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Abstract  

 
Prolonged exposure to stress implicates the physiological system, which can have 

adverse effects on many health-related domains, including eating behavior. As the global 

prevalence of chronic stress continues to rise, it is imperative to investigate an intervention to 

reduce stress and its accompanying diseases. Stress-induced overeating, for example, can lead 

to the accumulation of visceral fat tissue, thereby increasing the risk of developing metabolic 

and cardiovascular diseases such as type 2 diabetes and hypertension. Stress-eating can, 

therefore, not only severely impact physiological health but can also greatly reduce an 

individual’s quality of life. Mindfulness meditation, through its ability to regulate emotions 

and increase interoceptive awareness, could serve as a candidate to reduce stress as well as its 

subsequent maladaptive eating behavior. As the effects of stress and mindfulness can be 

observed on the behavioral and neuronal levels, the main aims of this dissertation project were 

threefold: 1) proof of concept: conduct a clinical trial to investigate the effectiveness of web-

based mindfulness training and observe its corresponding neural correlates 2) identify the 

neural processing nodes fundamental for the sensory perception of food stimuli 3) conduct a 

clinical trial to investigate the effectiveness of a web-based, food-related, mindfulness training 

on stress-eating and observe its corresponding neural correlates.  

The results of this dissertation project were able to demonstrate mindfulness training-

induced reductions in stress and anxiety, as well as increases in perceived mindfulness, flow 

state, and attention. Additionally, the results were able to provide initial insight into the 

application of web-based mindfulness training as an intervention for stress-eating behavior 

through the observed reductions in perceived food cravings as well as stress- and emotional-

eating tendencies. Furthermore, changes observed on the behavioral level were accompanied 

by changes on the neuronal level thereby emphasizing the effectiveness of mindfulness training 

as an intervention strategy. Moreover, through the completion of an extensive meta-analysis, 
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this dissertation was able to identify the neural processing nodes of the functional olfactory 

cortex, the results of which were utilized in subsequent neuroimaging analyses within the scope 

of this project.  

In summary, this dissertation provides initial evidence of the effectiveness of web-

based mindfulness training as an intervention strategy for stress as well as stress-eating 

behavior and should be considered for therapeutic or preventative treatment programs.  
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1.0 Introduction  

 

Stress [ˈstɹɛs] (noun) can be defined as an organism’s response to threatening 

stimuli in the environment.  

 

1.1 The Physiological Stress Response 

 

The rapidly changing environment can contain threatening stimuli at any turn. The human 

body, however, through a series of physiological mechanisms, can produce an acute stress 

response that allows for the rapid and effective reaction to threatening stimuli in the environment. 

The acute stress response is regulated by subdivisions of the autonomic nervous system including 

the sympathetic and parasympathetic nervous systems as well as the hypothalamic-pituitary-

adrenal (HPA) axis (McEwen, 2007; McEwen & Stellar, 1993). While the sympathetic nervous 

system elicits a series of immediate physiological changes, the HPA axis regulates the release of 

hormones necessary for initiating a stress response; together, the sympathetic nervous system and 

the HPA axis increase heart rate as well as the rate of respiration, elevates blood pressure, dilates 

pupils, tenses muscles, in addition to ensuring access to sufficient nutrients required to initiate a 

fight or flight response (Guilliams & Edwards, 2010; Joseph & Whirledge, 2017; Stephens & 

Wand, 2012). The parasympathetic nervous system, on the other hand, helps to restore the body to 

its initial state of homeostasis once the harmful stimulus has passed. These physiological systems 

are essential for survival, as they work together to ensure an effective response to threats in the 

environment.  
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Prolonged exposure to stress (i.e., chronic stress), however, can elicit persistent activation of 

the sympathetic nervous system, causing the aberrant production and release of stress hormones, 

thus ultimately dysregulating the HPA axis (McEwen, 2007; McEwen, 2008). Prolonged 

dysregulation of the HPA axis leads to abnormal physiological functioning and can contribute to 

the development of various physiological and psychiatric conditions. These include cardiovascular 

and immunological dysfunction, the accumulation of visceral fat tissue, osteoporosis, decreased 

neurogenesis, increased grey matter atrophy of the limbic system, as well as anxiety and depression 

disorders (Cohen et al., 2007; Conrad et al., 1999; Dich et al., 2015; Fineberg et al., 2013; Glover 

et al., 2006; Joëls et al., 2004; Kemeny, 2003; Kivimäki & Steptoe, 2018; McEwen, 2001; 

McEwen, 2008; Rosemberg et al., 2019; Sapolsky, 2003; Vanitallie, 2002; Weiss, 2007). 

 

1.2 Stress & Eating Behavior  

 

Not only has chronic stress been demonstrated to elicit a series of physiological and 

psychiatric diseases, but prolonged periods of stress can impact eating behavior. The 

dysregulation of the HPA axis can cause an excess of cortisol to be present in the bloodstream, 

which, in turn, can affect the hormone production of ghrelin, leptin, and neuropeptide Y. These 

hormones play an essential role in the body’s perception of hunger and satiety (Bose et al., 

2009; Holmes et al., 2010; Kuo et al., 2007; McEwen, 2007; McEwen & Stellar, 1993; Sojcher 

et al., 2012). Interestingly, the aberrant production of cortisol can additionally affect the 

storage of visceral fat tissue, as well as the body’s metabolism (see Figure 1; adapted from 

Sojcher et al. (2012). Therefore, when the body is subjected to chronic stress, the resulting 

dysregulation of the HPA axis can affect eating behavior exhibited through increased feelings 

of hunger, increased caloric intake, as well as weight gain. 
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Figure 1: Depicts the cascading effects chronic stress has on the body’s neuroendocrinological systems and its 

subsequent consequences on eating behavior. This figure was adapted from Sojcher et al. (2012).  

 

Not only does the dysregulation of the body’s physiological system affect appetite and 

eating behavior, but it can also have cascading effects on various psychological processes 

pertaining to executive functioning including the ability to regulate emotions (Mathews & 

MacLeod, 2005; Stansbury & Gunnar, 1994; Wang & Saudino, 2011). When stress hormones such 

as cortisol, adrenaline, and norepinephrine are released into the physiological system to prepare 

the body to engage in a fight or flight response, executive functions relevant to emotion regulation 

and cognitive control are implicated (Zimmermann & Stansbury, 2004). Stress can also have a 

significant effect on food-related decision-making abilities as well as on impulsive snacking and 

emotional eating behaviors (Mathews & MacLeod, 2005; Stansbury & Gunnar, 1994; Wang & 

Saudino, 2011). Moreover, individuals may seek relief or self-soothing mechanisms through high-

calorie foods (Neseliler et al., 2017; Ulrich-Lai et al., 2015). This is due to the fact that the 

consumption of food high in sugar and fat releases neurotransmitters, such as dopamine, which are 
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associated with pleasure and reward and can thereby help regulate the negative emotions elicited 

by stress (Parker et al., 2006; Tryon et al., 2013; Zellner et al., 2006).  

The reduced ability to regulate emotions can lead to the formation of cognitive appraisals 

which, when faced with a stressor or negative emotion, may cause individuals to appraise the 

situation by seeking self-soothing mechanisms through food (Adam & Epel, 2007; Ozier et al., 

2007; Ozier et al., 2008). The recurrent association of engaging with foods high in sugar and fat, 

which seemingly alleviates the psychological consequences of stress, promotes the repeated 

engagement in this behavior which can also be referred to as reinforcement learning or the learned 

association between stimuli. Reinforcement learning can ultimately lead to habit formation, which, 

within the context of stress eating, perpetuates the consumption of high-calorie foods (Klatzkin et 

al., 2019; Schaefer et al., 2021). While the association between stress, the physiological stress 

response, and the development of emotional eating patterns is clear, the problematic nature of this 

relationship becomes even more evident when considering the high societal prevalence of chronic 

stress in addition to the obesogenic environments (which are defined as living conditions with 

persistent exposure to high-calorie food items) in which much of the global population resides.  

Therefore, not only are stressed individuals more susceptible to experiencing an increase 

in appetite due to the aforementioned dysregulation of the HPA axis, but the inability to effectively 

exert cognitive control or restraint within these obesogenic environments renders individuals even 

more susceptible to engaging in stress-related overeating behavior (Hawkes, 2006; Lake & 

Townshend, 2006; Swinburn et al., 2011). While previous research has repeatedly demonstrated 

the impact chronic stress has on the physiological and cognitive systems including eating behavior, 

body metabolism, as well as executive functioning, little is known about the mechanisms through 

which stress-eating behaviors can be intervened and therefore requires further research.  
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1.3 Olfaction, Food, and the Sensory System  

 

Not only should the scientific community foster research on stress-reduction mechanisms, 

but it would additionally be advantageous to investigate the biological mechanism of olfaction, 

which is fundamental in the processing of food stimuli to further explore eating behavior. 

Olfaction, or the sense of smell, is one of the oldest evolutionary senses that has enabled organisms 

to extract valuable information from the environment. Odorous information is rapidly processed 

by the cerebral system to initiate behavioral responses ranging from finding food and mates, and 

avoiding predators or threats (Boesveldt et al., 2010; Hoover, 2010; Sorokowska et al., 2017). In 

fact, our sense of smell is linked with the physiological stress response such that negative (i.e., 

potentially dangerous or harmful) odors are prioritized by the cerebral system to allow for the rapid 

initiation of a fight or flight response (Boesveldt et al., 2010; Iravani et al., 2021). Not only is the 

sense of smell linked to stress or the detection of threatening stimuli, but it also has a significant 

influence on eating behavior. Previous research was able to demonstrate that the mere detection of 

food odors can elicit a series of biochemical and physiological responses. These responses include 

the release of saliva and digestive enzymes that prepare the body for the ingestion and digestion 

of food, while simultaneously eliciting appetite-enhancing effects, thereby motivating the 

organism to seek food (Ramaekers et al., 2016; Smeets et al., 2010). The rapid, physiological, 

response to the presence of food odors is an essential evolutionary mechanism to motivate 

organisms to eat, especially in times of food scarcity (Hoover, 2010). However, despite the 

evolutionary adaptations of the olfactory system to help organisms maintain sufficient nutrient 

levels, the stressful and obesogenic conditions of the modern world lead individuals to succumb 

to stress-related overeating behavior.  
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1.4 Stress, Malnutrition & Health  

 

Given the profound effect chronic stress has on the physiological, cognitive, and 

psychological systems, individuals who are frequently exposed to stressful situations and – 

consequently – engage in stress-eating behaviors, could be susceptible to long-term health 

consequences. For example, frequently engaging in stress-eating behaviors can increase caloric 

intake which can lead to significant weight gain. Given the prominent role chronic stress has taken 

in modern society, the prevalence of individuals engaging in stress-eating and snacking behavior 

continues to rise. In fact, the onset of the SARS-CoV-2 pandemic and its lockdown measures not 

only had an impact on emotional well-being exhibited through increased stress, anxiety, and 

depression levels, but also had a significant impact on eating behavior (Burnatowska et al., 2022; 

Madalı et al., 2021; Shen et al., 2020). Moreover, the COVID-19 pandemic cast a spotlight on an 

increasing central health issue namely chronic stress and its long-term health consequences. Not 

only does stress-induced overeating behavior lead to the accumulation of visceral fat tissue, but it 

can also have negative implications on metabolic and cardiovascular health. For example, stress-

related overeating and its subsequent weight gain have been demonstrated to contribute to the 

development of conditions such as type 2 diabetes, hypertension, and cardiovascular disease, all 

of which can severely impact both physical health as well as quality of life (Bray, 2004; Epel et 

al., 2000; Gami et al., 2007; Torres & Nowson, 2007).  

In addition, studies observing the trends in body mass index (BMI), a numerical value 

utilized within the medical community to provide an estimate of body composition based on 

weight and height, have demonstrated that an elevated BMI is associated with an increased risk of 

developing cardiovascular and metabolic diseases (Sturm, 2007). In fact, in recent years, a BMI of 

over 40 (which indicates the classification of severe obesity) has increased by 50% and the 
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occurrence of a BMI exceeding 50 has increased by 75% (Sturm, 2007).  It is therefore apparent, 

that the prevalence of maladaptive overeating behavior continues to rise. Given the negative 

implications chronic stress has on the body (Benjamin et al., 2019; Hales et al., 2020; Virani et al., 

2020), it is imperative that the scientific community contribute to the investigation of intervention 

mechanisms for stress-related malnutrition. 

 

2.0 Contemplative Science & Mindfulness Meditation  

 

Contemplative science is an interdisciplinary field of research investigating the effects and 

mechanisms of contemplative practices such as yoga and mindfulness meditation. These practices 

are founded upon the principle that the mind and body (i.e., emotional states and physical health) 

are bidirectionally connected. For example, in recent years, mindfulness meditation training 

(MMT) which involves the intentional focus of attention of the present moment without judgment 

or distraction (Kabat-Zinn, 2003a), has been extensively studied. This research demonstrated 

MMT to effectively reduce stress as well as improve overall well-being (Creswell & Lindsay, 

2014; M. Goyal et al., 2014a; Hariprasad et al., 2013; Hölzel et al., 2011; Luders et al., 2013; 

Pickut et al., 2013; Sharma & Rush, 2014). Through the ability to cultivate the awareness of 

thoughts, emotions, and bodily sensations, MMT facilitates the development of greater 

interoceptive awareness, emotion regulation, in addition to the reduction of stress sensitivity 

(Butzer et al., 2015; Chong et al., 2011; D'Silva et al., 2012; Gard et al., 2014; M. Goyal et al., 

2014b; Lemay et al., 2019; Wahbeh et al., 2008). This heightened awareness allows individuals to 

observe stressors with greater objectivity and compassion, leading to the reduction of both the 

physiological stress response as well as the susceptibility to chronic stress (Creswell & Lindsay, 
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2014; Marcus et al., 2003; Miller et al., 2021). Given its effect on stress, MMT should be 

considered as a possible intervention strategy for individuals who suffer from stress-related 

overeating behavior. 

 

2.1 Mindfulness Meditation & Stress Eating  

 

Conventional dieting methods enforcing calorie restriction and the elimination of certain 

macronutrients have become widely known for their claims to be effective weight loss 

mechanisms. These diet methods and their strict regiments, however, leave little room for 

individuals to follow natural hunger and satiety cues. This can, in turn, increase the risk of 

developing maladaptive eating behaviors. MMT, in comparison, can not only enable increased 

awareness of stress cues in the environment but can also enhance the awareness of bodily 

sensations. MMT can therefore increase stress sensitivity as well as increase the awareness of 

natural hunger and satiety cues. Greater awareness of hunger cues can help prevent individuals 

from engaging in mindless snacking or emotional eating tendencies, even when no hunger is 

perceived.   

To this end, researchers have taken initial steps in investigating the effects of MMT on 

maladaptive eating behaviors such as binge-eating disorder (Katterman et al., 2014; Kristeller & 

Hallett, 1999) as well as investigating its effects on individuals with obesity (Daubenmier et al., 

2011; Sampaio et al., 2021). While these findings have been able to demonstrate improvements in 

eating behavior in clinical populations, further research is required to understand the underlying 

effect MMT has on eating behavior. The aim of this dissertation project is therefore to determine 

MMT’s effects on reducing stress-related overeating behavior.  
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3.0 Neuroimaging  

 

To gain valuable insight into the association between human behavior and its underlying 

neural mechanisms, neuroimaging is a non-invasive technique frequently utilized within the field 

of neuroscience to explore this relationship. Through its ability to observe brain structure, function, 

and connectivity, neuroimaging methods allow for the investigation of the neural mechanisms 

underlying various cognitive processes, emotions, behaviors, and disorders. Therefore, to acquire 

a deeper understanding of the neural mechanisms underlying the relationship between stress, 

eating behavior, and MMT, magnetic resonance imaging (MRI) was utilized within the scope of 

this dissertation project. 

 
3.1 Magnetic Resonance Imaging | MRI 

 
To obtain in-vivo structural and time series images of the brain, MRI utilizes the 

phenomenon of nuclear magnetic resonance (NMR) which is founded upon the properties of 

atomic nuclei and how their spin (i.e., precession) changes when subjected to a magnetic field 

and/or radiofrequency (RF) pulses. Due to the high water (H20) content of human tissue, fats, 

proteins, and carbohydrates, hydrogen protons (H+) serve as a source nucleus for the MRI 

technique.  

When H+ atoms are exposed to a strong magnetic field (B0), H+ align parallel or 

antiparallel to the magnetic field. Once the protons are aligned, an RF pulse can be applied at the 

resonant frequency of the H+, thus exiting the proton spin and transferring the protons located 

within the RF pulse into a higher energy state. Once the RF is switched off, the protons transmit 

weak RF signals varying in strength during their return to equilibrium. Receiver coils within the 
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MRI machine can detect the signals and convert them into electrical signals to capture the change 

in energy state. The rate at which the hydrogen nuclei return to equilibrium is referred to as 

relaxation time and serves as the basis of the MRI image. Modern MRI machines incorporate 

gradient magnetic fields to produce multiple variations in the magnetic field strength across the 

imaging volume. This ultimately allows the image to contain spatial information. The digitized, 

electrical, signals, captured by the receiver coils are Fourier transformed, which converts the signal 

from the time domain to the frequency domain, thereby also allowing for the separation of the 

signal into different frequency components. At this stage, the data is represented in k-space, which 

effectively contains information pertaining to spatial frequencies as well as phase information of 

the encoded signal. Advanced mathematical algorithms, including Fourier reconstruction 

techniques, are utilized to convert k-space into two- or three-dimensional MRI images. Given that 

different tissue types (e.g., tissue, bone, blood) all have differing magnetic properties, the MRI 

signals differ, thereby allowing for the differentiation (or contrast) of the various tissue types 

within the image. In an MRI image, the image is divided into three-dimensional units called voxels 

(i.e., volumetric pixels). Each voxel represents a small volume element and contains information 

pertaining to the signal strength within said voxel. Differences in signal strength or intensity help 

to determine different tissue types in the brain (or imaged organ). The three-dimensional image, 

which consists of signals from multiple voxels, can now be utilized to derive information about 

the structure and tissue differentiation (e.g., grey matter, white matter, and cerebral spinal fluid) 

of the brain.  

3.1.1 Functional Magnetic Resonance Imaging   

 

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique within which 

multiple MRI measurements are acquired in rapid succession to measure changes in brain activity 
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over time. To capture brain activity, fMRI relies on changes in blood flow (and the corresponding 

change in oxygen levels) to provide insight into brain activity during a given task. This imaging 

technique is founded upon the blood-oxygen-level-dependent (BOLD) effect. The BOLD effect 

presupposes that when a particular brain region is active, blood flows to that area of the brain 

thereby providing it with an increased supply of nutrients (e.g., oxygen). An increase in oxygen 

concentration alters the magnetic field in that region, causing local field distortions initiated by the 

displacement of deoxygenated blood with oxygenated blood. It is through these local field 

distortions generated by the displacement of deoxygenated blood that is critical for the generation 

of BOLD images utilized in fMRI. However, it is important to note that BOLD imaging is an 

indirect measurement of brain activity, in which there is an assumption that an increase in the 

concentration of oxygenated blood indicates increased neural activity. Nevertheless, researchers 

have investigated the biological basis of the BOLD signal and have gained a foundational 

understanding pertaining to the complex interplay between the local blood flow, blood volume, as 

well as the metabolic rate of oxygen to support BOLD imaging as an indirect measure of brain 

activity (Logothetis & Wandell, 2004). The fMRI technique, therefore, plays a unique role within 

the field of cognitive neuroscience as it allows study aparticipants to be presented with various 

stimuli within the MRI scanner, thereby providing the scientific community with essential insights 

into the functional mechanisms underlying various cognitive processes and emotional states.  

Given that the fMRI technique can capture important information regarding the rapid 

delivery of blood to the active neuronal tissue, this technique allows for the detection of active 

brain areas during a stimulus presentation. To accurately derive information from the BOLD 

signal, the hemodynamic response function (HRF) must be taken into account. The HRF accounts 

for the fact that the delivery of the oxygenated blood in the active neuronal area is not 
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instantaneous; the HRF is, therefore, modeled onto the fMRI images to account for the delay in 

hemodynamic response, thus allowing for a more accurate interpretation of fMRI data and the 

neuronal response to a given stimulus.  

 
3.1.2 Resting-State fMRI  

  
Not only can MRI images capture the neuronal response to a particular stimulus or 

experimental condition, but resting state fMRI (rs-fMRI) is another neuroimaging technique 

utilized to capture intrinsic brain activity. While rs-fMRI acquisition does not subject the 

participant to a particular stimulus, this neuroimaging method enables researchers to investigate 

underlying neuronal activity at rest. In addition to capturing intrinsic brain activity, rs-fMRI can 

provide valuable information regarding the synchronization of spontaneous neural activity 

between different brain regions at rest. This is known as rs-fMRI functional connectivity (FC). 

This measure can serve as a marker for the degree to which various brain areas communicate with 

one another in the absence of a task or stimulus.  For example, while an increase in FC between 

brain regions can imply stronger coupling (i.e., the degree to which the neural activity of one region 

is related to the neural activity of another region), a decrease in functional connectivity can imply 

a decoupling of the dependence between brain areas. Observed alterations in FC can, therefore, 

provide insight into various neural processes and how these processes relate to other brain areas.  

 

3.1.3 Diffusion Tensor Imaging 

 

While BOLD imaging can provide information on the brain’s synchronous activity through 

FC metrics, diffusion tensor imaging (DTI) differentiates itself from BOLD imaging as it provides 

insight into the microstructural organization of the brain’s white matter, thereby shedding light on 
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the structural connections as well as the integrity of tracts between brain areas. The brain’s white 

matter consists of axons that serve as communication highways between different brain areas. The 

DTI method allows for the observation of the movement (direction and magnitude) of water 

molecules within white matter tracts. Not only does DTI provide information on the underlying 

organization of the brain’s microarchitecture, but changes in brain organization can be observed 

when conducting a longitudinal, intervention study. MRI can therefore not only provide valuable 

insight into the underlying functional organization of the brain but can also provide information 

on the brain’s structural organization.   

 

3.1.4 Meta-analyses  

 

As the neuroimaging field and its accompanying MRI research continue to grow, the 

number of annual studies in peer-reviewed journals also increased. In an effort to provide the 

scientific community with an overview of all available literature on a given topic, researchers 

utilize meta-analyses, a statistical technique to quantify and analyze data from multiple, 

independent, studies to obtain an overall estimate of the effect of interest. With regard to fMRI 

neuroimaging studies, the activation likelihood estimation (ALE) method is utilized to quantify all 

relevant and available data which allows for a formal statistical analysis to be conducted to obtain 

interstudy concordance (Eickhoff et al., 2009; Turkeltaub et al., 2002).  ALE’s allow for the pooling 

of MRI coordinates of significant brain activations and can calculate the probability of activation 

at each voxel of the brain across studies. ALE’s can therefore identify the most consistent and 

reliable areas of brain activation across studies, thereby providing the scientific community with a 

robust overview of the neuroimaging literature on a particular topic under investigation.  
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3.2 Eating Behavior, Stress, MMT, and the Brain 

 

Neuroimaging research can be applied to a multitude of research questions including the 

investigation of stress, eating behavior, as well as MMT and its underlying neuronal mechanisms. 

For example, not only has MMT been attributed to the ability to increase emotion regulation, 

interoceptive awareness, as well as the reduction of stress sensitivity on the behavioral level 

(Butzer et al., 2015; Hölzel et al., 2011; Lemay et al., 2019; Wahbeh et al., 2008), but extensive 

neuroimaging research on MMT practitioners has observed differences in brain structure and 

function in areas previously attributed to having an influence on executive functioning including 

emotion regulation as well as interoceptive awareness.   

For example, the amygdala, hypothalamus, and insula are brain areas that have been 

implicated in exhibiting neuroplastic changes in MMT practitioners; this is an important finding 

as these brain areas play a unique role in emotion processing, interoceptive awareness, as well as 

regulating the stress response (Cacciaglia et al., 2017; Hariprasad et al., 2013; Hölzel et al., 2011; 

Luders et al., 2013; Pickut et al., 2013; Roozendaal et al., 2009; Sapolsky, 1996; Zavorotnyy et 

al., 2018). For example, the hypothalamus is considered to be a brain area that plays a central role 

in the regulation of stress and has been demonstrated to play a role in eating behavior when 

considering the impact chronic stress has on inducing aberrant HPA axis functioning (Bose et al., 

2009; Holmes et al., 2010; Kuo et al., 2007; McEwen & Stellar, 1993; Sojcher et al., 2012). In 

fact, to further investigate its effects on eating behavior, the hypothalamus can be separated into 

two nuclei to investigate its unique effects on eating behavior: namely the medial and lateral 

hypothalamus.  

While the medial hypothalamus, through its ability to regulate the release of hormones such 

as melanin-concentrating-hormone (MCH), has been demonstrated to play a role in regulating 
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perceived satiety (Saper et al., 2002), the lateral hypothalamus, on the other hand, has been 

implicated in the perception of hunger through its regulation of hormones that stimulate eating 

behavior such as neuropeptide Y and agouti-regulated peptides (Aston-Jones et al., 2009; 

Bernardis & Bellinger, 1996; Saper et al., 2002; Syan et al., 2021). Interestingly, a recent review 

that sought to investigate differences in intrinsic FC patterns between individuals with obesity in 

comparison to controls was able to demonstrate FC differences between the medial hypothalamus, 

a brain area that plays a role in regulating satiety cues, and areas of the reward system (Syan et al., 

2021). This observation suggests that individuals with obesity may have an increased 

interdependence between perceived reward and satiety. An additional finding in the review 

revealed that individuals with obesity demonstrated greater FC between somatosensory areas and 

the lateral hypothalamus, which is an area of the brain that plays a role in regulating hunger cues. 

These results not only indicate that individuals with obesity may have increased sensitivity to both 

sensory aspects of food as well as the perception of hunger when compared with controls, but the 

results additionally provide evidence that differences in eating behavior are accompanied by 

changes on the neuronal level.  

Given MMT’s ability to impact stress sensitivity and emotion regulation, MMT may also, 

through the HPA axis, affect hypothalamic structure and function, thereby ultimately affecting 

eating behavior. The hypothalamus and its involvement in the complex interplay between stress, 

appetite, and eating behavior may provide valuable insight into the neuroplastic changes elicited 

by MMT.  

While the hypothalamus has been demonstrated to play a prominent role in stress and 

eating behavior, another brain area of interest, namely the insula, is also involved in regulating 

eating behavior. For example, the insula has been implicated in the perception of bodily sensations, 
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as well as in attentional control (Craig, 2009). Notably, these two aspects are fundamental in both 

MMT and eating behavior. More specifically, the literature provides extensive evidence pertaining 

to the insula’s role in the subjective processing of odor, flavor, and texture, which are integral 

factors in the assessment of the edibility and reward of food (Rolls & McCabe, 2007; Small, 2010; 

Torske et al., 2022). Similar to the hypothalamus, the insula can be divided into individual 

processing nodes (namely the anterior and posterior insula) to allow for a closer examination of its 

distinct roles in mindfulness, stress, and eating behavior.  

The anterior insula, for example, has been associated with emotion regulation as well as 

interoceptive awareness in the context of MMT practitioners (Farb et al., 2012; Hölzel et al., 2007; 

Laneri et al., 2017). Emotion regulation and interoceptive awareness are particularly relevant to 

eating behavior as these qualities enable individuals to become more aware of hunger and fullness 

cues, thereby facilitating more mindful food choices that are less driven by emotions (Craig, 2009; 

Critchley et al., 2004). In addition, the posterior insula has been implicated in sensory processing 

as well as the integration of taste and smell (Rolls, 2006). Interestingly, both the anterior and 

posterior insula have been found to integrate signals from hormones pertaining to eating behavior 

such as ghrelin and leptin (Wright et al., 2016). Therefore, while the anterior insula has been 

attributed to the regulation of emotions and interoceptive awareness, the posterior insula can be 

attributed to the sensory integration of food-related stimuli. The insula, therefore, not only plays a 

fundamental role in facilitating interoceptive awareness as well as cognitive and emotion 

regulation but also plays a fundamental role in sensory processing fundamental in influencing food 

choice.  

While several brain areas have been implicated in both stress and MMT, initial research on 

the FC of brain areas associated with MMT has been conducted and could successfully 
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demonstrate MMT-induced FC changes (Bremer et al., 2022; Creswell et al., 2016; Sezer et al., 

2022; Taren et al., 2015; Taren et al., 2017). However, it is important to note that previous studies 

investigating MMT-induced FC changes implemented general MMT interventions. The aim of 

this dissertation project was, therefore, to investigate MMT’s influence on eating behavior through 

the application of a food-specific MMT, in addition to gaining further insight into the complex 

interplay between stress, appetite, and eating behavior on both the behavioral and neuronal levels.   

 

4.0 Main Aims & Scope:  

 

This dissertation project aims to examine the influence of stress on eating behavior and its 

underlying neural correlates. What makes this project unique, is the investigation of a food-specific 

MMT as an intervention strategy for stress-related overeating while observing its effects on both 

the behavioral and neuronal levels. The results of this dissertation project could provide critical 

evidence for an intervention that can be utilized to improve overall well-being in addition to 

cultivating a more mindful relationship with food. If MMT serves to be an effective intervention 

strategy for stress-related overeating behavior, the long-term benefits of a food-related MMT could 

ultimately help individuals reduce the risk of developing cardiovascular and metabolic diseases.  
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4.1 Project 1: Validation of Web-Based MMT:  
The Effects of Web-Based Mindfulness Training on Psychological Outcomes, Attention,  
and Neuroplasticity 
 

 

The aim of Project 1 was to investigate the effectiveness of a web-based MMT on various 

psychological outcomes including stress, anxiety, attention, physical well-being, and flow, in 

addition to assessing its corresponding neuroplastic changes. While initial research on web-based 

MMT demonstrates improved self-compassion, perceived stress, cognition, mindfulness, and 

reduced anxiety and depression symptoms (Glück & Maercker, 2011; Krusche et al., 2013; Sevilla-

Llewellyn-Jones et al., 2018; Yogeswaran & El Morr, 2021), it is imperative to continue to 

elucidate whether a web-based MMT course can also reliably improve mental health and physical 

well-being in comparison to in-person MMT. If successful, web-based MMT could provide a 

larger portion of the population, who may not have access to in-person MMT (whether it be for 

logistical or financial reasons) with the necessary tools to improve their overall mental health and 

physical well-being. In addition, if web-based MMT is demonstrated to be as effective as in-person 

MMT, it could be utilized as a tool for more specific (i.e., targeted) health-related topics (e.g., 

stress-eating behavior).  

 

4.2 Project 2: Localizing the Human Brain Response to Olfactory and Food Stimulation 
 

 

Given that the overall aim of this dissertation project is to explore the effects of MMT on 

eating behavior, key regions of interest essential in the processing of olfactory stimulation, which 

is an essential mechanism underlying the hedonic processing of food, should be considered. 

However, over 1,000 new neuroimaging studies exploring the functional neuroanatomy of the 
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olfactory cortex have been published since 2013 alone. Therefore, to identify the most consistent 

and reliable areas of brain activation during the presentation of food stimulation across studies, the 

aim of Project 2 was to conduct a robust overview of the neuroimaging literature involving the 

functional neuroimaging of olfactory processing. To this end, an ALE was conducted to gain 

insight into the functional neuroanatomy of olfactory stimulation and its processing nodes. The 

results of the ALE provide important information on the brain areas of interest when observing the 

neuronal effects of MMT on eating behavior.  

 

4.3 Project 3: Mindfulness Training Reduces Mindless Eating Behavior:   
The effects of a food-related mindfulness training on stress-eating and brain function. 
 

 

As both stress and mindfulness have an effect on the neuronal level, the aim of Project 3 

was to investigate the effects of a food-related MMT on the behavioral as well as neuronal levels. 

To this end, participants completed self-report measures and underwent rs-fMRI. The results of 

this study provide insight into the neural processes underlying the mechanisms through which 

MMT influences stress-eating behavior, while also supporting MMT as a possible intervention 

mechanism for stress-eating behaviors in addition to other clinical populations.  
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Manuscript: Project 1 | Validation of a Web-Based MMT 
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Manuscript: Project 2 | Localizing the Human Olfactory Cortex 
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Manuscript:  Project 3 | The Effectiveness of a Food-Related MMT 
Mindfulness Training Reduces Mindless Eating Behavior:  The effects of a food-related 
mindfulness training on stress-eating and brain function. 
 
Abstract:  

Background: Stress-related overeating can lead to excessive weight gain, increasing the risk of 

developing metabolic and cardiovascular disease. Mindfulness meditation training (MMT) has 

been demonstrated to reduce stress as well as increase interoceptive awareness. Methods: To 

investigate the effects of MMT on eating behavior, stressed, meditation-naïve, individuals (N = 

66) were recruited to participate in either a 31-day, web-based, MMT or health training (HT) 

condition. Behavioral as well as resting-state MRI data were acquired. Results: The MMT, in 

comparison to the HT, was found to significantly reduce stress- and emotional-eating tendencies 

as well as food cravings, while also increasing perceived mindfulness. These behavioral results 

were corroborated through observed seed-based functional connectivity (FC) changes on the 

neuronal level: A-priori-selected seed regions fundamental in the regulation of eating behavior 

(i.e., the hypothalamus and insula) and the whole brain revealed MMT-related FC changes 

associated with the hypothalamus, reward regions, as well as several areas of the DMN in addition 

to observing FC changes between the insula and somatosensory areas. Further FC changes between 

seed regions and brain areas attributed to emotion regulation, awareness, attention, and sensory 

integration were also observed. Notably, FC changes significantly correlated with behavioral 

measures, thereby providing insight into the underlying neuronal mechanisms of MMT’s effects 

on stress-eating. 

This study is listed as a clinical trial on the ISRCTN registry with trial ID ISRCTN12901054  
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Introduction 
 

Prolonged exposure to stress (i.e., chronic stress) has been demonstrated to have negative 

implications on many health-related domains including eating behavior. This is due in part to the 

nature of the physiological stress response which is comprised of the autonomic nervous system 

including the sympathetic and parasympathetic nervous systems in addition to the hypothalamic-

pituitary-adrenal (HPA) axis (McEwen, 2007; McEwen & Stellar, 1993). While these systems, 

and their accompanying neuroendocrine pathways, work together to allow the body to effectively 

respond to acute stress (i.e., threatening stimuli in the environment), chronic stress can have 

negative consequences on physiological circuits (McEwen, 2007). For example, chronic stress can 

lead to the dysregulation of the HPA axis, which can result in the aberrant production of stress 

hormones such as cortisol (McEwen, 2007; McEwen, 2008). The excess secretion of cortisol elicits 

a series of cascading, negative, effects on the production of leptin, ghrelin, and neuropeptide Y, 

which all play an integral role in regulating perceived hunger and satiety, while also affecting 

metabolism as well as the storage of visceral fat tissue (Bose et al., 2009; Holmes et al., 2010; Kuo 

et al., 2007; McEwen, 2007; McEwen & Stellar, 1993; Sojcher et al., 2012). Chronic stress, and 

the subsequent dysregulation of the HPA axis, can, thereby, induce increased feelings of hunger, 

increased caloric intake, and weight gain (Adam & Epel, 2007; Epel et al., 2001; Groesz et al., 

2012; Oliver et al., 2000; Torres & Nowson, 2007). In fact, prior research demonstrates that 

stressed individuals are more susceptible to selecting high-calorie foods, i.e., foods with a high fat, 

salt, or sugar content than non-stressed individuals (Oliver et al., 2000).  

Furthermore, chronic stress has been shown to implicate emotion regulation and cognitive 

control (Mathews & MacLeod, 2005). This is particularly noteworthy as a large portion of the 

global population lives in an obesogenic environment, i.e., individuals are persistently being 
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exposed to high-calorie food items (Hawkes, 2006; Lake & Townshend, 2006; Swinburn et al., 

2011). Given that the mere presence of high-calorie food and its odors can elicit appetite-enhancing 

effects (Yeomans, 2006), stressed individuals may not only be more prone to experiencing an 

increase in appetite through the dysregulation of their HPA axis but may also be less able to utilize 

cognitive control (i.e., restraint) when encountering high-calorie foods.  

Ultimately, the long-term effects of chronic stress and its influence on eating behavior can 

have negative implications on metabolic and cardiovascular health. For example, frequently 

engaging in stress-related overeating behavior (and the subsequent weight gain) can lead to type 2 

diabetes, hypertension, and cardiovascular disease (Bray, 2004; Epel et al., 2000; Gami et al., 

2007; Torres & Nowson, 2007). Given the profound effect stress has on eating behavior, its long-

term health consequences, in addition to the high, global, prevalence of cardiovascular and 

metabolic disease (Benjamin et al., 2019; Hales et al., 2020; Virani et al., 2020), it is crucial for 

the scientific community to establish and investigate interventions that could reduce stress-related 

overeating behavior. 

To this end, mindfulness meditation training (MMT) has been demonstrated to be a reliable 

stress-reduction mechanism that can also improve overall well-being (Creswell et al., 2014; Goyal 

et al., 2014; Hariprasad et al., 2013; Hölzel et al., 2011; Luders et al., 2013; Pickut et al., 2013; 

Sharma & Rush, 2014). Mindfulness meditation involves the intentional focus of attention as well 

as open awareness of the present moment without judgment or distraction (Kabat-Zinn, 2003a). 

Through its ability to bring attention to thoughts, feelings, and bodily sensations, MMT can support 

individuals in developing greater interoceptive awareness, emotion regulation, and reduce stress 

sensitivity (Butzer et al., 2015; Chong et al., 2011; D'Silva et al., 2012; Gard et al., 2014; Goyal et 

al., 2014; Lemay et al., 2019; Wahbeh et al., 2008). By becoming more aware of thoughts and 
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emotions, individuals can observe stressors with greater objectivity and compassion, thereby 

reducing the physiological stress response in addition to the susceptibility to chronic stress 

(Creswell & Lindsay, 2014; Marcus et al., 2003; Miller et al., 2021). Given the role MMT plays 

in reducing perceived stress as well as the physiological stress response, it is hypothesized that 

individuals suffering from stress-related overeating behavior would benefit from a food-related 

MMT. In addition, while conventional dieting methods leave little room to follow natural hunger 

cues, MMT enables practitioners to become more aware of both their mind and body and allows 

for an increase in the perception of satiety and hunger, as well as stress and emotion cues. MMT 

could thereby alter the reactivity to food stimuli thus ultimately helping individuals lead a healthier 

lifestyle. The training utilized in the present study provides stress-eaters with an alternative to 

conventional, rigorous, diet plans that typically enforce calorie restriction, which is a method that 

only perpetuates the inability to listen to internal hunger cues.  

As both stress and mindfulness have an effect on the neuronal level (Bremer et al., 2022; Brewer 

et al., 2011; Hölzel et al., 2011; Kilpatrick et al., 2011; Syan et al., 2021; Tang et al., 2015), this 

study seeks to investigate the effects of a food-related MMT on the behavioral as well as neuronal 

levels. To this end, participants underwent resting-state functional magnetic resonance imaging 

(rsfMRI), which is a neuroimaging method that provides insight into the underlying functional 

organization of the brain during rest. While an increase in functional connectivity (FC) between 

brain regions can imply stronger coupling (i.e., the degree to which the neural activity of one region 

is related to the neural activity of another region), a decrease in functional connectivity can imply 

a decoupling of the dependence between brain areas. Observed alterations in FC will, therefore, 

provide insight into the neural processes underlying the mechanisms through which MMT 

influences stress-eating behavior. While previous studies were able to successfully demonstrate 
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MMT-induced neuroplastic changes on resting state FC (Bremer et al., 2022; Creswell et al., 2016; 

Sezer et al., 2022; Taren et al., 2015; Taren et al., 2017), these studies utilized general MMT 

interventions. The aim of the present study, however, was to investigate meditation's specific 

influence on eating behavior through the application a food-specific MMT. 

The hypothalamus and insula were, therefore, selected as regions of interest given their 

fundamental role in mediating the neural processes of perceived hunger and satiety cues. The 

hypothalamus, for example, when considering the role chronic stress plays in the dysregulation of 

the HPA axis, can initiate alterations in appetite and food intake, (Bose et al., 2009; Holmes et al., 

2010; Kuo et al., 2007; McEwen & Stellar, 1993; Sojcher et al., 2012). While the hypothalamus, 

as a whole, helps to regulate both stress and eating behavior, the hypothalamus can be parcellated 

into two nuclei that each play a unique role in processing perceived hunger and satiety, i.e., the 

lateral hypothalamus and the medial hypothalamus, respectively. While the lateral hypothalamus 

is critical in initiating eating behavior through its ability to regulate hormones such as neuropeptide 

Y and agouti-related peptides, which stimulate eating behavior by increasing feelings of hunger 

(Aston-Jones et al., 2009; Bernardis & Bellinger, 1996; Saper et al., 2002; Syan et al., 2021), the 

medial hypothalamus, on the other hand, has been demonstrated to be involved in regulating 

perceived satiety, or feelings of fullness, through the release of hormones such as melanin-

concentrating-hormone (MCH) (Saper et al., 2002).  

Furthermore, a review published by Syan et al. (2021) was able to demonstrate differences 

in FC between individuals with obesity and controls in the medial and lateral hypothalami. 

Researchers demonstrated an increase in FC between the medial hypothalamus (responsible for 

eliciting satiety cues) and areas of the reward system suggesting an increased interdependence 

between perceived reward and perceived satiety in individuals with obesity. The review 
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additionally demonstrated that, in comparison to controls, individuals with obesity exhibited an 

increase in FC between the lateral hypothalamus (responsible for regulating feelings of hunger) 

and somatosensory areas, indicating that individuals with obesity may be more sensitive to both 

the perception of hunger as well as the sensations of food in comparison to controls. These findings 

indicate that differences in eating behavior are accompanied by specific FC changes in the brain. 

Therefore, given its complex interplay between stress, appetite, and eating behavior, the 

hypothalamus was selected as a region of interest to allow for the observation of possible neuronal 

changes elicited by a food-related MMT. 

Not only does the hypothalamus play an integral role in the processing of stress and eating 

behavior but the insula is a brain area that also contributes to cognitive processes underlying 

mindfulness meditation and eating behavior. For example, the insula has been demonstrated to be 

involved in interoception (i.e., perception of bodily sensations) and attentional control, which are 

both fundamental aspects of mindfulness meditation as well as eating behavior (Craig, 2009). 

Moreover, the insula has been demonstrated to play a role in the subjective experience of flavor, 

texture, and smell (Rolls & McCabe, 2007; Small, 2010; Torske et al., 2022), which are all factors 

that contribute to assessing the hedonic value of food. The insula, therefore, plays an integral role 

in eating behavior. Similar to the hypothalamus, the insula can be parcellated into individual nuclei 

allowing for closer inspection of its unique roles pertaining to the processing of mindfulness, 

stress, and eating behavior. For example, the insula can be parcellated into the anterior and 

posterior nuclei. Mindfulness meditation and its involvement in fostering awareness in addition to 

the acceptance of present-moment experiences has previously been associated with the anterior 

insula, an area of the brain involved in emotion regulation and interoceptive awareness (Farb et 

al., 2012; Hölzel et al., 2007; Laneri et al., 2017). Both emotion regulation and interoceptive 
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awareness are particularly relevant to eating behavior as they help individuals tune into hunger 

and fullness cues, allowing for more mindful – or less emotion-dependent - food selections (Craig, 

2009; Critchley et al., 2004).  

The posterior insula, on the other hand, has been associated with sensory processing and 

the integration of taste-related stimuli (Rolls, 2006). Therefore, while the anterior insula may be 

responsible for regulating emotion regulation and interoceptive awareness, the posterior insula is 

involved sensory integration of food-related stimuli, which both ultimately influence food choice. 

Additionally, both the anterior and posterior insula have been demonstrated to integrate 

information signaling produced by the hormones ghrelin and leptin, as well as be involved in the 

processing of somatosensory information (Wright et al., 2016). The insula is, therefore, not only a 

brain area that is associated with regulating perceived hunger and satiety cues but also plays a 

fundamental role in mediating cognitive, emotional, and sensory processes related to both 

mindfulness and stress-related eating behavior. The insula and its individual nuclei, thus, serve as 

essential seed regions to observe FC changes to provide insight into the intersecting neural 

mechanisms of mindfulness meditation and eating behavior. 

This research will not only allow for an improved understanding on how mindfulness 

training impacts stress-related overeating behavior, but it will also provide further insights into the 

neural mechanisms of eating behavior and stress reduction. The results of this study could 

additionally provide critical evidence of an effective intervention strategy for stress-eaters to 

improve overall well-being in addition to cultivating a more mindful relationship with food. If 

MMT serves to be an effective intervention strategy for stress-eating tendencies, the longer-term 

benefits of a food-related MMT could ultimately help to reduce the risk for developing 

cardiovascular and metabolic diseases.  
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Methods 
Participants 
 

In an effort to recruit individuals with the tendency to overeat when stressed, the present 

study was advertised via the university hospital’s mailing list and online advertisements. Interested 

participants were required to report moderate to high levels of stress, as assessed by the perceived 

stress scale (PSS) (Cohen et al., 1983), and were considered eligible when meeting the following 

criteria: (1) between the ages of 18 and 45 (2) general MRI suitability (i.e., no metal implants and 

not prone to claustrophobia), (3) body-mass-index (BMI) between 18 and 30, (4) no dietary 

restrictions (including vegetarianism or veganism) (Bontempi et al., 2022), (5) no use of oral 

contraceptives or intrauterine devices, (6) no known, untreated, thyroid dysfunction, (7) no chronic 

respiratory diseases. All participants provided written, informed, consent and were given monetary 

compensation for their participation. this study is listed as a clinical trial on the ISRCTN registry 

with trial ID ISRCTN12901054 and was approved by the Ethics Committee of Klinikum Rechts 

der Isar, Technical University Munich. All methods were carried out in accordance with relevant 

guidelines and regulations. 

Procedure 
This study was designed as a pseudo-randomized, active control trial to investigate the 

effects of mindfulness meditation on stress-related overeating behavior and its neuronal correlates. 

All subjects enrolled were single-blindedly (subject only) allocated to one of two, equisized, 

groups to complete either the MMT condition or the active control, health training (HT), condition. 

All participants underwent magnetic resonance imaging (MRI), psychometric testing, i.e., for 

perceived mindfulness, stress and emotional eating, food cravings and dietary restraint, and the 

assessment of body weight prior to and after completing the intervention. Participants were 
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additionally required to report their susceptibility to engage in stress-related overeating behavior. 

All measures were acquired after a subjectively stressful work or school day and subjects were 

instructed to abstain from eating for five hours prior to their scheduled measure. After September 

2020, participants were required to present a negative SARS-CoV-2 PCR test result obtained on 

the day of their measure in order to participate in the study. The training programs for both 

conditions were accessible via an online platform and consisted of 31 sessions delivered in daily 

portions of 10 to 15 minutes. To promote training adherence, daily reminders were sent to 

participants by email. 

The MMT was developed in close cooperation with Dr. Britta Hölzel who is a mindfulness 

expert and certified MBSR instructor. In the MMT, participants were provided with a detailed 

introduction on the theoretical framework of mindfulness while additionally guiding participants 

through the daily meditation exercises via video or audio- clips. These exercises emphasized the 

relationship between mindfulness meditation and eating behavior through written instructions 

encouraging participants to observe their eating behavior and to engage more mindfully with food. 

The HT condition, on the other hand, was designed to imitate the format of the MMT and provided 

participants with informative, health-related, video and audio clip excerpts from popular science 

broadcasting networks in Germany. It is important to note that topics in the HT did not include 

any information pertaining to mindfulness, meditation, eating behavior, or nutrition. For a detailed 

description of the training content please see table S1 in the supplementary section. Participants 

were required to complete at least 27 training sessions to be included in the final analysis. 

295 participants were assessed for eligibility and 112 participants fulfilled the inclusion criteria. 

87 participants completed the first MRI measure, and 74 participants were also available for the 

second MRI measure. After preprocessing, data from 66 participants (33 female) participants were 
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included in the final analysis. A data acquisition flowchart is illustrated in Figure 1. The data 

acquisition process took place between June 2019 and June 2021.  

To verify the pseudo-randomization process, final samples were compared for 

demographic characteristics, measuring intervals, and an average number of sessions completed 

using t-tests for independent samples or chi-square tests, respectively. 

 

 
Figure 1: Data acquisition process (June 2019 - June 2021). 

 

 

Behavioral data 

Psychometric testing was conducted using self-report questionnaires which were obtained 

prior to both MRI measurements. To assess training-related changes in perceived mindfulness, 
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participants completed the German version of the Mindful Attention and Awareness Scale 

(MAAS) (Brown & Ryan, 2003). The MAAS is a 15-item, self-report scale measuring the intensity 

of perceived mindfulness in daily life (e.g., “I find it difficult to stay focused on what is happening 

in the present”). The MAAS has been demonstrated to capture training effects in which high scores 

indicate high levels of perceived mindfulness (Chambers et al., 2008).  

An additional variable of interest was the susceptibility to experiencing food cravings as 

well as the tendency to engage in stress- and emotional-eating. Therefore, German versions of the 

psychometric assessments of the Food Cravings Questionnaire (FCQ, state and trait), Salzburg 

Stress Eating Scale (SSES), Salzburg Emotional Eating Scale (SEES), and the Restraint scale were 

included.  

The FCQ is a self-report scale measuring the susceptibility to experiencing food cravings. 

The FCQ is divided into two subscales; the state scale (FCQ-S), which contains 15 items 

measuring the current intensity of food cravings (e.g., “I have an intense desire to eat [one or 

more specific foods]”) and the trait scale (FCQ-T), which contains 39 items measuring the general 

frequency and intensity of food cravings (e.g., “I feel like I have food on my mind all the time”). 

High scores indicate higher susceptibility to food cravings (Cepeda-Benito et al., 2000).  

The SSES is a 10-item, self-report, scale measuring the change in eating behavior when under 

stress (e.g., “During periods of great stress I eat much more than usual”). Mean scores above 3 

indicate increased food intake when stressed, while scores below 3 indicate decreased food intake 

when stress (Meule et al., 2018b).  

The SEES is a 20-item, self-report scale measuring the change in eating behavior under 

emotional conditions (e.g., “When I am anxious, I eat much less than usual”). Mean scores above 
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3 indicate an increase in food intake, while scores below 3 indicate a decrease in food intake when 

emotional (Meule et al., 2018a).  

The Restraint Scale is a 10-item, self-report scale measuring weight fluctuation (e.g., 

“What is the maximum amount of weight (…) you have ever lost in a month?”) in addition to the 

subjective preoccupation with dieting (e.g., “How often are you dieting?”). High scores indicate 

higher levels of dietary restraint which is associated with higher BMI and dysfunctional eating 

behaviors (Dinkel et al., 2005). 

The statistical analyses of behavioral data were performed using SPSS v29.0. The 

normality of data was assumed as groups were larger than n = 30. To assess training effects, 

psychometric data was entered into a 2 x 2 mixed effects analysis of variance (ANOVA), where 

group was the between-subject factor and time was the within-subject factor. Results were 

thresholded at p < 0.05. 

MRI data acquisition 

MRI data were acquired on a 3 T Philips MRI scanner with a 32-channel head coil at 

Klinikum Rechts der Isar’s department of neuroradiology in Munich, Germany. 

T2*-weighted resting-state functional images were acquired using echo planar imaging (EPI) with 

the following scanning parameters: Multiband (MB) factor 2, repetition time (TR) 2.3 s, echo time 

(TE) 30 ms and flip angle 75°. The field of view (FOV) was set to (192 × 192 × 136) mm3, 

corresponding to a matrix size of 96 × 96 with 62 axial slices of 2 × 2 × 2 mm3 large isotropic 

voxels. 250 volumes were obtained over the course of approximately 10 minutes. Subjects were 

instructed to keep eyes closed, to refrain from engaging in any trains of thought as much as 

possible, and to not fall asleep. 

Additional high-resolution T1-weighted anatomical images were acquired using a 

magnetization-prepared rapid acquisition gradient echo (MPRAGE) sequence with the following 
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scanning parameters: TR 11 ms, TE 5.2 ms and flip angle 8°. 230 axial AC-PC slices encompassing 

a 384 × 384 matrix of 0.7 × 0.7 × 0.7 mm3 large isotropic voxels were obtained. All anatomical 

images underwent clinical inspection by a neuroradiological specialist to detect possible structural 

pathologies. 

 

Preprocessing 

Preprocessing was conducted using SPM 12 (The Wellcome Centre for Human 

Neuroimaging; http://www.fil.ion.ucl.ac.uk/spm). The preprocessing pipeline was created using 

RestPLUS (Xi-Ze et al., 2019) during which the anatomical image was first coregistered to the 

mean functional image and segmented into tissue probability maps, which were then used to create 

a group-specific DARTEL template (Ashburner, 2007). Using these templates, the realigned 

functional time-series were normalized to MNI space and smoothed using a 4 × 4 × 4 mm3 full 

width at half maximum (FWHM) Gaussian Kernel. Additional preprocessing steps were 

performed using the CONN Toolbox v21.a (Whitfield-Gabrieli & Nieto-Castanon, 2012) and 

included denoising by regressing out white matter and cerebrospinal fluid using CompCor 

(Behzadi et al., 2007), filtering time courses with a bandpass filter of 0.01 to 0.1 Hz, as well as de-

trending and de-spiking.  

 

Seed-based functional connectivity 

Prior evidence demonstrated the differential involvement of hypothalamic and insular 

subnuclei. Therefore, for each region, four seeds that represented the bihemispheric medial and 

lateral hypothalamus or the anterior and posterior insula were utilized. Canonical parcellations of 

the hypothalamus were extracted from the WFU PickAtlas (Maldjian et al., 2003), while 

parcellations of the insula were extracted from the Hammers Atlas (Hammers et al., 2003). Atlas 

http://www.fil.ion.ucl.ac.uk/spm
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selection was determined by both the availability and anatomic quality of seeds corresponding to 

our nuclei of interest. It is important to note that since no single atlas provided seed masks for all 

regions of interest (ROI), seeds from different atlas sources were selected according to their level 

of establishment and anatomic correspondence. 

The seed-based FC analysis was conducted using the CONN Toolbox. To create first-level 

connectivity maps, Pearson correlation coefficients between the average time course of voxels 

within each ROI and every voxel (whole brain) were computed and transformed to z-scores. For 

the second-level analysis, the resulting maps were entered into a 2 × 2 mixed ANOVA, where 

training group was the between-subject factor and time was the within-subject factor. Results were 

simultaneously contrasted at MMT > HT and Post > Pre and thresholded at p < 0.05, FDR-

corrected for multiple comparisons. To evaluate the directionality of the results, both positive and 

negative contrasts were applied.  

Finally, correlations between changes in FC and behavioral measures for both MMT and 

HT groups were assessed. For every subject and time point, a mean signal from each significant 

cluster was extracted from the first-level maps using DPABI V6.0 (Yan et al., 2016). The cluster-

specific mean signal from the first time point was subtracted from the mean signal of the second 

time point, resulting in one value per subject which represented the change in cluster-specific FC 

after the intervention. Changes in behavioral measures were computed by calculating the 

difference scores (post-pre-intervention). Both values were then entered into a linear regression in 

SPSS and thresholded at p < (0.05 / 2) = 0.025, Bonferroni corrected for multiple comparisons 

with two different anatomical ROIs. 
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Results  
Sample characteristics 

Groups did not significantly differ in age, gender, years of education (i.e., total number of 

years spent in school, higher education, or professional training), or BMI. Participants received 

their second MRI scan no later than 5 days upon completing the training condition.   

 Total 
(N = 66) 

MMT 
(n = 34) 

HT 
(n = 32) 

p value 

Age, M ± SD 28.0 ± 5.1 27.4 ± 4.9 28.7 ± 5.3 0.30 

Female, n (%) 33 (50) 17 (50) 16 (50) 1.00 

Years of education, M ± SD 18.3 ± 3.0 18.2 ± 3.1 18.4 ± 3.0 0.80 

BMI, [kg/m2], M ± SD 24.1 ± 4.1 23.4 ± 4.3 25.0 ± 3.9 0.12 

Table 1: Participant demographics. 

 

Behavioral data 

Upon completing the training conditions, both groups displayed a slight decline in body 

weight. This change, however, was not statistically significant for either group. 

In line with our hypotheses, the MMT was found to effectively increase levels of perceived 

mindfulness demonstrated via an increase in MAAS scores upon completing the intervention 

(MPre = 53.9, SD = 10.6; MPost = 57.9, SD = 8.7). No increase in perceived mindfulness was 

observed in participants of the HT (MPre = 55.5, SD = 12.6; MPost = 54.9, SD = 11.6). An ANOVA 

was conducted and determined a significant group-by-time interaction (F (1,64) = 7.74, p = 0.007, 

partial η2 = 0.108). 

Following the MMT, participants also reported lower FCQ-T scores indicating an overall 

reduction of food cravings (MPre = 84.0, SD = 30.3; MPost = 55.6, SD = 27.9). In the HT condition, 

FCQ-T scores demonstrated no significant difference upon completing the training (MPre = 79.4, 

SD = 34.6; MPost = 78.0, SD = 36.0). An ANOVA was conducted and resulted in a significant group 

by time interaction (F (1,64) = 20.60, p < 0.001, partial η2 = 0.243).  
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Furthermore, the MMT resulted in a significant reduction of stress- and emotional- eating 

as assessed by the SSES (MPre = 33.7, SD = 8.1; MPost = 31.8, SD = 6.7) and SEES (MPre = 64.3, 

SD = 7.1; MPost = 58.4, SD = 9.2). Participants of the HT, however, did not demonstrate any 

significant changes in stress-eating (MPre = 32.4, SD = 9.9; MPost = 31.8, SD = 10.5) or emotional-

eating behavior (MPre = 61.8, SD = 10.0; MPost = 60.2, SD = 10.7). Again, an ANOVA was 

conducted and determined a significant group-by-time interaction for both the SSES (F 

(1,64) = 4.06, p = 0.048, partial η2 = 0.06) and SEES (F (1,64) = 4.94, p = 0.030, partial η2 = 0.072) 

questionnaires. It is important to note that a Levene’s test revealed that the homogeneity of error 

variances was not given for data pertaining to SSESPost and SEESPre. While it has been argued that 

the results deriving from data of failed homogeneity of error variance still allows for sufficient 

inferencing (Hsu, 1996), we repeated the analysis by comparing individual difference scores with 

t-tests for independent samples between groups. Results for the SSES (t (64) = 2.02, two-sided p 

= 0.048) and the SEES (t (64) = 2.22, two-sided p = 0.030) remained consistent, thereby confirming 

the results of the prior analysis. 

No significant group effects of the MMT on dietary restraint as measured by the Restraint scale 

were observed (F (1,64) = 3.174, p = 0.080, partial η2 = 0.047).  
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Figure 2: visualizes the change in various self-report measures between T1 (pre-intervention) and T2 (post-

intervention). Experimental group = MMT; Control group = HT  

 

 
  Peak MNI 

coordinates 
   

ROI Cluster region x y z k pFWE  pFDR 

Hypothalamus L. Lateral   L. PreSMA  -18 10 60 49 0.047  0.042  
R. Lateral R. Ventral PCC  -14 -58 10 131 0.081  0.027  
L. Medial  L. Striatum/Thalamus -16 -16 -4 137 0.03  0.033  
L. Medial  L. Precuneus  4 -82 34 297 0.00025  0.00023  
L. Medial  L. Caudal Precuneus  8 -52 64 119 0.15  0.033  
L. Medial  L. Angular Gyrus  46 -46 16 128 0.10  0.037  

Insula L. Anterior  L. Postcentral Gyrus -52 -20 46 329 0.00002  0.000001  
L. Anterior  R. Postcentral gyrus   48 -74 -6 150 0.07  0.03  
L. Anterior   Temporal Lobe / Occipital Cortex  44 -26 -52 143 0.10  0.02  
L. Posterior  L. Postcentral Gyrus  -46 -30 48 167 0.046  0.034  
R. Posterior  L. Inferior Parietal Lobe  48 -32 32 337 0.003  0.002  

Table 2: ANOVA results with associated anatomic regions. (k = Number of voxels in cluster; R = Right 
hemispheric; L = Left hemispheric, PreSMA = Pre-supplementary motor area, PCC = Posterior cingulate cortex) 
 

The interaction results of the 2 x 2 ANOVA from the whole brain, FDR-corrected analyses 

revealed significant changes in hypothalamic and insular FC in participants of the MMT group 

whereas no changes in FC were observed in the HT group. 

The analyses using the left medial hypothalamus as a seed region demonstrated FC 

increases with two clusters within the right precuneus and an additional cluster within the right 

angular gyrus. FC analyses using the left medial hypothalamus demonstrated decreases in FC with 

a cluster extending across the left dorsal striatum and thalamus. The analyses conducted with the 
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right lateral hypothalamus exhibited increased FC with a cluster within the vPCC, whereas the 

analyses conducted with the left lateral hypothalamus yielded decreased FC with the left pre-

supplementary motor area.  

Additional FC increases were observed between the left anterior insula and bilateral 

clusters within the postcentral gyrus as well as a cluster within the right occipital gyrus. Increased 

FC was also observed between the left posterior insula and the left postcentral gyrus in addition to 

observing increases in FC between the right posterior insula and the right inferior parietal lobule. 

An overview of the FC results can be seen in Figure 3.  

Interestingly, changes in hypothalamic connectivity patterns in the MMT group (but not 

the HT group) were accompanied by a multitude of changes on the behavioral level (Table 3). For 

example, greater decoupling of FC between the left medial hypothalamus and the left dorsal 

striatum and thalamus significantly correlated with a greater reduction of FCQ-T scores. 

Additionally, SSES scores were inversely correlated with an increase FC between the right lateral 

hypothalamus and the vPCC. These results indicate that the greater the decline in stress eating 

behavior, the greater the increase in FC between the lateral hypothalamus and the vPCC was 

observed. Furthermore, our results demonstrated that an in increased MAAS scores correlated 

significantly with increased FC between the left medial hypothalamus and the right caudal 

precuneus, whereas a negative correlation between MAAS score and an increase in FC between 

the left medial hypothalamus and the right angular gyrus was observed. 

It is important to note that FC changes of the insula did not correlate with any of the changes of 

behavioral measures, nor were any significant correlations observed between FC changes and 

behavioral measures of the HT group. 
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Hypothalamus Cluster region MAAS FCQT SEES SSES 
L. Lateral L. PreSMA r2 -0.06 r2 0.01 r2 -0.01 r2 0.01 
  p <0.23 p <0.88 p <0.86 p <0.94 
R. Lateral R. Ventral PCC r2 0.15 r2 0.10 r2 -0.27 r2 -0.47 
  p <0.74 p <0.66 p <0.32 p <0.03* 
L. Medial  L. Striatum/Thalamus r2 -0.04 r2 0.37 r2 -0.09 r2 0.27 
  p <0.94 p <0.01** p <0.27 p < 0.69 
L. Medial  L. Precuneus r2 0.04 r2 -0.02 r2 0.04 r2 0.01 
  p <0.05 p <0.21 p <0.24 p <0.81 
L. Medial  L. Caudal Precuneus r2 0.34 r2 -0.19 r2 0.05 r2 0.05 
  p <0.05* p <0.22 p <0.24 p < 0.82 
L. Medial   L. Angular Gyrus r2 -0.34 r2 -0.30 r2 -0.12 r2 0.01 
  p <0.03* p <0.05* p <0.61 p < 0.87 

Table 3: Results of linear regression between the change in functional connectivity and the change in behavioral 

measures. (MAAS = Mindful Attention and Awareness Scale, FCQT = Food Cravings Questionnaire – Trait, SEES 
= Salzburg Emotional Eating Scale, SSES = Salzburg Stress Eating Scale, R = Right hemispheric; L = Left 
hemispheric, PreSMA = Pre-supplementary motor area, PCC = Posterior cingulate cortex) 
 
 

Discussion 

This study investigated the effects of a food-related mindfulness training on eating behavior. Our 

results successfully demonstrate that MMT can reduce stress-eating tendencies while also 

increasing perceived mindfulness. In fact, the observed behavioral changes pertaining to both 

mindfulness and eating behavior significantly correlated with FC alterations demonstrating 

increased and decreased coupling of brain areas relevant to eating behavior, self-referential 

thinking and mind-wandering, reward perception, and the processing of sensory stimuli in the 

environment. Our results thereby provide insight into the behavioral and neuronal mechanisms 

underlying the positive impact mindfulness meditation has on stress-eating.  

Self-Report Measures:  

Through the administration of self-report measures, this study was able to determine the effects of 

a food-related MMT on perceived eating behavior and mindfulness. Not only were we able to 

demonstrate a significant reduction in perceived stress-eating, emotional eating, and food cravings, 

but we were also able to observe an increase in perceived mindfulness in daily life. Our findings 

are, therefore, in line with prior observations supporting the positive effects MMT has on stress, 
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emotion regulation, interoceptive awareness, and perceived mindfulness (Chiesa & Serretti, 2009; 

Fissler et al., 2016; Kabat-Zinn, 2003b; Khoury et al., 2015; Roemer et al., 2015; Teper et al., 

2013). Given that the MMT was conducted entirely online, our results contribute to the literature 

on the effectiveness of web-based MMT, while also providing specific evidence on its ability to 

reduce stress-eating behavior without any in-person components. Further research is, however, 

required to determine whether the effectiveness of web-based MMTs differ from interventions 

with in-person training, as well as whether web-based MMTs can be utilized as a therapeutic 

mechanism for individuals with obesity or for those suffering from metabolic or cardiovascular 

disease.  

To this end, not only was the present study able to demonstrate MMT-elicited changes in self-

reported, behavioral, measures, but we were also able to demonstrate changes on the neuronal level 

exhibited by resting-state FC changes in brain areas essential in regulating hunger and satiety cues, 

namely the hypothalamus and the insula.  

 
Figure 3: depicts and overview of the FC changes observed between the hypothalamus (A), the insula 
(B), and the whole brain. HT = hypothalamus; BG = basal ganglia; PreSMA = Pre supplementary motor 
area; PCC = precuneus; AG = angular gyrus; INS = insula; PoG = Postcentral gyrus; IPL = inferior 
parietal lobe. 



 

 75 

Hypothalamus: 

The hypothalamus plays a critical role in regulating the body’s stress response in addition 

to eating behavior (Bose et al., 2009; Holmes et al., 2010; Kuo et al., 2007; McEwen, 2007; 

McEwen & Stellar, 1993; Sojcher et al., 2012). To observe the processes underlying perceived 

hunger and satiety, the hypothalamus can be parcellated into the lateral and medial hypothalamus. 

These nuclei have been attributed to the processing of perceived hunger and satiety levels, 

respectively (Aston-Jones et al., 2009; Bernardis & Bellinger, 1996; Saper et al., 2002; Syan et al., 

2021). In participants of the MMT group, the FC of the hypothalamus was subject to an array of 

changes following MMT.  

Mindfulness Meditation & the DMN 

The results of this study were able to demonstrate an increase in FC between subregions of 

the hypothalamus and multiple clusters within the precuneus, vPCC, and angular gyrus in the 

MMT group. Interestingly, these clusters all pertain to hub regions of the DMN, which is one of 

the most extensively studied large-scale brain networks. The DMN is frequently associated with 

the mental processes of self-referential thinking and mind-wandering (Menon, 2011). Prior 

research was able to demonstrate that mindfulness and similar meditation practices have a wide-

ranging impact on the DMN. For example, in comparison to meditation-naïve individuals, studies 

were able to determine that experienced meditators yielded less connectivity between core hubs of 

the DMN, which formally indicates an overall reduction of network activation (Brewer et al., 

2011). In addition, a growing body of evidence suggests that mindfulness meditation increases 

connectivity between the DMN and other networks, especially the salience network (SN) (Bremer 

et al., 2022; Rahrig et al., 2022), which encompasses hub regions responsible for detecting 

emotional and sensory information (Menon, 2011). Notably, a recent, extensive systematic review 

observing the resting-state FC changes as an outcome of MMT  published by Rahrig et al. (2022) 
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found increased network connectivity in the DMN as well as the SN. Connectivity increases 

between brain networks such as the DMN and SN can, therefore, be interpreted as an increase in 

awareness as a result of regular mindfulness meditation practice (Bremer et al., 2022). Similarly, 

increased connectivity between hub regions of the DMN and the hypothalamus could indicate that 

a food-related MMT facilitates the more conscious perception of hunger and satiety. This could 

ultimately reflect increased interoceptive awareness, a cognitive process fundamental in the 

regulation of eating behavior.  

Remarkably, our findings were corroborated by correlations observed between alterations 

in FC and behavioral changes. To this end, increased FC between the medial hypothalamus and 

the caudal precuneus positively correlated with an increase in MAAS scores. An increase in self-

reported mindfulness is, therefore, associated with stronger coupling between the medial 

hypothalamus (relevant for the processing of satiety along with other homeostatic processes), and 

the caudal precuneus (relevant for self-reflection). Therefore, when individuals perceive 

themselves to be more mindful, the processing of satiety cues may be more strongly linked with 

self-referential processing. 

An additional negative correlation between an increase in FC between the lateral 

hypothalamus and the vPCC with the reduction in SSES was observed. This suggests that the 

greater increase in FC between these brain areas, the less participants were inclined to succumb to 

stress-eating. Taken together, our findings indicate that MMT strengthens the interaction between 

hub regions of the DMN and the hypothalamus which goes along with increased levels of 

perceived mindfulness and a reduction in stress-eating behavior. 

Mindfulness Meditation & the Reward System 

Not only does our web-based, food-related, MMT implicate areas of the DMN, but we 

were also able to observe MMT’s influence on areas of the reward system. To this end, an 
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additional FC alteration was observed between the left medial hypothalamus and the left dorsal 

striatum. The dorsal striatum has been demonstrated to elicit cravings and reward-seeking 

behaviors (Grall-Bronnec & Sauvaget, 2014). Interestingly, the dorsal striatum is also said to be 

responsible for triggering relapse during abstinence in addiction (Grall-Bronnec & Sauvaget, 

2014). Therefore, a reduction in FC between the medial hypothalamus and the dorsal striatum 

could indicate a decoupling of brain areas responsible for processing feelings of satiety and reward. 

Notably, a significant, positive, correlation between the observed reduction in FC between these 

two brain areas and the FCQ-T was observed. This association indicates that greater reduction in 

FC between the lateral hypothalamus and the dorsal striatum was associated with a greater 

reduction in food cravings in participants of the MMT group. These results could imply that 

feelings of satiety may be perceived as less rewarding, which could consequently reduce the 

tendency to develop food cravings. 

Overall, the findings pertaining to the hypothalamus and areas of the DMN support MMT’s 

role in cultivating a more mindful relationship with food. Interestingly, our results go in line with 

another recent systematic review conducted by Syan et al. (2021). The main aim of this review 

was to define the differences in FC patterns in individuals with obesity in comparison to controls. 

Syan et al. (2021) determined that the existing literature supports differences in resting-state FC in 

individuals with obesity. For example, aberrant DMN connectivity (i.e., hypoconnectivity), as well 

as increases in FC between the hypothalamus and regions attributed with reward, limbic, and 

salience networks were observed, while also demonstrating a decrease in FC between the 

hypothalamus and cognitive regions. Although the individuals recruited for the present study had 

a BMI within, what is considered to be, a healthy range, our results were also able to indicate MMT 

elicited FC changes in stress eaters.  
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Not only did our results demonstrate FC changes between subregions of the hypothalamus 

and hub regions of the DMN and reward areas, but we were also able to observe FC changes 

between the medial hypothalamus and the angular gyrus (AG). The AG is said to play a role in the 

integration of sensory information, specifically the perception of smell and taste as it receives input 

from both the olfactory and gustatory cortices, which are essential in processing the smell and taste 

of food (Contreras-Rodriguez et al., 2020). These results indicate an increased coupling between 

brain areas demonstrated to be involved in the processing of perceived satiety and integrating 

perceptual information, respectively. Interestingly, the correlation analysis conducted between FC 

and behavioral measures demonstrated a significant negative correlation indicating that a greater 

increase in FC between the medial hypothalamus and the AG is associated with a greater reduction 

in food cravings (via the FCQ-T). These results indicate that the greater the coupling between the 

medial hypothalamus and the AG, the greater the reduction of stress-eating behaviors in 

mindfulness practitioners.  

 

Mindfulness Meditation & Reducing Automatic Eating Behavior 

In addition to the observed changes between the hypothalamus and hub regions of the 

DMN, reward areas, as well as areas involving sensory integration, our results could demonstrate 

alterations in FC between the hypothalamus and areas pertaining to automatic eating behaviors. 

For example, we observed a reduction in FC between the left lateral hypothalamus and the left pre-

supplementary motor area (PreSMA). The PreSMA is a brain region demonstrated to play a key 

role in regulating movement, motor planning, and reward behavior (Nachev et al., 2007; Tabu et 

al., 2011). Given the observed reduction in FC between these brain areas, our results indicate that 

MMT may reduce the automatic, action-oriented, behaviors when hunger is perceived. This could 
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be attributed to more reflective decision-making about perceived hunger elicited via MMT prior 

to engaging in goal-directed behavior to find or eat food.  

Overall, our results pertaining to the hypothalamus demonstrate MMT elicited resting-state 

FC changes between the subregions of the hypothalamus, key nodes of the DMN, in addition to 

areas processing reward, sensory integration, and action-oriented behaviors. These results 

emphasize MMT-elicited network changes in structures known to be involved in food cravings 

and eating behavior.  

 

Insula:  

Not only were we able to observe differences in FC using the hypothalamus as a region of 

interest, but we were additionally able to show MMT-associated FC changes with the insula. The 

insula has been demonstrated to be involved in interoception, or the perception of bodily 

sensations, in addition to attentional control which both play an essential role in mindfulness 

meditation and eating behavior, specifically in the subjective experience of flavor, texture, and 

smell (Craig, 2009; Critchley et al., 2004; Frank et al., 2013; Nelson et al., 2010; Roy-Côté et al., 

2021; Terasawa et al., 2011; Torske et al., 2022).  

Similar to the hypothalamus, the insula can be parcellated into individual nuclei allowing 

for the inspection of its distinct roles in the processing mindfulness and stress-related eating 

behavior. While the anterior insula has been demonstrated to be involved in mindfulness through 

its integration of interoceptive awareness and emotion regulation (Craig, 2009; Critchley et al., 

2004), the posterior insula has been linked to the processing of somatosensory information, 

particularly the awareness of bodily sensations (Rolls, 2006). The anterior and posterior insula 

were, therefore, selected as seed regions of interest with the aim of investigating potential FC 

changes, to ultimately gain insight into the neural impact of a food-related MMT.    
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Mindfulness Meditation & Sensory Awareness: 

The results of this analysis demonstrated an MMT-associated increase in FC between both 

the anterior and the posterior division of the insula and nearly symmetrical, bilateral, clusters 

within the postcentral gyrus. The postcentral gyrus, or primary somatosensory cortex, receives 

sensory information via thalamocortical pathways; sensory input is organized topographically with 

tactile information originating from facial and oral sensations processed in the lateral postcentral 

gyrus which is where the clusters were observed (Grabenhorst & Rolls, 2014).  

Given the emphasis MMT puts on the conscious perception of bodily sensations, it seems 

only plausible that areas responsible for perceiving somatosensory sensations in addition to areas 

that integrate the sensations into awareness are simultaneously activated. This interpretation would 

thereby support the observed increase in FC in participants that completed the MMT. The 

localization of the clusters within regions responsible for facial and oral sensations could be 

explained by the emphasis our food-specific MMT puts on increasing the awareness of food and 

its accompanying sensations while it is being consumed. As it is known that regions and networks 

involved in sensory processing are stably active (also during rest), participants in the 31-day food-

related MMT could demonstrate an increase in activation and connectivity within and between 

sensory areas pertaining to eating behavior at rest. In addition, the insula has been identified as 

part of the primary gustatory cortex, thus being responsible for the perception of taste (Iannilli et 

al., 2014). An increase in the interaction between areas of the primary gustatory cortex and areas 

of the postcentral gyrus suggests an increase in the integration of the sensory components, i.e., 

texture and taste, involved in the sensation of eating. Additional connectivity increases between 

the posterior insula and the supramarginal gyrus, an area associated with the somatosensory cortex, 

provides further evidence for the MMT-elicited integration of components involved in the 
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processing of sensations. These results indicate that a food related MMT can increase the 

efficiency of sensory integration and its corresponding networks all while facilitating increased 

awareness during eating.  

While the anterior and posterior regions of the insula were found to display increased FC 

with the postcentral gyrus, additional connectivity increases, specific to its subdivisions, were 

observed. For instance, an increase in FC was observed between the anterior insula and the medial 

temporal lobe (MTL). While previous research has demonstrated the MTL to play an essential role 

in the memory formation and retrieval (Henson, 2005), a transcranial magnetic stimulation (TMS) 

study published in 2015 (Gonzalez-Franco, 2015) demonstrated that the temporary disruption of 

the MTL led to increased consumption of high-calorie foods. Therefore, our observed increase in 

FC (as opposed to a disruption in the MTL via TMS) could corroborate these findings through our 

observed reduction in stress-eating tendencies. Furthermore, we were able to observe an increase 

in FC between the anterior insula and the occipital lobe, or visual cortex. The human sense of sight 

additionally provides valuable information about food cues in the environment thereby influencing 

food selection and eating behavior. The observed increase in FC between the anterior insula, which 

integrates sensory information into a representation of interoceptive awareness, and the visual 

cortex, may therefore indicate increased awareness of visual food cues in the environment. Given 

that the FC observed together with the insula involved brain regions essential in sensory processing 

and sensory integration, a plausible explanation as to why no significant correlations between FC 

and self-report measures were observed (as was observed between the hypothalamus and self-

report measures) may be due to the fact that our self-report measures did not specifically observe 

behavioral changes in sensory perception, specifically to the sensory perception of food. In future 

studies, it would be interesting to observe where MMT elicits changes in sensory persecution (i.e., 
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olfaction and gustation). Nevertheless, the insula, and its ROI subdivisions, provide insight into 

MMT’s ability to alter FC pertaining specifically to the processing of sensory stimuli, which can 

consequently alter eating behavior.  

Overall, the observed MMT- associated FC changes utilizing both the hypothalamus and 

the insula and their individual nuclei, provides evidence pertaining to MMT’s ability to alter 

resting-state FC pertaining to the DMN (i.e., self-referential thinking and mind-wandering), reward 

perception, and the processing of sensory stimuli in the environment, in addition to providing 

evidence on MMT’s ability to reduce stress- and emotional-eating tendencies.  

 

Limitations:  

The results of this study must be interpreted under the consideration of methodological 

limitations. First, given our hypothesis-driven approach and the a-priori selection of seed regions, 

inevitably entails the risk of overlooking other, potentially relevant, interactions. Nevertheless, the 

existing literature suggests that the hypothalamus and insula effectively provide a relevant 

perspective on both mindfulness and eating behavior. Therefore, we believe that the results 

generated from the present study allow for a better understanding of the mechanisms underlying 

the intersection of mindfulness and eating behavior. While we acknowledge the complex nature of 

both eating behavior and mindfulness meditation, and therefore would not rule out the possibility 

of further relevant influences, a possible strategy to investigate this subject matter further would 

be to utilize data-driven methods, e.g., independent component analyses. However, these analyses 

typically involve strict statistical thresholding and, therefore, may not capture subtle effects. 

Moreover, it is important to note that not all the results withstood multiple comparison 

correction. While it would be a considerable alternative to liberalize thresholding, we believe that 
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the recurrent patterns across ROIs, along with the statistical interdependence with behavioral 

measures, gives sufficient grounds to assume plausibility of these results. 

Finally, we would like to point out that the instructions given to participants during the 

imaging procedure, i.e., to keep their eyes closed and not engage in a specific train of thought, 

does not exclude the possibility of entering a meditative state during the MRI measure. Therefore, 

despite our instruction, we cannot distinguish whether the observed effects occur at rest or during 

meditation. Nevertheless, we believe that our results convey valuable information on how MMT 

influences the functional organization of the brain and, thereby, cultivates a healthier relationship 

with food.  

 

Conclusions 

Stress can elicit a series of psychological and physiological responses that can ultimately 

lead to stress-related overeating behavior. Frequently engaging in stress-eating tendencies can 

result in persistent weight gain which can cause metabolic and cardiovascular disease. The aim of 

this study was, therefore, to investigate whether a food-related mindfulness training can effectively 

reduce stress-related overeating tendencies. Our results were not only able to demonstrate the 

successful increase in perceived mindfulness but also to observe the reduction in stress-eating and 

emotional-eating tendencies, as well as the reduction of food cravings. Our analyses investigating 

the neural underpinnings of mindfulness training and its influence on stress-eating behavior 

ultimately demonstrate altered FC patterns within the DMN, reward processing, and sensory 

processing upon completing a food-related mindfulness training. Additionally, our results provide 

novel insight into the relationship between stress, stress reduction, and mindfulness training on 

both the behavioral and neuronal levels. This study, therefore, serves as evidence of the 
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effectiveness of MMT as an intervention strategy for stress-eating behavior and should be 

considered for therapeutic or preventative treatment programs.  
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5.0 General Summary  

 

This dissertation project was successfully able to provide insight into the effects of MMT 

as an intervention strategy for stress-related overeating behavior through the implementation of 

two clinical trials. Not only were the results of this dissertation project able to provide evidence 

on the effectiveness of web-based MMT on the behavioral and neuronal levels through the first 

clinical trial, but this dissertation project was additionally able to statistically locate the neural 

processing nodes of the olfactory cortex relevant for the processing of food stimuli. Finally, by 

conducting a second clinical trial, this dissertation provides insight into the effects of a web-based, 

food-related, MMT on stress-eating behavior by demonstrating changes observed on both the 

behavioral and neuronal levels. The results of the projects presented in this dissertation will not 

only contribute to the literature on stress, stress-eating, as well as MMT, but could also help 

prevent the consequences resulting from maladaptive overeating behavior. To this end, the 

relevance of this dissertation project remains high when considering the increasing global 

prevalence of stress-related overeating and its resulting metabolic and cardiovascular diseases. 

In summary, this dissertation provides evidence of the effectiveness of MMT as an 

intervention strategy for stress and anxiety reduction as well as the reduction of stress-eating 

behavior and should therefore be considered for therapeutic or preventative treatment programs. 

 
5.1. The Effects of a Web-Based MMT: Project 1 

  
Within the scope of this dissertation, Project 1 aimed to investigate the effects of a 31-day 

web-based MMT on attention, mental health, as well as brain structure and function. Given that 

the available research pertaining to the effectiveness of web-based MMT, in addition to research 
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investigating the relationship between MMT, decreased stress and anxiety levels, and improved 

cognitive function is limited, the results of Project 1 provide valuable information on MMT to the 

scientific community.  

Not only did Project 1 demonstrate that MMT leads to improvements in perceived anxiety 

levels, perceived stress, attentional performance, and flow experience, but it was also able to 

demonstrate MMT-induced changes in brain activation, specifically in the left superior frontal 

gyrus (SFG), posterior cingulate cortex (PCC), and right hippocampus. Interestingly, these 

changes were accompanied by increased microstructural integrity between the right hippocampus 

and the superior frontal gyrus. These findings are noteworthy given the initial interest in studying 

the effects of MMT on attention. For example, the PCC has not only been previously associated 

with cognitive and executive functioning but it has also been associated with the frontoparietal 

control network as well as the dorsal attention network, which are both fundamental in the 

processing of visuospatial attention (Leech & Sharp, 2014; Leech & Smallwood, 2019; Somers & 

Sheremata, 2013). These results are particularly important within the scope of this dissertation 

project given that attention is a cognitive process that has been demonstrated to be severely 

impacted by stress and anxiety (Liu et al., 2020; Robinson et al., 2013). 

Interestingly, not only did our results capture improvements in attentional processing, but 

we were also able to observe a significant, MMT-induced increase in flow experience. These 

findings imply that MMT can have an effect on both attentional mechanisms as well as on the 

psychological flow state. In fact, our results reflect a recent publication from  Xie (2022) in which 

increased flow experience, teamwork abilities, and productivity were associated with MMT. 

Similarly, our results highlight the potential of a web-based MMT to elicit positive changes in 
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perceived stress, flow experience, and attention, all while demonstrating its impact on the neuronal 

level.  

It is, however, important to note that Project 1 was not able to demonstrate a significant 

reduction in self-reported stress levels in the MMT group. However, our results could demonstrate 

a negative correlation between hippocampal activation and the PSS score upon completing the 

MMT. This finding indicates that greater stress reduction was associated with greater hippocampal 

activity, thereby implicating the hippocampus in modulating the behavioral adaptation to stress. 

This interpretation of the results would reflect the findings observed by Fanselow and Dong 

(2010).  

Not only do the results of Project 1 demonstrate an associated between stress and 

hippocampal activity during an attention task but increases in white matter microstructural 

integrity were also observed in the right uncinate fasciculus (rUNC). These results indicate that 

MMT strengthened the connection between the hippocampus and areas of the frontal lobe, thereby 

further emphasizing MMT’s role in emotion regulation and reducing perceived stress levels. In 

addition, given that changes were observed both in hippocampal structure and function while also 

observing correlations with self-report measures, these results could indicate that the hippocampus 

may mediate the relationship between MMT and stress reduction.   

Project 1 was ultimately able to contribute to the understanding of the neural mechanisms 

of MMT on attention, in addition to its impact on flow, stress, and other psychological outcomes. 

Based upon these findings, a similar web-based MMT was utilized in dissertation Project 3 to 

continue to investigate the effectiveness of web-based MMT on a specific subset of the population, 

namely on individuals who engage in stress-related overeating behaviors. 
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5.2 Localizing the Olfactory Cortex: Project 2 

 

The olfactory cortex and the ability to smell are considered to be one of the oldest, 

evolutionary, sensory systems that enable organisms to find food, mates, and avoid predators 

(Hoover, 2010). Given our interest in investigating the effects of web-based MMT on eating 

behavior, the aim of Project 2 was to identify the functional neural anatomy of food odor 

processing. To achieve this aim, all available and relevant literature pertaining to the investigation 

of the olfactory cortex via fMRI was utilized to quantify inter-study concordance to generate 

activation probability maps as well as identify the individual processing nodes for different odor 

categories (i.e., pleasant, aversive, food, and all odors).  

Interestingly, one of the more prominent findings pertaining to the food odor ALE was the 

observed activation in the insula. This finding can be explained given the multisensory nature of 

food stimuli and the insula's role in integrating multisensory stimulation (Lundström et al., 2011). 

When engaging with a food stimulus in the environment, not only is the sense of smell utilized to 

assess the edibility of the food, but the brain is simultaneously processing visual inputs as well as 

gustatory and somatosensory stimulation during the consumption and evaluation of food. 

Therefore, the insula, known for its role in integrating multisensory stimuli, regulating energy 

balance, appetite (Frank et al., 2013),  and processing sensory stimuli (Berthoud & Münzberg, 

2011), serves as an excellent candidate for the observation of MMTs effects on stress-eating 

behavior.  

The results of Project 2 not only provide activation probability maps for all odors, aversive 

odors, and pleasant odors, but the results of the food odor ALE provided specific information on 

the functional neural cortex of food stimulus processing and was therefore utilized in the 

subsequent analyses of this dissertation project. 
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5.3 Mindfulness Reduces Mindless Eating: Project 3  

 

Within the scope of this dissertation, Project 3 aimed to examine the effects of a food-related 

MMT on eating behavior and its underlying neural mechanisms. The results demonstrate that a 

food-specific MMT was successfully able to reduce stress-eating tendencies in addition to 

increasing perceived mindfulness. Our findings are in line with prior observations supporting the 

positive effects MMT has on stress, emotion regulation, interoceptive awareness, and perceived 

mindfulness (Chiesa & Serretti, 2009; Fissler et al., 2016; Kabat-Zinn, 2003b; Khoury et al., 2015; 

Roemer et al., 2015; Teper et al., 2013). Further strengthening the results we observed on the 

behavioral level, the neuroimaging analyses, which focused on seed regions fundamental in the 

processing of perceived hunger, stress, and emotion regulation, revealed noteworthy FC changes. 

For example, increased FC between the hypothalamus and hub regions of the DMN were observed. 

While the hypothalamus plays a critical role in regulating the body’s stress response in addition to 

eating behavior (Bose et al., 2009; Holmes et al., 2010; Kuo et al., 2007; McEwen, 2007; McEwen 

& Stellar, 1993; Sojcher et al., 2012), the DMN is frequently associated with the mental processes 

of self-referential thinking and mind-wandering wandering (Menon, 2011). In fact, a growing body 

of evidence suggests that MMT increases FC between the DMN and other networks, such as the 

salience network (SN) (Bremer et al., 2022; Rahrig et al., 2022). Our results, therefore, indicate an 

increase in coupling between brain areas responsible for the processing of stress, perceived satiety, 

and self-referential processing, which could indicate that a food-related MMT facilitates the more 

conscious perception of hunger and satiety.  

The changes observed on the neuronal level were remarkably correlated with MMT-induced 

behavioral changes. For example, an increase in MAAS score was positively correlated with an 
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increase in FC between the medial hypothalamus and the caudal precuneus, whereas a negative 

correlation was observed between the lateral hypothalamus and vPCC and a reduction in SEES 

score. Taken together, these observations suggest that the MMT increases the connectivity 

between hub regions of the DMN and the hypothalamus which goes along with increased levels 

of perceived mindfulness and a reduction in stress-eating behavior. 

Additionally, changes between the hypothalamus and brain areas relating to reward regions 

were also observed thereby suggesting a decoupling of the processing of perceived satiety and 

reward-seeking behaviors, specifically between the left medial hypothalamus and the left dorsal 

striatum, which could indicate a decoupling of brain areas responsible for processing feelings of 

satiety and reward (Grall-Bronnec & Sauvaget, 2014). 

Furthermore, MMT was associated with increased FC between the insula and regions 

involved in sensory processing. This suggests that MMT enhances sensory awareness through the 

integration of tactile, gustatory, and visual information. This finding is significant given that, the 

insula has been identified to be part of the primary gustatory cortex, thus being responsible for the 

perception of taste (Iannilli et al., 2014). An increase in the interaction between areas of the 

primary gustatory cortex and areas relevant for sensory processing suggests an increase in the 

integration of the sensory components, i.e., texture and taste, upon completing MMT.  

Lastly, FC changes between the insula and brain regions involved in memory formation 

and retrieval, as well as visual processing were observed. As the human sense of sight can provide 

information pertaining to food cues in the environment, MMT's ability to influence sensory 

perception, in addition to increasing the awareness of food cues in the environment, continues to 

support MMT’s influence on eating behavior.  
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Dissertation Project 3 could provide insight into MMT’s ability to increase perceived 

mindfulness while reducing food cravings and stress- and emotional-eating tendencies. It could 

also provide insight into the neural underpinnings underlying MMT and its influence on stress and 

eating behavior.  

Given that the MMT was conducted entirely online, our results additionally contribute to the 

literature on the effectiveness of web-based MMT and, therefore, also support the utilization of 

web-based MMT as an intervention strategy for stress reduction that can influence eating behavior. 

Web-based MMT should, therefore, be considered for therapeutic or preventative treatment 

programs. 

6.0 Limitations and Methodological Considerations 

 
6.1 Participant Recruitment | Baseline Scores 

 

Interestingly, despite the similarities in web-based MMT interventions utilized in Projects 

1 and 3, one of the most striking differences in the results was observed in the MAAS self-report 

measure. The MAAS questionnaire evaluates perceived mindfulness in daily life, and while in 

Project 3, a significant increase in perceived mindfulness was observed upon completing the food-

related MMT, this was not the case upon completing the MMT in Project 1. One methodological 

factor that may explain these observed differences in the MAAS self-report measure is participant 

recruitment. While participants with a high perceived stress score were recruited to participate in 

Project 3, stress scores were not evaluated as a part of the inclusion criteria for the recruitment 

process in Project 1. Therefore, the baseline stress score may have had an influence on the overall 

effect of perceived mindfulness. In fact, a recent study conducted by Vergara et al. (2022) was 
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able to demonstrate that stress (amongst many other baseline variables) can greatly impact the 

effect MMT has on mindfulness scores. Thus, it is important to carefully consider baseline factors 

when completing an MMT study. 

 

6.2 Web-Based MMT Limitations:  

 

While the results of this dissertation project provide evidence of the effectiveness of web-based 

MMT, it is important to consider its limitations. For example, the duration of the web-based MMT 

(31 days), in comparison to other MMT programs (e.g., the 8-week mindfulness-based stress 

reduction program; MBSR) was brief. While our results were able to demonstrate MMT-elicited 

effects on both the behavioral and neuronal levels despite the training’s brevity, the effects 

observed in this dissertation project may have been strengthened given a longer MMT duration. In 

fact, previous research has been able to demonstrate that psychological measures of interest could 

be moderated by the length (i.e., number of hours) of MMT conducted (Khoury et al., 2015; 

Sedlmeier et al., 2018). To this end, increasing the duration of the MMT could elicit larger effects. 

Nevertheless, despite the comparatively brief MMT, our training programs demonstrated that even 

a 31-day MMT could elicit significant behavioral and neuroplastic changes.   

In addition, while this dissertation project was successfully able to demonstrate the 

effectiveness of web-based MMT without any in-person components, it may be important to 

consider the possible benefits of integrating direct contact with a mindfulness expert to help novice 

MMT practitioners solidify the fundamental processes involved in MMT, as well as answering 

any open questions practitioners may have. While some novice MMT-practitioners notice 

immediate improvements in mental health and well-being, some initial MMT-related challenges 

can occur. For example, novice MMT practitioners may encounter initial difficulties in focusing 
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their attention, ‘quieting’ their minds, or may even encounter and increase in anxiety levels during 

the first MMT sessions (Aizik-Reebs et al., 2021; Anālayo, 2019; Britton et al., 2021; Van Gordon 

et al., 2017). These initial difficulties can be discouraging and may cause novice practitioners to 

abandon the practice prematurely. Therefore, it may be beneficial to have contact with an MMT 

expert or coach during the initial MMT sessions to help navigate any potential challenges.  

Another limitation to consider is that MMT may not be suitable for those with specific mental 

health conditions. For example, with regard to eating behavior, MMT may not be suitable for 

individuals with anorexia nervosa, an eating disorder characterized by a distorted body image and 

fear of weight gain. MMT’s practice on the focus of bodily sensations and emotions could 

exacerbate obsessive thoughts about food and body image, potentially reinforcing disordered 

eating behaviors in anorexia nervosa patients. However, additional research is required to 

investigate MMT’s specific effects on individual clinical populations.  

To this end, it is important to note that MMT should not be utilized as a replacement for 

professional help. Instead, MMT can be employed as a valuable, additional, component to other 

therapeutic interventions and treatment mechanisms. Individuals with eating disorders should, 

therefore, seek professional treatment from a multidisciplinary team to address their unique needs 

to promote recovery. 

Despite these limitations, an open and informed approach to MMT can still yield positive 

results for many individuals. Seeking guidance from experienced instructors or scientifically 

backed programs, along with maintaining realistic expectations, can help individuals navigate 

these limitations. The successful navigation of these limitations will emphasize the benefits of 

MMT including improved well-being, stress reduction, in addition to an improved relationship 

with food.  
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6.3 The History and Cultural Tradition of Mindfulness Meditation 

 

It is also important to be aware of and respect the cultural traditions of mindfulness 

meditation and its basis from the teachings and philosophies of Buddhism. Mindfulness 

meditation, or "vipassana," has been an integral part of Buddhist practice for over two millennia, 

serving as a cornerstone for spiritual growth and self-awareness. Acknowledging MMT’s cultural 

origins can not only enrich the practice of MMT but can also help to ensure sensitivity and respect 

towards the communities who have preserved and practiced meditation for generations.  

 

6.4  Limitations of Functional MRI  

  
This dissertation project must also acknowledge the methodological limitations of 

functional MRI. One of the more prominent limitations is its relationship between spatial and 

temporal resolution. In an effort to capture brain activity over time, neuroimaging researchers are 

required to weigh the spatial resolution cost of acquiring images more quickly, or – alternatively- 

the temporal resolution cost of acquiring images with higher millimeter resolution. However, 

within the scope of this study, the scanning parameters were adjusted to account for the study 

design (i.e., event-related in Project 1 and block design in Project 3) to optimize both spatial as 

well as temporal resolution.  

Another factor to consider in fMRI research is that the technique is, in and of itself, an 

indirect measure. The method presupposes that changes in BOLD signal are related to changes in 

neuronal firing rates. Researchers have, however, investigated the biological basis of the BOLD 

signal and have gained a foundational understanding pertaining to the complex interplay between 
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the local blood flow, blood volume, as well as the metabolic rate of oxygen to support BOLD 

imaging as an indirect measure of brain activity (Logothetis & Wandell, 2004).  

Another limitation frequently encountered in neuroimaging research is the small sample size. 

However, given that in Projects 1 and 3, behavioral measures could be correlated with the changes 

observed on the neuronal level, the reliability of these results is increased.  

In addition, regarding Projects 1 and 3; given the nature of the region of interest analysis, the 

results risk having overlooked other relevant interactions. Further investigation using data-driven 

methods is required to continue to investigate further interactions.  

Despite these limitations, this dissertation project provides valuable insights into how MMT 

influences brain function, functional organization of the brain, stress reduction, and eating 

behavior. 

 

6.5 Limitations of ALE  
 

Lastly, this study acknowledges the inherent limitations of the activation likelihood 

estimation (ALE) model. One of its primary limitations is the inability to control for 

methodological differences between studies. While efforts were made to extract methodological 

details from each publication, it is not possible to account for all differences. Technological and 

methodological advancements over the publication period for data extraction may have influenced 

reported activations. However, many measures were taken and implemented to ensure the robust 

statistical outputs of MA maps (Eickhoff et al., 2009). 

 



 

 101 

7.0 Clinical Relevance 

 

The results of this dissertation project have noteworthy clinical relevance in two research 

domains. Not only do the results provide insight into the neural mechanisms of stress reduction, 

eating behavior, and MMT, but it is also able to provide insight into the neural processing of the 

olfactory cortex, which has gained new relevance due to the onset and long-term effects of the 

SAR-CoV-2 pandemic.  

  
7.1 MMT & Future Clinical Applications  

  
 

Not only were the results of this dissertation project able to demonstrate the effectiveness 

of web-based MMT programs, but the results were also able to contribute to the literature on MMT 

as a mechanism for stress reduction and its relevance for improving well-being, perceived stress, 

anxiety, attention, as well as stress-eating behavior. While these studies were conducted with 

healthy participants, future research projects should consider evaluating the effectiveness of web-

based MMT in clinical populations. Due to the feasibility and ease with which web-based MMT 

programs can be administered, in addition to considering the smaller funding budgets required to 

run web-based MMT studies, these factors could expedite the ability to conduct subsequent studies 

on clinical populations in comparison with in-person MMT programs. 

 If web-based MMTs are effective in clinical populations, they could additionally help to 

alleviate some of the current strains placed upon the healthcare systems worldwide. To this end, 

given the diverse results observed in this dissertation project, web-based MMT should be studied 

on a variety of clinical populations, including individuals with anxiety or depressive disorder, 

attention deficit disorder, or individuals suffering from eating disorders.  
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Additionally, if future studies have access to neuroimaging techniques, the acquisition of 

structural and functional MRI data would only continue to contribute to the understanding of how 

MMT implicates brain structure and function and could provide essential information on neuronal 

differences in clinical populations.  

 

7.2 Statistically Locating the Olfactory Cortex in times of SARS–CoV–2   

  
Through the completion of an extensive meta-analysis, this project was able to successfully 

identify the neural processing nodes of olfactory stimulation. These activation likelihood 

estimation maps were not only relevant for the subsequent neuroimaging analyses on the food-

related mindfulness training task, but the results of this meta-analysis gained relevance through 

the onset of the SARS-CoV-2 pandemic as it contributed to the understanding of the olfactory 

system. 

 

8.0 iOS App Development Project  

 

The majority of this dissertation project was completed during the SARS-CoV-19 

pandemic, which brought with it a series of logistical and practical challenges. Having completed 

the first few months of data acquisition prior to March 2020, our pilot data could already 

demonstrate the positive effects of  MMT on stress-eating behavior.  

While Project 3 recruited over 600 individuals to participate, the study had very strict 

inclusion criteria, rendering many volunteers ineligible to participate in the food-related MMT 

program. However, upon feeling the effects of isolation and uncertainty brought upon by the 
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pandemic, in addition to the subjective increase in stress-eating and snacking tendencies (due in 

part to the newfound proximity to the refrigerator and snack cabinets), it was presumed that many 

individuals, especially those who volunteered to participate in the study, felt similarly. The food-

related MMT program was therefore sent to all individuals who were ineligible to participate in 

the study in hopes of helping to alleviate stress as well as stress-related overeating tendencies 

elicited by the uncertainty and isolation of the pandemic.  

Upon receiving many emails expressing gratitude from those who participated in the food-

related MMT, I contacted Martin Lurz from the Technical University Munich’s Department of 

Informatics given his experience working on e-Health and e-Learning platforms to help me initiate 

the development of a platform to make the MMT more readily available. Consequently, over the 

past 3 years, together with several informatics master’s students completing their interdisciplinary 

projects (Mathias Quintero, Clemens Ruck, Onur Cakmak, Laura Drossel, Nathalie Pett, Henning 

Hontheim, Michael Schlicker, Max Obermeier, Bayram Ahmadov, Hans Santoso, Milen Vitanov, 

Anna Darii, and Tohid Ajdari), an iOS application was developed.  
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Figure 2 depicts a screenshot of the application page dedicated to tracking the rewards and 
milestones of the MMT practitioners (featuring a meditating broccoli J).  
 

9.0 Conclusion & Future Directions 

 

In conclusion, the three projects included in this dissertation provide valuable insights into 

the effects of mindfulness training on various aspects of mental health, cognitive function, and 

eating behavior. Not only do the results of this dissertation provide evidence for the positive effects 

of MMT on psychological well-being, cognitive performance, and eating behavior, but the 

behavioral results are supported by observed changes in neural structure and function. 

Given these results, the web-based MMT should be considered for preventative as well as 

therapeutic application in clinical populations.  
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