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Zusammenfassung

In Dienstleistungsbranchen wie dem Luftverkehr bestimmt der Preis die Nachfrage. Um
den Umsatz zu maximieren, müssen Fluggesellschaften die Nachfrageelastizität des Preises
auf der Mikroebene (täglich für jeden Flug ) vorhersagen, um ihre Preisstrategie so zu opti-
mieren, dass der richtige Kunde das richtige Produktbündel zur richtigen Zeit kauft.

Diese Arbeit leistet einen Beitrag zur Literatur des Operations Research und der Statistik,
indem zwei Modelle zur Schätzung der Preissensitivität von Fluggästen bei Flugreisen mit
variablen Preisableitungen vorgestellt werden.

Neben der Schätzung der Preissensitivität wird die Anwendungen der Modelle auf das Er-
tragsmanagement von Fluggesellschaften, insbesondere auf die kontinuierliche Preisgestal-
tung und die Kundensegmentierung, diskutiert. Da die Ertragsmanagementsysteme der
Fluggesellschaften die Nachfrage über den Preis steuern, wird zudem die Preisendogenität
berücksichtigt.

Das erste Modell, ein erweitertes verallgemeinertes additives Modell, geht von einer
Buchungsintensität als Funktion Kovariaten auf Buchungs- und Flugebenen aus,
einschließlich nichtlinearer Effekte, die semiparametrisch mit Hilfe von penalisierten Splines
modelliert werden. Durch die Anwendung monotoner ANOVA-artiger glatter Interaktio-
nen bis hin zur bivariaten Ebene können erhebliche Variationen in der Preissensitivität
identifiziert und die Prognosegenauigkeit zu gängigen Alternativen übertroffen werden.
Darüber hinaus bietet der vorgeschlagene Ansatz einen effizienten Weg zur Implemen-
tierung einer kontinuierlichen Preisgestaltung Mittels einfacher mathematischer Funktio-
nen. Des Weiteren wird eine Feldstudie durchgeführt, welche bestätigte, dass der neue
Modellierungsansatz zur Umsatzsteigerung von durchschnittlich 6% führt.

Der zweite Ansatz, ein Finite-Mixture-Modell mit kovariatenabhängigen
Mixture-Wahrscheinlichkeiten, reduziert die Komplexität des verallgemeinerten additiven
Modells, da keine hochdimensionalen Glättungsfunktionen zur Erfassung variabler Preis-
ableitungen geschätzt werden müssen.

Im Vergleich zum verallgemeinerten additiven Modell, das eine einzige Buchungsintensität
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mit zahlreichen Glättungsfunktionen modelliert, geht das Finite-Mixture-Modell davon
aus, dass Schwankungen in der beobachteten Zahlungsbereitschaft der Fahrgäste auf die
Heterogenität der Kunden zurückzuführen sind. Das Mixture-Modell wird für einen Daten-
satz von über einer Million täglicher Buchungen für 9.602 Linienflüge auf einer Kurzstrecke
über zwei Jahre hinweg geschätzt. Die Schätzungen verdeutlichen eine umfangreiche la-
tente Segmentierung der Fluggäste, welche sich in zahlreichen Kovariateneffekten deutlich
unterscheiden. Das kalibrierte Modell kann die Nachfrage- und Preiselastizität für Flüge
quantifizieren, die an verschiedenen Tagen vor dem Abflug gebucht werden. Da das Mod-
ell interpretierbar ist, können Prognosen auch unter unvorhersehbaren Szenarien erstellt
werden. Obwohl unser Modell auf der Grundlage von Daten kalibriert ist, welche vor
COVID-19 erhoben wurden, dürften viele empirische Erkenntnisse auch dann noch gültig
sein, wenn sich der Flugverkehr in der Zeit nach COVID-19 normalisiert.
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Abstract

For service industries such as air travel, pricing drives demand. To maximize revenue,
airlines have to predict the demand-elasticity of the price at the micro-level to optimize
their pricing strategy such that the right customer buys the right product bundle at the
right time.

This thesis contributes to the literature of operation research and statistics by presenting
two models for estimating the passengers’ price sensitivity for air travel with variable price
derivatives at the daily booking and individual flight level. Furthermore, the models’
applications to airline revenue management, particularly continuous pricing and customer
segmentation, are discussed. Additionally, as airline revenue management systems control
demand by price, price endogeneity is considered.

The first, an augmented generalized additive model, assumes a booking intensity as a
function of booking and flight level covariates, including nonlinear effects modelled semi-
parametrically using penalized splines. The application of monotonicity constraint ANOVA-
type smooth interactions up to the bivariate level can identify substantial variations in price
sensitivity and exceed state-of-the-art alternatives’ predictive performance. The proposed
approach offers a simple and efficient way to implement continuous pricing with a closed-
form solution. Furthermore, a field study is conducted, which results in a revenue increase
of 6% on average.

The second approach, a finite mixture model with covariate-dependent probabilities, re-
duces the generalized additive model’s complexity by not estimating high dimensional
smoothing functions to capture variable price derivatives.

Compared to the generalized additive model, which models a single booking intensity with
numerous smoothing functions, the finite mixture model assumes fluctuations in the ob-
served passenger willingness to pay to originate from customer heterogeneity. The mixture
model is estimated for a unique dataset of over one million daily counts of bookings for
9,602 scheduled flights on a short-haul route over two years. A rich latent segmentation is
uncovered, along with strong covariate effects. The calibrated model can quantify demand
and price elasticity for flights booked on different days before departure. As the model is
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interpretable, forecasts can be created even under unforeseeable scenarios. For instance,
while our model is calibrated on data collected before COVID-19, many empirical insights
will likely remain valid as air travel slowly recovers in post-COVID-19 times.
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Chapter 1. Introduction

This thesis is the result of the interdisciplinary project between the AirABC, specifically the
Resort of Revenue Management and Operation Research and the Department of Statistics
of the Ludwig Maximilians University Munich. The project’s research question is whether
integrating accurate willingness to pay estimates for airfares into AirABC’s revenue man-
agement system can improve revenue.

1.1 Motivation

The different ways airlines change the fare of a flight depend upon their ability to discrim-
inate between passenger requests wanting to travel from an origin- to a destination airport
(OD) with a possible transfer point (Yeoman and McMahon-Beattie, 2010, p. 110). Em-
bedding the work into the existing literature of operation research and applied statistics
and motivating its relevance, it is crucial to understand the logic of how AirABC’s revenue
management system functions.

Revenue Management:

Even before the advent of COVID-19, profits in the airline industry were notoriously low.
For example, the industry average net margin was only 3.1% in 2019 (IATA, b). Revenue
management helps airlines increase their thin margin by about 4-5% (Talluri and van
Ryzin, 2005, p. 10). Revenue management practices ensure products are sold to the right
customer at the right price (Yeoman and McMahon-Beattie, 2010, p. 9).

Figure 1.1 illustrates a small network of three airports (A,B, and C). Each dotted line is

3

1

0
Legend:

Airport

Offered itinerary

Remaining capacity
for itinerary

1

AirABC
Networki j

j

k l

Figure 1.1: Example of an airline network with three airports (A,B, and C). The remaining capacity is 3
for A to B, 1 for B to C, and 0 for A to C. There are four passenger requests (i, j, k, and l), three for the
OD,A to B and one for OD,A to C.

one itinerary with the number giving its remaining capacity (available seats) as there is
four demand for the A to B connection, passenger j going from A to C via B and i, k, l
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1.1. Motivation

requesting A to B, but only three remaining seats available, the airline needs to decline
one of the passengers requests.

The (simplified) Capacity Steering Problem of AirABC:

To decide which passengers to accept/decline, the airline maximizes the revenue obtained
from selling the limited capacity (C) of a perishable asset (once the flight departs, seats
cannot be sold again) over a fixed selling horizon (typically one year). Typically, airlines
organize their fares (f) in (booking-) classes (labeled/indexed by letters of the Alphabet),
i.e., fA, . . . , fZ and control the seat-inventory by their availability (Yeoman and McMahon-
Beattie, 2010, p. 111). Assuming that the willingness to pay of passenger i, j, k and l is
wi < wj = wl < wk and that AirABC offers the fares fA = wi = 30 < fB = wj = wl = 70 <
fC = wk = 150, the airline wants to accept passenger j, k and l. To that end, a minimum
acceptable fare value is introduced, the bidprice (π) (Belobaba et al., 2015, p. 115). Thus,
only passenger requests are accepted where the fare value is at least the sum of π over all
the requested flight legs, i.e., f >=

∑
π. To maximize revenue, AirABC would choose its

bidprice values for each flight-leg (A-B,B-C,A-C) as follows:

• πA-B = min{fB, fC} = fB (to decline passenger i, fare fA cannot be offered),

• πB-C = 0 (there is no capacity constraint),

• πA-C = ∞ (no more seats are available; the flight is closed for sale).

As wi < fB = πA-B = wj = wl < wk and wj >= πA-B + πB-C = fB + 0, passenger i is
denied and j, k, l are accepted. Mathematically, the bidprice results from an optimization
problem, having a vast body of literature Pang et al. (2015); Talluri and van Ryzin (2005)
and requires the airlines’ knowledge of how much demand arrives at any given day before
departure (t) for every OD. For illustrative purposes, we assume that the passenger arrival
process N(t) for a specific OD follows a non-homogeneous Poison process with an arrival
rate

λ(t, f) = exp(η(t, f)) (1.1)

where η(t, f) = β0+β1t+β2f is the linear predictor. The optimization problem of a single
flight-leg (for instance A-B) is

max λ(t, f)f

s.t. λ(t, f) ≤ C(t) ∀ t ∈ {0, . . . , 365}
f ≥ 0

(1.2)

where we (ignoring cost for simplicity) maximize revenue (maxλ(t, f)f) under the con-
straints that we (ignoring overbooking) cant sell more than the available capacity (λ(t, f) ≤
C(t) ∀ t ∈ {0, . . . , 365}) and ensure that the offered fare is not negative (f ≥ 0). Solving

3



Chapter 1. Introduction

the Karush-Kuhn-Tucker conditions of Equation 1.2 yields the bid-price as:

π∗ =


log
(

D(t)
C(t)

)
α if C(t) ≤ D(t)

0 if C(t) > D(t)

∞ if C(t) = 0

(1.3)

where C(t) is the remaining seat-capacity at day t, D(t) = exp(β0)(1 − exp(β1t)) the

remaining demand to come, and α = −
(

∂η(t,f)
∂f

)−1

= − 1
β2

= is the negative reciprocal

demand elasticity parameter. Note that the third condition of Equation 1.3 is added to
ensure that no more passengers are accepted if all the seats are sold. It is important to
highlight two key insights into the application of bidprice control:

1. The bidprice control on leg-level does not maximize the revenue as it only considers
the capacity constraints on leg-level and not the passengers’ willingness to pay on
OD-level, see Belobaba et al. (2015, p. 61), Boyd and Bilegan (2003, p. 1371). For
instance, passenger j (going from A to C via B) may not decide to buy every single
leg (A-B and B-C) separately but instead, select to purchase the whole journey A-C
at once.

2. The second condition of Equation 1.3 shows that the bid price is zero when there is
less demand than capacity, which means that the airline would offer the lowest fare
even though there may be ’yieldable demand,’ i.e., passengers with a high willingness
to pay.

3. Unlike the demand-model 1.1 using f as an explanatory variable, all of the demand-
models used for OD-control in practice assume that demand between classes is in-
dependent (Fiig et al., 2010, p. 4). Since the dawn of low-cost airlines (LCC), the
segmentation criteria between classes have mostly vanished. The only difference be-
tween classes is the price, so the independence assumption between classes is violated
in practice.

The (simplified) Pricing Problem of AirABC:

Based on the example of Figure 1.1, passenger k buys (down to) fare fB = 70 even though
the willingness to pay is wk = fC = 150. Therefore, accepting passenger k for fB results
in a revenue loss of fC − fB = 80. To ensure that fare fB is not offered and to effectively
(price-) discriminate passenger requests, the airline adjusts the fare values to ensure that
fC ≥ πA-B > fB. Mathematically, the airline maximizes the margin over bidprice

max
f

λ(t, f)(f − π∗)

s.t. f ≥ 0
(1.4)

If we assume that λ(t, f) follows an exponential demand model, the (closed form) solution
of Equation 1.4 is:

f ∗ = α + π∗ (1.5)

4



1.1. Motivation

where the α-parameter is the margin and π∗ the bid-price as defined by Equation 1.3.
Even if π∗ = 0, the airline charges a fare value of at least α. If airlines organize their
fares in (booking-) classes fA, . . . , fZ , selecting a fare value from a continuous range is
impossible. As mentioned earlier, the concept of fare adjustments, as discussed by Fiig
et al. (2010), ensures that the offered fare maximizes the revenue for the case where airlines
need to offer fares from a discrete selection of classes. For the example of Figure 1.1, the
airline calculates the revenue for each possible option. Offering the A-B-connection for a
fA results in a revenue of 3fA = 90. For class B the revenue is 2fB = 140 and fC = 150
for class C. The adjustment fare (f ‘) is defined by the marginal revenue contribution of
receiving an additional booking in a particular class and requires the airlines’ knowledge
of how much the demand decreases if the price increases (the price elasticity of demand).
Mathematically, the fare adjustment for class A is the revenue difference to the next higher
class, i.e., 3fA − 2fB = 90 − 140 = −50, divided by the difference in demand 3 − 2 = 1,
i.e., f ‘

A = −50. Therefore, the airline would not offer class A as it loses 50 revenue. The
adjusted fare for class B is f ‘

B = (2fB−fC)/(2−1) = (140−150)/1 = −10. Thus, B is not
offered. Note that the highest fare fC is not adjusted. To ensure that passenger k books
its ticket for fare fC , the availability control mechanism of AirABC uses the adjusted fares
f ‘ instead of the actual fares f . As f ‘

A, f
‘
B < πA-B, only class C with fare fC is available,

and the maximum revenue is obtained.

To apply fare adjustments, it is vital to highlight that the price derivative of the linear
predictor of Equation 1.1 needs to change within the variables the airline wants to use for
price discrimination. Remember, that the margin parameter α of the optimal fare f ∗ 1.5 for
η(t, f) = β0+β1t+β2f is α = − 1

β2
. Therefore, the margin will not change even though the

airline may suspect that the passengers’ willingness to pay differs for requests at a specific
time before departure and itinerary. The solution to this problem is the identification of
relevant interaction effects. For instance, to discriminate passenger requests at the time of
booking, the airline needs to add the function f(t, f) = β3tf to η(t, f), which results in
α = − 1

β2+β3t
.

Disentanglement:

To discriminate between passenger requests, applying fare adjustments and bidprice de-
fines the AirABCs revenue management OD system. The literature, see Pölt (2016,
p. 238), Vinod (2016), and Doreswamy et al. (2015) acknowledges that a OD-system out-
performs the leg-system in terms of revenue gain. Despite the superior revenue perfor-
mance, OD-systems require unfeasible amounts of demand-forecasts (Boyd and Bilegan,
2003, p. 1377), which makes its application numerically unstable and results in revenue
loss. With an average of 3.000 flights per day1 × 366 days of booking × 20 fare-classes ×
2 (inbound-/outbound-differentiation, about 43.920.000 demand forecasts need to be cre-
ated every day. Regardless of the vast number of forecast units, the number increases even
further if price discrimination) is performed for different demand segments, considering the
passengers’ length of stay. As the number of bookings per day is only a small percentage

1pre-COVID19-times there was an average of 90.000 flights per month
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of the number of forecast units (and specifically does not change if the airline increases
the demand forecast’s granularity), the amount of bookings per demand estimate goes to
zero. Bartke (2014, Chapter 7), who termed this issue the problem of small numbers, shows
that the mean-squared estimation error becomes arbitrarily large. To avoid obtaining a
forecast on OD-level but maintaining its benefits, Pölt et al. (2018) proposed the idea of
disentanglement.

Instead of estimating demand on OD-level for capacity control, a model for network con-
tribution depending on the bid price, time to departure t, and itinerary information such
as travel time, departure day of the week, and departure time is estimated. Consequently,
airlines can solve the pricing- and capacity-steering problem independently. Specifically, to
solve the pricing problem, disentanglement allows (1) application aggregation techniques
to counter the aforementioned ’problem of small numbers’ and (2) not having to main-
tain a complete data set for every passenger reservation. Hence, data from staff travel or
redemption can be removed if modeling the price elasticity of demand.

1.2 Outline

This thesis’s contribution focuses on the pricing problem of AirABC, specifically identi-
fying demand models that allow AirABC to price discriminate effectively. To that end,
the demand model needs variable price derivatives for any dimension where the passen-
gers’ willingness to pay shows significant fluctuations. This thesis proposes two modeling
approaches of retail demand for air travel and ticket price elasticity at the daily booking
and individual flight level. Both models assume that daily bookings are modeled as a
nonhomogeneous Poisson process concerning the time to departure.

The first approach, an augmented generalized additive model (e.g. Wood, 2017), is de-
scribed in Chapter 2 consisting of five sections. The augmentation concerns two aspects.
Firstly, to estimate a full factorial model with all possible uni- and bivariate smooth func-
tions of covariates, ANOVA type interactions (Lee and Durbán, 2011) are used. Secondly,
to ensure that demand decreases in price, smooth functions containing price must be con-
straint (Pya and Wood, 2014). The outline of Chapter 2 is as follows. Section 2.2 briefly
introduces the statistical methodology and reviews related literature on demand estima-
tion and dynamic pricing. Section 2.3 outlines the model. Section 2.4 discusses the results
of applying the model to empirical airline data and presents a forecasting benchmark.
Section ?? highlights the practical applicability within the airline domain by demonstrat-
ing how the proposed algorithm can return continuous or discrete prices. Section ?? also
documents a field study implementing our approach and dynamic pricing. The chapter
concludes with section 2.6, giving airline managers insights into how adjustments to the
augmented generalized additive model allow describing changes to passenger demand and
price elasticity at the aggregated level due to COVID-19.

The second modeling approach is presented in Chapter 3. Here, it is assumed that fluc-
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tuations in willingness to pay and price derivatives originate from customer heterogeneity.
Therefore, the booking intensity is captured as a function of booking and flight level co-
variates, including nonlinear effects modeled semi-parametrically using penalized splines.
The customer heterogeneity is incorporated using a finite mixture model, where the latent
segments have covariate-dependent probabilities. Chapter 3 is organized into four sec-
tions. Section 3.2 provides a brief overview of part of the extensive literature on modeling
airline passenger demand considering customer heterogeneity. Section 3.3 introduces the
employed dataset, while Section 3.4 outlines the flexible Poisson model. The latter includes
the mixture model, penalized spline smoothing, penalized maximum likelihood estimation,
and an endogeneity correction approach. Section 3.5 contains the empirical analysis.

1.3 Disclaimer

The methodology and the presentation of its results depend on data gathered from 2012
to 2015. Since the beginning of the coronavirus pandemic in Feb 2020, the entire airline
industry has been in the midst of an unprecedented crisis. Though many of the results
presented in this thesis only apply to pre-corona times, we outline the methodological
applicability to post-corona times in the respective chapters.
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2.1. Abstract

2.1 Abstract

Pricing drives demand for service industries such as air transport, hotels, and car rentals.
To optimise the price, firms have to predict real-time customer demand at the micro level
and optimise the price. This paper contributes to revenue management by introducing a
nonparametric statistical approach to predict price-sensitive demand and its application
to continuous pricing.

Continuous pricing lets service companies maximise revenue by using customers’ willing-
ness to pay. However, it requires accurate demand estimations, particularly of customers’
price sensitivity. This paper introduces an augmented generalised additive model to esti-
mate price sensitivity, which identifies substantial variations in price sensitivity, exceeds
the predictive performance of state-of-the-art alternatives, and controls for price endo-
geneity. In addition, the demand model has variable price derivatives enabling continuous
pricing.

The proposed approach offers a simple and efficient way to implement continuous pricing
with a closed-form solution. Our research also highlights the relevance of considering the
problem of price endogeneity when estimating price-sensitive demand based on observations
that resulted from prior pricing decisions.

We demonstrate how continuous pricing is applied using empirical airline ticket data. We
document a field study, which shows a revenue increase of 6% on average and outline how
the approach applies to turbulent market conditions caused by the COVID-19 pandemic,
the surge in inflation since mid-2021, and the start of the Ukraine war in April 2022.

2.2 Introduction

2.2.1 The Revenue Management Environment

As outlined by IATA (a), recent efforts by the International Air Transport Association
(IATA) revolutionize how airlines retail, distribute, and sell their products. In partic-
ular, reducing distribution costs and increasing control of the offered content is in the
focus (Bingemer, 2018). From the passengers’ point of view, the airline initiative leads to a
new shopping experience with more personalized offers (Wittman and Belobaba, 2017), in-
creased accuracy in pricing (Wittman and Belobaba, 2019), and more convenient customer
touch points (Sankaranarayanan and Lalchandani, 2019) to sell new products.

Viewing the changes within the airline industry from a revenue management point of
view outlines that the classical practice of revenue management (availability control of
booking classes) needs to change accordingly to tap into the newfound revenue potential
to increase the airlines‘ profitability. One of the potentials that airlines discovered recently
is continuous pricing, where the airline decides to offer one of many possible price fixed
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price points; within continuous pricing, the price moves continuously from a lower to an
upper bound.

Besides implementing new revenue management practices, past years have shown that
airlines need to be capable of quickly adapting to changing market conditions. Due to
the global COVID-19 pandemic, since the beginning of 2020, the global aviation industry
has been struck by an unprecedented crisis. Furthermore, the surge in inflation since mid-
2021 and the start of the Ukraine war in April 2022 have added additional complexity
and uncertainty to the market, making traditional methods of price elasticity estimation
within airline revenue management even more challenging. These events underscore the
need for alternative approaches and careful consideration when analyzing current market
conditions. From an airline operations perspective, all the revenue management systems
depending on demand-forecasting models for price optimization need to be corrected as
they rely on data recorded before the start of market turbulences, such as the COVID-
19 pandemic. This section gives airline managers insights into how passenger demand
and price elasticity change on an aggregated level by analyzing data gathered during the
COVID-19 pandemic.

2.2.2 Motivation and Research Goals

Similar to related work of Arandia (2013), Wu and Akbarov (2012), and Zhang and Kou
(2010), we model customer arrivals by a nonhomogeneous Poisson process (NHPP). Thus,
the Poisson intensity defines the expected number of arrivals per day. The Poisson intensity
is modeled as a function of covariates and accounts for variable price sensitivity.

The proposed approach considers multivariate functional dependencies between price and
additional covariates to capture the unknown structure of price sensitivity. However, it does
not assume a known functional form but approximates functional components via penalized
splines. A penalized spline approximates an unknown function by a linear combination of
basis functions. Common bases are B-splines (de Boor, 1978), cubic (Gu, 2002, p.2) or,
thin-plate splines (Wood, 2017, p.150). We refer to Wood (2017) for technical details and
to Marx et al. (2016) for a general overview.

The approach presented here includes regularisation parameters (e.g. Eilers and Marx,
1996) to control the trade-off between flexibility and generality. Similar to Blundell et al.
(2012) or Brezger and Steiner (2008), we additionally impose a monotonicity constraint on
functions that contain price such that demand decreases when price increases. As pointed
out by Tutz and Leitenstorfer (2007), imposing monotonicity also improves the validity
of price-sensitivity estimates. To this end, we combine the penalized smoothing spline
ANOVA type interaction model of Lee and Durbán (2011) with the shape-constrained
generalized additive model framework of Pya and Wood (2014). Considering smoothing
spline ANOVA-type interactions allows us to disentangle changes in the volume of demand
and related pricing effects.

Our work contributes to the literature on service demand estimation and pricing. Firstly,
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it extends the class of nonparametric models by augmenting generalized additive model
framework (e.g. Wood, 2017), combined with monotonicity constraints (Pya and Wood,
2014) and ANOVA type interactions (Lee and Durbán, 2011). Secondly, we extend the
model and correct for price endogeneity.

To illustrate the use of the resulting demand estimates, we will also present a dynamic
pricing approach. To do so, given opportunity costs, we assume to define the optimal
price via a closed-form solution as the sum of a margin and a cost component. Based on
empirical airline data, we show that the proposed approach outperforms a selection of state-
of-the-art demand estimation routines regarding forecasting accuracy. These competing
approaches include the parametric model of Fiig et al. (2014), the nonparametric model
of Vulcano et al. (2012), and the heuristic of Weatherford and Pölt (2002). Finally, we
document a field study that verifies the model’s ability to increase revenue by 6% on
average in the airline setting. In the remainder of this paper, Section 2.2.3 reviews related
literature on demand estimation and dynamic pricing. Section 2.3 outlines the model.
Section 2.4 discusses applying the model to empirical airline data and presents results
from benchmarking our approach to alternatives. Section ?? presents a dynamic pricing
algorithm. The proposed algorithm can return continuous or discrete prices. The practical
applicability of our approach within the airline industry is highlighted within section ??,
where the application of dynamic pricing is demonstrated through a field study. Finally,
Section 2.7 concludes the paper.

2.2.3 Literature Review on Demand Estimation and Dynamic Pricing

The literature on demand estimation given functional structures can be categorized into two
groups. The first group includes parametric and linear models, which implicitly assume
constant price sensitivity. An example is the parametric, multiplicative, and non-linear
forecast model (FCST) of Fiig et al. (2014). In FCST, the upsell probability captures price
sensitivity and is assumed to be independent of other confounders. To model a customer
choice, multinomial logit (MNL) models are proposed by Vulcano et al. (2010); Newman
et al. (2014); Dai et al. (2014), and Xie et al. (2016). All these approaches assume a linear
relationship between covariates and the utility defining the choice probability.

The second group represents nonparametric techniques that allow for more complex con-
cepts of price sensitivity. Relaxing the linearity assumption, Vulcano et al. (2012) in-
troduces a nonparametric approach based on the expectation maximization (EM) algo-
rithm. They employ a mixture of a Poisson- and MNL distribution, where a multinomial
utility choice model links the booking decision to a choice probability. The model also
differentiates primary and secondary demand, i.e., assuming customers‘ first choice to be
available.

Several contributions focus on NHPP and propose data-driven techniques to capture a
dynamic arrival rate while abandoning pre-defined functional structures. To model the
NHPP’s cumulative intensity function nonparametrically, Leemis (1991) proposes piecewise-
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linear interpolation. Zhang and Kou (2010) analyze the doubly stochastic Poisson process
(or Cox process) and show that nonparametric kernel functions improve the fit for high
arrival rates. Beyond parametric or nonparametric demand functions, heuristics use im-
putation when demand observations are censored. In revenue management, this challenge
arises when the product is not offered during part of the sales horizon. In such situa-
tions, Weatherford and Pölt (2002) proposed substituting demand with the mean number
of bookings.

The (dynamic) pricing literature also discusses parametric versus nonparametric demand
estimation approaches. Given Poisson-distributed customer arrivals, where a Bernoulli
variable defines the purchase probability, Avramidis (2013) proposes a way to estimate
arrival rates and purchase probabilities. The authors show their approach can outper-
form the estimator introduced in Besbes and Zeevi (2009). Given a linear demand-price
relationship, Keskin and Zeevi (2014) proposes the greedy iterative least squares (GILS)
approach. Extending this work, Besbes and Zeevi (2015) shows that assuming a linear
price-demand relationship does not significantly diminish revenue under reasonably gen-
eral conditions. Including additional covariates such as market expenditures, geographical
information, and socio-economic attributes, Qiang and Bayati (2016) extend the GILS
approach. Also, assuming linearity for every covariate, the authors show asymptotically
optimal performance.

Abandoning the linearity assumption, Farias et al. (2013) captures customers’ choice be-
havior to predict revenue gains. The authors conclude that nonparametric techniques are
better suited for large-scale automatization as they rely on something other than expert in-
formation. Proposing a nonparametric method that uses B-splines for approximation, Chen
et al. (2014) claims that nonparametric techniques are asymptotically robust if the demand
function is sufficiently smooth. The authors also show that misspecified parametric meth-
ods can cause substantial revenue losses.

Here, we propose differentiating models based on their demand function as seen in den
Boer (2015). The demand function may be static or dynamic. Unlike static demand func-
tions, where changes in pricing are motivated by limited capacity, we model demand via
uni-, and bivariate functions of price and other covariates. This setting renders the demand
function dynamics for confounding variables such as time. We contribute to nonparametric
dynamic pricing by non-linear relationships of demand and price to confounding variables,
which can also influence price sensitivity. We achieve this goal via a bivariate and penal-
ized B-spline setting. The resulting dynamic pricing algorithm relies on price derivatives,
which change dynamically over confounding variables. To consider scarce capacity, we as-
sume known opportunity cost to evaluate the margin and cost component separately. This
assumption enables subsequent optimization steps to consider separate capacity allocation
and revenue maximization. Revenue maximization solves a Cournot-type price optimiza-
tion problem. Pölt et al. (2018) describes a similar concept, concentrating on capacity
allocation.

Our work also contributes to research on price endogeneity. Price endogeneity causes bi-
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ased sensitivity estimates: Mumbower et al. (2014); Lo et al. (2015), and Petrin and Train
(2010) show that ignoring price endogeneity means underestimating the price coefficient.
Typically, instrument variables are suggested to cure endogeneity. Usually, the instrument
variable is a linear combination of (presumably) exogenous variables. Given a fitting instru-
ment variable, unbiased estimates result from a two-staged estimation procedure (Davidson
and MacKinnon, 1999).

In recent times, driven by the COVID-19 pandemic, the surge in inflation since mid-2021,
and the start of the Ukraine war in April 2022, the models’ capability to adjust to changing
market conditions has become an important feature. As described by Yeoman (2021), air-
lines need to accept COVID-19 as the new norm until the coronavirus pandemic disappears
from this planet. Yeoman (2022), analyses the impact of the Ukraine war and inflation on
price sensitivity and demand. To adjust how revenue management is performed, Vinod
(2021) suggests monitoring key revenue management metrics and taking corrective action
with demand and supply levers to make the revenue plan happen. To perform corrective
actions using the presented model framework of this paper, Bonciolini (2022) presented
a price elasticity monitoring method that automatically adjusts price elasticity estimates.
Similarly to adjustments to price elasticity, Gatti Pinheiro et al. (2022) introduced a shock
detector to identify positive and negative shocks in demand volume and willingness-to-
pay. Besides applying adjustments as proposed by Bonciolini (2022), our work shows that
the changing market conditions caused by the COVID-19 pandemic can be considered by
adding additional functions to the model.

2.3 Statistical Model and Estimation

This section outlines the statistical model class and introduces parameter estimation based
on a penalized likelihood procedure. We also describe the two-staged estimation ap-
proach.

2.3.1 Model Development

Let index i = 1, . . . ,M describe a flight connection between two cities. Let Ni(t) define

the number of accumulated bookings for flight i at the time t ∈
[
t
open
i , tclosei

]
, where the

interval represents the sales horizon during which product i is offered. Indexing t
open
i and

tclosei of the sales horizon by i allows for individual sales horizons per product. We assume
that Ni(t

open
i ) ≡ 0, i.e., there are no observed bookings at the beginning of the sales

horizon.

We model the accumulated bookings Ni(t) as a Poisson process, such that the increments,
Ni(t)−Ni(t− 1) are Poisson-distributed with

P
({

Ni(t)−Ni(t− 1)
}
= yi,t

)
=

λ(t)yi,t

yi,t!
exp

(
− λ(t)

)
. (2.1)
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Equation (2.1), also includes the possibility of observing no bookings (yi,t = 0, referred to as
non-bookings). The Poisson intensity λ(t) accounts for changes in booking intensity and de-
pends on price and additional observable covariates. The covariates for product i at time t
with price pi,t are given by a covariate vector (x)i,t = (x1,i,t, . . . , xK2,i,t, pi,t, z1,i,t, . . . , zK1,i,t).
The index-sets I1 = {1, . . . , K1} and I2 = {1, . . . , K2} give the positions of the categorical
covariates xk,i,t, (k ∈ I1) and continuous covariates zk,i,t, (k ∈ I2). For categorical covari-

ates in I1, the kth variable takes values from the set Jk = {1, . . . , Gk}. This leads to the
model:

λ((x)i,t, t) = λ (x1,i,t, . . . , xK2,i,t, pi,t, z1,i,t, . . . , zK1,i,t) . (2.2)

The model aims to quantify the effect of price on booking intensity given covariates
zk,i,t, (k ∈ I2) and xk,i,t, (k ∈ I1). Thus, the effects of covariates on booking intensity
need to be specified. To this end, the model captures all bivariate interaction effects of the
continuous covariates by setting

log
(
λ((x)i,t, t)

)
= β0 +

∑
k∈I1

∑
j∈Jk

(1){xk,i,t=j}βk,j

+ fp (pi,t) + fp,t (pi,t, t) +
∑
k∈I2

fp,k (pi,t, zk,i,t)

+ ft (t) +
∑
k∈I2

fk (zk,i,t) +
∑
k∈I2

ft,k (t, zk,i,t) +
∑
k1<k2

k1,k2∈I2

fk1,k2 (zk1,i,t, zk2,i,t) .

(2.3)

Here, (1){xk,i,t=j} is an indicator function that equals one if the categorical covariate
xk,i,t = j ∈ Jk. The coefficient-vector (β)k∈I1 = (βk,1, . . . , βk,Gk

) quantifies the effect of

the kth categorical variable on the booking intensity. Similar to a full factorial design,
which analyses the effect of each covariate as represented by the univariate function f(·),
bivariate function f(·, ·) captures all interactions between covariates. For example, fp (pi,t)
determines the general level of price-sensitivity, and ft (t) describes the dynamics in the ar-
rival of bookings. The interaction effect fp,t

(
pi,t, t

)
quantifies how price-sensitivity changes

over the sales horizon.

To describe price sensitivity, we first isolate demand components unrelated to price. These
are captured by price-independent functions ft(·), fk∈I2(·), and ft,k∈I2(·, ·), f k1<k2

k1,k2∈I2
(·, ·).

In contrast, fp(·), fp,t(·, ·), and fp,k∈I2(·, ·) amend the slope of price, representing price-
sensitivity. When demand is price-sensitive, fewer bookings occur if the price is high, and
more bookings occur if the price is low. Monotonicity constraints as proposed in Pya
and Wood (2014) for functions fp(·), fp,t(·, ·), and fp,k∈I2(·, ·) ensure this. Appendix A.1
provides a detailed description and a technical discussion of the penalty setup. Further-
more, Appendix B.2 outlines the implementation to consider price endogeneity during the
estimation process.
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2.4 Empirical Data

To demonstrate the proposed approach, we apply it to airline booking data.

The empirical data set includes 1, 708, 236 bookings (yi,t > 0) for the economy compartment
as offered on eight European city pairs between April 1, 2012, and December 31, 2015.
Eight pairs of origin and destination (OD) create 16 point-to-point (P2P) connections, as
passengers can travel each connection in two directions. Each flight i is described by the
continuous covariates departure day of the year (YDAY, taking values from 1, . . . , 365) and
departure time (DTIME, taking values between 0 and 24). The dataset also includes daily
snapshots of the lowest available fare (pi,t). Each booking is attributed to one of 16 P2P
connections and one of the 10 to 14 fares offered.

When the airline records no bookings for flight i on the day t, a non-booking entry (yi,t = 0)
reports the offered price. Entries are further described by the categorical covariates booking
weekday (BDAY, taking the values Monday, . . . , Sunday), the departure weekday (DDAY,
taking the values Monday, . . . , Sunday), and the P2P connection. Flight, booking, and
availability data create a complete record of available and booked fares for the entire
booking horizon. The daily snapshot only covers price changes within one booking day.
Therefore, when multiple bookings for different prices occur on the same day, pi,t is observed
at a finer resolution than per day t. Appendix C.3 describes how an extension of model (2.3)
compensates for this.

We exclude flight departures on public or school holidays, major fairs, exhibitions, or
conferences. If a flight is canceled or re-scheduled, we maintain data from before the
adjustment and treat data collected after the change as a new flight. In consequence, we
consider 70,283 flights and 3,225 departure days.

Our analysis excludes bookings of fares with fewer restrictions than the lowest available
fare. From a pricing point of view, the revenue gain from such upselling could be modeled
separately. Here, we aim only to find the best price for the basic fare, as ancillary features
could complicate the estimation of the price sensitivity.

The analysis only considers ticketed bookings. It focuses on return tickets, which represent
95.5% of all bookings. Finally, to reduce the number of non-bookings, it only considers
the slice of the sales horizon that captures 99% of bookings. Table 2.1 summarises the
analyzed data set.

The first row lists the number of days in the sales horizon considered. The second row
describes the number of daily services. Row three and four report the number of bookings
(yi,t > 0) and non-bookings (yi,t = 0).
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Origin destination pair Booking horizon Daily services Bookings Non-Bookings
OD1 291 6 101,905 1,193,193
OD2 285 8 192,764 2,007,423
OD3 254 12 280,130 3,339,491
OD4 208 4 36,076 887,384
OD5 282 5 99,077 1,339,820
OD6 110 15 406,884 621,838
OD7 110 16 320,067 448,388
OD8 106 17 271,333 425,446

Table 2.1: Summary of data for the origin-destination pairs OD1 to OD8.

2.4.1 The Airline’s Pricing Model

As discussed in Appendix B.2, a prediction model for the airline’s pricing and a suitable
instrument variable are required to account for price endogeneity. As airline revenue man-
agement assumes fixed and variable costs to be constant across flights operating on the
same route, these cost types are unsuitable instruments. Instead, we propose to use the
opportunity cost of capacity as an instrument variable.

Airline revenue management often employs the opportunity cost of capacity as a bid-
price for capacity allocation. The bidprice is known for future departure days and varies
across bookings, as each booking increases the bidprice to acknowledge scarce capacity.
This mechanism introduces simultaneity between demand and price, i.e., price influences
demand and vice versa. Furthermore, when flights are part of a transfer itinerary, the
bidprice accounts for network effects. Therefore, the bidprice is not entirely determined
by the demand for a single flight.

However, this instrument variable only varies if the capacity is scarce. Therefore, it is only
useful when demand exceeds capacity. When the natural logarithm of the bidprice is the
instrument IVi,t, the functional structure of the first-stage regression equation (6) is:

ηi,t = θ0 + θ1 log(IVi,t) +
6∑

j=1

(1)BDAYi,t=jθ1,j + st(t) + s1(DTIMEi,t) + s2(YDAYi,t). (2.4)

2.4.2 The Airline’s Demand Model

The empirical data set records three categorical covariates: DDAY, BDAY, and P2P.
Segmenting by the DDAY and P2P induces a full interaction between these variables
and any other covariate that describes the demand model (2.2). Therefore, we estimate
7 × 16 = 112 separate models at this level. As the categorical variable BDAY is closely
associated with the booking time t, the model includes it to capture potential changes
in booking intensity over the sales horizon. Incorporating BDAY as the only categorical
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variable (taking BDAY=Sunday as the reference category) yields the first index set as
I1 = {1} with J1 = {1, . . . , 6}, where 1 represents Monday, 2, Tuesday,...,6 Saturday.

In addition to price pi,t and booking time t, the data records continuous covariates DTIME
and YDAY. I2 = {1, 2} defines the second index set. The covariate vector is, therefore
(x)i,t = (BDAYi,t, pi,t,DTIMEi,t,YDAYi,t, t). Thus, a typical data row for flight i with
booking day Monday (reported as 1), ticket price $50, departure time 6:00 am (reported
as 6), and departure date on January 2 (reported as 2) at the day of departure (t = 0) is
(x)i,t = (1, 50, 6, 2, 0). The airline’s demand model is as follows:

log
(
λ((x)i,t, t)

)
= β0 + βξ̂ ξ̂i,t +

∑6

j=1
(1)BDAYi,t=jβ1,j + fp (pi,t)

+ fp,t
(
pi,t, t

)
+ fp,1 (pi,t,DTIMEi,t) + fp,2

(
pi,t,YDAYi,t

)
+ ft (t) + f1 (DTIMEi,t) + f2 (YDAYi,t)

+ ft,1 (t,DTIMEi,t) + ft,2
(
t,YDAYi,t

)
+ f1,2

(
DTIMEi,t,YDAYi,t

)
.

(2.5)

Here, coefficient-vector (β)1 = (β1,1, . . . , β1,6) quantifies the effect of the booking day on
the demand intensity.

2.4.3 Estimation Results

We look at one route, OD8, and DDAY = Thursday, to demonstrate the estimation results.
Figure 2.1 shows the smooth components st(t), s1(DTIMEi,t), and s2(YDAYi,t) from the
first-stage. The left panel shows the estimate of st(t), which indicates that prices increase
over the sales horizon. The estimate of s1(DTIME) (middle panel) shows there exists a
strong departure time pattern. Flights departing around 8:00 am and 7:00 pm are the
most expensive. The right panel shows the estimate of s2(YDAY). The lack of a strong
pattern indicates little price variation over the days of the year.

Figure 2.2 shows second-stage estimates of demand model (2.5). Our analysis concentrates
on four aspects. All covariates except the one indicated in the caption are fixed in each
panel. The panels on the left reveal how price and demand vary over departure time (a) and
year day (c). Panels (b) and (d) show how demand varies independently of the price. Panel
(a) indicates that price sensitivity depends on departure time. Peak flights at 7:00 am and
7:00 pm show a smaller price slope than midday flights. Panel (c) accounts for seasonal
price sensitivity changes but only shows moderate fluctuations. Panel (b) confirms that
demand varies along the time-to-departure axis by departure time. The step-like pattern
in panel (b) arises from the influence of BDAY: fewer bookings occur on weekends than on
weekdays.

Table 2.2 reports the parameter estimates of the first (2.4) and second-stage (2.5), as
well as the estimated standard errors (in brackets). The parameter estimates for the
second stage show fewer bookings on weekends than on weekdays. When the second stage
considers price endogeneity, there are about ten times more bookings for BDAY=Monday
than on the reference category BDAY=Sunday (exp(−2.01) ≈ 0.13 to exp(−2.01+2.29) ≈
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1.32). For the first stage, BDAY estimates are negative for weekdays and positive for the
weekend. Thus, weekdays combine high demand with low prices, while weekends combine
low demand with high prices. Apart from the BDAY effect, we also report the estimates
of IV (only relevant for the first stage) and first-stage residual ξ̂ (only suitable for the
second stage). In the first stage, IV is significantly different from zero (with t-statistic
= 0.07/0.0004 = 175), which satisfies one requirement of the two-staged procedure. The

parameter estimate for the first-stage residual ξ̂ represents the working parameter of a
univariate spline with one inner knot-interval and a monotonicity restriction according
to Pya (2010, p. 45). The BDAY estimates show that considering the first-stage residual ξ̂
does not change the parametric coefficients of BDAY. As the second stage, which controls
for price endogeneity, shows smaller values for AIC and BIC, the remainder of the paper
focuses on the corresponding model setup with endogeneity considered. Appendix D.4
discusses the models’ prediction accuracy assessment.

2.5 Dynamic Pricing

This section demonstrates the demand model’s applicability to dynamic pricing. The re-
sulting pricing leads to an offered price that maximizes the revenue gained from sales.
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Figure 2.1: Estimate of the three smooth functions st(t), s1(DTIME), and s2(YDAY) for the first-stage
model (2.4). Solid line = estimate, dotted lines = 99% confidence band.
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2.5.1 Continuous Prices

This paper assumes dynamic pricing with support on R+ is possible. With revenue gain
ri,t from selling a ticket at a price pi,t, we calculate the total revenue as λ((x)i,t, t)ri,t. The
opportunity cost of selling capacity to λ((x)i,t, t) many passengers is λ((x)i,t, t)πi,t. When
the capacity constraint is irrelevant, we can set πi,t = 0 ∀ i, t. According to equation (2.2),
the proposed demand model includes a multiplicatively separable demand rate with expo-

p

100

200

300

DTIME
10

15

20

D
e
m

a
n
d
 in

te
n
s
ity 0.2

0.4

0.6

0.8

(a) t = 0, YDAY = 15

t

0

20

40

60
DTIME

10

15

20

D
e
m

a
n
d
 in

te
n
s
ity

2

4

6

8

10

(b) p = 49.5, YDAY = 15

p

100

200

300

YDAY100

200

300

D
e
m

a
n
d
 in

te
n
s
ity

0.2

0.4

0.6

0.8

(c) t = 0, DTIME = 8

D
T
IM

E

10

15

20 YDAY100

200

300

D
e
m

a
n
d
 in

te
n
s
ity 0.4

0.6

0.8

1.0

(d) p = 49.5, t = 0

Figure 2.2: Estimates of the conditional demand intensity for OD8 and DDAY = Thursday. The variables
appearing in each panel’s title are fixed to a specific value (e.g., t is fixed to 0 and YDAY to 15 for panel
(a). Every panel shows how the demand intensity (vertical axis) changes within the covariates that are
shown at the horizontal axis (e.g. the demand intensity within the panel (a) changes in departure time
and peaks at 8:00 am and 7.00 pm).
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Stage
First Second

Endogeneity considered
yes no

Intercept 4.8223(0.0022) −2.0104(0.3877) −1.8381(0.1084)
log(IV) 0.0700(0.0004) - -

ξ̂ - −0.0020(0.0013) -
BDAY = Monday −0.0253(0.0025) 2.2966(0.1123) 2.2946(0.0358)
BDAY = Tuesday −0.0293(0.0025) 2.2116(0.1311) 2.2079(0.0452)
BDAY = Wednesday −0.0263(0.0025) 2.2363(0.1406) 2.2326(0.0498)
BDAY = Thursday −0.0224(0.0025) 2.1077(0.1366) 2.1019(0.0504)
BDAY = Friday −0.0129(0.0025) 2.1083(0.1273) 2.1050(0.0460)
BDAY = Saturday 0.0064(0.0028) −0.3627(0.1692) −0.3627(0.0516)
AIC 1457362 106957.9 107131.0
BIC 4741586 107920.4 108034.5

Table 2.2: Parameter estimates for OD8 and DDAY=Thursday. Standard errors in brackets.

nential price sensitivity. From this, we derive the optimal price p⋆i,t by solving

max
pi,t

{
λ((x)i,t, t)ri,t − λ((x)i,t, t)πi,t

}
⇔

∂
(
λ((x)i,t, t)ri,t − λ((x)i,t, t)πi,t

)
∂pi,t

!
= 0. (2.6)

To efficiently calculate the derivative of λ((x)i,t, t) concerning pi,t, we can take advantage
of the fact that the derivative of a B-spline is a linear combination of lower order B-
splines (Marsh and Marshall, 1999). Solving (2.6), i.e., maximizing the total revenue gain
over cost, yields the optimal value for ri,t, say r⋆i,t. To calculate the corresponding optimal
price-value p⋆i,t, we have to derive the amount of variable cost (including fuel, onboard
service, and taxes) that has to be added to ri,t to achieve price pi,t (the amount is defined
by the difference pi,t − ri,t). We do so by solving the regression problem

pi,t − ri,t = α0 + α1pi,t + ϵi,t

ri,t = −α0︸︷︷︸
≡γ0

− (1− α1)︸ ︷︷ ︸
≡γ1

pi,t + ϵi,t. (2.7)

The difference between r⋆i,t and p⋆i,t is determined by γ0 = −α0 and γ1 = 1 − α1. The
parameter α0 represents the constant variable cost amount that does not depend on the
ticket price, e.g., fuel or onboard service. The parameter α1 gives the variable cost factor
that increases the price, e.g., taxes. If model (2.3) is linear in pi,t, the maximization
problem (2.6) has the closed-form solution

p⋆i,t = − 1

(1)2sβξ̂ + f ′
p + f ′

p,t(t) +
∑

k∈I2 f
′
p,k(zk,i,t)︸ ︷︷ ︸

profit margin

+
α0

1− α1

+
πi,t

1− α1︸ ︷︷ ︸
cost margin

. (2.8)
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A detailed description of how to derive (2.8) by solving (2.6) is found in Appendix F.6.
Here, f ′

p, f
′
p,t(t), and f ′

p,k(zk,i,t) correspond to the derivative of fp, fp,t(t), fp,k(zk,i,t), k ∈ I2

with respect to pi,t, e.g., f ′
p =

∂fp(pi,t)

∂pi,t
. Assuming linearity of pi,t, f ′

p is only a scalar.

Factor βξ̂ only appears in (2.8) if (1)2s indicates that price endogeneity is considered,
where (1)2s = 1 if the estimation is two-staged and (1)2s = 0 otherwise. The influence of

ξ̂ is constrained such that βξ̂ < 0.

By monotonicity of (2.2) within pi,t, every derivative f ′
p, f

′
p,t(t), f

′
p,k(zk,i,t) is strictly nega-

tive, rendering the profit margin positive. The smooth components ft, fk, ft,k, fk1,k2 , k, k1, k2 ∈
I2, k1 < k2 and parametric parts xk,i,t, (k ∈ I2) are not relevant to price-sensitivity and van-

ish when the derivative of pi,t is calculated. Thus
∂λ((x)i,t,t)

∂pi,t
= λ′((x)i,t, t) = (1)2sβξ̂ + f ′

p +

f ′
p,t(t) +

∑
k∈I2 f

′
p,k(zk,i,t) < 0.
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Figure 2.3: Estimated derivative λ̂′((x)i,t, t) for DDAY=Thursday, t=0 and YDAY=15 for different

DTIME values. Each line shows the changes of the derivative λ̂′((x)i,t, t) for a specific OD.

Figure 2.3 shows how each OD’s derivative λ′((x)i,t, t) evolves over DTIME for DDAY=Thursday,
t = 0, and YDAY=15. Note that decreasing price-sensitivity goes along with increasing
λ′((x)i,t, t). Aside from the amplitude of the pattern, every OD experiences a decline in
price-sensitivity during the morning and evening (|λ′((x)i,t, t)| becomes smaller), meaning
that passengers are willing to pay more if traveling during these hours of the day.
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As (2.8) shows, p⋆i,t is the sum of the profit margin and cost. Whenever price-sensitivity
decreases, the value of λ′((x)i,t, t) increases. Therefore, the optimal price p⋆i,t increases by
the increasing value of the profit margin. Thus, the offered price p⋆i,t inversely depends on
the estimated price sensitivity. The lower bound of p⋆i,t is the cost of production. Depending
on the application, this bound is also a function of opportunity cost πi,t.

Figure 2.4 shows p⋆i,t for t = 0, DDAY=Thursday, and day of the year 15 for OD6 and OD8
with opportunity cost πi,t ∈ {1, 20, 100}. Appendix G.7 induces supplementary illustrations
for the other OD. The general shape of each curve is defined by the derivative function
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Figure 2.4: Optimal price values for OD6, OD8 at DDAY=Thursday for opportunity cost πi,t = 1, 20, 100.

λ′((x)i,t, t) as shown by Figure 2.3. For OD6, optimal price p⋆i,t increases if the value of
the derivative function λ′((x)i,t, t) increases, indicating a decrease in price-sensitivity. This
mechanic leads to a pricing policy where prices inversely depend on price sensitivity, i.e., the
price increases if the price sensitivity decreases and vice versa. For OD8, this yields higher
prices for peak flights, as an increase within the derivative function λ′((x)i,t, t) indicates
a decrease in price sensitivity. Additionally, a change in the opportunity cost π shifts the
entire curve as the cost of selling a seat increases, regardless of price sensitivity.

2.5.2 Discrete Prices

For most airlines, technological hurdles still call for offering prices from a countable and
finite set of discrete values Ωp = {p1, . . . , pJ} with revenue gain rj, j ∈ {1, . . . , J} (compare
Fiig et al., 2015). As suggested by Fiig et al. (2010), we also propose only to offer the subset
of prices Ω′

p ⊂ Ωp for which the marginal revenue gain exceeds the marginal cost (bid-price).
As it turns out (proof given in Appendix E.5), the solution of the continuous problem (2.8)
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OD1,OD2, and OD4 OD3
Outbound direction

CW Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su
25 o x o x o x o x o x o x o x
24 x o x o x o x o x o x o x o
23 o x o x o x o x o x o x o x
22 x o x o x o x o x o x o x o

Inbound direction
25 x o x o x o x o x o x o x o
24 o x o x o x o x o x o x o x
23 x o x o x o x o x o x o x o
22 o x o x o x o x o x o x o x

Table 2.3: Layout of the test-pattern. Abbreviations: x = influenced, o = non-influenced.

also defines the boundary point for price points that belong to the set Ω′
p. Therefore, it is

optimal to offer the next highest price point to the optimal price p⋆i,t.

2.5.3 Performance Evaluation in a Field Study

In cooperation with a European network airline, we test our model in a field study. To
that end, we choose four OD to reflect specific market characteristics, e.g., the dominance
of business vs. leisure travelers or high versus low competition. OD1 and OD4 represent
leisure routes, whereas OD2 and OD3 represent business routes. Applying our approach
to every combination of OD, DDAY, and P2P created 4 × 7 × 2 = 56 separate model
estimates. For every model, we offer (given the bidprice) the next highest price, the
optimal price p⋆i,t.

The field study includes departure dates from 2016-05-30 until 2016-06-26. For every flight
within that departure period and booking dates between 2016-04-04 and 2016-05-29, the
available price is chosen according to the optimal price p⋆i,t (see 2.5.2). Table 2.3 describes
the test pattern.

The checkerboard pattern aims to capture and control systematic differences in DDAY
and OD directions. The airline’s regular revenue management system (non-influenced)
calculates the bidprices and lets market analysts set the prices. Both the traditional
approach and our model relied on the same bidprice information. Thus, the observed
revenue difference originates from the passengers’ price sensitivity estimates. The overall
revenue gain is aggregated separately for influenced and non-influenced departure days for
each OD. The difference is given in percent of the regular system’s performance. As the
results in Table 2.4 show, our approach successfully increased the revenue between 1.64%
to 8.03% and the margin by 11.08% to 36.39% across markets. The margin defines the
gaps between revenue earned and opportunity cost π. Due to the positive outcome, the
airline plans to apply our approach to every OD of the European network by the end of

25



Chapter 2. Modelling Price Sensitive Demand in Turbulent Times: An Application to
Continuous Pricing

Market OD1 OD2 OD3 OD4 overall
Revenue 1.64% 6.31% 8.44% 8.03% 6.37%
Margin 36.39% 18.96% 13.91% 11.08% 15.36%

Table 2.4: Results of the live test in percent

2017.

2.6 Model adjustments due to market turbulences

Since 2017 and due to the success of the field study, see Section 2.5.3, AirABC decided
to increase the models’ scope to about 360 ODs. In May 2019, an intervention analysis
examining the revenue impact of the models’ rollout resulted in an average revenue increase
of +2.37%, confirming the field study’s positive result. Since the models’ rollout, the
price elasticity estimates have regularly been updated using the past two departure years.
Even though frequent updates of the demand model would eventually catch up with a
changing market environment, due to the functional structure of the predictor (2.5), the
price-elasticity estimates for the next selling date only differ from the previous selling
date by variables that describe the flight (DTIME, YDAY) and the time to departure
t. Specifically, structural changes within the market happening from one selling date to
another cannot be captured accurately. To allow for more flexibility for demand- and
price-elasticity predictions to describe changes in the market environment, four additional
covariates are introduced:

1. Booking day of the year (BYDAY), taking values from 1, . . . , 365

2. Selling Date Index (SDI) as

(a) SDI = -630 for April 12, 2019

(b) ...

(c) SDI = -2 for December 30, 2019

(d) SDI = -1 for December 31, 2019

(e) SDI = 0 (ease of interpretation) for the selling date January 1, 2020

(f) SDI = 1 for January 2, 2020

(g) SDI = 2 for January 3, 2020

(h) ...

(i) SDI = 100 for April 11, 2021

3. Daily new cases of COVID-19 within the country of the origin airport (OCOV)
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4. Daily new cases of COVID-19 within the country of the destination airport (DCOV)

The data for daily new cases of COVID-19 is gathered from (OWID). Figure 2.5 shows how
the daily new cases of COVID-19 evolved over the period 2020-01-24 to 2021-04-11. For
every country, the first wave of COVID-19 cases occurred from 2020-03-01 to 2020-05-01
and was followed by another wave starting between 2020-08-01 and 2020-10-01. Within
2021-05-01 and 2021-08-01, the number of cases was reduced by severe lock-down mea-
sures, which were (depending on the country) partially lifted during the summer months,
i.e., between 2020-06-01 to 2020-08-01 and re-implemented afterward. The adjustment of
model (2.5), including the additional covariates (in black), is defined by Equation (2.9).
Table 2.5 describes the nine functions in more detail.
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Figure 2.5: Daily new cases of COVID-19 for the countries Germany(DE), Spain (ES), France (ES), United
Kingdom (GB), Italy (IT), and Sweden (SE) from 2020-01-24 to 2021-04-11.

log
(
λ((x)i,t, t)

)adj
= log

(
λ((x)i,t, t)

)
+ f3 (BYDAYi,t) + f4 (SDIi,t) + f5 (OCOVi,t) + f6 (DCOVi,t)

+ fp,3 (pi,t,BYDAYi,t) + fp,4 (pi,t, SDIi,t) + fp,5 (pi,t,OCOVi,t) + fp,6 (pi,t,DCOVi,t)

+ ft,5 (t, SDIi,t) .

(2.9)

27



Chapter 2. Modelling Price Sensitive Demand in Turbulent Times: An Application to
Continuous Pricing

where log
(
λ((x)i,t, t)

)
corresponds to the (unadjusted) model (2.3). Note that the adjusted

model (2.9) is different from the full factorial design of the (general) model (2.3). As the
research goal of this section focuses on an aggregated level, all bivariate functions between
the covariates DTIME, YDAY, OCOV, DCOV, and SDI are omitted. Not all combinations
of continuous covariates are included, as the adjustment intends to answer the following
questions:

Q1: Does the impact of COVID-19 on passenger demand change over time, i.e., is it
different from one COVID-19 wave to another?

Q2: Does the impact of COVID-19 on passenger price elasticity change over time, i.e., is
it different from one COVID-19 wave to another?

Q3: Do passengers book more spontaneously, i.e., closer to departure than pre-COVID-19
times?

The two functions f3 (BYDAYi,t) and fp,3 (pi,t,BYDAYi,t) are added to ensure that the
impact of the selling-date-index (SDI) on passenger demand and price elasticity may not
be affected by a booking seasonality.

Data Adjustments:

To ensure that the estimations for the departure date seasonality are unbiased, the results
of section 2.4.3 depend on data where the entire booking period is observable for every
flight. Suppose data for flights with an incomplete booking period is considered. In that
case, demand estimates for future departure months can be lower, which may give a wrong

Function Description

fp,3 (pi,t,BYDAYi,t) Booking yearday seasonality of price elastictiy
f3 (BYDAYi,t) Booking yearday seasonality of demand
fp,4 (pi,t, SDIi,t) Daily change in price elasticity
f4 (SDIi,t) Daily demand changes
fp,5 (pi,t,OCOVi,t) Change of price elasticity by daily new COVID19 cases

at the origin airport
f5 (OCOVi,t) Demand changes by daily new COVID19 cases at the

origin airport
fp,6 (pi,t,DCOVi,t) Change of price elasticity by daily new COVID19 cases

at the destination airport
f6 (DCOVi,t) Demand changes by daily new COVID19 cases at the

destination airport
ft,5 (t, SDIi,t) Daily change of the demand booking curve

Table 2.5: Additional model functions and covariates allowing for more flexibility for demand- and price-
elasticity predictions
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impression of how demand changes during the departure year. The models’ demand predic-
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Figure 2.6: Assuming today’s estimation date is 7/11/21, the top graph describes the available data history
for the departure date view. The departure dates range from 7/11/18 until 7/11/19, each with a 365-day
selling date history. The dotted area of the bottom graph describes the data for the selling date view,
where each selling date includes the booking history of past and future departure dates.

tions using post-COVID-19 data no longer apply to the market environment of COVID-19
times. As the models’ ability to react to recent changes in previous selling dates depends
on the input data, the data scope changes from a departure-date view to a selling-date
view. The departure-date view (the dotted area within the top graph of Figure 2.6) de-
fines the data history of flights with complete selling-date history. The selling-date view
(dotted area of the bottom graph of Figure 2.6) describes the data set, where every selling
date contains the entire (future) departure-date history. Assuming today’s estimation date
is 7/11/21, Figure 2.6 shows that the data for departure date 7/11/22 is not available
for the departure-date view until the models’ estimation date reaches 7/11/22, whereas
the selling-date view includes already all future fights until 7/11/22. Therefore, the bene-
fit of having more up-to-date data and an accurate booking-behaviour representation (as
captured by the functions f3 (BYDAYi,t) , fp,3 (pi,t,BYDAYi,t) , f4 (SDIi,t) , fp,4 (pi,t, SDIi,t),
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and ft,5 (t, SDIi,t)) outweighs the risk of having a biased seasonality estimate for departure
dates.

Results:

To answer the questions Q1, Q2, and Q3, the exp() is applied to both sides of the adjusted
equation of model (2.9), which gives

λ((x)i,t, t)
adj = λ((x)i,t, t)

× exp
(
f3 (BYDAYi,t) + f4 (SDIi,t) + f5 (OCOVi,t) + f6 (DCOVi,t)

)
︸ ︷︷ ︸

Q1f

× exp
(
fp,3 (pi,t,BYDAYi,t) + fp,4 (pi,t, SDIi,t) + fp,5 (pi,t,OCOVi,t) + fp,6 (pi,t,DCOVi,t)

)
︸ ︷︷ ︸

Q2f

× exp
(
ft,5 (t, SDIi,t)

)
︸ ︷︷ ︸

Q3f

.

(2.10)

The underlined elements Q1f ,Q2f , and Q3f decrease or increase the unadjusted demand

model (2.3), i.e., log
(
λ((x)i,t, t)

)
by a factor that depends on the additional covariates

BYDAY, SDI, OCOV, and DCOV. Figure 2.7 shows how the factor Q1f changes the de-
mand over the selling dates ranging from 2019-02-01 to 2021-04-11. As for the model (2.3),
we segment the data by DDAY and P2P. Every line shows the Q1f estimate for a specific
DDAY and P2P value. To answer the research question Q1, a steep drop in demand start-
ing 2020-03-01, shortly before the first wave of COVID-19, is observed for every country.
For some countries, specifically DE and GB, there is an increase in demand during the
summer months between 2020-05-01 and 2020-09-01. For GB, we can observe a demand
increase during the winter period. Therefore, depending on regulations and restrictions,
every country reacts differently and highlights the importance of capturing these effects
within the demand model.

Figure 2.8 describes how the factor ∂ log(Q2f )
∂pi,t

, i.e., the price derivative of the logarithm of

the factor Q2f changes the price elasticity over the selling dates ranging from 2019-02-01
to 2021-04-1. Suppose the adjusted demand model is used to derive optimal price val-
ues described in section 2.5. In that case, the factor appears within the denominator of
the equation (2.8) and makes the profit margin depend on the additional covariates BY-
DAY, SDI, OCOV, and DCOV. The graph shows no significant changes in price elasticity,
i.e., there is no visible trend and no change of price elasticity during the periods of first
wave 2020-03-01 to 2021-05-01 (first wave) and 2020-08-01 and 2020-10-01 (second wave)
implying that there is no connection to the number of new cases of COVID-19. Particu-
larly for the countries DE and GB that show an increase in demand during the summer
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Figure 2.7: For the countries DE, ES, FR, GB, IT, and SE, every line corresponds to an estimate of the
factor Q1f from the adjusted model (2.3) for a specific DDAY and P2P value for selling dates ranging
from 2019-02-01 to 2021-04-11

months between 2020-05-01 and 2020-09-01, no visible change in price elasticity is observed.
Therefore, there is no evidence that the passengers’ price elasticity has changed over time
between the two waves of COVID-19. Moreover, these results imply that travel will likely
not recover by offering cheaper tickets but by conditions that ensure travel safety.

Finally, Figure 2.9 describes the change in the booking behavior over a 100-day booking
period before departure from January 2021 to April 2021 for DE. The countries’ ES, FR,
GB, IT, and SE figures are in Appendix G.7. Every graph shows that the booking be-
havior of passengers has drastically changed in every country since the beginning of 2020.
Whereas passenger demand steadily increased towards the day of departure, the booking
curve is flat from 2020 until the end of the observed data range of April 2021. With
the observations for 2.7 where a demand increase is observed for a certain period during
the COVID-19 pandemic, airlines can no longer assume that passengers booking behavior
follows pre-COVID-19 patterns. Passenger demand arrives not necessarily spontaneously,
with a booking curve only increasing shortly before departure and otherwise flat but spo-
radically throughout the booking period. This effect may be emphasized by the airlines’
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Figure 2.8: For the countries DE, ES, FR, GB, IT, and SE, every line corresponds to an estimate of the
factor Q2f from the adjusted model (2.3) for a specific DDAY and P2P value for selling dates ranging
from 2019-02-01 to 2021-04-11

offering cheap tickets together with a waiver of cancellation and rebooking constraints to
counter the increased uncertainty of passengers.

2.7 Conclusion

This paper introduced a demand estimation approach combining smoothing spline ANOVA
interaction components and monotonicity constraints. The functional structure of the pro-
posed model predicts demand by nonparametric and bivariate functions, which dynamically
detect and predicts changes in price sensitivity. We derived a closed-form solution to de-
termine the optimal price as the sum of costs and profit margin. This setting is beneficial
when the offered price depends on a profit margin and a cost part, which are evaluated in-
dependently. The resulting approach efficiently limits the computational effort of dynamic
pricing.

To demonstrate and test the proposed approach, we applied it in an airline revenue man-
agement setting. Using the opportunity cost of capacity as an instrument variable, we
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Figure 2.9: For the country DE, the graph shows how the factor Q3f changes for different days to departure,
ranging from 100 days pre-departure to the day of departure and over the selling dates from January 2019
to April 2021.

employed the two-staged approach of Marra and Radice (2011) to account for price endo-
geneity. A benchmarking study favourably compared the performance of our approach to
that state-of-the-art demand estimates. A field study demonstrated a revenue gain between
1.64% to 8.44% and an increase in the margin between 11.08% and 36.39%. Furthermore,
we highlight the importance and flexibility of the proposed approach by adjusting the mod-
els’ structure to consider changing market conditions caused by the COVID-19 pandemic.
The model estimates suggest that the behaviour of passenger demand has changed drasti-
cally during the COVID-19 pandemic; specifically, bookings occur more sporadically.

As the following steps, we recommend investigating whether possible dependencies among
customer segments could improve prediction accuracy. For segmentation, one could ex-
amine model-based partitioning (e.g. Zeileis et al., 2008). On another note, we explicitly
excluded bookings of fares with fewer restrictions than the lowest available fare. As such
features imply upsell, considering upsell-related passenger behaviour may further improve
the revenue gain from dynamic pricing.
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3.1. Abstract

3.1 Abstract

We propose a model of retail demand for air travel and ticket price elasticity at the daily
booking and individual flight level. Daily bookings are modeled as a nonhomogeneous
Poisson process with respect to the time to departure. The booking intensity is a function of
booking and flight level covariates, including nonlinear effects modeled semi-parametrically
using penalized splines. Customer heterogeneity is incorporated using a finite mixture
model, where the latent segments have covariate-dependent probabilities. We fit the model
to a unique dataset of over one million daily counts of bookings for 9,602 scheduled flights
on a short-haul route over two years. A control variate approach with a strong instrument
corrects for a substantial level of price endogeneity. A rich latent segmentation is uncovered,
along with strong covariate effects. The calibrated model can be used to quantify demand
and price elasticity for different flights booked on different days prior to departure and is
a step towards continuous pricing; something that is a major objective of airlines. As our
model is interpretable, forecasts can be created under different scenarios. For instance,
while our model is calibrated on data collected prior to COVID-19, many of the empirical
insights are likely to remain valid as air travel recovers in the post-COVID-19 period.

3.2 Introduction and Literature Review

The International Air Transport Association (IATA) estimates that in 2019 there were
over 4.54 billion passengers on scheduled flights worldwide, generating revenues of $838
billion dollars (IATA, b). However, profits in the airline industry were notoriously low,
even before the advent of COVID-19. For example, the industry average net margin was
only 3.1% in 2019 (IATA, b). This forces airlines to seek ever greater competitiveness,
including the development of improved revenue management methodologies (Talluri and
van Ryzin, 2005). Increasing the accuracy of short term forecasts of passenger demand,
along with estimates of its price elasticity, is one such operational efficiency. In particular,
the availability of complete booking databases opens up the possibility of computing both
demand forecasts and price elasticities for each individual flight and cabin class in real
time. Yet, there is surprisingly little work in the statistical or econometric literatures on
the modeling of passenger demand at such a disaggregate level — in part because the
databases required are large, complex and proprietary. In this paper, we do so using a
novel flexible statistical model, which we apply to a new and unique dataset of 1,333,712
daily counts of retail bookings for flights on a busy short-haul route. This approach allows
us to compute the price elasticity of demand for this route at a daily and flight level
resolution.

The data is sourced from the booking and flight databases of a large Western airline, and
are a complete and accurate record of bookings. Therefore our data are free from the
complex biases that can occur in booking datasets constructed using web crawlers or sur-
veys. The airline wishes to remain anonymous, so that throughout this paper we refer to
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it as ‘AirABC’, and do not identify the origin and destination cities of the route. Only
AirABC services this route, with alternatives restricted to other modes of transport or
indirect flights, so that it is reasonable to consider these bookings in isolation of those for
other airlines. Thus, our data are similar to those obtained from a controlled experiment.
Tickets for different cabin classes (i.e. economy or business) and route directions are effec-
tively separate products, and in our empirical work we consider bookings in one direction
(so called half-return journey) for the main economy class cabin; although the model can
be employed directly for other cabin classes or return journeys.

We model the booking process for each flight as an nonhomogeneous Poisson process with
respect to the (decreasing) number of days to departure. The booking intensity has both
a baseline component and a ticket price adjustment. The baseline component is modelled
as additive in covariates, including smooth unknown functions of the flight departure time
and day to departure. The price adjustments follow a finite mixture modeled using a
multinomial logistic regression (MNL) with probabilities that are additive in covariates,
including smooth unknown functions of the flight departure time and day to departure.
Such a model is similar to the ‘mixture-of-experts’ models that are popular in the machine
learning literature (Jordan and Jacobs, 1994), where each mixture component is called an
‘expert’.

The unknown smooth functions in the baseline intensity and mixture probabilities are
modeled semi-parametrically with penalized splines (Wood, 2017, chap. 5). This is impor-
tant because prior research (Wen and Chen, 2017) and our empirical analysis suggests the
effects of the key covariates ‘flight departure time’ and ‘time to departure’ can be highly
non-linear. A quadratic penalty is used to ensure smoothness of each penalized spline,
with the smoothing parameter selected by minimizing the BIC as in Ruppert et al. (2003)
and Kauermann et al. (2009). The inclusion of covariates in this way means that each ex-
pert is a semi-parametric Poisson regression, and the MNL is also semi-parametric.

From a marketing perspective, the model provides a latent segmentation that accounts for
customer heterogeneity (Wedel and Kamakura, 2012) at the daily booking count and flight
level. Teichert et al. (2008) highlight the importance of identifying different segments
to account for customer heterogeneity in airline passenger demand. They found more
than two latent segments, which is consistent with our empirical work where we find up
to seven segments. From a revenue management perspective, because the probability of
latent class membership varies at the booking day and flight level, so does the ticket
price elasticity. This is a key input into variable pricing frameworks. From a regulatory
perspective, segmentation at the daily booking and flight level, as opposed to the customer
level, avoids the need to collect individual level data. This is an advantage because the
collection of such information can either be a concern to breach data privacy provisions,
such as the EU General Data Protection Legislation, or is not available to practitioners.
In particular data containing socio-economic and trip characteristics of air travelers as
revealed by a preference survey (Wen and Chen, 2017; Teichert et al., 2008) is generally
unavailable to the airline, nor can it be used by today’s revenue management systems
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(Hetrakul and Cirillo, 2014).

A central problem in the estimation of price elasticity using realized demand is that price
is likely to be endogenous (Petrin and Train, 2010; Li et al., 2014). We address this using
a control function approach similar to that suggested by Marra and Radice (2011) for
generalized linear models. We employ the ‘bid-price’ (Talluri and van Ryzin, 2004, pp. 31)
as an instrumental variable, which is an airline industry displacement measure that varies
at both the flight and daily levels. We find strong evidence of all aspects of our proposed
model— non-linear covariate effects, customer heterogeneity and price endogeneity—in
our empirical analysis of passenger demand. A detailed overview of prior studies of retail
demand for passenger flights in the revenue management literature that have features
closest to ours is given in Section 1 of the Web Appendix.

Deep models from machine learning are also increasingly used to forecast complex time
series with nonlinear serial dependencies (Diaconescu, 2008), including in transportation;
see Ke et al. (2017), Lin et al. (2018) and Xu et al. (2018) for recent examples. Our
proposed nonhomogenous Poisson model has the advantage of being interpretable and
provides insights into customers’ behavior that can be used in different scenarios. We
mention this point explicitly since the airline industry market is experiencing dramatic
changes through the COVID-19 pandemic (see e.g. Peterson and Thankom (2020) or
IATA (c)). Even though the analysis in this paper uses data from prior to the pandemic,
many of the empirical insights obtained in the nature and form of the key drivers of demand
and price elasticity, as well latent segmentation, are likely to remain valid when air travel
recovers post COVID-19. It also has the potential to provide forecasts under different
scenarios. For example, baseline intensity can be adjusted to account for new realities in
future passenger demand, while retaining the remaining aspects of the calibrated model,
to produce flight-level daily demand forecasts.

To account for any unexplained intraday dependence between bookings for different flights
we fit a multivariate model using a Gaussian copula and marginals given by the Poisson
model. Dependence may exist between bookings for flights that depart at different times
on the same day, because some customers might consider them as substitutes (i.e. when
the time of flight is not a significant factor for a passenger). To date, only very few
articles analyze the substitution patterns between flights in detail. One study to do so is
Escobari (2017) who analyzes passenger choice behavior using a random coefficient logit
model. However, this author found little evidence of significant cross-price elasticity at
the departure time level, indicating limited substitution patterns between flights. In line
with these results, estimates of the Gaussian copula model using our data suggest only
low levels of dependence between bookings on different flights departing on the same day.
Full details on the copula model and its application are given in Section 4 of the Web
Appendix.

Last, we summarize here our main empirical findings. Correcting for price endogeneity
in a mixture model framework has a substantial effect on the estimates of price elasticity,
which is underestimated if the price is incorrectly treating as exogenous. Even though the

39



Chapter 3. Interpretable Modeling of Retail Demand and Price Elasticity for Passenger
Flights using Booking Data

consideration of price endogeneity is not novel to the literature, it is novel in a mixture
model framework for latent segmentation. We identify a rich segmentation, with between
five and seven latent classes for flights that depart on weekdays, but only two for weekend
flights; although there is always at least one price insensitive and one highly price sensitive
segment. The (i) day of the week on which bookings are made, (ii) number of days
before departure, and (iii) time of the day at which the flight departs, are all strong
nonlinear predictors of both the mixture component probabilities and baseline booking
intensity. These three covariates all vary by flight and booking day, so that both the
demand and price elasticity estimates from the model also vary by flight and booking day.
Price sensitive customers tend to dominate up to 75 days before departure, and are replaced
by price insensitive customers closer to the departure date. Interestingly, price elasticities
are higher for customers who book on the weekend, compared to those who book their
flights on a weekday. Thus, the date of booking (both the day type and the number of days
before departure) reveals a great deal about the price elasticity of customers. Similarly,
the time of departure of the flight itself is highly revealing, with morning and evening
peak time flights having a higher proportion of price insensitive customers; presumably,
because these flights are dominated by customers flying for business purposes. As all of the
covariates used in our model are observable, our approach does not depend upon individual
customer level data which is difficult to retain under data privacy provisions, such as the
EU General Data Protection Regulation (GDPR). Hence, our segmentation model allows
for ready forecasting of elasticity and demand for use in airlines’ revenue management
systems and therefore aid AirABC in effective variable pricing by flight and day of booking
— an approach that it has adopted in practice.

The rest of the paper is organized as follows. Section 3.3 introduces the new dataset
we employ, while Section 3.4 outlines the flexible Poisson model. The latter includes
the mixture model, penalized spline smoothing, penalized maximum likelihood estimation
and the approach to endogeniety correction. Section 3.5 contains the empirical analysis
and Section 3.6 concludes our work. Extensive additional material is provided in the
Web Appendix. This includes an in-depth literature review, additional empirical results,
implementation details, and specification of the multivariate Gaussian copula model to
account for additional dependence between bookings for different flights.

3.3 Data

3.3.1 Setting

The data are extracted from the booking system of AirABC, which provides a complete
record of bookings. We analyze flight and matching retail booking data for a busy short-
haul route over the two year period between April 1 2012 and 31 March 2014. The route is
direct between two Western cities, which we do not name to ensure anonymity of AirABC,
and for simplicity we only consider flights in one direction. Analysis of demand for this
route is of particular interest because during this period only AirABC offered direct flights
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between these destinations, so that alternatives were limited either to indirect flights and
other transportation modes. Both economy and business cabin classes were available,
although our empirical analysis focuses on the economy cabin, which is the much larger of
the two.

3.3.2 Flight Data

The route has up to 17 flights per day, and from these we exclude flights departing on public
or school holidays, or correspond to major fairs, exhibitions and conferences at either the
origin or destination cities. For these special day types, it is advisable to build separate
models for passenger demand, which differs greatly from that on other departure days. If
a flight is cancelled, then we retain all bookings over the days prior to cancellation, and do
not consider any booking days afterwards. If a flight is rescheduled, we retain the original
data on bookings prior to the date of reschedule and consider the initial flight cancelled
afterwards. We then create a second flight with the departure details of the rescheduled
flight, but with bookings possible only on days after the date of reschedule. With these
exclusions and rules, our data includes a total of 9,602 flights scheduled to depart on a
total of 730 days.

Flights are scheduled to depart every day of the week. There are also 61 distinct scheduled
departure times recorded in our data, with the earliest departure at 06:00 and the latest at
21:55. The variable DDAY records the day of the week (Monday through Sunday) on which
the flight departs, and the variable DTIME records the time of the day of the departure;
both have a substantial impact on passenger demand.

3.3.3 Retail Booking Data

We only consider retail demand, based on bookings made within the published fare struc-
ture. Bookings made outside this fare structure, which includes those based on frequent
flyer miles, corporate and private tariffs, or by airline staff, are omitted. Moreover, we
only consider bookings that were also ticketed. This includes online transactions, where
booking and ticketing are completed together. However, it excludes some bookings made
by phone or via travel agents, where a booking can be made but is not ultimately ticketed
due to non-payment. In addition, as discussed above, if a flight is rescheduled or cancelled
by the airline, we retain the bookings in our data. We also retain a booking if the passenger
cancels after ticketing, as this usually involves some monetary cost to the passenger.

Both return and single tickets are sold for this route. Purchasing the return ticket is
always cheaper than two single tickets for the same two flights. Therefore, the motivation
for purchasing each ticket type is likely to be different, so that we separate them. In our
empirical work we only consider bookings made as part of a return ticket, both when the
flight is the inbound or outbound section of a return ticket. We note that return tickets are
more common than single ticket bookings for this route, at 93.1% of total bookings.
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We construct booking specific variables as follows. We record the day of the week on
which each booking was made (BDAY), along with the number of days prior to departure
of the flight (t) and also the price paid (PRICE). Over 96.4% of total economy cabin class
bookings were made within 120 days before the departure, and we only consider these
bookings in our analysis. Bookings made on the day of departure have a value of t = 0,
so that 0 ≤ t ≤ 120. If all flights were open for booking during the 121 day period, there
would be a total of 121× 9, 602 = 1, 161, 842 possible booking days. However, with flight
cancellations and rescheduling as discussed above, the number of booking days in our data
is slightly less at 1,109,559.

For historical reasons, airlines typically associate each ticket sold with a unique ‘booking
class’, which should not be confused with the cabin class (i.e. economy or business). In
our data there are 14 such booking classes which are ordered in terms of increasing price.
During the two year period AirABC changed the fares associated with each booking class
only once, which corresponded to an overall price increase. However, on any given day prior
to departure, to change the price for a flight the airline simply opens or closes booking
classes. This creates substantial variation in fares for each flight during the booking period.
The majority of ticket purchases (94%) are at the lowest cost open booking class. The
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Figure 3.1: Prices of standard bookings (PRICE) for four flights against the time to departure (t), during
the 120 day booking window. All three flights were open for booking throughout this window, and were
scheduled to depart at 07:00.
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remaining purchases are made at higher cost open booking classes, and are termed an
‘upsell’ by AirABC. In our data upsell bookings do not attract any meaningful additional
customer benefits, and are likely due to complexities in the booking system. For simplicity,
we exclude the small number of upsell bookings from our data, but note that our model
can be readily applied to these bookings separately. Overall, there are 442,991 economy
bookings recorded in our data for the 9,602 flights. To illustrate the level of variation in
ticket prices for a flight, Figure 3.1 plots the prices (PRICE) of bookings for four typical
flights over the 121 day booking period. Prices are quoted in U.S. dollars, although to
help ensure anonymity of AirABC, we note that the tickets may, or may not, have been
sold in this currency. The four flights were neither cancelled nor rescheduled during the
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Figure 3.2: Total number of bookings in our data observed at each day prior to departure date. The
bookings are further broken down into hourly intervals of flight departure times, with one panel for each
hourly interval. For example, the top lefthand panel plots total bookings made up to 18 weeks prior to
departure, only for flights departing between 06:00 and 07:00 (inclusive).

121 day booking period, and all depart at 07:00, which is during the daily peak period.
The four price pathways reveal substantial price variation over the booking period, and
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also across the three flights. This price variation is created by the process of opening and
closing booking classes, as discussed above.

Figure 3.2 gives the total number of bookings in our data that were made in each seven
day interval (i.e. week) prior to flight departure. The bookings are further broken down
according to flight departure time, with each panel corresponding to flights leaving during
different hourly intervals. Bookings are most heavily concentrated for flights departing
between 06:00 – 08:00 and between 17:00 – 20:00. These are morning and evening travel
peaks, and are typical of return ticket bookings for a short-haul flight. Regardless of the
time of departure of a flight, booking intensity is strongest in the weeks immediately prior
to departure; a feature that is again consistent with the short-haul nature of the flight.
Last, we note that the day of the week on which the booking was made (BDAY) follows

Variable Mon Tue Wed Thr Fri Sat Sun
BDAY 21.9 19.8 18.7 17.7 16.8 2.4 3.6
DDAY 14.5 16.8 19.9 21.1 17.3 4.9 5.5

Table 3.1: Relative frequency (in percent) of bookings made on different days of the week (BDAY), and
also for the day of the week the flights depart (DDAY).

a different distribution than the day of the week on which flights depart (DDAY). To
illustrate this, Table 3.1 provides the relative frequencies of both variables, from which we
make three observations. First, bookings are almost exclusively made on weekdays for this
route, with around 95% of bookings made between Monday and Friday. Second, while
Monday and Tuesday are the most popular days on which to make a booking, Wednesday
and Thursday are the most common departure days. Third, only 10% of bookings are for
flights that depart on the weekend.

3.4 Model development

3.4.1 Semiparametric Mixed Poisson Regression for Bookings

Let Ni(t) denote the total number of bookings for flight i at t days to departure, which is
increasing for t decreasing, so that Yi(t) = Ni(t) − Ni(t + 1) is the number of passengers
who book flight i during day t. Flights departing on each day of the week are considered
separately as different products, and DDAY is not incorporated into the notation to aid
readability. Because we only consider bookings made up to 120 days prior to departure,
we assume Ni(121) = 0, so that Ni(0) is the total number of bookings for flight i made
during the 121 day window. The booking process Ni(t) is modelled as a (time-reversed)
nonhomogeneous Poisson process with intensity λi(t) > 0, which is factorized as

λi(t) = λBL(t)

(
K∑
k=1

πk(t)δk

)
. (3.1)

44



3.4. Model development

Here, λBL(t) > 0 is a time-varying baseline intensity, while the terms δ1, . . . , δK are positive
adjustments. These adjustments follow a latent finite mixture model with probabilities
π1(t), . . . , πK(t), such that 0 ≤ πk(t) ≤ 1 and

∑K
k=1 πk(t) = 1.

Eqn. (3.1) specifies a nonhomogeneous mixed Poisson model for booking activity (Karlis
and Xekalaki, 2005), where the intensity follows a discrete mixing distribution with atoms
at the points {λBL(t)δ1, . . . , λBL(t)δK}. The adoption of a mixture model is motivated by
previous research which finds latent customer segments based on differing trip purposes
and demographics of travelers; for example, see Teichert et al. (2008) and Wen and Lai
(2010). To identify these segments we assume the intensity adjustment δk does not vary
directly with day to departure, but we allow the probabilities π1(t), . . . , πK(t) to do so
instead. However, the baseline intensity, adjustment values and associated probabilities
are all functions of further flight and booking level covariates, as now discussed.

Table 3.1 illustrates that the booking intensity varies greatly with booking day (BDAY),
while Figure 3.2 shows that it also varies substantially with departure time (DTIME) and
day to departure (t). The logarithm of the baseline booking intensity is therefore modelled
as an additive function of these variables, with

log(λBL(t)) =
7∑

j=1

1(BDAY = j)β
(λ)
j + s

(λ)
0 (t) + s

(λ)
1 (DTIME) . (3.2)

The term 1(A) is an indicator function equal to one if A is true, and zero otherwise, so that

β(λ) = (β
(λ)
1 , . . . , β

(λ)
7 ) is a vector of booking day intensity effects. Here, the superscript λ

distinguishes these baseline booking intensity effects from those for the segment probabili-
ties πk(t) introduced later. The impact of t and DTIME are modeled as unknown smooth

functions s
(λ)
0 and s

(λ)
1 as discussed further below. To identify the level in equation (3.2),

we follow Hastie and Tibshirani (1990) and set the integrals of these functions to zero over
their domain.

Previous research (Hetrakul and Cirillo, 2014; Li et al., 2014; Vulcano et al., 2010) indicates
there is strong customer heterogeneity in the price elasticity for passenger flights. Our
objective in adopting the mixture model is to capture segment specific price elasticities
parsimoniously. These are log-linear within each segment, with

log(δk) = αkPRICE (3.3)

The overall price elasticity is therefore Eλ =
∑K

k=1 πk(t)αk which varies with t and other
covariates through the probabilities π1(t), . . . , πK(t). For modelling these segment proba-
bilities a multinomial logistic regression (MNL) model is adopted. If segment K is taken
as reference category, then the log-odds are

log

(
πk(t)

πK(t)

)
= βj,1 +

7∑
j=2

1(BDAY = j)β
(π)
j,k + s

(π)
0,k(t) + s

(π)
1,k(DTIME) , (3.4)
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for segments k = 1, . . . , K − 1. This is a semiparametric specification, because the effect
of t and DTIME are given by unknown smooth functions s

(π)
0,k and s

(π)
1,k . As with the

baseline intensity, the functions are constrained to integrate to zero to identify the level
in Eqn. (3.4). The coefficients β

(π)
k = (β

(π)
1,k , . . . , β

(π)
7,k ) capture the booking day type level

effect for segment k, relative to the reference category.

3.4.2 Penalized Likelihood Estimation and Inference

The unknown functions s
(λ)
0 , s

(λ)
1 for the intensity, and {s(π)0,k , s

(π)
1,k ; j = 1, . . . , K − 1} for the

MNL model, are modelled using penalized splines. This is a popular approach to smooth
function estimation; see Wood (2017) and Ruppert et al. (2009) for overviews and Smith
and Kauermann (2011) for their use in transportation science. The advantage of using
splines instead of flexible functional forms based on Fourier terms as in Wen and Chen
(2017) and Lurkin et al. (2017), is that they allow for data-driven levels of smoothing
(i.e. regularization). A penalized spline approximates an unknown function by the inner
product of a vector of basis terms w(.) with a coefficient vector γ, so that each function
is s(.) = w(.)′γ. Smoothness is achieved by adopting a regularization penalty on γ. For
univariate functions, Eilers and Marx (1996) proposed for a B-spline basis an appropriate
quadratic penalty ργ ′Dγ, where ρD is the precision matrix of a first order random walk
in the elements of γ. In this case, D is a constant band one matrix, and ρ is a scalar
smoothing parameter. We adopt this basis and penalty here for each unknown function
in our model, as discussed further in Section 5 of the Web Appendix, . Using the same
super- and subscripts for the penalized spline coefficients as the unknown functions, the
parameters of the model are therefore

θ =
{
(β

(π)
1 ,γ

(π)
0,1 ,γ

(π)
1,1 ), . . . , (β

(π)
K−1,γ

(π)
0,K−1,γ

(π)
1,K−1),β

(λ),γ
(λ)
0 ,γ

(λ)
1 , α1, . . . , αK

}
.

If yi,t ∈ {0, 1, 2, . . .} is the number of bookings for flight i made on t days to departure,
and the corresponding observation of the three covariates is

xi,t = (DTIMEi,BDAYt,PRICEi,t) ,

then the (unpenalized) log-likelihood arising from Eqn. (3.1) is

ℓ(θ) =
n∑

i=1

topeni∑
t=tclosei

yi,t log(λ(xi,t, t;θ))− λ(xi,t, t;θ) . (3.5)

Here, the booking and flight specific intensity in Eqn. (3.1) is written as a function of the
covariates and model parameters as λ(xi,t, t;θ). The outer summation is over the number
of flights n in the sample, as reported in Table 3.2, while topeni and tclosei are the days to
departure at the opening and closing of booking for flight i. For example, if flight i is
not canceled or rescheduled during the 121 day booking window, then these values are
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topeni = 120 and tclosei = 0. Whereas, if flight i was canceled 100 days prior to departure,
then tclosei = 100.

In Eqn. (1), the covariates are observed on the same resolution as the booking variable,
which is the daily level for each flight, which is also the resolution of the revenue manage-
ment system used by AirABC. Both DTIME and BDAY are observed at this resolution,
but the price of a ticket for a given flight can vary between multiple bookings made on
the same day so that PRICE is not. In practice, the PRICE variable changes during the
day whenever AirABC opens or closes booking classes for a flight mid-way through the
day—for example, when a booking class quota is exhausted—and there are 13,988 booking
day/flight combinations in our data where this occurs.

To manage intra-day price variation without losing information by averaging the PRICE
variable (which could be employed with the likelihood function at Eqn. (1)) and ensure that
the predictions are created on a daily level for each flight, we incorporate PRICE variation
in the likelihood using differing aggregation levels. For example, if three bookings are
observed on a single day, we assume an aggregation level of 1

3
day. This leads to an offset

mirroring the aggregation level as described, for instance, in Tutz (2012, Sec. 7.2). To
specify this here, let

xi,t,l = (DTIMEi,BDAYt,PRICEi,t,l) ,

be the covariate vector for the lth booking made t days to departure for flight i, where
l = 1, ...,max(1, yi,t). On days without any bookings for flight i (i.e. when yi,t = 0),
let xi,t,1 be the vector of covariate values, and set yi,t,1 = 0. Similarly, let yi,t,l = 1 for
l = 1, ...,max(1, yi,t) for days with observed bookings (that is, when yi,t ≥ 1). Then, the
(unpenalized) log-likelihood with an aggregation offset is:

ℓ(θ) =
n∑

i=1

topeni∑
t=tclosei

max(1,yi,t)∑
l=1

yi,t,llog
(
λ(xi,t,l, t;θ)

)
− λ(xi,t,l, t;θ)

max(1, yi,t)
. (3.6)

The multiple summation in Eqn. (3.6) is over all observed bookings, plus the booking days
where no bookings were made for the ith flight (i.e. all instances where yi,t = 0). These
summations are over all flights i that depart on each given day type. The bottom row of
Table 3.2 reports the number of terms in the summation, and there are between 139, 006
and 228, 026 of these. Note that if there were no intraday variation in price, then Eqn. (3.6)
and (1) would be the same.

Eqn. (3.6) is augmented with an additive penalty to account for smoothness in the func-
tions. The first and second order derivatives are computed analytically (see Section 5.1 of
the Web Appendix) enabling fast direct maximization of the penalized log-likelihood; even
for the high sample sizes employed here. The optimal values of these smoothing parame-
ters are selected by minimizing the Bayesian Information Criterion (BIC). The number of
latent segments is also selected using BIC, where we fit models with increasing number of
segments K as long as this decreases the BIC as in Allenby and Rossi (1998). Bootstrap
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confidence intervals for the parameters and functions of a fitted model are computed using
the ‘leave out one individual’ approach of Rice and Silverman (1991). The identification
of the segment labels in the mixture model is achieved by ordering the segment specific
price coefficients αk in a monotone sequence. We refer to Section 6 of the Web Appendix
for details.

We comment briefly on the suitability of selecting the number of latent segments using BIC.
Whittaker and Miller (2021) explores the accuracy of enumerating the number of classes
using different metrics in latent class analysis. They found strong evidence to suggest that
sample size adjusted BIC (NBIC) was more accurate than a variety of alternatives, includ-
ing cross-validation and BIC. However, the results also show similar enumeration accuracy
for BIC and NBIC with an increasing sample size. Because our analysis is based on a large
sample of size n = 1, 109, 559, BIC is an accurate metric for latent class enumeration.

3.4.3 Semiparametric Regression for Price

Treating price as an exogenous variable in a consumer demand model can lead to biased
estimates of price elasticity; see discussions in Davidson and MacKinnon (1999, 1993),
Wooldridge (2002), Petrin and Train (2010) and references therein. For example, Mum-
bower et al. (2014) show the importance of controlling for price endogeneity in a lin-
ear model for flight bookings using a two-stage least squares linear regression estimator,
whereas Lurkin et al. (2017) do so for a choice model. For generalized nonlinear models,
Marra and Radice (2011) suggest an extension of such two-stage estimators, similar to the
control function approach of Petrin and Train (2010). We follow these authors and first
build a nonlinear model for price based on an instrumental variable, and then include the
price residual as a covariate in our model of passenger demand.

DDAY
Number of ... Mon Tue Wed Thr Fri Sat Sun Total

Flights n 1,385 1,295 1,435 1,528 1,593 1,124 1,242 9,602
Dep. Days |D| 105 104 104 104 104 104 105 730
Booking Days 157,932 147,518 164,323 173,406 179,898 131,000 137,482 1,091,559
Bookings 64,371 74,383 88,070 93,311 76,816 21,712 24,328 442,991
Non-Bookings 128,342 117,611 129,408 134,715 141,746 117,294 121,605 890,721
Observations 192,713 191,994 217,478 228,026 218,562 139,006 145,933 1,333,712

Table 3.2: Summary of data size, broken down by departure day type DDAY. The first three rows report
the number of flights, departure days and possible booking days for these flights. The next two rows report
the number of observed bookings, and booking days for each flight where no bookings were made. The
final row gives the total of the the number of bookings and non-bookings observed, which is the number
of terms in the likelihood at Eqn. (3.6).
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To do so, we model the logarithm of prices at the daily and flight level as

log(PRICE) = θ0 + θ1IV +
7∑

j=2

1(BDAY = j)θj + f0(t) + f1(DTIME) + U

= η + U , (3.7)

where U ∼ N(0, σ2). The effects of t and DTIME are captured by unknown smooth func-
tions f0 and f1 modelled by penalized splines, while IV is an instrumental variable.

Mumbower et al. (2014) discusses possible choices for IV and suitable candidates. Li et al.
(2014) notes that many of these choices are invalid because both the IV and booking
data need to be observed at the same level of aggregation to control effectively for price
endogeneity. Supply shifters—for example, airport fees, transportation taxes and fuel
costs—are constant over daily bookings. Hausman-style instruments at the firm level do not
match to a model on the market level. Stern-type instruments that measure competition
and market share do not vary on the booking level. Last, IVs that have an impact on
marginal costs remain a feasible option, which is why we use (the logarithm of) a variable
that is popular in the revenue management literature called the ‘bid-price’ (Talluri and van
Ryzin, 2004, pp. 31). The bid-price is a measure of the (marginal) cost of offering a seat,
taking into account that it cannot be sold again. Crucially, it varies between bookings
because the airline updates its assessment frequently. The bid-price is available for all
flights in the database and at all time points, as well as for predictive purposes, i.e. for
flights that are yet to depart.

To ensure the validity of our choice the IV needs to fulfill the properties of relevance
and exogeneity (Guevara, 2018). Whereas (strong) relevance can easily be demonstrated
by the strong nonlinear dependence between the IV and the endogenous variable price,
exogeneity needs to be addressed by a statistical (over-identification) test. Unfortunately,
this test requires the availability of at least two instruments, so that exogeneity cannot be
established definitively. From a qualitative perspective, the bid-price is a measurement of
displacement cost, ensuring that revenue gain for the available airlines’ network capacity
is maximized. As pointed out by Li et al. (2014), the exogeneity (and hence the validity
of the bid-price IV) means that a demand shock for flight i at time to departure t (i.e.
εi(t) = Yi(t) − λi(t)) is uncorrelated with the IV. Figure 1 describes two possible revenue
management setups, where an airline only controls for displacement cost on route-level
(left-hand side) or incorporates all possible demand-streams into the displacement cost
calculation (right-hand side). As AirABC is a network carrier, it considers every demand
stream when calculating the bid-price value. Therefore the bid-price defines the distribution
of all network demand on the route. In our study, the share of transfer passengers, i.e.,
passengers not traveling solely between BBB and AAA, is approximately 50%. Thus, the
bid-price value is largely determined by factors that are exogenous to the route under
study. Hence, we conclude that the demand shock εi(t) and the bid-price are uncorrelated.
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We fit the model at Eqn. (6) using maximum likelihood, and then use this to estimate the
error

ξ = PRICE− E (PRICE | IV,BDAY,t,DTIME) = PRICE− exp
(
η + σ2/2

)
for each flight and booking day combination. The resulting residuals values are observations
on the covariate ξ̂, which is included in the log-linear segment price adjustments, so that
we replace Eqn. (3.3) by

log(δk) = α1,kPRICE + α2,kξ̂ (3.8)

We will subsequently refer to Model I if we ignore endogeneity and use Eqn. (3.3). Taking
endogeneity into account and using Eqn. (3.8) is referred to as Model II. A more detailed
motivation for this two-stage procedure using the bid-price as an instrumental variable is
given in Section 7 of the Web Appendix.

3.5 Empirical analysis

We now discuss the estimates from our model. Because we fit it to bookings for flights
departing on different day types—that is, different values of DDAY—separately, we give
in detail the results arising from flights departing on Thursday. This is the departure day
with the highest demand.

We fit the demand models with K = 2, . . . , 7 segments, both including and excluding the
price model residuals ξ̂ (the calculation of ξ̂ is discussed in Section 2 of the Web Appendix).
The inclusion of the residuals improves the fit of the demand models substantially—as mea-
sured using either AIC or BIC—in every case. A detailed discussion of the K = 2 segment

AAA

BBB

Destination

Origin

AAA

BBB

Figure 3.3: Description of two Airline-network scenarios. On the left-hand side, the airline controls for
capacity constraints only taking passenger demand from the origin (BBB) to the destination (AAA) into
account. Low-cost-carriers typically use this setup. On the right-hand side, the airline controls for the
capacity constraint on the BBB to AAA route by taking all possible passenger demand streams coming
from other origins than BBB (arrows going into BBB) to different destinations than AAA (arrows going
out of AAA) into account. Network-carriers typically use this setup.
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Segment BL k = 1 k = 2 k = 3 k = 4 k = 5

Component λBL(t) πk(t)

Segment Adjustment Coefficients
PRICE 0.0019 -0.0035 -0.0287 -0.0295 -0.0301

(0.0006) (0.0022) (0.0082) (0.0025) (0.0025)

ξ̂ -0.0030 -0.0036 -0.0126 -0.0133 -0.0135
(0.0003) (0.0004) (0.0039) (0.0017) (0.0019)

Baseline Coefficients Log-odds Coefficients
Intercept 1.4254 -3.3756 -0.5172 3.0461 0.6938 –

(0.3028) (0.5777) (1.0661) (1.5426) (1.3458) –
BDAY = Mon 0.3470 2.3653 0.1170 -1.6610 -2.0355 –

(0.3028) (0.4349) (0.5276) (0.7180) (0.4943) –
BDAY = Tue 0.2948 2.7756 0.4308 -1.3427 -1.2495 –

(0.1532) (0.4976) (0.4139) (0.5904) (0.5588) –
BDAY = Wed 0.3027 2.2079 -0.0261 -1.9197 -2.1133 –

(0.1718) (0.6987) (0.2931) (0.4627) (0.8671) –
BDAY = Thr 0.3088 3.4974 1.0745 -0.5302 0.5838 –

(0.1623) (0.6321) (0.5552) (0.8554) (0.9305) –
BDAY = Fri 0.2337 2.8789 0.2554 -1.2382 -0.4404 –

(0.1516) (0.5650) (0.3854) (0.6682) (1.8257) –
BDAY = Sat -0.4454 -0.3175 -0.0387 -0.1650 -0.2100 –

(0.0868) (0.3989) (0.4055) (0.4170) (0.5661) –

Table 3.3: Parameter estimates for Model II (i.e. the with the inclusion of the residuals ξ̂i) with K = 5
latent class segments, fitted to bookings on flights departing on Thursday. Bootstrap standard errors are
given in parentheses.
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model estimates, and the impact of controlling for endogeneity, is given in Section 3 of the
Web Appendix. For all seven departure days (DDAY), Table 3.5 reports the BIC values for
all fitted demand models that include the residuals ξ̂ and different numbers of segments.
For flights departing on thursday (DDAY = Thr), K = 5 segments are optimal with the
minimum BIC value. Table 3.3 gives the estimates of the linear coefficients. Inclusion of
the price residual has a substantial effect on the parameter estimates so that we subse-
quently only discuss the results with price endogeneity taken into account. The segment
adjustment coefficients shows that the PRICE coefficient for segment 2 is insignificant and
close to insignificant for segment 1. However, segments 3, 4, and 5 exhibit significant price
sensitivities between α̂3 = −0.0287 and α̂5 = −0.0301.
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Figure 3.4: For K = 5 segments, the left-hand panels provide the function estimates for s
(λ)
0 (t) and

s
(λ)
1 (DTIME) in Eqn. (3.2) for bookings on flights that depart on Thursday. The right-hand side shows

the estimates of s
(π)
0,k(t) and s

(π)
1,k(DTIME), k = 1, . . . , 4 in Eqn. (3.4). The first-stage residuals ξ̂ are included

(ie. Model II). The estimates are given by the solid line, while the dashed lines are 99% local confidence
bands.

Figure 3.4 shows the fitted smooth terms of model component at Eqn. (3.2) (left panel)
and Eqn. (3.4) (right panel). We see a general increase in demand closer to the day of
departure (i.e. for lower values of t). Moreover, the size of segments 1 and 4 increase,
and segment 3 decreases, closer to the day of departure. Segment 2 shows no significant
time effect. DTIME has only a weak impact on demand, although this is not the case for
customer segmentation which we discuss next.

To measure the composition of customers as a function of time to departure, we compute
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the ratio

qk(t) =
πk(t)δk∑K

k′=1 πk′(t)δk′
, (3.9)
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Figure 3.5: Plot of the average segment proportion computed from the model fitted to booking on flights
departing on Thursday and K = 5 (solid line) with 99% local bootstrapped confidence bands (dashed
lines). Top row: within each panel, q̄k(t) is plotted against days to departure t. Bottom row: within each
panel, q̄k(DTIME) is plotted against DTIME.

53



Chapter 3. Interpretable Modeling of Retail Demand and Price Elasticity for Passenger
Flights using Booking Data

for k = 1, 2, . . . , K. This ratio measures the proportion of customers in segment k. In our
demand model the component πk(t) is a function of both flight and booking level covariates,
so that we compute the mean q̄k(t) by averaging qk(t) over all flights and bookings on a
given day to departure t.

Figure 3.5 (top panel) plots q̄k(t) for the five segments against days to departure. Only a
very small proportion of bookings fall into the price sensitive segments 4 and 5. For seg-
ment 5 passengers arrive anytime, whereas segment 4 corresponds to a type of passenger
that arrives shortly before departure. The vast bulk of bookings by price sensitive cus-
tomers are in segment 3. This accounts for around 40-50% of all bookings made up to 75
days before departure, but gradually declines as the flight departure approaches, falling to
almost none in the week prior to departure. Bookings made in this segment are also more
likely to be made on the weekend (i.e. when BDAY is either Saturday or Sunday). The
proportion of bookings that fall into the two price inelastic segments have quite different
patterns. The probability of a booking in segment 1 is at most 20% until 75 days prior
to departure, after which it increases rapidly until the day of departure, during which just
over 80% of bookings arise from this segment. Bookings in segment 2 are common through-
out the booking window, varying between around 20% to 60% of the total. Interestingly,
bookings in this segment exhibit a strong booking day effect—with bookings much more
likely on the weekend than weekdays—a stark difference with bookings in segment 1 which
do not.

The probability πk of being in segment k is also a function of DTIME through the MNL
model at Eqn. (3.4). Thus, the diagnostic ratio can be also be computed as a function
of DTIME, which we write as q̄k(DTIME). The bottom panel in Figure 3.5 plots this
ratio against DTIME for each of the five segments. Of the two price insensitive latent
classes, segment 1 accounts for around 50% of all bookings on fights departing during the
morning peak, and a striking 70% of those during the evening peak. In contrast, segment 2
bookings exhibit a preference for the late evening. Bookings in the price sensitive segment 3
are largely for flights departing during off-peak periods, whereas segment 4 and 5 show no
particular time preference.

Table 3.4 summarizes the main features of each latent segment, which we label as ‘Rush
Peak-time’ (segment 1), ‘Planned Evening Business’ (segment 2), ‘Planned Leisure’ (seg-
ment 3), ‘Bargain Catcher’ (segment 4), and ‘High Value Seeker’ (segment 5). We also
compute the overall elasticity estimate Eλ that averages over the latent segments. Fig-
ure 3.6 plots Eλ against the time to departure for select values of DTIME and BDAY. All
panels show that the price elasticity decreases as the day of departure nears (t = 0). This
effect is stronger for a weekday booking day, e.g. Monday, compared to a weekend booking
day such as Sunday. In the weeks immediately prior to departure, tickets on morning and
evening flights are much more price inelastic than tickets for midday flights. Overall, the
results indicate that K = 5 passenger segments successfully identify customer heterogene-
ity in price elasticity broken down by time to departure (t) and departure time (DTIME),
allowing for optimal variable pricing of tickets.
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Segment

1 2 3 4 5
Booking Features Rush Planned Planned Bargain High
& Preferences Peak-time Evening

Business
Leisure Catcher Value Seeker

Price Sensitive? No No Yes Yes Yes
Relative Size Large Medium Medium Small Tiny
Flight Time Pref. Peak Evening Midday No Pref. No Pref.
Day of Booking Weekday Any day Weekend Thr Baseline
Booking Day
Relative to Flight
Departure

Closer Throughout Earlier Last Minute Anytime

Table 3.4: Summary of main booking features and flight preferences of bookings made in each of the four
latent segments of the demand model (with K = 5 and price residual inclusion) fit to bookings made for
flights departing on Thursday.

So far we have looked at Thursday departures only. We extend this now and fit the demand

BDAY = Mon BDAY = Sun

DTIME = 800

DTIME = 1300

DTIME = 2145

0 30 60 90 120 0 30 60 90 120

−0.030
−0.027
−0.025
−0.022
−0.019
−0.016
−0.013
−0.010
−0.007
−0.005

−0.030
−0.027
−0.025
−0.022
−0.019
−0.016
−0.013
−0.010
−0.007
−0.005

−0.030
−0.027
−0.025
−0.022
−0.019
−0.016
−0.013
−0.010
−0.007
−0.005

t

E
l

Figure 3.6: Estimated overall price elasticity Eλ (solid line) for a mixture of K = 5 customer segments,
estimated with endogeneity correction. Also plotted are 99% local bootstrapped confidence bands (dashed
lines). Six combinations of booking day (BDAY) and departure time (DTIME) are considered, and days
to departure (t) is on the horizontal axis.
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model to bookings for flights on all departure days. The BIC values for K = 1, . . . , 7
customer segments are shown in Table 3.5, while the corresponding estimated coefficients
of PRICE for the optimal model based on the BIC are reported in Table 3.6. For weekday
departures (except Monday) K = 5 is optimal throughout, and the segment specific price
sensitivities are similar across departure day.

No. Segments
DDAY K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7

Mon
BIC 191939.0 188487.0 188374.2 188259.2 188306.1 188273.0 188274.9
log-lik -95503.1 -93520.3 -93285.5 -93342.5 -93310.0 -93201.7 -93182.5
dist. 0.0 3980.9 4198.3 4267.2 4243.5 4328.4 4337.1

Tue
BIC 190944.8 188571.7 188363.8 188181.1 188001.9 188086.4 188292.3
log-lik -95005.5 -93774.8 -93354.7 -93359.1 -93198.1 -93194.1 -93324.6
dist. 0.0 2673.2 3063.7 3216.9 3453.6 3384.0 3140.2

Wed
BIC 223292.3 220656.5 220037.9 220285.9 219981.6 220096.5 220071.4
log-lik -111173.9 -109818.4 -109284.7 -109188.8 -109098.5 -109170.9 -109177.1
dist. 0.0 2963.9 3763.0 3602.7 3907.5 3771.7 3789.7

Thr
BIC 251600.2 247740.6 246328.3 246035.5 245916.0 246052.4 246129.1
log-lik -125325.9 -123286.0 -122505.7 -122311.4 -122129.7 -122110.6 -122116.1
dist. 0.0 4365.5 5978.9 6328.8 6521.2 6412.2 6343.2

Fri
BIC 259010.7 251940.9 250399.2 250427.2 250215.5 250202.4 250356.3
log-lik -129033.3 -125341.8 -124400.1 -124288.3 -124130.0 -124182.0 -124242.5
dist. 0.0 7975.5 9778.7 9807.7 10069.6 10055.9 9891.9

Sat
BIC 117554.1 115858.9 116022.4 116088.2 116135.1 116156.7 116170.7
log-lik -58551.9 -57554.7 -57588.0 -57582.2 -57596.6 -57584.5 -57590.5
dist. 0.0 1966.8 1809.8 1757.6 1710.6 1699.6 1684.7

Sun
BIC 124814.0 122542.7 122788.6 122872.7 122946.6 122988.3 122987.1
log-lik -61990.1 -60968.8 -61029.7 -61016.3 -61014.4 -61024.5 -61023.4
dist. 0.0 2490.9 2241.5 2171.8 2106.9 2065.3 2066.9

Table 3.5: BIC- and log-likelihood-values for each DDAY and No. Segment combination. The distance-
value reports the L2-Norm of a model with No. Segments K > 1 to the model with K = 1. The numbers
in bold indicates the model with the greatest distance (dist.) to the model with K = 1.

For example, there are two price insensitive segments, with the exception of Friday flights
where there is only one. For flights departing during the weekend the optimal number of
segments is K = 2, indicating less customer heterogeneity. For all seven departure days the
individual segments exhibit significant differences in price elasticity, which can be exploited
for variable pricing purposes.

In Section 4 of the Web Appendix, we validate the assumption of conditional independence
of flight counts during a departure day. To do so, we extend the univariate model to a
multivariate Poisson model to analyse possible dependencies between flights. No significant
dependence between flights is found, and we conclude that the proposed mixture-of-experts
model is unbiased by unobserved heterogeneity caused by additional dependence between
demand for flights departing on the same day.
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3.6 Conclusion

We propose a flexible nonhomogeneous Poisson model of demand for passenger flights and
apply it to a large dataset constructed from the booking database of a major airline. The
dataset contains daily booking counts for all flights on a single busy short-haul route, where
the airline has no direct competition. In comparison to most previous studies, our data
do not suffer from the exclusions typical of data constructed either using web crawlers or
sourced from the Global Distribution System. Our empirical study reveals four substantive
findings with managerial and marketing implications for airlines.

First, based on the BIC criteria (see, Table 3.5), our latent segmentation model suggests
that there are typically between two and five consumer segments, which have very different
levels of price elasticity. Using an MNL model, we show that the probability of segment
membership varies substantially over the flight departure time, booking day type and
number of days to departure at the time of booking in a nonlinear way, so that price
elasticity does so also. Quantifying variable price elasticities, as a mixture of passenger
segments, is essential for revenue management practices where the airlines try to maximize
their revenue by optimally changing the price of a ticket. From a marketing perspective,
the characterization of customer segments in Table 3.4 allows AirABC to better tailor its
product and promotion activities.

Second, we consider a booking horizon of 120 days, which is longer than in most previous
studies. During this period, as seen by the varying segment proportions of Figure 3.5, we

No. Segments
DDAY k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

Mon
0.0011
(0.0006)

0.0003
(0.0014)

-0.0005
(0.0051)

-0.0039
(0.0088)

-0.0210
(0.0037)

-0.0277
(0.0021)

-0.0282
(0.0021)

Tue
-0.0011
(0.0005)

-0.0039
(0.0016)

-0.0214
(0.0012)

-0.0220
(0.0012)

-0.0227
(0.0012)

- -

Wed
-0.0008
(0.0004)

-0.0077
(0.0047)

-0.0214
(0.0021)

-0.0225
(0.0019)

-0.0232
(0.0019)

- -

Thr
0.0019
(0.0006)

-0.0035
(0.0022)

-0.0287
(0.0082)

-0.0295
(0.0025)

-0.0301
(0.0025)

- -

Fri
0.0007
(0.0003)

-0.0160
(0.0018)

-0.0206
(0.0021)

-0.0354
(0.0015)

-0.0361
(0.0015)

- -

Sat
-0.0037
(0.0007)

-0.0368
(0.0020)

- - - - -

Sun
-0.0027
(0.0007)

-0.0435
(0.0018)

- - - - -

Table 3.6: Segment specific price-coefficients and bootsrapped standard errors for the optimal endogeneity
corrected model seperated by DDAY.
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find the determinants of demand (and elasticity) vary greatly, suggesting that continuous
tailoring of price and marketing over the entire booking horizon is warranted.

Third, the covariates used in our model are all fully observable throughout the airline
scheduling horizon of 365 days before departure and allow for forecasting of elasticity
and demand for use in airlines’ revenue management systems. In contrast, capturing
consumer heterogeneity using individual customer level data that includes some customer
characteristics would not allow for forecasting future demand and price elasticity because
this data is typically unknown to the airline at the time of booking. Moreover, retention
of individual-level customer data is likely to be increasingly difficult under data privacy
provisions, such as the EU General Data Protection Regulation (GDPR).

Last, we highlight the importance of accounting for endogeneity when estimating price
elasticity. While studies have shown this previously for aggregate data, we do so at a
disaggregate level within a flexible mixture-of-experts framework with nonlinear effects
captured using regularized splines. A control variate approach is used with the bid-price
as an instrument, which is discussed in detail for two latent passenger segments in Section 3
of the Web Appendix. The advantage of using the bid-price is that it varies at the same
resolution as our booking data—i.e. at the flight and daily level—and proves to be a strong
instrument.

Our study uses data from customers purchasing published fares for the economy class cabin
on a single route without any competition from other airlines. The advantage of focusing
on this specific situation is that it can be seen as a controlled experiment. Nevertheless, the
model developed is applicable more generally. It has been applied by AirABC to bookings
on other routes with competitors and a varying share of passengers who buy published
fares. To model and forecast demand in those scenarios, additional variables are simply
added to describe the behaviour of competitors and passenger segments.

The extension of the model to a multivariate Poisson model using a Gaussian copula, as
outlined in Section 4 of the Web Appendix, has strong potential. While we found little
evidence of additional dependence between bookings on flights that depart on the same day,
it can also be used to capture dependence between other bookings. For example, between
bookings for (i) the same flight on adjacent days (which would be a type of longitudinal
model) and (ii) different flights departing during the same hourly period but in adjacent
days. Such analyses would enable a better understanding of how price variation at the flight
and daily level affect demand for substitute flights and provide a step towards improved
continuous pricing by airlines.

Our research was undertaken before the 2020 COVID-19 pandemic, which at the time of
writing, has greatly affected flights around the world. However, as air travel resumes the
insights listed above are likely to remain valid. This is because our statistical model has
interpretable components, whereas black-box models (e.g. deep neural networks) are often
difficult to extrapolate in the presence of a structural shock. We conclude by noting that
prior to March 2020, insights from these results were incorporated into practice by AirABC.
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Tickets on the considered route, as well as on comparable connections, were priced based on
the proposed model. As air travel recovers post-COVID-19, AirABC will likely continue to
price tickets using this model, while incorporating adjustments to key components (notably
the baseline intensity) to reflect new demand realities as they emerge.
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Conclusion

In conclusion, this thesis has presented two novel modeling approaches for estimating price
sensitivity in the context of airline revenue management. The first model, an augmented
generalized additive model, offers a closed-form solution for continuous pricing and has
demonstrated superior predictive performance compared to state-of-the-art alternatives.
The second model, a finite mixture model, has uncovered latent customer segments and
has provided interpretable estimates of demand and price elasticity for flights booked on
different days before departure. It is essential to highlight that both models are ready to be
used within the revenue management systems of airlines, where the augmented generalized
additive model has demonstrated practical applicability and is, therefore, used by AirABC
for a vast majority of their daily flight operations.

Despite these contributions, there remain important avenues for future research. One area
is the estimation of price elasticity in the context of dynamic bundling and a-la-carte shop-
ping of ancillary products such as advanced seat reservations, seating options, and meals,
to name a few. With airlines increasingly offering personalized bundles of ancillary prod-
ucts and services, it is essential to understand how customers trade off different elements
of the bundle and how pricing affects demand.

Another area of future research is the estimation of cross-price elasticity between the air-
line’s and similar competitors’ offers. Estimating cross-price elasticity enables airlines to
understand the competitive landscape better and optimize their pricing strategies accord-
ingly.

Finally, there is a need to identify anomalies within the data where natural disasters,
political unrest, or pandemics influence price elasticity and demand. Developing methods
to detect and account for such anomalies will be crucial for airlines to make accurate
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revenue management decisions in real-time.

Overall, this thesis has advanced the field of airline revenue management by developing
innovative models for estimating price sensitivity and providing insights into customer
segmentation and pricing strategies. These future research areas will further enhance our
understanding of the airline industry’s complex dynamics between pricing, demand, and
customer behavior.
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A.1 Penalized Likelihood Estimation Approach

We approximate each of the unknown function fp(·), ft(·), and fk(·) by a weighted sum
of local P-spline (penalised B-spline) basis functions (e.g. Eilers and Marx, 1996). For
example, the representation of fk(·) is represented by a B-spline basis function given by
the column vectors (b)k,j(·), j = 1, . . .m. The n ×m matrix of basis functions (b)k(·) =(
(b)k,1(·), (b)k,2(·), . . . , (b)k,m(·)

)
is subsequently multiplied by a m×1 vector of weighting

coefficients (γ)k. Therefore, function fk(·) is approximated by (b)k(·)(γ)k. The column
dimension m depends on the number of knots and degree of the B-spline functions (see,
e.g. Marsh and Marshall, 1999, Ch. 8, p. 187). The bivariate functions fp,t(·, ·), fp,k∈I2(·, ·),
and ft,k∈I2(·, ·), f k1<k2

k1,k2∈I2
(·, ·) are also replaced in this manner. For example, fk1,k2(·, ·) is

replaced by (b)k1,k2(·, ·)(γ)k1,k2 , where the matrix of basis functions (b)k1,k2(·, ·) is built from
their univariate marginal basis terms as (b)k1,k2(·, ·) = (b)k1(·) ⊗ (b)k2(·). The Kronecker
product ⊗ is calculated row-wise fashion.

Estimating the parameters in equation (2.3), requires identifiability constraints on the
spline representations of the functions. Following Hastie and Tibshirani (1987) and Wood
(2017), we require that the univariate functions fp(·), ft(·), and fk(·) integrate out to zero.
For the bivariate functions ft,k∈I2(·, ·) and f k1<k2

k1,k2∈I2
(·, ·), we follow Lee and Durbán (2011),

by applying the mixed model framework for smoothing. Lee and Durbán (2011) prove
that the imposed constraints are equal to a classical factorial design. For the functions
fp,t(·, ·) and fp,k∈I2(·, ·), we exclude the first column of each marginal B-spline basis to
achieve identifiability. For example, fp,t(·, ·) is replaced by (b)p,t(·, ·)(γ)p,t, where the
matrix of basis functions (b)p,t(·, ·) is built from (b)p,t(·, ·) =

(
(b)p,2(·), . . . , (b)p,mp(·)

)
⊗(

(b)t,2(·), . . . , (b)t,mt(·)
)
.

Having achieved identifiability, we compute parameter values by penalised maximum like-
lihood estimation. The penalty balances model flexibility and parsimony. The parameters
of model (2.3) are given by (θ) = ((β), (γ))T . Here, (β) = (β0, (β)1, . . . , (β)p,I1)

T con-
cerns parametric covariates, and the coefficient vector for the unknown functions is (γ) =
((γ)p, (γ)t, (γ)1, . . . , (γ)I2 , (γ)p,t, (γ)p,1, . . . , (γ)p,I2 , (γ)t,1, . . . , (γ)t,I2 , (γ)1,2, . . . , (γ)I2−1,I2)

T .
This creates a feasible semi-parametric model, where a high-dimensional basis is employed
and smoothed by imposing a penalty on (γ). The optimal values of the smoothing param-
eters are selected using the Bayesian Information Criterion (BIC) (see also Claeskens and
Hjort, 2008, p. 100-102).

The (unpenalized) log-likelihood ℓ((θ)) arising from Equation (2.1) and (2.2) is

ℓ((θ)) =
M∑
i=1

topeni∑
t=tclosei

yi,t log
(
λ((b)i,t, t; (θ))

)
− λ((b)i,t, t; (θ)), (1)

where the intensity λ((x)i,t, t; (θ)) in equation (2.3) is written as a function of the covariates
and the model parameters.
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We maximize equation (1) with an additive penalty to regulate the degree of smoothness for
every function of (2.3). The structure of (1) allows us to calculate the first and second-order
derivatives analytically. Thereby, the derivatives are quickly evaluated and maximizing the
likelihood proves straightforward by quasi Newton-Methods, such as the Broyden-Fletcher-
Goldfarb-Shanno algorithm (e.g. Broyden, 1970). The penalization is based on the ideas
of Eilers and Marx (1996). We impose a penalty on the coefficients relating to all functional
effects that define the demand model (2.3). We use linear B-splines for the marginals
that concern pi,t and take quadratic B-splines otherwise. For the functions that have no
shape constraint, i.e., ft, fk, ft,k, fk1,k2 , k, k1, k2 ∈ I2, k1 < k2, we penalize neighbouring
coefficients of second order.

For example, let (b)t(t) be the quadratic B-spline bases for the main effect ft(t) with column
dimension mt and (γ)t as the vector of weights. By penalizing second order differences,
i.e., ∆2γt,l = γt,l − 2γt,l−1 + γt,l−2, l = mt, . . . , 3. With the (mt − 2)×mt matrix

(P)t =


1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1

 , (2)

the quadratic penalty for ft(t) is defined by (γ)Tt (S)t(γ)t, where (S)t = (P)Tt (P)t. Two
penalty matrices (S) exist for bivariate effects, one for each dimension.

For the constrained functions fp, fp,t and fp,k, k ∈ I2, we follow Pya (2010), who discusses
uni- and bi-variate as well as single and double constraint functions. However, building the
bivariate functions fp,t and fp,k, k ∈ I2 without the intercept values requires some adjust-
ments. The first concerns the function fp,t, which has a double monotonicity constraint.
Here, we remove the first row and column vector from the matrices (Σ)j, j = 1, 2 (Pya,
2010, p. 58). For the functions fp,k, k ∈ I2 with a monotonicity constraint along the first
dimension pi,t, we remove the first row and column vector of (Σ)1 and (I)2 (Pya, 2010,
p. 58). Secondly, for every bivariate function with monotonicity constraint, the penalty
matrix (S)j = (P)Tj (P)j, j ∈ {1, 2} is built from (P)j without the first diagonal block
element (P)uj (Pya, 2010, p. 60). The penalty matrix adjustments for fk1,k2 are discussed
by Lee and Durbán (2011).

The penalised likelihood ℓp(...) is defined by the unpenalised version (1) plus the sum of the
weighted quadratic penalties. Thus, for every function of model (2.3), the penalty matrix
(S) is multiplied by a weighting factor ρ. For example, the weighted penalty term for ft(t)
is defined by ρt(γ)

T
t (S)t(γ)t. Collecting all weighted penalty matrices for every function
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finally leads to the expression:

ℓp((θ), (ρ)) = ℓ((θ)) + ρp(γ)
T
p (S)p(γ)p + (γ)Tp,t

(
ρp,t,1(S)p,t,1 + ρp,t,2(S)p,t,2

)
(γ)p,t

+
∑
k∈I2

(γ)Tp,k

(
ρp,k,1(S)p,k,1 + ρp,k,2(S)p,k,2

)
(γ)p,k

+ ρt(γ)
T
t (S)t(γ)t +

∑
k∈I2

ρk(γ)
T
k (S)k(γ)k

+
∑
k∈I2

(γ)Tt,k

(
ρt,k,1(S)t,k,1 + ρt,k,2(S)t,k,2

)
(γ)t,k

+
∑
k1<k2

k1,k2∈I2

(γ)Tk1,k2

(
ρk1,k2,1(S)k1,k2,1 + ρk1,k2,2(S)k1,k2,2

)
(γ)k1,k2 ,

(3)

where (ρ) = (ρp, (ρ)p,t, (ρ)p,1, . . . , (ρ)p,I2 , ρt, ρ1, . . . , ρI2 , (ρ)t,1, . . . , (ρ)t,I2 , (ρ)1,2, . . . , (ρ)I2−1,I2)
T

refers to the vector of penalty parameters, weighting the quadratic penalties. Penalty pa-
rameters in bold correspond to column vectors. The first row gives the penalty of the
first and the second row for the second dimension. For (ρ) = 0, one obtains unpenalized
estimations.

The penalty parameters are selected using the Bayesian Information Criterion defined
through

BICγ((ρ)) = −2ℓp((θ), (ρ)) + γ log(n)df((ρ)), (4)

where n is the number of observations (≈ number of flights multiplied by the number of
considered days to departure) and γ inflates the influence of df to increase the smoothness
of the fit. The model degree of freedom df((ρ)) can be calculated through Fisher Matrices.
Thus, let F ((θ), (ρ)) denote the penalized Fisher matrix, i.e.

F ((θ), (ρ)) = E

(
−∂ℓp((θ), (ρ))

∂(θ)∂(θ)T

)
. (5)

Then, the model degree can be approximated as

df((ρ)) = trace{F−1((̂θ), (ρ))F ((̂θ), (ρ) = 0)},

see e.g. Krivobokova and Kauermann (2007a). To estimate (2.5), we first maximise (L.12.2)

for (ρ) = 0. Secondly, given the estimate (̂θ), we estimate (ρ) by minimising BICγ((ρ)).

The corresponding estimate (̂ρ) is subsequently used to maximize (L.12.2) once more. We

alternate the maximisation of (L.12.2) and minimisation of BICγ((ρ)) until
∥∥∥∂BICγ((ρ))

∂(ρ)

∥∥∥,
as calculated after the maximisation of (L.12.2), falls below a fixed threshold ϵ = 10−4.
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Treating price as an exogenous variable in a consumer demand model can lead to biased
estimates of price elasticity; see discussions in Davidson and MacKinnon (1999, 1993),
Wooldridge (2002), Petrin and Train (2010) and references therein. For example, Mum-
bower et al. (2014) show the importance of controlling for price endogeneity in a lin-
ear model for flight bookings using a two-stage least squares linear regression estimator,
whereas Lurkin et al. (2017) do so for a choice model. For generalized nonlinear models,
Marra and Radice (2011) suggest an extension of such two-stage estimators, similar to the
control function approach of Petrin and Train (2010). We follow these authors and first
build a nonlinear model for price based on an instrumental variable, and then include the
price residual as a covariate in our model of passenger demand. To do so, we model the
logarithm of prices at the daily and flight levels as

log(pi,t) = θ0 + θ1IVi,t +
∑
k∈I1

∑
j∈Jk

(1){xk,i,t=j}θk,j + st (t) +
∑
k∈I2

sk (zk,i,t) + ui,t

= ηi,t + ui,t , (6)

where ui,t ∼ N(0, σ2) ∀ i, t. The effects of t and zk,i,t, k ∈ I2 are captured by unknown
smooth functions st () and sk () , k ∈ I2 modelled by penalized splines, while IVi,t is an
instrumental variable.

Mumbower et al. (2014) discusses possible choices for IV and suitable candidates. Li et al.
(2014) describes that almost all of these choices are invalid as the researcher needs to
observe both the IV and booking data at the same level of aggregation to control for price
endogeneity effectively. Supply shifters—for example, airport fees, transportation taxes
and fuel costs—are constant over daily bookings. Hausman-style instruments at the firm
level do not match a model at the market level. Stern-type instruments that measure
competition and market share do not vary on the booking level. Last, IVs that impact
marginal costs remain a feasible option. Similar to (Meyer et al., 2022), we use (the
logarithm of) a variable that is popular in the revenue management literature called the
‘bidprice’ (Talluri and van Ryzin, 2005, pp. 31). The bidprice is a measure of the (marginal)
cost of offering a seat, taking into account that it cannot be sold again. Crucially, it varies
between bookings because the airline updates its assessment frequently. The bidprice is
available for all flights in the database and all time points and for prediction purposes for
flights that have yet to depart.

To ensure the validity of our choice, the IV needs to fulfil the properties of relevance
and exogeneity (Guevara, 2018). Whereas (strong) relevance can easily be demonstrated
by the strong nonlinear dependence between the IV and the endogenous variable price,
exogeneity needs to be addressed by a statistical (over-identification) test. Unfortunately,
this test requires the availability of at least two instruments, so exogeneity can only be
established definitely. From a qualitative perspective, the bidprice is a measurement of
displacement cost, ensuring that revenue gain for the available airlines’ network capacity
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AAA

BBB

Destination

Origin

AAA

BBB

Figure 1: Description of two Airline-network scenarios. On the left-hand side, the airline controls for
capacity constraints only taking passenger demand from the origin (BBB) to the destination (AAA) into
account. Low-cost carriers typically use this setup. On the right-hand side, the airline controls for the
capacity constraint on the BBB to AAA route by taking all possible passenger demand streams coming
from other origins than BBB (arrows going into BBB) to different destinations than AAA (arrows going
out of AAA) into account. Network carriers typically use this setup.

is maximized. As pointed out by Li et al. (2014), the exogeneity (and hence the validity
of the bid-price IV) means that a demand shock for flight i at the time to departure t (i.e.
εi(t) = Yi(t) − λ((x)i,t, t), where Yi(t) = Ni(t) − Ni(t − 1)) is uncorrelated with the IV.
Figure 1 describes two possible revenue management setups, where an airline only controls
displacement cost on the route level (left-hand side) or incorporates all potential demand
streams into the displacement cost calculation (right-hand side). AirABC is a network
carrier that considers every demand stream when calculating the bidprice value. Therefore
the bidprice defines the distribution of network demand on the route level. In our study,
the share of transfer passengers, i.e., passengers not travelling solely between BBB and
AAA, is approximately 50%. Thus, the bid-price value is largely determined by factors
exogenous to the route under study. Hence, we conclude that the demand shock εi(t) and
the bidprice are uncorrelated.

After the parameters of the model (2.4) are estimated using maximum likelihood, the
error

ξi,t = pi,t − E (pi,t | IVi,t, z1,i,t, . . . , zI2,i,t) = pi,t − exp
(
ηi,t + σ̂2/2

)
is estimated for each flight and booking day combination, where the squared residual
standard error is calculated as

σ̂2 =
1

n− df(θ̂)

M∑
i=1

topeni∑
t=tclosei

û2
i,t, (7)

The resulting residuals values are observations on the covariate ξ̂i,t, which is included in
the demand model (2.3) as an additional regressor.
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C.3 Model adjustments for price data on booking level

The ticket price pi,t can change during booking day t, but covariates BDAY, DTIME,
YDAY, and t are fixed. Therefore, the price is observed per booking, but BDAY, DTIME,
YDAY, and t are given per day. The likelihood of model (2.5) is augmented to incorporate
different resolution levels for the observations, specifically price variation on booking level.
The augmentation aims to maintain the price information pi,t per booking.

Suppose for model (2.5) with likelihood (1), three bookings are observed on a single day.
We assume an aggregation level of 1

3
day in that case. To specify this here, let

(x)i,t,l = (BDAYi,t, pi,t,l,DTIMEi,t,YDAYi,t, t)

be the covariate vector for the lth booking observed t days to departure for flight i, where
l = 1, ...,max(1, yi,t). On days without bookings of flight i (i.e. when yi,t = 0), let
(x)i,t,1 be the vector of covariate values, and set yi,t,1 = 0. Similarly, let yi,t,l = 1 for
l = 1, ...,max(1, yi,t) for days with observed bookings (yi,t ≥ 1). Then, the (unpenalized)
log-likelihood is:

ℓ((θ)) =
M∑
i=1

topeni∑
t=tclosei

max(1,yi,t)∑
l=1

yi,t,llog
(
λ((x)i,t,l, t; (θ))

)
− λ((x)i,t,l, t; (θ))

max(1, yi,t)
. (8)

The additional inner summation in Equation (8) runs over all observed bookings (yi,t,l = 1)
during one booking day t and flight i. This summation drops out for days without bookings
(yi,t,l = 0).

D.4 Benchmarking

We benchmark our approach against a heuristic, a parametric and a nonparametric model.
As a representative heuristic, we select the model proposed by Weatherford and Pölt (2002)
(WP). WP imputed the mean number of bookings as a demand estimate for days where
the airline did not offer a fare. As a parametric approach, we select FCST of Fiig et al.
(2014). This approach models demand depending on BDAY, DTIME, YDAY, t, and pi,t.
As a nonparametric approach, we select EM by Vulcano et al. (2012). EM requires price
variation for all flights i and values of t. However, for the analysed data set, this is only
sometimes given. So instead of using the observed bookings with prices pi,t, we calculate
the average number of bookings for all observable prices. This logic imposes price variation
for fixed values of t by dropping the flight index i. Therefore, EM predicts the average
demand level per flight without considering season or departure time effects. Hence, we
expect EM to perform best when demand does not depend on season or departure time
and worse otherwise.
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D.4. Benchmarking

Label Flexibility Reference
WP low Weatherford and Pölt (2002)
FCST medium Fiig et al. (2014)
EM high Vulcano et al. (2012)
our model high Eq. (2.4), (2.5)

Table 1: Properties of forecasting models for benchmarking.

Table 1 lists the benchmarked models per represented family. The second column assesses
model flexibility: nonparametric models provide more flexibility than parametric models.
WP is rated as less flexible than all alternatives, as it ignores the information contributed
by the covariates BDAY, DTIME, YDAY, and t.

We measure the prediction error by K-fold cross-validation to quantify the forecasting ac-
curacy. The smallest prediction error indicates the best demand estimate. We evaluate the
prediction error per product, i.e., per flight i. To that end, we aggregate observed bookings

yi,t and demand estimates λ̂((x)i,t, t) ≡ λ̂i,t over t: yi =
∑topeni

t=tclosei
yi,t and λ̂i =

∑topeni

t=tclosei
λ̂i,t.

To create K roughly equal-sized folds of data (indexed by k ∈ {1, . . . , K}) from M prod-

ucts (K << M), we randomly draw m =

⌊
M
K

⌋
products, K-times without replacement.

Finally, for each competing model, the cross-validation estimate of the prediction error

CV
(
λ̂
)
is

CV
(
λ̂
)
=

1

K

K∑
k=1

1

Mk

Mk∑
i=1

L
(
yi, λ̂

−k(i)
i

)
, (9)

where prediction λ̂
−k(i)
i is created by excluding the data of fold k. The loss L

(
yi, λ̂

−k(i)
)

results by forecasting λ̂
−k(i)
i and observing yi.

As loss functions L(·), we consider a selection of absolute and relative measures. We
measure absolute deviations by the root mean squared error (RMSE) and the mean absolute
deviation (MAD). Relative deviations are evaluated by the root mean squared logarithmic
error (RMSLE) and the symmetric mean absolute percentage error (SMAPE), which are
feasible if the target attains a value of zero (if no demand is observed). The definitions for
RMSE, MAD, RMSLE, and SMAPE are

RMSE =
M∑
i=1

(
yi − λ̂

−k(i)
i

)2
(10)

MAD =
M∑
i=1

∣∣∣yi − λ̂
−k(i)
i

∣∣∣ (11)

RMSLE =
M∑
i=1

log

(
λ̂
−k(i)
i + 1

yi + 1

)2

(12)
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SMAPE =

∑M
i=1

∣∣∣yi − λ̂
−k(i)
i

∣∣∣∑M
i=1 yi + λ̂

−k(i)
i

(13)

Figure 2 reports the resulting average cross-validation estimates CV(λ̂) per benchmarked
approach and sample size. Two P2P connections and seven departure days yield 14 combi-
nations per OD. Thus, the average cross-validation estimate for prediction λ̂ is calculated
as CV(λ̂) = 1

14

∑14
j=1CVj. Figure 2 shows that the two absolute measures tend to increase

in the sample size, whereas the relative measures RMSLE and SMAPE decrease. Our
approach ranges at the top independent of the sample size, even though FCST performs
almost as well. The weak performance of EM originates from not considering seasonal or
departure time dependencies but being dependent on aggregated data. The relative mea-
sures RMSLE and SMAPE highlight the superior performance of our model. As Bartke
(2014) point out, small observations result if disaggregated booking data is used for demand
estimation. Therefore, the final judgment should focus on relative forecasting performance
as quantified by RMSLE and SMAPE.

E.5 Proof of the discrete pricing problem

Given a discrete set of price points Ωp = {p1, . . . , pJ}, the optimal price p⋆i,t (2.8) defines
the lower boundary point of the subset Ω′

p ⊂ Ωp of prices that are profitable to be offered.
To show that p⋆i,t defines the boundary point of the set Ω′

p, every price below (pk < p⋆i,t) has
to have a marginal revenue contribution that is smaller than πi,t (bid-price) and a price
above or equal (pj ≥ p⋆i,t) has to have a marginal revenue contribution that is greater than
π.

Proof : for simplicity all indices are dropped
For pk < p⋆:

λ(pk)rk − λ(pk)π < λ(p⋆)r⋆ − λ(p⋆)π

⇐⇒ λ(pk)rk − λ(p⋆)r⋆ − π (λ(pk)− λ(p⋆)) < 0

⇐⇒ λ(pk)rk − λ(p⋆)r⋆

λ(pk)− λ(p⋆)
< π

(14)

For pj > p⋆:

λ(pj)rj − λ(pj)π < λ(p⋆)r⋆ − λ(p⋆)π

⇐⇒ λ(pj)rj − λ(p⋆)r⋆ − π (λ(pj)− λ(p⋆)) < 0

⇐⇒ λ(p⋆)r⋆ − λ(pj)rj
λ(p⋆)− λ(pj)

> π

(15)

We conclude that prices below the optimal price (pk < p⋆) have a marginal revenue contri-
bution smaller than the bidprice and are therefore not included in the offer-set Ω′

p whereas

74



E.5. Proof of the discrete pricing problem
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Figure 2: Estimates of the average prediction error CV(λ̂) versus the ODs sample size calculated by the
criteria RMSE (1st row), MAD (2nd row), RMSLE (3rd row), and SMAPE (4th row). For every criterion,
the model with the lowest prediction error among all other models (our model, EM, FCST, and WP) has
the best forecasting performance.
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prices equal or greater than the optimal price p⋆ have a marginal revenue contribution
greater than the bidprice and are therefore included in Ω′

p. Note that the first inequality
of each case results as p⋆ is the optimal price that maximises (2.6).

F.6 Calculation of the optimal continuous price

∂
(
λ((x)i,t, t)(ri,t − πi,t)

)
∂pi,t

!
= 0

⇐⇒ (r̂⋆i,t − πi,t)
∂λ((x)i,t, t)

∂pi,t
+ λ((x)i,t, t)

∂(r̂⋆i,t − πi,t)

∂pi,t
= 0

⇐⇒
(
−α̂0 + (1− α̂1)p

⋆
i,t − πi,t

) ∂λ((x)i,t, t)
∂pi,t

+ λ((x)i,t, t)(1− α̂1) = 0

⇐⇒
(
−α̂0 + (1− α̂1)p

⋆
i,t − πi,t

)
λ((x)i,t, t)

∂ log (λ((x)i,t, t))

∂pi,t
+ λ((x)i,t, t)(1− α̂1) = 0

⇐⇒
(
−α̂0 + (1− α̂1)p

⋆
i,t − πi,t

)(
(1)2sβξ̂ + f ′

p + f ′
p,t(t) +

∑
k∈I2

f ′
p,k(zk,i,t)

)
= − (1− α̂1)

⇐⇒ − 1− α̂1

(1)2sβξ̂ + f ′
p + f ′

p,t(t) +
∑

k∈I2 f
′
p,k(zk,i,t)

+ α̂0 + πi,t = (1− α̂1)p
⋆
i,t

⇐⇒ − 1

(1)2sβξ̂ + f ′
p + f ′

p,t(t) +
∑

k∈I2 f
′
p,k(zk,i,t)

+
α̂0

1− α̂1

+
πi,t

1− α̂1

= p⋆i,t

(16)

In line two, we use the fact that the estimated regression model (2.7) gives r̂i,t = −α̂0 +
(1 − α̂1)pi,t. Thus, for pi,t = p⋆i,t we get the corresponding revenue gain r̂⋆i,t. The model
for log (λ((x)i,t, t)) is defined by equation (2.3). Specifically, equation (2.5) describes the
model that is applied to airline data. In line 5, we used the structure of the airline model,
where f ′ corresponds to ∂

∂pi,t
f .

G.7 Supplementary plots

Figure 3 shows the offered price per departure time and for three values of bidprice π for
OD1-5 and OD7.
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H.8. Revenue Management Literature Review
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Figure 3: Optimal price values for OD1-5 and OD7 at DDAY=Thursday.

H.8 Revenue Management Literature Review

Airlines’ revenue management systems handle thousands of transactions per second, and
sell decisions are due in milliseconds, so that no current revenue management system works
in real time. Therefore, accurate estimates of demand and price elasticity are essential to
precompute control values to maximise revenue from of its seat inventory (McGill and
Van Ryzin, 1999). Early examples of price elasticity estimation include Jung and Fujii
(1979), Oum et al. (1992), Brons et al. (2002), and Kremers et al. (2002), while Granados
et al. (2012) study differences in price elasticities for flights due to distribution channel
using a log-linear model. In the revenue management literature, multinomial discrete
choice models of customer selection between available booking classes, cabin classes and/or
flights times are popular; for examples, see Vulcano et al. (2010), Vulcano et al. (2012),
and Dai et al. (2014). In contrast, we do not model individual customer choice, but model
daily booking counts for a given flight and cabin class. Any remaining dependence in these
counts due to customer choice between different flights departing on the same day is instead
captured by the copula model. A number of authors also combine nonhomogeneous Poisson
processes for the arrival of potential customers, with product choice models (Balaiyan et al.,
2019). A ‘no-buy’ option is included in the choice set to accommodate potential customers
who do not buy a ticket; see Vulcano et al. (2012), Besbes and Zeevi (2015), and Van Ryzin
and Vulcano (2014). However, our model differs from this because we model the realized
booking process — i.e. the bookings that are actually made — rather than the arrival of
potential customers, including those who do not make a booking.
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(d) PoC = SE
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Figure 4: For the countries ES, FR, GB, IT, and SE, the graph shows how the factor Q3f changes for
different days to departure, ranging from 100 days pre-departure to the day of departure and over the
selling dates from January 2019 to April 2021.
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H.8. Revenue Management Literature Review

Lo et al. (2015) and Li et al. (2014) also stress the importance of accounting for price
endogeniety in models of demand in the airline industry, as do Mumbower et al. (2014)
and Lurkin et al. (2017) who also make use of instrumental variables. Similarly, a number
of other authors have also considered latent segmentation of customers when estimating
demand and/or price elasticity using choice and other models; for example, see Teichert
et al. (2008), Wen and Lai (2010), Martinez-Garcia and Royo-Vela (2010), Vij and Walker
(2014), and Feldman and Topaloglu (2015). However, our study is the first of which we are
aware that identifies such a rich latent segmentation of airline passenger bookings using
a mixture-of-experts style model calibrated with a large disaggregate dataset. A similar
modelling approach to our mixture-of-expert model is Li et al. (2014). The authors analyze
strategic behaviour by a mixture of myopic and strategic customers, a special case of our
model with two latent segments and no differentiation between the arrival time of strategic
customers. Reviewing the statistical literature for two fundamental techniques accounting
for unobserved heterogeneity, Sfeir et al. (2021) compare latent class with mixed logit
models. Besides the advantages of latent class models, having fewer assumptions about the
mixture distribution, being interpretable (as their mixture component typically depends on
covariates — in our case, time to departure, departure time, and booking day of the week),
and the correlation between the mixture component and the segment-specific variables
and estimated elasticities are implicit in the model (mixed logit models need to assume a
joint distribution for both components), the author mentions that latent class models may
oversimplify the unobserved heterogeneity if the number of classes is small. To ensure that
our model does not oversimplify the unobserved heterogeneity, up to 7 passenger segments
are analyzed for each departure day.

Last, Wen and Chen (2017) account for the impact of the days to departure at booking
on demand as a smooth nonlinear function, whereas Lurkin et al. (2017) do so for the
flight departure time. Both papers employ parametric function bases constructed from
low order Fourier terms. In contrast, following the statistical literature (Wood, 2017), we
model both nonlinear effects using splines. These are more flexible and allow for data-
driven levels of smoothing. Moreover, these two nonlinear effects are estimated for both
the booking intensity and the mixture probabilities in the MNL.

Within Table 2, we summarizes the main features (sample size of data, usage of covariates,
model-type, handling of endogeneity (Endo.), and usage of segmentation (Seg.)) of prior
studies of passenger flight retail demand and price elasticity that are closest to ours.
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Table 2: Comparison of relevant prior literature on modelling retail demand for passenger flights

Author Data Covariates Model Endo. Seg.

Dai et al.
(2014)

Booking, ticketing,
and availability
data from 3
airlines between
2011 and 2012
(n = 748,076).

[1] Ticket price,
[2] Departure Time,
[3] Ticket change fee,
[4] Milage gain,
[5] Carrier,
[6] Booking Time,
[7] Booking Channel

MNL,
Nested Logit,
Mixed Logit

no no

Mumbower
et al.
(2014)

JetBlue Webbot
data for
transcontinental
flights between 2
and 22 September
2010 over a 28-day
booking horizon
(n = 7,522).

[1] Ticket price,
[2] Departure day of week,
[3] Departure Time,
[4] Days to departure at
booking,
[5] Booking day of week,
[6] Virgin America
promotions,
[7] Labor Day indicator

Ordinary Least
Squares,
Two Staged
Least Squares

yes no

Fiig et al.
(2014)

Bookings at 22
selected traffic
flows from
Scandinavian
Airlines
(n = 7,780).

[1] Ticket price,
[2] Departure day of week,
[3] Departure Time,
[4] Days to departure at
booking,
[5] Recurring special periods,
[6] Departure Date

Nonlinear
regression
(multiplicative)

no no

Vulcano
et al.
(2012)

Booking data from
last 7 selling days
for 11 Monday
flights from
January to March
of 2004.

[1] 11 Products (fare-classes)
with different fare-values,
[2] 7 Booking Periods (each
24 hours),
[3] 2 daily flights,
[4] Market share

MNL no no

Teichert
et al.
(2008)

Stated preference
survey data from
frequent flyer
passengers
traveling on 11
European
short-haul routes
(n = 5,829).

[1] Product characteristics:
compartment (business,
economy),
[2] Stated preferences:
scheduled frequency, price,
fare flexibility, punctuality,
catering, ground service,
[3] Behavioral and
socio-demographic variables:
gender, age, education level,
profession, flying frequency

Latent Class no yes
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I.9. Price Model

Lurkin
et al.
(2017)

Ticket data
purchased through
travel agencies
worldwide as
collected by the
Airlines Reporting
Corporation
(ARC)
(n = 10, 034, 935).

[1] Itinerary Information
(Departure Time, Travel
Time, Equipment, Number
of connections, Direct Flight
Indicator),
[2] Price (Average high yield
fare, Average low yield fare),
[3] Marketing relationships
(Codeshare, Interline,
Online),
[4] Carrier preference

MNL yes no

Present
Study

Retail bookings
and flight data up
to 120 days to
departure
(n = 1,333,712).

[1] Ticket price,
[2] Departure day of week,
[3] Departure Time,
[4] Days to departure at
booking,
[5] Booking day of week

our model yes yes

I.9 Price Model

The initial step in our estimation is the construction of the residual ξ̂ to accommodate the
missing exogeneity of price. Table 4 provides estimates of the linear coefficients θ0, . . . θ7 of

Component Estimate (θ̂j) Std. Error % Change

Intercept 4.6204 0.0014 –
log(IV) 0.1052 0.0003 11.09%
BDAY = Mon -0.0148 0.0017 -1.47%
BDAY = Tue -0.0170 0.0017 -1.69%
BDAY = Wed -0.0141 0.0017 -1.40%
BDAY = Thr -0.0127 0.0017 -1.26%
BDAY = Fri -0.0054 0.0017 -0.54%
BDAY = Sat 0.0045 0.0019 0.45%

Table 4: Linear parameter estimates for the model for PRICE at Eqn. (6) fitted to bookings departing
on Thursday. The point estimate and the standard error are reported, along with the effect on PRICE of
increasing each covariate by 1 unit, which is given by exp(θ̂j)− 1.

model 6 and their impact on PRICE. The baseline for the BDAY dummy variable is Sunday,
and the remaining weekday dummy variables have significant relationships with PRICE.
There is a slight discount for tickets booked on weekdays of between 0.63% and 1.84%,
compared to those booked on the weekends. The instrumental variable IV has a significant
positive coefficient, with a z-value of 0.1052/0.0003 = 350.7 for the null hypothesis that
θ1 = 0; suggesting that the logarithm of bid-price is a strong instrument.
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Figure 5: Estimates of f0 (left panel) and f1 (right panel) from fitting the price model at Eqn. (6) to
bookings on flights that depart on Thursday. The dashed lines are 99% confidence bands, which are tight.

Figure 5 plots the estimates of the smooth functions f0 and f1, along with 99% confidence
bands, constructed as in Marra and Wood (2012). The estimate of f0 shows that ticket
prices tend to increase closer to departure. Turning to the estimate of f1, it can be seen
that ticket prices tend to peak for flights departing at around 08:00 and 18:00. These are
the morning and evening peak demand periods, and this increase is consistent with the
demand profile for flights on a busy short-haul route.

J.10 Demand Model with Two Segments

Table 5 gives the estimates of the linear coefficients, both excluding (Model I) and in-
cluding (Model II) the residuals ξ̂ from the price model. That is Model I ignores the
missing exogeneity of price while Model II takes this into account through the above in-
strumental variable approach. We find a significant coefficients of ξ̂, with z-statistics of
−0.0032/0.0004 = −8 and −0.0045/0.0010 = −4.5 clearly highlights the importance of
controlling for endogeneity here. Turning to the segments coefficients in Model II, the
estimates are α̂1,1 = 0.0008 and α̂1,2 = −0.0641, suggesting that the first segment (which
we label segment 1) consists of price inelastic customers, whereas the second consists of
customers who are more price sensitive. Given the nature of the busy short-haul route, it is
likely that segment 1 corresponds to a high proportion of customers travelling for business
purposes, whereas the second segment includes a higher proportion of leisure travellers
who are more budget conscious. Comparing the estimates of the coefficients of PRICE for
Models I and II shows that controlling for endogeneity excentuates the price elasticity for
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J.10. Demand Model with Two Segments

segment 2.
Recall that the reference category in the log-odds at Eqn. (3.4) is segment K = 2. There-

fore, the estimates of β
(π)
2,1 , . . . , β

(π)
7,1 indicate the relative preference of customers in segment 1

for booking on different day types. The positive (and significant) coefficient values for the
weekdays indicate that customers from segment 1 are more likely to make a booking on
weekdays, rather than on Saturday or Sunday (where the latter is the baseline case for
the BDAY dummies). This is consistent with the interpretation of customers in segment 1
booking flights for business purposes.
Figure 6 plots the estimates of the smooth components s

(π)
0,1 (t), s

(π)
1,1 (DTIME) for the log-

odds equation as well as the estimates of the smooth components s
(λ)
0 (t), s

(λ)
1 (DTIME) of

the baseline booking along with 99% confidence intervals for Model I. As the right-hand
panels show, the probability of a booking increases with time getting closer to the departure
date. Other than that there is only a little variation in time and DTIME which, as we
will see, is also due to the fact that the model with K = 2 customer segments is too
simplistic and does not appropriately describe customers’ behavior. Comparing the results
of Model I with the estimates of Model II, Figure 6 shows that the smooth components

Segment BL k = 1 k = 2

Model Component λBL(t) πk(t)

I

Segment Adjustment Coefficients
PRICE -0.0009 (0.0002) -0.0336 (0.0019)

Baseline Coefficients Log-odds Coefficients
Intercept -1.1213 (0.0886) -3.8781 (0.1450) –
BDAY = Mon 0.7753 (0.0743) 3.9991 (0.1437) –
BDAY = Tue 0.9768 (0.0760) 3.9786 (0.1540) –
BDAY = Wed 1.2515 (0.0806) 3.4608 (0.1395) –
BDAY = Thr 1.0012 (0.0877) 3.9168 (0.1482) –
BDAY = Fri 0.6714 (0.0848) 4.3488 (0.1605) –
BDAY = Sat -0.3964 (0.0558) 0.3479 (0.1175) –

II

Segment Adjustment Coefficients
PRICE 0.0008 (0.0005) -0.0641 (0.0104)

ξ̂ -0.0032 (0.0004) 0.0045 (0.0039)

Baseline Coefficients Log-odds Coefficients
Intercept -0.9589 (0.5145) -1.5856 (1.1263) –
BDAY = Mon 1.1680 (0.3021) 2.5242 (0.4329) –
BDAY = Tue 1.1535 (0.3879) 2.6881 (0.6621) –
BDAY = Wed 1.0423 (0.3924) 3.2702 (0.5823) –
BDAY = Thr 1.0721 (0.3397) 2.5534 (0.4931) –
BDAY = Fri 0.9795 (0.3058) 2.5480 (0.4754) –
BDAY = Sat -0.4299 (0.0665) -0.1150 (0.1905) –

Table 5: Parameter estimates and bootstrapped standard errors in parenthesize for K = 2 segments fitted
to bookings on flights departing on Thursday. Results are given for models fit excluding (Model I) and

including (Model II) the price model residuals ξ̂.
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Figure 6: For K = 2 segments, function estimates are given for models fit excluding (Model I, first two

rows) and including (Model II, row 3 and 4) the price model residuals ξ̂. The left-hand panels provide

the function estimates for s
(λ)
0 (t) and s

(λ)
1 (DTIME) in Eqn. (3.2) for bookings on flights that depart

on Thursday. The right-hand side shows the estimates of s
(π)
0,1 (t) and s

(π)
1,1 (DTIME) in Eqn. (3.4). The

estimates are given by the solid line, while the dashed lines are 99% local confidence bands.
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K.11. Model Evaluation for intra-day dependence

are less erratic if controlling for price endogeneity. This is explained by the reduction in
the models’ degrees of freedom (134.42 for Model I and 94.73 for Model II). Though both
models show similar results long before departure, i.e., overall booking intensity is relatively
low and the mix of segments show increasing booking probability of the price-insensitive
segment if going closer to departure, the most striking differences show during the week
before departure. Here, s

(λ)
0 (t) no longer decreases whereas s

(π)
0,1 (t) indicates a decreasing

booking probability of the price-insensitive segment. Additionally s
(π)
1,1 (DTIME) is no longer

significant proposing no segment specific booking probabilities with respect to departure
time. As the interpretations of the smooth components from Model I and Model II make
equal sense, i.e., Model I suggest that there is a general decline in booking intensity the week
prior to departure where only the price-insensitive segment books whereas Model II depicts
a steadily increase in booking intensity and a price-sensitive segment close to departure
(last minute passengers only willing to travel if the price is cheap) this indecisiveness points
towards the possibility of having at least an additional segment of price-sensitive passengers
which Model I is not able to describe.
Figure 7 plots q̄1(t) and q̄2(t), see (3.9) for Model II. The upper row shows that the
proportion of customers in segment 1 — customers with demand patterns consistent with
business travel — increases as the departure day gets closer. A strong weekly pattern due
to the booking day type is also apparent. The bottom row of Figure 7 q̄1(DTIME) and
q̄2(DTIME) for Model II. We see that the proportion of customers in segment 1 increases
during the peak periods during the morning and evening, which is also consistent with
business travel.
Last, we estimate any over-dispersion in the Poisson model by computing the Pearson
residuals

εi,t =
Yi(t)− E(Yi(t))

(Var(Yi(t))1/2
=

yi,t − λ(xi,t, t;θ)

λ(xi,t, t;θ)1/2
.

The mean of the squared residuals is 1.77, indicating only moderate over-dispersion to
the Poisson model. We also investigated whether the squared residuals are related to the
covariates, and also to the intensity, and we find no indication of structured heterogene-
ity.

K.11 Model Evaluation for intra-day dependence

So far we have treated bookings as independent, conditional on the covariates. However,
dependence may exist between bookings made on the same day for flights departing on a
given day, that is unaccounted for by the Poisson regression model. We call this ‘intra-
day dependence’ in bookings, and to account for it we use a multivariate Gaussian copula
model (Song, 2000) with the margins given by the Poisson regression models fitted above.
Copulas models for discrete-valued responsesn have been used previously in the trans-
portation sciences literature; for examples, see Bhat and Eluru (2009),Eluru et al. (2010),
and Smith and Kauermann (2011). However, here our copula model needs to capture de-
pendence between vectors that differ in length and composition for each observation, as
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K.11. Model Evaluation for intra-day dependence

we now discuss.

K.11.1 Gaussian Copula Model

In a copula model, dependence between the elements in a random vector of length m is
captured by its ‘copula function’. In practice, only vine or elliptical copulas currently are
suitable for problems where m ≥ 3 and pairwise dependence can vary between elements.
Vine copulas can be difficult to specify (Dissmann et al., 2013), so that we instead use the
Gaussian copula, which is the most popular elliptical copula. It has copula function

CGa(u1, . . . , um; Γ) = Φm(Φ
−1(u1), . . . ,Φ

−1(um); Γ) = Φ(y⋆1, . . . , y
⋆
m; Γ) ,

where Φm(·; Γ) is the distribution function of aN(0,Γ) density with Γ as correlation matrix,
and Φ is the standard normal distribution function. The m×m correlation matrix Γ is the
copula parameter that requires estimation. We define y⋆l = Φ−1(ul) for l = 1, . . . ,m so that
(y⋆1, . . . , y

⋆
m) ∼ N(0,Γ). As discussed in Danaher and Smith (2011), because the marginal

distributions of the bookings are discrete-valued, we link the continuous Gaussian copula
to the observed bookings through the constraint

Φ−1(Po(yl − 1;λl)) < y⋆l < Φ−1(Po(yl;λl)) ,

with Po(·;λl) as the distribution function from the fitted Poisson regression model from
above.
Because on our route flights depart at 61 distinct times, we consider capturing intra-day
dependence at the hourly resolution, with flights departing in hourly intervals from 06:00
to 22:00 (except for flights departing between [06:00,08:00) which we consider as a single
interval because only a few flights depart prior to 07:00). This requires estimation of a
15-dimensional copula function CGa(u1, . . . , u15; Ω), where the parameter matrix Ω = {ωi,j}
for i = 1, . . . , 15 and j = 1, . . . , 15. For example, element ω2,4 captures the dependence
between flights departing in intervals [08:00,09:00) and [10:00,11:00). However, there are
four complicating factors that make specifying the likelihood of such a copula model difficult
for our data. For any given departure day d, (i) the number of flights scheduled to depart
varies, (ii) the hours at which these flights depart varies, (iii) multiple flights can leave
during the same hourly interval (particularly during peak periods), and (iv) a different set
of flights can be open or closed for different booking days t ∈ {0, . . . , 120}. Thus, the vector
of booking counts for each departure day d and day to departure t, given as pair (d, t),
can be considered to have ‘ragged edges’, because it differs both in size and composition
of its elements. That is to say, in practice we do not have multiple observations on the 15-
dimensional vector of bookings and hence direct application of a copula model to address
intraday dependence is not possible.1

1As an illustrative example, if on day d1 flights were scheduled to depart at 07:15, 07:30, 9:30 and 10:30,
then the vector would be of length K(d1, t) = 4. If 30 days prior to departure the 9:30 flight was cancelled,
then the vector would of length K(d1, t) = 3 for bookings with t ≤ 30. And if on the next departure day
d1 + 1 there are additional flights also scheduled to depart at 11:00 and 11:30, then K(d1 + 1, t) = 6 with
no cancellations.
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To account for these complications, we introduce the following notation. For each pair of
values (d, t), let K(d, t) denote the number of flights for which booking is possible. Label
the hours of departure of these flights as H(d, t) = {h1, . . . , hK(d,t)}, with values from 1
to 15, and where it is possible that hi = hj when two or more flights are scheduled to
leave during the same hour.2 Using this notation, all observed booking counts (including
occurrences of zero bookings) made t days before departure on flights departing on day
d, can be stacked into a K(d, t) vector of varying length yd,t = (yd,t1 , yd,t2 , . . . , yd,tK(d,t)).

3 Its
joint distribution function is also given by the copula decomposition. It is a property of the
Gaussian copula that it is closed under marginalization, including for a subset of elements
as here, so that the distribution function of yd,t is

F (yd,t; Ω) = ΦK(d,t)(y
⋆,d,t
1 , y⋆,d,t2 , . . . , y⋆,d,tK(d,t); Ω

d,t) .

Here, Ωd,t = {ωd,t
i,j } is a K(d, t) × K(d, t) matrix formed from Ω = {ωi,j}, by setting ele-

ment ωd,t
i,j = ωhi,hj

for i = 1, . . . , K(d, t) and j = 1, . . . , K(d, t). That is, Ωd,t is function
of Ω formed by simply ‘pulling out’ the relevant elements. The latent variables are dis-
tributed y⋆,d,t = (y⋆,d,t1 , y⋆,d,t2 , . . . , y⋆,d,tK(d,t)) ∼ N(0,Ωd,t), constrained by the bounds as at

Eqn. Φ−1(Po(yl − 1;λl)) < y⋆l < Φ−1(Po(yl;λl)).
The likelihood of the proposed multivariate copula model is the product of the probability
mass functions obtained from Eqn. ΦK(d,t)(y

⋆,d,t
1 , y⋆,d,t2 , . . . , y⋆,d,tK(d,t); Ω

d,t) over all pairs of

(d, t). However, direct evaluation of each of these individual mass functions is an O(2K(d,t))
operation, which is computationally infeasible for the values of K(d, t) in our data, which
are typically greater than 15. Instead, we follow Pitt et al. (2006), Danaher and Smith
(2011), and Smith and Khaled (2012), and estimate the copula model using Bayesian data
augmentation, which generates the constrained latent variables y⋆,d,t observing Φ−1(Po(yl−
1;λl)) < y⋆l < Φ−1(Po(yl;λl)) using Markov chain Monte Carlo (MCMC) methods. Details
are discussed next.

K.11.2 Copula Estimation

It is computationally infeasible to evaluate the likelihood of high dimensional copula mod-
els with discrete margins directly; for example, see the discussion in Smith and Khaled
(2012). Therefore, we follow Pitt et al. (2006); Danaher and Smith (2011) and subsequent
authors and estimate the copula parameters using Bayesian data augmentation. This pro-
vides estimates of the copula parameters—and associated Spearman correlations—from
the Bayesian posterior distribution.
Because this is a Bayesian approach, a prior distribution for the copula parameters has
to be adopted. For this, we follow Joe (2006); Daniels and Pourahmadi (2009) and pa-
rameterize Ω through its partial correlations. If 1 ≤ j < i ≤ 15, these are given by

2To continue the illustrative example, H(d1, t) = (2, 2, 4, 5) for t > 30, H(d1, t) = (2, 2, 5) for t ≤ 30
and H(d1 + 1, t) = (2, 2, 4, 5, 6, 6).

3To further continue the illustrative example, if there were 3 and 6 bookings on day t > 30 for the
flights departing at 7:15 and 9:30 on day d1, respectively, then yd1,t = (3, 0, 6, 0).

88



K.11. Model Evaluation for intra-day dependence

ri,j = Corr(y⋆j , y
⋆
i |y⋆j+1, . . . , y

⋆
i−1), where the correlation is defined to be unconditional when

j = i−1. The set of all partials is therefore r = {ri,j; i = 1, . . . , 15; j < i}. This parameter-
ization is invariant with respect to the ordering of the elements of y⋆, unlike the Cholesky
decomposition of Ω used in Smith and Kauermann (2011); Danaher and Smith (2011) and
others. Daniels and Pourahmadi (2009) give a one-to-one transformation between Ω and
r, that is widely attributed to Yule.
The approach generates the latent Gaussian variables y⋆ = {y⋆,d,t ; d ∈ D, t = 0, . . . , 120}
as part of the Markov chain Monte Carlo (MCMC) scheme below. This greatly simplifies
estimation, because the posterior of r conditional on y⋆ is fast to compute.

Sampling Scheme
Step 1. For d = 1, . . . , D, t = 0, . . . , 120, generate from f(y⋆,d,ti |{y⋆\y⋆,d,ti }, r,y) =
f(y⋆,d,ti |{y⋆,d,t\y⋆,d,ti },Ωd,t, y⋆,d,t).
Step 2. Generate from f(r|y⋆) element-by-element using (adaptive) random walk
Metropolis-Hastings.
Step 3. Compute Ω from r using Yule’s one-to-one transformation.

For Step 1, note that y⋆,d,t ∼ N(0,Ωd,t), from which the mean µ and variance s2 of the con-
ditional distribution of the element y⋆,d,ti |y⋆,d,t\y⋆,d,ti ∼ N(µ, s2) can be computed easily. To
compute the required conditional posterior, this needs to be combined with the constraint

(Ld,t
i < y⋆,d,ti < Ud,t

i ), where the lower bound Ld,t
i = Φ−1

(
Po(yd,ti − 1;λd,t

i )
)
and the upper

bound Ud,t
i = Φ−1

(
Po(yd,ti ;λd,t

i )
)
. Here, Φ is the standard normal distribution function,

and Po(·;λd,t
i ) is the distribution function of the Poisson regression model in Section 4

with intensity value λd,t
i for booking count yd,ti . (Note that we define Po(−1;λ) = −∞

here). The conditional posterior in Step 1 is therefore a N(µ, s2) distribution constrained
to the range (Ld,t

i , Ud,t
i ]. The bounds are computed only once, based on the fitted Poisson

regression model, so that it is fast to sample each element. Moreover, the elements can be
sampled in parallel because the loops in d and t are not recursive.
To implement the random walk Metropolis-Hastings (MH) in Step 2, f(r|y⋆) ∝
f(y⋆|r)f(r), where the prior f(r) is flat on the partial correlations. The augmented
likelihood is

f(y⋆|r) =
∏
d

∏
t

ϕK(d,t)(y
⋆,d,t;0,Ωd,t) .

By first computing Ω from r using Yule’s one-to-one transformation, the matrices Ωd,t

above can be formed by simply extracting their elements from Ω. The density is then
evaluated directly, which requires the Cholesky factorization of each matrix Ωd,t. When
programmed in a low level language (Fortran 90) we found this is practical to implement on
regular PCs with the sample sizes examined here. Moreover, the products can be readily
computed in parallel, greatly speeding the evaluation. Note that all computations are
undertaken on the logarithmic scale for numerical stability, as is usually the case when
implementing a MH step. In general, we run our sampling scheme for a burnin of 40,000
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iterates, and a collect a further 20,000 iterates from which to compute posterior inference,
which takes around 4 hours on a standard desktop for our dataset.

K.11.3 Estimated Dependence

As in Section 3, we fit the model separately for different departure day types. We also
further segment by the number of days prior to departure when the booking was made,
and by the booking day type. To measure the overall level of dependence we compute
the posterior estimates of the Spearman pairwise correlations between y⋆i and y⋆j , which is
ρsi,j =

6
π
arcsinωi,j for a Gaussian copula parameter matrix Ω = {ωi,j}. Figure 8 plots the

posterior mean of the matrix of Spearman pairwise correlations R = {ρsi,j} for bookings
made on weekdays for flights departing Thursdays. The panels give estimates for bookings
made between (a) 2 ≤ t ≤ 30, (b) 30 < t ≤ 60 and (c) t > 60 days prior to departure.
Blank cells show where the 99% posterior probability intervals for ρsi,j contain 0. For
bookings made in the month prior to departure (panel (a)), there is positive dependence
throughout. This is likely due to the omission of factors that drive demand for all flights
at a daily level. A similar feature can be seen with bookings made between long before
departure in panels (b,c), but mostly for flights that depart in the evening. In either case,
the level of dependence is only mild, suggesting the proposed Poisson model accounts for
the vast majority of dependence between bookings for flights that depart on the same day.
While not reported here, very similar results were found for other segmentations of the
bookings data.

L.12 Penalized Maximum Likelihood Estimation

For simplicity of notation we write πk,i,t instead of πk(t) and define θ
(π)
k = (β

(π)
k ,γ

(π)
0,k ,γ

(π)
1,k )

as corresponding subvector of θ. The corresponding model design matrix for the i-th flight
at t days to departure is denoted as

w
(π)
i,t =

(
I(BDAYi = j), j = 1, ..., 7;w

(π)
0 (t),w

(π)
1 (DTIMEi)

)
where w

(π)
0 (t) and w

(π)
1 (DTIMEi) are B-spline basis functions in time and departure time,

see also Appendix B. Analogously we define

w
(λ)
i,t =

(
I(BDAYi = j), j = 1, ..., 7;w

(λ)
0 (t),w1(λ)(DTIMEi)

)
and θ(λ) = (β(λ),γ

(λ)
0 ,γ

(λ)
1 )T to be the design matrix and corresponding parameter vector

for modelling λBL. Finally for the group specific part δk we define the matrix as vi,t =

(PRICEi,t) or vi,t = (PRICEi,t, ξ̂i,t) depend on whether we fit the model without or with

instrumental variable where PRICEi,t is the price for flight i at t days to departure and ξ̂i,t
the fitted residual of the OLS estimation of Eqn. (6). The matching vector of parameters
is αk. Then the first partial derivatives, defining the gradients, are:
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L.12. Penalized Maximum Likelihood Estimation
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L.12.1 Derivatives
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∑
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where λ0,i,t = exp(w
(λ)
i,t θ

(λ)), δk,i,t = exp(vi,tγk) and ck = exp(αk). The Fisher information
results as

E

(
− ∂2ℓ(θ)

∂θ
(π)
k1

∂θ
(π)
k2

T

)
=


∑
i

∑
t
w

(π)
i,t

T
λ2
0,i,t

(
π2
k,i,t

(
1−πk,i,t

)2(
λk,i,t−λK,i,t

)2
λi,t

)
w

(π)
i,t if k = k1 = k2∑

i

∑
t
w

(π)
i,t

T
λ2
0,i,t

( ∏
k∈{k1,k2}

πk,i,t

(
1− πk,i,t

))
Bk,i,tw

(π)
i,t if k1 ̸= k2

E

(
− ∂2ℓ(θ)

∂θ(λ)∂θ(λ)T

)
= w

(λ)
i,t

T
λ,i,tw

(λ)
i,t

E

(
− ∂2ℓ(θ)

∂αk1
∂αk2

T

)
=



∑
i

∑
t
vT
i,tλitvi,t if k = k1 = k2 = 1

ck

(∑
i

∑
t
vT
i,tλ

3
0,i,t

A2
k,i,t

λit
vi,t

)
ck if k = k1 = k2 > 1

−ck2

(∑
i

∑
t
vT
i,tλ0,i,tAk2,i,tvi,t

)
if k1 = 1, k2 > 1

ck1

(∑
i

∑
t
vT
i,tλ

3
0,i,t

Ak1,i,tAk2,i,t

λi,t
vi,t

)
ck2

if k1, k2 > 1, k1 ̸= k2

where Ak,i,t =

(
K∑
j=k

πj,i,tλj,i,t

)
and Bk,i,t =

λk,i,t−λK,i,t

λi,t

E

(
− ∂2ℓ(θ)

∂θ
(π)
k1

∂αk2
T

)
=


−
∑
i

∑
t
w

(π)
i,t

T
λ0,i,tπk1,i,t

(
1− πk1,i,t

)
Bk1,i,tvi,t if k1 ≥ 1, k2 = 1

−ck2

(∑
i

∑
t
w

(π)
i,t

T
λ2
0,i,tπk1,i,t

(
1− πk1,i,t

)
Ak2,i,tBk1,i,tvi,t

)
if k1 ≥ 1, k2 > 1

E

(
− ∂2ℓ(θ)

∂θ
(π)
k ∂θ(λ)T

)
=
∑
i

∑
t

w
(π)
i,t

T
λBL

(
λk,i,t − λK,i,t

)
πk,i,t

(
1− πk,i,t

)
w

(λ)
i,t

E

(
− ∂2ℓ(θ)

∂θ
(λ)
k ∂αT

k

)
=


∑
i

∑
t
w

(λ)
i,t

T
λi,tvi,t if k = 1

−ck

(∑
i

∑
t
w

(λ)
i,t

T
λ0,i,tAk,i,tvi,t

)
if k > 1

92



L.12. Penalized Maximum Likelihood Estimation

As (3.2) and (3.4) are typically not identifiable if the B-splines basis is used a mean cen-
tering constraint, see e.g. Wood (2017), is applied to each smooth component. For in-

stance centering the component w
(π)
0 (t) is achieved by finding the matrix Z0 which solves

1Tw
(π)
0 (t)Z0 = 0 where Z0 has one column less then the original design-matrix w

(π)
0 (t).

By the use of the re-parameterized parameter-vector γ
(π)
0,k,c = Z0γ

(π)
0,k for estimation, the

centering constraint is automatically satisfied.

L.12.2 Penalization Setting

Based on the ideas of Eilers and Marx (1996) and Ruppert et al. (2003). We impose a

penalty on the coefficients relating to the functional effects s
(π)
0k (t), s

(π)
1k (DTIME),s

(λ)
0 (t)

and s
(λ)
1 (DTIME), respectively. We make use of linear B-splines and penalize neighboring

coefficients. To be specific we set w
(π)
0 (t) as linear B-spline bases with 12 knots located

at equidistantly between −11 and 133. We therefore penalize first order differences of
the components of γ

(π)
0k , i.e., γ

(π)
0,k,l − γ

(π)
0,k,l−1, l = 10, . . . , 2. Analogously we specify the

remaining spline base matrices. The penalties can be written as quadratic form leading to
the penalized likelihood ℓp(, )

ℓp(θ, ρ) = ℓ(θ) +
1∑

j=0

K−1∑
k=1

ρ
(π)
jk γ

(π)T

jk D
(π)
jk γ

(π)
jk +

1∑
j=0

ρ
(λ)
j γ

(λ)T

j D
(λ)
j γ

(λ)
j

where ρ = (ρ
(λ)
0 , ρ

(λ)
1 , ρ

(λ)
0k , ρ

(λ)
1k , k = 1, ..., K) are the penalty parameters to be specified

later. Apparently, if ρ = 0 one obtains unpenalized estimation. The smoothing matrices D
result from taking differences of neighboring coefficients and exactly follows the convention
of Eilers and Marx (1996). This means, for instance, that the difference of spline coefficients
is penalized so that neighbouring spline coefficients are forced to be of similar size.
The penalty parameters need to be selected, data driven and we here use the Bayesian
Information Criterion (BIC) defined through

BIC(ρ) = −2ℓ(θ̂) + log(n)df(ρ)

where df(ρ) is the degree of the model and n is the number of observations (≈ number
of flights multiplied by the number of considered days to departure). The degree of the
model can be approximated through Fisher matrices as follows. Let F (θ,ρ) denote the
penalized Fisher matrix, i.e.

F (θ,ρ) = E

(
−∂ℓp(θ,ρ)

∂θ∂θT

)
.

Then, the degree of the model is approximated through
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df(ρ) = trace{F−1(θ̂,ρ)F (θ̂,ρ = 0)}

where θ̂ is the penalized parameter estimate. For a justification of (A.6) see Ruppert et al.
(2003) or Krivobokova and Kauermann (2007b).
We maximize (L.12.2) and apply for simplicity the same degree of smoothing for t and

DTIME. That is we set ρ
(π)
jk = ρ

(λ)
j ∀ j = 0, 1. If K = 2 within the optimization procedure

the control parameters ρ
(π)
01 = ρ

(λ)
0 and ρ

(π)
11 = ρ

(λ)
1 will be fixed to some value. These values

are selected based on a grid search by minimizing the BIC.

M.13 Bootstrapping for Mixture Models

We compute bootstrap confidence intervals using the ‘leave out one individual’ approach
of Rice and Silverman (1991). Re-sampling is undertaken on the flight level to accommo-
date dependence between bookings on the same flight, and consistent with the likelihood
at Eqn. (3.6). For each flight i, booking counts and associated covariates are re-sampled
(with replacement) for the entire window of booking days between tclosei and topeni .
To control for label switching we choose to order the segment specific price coefficients αk

in a monotone sequence. The label switching problem occurs for such random samples
from its population whenever at least two group labels δk, k = 1, . . . , K from Eqn. (3.1)
change their positions. If the superscript l within δlk denotes the group label for a random
sample, than there exists at least two group indices k for which δ1k ̸= δ2k if a single label
switch between two groups occurs.
To avoid label switching and its negative impact on confidence intervals that result from re-
sampling techniques such as boostraping, we propose a frequentist control approach.
To identify the segment labels δk = exp(α1,kPRICE+α2,kξ̂) in 3.1 we impose ordering con-
straints on the elements of the coefficient vector αT

j = (αj,1, . . . , αj,K). The identification of
the group labels is finally achieved by constraints the elements of αj such that αj,k < αj,k+1

or that αj,k > αj,k+1. Allowing for every possible ordering (<,>) between two neighboring
coefficients αj,k, αj,k+1, a total of KJ possible ordering combinations result. For Eqn. 3.1,
we have J = 2 and if K = 2, the number of possible ordering combinations is 4. This
number reduces to K(J−1) if it is acknowledged that the same ordering of αj,k < αj,k+1

is achieved by αj,k > αj,k+1∀j = 1, . . . , J, k = 1, . . . , K if the grouping index k no longer
runs from the lowest to the highest index but rather from the highest to the lowest, i.e.,
αj,k > αj,k+1 transforms into αj,k+1 > αj,k. Abbreviating αj,k < αj,k+1 by decrj and
αj,k > αj,k+1 by incrj, for Eqn. (3.1) , with J = 2 and K = 2, every possible ordering
constraints belongs to the set {{decr1, decr2}, {decr1, incr2}}. For a fixed value of K, a
separate estimation of (3.6) for each ordering constraint is performed and the model with
the lowest BIC values among all candidate models is finally chosen and the corresponding
ordering constraint is used to derive bootstrap confidence bands. As the number of possible
ordering constraints gets large for small values of K, we use the ordering constraints of the
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N.14. Two-step Estimator by residual inclusion

K = 2 case for K > 2. A consequence of this restriction is that only monotone decreasing
or increasing ordering constraints between group parameters are allowed, even though the
true ordering between group parameters αj,k is possibly different. Therefore, applying the
minimum BIC rule to models with K > 2 to select the optimal number of groups only
results in an upper bound and is therefore not exact. Exemplary let K = 3 be the true
group size and α∗

j,1 < α∗
j,k+1 > α∗

j,3 the optimal ordering constraint. As we only allow for
αj,1 < αj,2 < αj,3 or αj,1 > αj2 > αj,3, the BIC rule selects a model with K = 4 groups as
a convex combination of the parameters with ordering constraint αj,1 < αj,2 < αj,3 < αj,4

is able to express the relation of α∗
j,1 < α∗

j,2 > α∗
j,3 by setting α∗

j,1 = αj,1, α
∗
j,2 = αj,3, and

α∗
j,3 = π2(.)αj,2 + π4(.)αj,4.

N.14 Two-step Estimator by residual inclusion

We consider the two-step estimator of Marra and Radice (2011) to account for price-
endogeneity. As the technical discussions of Marra and Radice (2011) concerns the omit-
ted variable bias problem as a characteristic of endogeneity, some minor adjustments are
necessary to provide a similar statement for the case of simultaneity.
Given that the number of arriving passengers are specified by Y (t) = λ(t) + uλ, the
systematic component λ(t) characterizes through the segment-specific Eqn. log(δk) (3.1)
how demand depends on PRICE as:

Y (t) = λBL(t)

 K∑
k=1

πk(t) exp
(
α1,kPRICE

)︸ ︷︷ ︸
δk

+ uλ

If PRICE is endogenous the assumption of E (uλ | PRICE,BDAY,DTIME, t) = 0 is
violated and the estimation of the demand-equation results in biased estimates. For
η = η

(
IV,BDAY,t,DTIME

)
we plug the expression PRICE = exp (η + σ2/2) + ξ into

the demand-equation which results in

Y (t) = λBL(t)

(
K∑
k=1

πk(t) exp

(
α1,k

{
exp

(
η + σ2/2

)
+ ξ
}))

+ uλ

As the unobservable error ξ enters the segment-specific equations, biased estimates result
if E (uλ | ξ) ̸= 0. For the additive separation of ξ into two parts

ξ = ξ1 + ξ2.

we assume that E (uλ | ξ1) = 0 but E (uλ | ξ2) ̸= 0. If ξ2 would be observable we could
include this variable to (6) as an additional regressor. Thus, the new predictor changes
to

ηnew = θ0 + θ1IV +
7∑

j=2

I(BDAY = j)θj + f0(t) + f1(DTIME) + θ8ξ2
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Therefore, the update on the PRICE-equation is

PRICE = exp

(
ηnew +

σ2
new

2

)
+ v

Taking the Taylor approximation of exp
(
ηnew + σ2

new

2

)
around θ8ξ2 = 0 results in

PRICE = exp (η) +
∂ exp (ηnew)

∂θ8ξ2
θ8ξ2 + v︸ ︷︷ ︸

:=ζ

Thus estimation of the reduced form of price with Eqn. (6) with instrument IV gives an
estimate of ζ that contains information about the unobservable variable ξ2. Therefore, the
inclusion of the estimate ξ̂ within the segment-specific equations controls for the endogene-
ity of price.

O.15 Source-Code and Data-Files

The associated R- and Fortran-code for the estimation algorithm used, as well as the data
for flights departing on a Thursday, can be downloaded at
https://github.com/JFMeyer2k/SMIJ.
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O.15. Source-Code and Data-Files
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