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Summary

Due to their flexibility in modeling complex relationships such as non-linear and interaction effects,
machine learning models are used in various application fields. However, the flexibility also comes
with a black box character of these models, leading to a lack of explanation and transparency.

To that end, the research field interpretable machine learning to explain the inner workings of
machine learning models has grown immensely in recent years. Therefore, model-agnostic inter-
pretation methods that aim to elucidate the influence of features on any model’s prediction or
performance have been introduced on a global and local level. Global explanations provide insights
into the general model behavior. In contrast, local explanations focus on single observations.

While model-agnostic interpretation methods provide more insights into machine learning models,
they also bear the risk of being incorrectly applied or interpreted. The first contributing article in
Part II of this thesis provides an overview of potential pitfalls, possible solutions, and open issues
of existing model-agnostic interpretation methods. The following two parts of this thesis focus on
two major limitations of global interpretation methods:

1. human-incomprehensibility of high-dimensional output, and

2. misleading interpretations of global explanations due to aggregation.

Part III of this thesis aims to analyze and propose potential solutions for the limitation human-
incomprehensibility of high-dimensional output. Most existing global interpretation methods, such
as feature importance scores and feature effect visualizations, were introduced on a single-feature
level. However, the output of these methods might be overwhelming for high-dimensional settings.
This problem can be addressed by grouping features and thus lower dimensionality to simplify
the methods’ output. Therefore, the second contributing article provides an overview of existing
methods and suggests new approaches to quantify feature importance scores and visualize feature
effects for feature groups.

Part IV of this thesis is supported by three contributing articles and deals with the limitation of
misleading interpretations of global explanations due to aggregation. Global feature effect methods
may be affected by an aggregation bias due to heterogeneity in local feature effects. This part
bridges the gap between local and global feature effect methods by suggesting approaches that
provide regional explanations that are more representative of the underlying observations. The
heterogeneity in local feature effects is usually either caused by feature interactions or by extrap-
olation. In the first and second contributing articles of this part, we provide solutions to find
interpretable regions based on a recursive partitioning algorithm for cases where the aggregation
bias in global feature effect methods is caused by feature interactions. The third contributing
article deals with the aggregation bias if it is caused by extrapolating in unseen or sparse regions
of the feature space. This article addresses the problem for partial dependence plots when applied
to explain hyperparameter effects in the context of hyperparameter optimization. Again, a re-
cursive partitioning algorithm is used to obtain interpretable regions with more confident partial
dependence estimates.





Zusammenfassung

Dank ihrer Flexibilität bei der Modellierung komplexer Zusammenhänge wie nichtlinearer und
Interaktionseffekte finden maschinelle Lernmodelle in einer Vielzahl von Anwendungsbereichen
Verwendung. Diese Flexibilität geht jedoch auch mit einem “Black-Box”-Charakter dieser Mod-
elle einher, was zu einem Mangel an Erklärbarkeit und Transparenz führt. Infolgedessen hat das
Forschungsgebiet “Interpretierbares maschinelles Lernen”, das Einblicke in die innere Funktion-
sweise von maschinellen Lernmodellen ermöglicht, in den letzten Jahren erheblich an Bedeutung
gewonnen. Somit wurden modellagnostische Interpretationsmethoden eingeführt, um den Einfluss
von Merkmalen auf die Vorhersage oder Performance eines beliebigen Modells sowohl auf globaler
als auch auf lokaler Ebene zu erklären. Globale Erklärungen bieten Einblicke in das allgemeine
Modellverhalten, während lokale Erklärungen einzelne Beobachtungen erklären. Obwohl model-
lagnostische Interpretationsmethoden tiefere Einblicke in maschinelle Lernmodelle bieten, bergen
sie auch das Risiko, falsch angewendet oder interpretiert zu werden. Der erste beitragende Artikel
in Teil II dieser Dissertation bietet einen Überblick über potenzielle Fallstricke, mögliche Lösungen
und noch offene Herausforderungen bestehender modellagnostischer Interpretationsmethoden. Die
folgenden beiden Teile dieser Arbeit konzentrieren sich auf zwei wesentliche Limitationen globaler
Interpretationsmethoden:

1. Die Unverständlichkeit hochdimensionaler Ausgaben

2. Irreführende Interpretationen globaler Erklärungen aufgrund von Aggregation.

Teil III dieser Arbeit zielt darauf ab, die Limitation der Unverständlichkeit hochdimensionaler Aus-
gaben zu analysieren und potenzielle Lösungen vorzuschlagen. Die meisten bestehenden globalen
Interpretationsmethoden, wie Merkmalwichtigkeitsbewertungen und Visualisierungen von Merk-
malseffekten, wurden auf einzelner Merkmalsebene eingeführt. Die Ausgabe dieser Methoden
kann jedoch in hochdimensionalen Merkmalsräumen überwältigend sein. Daher bietet der zweite
Beitrag einen Überblick über bestehende Methoden und schlägt neue Ansätze zur Quantifizierung
der Merkmalswichtigkeit und Visualisierung von Merkmalswirkungen für Merkmalsgruppen vor.

Teil IV dieser Dissertation wird von drei beitragenden Artikeln unterstützt und behandelt die
Limitation irreführender Interpretationen globaler Erklärungen aufgrund von Aggregation. Glob-
ale Merkmalseffektmethoden können durch Heterogenität in lokalen Merkmalseffekten von einer
Aggregationsverzerrung betroffen sein. Dieser Teil der Arbeit schließt die Lücke zwischen lokalen
und globalen Merkmalseffektmethoden, indem er Ansätze vorschlägt, die regionale Erklärungen
bieten, die repräsentativer für die zugrundeliegenden Beobachtungen in den Regionen sind. Die
Heterogenität in lokalen Merkmalseffekten kann verschiedene Ursachen haben. In den ersten bei-
den Beiträgen dieses Teils bieten wir Lösungen zur Identifizierung interpretierbarer Regionen auf
der Grundlage eines rekursiven Partitionierungsalgorithmus an, wenn die Aggregationsverzerrung
in globalen Merkmalseffektmethoden durch Interaktionen zwischen Merkmalen verursacht wird.
Der dritte beitragende Artikel behandelt das Problem der Aggregationsverzerrung, wenn sie durch
Extrapolation in nicht oder kaum gesehenen Regionen des Merkmalsraums verursacht wird. Der
Artikel adressiert dieses Problem im Kontext der Erklärung von Hyperparameter-Effekten bei der
Hyperparameter-Optimierung mittels Partial Dependence Plots. Erneut wird ein rekursiver Par-
titionierungsalgorithmus verwendet, um interpretierbare Regionen mit zuverlässigeren regionalen
Partial Dependence Schätzungen zu erhalten.





Contents

I. Introduction and Background 1

1. Introduction 3
1.1. Motivation and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Background 7
2.1. General Notation and Supervised Machine Learning . . . . . . . . . . . . . . . . . . . 7
2.2. Interpretable Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2. Model-Agnostic Interpretation Methods . . . . . . . . . . . . . . . . . . . . . . 9

2.3. Feature Interactions and Functional ANOVA Decomposition . . . . . . . . . . . . . . . 12
2.3.1. Feature Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2. Functional ANOVA Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4. Global Feature Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5. Global Feature Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.2. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6. Limitations of Global Interpretation Methods . . . . . . . . . . . . . . . . . . . . . . . 23
2.7. Marginal-based versus Conditional-based Approaches . . . . . . . . . . . . . . . . . . . 26

II. Pitfalls in Interpretable Machine Learning 29

3. General Pitfalls of Model-Agnostic Interpretation Methods for Machine Learning Models 31

III. Grouping Approaches in Interpretable Machine Learning 63

4. Grouped Feature Importance and Combined Features Effect Plot 65

IV. Partitioning Approaches in Interpretable Machine Learning 117

5. REPID: Regional Effect Plots with implicit Interaction Detection 119

6. Decomposing Global Feature Effects Based on Feature Interactions 145

7. Explaining Hyperparameter Optimization via Partial Dependence Plots 205

V. Conclusion and Open Challenges 219

8. Conclusion 221

xi



Contents

9. Open Challenges 223
9.1. Open Challenges of Grouping Approaches . . . . . . . . . . . . . . . . . . . . . . . . 223
9.2. Open Challenges of Partitioning Approaches . . . . . . . . . . . . . . . . . . . . . . . 223
9.3. General Open Challenges of IML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

References 225

xii



Part I.

Introduction and Background





1. Introduction

1.1. Motivation and Scope

In recent years, the substantial growth of digital data and the simultaneous improvements in
computational power have contributed to notable achievements in artificial intelligence (AI) ap-
plications. Billions of people are confronted with AI-based applications on a daily basis when
they check their recommendations on social media (Wong, 2023) or for the next series to watch
on Netflix (Stoll, 2023) and by using the search engine of Google (Bianchi, 2023). The incredible
potential of AI-based applications, particularly of generative AI and large language models, was
recognized at the latest when OpenAI released ChatGPT (OpenAI, 2022). The International
Data Corporation (IDC) predicted in 2022 that the global value of the AI market will reach 900
billion US Dollars in 2026 (Plachy and Vavra, 2022). According to Bloomberg, the generative AI
market alone will increase its value to 1.3 trillion US Dollars within the next ten years, which was
around 40 billion in 2022 and thus constitutes a market growth of 3250% (Catsaros, 2023). Given
these promising forecasts, the relevance of AI for the future economy and society is undeniable.

With machine learning (ML) algorithms performing extremely well due to their capability to learn
complex relationships from data, their application in various fields such as healthcare (Topol,
2019), finance (Heaton et al., 2017), and education (Peters, 2018) is no longer dispensable. How-
ever, their ability to flexibly learn complex relationships is based on opaque algorithms. Thus,
these algorithms have a black box character, i.e., the inner workings of these algorithms cannot be
understood by the user. Consequently, interpretability, which I define according to Miller (2019)
by “the degree to which an observer can understand the cause of a decision”, is needed when the
decisions made by these black box algorithms affect human life or society. Hence, interpretabil-
ity is particularly needed if potential biases have been learned by the model and the resulting
discriminating actions might have severe consequences for individuals or specific socioeconomic
subgroups, such as an unexplainable diagnosis for a life-threatening disease, an unjustified denial
of a loan application at a bank or an unjustified risk assessment for a conviction in criminal justice
(Carvalho et al., 2019; Gilpin et al., 2018; Watson, 2022). Another important field of application
that aspires for interpretability is related to safety-critical tasks such as autonomous driving, where
wrong decisions made by an AI system can be perilous for other road users (Gilpin et al., 2018).
Since these scenarios are not just hypothetical but have already occurred (Angwin et al., 2016;
Obermeyer et al., 2019), the need for interpretability increased. Being able to test, audit, and
debug the algorithm before deployment and receiving explanations for potentially wrong decisions
can help improve the system and make it more secure (Gilpin et al., 2018). As a result, initial
measures have been taken, such as introducing explainability guidelines in the European General
Data Protection Regulation (GDPR) (Goodman and Flaxman, 2017). Furthermore, Gartner pre-
dicted in 2022 that one of ten major technology trends that will affect the business priorities of
organizations in the following three years is “AI Trust, Risk and Security Management”, which
“combines methods for explaining AI results, rapidly deploying new models, actively managing AI
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1. Introduction

security, and controls for privacy and ethics issues” (Groombridge, 2022). Hence, methods that
provide insights into these black boxes are required. Therefore, the research area of interpretable
machine learning (IML), which provides methods that make the predictions of ML models more
understandable to humans (Watson, 2022), has received increasing attention and has proliferated
in recent years. These interpretation methods can generally be categorized into model-based and
post hoc methods (Murdoch et al., 2019). While the former approach pursues to fit directly an
interpretable model instead of a black box, the latter approach gains insights into the learned
relationships of a black box model by applying these methods to a trained ML model. This the-
sis focuses on post hoc model-agnostic interpretation methods, which can be applied to any ML
model.

Post hoc methods allow us to derive interpretations after training a high-performing ML model to
gain insights into the inner workings of the trained ML model. Hence, to obtain interpretability,
the model’s performance is not reduced, for example, by using an interpretable or less flexible
model class that cannot learn the underlying complex relationships given by the data.1 While
this characteristic holds considerable resonance within the broader research community, post hoc
methods also have their pitfalls, which are discussed in detail in the contributing article of Part II
of this thesis. The sources of these pitfalls can be categorized into (1) using an unsuitable ML
model, (2) the applied IML method is itself limited, and (3) the IML method is not correctly
applied (Molnar et al., 2022). While all of these pitfalls need to be taken into consideration when
applying post hoc IML methods, the remaining part of the thesis focuses on the second source for
model-agnostic interpretation methods. To be more exact, it deals with the limitations of global
model-agnostic methods, which try to explain the inner workings of the ML model in general for
the entire data set.

Two major limitations of these methods and suggested solutions, which are presented in the
contributing articles of Parts III and IV of this thesis, can be summarized as follows:

1. Human-incomprehensibility of high-dimensional output. Most global interpretation methods
are defined at a single feature level, which makes these methods in high-dimensional settings
not only computationally expensive but also incomprehensible for humans when confronted with
hundreds or thousands of numbers or visualizations. Part III of this thesis addresses this problem
by suggesting several methods to quantify feature importance scores and to create feature effect
visualizations for groups of features to lower the dimensionality and thus simplify the resulting
output of the interpretation method.

2. Misleading interpretations of global explanations due to aggregation. Many global interpreta-
tions are estimated by averaging over underlying local interpretations, and thus, their calculation
might cause an aggregation bias due to heterogeneity in the underlying local interpretations. This
heterogeneity is usually either caused by (1) feature interactions or by (2) extrapolation into sparse
or unseen regions of the feature space. In the first two contributing articles of Part IV of the thesis,
we suggest solutions for cause 1 by partitioning the feature space such that feature interactions
in the resulting regions are minimized, and thus, global interpretation methods (here we focus on
feature effect methods) are more representative for the local interpretations in each region. In the
third contributing article of Part IV, we address cause 2 of this limitation for partial dependence
(PD) plots in the context of explaining hyperparameter effects in automatic ML systems. Here,

1It should be noted that black box models do not always perform better than interpretable models, but it depends on
the complexity of the underlying relationships to be learned by the model (Rudin, 2019). Thus, it is recommended
to choose an interpretable model if its performance is similar to that of a black box model (Molnar et al., 2022).

4



1.2 Outline

we partition the hyperparameter space such that regions with high uncertainty (sparse regions)
are separated from regions with low uncertainty (high-density regions), which results in at least
one region that provides a confident and reliable regional PD estimate.

1.2. Outline

The thesis is structured as follows: Section 2 defines and discusses the background knowledge
required for the subsequent contributing articles. There, supervised ML is defined, and a general
notation is introduced (Section 2.1), followed by a formal definition of IML and a categorization
of the methods. A particular focus is on global model-agnostic post hoc interpretation methods
(Section 2.2). Then, feature interactions and the functional ANOVA decomposition are defined
(Section 2.3). They enhance a better understanding of the following sections, which introduce the
most popular global feature effect (Section 2.4) and importance (Section 2.5) methods and explain
their limitations (Section 2.6). The final background section covers a general discussion about
marginal-based versus conditional-based IML methods (Section 2.7). The background section is
followed by three parts, which contain the contributing articles of this thesis. Part II gives an
overview of the general pitfalls of model-agnostic IML methods, as well as potential solutions
and open challenges to each of these pitfalls. Part III deals with the limitation of the high-
dimensional output of interpretation methods by using grouping approaches. Part IV, which is
supported by three contributing articles, addresses the aggregation bias of global feature effect
methods and provides solutions based on partitioning approaches. The final part of this thesis
(Part V) summarizes the main contributions and discusses open challenges regarding the addressed
limitations and general limitations of IML methods.
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2. Background

2.1. General Notation and Supervised Machine Learning

In ML, users are typically confronted with a p-dimensional feature space X = (X1 × ... × Xp).
In supervised ML problems, we are also given a target space Y, which is one-dimensional for
regression tasks, while its dimensionality depends on the number of classes in a classification
task. The respective random variables are then denoted by X = (X1, ..., Xp) and Y . We draw
n samples i.i.d. of these random variables based on their joint probability distribution PX,Y

to obtain the data set D = {(x(i), y(i))}n
i=1. Generally, we denote x(i) =

(
x

(i)
1 , . . . , x

(i)
p

)⊤
and

xj =
(
x

(1)
j , . . . , x

(n)
j

)⊤
to be the feature values of the i-th observation and the j-th feature,

respectively.

In supervised settings, a function f : X → Y maps the feature space to the target space. Su-
pervised ML algorithms are based on a so-called learner or inducer I which strives to learn the
underlying relationship between the features and the target by applying I on D leading to the final
fitted model f̂ = I(D) (see Figure 2.1). Therefore, the learning algorithm aims to minimize the
generalization error measured by the empirical risk Remp = E(L(f̂(X), Y )), which is defined by
the expected loss of a fitted model. To measure the generalization error, the empirical risk needs
to be evaluated on an independent test data set1 Dtest that follows the same joint distribution
PX,Y as D. The estimate of the generalization error of f̂ = I(D) is then calculated by

R̂emp(f̂ , Dtest) = 1
|Dtest|

∑
(x,y)∈Dtest

L(f̂(x), y). (2.1)

In ML we distinguish between white-box and black box models. White-box models are inherently
interpretable, i.e., a user understands how a model arrived at a specific prediction. Examples of
inherently interpretable models are linear models or (shallow) decision trees. Black box models,
on the other hand, are more complex ML algorithms such as (deep) neural networks or gradient
boosting algorithms, which often outperform white-box models since they can learn the underlying
relationships in the data more flexibly and locally. However, this leads to a more complex model
structure that is not inherently interpretable. Therefore, these models are known as black box
models.

This thesis only considers supervised ML problems.2 Furthermore, the focus in the following
sections is on black box ML models. Therefore, the terms supervised ML, ML, and black box are
used interchangeably unless explicitly stated otherwise.

1While the definition in Eq. (2.1) refers to evaluating the generalization error on a holdout test data set, it is
more common to use cross-validation to assess the generalization error for ML algorithms (Hastie et al., 2009).
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2. Background

Figure 2.1.: The learner I is applied on a data set D to obtain the fitted ML model f̂ .

2.2. Interpretable Machine Learning

While users might be satisfied with the predictive performance of the resulting ML model found
in the learning process, they are often not able to understand which features the ML model
considered in the learning process and how these features influence the final predictions of the ML
model. The lack of interpretation might lead to a lack of trust in these models, and depending
on the underlying application, this could potentially constitute a decisive factor. The research
field IML addresses this concern and provides various solutions to either circumvent the black box
character of ML models or to generate insights into the black box. Therefore, I first define IML
and categorize the different approaches in the field. Since the contributions in Part II to IV belong
to the category of model-agnostic interpretation methods, a more fine-grained classification and
description of these methods follow the general overview.

2.2.1. Overview

Murdoch et al. (2019) define IML “as the use of machine-learning models for the extraction
of relevant knowledge about domain relationships contained in data”. The way we extract the
knowledge, which of it is considered relevant, and how the final output of the interpretation is
presented (e.g., by visualizations, formulas, or text) depends on the given data, context, questions,
and the respective audience to whom the final results are addressed to. For example, when a
model uses “inadmissible” features such as gender or ethnicity, the underlying algorithm might
have learned a potential discrimination (Fisher et al., 2019). In medical diagnoses, a doctor will
ask different questions about the potentially underlying discriminatory bias than a data engineer
in the context of image classification. Hence, different information is required, leading to different
interpretation methods to provide this information (Murdoch et al., 2019).

According to Murdoch et al. (2019), IML methods can be grouped into model-based and post hoc
interpretation methods as illustrated in Figure 2.2. The main idea of model-based interpretability
is to learn a model that is intrinsically interpretable. Thus, we construct a more transparent,
”whiteish” model instead of learning a black box model. We can furthermore distinguish between
directly fitting inherently interpretable models on D (such as linear models or decision trees) and
fitting an ML model with interpretability constraints. Examples of interpretability constraints
include sparsity constraints – fewer features might lead to less complex learned relationships and
provide more comprehensible results – or constraints on feature interactions or monotonicity.

However, the simplified definition stated here is more suitable for explaining the fundamentals of the methods
covered in this background section.

2Consequently, this thesis does not consider other areas of ML, such as unsupervised ML or reinforcement learning.
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2.2 Interpretable Machine Learning

Compared to inherently interpretable models, interpretability constraints in ML models might
lead to better predictive performance since it possibly allows for modeling the underlying complex
relationships in the data more flexibly. However, depending on the chosen model and constraints,
interpretability might be limited. Hence, the trade-off between predictive performance and inter-
pretability remains (Du et al., 2019).

Figure 2.2.: Categorization of IML methods.

Post hoc interpretation methods, on the other hand, do not influence the learning process but
are applied after fitting the ML model f̂ as illustrated in Figure 2.3. Hence, unlike model-based
interpretability, we do not try to learn an intrinsically interpretable model, which may reduce
predictive performance. Instead, we learn an arbitrarily complex black box model and apply
post hoc interpretation methods on the final model to generate insights about the inner workings
of the fitted model. We can distinguish between model-specific and model-agnostic post hoc
interpretation methods (see Figure 2.2). Model-specific methods are developed for a specific ML
algorithm. Examples include various methods developed particularly for neural networks (see,
e.g., Bach et al., 2015; Selvaraju et al., 2017) or for tree-based methods (see, e.g., Lundberg et al.,
2020; Breiman, 2001). While model-specific methods can be optimized for one specific algorithm
and use the internal model structure to make computations more efficient, they usually depend
on the particular characteristics of this algorithm and cannot be applied to other ML algorithms.
Hence, comparing explanations based on a model-specific interpretation method is not possible
between different learning algorithms. In contrast, model-agnostic interpretation methods can be
applied to any ML algorithm. In the following section, I provide a more detailed overview of model-
agnostic interpretation methods. The subsequent sections cover the methodological background
of model-agnostic interpretation methods that are most relevant to this thesis and point out the
respective limitations that are addressed in the contributing articles of Part III and IV.

2.2.2. Model-Agnostic Interpretation Methods

Model-agnostic interpretation methods are characterized by (1) being applied post hoc on an al-
ready fitted black box model (see Figure 2.3) and (2) being independent of the learning algorithm,
which means that these methods can be applied to any ML algorithm. These characteristics are
often beneficial since model-agnostic interpretation methods can be applied after the model is
trained and thus do not require a definition of interpretation goals beforehand. Furthermore, we

9



2. Background

Figure 2.3.: Post hoc interpretability methods are applied to f̂ after the model training process.

can compare results between different learning algorithms since the same interpretation method
can be applied to different algorithms. Model-agnostic interpretation methods achieve this flexi-
bility as follows: First, data set D is manipulated (e.g., by perturbating or removing a feature),
then based on the manipulated data set, predictions or performance values based on the model
f̂ are produced3 and compared to the metrics achieved without manipulation (Scholbeck et al.,
2020).

Model-agnostic interpretation methods can be categorized depending on different dimensions. I
define two dimensions that are most relevant to this thesis and assign the existing methods ac-
cordingly. I restrict the type of explanation to feature attributions, which aim to explain the
contributions of features regarding the model’s predictions, performance, or variance. Hence,
the following categorization does not consider other types of explanations, such as data attribu-
tions4.

Level of explanation We can distinguish model-agnostic interpretation methods based on which
level of explanation they inspect. The two known categories are local and global interpretation
methods (Adadi and Berrada, 2018; Murdoch et al., 2019; Carvalho et al., 2019; Schwalbe and
Finzel, 2023).

• Local interpretation methods explain single predictions and thus answer questions such as
“Which feature was most responsible for the bank’s algorithm to decline the credit applica-
tion of person XY?”.

• Global interpretation methods, on the other hand, aim to explain the general behavior of an
ML model and thus generate a general understanding of its inner workings with regard to
the given data distribution. Hence, considering the above-stated example, we would answer
the question, “Which feature has the highest impact on the model’s decision to decline a
credit application based on the given data set?”. Thus, instead of explaining one specific
instance of our data set, we try to explain an average instance based on the data.

3Depending on the data manipulation, refitting the model might be necessary, which is discussed in more detail
in Section 2.5.

4Data attributions analyze the influence of the data instances (observations) on the model’s outcome. For example,
Ghorbani and Zou (2019) suggest using Shapley values for data valuation. Thus, the players of the cooperative
games are the n data instances instead of the p features.

10



2.2 Interpretable Machine Learning

Type of feature attribution While the taxonomy of local and global interpretation levels is com-
monly used, there is no consensus on the taxonomy of categorizing feature attribution methods
according to the type of explanation they provide.5 In this thesis, I categorize model-agnostic
feature attribution methods into feature effect, feature importance, and feature interaction meth-
ods.

• Feature effect methods answer the question “How does a feature of interest influence the
predicted outcome of the ML model?”. Hence, feature effects show the direction of the
feature’s influence on the model’s prediction. For instance, in the case of the credit scoring
example, one could ask if the age of the regarded person has a positive or a negative influence
on the predicted credit score of person XY (local explanation).

• Feature importance methods, on the other hand, answer the question “How important is a
feature?”. The importance, therefore, can relate to the predicted outcome, to the model’s
predictive performance or prediction variance. Here, I focus on feature importance methods
that measure importance with respect to the model’s predictive performance. Thus, we re-
ceive a ranking of features based on how much performance we lose if we lose the information
contained in the feature. Considering the credit scoring example, we could ask questions like
“Does the model’s expected predictive performance rely on the feature gender?”, or in other
words, “How much does the model’s expected predictive performance drop if we remove the
information contained in the feature gender?” (global explanation).

• Feature interaction methods quantify the share of the contribution of a feature of interest
on the model’s prediction that not solely depends on the feature of interest itself but also
on other features. For instance, considering the credit scoring example, feature interactions
address questions like: “Does the influence of feature age on the predicted credit score
differ for male applicants compared to female applicants?” (global explanation). Feature
interactions are closely related to feature effects. The relationship is explained in more detail
in Sections 2.3, 2.4, and 2.6.

All three feature attribution types can be defined on a local as well as on a global level. Existing
model-agnostic interpretation methods can be categorized accordingly, as illustrated in Table 2.1.
Popular examples for local feature effect methods are individual conditional expectation (ICE)
curves (Goldstein et al., 2015), local interpretable model-agnostic explanations (LIME) (Ribeiro
et al., 2016) and Shapley (Štrumbelj and Kononenko, 2014) or Shapley additive explanations
(SHAP) values (Lundberg and Lee, 2017). Partial dependence (PD) (Friedman, 2001), accumu-
lated local effects (ALE) (Apley and Zhu, 2020) or SHAP dependence (Lundberg et al., 2020)
are well-known representatives for global feature effect methods. While feature importance on
a global level can be quantified by permutation feature importance (PFI) (Fisher et al., 2019),
leave-one-covariate-out (LOCO) importance (Lei et al., 2018) or Shapley additive global impor-
tance (SAGE) (Covert et al., 2020), individual conditional importance (ICI) (Casalicchio et al.,
2019) can be used as a local importance measure. Feature interactions on a local level can be
visualized by ICE or derivative ICE (d-ICE) curves6 and quantified by Shapley-based interaction

5For example, Murdoch et al. (2019) distinguishes between feature importance, feature interactions, visualizations,
and analyzing trends for global interpretations. In contrast, Adadi and Berrada (2018) categorizes feature
attribution methods into visualizations and influence methods. Molnar et al. (2022) distinguishes between feature
effect and feature importance methods for local and global methods, which is most similar to the categorization
used in this thesis.

6These visualizations can be interpreted on a local as well as on a global level.
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2. Background

values (Grabisch and Roubens, 1999; Tsai et al., 2023; Bordt and von Luxburg, 2023; Lundberg
et al., 2020). The H-Statistic introduced by Friedman and Popescu (2008) is the most popular
approach to quantifying feature interactions on a global level. Further approaches are Greenwell’s
interaction index, regional effect plots with implicit interaction detection (REPID), and gener-
alized additive decomposition of global effects (GADGET), which were introduced by Greenwell
et al. (2018), and in the contributing articles of Sections 5 and 6, respectively. The list of methods
in Table 2.1 is incomplete but contains the most relevant ones for this thesis.

Feature attribution
Featue effect Feature importance Feature interaction

Level

Local
ICE ICI Shapley-based interaction

LIME ICE/d-ICE
Shapley/SHAP values

Global
PD PFI H-Statistic

ALE LOCO Greenwell’s interaction
SHAP dependence SAGE REPID/GADGET

Table 2.1.: Categorization of popular model-agnostic interpretation methods according to the type
of feature attribution and the level of explanation. The table is based on the catego-
rization in Molnar et al. (2022) but extended by feature interactions.

The list of methods in Table 2.1 shows that various model-agnostic interpretation methods exist to
inspect single predictions and understand the general black box model behavior. However, there
also exist several pitfalls one has to be aware of when applying these methods, as demonstrated
in the contributing article of Part II of this thesis. Since the remaining contributing articles of
this thesis focus on the limitations of global model-agnostic interpretation methods (as described
in Section 1.1), I will introduce the relevant methodology of these methods and elaborate on their
limitations in the subsequent sections.

2.3. Feature Interactions and Functional ANOVA Decomposition

2.3.1. Feature Interactions

The influence of a feature xj on the model’s predictions can be broken down into main and
higher-order (interaction) effects of feature xj . The main effect of feature xj is the influence on
the model’s predictions that solely depends on this feature and is independent of the influence of
other features x−j (where −j = {1, . . . , p} \ j indexes all features except the j-th feature). The
higher-order effect of xj is the influence of xj on the model’s predictions that does not only depend
on feature values of xj but also on feature values of features in x−j . Hence, if the feature xj does
not interact with any other feature in x−j , the prediction function can be additively decomposed
into the main effect of feature xj , denoted by hj(xj), and the remaining effect denoted by h−j(x−j):
f̂(x) = hj(xj) + h−j(x−j). The remaining effect is independent of xj , and thus only depends on
features in x−j (Friedman and Popescu, 2008). If this additive decomposition is not possible,
meaning that f̂(x) − hj(xj) − h−j(x−j) ̸= 0, then interaction effects between feature xj and
features in x−j have been learned by the ML model f̂ .
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2.3 Feature Interactions and Functional ANOVA Decomposition

Based on this definition, Friedman and Popescu (2008) introduced the H-Statistic to quantify
feature interactions on a global level. The H-Statistic between a feature of interest xj and all
other features x−j is defined by

H2
j =

∑n
i=1

(
f̂ c(x(i)) − hc

j(x(i)
j ) − hc

−j(x(i)
−j)
)2

∑n
i=1

(
f̂ c(x(i))

)2 , (2.2)

with the superscript c denoting the mean-centered version of the individual or joint effects (e.g.,
f̂ c(x(i)) = f̂(x(i))− 1

n

∑n
i=1 f̂(x(i))). Friedman and Popescu (2008) suggest to estimate the feature

effect functions hj and h−j using the PD function, which is introduced in Section 2.4. The H-
Statistic value H2

j can be interpreted as the proportion of the model’s prediction variance that is
attributable to feature interactions between feature xj and all other features in the data (i.e., x−j).
If we calculate the H-Statistic for all features xj where j ∈ {1, . . . , p}, then we obtain a ranking
of all features according to their overall interaction strengths with other features. Since the H-
Statistic values in Eq. (2.2) are always scaled by the model’s prediction variance, the interaction
values between different features are comparable.

While Eq. (2.2) can be used to detect features that are highly interacting with other features, it
does not reveal with which other features the feature xj interacts, which orders of interactions
have been learned and how strong the effect of each of these higher-order terms are. However, the
formula of the H-Statistic in Eq. (2.2) can be adjusted to quantify interactions of different orders.
The most common one and easiest to access is the H-Statistic definition for two-way interactions.
Following from the definition above, two features xj and xk do not interact if their joint effect
can be additively decomposed into their respective main effects: hjk(xj , xk) = hj(xj) + hk(xk).
Thus, the two-way H-Statistic value can be calculated by

H2
jk =

∑n
i=1

(
hc

jk(x(i)
j , x(i)

k ) − hc
j(x(i)

j ) − hc
k(x(i)

k )
)2

∑n
i=1

(
hc

jk(x(i)
j , x(i)

k )
)2 . (2.3)

The two-way H-statistic value H2
jk can be calculated using the 2-dimensional and the 1-dimensional

PD functions (Friedman and Popescu, 2008). The value can be interpreted as the proportion of
the variance of the 2-dimensional mean-centered PD of xj and xk that can be attributed to the
interactions between these two features and thus cannot be explained by the main effects of the
two features. The scaling factor in the denominator in Eq. (2.3) is based on the joint effect of the
two features of interest and thus varies for different features of interest. It follows that the pro-
portions and, therefore, the final H-Statistic values are not comparable between different pairs of
features if main effect sizes (proportions of main effects versus interaction effects) differ (Herbinger
et al., 2022). Moreover, the H-statistic suffers from potentially wrong rankings due to correlations
between the two features of interest (Herbinger et al., 2022). Another global interaction measure
to quantify two-way interactions based on PDs has been suggested by Greenwell et al. (2018).
While the ranking of feature interactions of their approach is not affected by feature correlations
between the two features of interest, it is also sensitive with regard to the main effect sizes. In
our contributions of Section 5, we show theoretically and empirically how these two pitfalls affect
the ranking of feature interactions for the H-Statistic and the approach by Greenwell et al. (2018)
and suggest an alternative interaction ranking measure for two-way interactions based on PD and
ICE functions, which does not suffer from the same disadvantages. In the contributing article
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2. Background

of Section 6, we generalize this approach to other feature effect methods such as ALE or SHAP
dependence.

While most introduced global feature interaction methods focus on quantifying two-way inter-
actions, Hooker (2004) introduced an algorithm that also detects feature interactions of higher
order than two. The resulting feature relationships are visualized in a network graph. However,
the method does not quantify or rank feature interactions. Quantifying all higher-order terms
requires decomposing the prediction function into all main and higher-order effects of all features.
These decompositions are desirable from an interpretation perspective but are usually challenging
to estimate. In the following section, I introduce – from an IML perspective – the most popular
functional decomposition, the functional ANOVA decomposition, and discuss the benefits and
underlying challenges of this approach.

2.3.2. Functional ANOVA Decomposition

The functional ANOVA decomposition has, amongst others, been studied and extended for de-
composing prediction functions by Stone (1994); Hooker (2004, 2007); Rahman (2014). If the
prediction function of an ML model is square-integrable, we can use the functional ANOVA
decomposition to decompose it into the main and higher-order effects of involved features as
follows:

f̂(x) = g0 +
p∑

j=1
gj(xj) +

∑
j ̸=k

gjk(xj , xk) + . . . + g12...p(x) =
p∑

k=1

∑
W ⊆{1,...,p},

|W |=k

gW (xW ), (2.4)

with g0 representing an additive constant (comparable to an intercept in a linear model), gj(xj)
representing the main effect of each feature indexed by j ∈ {1, . . . , p} and gjk(xj , xk) being the
pure two-way interaction effects between all pair of features. All effects that cannot be explained
by main or pure two-way interaction effects are then assigned to further higher-order effects with
a potential p-way remaining effect that cannot be explained by any lower-order effect. Thus, the
functional ANOVA decomposition always exactly decomposes the prediction function.7

Being able to uniquely decompose the prediction function into all components, meaning into all
main and higher-order effects of all features, is desirable from an interpretability perspective since
this decomposition provides many insights into how features individually and jointly influence
the model’s predictions. For example, if we assume that a bank fitted an ML model to predict
the credit score of their customers based on the age (xage), profession (xprof ), savings (xsav) and
desired loan amount (xamt) of the applicants, and if we can decompose the predictions of the ML
model into the main and higher-order effects of each of the involved features as in Eq. (2.4) by

f̂(x) = g0 + gage(xage) + . . . + gage,prof (xage, xprof ) + . . . + gage,prof,sav(xage, xprof , xsav)
+ . . . + gage,prof,sav,amt(xage, xprof , xsav, xamt),

then we can answer questions like:
7A more formal definition of how these components are determined is provided at the end of this section and

depends on the restrictiveness of underlying assumptions.
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2.3 Feature Interactions and Functional ANOVA Decomposition

1. How does each feature individually influence the ML model’s predicted outcome? For in-
stance, we might be interested in the main effect of age (gage(xage)), i.e., we would like to
know how the age of the applicants individually influences the predicted credit score.

2. Which influence on the model’s predictions can only be explained when two features are
considered together and thus cannot be explained by their individual (main) effects? For
example, we would like to know how the effect of age on the predicted credit score varies
depending on the feature profession. If the effect of age changes for different profession
categories, then feature interactions between age and profession are present, and it follows
gage,prof (xage, xprof ) ̸= 0.

3. Similarly to point 2, we can ask questions regarding the effects of a higher order than two.
Thus, there might be effects that cannot be explained by only considering the combination
of age and profession, but also the amount in the savings account of the applicants changes
the influence on the predicted credit score for different combinations of age and profession.
In this case the three-way interaction effect gage,prof,sav(xage, xprof , xsav) is non-zero.

Overall, the decomposition generates insights into the complexity of learned relationships of the
underlying ML model. Suppose a high proportion of the learned effects is due to interaction effects
(especially of high order). In that case, the learned relationships are rather complex and local. At
the same time, prediction functions that can be decomposed into components of low order (e.g.,
only main and some two-way interaction effects) are less complex and easier to explain on a global
level. The latter case might imply that a simpler and more interpretable model might lead to a
similar predictive performance to the chosen more complex black box model.

The following paragraphs define the underlying assumptions and resulting properties of a unique
functional ANOVA decomposition and the consequential challenges of estimating such a decom-
position. In general, we distinguish between the standard and the generalized functional ANOVA
decomposition, of which the former is based on stronger assumptions, which makes it unsuitable
in the presence of (strong) feature correlations (Hooker, 2007).

Standard functional ANOVA decomposition The standard functional ANOVA decomposition
(Hooker, 2004) assumes that the probability density function is defined by a product-type proba-
bility measure w(x) =

∏p
j=1 wj(xj) with wj : R → R+

0 denoting the marginal probability density
function of feature xj . This assumption implies that random variables in X and, thus, the fea-
tures are independent of each other. Following from that assumption and given that the vanishing
condition8 is fulfilled, we can uniquely and optimally decompose the prediction function f̂ into
each single component function gW (xW ) of Eq. (2.4) (Li and Rabitz, 2012; Rahman, 2014). The
vanishing condition is defined by∫

gW (xW )wj(xj) dxj = 0 ∀j ∈ W ̸= ∅, (2.5)

where
∫
R wj(xj) dxj = 1 and wj(xj) ≤ 0 holds. Thus, the component functions gW (xW ) “integrate

to zero with respect to the marginal density of each random variable” in W (Rahman, 2014).

The vanishing condition results in two properties: The zero means property E[gW (xW )] = 0 and
the orthogonality property E[gW (xW )gV (xV )] = 0 with ∅ ̸= W ⊆ {1, . . . , p}, ∅ ̸= V ⊆ {1, . . . , p}

8The vanishing condition is also known as strong annihilating condition (Rahman, 2014).
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2. Background

and W ̸= V . Hence, each component function’s expected value (mean) is zero, and two distinct
component functions are orthogonal to each other.

These properties allow us to determine the component functions of Eq. (2.4) sequentially:

gW (xW ) =
∫

x−W

(
f̂(x)w(x) −

∑
V ⊂W

gV (xV )
)

dx−W . (2.6)

Hence, each component function gW (xW ) represents the pure W -th order main or interaction
effect and is calculated by subtracting all effects of lower order than W from the joint effect of
all features in W . This approach is straightforward if the probability density w(x) is defined by
a product-type probability measure, which allows us to integrate over marginal rather than joint
distributions. However, as mentioned before, this implies that features are independent of each
other, which is a strong and often unrealistic assumption in real-world settings.

Generalized functional ANOVA decomposition If the random variables in X are not inde-
pendently distributed, the probability density w(x) cannot be written as a product of marginal
densities, and thus the vanishing condition in Eq. (2.5) does not hold. To facilitate a unique de-
composition of the prediction function f̂(x) in the presence of correlated features, Hooker (2007)
relaxed the vanishing condition to∫

gW (xW )w(x) dxj dx−W = 0 for j ∈ W ̸= ∅, (2.7)

meaning that the integral over each coordinate direction of the subset W is zero. With w(x)
representing a general probability density with its support being grid-closed, the component func-
tions of the generalized functional ANOVA decomposition can, according to Hooker (2007), be
uniquely determined by optimizing

gW (xW ) = arg min{hW ∈L2(RW ),W ⊆{1,...,p}}

∫  ∑
W ⊆{1,...,p}

hW (xW ) − f̂(x)

2

w(x) dx. (2.8)

The functional ANOVA decomposition is one approach that guarantees a unique decomposition of
the prediction function by preferring lower-order terms over higher-order terms. This idea follows
the reluctance principle (Sun et al., 2022) and thus tends to decompose the prediction function
into a simple structure that enhances interpretability.

Note that all non-constant component functions have zero means for both the standard and the
generalized functional ANOVA decomposition. However, compared to the standard version, the
relaxed vanishing condition of the generalized functional ANOVA decomposition only allows for
hierarchical orthogonality, meaning only component functions are orthogonal to each other if one
is a subset of the other. It follows that the unique decomposition cannot be achieved sequentially
anymore, but instead, the more complex and computationally expensive optimization problem
in Eq. (2.8) needs to be solved. Recent research addresses this challenge by either including the
hierarchical orthogonality condition as a constraint in the modeling process (Sun et al., 2022)
or by suggesting more efficient model-specific solutions such as for tree-based models (Lengerich
et al., 2020). While these are promising first approaches to estimate the generalized functional
ANOVA decomposition efficiently, one should keep in mind that the decomposition itself relies on
how well we can approximate the true data distribution (Lengerich et al., 2020).
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2.4 Global Feature Effects

2.4. Global Feature Effects

2.4.1. Motivation

Feature effects are widely used model-agnostic interpretation methods that address the question
of how features influence the model’s predictions. While local feature effect methods focus on
explaining the features’ influence on a single prediction, global feature effects focus on effects that
explain the average influence of the (individual) features on the model predictions with respect to
the given data distribution. For the linear model, the global feature effect of a feature of interest
corresponds to its estimated coefficient multiplied by its feature values. Since the effect is linear,
we can interpret the result as follows: If the value of feature xj increases by 1, the predicted
outcome changes by the size and sign of the estimated coefficient9 while keeping all other features
constant. Hence, the influence of a feature on the predictions in a linear model can – due to
its linearity – be summarized by one number.10 The influence of features on an ML model’s
predictions, on the other hand, is often not linear, which makes summarizing the feature effect in
one number more challenging. Hence, global feature effect methods in IML are usually based on
visualizations.

2.4.2. Methodology

Here, I describe the most popular global feature effect methods, namely the PD, ALE, and SHAP
dependence plots. Since the final result is presented in a plot, we usually limit the number of
features that are visualized to one or two. For the sake of simplicity and relevance for this thesis,
the following definitions and examples are based on one feature of interest xj .11 In that case, the
plot to visualize the feature effect for the feature of interest shows the feature values of xj on the
x-axis and the respective predicted feature effects on the y-axis. The global feature effect is then
visualized by a curve showing the predicted average feature effect for feature xj .

Partial dependence The PD plot (Friedman, 2001) is amongst the most popular global feature
effect methods. One reason for its popularity is the intuitive definition and estimation approach,
which makes it very accessible to users. The PD function for feature xj is defined by

fP D
j (xj) = EX−j [f̂(xj , X−j)] =

∫
f̂(xj , x−j)dP(x−j). (2.9)

Thus, the PD is the expected marginal effect of feature xj , which can be estimated by integrating
over the joint distribution P(x−j) of all other features x−j . However, we usually do not have access
to the joint distribution, and thus, P(x−j) is approximated by using Monte Carlo integration to
estimate the PD function:

f̂P D
j (xj) = 1

n

n∑
i=1

f̂(xj , x(i)
−j). (2.10)

9In the presence of multiplicative feature interactions, the predicted outcome changes by the sum of the respective
coefficients.

10To compare features on different scales, we calculate the feature effect by multiplying the coefficient with the
respective feature values.

11However, the definitions can easily be extended to more than one feature of interest (Herbinger et al., 2023).
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The final PD plot is then created by visualizing {(x(k)
j , f̂P D

j (x(k)
j ))}m

k=1 based on m grid points12.
The resulting PD curve is an average over the n local ICE curves f̂(xj , x(i)

−j) (Goldstein et al.,
2015). An ICE curve describes how a feature of interest influences the prediction of a single
instance. For example, the upper left plot in Figure 2.5 shows the ICE curve for the feature age
of a female passenger of the ocean liner Titanic. The predicted survival probability of the ML
model for this woman is 96.7%, which is marked by the dotted line at her age of 19. The orange
ICE curve shows how the predicted survival probability of this woman would change if she had a
different age, but all her other characteristics, such as her passenger class or the fare price she paid,
are fixed. For instance, the predicted survival probability decreases for higher age values than her
actual age, leaving all other characteristics unchanged. The right plot of Figure 2.5 shows the
ICE curves of all 891 passengers and the PD curve (blue), which is the average over the 891 ICE
curves calculated at each grid point. Thus, the PD curve here represents the average marginal
effect of the feature age on the predicted survival probability, i.e., it addresses how changing an
average passenger’s age affects their expected predicted survival probability. It is also observable
that the ICE curves in this plot are very heterogeneous. Thus, the feature age influences the
predicted outcome differently for different individuals. This heterogeneity can be explained by
feature interactions between the feature of interest (feature age) and other features that are used
for modeling – for example, the gender or passenger class of a person (Goldstein et al., 2015;
Herbinger et al., 2022). Thus, it is recommended to visualize ICE curves (local effects) and the
PD curve (global effect) together in one plot as shown in Figure 2.5 as this provides more insights
into the learned effects of a model than only considering the aggregated version (PD plot).

Both the calculation and the interpretation of PD and ICE plots are very intuitive and provide
comprehensive insights into how a feature of interest influences the model’s predictions. One
reason for this simplicity lies in the assumption that PD functions are calculated by integrating
over marginal distributions, which assumes feature independence. Similarly to the standard func-
tional ANOVA decomposition, this assumption allows us to decompose the prediction function
sequentially based on the mean-centered PD functions for all possible feature subsets up to a
constant (Friedman, 2001). However, using marginal distributions for integration causes extrap-
olation in unseen regions in the presence of (strong) feature correlations when estimating ICE
and PD curves. This extrapolation problem is illustrated in Figure 2.4. Here, features x1 and x3
are highly correlated with each other, resulting in the regions of small x1 combined with large
x3 values and large x1 combined with small x3 values that the ML model did not see during the
learning process. Thus, the fitted neural network may exhibit an oscillating extrapolation effect
when estimating ICE curves in these unseen regions. Since the PD curve averages over all ICE
curves, including the ones in the sparsely sampled regions, the PD estimate might not reflect
the underlying data distribution very well, as shown in this figure. One possibility to overcome
this problem is to use the conditional instead of the marginal distribution in Eq. (2.9), which is
also called Marginal (M) plot (Friedman, 2001; Apley and Zhu, 2020). While M plots have the
advantage that they do not extrapolate in unseen regions, the interpretation of the feature effect
changes. By using the conditional distribution, the M plot reflects not only the feature effect of
the feature of interest but also partially the effect of the features correlated with the feature of
interest. Hence, the M plot does not allow visualizing the individual marginal effect of the feature

12Usually not all feature values of xj are used for calculating and visualizing the PD plot but only a smaller number
of m grid points, which can be defined as a random sample of feature values, quantile values or an equidistant
grid of the feature range of xj (Molnar et al., 2022).
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of interest and provides no information on how this combined effect can be decomposed into the
different correlated features.
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Figure 2.4.: The figure shows the PD and ICE plot (left), ALE plot (middle) and SHAP depen-
dence plot (right) for feature x1 of the following simulation example, which is taken
from Herbinger et al. (2023): Let X2, X3 ∼ U(−1, 1) be independently distributed
and X1 = X3 + δ with δ ∼ N(0, 0.0625). The data generating process is defined by
Y = 3X11X3>0 − 3X11X3≤0 + X3 + ϵ, with ϵ ∼ N(0, 0.09). We draw 500 observations
and fit a tuned feed-forward neural network13on the data set. It holds for all plots
(if available): Blue curves represent the global average feature effect, black curves or
points visualize the local feature effects, and grey points are the actual data points.
The effect values of ALE and SHAP show an additive shift compared to the actual
data points since these effect methods are centered by their means.

Accumulated local effects ALE (Apley and Zhu, 2020) is another global feature effect method,
which uses the conditional instead of the marginal distribution for integration and thus does not
suffer from the issues extrapolation may induce. ALE functions are calculated such that the effect
curve only represents the feature effect of the feature of interest. Hence, compared to M plots,
the ALE curve does not reflect the effects of features correlated with the feature of interest. The
ALE function fALE

j (x) for feature xj at feature value x ∼ P(xj) is given by

fALE
j (x) =

x∫
z0

E

[
∂f̂(X)
∂Xj

∣∣∣∣Xj = zj

]
dzj =

(3)︷ ︸︸ ︷
x∫

z0

∫
∂f̂(zj , x−j)

∂zj︸ ︷︷ ︸
(1)

dP(x−j |zj)

︸ ︷︷ ︸
(2)

dzj , (2.11)

where z0 = min(xj). ALE is estimated according to the following three steps related to the
numbering of Eq. (2.11):

1. Calculate the local derivatives for each observation with respect to its feature value xj = zj .
A common approach to calculate the local derivatives is to create quantile-based intervals for

13More information about the hyperparameter tuning and specifications can be found in Herbinger et al. (2023).
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the feature range of xj and determine for each observation the prediction difference between
the upper and lower boundary of the respective interval that contains zj .

2. Integrate the local derivatives over the conditional distribution P(x−j |zj). This integral is
equivalent to a conditional expectation and is estimated by calculating the mean values of
the local derivatives within each interval.

3. The global ALE effect at xj = x is then calculated by accumulating the conditional expected
values of step (2) up to the interval that contains x.

By calculating the derivatives in step (1), the additive feature effects that do not contain the
feature of interest – meaning all main and interaction effects that only consider features in x−j

– are removed. Thus, ALE does not consider the effects of features correlated with xj . Note
that since the calculation of the final curve in step (3) is based on derivatives, the additive shift
cannot be meaningfully interpreted as it is with PD plots. Hence, the mean-centered ALE curve
is typically calculated and visualized (Apley and Zhu, 2020).

Similar to PD plots, ALE plots visualize solely the feature effect for the feature of interest.
However, compared to PD plots, they do not extrapolate into sparse or unseen regions as illustrated
in the plot in the middle of Figure 2.4. Furthermore, Apley and Zhu (2020) showed that the
prediction function can be uniquely decomposed by ALE functions up to a constant and that
this decomposition satisfies an orthogonality-like property, which is similar to the hierarchical
orthogonality property of the generalized functional ANOVA decomposition. One disadvantage
of ALE is that the final visualization only shows the global effect curve. Since the global curve is
determined by first integrating and then accumulating over the local derivatives, the local effects
(derivatives) cannot be meaningfully visualized within the ALE plot. Hence, the final plot does
not provide any information about the heterogeneity of underlying local effects.

SHAP dependence Another method that visualizes the influence of a feature on the model’s
predictions is the SHAP dependence plot (Lundberg et al., 2020). The SHAP dependence plot
is based on SHAP values (Lundberg and Lee, 2017), which are the additive feature attribution
definition of Shapley values.14 Shapley values originate from game theory (Shapley, 1953) to cal-
culate the fair payout for each player in a cooperative game. The general concept was transferred
to ML where it is used to fairly distribute the predicted outcome of a single observation to the
involved features (Štrumbelj and Kononenko, 2014). Thus, Shapley values are a local feature ef-
fect method. They rely on a proper axiomatic foundation, which guarantees that features that do
not contribute to the prediction receive a Shapley value of zero (dummy axiom), that the Shapley
values of all features sum up to the prediction (efficiency axiom), that features that contribute
equally to the prediction receive the same Shapley values (symmetry axiom) and that Shapley
values are additive for arbitrarily weighted ensemble of models (additivity axiom). The Shapley
value is the unique feature attribution method that fulfills all these axioms and thus allows a fair
distribution of the predicted outcome to all features. The Shapley value definition for the feature
of interest xj is based on its contribution to all possible subsets of the remaining features. Each

14Based on the additive feature attribution definition, Lundberg and Lee (2017) proposed a more efficient estimation
technique of Shapley values called Kernel SHAP. However, theoretically and if calculated exactly, Shapley and
SHAP values are the same.
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of these feature subsets forms a coalition denoted by S ⊆ {1, . . . , p} \ j. The Shapley value of
feature xj at feature value x is then defined by

ϕj(x) =
∑

S⊆{1,...,p}\j

|S|!(p − |S| − 1)!
p!

(v(S ∪ j) − v(S)), (2.12)

with the value function v(S) = EX−S
[f̂(xS , X−S)] − EX [f̂(X)].

To create the SHAP dependence plot, the Shapley (SHAP) values for the feature of interest xj

need to be calculated for all observations of the data set. The plot then shows the feature values
of xj on the x-axis and the respective Shapley (SHAP) values of each observation on the y-axis
(see the right plot in Figure 2.4). Hence, the SHAP dependence plot is a pendant to the ICE
plot and does not provide an average marginal feature effect curve like the PD or ALE curve.
However, it visualizes the overall trend and the heterogeneity of local effects and thus indicates if
feature interactions between xj and other features are present.

While PD plots are based on the marginal feature distributions and ALE plots are based on
conditional feature distributions, Shapley values can be calculated based on either of the two. If
Shapley values are based on marginal distributions, then the value function of Eq. (2.12) can be
defined based on PD functions and thus might also be affected by extrapolation when features are
correlated.

Recent research also focused on relating Shapley values and SHAP dependence plot to functional
decompositions and thus allow to separate main from higher-order effects (Hiabu et al., 2023;
Herren and Hahn, 2022; Bordt and von Luxburg, 2023).

2.5. Global Feature Importance

2.5.1. Motivation

Unlike feature effect methods, feature importance methods are not concerned about how the
feature influences the model predictions. Instead, these methods quantify the strength of the
feature’s influence on the model’s predictions, prediction variance, or predictive performance. The
importance score for a feature of interest summarizes the strength of the feature’s influence in a
single number. This quantity can then be used to rank the features according to their importance.
In ML, we are typically interested in how important a feature is regarding the model performance
(i.e., the generalization error) rather than the model predictions themselves since only considering
the predictions does not tell us how well the ML model f̂ fits the underlying data. Thus, we would
like to understand which features play a crucial role in obtaining a high model performance.

2.5.2. Methodology

Many performance-based global feature importance methods typically rely on either feature per-
mutations or model refits. Permutation-based approaches assess the importance of features by
permuting them while keeping the fitted model fixed. In contrast, refitting-based approaches
conduct changes in the feature space (e.g., by removing a feature), requiring a refit. I will now
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define and discuss popular permutation-based and refitting-based approaches, namely, PFI and
LOCO.

Permutation feature importance The PFI was introduced by Breiman (2001) for random forests
and generalized to a model-agnostic version by Fisher et al. (2019). The PFI of feature xj is defined
by the difference between the expected loss (empirical risk) after permuting the j-th feature and
the expected loss of the originally fitted model f̂ :

PFIj(f̂) = E(L(f̂(X[j]), Y )) − E(L(f̂(X), Y )), (2.13)

with X[j] = (X1, ..., Xj−1, X̃j , Xj+1, ..., Xp) representing the random variable vector of features
with X̃j being a random variable that is independent of Xj but that follows the same marginal
distribution as Xj .

The PFI of a feature xj is calculated as follows: First, the feature values of xj for the test data set
are randomly permuted. Second, the model f̂ that was fitted on the training data set is applied
to the test data set, but feature values of xj are exchanged by the randomly permuted version of
xj . Third, we subtract the empirical risk based on the initial predictions of the test data (without
permutation) from the empirical risk calculated based on the predictions of the test data set that
incorporates the permuted feature of interest to determine the risk difference for this permutation.
The PFI is then calculated by repeating the three steps for several random permutations of xj

and averaging over the risk differences obtained in step three.15

The intuition behind permuting the feature values is to break the association between the target
variable and the feature of interest, in this example, xj . It follows that if the permutation of the
feature values does not change the model’s performance, the feature is not considered important.
By randomly permuting the feature values of xj over all observations in the data set without
considering the underlying correlation structure with other features, PFI uses marginal sampling
and thus applies a similar logic to PD. Hence, when features are correlated, PFI is also affected
by extrapolating in sparse or unseen regions. Conditional variants of PFI can be estimated by
using a conditional instead of a marginal sampling strategy for the feature of interest (Freiesleben
et al., 2023). Common approaches are model-X knockoffs (Watson and Wright, 2021) or subgroups
(Molnar et al., 2023). However, one must be careful when comparing the importance scores of the
two strategies since PFI based on marginal sampling, as defined above, answers the question of
how important the feature itself (irrespective of all other features) is for the model’s performance.
In contrast, PFI based on conditional sampling addresses the question of how much a feature
contributes in addition to all other features used by the model (hence conditioned on the remaining
features). The different approaches are discussed on a more general level in Section 2.7.

Leave-one-covariate-out importance While permutation-based methods have the advantage
that only new predictions based on an already trained model need to be generated, refitting-
based methods require refitting the algorithm, which is usually computationally more expensive.
The most popular refitting-based feature importance method is LOCO (Lei et al., 2018), which
refits the learner I based on a reduced data set where the feature of interest xj has been removed:
15Note that for an exact computation, all possible random permutation need to be computed. However, it is

commonly approximated in practice by choosing a smaller number of random permutations and calculating the
PFI by Monte Carlo integration (Casalicchio et al., 2019; Au et al., 2022).
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D̃ := {(x(i)
−j , y(i))}n

i=1. Based on the original model fit on the entire data set I(D) = f̂D and the
model fitted on the reduced data set I(D̃) = f̂D̃, the LOCO importance score LOCOj(I) for
feature xj is defined by

LOCOj(I) = E(L(f̂D̃(X−j), Y )) − E(L(f̂D(X), Y )). (2.14)

Hence, LOCO measures the difference between the expected loss when leaving out the feature of
interest xj and refitting the algorithm and the expected loss of the original model that was fitted to
the full set of features. Thus, LOCO calculates the feature importance based on the question: Can
we remove the feature xj without losing performance if we refit the model based on the remaining
features? Hence, we ask if the information contained in the j-th feature that is relevant to the
model’s performance can be learned by the remaining features in x−j when the learner is refitted
on the reduced data set. If the performance of the refitted model f̂D̃ does not drop in expectation
compared to the originally fitted model f̂D, the j-th feature is considered irrelevant. Note that
with this definition, a feature is considered not only irrelevant (or barely relevant) for the model
if it is not used by the model at all, but also if other, potentially highly correlated features are
able to reach a similar model performance without the help of the feature of interest. However, if
the feature xj provides additional valuable information for making predictions on the target, the
performance of the refitted model f̂D̃ is reduced in expectation compared to the performance of
originally fitted model f̂D and thus feature xj is considered important in terms of LOCO.16

To sum up, PFI quantifies the influence of a single feature of interest on the model performance
by breaking the association to the target variable and all other features in the data set. Thus, PFI
represents the influence of the feature of interest, disregarding the influence of all other features
for a fitted model f̂ . In contrast, LOCO aims to quantify the additional importance provided
by feature xj to the model fit on the full data set compared to the model refit on the reduced
data set, which does not take into account the information provided by xj . Hence, the two
feature importance methods provide different information, which needs to be considered when
interpreting the results. In the contributing article in Section 4, we discuss the differences in more
detail, extend both approaches to feature groups, and show how to leverage the grouped versions
to gain more insights into which combination of features are most important in terms of model
performance by suggesting a new importance-based sequential procedure. Based on the definitions
of the permutation-based and refitting-based importance methods for feature groups, we derive a
grouped version of SAGE, which can be calculated by either of the two approaches.

2.6. Limitations of Global Interpretation Methods

After introducing the most popular model-agnostic global interpretation methods, I will now
discuss two of their major limitations that are in the focus of this thesis.

16Note that refitting-based approaches are usually calculated by using a resampling technique, and therefore several
refits and evaluations on different data sets are required (Au et al., 2022).
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Human-incomprehensibility of high-dimensional output The global feature effects and impor-
tance methods introduced in Section 2.4 and 2.5 are usually defined for a single feature of interest.
Hence, we can create, for instance, a PD plot for each feature in the data set or calculate an im-
portance score for each feature and provide the user with a table of their importance rankings.
Single-feature interpretations usually work well for low-dimensional data sets, typically used for
illustration purposes in research articles. However, in real-world applications, we are often con-
fronted with hundreds or even thousands of features that are used for modeling. For example,
genetic or sensor applications frequently incorporate high-dimensional data sets that contain com-
plex relationships like feature interactions of high order and highly correlated features such as genes
in a given pathway (He and Yu, 2010; Gregorutti et al., 2015) or spectral bands of satellite images
in sensor data (Chakraborty and Pal, 2008). In addition to the high computational cost, which is a
challenging problem for many interpretation methods (see pitfall 9.2 in the contributing article of
Part II), grasping the interrelationships and the overall picture of the resulting high-dimensional
output is usually not feasible for humans. Furthermore, feature effect methods like PD plots are
visual tools. Thus, they are usually limited to two dimensions, making it difficult to understand
if the model has learned interactions of higher order than two and how they influence the model’s
predictions.

In the contributing article of Part III of this thesis, we address this limitation and propose so-
lutions for both global feature importance and global feature effect methods. The suggested
interpretation methods are defined for groups of features. Therefore, the resulting output is of
lower dimensionality, which may increase comprehensibility.

Misleading interpretations of global explanations due to aggregation Global interpretation
methods are usually defined as an aggregation over local interpretations (e.g., the PD curve of
feature xj is an average over the ICE curves of feature xj). This aggregation has the advantage that
the information is simplified and thus more understandable for the user in the sense that it is easier
to interpret one number or curve than n numbers or curves. However, by aggregating quantities
across observations, the granularity of information is lost. For most methods, the information loss
is particularly high when features interact and when features are correlated, which may lead to
what is known as aggregation bias (Mehrabi et al., 2021; Herbinger et al., 2022).

In the following, I will present two concrete examples of how this aggregation bias limits the
meaningfulness of the PD plot as an IML method.

Aggregation bias due to feature interactions. For illustration purposes, I use the Titanic data set
(Dawson, 1995). This data set contains 11 characteristics of 891 passengers of the ocean liner
Titanic. The target variable is the binary label if they survived the disaster, and the chosen ML
model is a random forest with 500 trees (Herbinger et al., 2022). Let us assume that we are
interested in how the age of the passengers influences their predicted survival probability. Let us
furthermore assume that we are interested in two specific passengers of the ocean liner:

1. a female passenger, aged 19, with a first-passenger class ticket and

2. a male passenger, aged 22, with a third-passenger class ticket.

We use ICE curves to visualize the effect of the feature age for the two passengers. The two
respective ICE curves are shown in Figure 2.5, where the dotted line marks the predicted survival
probability of each passenger. The upper orange ICE curve of the female passenger (1) shows
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an overall high predicted survival probability across all age values. However, compared to the
actual age of 19, it decreases slightly for older women and young girls. The lower yellow ICE
curve of the male passenger (2), on the other hand, shows a different behavior. The predicted
survival probability for this passenger (across all age values) is far lower than for passenger 1.
Moreover, the influence of the feature age on the predictions is different for the two passengers.
For the male passenger, the predicted survival probability stays relatively constant for higher age
values. In contrast, it increases strongly for passengers of younger age while keeping the other
characteristics constant. Hence, in this model, age does have a different influence on the predicted
survival probability for passenger 1 compared to passenger 2. The right plot in Figure 2.5 visualizes
the ICE curves of all 891 passengers. The curves are very heterogeneous, indicating that age does
have a different influence on the predicted survival probability for different passengers depending
on their other characteristics. This heterogeneous behavior of ICE curves indicates that age
interacts with other features of the data set, which leads to heterogeneous local feature effects.
However, the plot does not tell us which feature interactions have been learned by the model, and
due to the high number of very heterogeneous curves, the plot itself becomes incomprehensible.
The PD curve (blue) shows the aggregation over all 891 ICE curves. However, as clearly visible,
the PD curve is not representative of many of the underlying ICE curves, and thus, basing the
interpretations only on the PD curve might lead to misguided conclusions for many individuals.

One solution to that problem might be to estimate the functional ANOVA decomposition and
visualize only the main effect of the feature of interest by a PD plot. In this case, interaction
effects are separated into additive functions, and the aggregated effect curve for the main effect
does represent all underlying local effect curves. However, as mentioned in Section 2.3, estimating
the functional ANOVA decomposition remains a challenging and computationally expensive task.
And even if we could compute the functional ANOVA decomposition, visualizing and interpreting
effects of a higher order than two remains an open issue.

Founded on the theoretical concept of functional ANOVA decomposition, we address the described
limitation for global feature effect methods and suggest solutions based on recursive partitioning
in the first and second contributing articles of Part IV of this thesis. The proposed algorithms
partition the feature space such that feature interactions are minimized. Thus, the regional feature
effects are more representative of the underlying local effects in the final regions.

Aggregation bias due to extrapolation. In Figure 2.4, I already illustrated that the heterogeneity of
ICE curves can also be caused by an oscillating behavior of the algorithm in extrapolating regions.
In particular, algorithms that exhibit local instabilities, like neural networks, are affected by this
problem. Since the PD function aggregates over all ICE curves (with equal weights) and does not
distinguish between dense and sparse regions of the feature space, potentially extreme predictions
from extrapolating regions might strongly influence the shape of the PD curve. Thus, the final
average marginal effect curve might inappropriately represent the underlying observations.

A concrete application affected by this phenomenon is the interpretation of hyperparameter effects
in automated ML, where efficient optimizers, like Bayesian optimization, are applied to find good
configurations for the hyperparameters of the ML algorithm to be tuned. These optimizers try to
find a good balance between exploring the hyperparameter space and exploiting in regions, which
seem promising to converge to a good configuration as fast as possible. Thus, while promising
regions for a good configuration usually show a high number of sampled configurations, other
less promising regions show only a small number of sampled configurations or none at all. Thus,
the underlying model will be uncertain when predicting in these sparse or unseen regions of
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Figure 2.5.: The left plots show the ICE curves for the feature age of two passengers (upper:
female, lower: male) from the Titanic data set. The dotted lines mark the prediction
of the random forest for their actual age. The right plot visualizes these two ICE
curves and all other ICE curves (black) of the remaining passengers, as well as the
PD curve (blue) for the feature age.

the hyperparameter space, leading to uncertain and unreliable PD estimates in these regions
(Moosbauer et al., 2021).

In the third contributing article of Part IV of this thesis, we analyze the described aggregation bias
of PD plots for hyperparameter effects in hyperparameter optimization and suggest a potential
solution based on recursive partitioning, which provides more confident and reliable PD estimates
for hyperparameter effects in relevant regions of the hyperparameter space.

The aggregation bias due to extrapolation is not only problematic for PD plots but for every
global interpretation method based on marginal distributions or sampling strategies such as PFI.
Another solution to this limitation that focuses on interpreting the influence of features rather
than hyperparameters by PD plots and PFI is suggested by Molnar et al. (2023).

2.7. Marginal-based versus Conditional-based Approaches

In the discussion of various global model-agnostic interpretation methods in the previous sections,
the question of whether we should use approaches based on marginal or conditional distribution
or sampling strategies arose several times. Recent research criticizes marginal-based approaches
because they extrapolate in sparse or unseen regions of the feature space in the presence of de-
pendent features, which might lead to explanations that are based on predictions of unrealistic
data points (Aas et al., 2021; Frye et al., 2020). Therefore, some favor the conditional variants of
the methods, such as conditional feature importance instead of PFI (Watson and Wright, 2021;
Blesch et al., 2023; Molnar et al., 2023), M plots instead of PD plots, or Shapley values based on
conditional instead of marginal sampling approaches (Aas et al., 2021). However, the conditional
variants have their downsides, too. Some works criticize method-specific disadvantages. For ex-
ample, features not used by the ML model may receive a non-zero Shapley value if conditional
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instead of marginal sampling is used (Janzing et al., 2020; Chen et al., 2020). The main disad-
vantage is that the conditional distribution needs to be approximated, which becomes especially
difficult and computationally expensive when training data is sparse or of high dimensionality
(Janzing et al., 2020; Sundararajan and Najmi, 2020). Ultimately, the approximation of the con-
ditional distribution influences the final interpretation and might even lead to counter-intuitive
explanations (Sundararajan and Najmi, 2020).

Arguments exist for both perspectives, so the question remains: Which one to choose? I follow the
argumentation of Watson (2022), Freiesleben et al. (2022) and Chen et al. (2020) that there is not
one approach that fits it all, but that the choice depends on different factors, in particular which
question one would like to answer by using IML. Therefore, I distinguish between two general
goals:

1. If we are interested in understanding the inner workings of the fitted ML model, marginal
approaches may be most suitable.

2. If we are interested in interpretations that reflect the underlying data structures, conditional
methods may be most suitable.

The first goal is particularly important in model auditing to debug a model and to understand the
influence of features that the model has learned. The second goal is especially interesting when
we want to draw inferences from the model (Freiesleben et al., 2022).

Besides these two general goals, users need to be aware that depending on the interpretation
method, marginal-based methods are differently interpreted than conditional-based methods. For
example, while PFI quantifies the absolute importance of each feature irrespectively of all other
features, conditional versions of PFI quantify the additional importance of a feature of interest,
considering all other feature values are known. Also, the interpretation of PD and M plots differ.
PD plots visualize solely the influence of the feature of interest. In contrast, M plots visualize the
influence of the feature of interest and, in parts, the influence of the features correlated with it.

To summarize, the choice between marginal-based and conditional-based approaches depends on
the context, the desired interpretation, and whether we are interested in answering questions
about the model or the data. However, this choice is only to be made if features are correlated
since the two approaches are identical in the case of independent features.
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3. General Pitfalls of Model-Agnostic
Interpretation Methods for Machine Learning
Models

This article reviews the general pitfalls of existing model-agnostic interpretation methods. We
summarize suggested solutions and remaining open challenges for each of the pitfalls. These pitfalls
can be categorized according to their source into (1) an inappropriate ML model is used, (2) the
IML method itself is limited, and (3) the IML method is misapplied. The remaining contributing
articles of this thesis propose solutions to the pitfalls categorized in the second source.

Contributing article: Molnar, C., König, G., Herbinger, J., Freiesleben, T., Dandl, S., Scholbeck,
C. A., Casalicchio, G., Grosse-Wentrup, M. and Bischl, B. (2022). General pitfalls of model-
agnostic interpretation methods for machine learning models. In A. Holzinger, R. Goebel, R.
Fong, T. Moon, K.-R. Müller, and W. Samek (Eds.), xxAI - Beyond Explainable AI, Volume
13200 of Lecture Notes in Artificial Intelligence, pp. 39–68, Cham: Springer. https://doi.org/
10.1007/978-3-031-04083-2_4.

Author contributions: Julia Herbinger contributed to this paper as a co-author with the follow-
ing significant contributions:
The project idea was developed by Christoph Molnar, Gunnar König, Julia Herbinger, Timo
Freiesleben, Susanne Dandl, Christian Scholbeck, and Giuseppe Casalicchio with equal contribu-
tions. Christoph Molnar initiated, led, and coordinated the project. The manuscript was drafted
jointly by Christoph Molnar, Gunnar König, Julia Herbinger, Timo Freiesleben, Susanne Dandl,
Christian Scholbeck, and Giuseppe Casalicchio. Julia Herbinger wrote the chapters “Mislead-
ing Interpretations Due to Feature Interactions” and “Human-Intelligibility of High-Dimensional
IML Output” with support from Giuseppe Casalicchio. All authors contributed to revisions of
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1 Introduction

In recent years, both industry and academia have increasingly shifted away
from parametric models, such as generalized linear models, and towards non-
parametric and non-linear machine learning (ML) models such as random forests,
gradient boosting, or neural networks. The major driving force behind this devel-
opment has been a considerable outperformance of ML over traditional models
on many prediction tasks [32]. In part, this is because most ML models han-
dle interactions and non-linear effects automatically. While classical statistical
models – such as generalized additive models (GAMs) – also support the inclu-
sion of interactions and non-linear effects, they come with the increased cost of
having to (manually) specify and evaluate these modeling options. The benefits
of many ML models are partly offset by their lack of interpretability, which is
of major importance in many applications. For certain model classes (e.g. lin-
ear models), feature effects or importance scores can be directly inferred from
the learned parameters and the model structure. In contrast, it is more diffi-
cult to extract such information from complex non-linear ML models that, for
instance, do not have intelligible parameters and are hence often considered
black boxes. However, model-agnostic interpretation methods allow us to har-
ness the predictive power of ML models while gaining insights into the black-box
model. These interpretation methods are already applied in many different fields.
Applications of interpretable machine learning (IML) include understanding pre-
evacuation decision-making [124] with partial dependence plots [36], inferring
behavior from smartphone usage [105,106] with the help of permutation feature
importance [107] and accumulated local effect plots [3], or understanding the
relation between critical illness and health records [70] using Shapley additive
explanations (SHAP) [78]. Given the widespread application of interpretable
machine learning, it is crucial to highlight potential pitfalls, that, in the worst
case, can produce incorrect conclusions.

This paper focuses on pitfalls for model-agnostic IML methods, i.e. meth-
ods that can be applied to any predictive model. Model-specific methods, in
contrast, are tied to a certain model class (e.g. saliency maps [57] for gradient-
based models, such as neural networks), and are mainly considered out-of-scope
for this work. We focus on pitfalls for global interpretation methods, which
describe the expected behavior of the entire model with respect to the whole
data distribution. However, many of the pitfalls also apply to local explanation
methods, which explain individual predictions or classifications. Global meth-
ods include the partial dependence plot (PDP) [36], partial importance (PI)
[19], accumulated local affects (ALE) [3], or the permutation feature impor-
tance (PFI) [12,19,33]. Local methods include the individual conditional expec-
tation (ICE) curves [38], individual conditional importance (ICI) [19], local
interpretable model-agnostic explanations (LIME) [94], Shapley values [108] and
SHapley Additive exPlanations (SHAP) [77,78] or counterfactual explanations
[26,115]. Furthermore, we distinguish between feature effect and feature impor-
tance methods. A feature effect indicates the direction and magnitude of a change
in predicted outcome due to changes in feature values. Effect methods include
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Fig. 1. Selection of popular model-agnostic interpretation techniques, classified as local
or global, and as effect or importance methods.

Shapley values, SHAP, LIME, ICE, PDP, or ALE. Feature importance meth-
ods quantify the contribution of a feature to the model performance (e.g. via a
loss function) or to the variance of the prediction function. Importance methods
include the PFI, ICI, PI, or SAGE. See Fig. 1 for a visual summary.

The interpretation of ML models can have subtle pitfalls. Since many of
the interpretation methods work by similar principles of manipulating data and
“probing” the model [100], they also share many pitfalls. The sources of these
pitfalls can be broadly divided into three categories: (1) application of an unsuit-
able ML model which does not reflect the underlying data generating process
very well, (2) inherent limitations of the applied IML method, and (3) wrong
application of an IML method. Typical pitfalls for (1) are bad model generaliza-
tion or the unnecessary use of complex ML models. Applying an IML method in
a wrong way (3) often results from the users’ lack of knowledge of the inherent
limitations of the chosen IML method (2). For example, if feature dependencies
and interactions are present, potential extrapolations might lead to mislead-
ing interpretations for perturbation-based IML methods (inherent limitation).
In such cases, methods like PFI might be a wrong choice to quantify feature
importance.

Table 1. Categorization of the pitfalls by source.

Sources of pitfall Sections

Unsuitable ML model 3, 4

Limitation of IML method 5.1, 6.1, 6.2, 9.1, 9.2

Wrong application of IML method 2, 5.2, 5.3, 7, 8, 9.3, 10

Contributions: We uncover and review general pitfalls of model-agnostic inter-
pretation techniques. The categorization of these pitfalls into different sources
is provided in Table 1. Each section describes and illustrates a pitfall, reviews
possible solutions for practitioners to circumvent the pitfall, and discusses open
issues that require further research. The pitfalls are accompanied by illustrative

3. General Pitfalls of Model-Agnostic Interpretation Methods for Machine Learning Models

34



42 C. Molnar et al.

examples for which the code can be found in this repository: https://github.com/
compstat-lmu/code pitfalls iml.git. In addition to reproducing our examples, we
invite readers to use this code as a starting point for their own experiments and
explorations.

Related Work: Rudin et al. [96] present principles for interpretability and dis-
cuss challenges for model interpretation with a focus on inherently interpretable
models. Das et al. [27] survey methods for explainable AI and discuss challenges
with a focus on saliency maps for neural networks. A general warning about using
and explaining ML models for high stakes decisions has been brought forward
by Rudin [95], in which the author argues against model-agnostic techniques
in favor of inherently interpretable models. Krishnan [64] criticizes the general
conceptual foundation of interpretability, but does not dispute the usefulness of
available methods. Likewise, Lipton [73] criticizes interpretable ML for its lack
of causal conclusions, trust, and insights, but the author does not discuss any
pitfalls in detail. Specific pitfalls due to dependent features are discussed by
Hooker [54] for PDPs and functional ANOVA as well as by Hooker and Mentch
[55] for feature importance computations. Hall [47] discusses recommendations
for the application of particular interpretation methods but does not address
general pitfalls.

2 Assuming One-Fits-All Interpretability

Pitfall: Assuming that a single IML method fits in all interpretation contexts
can lead to dangerous misinterpretation. IML methods condense the complex-
ity of ML models into human-intelligible descriptions that only provide insight
into specific aspects of the model and data. The vast number of interpretation
methods make it difficult for practitioners to choose an interpretation method
that can answer their question. Due to the wide range of goals that are pursued
under the umbrella term “interpretability”, the methods differ in which aspects
of the model and data they describe.

For example, there are several ways to quantify or rank the features according
to their relevance. The relevance measured by PFI can be very different from
the relevance measured by the SHAP importance. If a practitioner aims to gain
insight into the relevance of a feature regarding the model’s generalization error,
a loss-based method (on unseen test data) such as PFI should be used. If we aim
to expose which features the model relies on for its prediction or classification –
irrespective of whether they aid the model’s generalization performance – PFI
on test data is misleading. In such scenarios, one should quantify the relevance
of a feature regarding the model’s prediction (and not the model’s generalization
error) using methods like the SHAP importance [76].

We illustrate the difference in Fig. 2. We simulated a data-generating process
where the target is completely independent of all features. Hence, the features
are just noise and should not contribute to the model’s generalization error.
Consequently, the features are not considered relevant by PFI on test data.
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However, the model mechanistically relies on a number of spuriously correlated
features. This reliance is exposed by marginal global SHAP importance.

As the example demonstrates, it would be misleading to view the PFI com-
puted on test data or global SHAP as one-fits-all feature importance techniques.
Like any IML method, they can only provide insight into certain aspects of model
and data.

Many pitfalls in this paper arise from situations where an IML method that
was designed for one purpose is applied in an unsuitable context. For example,
extrapolation (Sect. 5.1) can be problematic when we aim to study how the
model behaves under realistic data but simultaneously can be the correct choice
if we want to study the sensitivity to a feature outside the data distribution.

For some IML techniques – especially local methods – even the same method
can provide very different explanations, depending on the choice of hyperparam-
eters: For counterfactuals, explanation goals are encoded in their optimization
metrics [26,34] such as sparsity and data faithfulness; The scope and meaning
of LIME explanations depend on the kernel width and the notion of complexity
[8,37].

Solution: The suitability of an IML method cannot be evaluated with respect to
one-fits-all interpretability but must be motivated and assessed with respect to
well-defined interpretation goals. Similarly, practitioners must tailor the choice
of the IML method and its respective hyperparameters to the interpretation
context. This implies that these goals need to be clearly stated in a detailed
manner before any analysis – which is still often not the case.

Open Issues: Since IML methods themselves are subject to interpretation,
practitioners must be informed about which conclusions can or cannot be drawn
given different choices of IML technique. In general, there are three aspects to
be considered: (a) an intuitively understandable and plausible algorithmic con-
struction of the IML method to achieve an explanation; (b) a clear mathematical
axiomatization of interpretation goals and properties, which are linked by proofs
and theoretical considerations to IML methods, and properties of models and
data characteristics; (c) a practical translation for practitioners of the axioms
from (b) in terms of what an IML method provides and what not, ideally with
implementable guidelines and diagnostic checks for violated assumptions to guar-
antee correct interpretations. While (a) is nearly always given for any published
method, much work remains for (b) and (c).

3 Bad Model Generalization

Pitfall: Under- or overfitting models can result in misleading interpretations
with respect to the true feature effects and importance scores, as the model does
not match the underlying data-generating process well [39]. Formally, most IML
methods are designed to interpret the model instead of drawing inferences about
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Fig. 2. Assuming one-fits-all interpretability. A default xgboost regression model
that minimizes the mean squared error (MSE) was fitted on 20 independently and uni-
formly distributed features to predict another independent, uniformly sampled target.
In this setting, predicting the (unconditional) mean E[Y ] in a constant model is opti-
mal. The learner overfits due to a small training data size. Mean marginal SHAP (red,
error bars indicate 0.05 and 0.95 quantiles) exposes all mechanistically used features.
In contrast, PFI on test data (blue, error bars indicate 0.05 and 0.95 quantiles) con-
siders all features to be irrelevant, since no feature contributes to the generalization
performance.

the data-generating process. In practice, however, the latter is often the goal of
the analysis, and then an interpretation can only be as good as its underlying
model. If a model approximates the data-generating process well enough, its
interpretation should reveal insights into the underlying process.

Solution: In-sample evaluation (i.e. on training data) should not be used to
assess the performance of ML models due to the risk of overfitting on the train-
ing data, which will lead to overly optimistic performance estimates. We must
resort to out-of-sample validation based on resampling procedures such as hold-
out for larger datasets or cross-validation, or even repeated cross-validation for
small sample size scenarios. These resampling procedures are readily available
in software [67,89], and well-studied in theory as well as practice [4,11,104],
although rigorous analysis of cross-validation is still considered an open prob-
lem [103]. Nested resampling is necessary, when computational model selection
and hyperparameter tuning are involved [10]. This is important, as the Bayes
error for most practical situations is unknown, and we cannot make absolute
statements about whether a model already optimally fits the data.

Figure 3 shows the mean squared errors for a simulated example on both
training and test data for a support vector machine (SVM), a random forest,
and a linear model. Additionally, PDPs for all models are displayed, which show
to what extent each model’s effect estimates deviate from the ground truth. The
linear model is unable to represent the non-linear relationship, which is reflected
in a high error on both test and training data and the linear PDPs. In contrast,
the random forest has a low training error but a much higher test error, which
indicates overfitting. Also, the PDPs for the random forest display overfitting
behavior, as the curves are quite noisy, especially at the lower and upper value
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Fig. 3. Bad model generalization. Top: Performance estimates on training and test
data for a linear regression model (underfitting), a random forest (overfitting) and a
support vector machine with radial basis kernel (good fit). The three features are drawn
from a uniform distribution, and the target was generated as Y = X2

1 +X2−5X1X2+ε,
with ε ∼ N(0, 5).Bottom: PDPs for the data-generating process (DGP) – which is the
ground truth – and for the three models.

ranges of each feature. The SVM with both low training and test error comes
closest to the true PDPs.

4 Unnecessary Use of Complex Models

Pitfall: A common mistake is to use an opaque, complex ML model when an
interpretable model would have been sufficient, i.e. when the performance of
interpretable models is only negligibly worse – or maybe the same or even better
– than that of the ML model. Although model-agnostic methods can shed light
on the behavior of complex ML models, inherently interpretable models still
offer a higher degree of transparency [95] and considering them increases the
chance of discovering the true data-generating function [23]. What constitutes
an interpretable model is highly dependent on the situation and target audience,
as even a linear model might be difficult to interpret when many features and
interactions are involved.

It is commonly believed that complex ML models always outperform more
interpretable models in terms of accuracy and should thus be preferred. However,
there are several examples where interpretable models have proven to be serious
competitors: More than 15 years ago, Hand [49] demonstrated that simple models
often achieve more than 90% of the predictive power of potentially highly com-
plex models across the UCI benchmark data repository and concluded that such
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models often should be preferred due to their inherent interpretability; Makri-
dakis et al. [79] systematically compared various ML models (including long-
short-term-memory models and multi-layer neural networks) to statistical mod-
els (e.g. damped exponential smoothing and the Theta method) in time series
forecasting tasks and found that the latter consistently show greater predictive
accuracy; Kuhle et al. [65] found that random forests, gradient boosting and
neural networks did not outperform logistic regression in predicting fetal growth
abnormalities; Similarly, Wu et al. [120] have shown that a logistic regression
model performs as well as AdaBoost and even better than an SVM in predicting
heart disease from electronic health record data; Baesens et al. [7] showed that
simple interpretable classifiers perform competitively for credit scoring, and in
an update to the study the authors note that “the complexity and/or recency
of a classifier are misleading indicators of its prediction performance” [71].

Solution: We recommend starting with simple, interpretable models such as
linear regression models and decision trees. Generalized additive models (GAM)
[50] can serve as a gradual transition between simple linear models and more
complex machine learning models. GAMs have the desirable property that they
can additively model smooth, non-linear effects and provide PDPs out-of-the-
box, but without the potential pitfall of masking interactions (see Sect. 6). The
additive model structure of a GAM is specified before fitting the model so that
only the pre-specified feature or interaction effects are estimated. Interactions
between features can be added manually or algorithmically (e.g. via a forward
greedy search) [18]. GAMs can be fitted with component-wise boosting [99]. The
boosting approach allows to smoothly increase model complexity, from sparse
linear models to more complex GAMs with non-linear effects and interactions.
This smooth transition provides insight into the tradeoffs between model sim-
plicity and performance gains. Furthermore, component-wise boosting has an
in-built feature selection mechanism as the model is build incrementally, which
is especially useful in high-dimensional settings (see Sect. 9.1). The predictive
performance of models of different complexity should be carefully measured and
compared. Complex models should only be favored if the additional performance
gain is both significant and relevant – a judgment call that the practitioner must
ultimately make. Starting with simple models is considered best practice in data
science, independent of the question of interpretability [23]. The comparison of
predictive performance between model classes of different complexity can add
further insights for interpretation.

Open Issues: Measures of model complexity allow quantifying the trade-off
between complexity and performance and to automatically optimize for multiple
objectives beyond performance. Some steps have been made towards quantifying
model complexity, such as using functional decomposition and quantifying the
complexity of the components [82] or measuring the stability of predictions [92].
However, further research is required, as there is no single perfect definition of
interpretability, but rather multiple depending on the context [30,95].
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5 Ignoring Feature Dependence

5.1 Interpretation with Extrapolation

Pitfall: When features are dependent, perturbation-based IML methods such
as PFI, PDP, LIME, and Shapley values extrapolate in areas where the model
was trained with little or no training data, which can cause misleading interpre-
tations [55]. This is especially true if the ML model relies on feature interactions
[45] – which is often the case. Perturbations produce artificial data points that
are used for model predictions, which in turn are aggregated to produce global
or local interpretations [100]. Feature values can be perturbed by replacing orig-
inal values with values from an equidistant grid of that feature, with permuted
or randomly subsampled values [19], or with quantiles. We highlight two major
issues: First, if features are dependent, all three perturbation approaches pro-
duce unrealistic data points, i.e. the new data points are located outside of the
multivariate joint distribution of the data (see Fig. 4). Second, even if features
are independent, using an equidistant grid can produce unrealistic values for the
feature of interest. Consider a feature that follows a skewed distribution with
outliers. An equidistant grid would generate many values between outliers and
non-outliers. In contrast to the grid-based approach, the other two approaches
maintain the marginal distribution of the feature of interest.

Both issues can result in misleading interpretations (illustrative examples are
given in [55,84]), since the model is evaluated in areas of the feature space with
few or no observed real data points, where model uncertainty can be expected
to be very high. This issue is aggravated if interpretation methods integrate
over such points with the same weight and confidence as for much more realistic
samples with high model confidence.

Solution: Before applying interpretation methods, practitioners should check
for dependencies between features in the data, e.g. via descriptive statistics or
measures of dependence (see Sect. 5.2). When it is unavoidable to include depen-
dent features in the model (which is usually the case in ML scenarios), additional
information regarding the strength and shape of the dependence structure should
be provided. Sometimes, alternative interpretation methods can be used as a
workaround or to provide additional information. Accumulated local effect plots
(ALE) [3] can be applied when features are dependent, but can produce non-
intuitive effect plots for simple linear models with interactions [45]. For other
methods such as the PFI, conditional variants exist [17,84,107]. In the case
of LIME, it was suggested to focus in sampling on realistic (i.e. close to the
data manifold) [97] and relevant areas (e.g. close to the decision boundary) [69].
Note, however, that conditional interpretations are often different and should
not be used as a substitute for unconditional interpretations (see Sect. 5.3). Fur-
thermore, dependent features should not be interpreted separately but rather
jointly. This can be achieved by visualizing e.g. a 2-dimensional ALE plot of
two dependent features, which, admittedly, only works for very low-dimensional
combinations. Especially in high-dimensional settings where dependent features
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Fig. 4. Interpretation with extrapolation. Illustration of artificial data points gen-
erated by three different perturbation approaches. The black dots refer to observed data
points and the red crosses to the artificial data points.

can be grouped in a meaningful way, grouped interpretation methods might be
more reasonable (see Sect. 9.1).

We recommend using quantiles or randomly subsampled values over equidis-
tant grids. By default, many implementations of interpretability methods use an
equidistant grid to perturb feature values [41,81,89], although some also allow
using user-defined values.

Open Issues: A comprehensive comparison of strategies addressing extrapola-
tion and how they affect an interpretation method is currently missing. This also
includes studying interpretation methods and their conditional variants when
they are applied to data with different dependence structures.

5.2 Confusing Linear Correlation with General Dependence

Pitfall: Features with a Pearson correlation coefficient (PCC) close to zero can
still be dependent and cause misleading model interpretations (see Fig. 5). While
independence between two features implies that the PCC is zero, the converse is
generally false. The PCC, which is often used to analyze dependence, only tracks
linear correlations and has other shortcomings such as sensitivity to outliers
[113]. Any type of dependence between features can have a strong impact on the
interpretation of the results of IML methods (see Sect. 5.1). Thus, knowledge
about the (possibly non-linear) dependencies between features is crucial for an
informed use of IML methods.

Solution: Low-dimensional data can be visualized to detect dependence (e.g.
scatter plots) [80]. For high-dimensional data, several other measures of depen-
dence in addition to PCC can be used. If dependence is monotonic, Spearman’s
rank correlation coefficient [72] can be a simple, robust alternative to PCC.
For categorical or mixed features, separate dependence measures have been pro-
posed, such as Kendall’s rank correlation coefficient for ordinal features, or the
phi coefficient and Goodman & Kruskal’s lambda for nominal features [59].
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Fig. 5. Confusing linear correlation with dependence. Highly dependent fea-
tures X1 and X2 that have a correlation close to zero. A test (H0: Features are inde-
pendent) using Pearson correlation is not significant, but for HSIC, the H0-hypothesis
gets rejected. Data from [80].

Studying non-linear dependencies is more difficult since a vast variety of
possible associations have to be checked. Nevertheless, several non-linear asso-
ciation measures with sound statistical properties exist. Kernel-based measures,
such as kernel canonical correlation analysis (KCCA) [6] or the Hilbert-Schmidt
independence criterion (HSIC) [44], are commonly used. They have a solid the-
oretical foundation, are computationally feasible, and robust [113]. In addition,
there are information-theoretical measures, such as (conditional) mutual infor-
mation [24] or the maximal information coefficient (MIC) [93], that can however
be difficult to estimate [9,116]. Other important measures are e.g. the distance
correlation [111], the randomized dependence coefficient (RDC) [74], or the alter-
nating conditional expectations (ACE) algorithm [14]. In addition to using PCC,
we recommend using at least one measure that detects non-linear dependencies
(e.g. HSIC).

5.3 Misunderstanding Conditional Interpretation

Pitfall: Conditional variants of interpretation techniques avoid extrapolation
but require a different interpretation. Interpretation methods that perturb fea-
tures independently of others will extrapolate under dependent features but
provide insight into the model’s mechanism [56,61]. Therefore, these methods
are said to be true to the model but not true to the data [21].

For feature effect methods such as the PDP, the plot can be interpreted as
the isolated, average effect the feature has on the prediction. For the PFI, the
importance can be interpreted as the drop in performance when the feature’s
information is “destroyed” (by perturbing it). Marginal SHAP value functions
[78] quantify a feature’s contribution to a specific prediction, and marginal SAGE
value functions [25] quantify a feature’s contribution to the overall prediction
performance. All the aforementioned methods extrapolate under dependent fea-
tures (see also Sect. 5.1), but satisfy sensitivity, i.e. are zero if a feature is not
used by the model [25,56,61,110].
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Fig. 6. Misunderstanding conditional interpretation. A linear model was fit-
ted on the data-generating process modeled using a linear Gaussian structural causal
model. The entailed directed acyclic graph is depicted on the left. For illustrative pur-
poses, the original model coefficients were updated such that not only feature X3, but
also feature X2 is used by the model. PFI on test data considers both X3 and X2 to be
relevant. In contrast, conditional feature importance variants either only consider X3

to be relevant (CFI) or consider all features to be relevant (conditional SAGE value
function).

Conditional variants of these interpretation methods do not replace feature
values independently of other features, but in such a way that they conform to
the conditional distribution. This changes the interpretation as the effects of all
dependent features become entangled. Depending on the method, conditional
sampling leads to a more or less restrictive notion of relevance.

For example, for dependent features, the Conditional Feature Importance
(CFI) [17,84,107,117] answers the question: “How much does the model perfor-
mance drop if we permute a feature, but given that we know the values of the
other features?” [63,84,107].1 Two highly dependent features might be individu-
ally important (based on the unconditional PFI), but have a very low conditional
importance score because the information of one feature is contained in the other
and vice versa.

In contrast, the conditional variant of PDP, called marginal plot or M-plot
[3], violates sensitivity, i.e. may even show an effect for features that are not used
by the model. This is because for M-plots, the feature of interest is not sampled
conditionally on the remaining features, but rather the remaining features are
sampled conditionally on the feature of interest. As a consequence, the distri-
bution of dependent covariates varies with the value of the feature of interest.
Similarly, conditional SAGE and conditional SHAP value functions sample the
remaining features conditional on the feature of interest and therefore violate
sensitivity [25,56,61,109].

We demonstrate the difference between PFI, CFI, and conditional SAGE
value functions on a simulated example (Fig. 6) where the data-generating mech-

1 While for CFI the conditional independence of the feature of interest Xj with the
target Y given the remaining features X−j (Y ⊥ Xj |X−j) is already a sufficient
condition for zero importance, the corresponding PFI may still be nonzero [63].
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anism is known. While PFI only considers features to be relevant if they are
actually used by the model, SAGE value functions may also consider a feature
to be important that is not directly used by the model if it contains information
that the model exploits. CFI only considers a feature to be relevant if it is both
mechanistically used by the model and contributes unique information about Y .

Solution: When features are highly dependent and conditional effects and
importance scores are used, the practitioner must be aware of the distinct
interpretation. Recent work formalizes the implications of marginal and condi-
tional interpretation techniques [21,25,56,61,63]. While marginal methods pro-
vide insight into the model’s mechanism but are not true to the data, their
conditional variants are not true to the model but provide insight into the asso-
ciations in the data.

If joint insight into model and data is required, designated methods must be
used. ALE plots [3] provide interval-wise unconditional interpretations that are
true to the data. They have been criticized to produce non-intuitive results for
certain data-generating mechanisms [45]. Molnar et al. [84] propose a subgroup-
based conditional sampling technique that allows for group-wise marginal inter-
pretations that are true to model and data and that can be applied to fea-
ture importance and feature effects methods such as conditional PDPs and
CFI. For feature importance, the DEDACT framework [61] allows to decom-
pose conditional importance measures such as SAGE value functions into their
marginal contributions and vice versa, thereby allowing global insight into both:
the sources of prediction-relevant information in the data as well as into the
feature pathways by which the information enters the model.

Open Issues: The quality of conditional IML techniques depends on the good-
ness of the conditional sampler. Especially in continuous, high-dimensional set-
tings, conditional sampling is challenging. More research on the robustness of
interpretation techniques regarding the quality of the sample is required.

6 Misleading Interpretations Due to Feature Interactions

6.1 Misleading Feature Effects Due to Aggregation

Pitfall: Global interpretation methods, such as PDP or ALE plots, visualize
the average effect of a feature on a model’s prediction. However, they can pro-
duce misleading interpretations when features interact. Figure 7 A and B show
the marginal effect of features X1 and X2 of the below-stated simulation exam-
ple. While the PDP of the non-interacting feature X1 seems to capture the
true underlying effect of X1 on the target quite well (A), the global aggregated
effect of the interacting feature X2 (B) shows almost no influence on the target,
although an effect is clearly there by construction.
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Fig. 7. Misleading effect due to interactions. Simulation example with inter-

actions: Y = 3X1 − 6X2 + 12X21(X3≥0) + ε with X1, X2, X3
i.i.d.∼ U [−1, 1] and

ε
i.i.d.∼ N(0, 0.3). A random forest with 500 trees is fitted on 1000 observations. Effects

are calculated on 200 randomly sampled (training) observations. A, B: PDP (yellow)
and ICE curves of X1 and X2; C: Derivative ICE curves and their standard deviation
of X2; D: 2-dimensional PDP of X2 and X3.

Solution: For the PDP, we recommend to additionally consider the correspond-
ing ICE curves [38]. While PDP and ALE average out interaction effects, ICE
curves directly show the heterogeneity between individual predictions. Figure 7
A illustrates that the individual marginal effect curves all follow an upward trend
with only small variations. Hence, by aggregating these ICE curves to a global
marginal effect curve such as the PDP, we do not lose much information. How-
ever, when the regarded feature interacts with other features, such as feature X2

with feature X3 in this example, then marginal effect curves of different obser-
vations might not show similar effects on the target. Hence, ICE curves become
very heterogeneous, as shown in Fig. 7 B. In this case, the influence of feature
X2 is not well represented by the global average marginal effect. Particularly
for continuous interactions where ICE curves start at different intercepts, we
recommend the use of derivative or centered ICE curves, which eliminate differ-
ences in intercepts and leave only differences due to interactions [38]. Derivative
ICE curves also point out the regions of highest interaction with other features.
For example, Fig. 7 C indicates that predictions for X2 taking values close to 0
strongly depend on other features’ values. While these methods show that inter-
actions are present with regards to the feature of interest but do not reveal other
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features with which it interacts, the 2-dimensional PDP or ALE plot are options
to visualize 2-way interaction effects. The 2-dimensional PDP in Fig. 7 D shows
that predictions with regards to feature X2 highly depend on the feature values
of feature X3.

Other methods that aim to gain more insights into these visualizations are
based on clustering homogeneous ICE curves, such as visual interaction effects
(VINE) [16] or [122]. As an example, in Fig. 7 B, it would be more meaningful to
average over the upward and downward proceeding ICE curves separately and
hence show that the average influence of feature X2 on the target depends on
an interacting feature (here: X3). Work by Zon et al. [125] followed a similar
idea by proposing an interactive visualization tool to group Shapley values with
regards to interacting features that need to be defined by the user.

Open Issues: The introduced visualization methods are not able to illustrate
the type of the underlying interaction and most of them are also not applicable
to higher-order interactions.

6.2 Failing to Separate Main from Interaction Effects

Pitfall: Many interpretation methods that quantify a feature’s importance or
effect cannot separate an interaction from main effects. The PFI, for example,
includes both the importance of a feature and the importance of all its interac-
tions with other features [19]. Also local explanation methods such as LIME and
Shapley values only provide additive explanations without separation of main
effects and interactions [40].

Solution: Functional ANOVA introduced by [53] is probably the most popular
approach to decompose the joint distribution into main and interaction effects.
Using the same idea, the H-Statistic [35] quantifies the interaction strength
between two features or between one feature and all others by decomposing
the 2-dimensional PDP into its univariate components. The H-Statistic is based
on the fact that, in the case of non-interacting features, the 2-dimensional par-
tial dependence function equals the sum of the two underlying univariate par-
tial dependence functions. Another similar interaction score based on partial
dependencies is defined by [42]. Instead of decomposing the partial dependence
function, [87] uses the predictive performance to measure interaction strength.
Based on Shapley values, Lundberg et al. [77] proposed SHAP interaction val-
ues, and Casalicchio et al. [19] proposed a fair attribution of the importance of
interactions to the individual features.

Furthermore, Hooker [54] considers dependent features and decomposes the
predictions in main and interaction effects. A way to identify higher-order inter-
actions is shown in [53].

Open Issues: Most methods that quantify interactions are not able to identify
higher-order interactions and interactions of dependent features. Furthermore,
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the presented solutions usually lack automatic detection and ranking of all inter-
actions of a model. Identifying a suitable shape or form of the modeled inter-
action is not straightforward as interactions can be very different and complex,
e.g., they can be a simple product of features (multiplicative interaction) or can
have a complex joint non-linear effect such as smooth spline surface.

7 Ignoring Model and Approximation Uncertainty

Pitfall: Many interpretation methods only provide a mean estimate but do not
quantify uncertainty. Both the model training and the computation of interpre-
tation are subject to uncertainty. The model is trained on (random) data, and
therefore should be regarded as a random variable. Similarly, LIME’s surrogate
model relies on perturbed and reweighted samples of the data to approximate the
prediction function locally [94]. Other interpretation methods are often defined
in terms of expectations over the data (PFI, PDP, Shapley values, ...), but are
approximated using Monte Carlo integration. Ignoring uncertainty can result in
the interpretation of noise and non-robust results. The true effect of a feature
may be flat, but – purely by chance, especially on smaller datasets – the Shap-
ley value might show an effect. This effect could cancel out once averaged over
multiple model fits.

Fig. 8. Ignoring model and approximation uncertainty. PDP for X1 with Y =
0 ·X1 +

∑10
j=2 Xj + εi with X1, . . . , X10 ∼ U [0, 1] and εi ∼ N(0, 0.9). Left: PDP for X1

of a random forest trained on 100 data points. Middle: Multiple PDPs (10x) for the
model from left plots, but with different samples (each n=100) for PDP estimation.
Right: Repeated (10x) data samples of n=100 and newly fitted random forest.

Figure 8 shows that a single PDP (first plot) can be misleading because it
does not show the variance due to PDP estimation (second plot) and model
fitting (third plot). If we are not interested in learning about a specific model,
but rather about the relationship between feature X1 and the target (in this
case), we should consider the model variance.
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Solution: By repeatedly computing PDP and PFI with a given model, but with
different permutations or bootstrap samples, the uncertainty of the estimate
can be quantified, for example in the form of confidence intervals. For PFI,
frameworks for confidence intervals and hypothesis tests exist [2,117], but they
assume a fixed model. If the practitioner wants to condition the analysis on the
modeling process and capture the process’ variance instead of conditioning on a
fixed model, PDP and PFI should be computed on multiple model fits [83].

Open Issues: While Moosbauer et al. [85] derived confidence bands for PDPs
for probabilistic ML models that cover the model’s uncertainty, a general model-
agnostic uncertainty measure for feature effect methods such as ALE [3] and PDP
[36] has (to the best of our knowledge) not been introduced yet.

8 Ignoring the Rashomon Effect

Pitfall: Sometimes different models explain the data-generating process equally
well, but contradict each other. This phenomenon is called the Rashomon effect,
named after the movie “Rashomon” from the year 1950. Breiman formalized it
for predictive models in 2001 [13]: Different prediction models might perform
equally well (Rashomon set), but construct the prediction function in a different
way (e.g. relying on different features). This can result in conflicting interpre-
tations and conclusions about the data. Even small differences in the training
data can cause one model to be preferred over another.

For example, Dong and Rudin [29] identified a Rashomon set of equally well
performing models for the COMPAS dataset. They showed that the models
differed greatly in the importance they put on certain features. Specifically, if
criminal history was identified as less important, race was more important and
vice versa. Cherry-picking one model and its underlying explanation might not
be sufficient to draw conclusions about the data-generating process. As Hancox-
Li [48] states “just because race happens to be an unimportant variable in that
one explanation does not mean that it is objectively an unimportant variable”.

The Rashomon effect can also occur at the level of the interpretation method
itself. Differing hyperparameters or interpretation goals can be one reason (see
Sect. 2). But even if the hyperparameters are fixed, we could still obtain contra-
dicting explanations by an interpretation method, e.g., due to a different data
sample or initial seed.

A concrete example of the Rashomon effect is counterfactual explanations.
Different counterfactuals may all alter the prediction in the desired way, but
point to different feature changes required for that change. If a person is deemed
uncreditworthy, one corresponding counterfactual explaining this decision may
point to a scenario in which the person had asked for a shorter loan duration
and amount, while another counterfactual may point to a scenario in which
the person had a higher income and more stable job. Focusing on only one
counterfactual explanation in such cases strongly limits the possible epistemic
access.
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Solution: If multiple, equally good models exist, their interpretations should
be compared. Variable importance clouds [29] is a method for exploring variable
importance scores for equally good models within one model class. If the interpre-
tations are in conflict, conclusions must be drawn carefully. Domain experts or
further constraints (e.g. fairness or sparsity) could help to pick a suitable model.
Semenova et al. [102] also hypothesized that a large Rashomon set could contain
simpler or more interpretable models, which should be preferred according to
Sect. 4.

In the case of counterfactual explanations, multiple, equally good explana-
tions exist. Here, methods that return a set of explanations rather than a single
one should be used – for example, the method by Dandl et al. [26] or Mothilal
et al. [86].

Open Issues: Numerous very different counterfactual explanations are over-
whelming for users. Methods for aggregating or combining explanations are still
a matter of future research.

9 Failure to Scale to High-Dimensional Settings

9.1 Human-Intelligibility of High-Dimensional IML Output

Pitfall: Applying IML methods naively to high-dimensional datasets (e.g. visu-
alizing feature effects or computing importance scores on feature level) leads to
an overwhelming and high-dimensional IML output, which impedes human anal-
ysis. Especially interpretation methods that are based on visualizations make
it difficult for practitioners in high-dimensional settings to focus on the most
important insights.

Solution: A natural approach is to reduce the dimensionality before applying
any IML methods. Whether this facilitates understanding or not depends on
the possible semantic interpretability of the resulting, reduced feature space –
as features can either be selected or dimensionality can be reduced by linear
or non-linear transformations. Assuming that users would like to interpret in
the original feature space, many feature selection techniques can be used [46],
resulting in much sparser and consequently easier to interpret models. Wrap-
per selection approaches are model-agnostic and algorithms like greedy forward
selection or subset selection procedures [5,60], which start from an empty model
and iteratively add relevant (subsets of) features if needed, even allow to measure
the relevance of features for predictive performance. An alternative is to directly
use models that implicitly perform feature selection such as LASSO [112] or
component-wise boosting [99] as they can produce sparse models with fewer fea-
tures. In the case of LIME or other interpretation methods based on surrogate
models, the aforementioned techniques could be applied to the surrogate model.

When features can be meaningfully grouped in a data-driven or knowledge-
driven way [51], applying IML methods directly to grouped features instead of
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single features is usually more time-efficient to compute and often leads to more
appropriate interpretations. Examples where features can naturally be grouped
include the grouping of sensor data [20], time-lagged features [75], or one-hot-
encoded categorical features and interaction terms [43]. Before a model is fitted,
groupings could already be exploited for dimensionality reduction, for example
by selecting groups of features by the group LASSO [121].

For model interpretation, various papers extended feature importance meth-
ods from single features to groups of features [5,43,114,119]. In the case of
grouped PFI, this means that we perturb the entire group of features at once
and measure the performance drop compared to the unperturbed dataset. Com-
pared to standard PFI, the grouped PFI does not break the association to the
other features of the group, but to features of other groups and the target. This is
especially useful when features within the same group are highly correlated (e.g.
time-lagged features), but between-group dependencies are rather low. Hence,
this might also be a possible solution for the extrapolation pitfall described in
Sect. 5.1.

We consider the PhoneStudy in [106] as an illustration. The PhoneStudy
dataset contains 1821 features to analyze the link between human behavior based
on smartphone data and participants’ personalities. Interpreting the results in
this use case seems to be challenging since features were dependent and single
feature effects were either small or non-linear [106]. The features have been
grouped in behavior-specific categories such as app-usage, music consumption,
or overall phone usage. Au et al. [5] calculated various grouped importance
scores on the feature groups to measure their influence on a specific personality
trait (e.g. conscientiousness). Furthermore, the authors applied a greedy forward
subset selection procedure via repeated subsampling on the feature groups and
showed that combining app-usage features and overall phone usage features were
most of the times sufficient for the given prediction task.

Open Issues: The quality of a grouping-based interpretation strongly depends
on the human intelligibility and meaningfulness of the grouping. If the grouping
structure is not naturally given, then data-driven methods can be used. However,
if feature groups are not meaningful (e.g. if they cannot be described by a super-
feature such as app-usage), then subsequent interpretations of these groups are
purposeless. One solution could be to combine feature selection strategies with
interpretation methods. For example, LIME’s surrogate model could be a LASSO
model. However, beyond surrogate models, the integration of feature selection
strategies remains an open issue that requires further research.

Existing research on grouped interpretation methods mainly focused on quan-
tifying grouped feature importance, but the question of “how a group of fea-
tures influences a model’s prediction” remains almost unanswered. Only recently,
[5,15,101] attempted to answer this question by using dimension-reduction tech-
niques (such as PCA) before applying the interpretation method. However, this
is also a matter of further research.
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9.2 Computational Effort

Pitfall: Some interpretation methods do not scale linearly with the number of
features. For example, for the computation of exact Shapley values the number
of possible coalitions [25,78], or for a (full) functional ANOVA decomposition
the number of components (main effects plus all interactions) scales with O(2p)
[54].2

Solution: For the functional ANOVA, a common solution is to keep the analysis
to the main effects and selected 2-way interactions (similar for PDP and ALE).
Interesting 2-way interactions can be selected by another method such as the
H-statistic [35]. However, the selection of 2-way interactions requires additional
computational effort. Interaction strength usually decreases quickly with increas-
ing interaction size, and one should only consider d-way interactions when all
their (d−1)-way interactions were significant [53]. For Shapley-based methods, an
efficient approximation exists that is based on randomly sampling and evaluat-
ing feature orderings until the estimates converge. The variance of the estimates
reduces in O( 1

m ), where m is the number of evaluated orderings [25,78].

9.3 Ignoring Multiple Comparison Problem

Pitfall: Simultaneously testing the importance of multiple features will result
in false-positive interpretations if the multiple comparisons problem (MCP) is
ignored. The MCP is well known in significance tests for linear models and
exists similarly in testing for feature importance in ML. For example, suppose
we simultaneously test the importance of 50 features (with the H0-hypothesis
of zero importance) at the significance level α = 0.05. Even if all features are
unimportant, the probability of observing that at least one feature is significantly
important is 1 − P(‘no feature important’) = 1 − (1 − 0.05)50 ≈ 0.923. Multiple
comparisons become even more problematic the higher the dimension of the
dataset.

Solution: Methods such as Model-X knockoffs [17] directly control for the false
discovery rate (FDR). For all other methods that provide p-values or confidence
intervals, such as PIMP (Permutation IMPortance) [2], which is a testing app-
roach for PFI, MCP is often ignored in practice to the best of our knowledge,
with some exceptions[105,117]. One of the most popular MCP adjustment meth-
ods is the Bonferroni correction [31], which rejects a null hypothesis if its p-value
is smaller than α/p, with p as the number of tests. It has the disadvantage that
it increases the probability of false negatives [90]. Since MCP is well known
in statistics, we refer the practitioner to [28] for an overview and discussion of
alternative adjustment methods, such as the Bonferroni-Holm method [52].

2 Similar to the PDP or ALE plots, the functional ANOVA components describe
individual feature effects and interactions.
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Fig. 9. Failure to scale to high-dimensional settings. Comparison of the num-
ber of features with significant importance - once with and once without Bonferroni-
corrected significance levels for a varying number of added noise variables. Datasets
were sampled from Y = 2X1 + 2X2

2 + ε with X1, X2, ε ∼ N(0, 1). X3, X4, ..., Xp ∼
N(0, 1) are additional noise variables with p ranging between 2 and 1000. For each p,
we sampled two datasets from this data-generating process – one to train a random
forest with 500 trees on and one to test whether feature importances differed from 0
using PIMP. In all experiments, X1 and X2 were correctly identified as important.

As an example, in Fig. 9 we compare the number of features with significant
importance measured by PIMP once with and once without Bonferroni-adjusted
significance levels (α = 0.05 vs. α = 0.05/p). Without correcting for multi-
comparisons, the number of features mistakenly evaluated as important grows
considerably with increasing dimension, whereas Bonferroni correction results in
only a modest increase.

10 Unjustified Causal Interpretation

Pitfall: Practitioners are often interested in causal insights into the underly-
ing data-generating mechanisms, which IML methods do not generally provide.
Common causal questions include the identification of causes and effects, pre-
dicting the effects of interventions, and answering counterfactual questions [88].
For example, a medical researcher might want to identify risk factors or predict
average and individual treatment effects [66]. In search of answers, a researcher
can therefore be tempted to interpret the result of IML methods from a causal
perspective.

However, a causal interpretation of predictive models is often not possible.
Standard supervised ML models are not designed to model causal relationships
but to merely exploit associations. A model may therefore rely on causes and
effects of the target variable as well as on variables that help to reconstruct
unobserved influences on Y , e.g. causes of effects [118]. Consequently, the ques-
tion of whether a variable is relevant to a predictive model (indicated e.g. by
PFI > 0) does not directly indicate whether a variable is a cause, an effect,
or does not stand in any causal relation to the target variable. Furthermore,
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even if a model would rely solely on direct causes for the prediction, the causal
structure between features must be taken into account. Intervening on a variable
in the real world may affect not only Y but also other variables in the feature
set. Without assumptions about the underlying causal structure, IML methods
cannot account for these adaptions and guide action [58,62].

As an example, we constructed a dataset by sampling from a structural causal
model (SCM), for which the corresponding causal graph is depicted in Fig. 10. All
relationships are linear Gaussian with variance 1 and coefficients 1. For a linear
model fitted on the dataset, all features were considered to be relevant based
on the model coefficients (ŷ = 0.329x1 + 0.323x2 − 0.327x3 + 0.342x4 + 0.334x5,
R2 = 0.943), although x3, x4 and x5 do not cause Y .

Solution: The practitioner must carefully assess whether sufficient assumptions
can be made about the underlying data-generating process, the learned model,
and the interpretation technique. If these assumptions are met, a causal inter-
pretation may be possible. The PDP between a feature and the target can be
interpreted as the respective average causal effect if the model performs well and
the set of remaining variables is a valid adjustment set [123]. When it is known
whether a model is deployed in a causal or anti-causal setting – i.e. whether
the model attempts to predict an effect from its causes or the other way round
– a partial identification of the causal roles based on feature relevance is pos-
sible (under strong and non-testable assumptions) [118]. Designated tools and
approaches are available for causal discovery and inference [91].

Open Issues: The challenge of causal discovery and inference remains an open
key issue in the field of ML. Careful research is required to make explicit under
which assumptions what insight about the underlying data-generating mecha-
nism can be gained by interpreting an ML model.

Fig. 10. Causal graph

11 Discussion

In this paper, we have reviewed numerous pitfalls of local and global model-
agnostic interpretation techniques, e.g. in the case of bad model generalization,
dependent features, interactions between features, or causal interpretations. We
have not attempted to provide an exhaustive list of all potential pitfalls in ML
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model interpretation, but have instead focused on common pitfalls that apply
to various model-agnostic IML methods and pose a particularly high risk.

We have omitted pitfalls that are more specific to one IML method type:
For local methods, the vague notions of neighborhood and distance can lead to
misinterpretations [68,69], and common distance metrics (such as the Euclidean
distance) are prone to the curse of dimensionality [1]; Surrogate methods such
as LIME may not be entirely faithful to the original model they replace in
interpretation. Moreover, we have not addressed pitfalls associated with certain
data types (like the definition of superpixels in image data [98]), nor those related
to human cognitive biases (e.g. the illusion of model understanding [22]).

Many pitfalls in the paper are strongly linked with axioms that encode
desiderata of model interpretation. For example, pitfall Sect. 5.3 (misunderstand-
ing conditional interpretations) is related to violations of sensitivity [56,110]. As
such, axioms can help to make the strengths and limitations of methods explicit.
Therefore, we encourage an axiomatic evaluation of interpretation methods.

We hope to promote a more cautious approach when interpreting ML models
in practice, to point practitioners to already (partially) available solutions, and
to stimulate further research on these issues. The stakes are high: ML algorithms
are increasingly used for socially relevant decisions, and model interpretations
play an important role in every empirical science. Therefore, we believe that
users can benefit from concrete guidance on properties, dangers, and problems
of IML techniques – especially as the field is advancing at high speed. We need
to strive towards a recommended, well-understood set of tools, which will in turn
require much more careful research. This especially concerns the meta-issues of
comparisons of IML techniques, IML diagnostic tools to warn against mislead-
ing interpretations, and tools for analyzing multiple dependent or interacting
features.
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G. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11051, pp. 655–670. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-10925-7 40

20. Chakraborty, D., Pal, N.R.: Selecting useful groups of features in a connectionist
framework. IEEE Trans. Neural Netw. 19(3), 381–396 (2008). https://doi.org/
10.1109/TNN.2007.910730

21. Chen, H., Janizek, J.D., Lundberg, S., Lee, S.I.: True to the model or true to the
data? arXiv preprint arXiv:2006.16234 (2020)

22. Chromik, M., Eiband, M., Buchner, F., Krüger, A., Butz, A.: I think I get your
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45. Grömping, U.: Model-agnostic effects plots for interpreting machine learning mod-
els. Reports in Mathematics, Physics and Chemistry Report 1/2020 (2020)

46. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach.
Learn. Res. 3(Mar), 1157–1182 (2003)

47. Hall, P.: On the art and science of machine learning explanations. arXiv preprint
arXiv:1810.02909 (2018)

48. Hancox-Li, L.: Robustness in machine learning explanations: does it matter?
In: Proceedings of the 2020 Conference on Fairness, Accountability, and Trans-
parency, FAT* 2020, pp. 640–647. Association for Computing Machinery, New
York (2020). https://doi.org/10.1145/3351095.3372836

49. Hand, D.J.: Classifier technology and the illusion of progress. Stat. Sci. 21(1),
1–14 (2006). https://doi.org/10.1214/088342306000000060

50. Hastie, T., Tibshirani, R.: Generalized additive models. Stat. Sci. 1(3), 297–310
(1986). https://doi.org/10.1214/ss/1177013604

51. He, Z., Yu, W.: Stable feature selection for biomarker discovery. Comput. Biol.
Chem. 34(4), 215–225 (2010). https://doi.org/10.1016/j.compbiolchem.2010.07.
002

52. Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat.
6(2), 65–70 (1979)

53. Hooker, G.: Discovering additive structure in black box functions. In: Proceedings
of the Tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD 2004, pp. 575–580. Association for Computing Machinery,
New York (2004). https://doi.org/10.1145/1014052.1014122

54. Hooker, G.: Generalized functional ANOVA diagnostics for high-dimensional func-
tions of dependent variables. J. Comput. Graph. Stat. 16(3), 709–732 (2007).
https://doi.org/10.1198/106186007X237892

55. Hooker, G., Mentch, L.: Please stop permuting features: an explanation and alter-
natives. arXiv preprint arXiv:1905.03151 (2019)
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Grouping Approaches in Interpretable
Machine Learning





4. Grouped Feature Importance and Combined
Features Effect Plot

In this article, we provide an overview of existing solutions and propose new solutions for the first
limitation of global interpretation methods stated in Section 1.1, namely the human incompre-
hensibility of high-dimensional output. The suggested methods interpret feature groups instead
of single features and thus reduce dimensionality and simplify the resulting output, which may
enhance comprehensibility.
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Abstract
Interpretable machine learning has become a very active area of research due to
the rising popularity of machine learning algorithms and their inherently challeng-
ing interpretability. Most work in this area has been focused on the interpretation
of single features in a model. However, for researchers and practitioners, it is often
equally important to quantify the importance or visualize the effect of feature groups.
To address this research gap, we provide a comprehensive overview of how exist-
ing model-agnostic techniques can be defined for feature groups to assess the grouped
feature importance, focusing onpermutation-based, refitting, andShapley-basedmeth-
ods. We also introduce an importance-based sequential procedure that identifies a
stable and well-performing combination of features in the grouped feature space. Fur-
thermore, we introduce the combined features effect plot, which is a technique to
visualize the effect of a group of features based on a sparse, interpretable linear com-
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bination of features. We used simulation studies and real data examples to analyze,
compare, and discuss these methods.

Keywords Grouped feature importance · Combined features effects · Dimension
reduction · Interpretable machine learning

1 Introduction

Machine learing (ML) algorithms are nowadays used in many diverse fields e.g. in
medicine (Shipp et al. 2002), criminology (Berk et al. 2009), and increasingly in
the social sciences (Stachl et al. 2020b; Yarkoni and Westfall 2017). Interpretable
models are paramount in many high-stakes settings, such as medical and juridical
applications (Lipton 2018). However, well-performing ML models often bear a lack
of interpretability. In the context of interpretable ML (IML) research, several model-
agnostic methods to produce explanations for single features have been developed
(Molnar 2019). Examples include the permutation feature importance (PFI; Fisher
et al. 2019), leave-one-covariate out (LOCO) importance (Lei et al. 2018), SHAP
values (Lundberg and Lee 2017), or partial dependence plots (PDP; Friedman 2001).

In many applications, it can be more informative to produce explanations for the
importance or effect of a group of features (which we refer to as grouped interpre-
tations) rather than for single features. It is important to note that the meaning of
grouped interpretations, in general, differs from single feature interpretations, and
resulting interpretations are usually not directly comparable (e.g., as Gregorutti et al.
(2015) shows for the permutation feature importance). Hence, our aim is not to chal-
lenge single feature interpretations as both single and grouped feature interpretation
methods measure different things and are useful on their own.

Grouped interpretations might be especially interesting for high-dimensional set-
tings with hundreds or thousands of features. In particular, when analyzing the
influence of these features visually (e.g., by plotting the marginal effect of a feature on
the target) on a single feature level, this might result in an information overload which
might not provide a comprehensive understanding of the learned effects (Molnar et al.
2020b). Furthermore, the runtime of some interpretation methods—such as Shapley
values—does not scale linearly in the number of features. Hence, calculating them
on a single feature level might not be computationally feasible for high-dimensional
settings, making grouped computations a feasible remedy (Lundberg and Lee 2017;
Covert et al. 2020; Molnar et al. 2020b).

From a use case perspective, the concept of grouped interpretations is particularly
useful when the feature grouping is available a priori based on the application context.
In that sense, features that either belong to the same semantic area (e.g., behaviors
in psychology or biomarkers in medicine) or are generated by the same mechanism
or device (e.g., fMRI, EEG, smartphones) can be grouped together to assess their
joint effect or importance. For example, in our application in Sect. 7, we use a real-
world use case from psychology that studies how the human behavior on smartphone
app usage is associated to different personality traits (Stachl et al. 2020a). Features
were extracted from longitudinal data collected from smartphones of 624 participants,
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Fig. 1 A possible process from group definition to grouped interpretations. First, the feature groups must
be defined. A model is then fitted, typically on the feature space where the information of the pre-defined
grouping might be used (e.g., if the fitting process is combined with a feature selection procedure) or
ignored. When the best model is found, model-agnostic grouped interpretation methods are applied on the
previously defined feature groups. A commonly used approach is to first obtain an overview of which groups
are most important for achieving a good model performance (grouped feature importance) to subsequently
analyze how the most important feature groups influence the model’s prediction (grouped feature effect)
(Color figure online)

and can be grouped into different behavioral classes (i.e., communication and social
activity, app-usage, music consumption, overall phone activity, mobility). Another
example is applications with sensor data (Chakraborty and Pal 2008), where multiple
features measured by a single sensor naturally belong together, and hence grouped
interpretations on sensor-level might be more informative.

There are also situations where the interpretation of single features might be mis-
leading and where grouped interpretations can provide a remedy. Examples include
datasets with time-lagged or categorical features (e.g., dummy or one-hot encoded cat-
egories) and the presence of feature interactions (Gregorutti et al. 2015). A concrete
example for dummy encoded categorical features is shown in Appendix A.

Even in situations where feature groups are not naturally given in advance, it still
might be beneficial to define groups in a data-driven manner and apply interpretation
methods on groups of features (for examples, see Sect. 1.2).

Hence, compared to single feature interpretation methods, the grouping structure
must be defined beforehand. A possible process—from group membership definition
to modeling up to post-hoc interpretations—is illustrated in Fig. 1. Since defining the
underlying group structure is a relevant step in this process, we discuss some applied
techniques on how to find groups of features in Sect. 1.2. However, in this paper, we
focus on the interpretation component once the groups are known (the green part in
Fig. 1).

Although the grouped feature perspective is relevant in many applications, most
IML research has focused onmethods that attempt to provide explanations on a single-
feature level.Model-agnostic methods for feature groups are rare and not well-studied.

1.1 Real data use cases with grouped features

In the following we summarize further exemplary predictive tasks with pre-specified
feature groupings. These tasks will also be used in Sect. 3.4 for further empirical
analysis. For more details on features and associated groups see Table 1.

Heat value of fossil fuels In this small scale regression task (n = 129), the objective
is to predict the heat value of fossil fuels from spectral data (Fuchs et al. 2015). In
addition to one scalar feature (humidity), the dataset contains two groups of curve
data, the first from the ultraviolet-visible spectrum (UVVIS) and the second from the
near infrared spectrum (NIR).
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Table 1 Real world datasets with grouped features and their pre-specified group memberships

Dataset Single features Group membership Description

Birthweight age1, age2, age3 Age Mother’s age represented by 3
orthogonal polynomials

lwt1, lwt2, lwt3 lwt Mother’s weight represented by 3
orthogonal polynomials

White, black Race Mother’s race (indicator
functions)

Smoke Smoke Smoking status (indicator
function)

ptl1, ptl2m ptl One, or two or more previous
premature labors

ht ht History of hypertension
(indicator function)

ui ui Presence of uterine irritability
(indicator function)

ftv1, ftv2, ftv3m ftv One, two, or three or more
physician visits during first
trimester

Colon x1, ..., x5 Gene1 Gene expression data for gene 1

.

.

.
.
.
.

.

.

.

x96, ..., x100 Gene20 Gene expression data for gene 20

Fuelsubset H20 H20 Humidity in percent

UVVIS1, ..., UVVIS134 UVVIS Data from the ultraviolet-visible
spectrum (134 wavelength
points)

NIR1, ..., NIR231 NIR Data from the near infrared
spectrum (231 wavelength
points)

Birthweight The birthweight dataset has data on 189 births at the Baystate Medical
Centre in Massachusetts during 1986 (Venables and Ripley 2002). The objective is
to predict the birth weight in kilograms from a set of 16 features, some of which are
grouped (e.g., dummy encoded categorical features).

Colon cancer The colon dataset contains gene expression data of 20 genes (5 basis
B-Splines each) for 62 samples from microarray experiments of colon tissue (Alon
et al. 1999). The task is to predict cancerous tissue from the resulting 100 predictors.

1.2 Grouping procedures

Following the definitions of He andYu (2010), we provide a brief overview of different
procedures to define feature groups in a knowledge-driven and data-driven manner. In
data-driven grouping, an algorithmic approach such as clustering or density estimation
is used to define groups of features. Knowledge-driven grouping, on the other hand,
uses domain knowledge to define the grouping structure of features. Throughout our
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paper, we mainly assume a user-defined grouping structure. However, all methods
introduced in this paper should also be compatible with an appropriate data-driven
method if the defined groups have a meaningful interpretation.

Data-driven grouping
Onemethod togroup features in adata-drivenmanner is to use clustering approaches

such as hierarchical clustering (Park et al. 2006; Toloşi and Lengauer 2011; Rapaport
et al. 2008) or fuzzy clustering (Jaeger et al. 2003). These approaches often work well
in highly correlated feature spaces, such as in genomics or medicine, where correlated
features are grouped together so that no relevant information is discarded (Toloşi
and Lengauer 2011). For instance, Jaeger et al. (2003) tackles a feature selection
problem for a high-dimensional and intercorrelated feature space when working with
microarray data. To simultaneously select informative and distinct genes, they first
apply fuzzy clustering to obtain groups of similar genes from microarray data. Next,
the informative representatives of each group are selected based on a suitable test
statistic. The disadvantage of data-driven grouping is that groups depend only on the
statistical similarity between features, which might not coincide with domain-specific
interpretations (Chakraborty and Pal 2008).

Knowledge-driven grouping
Knowledge-driven group formation has the advantage that the dimensionality

reduction might lead to better interpretability than the data-driven path. Gregorutti
et al. (2015) apply a knowledge-driven approach in the context of multiple functional
data analysis, where they then select groups for subsequent modeling based on their
group importance values. Chakraborty and Pal (2008) also select groups of features,
where data fromone sensor (e.g., to capture satellite images in different spectral bands)
represents a group. Hence, features are grouped based on their topical character (e.g.,
measurement device) rather than their shared statistical properties. Another use case
of knowledge-driven grouping is described in Lozano et al. (2009), who group time-
lagged features of the same time series for gene expression data. They use the given
grouping structure in a group feature selection procedure and apply group LASSO as
well as a boosting method.

1.3 Related work

A well-known model that handles groups of features is the group LASSO (Yuan and
Lin 2006), which extends the LASSO (Tibshirani 1996) for feature selection based on
groups. Moreover, other extensions—e.g., to obtain sparse groups of features (Fried-
man et al. 2010), to support classification tasks (Meier et al. 2008) or non-linear effects
(Gregorova et al. 2018)—also exist. However, group LASSO is a modeling technique
that focuses on selecting groups in the feature space rather than quantifying their
importance.

A large body of research already exists regarding the importance of individual fea-
tures (see, e.g., Fisher et al. 2019; Hooker and Mentch 2019; Scholbeck et al. 2020).
Hooker and Mentch (2019) distinguish between two loss-based feature importance
approaches, namely permutation methods and refitting methods. Permutation meth-
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ods measure the increase in expected loss (or error) after permuting a feature while the
model remains untouched. Refitting methods measure the increase in expected loss
after leaving out the feature of interest completely and hence require refitting themodel
(Lei et al. 2018). Since the model remains untouched in the former approach, interpre-
tations refer to a specific fitted model, while interpretations for refitting methods refer
to the underlying ML algorithm. Gregorutti et al. (2015) introduced a model-specific,
grouped PFI score for random forests and applied this approach to functional data
analysis. Valentin et al. (2020) introduced a model-agnostic grouped version of the
model reliance score (Fisher et al. 2019). However, they focus more on the application
and omit a detailed theoretical foundation. Recently, a general refitting framework to
measure the importance of (groups of) features was introduced by Williamson et al.
(2020). In their approach, the feature importance measurement is detached from the
model level and defined by an algorithm-agnostic version to measure the intrinsic
importance of features. The importance score is defined as the difference between the
performance of the full model and the performance based on all features except the
group of interest.

Permutation methods can be computed much faster than refitting methods. How-
ever, the PFI, for example, has issues when features are correlated and interact in the
model due to extrapolation in regions without any or just a few observations (Hooker
and Mentch 2019). Hence, interpretations in these regions might be misleading. To
avoid this problem, alternatives based on conditional distributions or refitting have
been suggested (e.g., Strobl et al. 2008; Nicodemus et al. 2010; Hooker and Mentch
2019; Watson and Wright 2019; Molnar et al. 2020a). Although the so-called condi-
tional PFI provides a solution to this problem, its interpretation is different and “must
be interpreted as the additional, unique contribution of a feature given all remaining
features we condition on were known” (Molnar et al. 2020a). This property compli-
cates the comparison with non-conditional interpretation methods. Therefore, we do
not consider any conditional variants in this paper.

A third class of importance measures is based on Shapley values (Shapley
1953), a theoretical concept of game theory. The SHAP (Lundberg and Lee 2017)
approach quantifies the contribution of each feature to the predicted outcome and is
a permutation-based method. It has the advantage that contributions of interactions
are distributed fairly between features. Besides being computationally more expen-
sive, SHAP itself is based on the model’s predicted outcome rather than the model’s
performance (e.g., measured by the model’s expected loss). Casalicchio et al. (2019)
extended the concept of Shapley values to fairly distribute the model’s performance
among features and called it Shapley Feature IMPortance (SFIMP).A similar approach
called SAGE has also been proposed by Covert et al. (2020), who showed the ben-
efits of the method on various simulation studies. One approach that uses Shapley
values to explain grouped features was introduced by de Mijolla et al. (2020). How-
ever, instead of directly computing Shapley importance on the original feature space,
they first apply a semantically-meaningful latent representation (e.g. by projecting
the original feature space into a lower dimensional latent variable space using disen-
tangled representations) and compute the Shapley importance on the resulting latent
variables. Williamson and Feng (2020) mention that their feature importance method
based on Shapley values can also be extended to groups of features. Additionally,

123

71



Grouped feature importance and combined features effect... 1407

Amoukou et al. (2021) investigated grouping approaches for Shapley values in the
case of encoded categorical features and subset selection of important features for
tree-based methods. The calculation of Shapley values on groups of features based
on performance values has only been applied with regard to feature subset selection
methods and not for interpretation purposes (Cohen et al. 2005; Tripathi et al. 2020).1

After identifying which groups of features are important, the user is often interested
in how they (especially the important groups) influence themodel’s prediction. Several
techniques to visualize single-feature effects exist. These include partial dependence
plots (PDP) (Friedman 2001), individual conditional expectation (ICE) curves (Gold-
stein et al. 2013), SHAP dependence plots (Lundberg et al. 2018), and accumulated
local effects (ALE) plots (Apley and Zhu 2019). However, in the case of high-
dimensional feature spaces, it is often not feasible to compute, visualize, and interpret
single-feature plots for all (important) features. If features are grouped, visualization
techniques become computationally more complex, and it may become even harder
to visualize the results in an easily interpretable way. In the case of low-dimensional
feature spaces, this might still be feasible, for example by using two-feature PDPs
or ALE plots. Recently, effect plots that visualize the combined effect of multiple
features have been introduced by Seedorff and Brown (2021) and Brenning (2021).
They use principal component analysis (PCA) to reduce the dimension of the feature
space and calculate marginal effect curves for the principal components. However, the
employed dimension reduction method does not include information about the target
variable and lacks sparsity (and hence, interpretability).

1.4 Contribution

Our contributions can be summarized as follows: We extend the permutation-based
and refitting-based grouped feature importance methods introduced by Valentin et al.
(2020) and Williamson et al. (2020) by comparing these methods to not only the full
model (i.e., taking into account all features), but also to a null model (i.e., ignoring
all features). Hence, we can quantify to what extent a group itself contributes to
the prediction of a model without the presence of other groups. Furthermore, we
introduce Shapley importance for feature groups and describe how these scores can
be decomposed into single-feature importance scores of the respective groups. Our
main contributions are: (1) We define a new algorithm to sequentially add groups
of features depending on their importance, thereby enabling identification of well-
performing combinations of groups. (2) We compare all grouped feature importance
methods with respect to the main challenges that arise when applying these methods
by creating small simulation examples. Subsequently, we provide recommendations
for using and interpreting the respective methods correctly. (3) We introduce a model-
agnostic method to visualize the joint effect of a group of features. To that end, we use
a suitable dimension reduction technique and the conceptual idea of PDPs to calculate
and plot the mean prediction of a sparse group of features with regard to their linear

1 Feature subset selectionmethods usually aim tofind sparse,well-performing feature combinations.Hence,
the intended purpose of employing these methods is not to produce interpretability, but rather to generate
a sufficient performance with fewer features.
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combination. This novel method finally enables the user to visualize effects for groups
of features. Finally, we showcase the usefulness of all these methods in real data
examples.

The structure of this paper is as follows: First, we provide some general notation
and definitions in Sect. 2. We formally define the grouped feature importance methods
and introduce the sequential grouped feature importance procedure in Sects. 3 and 4,
respectively. We compare these methods for different scenarios in Sect. 5. In Sect. 6,
we introduce the combined features effect plot (CFEP) to visualize the effects of
feature groups based on a supervised dimension reduction technique. Moreover, we
also show the suitability of this technique compared to its unsupervised counterpart in
a simulation study. Finally, in Sect. 7, all methods are applied to a real data example
before summarizing and offering an outlook for future research in Sect. 8.

2 Background and notation

Analogous to Casalicchio et al. (2019), we use the term feature importance to refer to
the influence of features on a model’s predictive performance, which we measure by
the expected loss when we perturb these features in a permutation approach or remove
these features in a refitting approach.

2.1 General notation

Consider a p-dimensional feature space X = (X1 ×· · ·×Xp) and a one-dimensional
target space Y . The corresponding random variables that are generated from these
spaces are denoted by X = (X1, . . . , X p) and Y . We denote a ML prediction function
that maps the p-dimensional feature space to a one-dimensional target space by f̂ :
X → R for regression tasks.2 ML algorithms try to learn this functional relationship
using n ∈ N i.i.d. observations drawn from the joint space X × Y with unknown
probability distribution P . The resulting dataset is denoted by D = {(x(i), y(i))}ni=1,

where the vector x(i) = (x (i)
1 , . . . , x (i)

p )ᵀ ∈ X is the i-th observation associated with

the target variable y(i) ∈ Y . The j-th feature is denoted by x j = (x (1)
j , . . . , x (n)

j )ᵀ,
for j = 1, . . . , p. The dataset D can also be written in matrix form:

⎛
⎜⎝
x (1)
1 . . . x (1)

p y(1)

...
. . .

...
...

x (n)
1 . . . x (n)

p y(n)

⎞
⎟⎠ = (

X,Y
)
, with X =

⎛
⎜⎝
x (1)
1 . . . x (1)

p
...

. . .
...

x (n)
1 . . . x (n)

p

⎞
⎟⎠ ,Y =

⎛
⎜⎝
y(1)

...

y(n)

⎞
⎟⎠ . (1)

The general error measure ρ( f̂ ,P) = E(L( f̂ (X), Y )) of a learned model f̂ is
measured by a loss function L on test data drawn independently from P and can be

2 The target space is defined by R
g in the case of scoring classifiers with g classes.
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estimated using unseen test data Dtest by

ρ̂( f̂ ,Dtest) = 1

|Dtest|
∑

(x,y)∈Dtest

L( f̂ (x), y). (2)

The application of an ML algorithm (or learner) I to a given dataset D results in a
fitted model I(D) = f̂D. The expected generalization error of a learner I takes into
account the variability introduced by sampling different datasets D of equal size n
from P and is defined by

GE(I,P, n) = E|D|=n(ρ(I(D),P)). (3)

In practice, resampling techniques such as cross-validation or bootstrapping on the
available dataset D are used to estimate Eq. (3). Resampling techniques usually split
the dataset D into k ∈ N training datasets Di

train, i = 1, . . . , k, of roughly the same
size ntrain < n. Eq. (3) can be estimated by

ĜE(I,D, ntrain) = 1

k

k∑
i=1

ρ̂( f̂Di
train

,Di
test). (4)

In the following, we often associate the set of numbers {1, . . . , p} in a one-to-one
manner with the features x1, . . . , xp by referring a number j ∈ {1, . . . , p} as feature
x j . We call G ⊂ {1, . . . , p} a group of features.

2.2 Permutation feature importance (PFI)

Fisher et al. (2019) proposed a model-agnostic version of the PFI measure used in
random forests (Breiman 2001). The PFI score of the j−th feature of a fitted model
f̂ is defined as the increase in expected loss after permuting feature X j :

PFI j ( f̂ ) = E(L( f̂ (X[ j]),Y )) − E(L( f̂ (X), Y )). (5)

Here, X[ j] = (X1, . . . , X j−1, X̃ j , X j+1, . . . , X p) is the p-dimensional random vari-
able vector of features, where X̃ j is an independent replication of X j following the
same distribution. The idea behind this method is to break the association between
the j−th feature and the target variable by permuting its feature values. If a feature
is not useful for predicting an outcome, changing its values by permutation will not
increase the expected loss.3 For an accurate estimation of Eq. (5), we would need to
calculate all possible permutation vectors over the index set {1, . . . , n} (see Casalic-
chio et al. (2019) for an in-depth discussion on this topic). However, Eq. (5) can be
approximated on a datasetD with n observations by Monte Carlo integration using m

3 Weconsider the case of loss functions that are to beminimized.Hence, the larger PFI j , themore substantial
the increase in expected loss and the more important the j−th feature.
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random permutations:

P̂FI j ( f̂ ,D)= 1
nm

n∑
i=1

m∑
k=1

(
L

(
f̂ ((x (i)

1 ,...,x
(τ

(i)
k )

j ,...,x (i)
p ),y(i))

)
−L

(
f̂ (x(i),y(i))

))
, (6)

where τk is a random permutation vector of the index set {1, . . . , n} for k = 1, . . . ,m
permutations.4

Equation (6) could also be embedded into a resampling technique, where the per-
mutation is always applied on the held-out test set of each resampling iteration (Fisher
et al. 2019). However, this leads to refits and is computationally more expensive. The
resulting resampling-based PFI of a learner I is estimated by

P̂FI
res
j (I,D, ntrain) = 1

k

k∑
i=1

P̂FI j ( f̂Di
train

,Di
test), (7)

where the permutation strategy is applied on the test sets Di
test.

3 Feature importance for groups

In our first minor contribution, we provide a general notation and formal definitions
for grouped permutation and refitting methods and explain them by answering the
following questions:

(a) To what extent does a group of features contribute to the model’s performance in
the presence of other groups?

(b) To what extent does a group itself increase the expected loss if it is added to a null
model like the mean prediction of the target for refitting methods?

(c) How can we fairly distribute the expected loss among all groups and all features
within a group?

The definitions of all grouped feature importance scores are based on loss functions.
They are defined in such a way that important groups will yield positive grouped
feature importance scores. The question of how to interpret the differing results of
these methods is addressed in Sect. 5.

3.1 Permutationmethods

Here, we extend the existing definition of PFI to groups of features and introduce the
GPFI (Grouped Permutation Feature Importance) and GOPFI (Group Only Permuta-
tion Feature Importance) scores. For ease of notation, we will only define these scores
for a fitted model f̂ (see Eq. 5).

4 An example for n = 3 would be τ1 = (1, 3, 2)ᵀ with τ
(i)
1 being the i−th entry of that vector.
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3.1.1 Grouped permutation feature importance (GPFI)

For the definition ofGPFI—which is based on the definitions ofGregorutti et al. (2015)
and Valentin et al. (2020)—let G ⊂ {1, . . . , p} be a group of features. Let X̃G =
(X̃ j ) j∈G be a |G|-dimensional random vector of features, which is an independent
replication of XG = (X j ) j∈G following the same joint distribution. This random
vector is independent of both the target variable and the randomvector of the remaining
features, which we define by X−G := (X j ) j∈{1,...,p}\G . With slight abuse of notation
to index the feature groups included in G, we define the grouped permutation feature
importance of G as

GPFIG = E(L( f̂ (X̃G, X−G),Y )) − E(L( f̂ (X), Y )). (8)

Equation (8) extends Eq. (5) to groups of features so that the interpretation of GPFI
scores always refers to the importance when the feature values of the group defined
by G are permuted jointly (i.e., without destroying the dependencies of the features
within the group). Similar to Eq. (7), the grouped permutation feature importance can
be estimated by Monte Carlo integration:

ĜPFIG = 1

nm

n∑
i=1

m∑
k=1

(
L( f̂ (x

(τ
(i)
k )

G , x(i)
−G), y(i)) − L( f̂ (x(i), y(i)))

)
. (9)

The GPFI measures the contribution of one group to the model’s performance if all
other groups are present in the model (see (a) from Sect. 3).

3.1.2 Group only permutation feature importance (GOPFI)

To evaluate the extent to which a group itself contributes to a model’s performance
(see (b) from Sect. 3), one can also use a slightly different measure. As an alternative
to Eq. 9, we can compare the expected loss after permuting all features jointly with
the expected loss after permuting all features except the considered group. We define
this GOPFI for a group G ⊂ {1, ..., p} as

GOPFIG = E(L( f̂ (X̃),Y )) − E(L( f̂ (XG , X̃−G), Y )), (10)

which can be approximated by

ĜOPFIG = 1

nm

n∑
j=1

m∑
k=1

(
L( f̂ (x(τ

( j)
k ), y( j))) − L( f̂ (x( j)

G , x
(τ

( j)
k )

−G ), y( j))

)
. (11)

While the relevance of GOPFI as an importance measure might be limited, it is
technically useful for the grouped Shapley importance (see Eq. 14).
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3.2 Refittingmethods

Here, we introduce two refitting-based methods for groups of features. The first defi-
nition is similar to the one introduced in Williamson et al. (2020).

3.2.1 Leave-one-group-out importance (LOGO)

For a subset G ⊂ {1, . . . , p}, we define the reduced dataset D̃ := {(x(i)
−G , y(i))}ni=1.

Given a learner I, which generates models I(D) = f̂D and I(D̃) = f̂D̃, we define
the Leave-One-Group-Out Importance (LOGO) as

LOGO(G) = E(L( f̂D̃(X−G),Y )) − E(L( f̂D(X), Y )). (12)

The LOGO can be estimated by using a learner I on D̃ and should be embedded
in a resampling technique:

L̂OGO(G) = ĜE(I, D̃, ntrain) − ĜE(I,D, ntrain)

= 1

k

k∑
i=1

ρ̂( f̂D̃i
train

, D̃i
test) − 1

k

k∑
i=1

ρ̂( f̂Di
train

,Di
test).

Consequently, we compare the increase in expected loss compared to the full model’s
expected loss when leaving out a group of features and performing a refit (see (a) from
Sect. 3).

While GPFI can be calculated with a resampling-based strategy by using refits to
receive the algorithm-based instead of model-based GPFI, the meaning still varies
from LOGO. For the algorithm-based GPFI, we calculate for each fitted model the
importance score by permuting the regarded group and predictingwith the samemodel.
Then we average over all models from our resampling strategy and receive an impor-
tance score, which tells us how important a group of features is for some learner I
when we break the association between this group and all other groups and the target.
LOGO, on the other hand, leaves the group out and then performs the refit to calculate
the importance of the group, and hence, it addresses the question: Can we remove
this group from our dataset without reducing our model’s performance? This is not
answered by permutation-based methods.

3.2.2 Leave-one-group-in importance (LOGI)

While it may be too limiting to estimate the performance of a model based on one
feature only, it can be informative to determine the extent to which a group of fea-
tures (e.g., all measurements from a specific medical device) can reduce the expected
loss in contrast to a null model (see (b) from Sect. 3). The Leave-One-Group-In
(LOGI) method could be particularly helpful in settings where information on addi-
tional groups ofmeasureswill induce significant costs (e.g., adding functional imaging
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data for a diagnosis) and/or limited resources are available (e.g., in order to be cost-
covering, only one group of measures can be acquired). The LOGI method can also
be useful for theory development in the natural and social sciences (e.g., which group
of behaviors is most predictive by itself).

Let Inull be a null algorithm, which results in a null model f̂null that only guesses
the mean (or majority class for classification) of the target variable for any dataset.
We additionally define a learner I, which generates a model I(D̊) = f̂D̊ for a dataset

D̊ := {(x(i)
G , y(i))}ni=1, which only contains features defined by G ⊂ {1, . . . , p}. We

define the LOGI of a group G as

LOGI (G) = E(L( f̂null,Y )) − E(L( f̂ D̊(XG), Y )). (13)

The LOGI can be estimated by using a learner I on D̊ = {(x(i)
G , y(i))}ni=1 and should

be embedded in a resampling technique:

L̂OGI (G) = ĜE(Inull,D, ntrain) − ĜE(I, D̊, ntrain)

= 1

k

k∑
i=1

ρ̂( f̂null,Di
test) − 1

k

k∑
i=1

ρ̂( f̂D̊i
train

, D̊i
test).

3.3 Grouped Shapley importance (GSI)

The importance measures defined above either exclude (or permute) individual groups
of features from the total set of features or consider only the importance of groups
by omitting (or permuting) all other features. The grouped importance scores are
usually not affected if interactions within the groups are present. However, they can
be affected if features from different groups interact, since permuting a group of
features jointly destroys any interactions with other features outside the considered
group. Therefore, we define the grouped Shapley importance (GSI) based on Shapley
values (Shapley 1953). GSI scores account for feature interactions, as they measure
the average contribution of a given group to all possible combinations of groups and
fairly distribute the importance value caused by interactions among all groups (see (c)
from Sect. 3).

We assume a set of distinct groups G = {G1, . . . ,Gl}, with Gi ⊂ {1, . . . , p}, for
i = 1, . . . , l. In our grouped feature context, the value function v : P(G) −→ R

assigns a “payout” to each possible group or combination of groups included in G.
With slight abuse of notation, we define the value function for a subset S ⊂ G as

v(S) := v
(∪Gi∈SGi

)
.

We define the value function for a group G ∈ G calculated by a refitting or a permu-
tation method by

vrefit(G) = LOGI (G) or vperm(G) = GOPF I (G), (14)
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respectively. The marginal contribution of a group G ∈ G, with S ⊂ G is

�G(S) = v(S ∪ G) − v(S).

The GSI of the feature group G is then defined as

φ(G) =
∑

S⊂G\G

(|G| − 1 − |S|)! · |S|!
|G|! �G(S), (15)

which is a weighted average of marginal contributions to all possible combinations of
groups.

The GSI cannot always be calculated in a time-efficient way, because the number of
coalitions S ⊂ G\G can become large very quickly. In practice, the Shapley value is
often approximated (Casalicchio et al. 2019; Covert et al. 2020) by drawing M ≤ |G|!
different coalitions S ⊂ G\G and averaging the marginal, weighted contributions:

φ̂M (G) = 1

M

M∑
m=1

(|G| − 1 − |Sm |)! · |Sm |! · �G(Sm), (16)

with Sm ⊂ G\G, for all m = 1, . . . , M .
The GSI can in general not be exactly decomposed into the sum of the Shapley

importances for single features of the regarded group. In Appendix B, we show that
the remainder term R = φ(G)−∑

i∈G φ(xi ) depends only on higher-order interaction
effects between features of the regarded group and features of other groups. Hence,
if one is interested in which features contributed most within a group, the Shapley
importances for single features can be calculated, which provide a fair distribution
of feature interactions within the group but not necessarily of feature interactions
across groups. However, the remainder term can be used as a quantification of learned
higher-order interaction effects between features of different groups.

While the GSI can be calculated with permutation- as well as refitting-based
approaches, we will only apply the permutation-based approach in the upcoming
simulation studies and the real-world example.

3.4 Real world use cases

For each dataset from Sect. 1.1, we fitted a random forest and summarized the three
most important groups according to different grouped feature importance methods.
For the importance scores of LOGI and LOGO, we used a 10-fold cross-validation
(Table 2).

For the birthweight task, the feature lwt (mother’s weight) was the most important
group to predict the birthweight for all grouped feature importance methods except for
LOGI.While all methods except LOGI also agree on the second most important group
ui (presence of uterine irritability), feature groups differ for the third rank. However,
this may also be due to statistical variability, as the importance values become very
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Table 2 Best 3 groups for each grouped feature importance score

Dataset GPFI GOPFI GSI LOGI LOGO

Birthweight lwt (0.067) lwt (0.056) lwt (0.062) ui (0.041) lwt (0.036)

ui (0.056) ui (0.047) ui (0.046) Race (0.017) ui (0.029)

Smoke (0.009) Race (0.045) ptl (0.019) ptl (0.015) Race (0.005)

Colon Gene14 (0.143) Gene14 (0.174) Gene14 (0.125) Gene14 (0.128) Gene14 (0.131)

Gene10 (0.007) Gene16 (0.087) Gene16 (0.042) Gene20 (0.045) Gene17 (0.036)

Gene7 (0.001) Gene12 (0.057) Gene13 (0.019) Gene13 (0.028) Gene18 (0.033)

Fuelsubset NIR (30.51) NIR (42.20) NIR (36.21) NIR (27.35) NIR (8.34)

UVVIS (2.85) UVVIS (14.38) UVVIS (7.99) UVVIS (15.74) H2O (0.14)

H2O (0.01) H2O (1.26) H2O (0.24) H2O (−12.17) UVVIS (−2.14)

For the classification task (colon) the scores were calculated as differences in classification accuracy. For
the other two regression tasks the scores result from differences in MSE

small. It is interesting that lwt, despite being the most important group for all other
scores, is not very important in terms of LOGI. Thus, lwt is less important as a stand-
alone group, but appears important if the other feature groups are included in the
model.

In the colon task, the feature group gene14 is by far the most important group to
predict cancerous tissue for all grouped feature important methods. However, there
are variations in the second and third most important groups.

For the fuelsubset task, the permutation-based grouped importancemethods (GPFI,
GOPFI and GSI) show the same importance ranking for the three most important
feature groups. However, for the refitting-based grouped importance methods (LOGI
and LOGO), we can observe interesting differences. The features from the UVVIS
group are important as a stand-alone group as can be seen by their positive LOGI
score. However, the negative LOGO score of the UVVIS group indicates that the
algorithm seems to perform better with only the NIR and H2O groups.

GPFI, GOPFI and GSI provide importance scores for feature groups of a given
trained model without the necessity to refit the model. In contrast, LOGI and LOGO
provide grouped importance scores based on the underlying algorithm and should
always be considered together.

4 Sequential grouped feature importance

In general, feature groups do not necessarily have to be distinct or independent of
each other. When groups partly contain the same or highly correlated features, we
may obtain high grouped feature importance scores for similar groups. This can lead
to misleading conclusions regarding the importance of groups. Quantifying the impor-
tance of different combinations of groups is especially relevant in applications where
extra costs are associated with using additional features from other data sources. In
this case, one might be interested in the sparest, yet most important combination of
groups or in understanding the interplay of different combinations of groups. Hence,
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in practical settings, it is often important to decide which additional group of features
to make available (e.g., buy or implement) for modeling and how groups should be
prioritized under economic considerations.

Gregorutti et al. (2015) introduced a method called grouped variable selection,
which is an adaptation of the recursive feature elimination algorithm from Guyon
et al. (2002) and uses permutation-based grouped feature importance scores for the
selection of feature groups. In Algorithm 1, we introduce a sequential procedure that
is based on the idea of stability selection (Meinshausen and Bühlmann 2010). The
procedure primarily aims at understanding the interplay of different combinations of
groups by analyzing how the importance scores change after including other groups
in a sequential manner. The feature groups must be pre-specified by the user. We
prefer a refitting-based over a permutation-based grouped feature importance score
when the secondary goal is to find well-performing combinations of groups. Here,
the fundamental idea is to start with an empty set of features and to sequentially add
the next best group in terms of LOGI until no further substantial improvement can be
achieved. Our sequential procedure is based on a greedy forward search and creates an
implicit ranking by showing the order in which feature groups are added to the model.
To account for the variability introduced by the model, we propose to use repeated
subsampling or bootstrap with sufficient repetitions (e.g., 100 repetitions).

To better understand Algorithm 1, we will demonstrate it with a small example
with four groups G = {G1,G2,G3,G4} here. As a reminder, each group is a subset of
{1, . . . , p}, and we want to find a subset B ⊂ {1, . . . , p}, which consists of the union
of groups in G. The subset B is found by our sequential grouped feature importance
procedure. To account for variability, the whole dataset is split into two sets (training
and test set) repeatedly so that the train-test splits are different in each repetition of
the resampling strategy (bootstrap or subsampling). For each training set, Algorithm
1 starts with an empty set B = ∅ (line 2, Algorithm 1). In line 5 of Algorithm 1, the
candidate set B ⊂ P(G) is defined as all subsets of the power set with cardinality 1.
These are all individual groups B = {{G1}, {G2}, {G3}, {G4}}. The LOGI score of
each single group is then calculated. In our example, let G1 have the highest LOGI
score, which also exceeds the threshold δ. The desired combination B is preliminarily
defined asG1 (line 8), and for the comparison in the next step, the LOGI score ofG1 is
defined as L0 (line 9). Then, a new candidate set B is defined (line 11), which consists
of all subsets of the power set ofG of size i (at this step, we have i = 2), where B = G1
is also a subset of B. Hence, B := {{G1,G2}, {G1,G3}, {G1,G4}}. The LOGI score
of elements of B is calculated as the LOGI score of the union of all subsets. Now, let
L̂OGI (G1 ∪ G3) have the highest score. This score is compared to the LOGI score
of the previous iteration L0 (line 13). Let the difference exceed the threshold δ for our
example. In line 14 and 15, the desired combination B is now defined as G1 ∪ G3
and the LOGI score is again defined as L1. Algorithm 1 now jumps to line 10 again
with i = 3. The candidate set is now B = {{G1,G3,G2}, {G1,G3,G4}} (line 11).
The LOGI scores are now calculated again for each element of B. Let no LOGI score
exceed L0 by the threshold δ (line 13). Algorithm 1 now ends for this dataset split and
returns B = G1 ∪ G3 as the best combination. This procedure is repeated for each
train-test split in each repetition.
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Algorithm 1: Sequential Grouped Feature Importance
input : Set of groups G = {G1, ...,Gk }.

Improvement threshold δ > 0.
Number of repetitions for the data splitting.

output: For every data split: a combination B ⊂ {1, ..., p} and the order in which feature groups
were added.

1 for Every outer data split do
2 Let B = ∅ for i = 1, ..., k do
3 if i = 1 then

4 Define candidate set B̃ :=
{
G̃ ∈ P(G)

∣∣|G̃| = 1
}

5 Find best single group G∗ = argmax
G̃∈B

(
L̂OGI (G̃)

)

6 if L̂OGI (G∗) > δ then
7 B = G∗
8 Li−1 = L̂OGI (B)

9

10 if i > 1 and B 	= ∅ then

11 Define candidate set B̃ :=
{
G̃ ∈ P(G)

∣∣|G̃| = i and B ⊂ G̃
}

12 Find best combination G∗ = argmax
G̃∈B

(
L̂OGI

(⋃
G′∈G̃ G′))

13 if L̂OGI
(⋃

G′∈G∗ G′) − Li−1 > δ then
14 B = ⋃

G′∈G∗ G′
15 Li−1 = L̂OGI (B)

16 else
17 break for loop

18

Since the order in which feature groups are added is also known, alluvial charts
(Allaire et al. 2017) can be created for visualization purposes (see Figs. 2 and 10). In
these charts, we included the number of times feature groups were added as well as
the performance on the test datasets. These charts show how frequently a group was
selected given that another group was already included and thereby highlight robust
combinations of groups.
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5 Comparison of grouped feature importancemethods

After introducing the methodological background of the different loss-based grouped
feature importance measures in Sect. 3, we will now compare them in different sim-
ulation settings. We analyze the impact on all methods for settings where (1) groups
are dependent, (2) correlations within groups vary, and (3) group sizes differ.

5.1 Dependencies between groups and sparsity

In this section, we compare refitting- and permutation-based grouped feature impor-
tance methods and show how different dependencies between groups can influence
the importance scores. We demonstrate the benefits of the sequential grouped feature
importance procedure and conclude with a recommendation of when to use refitting
or permutation-based methods depending on the use-case.

We simulate a data matrix X with n = 1000 instances and 3 groups G1,G2,G3,
with each of them containing 10 normally distributed features. Features are simulated
in such a way that features within each group are highly correlated. However, features
in G3 are independent of features in G1 and G2, while features in G1 and G2 are also
highly correlated with each other. To generate normally distributed features with such
correlation patterns, we follow the approach of Toloşi and Lengauer (2011) and use
prototype vectors in the followingway: (1)We draw n instances of the prototype vector
U ∼ N (0, 1). (2) We generate features in G1 by adding a normally distributed error
term ε ∼ N (0, 0.5) to 10% of the instances of the prototype vector U. (3) Features in
G2 are generated by copying features of G1 and adding a small normally distributed
error term ε ∼ N (0, 0.01) to the copied features. It follows that features withinG1 and
G2 as well as features between the two groups are highly correlated. (4) We generate
a new prototype vector V, which is independent ofU. (5) We generate features for G3
in the same way as done for G1 in step (2) but with the prototype vector V.

The target vector Y is generated by Y = 2U + 1V + ε, with ε ∼ N (0, 0.1). We
fitted a support vector machine with a radial basis function kernel5, as an example of
a black-box algorithm.

The results in Table 3 show that there can be major differences depending on how
the grouped feature importance is calculated. Permutationmethods (GOPFI&GPFI&
GSI) reflect the importance of the groups based on a model trained on a fixed dataset.
In contrast, refitting methods (LOGI & LOGO) retrain the model on a reduced dataset
and can therefore learn new relationships. Looking at the results from the permutation
methods, we can see that the groups G1 and G2 are approximately equally important
while both being more important than G3. However, the results from the refitting
methods can reveal some interesting relationships between the groups. The refitting
methods highlight thatG1 andG2 are more or less interchangeable if we only consider
a performance-based interpretation (which might not coincide with a domain-specific

5 Epsilon regression, ε = 0.1,C = 1 with heuristically chosen kernel width according to (Caputo et al.
2002) (here: σ = 0.079).
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Table 3 Results of different feature importance calculations of the simulation

Group GOPFI GPFI GSI LOGI LOGO

G1 6.04 (± 0.37) 2.64 (± 0.07) 4.12 (± 0.45) 3.93 (± 0.75) −0.01 (± 0.02)

G2 5.90 (± 0.35) 2.57 (± 0.09) 4.01 (± 0.47) 3.93 (± 0.76) −0.00 (± 0.02)

G3 1.76 (± 0.39) 1.75 (± 0.05) 1.54 (± 0.39) 0.58 (± 1.01) 1.01 (± 0.22)

GSI scores were calculated without approximation, with vperm as value function (see Eq. 14). All results
were averaged by a 10-fold cross-validation scheme, with standard deviations reported in parentheses

G1, MSE = 1.204, n = 46

G2, MSE = 1.219, n = 54

G1.G3, MSE = 0.206, n = 46

G2.G3, MSE = 0.206, n = 54

G1.G2.G3, MSE = 0.196, n = 15

Fig. 2 Sequential grouped feature importance for the simulation in Sect. 5.1. 100 times repeated subsam-
pling. Improvement threshold δ = 0.001. Vertical bars show one step of the sequential procedure (left to
right). Height of the vertical bars represent the number of subsampling iterations that a combination of
groups was chosen. MSE scores show predictive performance. Streams represent the addition of a group

perspective)6. Hence, the two groups do not complement each other. This is reflected
by the near-zero LOGO scores, which indicate that leaving each group out of the full
model does not considerably change the model’s expected loss.

Figure 2 illustrates the results of the sequential procedure introduced in Algorithm
1. We see that across 100 subsampling iterations, G1 was chosen 46 times as the most
important first group, andG2 was chosen 54 timeswith similar predictive performance
for both groups, while G3 was never chosen as the first most important group. Hence,
similar to LOGI, we can see that if only one group can be chosen, it would either
be G1 or G2 with approximately the same probability. In the second step, the group
G3 was added in all cases to either G1 or G2 (depending on which group had been
chosen in the first step). This step resulted in an on-average drop in the MSE score
from 1.2 to 0.2. In only a few cases (15 out of 100), the final addition of either G1 or
G2 to a full model in step 3 exceeded the very low chosen threshold of δ = 0.001.
This rather unlikely improvement is represented by the proportionally narrower band
that connects the second and the third step (dark gray bars) in the chart in Fig. 2. This
reveals that these two groups are—from a performance or loss perspective—rather
interchangeable and do not benefit from one another.

6 It is possible that adding a group of features to themodel might not lead to a better model performance, but
the group may still be relevant due to the domain-specific context. However, this depends on the regarded
use case. All our interpretations here are purely statistical.
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The choice between using permutation-based or refitting-based grouped feature
importance methods might depend on the number of groups and correlation strength
between the different groups. If feature groups are distinct and features between the
groups are almost uncorrelated, we might prefer permutation over refitting methods
due to lower computation time. In cases where groups are correlated with each other
(e.g., because some features belong to multiple groups), refitting methods might be
preferable, as they are not misleading in correlated settings. Since the number of
groups is usually smaller than the number of features in a dataset, refitting methods
for groups of features could become a viable choice. Furthermore, with the sequential
grouped feature importance procedure, it is possible to find sparse andwell performing
combinations of groups in an interpretable manner. Thus, this approach helps to better
understandwhich groups of featureswere important (e.g., as theyweremore frequently
selected) given that certain groups were already selected.

5.2 Varying correlations within groups

Inmany use cases, it is quite common to group similar (and therefore, often correlated)
features together, while groups of features may be almost independent of each other.
However, compared to Sect. 5.1, correlations of features within groups might differ.
We created a data matrix X with n = 1000 instances and 4 groups G1, G2, G3,
and G4, with each of these groups containing 10 normally distributed features. Using
fivefold cross-validation, we fitted a random forest with 2000 trees and a support
vector regression with a radial basis function kernel.7 The univariate target vector Y
is defined as follows:

Z j = 3X2
G j ,3 − 4XG j ,5 − 6XG j ,7 + 5XG j ,9 · d j , j ∈ {1, 2, 3}

Y =
3∑
j=1

Z j + ε

with

d j =
{
1, if mean(XG j ,8) > 0

0, otherwise

and ε
i id∼ N (0, 1). The i−th feature of the j-th group is denoted byXG j ,i . We repeated

the simulation 500 times.
It follows that G1, G2, and G3 have the same influence on the target variable, while

G4 has no influence on Y. We generate the feature space X—similar to the approach
in Sect. 5.1—as follows: (1) For each feature group j , we generate a prototype vector
U j ∼ N (0, 1)with n instances. (2)Wegenerate the features of a groupG j by altering a
proportionαwith 0 ≤ α ≤ 1of the n instances ofU j .We alter these instances by taking

7 We used a cost parameter of C = 1 and estimate the kernel width based on the heuristic introduced by
Caputo et al. (2002)
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aweighted average between the respective values ofU j (20%) and a standard normally
distributed random variableWi (80%). For the results shown in Fig. 3, we set α to 0.1
for all features within the same group. Hence, correlations within groups are the same
(around 90%) for all groups, while groups themselves are independent of each other.
The plots show that all methods correctly attribute the same importance to the first
three groups, while the fourth group is not important for predictingY. The lower plots
in Fig. 3, on the other hand, correlations within groups vary across groups. The altering
proportion parameter α is set to 0.1 for features of G1 and G4, to 0.3 for features of
G2, and to 0.6 for features of G3. Hence, features in G1 and G4 are highly correlated
within the respective group, while features within G2 and G3 show a medium and
small correlation, respectively. While G4 is still recognized to be unimportant, the
relative importance of groups 1 to 3 drops with decreasing within-group correlation.
This artifact seems—at least, in this simulation setting—to be even more severe for
the random forest compared to the support vector machine. For example, G3 is on
average less than half as important as G1 for permutation-based methods. Thus, none
of themethods reflect the true importance of the different groups of the underlying data
generating process.A possible reason for this artifact is that the regardedmodel learned
effects different from those given by the underlying true relationship. Especially for
the random forest, this has already been studied extensively in the presence of different
correlation patterns in the feature space (Strobl et al. 2008; Nicodemus et al. 2010).
Additionally, Hooker and Mentch (2019) showed that permutation-based methods are
more sensitive in this case than refitting methods, which is also visible for both models
in Fig. 3. Since the model is learned on the original feature space and group structures
are not considered in the modelling process, we can also observe this effect when
applying grouped feature importance methods. This is due to the fact that we can only
quantifywhichgroups are important for themodel or algorithmperformance but not for
the underlying data generating process, which is usually unknown. Another approach
to quantify feature importance when using random forests is to extract the information
on how often a feature has been used as a splitting variable for the different trees. The
feature chosen for the first split has the most influence within each tree. Hence, we
calculated for each repetition the percentage of how often a feature is chosen as the
first splitting feature. The distribution over all repetitions is displayed in Fig. 4. Each
of the features of G1 is on average chosen more often as the first splitting feature
than all features of the other groups, no matter if it has an influence on the target or
not. The influential features of G3 (which has the lowest within-group correlation) are
rarely chosen as the first splitting feature. This observation confirms the results of the
grouped importance methods in Fig. 3, since all of them rank G3 as least important
from the influential feature groups.

Note that while GPFI and LOGO are calculated with reference to the full model’s
performance—which on average leads to higher absolute values than the two counter-
methods based on the null model’s performance—GOPFI and LOGImight lead to less
robust results, as the newly learned effects as well as the approximation of the per-
mutation effect underlie a higher uncertainty. This effect might increase when relative
values instead of absolute values are considered due to smaller absolute importance
scores of GOPFI and LOGI. However, the methods are only comparable on a relative
scale. This effect is also visible in the boxplots of Fig. 3. Furthermore, LOGI can also
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Fig. 3 Upper (lower) plots: Grouped relative importance scores in the case of equally sized (varying sizes
of)within-group correlations for random forest (left) and SVM (right). Relative importance is calculated by
dividing each of the absolute group importance scores by the importance score of G2. Hence, the relative
importance of G1 is 1. Boxplots illustrate the variation between different repetitions

take negative values in the case of G4, as the feature group does not affect the target
in the underlying data generating process, and hence it might be counterproductive to
only include G4 compared to the null model.

5.3 Varying sizes of groups

Another factor to consider when calculating grouped rather than individual feature
importance scores is that differinggroup sizesmight influence the rankingof the scores.
Groups with more features might often have higher grouped importance scores and
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Fig. 4 Percentage of how often each feature is chosen as the first splitting feature within the trained random
forests. Results have been averaged over the cross-validation folds for each repetition. Boxplots show the
distribution over all 500 repetitions

might contain more noise features than smaller groups. Therefore, Gregorutti et al.
(2015) argue that in case one must decide between two groups that have an equal
importance score, one would prefer the group with fewer features. Following from
that, they normalize the grouped feature importance scores regarding the group size
with the factor |G|−1. This is also used in the default definition of the grouped model
reliance score in Valentin et al. (2020). However, the usefulness of normalization
highly depends on the question the user would like to answer. This is illustrated in a
simulation example in Fig. 5. We created a data matrixXwith n = 2000 instances and
2 groups, with G1 containing {x1, . . . x6} and G2 containing {x7, x8} i.i.d. uniformly
distributed features on the interval [0, 1]. The univariate target variable Y is defined
as follows:

Y = 2X1 + 2X3 + 2X7 + ε, with ε
i id∼ N (0, 1).

We used 1000 observations for fitting a random forest with 2000 trees and 1000
observations for prediction and calculating the GSI as defined in Sect. 3.3 with a
permutation-based value function. This was repeated 500 times. Figure 5 shows that
G1 is about twice as important as G2. As shown in Sect. 3.3 and Appendix B, we
can compare the GSI with the Shapley importance on feature level. In case there are
no higher-order interaction terms between groups modeled by the random forest, the
single feature importance scores will approximately sum up to the grouped importance
score, as shown in this example. This provides a more detailed view of how many and
which features are important within each group. In this case, there are two equally
important features in G1 and one equally important feature in G2. If we use the
normalization constant in this example, we would divide the grouped importance
score of G1 (which is on average approximately 1.1) by 6 and the one of G2 (which
is on average approximately 0.55) by 2. Consequently, G2 with a normalized score of

123

4. Grouped Feature Importance and Combined Features Effect Plot

88



1424 Q. Au et al.

Fig. 5 Shapley importance on group (left) and on feature level (right). Boxplots show the variation between
the 500 repetitions of the experiment

approximately 0.27 would be regarded as more important than G1 with a normalized
score of approximately 0.18. It follows that if we must decide between two groups, we
would choose G2 when we follow the approach of Gregorutti et al. (2015). However,
since G1 contains two features with the same importance as the one important feature
of G2, and hence G1 contains more information from a statistical perspective, the user
might prefer G1. Furthermore, breaking down the GSI to the single-feature Shapley
importance scores puts the user in the position of defining sparser groups by excluding
non-influential features.

Finally, Table 4 presents a summary of the key takeaways regarding all discussed
grouped feature importance methods.

6 Feature effects for groups

Feature effect methods quantify or visualize the influence of features on the model’s
prediction. For a linear regression model, we can easily summarize the feature effect
in one number, thus making interpretation very simple: If we change feature x1 by
one unit, our prediction will change by the corresponding coefficient estimate β̂1
(positively or negatively depending on the sign of the coefficient). For more complex
non-linear models like generalized additive models, such a simplified summary of the
feature effect is not adequate, as the magnitude and sign of the effect might change
over the feature’s value range. Hence, it is more common to visualize the marginal
effect of the feature of interest on the predicted outcome. Since ML models are often
complex non-linear models, different visualization techniques for the feature effect
have been introduced in recent years. Common methods are PDP, ICE curves or
ALE (Friedman 2001; Goldstein et al. 2013; Apley and Zhu 2019), which show how
changes in the feature values affect the predictions of the model. However, these are
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Table 4 Overview of pros and cons of the grouped feature importance methods

Criteria GOPFI & GPFI GSI LOGI & LOGO

Time efficient Yes (in comparison to
alternatives)

Depends on number
of groups

Depends on number
of groups

Dependencies between
groups (Sect. 5.1)

No full picture No full picture More insights than
permutation-based
if regarded together

Identify well performing
combinations of
groups (Sect. 5.1)

Not in general Not in general Only LOGI wihin
Algorithm 1

Correlations within
groups but
independence between
groups (Sect. 5.2)

Depends on learned
effects of the model,
less problematic if
within group
correlations do not
differ strongly
between groups

Depends on learned
effects of the model,
less problematic if
within group
correlations do not
differ strongly
between groups

More robust than
permutation-based
methods but still
dependent on
learned effects

Drilldown of grouped
importance score on
feature level (Sect. 5.3)

No Yes (approximately
depending on the
influence of
higher-order
interactions)

No

While GOPFI is less relevant on its own, LOGI can provide insightful interpretations, e.g., if feature
groups are correlated with each other or when used within the sequential procedure introduced in Sect. 4.
The sequential procedure is the only method that can identify well performing and sparse combination of
groups. Note that GSI is only evaluated w.r.t. a permutation-based calculation

usually only defined for a maximum of two features. For larger groups of features,
this becomes more challenging, since it is difficult to visualize the influence of several
features simultaneously. The approach described in this section aims to create effect
plots for a predefined group of features that have an interpretation similar to that
of the single-feature PDP. To achieve this, we transform the high-dimensional space
of the feature group into a low-dimensional space by using a supervised dimension
reduction method, which is discussed in Sect. 6.1. We want to find a few underlying
factors that are attributed to a sparse and interpretable combination of features that
explain the effect of the regarded group on the model’s expected loss. We provide a
detailed description of this method in Sect. 6.3 and introduce the resulting combined
features effect plot (CFEP). In Sect. 6.4, we illustrate the advantages of applying a
supervised rather than an unsupervised dimension reduction method and compare our
method to the main competitor, which is the totalvis effect plot introduced in Seedorff
and Brown (2021).

6.1 Choice of dimension reductionmethod

The most prominent dimension reduction technique is arguably PCA (Jolliffe 1986).
PCA is restricted to explaining most of the variance of the feature space, and the iden-
tified projections are not related to the target variable (for more details see Appendix
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C.1). Becausewewant to visualize themean prediction of combined features as a result
of the dimension reduction process, we prefer supervised procedures that maximize
dependencies between the projected dataXV—withV being a projectionV ∈ R

p×p—
and the target vector Y (as we show in Sect. 6.4). Many methods for supervised PCA
have been established. For example, see Bair et al. (2006), who used a subset of
features that were selected based on their linear correlation with the target variable.
Another very popular method that maximizes the covariance between features and the
target variable is partial least squares (PLS) (Wold et al. 1984). The main difference
between these methods and the supervised PCA (SPCA) introduced by Barshan et al.
(2011) is that the SPCA is based on a more general measure of dependence, called
the Hilbert-Schmidt Independence Criterion (HSIC). This independence measure is
constructed to be zero, if and only if any bounded continuous function between the
feature and target space is uncorrelated. In practice, an empirical version of the HSIC
criterion is calculated with kernel matrices. It follows that while this SPCA tech-
nique can cover a variety of linear and non-linear dependencies between X and Y by
choosing an appropriate kernel, the other suggested methods are only able to model
linear dependencies between the features and the target variable. The approach that is
probably best suited for our application of finding interpretable sets of features in a
high-dimensional dataset is the method called sparse SPCA, described in Sharifzadeh
et al. (2017). Similar to the SPCA method from Barshan et al. (2011), sparse SPCA
not only uses the HSIC criterion to maximize the dependency between projected data
XV and the target Y, but also incorporates an L1 penalty of the projection V for
sparsity. The sparse SPCA problem can be solved with a penalized matrix decompo-
sition (Witten et al. 2009). More theoretical details on the sparse SPCA, including the
HSIC criterion and how it can be calculated empirically, and the choice of kernels and
hyperparameters can be found in Appendix C.

6.2 Totalvis effect plot

Seedorff and Brown (2021) recently introduced a method that aims to plot the com-
bined effect of multiple features by using PCA. Their approach can be described as
follows: First, they apply PCA on the regarded feature space to receive the principal
components matrix after rotation. For the principal component of interest, they create
an equidistant grid. Second, for each grid value, they replace all values of the selected
principal component with this grid value and transform the matrix back to the original
feature space. Third, The ML model is applied on these feature values and a mean
prediction for the grid point of the regarded principal component is calculated. Steps
2 and 3 are repeated for all grid points.

Hence, with this method, combined effect plots for up to p principal components
can be created. Thus, Seedorff and Brown (2021) do not focus on explaining groups of
features explicitly. Furthermore, they use PCA for unsupervised dimension reduction,
and thus, projections might not be related to the target. Due to using PCA and not
sparse PCA, the results might be difficult to interpret, as many or all features might
have an influence on the principal component. Lastly, with the back-transformation
from the principal component matrix to the original feature space, all feature values
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change and might not be meaningful anymore. For example, in the case of integer
features, the back-transformation might lead to real feature values. We illustrate the
drawbacks of the method compared to the CFEP in Sect. 6.4.

6.3 Combined features effect plot (CFEP)

The CFEP picks up the idea of PDPs (Friedman 2001) and extends it to groups of
features. The partial dependence function is defined as

f PD
S (xS) = EXC [ f̂ (xS, XC )] (17)

with S ⊂ {1, . . . , p} and C = {1, . . . , p}\S. Since the joint distribution of XC is
usually unknown, the Monte Carlo method is used to estimate f PD

S (xS):

f̂ PD
S (xS) = 1

n

n∑
i=1

f̂ (xS, x
(i)
C ) (18)

Hence, we marginalize over all features in C and with that we obtain the average
marginal effect for the feature subset in S. The PDP usually visualizes this average

marginal effect for |S| ≤ 2 by plotting
(
x(k)
S , f̂ PD

S (x(k)
S )

)
for some pre-specified grid

points k = {1, . . . ,m}.8 However, this is usually only possible for |S| ≤ 2 and thus
not directly applicable to visualize the combined effect of feature groups. To obtain a
visualization in the case of |S| > 2, we need to reduce the dimensions and therefore
define the CFEP of a certain group of features G as follows:

(1) We first apply a suitable (preferably supervised) dimension reductionmethod (e.g.,
here we use the sparse SPCA, however, the CFEP follows a modular approach
and hence the dimension reduction method is exchangeable) on features in G ⊂
{1, . . . , p} to obtain a low dimensional representation of the feature group G.
We denote these principle component functions—which are ordered according to
relevance9 and which possibly depend on a reduced set of features10 S j ⊆ G with
j ∈ {1, . . . , |G|}—by g j : XS j −→ R.

(2) For visualization purposes, we choose from all possible g j with j ∈ {1, . . . , |G|}
a principle component function

g : XS −→ R (19)

(with S being its reduced set of features) which serves as a proxy for the feature
group G. We usually only consider the first few principle components.

8 For example, by using an equidistant grid or a random sample of values of xS .
9 The relevance is defined by the objective that is optimized by the dimension reduction method. For sparse
SPCA this is the HSIC criterion (see also Appendix C) and for PCA it is the explained variance.
10 If a dimension reduction method which results in a sparse solution (e.g., sparse SPCA) is applied, then
S j is only a subset of G and might differ for different principal components.
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(3) We calculate the average marginal effect f̂ PD
S (xS) of the feature set S exactly as

in Eq. (18).

(4) We visualize the CFEP by plotting
(
g(x(i)

S ), f̂ PD
S (x(i)

S )
)
for each observation in

the dataset.

Hence, the CFEP visualizes the average marginal effect of features in S against the
combinations of features received by the dimension reduction method (e.g., a linear
combination of a principal component in the case of sparse SPCA) and thus shows
how different values of g(xS) affect the predictions of a given model. For a feature
group, several principle components g j and hence several CFEPs may be of interest.

The CFEP is defined in Algorithm 2, but we will demonstrate the procedure of
constructing a CFEP with the illustrative example in Fig. 6. In this example, we have
two predefined groups of features, where the first group contains x1, x2, and x3, and the
second group contains features x4 and x5. The sparse SPCA on the first group yields
a first principal component (g1) with the loadings 0.3 for x1, 0.6 for x2 and 0.5 for x3
(step 1 to 3 of Algorithm 2). It follows that S = {1, 2, 3} and that the low dimensional
representation of interest is g1. For the construction of a CFEP for g1, mean predictions
for the principal component are calculated for each observation. To calculate the mean
prediction of the first observation (shown in red), we replace the values of features
with non-zero loadings of g1 of each instance in the dataset by the feature values of the
first observation (step 6 in Algorithm 2). A prediction vector ŷ(1)

rep is then calculated
with the previously trained model (step 7 in Algorithm 2). The value on the y-axis
for the red point in the graph below corresponds to the mean over all predictions for
the first observation: ¯̂y(1)

rep = (0.8 + 0.2 + 0.7 + 0.6 + 0.4 + 0.3)/6 = 0.5. The value
on the x-axis is the linear projection of the first observation for the regarded principal
component (step 8 and 9 in Algorithm 2). Hence, it is calculated by the weighted sum
of feature values x (i)

1 to x (i)
3 , where the weights are defined by the loadings of the

respective principal component that we receive with sparse SPCA.
In contrast to PDP or totalvis effect plots, CFEP produces a point cloud instead of

a curve. The CFEP is, mathematically speaking, not a function, since points on the
x-axis correspond to linear projections of features within a group. A point z on the
x-axis can have multiple combinations of features, which lead to z and have different
mean predictions on the y-axis. However, we now have the possibility to interpret the
shape of the point cloud and can draw conclusions about the behavior of the mean
prediction of the model regarding a linear combination of features of interest.

6.4 Experiments on supervised versus unsupervised dimension reduction

Asdiscussed in Sect. 6.1, PCAmight be themost popular dimension reductionmethod.
However, since PCA is unsupervised, it does not account for the dependency between
the feature space and the target variable. To evaluate the degree to which this drawback
influences CFEP, we examine two regression problems on simulated data. The first is
defined by a single underlying factor depending on a sparse set of features, which can
be represented by a single principal component. The linear combination of this feature
set is also linearly correlated with the target variable. The second regression problem
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Group 1 Group 2
x1 x2 x3 x4 x5

1 -1 2 2.5 3
-2 1.5 3 -2 -1
2.3 4 -1 6 2
-6.5 8 0 5 1
0.5 1 2 4 2
4 -2 2 3 3

→

Group 1 Group 2
x
(1)
1 x

(1)
2 x

(1)
3 x4 x5

1 -1 2 2.5 3
1 -1 2 -2 -1
1 -1 2 6 2
1 -1 2 5 1
1 -1 2 4 2
1 -1 2 3 3

→
predict

ŷ(1)
rep

0.8
0.2
0.7
0.6
0.4
0.3

0.3

0.4

0.5

0.6

1.0 1.5 2.0 2.5
PC1 = 0.3x1 + 0.6x2 + 0.5x3

M
ea

n 
P

re
di

ct
io

n

Fig. 6 Explanation of estimating and visualizing CFEP; the x-coordinate reflects the linear combination

of features with non-zero loadings for g1, and the y-coordinate reflects the mean predictions ¯̂y(i)
rep for

each observation i . The substitution of values for each observation is only done for features with non-zero
loadings

contains two underlying factors that depend on two sparse sets of features. While the
linear combination of the first feature set is also linearly correlated with the target,
the second factor has a quadratic effect on Y. In both cases, we compare the usage of
sparse supervised and unsupervised PCA (sparse SPCA and sparse PCA) as dimension
reduction methods within CFEP and compare them to the totalvis effect plot. Here, we
investigate if the respective dimension reduction method does correctly identify the
sparse set of features for each group. Additionally, we determine how accurately we
can predict the true underlying relationship between the linear combination of these
features and the target variable. Since we simulated the data, we know the number of
underlying factors (principal components).

6.4.1 One factor

In this example, we created a data matrixXwith 500 instances of 50 standard normally
distributed features with decreasing correlations. Therefore, all features are generated
as done in Sect. 5.2. The altering proportion α is set to 0.2 for the first 10 features, to
0.4 for the next 10 features, and to 1 for the last 10 features. Thus, while the first 10
features are highly correlated with each other, the last 10 features are approximately
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Algorithm 2: Combined Features Effect Plot

input : Dataset D = {(x(i), y(i))}ni=1,
group G ⊂ {1, ..., p},
model f̂ trained on D.

output: Combined Features Effect Plot

1 Perform sparse SPCA on D̊ := {(x(i)
G , y(i))}ni=1;

2 Choose a principle component function of interest g;
3 Let S ⊆ G be the sparse set of features of g;
4 for i ∈ {1, ..., n} do
5 get feature values x(i)

S ;

6 create D(i)
rep by replacing feature values from S of every observation with x(i)

S ;

7 predict vector ŷ(i)
rep by applying f̂ on D(i)

rep row-wise;

8 calculate the mean prediction ¯̂y(i)
rep of ŷ(i)

rep ;

9 save g(x(i)
S ) as x-coordinate and ¯̂y(i)

rep as y-coordinate of observation i for the CFEP (see
Eq. (19));

The CFEP can be used as a descriptive method to better understand the effect of a group of features on the
target variable. The dimension reduction method in step 1 is exchangeable.

uncorrelated with each other. The sparse subgroup defined by the variable Z is a linear
combination of 5 features from X and has itself a linear effect on the target variable
Y:

Z = X5 − 2X8 − 4X25 + 8X47 + 4X49

Y = Z + ε, with ε
i id∼ N (0, 1).

Hence, according to our notation, GZ is defined by GZ = {5, 8, 25, 47, 49}, and thus,
XGZ is the related subset of all features. We drew 100 samples and fitted a random
forest with 2000 trees with each sample drawing. We used the 10-fold cross-validated
results to perform sparse SPCA. For each dimension reduction method, we estimate
Ẑ by summing up the (sparse) loading vector (estimated by the dimension reduction
method) multiplied by the feature matrixX. Therefore,XGẐ

is defined by the received

sparse feature set. The mean prediction ¯̂Yrep for the CFEP is calculated as described
in Sect. 6.3.

The impact of choosing a supervised over an unsupervised sparse PCA approach
is shown in Fig. 7, which also shows the average linear trend and 95% confidence
bands of CFEP for the simulation results. To evaluate how well the estimated mean
prediction ¯̂Yrep approximates the underlying trend, we assume that we know thatZ has
a linear influence on the target. Thus, we fit a linear model on each simulation result.
To compare the received regression lines, we evaluate each of them on a predefined
grid and average over all 100 samples (represented by the red line). The confidence
bands are then calculated by taking the standard deviation over all estimated regression
lines on grid level and calculating the 2.5% and 97.5% quantiles using the standard
normal approximation. The associated calculation steps for each of the 100 samples
can be summarized as follows:
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Fig. 7 Average linear trend and confidence bands of CFEP over all samples using sparse SPCA (left) and
sparse PCA (middle) compared to estimated totalvis effect curves over all 100 samples for the first principal
component (black) and the average linear trend (red) (right) (Color figure online)

(1) Estimate a linear model f̂ (XGẐ
) ∼ Z.

(2) Define an equidistant grid of length 50 within the range of Z.
(3) Apply the linear model estimated in 1) on the grid defined in 2).
(4) Repeat steps 1 to 3 for f̂ (XGZ) by using the true underlying features of Z to

calculate the combined features dependencies that we call the ground truth.

The left plot in Fig. 7 shows a similar linear trend of the estimated CFEP compared
to the average ground truth (represented by the blue line), while the red line in the right
plot varies around 0. By using sparse SPCA, the underlying feature set XGẐ

is better

approximated than with sparse PCA, which is reflected in the MSE between Z and Ẑ
of 0.7 for sparse SPCA and 1.9 for sparse PCA. Figure 8 provides an explanation for
those differences. While sparse SPCA (on average) more strongly weights features
that have a large influence on the target, impactful loading weights for sparse PCA are
solely distributed over highly correlated features in X that explain the most variance
in the feature space. Thus, including the relationship between the target and X in the
dimension reduction method may have a huge influence on correctly approximating
the underlying factor and, hence, also on the CFEP.

Similar to using sparse PCA as a dimension reduction method within CFEP, on
average, the totalvis effect curves based on PCA do not show a clear positive linear
trend (see Fig. 7). For almost half of the samples, we even receive a negative instead
of a positive trend for the underlying factor. The interpretation is opposite to the actual
effect and, hence, is misleading.

6.4.2 Two factors

In real-world data settings are often more complex by containing non-linear relation-
ships and the target variable is described by more than one underlying factor. Hence,
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Fig. 8 Distribution of feature loadings in sparse SPCA (top) and sparse PCA (bottom) over all samples.
Rhombuses denote the mean values, with the blue rhombuses indicating the features that have an influence
on the target in the underlying model formula (Color figure online)

we now examine a more complex simulation setting to assess if we can observe the
same behavior that we observed for the simple case. To that end, we simulated a data
matrix X with 500 instances for two feature sets, each containing 20 standard nor-
mally distributed features. The data for each feature set is generated as described in
Sect. 5.2 but with an altering proportion of 0.15 and 0.35 for the features in the first
set and 0.55 and 0.85 in the second set. Hence, within each set, the first ten features
show a higher correlation among each other than the last ten features. Additionally,
all features of the first set are on average more highly correlated than all features of
the second set. Features between the two sets are uncorrelated. The first factor Z1 is a
linear combination of four features from the first set and Z2 of two features from the
second set. Z1 has a linear and Z2 a quadratic effect on Y.

Z1 = 3X3 − 2X8 − 4X13 + 8X18

Z2 = 2X25 + 4X35

Y = Z1 + Z2
2 + ε, with ε

i id∼ N (0, 1).

Again, we drew 100 samples and fitted a random forest with 2000 trees with each
sample drawing. The approach is almost the same as described for one factor, with
the difference being that we use the first two principal components (as we want to find
two sparse feature sets instead of one).

In Fig. 9, the average linear and quadratic trend of the underlying CFEPs of Z1
and Z2 are depicted for both dimension reduction methods. While the average linear
regression line of sparse SPCA matches the average ground truth almost perfectly
for Z1, the associated line of sparse PCA shows only a slightly positive trend and
differs substantially from the ground truth. Regarding Z2, a similar propensity can be
observed for the quadratic shape. Again, this behavior results from sparse SPCA (on
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Fig. 9 Top (Z1): Average linear trend and confidence bands of CFEP over all samples using sparse SPCA
(left) and sparse PCA (middle) compared to estimated totalvis effect curves over all 100 samples for first
principal component (black) and the average linear trend (red) (right). Bottom (Z2): Same structure as for
Z1, but showing the quadratic trend of Z2 (Color figure online)

average) more strongly weighting features that have a large effect on the target, while
the unsupervised version focuses on features that explain the most variance in X.

The estimated linear trend of the totalvis effect curves for the first principal com-
ponent is negative instead of positive. Thus, for most of the samples and on average,
these results are completely misleading (see Fig. 9). The quadratic shape of the second
component is (on average and for almost all samples) steeper than the average ground
truth. Additionally, the deviation is higher here than for CFEP with sparse SPCA.

7 Real data example: smartphone sensor data

Smartphones and other consumer electronics have increasingly been used to collect
data for research (Miller 2012; Raento et al. 2009). The emerging popularity of these
devices for data collection is grounded in their connectivity, the number of built-in
sensors, and their widespread use. Moreover, smartphones enable users to perform
a wide variety of activities (e.g., communication, shopping, dating, banking, naviga-
tion, listening to music) and thus provide an ideal means to study human behavior
in naturalistic contexts, over extended periods of time, and at fine granularity (Harari
et al. 2015, 2016, 2017). In this regard, smartphone data has been used to investigate
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individual differences in personality traits (Stachl et al. 2017; Harari et al. 2019), in
human emotion and well-being (Servia-Rodríguez et al. 2017; Rachuri et al. 2010;
Saeb et al. 2016; Thomée 2018; Onnela and Rauch 2016; Kolenik and Gams 2021),
and in daytime and nighttime activity patterns (Schoedel et al. 2020).

We use a dataset on human behavior, collected with smartphones, to illustrate
methods for group-based feature importance. The PhoneStudy dataset was consoli-
dated from three separate datasets (Stachl et al. 2017; Schuwerk et al. 2019; Schoedel
et al. 2018). It consists of 1821 features on smartphone-sensed behavior and 35 target
variables on self-reported Big Five personality trait dimensions (domains) and subdi-
mensions (facets). The dataset has been published online and is openly available.11

The Big Five personality trait taxonomy is the most widely used conceptualization
of stable individual differences in human patterns of thoughts, feelings, and behavior
(Goldberg 1990). In their original study, Stachl et al. (2020a) used the behavioral vari-
ables to predict self-reported Big Five personality trait scores (five dimensions and
30 subdimensions) and used grouped feature importance measures to explore which
classes of behaviors were most predictive for each personality trait dimension. The
groups in this study were created based on theoretical considerations from past work.

The personality prediction task is challenging because (1) the dataset containsmany
variables on similar behaviors, (2) these variables are often correlated, and (3) effects
with the targets are interactive, very small, and partially non-linear. Many variables
in the dataset can be manually grouped into classes of behavior (e.g., communication
and social activity, app-usage, music consumption, overall phone activity, mobility).

We use this dataset to illustrate the idea of grouped feature importancewith regard to
the prediction of personality trait scores for the dimension of conscientiousness (Table
5). Conscientiousness is a personality trait dimension that globally describes people’s
propensity to be reliable, dutiful, orderly, ambitious, and cautious (Jackson et al. 2010).
We chose this personality trait because it has high practical relevance due to its ability
to predict important life outcomes and behaviors (Ozer and Benet-Martínez 2006).
Here, we (1) fit a random forest model to predict the personality dimension of con-
scientiousness, (2) compute the introduced methods for grouped feature importance
(GOPFI, GPFI, GSI, LOGI, LOGO), (3) use the proposed sequential grouped feature
importance procedure to investigate which groups are most important in combination,
and (4) visualize the effect of different groups with CFEPs. Once the importance of
individual groups has been quantified, CFEPs can be helpful to further explore the
variables in these groups with regard to the criterion variable of interest (i.e., consci-
entiousness) to generate new hypotheses for future research.

In Fig. 10, we show a sequential procedure for our personality prediction example.
The figure shows that the groups overall phone usage and app usage lead to the best
model performance if used alone and, in many cases, lead to even better performances
if combined. The results also suggests that if only one group can be selected, the initial
selection of the feature group app usage more often leads to the smallest expected loss
(mean MSE = 0.519). For a practical application, this would indicate that if only one
type of feature may be collected from smartphones to predict the personality trait
conscientiousness, features on app usage should be used. If two groups of data can

11 https://osf.io/kqjhr/.
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Table 5 Grouped feature importance values for predicting the personality trait conscientiousness based on
MSE

Group GOPFI GPFI GSI LOGI LOGO

Mobility
(Mo)

−0.002
(±
0.011)

−0.002
(±
0.001)

0.000 (±
0.003)

−0.011
(±
0.075)

0.000 (±
0.006)

Music
(Mu)

−0.001
(±
0.011)

0.002 (±
0.002)

0.001 (±
0.006)

−0.019
(±
0.074)

0.001 (±
0.012)

Communication
and
social
(C)

0.000 (±
0.008)

0.001 (±
0.003)

0.004 (±
0.006)

0.008 (±
0.070)

0.001 (±
0.010)

Overall
phone
usage
(O)

0.007 (±
0.011)

0.009 (±
0.003)

0.012 (±
0.008)

0.032 (±
0.080)

0.009 (±
0.014)

App
usage
(A)

0.032 (±
0.009)

0.028 (±
0.005)

0.031 (±
0.012)

0.041 (±
0.069)

0.011 (±
0.019)

All values were calculated using a resampling method (10-times cross-validation)

be collected, overall phone usage should also be added (mean MSE = 0.513). Finally,
the plot indicates that in some cases (n = 9), the additional consideration of music
listening behaviors in the model could lead to additional, small improvements of the
expected loss (mean MSE= 0.508). If a feature group is not added, this means that it
did not make a significant contribution in this iteration of the data split. Interestingly,
the feature group music alone shows very low (or even negative) grouped feature
importance scores. This would mean that music features are only predictive in the
presence of other features.

To additionally explore meaningful and predictive directions in the feature space
of the app usage group, we use CFEPs for the visualization. Subplot (a) in Fig. 11
shows that combinations of higher values in features on weather app usage on average
lead to higher mean values in the personality trait conscientiousness. The increased
frequency in weather app usage could signify the propensity of conscientious people
to be prepared for future eventualities (e.g., bad weather; Jackson et al. 2010). Subplot
(b) shows an interesting non-monotonic relationship between the number of different
apps used each day and themean value in conscientiousness. Subplot (c) shows that the
combinations of higher values in overall phone activities lead to lower mean values in
conscientiousness. Finally, plot (d) shows a similar, negative effect pattern with regard
to music listening behaviors.

8 Conclusion

We introduced various techniques to analyze the importance and effect of user-defined
feature groups on predictions of ML models. We provided formal definitions and dis-
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A, MSE = 0.519, n = 82

O, MSE = 0.526, n = 18

A.O, MSE = 0.513, n = 73

A.O.Mu, MSE = 0.508, n = 9

Fig. 10 Sequential grouped feature importance procedure for smartphone sensor data predicting con-
scientiousness. 100 times repeated subsampling. Inner resampling strategy: 10-fold cross-validation.
Improvement threshold δ = 0.01. Abbreviations: app-usage (A), communication & social (C), music
(Mu), overall phone activity (O), mobility (Mo). Vertical bars show one step in the greedy forward search
algorithm.Height of the vertical bars represent the number of subsampling iterations inwhich a combination
of groups was chosen (for example, out of 100 subsampling iterations the group app-usage (A) was chosen
82 times as the best first group. Streams indicate the proportion of iterations that additionally benefited from
a consequent step. Only streams containing at least 5 iterations and better mean performance at the end are
displayed

tinction criteria for grouped feature importance methods and distinguished between
permutation- and refitting-based methods. For both approaches, we defined two cal-
culation strategies that either start with a null model or with the full model. Based on
these two definitions, we introduced Shapley importance scores for groups, which we
defined for permutation as well as refitting methods. Moreover, we introduced as our
first main contribution a sequential grouped feature importance procedure to find good
and stable combinations of feature groups. To contrast the newly proposed methods
with existing ones, we compared them for different scenarios. The key recommenda-
tions for the user can be summarized for four scenarios: (1) If high correlations between
groups are present, refitting methods should be preferred over permutation methods,
since they often deliver more meaningful results in these scenarios. Moreover, if the
number of groups is reasonably small, refitting methods become computationally fea-
sible. (2) If a sparse set of feature groups is of interest (e.g., due to data availability),
the introduced sequential procedure can be useful. It provides insights regarding the
most important groups: which sparse group combinations are stable in the sense that
they are frequently selected and achieve a good performance. These criteria can be
critically informative in situations where feature groups must be obtained from differ-
ent data sources that are associated with further costs. (3) If the correlation strengths
of features within groups are very diverse, all of the introduced methods might fail
to reflect the true underlying importance of the feature groups. The size of this effect
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x2 = daily_mean_num_unique_apps_week
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Fig. 11 CFEPs for the prediction of the personality trait conscientiousness. g1 describes the first principal
component of the respective group, and g2 describes the second.More details about the features can be found
in Appendix D and on the supplemental website https://compstat-lmu.shinyapps.io/Personality_Prediction/
for Stachl et al. (2020a)

depends heavily on how well the fitted model captures the true underlying relation-
ship between features. Especially when using random forests, we showed that all of
the methods lead to misleading results. (4) Groups with many features might tend to
have a higher grouped importance score than groups with fewer features. Normalizing
the grouped importance score leads to an average score per feature. However, this
might result in choosing groups where grouped scores are smaller than those of other
groups and, hence, contain less (performance-based) information than others. When
using GSI, users can extract additional feature-level information to gain more insights
into the group scores. Specifically, we showed that single feature Shapley importance
scores add up to GSI when no higher-order interactions between groups are present.
As third main contribution we proposed the CFEP, which is another global interpre-
tation method that allows visualizations of the combined effect of multiple features
on the prediction of an ML model. By applying a sparse SPCA, we received more
meaningful and interpretable results for the final CFEPs compared to its unsupervised
counterpart. We also demonstrated the suitability of the method in our real data exam-
ple from computational psychology. Although, we only considered a numeric feature
space here, all methods are in general also applicable to mixed feature spaces. How-
ever, in the presence of categorical features, a suitable dimension reduction method
for CFEP must be chosen.

Here, we have focused on knowledge-driven feature groupings. However, the intro-
duced methods could also be applied to data-driven groups (e.g., via shared variance).
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Notably, their interpretation is only meaningful if groups can be described by some
underlying factor. This might be a good application for interpretable latent variables
to find causal relationships between feature groups and predictions of ML models.
Additionally, with regard to highly correlated feature groups that cannot be grouped
naturally, a data-driven approach might be more suitable.

It is our goal that this article not only provides a helpful reference for researchers in
selecting appropriate interpretation methods when features can be grouped, but also
that it inspires future research in this area.
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Appendix AMotivational example for grouped importancemethods

In some settings, permuting single features individually might not be meaningful,
for example, when categorical features are dummy-encoded. Table 6 shows for two
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Table 6 We draw 1000 samples of two independent categorical random variables X1, X2 ∈ {1, 2, 3, 4}
where the categories 1 and 2 occur four times more frequently than 3 and 4

Method X1 X2,2, X2,3, X2,4 X2,2 X2,3 X2,4

Individually permuted 2.63 – 2.45 1.00 1.71

Group-wise permuted 2.63 2.65 –

Consider the target y = 5 · 1X1 	=1 + 5 · 1X2 	=1 + ε with ε ∼ N (0, 1). Both categorical features have the
same influence on the target. We explicitly dummy encode X2 using X2 = 1 as the reference category to
obtain 3 binary features X2,k = 1X2=k , k ∈ {2, 3, 4}. We fit a linear model using the categorical feature X1
and the binary features X2,2, X2,3, X2,4. Here, we want to illustrate why it makes more sense to permute
the 3 binary features jointly rather than individually, since they naturally belong together. As expected,
permuting the binary features X2,2, X2,3, X2,4 jointly as a group yields a comparable importance to X1.
However, permuting each binary feature individually gives different importance scores making it unclear
how important X2 is compared to X1

equally important categorical features that if one feature is dummy-encoded (here: X2),
then all resulting binary features must be permuted as a group to obtain a comparable
importance score to X1. Hence, settings like in Table 6 or as described in Sects. 1 or
1.2 point out the need of grouped importance methods.

Appendix B Shapley importance

B.1 Properties of the grouped Shapley importance

For single features12 xi ∈ {1, . . . , p}, which are divided into l groups, we define the
marginal contribution for xi as

�{xi }(S) = v(S ∪ {xi }) − v(S),

for S ⊂ {1, . . . , p}\{xi }. The Shapley importance for single features φ(xi ) can also
be defined analogously to (15). One interesting question is, does the GSI for a group
G ⊂ {1, . . . , p} decompose into the sum of Shapley importances of features in G? In
the following, we want to analyze the remainder

R = φ(G) −
∑
i∈G

φ(xi ). (B1)

Similar to the functional ANOVA decomposition (Hooker 2004), we assume, that
the value function for a coalition S ⊂ {1, . . . , p} can be broken down into main and
interaction effects

v(S) = v0 +
∑
xi∈S

v(xi ) +
∑
i 	= j

εi j +
∑

i 	= j 	=k

εi jk + · · · , (B2)

12 Remember the one-to-one association of the numbers 1, . . . , p and the features x1, . . . , xp
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where εi ...m is the effect of the interaction between the features xi , . . . , xm ∈ S. A
needed requirement to apply this decomposition is that each of the functional terms has
zero means, hence they need to be centralized. The considered intercept shift is stored
in v0. To receive a unique decomposition, the orthogonality between the functional
terms needs to be fulfilled which is not the case in the presence of correlated features.
Hooker (2007) therefore suggests the generalized functional ANOVA which replaces
the orthogonality property with a hierarchical orthogonality condition and which is a
weighted version of the standard functional ANOVA (Hooker 2004). However, we do
not try to estimate or calculate the decomposed function terms, we only use the (valid)
assumption that a function can be decomposed as in Eq. (B2) to show how GSI relates
to Shapley importance for individual features. Hence, we are not directly interested in
a unique solution of the decomposition.

With the assumption in Eq. (B2), it follows that the Shapley importance of a single
feature x1 (without loss of generality) can be written as

φ(x1) = v(x1) + 1

2

⎛
⎝

p∑
i 	=1

ε1i

⎞
⎠ + 1

3

⎛
⎝

p∑
i 	= j 	=1

ε1i j

⎞
⎠ + · · · + 1

p
ε1...p. (B3)

The value function of the feature x1 contributes to the Shapley importance with the
weight 1 and all possible interaction effects with feature x1 contribute with the recipro-
cal length of the interaction effect. We proved this assertion in Appendix B.2. Similar
to (B3), the GSI of a group G1 (w.l.o.g.) can be written as

φ(G1) = v(G1) + 1

2

⎛
⎝

k∑
i 	=1

εG1Gi

⎞
⎠ + 1

3

⎛
⎝

k∑
i 	= j 	=1

εG1GiG j

⎞
⎠ + · · · + 1

k
εG1...Gk ,(B4)

where εG1...Gk is the (non-computable) interaction effect between features of groups
G1, …, Gk , where each group provides at least one feature. By using Eq. (B2) on
v(G1), we get:

v(G1) =
∑
i∈G1

v(xi ) +
∑

i 	= j∈G1

εi j +
∑

i 	= j 	=k∈G1

εi jk + · · · (B5)

Looking back at Eq. (B1), a lot of terms cancel out by using Eqs. (B3) and (B5).
The term v(G1), meaning all main effects v(xi ), i ∈ G1, and all interaction effects
εi,...,k, 1 ≤ k ≤ |G1| between features within G1, cancels out entirely.13 Furthermore,
at least all two-way interaction effects between groups εG1Gi , i = 2, . . . , k cancel
out. A combination of higher-order interaction terms between features of G1 and
{1, . . . , p}\G1 remain.14 This means that the remainder R is (usually) not equal to
zero in case the applied algorithm learned a higher-order interaction between features

13 Note, v(G1) cancels out, meaning that these interaction terms cannot be computed directly but are
assumed to affect the “payout” of the value function.
14 They mostly only partly cancel out, depending on the number of features within the groupsG1, . . . ,Gk .
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of the regarded group and other groups. The higher the remainder, the larger the higher-
order interaction effect. Thus, the remainder can be used as a quantification of learned
higher-order interaction effects between features of different groups.

B.2 Proof of Properties

Assume, that the value function for a coalition S ⊂ {x1, . . . , xp} can be broken down
into main and interaction effects:

v(S) =
∑
xi∈S

v(xi ) +
∑
i1 	=i2

εi1i2 +
∑

i1 	=i2 	=i3

εi1i2i3 + · · · ,

the Shapley importance of a single feature x1 can be written as

φ(x1) = v(x1) + 1

2

⎛
⎝

p∑
i 	=1

ε1i

⎞
⎠ + 1

3

⎛
⎝

p∑
i 	= j 	=1

ε1i j

⎞
⎠ + · · · + 1

p
ε1...p.

Proof Let N = {x2, . . . , xp}. The general formula for the Shapley importance is given
by:

φp(x1) =
∑

S⊂N\{x1}

(p − 1 − |S|)! · |S|!
p! (v(S ∪ {x1}) − v(S)) (B6)

With assumption (B2) the term v(S ∪ {x1}) − v(S) will reduce to:

v(S ∪ {x1}) − v(S) = v(x1) +
p∑

i1 	=1

ε1i1 + · · · +
p∑

i1 	=···	=i|S| 	=1

ε1i1...i|S| (B7)

It is the sum of v(x1) and all interactions with feature x1 of sizes 2, . . . , |S| + 1. All
other terms without feature x1 cancel out.

Equation (B6) consists ofmany summands of the form (B7). The term v(x1) appears
once for every subset S ⊂ N\{x1}. There are

(p−1
|S|

)
different subsets of size |S|. Only

looking at the summands with the term v(x1), Eq. (B6) reduces to

p−1∑
|S|=0

(p − 1 − |S|)! · |S|!
p!

(
p − 1

|S|
)

v(x1) = v(x1). (B8)

For the interaction terms, we first start counting the interaction term ε12 of size 2, as
an example. For |S| = 0, there are zero terms of ε12. For |S| = 1, the term ε12 only
appears once, when S = {x2}. For |S| = 2, the term ε12 appears p − 2 times, once
for each subset S = {x2, x j }, for 3 ≤ j ≤ p. For |S| = 3, we have

(p−2
2

)
times the

term ε12, again, once for each subset S = {x2, x j , xk}, for 3 ≤ j 	= k ≤ p. This
pattern goes on until there are

(p−2
p−2

)
terms of ε12 for |S| = p − 1. Now, we look at
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the interaction terms ε1i1...ik−1 of size k. Following the pattern, which we just derived,
there are zero terms of ε1i1...ik−1 for |S| ≤ k − 2 and

( p−k
|S|−k+1

)
terms of ε1i1...ik−1 for

k ≤ |S| ≤ p − 1. If we only look at the interaction terms ε1i1...ik−1 of size k and
following the Eq. (B6), we get

p−1∑
|S|=k−1

(p − 1 − |S|)! · |S|!
p!

(
p − k

|S| − k + 1

)
ε1i1...ik−1 = 1

k
ε1i1...ik−1 ,

which was left to show the assertion. �

Appendix CMore details on dimension reduction techniques

C.1 Principal component analysis

PCA only considers the data matrix X and does not take the target vector Y into
account. This procedure is thus unsupervised.

Given a centering Matrix

H = I − n−1eeT , (C9)

where e is an n-dimensional vector of all ones. The centered matrix isXC = HX. The
sample covariance matrix of X can be written as:

SX := 1

n
Xᵀ
CXC = 1

n
XᵀHHX (C10)

The goal is to maximize the total variance of projected data, which is equivalent
to maximizing trace of the sample covariance matrix. Equation (C10) can also be
written as SX = 1

n

∑n
i=1 x

(i)
C x(i)ᵀ

C , where x(i)
C corresponds to the i−th row of XC . By

projecting each data point by some unknown vectors v j , j = 1, . . . , p, we get the
projected variance for each j = 1, . . . , p, which is:

1

n

n∑
i=1

vᵀ
j x

(i)
C x(i)ᵀ

C v j = vᵀ
j

(
1

n

n∑
i=1

x(i)
C x(i)ᵀ

C

)
v j = vᵀ

j SXv j .

LetV ∈ R
p×p be the full projectionmatrix. Theprojected total variance is tr(VᵀSXV),

and by ignoring constant terms, PCA finds a solution to the problem

argmax
V

tr(VᵀSXV) = argmax
V

tr(VᵀXᵀHHXV) (C11)

with an Eigen decomposition of the covariance matrix SX. The resulting Eigen vectors
thus maximize the variation of projected data.
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C.2 Measuring statistical dependence with Hilbert Schmidt norms

In Gretton et al. (2005) a more generalized measure of dependence between variables
X and Y was introduced:

Two random variables X and Y are independent if and only if any bounded contin-
uous function of them are uncorrelated.

In more detail, this means that any pairs (X , Y ), (X , Y 2), (X2, Y ), (cos(X),

log(Y )), ... have to be uncorrelated. The resulting independence measure is called
the Hilbert-Schmidt Independence Criterion (HSIC). For the analysis of this indepen-
dence measure, it is necessary to analyze functions on random variables. Therefore
theory of Hilbert spaces and concepts of functional analysis are necessary for a thor-
ough analysis, but they are not part of this paper. For an extensive discussion of
Hilbert spaces, especially reproducing kernel hilbert spaces (RKHS) we refer to Hein
and Bousquet (2004).

Let F be a separable RKHS containing all bounded continuous functions from X
to R. The associated kernel shall be denoted by K ∈ R

n×n , with Ki j = k(xi , x j ).
Concurrently, let G be a separable RKHS with bounded continuous functions from Y
to R and associated kernel L ∈ R

n×n , with Li j = l(yi , y j ).
We are particularly interested in the cross variance between f and g:

Cov( f (x), g(y)) = Ex,y[ f (x)g(y)] − Ex [ f (x)]Ey[g(y)] (C12)

A function, which maps one element from one hilbert space to another hilbert space
is called operator. A theorem (see e.g. Fukumizu et al. 2004) states, that there exists
a unique operator CX ,Y : G −→ F with

〈 f ,Cx,y(g)〉F = Cov( f (x), g(y)). (C13)

TheHilbert-Schmidt Independence Criterion (HSIC) is defined as the squaredHilbert-
Schmidt norm of the cross-covariance operator C:

HSIC(PX ,Y ,F ,G) = ‖Cx,y‖2HS (C14)

‖Cx,y‖2HS = 0 if and only if the random variables X and Y are independent. For
a detailed discussion and derivation of the HSIC independence measure, we refer to
Gretton et al. (2005). The HSIC measure was used for feature selection in Song et al.
(2007) or for supervised principal components in Barshan et al. (2011).

C.2.1 Empirical HSIC

For a dataset D = {(x(i), y(i))}ni=1 the empirical HSIC is:

HSIC(D, F,G) = (n − 1)−2tr(KHLH) = (n − 1)−2tr(HKHL), (C15)

where H is the centering matrix from (C9). A high level of dependency between two
kernels yields a high HSIC value.
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C.3 Supervised sparse principal components

In the process of finding interpretable latent variables, which also incorporate depen-
dencies to a target variable, the Sparse Supervised Principal Components (SPCA),
which was introduced in Sharifzadeh et al. (2017), is a suitable method for our appli-
cation.

For sparseSPCAthekernelmatrix K ist defined as K = XVV ᵀXᵀ with a constraint
for unit length and an L1 penalty for sparsity. By ignoring constant terms, we get the
optimization problem:

argmax
V

tr(HKHL) = argmax
V

tr(HXVVᵀXᵀHL) (C16)

= argmax
V

tr(VᵀXᵀHLHXV) (C17)

s.t . VᵀV = I, |V| ≤ c. (C18)

Note, that without the sparsity constraint, (C17) reduces to (C11), when choosing
L = I. Already explained in Barshan et al. (2011), PCA is a special form of their
Supervised PCA, where setting L = I is a kernel, which only captures similarity
between a point and itself. Maximizing dependency betweenK and the identiy matrix
corresponds to retaining maximal diversity between observations.

Now, an arbitrary L can be decomposed as L = ��ᵀ, since L, as a kernel matrix,
is positive definite and symmetric. Defining � := �ᵀHX ∈ R

n×p, the objective
function (C17) can be rewritten as:

argmax
V

tr(Vᵀ�ᵀ�V) s.t .VᵀV = I, |V| ≤ c. (C19)

Using the singular value decomposition (SVD), the matrix� with rank(�) = m ≤
n can be written as a product of matrices:

� = U�Vᵀ s.t . UᵀU = In,VVᵀ = Ip,� = I (λ1, . . . , λm, 0, . . . , 0), (C20)

whereU ∈ R
n×n andV ∈ R

p×p are orthogonal matrices, and� ∈ R
n×p is a diagonal

matrix, with descending diagonal entries λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0. It is easy to see
that the columns ofV are Eigen vectors of the matrix �ᵀ�, since the following Eigen
value decomposition holds:

�ᵀ� = V�UᵀU�Vᵀ = V(�2)Vᵀ. (C21)

The sparse SPCA problem (C19) now becomes a matrix decomposition problem
of the matrix �, when adding an L1 penalty on the matrix V, since the columns of V,
being Eigen vectors of �ᵀ�, maximize tr(Vᵀ�ᵀ�V).

With an L1 penalty onV, this problem is a penalizedmatrix decomposition problem
(PMD, Witten et al. (2009)).
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Recalling our original problem of finding interpretable latent variables that also
depend on a target variable, the rank m matrix decomposition of � may not be desir-
able. It can be shown (e.g. Eckart and Young 1936) that the best low rank (r ≤ m)
approximation of � is calculated by the first r singular values of � and the first r
singular vectors of U and V. With ui being the i−th column of U and vi being the
i−th column of V, the best low rank approximation can thus be written as:

r∑
i=1

λiuiv
ᵀ
i = argmin

�̂

‖� − �̂‖2F , (C22)

subject to the squared Frobenius-norm (A ∈ R
m×n : ‖A‖2F = ∑n

i=1
∑m

j=1 |ai j |2). The
following equality was demonstrated in Witten et al. (2009):

1

2
‖� − U�Vᵀ‖2F = 1

2
‖�‖2F −

r∑
i=1

uᵀ
i �viλi + 1

2

r∑
i=1

λ2i . (C23)

The minimization problem (C22) thus becomes a maximization problem, by ignor-
ing the constant terms. Sharifzadeh et al. (2017) added additional L2 constraints on
ui and vi , an L1 constaint on vi for sparsity and an orthogonality constraint for ui :

argmax
uivi

uᵀ
i �vi s.t .‖ui‖2 ≤ 1, ‖vi‖2 ≤ 1, ‖vi‖1 ≤ c,ui ⊥ u1, . . . ,ui−1 (C24)

The L2 constraints do not force unit length to avoid non convex optimization prob-
lems. Witten et al. (2009) discuss how to solve many penalized matrix decomposition
problems of this kind. Without the orthogonality constraint, they call this particular
problem PMD(., L1). The solution to this problem is discussed in detail in Sharifzadeh
et al. (2017). A software implementation is available with the R-package PMAbyWit-
ten and Tibshirani (2020), which we will use for our demonstrations. Problem (C24)
does not yield orthogonal sparse vectors vi , Witten et al. (2009) state that these vectors
are unlikely to be very correlated, since the vectors vi are associated with orthogonal
vectors ui , i = 1, . . . , r .

C.3.1 Choice of the Kernel

For sparse SPCA the kernel K has been predefined as. The choice of the kernel L,
however, has a decisive impact on how the dependencies are modeled. Song et al.
(2012) discuss the kernel choice for different situations. For binary classification, one
may simply choose

l(yi , y j ) = yi y j , where yi , y j ∈ {±1}, (C25)

or a weighted version, giving different weights on positive and negative labels. For
multiclass classification a possible kernel is

l(yi , y j ) = cyδyi ,y j , where cy > 0. (C26)
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For regression one can also use a linear kernel l(yi , y j ) = yi , y j , but then only simple
linear correlations between features and the target variable can be detected. A more
universal choice is the radial basis function (RBF) kernel:

l(yi , y j ) = exp

(
−‖yi − y j‖2

2σ 2

)
. (C27)

The choice of the bandwidth 2σ 2 is extremely important. For example, if 2σ 2 → 0,
the matrix L becomes the identity matrix. Or if 2σ 2 → ∞, all entries of L are 1. In
both cases, all relevant information of the dependency between features and the target
variable is lost. Besides the bandwidth 2σ , the kernel matrix L depends only on the
pairwise distances ‖yi − y j‖2. A reasonable, and heuristically well performing (Pfister
et al. 2017) choice is 2σ 2 = median

(‖yi − y j‖2 : i > j
)
. However, it might also be

possible and advantageous to use other kernels that are selected to be particularly
efficient in detecting certain kinds of dependencies.

C.3.2 Choice of c

Witten et al. (2009) explained how PMD can be used to impute missing data. Themain
idea is simply to exclude missing entries from the maximization problem (C24) and
impute missing values by the low rank approximation matrix U�Vᵀ. This procedure
can also be used for finding optimal values for c by a cross-validation approach.
The test data consists of leaving out some entries of the matrix � (not entire rows
or columns, but individual elements of the matrix), yielding a matrix with missing
entries �̃. For candidate values ci , i = 1, . . . , k, calculate the PMD(., L1) and record
the mean squared error over the missing elements of �̃ and the estimate U�Vᵀ. The
true values of the missing values of �̃ are available in the original data�. The optimal
value c∗ corresponds to the best candidate value c j , whichminimizes themean squared
error.

However, such a cross-validation approach for the search for c is not always neces-
sary. If the method is used as a descriptive method to better understand the underlying
structure of the data, a small value of c can be chosen to achieve a desired sparsity.

Appendix D Feature description for smartphone sensor data

See Table 7.
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Table 7 Description of features used for CFEPs in Sect. 7

Feature Description

daily_mean_num_unique_Weather_weekend Mean number of different weather apps used each day
on weekends

daily_mean_num_Weather Mean number of weather apps used each day

daily_mean_num_unique_Weather_week Mean number of different weather apps used each day
on weekdays

daily_mean_num_unique_Weather Mean number of different weather apps used each day

daily_mean_num_unique_apps Mean number of different apps used each day

daily_mean_num_unique_apps_week Mean number of different apps used each day on
weekdays

daily_mean_num_unique_apps_weekend Mean number of different apps used each day on
weekends

daily_mean_sum_events_night Number of all events during the night averaged for each
day

daily_mean_dur_all Duration of all events averaged for each day

daily_sd_sum_intereventall Sd of the sum of all inter-event time intervals for each
day

daily_mean_num_uniq_song Mean number of different songs listened to each day

daily_mean_num_song Mean number of songs listened to each day

daily_mean_duration_music Mean duration of music apps used each day
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5. REPID: Regional Effect Plots with implicit
Interaction Detection

This is the first of three contributing articles addressing the second limitation stated in Section 1.1:
misleading interpretations of global explanations due to aggregation. This work analyzes the
aggregation bias caused by feature interactions for PD plots and one feature of interest. We
suggest a new method called regional effect plots with implicit interaction detection (REPID),
which is based on recursive partitioning to find interpretable regions in which feature interactions
of the feature of interest are minimized. Thus, regional PD plots are more representative of the
underlying observations within each region.

Contributing article: Herbinger, J., Bischl, B., and Casalicchio, G. (2022). Repid: Regional ef-
fect plots with implicit interaction detection. In Proceedings of The 25th International Conference
on Artificial Intelligence and Statistics, pp. 10209–10233, PMLR.

Author contributions: Julia Herbinger contributed to this paper as the first author with the
following contributions:
Julia Herbinger and Giuseppe Casalicchio developed the project idea. Julia Herbinger developed
the REPID method with continuous support and valuable input from Giuseppe Casalicchio. Ju-
lia Herbinger provided the mathematical foundation and proofs in the paper, which Giuseppe
Casalicchio revised. Julia Herbinger designed and conducted the experiments. Julia Herbinger
drafted the entire manuscript. All authors contributed to revisions of the paper. Giuseppe Casal-
icchio and Bernd Bischl gave valuable input throughout the project and suggested several notable
modifications.
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Abstract

Machine learning models can automatically
learn complex relationships, such as non-
linear and interaction effects. Interpretable
machine learning methods such as partial de-
pendence plots visualize marginal feature ef-
fects but may lead to misleading interpreta-
tions when feature interactions are present.
Hence, employing additional methods that
can detect and measure the strength of in-
teractions is paramount to better under-
stand the inner workings of machine learn-
ing models. We demonstrate several draw-
backs of existing global interaction detection
approaches, characterize them theoretically,
and evaluate them empirically. Furthermore,
we introduce regional effect plots with im-
plicit interaction detection, a novel frame-
work to detect interactions between a feature
of interest and other features. The frame-
work also quantifies the strength of interac-
tions and provides interpretable and distinct
regions in which feature effects can be inter-
preted more reliably, as they are less con-
founded by interactions. We prove the theo-
retical eligibility of our method and show its
applicability on various simulation and real-
world examples.

1 INTRODUCTION

Many machine learning (ML) models are considered
black-boxes, as they do not provide insights into
how the model’s prediction function is composed and
which features or interactions1 are actually used by

1Interactions describe to what extent a feature’s effect
on the model prediction is influenced by other features.

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

the model. This lack of transparency has been par-
tially addressed by recent developments in the field
of interpretable ML. In general, the literature distin-
guishes between local and global interpretation meth-
ods (Molnar et al., 2020). Global interpretation meth-
ods aim at explaining the overall behavior of an ML
model. Examples include the partial dependence (PD)
plot (Friedman, 2001), which visualizes the effect of
a feature on the model’s prediction, and the permu-
tation feature importance, which quantifies the rele-
vance of features (Fisher et al., 2019). However, many
of these global interpretation methods are confounded
by feature interactions, meaning that they can produce
misleading explanations when feature interactions are
present because they often aggregate over individual
effects of local interpretation methods and thereby ob-
fuscate heterogeneous effects induced by feature in-
teractions (Molnar et al., 2021b). This so-called ag-
gregation bias (Mehrabi et al., 2021) is responsible
for producing global explanations that are usually not
representative or not valid for many individuals. In-
stead of explaining the ML model on a global level,
local interpretation methods – such as individual con-
ditional expectation (ICE) curves (Goldstein et al.,
2015), LIME (Ribeiro et al., 2016), or Shapley val-
ues (Strumbelj and Kononenko, 2014) – can be used
to understand how a feature influences an individual
prediction. However, many local interpretation meth-
ods do not provide a global understanding of the ML
model due to their local view (i.e., their explanations
only refer to individual observations). Thus, it is of-
ten recommended to consider both local and global
interpretation methods. For example, in the case of
PD plots, looking additionally at ICE curves (Gold-
stein et al., 2015) can help to reveal interactions when
the ICE curves are heterogeneous (see Figure 1). Yet,
ICE curves are not able to quantify the strength of the
underlying feature interactions, nor can they tell ex-
actly which features interact with each other. On the
other hand, other methods that quantify the interac-
tion strength between features are available. However,
they do not provide any visual component of how these
interactions influence the effect of a feature of interest
(Friedman et al., 2008; Greenwell et al., 2018). The
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work in this paper is motivated by subgroup analy-
sis (Su et al., 2009) as a trade-off between local and
global explanations. We aim to uncover a possible ag-
gregation bias in the PD plot by finding interpretable
subgroups in the data with differing influences of a
feature on the predictions. Hence, for well-performing
ML models, this might also reveal a possible bias in
the data (e.g., when the influence of a feature on the
prediction strongly differs for certain subgroups, al-
though it should not) and thus might be helpful to
uncover possible negative societal impacts.

Contributions: We introduce regional effect plots
with implicit interaction detection (REPID), a model-
agnostic interpretation method that produces regional
effect plots (REPs) in which feature effects are less
confounded by interactions. Regions are obtained by
a decision tree and thus represent interpretable and
distinct subgroups in the feature space. We also pro-
pose a new measure to detect and quantify interac-
tions with a feature of interest, which can be used to
rank interactions according to their strength. To re-
ceive a broader and more competitive comparability,
we derive another global interaction index based on
SHAP interaction values (Lundberg et al., 2018). We
mathematically prove the theoretical meaningfulness
of our method and demonstrate its advantages com-
pared to not only the well-known H-statistic (Fried-
man et al., 2008), but also to Greenwell’s interaction
index (Greenwell et al., 2018) and our derived global
SHAP interaction index. Finally, we demonstrate the
usefulness of our method on real-world data.

Open Science: The implementation of the proposed
method and the fully reproducible code for all experi-
ments are provided in a public repository2.

2 BACKGROUND AND RELATED
WORK

Notation: Consider a p−dimensional feature space
X ∈ Rp and a target space Y (e.g., Y = R for regres-
sion). The corresponding random variables are X =
(X1, . . . , Xp) for the features and Y for the target. ML

algorithms learn a prediction model f̂ using training
data D = {(x(i), y(i))}ni=1 sampled i.i.d. from the un-
known joint distribution PX,Y . In our notation, the

i-th observation is denoted by x(i) =
(
x

(i)
1 , . . . , x

(i)
p

)T
,

and xj =
(
x

(1)
j , . . . , x

(n)
j

)T
denotes the realizations of

the j-th feature Xj .

PD Plot (Friedman, 2001): The marginal relation-
ship of features on model predictions can be visual-

2https://github.com/JuliaHerbinger/repid

ized by PD plots. Consider a set of feature indices
S ⊆ {1, . . . , p} and its complement C = S{. Each

observation x(i) can be partitioned into x
(i)
S and x

(i)
C

containing only features indexed by S and C, respec-
tively. XS and XC refer to the corresponding ran-
dom variables. The PD function of features indexed
by S marginalizes over features in C and is defined
as fPDS (xS) = EXC

[f̂(xS , XC)]. The PD function is
estimated by Monte-Carlo integration:

f̂PDS (xS) = 1
n

∑n
i=1 f̂(xS ,x

(i)
C ). (1)

Here, f̂(xS ,x
(i)
C ) can be read as the prediction of the

i-th observation where features in S were replaced by

xS . Plotting the pairs {(x(k)
S , f̂S(x

(k)
S ))}mk=1 using grid

points3 denoted by x
(1)
S , . . . ,x

(m)
S yields a PD curve.

The mean-centered PD function can be estimated by

f̂PD,cS (xS) = f̂PDS (xS)− 1
m

∑m
k=1 f̂

PD
S (x

(k)
S ).

If |S| = 2, we get a 2-dimensional PD plot showing the
joint marginal effect of the 2 features included in S.

ICE Plot (Goldstein et al., 2015): The averaging in
Eq. (1) can obfuscate complex relationships result-
ing from feature interactions. ICE plots address this
problem by directly visualizing individual curves for

each observation, i.e., {(x(k)
S , f̂(x

(k)
S ,x

(i)
C ))}mk=1 for all

i ∈ {1, . . . , n}. ICE curves will usually have differ-
ent shapes if interactions with other features in C are
present. To facilitate the visual identification of het-
erogeneous ICE curves and, consequently, the presence
of interactions, the authors propose the derivative-
ICE (d-ICE) plot. Assuming that there are no in-
teractions between features xS and xC , the predic-
tion function can be written as f̂(x) = f̂(xS ,xC) =
g(xS) + h(xC). Hence, the partial derivatives of all

ICE curves
δf̂(xS ,x

(i)
C )

δxS
= g′(xS) do not depend on x

(i)
C ,

which means that d-ICE curves have the same shape
if there are no interactions. The d-ICE plot visualizes
the partial derivatives of ICE curves along with their
standard deviation to highlight regions in xS where
the d-ICE curves are heterogeneous (see Figure 1).

Visual INteraction Effects (VINE) (Britton, 2019):
The principle of VINE is to cluster similar slopes of
ICE curves to obtain clusters where the curves are
less affected by interactions based on a three-step ap-
proach: (1) for a feature of interest, find clusters where
the ICE curves of that feature have similar slopes us-
ing, e.g., agglomerative clustering, (2) for each found
cluster, create a binary label containing the informa-
tion of whether an observation belongs to the con-
sidered cluster or any other cluster and apply a tree

3Common choices are randomly selected feature values,
quantiles, or equidistant values (Molnar et al., 2021b).
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stump, (3) identify the split feature and its split point
and merge clusters that use the same feature and a
similar split point. Although VINE is based on a
similar strategy as our approach, its three-step ap-
proach has several disadvantages (see Section 3.1.1).
Approaches to group ICE curves to reduce feature de-
pendencies instead of feature interactions is introduced
in Molnar et al. (2021a) and Grömping (2020).

H-Statistic (Friedman et al., 2008): The H-Statistic is
based on the assumption that if two features do not
interact, the 2-dimensional mean-centered PD func-
tion of two features xj and xl is additively separable
and can be decomposed into the sum of their mean-
centered 1-dimensional PDs, i.e.,

fPD,cS (xS) = fPD,cj (xj) + fPD,cl (xl), with S = {j, l}.

The stronger an interaction effect, the more the
sum of fPD,cj (xj) and fPD,cl (xl) will deviate from

fPD,cS (xS). Hence, the H-statistic computes the in-
teraction strength between two features xj and xl by
quantifying the degree of this deviation using

Ĥ2
S =

∑n
i=1

(
f̂PD,c
S (x

(i)
S )−

∑
k∈S f̂

PD,c
k (x

(i)
k )
)2

∑n
i=1

(
f̂PD,c
S (x

(i)
S )
)2 . (2)

Greenwell’s interaction index (Greenwell et al., 2018):
The interaction strength between two features xj and
xl is quantified based on the variability of the PD func-
tion of xj conditioned on a fixed value of xl (see Ap-
pendix A.3.1).

However, the H-Statistic and the Greenwell’s interac-
tion index only quantify interaction effects and do not
visualize how interactions influence the marginal effect
of a feature. Moreover, both methods are sensitive to
varying main effects (see Section 3.2.1 and 4.1).

Functional ANOVA (fANOVA) (Hooker, 2004): The
fANOVA decomposes the prediction function as fol-
lows:

f̂(x) = g0 +
∑p
k=1

∑
W⊆{1,...,p},|W |=k gW (xW ) (3)

where EX [gW (xW )] = 0 for all feature index sets W
(zero-means property). While gW (XW ) with |W | = 1
refers to main (or first-order) effects, gW (XW ) with
|W | > 1 refers to interactions (or higher-order) effects.
Based on the decomposition in Eq. (3), the authors de-
tect interactions of any order by applying an efficient
search algorithm and visualize them in an interaction
network graph. However, the network only shows the
presence of feature interactions and does not quantify
the interaction strength or illustrate how they influ-
ence the prediction. A discussion on the assumptions
and application of the fANOVA decomposition in the
context of this paper is provided in Appendix A.1.

SHAP interaction values (Lundberg et al., 2018): The
method is based on Shapley values (Shapley, 1953)
and Shapley interaction indices (Fujimoto et al., 2006)
from game theory. In the ML context, SHAP interac-
tion values of two features quantify the pure interac-
tion effect after accounting for the individual feature
effects. The SHAP interaction values separate the in-
teraction effect from the main effects of two features
indexed by j and l (for j 6= l) for an observation x:

Φj,l(x) =
∑
S⊆{1,...p}\{j,l}

|S|!(p−|S|−2)!
2(p−1)! ∇j,l(xS),

where ∇j,l(xS) = fPDS∪{j,l}(xS∪{j,l})−f
PD
S∪{j}(xS∪{j})−

fPDS∪{l}(xS∪{l})+fPDS (xS). The SHAP interaction val-
ues have only been introduced on an observational
level, where the final plot over all observations shows
the influence of the interaction effect on the prediction.

3 THE REPID METHOD

REPID visualizes regional marginal effects of a cer-
tain feature of interest xS with |S| = 1 depending
on its interactions with other features and quanti-
fies the underlying interaction strength. The follow-
ing simulation example demonstrates the benefits of
our method compared to existing ones. We draw
n = 500 samples for 6 independent random variables,
which are distributed as follows: X1, X2 ∼ U(−1, 1),
X3, X5 ∼ B(n, 0.5), X4 ∼ B(n, 0.7) and X6 ∼ N (1, 5).
The true relationship is described by

f(x) = 0.2x1−8x2+8x21(x1>0)+16x21(x3=0)+ε (4)

with ε ∼ N (0, 1). We fit a random forest (RF) with
500 trees on the data. Due to the linear relationship,
we can assume that the interaction strength between
x2 and x3 is higher than the one between x2 and x1.

3.1 Regional Effect Plots

3.1.1 Motivation

PD plots are often shown together with their under-
lying ICE curves (see Figure 1). The heterogeneous
shapes of ICE curves imply the presence of feature
interactions. Although ICE or d-ICE plots indicate
interactions, they do not provide any information on
which other features are responsible for these interac-
tions and how the underlying interaction influences the
marginal effect of xS (see Figure 1). Grouping homo-
geneous ICE curves will reduce the presence of individ-
ual interaction effects within a group. This leads to re-
gional PD plots that actually reflect the pure marginal
effect of xS within this group. VINE (Britton, 2019)
implements this idea by clustering ICE curves with
similar slopes (see Section 2). However, VINE is only

5. REPID: Regional Effect Plots with implicit Interaction Detection
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Figure 1: Left: ICE curves (black) and PD plot (blue)
for x2. Right: Smoothed d-ICE curves (upper plot) and
standard deviation of d-ICE curves (lower plot).

a visual tool and does not quantify or rank feature
interactions. Furthermore, VINE is an unsupervised
approach, and its solution depends on the number of
clusters k that must be chosen (which is not trivial).
Another drawback is that VINE “finds” feature inter-
actions in an inconvenient second step by fitting a sep-
arate tree stump for each cluster (see Section 2). Due
to the different tree stumps used in VINE, the derived
decision rules are often not distinct and therefore dif-
ficult to interpret. In a third step, VINE introduces
a post-hoc merging of clusters based on similar deci-
sion rules. In Figure 2, we show that this three-step
approach does not always lead to meaningful group-
ings. While in the left plot, the ICE curves are divided
meaningfully into 2 clusters based on the most inter-
acting feature x3 (according to Eq. (4)), the clusters in
the right plot do not divide the ICE curves into visu-
ally meaningful groups with homogeneous ICE curves.

Figure 2: ICE and regional PD (dashed) plot of x2 clus-
tered by VINE for k = 2 (left) and k = 5 (right). The
5 clusters are reduced to 3 by post-hoc merging. Cluster
numbers 0 and 3 still contain differing individual interac-
tion effects, which are averaged and hence not represented
well by the regional PD plot.

3.1.2 Methodology

Here, we derive a new tree-based approach to deter-
mine optimal REPs for any feature of interest xS .
REPs are regional PD plots that aggregate ICE curves

within automatically identified regions where feature
effects are less confounded by interactions. Our aim
is to recursively split the entire data referred to by in-
dex set N = {1, . . . , n} into interpretable regions to
obtain more homogeneous ICE curves for xS within
the split regions denoted by Ng (where g ∈ {1, . . . G}
indexes a certain node of the tree and G is the num-
ber of all tree nodes). Hence, we want to split N
in such a way that ICE curves within the obtained
regions have a similar shape, meaning that the dis-
tance of these ICE curves to the REP estimate (i.e.,

f̂PDS|Ng
(xS) := 1

|Ng|
∑
i∈Ng

f̂
(
xS ,x

(i)
C

)
) is small. To

that end, we propose a tree-based partitioning in Algo-
rithm 1, which refers only to a single binary split and
is inspired by the CART algorithm (Breiman et al.,
1984)4. The splitting is recursively repeated until the
split criterion (denoted by I(t̂, ĵ) in Algorithm 1) does
not improve anymore compared to the previous split
or until a pre-specified stop criterion is met. The split
criterion is based on a suitable risk function R that
operates on ICE curves (see also Eq. (6)).

Algorithm 1: Tree-based Partitioning

input: index set N , risk RL2 (see, e.g., Eq. (6))

output: child nodes N t̂,ĵ
l and N t̂,ĵ

r

for each feature indexed by j ∈ C do
for every split t on feature xj do

N t,j
l = {i ∈ N}

x
(i)
j ≤t

; N t,j
r = {i ∈ N}

x
(i)
j >t

I(t, j) = RL2(N t,j
l ) +RL2(N t,j

r )
end for

end for
Choose t̂, ĵ ∈ argmint,j I(t, j)

We first estimate the mean-centered ICE curves
by f̂ c(xS ,x

(i)
C ) = f̂(xS ,x

(i)
C ) − 1

m

∑m
k=1 f̂(x

(k)
S ,x

(i)
C ).

Since we want to minimize the shape differences be-
tween ICE curves in the regions, we then define the risk
function RL2 in Eq. (6)5 such that the variance (L2
loss) of the mean-centered ICE curves is minimized.
This can be estimated by calculating the L2 loss of
the mean-centered ICE curves at each grid point (see
Eq. (5)) and aggregating it over all grid points:

L (Ng, xS) =
∑
i∈Ng

(
f̂ c(xS ,x

(i)
C )− f̂PD,cS|Ng

(xS)
)2

(5)

RL2 (Ng) =
m∑
k=1

L
(
Ng, x(k)

S

)
(6)

4Algorithm 1 is defined for numerical features. For cat-
egorical features, we use an exhaustive search as seen in
CART. The computational feasibility of this procedure de-
pends on the number of categories.

5Multiplying with 1
m

to obtain the average loss can be
neglected for optimization.
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Theorem 1 If Eq. (3) holds, then f̂ c(xS ,x
(i)
C ) with

|S| = 1 can be decomposed into the mean-centered6

main effect of xS (i.e. gcSS (xS)) and the mean-centered
interaction effect of xS with xC for the i-th observation

(i.e., gcSCk∪{S}(xS ,x
(i)
Ck

)):

f̂ c(xS ,x
(i)
C ) = gcSS (xS) +

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gcSCk∪{S}(xS ,x
(i)
Ck

).

Corollary 1.1 If Eq. (3) holds, then fPD,cS (xS) =

EXC
[f̂ c(xS , XC)] with |S| = 1 can be decomposed into

gcSS (xS) +
p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

EXC

[
gcSCk∪{S}(xS , XCk

)
]
.

The proof can be found in Appendix A.1.1.

Based on Theorem 1 and Corollary 1.1 – where we
show that the mean-centered ICE curves and PD func-
tion can be decomposed in first-order and higher-order
terms which depend on xS – we can prove in Theorem
2, that our risk function of Eq. (6) only depends on
the interaction effects between xS and features in xC .
Hence, by minimizing this risk function, we minimize
the individual interaction effects between the feature
of interest and all other features. Thus, we minimize
the shape differences between ICE curves in each re-
gion. Theorem 3 states that the theoretical minimum
of our split criterion leads to the optimal solution we
aim to achieve, meaning that for each final region, all
ICE curves are best represented by the REP.

Theorem 2 The distance minimized by the risk func-
tion RL2 of Eq. (6) only depends on the mean-centered
interaction effects between xS with |S| = 1 and all fea-
tures interacting with xS, i.e., for the i-th observation,
the distance results in

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gcSCk∪{S}(xS ,x
(i)
Ck

)−EXC
[gcSCk∪{S}(xS , XCk

)].

The proof can be found in Appendix A.1.2.

Theorem 3 If I(t, j) = 0, i.e., the theoretical min-
imum of the split criterion is reached for a split,
then the ICE curves within each of the child nodes
Nl and Nr are identical to the respective REP (e.g.,

f̂ c(xS ,x
(i)
C ) = f̂PD,cS|Nl

(xS) ∀i ∈ Nl).

Proof 3 Since RL2(Ng) ≥ 0 ∀g ∈ {1, . . . , G},
I(t, j) = 0 implies f̂ c(xS ,x

(i)
C ) = f̂PD,cS|Ng

(xS),

6gcSW (XW ) = gW (XW ) − EXS [gW (XW )] is the mean-
centered counterpart of gW (XW ) of Eq. (3) regarding XS .

∀i ∈ Ng,∀g ∈ {l, r}.

Applying our method to the simulation example
introduced at the beginning of Section 3.1 leads to
the REPs shown in Figure 3 after two splits. The
first binary split divides the ICE curves of x2 using
feature x3, which interacts most with x2 (according
to Eq.(4)). Each of the 2 resulting regions is then
split again into 2 groups by feature x1, which also
interacts with x2. Hence, after the second split, we
receive interpretable and distinct regions with REPs
that represent each sub-population well.

Figure 3: ICE curves for x2 grouped by REPID (black)
and REPs (blue).

3.2 Quantifying Interaction Strength

3.2.1 Motivation

Besides understanding how other features influence the
marginal effect of xS , users might be interested in how
strong these interactions are and how to rank these
features regarding their interaction strength with xS .
The H-Statistic defined in Section 2 is a global mea-
sure that quantifies the strength of interaction between
two features. However, its values are influenced by the
main effects of the two regarded features (see Theorem
4). Hence, the two-way interaction with the highest
H-Statistic value is not necessarily the strongest inter-
action, which we demonstrate in Section 4.1.

Theorem 4 The variance of the 2-dimensional
mean-centered PD plot of features xj and xl
(V ar(fPD,cS (xS)) with S = {j, l}) depends on the
mean-centered main effects (i.e., gcSj (xj) and gcSl (xl))
of the two features of interest xj and xl. Since

V ar(fPD,cS (xS)) is the denominator of the H-Statistic,
which is estimated as in Eq. (2), the H-Statistic itself
also depends on the main effects of features in S. The
proof can be found in Appendix A.1.3.

5. REPID: Regional Effect Plots with implicit Interaction Detection

124



REPID: Regional Effect Plots with implicit Interaction Detection

The global interaction index proposed by Greenwell
et al. (2018) suffers from the same problem that we
illustrate in Section 4.1 (see also Appendix A.3.1). A
third method of quantifying the two-way interaction
strength between features is based on SHAP interac-
tion values (see Section 2). To the best of our knowl-
edge, SHAP interaction values have been only defined
on an observational level. Similar to the global feature
importance used in Lundberg et al. (2018) to rank fea-
tures according to their global impact in their SHAP
summary plots, we suggest summarizing the individ-
ual SHAP interaction values for two features xj and
xl into a global SHAP interaction index by

Irel
j,l =

Ij,l∑
l∈{1,...,p}\{j} Ij,l

where Ij,l =
∑n
i=1 |Φj,l(x(i))|.

Since the absolute values Ij,l are difficult to inter-
pret, we prefer a relative version Irel

j,l , which we call
the SHAP interaction index and can be interpreted
as the proportion of all two-way interactions with xj
to which the l-th feature contributes. By definition,
SHAP interaction values only contain the interaction
effect between xj and xl. Hence, in contrast to the
H-Statistic, varying main effects do not change the
ranking of our proposed global SHAP interaction in-
dex Irel

j,l . However, both SHAP interaction indices and
the H-Statistic are based on the joint distribution of
the two regarded features, and hence, correlations be-
tween xS and features in xC might bias the interaction
value calculated by these methods, as demonstrated in
Section 4.1.

3.2.2 Methodology

Here, We derive an interaction index based on the
split criterion minimized in Algorithm 1 and Eq. (6),
and we prove its advantages compared to alternatives
mentioned in Section 3.2.1. Since the risk function of
our split criterion is based on the variance of mean-
centered ICE curves – which measures the degree of
existing feature interactions with xS – we can use the
achieved risk reduction after a split to quantify the
interaction strength. For better interpretability and
comparability, we define the relative interaction im-
portance for each parent node NP by

intImp(NP ) = RL2(NP )−(RL2(Nl)+RL2(Nr))
RL2(N ) (7)

with l, r ∈ {1, . . . G} denoting the left and right child
node of a parent node NP and N representing the
root node. Hence, intImp(NP ) measures the relative
risk reduction after splitting NP compared to the risk
within the root node RL2(N ). Let BP ⊂ {1, . . . G}
denote the index set of all parent nodes (i.e., all nodes
that have child nodes), and let Bj ⊆ BP denote the
subset of these parent nodes that used the regarded

feature xj for splitting. To obtain the relative interac-
tion importance of feature xj , we sum up the relative
interaction importance over the parent nodes in Bj :

intImpj =
∑
P∈Bj

intImp(NP ). (8)

This principle of summing up the relative risk reduc-
tion of individual splits regarding a certain feature in
order to measure the interaction strength is related to
how a decision tree measures the Gini or mean de-
crease impurity (MDI) feature importance (Breiman
et al., 1984). We obtain a measure that reports how
important each of these features is for reducing interac-
tions and thus obtaining more representative REPs for
xS . Our proposed interaction importance in Eq. (8)
only depends on the interaction effects between xj and
xS and not on their main effects (see Theorem 2), as
opposed to the H-Statistic or the interaction index of
Greenwell et al. (2018). Furthermore, we show by The-
orem 5 that intImp – in contrast to the H-Statistic and
the SHAP interaction index Irel

j,l – is not influenced by
correlations between xS and xj .

Theorem 5 Correlations between XS and XC do not
influence the splitting procedure of REPID, since the
loss function L of Eq. (5) does not contain a covariance
term between XS and features in XC . The proof can
be found in Appendix A.1.4.

To determine how well the resulting REPs in the
terminal nodes represent the underlying ICE curves,
we derive an R2 measure, which is commonly used
in statistics. The R2 can be calculated by R2 =

1− SSE(complex model)
SSE(baseline model) where the baseline model is, e.g.,

a constant mean prediction and the SSE is the sum
of squared errors of the model. The measure (usually)
only takes values between 0 and 1 when applied on
training data. While a value of 1 indicates that the
complex model fits the data perfectly, a value of 0 im-
plies that the complex model does not outperform the
baseline model. Similar to this concept, we use the
global PD plot as our baseline model. Our complex
model is the additive combination of the REPs in the
terminal nodes of the final tree. Hence, each additive
functional component (REP) is only valid for the spec-
ified region. The SSE of each model is measured by the
variability of the underlying ICE curves. Let Bt = B{P
denote the subset of terminal nodes in a symmetric
tree. We derive an interaction-related R2 measure by
aggregating the interaction importance over all parent
nodes BP :

R2
int =

∑
P∈BP

intImp(NP ) = 1−
∑

t∈Bt
RL2(Nt)

RL2(N ) (9)

A detailed derivation can be found in Appendix A.2.

For our example, we obtain the relative interaction im-
portance values for x2, as stated in Table 1. Since
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both child nodes after the first split use x1 as the
splitting feature, the relative interaction importance
values of the two nodes can be aggregated to obtain
intImp1 = 0.14. It follows that REPID detects (only)
the feature interactions with x2 that have been speci-
fied in the underlying data-generating process and also
ranks them in the correct order. The total variance
after the second split is reduced by R2

int = 97.5%
compared to the root node, suggesting that resulting
REPs are now meaningful representatives for the av-
erage marginal effect, as shown in Figure 3.

Table 1: Relative interaction importance on a node level
(left) and on a feature level (right). Gray shadings indicate
how intImpj is calculated from intImp(NP ). The param-
eters d and P indicate the tree depth and the index of the
parent node, respectively.

d P xj intImp(NP )
0 1 x3 0.835
1 2 x1 0.074
1 3 x1 0.066

xj intImpj
x3 0.835
x1 0.14

Stop Criteria A possible stop criterion for the tree
is to limit the maximum depth of the tree or to define a
minimum number of observations for each node. Fur-
thermore, we can apply a stop criterion based on the
interaction importance intImp. Let Ng be the node
we want to split and let NP be its parent node. Then,
we only split deeper if intImp(Ng) ≥ γ · intImp(NP ),
with γ ∈ [0, 1]. In other words, we only split deeper
if the improvement of the current split is at least as
large as a pre-specified proportion of the improvement
of the previous split. The suggested criteria can also
be combined and the hyperparameters must be cho-
sen by the user and usually depend on the underlying
setting.

4 SIMULATION EXAMPLES

For many model-agnostic interpretation techniques
– including interaction detection methods – ground
truth information is usually not available on real-world
data. Therefore, well-constructed simulation experi-
ments with a known ground truth are often used for
empirical evaluations and comparisons, while only one
or few real-world datasets are used to demonstrate
practical applicability (e.g., see Friedman et al. (2008),
Fisher et al. (2019), Goldstein et al. (2015), Greenwell
et al. (2018), or Aas et al. (2021)). Hence, we follow
this commonly used approach to evaluate our method
using various simulation settings.

4.1 Weaknesses of other Methods

In Section 3.2.1, we described disadvantages of sev-
eral interaction measures from a theoretical perspec-
tive. In the following simulation example, we provide
further empirical evidence. To be able to modify the
degree of the feature dependencies later on, we use
a Gaussian copula to simulate the data in all set-
tings. In the initial setting, we draw 1000 samples
of four approximately i.i.d. random variables, which
are marginally X1, . . . , X4 ∼ U(−1, 1), and assume the
true underlying function of f(x) = r(x) + ε, where
ε ∼ N (0, (σ(r(x)) · 0.1)2). We define the remainder by

r(x) =
∑4
j=1 xj + x1x2 + x2x3 + x1x3 + x1x2x3. To

avoid undefined interaction effects, we fit a correctly
specified linear model on the data. We repeat the ex-
periment 30 times, and each time, we measure the
interaction strength between x2 and the other three
features using REPID as well as the three alternatives
(the H-statistic, the Greenwell’s interaction index, and
the SHAP interaction index). On three adjusted set-
tings, we then illustrate that already small modifica-
tions of main effect sizes or feature dependencies may
produce misleading results for some of the alternatives
when used as a measure to rank interactions, while
REPID provides correct and stable results. For the
computations, we used an equidistant grid of size 20
for REPID and Greenwell’s interaction index. For bet-
ter comparability, we used a sample size of 20 for the
H-Statistic. We calculated the SHAP interaction in-
dex by aggregating the individual interaction indices
for 100 randomly sampled observations, which are ap-
proximated by using 20 random permutations for all
possible feature coalitions. For REPID, we combine
the stop criteria described in Section 3.2.2 as follows:
We use a maximum depth of 6, a minimum number of
10 observations per node, and an improvement factor
of γ = 0.15.
(1) Initial Setting: The plot on the top left of Figure 4
shows that, for the initial setting, all methods on aver-
age correctly assign the same interaction importance
to x1 as to x3, while x4 does not interact with x2.
(2) Small main effects: If we reduce the main effect
of x1 to 0.1, we observe in the top right plot of Fig-
ure 4 that its interaction strength with x2 increases
on average when the H-Statistic is used. This effect
can be explained by Theorem 4. Hence, when main
effects decrease, the proportion of the variance that
explains the interaction between x1 and x2 increases
compared to the proportion of the variance that ex-
plains the respective main effects. Also the method of
Greenwell’s interaction index depends on the main ef-
fect sizes. However, since Greenwell’s interaction index
includes the main effects in the nominator, the effect
on the resulting interaction index is opposite to the
one of the H-Statistic which includes the main effects

5. REPID: Regional Effect Plots with implicit Interaction Detection
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in the denominator. On the other hand, the SHAP
interaction index as well as REPID are only based on
interaction effects, and hence, varying main effects do
not change the ranking. The plot on the bottom right
of Figure 4 illustrates how problematic small main ef-
fects can be when the H-Statistic is applied. The H-
Statistic leads to average interaction values close to 1
for x1 and x3, although the actual interaction effect of
x1 with x2 is twice as high as that of x3 with x2.
(3) Dependencies between the feature of interest and
other features: In the lower left plot of Figure 4,
the correlation between x1 and x2 has been set to
ρ12 ≈ 0.9. Since we face a positive linear interac-
tion effect between x1 and x2, a positive linear cor-
relation between these features leads to an increasing
denominator of the H-Statistic. Hence, the respective
H-Statistic value decreases compared to features that
are independent of x2 (here, x3). The SHAP interac-
tion index for x1 is higher than for x3, since in this
case, it can be shown that the interaction strength is
an additive combination of the interaction effect and
the covariance of the interacting features. Conversely,
Greenwell’s interaction index is based on the variance
of conditional marginal effects, and hence, the interac-
tion index is not influenced by dependencies between
the feature of interest and other features. The same
holds for REPID, as proven with Theorem 5.

A summary of the simulation settings and key results is
provided in Appendix B.1. Detailed theoretical deriva-
tions and explanations can be found in Appendix A.3.

4.2 Comparison on More Complex Settings

The aim in this simulation is to show that REPID de-
tects existing interactions correctly in a more complex
non-linear setting and to compare the results to the H-
Statistic. Analogous to Hu et al. (2020), we draw 2000
samples of 10 independently and uniformly distributed
random variables X1, . . . , X10 ∼ U(−1, 1) and assume
the following true underlying function:

f(x) = 6x1 + x2
2 − πx3 + exp−2x2

4 +(2 + |x5|)−1

+ x6 log |x6|+ 2x31(x1>0)1(x2>0) + 2x21(x4>0)

+ 4(x21(x2>0))
|x6| + |x2 + x8|+ ε

with ε ∼ N (0, 0.25). Hence, x2 interacts with five
other features in a more complex and non-linear way.
To avoid undefined interaction effects in a fitted model,
we fit a correctly specified generalized additive model
(GAM) and a tree-based extreme gradient boosting
model (XGBOOST) with correctly specified interac-
tion constraints7, a learning rate of 0.1, a maximum

7The “xgboost” library (Chen and Guestrin, 2016) en-
ables definition of which features are allowed to interact
with each other.

number of iterations of 1000, and a maximum tree
depth of 6 on the simulated data. The performance
of each model is measured by a separately simulated
test set with the same distributional assumptions of
size 100,000 and is reported in Figure 5. We repeat
the experiment 30 times, and each time, we measure
the interaction strength between x2 and the other nine
features using REPID and the H-Statistic. For both
methods, we again use a grid size of 20. For REPID,
we apply the same stop criteria as in Section 4.1 but
with a maximum tree depth of 7 due to a more com-
plex setting. The results are illustrated in Figure 5.
REPID correctly identifies only the true interactions
for both models. In most of the repetitions, the H-
Statistic does not find an interaction between x1 and
x2 for the GAM. A possible reason for this behavior is
the rather high main effect of x1 compared to the in-
teraction effect (Theorem 4). More experiments of dif-
ferent models and settings – including varying values
of λ to obtain shallower or deeper trees – can be found
in Appendix B.2. The experiments show that shallow
trees produce fewer regions and are therefore easier to
interpret. However, they might only detect the most
important interactions. Deeper trees are more likely
to also identify less important interactions but are less
interpretable.
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Figure 4: Comparison of REPID, the H-Statistic, Green-
well’s, and SHAP interaction indices for interactions be-
tween x2 and all other features for 30 repetitions. The up-
per left plot shows the initial setting (1). The upper and
lower right plots adjust effect sizes (2), while the bottom
left plot adjusts the correlation (3).

5 REAL-WORLD EXAMPLE

We now demonstrate the usefulness of REPID on the
titanic data (Dawson, 1995). The labeled part of the
dataset consists of 11 characteristics of 891 passengers
of the ocean liner Titanic and a binary label if they
survived. After some pre-processing steps that are de-
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Figure 5: Comparison of the interaction strength between
x2 and all other features measured by REPID (top) and the
H-Statistic (bottom) on 30 repetitions. The mean (stan-
dard deviation) of the models’ test performance (measured
by the mean squared error) is: GAM: 0.36 (0.01), XG-
BOOST: 0.57 (0.11).

scribed in more detail in Appendix B.4, we train a RF
with 500 trees on the dataset. Therefore, we obtain a
balanced accuracy of 0.8 under 5-fold cross-validation.
We are interested in how the age of the passengers af-
fects the probability of survival. The left plot in Figure
6 shows that, from 0 to 20 years, the PD plot for pas-
sengers continuously decreases and then flattens above
20 years. The ICE curves indicate that age might
influence the predicted survival probability for differ-
ent passengers in different ways, and thus, interactions
with other features might be present. The REPs after
applying REPID by using a grid size of 20, a maximum
depth of 3, a minimum number of 30 observations, and
γ = 0.2 are shown in the right plot of Figure 6. The
3 most interacting features are Sex, Pclass (passenger
class), and Fare. The green REPs show that the pre-
dicted survival probability of female passengers is on
average higher compared to their male counterparts
independent of their age. However, it is also visible
that the probability strongly depends on the passen-
ger’s class and the fare they payed. While female pas-
sengers who payed a high fare or who belong to an
upper or middle class show an overall high survival
probability independent of their age (even slightly in-
creasing until 30), the survival probability of women
with a low fare and Pclass drops with age. For men
from middle and lower classes, the predicted survival
probability drops dramatically from 0 until 20 to 30,
meaning that for the sub-population of male passen-
gers, the chances of survival are several factors higher
for children than for adults.

More real-world examples for the California housing
(Pace and Barry, 1997) and the diabetes (Smith et al.,
1988) datasets are provided in Appendix B.4.
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Figure 6: Global PD plot (blue) including ICE curves (left)
and the REPs after applying REPID (right) for the feature
of interest Age of the titanic dataset. The interaction im-
portance intImpj between Age and the interacting features
is 0.28 (Sex), 0.17 (Pclass), 0.13 (Fare), 0.06 (Embarked)
and R2

int = 0.64.

6 DISCUSSION

We have introduced the interaction detection method
REPID, which provides more representative PD plots
on interpretable regions and enables quantification of
feature interactions. We have proven its theoretical
and empirical advantages and demonstrated how it
out-performs alternatives presented in Section 3 and
4. Unlike the H-Statistic or SHAP interaction index,
REPID is not influenced by correlations between the
feature of interest xS and other features xC . How-
ever, like the other methods, it might be affected if
features within xC are correlated. Furthermore, the
method might be limited if the feature of interest is,
e.g., highly skewed, especially if an equidistant grid
is used for computations. Possible solutions might be
feature transformations or to use a sample or quantile-
based grid. As our method is based on a tree-based
partitioning algorithm that is known to be unstable
(Breiman, 1996), the question arises whether the split-
ting procedure in Algorithm 1 is a potential limitation.
However, with regards to the interaction quantifica-
tion, we demonstrated in Section 4 that we obtain sta-
ble results when repeating the experiments multiple
times. A more detailed analysis on the robustness of
the method can be found in Appendix B.3.
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A THEORETICAL EVIDENCE

A.1 Proofs

Here, we provide the proofs of the Theorems defined in Section 3. For each Theorem, we first provide a textual
description in a proof sketch followed by the formal proof.
Note: For our proofs, we apply the concept of functional decomposition. One concept of functional decomposition
has been introduced in Section 2. The so-called functional ANOVA (fANOVA) decomposition is a well-known
approach to decompose a function in main and interaction effects. The fANOVA decomposition defined in Section
2 is based on Hooker (2004), and according to this definition, covariates must be independent to obtain a unique
decomposition. However, we argue that this is not a relevant issue for our methods, since: (1) We do not try to
estimate or calculate the decomposed mean-zero function terms gW ; we only use the (valid) assumption that a
function can be decomposed as in Eq. (3) to prove our theorems. Hence, we are not directly interested in a unique
solution of the decomposition. (2) Still, it is possible to relax this assumption by using the generalized fANOVA
(Hooker, 2007), which is a weighted version of the “normal” fANOVA to address the extrapolation problem when
strong correlations are present. However, it is also possible to use another functional decomposition (e.g., as
done in Apley and Zhu (2020)) for these proofs.

A.1.1 Proof of Theorem 1 and Corollary 1.1

Proof Sketch Since EXC

[
f̂(xS ,x

(i)
C )
]

= f̂(xS ,x
(i)
C ) and if Eq. (3) holds, the fANOVA decomposition can also be

applied to the i-th ICE curve. Since x
(i)
C is constant in i, all fANOVA components that do not depend on xS can

be summarized to an individual intercept shift of observation i and, thus, cancelled out by mean-centering an ICE
curve. The remaining term is then defined by the mean-centered main and mean-centered individual interaction
effect of xS for observation i. Taking the expected value w.r.t. XC results in an analogous decomposition of the
PD function and mean-centered PD function, respectively.

Proof 1 We first derive the fANOVA decomposition of the i-th ICE curve f̂(xS ,x
(i)
C ) using Eq. (3) and use this

decomposition to derive the mean-centered version f̂ c(xS ,x
(i)
C ) for |S| = 1. Therefore, we first decompose the

function into main and interaction effects depending on xS . Note: The term g0 represents a constant intercept
shift. This term is necessary to receive zero-mean functional components, i.e., e.g., EX [gS(XS)] = 0.

f̂(xS ,x
(i)
C ) = EXC |XC

[
f̂(xS , XC)|XC = x

(i)
C

]
= g0︸︷︷︸

constant term

+ gS(xS)︸ ︷︷ ︸
main effect of xS

+
∑
j∈C

gj(x
(i)
j )︸ ︷︷ ︸

main effect of all other
features xj for observation i

+

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{S}(xS ,x
(i)
Ck

)

︸ ︷︷ ︸
(k + 1)-order interaction between
xS and xCk

for observation i

+

p−1∑
k=2

∑
Ck⊆C,
|Ck|=k

gCk
(x

(i)
Ck

)

︸ ︷︷ ︸
k-order interaction between

features within Ck for observation i
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f̂ c(xS ,x
(i)
C ) = f̂(xS ,x

(i)
C )− EXS

[
f̂(XS ,x

(i)
C )
]

= g0 + gS(xS) +
∑
j∈C

gj(x
(i)
j ) +

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{S}(xS ,x
(i)
Ck

) +

p−1∑
k=2

∑
Ck⊆C,
|Ck|=k

gCk
(x

(i)
Ck

)

− g0 − EXS
[gS(XS)]︸ ︷︷ ︸
=0

−
∑
j∈C

gj(x
(i)
j )− EXS

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{S}(XS ,x
(i)
Ck

)

− p−1∑
k=2

∑
Ck⊆C,
|Ck|=k

gCk
(x

(i)
Ck

)

= gcSS (xS)︸ ︷︷ ︸
mean-centered

main effect of xS

+

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{S}(xS ,x
(i)
Ck

)− EXS

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{S}(XS ,x
(i)
Ck

)


︸ ︷︷ ︸

mean-centered interaction effect of xS with x
(i)
C for observation i

= gcSS (xS)︸ ︷︷ ︸
mean-centered

main effect of xS

+

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gcSCk∪{S}(xS ,x
(i)
Ck

)

︸ ︷︷ ︸
mean-centered interaction effect of

xS with x
(i)
C for observation i

Proof 1.1 We first derive the fANOVA decomposition of the PD function f̂PDS (xS) using Eq. (3) and use this

decomposition to derive its mean-centered version fPD,cS (xS) for |S| = 1.

fPDS (xS) = EXC

[
f̂(xS , XC)

]

= EXC

g0 + gS(xS) +
∑
j∈C

gj(x
(i)
j ) +

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{S}(xS , XCk
) +

p−1∑
k=2

∑
Ck⊆C,
|Ck|=k

gCk
(XCk

)



= g0 + gS(xS) + EXC

∑
j∈C

gj(x
(i)
j )


︸ ︷︷ ︸

expected main effect
of features in xC (=0)

+EXC

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{S}(xS , XCk
)

+ EXC

p−1∑
k=2

∑
Ck⊆C,
|Ck|=k

gCk
(XCk

)


︸ ︷︷ ︸

expected interaction effect
of features in xC (=0)

= g0 + gS(xS)︸ ︷︷ ︸
main effect of xS

+EXC

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{S}(xS , XCk
)


︸ ︷︷ ︸

expected interaction effect
of xS with xC w.r.t. xC

If the expected value of each decomposed term g(x) exists and if the integral of the absolute value is finite, then
Fubini’s theorem can be applied, and the mean-centered PD function of xS for |S| = 1 can be derived by:

fPD,cS (xS) = fPDS (xS)− EXS

[
fPDS (XS)

]
= EXC

[
f̂(xS , XC)

]
− EXS

g0 + gS(XS) + EXC

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{S}(XS , XCk
)
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= g0 + gS(xS) + EXC

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{S}(xS , XCk
)



− g0 − EXS
[gS(XS)]︸ ︷︷ ︸
=0

−EXS

EXC

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{S}(XS , XCk
)




︸ ︷︷ ︸
expected interaction effect
between xS and xC (=0)

= gcSS (xS)︸ ︷︷ ︸
mean-centered

main effect of xS

+EXC

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gcSCk∪{S}(xS , XCk
)


︸ ︷︷ ︸

expected mean-centered interaction effect
of xS with xC w.r.t. xC

A.1.2 Proof of Theorem 2

Proof Sketch If the function f̂(x) can be decomposed as in Eq. (3), then Theorem 1 and Corollary 1.1 hold, and
the main effect of xS is cancelled out when calculating RL2 (Ng). The remaining term is given by the distance
between the i-th centered interaction effect and the average centered interaction effect between xS and xC .

Proof 2 In the risk function of Eq. (6), the squared distance between the i-th mean-centered ICE curve

f̂ c(xS ,x
(i)
C ) and the respective PD function fPD,cS (xS) is calculated. The distance can be reduced to the following

term:

f̂ c(xS ,x
(i)
C )− fPD,cS (xS) = gcSS (xS) +

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gcSCk∪{S}(xS ,x
(i)
Ck

)− gcSS (xS)−
p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

EXC

[
gcSCk∪{S}(xS , XCk

)
]

=

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

(gcSCk∪{S}(xS ,x
(i)
Ck

)− EXC
[gcSCk∪{S}(xS , XCk

)]

The first term is the mean-centered interaction effect of the i-th ICE curve, while the second term represents
the mean-centered expected interaction effect over the joint distribution of xC (which is included in the mean-

centered PD function, see also the decomposition of the mean-centered PD function fPD,cS (xS) in the proof in
Appendix A.1.1). The intuition behind our split criterion is that we search for the optimal split value of a feature
in xC that reduces the aggregated variance over all curves the most if we split according to this optimal split
value. Thus, we try to find regions in the feature space xC where the distance between the individual centered
ICE curves in this region and the respective mean-centered PD plot is as small as possible. Hence, we want
to minimize the deviation of the individual interaction effect of the ICE curves in a region from the average
interaction effect in the considered region.

A.1.3 Proof of Theorem 4

Proof Sketch The two-way interaction index of the H-Statistic is calculated by dividing the variance of the
difference between the centered 2-dimensional PD plot and the 1-dimensional PD plots of the two features of
interest (nominator) by the variance of the centered 2-dimensional PD plot (denominator, see Eq. (2)). If Eq. (3)
holds, we can apply Theorem 1 and Corollary 1.1, and it can be shown that the main effects of the two features
of interest are cancelled out in the nominator, but are still present in the denominator (scaling factor) of the
interaction index.
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Proof 4 Let S = {j, l} and C = S{ its complement, then the 2-dimensional PD function fPDS (xS) of xj and
xl is given by

fPDS (xS) = EXC
[f(xS , XC)]

= g0 + gj(xj) + gl(xl) + gjl(xj ,xl) + EXC

p−2∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk
(XCk

)


︸ ︷︷ ︸

expected interaction effect
of features in xC (=0)

+ EXC

p−2∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{j}(xj , XCk
) + gCk∪{l}(xl, XCk

) + gCk∪{S}(xS , XCk
)



If the expected value of each decomposed term g(x) exists, and if the integral of the absolute value is finite, then

Fubini’s theorem can be applied, and the mean-centred 2-dimensional PD function fPD,cS (xS) of features xj and
xl can then be derived by

fPD,cS (xS) = fPDS (xS)− EXS

[
fPD,cS (XS)

]
= g0 + gj(xj) + gl(xl) + gjl(xj ,xl)

+ EXC

p−2∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{j}(xj , XCk
) + gCk∪{l}(xl, XCk

) + gCk∪{S}(xS , XCk
)


− g0 − EXS

[gj(Xj) + gl(Xl) + gjl(Xj , Xl)]︸ ︷︷ ︸
=0

− EXS

EXC

p−2∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{j}(Xj , XCk
) + gCk∪{l}(Xl, XCk

) + gCk∪{S}(XS , XCk
)




︸ ︷︷ ︸
expected interaction effect between xS and xC (=0)

= gcSj (xj) + gcSl (xl)︸ ︷︷ ︸
mean-centered

main effects of xS

+ gcSjl (xj ,xl)︸ ︷︷ ︸
mean-centered interaction effect

between xj and xl

+ EXC

p−2∑
k=1

∑
Ck⊆C,
|Ck|=k

gcSCk∪{j}(xj , XCk
) + gcSCk∪{l}(xl, XCk

) + gcSCk∪{S}(xS , XCk
)


︸ ︷︷ ︸

expected mean-centered interaction effects
between features in xS and features in xC w.r.t. xC

It follows that the H-Statistic still depends on the mean-centered main effects gcSj (xj) and gcSl (xl) of xj and xl
in the denominator.

To calculate the nominator of the H-Statistic, we must subtract the 1-dimensional mean-centered PD functions
of xj and xl as follows:

fPD,cS (xS)− fPD,cj (xj)− fPD,cl (xl) = gcSj (xj) + gcSl (xl) + gcSjl (xj ,xl)

5. REPID: Regional Effect Plots with implicit Interaction Detection
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+ EXC

p−2∑
k=1

∑
Ck⊆C,
|Ck|=k

gcSCk∪{j}(xj , XCk
) + gcSCk∪{l}(xl, XCk

) + gcSCk∪{S}(xS , XCk
)


− gcSj (xj)−

p−1∑
k=1

∑
Ck⊆C∪{l},
|Ck|=k

EXC∪{l}

[
gcSCk∪{j}(xj , XCk

)
]

− gcSl (xl)−
p−1∑
k=1

∑
Ck⊆C∪{j},
|Ck|=k

EXC∪{j}

[
gcSCk∪{l}(xl, XCk

)
]

Thus, in the nominator of the H-Statistic, the variance of the calculated term is determined. This term only
depends on interactions with features xj and xl, while the main effects gcSj (xj) and gcSl (xl) that are present in
the denominator are cancelled out.

A.1.4 Proof of Theorem 5

Proof Sketch The loss function in Eq. (5), which is used for the splitting in Algorithm 1, is calculated grid-wise.

This means that we calculate the variation measured by the estimated variance (L2 loss) for each grid point x
(k)
S

with k ∈ {1, . . . ,m}. Hence, xS is not treated as a random variable but as a constant. It follows that when

calculating the variance over all ICE curves on a specific grid point x
(k)
S , no covariance terms between XS and

features in XC are considered.

Proof 5 L(Ng, xS) of Eq. (5) is estimated by taking the variance over all mean-centered ICE curves within a
region Ng for a fixed grid point of xS . Hence, for each grid point k ∈ {1, . . . ,m}, we calculate:

L(x
(k)
S ,Ng) = V arX|Ng

(f̂ c(X)|XS = x
(k)
S ) = V arX|Ng

[f̂ c(x
(k)
S , XC)].

Since x
(k)
S is constant, it follows V arX|Ng

[f̂ c(x
(k)
S , XC)] = V arXC |Ng

[f̂ c(x
(k)
S , XC)], and hence, the calculated

variance only depends on features in C while there are no covariance terms between XS and features in XC

included.

A.2 Derivation of R Squared Measure

Let d = 0, . . . , D be the depth of the tree, where d = 0 is the depth of the root node and d = D of the leaf nodes
of a symmetric tree, and k defines the index of the node at each depth from left to right (starting from 0). With
a slight abuse of notation, we denote Rdk as the risk of the k-th node at depth d. For example, R0

0 is the risk of

the root node (R(N )). Let Bt = B{P denote the subset of terminal nodes in a symmetric tree. We can derive an
interaction-related R2 measure by aggregating the interaction importance over all parent nodes BP :

R2
int =

∑
P∈BP

intImp(NP )

=
1

R0
0

·
D−1∑
d=0

d∑
k=0

(Rdk −Rd+1
2k −R

d+1
2k+1)

=
1

R0
0

· (R0
0 −

D−1∑
k=0

(RD2k +RD2k+1))

= 1−

D−1∑
k=0

(RD2k +RD2k+1)

R0
0

= 1−
∑
t∈Bt
R(Nt)

R(N )
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Explanation: According to Eq. (7), intImp(NP) is defined by intImp(NP ) = R(NP )−(R(Nl)+R(Nr))
R(N ) which is,

e.g., for the first split (using the new notation defined in this section) the same as intImp(N ) =
R0

0−(R1
0+R1

1)

R0
0

and

for the split of the first left and right child nodes (which we denote here by Nl and Nr, respectively), we obtain

intImp(Nl) =
R1

0−(R2
0+R2

1)

R0
0

and intImp(Nr) =
R1

1−(R2
2+R2

3)

R0
0

. It follows that, after the second split (D = 2), R2
int

can be calculated by

R2
int = intImp(N ) + intImp(Nl) + intImp(Nr)

=
1

R0
0

(R0
0 − (R1

0 +R1
1) +R1

0 − (R2
0 +R2

1) +R1
1 − (R2

2 +R2
3)

=
1

R0
0

·
1∑
d=0

d∑
k=0

(Rdk −Rd+1
2k −R

d+1
2k+1)

=
1

R0
0

(R0
0 − (R2

0 +R2
1))− (R2

2 +R2
3)

=
1

R0
0

· (R0
0 −

1∑
k=0

(RD=2
2k +RD=2

2k+1))

= 1−

D−1∑
k=0

(RD2k +RD2k+1)

R0
0

= 1−
∑
t∈Bt
R(Nt)

R(N )

From the second to the fourth line of the equation, we can see that the parent nodes (besides the root node)
are cancelled out when aggregating the interaction importance over all nodes. It follows that only the deviation
between the root node risk and the sum over all terminal node risks remains in the nominator. The denominator
is always the root node (baseline) risk.

A.3 Explanations for Weaknesses of other Methods

A.3.1 Small Main Effects

For REPID, we proved with Theorem 2 that the split criterion only depends on interaction effects with the
feature of interest xS and is independent of main effects. On the other hand, according to Theorem 4, the
H-Statistic depends on main effects in the denominator of the H-Statistic. Since the main effect of feature x1

is reduced from 1 to 0.1 in the adjusted example of Section 4.1, the denominator of H-Statistic decreases, and
hence, the overall H-Statistic value increases for feature x1.

Since we provided proofs for REPID and for the H-Statistic, we will not go into more detail here, but instead
derive explanations for the SHAP and Greenwell’s interaction indices with regards to varying main effects.

SHAP interaction index By definition, SHAP interaction values only contain the interaction effect between
the two features of interest and do not contain their main effects. Since we only sum up the absolute interaction
values and divide them by the total amount of two-way interaction values between the feature of interest and
all other features, there are also no main effects included in the global SHAP interaction index. Hence, varying
main effects does not change the interaction strength / ranking calculated by the SHAP interaction index.

Example: Due to the complexity of an increasing number of feature permutations, we show this relationship on
the following simple model: f̂(x) = β̂1x1 + β̂2x2 + β̂12x1x2 with E(X1) = E(X2) = 0.
In this case, we can straightforwardly calculate the individual components of the SHAP interaction value with
S = ∅:

fPDS∪{1,2}(xS∪{1,2}) = β̂1x1 + β̂2x2 + β̂12x1x2

Since E(X1) = E(X2) = 0, it follows:

fPDS∪{1}(xS∪{1}) = β̂1x1 and fPDS∪{2}(xS∪{2}) = β̂2x2 and fPDS (xS) = EX

[
f̂(X)

]
= β̂12EX [X1X2]

5. REPID: Regional Effect Plots with implicit Interaction Detection
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and hence, the SHAP interaction value between x1 and x2 is given by

Φ1,2(x) =
1

2
(fPDS∪{1,2} − f

PD
S∪{1}(xS∪{1})− f

PD
S∪{2}(xS∪{2}) + fPDS (xS))

=
1

2
(β̂1x1 + β̂2x2 + β̂12x1x2 − β̂1x1 − β̂1x2 + β̂12EX [X1X2])

=
1

2
(β̂12x1x2 + β̂12EX [X1X2])

Greenwell’s interaction index Greenwell et al. (2018) defines feature importance i(xj) as the standard
deviation over the PD function of a feature xj with mj unique values as follows:

i(xj)
2 =

1

mj − 1

mj∑
k=1

(
f̂PDj (x

(k)
j )− 1

mj

mj∑
k=1

f̂PDj (x
(k)
j )

)2

To calculate the interaction between xj and xl, they define the conditional importance i(xj |xl = x
(i)
l ) of a feature

xj given the t-th unique value of xl as follows:

i(xj |xl = x
(t)
l )2 =

1

mj − 1

mj∑
k=1

(
f̂PDj (x

(k)
j |xl = x

(t)
l )− 1

mj

mj∑
k=1

f̂PDj (x
(k)
1 |xl = x

(t)
l )

)2

With mj and ml being the number of unique values of xj and xl, respectively, the interaction measure i(xj ,xl)
between these two features is then defined by:

i(xj ,xl) =
1

2

√√√√ 1

ml − 1

ml∑
t=1

[
i(xj |xl = x

(t)
l )− 1

ml

ml∑
t=1

i(xj |xl = x
(t)
l )

]2

+
1

2

√√√√ 1

mj − 1

mj∑
k=1

[
i(xl|xj = x

(k)
j )− 1

mj

mj∑
k=1

i(xl|xj = x
(k)
j )

]2

Instead of conditioning on all features in C as done for ICE curves, Greenwell et al. (2018) conditions only on
the second feature of interest (e.g., xl) to calculate the variation of PD curves for the first feature of interest
(e.g., xj). Hence, they first take the variation of each conditioned curve and then calculate the variation over all
these curves. Since they calculate the squared distance of each conditioned PD curve to its mean, the distance
still contains the main effects of the two features of interest (see Theorem 1).

A.3.2 Dependencies between the Feature of Interest and other Features

For REPID, we proved with Theorem 5 that the loss function of Eq. (5) (which is used for splitting) is not
affected by dependencies between the feature of interest xS and features in xC .

Hence, we will now derive explanations for the H-Statistic, the SHAP, and the Greenwell’s interaction indices
with regards to dependencies between the feature of interest and other features.

The H-Statistic The H-Statistic (which is estimated as in Eq. (2)) divides the variance of the difference
between the mean-centered 2-dimensional PD plot and the two mean-centered 1-dimensional PD plots by the
variance of the mean-centered 2-dimensional PD plot. Both the nominator and the denominator depend on the
joint distribution of the two features of interest and, hence, also on the dependency between the two features.

Example Considering our simulation example in Section 4.1 with E(X1) = E(X2) = E(X3) = E(X4) = 0, the
mean-centered 2-dimensional PD function between x1 and x2 with S = {1, 2} is given by:

f̂PD,cS (x1,x2) = β̂1x1 + β̂2x2 + β̂3E(X3) + β̂12x1x2 + β̂23E(X3)x2 + β̂13x1E(X3) + β̂123x1E(X3)x2
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− β̂1E(X1)− β̂2E(X2)− β̂3E(X3)− β̂12EXS
[X1X2]− β̂23E(X3)E(X2)− β̂13E(X1)E(X3)

− β̂123EXS
[X1X2]E(X3)

= β̂1x1 + β̂2x2 + β̂12(x1x2 − EXS
[X1X2])

Calculating the denominator by taking the variance

V ar(f̂PD,cS (x1,x2)) = E
[
(β̂1X1 + β̂2X2 + β̂12(X1X2 − EXS

[X1X2]))2
]

− E
[
β̂1X1 + β̂2X2 + β̂12(X1X2 − EXS

[X1X2])
]2

= E
[
β̂2

1X
2
1 + 2β̂1β̂2X1X2 + β̂2

2X
2
2 + 2β̂1β̂12X

2
1X2 + 2β̂2β̂12X1X

2
2

]
+ E

[
−2β̂1β̂12X1EXS

[X1X2]− 2β̂2β̂12X2EXS
[X1X2] + β̂2

12X
2
1X

2
2

]
+ E

[
−2β̂2

12X1X2EXS
[X1X2] + β̂2

12EXS
[X1X2]

2
]

= β̂2
1V ar(X1) + β̂2

2V ar(X2) + β̂2
12V ar(X1X2)

+ 2β̂1β̂2Cov(X1, X2) + 2β̂1β̂12Cov(X2
1 , X2) + 2β̂2β̂12Cov(X1, X

2
2 )

in the nominator, we subtract the mean-centered 1-dimensional PD functions (i.e., f̂PD,c1 (x1) = β̂1x1 and

f̂PD,c2 (x2) = β̂2x2) and take the variance, which results in

EX

[
β̂2

12(X1X2 − EXS
[X1X2]))2

]
− EX

[
β̂12(X1X2 − EXS

[X1X2])
]2

= EX

[
β̂2

12X
2
1X

2
2 − 2β̂2

12X1X2EXS
[X1X2] + β̂2

12EXS
[X1X2]

2
]

= β̂2
12V ar(X1X2)

= β̂2
12(V ar(X1)V (X2))− Cov(X1, X2)2 + Cov(X2

1 , X
2
2 ))

It follows that by increasing the correlation between x1 and x2 to ρ12 = 0.9, the denominator of the H-Statistic
increases compared to the nominator for the given example, and hence, the H-Statistic value between x1 and x2

decreases compared to the H-Statistic value between x2 and x3.

Some general rules that were applied here:

1 Rearrangement of variance formula for functions: V ar(g(X)) = E
[
g(X)2

]
− (E [g(X)]

2

2 Expected value of a product of two random variables: E [X1X2] = E [X1]E [X2] + Cov(X1, X2) which
reduces for E(X1) = E(X2) = 0 to E [X1X2] = Cov(X1, X2)

3 Variance of a product of two random variables: V (XY ) = E
[
X2Y 2

]
− (E [XY ]

2
= Cov(X2, Y 2) + (V (X) +

(E [X]
2
)(V (Y ) + (E [Y ]

2
)− (Cov(X,Y ) + E [X]E [Y ])2 which reduces for E [X] = E [Y ] = 0 to V (XY ) =

Cov(X2, Y 2) + V (X)V (Y )− Cov(X,Y )2

SHAP interaction index SHAP interaction values – and with that, also the (global) SHAP Interaction index
– depend on the correlation between the two features of interest, since we consider the joint distribution of the
features as we do for the H-Statistic.

Example In Appendix A.3.1, we derived the SHAP interaction value for a simple linear model of two features
with a positive linear interaction between these features, which resulted in

Φ1,2(x) = 1
2 (β̂12x1x2 + β̂12EX [X1X2])

Hence, if x1 and x2 are positively correlated as in our example in Section 4.1, then EX [X1X2] > 0, while this
term is 0 if the two features are independent. This is why x1 shows a higher interaction value than x3 in the
referred simulation study.

5. REPID: Regional Effect Plots with implicit Interaction Detection
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Greenwell’s interaction index Similarly to our approach, the Greenwell’s interaction index conditions on
one of the two features of interest. They calculate the variance w.r.t. the other feature of interest, and vice versa.
Hence, the dependency between the two regarded features does not influence the resulting interaction index.

B EMPIRICAL EVIDENCE

In this section, we provide more empirical evidence for the usefulness of REPID. We will further analyze the
nonlinear simulation setting described in Section 4.2 and will also look at a linear example where interactions
can clearly be ranked. Furthermore, we analyze the influence of the improvement parameter γ used as stop
criterion and provide some evidence for the robustness of our method in Section B.3. In Section B.4, we clarify
the pre-processing steps of the real-world example that was analyzed in Section 5.

Infrastructure All experiments only require CPUs (and no GPUs) and were computed on a Linux cluster
(see Table 2).

Table 2: Description of the infrastructure used for the experiments in this paper.

Computing Infrastructure

Type Linux CPU Cluster
Architecture 28-way Haswell-EP nodes
Cores per Node 1
Memory limit (per core) 2.2 GB

B.1 Overview on Weaknesses of other Methods

In Table 3, we provide a brief overview of the simulation setting, including a sensitivity analysis that we performed
in Section 4.1. The table shows that only REPID provides on average correct ranks for all settings, while the
other state-of-the-art methods provide for at least one of the settings a wrong ranking (on average).

Table 3: Summary table of settings and key results of the simulation study in Section 4.1. The column “Setting” refers
to the setting number in Section 4.1. The second column refers to the adjustments made in the setting compared to the
initial setting. The other four columns show if the average ranks (r) of the feature interactions with the feature of interest
(x2) are correct (meaning that the ranks are the same as the ranks of the underlying data-generating process and fitted
linear model) or if they are wrong (different from the ranks in the data-generating process and fitted linear model).

Setting Adjustment REPID H-Statistic Greenwell Shapley
(2) β1 = 0.1 (initial: 1) correct

r(x1) = r(x3)
wrong
r(x1) > r(x3)

wrong
r(x1) < r(x3)

correct

(2) β1 = β2 = β3 = β4 = 0.1
and β12 = 2 (initial: 1)

correct
r(x1) > r(x3)

wrong
r(x1) = r(x3)

correct correct

(3) ρ12 = 0.9 (initial: 0) correct
r(x1) = r(x3)

wrong
r(x1) < r(x3)

correct wrong
r(x1) > r(x3)

B.2 Further experiments

Nonlinear example In Section 4.2, we compared REPID and the H-Statistic for the interactions between the
most interacting feature x2 and the other nine features of the simulation setting described in the referred section.
In addition to the correctly specified GAM and XGBOOST model from Section 4.2, we now also compare the
results to two other ML models: an RF with 500 trees – the mean and standard deviation of the models’ test
performance (measured by the mean squared error) is 1.01 and 0.16 – and a support vector machine (SVM) using
epsilon support vector regression with a Gauss kernel, C = 1 and ε = 0.1 – the mean and standard deviation
of the models’ test performance (measured by the mean squared error) is 0.76 and 0.07. The left plot in Figure
7 shows the same illustration as in Figure 5 for the interactions between the non-influential feature x10 and all
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other features. For the correctly specified GAM and XGBOOST model, both methods do – as expected – on
average not find any interactions. While REPID on average also recognizes that there are no interactions present
between x10 and all other features for the SVM and RF models, the H-Statistic finds some higher interactions,
especially for the SVM. A possible explanation is that x10 does also not influence the target by a main effect in
the underlying function, and hence, possible small found interaction effects might lead to high H-Statistic values.
The outliers for some features when REPID is applied are possibly because the total variation of mean-centered
ICE curves for non-influential features are rather small, and hence, relative loss reduction values might be high,
although the absolute values are small. A potential solution to prevent these outliers is to extend the stop
criterion by, e.g., a minimum absolute loss reduction constraint.

In the left plot in Figure 8, we analyzed the influence of the improvement parameter γ on the interaction strength.
The difference between the threshold γ = 0.15, which we chose in Section 4.2, and γ = 0.1 is rather small, while it
becomes more difficult to detect the smaller interactions with γ = 0.2. The smaller we choose γ to be, the deeper
we split, and the less interaction variance remains in the final terminal nodes. Therefore, the obtained interaction
strengths are more precise, and hence, our results seem to be more robust for different repetitions8. However, the
deeper we split, the more final regions we obtain, which makes it more difficult to visually analyze the influence
of the interactions on the marginal effect of the feature of interest. Hence, how to set the improvement parameter
γ depends on the question the user would like to answer.
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Figure 7: Left (right): The figure compares the interaction strength between x10 (x2) and all other features measured by
REPID and the H-Statistic for 4 different models on 30 repetitions of the described nonlinear (linear) simulation setting.

Linear example We now look at a further simulation example with only linear interaction effects between
numeric features, which makes it possible to clearly rank the interactions between the feature of interest and all
other features. Therefore, we draw 2000 samples of seven independent random variables, which are distributed
as follows: X1, . . . , X5 ∼ U(−1, 1), X6 ∼ N (0, 4) and X7 ∼ N (2, 9). The true underlying relationship is defined
by f(x) = r(x) + ε, where the remainder r(x) is given by

r(x) = x1 + 4x2 + 3x2x3 + 5x2x4 + 7x2x5

and ε ∼ N (0, (σ(r(x)) · 0.1)2). Hence, x5 interacts most with x2, followed by x4 and then x3. We fitted a linear
model (LM) and an XGBOOST model with interaction constraints as well as an SVM and RF using the same
configurations as for the nonlinear example on the simulated data. We repeated the experiment 30 times to
quantify the interaction strength between x2 and all other features using REPID and the H-Statistic.9 We use
the same specifications for the models’ and interaction detection methods’ hyperparameters as used in Section
4.2. The right plot in Figure 7 illustrates that both methods on average find the correct ranking of the feature
interactions. However, REPID shows almost no variation over all repetitions and hence leads to more stable
and clearer ranking results than the H-Statistic. In the right plot of Figure 8, the impact of the improvement
parameter γ is shown. However, for this example, we barely see a difference between the different choices of γ,
which might be due to the simplicity of the setting and hence that no deep trees are necessary to receive stable
results for the interaction strength.

8The more robust results are shown by smaller interquartile ranges of boxplots in Figure 8.
9The mean (standard deviation) of the models’ test performance (measured by the mean squared error) is for the LM:

0.15 (0.002), XGBOOST: 0.6 (0.22), SVM: 0.31 (0.069) and RF: 1.43 (0.34).

5. REPID: Regional Effect Plots with implicit Interaction Detection

140



REPID: Regional Effect Plots with implicit Interaction Detection

0.1
0.15

0.2

x1 x3 x4 x5 x6 x7 x8 x9 x10

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

Feature

In
te

ra
ct

io
n 

S
tr

en
gt

h

GAM XGBOOST SVM RF

0.1
0.15

0.2

x1 x3 x4 x5 x6 x7

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

Feature

In
te

ra
ct

io
n 

S
tr

en
gt

h

LM XGBOOST SVM RF

Figure 8: Left (right): The figure compares the interaction strength between x2 and all other features measured by REPID
for 3 different improvement parameter values: γ = 0.1 (top), γ = 0.15 (middle), and γ = 0.2 (bottom) for 4 different
models on 30 repetitions of the described nonlinear (linear) simulation setting.

B.3 Robustness analysis

An oft-stated limitation of the usage of decision trees is that they do not provide robust results. In Section
4 and B.2, we already showed that REPID provides robust results with regards to quantifying the interaction
strength for different simulation settings. To investigate the robustness itself of the fitted trees, we extract and
analyze the splits of the first three levels (depths) of the tree for the nonlinear example of Section 4.2, which
is the most complex analyzed example of all examples in this paper. The frequencies of the features used at
each split for the 30 repetitions is shown in Table 4 for each of the fitted models. For all repetitions and for all
models, x4 was always chosen as the first splitting feature, with an average split value very close to 0, which
shows only small variations (sd values). Furthermore, all models chose most often x8 for all nodes in the second
level and x3 for all nodes in the third level of the tree. For the GAM that was correctly specified according to
the true underlying function, the splits for the first three levels of the fitted decision tree barely differ. On the
other hand, the SVM and the RF show higher variations. However, these models might have learned different
interaction effects for different repetitions, and hence, it might be reasonable to receive different splits and REPs.
The XGBOOST model also varies more than the GAM, which might be due to the fact that the GAM has a
better and less variable model performance compared to the XBGOOST model, and hence, effect sizes might
also vary less (see Figure 5). However, for all models, the feature chosen most often in each node is the same.
It follows that REPID seems to provide robust results with regards to the interaction strength and the upper
levels of the fitted tree if the same interactions have been learned by the ML models we want to explain.

B.4 Real-World Examples

Titanic dataset In Section 5, we applied REPID on the titanic dataset (Dawson, 1995). The labeled part
of the dataset consists of 11 features and the binary survival target variable of 891 passengers. The features of
the raw dataset include: PassengerId , Name, Pclass, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked, a
detailed definition of each feature can be found at https://www.kaggle.com/c/titanic/data. To fit the RF
model and analyze the predictions, we first pre-processed the data according to the following kaggle notebook
https://www.kaggle.com/nitinar1/titanic-solution-using-random-forest-tool-r. The pre-processing
steps can be summarized as follows:

1 We extract a title from the feature Name and categorize them into 5 categories (Master, Miss, Mr, Mrs and
Rare Title).

2 We create a family size feature FsizeD from the features Sibsp as the number of siblings and Parch as the
number of parents and children, and we categorize it into singleton, small and large family size.

3 We impute missing values of feature Embarked based on the fare price they paid.
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4 We impute missing values of feature Fare by its median value of the respective Pclass and Embarked
categories.

5 We impute the feature Age using a random forest imputation via multivariate imputation by chained equa-
tions.

6 We exclude the features PassengerId, Name, Ticket, Cabin from the dataset, which leaves us with nine
features: Pclass, Sex, Age, SibSp, Parch, Fare, Embarked, Title, FsizeD.

California housing dataset As a second example, we applied REPID on the California housing dataset
(Pace and Barry, 1997). The dataset contains information from the 1990 U.S. Census in California. Each of the
20640 observations provides information of a block group (small geographical unit), with an average population
of around 1425 on the median house value (target), eight numeric features, and one categorical feature describing
the ocean proximity. The features of the dataset include: Longitude, Latitude, Housing median age, Total rooms,
Total Bedrooms, Population, Households, Median Income and Ocean proximity. A detailed definition of each
feature can be found at https://www.kaggle.com/camnugent/california-housing-prices. Only the feature
Total bedroom contains 207 missing values, which we imputed by the median value of Total bedroom of all other
observations. Before applying the neural network on the data, we log transformed the target variable with a base
of 10 and log transformed the features Total rooms, Total Bedrooms, Population, Households, Median Income
using the natural logarithm. After pre-processing the data, we fit a neural net with one hidden layer of size
20, a weight decay of 0.1, and a maximum number of iterations of 1000. Thus, we obtain a mean absolute
error (R-squared) of 0.08 (0.78) under 5-fold cross-validation. The left plot in Figure 9 shows that the median
house value on average decreases the farther west a house is. The effect of individual observations seems to
vary. However, visualizing ICE curves for such a high number of observations is not very insightful. In the
right plot, we illustrate the resulting REPs after applying REPID with the same configurations as used for the
titanic example in Section 5 but with γ = 0.25. The REPs show that the marginal effect of Longitude on the
predicted median house value highly depends on how far north a house is (Latitude: the higher the value the
farther north) and how close the house is to the ocean (Ocean proximity). For example, median values of houses
that are farther north decrease with Longitude (light orange), while median values of houses farther south and
not in the inland increase with Longitude (red).
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Figure 9: The figure shows the global PD plot (blue), including ICE curves (left) and the REPs after applying REPID
(right) for the feature of interest Longitude of the California housing dataset. The interaction importance intImpj
between Longitude and the interacting features is 0.49 (Latitude), 0.18 (Ocean proximity), and R2

int = 0.67.

Diabetes dataset As a third real-world example, we apply REPID on the Diabetes dataset, which analyzes
diabetes in Pima Indian women and is available in the MASS package in R. The dataset consists of seven numeric
features and the binary target variable type, which indicates if a woman is diabetic. The features for the 332
women contained in the dataset include: Npreg (number of pregnancies), Glu (plasma glucose concentration),
Bp (diastolic blood pressure in mm Hg), Skin (triceps skin fold thickness in mm), Bmi (body mass index, ped
(diabetes pedigree function), Age. We trained an SVM using epsilon support vector regression with a Gauss

5. REPID: Regional Effect Plots with implicit Interaction Detection
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kernel, C = 1 and ε = 0.1. Subsequently, we obtained a balanced accuracy of 0.72 using a 5-fold cross-validation.
We are interested in how the feature Skin influences the predicted probability for diabetes. When looking at the
global PDP in Figure 10, one would assume that the skin fold thickness does not effect the predicted probability
for diabetes, however, the ICE curves in the left plot indicate heterogeneous effects and, hence, interactions. We
apply REPID with the same configurations as used in the titanic example in Section 5 and obtain the REPs
shown in the right plot of Figure 10. While the risk of diabetes is in general higher for women with a glucose
concentration higher than 133 than for women with a lower glucose concentration, the REPs also show that the
risk for women with high glucose concentration values first increases with skin fold thickness and then decreases
(green and light green curves), while the risk of diabetes for women with lower glucose concentration values
and a maximum of five pregnancies first slightly decreases until a thickness of approximately 20 mm and then
increases with skin fold thickness (orange and red curve).
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Figure 10: The figure shows the global PD plot (blue), including ICE curves (left), and the REPs after applying REPID
(right) for the feature of interest Skin of the diabetes dataset. The interaction importance intImpj between Skin and the
interacting features is 0.29 (Glu), 0.09 (Age), 0.08 (Npreg), 0.03 (Bmi) and R2

int = 0.49.
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Table 4: Summary of the split information of the first three levels (depths) of the trees fitted by applying REPID to
the simulation example stated in Section 4.2 for the 30 repetitions of the 4 models (GAM, XGBOOST, SVM, RF). The
column “Depth” indicates the tree depth while the column “Node ID” indicates the respective node of this depth from
left to right. The columns “Feature” and “Share” provide information of how often which feature was chosen for splitting
in the respective node. The last two columns contain the mean and standard deviation of the respective split value. The
coloring indicates the feature that was chosen most often for each node, where the different colors belong to the different
tree depths.

Model Depth Node ID Feature Share Split value mean Split value sd

GAM

1 1 x4 1.00 0.01 0.02
2 1 x8 1.00 0.02 0.10
2 2 x8 1.00 -0.00 0.10
3 1 x3 1.00 -0.04 0.14
3 2 x8 0.03 0.31
3 2 x3 0.97 0.03 0.16
3 3 x8 0.03 -0.37
3 3 x3 0.97 -0.05 0.16
3 4 x8 0.07 0.38 0.07
3 4 x3 0.93 -0.01 0.14

XGBOOST

1 1 x4 1.00 0.00 0.01
2 1 x8 0.63 -0.06 0.11
2 1 x3 0.37 -0.02 0.25
2 2 x8 0.77 -0.05 0.11
2 2 x3 0.23 0.01 0.11
3 1 x8 0.17 -0.06 0.16
3 1 x3 0.63 0.03 0.14
3 1 x1 0.20 -0.01 0.10
3 2 x8 0.07 -0.19 0.01
3 2 x3 0.63 0.03 0.21
3 2 x1 0.30 0.01 0.06
3 3 x8 0.10 0.13 0.22
3 3 x3 0.77 -0.04 0.19
3 3 x1 0.13 -0.02 0.06
3 4 x8 0.03 0.00
3 4 x3 0.77 0.08 0.20
3 4 x1 0.20 0.06 0.07

SVM

1 1 x4 1.00 -0.03 0.07
2 1 x8 1.00 -0.02 0.10
2 2 x8 1.00 -0.11 0.10
3 1 x4 0.23 -0.45 0.06
3 1 x8 0.03 -0.55
3 1 x3 0.73 -0.02 0.15
3 2 x4 0.37 -0.50 0.09
3 2 x3 0.63 -0.15 0.13
3 3 x4 0.20 0.35 0.07
3 3 x8 0.07 -0.61 0.00
3 3 x3 0.73 -0.18 0.16
3 4 x4 0.07 0.24 0.05
3 4 x3 0.93 -0.21 0.15

RF

1 1 x4 1.00 0.00 0.02
2 1 x8 0.70 -0.12 0.09
2 1 x3 0.30 0.21 0.18
2 2 x8 1.00 -0.11 0.15
3 1 x8 0.23 -0.08 0.13
3 1 x3 0.70 0.17 0.18
3 1 x1 0.07 0.04 0.17
3 2 x8 0.30 -0.18 0.17
3 2 x3 0.70 0.20 0.18
3 3 x8 0.03 -0.48
3 3 x3 0.97 0.10 0.18
3 4 x3 0.97 0.08 0.23

5. REPID: Regional Effect Plots with implicit Interaction Detection
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6. Decomposing Global Feature Effects Based
on Feature Interactions

This article also deals with the aggregation bias of global feature effect methods due to feature
interactions. Here, we introduce the general framework generalized additive decomposition of global
effects (GADGET) based on recursive partitioning to minimize the feature interactions between
any set of features and thus to additively decompose their joint effect into the features’ main
effects within the found regions. Compared to the REPID method suggested in the contributing
article of Section 5, GADGET is applicable to many global feature effect methods, including PD,
ALE, and SHAP dependence and to multiple features of interest. We also show that the REPID
method is a special case of GADGET.

Contributing article: Herbinger, J., Bischl, B., and Casalicchio, G. (2023). Decomposing global
feature effects based on feature interactions. arXiv preprint arXiv:2306.00541.
Under Review at the Journal of Machine Learning Reserach (JMLR).

Author contributions: Julia Herbinger contributed to this paper as the first author with the
following contributions:
Julia Herbinger developed the project idea and the algorithms. Julia Herbinger provided the
mathematical foundation and proofs in the paper, which were revised by Giuseppe Casalicchio.
Julia Herbinger designed and conducted the experiments as well as the real-world applications.
Julia Herbinger created all visualizations and drafted the entire manuscript. All authors con-
tributed to revisions of the paper. Giuseppe Casalicchio and Bernd Bischl gave valuable input
throughout the project and suggested several notable modifications.
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Abstract

Global feature effect methods, such as partial dependence plots, provide an intelligible
visualization of the expected marginal feature effect. However, such global feature effect
methods can be misleading, as they do not represent local feature effects of single observa-
tions well when feature interactions are present. We formally introduce generalized additive
decomposition of global effects (GADGET), which is a new framework based on recursive
partitioning to find interpretable regions in the feature space such that the interaction-
related heterogeneity of local feature effects is minimized. We provide a mathematical
foundation of the framework and show that it is applicable to the most popular meth-
ods to visualize marginal feature effects, namely partial dependence, accumulated local
effects, and Shapley additive explanations (SHAP) dependence. Furthermore, we intro-
duce a new permutation-based interaction test to detect significant feature interactions
that is applicable to any feature effect method that fits into our proposed framework. We
empirically evaluate the theoretical characteristics of the proposed methods based on var-
ious feature effect methods in different experimental settings. Moreover, we apply our
introduced methodology to two real-world examples to showcase their usefulness.

Keywords: interpretable machine learning, feature interactions, partial dependence,
accumulated local effect, SHAP dependence

1 Introduction

Machine learning (ML) models are increasingly used in various application fields—such as
medicine (Shipp et al., 2002) or social sciences (Stachl et al., 2020)—due to their better
predictive performance compared to simpler, inherently interpretable models. The superior
performance often comes from complex non-linear relationships or feature interactions in
the data which can be modeled more accurately by more flexible and complex ML models.
However, the more complex and flexible a model, the harder it becomes to explain its inner
workings. A lack of explainability might hurt trust or might even be a deal-breaker for high-
stakes decisions (Lipton, 2018). Hence, ongoing research on model-agnostic interpretation
methods to explain any ML model has grown quickly in recent years.

One promising type of explanation is produced by feature effect methods which explain
how features influence the model predictions (similarly to the coefficients in a linear model)
(Molnar, 2022). We distinguish between local and global feature effect methods. Local
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feature effect methods—such as individual conditional expectation (ICE) curves (Gold-
stein et al., 2015) or Shapley values / Shapley additive explanations (SHAP) (Štrumbelj
and Kononenko, 2014; Lundberg and Lee, 2017)—explain how each feature influences the
prediction of a single observation. In contrast, global feature effect methods explain the
general model behavior based on the given data. Since global feature effects of ML models
are often non-linear, it is easier to visualize them as done by partial dependence (PD) plots
(Friedman, 2001), accumulated local effects (ALE) plots (Apley and Zhu, 2020), or SHAP
dependence (SD) plots (Lundberg et al., 2019).

Aggregating individual explanations to a global explanation (e.g., ICE to PD curves)
has the advantage that the global feature effects can be presented in an easy-to-understand
way. However, the aggregation step might cause information loss due to heterogeneity
in local effects (e.g., see the different shapes of ICE curves in Figure 1). This so-called
aggregation bias is usually induced by feature interactions leading to a global feature effect
that is not representative for many individuals in the data (Herbinger et al., 2022; Mehrabi
et al., 2021). We term this heterogeneity interaction-related heterogeneity. Therefore, global
explanations might be misleading or not give a complete picture when feature interactions
are present, as illustrated in the bikesharing example in Figure 1 (see also Section 7). This
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Figure 1: Left: ICE and global PD curves of feature hr (hour of the day) of the bikesharing
data set (James et al., 2022). Right: ICE and regional PD curves of hr depending
on feature workingday. The feature effect of hr on predicted bike rentals is differ-
ent on working days compared to non-working days, which is due to aggregation
not visible in the global feature effect plot (left).

is particularly relevant when ML models are trained on biased data (Mehrabi et al., 2021).
The ML model might learn this bias, which might not be visible in global explanations due
to aggregation (e.g., see COMPAS example in Section 7).

To bridge the gap between local and global effect explanations, so-called subgroup ap-
proaches that partition the feature space to obtain meaningful regional explanations within
each partition have recently been introduced (e.g., Hu et al., 2020; Molnar et al., 2023;
Scholbeck et al., 2022; Herbinger et al., 2022). Herbinger et al. (2022) introduced a recur-
sive partitioning algorithm that finds interpretable subgroups in the data where the feature
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interactions between a specific feature of interest and other features are minimized based
on ICE curves. Thus, the resulting regional PD plots of the feature of interest are more
representative for the individuals within the respective subgroup. However, the method is
limited to PD plots with one feature of interest and, hence, leads to different partitions if
multiple features of interest are considered. The mathematical foundation of their method
relies on the functional ANOVA decomposition (Stone, 1994; Hooker, 2007) of the predic-
tion function. Being able to decompose the predictions into main and higher-order effects
is very appealing to better understand how features individually and jointly influence the
predictions. However, the decomposition might not be unique and the respective estimation
complex in the presence of feature interactions (Hooker, 2007; Lengerich et al., 2020).

Contributions. We introduce the framework GADGET, which partitions the feature space
into interpretable subspaces by minimizing feature interactions based on some feature effect
method. We prove that the objective of GADGET minimizes feature interactions of any fea-
ture subset and for any feature effect method that satisfies the local decomposability axiom
(Section 4.1 and 4.2). We show that the most popular feature effect methods (PD, ALE,
and SD) satisfy the local decomposability axiom. For each method, we introduce an estima-
tion and visualization technique for the regional feature effect and the interaction-related
heterogeneity (Section 4.3-4.5). Moreover, we propose several measures to quantify feature
interactions based on GADGET, which provide more insights into the learned effects and
remaining interaction-related heterogeneity (Section 4.6). To the best of our knowledge, we
are the first who introduce such a flexible framework for more insights into regional feature
effects and feature interactions. Additionally, we introduce the permutation interaction test
(PINT) algorithm to detect significant feature interactions based on the underlying feature
effect method (Section 5). Finally, we empirically evaluate the theoretical characteristics of
the different methods based on several simulation settings (Section 6).

Open Science and Reproducibility. The implementation of the proposed methods as well
as reproducible scripts for the experiments are provided in Online Appendix 1.

2 Background and Related Work

In this section, we introduce relevant notation and summarize related work as well as the
required methodological background for this paper.

2.1 General Notation

We consider a feature space X ∈ Rp and a target space Y that for instance, in the case of
regression is Y = R. The random variables for the features are denoted byX = (X1, . . . , Xp)
and Y for the target variable. The realizations of these random variables are sampled
i.i.d. from the joint probability distribution PX,Y (which is unknown) and are denoted by

D = {(x(i), y(i))}ni=1. The i-th observation of D is denoted by x(i) =
(
x
(i)
1 , . . . , x

(i)
p

)T
and

the j-th feature by xj =
(
x
(1)
j , . . . , x

(n)
j

)T
. A true function f maps the feature space to

the target space f : X → Y. In ML, we strive to approximate this true relationship by a

3
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prediction model f̂ , which is learned on D. Furthermore, we denote −j = {1, . . . , p} \ j to
be the set of all features besides feature j.

2.2 Functional ANOVA Decomposition

The functional ANOVA decomposition has already been studied by Stone (1994) to ex-
plain prediction models. Hooker (2004, 2007), Rahman (2014), and Li and Rabitz (2012)
(amongst others) generalized the approach, suggested further estimation algorithms, and
provided several analyses with regard to decomposing an ML prediction function into so-
called main and higher-order (interaction) effects. If the influence of the feature xj on the
prediction function cannot solely be described by the main effect of xj because the pre-
diction changes depending on another feature xk, then the prediction function exhibits an
interaction between the features xj and xk. More formally, Friedman and Popescu (2008)

defined the presence of an interaction between two features xj and xk by E
[
δ2f̂(X)
δXjδXk

]2
> 0.

If the feature xj does not interact with any other feature in x−j , the prediction func-

tion f̂(x) can be additively decomposed into a function hj(xj) that only depends on fea-
ture xj and another function h−j(x−j) that only depends on all other features x−j , i.e.,

f̂(x) = hj(xj) + h−j(x−j).

The prediction function f̂(x) (if it is square-integrable) can be decomposed by using the
functional ANOVA decomposition as follows:

f̂(x) = g0 +

p∑
j=1

gj(xj) +
∑
j ̸=k

gjk(xj ,xk) + . . .+ g12...p(x) =

p∑
k=1

∑
W⊆{1,...,p},

|W |=k

gW (xW ), (1)

where g0 represents a constant, gj(xj) denotes the main effect of the j-th feature, gjk(xj ,xk)
is the pure two-way interaction effect between features xj and xk, and so forth. The last
component g12...p(x) contains the residual term, which always allows for an exact decompo-
sition.

We will now introduce the standard functional ANOVA decomposition and a general-
ization of it that is more suitable in the context of correlated features.

Standard Functional ANOVA Decomposition. The standard functional ANOVA decompo-
sition (Hooker, 2004; Rahman, 2014) assumes that all features are independent. Hence,
the joint probability density function w(x) can be written as a product-type probability
measure w(x) =

∏p
j=1wj(xj), with wj : R → R+

0 being the marginal probability density
function of the j-th feature. In this case, the component functions gW (xW ) can be opti-
mally and uniquely defined for a fixed prediction function f̂(x) if the vanishing condition
is satisfied. The vanishing condition is given by

∫
gW (xW )wj(xj)dxj = 0 ∀j ∈ W ̸= ∅,

with wj(xj) ≤ 0 and
∫
Rwj(xj)dxj = 1 (see, e.g., Li and Rabitz, 2012; Rahman, 2014, for

a detailed definition1). Following from that, the component functions can be determined
sequentially by

gW (xW ) =

∫
x−W

(
f̂(x)w(x)−

∑
V⊂W

gV (xV )

)
dx−W . (2)

1. In Rahman (2014) this is called the strong annihilating condition.
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Generalized Functional ANOVA Decomposition. When features are not independent from
each other, the vanishing condition does not hold. Therefore, Hooker (2007) introduces a
relaxed version of the vanishing condition2 that leads to a unique decomposition of f̂(x),
which they call the weighted functional ANOVA. The functional components cannot be
determined sequentially (as in Eq. 2) and must be determined by solving a computationally
more expensive optimization problem.

Thus, it is possible to decompose the prediction function in many different (valid) ways,
with differing interpretations in the presence of feature interactions. Functional ANOVA
decomposition is one possibility, which always leads to a unique decomposition. Hence,
recent research has focused either on proposing models that directly include the respective
conditions in the optimization process by constraints (e.g., Sun et al., 2022) or on purifying
the resulting decomposition for specific models within the modelling process (e.g., Lengerich
et al., 2020; Hu et al., 2022). While these approaches are first steps for computing the gen-
eralized functional ANOVA decomposition more efficiently, estimating the true underlying
data distribution remains an open challenge that also influences the decomposition itself
(Lengerich et al., 2020). First attempts in this direction have been proposed, for example
by Sun et al. (2022) using an adaptive kernel method. Note that the estimation of the
generalized functional ANOVA decomposition is only complex in the presence of feature
interactions, otherwise the prediction function can easily and uniquely be decomposed into
the main effects of each feature—e.g., estimated by a generalized additive model (GAM).

2.3 Visualizing Feature Effects

The visualization of feature effects provides a better understanding of how features indi-
vidually or jointly influence the predicted outcome of an ML model. In this section, we
introduce some of the most important global feature effect methods and relate them to the
functional ANOVA decomposition.

Partial Dependence. The PD plot introduced by Friedman (2001) visualizes the marginal
effect of a set of features W ⊂ {1, . . . , p} by integrating over the joint distribution over all
other features in −W = {1, . . . , p} \W , which we denote by P(x−W ). Therefore, the PD
function is defined by

fPD
W (xW ) = EX−W

[f̂(xW , X−W )] =

∫
f̂(xW ,x−W )dP(x−W ). (3)

As the joint distribution P(x−W ) is usually unknown, the PD function is estimated

using Monte-Carlo integration by f̂PD
W (xW ) = 1

n

∑n
i=1 f̂(xW ,x

(i)
−W ). Since the PD function

is usually estimated for visualization purposes, the number of features in W is chosen to be

one or two, and is visualized by the pairs {(x(k)
W , f̂PD

W (x
(k)
W ))}mk=1 for m grid points3.

The PD curve for |W | = 1 averages over heterogeneous effects that are induced by feature
interactions between the feature xW and other features. These heterogeneous effects can be
visualized using ICE plots (Goldstein et al., 2015), which measure the extent to which the

2. The relaxed vanishing condition is given by
∫
R gW (xW )wW (xW )dxj = 0 for j ∈ W ̸= ∅, with w(x) being

a general probability density.
3. Instead of using all feature values xW , an equidistant grid or a grid based on randomly selected feature

values or quantiles of xW are commonly chosen (Molnar et al., 2022).
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prediction of each observation changes when the value of feature xW changes. Thus, ICE

plots visualize each individual curve {(x(k)
W , f̂(x

(k)
W ,x

(i)
−W ))}mk=1 for all i ∈ {1, . . . , n}, with

the PD curve being the average over all ICE curves (see Figure 2).
While ICE plots can help to spot interactions between the feature of interest and other

features by visual inspection, they do not reveal with which other features xW interacts and
in which way these interactions influence the marginal effect of the feature of interest. To
that end, Inglis et al. (2022) suggest different visualization techniques—such as Zenplots—
that only show relevant 2-dimensional PD plots in a user-friendly layout. Other works focus
on grouping ICE curves with similar shapes to find regions within the feature space where
the regional PD plot can be interpreted reliably. For example, Britton (2019) suggests using
an unsupervised clustering approach to group ICE curves based on their partial derivatives.
A similar approach has been introduced by Zhang et al. (2021). However, Herbinger et al.
(2022) showed that this approach can produce misleading interpretations and suggest a
supervised approach to find interpretable regions where feature interactions are minimized
and resulting regional PD estimates are more representative for the underlying observations.

Friedman (2001) argues that using PD functions as additive components in a functional
decomposition can recover the prediction function up to a constant. Thus, the predic-
tion function can be decomposed into an intercept g0 and the sum of mean-centered PD
functions with the same sequential procedure, as done for the standard functional ANOVA
decomposition where lower-order effects are subtracted:

f̂(x) = g0 +

p∑
k=1

∑
W⊆{1,...,p},

|W |=k

(
f̂PD,c
W (xW )−

∑
V⊂W

f̂PD,c
V (xV )

)
, (4)

with f̂PD,c
W (xW ) = f̂PD

W (xW ) − 1
m

∑m
k=1 f̂

PD
W (x

(k)
W ). Tan et al. (2018) furthermore note

that if the prediction function can be written as a sum of main effects, it can be exactly
decomposed by an intercept plus the sum of all mean-centered 1-dimensional PD functions.

Similar to standard functional ANOVA, Hooker (2007) illustrate that the decomposition
via PD functions is misleading when features are highly correlated due to placing too much
weight in sparse regions, which causes extrapolation.

Extrapolation Problem and ALE. Since the marginal distribution is used in PD functions,
we extrapolate in empty or sparse regions of the feature space that might even be unrealistic
(e.g., predicting a disease status for a pregnant man) when features are highly correlated.
This can lead to inaccurate PD estimates, especially in the case of non-parametric models
such as neural networks (Apley and Zhu, 2020).

Rather than integrating over marginal distributions (see Eq. 3), one possible solution to
this challenge is to integrate over conditional distributions, which is known as a marginal
(M) plot (Friedman, 2001). However, the M plot of feature xj not only represents the feature
effect of the feature itself, but also includes the partial effects of features correlated with
the feature of interest (see Appendix A for an example). Therefore, we cannot additively
decompose the prediction function into individual M plot components, as done for PD in
Eq. (4)4. As we focus on methods that allow an additive decomposition of the prediction

4. This is only possible if all features are independent of each other. The M plot then results in the PD
plot, since the conditional joint distribution is then equivalent to the marginal joint distribution.

6

151



Decomposing Global Feature Effects

function and the isolated interpretation of individual feature effects, we will not cover M
plots (i.e., conditional PD plots) in greater detail here.

ALE plots are based on conditional expectations and thus avoid extrapolation. However,
they solely reflect the influence of the feature of interest on the predictions (Apley and Zhu,
2020). The uncentered ALE fALE

W (x) for |W | = 1 at feature value x ∼ P(xW ) and with
z0 = min(xW ) is defined by

fALE
W (x) =

x∫
z0

E

[
∂f̂(X)

∂XW

∣∣∣∣XW = zW

]
dzW =

x∫
z0

∫
∂f̂(zW ,x−W )

∂zW
dP(x−W |zW )dzW . (5)

ALE first calculates the local derivatives that are weighted by the conditional distribution
P(x−W |zW ) and then accumulates the local effects to generate a global effect curve.

Eq. (5) is usually estimated by splitting the value range of xW in intervals and calculating
the partial derivatives for all observations within each interval. The partial derivatives are
estimated by the differences between the predictions of the upper (zk,W ) and lower (zk−1,W )
bounds of the k-th interval for each observation. The accumulated effect up to observation
x is then calculated by summing up the average partial derivatives (weighted by the number
of observations n(k) within each interval) over all intervals until the interval that includes
observation x, which is denoted by k(x):

f̂ALE
W (x) =

k(x)∑
k=1

1

n(k)

∑
i: x

(i)
W ∈ ]zk−1,W ,zk,W ]

[
f̂(zk,W ,x

(i)
−W )− f̂(zk−1,W ,x

(i)
−W )

]
. (6)

For interpretability reasons, ALE curves are usually centered by the average of the
uncentered ALE curve to obtain fALE,c

W (x) = fALE
W (x)−

∫
fALE
W (xW ) dP(xW ).

Another advantage of ALE is that they are computationally less expensive than PD
functions. Compared to M plots, ALE also satisfies the additive recovery5. Note that
Apley and Zhu (2020) defined the W−th order ALE function by the pure W -th order
(interaction) effect, as done similarly for the functional ANOVA decomposition in Eq.(1).
Furthermore, Apley and Zhu (2020) show that the ALE decomposition has an orthogonality-
like property, which guarantees (similar to the generalized functional ANOVA) that the
following decomposition is unique:

f̂(x) = g0 +
∑

W⊆{1,...,p},
|W |=k

f̂ALE,c
W (xW ). (7)

For details on estimating higher-order ALE functions, we refer to Apley and Zhu (2020).

The choice of a feature effect method will typically depend on the underlying research
question. Generally, one distinguishes between understanding the model behavior or under-
standing the data-generating process. While PD generally answers the first question, ALE
is more focused on answering the second question.

5. Meaning, the prediction function can be additively decomposed into main and higher-order effects by
ALE functions (such as PD functions), as defined in Eq. (7).
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SHAP Dependence. Another method that quantifies feature effects on a local level are
Shapley values which have been transferred from game theory to an ML context (Shapley,
1953; Štrumbelj and Kononenko, 2014). The general idea behind this method is to distribute
the payout of a single prediction of an ML model fairly among all features.

The Shapley value of a feature is then defined by the fair contribution of this feature
to the prediction. Furthermore, Herren and Hahn (2022) showed that the Shapley value of

feature xj at feature value xj = x
(i)
j can be decomposed according to the functional ANOVA

decomposition into main and interaction effects6:

ϕ
(i)
j (xj) =

p−1∑
k=0

1

k + 1

∑
W⊆−j:
|W |=k

E[f̂(xj , X−j)|XW = x
(i)
W ]−

∑
V⊂{W∪j}

E[f̂(X)|XV = x
(i)
V ]



= gcj(xj) +

p−1∑
k=1

1

k + 1

∑
W⊆−j:|W |=k

gcW∪j(xj ,x
(i)
W ). (8)

While Shapley values only quantify the local effect of a feature on the prediction, Lund-
berg et al. (2019) propose the SHAP dependence (SD) plot as an alternative to PD plots.
SD plots show the global behavior by visualizing the local Shapley values for all or a sam-
ple of observations of one feature, similarly to an ICE plot (see Figure 5). Thus, feature
interactions between the feature of interest and other features also influence the shape of
the resulting point cloud. Lundberg et al. (2019) suggest coloring the points according to
another (potentially) interacting feature. However, if feature effects are very heterogeneous
due to feature interactions, it might not be possible to identify a clear trend of the marginal
feature effect (as observed similarly for ICE plots).

As with PD plots, M plots, or ALE plots, the means of estimating the conditional
expectation for Shapley values is an ongoing discussion in current research (see, e.g., Sun-
dararajan and Najmi, 2020; Chen et al., 2020). The approach taken might also influence the
SD plot, since the estimation of Shapley values can generally be based on either marginal
sampling (i.e., an interventional approach, similar to PD plots) or conditional sampling
(i.e., an observational approach, similar to M plots). While the interventional approach
also bears the problem of extrapolation, the observational approach requires the estimation
of the conditional data distribution, which is still a challenging task (Aas et al., 2021).
Chen et al. (2020) argue that the interventional approach is not generally wrong and can be
useful if we want to derive explanations that are true to the model, while the observational
approach should be used when we want to extract interpretations that are true to the data.

2.4 Quantification of Interaction Effects

Visualizing feature effects is a powerful technique to obtain a better understanding of how
features influence the prediction function. However, useful visualizations are usually limited
to a maximum of two features. Hence, to better comprehend which feature effects might
depend on other features due to interactions, we are interested in detecting and quantifying
the strength of feature interactions.

6. Similar decompositions and their estimation have been introduced in Hiabu et al. (2023) and Bordt and
von Luxburg (2023).
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Based on the definition of feature interactions in Section 2.2 and on the PD function,
Friedman and Popescu (2008) introduced the H-Statistic as a global interaction measure
between subsets of features. To quantify the interaction strength between a feature of
interest xj and all other features x−j , the H-Statistic is calculated by

Ĥ2
j =

∑n
i=1

(
f̂c(x(i))−f̂PD,c

j (x
(i)
j )−f̂PD,c

−j (x
(i)
−j)

)2

∑n
i=1(f̂c(x(i)))

2 . (9)

Hence, Ĥ2
j quantifies how much of the prediction function’s variance7 can be attributed to

the interaction between feature xj and all other features x−j
8. Eq. (9) can be adjusted

to quantify interactions of different order, such as two-way interactions (see Friedman and
Popescu, 2008). Other global interaction measures to quantify two-way interactions based
on PDs or SHAP interaction values have been suggested by Greenwell et al. (2018) and
Herbinger et al. (2022). While these methods focus on detecting and quantifying two-way
feature interactions, Hooker (2004) suggests an algorithm based on the idea of functional
ANOVA decomposition to detect all important higher-order terms and visualizes the feature
relationships in a network graph. However, the feature interactions are not quantified and
thus cannot be ranked according to their influence on the prediction.

Next to global interaction measures, there exist multiple local interaction measures that
quantify feature interactions for a single observation (e.g., Lundberg et al., 2019; Tsai et al.,
2023; Blücher et al., 2022; Kumar et al., 2021).

3 Motivation: REPID and its Limitations

To obtain a better understanding of how features globally affect the predictions in the
presence of feature interactions, Herbinger et al. (2022) propose the REPID method, which
decomposes the global PD into regional PDs such that individual effects (ICE curves) are
more homogeneous within each region. This section provides a short explanation of the
REPID method and illustrates its limitations, which are addressed by our new framework
introduced in Section 4.

The REPID method is based on a recursive partitioning algorithm (similar to CART by
Breiman et al., 1984) that splits each parent node into two child nodes until a stop criterion is
met. Compared to a common decision tree, the inputs are not the observations x themselves,
but the ICE curves belonging to the observations of one feature of interest xj . Herbinger
et al. (2022) showed that their chosen objective minimizes interaction effects between the
feature of interest and all other features. Therefore, the reduction at each split quantifies
the interaction strength between the feature of interest and the feature used for splitting.
Thus, the method provides more representative PD estimates in interpretable regions for a
feature of interest as well as a ranking of considered two-way feature interactions.

For illustration purposes, consider the following simulation example that is often used
in a slightly modified form in the context of feature interactions (see e.g., Goldstein et al.,

7. The denominator of Eq. (9) represents the prediction function’s variance, where f̂c(x(i)) = f̂(x(i)) −
1
n

∑n
i=1 f̂(x

(i)).
8. If the feature xj does not interact with any other feature in x−j , then the mean-centered joint effect

function can be additively decomposed into: fc(x) = fPD,c
j (xj) + fPD,c

−j (x−j), leading to Ĥ2
j = 0.
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2015; Herbinger et al., 2022): Let X1, X2, X3 ∼ U(−1, 1) be independently distributed
and the true underlying relationship be defined by Y = 3X11X3>0 − 3X11X3≤0 +X3 + ϵ,
with ϵ ∼ N(0, 0.09). We then draw 500 observations from these random variables and fit a
feed-forward neural network (NN) with a single hidden layer of size 10 and weight decay of
0.001.9 The R2 measured on a separately drawn test set of size 10000 following the same
distribution is 0.94. The ICE and PD curves of feature x1 for the training data are shown
in the left plot of Figure 2. The ICE curves clearly show that x1 influences the prediction
differently depending on another feature—in this case, x3. If we would only consider the
global PD plot, the nearly-horizontal PD curve of x1 (grey line) would indicate no influence
on the model’s predictions and thus is not representative for the underlying local feature
effects (ICE curves). Here, REPID can be applied to the ICE curves of x1 to search for
the best split point within the feature subset in −j (here: x2 and x3) and minimize the
feature interactions between features in j and −j. In this example, the best split point
found is x3 = 0, which is also optimal according to the data-generating process. The
regional PD plots found by REPID reflect the contradicting influence of feature x1 on the
predictions compared to the global PD plot. The respective split reduces the interaction-
related heterogeneity almost completely (by 98%). Hence, the resulting regional marginal
effects of x1 can be approximated well by the respective main effects (regional PD), which
are therefore more representative for the individual observations within each region.

−4

−2

0

2

4

−1.0 −0.5 0.0 0.5 1.0
x1

f̂ 1

−3

0

3

6

−1 0 1
x1

f̂ 1

Figure 2: ICE curves and PD curves (grey) for the uncorrelated (left) and correlated case
(right) of the simulation example of Section 3. ICE curves are colored w.r.t. the
first split when REPID is applied. The split feature is in both cases x3 with
split points −0.01 (left) and −0.15 (right). The blue color represents the left and
orange the right region according to the split point. The thicker lines represent
the respective regional PD curves. The rug plot shows the distribution of x1

according to the split point. The black points are the underlying observations.

9. The hyperparameters’ size (number of units of the hidden layer) and weight decay for a single-hidden-
layer feed-forward NN were tuned via 5-fold cross-validation using grid search and a maximum of 1000
iterations. Considered grid values for weight decay: (0.5, 0.1, 0.01, 0.001, 0.0001, 0.00001), and for size:
(3, 5, 10, 20, 30).
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Herbinger et al. (2022) have shown that REPID provides meaningful results if 1) only
one feature is of interest, and 2) if global feature effects are visualized by PD plots. These
two assumptions limit the general applicability of REPID for two reasons.

First, applying REPID to different features of interest will usually result in different
regions, as the method produces feature-specific regional PD plots. Hence, in the above-
mentioned simulation example, REPID produces different regions when the feature of inter-
est is x3 instead of x1, which complicates interpretations when effects of multiple features
are of interest. Moreover, we might be interested to receive regions within the feature space
where interactions between multiple features are minimized, and thus the joint effect within
each region can be decomposed into the main effects of the regarded features.

Second, there are other feature effect methods that might be more suitable, depending
on the underlying data set and research question. Thus, a general framework that allows
finding regions within the feature space where feature interactions are minimized w.r.t. an
individually chosen feature effect method would be extremely useful. One main disadvantage
specifically for ICE and PD plots is the extrapolation problem in the presence of feature
interactions and correlations, as described in Section 2.3. To illustrate how this problem
affects REPID, we consider the same simulation example as before, but with X1 = X3 + δ
and δ ∼ N(0, 0.0625). We again draw 500 observations and fit an NN with the same
specification and receive an R2 of 0.92 on a separately drawn test set of size 10000 following
the same distribution. Thus, the high correlation between x1 and x3 barely influences the
model performance. However, Figure 2 clearly shows that ICE curves are extrapolating in
low-density regions. The rug plot on the bottom indicates the distribution of feature x1

depending on feature x3. Thus, the model was not trained on observations with small x1

values and simultaneously large x3 values, and vice versa. However, since we integrate over
the marginal distribution, we also predict in these “out-of-distribution” areas. This leads
to the so-called extrapolation problem and, hence, to uncertain predictions in extrapolated
regions that must be interpreted with caution. In Section 6.1, we will analyze how severe
the extrapolation problem is with regard to finding the correct split feature and split point.

4 Generalized Additive Decomposition of Global EffecTs (GADGET)

Here, we introduce a new framework called generalized additive decomposition of global
effects (GADGET), which additively decomposes global feature effects based on minimizing
feature interactions. Through this approach, one or multiple features (up to all p features)
can be considered to find interpretable regions where feature effects of all regarded features
are more representative for the underlying individual observations. We will first introduce
the methodology of GADGET, which is applicable to many different feature effect methods.
We formally define the axiom that must be satisfied by the desired feature effect method to
be used in GADGET. We then show that the most popular feature effect methods satisfy
this axiom and that REPID is a special case of GADGET.

4.1 The GADGET Algorithm

Let h(xj ,x
(i)
−j) be the local feature effect of a feature xj of the i-th observation at some

feature value xj ∈ Xj measured by a local feature effect function h : Rp → R, and let
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E[h(xj , X−j)|Ag] be the expected feature effect of xj at xj w.r.t. X−j conditioned on the
subspace Ag ⊆ X .10 Then, we can define the deviation between the local feature effect and
the expected feature effect at a specific feature value xj for subspace Ag using a point-wise
loss function, e.g., the squared distance11:

L (Ag, xj) =
∑

i:x(i)∈Ag

(
h(xj ,x

(i)
−j)− E[h(xj , X−j)|Ag]

)2
. (10)

The risk function R of the j-th feature and subspace Ag is defined by aggregating the
point-wise loss of Eq. (10) over a sample of feature values of xj :

R (Ag,xj) =
∑

k:k∈{1,...,m}∧x(k)
j ∈Ag

L
(
Ag,x

(k)
j

)
. (11)

For instance, feature values of size m can be sampled values of xj
12 and their constraint

depends on feasible values within the subspace Ag.
The local feature effect function must be defined in such a way that the risk function

in Eq. (11) minimizes the interaction-related heterogeneity of features in S, i.e., the feature
interactions between xj ∈ xS with S ⊆ {1, . . . , p} and features of a previously defined fea-
ture set Z ⊆ {1, . . . , p} (see Section 4.2). The feature subset S is chosen to be the subset
of features for which we want to receive representative regional feature effect plots by mini-
mizing their interaction-related heterogeneity. Features in Z are considered as split features
and thus aim to partition the feature space in such a way that feature interactions with
features in S are minimized. Algorithm 1 defines a single partitioning step of GADGET,
which is inspired by the CART algorithm (Breiman et al., 1984) and is recursively repeated
until a certain stop criterion is met (see Section 4.7). We greedily search for the best split
point within the feature subset Z such that the interaction-related heterogeneity of feature
subset S is minimized in the two resulting subspaces. The interaction-related heterogeneity
is measured by the variance of the local feature effects of xj within the new subspace (see
Eq. 11). Hence, for each split feature z and split point t, we sum up the risk of the two
resulting subspaces for all features in S (line 6 in Algorithm 1) and then choose the split
point of the split feature (t̂, ẑ) that minimizes the interaction-related heterogeneity of all
features j ∈ S (line 9 in Algorithm 1).13

4.2 Theoretical Foundation of GADGET

To apply GADGET, a suitable local feature effect function h must be defined. General
properties that GADGET requires from this function are provided by Axiom 1.

10. The expected value is always taken w.r.t. the random variables within the expected value. We only use
a subscript for the expected value if it cannot uniquely be defined by the above notation.

11. Other distance metrics are also possible. However, we chose the squared distance, since the interpretation
in terms of variance is most intuitive in this context.

12. The choice depends on the underlying local feature effect function h and on the data distribution. Other
common choices are quantiles, or an equidistant grid from the feature range of xj .

13. In the case where z ∈ S, we also include the heterogeneity reduction of the z-th feature in the objective,
since we aim to reduce the overall interaction-related heterogeneity of all features in S.

14. S and Z can be distinct or partially or fully overlap with each other. See Section 5 for defining S and Z.

12

157



Decomposing Global Feature Effects

Algorithm 1: Partitioning algorithm of GADGET

1: input: subspace A ⊆ X , risk function R and feature of interest index set
S ⊆ {1, . . . , p} and feature interaction index set Z ⊆ {1, . . . , p}14

2: output: subspaces At̂,ẑ
l and At̂,ẑ

r

3: for each feature indexed by z ∈ Z do
4: for every split t on feature xz do
5: At,z

l = {A|xz ≤ t} ; At,z
r = {A|xz > t}

6: I(t, z) =
∑

j∈S

(
R(At,z

l ,xj) +R(At,z
r ,xj)

)
7: end for
8: end for
9: Choose (t̂, ẑ) ∈ argmint,z I(t, z)

Axiom 1 (Local Decomposability) A local feature effect function h : Rp → R satis-
fies the local decomposability axiom if and only if the decomposition of the i-th local effect

h(xj ,x
(i)
−j) of feature xj at xj solely depends on main and higher-order effects of feature xj:

h(xj ,x
(i)
−j) = gj(xj) +

p−1∑
k=1

∑
W⊆−j,
|W |=k

gW∪j(xj ,x
(i)
W ).

The local decomposability axiom must be satisfied by the chosen local feature effect

function h. Thus, the i-th local feature effect h(xj ,x
(i)
−j) for feature xj at xj must be

defined such that it only depends on the main effect of feature xj as well as the interaction
effects between xj and all other features in −j. This decomposition is not generally given by
every local feature effect method. For example, the decomposition of ICE curves depends
not only on effects including the feature of interest xj but also on effects of other features,
which leads to additive shifts. However, we can usually transform the local feature effects
in a meaningful manner to receive the decomposition provided in Axiom 1. ICE curves,
for instance, must be mean-centered (see Appendix B.4) to satisfy the local decomposability
axiom. If the local feature effect function satisfies Axiom 1, then Theorem 2 guarantees
that the loss function defined in Eq. (10) quantifies the interaction-related heterogeneity of
local effects (feature interactions) of feature xj at xj within the regarded subspace Ag.

Theorem 2 If the local feature effect function h(xj ,x
(i)
−j) satisfies Axiom 1, then the loss

function L (Ag, xj) defined in Eq. (10) only depends on feature interactions between the
feature xj at xj and features in −j:

L (Ag, xj) =
∑

i:x(i)∈Ag

p−1∑
k=1

∑
W⊆−j,
|W |=k

gW∪j(xj ,x
(i)
W )− E[gW∪j(xj , XW )|Ag]


2

.

The proof can be found in Appendix B.1.
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Since we only use features in Z for splitting and we aggregate the resulting risk over all
features j ∈ S, the objective function in GADGET minimizes the feature interactions
between all features in S and interacting features in Z (see Theorem 3). Furthermore, if Z
contains all features interacting with any feature in S (i.e., no feature in −Z interacts with
any feature in S), then the theoretical minimum of the objective minimized in Algorithm 1
is zero (see Corollary 4). This means that all feature interactions present in feature effects
of the features in S can be reduced such that only main effects of these features remain in
each subspace. Thus, the joint feature effect fS|Ag

within each subspace Ag can be uniquely
and additively decomposed into the univariate feature effects fj|Ag

:

fS|Ag
(xS) =

∑
j∈S

fj|Ag
(xj). (12)

However, if Z is chosen such that the features contained in its complement −Z interact
with features contained in S, then the theoretical minimum of the objective is larger than
0. Thus, heterogeneous effects due to feature interactions between features in S and features
in −Z remain. The approach to choose the subsets S and Z is discussed in Section 5.

Theorem 3 If the local feature effect function h satisfies Axiom 1 and if all features con-
tained in Z and all features in −Z = Z∁ are pairwise independent, then the objective
function I(t, z) of Algorithm 1 based on the loss function in Eq. (10) minimizes feature
interactions between features within the subset S and features in Z, but does not generally
minimize feature interactions between features in S and −Z. Since the partitions found by
the GADGET algorithm to minimize the feature interactions of S only depend on features
in Z and are independent of features in −Z, interactions between each j ∈ S and features
in −Z are independent of the partitioning in Algorithm 1:|−Z\j|∑

l=1

∑
−Zl⊆−Z\j,
|−Zl|=l

g−Zl∪j(xj ,x
(i)
−Zl

)− E[g−Zl∪j(xj , X−Zl
)|At,z

b ]

 ⊥⊥ At,z
b .

The proof can be found in Appendix B.2.

Corollary 4 If the local feature effect function h satisfies Axiom 1 and if the feature subset
−Z = Z∁ does not contain any features interacting with any j ∈ S, then the theoretical
minimum of the objective function in Algorithm 1 is I(t∗, z∗) = 0.
The proof can be found in Appendix B.3.

The fulfillment of the local decomposability axiom depends on the definition of the un-
derlying local feature effect function h. In the following sections, we show the validity of this
axiom for common feature effect methods and provide estimates as well as visualizations for
the resulting regional effect curves and their remaining interaction-related heterogeneity.

4.3 GADGET-PD

Here, we show the applicability of PD as feature effect method within the GADGET algo-
rithm which we call the GADGET-PD.
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Method. The PD plot is based on ICE curves (local feature effects) and one of the most
popular global feature effect methods. However, ICE curves of feature xj do not satisfy
Axiom 1, since the decomposition of the i-th ICE curve also contains main or interaction
effects of the i-th observation that are independent of feature xj (see Appendix B.4). These
effects can be cancelled out by centering ICE curves w.r.t. the mean of each curve (i.e.,

E[f̂(Xj ,x
(i)
−j)]). The resulting mean-centered ICE curves satisfy Axiom 1 (see Appendix

B.4). Hence, they are chosen as local feature effect method within GADGET: h(xj ,x
(i)
−j) =

f̂ c(xj ,x
(i)
−j) = f̂(xj ,x

(i)
−j)− E[f̂(Xj ,x

(i)
−j)|Ag].

The loss function used within GADGET-PD to minimize the interaction-related hetero-
geneity is then defined by the variability of mean-centered ICE curves:

LPD (Ag, xj) =
∑

i:x(i)∈Ag

(
f̂ c(xj ,x

(i)
−j)− E[f̂

c(xj , X−j)|Ag]
)2

. (13)

By choosing mean-centered ICE curves as local feature effect function h, the loss function
in Eq. (13) for GADGET-PD results in the same loss function used within REPID. In
Appendix B.4, we show that the REPID method is—for this specific loss function—a special
case of GADGET-PD, where we have only one feature of interest (i.e., S = j) and where
we consider all other features to be potential split features (i.e., Z = −j).

Note that since REPID never splits with regard to the visualized feature of interest

xj , the constant used for mean-centering (i.e., E[f̂(Xj ,x
(i)
−j)|Ag] = E[f̂(Xj ,x

(i)
−j)]) always

stays the same. In contrast, for the more general GADGET algorithm, the mean-centering
constant depends on how S and Z are defined. Thus, the mean-centering constants of
features in S might change if we also use them for splitting. For example, in Figure 3, we
use feature x3 as a feature of interest in S and as a split feature in Z. In this case, the
range of the visualized feature x3 is also split according to the split point found by the
GADGET algorithm. Hence, the expected value conditioned on the new subspace changed

(i.e., E[f̂(Xj ,x
(i)
−j)|Ag] ̸= E[f̂(Xj ,x

(i)
−j)]) and thus must be adjusted to avoid additive (non-

interaction) effects in the new subspace.

Illustration. Figure 3 visualizes the result when applying GADGET-PD on the uncor-
related simulation example of Section 3 by choosing S = Z = {1, 2, 3}. Hence, we are
interested in the feature effect of all available features and consider all features as possible
interaction (split) features. GADGET-PD performs one split with regard to x3 ≈ 0. Thus,
the correct split feature and its corresponding split point are found by GADGET such that
the interaction-related heterogeneity of all features in S is almost completely reduced and
only main effects within the subspaces remain.

Decomposition. If Z contains all features interacting with features in S and if GADGET is
applied such that the theoretical minimum of the objective function is reached, then accord-
ing to Corollary 4, the joint mean-centered PD function fPD,c

S|Ag
within each final subspace

Ag can be decomposed into the respective 1-dimensional mean-centered PD functions:

fPD,c
S|Ag

(xS) =
∑
j∈S

fPD,c
j|Ag

(xj). (14)
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Figure 3: Visualization of applying GADGET with S = Z = {1, 2, 3} to mean-centered ICE
curves of the uncorrelated simulation example of Section 3 with Y = 3X11X3>0−
3X11X3≤0+X3+ ϵ with ϵ ∼ N(0, 0.09). The upper plots show the mean-centered
ICE and PD curves on the entire feature space, while the lower plots represent
the respective mean-centered ICE and PD curves after partitioning the feature
space w.r.t. x3 = −0.003.

Eq. (14) is justified by the assumption that no more interactions between features in S and
other features are present in the final regions (Friedman and Popescu, 2008).

Furthermore, if the subset−S is the subset of features that do not interact with any other
features (local feature effects are homogeneous), then according to Eq. (14) and Eq. (4),
the prediction function f̂Ag within each final subspace Ag can be decomposed into the
1-dimensional mean-centered PD functions of all p features plus a constant value g0:

f̂Ag(x) = g0 +

p∑
j=1

fPD,c
j|Ag

(xj).

Thus, depending on how we choose the subsets S and Z and the extent to which we
are able to minimize the interaction-related heterogeneity of feature effects by recursively
applying Algorithm 1, we might be able to approximate the prediction function by an
additive function of main effects of all features within the final regions.

This can also be shown for the simulation example illustrated in Figure 3, where
f̂PD,c
2|Ag

(x2) = 0 (the regional effect of feature x2 after the split is still 0 and a has low

interaction-related heterogeneity). Instead, the regional effects of x1 and x3 vary compared
to the root node and strongly reduce the interaction-related heterogeneity. Since the re-
gional effects of x1 and x3 are approximately linear, we can estimate the prediction function
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within each subspace by

f̂Al
(x) = g0 +

−3.04

1.05
x1 +

0.99

0.94
x3 = g0 − 2.9x1 + 1.05x3

and

f̂Ar(x) = g0 +
3.08

1.05
x1 +

0.89

0.83
x3 = g0 + 2.93x1 + 1.07x3,

which is a close approximation to the underlying data-generating process and thus provides
a better understanding of how the features of interest influence the prediction function
compared to only considering the global PD plots.

Note that besides the decomposability property in Eq. (14), each global PD of features
in S is a weighted additive combination of the final regional PDs. Thus, each global PD
can be additively decomposed into regional PD.

Estimates and Visualization. To estimate and visualize the expected regional effect, one
can choose between the regional PD curve f̂PD

j|Ag
or its mean-centered version f̂PD,c

j|Ag
for each

feature j ∈ S, which are calculated by Monte-Carlo integration for each final region Ag. The
interaction-related heterogeneity for each feature in S and final subspace Ag is measured by
the risk function in Eq. (11) with the loss function in Eq. (13). Thus, the interaction-related
heterogeneity quantifies the variation of mean-centered ICE curves within each region. For
visualization purposes, we calculate the 95% intervals of interaction-related heterogeneity
based on this variation. We then suggest a plot for each feature in S that shows the final
regional PD curves and 95% interaction-related heterogeneity intervals (see e.g., Figure 11).

The main issue with local ICE curves and resulting global PD plots is the extrapolation
problem when features are correlated, as demonstrated in Section 3. This problem remains
for GADGET when mean-centered ICE curves are chosen as local feature effect function h.

4.4 GADGET-ALE

An alternative global feature effect method that allows an additive decomposition of the
prediction function and the interpretation of individual feature effects are ALE plots (Apley
and Zhu, 2020), which we summarized in Section 2.3. Here, we show their applicability
within the GADGET algorithm which we term GADGET-ALE.

Method. While ALE curves compared to PD curves do not suffer from extrapolation,
they do not directly entail a local feature effect visualization that shows the heterogeneity
induced by feature interactions as ICE curves for PD plots. However, ALE plots are also
based on corresponding local feature effects that provide information about the underlying
interaction-related heterogeneity and that can be used within the GADGET algorithm to
receive more representative ALE curves in the final regions. These local feature effects are
the derivatives w.r.t. the feature of interest xj of the prediction function (see Eq. 5). In

Appendix B.5, we show that by choosing h =
∂f̂(xj ,x

(i)
−j)

∂xj
, Axiom 1 is met, which leads to the

following loss function used within the objective in GADGET-ALE:

LALE (Ag, xj) =
∑

i:x(i)∈Ag∧
x(i)∈P(x−j |xj)

(
∂f̂(xj ,x

(i)
−j)

∂xj
− E

[
∂f̂(Xj , X−j)

∂xj

∣∣∣∣Ag ∧Xj = xj

])2

. (15)
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The derivatives are calculated by defining m intervals for feature xj and quantifying for each
interval the prediction difference between the upper and lower boundary for observations
lying in this interval (see Eq. 6). Hence, the loss function in Eq. (15) measures the variance
of the derivatives of observations where the feature values of xj lie within the boundaries
of the regarded interval and, thus, measures the interaction-related heterogeneity of local
effects of feature xj within this interval. The risk function in Eq. (11) then aggregates this
loss over all m intervals. Note that the conditional expectation in Eq. (15) is the expected
conditional derivative (estimated by the average derivative within the regarded interval)
and not the ALE curve itself. However, the ALE curve is calculated by integrating the
expected conditional derivative up to the regarded value xj (see Eq. 5).

Illustration. Figure 4 illustrates the first split for the two simulation examples of Section
3 using GADGET-ALE. The heterogeneity of the local effects (derivatives) before applying
GADGET is very high, spanning across negative to positive values (grey boxplots) within
each interval. With GADGET, we then partition the feature space w.r.t. one of the features
in Z such that this interaction-related heterogeneity is minimized. When GADGET-ALE
is used, for both the uncorrelated and the correlated case, we receive the correct split
feature and approximately the correct split point, which clearly shows a high reduction in
heterogeneity of these local effects after the first split. While the shapes of the centered
ALE curves look very similar to PD plots (see Figure 2) for the uncorrelated case, the ALE
curves for the correlated case do not extrapolate and, thus, are more representative for the
feature effect with regard to the underlying data distribution.

Decomposition Equivalently to PD plots, ALE plots also contain an additive recovery
and, thus, can be decomposed additively into main and interaction effects (see Section
2.3). Furthermore, if Z is defined such that all features interacting with features in S
are included and if GADGET is applied so that the theoretical minimum of the objective
function is reached, then—according to Corollary 4—the joint mean-centered ALE function
fALE,c
S|Ag

within each final subspace Ag can be decomposed into the 1-dimensional mean-

centered ALE functions of features in S (see Eq. 12). Thus, for ALE plots, we might
also be able to decompose the prediction function into the regional features’ main effects,
depending on how we choose the subsets S and Z within the GADGET algorithm. More
details on the decomposition when using GADGET-ALE and an exemplary illustration of
the uncorrelated simulation example of Section 3 can be found in Appendix C.1.

Estimates and Visualization. The regional effect is estimated by the regional centered ALE
curve f̂ALE,c

j|Ag
for each feature in S and is calculated as in Eq. (6) for each final subspace

Ag. The interaction-related heterogeneity for each feature in S and final subspace Ag is
measured by the risk function in Eq. (11) with the loss function in Eq. (15). Thus, the
interaction-related heterogeneity quantifies the variation of partial derivatives within each
subspace. Since the partial derivatives cannot be meaningfully visualized within the ALE
plot itself, we suggest to visualize it in combination with a plot for the interaction-related
heterogeneity measured by the standard deviation of partial derivatives within each interval,
which is inspired by the derivative ICE plots of Goldstein et al. (2015) (see e.g., Figure 12).
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Figure 4: Visualization of derivatives of f̂ w.r.t. x1 (top) and respective ALE curves (bot-
tom) for the uncorrelated (left) and correlated case (right) of the simulation ex-
ample of Section 3, with Y = 3X11X3>0− 3X11X3≤0+X3+ ϵ and ϵ ∼ N(0, 0.09).
Derivatives (top) and mean-centered observational values (bottom) are colored
w.r.t. the first split when GADGET-ALE with S = 1 and Z = {2, 3} is applied.
The boxplots (top) and lines (bottom) in grey show the variation of derivatives
and the global centered ALE curves, respectively. The colored curves show the
regional centered ALE curves after the first split with GADGET-ALE.

4.5 GADGET-SD

While PD and ALE plots visualize the global feature effect for which we define the ap-
propriate local feature effect function (mean-centered ICE curves and derivatives) for the
GADGET algorithm, the SD plot (Section 2.3) is comparable to an ICE plot and, thus,
does not show the global feature effect itself. Here, we provide an estimate for the global
effect and show the applicability of SD within GADGET which we term GADGET-SD.

Method. Herren and Hahn (2022) (amongst others) showed that the Shapley value ϕ
(i)
j (xj)

of observation i for feature value xj = x
(i)
j can be decomposed as defined in Eq. (8) to

ϕ
(i)
j (xj) = gcj(xj) +

p−1∑
k=1

1

k + 1

∑
W⊆−j:|W |=k

gcW∪j(xj ,x
(i)
W ),

with gcW∪j(xj ,x
(i)
W ) = E[f̂(xj , X−j)|XW = x

(i)
W ] −

∑
V⊂{W∪j}E[f̂(X)|XV = x

(i)
V ], which

satisfies Axiom 1 (see Appendix B.6). The global feature effect for the SD plot of feature
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xj at the feature value xj = x
(i)
j can then be defined by

fSD
j (xj) = EXW

[ϕj(xj)] = gcj(xj) +

p−1∑
k=1

1

k + 1

∑
W⊆−j:|W |=k

E[gcW∪j(xj , XW )]. (16)

Following from that, according to Theorem 2, the respective loss function used in GADGET
depends only on interaction effects between xj and features in −j and is given by

LSD(Ag, xj) =
∑

i:x(i)∈Ag∧x(i)
j =xj

(
ϕ
(i)
j (xj)− EXW

[ϕj(xj)|Ag]
)2

. (17)

For more details, see Appendix B.
While there exist estimators for the global effect in PD and ALE plots, a pendant for the

SD plot has not been introduced yet. Hence, a suitable estimator to estimate the expected
value of Shapley values of feature xj in Eq. (17) must be chosen. Here, we use univariate
GAMs with splines to estimate the expected value.15 Thus, the estimated GAM for feature
xj represents the regional SD feature effect of feature xj within subspace Ag.

Illustration. Figure 5 visualizes the SD plot for feature x1 of the simulation example de-
scribed in Section 3. Similarly to the least-square estimate in linear regression, we search
for the GAM that minimizes the squared distance (∆2) of the Shapley values of x1. With
GADGET, we now split such that the fitted GAMs within the two new subspaces minimize
the squared distances between them and the Shapley values within the respective subspace.
Since the GAMs are fitted on the Shapley values (local feature effects), in contrast to PDs,
they do not extrapolate with regard to x1 in the correlated scenario. However, as defined
in the beginning of this section, Shapley values are based on expected values that must be
estimated. If they are calculated using the interventional approach (as we do here), it is
still possible that the predictions considered in the Shapley values extrapolate in sparse re-
gions. Hence, the definition of Shapley values via expected values differs from those of ICE
curves and derivatives for ALE, which are based on local predictions. Similarly to estimat-
ing the mean-centering constants for ICE curves, it follows that the expected values within
the Shapley value estimation must consider the regarded subspace Ag to acknowledge the
full heterogeneity reduction due to interactions within each subspace. This means that we
must recalculate the Shapley values after each partitioning step for each new subspace to
receive regional SD effects in the final subspaces that are representative of the underlying
main effects within each subspace. However, without recalculating the conditional expected
values, we still minimize the unconditional expected value (i.e., the feature interactions on
the entire feature space). The two different approaches lead to a different acknowledgment
of interaction effects. In general, it can be said that the faster approach without recalcula-
tion will be less likely to detect feature interactions of higher order compared to the exact
approach with recalculation. The differences of the two approaches for the simulation ex-
ample of Section 3 are explained in Appendix C.2 and further discussed on a more complex
simulation example in Section 6.2.

15. Splines are functions that are defined in a piece-wise manner by polynomials. Splines are often preferred
over polynomial regression, since they provide more flexibility with already low-order polynomials.
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Figure 5: Visualization of Shapley values ϕ1 w.r.t. x1 for the uncorrelated (left) and corre-
lated case (right) of the simulation example of Section 3, with Y = 3X11X3>0 −
3X11X3≤0 +X3 + ϵ and ϵ ∼ N(0, 0.09). Shapley values (points) and the respec-
tive regional feature effect curves (GAMs) are colored w.r.t. the first split when
GADGET-SD with S = 1 and Z = {2, 3} is applied. The grey curve repre-
sents the global feature effect based on the entire feature space. ∆2

0 represents
the squared distance between a given Shapley value and the global SD curve
(grey), while ∆2

1 measures the squared distance between this Shapley value and
the respective regional SD curve. The GAMs are fitted such that these squared
distances over all Shapley values in the respective regions are minimized.

Decomposition. The decomposition of Shapley values differs from that of mean-centered
ICE curves in the way that feature interactions in Shapley values are fairly distributed
between involved features, which leads to decreasing weights the higher the order of the
interaction effect (see Eq. 8). In contrast, all interaction terms receive the same weight as
the main effects in ICE curves. Hence, interactions of high order lead to less heterogeneity in
SD plots compared to ICE plots. However, by using the interventional approach to calculate
Shapley values, they can be decomposed by weighted PD functions (see Eq. 8 and Herren
and Hahn, 2022). Hence, the same decomposition rules as defined for PD plots apply for
the SD feature effect, as defined in Eq. (16). Meaning, if Z contains all features interacting
with features in S, and if GADGET is applied such that the theoretical minimum of the
objective function is reached, then according to Corollary 4, the regional joint SD effect
of features in S can be decomposed into 1-dimensional regional SD effect functions, as in
Eq. (12). In this special case and if Shapley values are estimated by the interventional
approach, it can be shown that fSD,c

j|Ag
= fPD,c

j|Ag
(see Appendix C.2).

Again, we might be able to decompose the prediction function into the regional features’
main effects, depending on how we choose the feature subsets S and Z within the GAD-
GET algorithm. More details and an exemplary illustration of the uncorrelated simulation
example of Section 3 can be found in Appendix C.2.

Estimates and Visualization. The regional SD effect is estimated by a GAM for each
feature in S and final region Ag. The interaction-related heterogeneity for each feature in
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S and final subspace Ag is measured by the risk function in Eq. (11) with the loss function
in Eq. (17). The risk function quantifies the variation of Shapley values of feature xj within
each region. We visualize the interaction-related heterogeneity by the Shapley values that
are recalculated conditioned on the subspace Ag (see, e.g., Figure 18 in Appendix E).

An overview of introduced estimates and visualization techniques for the different effect
methods can be found in Appendix C.3. Moreover, an explanation of how categorical
features are handled within GADGET for each of the presented feature effect methods is
provided in Appendix C.4.

4.6 Quantifying Feature Interactions

Since GADGET minimizes the interaction-related heterogeneity based on the underlying
feature effect method, we can quantify feature interactions by measuring the heterogeneity
reduction in each partitioning step. We introduce several measures (inspired by Herbinger
et al., 2022) to gain more insights into learned feature interactions and the meaningfulness
of the final regional effects based on the interaction-related heterogeneity reduction.

Analysis of Single Partitioning Steps. We can quantify the extent to which interaction-
related heterogeneity has been reduced in each of the features in S after splitting according
to the chosen split feature z ∈ Z. Here, we denote G to be the total number of nodes after
applying GADGET. Furthermore, we denote P to be the index of a parent node and the
indices l and r to be the respective child nodes. We can quantify the relative interaction-
related heterogeneity reduction after the respective partitioning step for feature j ∈ S by

I(AP ,xj) =
R(AP ,xj)−R(Al,xj)−R(Ar,xj)

R(X ,xj)
,

meaning that we quantify the risk reduction of the regarded split relative to the risk on the
entire feature space (root node) for one feature of interest j ∈ S. For example, in Figure 3,
the interaction-related heterogeneity reduction of the first split (I(X ,x1)) for feature x1 is
0.986, which means that almost all of the interaction-related heterogeneity of x1 is reduced
after the first split.

Analysis of Single Split Features. Instead of considering only a single partitioning step,
one might be more interested in how much interaction-related heterogeneity reduction a
specific split feature z ∈ Z is responsible for w.r.t. all performed partitioning steps of an
entire tree. To that end, we can quantify (either for each feature of interest in S or for
all features in S together) the relative amount of heterogeneity reduction due to feature z.
Hence, we receive Iz,j(xj) by summing up I(AP ,xj) for the set of parent subspaces that
used feature z as split feature and that we denote by Bz ⊂ {A1, . . . ,AG}:

Iz,j(xj) =
∑

AP∈Bz

I(AP ,xj).

We obtain the overall interaction-related heterogeneity reduction Iz of the z-th split feature
by first aggregating over all features in S:

Iz =

∑
AP∈Bz

∑
j∈S(R(AP ,xj)−R(Al,xj)−R(Ar,xj))∑

j∈S R(X ,xj)
.
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In our previous example, we obtain I3,1(x1) = I(X ,x1) = 0.986, since z = 3 was only used
once for splitting, while the interaction-related heterogeneity reduction of all three features
is I3 = 0.99 for z = 3.

Goodness of Fit. A further aggregation level would be to sum up Iz,j(xj) over all z ∈ Z
and, thus, receive the interaction-related heterogeneity reduction for feature xj between the
entire feature space and the final subspaces (hence, over the entire tree). This is related to
the concept of R2, which is a well-known measure in statistics to quantify the goodness of
fit. We apply this concept here to quantify how well the final regional effect curves (in the
final subspaces Bt ⊂ {A1, . . . ,AG}) fit the underlying local effects compared to the global
feature effect curve on the entire feature space. We distinguish between the feature-related
R2

j , which represents the goodness of fit for the feature effects of feature xj :

R2
j =

∑
z∈Z

Iz,j(xj) = 1−
∑

At∈Bt
R(At,xj)

R(X ,xj)
,

and the R2
Tot, which quantifies the goodness of fit for the feature effects of all features in S:

R2
Tot =

∑
z∈Z

Iz = 1−
∑

At∈Bt

∑
j∈S R(At,xj)∑

j∈S R(X ,xj)
.

Both R2 measures take values between 0 and 1, with values close to 1 signalling that
almost all heterogeneity in the final subspaces compared to the entire feature space has been
reduced—either for a specific feature of interest (R2

j ) or for all features of interest (R2
Tot).

In our example, R2
1 for feature x1 is the same as for I3,1(x1), since GADGET performed

only one split. The total interaction-related heterogeneity reduction over all features in S
is R2

Tot = I3 = 0.99. Hence, the interaction-related heterogeneity of all features in S has
been reduced by 99% after the first split.

These measures provide a tool set to better understand how features interact with each
other and how well the final regional effect plots represent the underlying local effects.

4.7 Choosing Stop Criteria

The question of how many partitioning steps should be performed depends on the under-
lying research question. If the user is more interested in reducing the interaction-related
heterogeneity as much as possible, they might split rather deeply, depending on the com-
plexity of interactions learned by the model. However, this might lead to many regions
that are more challenging to interpret. If the user is more interested in a small number
of regions, they might prefer a shallow tree, thus reducing only the heterogeneity of the
features that interact the most.

Here, we suggest the following stopping criteria to control the number of partitioning
steps in GADGET: First, we could choose common hyperparameters of a decision tree, like
the tree depth or the minimum number of observations per leaf node. Another option is to
apply an early stop mechanism based on the interaction-related heterogeneity reduction—
either in each split or in total. According to our proposed split-wise measure, a further
split is only performed if the relative improvement of the split to be performed is at least
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γ ∈ [0, 1] times the total relative interaction-related heterogeneity reduction of the previous

split: γ ×
∑

j∈S(R(AP ,xj))−I(t̂,ẑ)∑
j∈S(R(X ,xj))

. Another possibility is to stop splitting as soon as a pre-

defined total reduction of heterogeneity (R2
Tot) is reached. In general, it holds that the

higher we choose γ and the lower we choose the threshold for R2
Tot, the fewer partitioning

steps will be performed, and vice versa.

5 Significance Test for Global Feature Interactions

In addition to the hyperparameters for early stopping, there are two more hyperparameters
in Algorithm 1 that must be specified—namely, the features of interest contained in S and
the interacting (splitting) feature subset Z. Choosing the features to be contained in S and
Z strongly depends on the underlying research question. If the user is interested in how
a specific set of features (S) influences the model’s predictions depending on another user-
defined feature set (Z), then S and Z are chosen based on domain knowledge. However, the
user does not know which feature effects and interactions were inherently learned by the
ML model. Thus, choosing S and Z based on domain knowledge does not guarantee that
all interacting features are considered and that we can additively decompose the prediction
function into univariate feature effects.

Thus, if our goal is to minimize feature interactions between all features to additively
decompose the prediction function into mainly univariate effects, we can define S = Z =
{1, . . . , p}. With that choice, we aim to reduce the overall interaction-related heterogeneity
in all features (S), since we also consider all features to be possible interacting features
(Z). However, this choice has two disadvantages. First, we must loop over all features
and possible split points in each partitioning step, which may be slow in medium- or high-
dimensional settings. This might also lead to less stable results, since only a few features
might interact with each other, although many more features are considered for splitting.
Second, if features are correlated, we might obtain spurious interactions (which we do not
want to consider, since we are only interested in true interaction effects). Hence, to solely
split according to feature interactions and only measure the interaction-related heterogeneity
reduction, we must define beforehand the subset of features that actually interact. Since
features interact with each other and all involved features will usually show heterogeneity
in their local effects while being responsible for the heterogeneity of other involved features,
we will usually choose S = Z.16 Thus, we will furthermore only use S as the globally
interacting feature subset to be defined.

Since the H-Statistic (as defined in Section 2.4) is a global interaction measure, it could
be used to define S by choosing all features with a high H-Statistic value. However, the
question remains of which value is considered “high”. Furthermore, the H-Statistic is based
on PDs. Thus, the interacting features are always chosen depending on the interaction
quantification of PDs, which might differ from other feature effect methods (e.g., see the
discussion of Shapley values versus ICE curves in Section 4.5). Since it is based on PDs, the
H-Statistic might also suffer from detecting spurious interactions (Sorokina et al., 2008).

We introduce a new statistical permutation interaction test (PINT) that is inspired
by the permutation importance (PIMP) algorithm of Altmann et al. (2010) to test for

16. Z might differ in the case of non-symmetrical interactions (see Section 7).
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significant feature importance values. The goal of PINT (see Algorithm 2) is to define the
feature subset S that contains all features that significantly interact with each other, w.r.t.
a predefined significance level α and a chosen feature effect method. With the risk function
defined in Eq. (11) and based on the chosen local feature effect method, we can quantify
the interaction-related heterogeneity of each feature xj within the feature space X . Due
to correlations between features, the estimated heterogeneity might also include spurious
interactions. Thus, we must define a null distribution to determine which heterogeneity is
actually due to feature interactions (i.e., significant w.r.t. the null distribution) and which
heterogeneity is due to other reasons, such as correlations or noise. This is achieved by
permuting the target variable y (line 4 in Algorithm 2). With that, we break the association
between the features and the target variable, but the underlying data structure remains.
We refit the given ML model based on the data set D̃ with the permuted target variable and
calculate the respective risk R̃j for each feature xj based on the chosen feature effect method
h (lines 5-8 in Algorithm 2). This is repeated s times, producing s permuted risk values that
represent the null distribution for the unpermuted risk value R(X ,xj) of the j-th feature.

Then, we perform a statistical test based on the null hypothesis H0 : R(X ,xj) ≤ R̃(s·(1−α))
j .

Hence, if the unpermuted risk value is larger than the (1−α)-quantile of the null distribution,
then the j-th feature is significant w.r.t. the defined α-level and belongs to the interacting
feature subset S (lines 11-18 in Algorithm 2).

Algorithm 2: PINT

1: input: data set D, prediction function f̂ , number of permutations s,
risk function R, significance level α

2: output: feature subset S
3: for k ∈ {1, . . . , s} do
4: permute y of D denoted by ỹk and D̃k = {x, ỹk}
5: refit model on D̃k to obtain the prediction function f̃k

6: for j ∈ {1, . . . , p} do

7: calculate risk R̃(k)
j = R̃k(X ,xj) for j-the feature based on D̃k and f̃k

8: end for
9: end for

10: for j ∈ {1, . . . , p} do
11: a) calculate risk R(X ,xj) for j-the feature based on D and f̂
12: b) sort R̃j in increasing order

13: c) determine the (1− α)-quantile of permuted risk values z1−α
j = R̃(s·(1−α))

j

14: if R(X ,xj) > z1−α
j then

15: j ∈ S
16: else
17: j /∈ S
18: end if
19: end for

We illustrate the performance of PINT compared to the H-Statistic on an example
which might be affected by spurious interactions. Therefore, we consider that X1, X2, X4 ∼
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U(−1, 1) and X3 = X2 + ϵ with ϵ ∼ N(0, 0.09). We draw n = {300, 500} observations
of these four random variables and assume the following relationship between y and x:
y = x1 + x2 + x3 − 2x1x2. Hence, x1 and x2 have a negative linear interaction effect,
while x2 and x3 are highly linearly positively correlated but do not interact. Thus, there
might be a spurious interaction between x1 and x3. We calculate PINT and the H-Statistic
for all features using a support vector machine (SVM) as the underlying ML model (with
specifications defined in Section 6.3). We repeat the experiment 30 times. Figure 8 shows
that for x1 and x2, the PINT test is significant for almost all repetitions and effect methods,
while it is never significant for features x3 and x4 w.r.t. a significance level of α = 0.05.
Hence, besides a few exceptions for ALE, the PINT algorithm returns the correct interacting
feature subset S = {1, 2}. The H-Statistic shows that x1 interacts most with all other
features, then x2, followed by x3 and x4 in the rankings. Depending on which threshold is
chosen, one would possibly include the non-interacting feature x3 in S, which shows over
all repetitions values ranging from 0.1 to 0.2—possibly due to spurious interactions.

Hence, PINT not only allows to more clearly and (in this example) correctly define the
subset S than the H-Statstic, but PINT also has the advantage that it can be used with
any feature effect method that we use for GADGET. Thus, PINT can be applied according
to the objective we want to minimize. This is analyzed in more detail in Section 6.

PINT also entails two hyperparameters α and s that must be specified. The significance
level α can be chosen depending on the underlying research question. If we are only inter-
ested in a small set of very strong interactions, we choose α to be very small. If we want to
find all (also small) interaction effects, we choose α to be larger. However, a larger signifi-
cance level might also lead to detecting spurious interactions. The number of permutations
s should be chosen to be as high as possible in order to obtain accurate results. However,
since PINT must refit the model within each permutation, the computational burden in-
creases with more permutations. One possible solution to address this trade-off for PIMP
was proposed by Altmann et al. (2010), where the authors use a smaller number of permu-
tations (e.g., 100) to approximate the empirical null distribution and then fit a theoretical
distribution (e.g., normal, log-normal or gamma distribution) on the empirical distribution.
Based on a Kolmogorov-Smirnov test, the theoretical distribution that best fits the empiri-
cal distribution is selected to approximate the null distribution. If the Kolmogorov-Smirnov
test is not significant for any of the theoretical distributions, then the empirical distribution
is used as the null distribution.17 This approach can similarly be applied for PINT. More
suggestions to decrease the computational burden of PINT are provided in Appendix D.

6 Simulations

In this section, we analyze different hypotheses to (1) empirically validate that GAD-
GET generally minimizes feature interactions and (2) show how different characteristics
of the underlying data—such as correlations between features and different settings of the
data-generating process—might influence GADGET, depending on the chosen feature effect
method. The structure of the following sections and the concrete definition of the hypothe-
ses is based on (2). However, the simulation examples themselves are designed in such a way

17. Note that Altmann et al. (2010) do not adjust for multiple testing, which can lead to false positives in
higher dimensions (Molnar et al., 2022).
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that we know the underlying ground-truth of feature interactions for each example. Thus,
we are able to empirically validate that GADGET generally minimizes feature interactions.

6.1 Extrapolation

Hypothesis. For increasing correlation between features, due to extrapolation, we receive
results that are less stable for methods using the marginal distribution for integration (espe-
cially PD, as shown in Section 3, but also SD) compared to methods using the conditional
distribution (such as ALE). Note that in this context, “stability” refers to the ability of the
different methods to find the correct split feature and split point in GADGET over various
repetitions.

Experimental Setting. To address this hypothesis, we choose the (simple) simulation ex-
ample of Section 3 and compare GADGET based on PD, ALE, and SD for four different
correlation coefficients ρ13 between x1 and x3—0, 0.4, 0.7, and 0.9. The data is generated
as follows: Let X2, X3 ∼ U(−1, 1) be independently distributed and X1 = c ·X3+(1−c) ·Z
with Z ∼ U(−1, 1), where c takes values between 0 and 0.7, which correspond to the
above-mentioned ρ13 values. The true underlying relationship is defined as before by
Y = 3X11X3>0 − 3X11X3≤0 + X3 + ϵ with ϵ ∼ N(0, 0.09). We draw 1000 observations
and fit a GAM with correctly specified main and interaction effects as well as an NN with
the previously defined specifications to the data. We repeat the experiment 30 times.

We apply GADGET to each setting and model within each repetition using PD, ALE,
and SD as feature effect methods. We consider all features as features of interest as well as
potential interacting (split) features, meaning S = Z = {1, 2, 3}. As stopping criteria, we
choose a maximum depth of 6, minimum number of observations per leaf of 40, and set the
improvement parameter γ to 0.2.

Results. Figure 6 shows that independent of the model or correlation degree, x2 has (cor-
rectly) never been considered as split feature. For correlation strengths ρ13 between 0 and
0.7, x3 is always chosen as the only split feature, with I3 taking values between 0.75 and
1 and, thus, reducing most of the interaction-related heterogeneity of all features with one
split. Thus, for low to medium correlations, there are only minor differences between the
various feature effect methods and models. However, the observed behavior changes sub-
stantially for ρ13 = 0.9. For the correctly-specified GAM, we still receive quite consistent
results, apart from one repetition where x1 is chosen as the split feature when PD is used.
In contrast, there is more variation of I3 when the NN is considered as the underlying ML
model, especially when SD is used. For SD, x1 is chosen once for splitting, and for PD,
this is also the case for 30% of all repetitions (see Table 1). While using ALE, GADGET
always correctly performs one split with regard to x3. Additionally, GADGET performs a
second split once when PD is used and 7 times when SD is used.

Thus, for a high correlation between features, we already observe in this very simple
setting that the extrapolation problem influences the splitting within GADGET for effect
methods based on marginal distributions, while methods based on conditional distributions
such as ALE are less affected. This is particularly relevant for learners that model very
locally (e.g., NNs) and thus, tend to have wiggly prediction functions and oscillate in ex-
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Figure 6: Boxplots showing the interaction-related heterogeneity reduction Iz per split fea-
ture over 30 repetitions when PD, ALE, or SD is used in GADGET. The columns
show the results depending on the correlation between x1 and x3, while the rows
show the respective boxplots when GADGET is applied, based on the predictions
of a correctly-specified GAM (upper) and of an NN (lower).

trapolating regions. This is also notable on the split value range, which increases for the
NN in the case of high correlations for PD and SD but not for ALE (see Table 1).

Split feature x3 in % Split value range MSE

Model ρ13 ALE PD SD ALE PD SD mean (sd)

GAM 0 1.00 1.00 1.00 0.10 0.10 0.12 0.329 (0.008)
GAM 0.4 1.00 1.00 1.00 0.13 0.10 0.10 0.201 (0.003)
GAM 0.7 1.00 1.00 1.00 0.09 0.10 0.09 0.137 (0.002)
GAM 0.9 1.00 0.97 1.00 0.11 0.11 0.12 0.107 (0.001)

NN 0 1.00 1.00 1.00 0.10 0.09 0.09 0.152 (0.018)
NN 0.4 1.00 1.00 1.00 0.08 0.08 0.07 0.124 (0.007)
NN 0.7 1.00 1.00 1.00 0.11 0.10 0.10 0.111 (0.005)
NN 0.9 1.00 0.70 0.97 0.10 0.19 0.15 0.104 (0.003)

Table 1: Overview of how often x3 was chosen as the first split feature over all 30 repeti-
tions, including the respective split value range. The last column shows the test
performance of the respective model by the mean (standard deviation) of the mean
squared error (MSE).

6.2 Higher-Order Effects

Hypothesis. While SD puts less weight on interactions with increasing order, all interac-
tions (independent of the order) receive the same weight in PD and ALE. Hence, when

28

173



Decomposing Global Feature Effects

GADGET-SD is used, we might not be able to detect interactions of high order—especially
when the approximation without recalculation after each split is used (see Section 4.5).
However, it should be more likely to detect these interactions with PD and ALE.

Experimental Setting. To investigate this hypothesis, we consider 5 features with X1 ∼
U(0, 1) andX2, X3, X4, X5 ∼ U(−1, 1) and draw 1000 samples. The data-generating process
is defined by a series of interactions between different features: y = f(x) + ϵ with f(x) =
x1 · 1x3≤01x4>0 + 4x1 · 1x3≤01x4≤0 − x1 · 1x3>01x5≤01x2>0 − 3x1 · 1x3>01x5≤01x2≤0 − 5x1 ·
1x3>01x5>0 and ϵ ∼ N(0, 0.01 ·σ2(f(x)). These interactions can be seen as one hierarchical
structure between all features, where the slope of x1 depends on the subspace defined by
the interacting features (see Figure 7).

We fit an xgboost (XGB) model with correctly-specified feature interactions and a ran-
dom forest (RF) on the data set and apply GADGET using PD, ALE, SD with recalculation
after each split, and SD without recalculation on each model. We repeat the experiment
30 times, where the XGB showed an average (standard deviation) MSE of 0.068(0.009) and
the RF of 0.121(0.012) on a separate test set of the same distribution. For GADGET, we
consider one feature of interest S = 1 and all other features as potential interacting features
Z = {2, 3, 4, 5}. As stop criteria, we choose a maximum tree depth of 7, minimum number
of observations of 40, and γ = 0.1. We can assume that if the underlying model learned the
effects of the data-generating process correctly, GADGET must split as shown in Figure 7
to maximally reduce the interaction-related heterogeneity of x1.

Results. For the first partitioning step, all methods used x3 as the first split feature in
all repetitions. Table 2 shows that a second-level split was performed in only 10% of the
repetitions for XGB when SD without recalculation is used within GADGET, while the
second-level split frequency for all other methods is approximately 90%. A similar trend
is observable when RF is used as underlying ML model but with higher variation in the
relative frequencies, which might be due to to different learned effects. If further splits for
the second depth of the tree are performed, the correct split features x4 and x5 are always
chosen by all methods, which shows that GADGET generally minimizes feature interactions
(see Figure 7). Table 3 shows the same difference in relative frequencies between SD without
recalculation and all other methods for the third-level splits as for the previous splits. This
is confirmed by Table 4, which shows that while SD without recalculation demonstrates a
high variation of final subspaces, the median number of subspaces is 2, indicating that this
method stops after the first split (with x3). The other methods show a higher number of
final subspaces; PD and SD with recalculation typically show the correct final number of
subspaces (i.e., 5), while ALE tends to split slightly deeper.

To summarize, when SD without recalculation is used, the two-way interaction with x3

is primarily detected, while features of a third (x4 and x5) or fourth order (x2) interaction
are rarely considered for splitting. By contrast, for most repetitions of the other three
methods, we find that interactions of a higher order are also detected. This supports our
hypothesis regarding higher-order effects and the theoretical differences of the considered
feature effect methods.

Note that due to recalculating the Shapley values after each split, the order of inter-
actions is reduced. For example, recalculating Shapley values in the subspace {X |x3 ≤ 0}
reduces the three-way interaction x1 ·1x3≤01x4>0 to the two-way interaction x1 ·1x4>0 and,
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Figure 7: Explanation of the data-
generating process. The
green squares represent
the 5 final subspaces
which contain linear ef-
fects of feature x1.

At,z
l At,z

r

Model Method z Freq. z Freq.

XGB ALE x4 0.93 x5 0.93
XGB PD x4 0.90 x5 0.90
XGB SD not rc x4 0.10 x5 0.10
XGB SD rc x4 0.87 x5 0.87
RF ALE x4 0.80 x5 0.90
RF PD x4 0.63 x5 0.73
RF SD not rc x4 0.03 x5 0.13
RF SD rc x4 0.73 x5 0.90

Table 2: Relative frequencies of splits by split fea-
ture z over 30 repetitions in the left At,z

l

and right At,z
r subspaces after the first split

when GADGET with ALE, PD, SD with
recalculation (rc) and without recalculation
(not rc) is used.

thus, the weight of the interaction increases for the next split. Consequently, we receive
similar results for these settings as we do for PD. However, one might consider that the
recalculation can be computationally expensive.

Model Method z Rel. Freq.

XGB ALE x2 0.93
XGB PD x2 0.90
XGB SD not rc x2 0.10
XGB SD rc x2 0.87
RF ALE x2 0.83
RF ALE x4 0.03
RF PD x2 0.67
RF SD not rc x2 0.10
RF SD rc x2 0.83

Table 3: Relative frequencies of splits by
split feature z over all 30 repe-
titions in the subspace {X |x3 >
0 ∩ x5 ≤ 0} on third tree depth
when GADGET is applied with
ALE, PD, SD not rc and SD rc.

No. of Subspaces

Model Method Min Max Med

XGB ALE 3 15 7
XGB PD 2 7 5
XGB SD not rc 2 7 2
XGB SD rc 2 8 5
RF ALE 3 16 9
RF PD 2 11 5
RF SD not rc 2 11 2
RF SD rc 3 12 5

Table 4: Minimum, maximum and median
number of final subspaces over 30
repetitions after GADGET is ap-
plied with ALE, PD, SD not rc
and SD rc.
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6.3 PINT vs. H-Statistic: Spurious Interactions

Hypothesis. When using PINT to pre-select S = Z ⊆ {1, . . . , p}, we are more likely to
actually split according to feature interactions compared to when choosing all features
(S = Z = {1, . . . , p}) or using the H-Statistic values for pre-selection, especially when
potential spurious interactions are present.

Experimental Setting. We use the following simulation example described previously in
Section 5: We consider four features with X1, X2, X4 ∼ U(−1, 1) and X3 = X2 + ϵ with
ϵ ∼ N(0, 0.09). For 30 repetitions, we draw n = {300, 500} observations and create the
dependent variable, including a potential spurious interaction between x1 and x3: y =
x1+x2+x3−2x1x2. For each sample size n and each repetition, we fit an SVM based on a
radial basis function (RBF) kernel with cost parameter C = 1 and choose the inverse kernel
width based on the data. We receive very similar model performance values—measured by
the mean (standard deviation) of the MSE on a separate test set of size 100000 of the same
distribution—of 0.028(0.010) and 0.027(0.010) for n = 300 and n = 500, respectively.

We calculate PINT using PD, ALE, and SD for each repetition and sample size with
s = 100 and α = 0.05 by approximating the null distribution as described in Section 5 and
Altmann et al. (2010). We apply GADGET using PD, ALE, and SD with recalculation,
where S = Z is based on the feature subset chosen by PINT for the respective feature effect
method. We compare these results with considering all features as features of interest and
potential split features (i.e. S = Z = {1, . . . , p}). We use a maximum tree depth of 6,
minimum number of observations of 40, and γ = 0.15 as stop criteria.

Results. The two left plots in Figure 8 show that x3 and x4 are always correctly identified
as insignificant (according to the chosen α level), while the interacting features x1 and x2

are always significant and thus considered in S (apart from a few exceptions for ALE). The
sample size does not seem to have a clear influence on PINT in this setting. The right plots
in Figure 8 show that even the H-Statistic values of the non-influential and uncorrelated
feature x4 are larger than 0 for both sample sizes. The H-Statistic values of x3 might
support considering x3 in S, depending on which threshold is chosen. Since this choice is
not clear for the H-Statistic, it is not very suitable as a pre-selection method for GADGET.

Figure 9 illustrates that we correctly only consider x1 and x2 when PINT is applied
upfront, while GADGET also splits w.r.t. x3 for all settings and (in some cases) even w.r.t.
x4 if PINT is not applied upfront. The influence of these two features seems to be higher
for the smaller sample size according to Iz. Note that of the various effect methods used in
GADGET, PD and SD attribute most of the heterogeneity reduction to x1 and a small part
to x2, while ALE attributes the heterogeneity more equally between the two split features.
A possible explanation might be the correlation between x2 and x3, which particularly
affects the two methods based on marginal distributions (i.e., PD and SD). Furthermore,
Table 5 shows that we tend to obtain shallower trees when we use PINT upfront, while
we retain the level of heterogeneity reduction by obtaining similar R2

j values for the two
interacting features x1 and x2.

Thus, PINT reduces the number of features to consider in the interacting feature subset
for GADGET depending on the regarded feature effect method. This leads to better results
in GADGET in the sense that we only split w.r.t. truly interacting features defined by
PINT and receive shallower (and thus, more interpretable) trees.
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Figure 8: Boxplots showing the distribution of p-values of each feature for different sample
sizes and effect methods over all repetitions when PINT is applied (left) and the
distribution of feature-wise H-Statistic values for both sample sizes (right).
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Figure 9: Boxplots showing the interaction-related heterogeneity reduction Iz per split fea-
ture over 30 repetitions when PD, ALE, or SD is used within GADGET. The
rows show the results for the two different sample sizes, and the columns indicate
if GADGET is used based on all features without using PINT upfront (left) or
GADGET is used based on the feature subset resulting from PINT (right).
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R2
j Number of Subspaces

n Method PINT R2
1 mean(sd) R2

2 mean(sd) Min Max Median

300 ALE no 0.83 (0.05) 0.83 (0.05) 4 10 7.50
300 ALE yes 0.83 (0.07) 0.82 (0.05) 1 10 7.00
300 PD no 0.94 (0.02) 0.84 (0.06) 2 7 4.00
300 PD yes 0.92 (0.03) 0.80 (0.08) 2 5 3.00
300 SD no 0.93 (0.04) 0.90 (0.05) 2 11 5.00
300 SD yes 0.93 (0.04) 0.90 (0.05) 2 11 4.50
500 ALE no 0.83 (0.04) 0.83 (0.06) 4 10 7.00
500 ALE yes 0.86 (0.04) 0.82 (0.05) 1 11 6.50
500 PD no 0.94 (0.03) 0.84 (0.06) 2 7 4.00
500 PD yes 0.93 (0.03) 0.82 (0.08) 2 5 4.00
500 SD no 0.93 (0.04) 0.90 (0.05) 2 11 5.00
500 SD yes 0.93 (0.04) 0.90 (0.05) 2 9 5.00

Table 5: Interaction-related heterogeneity reduction per feature for x1 and x2 by mean
(standard deviation) of R2

j and minimum, maximum and median number of final
subspaces after applying GADGET based on different sample sizes, effect methods
and with and without using PINT upfront.

7 Real-World Applications

In this section, we show the usefulness of our introduced methodology on two real-world
application examples. These examples demonstrate that we can both obtain more insights
about the learned effects and interactions of the underlying model as well as potentially be
able to detect potential bias in the data or model.

COMPAS Data Set. Due to potential subjective judgement and a resulting bias in the
decision-making process of the criminal justice system (Blair et al., 2004), ML models have
been used to predict recidivism of defendants to provide a more objective guidance for
judges. However, if the underlying training data is biased (e.g., different socioeconomic
groups have been treated differently for the same crime in the past), the ML model might
learn the underlying data bias and, due to its black-box nature, explanations for its decision-
making process and a potential recourse are harder to achieve (Fisher et al., 2019).

We want to use GADGET here to obtain more insights in how different characteristics
about the defendant and their criminal record influence the risk of recidivism within different
subgroups and if “inadmissible” characteristics such as ethnicity or gender cause a different
risk evaluation. For our analysis, we use a data set to predict the risk of violent recidivism
gathered by ProPublica (Larson et al., 2016) from the Broward County Clerk’s Office,
the Broward County Sheriff’s Office, and the Florida Department of Corrections, based
on the commercial black-box model of Northpointe Inc. called the Correctional Offender
Management Profiling for Alternative Sanctions (COMPAS) data set.

As Fisher et al. (2019), we choose the three admissible features (1) age of the defendant,
(2) number of prior crimes, and (3) if the crime is considered a felony versus misdemeanor,
and the two “inadmissible” features (1) ethnicity and (2) gender of the defendant. We use
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the subset of African-American and Caucasian defendants and apply the data pre-processing
steps suggested by ProPublica and applied in Fisher et al. (2019), which leaves us with 3373
defendants of the original pool of 4743 defendants. We consider a binary target variable
indicating a high (= 1) or low (= 0) recidivism risk, which is based on a categorization of
ProPublica. We perform our analysis on the full data set, using a tuned SVM.18

Since the features do not show high correlations, we use ICE and PD for our analysis.19

Figure 10 shows that the average predicted risk visibly decreases with age, while the pre-
dicted risk first steeply increases with the number of prior crimes until 10 and then slightly
decreases for higher values. The PD values for the type of crime do not differ substantially.
When considering the two “inadmissible” features, there is on average a slightly higher risk
of recidivism for African-American versus Caucasian and female versus male defendants.
For all features, we can observe highly differing local effects. In particular, the heteroge-
neous ICE curves for age and number of prior crimes indicate potential feature interactions.
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Figure 10: ICE and PD curves of considered features of the COMPAS application example.

We first apply PINT with PD to define our subset S for GADGET. To that end, we
choose s = 200 and α = 0.05 and approximate the null distribution using the procedure
described in Section 5. All five features are significant w.r.t. the chosen significance level,
and thus we choose S = Z = {age, crime, ethnicity, gender, priors count} for GADGET.
We apply GADGET with a maximum depth of 3 and γ = 0.15. The effect plots for the
four resulting regions are shown in Figure 11. GADGET performed the first split according
to age and the splits on the second depth according to the number of prior crimes. The
total interaction-related heterogeneity reduction is R2

Tot = 0.86. The highest heterogeneity
reduction is given by age and number of prior crimes, which interact the most (see Figure
11). For defendants around 20 years old, the predicted risk is generally very high. However,
for defendants with a small number of prior crimes, the predicted risk decreases very quickly
with increasing age, reaching a low risk and remaining so for people older than 32. In
contrast, for defendants with more than four prior crimes, the predicted risk decreases only
slowly with increasing age. The regional feature effects of the number of prior crimes show
that the interaction-related heterogeneity is small for the subgroup of younger people, while

18. More details on the model selection process can be found in Appendix E.
19. We received similar results by using SD instead of PD within GADGET, see Appendix E.
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some heterogeneity still remains for defendants older than 32. Additionally, the interaction-
related heterogeneity of the three binary features (ethnicity, gender, and crime severity)
was reduced, indicating an interaction between each of them and age as well as the number
of prior crimes. While the effect on the predicted risk only differs slightly between the
categories of the three binary features for older defendants with a lower number of prior
crimes and for younger defendants with a high number of prior crimes, greater differences
were observed for the other two subgroups. The overall difference in predicted risk for the
two inadmissible features of ethnicity and gender seems to be especially high for people
older than 32 with a higher number of prior crimes as well as for people younger than 32
with a lower number of prior crimes.

Thus, our analysis has discovered a potentially learned bias regarding ethnicity and
gender of the defendant, potentially resulting in more severe predicted risk of recidivism
for some defendants than for others. Note that we applied GADGET on an ML model
that is fitted on the COMPAS scores and not directly on COMPAS. Consequently, we are
not able to draw conclusions about the learned effects of the underlying commercial black-
box model. However, GADGET is model-agnostic and can be applied to any accessible
black-box model.
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Figure 11: Regional PD plots for all features of the COMPAS application after applying
GADGET. The grey areas of the numeric features and the error bars of the
categorical features indicate the 95% interaction-related heterogeneity interval
as defined in Section 4.3 and Appendix C.3.

Bikesharing Data Set. As a second application example, we choose the bikesharing data
set provided in James et al. (2022). The target variable of this regression task is the hourly
count of rented bikes for the years 2011 and 2012 in the Capital bikeshare system. The goal
here is to predict the hourly rented bikes based on seasonal as well as weather information.
We include ten features in our model for this prediction task: the day and hour the bike
was rented, if the current day is a working day, the season, and the number of casual bikers.
Weather-related features we included are: normalized temperature, perceived temperature,
wind speed, humidity and the weather situation (categorical, e.g., clear).

We fit an RF on the data set and use the training data for our further analysis.20

20. More details on the model selection process can be found in Appendix E.
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Again, we first apply PINT (as done in the COMPAS example above) with s = 200
and α = 0.05 on all features to define the interacting feature subset S for GADGET.
Since some of the features—such as season, temperature, and perceived temperature—are
correlated, we use ALE for our analysis. While the features hour and workingday are
highly significant, the p-values of all other features are close to 1, indicating that only the
heterogeneity of local effects for hour and workingday are caused by interactions. Hence,
we define S = Z = {hr, workingday} and apply GADGET with a maximum depth of 3 and
γ = 0.15. GADGET splits once w.r.t. the binary feature workingday, which reduces the
interaction-related heterogeneity of the two features by R2

Tot = 0.88. The middle plots of
Figure 12 show the regional ALE plots after applying GADGET. High peaks are prominently
visible on working days during rush hours, while there is a drop during noon and afternoon
hours. However, on non-working days, the trend is the opposite. This interaction is not
visible in the global ALE plot of the feature hour (left plot).

The interaction-related heterogeneity of the feature hour is reduced compared to the
global plot, although there is still some variation apparent for working days. From a do-
main perspective, we might also consider an interaction of the temperature with hour and
working day (as done in Hiabu et al., 2023). Thus, we include temperature in feature subsets
S and Z and apply GADGET again with the same settings as described above. The feature
workingday governs the first split. However, for the region of working days, GADGET
splits again according to temperature, as shown in the right plot of Figure 12. While the
interaction-related heterogeneity of feature temperature was barely reduced within GAD-
GET (R2

j = 0.03)—which supports the results of PINT—using temperature in the subset
of splitting features Z further reduced the interaction-related heterogeneity of hour by 15%.
Thus, feature interactions can be asymmetric, and extending Z based on domain knowledge
might be a valid option in some cases.
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Figure 12: Global (left), regional ALE plots after applying GADGET for feature hour
when S = Z = {hr, workingday} (middle) and when S = Z =
{hr, workingday, temp} (right) of the bikesharing application. The upper plots
show the interaction-related heterogeneity as defined in Section 4.4 and Ap-
pendix C.3.
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8 Conclusion and Discussion

We introduced the new framework GADGET, which partitions the feature space into in-
terpretable and distinct regions such that feature interactions of any subset of features are
minimized. This allows to decompose joint effects into features’ main effects within the
found regions. GADGET can be used with any feature effect method that satisfies the local
decomposability axiom (Axiom 1). We showed applicability to the well-known global feature
effect methods—namely PD, ALE, and SD—and provide respective estimates and visual-
izations for regional feature effects and interaction-related heterogeneity. Furthermore, we
introduced different measures to quantify and analyze feature interactions by the reduc-
tion of interaction-related heterogeneity within GADGET. To define the interacting feature
subset, we introduced PINT, a novel permutation-based significance test to detect global
feature interactions that is applicable to any feature effect method used within GADGET.

Our experiments showed that PINT is often able to detect the true interacting feature
subset in the presence of spurious interactions and that the pre-selection thus leads to
more meaningful and interpretable results in GADGET. Moreover, considering feature effect
methods within GADGET that are based on conditional distribution tend to lead to more
stable results compared to considering feature effect methods based on marginal distribution
when features are highly correlated. Furthermore, due to a different weighting scheme in the
decomposition of Shapely values compared to the other considered feature effect methods,
higher-order terms are less likely to be detected by GADGET, especially if Shapley values
are not recalculated after each partitioning step. This approach might be computationally
expensive, which can be seen as a possible limitation. However, recent research has focused
on fast approximation techniques of Shapley values (e.g., Lundberg and Lee, 2017; Jethani
et al., 2021; Lundberg et al., 2020; Chau et al., 2022) and may offer solutions to overcoming
this limitation.

In general, our proposed method works well if learned feature interactions are not overly
local and if observations can be grouped based on feature interactions such that local feature
effects within the groups are homogeneous and, at the same time, show heterogeneous
feature effects between different groups. With that, we can avoid an aggregation bias of
global feature effect methods, obtain more insights into the learned effects, and may detect
potential biases within different subgroups (as illustrated in Section 7). One of the real-
world examples also showed that the frequently-made assumption of symmetric feature
interactions (e.g., in Shapley values) is not always the case (see also Masoomi et al., 2023,
for research on asymmetrical feature interactions). Thus, including domain knowledge to
define the interacting feature subset Z might sometimes be meaningful.
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Appendix A. Details on M Plot

The M plot for feature xj at feature value xj is defined as the marginal effect of feature
xj using the conditional distribution (compared to the marginal distribution used in PD
functions):

fM
j (xj) = E[f̂(Xj , X−j)|Xj = xj ] =

∫
f̂(xj ,x−j)dP(x−j |xj).

Hence, similar to PD plots, the local feature effect of M plots are also predictions at a
specific feature value of xj but w.r.t. the conditional distribution P(x−j |xj). Therefore, M
plots can be seen as an average over ICE curves, which are restricted based on the given
correlation structure. This leads to the inclusion of the feature effects of correlated features,
as illustrated in the following example.

We draw 1000 samples of two multivariate normally distributed random variables X1

and X2 with µ1 = µ2 = 0, σ1 = σ2 = 1 and σ12 = 0.9. The true data-generating process is
given by y = −x1 + 2x2 + ϵ with ϵ ∼ N (0, 0.2). We train a linear model on the given data
set. Based on the learned effects of the linear model, we would assume that the feature x1

has a negative influence on the predictions, as shown by the PD plot in Figure 13 (left).
On the other hand, the M Plot accounts for the effect of the correlated feature x2, which
has a positive effect and (in absolute terms) a higher influence on the predictions than x1,
which leads to a positive slope in the right plot of Figure 13.
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Figure 13: PD plot (left) and M Plot (right) for feature x1.

Appendix B. Theoretical Evidence of GADGET

In this appendix, we provide the proofs for the theorems and the corollary of Section 4.2.
Furthermore, we show the applicability of the feature effect methods PD, ALE, and SD
within the GADGET algorithm by defining respective local feature effect functions that
fulfill Axiom 1.

B.1 Proof of Theorem 2

Proof Sketch If the function f̂(x) can be decomposed as in Eq. (1) and if Axiom 1 holds
for the local feature effect function h, then the main effect of feature xj at xj is cancelled
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out within the loss function in Eq. (10). Thus, the loss function measures the interaction-
related heterogeneity of feature xj at xj , since the variability of local effects in the subspace
Ag are only based on feature interactions between the j-th feature and features in −j.

Proof

L (Ag, xj) =
∑

i:x(i)∈Ag

(
h(xj ,x

(i)
−j)−E[h(xj , X−j)|Ag]

)2

=
∑

i:x(i)∈Ag

gj(xj) +

p−1∑
k=1

∑
W⊆−j,
|W |=k

gW∪j(xj ,x
(i)
W )−E[gj(xj) +

p−1∑
k=1

∑
W⊆−j,
|W |=k

gW∪j(xj , XW )|Ag]


2

=
∑

i:x(i)∈Ag

p−1∑
k=1

∑
W⊆−j,
|W |=k

gW∪j(xj ,x
(i)
W )−E[gW∪j(xj , XW )|Ag]


2

B.2 Proof of Theorem 3

Proof Sketch We show in two steps that the objective in Algorithm 1 minimizes interaction-
related heterogeneity between features in S and Z. First, if the function f̂(x) can be
decomposed as in Eq. (1) and if Axiom 1 holds for the local feature effect function h, then
we can show (based on Theorem 2) that the objective I(t, z) in Algorithm 1 is defined by
feature interactions between each feature j ∈ S and features in −j. Second, since we only
consider features in Z for splitting and thus minimize the interaction-related heterogeneity
of features in S, we can show that feature interactions between features in S and features
in −Z are independent of the partitioning in Algorithm 1 (if all features contained in Z
and all features in −Z are pair-wise independent) and thus are not directly minimized in
the objective I(t, z).

Proof

I(t, z) =
∑
j∈S

∑
b∈{l,r}

(
R(At,z

b ,xj)
)

Eq. (11)
=

∑
j∈S

∑
b∈{l,r}


∑

k:k∈{1,...,m}
∧x

(k)
j ∈At,z

l

L(At,z
b , x

(k)
j )


Eq. (10)

=
∑
j∈S

∑
b∈{l,r}

∑
k:k∈{1,...,m}
∧x

(k)
j ∈At,z

b

∑
i:x(i)∈At,z

b

(
h(x

(k)
j ,x

(i)
−j)−E[h(x

(k)
j , X−j)|At,z

b ]
)2

T. 2
=

∑
j∈S

∑
b∈{l,r}

∑
k:k∈{1,...,m}
∧x

(k)
j ∈At,z

b

∑
i:x(i)∈At,z

b

p−1∑
l=1

∑
W⊆−j,
|W |=l

gW∪j(xj ,x
(i)
W )−E[gW∪j(xj , XW )|At,z

b ]


2
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The objective function I(t, z) is defined by the interaction-related heterogeneity between
all features j ∈ S ⊆ {1, . . . , p} and features in −j for the sum of the left and right sub-

space At,z
l and At,z

r . Since the aim is to minimize this term, we choose the split feature
z ∈ Z ⊆ {1, . . . , p} and split point t, which minimizes the sum of the risk values. However,
since we only split w.r.t. features in Z and not w.r.t. feature in −Z, the objective focuses
on minimizing the heterogeneity between features in S and features in Z, while interactions
between features in S and features in −Z are generally not minimized, since the hetero-
geneity is independent of the subspace At,z

b .21 This can be shown by decomposing the risk
function for features j ∈ S into interaction effects between feature xj and features in Z (first
term), interaction effects between feature xj and features in −j with at least one feature
of the subset Z and at least one feature of the subset −Z (second term), and interaction
effects between feature xj and features in −Z (third term):

R(At,z
b ,xj) =

∑
k:k∈{1,...,m}
∧x

(k)
j ∈At,z

b

∑
i:x(i)∈At,z

b

p−1∑
l=1

∑
W⊆−j,
|W |=l

gW∪j(xj ,x
(i)
W )−E[gW∪j(xj , XW )|At,z

b ]


2

=
∑

k:k∈{1,...,m}
∧x

(k)
j ∈At,z

b

∑
i:x(i)∈At,z

b


( |Z\j|∑

l=1

∑
Zl⊆Z\j,
|Zl|=l

gZl∪j(xj ,x
(i)
Zl
)−E[gZl∪j(xj , XZl)|A

t,z
b ]

)

+

(
p−1∑
l=2

∑
W⊆−j

∧∃Zl⊆Z\j:Zl⊂W
∧∃−Zl⊆−Z\j:−Zl⊂W,

|W |=l

gW∪j(xj ,x
(i)
Zl
,x

(i)
−Zl

)−E[gW∪j(xj , XZl , X−Zl)|A
t,z
b ]

)

+

( |−Z\j|∑
l=1

∑
−Zl⊆−Z\j,

|−Zl|=l

g−Zl∪j(xj ,x
(i)
−Zl

)−E[g−Zl∪j(xj , X−Zl)|A
t,z
b ]

)
2

While the first two terms contain feature interactions between j and features in Z, the last
term does not. Furthermore, this term is (at least, in an uncorrelated setting) independent
of the regarded subspace At,z

b and, thus, is not directly minimized by the given objective:|−Z\j|∑
l=1

∑
−Zl⊆−Z\j,
|−Zl|=l

g−Zl∪j(xj ,x
(i)
−Zl

)− E[g−Zl∪j(xj , X−Zl
)|At,z

b ]

 ⊥⊥ At,z
b

since E[g−Zl∪j(xj , X−Zl
)|At,z

b ] = E[g−Zl∪j(xj , X−Zl
)].

B.3 Proof of Corollary 4

Proof Sketch Based on Theorem 3, we can show that the theoretical minimum of the ob-
jective is I(t∗, z∗) = 0 if no feature in S interacts with any feature in −Z. In the following

21. This might be different if features in Z and −Z are highly correlated.
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proof, we apply the same decomposition of the risk functionR(At,z
b ,xj), as done in the proof

of Theorem 3. Since we assume that no feature in S interacts with any feature in −Z, the
second and third term—which contain interactions between these two feature subsets—are
zero. Hence, the risk function is only defined by feature interactions between features in S
and Z, which are minimized by the objective in Algorithm 1.

Proof If the feature subset Z contains all features interacting with features in S, and hence
no feature in −Z interacts with any feature in S, then (w.r.t. the decomposition of the risk

function in the proof of Theorem 3) the risk function for feature xj within a subspace At,z
b

reduces to the variance of feature interactions between feature xj and features in Z:

R(At,z
b ,xj) =

∑
k:k∈{1,...,m}
∧x

(k)
j ∈At,z

b

∑
i:x(i)∈At,z

b


( |Z\j|∑
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∑
Zl⊆Z\j,
|Zl|=l

gZl∪j(xj ,x
(i)
Zl
)−E[gZl∪j(xj , XZl)|A

t,z
b ]

)

+

(
p−1∑
l=2

∑
W⊆−j

∧∃Zl⊆Z\j:Zl⊂W
∧∃−Zl⊆−Z\j:−Zl⊂W,

|W |=l
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Zl
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(i)
−Zl

)−E[gW∪j(xj , XZl , X−Zl)|A
t,z
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)

+
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)−E[g−Zl∪j(xj , X−Zl)|A
t,z
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= 0

)
2

=
∑

k:k∈{1,...,m}
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(k)
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i:x(i)∈At,z
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Zl⊆Z\j,
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gZl∪j(xj ,x
(i)
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2

Since the objective is defined such that it minimizes these interactions for all j ∈ S
by splitting the feature space w.r.t. features in Z, we can split deep enough to achieve

gZl∪j(xj ,x
(i)
Zl
) = E[gZl∪j(xj , XZl

)|At,z
b ] for all terms within the sums of the risk function

and for all j ∈ S. In other words, the individual interaction effect is equal to the expected
interaction effect within a subspace, and thus the theoretical minimum of the objective is
I(t∗, z∗) = 0.

B.4 Applicability of PD within GADGET

Here, we show how h must be defined to fulfill Axiom 1 defined in Section 4.2 for the feature
effect method PD.

Local Decomposition: The local feature effect method used in PDs are ICE curves. The i-th
ICE curve of feature xj can be be decomposed as follows:
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f̂(xj ,x
(i)
−j) = g0︸︷︷︸

constant term

+ gj(xj)︸ ︷︷ ︸
main effect of xj

+
∑
k∈−j

gk(x
(i)
k )

︸ ︷︷ ︸
main effect of all other

features in −j for observation i

+

p−1∑
k=1

∑
W⊆−j,
|W |=k

gW∪{j}(xj ,x
(i)
W )

︸ ︷︷ ︸
(k + 1)-order interaction between

xj and features in −j for observation i

+

p−1∑
k=2

∑
W⊆−j,
|W |=k

gW (x
(i)
W )

︸ ︷︷ ︸
k-order interaction between

features in −j for observation i

However, this decomposition of the local feature effect of xj contains not only feature
effects that depend on xj , but also other effects (e.g., i-th main effects of features in −j),
and thus Axiom 1 is not fulfilled by ICE curves. However, by mean-centering ICE curves,

constant and feature effects independent of xj are cancelled out, and thus f̂ c(xj ,x
(i)
−j) can be

decomposed into the mean-centered main effect of xj and the i-th mean-centered interaction
effect between xj and features in −j. Hence, the mean-centered ICE of feature xj at xj can
be decomposed as follows:

f̂c(xj ,x
(i)
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Thus, Axiom 1 is satisfied by mean-centered ICE curves and can be used as local feature
effect h within GADGET. Following from that, the mean-centered PD for feature xj at xj
can be decomposed by:

fPD,c
j (xj) = E[f̂

c(xj , X−j)] = gcj(xj) +

p−1∑
k=1

∑
W⊆−j,
|W |=k

E
[
gcW∪{j}(xj , XW )

]
,

which is the mean-centered main effect of feature xj and the expected mean-centered in-
teraction effect with feature xj at feature value xj . Based on these decompositions and for
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h = f̂ c(xj ,x
(i)
−j), we can show that the loss function only depends on the feature interaction

effect between the j-th feature and features in −j (Theorem 2):

LPD (Ag, xj) =
∑

i:x(i)∈Ag

(
f̂c(xj ,x

(i)
−j)−E[f̂

c(xj , X−j)|Ag]
)2

=
∑

i:x(i)∈Ag

gcj (xj) +

p−1∑
k=1

∑
W⊆−j,
|W |=k

gcW∪{j}(xj ,x
(i)
W )

−gcj (xj)−
p−1∑
k=1

∑
W⊆−j,
|W |=k

E
[
gcW∪{j}(xj , XW )|Ag

]
2

=
∑

i:x(i)∈Ag

p−1∑
k=1

∑
W⊆−j,
|W |=k

gcW∪{j}(xj ,x
(i)
W )−E

[
gcW∪{j}(xj , XW )|Ag

]
2

REPID as special case of GADGET. The objective function I(t, z) in Algorithm 1 for

h = f̂ c(xj ,x
(i)
−j) is defined by the above loss function LPD (Ag, xj) as follows:

I(t, z) =
∑
j∈S

∑
g∈{l,r}

∑
k:k∈{1,...,m}∧x(k)

j ∈Ag

LPD
(
Ag,x

(k)
j

)

For the special case where we consider one feature of interest that we want to visualize
(S = j) and all other features as possible split features (Z = −j), the objective function of
GADGET reduces to:

I(t, z) =
∑

g∈{l,r}

m∑
k=1

LPD
(
Ag,x

(k)
j

)
,

which is the same objective used within REPID. Thus, for the special case where we choose
mean-centered ICE curves as local feature effect method and S = j and Z = −j, GADGET
is equivalent to REPID.

B.5 Applicability of ALE Within GADGET

Here, we show the fulfillment of Axiom 1 defined in Section 4.2 for the underlying local
feature effect function in ALE.

Local Decomposition: The local feature effect method used in ALE is the partial derivative
of the prediction function at xj = xj . Thus, we define the local feature effect function h

by h(xj ,x
(i)
−j) :=

∂f̂(xj ,x
(i)
−j)

∂xj
. We can decompose h such that it only depends on main and

interaction effects of and with feature xj :
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∂f̂(xj ,x
(i)
−j)

∂xj
=

∂
(
g0 +

∑p
j=1 gj(xj) +

∑
j ̸=k gjk(xj ,x

(i)
k ) + . . .+ g12...p(x

(i))
)

∂xj

=
∂gj(xj)

∂xj
+

p−1∑
k=1

∑
W⊆−j,
|W |=k

∂gW∪j(xj ,x
(i)
W )

∂xj

Taking the conditional expectation over the local feature effects (partial derivatives) at xj
yields the (conditional) expected (i.e., global) feature effect at xj :

E

[
∂f̂(Xj , X−j)

∂xj

∣∣∣∣Xj = xj

]
=

∂gj(xj)

∂xj
+

p−1∑
k=1

∑
W⊆−j,
|W |=k

E

[
∂gW∪j(Xj , XW )

∂xj

∣∣∣∣∣Xj = xj

]

Based on these decompositions, we can show that the loss function for ALE only depends
on the feature interaction effect between the j-th feature and features in −j (Theorem 2):

LALE (Ag, xj) =
∑

i:x(i)∈Ag∧
x(i)∈P(x−j |xj)

(
∂f̂(xj ,x

(i)
−j)

∂xj
−E

[
∂f̂(Xj , X−j)

∂xj

∣∣∣∣Ag ∧Xj = xj

])2

=
∑

i:x(i)∈Ag∧
x(i)∈P(x−j |xj)

∂gj(xj)

∂xj
+

p−1∑
k=1

∑
W⊆−j,
|W |=k

∂gW∪j(xj ,x
(i)
W )

∂xj

− ∂gj(xj)

∂xj
−

p−1∑
k=1

∑
W⊆−j,
|W |=k

E

[
∂gW∪j(Xj , XW )

∂xj

∣∣∣∣∣Ag ∧Xj = xj

]
2

=
∑

i:x(i)∈Ag∧
x(i)∈P(x−j |xj)

p−1∑
k=1

∑
W⊆−j,
|W |=k

(
∂gW∪j(xj ,x

(i)
W )

∂xj
−E

[
∂gW∪j(Xj , XW )

∂xj

∣∣∣∣∣Ag ∧Xj = xj

])
2

B.6 Applicability of SD Within GADGET

Here, we show the fulfillment of Axiom 1 defined in Section 4.2 for Shapley values, which
are the underlying local feature effect in SD plots.

Local Decomposition: The local feature effect function in the SD plot is the Shapley value.

We define h(xj ,x
(i)
−j) := ϕ

(i)
j (xj) to be the Shapley value for the i-th local feature effect at

a fixed value xj , which is typically the i-th feature value of xj (i.e., xj = x
(i)
j ). In Eq. (8),
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we defined ϕ
(i)
j (xj) according to Herren and Hahn (2022) by the following decomposition:

ϕ
(i)
j (xj) =

p−1∑
k=0

1

k + 1

∑
W⊆−j:
|W |=k

E[f̂(xj , X−j)|XW = x
(i)
W ]−

∑
V⊂{W∪j}

E[f̂(X)|XV = x
(i)
V ]



= gcj(xj) +

p−1∑
k=1

1

k + 1

∑
W⊆−j:|W |=k

gcW∪j(xj ,x
(i)
W ),

with gcW∪j(xj ,x
(i)
W ) = E[f̂(xj , X−j)|XW = x

(i)
W ]−

∑
V⊂{W∪j}E[f̂(X)|XV = x

(i)
V ].

Hence, we can decompose h such that it only depends on main effects of and interaction
effects with feature xj .

Taking the expectation over the local feature effects h = ϕj at xj yields the expected
(i.e., global) feature effect of Shapley values at xj = xj .

EXW
[ϕj(xj)] = gcj(xj) +

p−1∑
k=1

1

k + 1

∑
W⊆−j:|W |=k

E[gcW∪j(xj , XW )]

Based on these decompositions, we can show that the loss function for SD only depends on
feature interactions between the j-th feature and features in −j (Theorem 2):

LSD(Ag, xj) =
∑

i:x(i)∈Ag∧x
(i)
j =xj

(
ϕ
(i)
j (xj)−EXW [ϕj(xj)|Ag]

)2

=
∑

i:x(i)∈Ag∧x
(i)
j =xj

(
gcj (xj) +

p−1∑
k=1

1

k + 1

∑
W⊆−j:|W |=k

gcW∪j(xj ,x
(i)
W )

−gcj (xj) +

p−1∑
k=1

1

k + 1

∑
W⊆−j:|W |=k

E[gcW∪j(xj , XW )|Ag]
)2

=
∑

i:x(i)∈Ag∧x
(i)
j =xj

p−1∑
k=1

1

k + 1

∑
W⊆−j:|W |=k

(
gcW∪j(xj ,x

(i)
W )−E[gcW∪j(xj , XW )|Ag]

)2

Appendix C. Further Characteristics of Feature Effect Methods

In this section, we cover further characteristics of the different feature effect methods used
within GADGET. As illustrated for PD in Section 4.3, we also show here for ALE and SD
that the joint feature effect (and possibly the prediction function) within the final regions
of GADGET can be approximated by the sum of univariate feature effects. Hence, the joint
feature effect can be additively decomposed into the features’ main effects within the final
regions. Furthermore, we provide an overview on estimates and visualization techniques
for the regional feature effects and interaction-related heterogeneity for the different feature
effect methods. We also explain how categorical features are handled within GADGET,
depending on the underlying feature effect method.
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C.1 Decomposability of ALE

Figure 14 shows the effect plots when GADGET is applied to the uncorrelated simulation
example of Section 3 when ALE (the underlying derivatives) and S = Z = {1, 2, 3} are used.
The grey curves before the split illustrate the global ALE curves. Since they do not show
the interaction-related heterogeneity of the underlying local effects, we added a plot that
visualizes this heterogeneity by providing the standard deviation of the derivatives within
each interval as a (yellow) curve along the range of xj , similar to the idea of Goldstein et al.
(2015) for derivative ICE curves. This shows us that local effects for feature x2 are very
homogeneous over the entire range of x2, while the local feature effects of x1 show a constant
heterogeneous behavior and a regional high heterogeneity around x3 = 0 is visible for x3.
GADGET chooses x3 = −0.003 as the best split point that reduces the interaction-related
heterogeneity of the three features almost completely. Thus, the ALE curves we receive in
the subspaces are more representative for the underlying individuals.
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Figure 14: Visualization of applying GADGET with S = Z = {1, 2, 3} to derivatives of ALE
for the uncorrelated simulation example of Section 3 with Y = 3X11X3>0 −
3X11X3≤0 + X3 + ϵ with ϵ ∼ N(0, 0.09). The upper plots show the standard
deviation of the derivatives (yellow) and the ALE curves (grey) on the entire
feature space, while the lower plots represent the respective standard deviation
of the derivatives and regional ALE curves after partitioning the feature space
w.r.t. x3 = −0.003.

Equivalently to PD plots, ALE plots also contain an additive recovery and, thus, can be
decomposed additively in main and interaction effects (see Section 2.3). Furthermore, if Z
is defined such that all features interacting with features in S are included and if GADGET
is applied such that the theoretical minimum of the objective function is reached, then
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according to Corollary 4, the joint mean-centered ALE function fALE,c
S|Ag

within each final

subspace Ag can be decomposed into the 1-dimensional mean-centered ALE functions of
features in S. Hence, since there are no more interactions between features in S and other
features present in the final regions, fALE,c

S|Ag
can be uniquely decomposed into the mean-

centered main effects of features in S—just as in PD functions (Apley and Zhu, 2020):

fALE,c
S|Ag

(xS) =
∑
j∈S

fALE,c
j|Ag

(xj) (18)

Moreover, let −S be the subset of features that do not interact with any other features.
Then, according to Eq. (18) and Eq. (4), the prediction function f̂Ag within the region Ag

can be decomposed into the 1-dimensional mean-centered ALE functions of all p features,
plus some constant value g0:

f̂Ag(x) = g0 +

p∑
j=1

fALE,c
j|Ag

(xj).

We can again derive this decomposition from Figure 14, where x2 shows an effect of 0
with low heterogeneity before and after the split. The feature effects of x1 and x3 show high
heterogeneity before the split, which is almost completely minimized after the split w.r.t.
x3. Hence, the resulting regional (linear) ALE curves are representative estimates for the
underlying local effects. Therefore, we can approximate the prediction function within each
subspace by

f̂Al
(x) = g0 +

−2.85

0.99
x1 +

1.3

1.03
x3 = g0 − 2.89x1 + 1.26x3

and

f̂Ar(x) = g0 +
2.89

0.99
x1 +

0.94

0.96
x3 = g0 + 2.92x1 + 0.98x3.

Particularities of ALE Estimation. As seen for the continuous feature x3 in the simulation
example presented here, abrupt interactions (“jumps”)22 might be difficult to estimate
for models that learn smooth effects, such as NNs (used here) or SVMs—especially when
compared to models such as decision trees. Hence, depending on the model, these type of
feature interactions can lead to very high partial derivatives in a region around the “jump”
point instead of a high partial derivative at exactly the one specific “jump” point (here:
x3 = 0), thus leading to non-reducible heterogeneity. This is illustrated in the upper right
plot of Figure 14. The standard deviation of the derivatives of x3 are very high in the
region around and not exactly at x3 = 0. This interaction-related heterogeneity should
be (almost) completely reduced when splitting w.r.t. x3 = 0. However, high values will
remain, since the model did not perfectly capture this kind of interaction. To account for
this issue in the estimation and partitioning process within GADGET, we use the following
procedure for continuous features: In the two new subspaces after a split, if the derivatives
of feature values close to the split point vary at least twice as much (measured by the

22. With abrupt interaction, we mean interactions that lead to an abrupt change of the influence of one
feature (x1) based on the influence of another feature at a specific (“jump”) point (x3 = 0) like the
feature interaction between x1 and x3 in the here presented simulation example: Y = 3X11X3>0 −
3X11X3≤0 +X3 + ϵ with ϵ ∼ N(0, 0.09).
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standard deviation) as the derivatives of the other observations within each subspace, then
the derivatives of feature values close to the split point are replaced by values drawn from
a normally distributed random variable where mean and variance are estimated by the
derivatives of the remaining observation within each subspace.

C.2 Decomposability of SD

Recalculation Versus No Recalculation of Shapley Values. In Section 4.5, we argued that
Shapley values must be recalculated after each partitioning step in order for each new
subspace to receive SD effects in the final subspaces that are representative of the underlying
main effects within each subspace. Meanwhile, the unconditional expected value (i.e., the
feature interactions on the entire feature space) are minimized without recalculating the
conditional expected values.

The difference in the final feature effects within the subspaces is illustrated when com-
paring the left plot of Figure 5 (split without recalculation) with the respective plots of
feature x1 of Figure 15. Without recalculation, the effect of feature x1 is still regarded as
an interaction effect between x1 and x3, and hence only half of the joint interaction effect
is assigned to x1 (i.e., the respective slope within the regions is 1.5 and −1.5 instead of 3
and −3), and the other half of the joint interaction effect is assigned to x3. When Shapley
values are recalculated after the first partitioning step within each subspace, we can see in
Figure 15 that no more interactions are present between x1 and x3 within each subspace,
due to the split w.r.t. x3. Hence, the effect of x1 is recognized as the main effect with the
slope approximately defined in the data-generating process. Furthermore, due to interac-
tions with x1, the heterogeneity of feature effects of x3 is also reduced after the split, owing
to recalculation.

Note: If the feature we use for partitioning the feature space (z ∈ Z) coincides with
the features of interest (S), then the Shapley values should be recalculated in Algorithm
1 to find the best split point (at least, if we choose the approach with recalculation after
each partitioning step). The reason is that if z ∈ S, we also want to reduce the interaction-
related heterogeneity within z that is not accounted for if we do not recalculate the Shapley
values within the new subspace. For example, in Figure 15, we split according to x3, which
is also a feature of interest (3 ∈ S). If we do not recalculate the Shapley values for x3 within
the splitting process, then the sum of the risk of any two subspaces for x3 will always be
approximately the same as the risk of the parent node, and thus the heterogeneity reduction
for x3 (which is shown in the regional plots of Figure 15) is not considered in the objective
of Algorithm 1.

Decomposition. Herren and Hahn (2022) show that Shapley values can be decomposed by
weighted PD functions (see Eq. 8)). Hence, if the global SD feature effect as defined in
Eq. (16) is considered, the same decomposition rules as defined for PD plots apply. In other
words, if Z contains all features that interact with features in S and if GADGET is applied
such that the theoretical minimum of the objective function is reached, then according
to Corollary 4, the following decomposition in 1-dimensional global SD effect functions of
features in S holds:

fSD
S|Ag

(xS) =
∑
j∈S

fSD
j|Ag

(xj). (19)
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Figure 15: Visualization of applying GADGET with S = Z = {1, 2, 3} to Shapley values
of the uncorrelated simulation example of Section 3 with Y = 3X11X3>0 −
3X11X3≤0 + X3 + ϵ with ϵ ∼ N(0, 0.09). The upper plots show the Shapley
values and the global estimated SD curve on the entire feature space, while the
lower plots represent the respective Shapley values and regional SD curves after
partitioning the feature space w.r.t. x3 = 0.007.

If all features containing heterogeneous effects (feature interactions) are included in the
subset S, and the subset Z consists of all features that interact with features in S, then
according to Eq. (19) and Eq. (4), the prediction function f̂Ag within the region Ag can
be uniquely decomposed into the 1-dimensional global SD effect functions of all p features,
plus some constant value g0:

f̂Ag(x) = g0 +

p∑
j=1

fSD
j|Ag

(xj).

Again, we can derive this decomposition from Figure 14 in the same way we did for PD
and ALE plots. Hence, we can approximate the prediction function within each subspace
by f̂Al

(x) = g0 − 3.02x1 + 1.12x3 and f̂Ar(x) = g0 + 2.98x1 + 1.03x3.

Equivalence of SD and Mean-Centered PD. According to Herren and Hahn (2022), the

Shapley value ϕ
(i)
j (xj) of the i-th observation at xj = xj can be decomposed as defined in
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Eq. (8) to

ϕ
(i)
j (xj) =

p−1∑
k=0

1

k + 1

∑
W⊆−j:
|W |=k

E[f̂(xj , X−j)|XW = x
(i)
W ]−

∑
V⊂{W∪j}

E[f̂(X)|XV = x
(i)
V ]



= gcj(xj) +

p−1∑
k=1

1

k + 1

∑
W⊆−j:|W |=k

gcW∪j(xj ,x
(i)
W ),

with gcW∪j(xj ,x
(i)
W ) = E[f̂(xj , X−j)|XW = x

(i)
W ]−

∑
V⊂{W∪j}E[f̂(X)|XV = x

(i)
V ].

As in Eq. (16), the global feature effect (SD) of feature xj at xj is then defined by

fSD
j (xj) = EXW

[ϕj ] = gcj(xj) +

p−1∑
k=1

1

k + 1

∑
W⊆−j:|W |=k

E[gcW∪j(xj , XW )]

Hence, if Corollary 4 is satisfied, if the joint global SD effect of features in S can be
decomposed into the univariate SD effects as in Eq. (19), and if the interventional approach
for Shapley calculation is used, then all feature interactions are zero, and the global SD
effect of feature xj at xj is given by

fShap
j (xj) = gcj(xj) +

p−1∑
k=1

1

k + 1

∑
W⊆−j:|W |=k

E[gcW∪j(xj , XW )]

Cor. 4
= gcj(xj)

= E[f̂(xj , X−j)]− E[f̂(X)],

which is equivalent to the mean-centered PD of feature xj at xj .

C.3 Overview on Estimates and Visualizations

We provide here an overview on the estimates and visualization techniques for PD, ALE,
and SD within GADGET that we introduced in Sections 4.3-4.5.

Local Effect. The local effect h for a feature xj at feature value xj used within GADGET
is estimated by

• PD: mean-centerd ICE ĥ(i) = f̂ c(xj ,x
(i)
−j)

• ALE: partial derivatives estimated by prediction differences within k-th interval ĥ(i) =

f̂(zk−1,j ,x
(i)
−j)− f̂(zk−1,j ,x

(i)
−j) where xj ∈]zk−1,j , zk,j ]

• SD: Shapley value ĥ(i) = ϕ̂
(i)
j
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Regional Effect. The feature effect for a feature xj at feature value xj within a sub-
space/region Ag of GADGET is estimated by

• PD: mean-centered regional PD f̂PD,c
j|Ag

(xj) = 1
|Ng |

∑
i∈Ng

f̂ c(xj ,x
(i)
−j) with Ng being

the index set of all i : x(i) ∈ Ag.

• ALE: regional ALE f̂ALE
j|Ag

(xj) =
∑kj(xj)

k=1
1

|Ng(k)|
∑

i∈Ng(k)

[
f̂(zk,j ,x

(i)
−j)− f̂(zk−1,j ,x

(i)
−j)
]

with Ng(k) being the index set of all i : xj ∈ ]zk−1,j , zk,j ] ∧ x(i) ∈ Ag.

• SD: regional SD f̂SD
j|Ag

(xj) is estimated by fitting a GAM on {x(i)
j , ϕ̂

(i)
j }i:x(i)∈Ag

.

The regional effect for feature xj is visualized for all xj ∈ Ag. Therefore, the respective
GAM curve is plotted in the case of SD, while we linearly interpolate between the grid-
wise/interval-wise estimates of PD/ALE to receive the regional effect curves.

Interaction-Related Heterogeneity. The interaction-related heterogeneity for a feature xj

at feature value xj within a subspace/region Ag of GADGET is estimated by the loss
function in Eq. (10), which quantifies the variance of local effects at xj and is visualized by

• PD: 95% interval around (mean-centered) regional PD estimate
[
f̂PD,c
j|Ag

(xj) ± 1.96 ·√
L̂PD(Ag, xj)

]
.

• ALE: standard deviation of local effects
√
L̂ALE(Ag, xj).

• SD: Shapley values are recalculated within each region Ag and plotted with the fitted
GAM for the regional SD effect to visualize the variation of local feature effects aka
interaction-related heterogeneity.

For each feature j ∈ S, we generate one figure showing the regional effect curves of
all final regions we obtain after applying GADGET. For PD, the regional effect curves are
accompanied with intervals showing how much interaction-related heterogeneity remains
in the underlying local effects (see, e.g., Figures 11). For ALE, a separate plot visualizes
the interaction-related heterogeneity via the standard deviation of local effects, which is
inspired by the derivative ICE plots of Goldstein et al. (2015) (see, e.g., Figure 12). For SD,
the Shapley values that were recalculated conditioned on each subspace Ag are visualized
with the regional effect curve (see, e.g., Figure 18).

Note that we can also visualize the non-centered PD (f̂PD
j|Ag

) instead of the mean-centered
PD, which might provide more insights regarding interpretation. However, the interaction-
related heterogeneity must be estimated by the mean-centered ICE curves to only represent
heteroegeneity induced by feature interactions (see Appendix B.4).

C.4 Handling of Categorical Features

In this section, we will summarize the particularities of categorical features. Compared to
numeric features, we have a limited number of K values (categories). Hence, compared
to numeric features, we find split points by dividing the K categories into the two new
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subspaces. Since GADGET is based on the general concept of a CART (decision tree)
algorithm (Breiman et al., 1984) that can handle categorical features, the splitting itself
follows the same approach as for a common CART algorithm. If we have categorical features
in S, it does influence the calculation of our objective function, and the handling depends
on the underlying feature effect method. We briefly discuss the specifics for each of the
three feature effect methods that we use in this paper. All of them are able to handle
categorical features, which is a general requirement that we can use it for mixed data sets
within GADGET.

PD Plot. Compared to numeric features, the grid points for categorical features are limited
to the number of categories. Otherwise, the calculation of the loss and the risk (see, Eq. 13
and Eq. 11) works exactly the same as for numeric features.23

ALE Plot. ALE builds intervals based on quantiles for numeric features to calculate pre-
diction differences between neighboring interval borders for all observations falling within
this interval. For binary features, the authors solve this as follows: for all observations
falling in each of the categories, the prediction difference when changing it to the other
category is calculated. For more categories, they suggest a sorting algorithm.24 Hence, we
still receive the needed derivatives for GADGET for each category to calculate the loss and
risk function for GADGET.

SD Plot. Compared to numeric features, the x-axis of the SD plot is a grid of size K. For
each of these grid points (categories), the Shapley values for the observations belonging to
the specific category are calculated. Hence, instead of a spline to quantify the expected
value in Eq. (17), we use the arithmetic mean within each category (similar to PD plots)
and, thus, sum up the variance of Shapley values for each category over all categories (within
the respective subspace).

In general, if we apply GADGET and split w.r.t. a categorical feature such that only one
category is present within a subspace (e.g., we split the feature sex such that all individuals
are male in one resulting subspace), then the interaction related heterogeneity vanishes to
zero, since only an additive shift for the feature sex is left in this subspace.

Note: If a categorical feature xj is not only considered for splitting (j ∈ Z) but is also
a feature of interest (j ∈ S), the different splitting possibilities of categories of xj prompt
recalculation for ALE, since derivatives are only calculated for pre-sorted neighboring cate-
gories. In our implementations, we only split w.r.t. the pre-sorted categories and considered
them as integer values to reduce the computational burden of the calculations.

Appendix D. Additions to PINT

Although the approximation of the null distribution via theoretical distributions reduces
the computational burden when applying PINT (as described in Section 5), it is still high
for high-dimensional settings. Therefore, we suggest to randomly select a smaller set of
observations to apply PINT in the case of a high number of observations. In the case of

23. Since we calculate the loss point-wise at each grid point and sum it up over all grid points, the order of
the category does not make a difference for the objective of GADGET.

24. For more information, we refer to Apley and Zhu (2020).
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Figure 16: Mean-centered ice curves (black) and mean-centered PD curves (grey) for all
four features of one repetition of the simulation example described in Section 5.

many features, we recommend to filter features beforehand and apply PINT only once to
those with the highest possibility of containing feature interactions. For example, this can
be done by excluding features that show only small variations of the local feature effects used
in GADGET, since the homogeneous feature effects are a strong indicator that the feature
does not interact with any other feature. For instance, the mean-centered ICE curves of x4

in Figure 16 show only small variation, which indicates that x4 does not interact with any
other feature, and thus there is no need to consider it for PINT. Hence, we can apply PINT
only on the remaining three features to identify which features interact with each other and
must be considered within GADGET.

Appendix E. Further Details on Real-World Applications

COMPAS Data Set. Our analysis in Section 7 for the COMPAS data set is based on a
tuned SVM. We chose this model based on the following selection process: For the bi-
nary classification task25, we chose to select the best model out of a logistic regression, a
random forest, and a tuned SVM with RBF kernel. We also compared these models to a
featureless model. The model selection was performed by a 5-fold cross-validation, where
the hyperparameters cost C and inverse kernel width σ of the SVM were tuned via 3-fold
cross-validation on the inner folds of the nested resampling approach.26 We evaluate the
learners’ test performance on the outer folds based on the F1 score and Matthews corre-
lation coefficient (MCC) (Chicco and Jurman, 2020). Since the tuned SVM performs best
w.r.t. both evaluation metrics, we chose this model for our further analysis. Note that the
performance differences between the different learners (besides the featureless baseline) are
very small. Thus, one might consider using the most interpretable learner (here, logistic re-
gression) for further analysis. However, since the purpose of our analysis is to detect feature

25. The classes are slightly unbalanced, with 1317 defendants who have a high risk of recidivism and 2056
defendants with a low risk of recidivism.

26. For tuning, we used random search with 30 iterations on a search space of 2−12 to 212 for each of the
two hyperparameters.
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Figure 17: Global SD curves and Shapley values of considered features of the COMPAS
application example.

interactions and reduce interaction-related heterogeneity by partitioning the feature space,
here we choose the best-performing model that also potentially learned feature interactions.

Learner MCC F1 Score

Featureless 0.0000 0.7573
Logistic Regression 0.4675 0.8057
Random Forest 0.4710 0.8125
Support Vector Machine (tuned) 0.4752 0.8126

Table 6: Average learner test performance on 5-fold cross-validation for COMPAS data set.

In addition to the results of GADGET based on PD presented in Section 7, we also
applied GADGET with the same settings based on SD.

The effect plots for the four resulting regions are shown in Figure 18. GADGET based
on SD performs the same first split as for PD. The second split is also executed according
to the number of prior crimes, but the split value is lower than for PD (at 2.5 instead of
4.5). The total interaction-related heterogeneity reduction (R2

Tot = 0.87) is also similar to
that when PD is used. Note that Shapley values explain the difference between the the
actual and average prediction. Hence, SD plots are centered, while Figure 11 shows the
uncentered regional PD plots.

Bikesharing Data Set. The results in Section 7 for the Bikesharing data set are based on
a random forest. We chose this model based on the following selection process: For the
underlying regression task, we selected the best-performing model out of a linear model,
a random forest, and a tuned SVM with RBF kernel. As a baseline comparison, we also
report the performance of a featureless model. The model selection was performed by a
5-fold cross-validation, where the hyperparameters cost C and inverse kernel width σ of
the SVM were tuned via 3-fold cross-validation on the inner folds of the nested resampling
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Figure 18: Regional SD plots for considered features of the COMPAS application after
applying GADGET. Shapley values within each region are recalculated and vi-
sualize the interaction-related heterogeneity within each region.

approach.27 We evaluate the learners’ test performance on the outer folds based on the MSE
an R2. The random forest performed best and, hence, was chosen for further analyses.

Learner MSE R2

Featureless 17902 -0.0002
Linear Regression 6641 0.6289
Random Forest 1077 0.9397
Support Vector Machine (tuned) 3365 0.8114

Table 7: Average learner test performance on 5-fold cross-validation for bikesharing data
set.
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7. Explaining Hyperparameter Optimization via
Partial Dependence Plots

The third contributing article of Part III also addresses the second limitation stated in Section 1.1.
However, compared to the articles in Sections 5 and 6, we analyze the aggregation bias of global
effect methods caused by extrapolation in this work. Therefore, this article focuses on explain-
ing hyperparameter effects with PD plots in the context of automated ML. Hence, if efficient
optimizers, such as Bayesian optimization, are used for hyperparameter optimization, we obtain
regions in the hyperparameter space that are sparsely sampled, leading to uncertain predictions in
these regions and, thus, to unreliable PD estimates. Therefore, we suggest a recursive partitioning
algorithm, which partitions the hyperparameter space such that regional PD estimates are more
reliable and confident in relevant regions.

Contributing article: Moosbauer, J., Herbinger, J., Casalicchio, G., Lindauer, M., and Bischl,
B. (2021). Explaining hyperparameter optimization via partial dependence plots. In Advances
in Neural Information Processing Systems, Volume 34, pp. 2280–2291.

Author contributions: Julia Herbinger and Julia Moosbauer share the first authorship of this
paper. Their overall equal contributions can be described as follows:
Julia Moosbauer and Julia Herbinger developed the project idea with continuous support from
Giuseppe Casalicchio. Julia Moosbauer has developed the idea of leveraging an uncertainty esti-
mate to improve interpretability measures and derived the uncertainty estimate for partial depen-
dent plots. Julia Herbinger has formed the initial core idea for the partitioning method to identify
subregions based on uncertainty estimates with support from Giuseppe Casalicchio. The algo-
rithm was developed by Julia Moobauer based on an initial tree-splitting algorithm implemented
by Giuseppe Casalicchio and was substantially improved by Julia Herbinger. Julia Moosbauer
and Julia Herbinger jointly designed and conducted the experiments. Evaluation metrics for the
benchmark were defined by Julia Herbinger and improved by Julia Moosbauer. Julia Moosbauer
implemented the benchmark on synthetic functions, and Julia Herbinger implemented the deep
learning benchmark. The manuscript was drafted jointly by Julia Moosbauer and Julia Herbinger
with overall equal contributions. All authors contributed to revisions of the paper. Giuseppe
Casalicchio, Marius Lindauer, and Bernd Bischl gave valuable input throughout the project and
suggested several notable modifications.

Supplementary material available at: https://proceedings.neurips.cc/paper_files/
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Abstract

Automated hyperparameter optimization (HPO) can support practitioners to obtain
peak performance in machine learning models. However, there is often a lack of
valuable insights into the effects of different hyperparameters on the final model
performance. This lack of explainability makes it difficult to trust and understand
the automated HPO process and its results. We suggest using interpretable machine
learning (IML) to gain insights from the experimental data obtained during HPO
with Bayesian optimization (BO). BO tends to focus on promising regions with
potential high-performance configurations and thus induces a sampling bias. Hence,
many IML techniques, such as the partial dependence plot (PDP), carry the risk of
generating biased interpretations. By leveraging the posterior uncertainty of the
BO surrogate model, we introduce a variant of the PDP with estimated confidence
bands. We propose to partition the hyperparameter space to obtain more confident
and reliable PDPs in relevant sub-regions. In an experimental study, we provide
quantitative evidence for the increased quality of the PDPs within sub-regions.

1 Introduction

Most machine learning (ML) algorithms are highly configurable. Their hyperparameters must be
chosen carefully, as their choice often impacts the model performance. Even for experts, it can be
challenging to find well-performing hyperparameter configurations. Automated machine learning
(AutoML) systems and methods for automated HPO have been shown to yield considerable efficiency
compared to manual tuning by human experts [Snoek et al., 2012]. However, these approaches
mainly return a well-performing configuration and leave users without insights into decisions of
the optimization process. Questions about the importance of hyperparameters or their effects on
the resulting performance often remain unanswered. Not all data scientists trust the outcome of an
AutoML system due to the lack of transparency [Drozdal et al., 2020]. Consequently, they might not
deploy an AutoML model, despite all performance gains. Providing insights into the search process
may help increase trust and facilitate interactive and exploratory processes: A data scientist could
monitor the AutoML process and make changes to it (e.g., restricting or expanding the search space)
already during optimization to anticipate unintended results.

Transparency, trust, and understanding of the inner workings of an AutoML system can be increased
by interpreting the internal surrogate model of an AutoML approach. For example, BO trains a
surrogate model to approximate the relationship between hyperparameter configurations and model
performance. It is used to guide the optimization process towards the most promising regions of the
hyperparameter space. Hence, surrogate models implicitly contain information about the influence of

⇤These authors contributed equally to this work.
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hyperparameters. If the interpretation of the surrogate matches with a data scientist’s expectation,
confidence in the correct functioning of the system may be increased. If these do not match, it
provides an opportunity to look either for bugs in the code or for new theoretical insights.

We propose to analyze surrogate models with methods from IML to provide insights into the results
of HPO. In the context of BO, typical choices for surrogate models are flexible, probabilistic black-
box models, such as Gaussian processes (GP) or random forests. Interpreting the effect of single
hyperparameters on the performance of the model to be tuned is analogous to interpreting the
feature effect of the black-box surrogate model. We focus on the PDP [Friedman, 2001], which is
a widely-used method2 to visualize the average marginal effect of single features on a black-box
model’s prediction. When applied to surrogate models, they provide information on how a specific
hyperparameter influences the estimated model performance. However, applying PDPs out of the box
to surrogate models might lead to misleading conclusions. Efficient optimizers such as BO tend to
focus on exploiting promising regions of the hyperparameter space while leaving other regions less
explored. Therefore, a sampling bias in input space is introduced, which in turn can lead to a poor fit
and biased interpretations in underexplored regions of the space.

Contributions: We study the problem of sampling bias in experimental data produced by AutoML
systems and the resulting bias of the surrogate model and assess its implications on PDPs. We then
derive an uncertainty measure for PDPs of probabilistic surrogate models. In addition, we propose a
method that splits the hyperparameter space into interpretable sub-regions of varying uncertainty to
obtain sub-regions with more reliable and confident PDP estimates. In the context of BO, we provide
evidence for the usefulness of our proposed methods on a synthetic function and in an experimental
study in which we optimize the architecture and hyperparameters of a deep neural network. Our
Supplementary Material provides (A) more background related to uncertainty estimates, (B) notes on
how our methods are applied to hierarchical hyperparameter spaces, (C) details on the experimental
setup and more detailed results, (D) a link to the source code.

Reproducibility and Open Science: The implementation of the proposed methods as well as
reproducible scripts for the experimental analysis are provided in a public git-repository3.

2 Background and Related Work

Recent research has begun to question whether the evaluation of an AutoML system should be purely
based on the generated models’ predictive performance without considering interpretability [Hutter
et al., 2014a, Pfisterer et al., 2019, Freitas, 2019, Xanthopoulos et al., 2020]. Interpreting AutoML
systems can be categorized as (1) interpreting the resulting ML model on the underlying dataset, or
(2) interpreting the HPO process itself. In this paper, we focus on the latter.

Let c : ⇤ ! R be a black-box cost function, mapping a hyperparameter configuration � = (�1, ...,�d)
to the model error4 obtained by a learning algorithm with configuration �. The hyperparameter space
may be mixed, containing categorical and continuous hyperparameters. The goal of HPO is to find
�⇤

2 argmin�2⇤ c(�). Throughout the paper, we assume that a surrogate model ĉ : ⇤ ! R is given
as an approximation to c. If the surrogate is assumed to be a GP, ĉ(�) is a random variable following
a Gaussian posterior distribution. In particular, for any finite indexed family of hyperparameter
configurations

�
�(1), ...,�(k)

�
2 ⇤k, the vector of estimated performance values is Gaussian with a

posterior mean m̂ =
�
m̂

�
�(i)

��
i=1,...,k

and covariance K̂ =
⇣
k̂
�
�(i),�(j)

�⌘

i,j=1,...,k
.

Hyperparameter Importance. Understanding which hyperparameters influence model performance
can provide valuable insights into the tuning strategy [Probst et al., 2019]. To quantify relevance
of hyperparameters, models that inherently quantify feature relevance – e.g., GPs with ARD kernel
[Neil, 1996] – can be used as surrogate models. Hutter et al. [2014a] quantified the importance of
hyperparameters based on a random forest fitted on data generated by BO, for which the importance
of both the main and the interaction effects of hyperparameters was calculated by a functional
ANOVA approach. Similarly, Sharma et al. [2019] quantified the hyperparameter importance of

2There exist various implementations [Greenwell, 2017, Pedregosa et al., 2011]), extensions [Greenwell
et al., 2018, Goldstein et al., 2015] and applications [Friedman and Meulman, 2003, Cutler et al., 2007].

3https://github.com/slds-lmu/paper_2021_xautoml
4Typically, the model error is estimated via cross-validation or hold-out testing.
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residual neural networks. These works highlight how useful it is to quantify the importance of
hyperparameters. However, importance scores do not show how a specific hyperparameter affects
the model performance according to the surrogate model. Therefore, we propose to visualize the
assumed marginal effect of a hyperparameter. A model-agnostic interpretation method that can be
used for this purpose is the PDP.

PDPs for Hyperparameters. Let S ⇢ {1, 2, ..., d} denote an index set of features, and let C =
{1, 2, ..., d} \ S be its complement. The partial dependence (PD) function [Friedman, 2001] of
c : ⇤ ! R for hyperparameter(s) S is defined as5

cS(�S) := E�C [c(�)] =

Z

⇤C

c(�S ,�C) dP(�C). (1)

When analyzing the PDP of hyperparameters, we are usually interested in how their values �S impact
model performance uniformly across the hyperparameter space. In line with prior work [Hutter et al.,
2014a], we therefore assume P to be the uniform distribution over ⇤C . Computing cS(�S) exactly is
usually not possible because c is unknown and expensive to evaluate in the context of HPO. Thus,
the posterior mean m̂ of the probabilistic surrogate model ĉ(�) is commonly used as a proxy for c.
Furthermore, the integral may not be analytically tractable for arbitrary surrogate models ĉ. Hence,
the integral is approximated by Monte Carlo integration, i.e.,

ĉS (�S) =
1

n

Xn

i=1
m̂

⇣
�S ,�

(i)
C

⌘
(2)

for a sample
⇣
�(i)
C

⌘

i=1,...,n
⇠ P(�C). m̂

⇣
�S ,�

(i)
C

⌘
represents the marginal effect of �S for one

specific instance i. Individual conditional expectation (ICE) curves [Goldstein et al., 2015] visualize
the marginal effect of the i-th observation by plotting the value of m̂

⇣
�S ,�

(i)
C

⌘
against �S for a

set of grid points6 �(g)
S 2 ⇤S , g 2 {1, ..., G}. Analogously, the PDP visualizes ĉS(�S) against the

grid points. Following from Eq. 2, the PDP visualizes the average over all ICE curves. In HPO, the
marginal predicted performance is a related concept. Instead of approximating the integral via Monte
Carlo, the integral over ĉ is computed exactly. Hutter et al. [2014a] propose an efficient approach to
compute this integral for random forest surrogate models.

Uncertainty Quantification in PDPs. Quantifying the uncertainty of PDPs provides additional
information about the reliability of the mean estimator. Hutter et al. [2014a] quantified the model
uncertainty specifically for random forests as surrogates in BO by calculating the standard deviation of
the marginal predictions of the individual trees. However, this procedure is not applicable to general
probabilistic surrogate models, such as the commonly used GP. There are approaches that quantify the
uncertainty for ML models that do not provide uncertainty estimates out-of-the-box. Cafri and Bailey
[2016] suggested a bootstrap approach for tree ensembles to quantify the uncertainties of effects
based on PDPs. Another approach to quantify the uncertainty of PDPs is to leverage the ICE curves.
For example, Greenwell [2017] implemented a method that marginalizes over the mean ± standard
deviation of the ICE curves for each grid point. However, this approach quantifies the underlying
uncertainty of the data at hand rather than the model uncertainty, as explained in Appendix A.1. A
model-agnostic estimate based on uncertainty estimates for probabilistic models is missing so far.

Subgroup PDPs. Recently, a new research direction concentrates on finding more reliable PDP
estimates within subgroups of observations. Molnar et al. [2020] focused on problems in PDP
estimation with correlated features. To that end, they apply transformation trees to find homogeneous
subgroups and then visualize a PDP for each subgroup. Grömping [2020] looked at the same problem
and also uses subgroup PDPs, where ICE curves are grouped regarding a correlated feature. Britton
[2019] applied a clustering approach to group ICE curves to find interactions between features.
However, none of these approaches aim at finding subgroups where reliable PDP estimates have
low uncertainty. Additionally, to the best of our knowledge, nothing similar exists for analyzing
experimental data created by HPO.

5To keep notation simple, we denote c(�) as a function of two arguments (�S ,�C) to differentiate compo-
nents in the index set S from those in the complement. The integral shall be understood as a multiple integral of
c where �j , j 2 C, are integrated out.

6Grid points are typically chosen as an equidistant grid or sampled from P(�S). The granularity G is chosen
by the user. For categorical features, the granularity typically corresponds to the number of categories.
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Figure 1: Illustration of the sampling bias when
optimizing the 2D Styblinski Tang function with
BO and the Lower Confidence Bound (LCB)
acquisition function a(�) = m̂(�) + ⌧ · ŝ(�)
for ⌧ = 0.1 (left) and ⌧ = 2 (middle) vs. data
sampled uniformly at random (right).

Figure 2: The two horizontal cuts (left) yield two
ICE curves (right) showing the mean prediction
and uncertainty band against �1 for ĉ with ⌧ =
0.1 on the 2D Styblinski-Tang function. The
upper ICE curve deviates more from the true
effect (black) and shows a higher uncertainty.

3 Biased Sampling in HPO

Visualizing the marginal effect of hyperparameters of surrogate models via PDPs can be misleading.
We show that this problem is due to the sequential nature of BO, which generates dependent instances
(i.e., hyperparameter configurations) and thereby introduces a sampling and a resulting model bias.
To save computational resources in contrast to grid search or random search, efficient optimizers
like BO tend to exploit promising regions of the hyperparameter space while other regions are less
explored (see Figure 1). Consequently, predictions of surrogate models are usually more accurate with
less uncertainty in well-explored regions and less accurate with high uncertainty in under-explored
regions. This model bias also affects the PD estimate (see Figure 2). ICE curves may be biased and
less confident if they are computed in poorly-learned regions where the model has not seen much data
before. Under the assumption of uniformly distributed hyperparameters, poorly-learned regions are
incorporated in the PD estimate with the same weight as well-learned regions. ICE curves belonging
to regions with high uncertainty may obfuscate well-learned effects of ICE curves belonging to other
regions when they are aggregated to a PDP. Hence, the model bias may also lead to a less reliable
PD estimate. PDPs visualizing only the mean estimator of Eq. (2) do not provide insights into the
reliability of the PD estimate and how it is affected by the described model bias.

4 Quantifying Uncertainty in PDPs

Figure 3: PDPs (blue) with confidence bands for
surrogates trained on data created by BO and LCB
with ⌧ = 0.1 (left), ⌧ = 1 (middle) and uniform
i.i.d. dataset (right) vs. the true PD (black).

Pointwise uncertainty estimates of a probabilis-
tic model provide insights into the reliability of
the prediction ĉ(�) for a specific configuration
�. This uncertainty directly correlates with how
explored the region around � is. Hence, includ-
ing the model’s uncertainty structure into the PD
estimate enables users to understand in which
regions the PDP is more reliable and which parts
of the PDP must be cautiously interpreted.7 We
now extend the PDP of Eq. (2) to probabilistic
surrogate models ĉ (e.g., a GP). Let �S be a
fixed grid point and

⇣
�(i)
C

⌘

i=1,...,n
⇠ P (�C)

a sample that is used to compute the Monte
Carlo estimate of Eq. (2). The vector of predicted performances at the grid point �S is
ĉ (�S) =

⇣
ĉ
⇣
�S ,�

(i)
C

⌘⌘

i=1,...,n
with (posterior) mean m̂ (�S) :=

⇣
m̂

⇣
�S ,�

(i)
C

⌘⌘

i=1,...,n
and

7Note that we aim at representing model uncertainty in a PD estimate, and not the variability of the mean
prediction (see Appendix A.1 for a more detailed justification).
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a (posterior) covariance K̂ (�S) :=
⇣
k̂
⇣⇣

�S ,�
(i)
C

⌘
,
⇣
�S ,�

(j)
C

⌘⌘⌘

i,j=1,...,n
. Thus, ĉS (�S) =

1
n

Pn
i=1 ĉ

⇣
�S ,�

(i)
C

⌘
is a random variable itself. The expected value of ĉS (�S) corresponds to the

PD of the posterior mean function m̂ at �S , i.e.:

m̂S (�S) = Eĉ [ĉS (�S)] = Eĉ


1

n

Xn

i=1
ĉ
⇣
�S ,�

(i)
C

⌘�
=

1

n

Xn

i=1
m̂

⇣
�S ,�

(i)
C

⌘
. (3)

The variance of ĉS (�S) is

ŝ2S(�S) = Vĉ [ĉS (�S)] = Vĉ


1

n

Xn

i=1
ĉ
⇣
�S ,�

(i)
C

⌘�
=

1

n2
1>K̂ (�S) 1. (4)

For the above estimate, it is important that the kernel is correctly specified such that the covariance
structure is modeled properly by the surrogate model. Eq. (4) can be approximated empirically by
treating the pairwise covariances as unknown, i.e.:

ŝ2S (�S) ⇡
1

n

Xn

i=1
K̂ (�S)i,i . (5)

In Appendix A.2, we show empirically that this approximation is less sensitive to kernel misspecifi-
cations. Please note that the variance estimate and the mean estimate can also be applied to other
probabilistic models, such as GAMLSS8, transformation trees, or a random forest. An example for
PDPs with uncertainty estimates is shown in Figure 3 for different degrees of a sampling bias.

5 Regional PDPs via Confidence Splitting

As discussed in Section 3, (efficient) optimization may imply that the sampling is biased, which in
turn can produce misleading interpretations when IML is naively applied. We now aim to identify sub-
regions ⇤0

⇢ ⇤ of the hyperparameter space in which the PD can be estimated with high confidence,
and separate those from sub-regions in which it cannot be estimated reliably. In particular, we identify
sub-regions in which poorly-learned effects do not obfuscate the well-learned effects along each grid
point, thereby allowing the user to draw conclusions with higher confidence. By partitioning the
entire hyperparameter space through a tree-based approach into disjoint and interpretable sub-regions,
a more detailed understanding of the sampling process and hyperparameter effects is achieved. Users
can either study the hyperparameter effect of a (confident) sub-region individually or understand the
exploration-exploitation sampling of HPO by considering the complete tree structure. The result of
this procedure for a single split is shown in Figure 5.

The PD estimate on the entire hyperparameter space ⇤ is computed by sampling the Monte Carlo
estimate (�(i)

C )i2N ⇠ P(�C), N := {1, 2, ..., n}. We now introduce the PD estimate on a sub-
region ⇤0

⇢ ⇤ simply as (�(i)
C )i2N 0 only using N

0 = {i 2 N}�(i)2⇤0 . Since we are interested in the
marginal effect of the hyperparameter(s) S at each �S 2 ⇤S , we will usually visualize the PD for the
whole range ⇤S . Thus, all obtained sub-regions should be of the form ⇤0 = ⇤S⇥⇤0

C with ⇤0
C ⇢ ⇤C .

This corresponds to an average of ICE curves in the set i 2 N
0. The pseudo-code to partition a

hyperparameter (sub-)space ⇤ and corresponding sample (�(i)
C )i2N 2 ⇤C , N ✓ {1, ..., n}, into

two child regions is shown in Algorithm 1. This splitting is recursively applied in a CART9-like
procedure [Breiman et al., 1984b] to expand a full tree structure, with the usual stopping criteria (e.g.,
a maximum number of splits, a minimum size of a region, or a minimum improvement in each node).
In each leaf node, the sub-regional PDP and its corresponding uncertainty estimate are computed by
aggregating over all contained ICE curves.

The criterion to evaluate a specific partitioning is based on the idea of grouping ICE curves with
similar uncertainty structure. To be more exact, we evaluate the impurity of a PD estimate on a
sub-region ⇤0 with the help of the associated set of observations N 0 = {i 2 N}

�(i)
C 2⇤0

C
, also referred

to as nodes, as follows: For each grid point �S , we use the L2 loss in L (�S ,N 0) to evaluate how the

8Generalized additive models for location, scale and shape
9Classification and regression trees
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Figure 4: ICE curves of ŝ of �S for the left
(green) and right (blue) sub-region after the first
split. The darker lines represent the respective
PDPs. The orange vertical line marks the value
�S of the optimal configuration.

N

Nl Nr

�j < 6.9 �j � 6.9

Figure 5: Example of two estimated PDPs (blue
line) and 95% confidence bands after one parti-
tioning step. The orange vertical line is the value
of �S from the optimal configuration, the black
curve is the true PD estimate cS(�S).

uncertainty varies across all ICE estimates i 2 N
0 using ŝ2S|N 0 (�S) :=

1
|N 0|

P
i2N 0 ŝ2

⇣
�S ,�

(i)
C

⌘

and aggregate the loss L (�S ,N 0) over all grid points in RL2(N 0):

L (�S ,N
0) =

X
i2N 0

⇣
ŝ2

⇣
�S ,�

(i)
C

⌘
� ŝ2S|N 0 (�S)

⌘2
and RL2(N

0) =
XG

g=1
L(�(g)

S ,N 0). (6)

Algorithm 1: Tree-based Partitioning
input: N

for j 2 C do
for Every split t on hyperparameter �j do

N
j,t
l = {i 2 N}

�(i)
j t

N
j,t
r = {i 2 N}

�(i)
j >t

I(j, t) = RL2(N
j,t
l ) +RL2(N

j,t
r )

end for
end for
Choose

⇣
j⇤, t⇤�⇤

j

⌘
2 argminj,t I(j, t)

Return N
j,t
l and N

j,t
r for (j, t) =

⇣
j⇤, t⇤�⇤

j

⌘

Hence, we measure the pointwise L2-distance
between ICE curves of the variance function
ŝ2(�S ,�

(i)
C ) and its PD estimate ŝ2S|N 0 (�S)

within a sub-region N
0. This seems reasonable,

as ICE curves in well-explored regions of the
search space should, on average, have a lower
uncertainty than those in less-explored regions.
However, since we only split according to hy-
perparameters in C but not in S, the partition-
ing does not cut off less explored regions w.r.t.
�S . Thus, the chosen split criterion groups ICE
curves of the uncertainty estimate such that we
receive sub-regions associated with low costs c
(and thus high relevance for a user) to be more
confident in well-explored regions of �S and
less confident in under-explored regions. Fig-
ure 4 shows that ICE curves of the uncertainty
measure with high uncertainty over the entire

range of �S are grouped together (right sub-region). Those with low uncertainty close to the optimal
configuration of �S and increasing uncertainties for less suitable configurations are grouped together
by curve similarities in the left sub-region. The respective PDPs are illustrated in Figure 5, where
the confidence band in the left sub-region decreased compared to the confidence band of the global
PDP especially for grid points close to the optimal value of �S . Hence, by grouping observations
with similar ICE curves of the variance function, resulting sub-regional PDPs with confidence bands
provide the user with the information of which sub-regions of ⇤C are well-explored and lead to more
reliable PDP estimates. Furthermore, the user will know which ranges of �S can be interpreted
reliably and which ones need to be regarded with caution.

To sum up, the splitting procedure provides interpretable, disjoint sub-regions of the hyperparameter
space. Based on the defined impurity measure, PDPs with high reliability can be identified and
analyzed. In particular, the method provides more confident and reliable estimates in the sub-region
containing the optimal configuration. Which PDPs are most interesting to explore depends on the
question the user would like to answer. If the main interest lies in understanding the optimization and
exploring the sampling process, a user might want to keep the number of sub-regions relatively low
by performing only a few partitioning steps. Subsequently, one would investigate the overall structure
of the sub-regions and the individual sub-regional PDPs. If users are more interested in interpreting
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hyperparameter effects only in the most relevant sub-region(s), they may want to split deeper and
only look at sub-regions that are more confident than the global PDP.

Due to the nature of the splitting procedure, the PDP estimate on the entire hyperparameter space is a
weighted average of the respective sub-regional PDPs. Hence, the global PDP estimate is decomposed
into several sub-regional PDP estimates. Furthermore, note that the proposed method does not assume
a numeric hyperparameter space, since the uncertainty estimates as well as ICE and PDP estimates
can also be calculated for categorical features. Thus, it is applicable to problems with mixed spaces
as long as a probabilistic surrogate model – and particularly its uncertainty estimates – are available.
In Appendix B we describe how our method is applied to hierarchical hyperparameter spaces.

Since the proposed method is an instance of the CART algorithm, finding the optimal split for a cate-
gorical variable with q levels generally involves checking 2q subsets. This becomes computationally
infeasible for high values of q. It remains an open question for future work if this can be sped by an
optimal procedure as in regression with L2 loss [Fisher, 1958] and binary classification [Breiman
et al., 1984a] or by a clever heuristic as for multiclass classification Wright and König [2019].

6 Experimental Analysis

In this section, we validate the effectiveness of the introduced methods. We formulate two main
hypotheses: First, experimental data affected by the sampling bias lead to biased surrogate models and
thus to unreliable and misleading PDPs. Second, the proposed partitioning allows us to identify an
interpretable sub-region (around the optimal configuration) that yields a more reliable and confident
PDP estimate. In a first experiment, we apply our methods to BO runs on a synthetic function. In this
controlled setup, we investigate the validity of our hypotheses with regards to problems of different
dimensionality and different degrees of sampling bias. In a second experiment, we evaluate our PDP
partitioning in the context of HPO for neural networks on a variety of tabular datasets.

We assess the sampling bias of the optimization design points by comparing their empirical distribu-
tion to a uniform distribution via Maximum Mean Discrepancy (MMD) [Gretton et al., 2012, Molnar
et al., 2020], which is covered in more detail in the Appendix C.1. We measure the reliability of
a PDP, i.e., the degree to which a user can rely on the estimate of the PD estimate, by comparing
it to the true PD cS(�S) as defined in Eq. (1). More specifically, for every grid point �(g)

S , we
compute the negative log-likelihood (NLL) of cS(�S) under the distribution of ĉS (�S) pointwise
for every grid point �(g)

S . The confidence of a PDP is illustrated by the width of its confidence bands
m̂S (�S) ± q1�↵/2 · ŝS (�S), with q1�↵/2 denoting the (1 � ↵/2)-quantile of a standard normal
distribution. We measure the confidence by assessing ŝS(�S) pointwise for every grid point. In
particular, we consider the mean confidence (MC) across all grid points 1

G

PG
g=1 ŝ

⇣
�(g)
S

⌘
as well as

the confidence at the grid point closest to �̂S abbreviated by OC, with �̂ being the best configuration
evaluated by the optimizer. To evaluate the performance of the confidence splitting, we report the
above metrics on the sub-region that contains the best configuration evaluated by the optimizer,
assuming that this region is of particular interest for a user of HPO. PDPs are computed with regards
to single features for G = 20 equidistant grid points and n = 1000 Monte Carlo samples.

6.1 BO on a Synthetic Function

We consider the d-dimensional Styblinski-Tang function c : [�5, 5]d ! R, � 7!

1
2

Pd
i=1

�
�4
i + 16�2

i + 5�i

�
for d 2 {3, 5, 8}. Since the PD is the same for each dimension i,

we only present the effects of �1. We performed BO with a GP surrogate model with a Matérn-3/2
kernel and the LCB acquisition function a(�) = m̂(�)+⌧ · ŝ(�) with different values ⌧ 2 {0.1, 1, 5}
to control the sampling bias. We compute the global PDP with confidence bands estimated according
to Eq. (5) for the GP surrogate model ĉ that was fitted in the last iteration of BO. We ran Algorithm 1,
and computed the PDP in the sub-region containing the optimal configuration. All computations were
repeated 30 times. Further details on the setup are given in Appendix C.2.1.
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Figure 6: The figure presents the MC
(left) and the NLL (right) for d 2

{3, 5, 8} for a high (⌧ = 0.1), medium
(⌧ = 1), and low (⌧ = 5) sampling
bias across 30 replications. With a lower
sampling bias, we obtain narrower confi-
dence bands and a lower NLL.

Table 1: The table shows the relative improvement of the
MC and the NLL via Algorithm 1 with 1 and 3 splits,
compared to the global PDP along with the sampling
bias for a ⌧ = 0.1 (high), ⌧ = 2 (medium), and ⌧ = 5
(low). Results are averaged across 30 replications.

� MC (%) � NLL (%)

d MMD nsp = 1 nsp = 3 nsp = 1 nsp = 3

3 low (0.18) 7.65 13.64 5.89 10.92
3 medium (0.51) 12.86 36.92 4.78 7.70
3 high (0.56) 16.52 34.84 2.77 -1.62
5 low (0.15) 6.63 15.45 2.82 6.05
5 medium (0.45) 19.67 37.28 4.05 7.80
5 high (0.53) 11.99 33.06 -3.86 -1.93
8 low (0.11) 3.58 9.67 0.84 2.40
8 medium (0.42) 8.86 23.03 1.51 3.30
8 high (0.56) 6.59 19.84 1.53 4.29

As presented in Figure 6, the PDPs for surrogate models trained on less biased data (measured by
the MMD) yield lower values of the NLL, as well as lower values for the MC. Table 1 shows that
a single tree-based split reduces the MC by up to almost 20%, and up to 37% when performing 3
partitioning steps. Additionally, the NLL improves with an increasing number of partitioning steps in
most cases. The results on the synthetic functions support our second hypothesis that the tree-based
partitioning improves the reliability in terms of the NLL and the confidence of the PD estimates. The
improvement of the MC is higher for a medium to high sampling bias, compared to scenarios that are
less affected by sampling bias. We observe that (particularly for high sampling bias) there are some
outlier cases in which the NLL worsens. More detailed results are shown in Appendix C.3.1.

6.2 HPO on Deep Learning

In a second experiment, we investigate HPO in the context of a surrogate benchmark [Eggensperger
et al., 2015] based on the LCBench data [Zimmer et al., 2021]. For each of the 35 different OpenML
[Vanschoren et al., 2013] classification tasks, LCBench provides access to evaluations of a deep
neural network on 2000 configurations randomly drawn from the configuration space defined by
Auto-PyTorch Tabular (see Table 5 in Appendix C.2). For each task, we trained a random forest as
an empirical performance model that predicts the balanced validation error of the neural network
for a given configuration. These empirical performance models serve as cheap to evaluate objective
functions, which efficiently approximate the result of the real-world experiment of running a deep
learning configuration on an LCBench instance. BO then acts on this empirical performance model
as its objective10.

For each task, we ran BO to obtain the optimal architecture and hyperparameter configuration. Again,
we used a GP with a Matérn-3/2 kernel and LCB with ⌧ = 1. Each BO run was allotted a budget
of 200 objective function evaluations. We computed the PDPs and their confidences, which are
estimated according to Eq. (5), based on the surrogate model ĉ after the final iteration. We performed
tree-based partitioning with up to 6 splits based on a uniformly distributed dataset of size n = 1000.
All computations were statistically repeated 30 times. Further details are provided in Appendix C.2.2.

For the real-world data example, we focus on answering the second hypothesis, i.e., whether the tree-
based Algorithm 1 improves the reliability of the PD estimates. We compare the PDP in sub-regions
after 6 splits with the global PDP. We computed the relative improvement of the confidence (MC and
OC) and the NLL of the sub-regional PDP compared to the respective estimates for the global PDP.
As shown in Table 2, the MC of the PDPs is on average reduced by 30% to 52%, depending on the
hyperparameter. At the optimal configuration �̂S , the improvement even increases to 50%� 62%.
Thus, PDP estimates for all hyperparameters are on average – independent of the underlying dataset
– clearly more confident in the relevant sub-regions when compared to the global PD estimates,
especially around the optimal configuration �̂S . In addition to the MC, the NLL simultaneously
improves. In Appendix C.3.2, we provide details regarding the evaluated metrics on the level of the
dataset and demonstrate that our split criterion outperforms other impurity measures regarding MC

10Please note that the random forest is only used as a surrogate in order to construct an efficient benchmark
objective, and not as a surrogate in the BO algorithm, where we use a GP.
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and OC. Furthermore, we emphasize in Appendix C.3.2 the significance of our results by providing a
comparison to a naive baseline method.

Figure 7: PDP (blue) and confidence band (grey) of the GP for hyperparameter max. number of
units (batch size) on the left (right) side. The black line shows the PDP of the meta surrogate model
representing the true PDP estimate. The orange vertical line marks the optimal configuration �̂S . The
relative improvements from the global PDP to the sub-regional PDP after 6 splits are for max. number
of units (batch size): � MC = 61.6% (28.4%), � OC = 63.5% (62.2%), � NLL = 48.6% (30.1%).

Table 2: Relative improvement of MC, OC, and
NLL on hyperparameter level. The table shows the
respective mean (standard deviation) of the average
relative improvement over 30 replications for each
dataset and 6 splits.

Hyperparameter � MC (%) � OC (%) � NLL (%)

Batch size 40.8 (14.9) 61.9 (13.5) 19.8 (19.5)
Learning rate 50.2 (13.7) 57.6 (14.4) 17.9 (20.5)
Max. dropout 49.7 (15.4) 62.4 (11.9) 17.4 (18.2)
Max. units 51.1 (15.2) 58.6 (12.7) 24.6 (22.0)
Momentum 51.7 (14.5) 58.3 (12.7) 19.7 (21.7)
Number of layers 30.6 (16.4) 50.9 (16.6) 13.8 (32.5)
Weight decay 36.3 (22.6) 61.0 (13.1) 11.9 (19.7)

To further study our suggested method, we now
highlight a few individual experiments. We
chose one iteration of the shuttle dataset. On
the two left plots of Figure 7, we see that the
true PDP estimate for max. number of units is de-
creasing, while the globally estimated PDP trend
is increasing and thus misleading. Although the
confidence band already indicates that the PDP
cannot be reliably interpreted on the entire hy-
perparameter space, it remains challenging to
draw any conclusions from it. After perform-
ing 6 splits, we receive a confident and reliable
PD estimate on an interpretable sub-region. The
same plots are depicted for the hyperparameter
batch size on the right part of Figure 7. This
example illustrates that the confidence band might not always shrink uniformly over the entire range
of �S during the partitioning, but often particularly around the optimal configuration �̂S .

7 Discussion and Conclusion

In this paper, we showed that partial dependence estimates for surrogate models fitted on experimental
data generated by efficient hyperparameter optimization can be unreliable due to an underlying
sampling bias. We extended PDPs by an uncertainty estimate to provide users with more information
regarding the reliability of the mean estimator. Furthermore, we introduced a tree-based partitioning
approach for PDPs, where we leverage the uncertainty estimator to decompose the hyperparameter
space into interpretable, disjoint sub-regions. We showed with two experimental studies that we
generate, on average, more confident and more reliable regional PDP estimates in the sub-region
containing the optimal configuration compared to the global PDP.

One of the main limitations of PDPs is that they bear the risk of providing misleading results if applied
to correlated data in the presence of interactions, especially for nonparametric models [Grömping,
2020]. However, existing alternatives that visualize the global marginal effect of a feature such as
accumulated local effect (ALE) plots [Apley and Zhu, 2020] do also not provide a fully satisfying
solution to this problem [Grömping, 2020]. As a solution to this problem, Grömping [2020] suggests
stratified PDPs by conditioning on a correlated and potentially interacting feature to group ICE curves.
This idea is in the spirit of our introduced tree-based partitioning algorithm. However, in the context
of BO we might assume the distribution in Eq. (1) to be uniform and therefore no correlations are
present. Instead of correlated features, we are faced with a sampling bias (see Section 3) where
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we observe regions of varying uncertainty. Hence, instead of stratifying with respect to correlated
features and aggregating ICE curves in regions with less correlated features, we stratify with respect
to uncertainty and aggregate ICE curves in regions with low uncertainty variation. Nonetheless, it
might be interesting to compare our approach with approaches based on the considerations made by
Grömping [2020] – or potentially improved ALE curves.

Another limitation when using single-feature PDPs as in our examples is that hyperparameter
interactions are not visible. However, two-way interactions can be visualized by plotting two-
dimensional PDPs within sub-regions. Another possibility to detect interactions is to look at ICE
curves within the sub-regions. If the shape of ICE curves within a sub-region is very heterogeneous, it
indicates that the hyperparameter under consideration interacts with one of the other hyperparameters.
Hence, having the additional possibility to look at ICE curves of individual observations within a
sub-region is an advantage compared to other global feature effect plots such as ALE plots [Apley
and Zhu, 2020], as they are not defined on an observational level. While we mainly discussed GP
surrogate models on a numerical hyperparameter space in our examples, our methods are applicable to
a wide variety of distributional regression models and also for mixed and hierarchical hyperparameter
spaces. We also considered in Appendix C.3.2 different impurity measures. While the one introduced
in this paper performed best in our experimental settings, this impurity measure as well as other
components are exchangeable within the proposed algorithm. In the future, we will study our method
on more complex, hierarchical configuration spaces for neural architecture search.

The proposed interpretation method is based on a surrogate and consequently does provide insights
about what the AutoML system has learned, which in turn allows plausibility checks and may increase
trust in the system. To what extent this allows conclusions on the true underlying hyperparameter
effects depends on the quality of the surrogate. How to efficiently perform model diagnostics to ensure
a high surrogate quality before applying interpretability techniques is subject to future research.

While we focused on providing better explanations without generating any additional experimental
data, it might be interesting to investigate in future work how confidence and reliability of IML
methods can be increased most efficiently when a user is allowed to conduct additional experiments.

Overall, we believe that increasing interpretability of AutoML will pave the way for human-centered
AutoML. Our vision is that users will be able to better understand the reasoning and the sampling
process of AutoML systems and thus can either trust and accept the results of the AutoML system or
interact with it in a feedback loop based on the gained insights and their preferences. How users can
then best interact with AutoML (beyond simple changes of the configuration space) will be left open
for future research.
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Part V.

Conclusion and Open Challenges





8. Conclusion

This thesis addresses the general pitfalls of model-agnostic interpretation methods (Part II). In
particular, it investigates two major limitations of global interpretation methods and suggests
possible solutions for each of the limitations using grouping (Part III) and partitioning approaches
(Part IV), respectively. The main contributions of this thesis can, therefore, be summarized by
addressing the subsequent limitations as follows:

1. Human-incomprehensibility of high-dimensional output. Most existing interpretation methods
are defined for a single feature of interest, which leads in high-dimensional settings to explanations
that can be overwhelming and incomprehensible for the user and, therefore, contradictory to
achieving transparency, which is the very goal of IML. We addressed this limitation of global
feature importance and global feature effect methods by suggesting alternative definitions of these
methods based on feature groups in Section 4. We compared different definitions of grouped feature
importance methods and provided user guidelines for their practical applicability. Furthermore,
we introduced the combined features effects plot, which is based on the concept of PD plots and
allows us to visualize the feature effect for a group of features. Thus, the resulting outputs of
the interpretation methods are of lower dimension than the outputs of the original feature space,
which leads to higher comprehensibility and lower computational costs.

2. Misleading interpretations of global explanations due to aggregation. Global interpretation
methods are usually the results of an aggregation of underlying local interpretations. Possibly
learned feature interactions or extrapolation in sparse regions of the feature space often lead
to heterogeneously behaving local interpretations. Thus, calculating the global interpretation
method by aggregating over these heterogeneous local interpretations results in an information
loss that can cause an aggregation bias. In Section 5, we addressed the aggregation bias due to
feature interactions in PD plots for one feature of interest. We introduced a new method based on
recursive partitioning, which partitions the feature space into interpretable regions where feature
interactions are minimized, and thus, regional PD plots are more representative of the underlying
ICE curves. In Section 6, we introduced a general framework that can partition the feature space
into interpretable regions such that feature interactions between all (or a subset of) features are
minimized. The method can be applied to most feature effect methods, including PD, ALE, and
SHAP dependence. In Section 7, we addressed the aggregation bias caused by extrapolation for
PD plots in the context of hyperparameter optimization. Therefore, we suggested a recursive
partitioning algorithm to obtain regions in the hyperparameter space where resulting regional PD
plots for hyperparameter effects can be interpreted more reliably.
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9. Open Challenges

9.1. Open Challenges of Grouping Approaches

The suggested grouping approaches provide a lower dimensional output and thus lead to – at
least from a dimensionality perspective – more comprehensible results. However, interpretations
based on groups of features also lead to an information loss about individual features that cannot
be recovered for most methods. While this may be partially possible for the introduced grouped
Shapley feature importance method, the computational effort to calculate the individual impor-
tance values might be too high for high-dimensional applications. In scenarios that require not
only information on the grouped features’ influence but also on the individual features’ influence,
more efficient estimation techniques and implementations to approximate these Shapley feature
importance values are needed. Another option might be to provide more selective and human-
friendly interpretation outputs on a single feature level, depending on the concrete question the
user would like to answer.

The contributing article in Section 4 assumes readily available feature groupings. However, fea-
tures often cannot naturally be grouped based on domain knowledge, and data-driven grouping
approaches might lead to different groupings depending on the chosen approach and might not be
meaningful from a domain perspective, which again complicates interpretation. The data-driven
approach to group features based on a sparse supervised principle component analysis (Shar-
ifzadeh et al., 2017) showed promising results in our simulation studies since it not only considers
dependencies within the feature space but also takes into account the dependencies between the
target variable and the features, which might lead to more meaningful groupings for the final in-
terpretation. However, this has yet to be extensively evaluated and compared to other approaches
for grouped feature interpretations.

Addressing these open challenges in future work and suggesting a solution that combines the
whole interpretation process, from finding meaningful feature groupings to interpretations based
on grouped and selective individual features, may be beneficial.

9.2. Open Challenges of Partitioning Approaches

Although the introduced methods in Part IV of the thesis are beneficial for a better understanding
of the features’ influence on the predictions, they still offer room for improvement. First, it might
be difficult for a user to decide on a suitable configuration of the stopping criteria since it is
difficult to determine what number of regions is still comprehensive for a user but is also sufficient
to obtain representative regional feature effects. Furthermore, it must be considered that the
proposed methods are based on the CART algorithm (Breiman et al., 1984), and thus, the deeper
we split, the less stable the final tree becomes. One possible solution to obtain more stable results
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9. Open Challenges

for these kinds of recursive partitioning algorithms might be to exchange the single decision tree
that tends to be unstable with an algorithm that leads to more stable results, such as an ensemble
of trees. Another solution could be to limit the choices of potential splits at each node. One
possibility to restrict the selection of split features upfront has been presented in the second
contributing article of Part IV based on a statistical test for feature interactions.

Hence, providing the user with a more intuitive choice on the configuration of the hyperparameters
and improving the algorithm’s stability will lead to more interpretable and reliable results and thus
might enhance the user’s trust. Moreover, the contributing articles in this thesis either focused on
minimizing feature interactions or minimizing uncertainty due to extrapolation in sparse regions.
An algorithm that considers the simultaneous minimization of feature interactions and uncertainty
(or feature correlations) is an interesting challenge for future work.

9.3. General Open Challenges of IML

Although IML is still a young research area, the development of techniques to make ML algorithms
more understandable to humans has been impressive in recent years. However, an exponential
growth of available IML methods is not necessarily helpful. I will discuss here some general
concerns of current research directions in IML.

First, most of the available IML methods are developed from the perspective of ML researchers
rather than domain experts. Therefore, whether the method solves a real-world problem or just
a theoretical one arises (Du et al., 2019). Adadi and Berrada (2018) also state that there is
a difference between explaining and understanding: For understanding, one needs to consider
the person receiving the explanation. Hence, when developing IML methods, the ML researcher
needs to understand the real-world problem that needs to be solved and how the results can be
presented such that the respective explainees understand them. Also, deciding on the granularity
of presenting the results to the explainee is a challenging task since there is a trade-off between
presenting information in an intuitive way and fully understanding the inner workings of a model
(Murdoch et al., 2019). The more we comprise the information (e.g., by looking at PD plots
instead of ICE plots), the simpler we can represent it (e.g., by one instead of n curves), but the
more information we will lose about the model behavior (e.g., about feature interactions).

Second, evaluating IML methods is difficult since real-world data has no ground-truth interpreta-
tion. Thus, many researchers base the evaluation on simple simulation examples for which they
know the ground truth. While this evaluation step is essential to judge the faithfulness of an
IML method, the evaluation of these methods on real-world data or how well the resulting output
of an IML method can be understood by the user (e.g., by user studies) is still lacking in the
evaluation process. One reason might be that there is no evaluation approach of IML methods
that the community agreed on, as it exists for evaluating ML models. A first step in this direction
is, for example, the suggestion of a common taxonomy (Doshi-Velez and Kim, 2017).

I acknowledge that this is not an exhaustive list, but from the perspective of this thesis, the
challenges discussed here are important to address in the near future. Therefore, a shared language
within the community (Doshi-Velez and Kim, 2017) and more exchange between the different
disciplines that develop and apply the methods is necessary. Furthermore, there is a need for
more development of systems that allow human-computer interaction to adjust interpretation
methods according to the user’s understanding and needs (Adadi and Berrada, 2018).
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