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Abstract
The study of both classical and quantum spin models on geometrically frustrated lattices
has proven fertile ground for the theoretical discovery of states of matter beyond Lan-
dau’s symmetry-breaking paradigm. In three dimensions, the most well-studied of these
is the pyrochlore lattice, which hosts quantum and classical spin liquids, giving rise to
remarkable emergent phenomena such as magnetic monopoles or an effective quantum
electrodynamics. In this thesis, we study classical and quantum models on the centred py-
rochlore lattice, where there is an additional site at the centre of every tetrahedron. Using a
combination of Monte Carlo simulations and analytical mean-field calculations, we show
that the minimal classical J1 − J2 Heisenberg model hosts a rich variety of phases, with
competition between ferrimagnetic order on the one hand, and the disorder of a Coulomb
spin liquid on the other. A large region of the parameter space hosts a classical spin liq-
uid which realizes an emergent electrostatics with mobile charges in the ground state, an
emergent charge fluid. This can also be understood as the thin-film realization of a higher-
dimensional Coulomb spin liquid. We find that the addition of dipolar interactions induces
ordering at low temperatures, but the spin liquid survives at finite temperature. Compar-
ing to experiments on the metal-organic framework [Mn(ta)2], we find that this spin liquid
regime well-approximates bulk specific heat, magnetization and susceptibility measure-
ments. Therefore we propose that [Mn(ta)2] realizes a classical spin liquid in the regime
1 K . T . 6 K. Turning to the quantum S = 1/2 XXZ model, we propose, using
degenerate perturbation theory, that the effective low-energy description in the small J⊥

limit is a U(1) lattice gauge theory coupled to fermionic matter. Exact diagonalization
on small clusters and gauge mean-field calculations suggest a U(1) quantum spin liquid
ground state, corresponding to the deconfined phase of the gauge theory. As the first study
of spin models on the centred pyrochlore lattice, this thesis provides the framework for
understanding both classical and quantum models with this geometry. Since the lattice
is experimentally realizable in metal-organic frameworks, which are highly modular, this
provides a route to probing the exotic physics of emergent electrostatics and quantum elec-
trodynamics in the lab.
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Zusammenfassung
Die Untersuchung von klassischen und Quantenspinmodellen auf geometrisch frustrierten
Gittern hat sich als fruchtbarer Boden für die theoretische Entdeckung von Materiezustän-
den erwiesen, die über das Paradigma der Landau Symmetriebrechung hinausgehen. Das
am meisten untersuchte dreidimensionale Gitter ist das Pyrochlor-Gitter, das sowohl klas-
sische als auch Quantenspinflüssigkeiten beherbergt und zu bemerkenswerten emergen-
ten Phänomenen wie magnetischen Monopolen und einer effektiver Quantenelektrody-
namik führt. In dieser Dissertation untersuchen wir klassische und Quantenmodelle auf
dem zentrierten Pyrochlor-Gitter, bei dem sich im Zentrum jedes Tetraeders eine zusät-
zliche Gitterstelle befindet. Mithilfe einer Kombination aus Monte-Carlo-Simulationen
und analytischen Mittelfeldberechnungen zeigen wir, dass das minimale klassische J1 −
J2 Heisenberg-Modell eine Vielzahl von Phasen besitzt, in denen die ferrimagnetische
Ordnung und die Unordnung einer Coulomb-Spinflüssigkeit konkurrieren. Ein großer
Bereich des Parameterraums beherbergt eine klassische Spinflüssigkeit, die eine emer-
gente Elektrostatik mit beweglichen Ladungen im Grundzustand realisiert, eine emergente
Ladungsflüssigkeit. Dies kann auch als die Dünnschicht-Realisierung einer höherdimen-
sionalen Coulomb-Spinflüssigkeit verstanden werden. Wir stellen fest, dass das Hinzufü-
gen von dipolaren Wechselwirkungen bei niedrigen Temperaturen eine Ordnung verur-
sacht, welche die Spinflüssigkeit jedoch bei Temperaturen über dem Nullpunkt übersteht.
Im Vergleich zu Experimenten mit dem metallorganischen Gerüst [Mn(ta)2] stellen wir
fest, dass die Spinflüssigkeitsphase die Messungen der spezifischen Wärme, der Mag-
netisierung und der Suszeptibilität gut approximiert. Daher schlagen wir vor, dass [Mn(ta)2]
eine klassische Spinflüssigkeit im Bereich 1K . T . 6K realisiert. Wir widmen uns dem
S = 1/2 XXZ-Quantenmodell und schlagen unter Verwendung einer entarteten Störungs-
theorie vor, dass es effektiv und bei niedriger Energie durch eine an fermionische Materie
gekoppelte U(1) -Gittereichtheorie beschrieben wird. Des Weiteren, legen exakte Diago-
nalisierung auf kleinen Clustern und Eich-Mittelfeldtheorie nahe, dass der Grundzustand
eine U(1) Quantenspinflüssigkeit ist. Dies hat zur Folge, dass die emergente Eichtheorie
ungebunden ist. Bei der vorliegenden Arbeit handelt es sich um die erste Untersuchung
von Spinmodellen auf dem zentrierten Pyrochlor-Gitter und bildet somit den Rahmen für
das Verständnis von klassischen und Quantenmodellen auf diesem Gitter. Da das Gitter
durch hochgradig modulare metallorganische Gerüste experimentell realisierbar ist, bietet
es sich zur Erforschung der exotischen Physik von emergenter Elektrostatik und Quan-
tenelektrodynamik im Labor an.
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1

Introduction

One of the fundamental concepts of contemporary physics is Landau’s theory of phase
transitions [3], where phases of matter are classified by their symmetries, or lack thereof.
This leads to a framework, where, given a system with a set of symmetries, phase tran-
sitions occur via their spontaneous breaking, captured by a local order parameter that
transforms non-trivially under the broken symmetry. These effects can be captured by
a phenomenological Landau-Ginzburg theory [4, 5].

A simple (mean-field) example is provided by considering the free energy

F (m) = −a

2
m2 +

b

4
m4, (1)

where m is a continuous variable and a, b are non-negative parameters. F (m) possesses
a global Z2 symmetry, as it is invariant under the transformation m → −m. For a = 0,
the free energy is minimized by the unique value m = 0, which is invariant under the
inversion of m. On the other hand, as shown in fig. 1, for a finite, the free energy has
degenerate minima at

m± = ±
√

a

b
. (2)

Therefore the system must “choose" one of these minima, which breaks the Z2 symmetry,
as under inversion m+ → m−.

This quantity m could be, for example, the average magnetization,

m =
1

N

N∑
i=1

σi, σi = ±1, (3)

of an Ising model [6], a toy model for magnetism. The states with m = 0 and m± cor-
respond to distinct phases of matter. Those with m = 0 are in a symmetric, disordered
phase, whereas those with m = m± are in an ordered, symmetry-broken phase, with
the inversion operation mapping between the two degenerate possibilities. Furthermore,
entropic considerations tell us to expect the symmetric phase at high temperature and a
symmetry-broken one at low temperature.

The Landau-Ginzburg paradigm describes a huge variety of phases of matter, from liquids
and crystalline solids, normal and superfluid states (of liquid He for example [7]), to fer-
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?

(a) (b) (c)

Figure 1: (a,b) The free energy in eq. (1), with a = 0 (a) and finite a > 0 (b). Correspond-
ing Ising model states for the minima are shown, where an up (down) arrow corresponds to
σi = +(−)1. The appearance of degenerate minima at m 6= 0 signals the symmetry-breaking
phase transition. (c) Geometric frustration in an Ising model (eq. (4)) where the spins are cou-
pled antiferromagnetically. It is not possible to simultaneously minimize the energy of all bonds
so a spin of either value on the lattice site marked by the red question mark will give the same
energy.

romagnets, antiferromagnets and the many more complex (sometimes hidden [8]) forms
of order in magnetic systems.

However, despite the success of this idea, it is not the end of the story when it comes
to classifying states of matter. In the 1950s, it was found that antiferromagnetic (J > 0)
nearest-neighbour Ising models,

E = J
∑
〈ij〉

σiσj, (4)

on the triangular [9], kagome [10] and pyrochlore [11] lattices, host disordered ground
states, so that there is no symmetry-breaking transition at any temperature. These ground
states can be thought of as examples of classical spin liquids. The common feature of
these lattices is that they are geometrically frustrated [12, 13], the interactions cannot si-
multaneously be satisfied, as illustrated in fig. 1(c). The pertinent question is, if the low
temperature states do not break any symmetries, to what extent, and, in what way, can they
be considered distinct from the high temperature paramagnet?

Ising models are, in general, rather crude models of the quantum magnetic moments in real
materials, so it is natural to ask whether this evasion of symmetry-breaking can survive the
inclusion of quantum effects. In 1973, Anderson [14] proposed that the ground state of the
antiferromagnetic Heisenberg Hamiltonian on the triangular lattice would be a so-called
resonating valence bond (RVB) state, a quantum superposition of nearest-neighbour spin
singlets which does not break any symmetries. It was not until the 1990s that a consensus
began to emerge that the ground state was actually 120◦ ordered [15–20], yet the idea lives
on as a fundamental example of a quantum spin liquid (QSL) [12, 21–24].

The discovery of the fractional quantum Hall (FQH) effect in 1982 [25] (see also [26–30]),
characterized by plateaus in the Hall resistivity at fractional filling factors (in units of the
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flux quantum), began to provide experimental evidence for states of matter beyond the
symmetry-breaking paradigm. In these systems, where a strong magnetic field is applied
to a two-dimensional electron gas, the states at different filling factors are in some way
distinct, yet they do not break any symmetries [31, 32]. Wen and Niu [33] (see also [34,
35]) found that the distinction between FQH states could be understood through the lens of
topological order, a property of a many-body ground state wavefunction which arises as a
consequence of long-range quantum entanglement [36]. Topologically ordered states are
gapped and exhibit a topological ground state degeneracy alongside fractional excitations
which may possess anyonic statistics [37–39]. In fact, these phenomena can be understood
through the emergence of effective gauge theories [28, 29].

The notion of topological order is not restricted to the fractional quantum Hall effect, the
RVB state and a (bosonic) FQH state were shown to be equivalent [40], so must also pos-
sess topological order [41]. In the late 1980s and 1990s, the RVB state had begun to attract
considerable attention as a possible part of the mechanism leading to high-temperature
superconductivity in cuprates [42, 43]. Wen later generalized the concept of topological
order to include gapless states of matter, defining the notion of quantum order and propos-
ing a huge array of spin liquid ground states [44] distinguished by their quantum order
rather than symmetry.

Parallel to this, the experimental discovery in 1997 of dipolar spin ice in rare-earth py-
rochlore oxides [45] whose properties can be understood by mapping to Anderson’s Ising
model on the pyrochlore lattice [11, 46, 47], provides an example of a low temperature state
of matter, which does not break symmetries, yet can be understood in terms of a classical
model. Indeed, dipolar spin ice demonstrates many of the features usually associated with
quantum order [48], such as fractionalization (in the form of magnetic monopoles) [49],
emergent gauge fields [50], and a classical analogue of topological ground state degener-
acy [51, 52].

In 2003, the theoretical notion of QSLs and the potential for utilizing their fractional excita-
tions in topological quantum computing [39, 53], was clarified by Kitaev’s toric code [54],
an exactly solvable model with a QSL ground state. He later introduced another exactly
solvable model on the honeycomb lattice [55] with a QSL ground state, for which a route
to experimental realization in strong spin-orbit coupled d5 materials was proposed [56],
spawning the field of Kitaev materials [57]. In the spin liquid, the fractional excitations
are Majorana fermions, whose detection would be a smoking gun for the spin liquid state.
Probably the most famous of the Kitaev materials is α-RuCl3, which despite hosting a
magnetically ordered ground state, appears to show signatures of fractionalized fermionic
excitations at temperatures above the ordering transition (summarized in [57]). In an ex-
ternal field it is claimed that α-RuCl3 exhibits a half-integer thermal quantum Hall effect,
which could be explained by the presence of a Majorana edge mode [58], however, this
remains controversial, as the results have so far not been reproduced elsewhere.

There has also been significant progress in the last few decades on the study of geomet-
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rically frustrated systems in the solid-state. For example, Herbertsmithite [59], which is
thought to realize a spin 1/2 Heisenberg antiferromagnet on the kagome lattice, shows
a tantalizing broad continuum in its dynamical structure factor [60], which can be in-
terpreted as a result of fractionalization. Returning to the rare-earth pyrochlores, recent
neutron scattering experiments [61], show signatures of the expected fractional excitations
in the quantum version of spin ice. The inherent complexity of solid-state systems means
that one must rely on the detection of fractional excitations to diagnose the realization of
quantum ordered states of matter. However, it is challenging to definitively exclude other
effects which could give rise to similar signals.

This leaves fractional quantum Hall systems as the only ones to unambiguously realize
quantum ordered ground states, with recent experiments showing the fractional statistics of
the excitations in collisions [62] and using electron interferometry [63]. Furthermore, the
observation of fractional quantum Hall signatures in the absence of an external magnetic
field has been recently reported in twisted bilayers of the transition metal dichalcogenide
MoTe2 [64, 65].

The growing capabilities of quantum simulation platforms [66] in recent years also sug-
gests an alternative route to the realization of exotic states of matter. Here, one can, in
principle, artificially engineer Hamiltonians, rather than synthesizing materials with spe-
cific properties. Despite issues with scalability and heating, there have been some notable
results. For example, experiments using Rydberg atoms showed signatures of a topological
spin liquid [67], although it was later clarified that this is a non-equilibrium phenomenon,
as a result of the state preparation procedure [68]. Nevertheless, this experiment high-
lights the advantages of these platforms, where measurements are performed by taking
“snapshots" of the wavefunction, allowing access to non-local string and loop expectation
values, which can give clear signals of quantum order. Another notable experiment, in a
quantum gas with an optical lattice, claims the formation of a FQH state governed by an
interacting Harper-Hofstadter model [69], albeit with only two particles.

Another approach in digital quantum computers or simulators is to directly prepare desired
states [70–75], rather than realizing a low-energy state of a particular Hamiltonian. For
example, in [72], the authors prepare the ground state of the toric code by operating on
superconducting qubits with a specific sequence of gates, then apply another series of gates
to simulate the braiding of fractional excitations.

The huge diversity of experimental systems available, from solid-state to quantum gases,
opens up the possibility to discover, and experimentally realize, a whole zoo of states of
matter beyond Landau’s symmetry-breaking paradigm. This is a central part of the quest
to understand the types of collective phenomena possible, given the laws of nature that
govern our universe.

In this thesis, we present results on a specific set of models, classical and quantum spins
on the centred pyrochlore lattice, which can host examples of these exotic states of mat-
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ter. We find that these lead, rather naturally, to effective low-energy theories of emergent
charges and gauge fields, describing spin liquid states. Since the centred pyrochlore lat-
tice is experimentally realizable in metal-organic frameworks [2], this introduces a new
experimental system for probing physics beyond the symmetry-breaking paradigm.
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Chapter 1

Background

This chapter introduces the relevant background information for understanding the results
presented in this thesis. These results are for classical and quantum spin models defined on
the centred pyrochlore lattice, closely related to the pyrochlore lattice, which is the focus of
this chapter. First we introduce the lattice, then discuss the classical Coulomb spin liquid
which is the ground state of nearest neighbour classical spin models. We explain how its
low energy properties are described by an emergent electrostatics, giving rise to distinct
“pinch point" features in the spin structure factor. The signatures of a classical spin liquid
which can be measured in experiments are then discussed. Subsequently, we introduce the
notion of a quantum spin liquid, using the examples of a quantum dimer liquid, the toric
code and quantum spin ice, a U(1) quantum spin liquid on the pyrochlore lattice, which is
described by an emergent quantum electrodynamics.

1.1 The Pyrochlore Lattice

The pyrochlore lattice is probably the most well-studied 3D lattice in the context of frus-
trated magnetism, due to its inherent geometric frustration [12, 13]. It can be thought of
as being derived from a parent, pre-medial, diamond lattice [76], which is defined by the
positions

Rt = BI + δx, (1.1)

where BI are sites of the face-centred cubic (FCC) Bravais lattice, BI =
∑

i niai, with
lattice vectors

a1 =
1

2
(1, 1, 0), a2 =

1

2
(1, 0, 1), a3 =

1

2
(0, 1, 1), (1.2)

and the two-site basis

δa = (0, 0, 0), δb =
1

4
(1, 1, 1), (1.3)

in units where the side length of the conventional cubic unit cell, a = 1.
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(a) (b)

links

centres

Figure 1.1: (a) The cubic unit cell of the diamond lattice, the two sublattices are differentiated
by dark and light colours. (b) The cubic unit cell of the pyrochlore lattice. It can be generated by
putting sites at the midpoints of all links on the diamond lattice. Correspondingly, the diamond
lattice is made up of the positions on which the tetrahedra of the pyrochlore lattice are centred.

Defining new lattice sites at the midpoints of the links connecting diamond sites results
in the pyrochlore lattice of corner-sharing tetrahedra, as shown in fig. 1.1. As a result,
the tetrahedra of the pyrochlore lattice are centred on diamond sites. Tetrahedra centred
on a(b) diamond lattice sites are denoted as a(b) tetrahedra respectively. Specifically, the
pyrochlore lattice is defined by

ri = BI + δm, (1.4)

with BI the sites of the FCC lattice (see eq. (1.2)) and the four-site basis

δ1 =
1

8
(1, 1, 1), δ2 =

1

8
(1,−1,−1), δ3 =

1

8
(−1, 1,−1), δ4 =

1

8
(−1,−1, 1).

(1.5)

We generally consider cubic systems of size L×L×L, i.e L specifies the number of cubic
unit cells along each Cartesian axis.

1.2 A Classical Spin Liquid on the Pyrochlore
Lattice

The low temperature states of antiferromagnetic nearest neighbour spin models on the py-
rochlore lattice are prototypical examples of classical spin liquids (CSLs). They exhibit
the characteristic properties of such a state of matter: an extensive ground state degener-
acy, conservation of global symmetries, and an effective low-energy description in terms
of emergent gauge fields. Explicitly, consider n component classical spins (vectors), Si,
which are normalized such that |Si| = 1, occupying the sites i, j, of the pyrochlore lattice,
with Hamiltonian

Hpyro = J
∑
〈ij〉

Si · Sj, (1.6)

where the sum is over all nearest neighbour pairs of sites and the exchange interaction is
antiferromagnetic, J > 0. We will focus on the cases of Ising (n = 1) and Heisenberg
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(n = 3) spins. Since the lattice is made up of corner-sharing tetrahedra, the Hamiltonian
can be rewritten as the sum

Hpyro =
J

2

(∑
t

L2
t − 2Nt

)
, (1.7)

where t labels the tetrahedra, Nt = 8L3 is the total number of tetrahedra and,

Lt = |Lt| =

∣∣∣∣∣∑
i∈t

Si

∣∣∣∣∣, (1.8)

with Lt the sum of all spins belonging to the tetrahedron t. Equation (1.7) is minimized
by any state which satisfies the local constraint [77],

Lt = 0, (1.9)

for all tetrahedra. Since adjacent tetrahedra share one spin this constraint leads to a non-
trivial correlation structure in the ground state, as will be discussed in the next section. A
local constraint of this form is a necessary but not sufficient condition to realize a clas-
sical spin liquid, the constraint must also be compatible with an extensive ground state
degeneracy. Even then, order by disorder [13, 78] may ultimately select an ordered state.

For Ising spins, Si = ±1, eq. (1.9) tells us that each tetrahedron must have two +1 and
two −1 spins in the ground state, which we call the 2:2 state. There are six different spin
configurations which achieve this on a single tetrahedron. The 2:2 state is often referred
to in the literature as spin ice [47, 48, 79] due to the analogy with water ice, where each
oxygen atom is bonded to two nearby and two further away hydrogen atoms. The ground
state can equivalently be thought of as an emergent 6-vertex model [47, 80, 81] on the di-
amond lattice, due to the six different spin configurations allowed on a single tetrahedron.
Spin ice materials such as Ho2Ti2O7 are properly described by long-range dipolar inter-
actions between Ising spins constrained to point along the axes connecting diamond sites,
but upon truncating to nearest neighbours the model can be mapped to eq. (1.6) with Ising
spins [45, 46]. Anderson [11] applied Pauling’s argument [82] for the residual entropy of
water ice to the pyrochlore lattice, estimating the number of ground state configurations
as W = (3

2
)Nt and therefore a ground state entropy of S = kBNt ln

3
2
. Pauling’s argument

can be summarized as follows:

• A spin is shared between two tetrahedra, t1 and t2.

• There are 3 configurations on t1 where the spin is up and 3 where it is down.

• The probability the configuration on t2 is compatible with the spin being up or down
is 1

2
in both cases.

• The total number of viable configurations for two tetrahedra is therefore 3
2
+ 3

2
= 3.

For a single tetrahedron the number of viable configurations is 3
2
.
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Ising spins spin ice dimers

Figure 1.2: (Left) A spin configuration on a single tetrahedron which fulfills the ground state
constraint for the nearest neighbour Ising model, eq. (1.6). (Centre) The same spin configura-
tion mapped to the spin ice representation, as described in eq. (1.11). The two-up, two-down
configuration of the model spins is mapped to a two-in, two-out configuration in the spin ice
representation. The field, Eα, is the sum of the spin ice vectors. (Right) The dimer representation
of the same state which has two dimers touching every diamond lattice site.

Similarly, for n ≥ 2 one can also estimate the ground state degeneracy using a mode-
counting argument [83–85]. For each tetrahedron there areF = 4(n−1)

2
degrees of freedom

(the factor of 1/2 comes from the fact that spins are shared between two tetrahedra) and
C = n constraints from eq. (1.9), one for each component of Lt. Therefore for Heisenberg
spins, this leavesD = F−C = 1 unconstrained degrees of freedom per tetrahedron yield-
ing an Nt-dimensional ground state manifold. Both Ising and Heisenberg spins therefore
admit a ground state whose degeneracy scales with system size, which prevents symmetry-
breaking order at any temperature (order by disorder does not apply in these cases [84]).

1.3 Coulomb Phase

In addition to the highly degenerate, disordered nature of the ground state, the local con-
straint suggests that the ground state will have some kind of structure. However, Lt is
symmetric under both Z2 and O(3) transformations (which are global symmetries of the
Hamiltonian for Ising and Heisenberg spins respectively) so is not a local order parame-
ter associated with a symmetry-broken phase [3, 86]. Rather, the structure imparted by
the local constraint lies beyond this framework. It turns out that the low-energy physics
has an elegant description in terms of an emergent classical electrostatics [50, 76, 87] and
therefore the spin liquid is known as a Coulomb phase. This is an example of an emer-
gent gauge field in a classical many-body system, where the emergent description is a field
theory with a U(1) gauge invariance.

The mapping, initially proposed in [50], is as follows. On each tetrahedron, at position
Rt, define the three-component (since the lattice is three-dimensional) vector field,

Eα(Rt) =
4∑

m=1

umS
α(Rt ± δm), (1.10)

where there are n copies of this field, one for each spin component α, and um = δm
|δm| .

± = +(−) for Rt specifying an a(b) tetrahedron. This is equivalent to mapping each Sα
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to a spin in the spin ice representation (see fig. 1.2(a)),

Tα(Rt ± δm) = umS
α(Rt ± δm), (1.11)

then taking the vector sum on each tetrahedron. For example, in the Ising case, an up spin
is mapped to a spin pointing from an a to b tetrahedron (out) and a down spin to point from
b to a (in).

In the ground state, Eα is always finite for Ising spins and only zero for specific config-
urations in the Heisenberg case. On the other hand, defining the lattice divergence of a
generic field, F,

∇l · F(Rt) =
∑
m

um · F(Rt), (1.12)

which is proportional to the flux exiting/entering a given tetrahedron, we see that

∇l · Eα(Rt) ∝ |Lα
t | = 0, (1.13)

where the equality applies when we are in the ground state, so the local constraint is en-
forced. This tells us that the flux of Eα is conserved and hence after coarse-graining and
taking the continuum limit we obtain the ground state condition

∇ · Eα(r) = 0. (1.14)

What does the ground state manifold look like? For Ising spins, moves between different
states in the ground state manifold consist of flipping closed loops of alternating +,−
spins, as shown in fig. 1.4. Averaging Eα over such a flippable loop will yield zero, which
is easiest to see when considering the flippable loop in the spin ice representation, where
it is a directed closed loop. If a state has a large number of flippable loops this implies
that there are a large number of related ground states which can be reached by flipping
them. Therefore the ground state manifold is dominated by states with large numbers of
flippable loops, so choosing a random ground state and coarse-graining is highly likely to
lead to a state with small Eα. This entropic effect can be captured by assuming an effective
Gaussian partition function of the form

ZG =

∫
DEα(r) exp

(
− K

2

∫
d3r|Eα(r)|2

)
, (1.15)

where K is a phenomenological stiffness constant [50]. The effective free energy (the
exponent) is equivalent to the energy of a classical electric field [88]. Combined with
the divergence-free constraint, eq. (1.14), the effective description of the ground state is
classical electrostatics in the absence of charges. For n > 1 spins, one assumes that the
effective partition function should take the form of eq. (1.15), which is justified a posteri-
ori as predictions from the resulting effective theory match results from the microscopic
theory [50].
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Figure 1.3: (a) The field structure factor, Exx(q), as predicted by eq. (1.20) in the q = (h, k, 0)

plane, showing the characteristic point point structure centred at q = (0, 0, 0). (b) The spin
structure factor, Sαα(q), of the Coulomb phase on the pyrochlore lattice, computed using the
mean-field projection matrix method of [87]. Some of the pinch points at the Brillouin zone cen-
tres are absent as a result of the relation between the field structure factor and the spin structure
factor.

As for the magnetic field in classical electromagnetism [88], due to the divergence-free
constraint, we can write Eα in terms of a vector potential, Eα(r) = ∇ × Aα(r) where
the theory is invariant under U(1) gauge transformations of the form Aα(r) → Aα(r) +

∇Ψ(r), where Ψ(r) is an arbitrary scalar function. Therefore we see that the structure
imparted by the local constraint is a gauge theory with local U(1) invariance.

1.3.1 Pinch Points and Algebraic Decay in Spin Correlations

The effective theory of the ground state has important consequences for the form that spin
correlations in the Coulomb phase take [50, 76, 87], providing an important diagnostic
tool for identifying a Coulomb spin liquid. Defining the Fourier transform

Eα(r) =

∫
d3q

(2π)3
Eα(q)eiq·r, (1.16)

then substituting into eq. (1.14), we obtain

q · Eα(q) = 0, (1.17)

which tells us that the component of Eα parallel to q vanishes and thus we should project
it out,

Eµ(q) → E⊥
µ (q) = Eµ(q)−

q · E
q2

qµ, (1.18)

where µ ∈ {x, y, z} labels the vector components, and we have dropped the α label for
clarity. Since the effective partition function, eq. (1.15), is Gaussian, the unprojected ex-
pectation value for the E structure factor is

〈Eµ(q)Eν(−q′)〉 = δ(q− q′)δµν
K

. (1.19)
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For the projected case, we should calculate 〈E⊥
µ (q)E

⊥
ν (−q)〉. Substituting in eq. (1.18)

gives
Eµν(q) = 〈Eµ(q)

⊥E⊥
ν (−q)〉 = 1

K
(δµν −

qµqν
q2

). (1.20)

This is a non-analytic function in momentum space with a singularity at q = 0. It has a
characteristic shape called a pinch point as shown in fig. 1.3(a). In the example shown,
limqx→0Exx(qx, 0, 0) = 0 and limqy→0Exx(0, qy, 0) = 1

K
. Taking the inverse Fourier

transform of eq. (1.20) and assuming the distance r is large, one obtains the real space
correlations [50]

〈Eµ(0)Eν(r)〉 ∝
δµν
r3

− 3rµrν
r5

, (1.21)

which have a characteristic dipolar form, where rµ is a vector component of position r =

(rx, ry, rz). Along a particular direction the correlations decay algebraically as 1
r3

. This is a
key distinguishing feature of the Coulomb spin liquid from a high temperature paramagnet
where the spin correlations decay exponentially [89].

The Eα field is not straightforwardly related to a physical degree of freedom, except for in
dipolar spin ice, so cannot in general be directly accessed in experiment. Instead, the spin
structure factor

Sαβ(q) = 〈Sα(q)Sβ(−q)〉 = 1

N

∑
i,j

eiq·(ri−rj)〈Sα(ri)S
β(rj)〉, (1.22)

is measurable (see for example eq. (1.41)). The definition of Eα in terms of spin variables
is invertible [87], as long as a generalized local constraint of the form∑

m

Sα(Rt ± δm) = f(Rt), (1.23)

is satisfied. The inverse mapping from field to spins is

Sα(Rt ± δm) =
1

4
(3um · Eα(Rt) + f(Rt)), (1.24)

so Sαβ(q) is related to Eµν(q) in some non-trivial way where the pinch points are repeated
at some, but not all, Brillouin zone centres. The nodes where there are no pinch points
arise as a consequence of the symmetry of the lattice [87]. The spin structure factor for
the Coulomb phase on the pyrochlore lattice is shown in fig. 1.3(b).

1.3.2 Topological Sectors

In the case of Ising spins, the ground state manifold has a topological nature, where distinct
topological sectors can be labelled by a U(1) winding number [52]. By mapping the Ising
spins to dimers occupying the links of the diamond lattice, such that Si = +1(−1) →
ni = 1(0) [90], we see that this is related to the topological order in quantum dimer
models [29, 91], albeit fluctuations are thermal (assuming T = 0+) rather than quantum
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Figure 1.4: (a) A plane oriented perpendicular to ẑ intersecting the links of the diamond lattice
on which the winding number can be measured. A non-winding loop which intersects an even
number of times is shaded in red whereas a winding loop which intersects an odd number of
times is shown by the yellow dotted line. (b) The shortest possible loop move which maintains
the ground state constraint for the Ising spin liquid on the pyrochlore lattice in the spin ice rep-
resentation. A flippable loop is a directed closed loop, corresponding to an alternating string of
Ising spins e.g +1,−1,+1, . . . . (c) The corresponding move in the dimer picture, with spheres
representing the sites of the diamond lattice and dimers shown on the links. The number of
dimers intersecting a plane perpendicular to, for example, ẑ is unchanged by the move, which is
the wz component of the winding number. This plaquette move is the third order ring-exchange
process in the quantum spin 1/2 XXZ model discussed in section 1.6.3.

effects. As mentioned when deriving the effective free energy of the ground state, one can
move between ground states by flipping closed loops of alternating +1,−1 spins as this
amounts to swapping+1 and−1 spins on each tetrahedron, preserving the local constraint.
In the spin ice representation, this flippable loop is a directed closed string which begins
and ends on the same tetrahedron, as shown in fig. 1.4(b).

The ground state can be split into distinct sectors which are connected by only non-winding
moves. A winding move is on a loop which spans the entire lattice through a periodic
boundary, whereas a non-winding loop closes within the confines of a single periodic
image. The ground state is thus topological in the sense that the ability to move between
distinct sectors depends on the topology of the lattice; with open boundary conditions the
ground state is restricted to a single sector, whereas with periodic boundary conditions
winding moves connect the different sectors.

We can assign each microstate a topological sector by measuring the winding numbers,
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w = (wx, wy, wz). Each component,

wk =
∑

i∈planek

ni, (1.25)

measures the number of dimers intersecting a plane oriented perpendicular to k̂ which
spans the system, as illustrated for a single unit cell in fig. 1.4(a). This is invariant under
non-winding moves because the closed loop will cross the plane an even number of times
with an equal number of dimers and non-dimers intersecting the plane. On the other hand,
a winding move which goes around the periodic boundaries does not need to cross the
plane an even number of times; it can cross an odd number of times and then wind around
the periodic boundary to close the loop. The number of links intersected by the plane is
4L2 so the wk take integer values from 0 to 4L2, with a non-local winding loop changing
wk by ±n, where n is the number of times the loop winds around a periodic boundary.

These topological sectors have consequences for the spin fluctuations in thermal equilib-
rium [52], whereas in a related quantum model, each hosts a degenerate ground state in
the thermodynamic limit [90] (see also section 1.6.3).

1.3.3 Low-energy Excited States

Besides the properties of the ground state, the effective theory also describes the nature
of low-energy excitations. In the Ising case, an excitation is created by flipping a single
spin, which results in the pair of tetrahedra, t, t′, which share this spin obtaining a finite
magnetization, Lt = L′

t = ±2. The defects can be propagated at zero energy cost by
flipping a string of alternating spins (in an analogous way to fig. 1.9(b)), resulting in two
well-separated defects. In the coarse-grained language this yields

∇ · Eα(r) = Q1δ
3(r− r1) +Q2δ

3(r− r2), (1.26)

where the defects are located at positions r1, r2 and the breaking of the ground state con-
straint is parametrized by Q1 = −Q2. The defects will have opposite charge as the defect,
anti-defect pair initially reside on neighbouring tetrahedra which belong to different sub-
lattices.

An effective interaction energy, U(r1, r2)) can be defined between the defects

exp(−β∗U(r1, r2)) ∝
Z|Q1,Q2

Z
(1.27)

where β∗ is an effective temperature and the partition function in the numerator is inte-
grated subject to the constraint in eq. (1.26). This gives

U(r1, r2) ∝
Q1Q2

|r1 − r2|
, (1.28)
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that is, the charges interact via a Coulomb potential. This can be generalized to a system
of Nc charges at positions {ri}, with an effective interaction energy of

U({ri}) ∝
∑
i<j

QiQj

|ri − rj|
(1.29)

and an effective partition function

Zcharge =

∫
d3r1 · · ·

∫
d3rNc e

−β∗U({ri}). (1.30)

This is the partition function of a fluid of mobile electric charges [92], which is the effective
picture which emerges to describe the low-energy states. Hence there is a useful connec-
tion between the low-energy physics of the pyrochlore spin liquid and classical Coulomb
fluids, the study of which has a long and rich history [93]. Results from the electrostatic
context can be directly applied to understand phenomena in the spin system, with often
remarkable agreement, see for example [94].

Consider a system with a dilute concentration, nQ, of charge-anticharge pairs of strength
Q, so that the system can be described as a charge neutral Coulomb fluid, analogous to ions
in a solvent. Provided the effective temperature is high enough, Debye-Hueckel theory [92,
93, 95, 96] applies [76]. This predicts that electric fields emanating from a charge will be
exponentially screened,

E(r) → E(r)e−κr, (1.31)

where r measures the position relative to the reference charge and 1/κ is the screening
length with

κ ∝
√
nQQ2. (1.32)

In momentum space, the screening causes broadening of the pinch points into bow tie
structures with the form

Eµν(q) =
1

K
(δµν −

qµqν
q2 + κ2

), (1.33)

where κ parametrizes the width of the bow ties.

Debye-Hueckel theory is derived for a charge neutral, low concentration and high effective
temperature setting, yet this screening is a robust phenomenon in charged fluids [96]. In
the spin system at finite temperature, where there will be some finite concentration of
charges, the sharp pinch points of the Coulomb phase become broadened bow ties with κ

increasing as the number of charges increases with temperature.

1.4 Experimental Signatures of a Classical Spin
Liquid

The theoretical study of spin liquids has been constantly informed by results from exper-
iments on solid state materials, whether in identifying interesting lattice structures and
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models, or areas where new concepts are required to make sense of experimental results.
But what sort of signatures should one look out for to actually identify a CSL? In this
section we discuss some of these characteristic features.

First of all, at what sort of temperatures would a CSL exist? Consider the following ef-
fective spin Hamiltonian to describe an experimental solid state system, with the generic
form

Hspin =
∑
〈ij〉

∑
α,β

Jαβ
1ijS

α
i S

β
j +

∑
〈〈ij〉〉

∑
α,β

Jαβ
2ijS

α
i S

β
j + . . .

= HSL +Horder + . . .

(1.34)

where HSL has a CSL ground state and Horder may include effects which favour long-range
(symmetry-breaking) order such as quantum fluctuations, disorder, longer-range interac-
tions and anisotropies, to name but a handful of possibilities. Assuming the energy scale
of Horder is significantly less than that of HSL, one can treat it as a perturbation to the
low energy classical spin liquid, which causes the ground state to possess some kind of
long-range order.

Therefore, one would not generally expect a solid state system as T → 0 to be a CSL,
rather there will be some finite temperature window Tc < T < T ∗, where Tc and T ∗ are of
the order of the energy scales ofHorder andHSL respectively, that will host a CSL, provided
it has large enough entropy to wash out the effect of Horder. Systems where f = T ∗

Tc
[97]

is large have a broad regime where we might expect to find spin liquid physics and even
the finite temperature behaviour in this regime may be very well approximated by the
ground state of HSL. In synthetic systems such as artificial spin ice [98], or quantum
simulators [66] with a high effective spin, where one has greater control over the system
Hamiltonian, one could in principle also engineer a system with very large f in order to
probe the low energy behaviour of HSL.

1.4.1 Magnetic Susceptibility

An important bulk probe of the magnetic properties of a material is the molar magnetic
susceptibility [99, 100]

χ = Vm

(
∂M

∂H

)
H

m3mol−1 (1.35)

which measures the response of the magnetization per unit volume of a material, M, in an
external magnetic field, H. In SI units both are measured in Am−1 and we assume that the
response is isotropic. Here, Vm is the molar volume of the material. At high temperatures,
in a paramagnet, the susceptibility follows a Curie-Weiss law [99]

χ =
C

T − θCW

, (1.36)

where C is the material dependent Curie constant and θCW is the Curie-Weiss constant
whose sign indicates whether magnetic interactions in the material are predominantly
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ferro(+) or antiferromagnetic(−) and its magnitude the strength of these interactions [13].
In an unfrustrated system, Tc ≈ |θCW|, so the frustration factor [97]

f =
|θCW|
Tc

(1.37)

gives a measure of the amount of magnetic frustration in a material and, since |θCW|
measures the energy scale of interactions, the region to look for spin liquid physics is
Tc < T < |θCW|.

Equation (1.36) describes the behaviour of a paramagnet at high temperature, which can
be derived from a mean-field argument, so deviations from eq. (1.36) indicate the onset
of correlations in the material. In a conventional magnetic transition, where |M| or a
closely related quantity is the order parameter, χ would generically have a peak (or a cusp
if plotting χ−1) at Tc, so can be used to locate this ordering transition. Furthermore, θCW

can be extracted from a linear fit of eq. (1.36) to χ−1 at high temperature, so an estimate
of f can be obtained.

Upon entering a spin liquid, there will not be an obvious signal such as a peak or cusp, as
there is no symmetry breaking, yet correlations are distinct from the paramagnet. In [101]
the authors argue that a CSL will show a characteristic crossover from a high-temperature
paramagnetic Curie law to a low-temperature spin liquid Curie law with a different Curie
constant. This can be understood from the fact that in the ground state, the spins are
allowed to fluctuate, but in a characteristic constrained way, giving rise to a characteristic
correlation structure and related susceptibility. Therefore, plotting χT from experimental
measurements of a material with a spin liquid regime, one would expect to see a pair of
plateaus, one at high temperature in the paramagnetic regime, and one at low temperature
in the spin liquid regime, before a peak if there is ordering at lower temperature. An
example of the susceptibility measured for various frustrated Ising models is shown in
fig. 1.5(a).

1.4.2 Entropy and Specific Heat

A lattice spin system can typically be treated as a canonical ensemble with free energy
F = U − TS, where U is the internal energy and S the entropy of the system [89]. The
specific heat

C =
∂U

∂T
= −T

∂2F

∂T 2
, (1.38)

will generally pick up non-analyticities in the free energy associated with a phase tran-
sition. Since it does not depend on identifying an order parameter, measurement of the
specific heat in experiment provides an unbiased way to detect phase transitions. However,
in a solid state system it may not always be possible to subtract the non-magnetic contri-
bution to the specific heat from the magnetic one, so, for example, a structural transition
in the lattice cannot necessarily be distinguished from a magnetic ordering transition by
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(a) (b)

Figure 1.5: (a) χT for various frustrated Ising models with spin liquid ground states as a function
of temperature. At high temperature χT → 1, the paramagnetic Curie law in these units, whereas
at low temperature the spin liquids have a characteristic Curie constant. Adapted from [101].
(b) Specific heat measurements (upper) and resulting entropy (lower) obtained by integrating
the data from the upper panel for the dipolar spin ice material Dy2Ti2O7. The mismatch at high
temperature with the entropy of a paramagnet (R ln 2, see dotted line) is indicative of the residual
entropy of the spin liquid, which in zero field (H = 0) is well-approximated by the Pauling esti-
mate for the nearest neighbour Ising model (R/2 ln 3/2 in these units, see section 1.2 and [11]).
Adapted from [102].

looking at the specific heat alone. However, combined with other measurements it can be
possible to ascertain the origin of any transitions. Therefore, the specific heat can be a
useful tool for measuring Tc of a magnetic ordering transition in a material, giving a first
indication of whether there is significant magnetic frustration in the system.

Since CSLs are characterized by a highly degenerate ground state manifold, this manifests
itself as a large residual entropy at low temperatures. The entropy change as a function
of temperature can be computed by integrating the experimentally measured specific heat
using the relation

∆S =

∫ T2

T1

C(T )

T
dT. (1.39)

Integrating from an appropriate minimum temperature gives an estimate of the absolute
entropy which can be compared to the known entropy of a high temperature paramag-
net (modelled as free magnetic moments), where, provided care is taken to exclude the
influence of other effects, the discrepancy between the two entropies gives the residual
ground state entropy, as shown in fig. 1.5(b). The figure shows how the Pauling estimate,
S = kBNt ln

3
2

[11], for the residual ground state entropy in nearest neighbour spin ice was
measured experimentally in a dipolar spin ice compound [102] (see also [103]). Models
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of classical spins with number of components n ≥ 2 are unable to correctly describe the
entropy of a physical system at low temperature, so we cannot obtain an estimate for the
residual ground state entropy as in the Ising case. This is due to the fact that the spins are
continuous variables so C(T → 0) is finite and hence ∆S → ∞ as T → 0. Nevertheless
one still expects to find a large entropy at low temperature in a CSL.

Returning to the specific heat itself, for n ≥ 2 systems with a global O(n) symmetry,
in the standard symmetry-broken phase, there will be n − 1 transverse Goldstone modes
(magnons) about the ordered state with quadratic dispersion [104]. Therefore by equipar-
tition of energy, U = 〈E〉 = (n − 1)kB

2
T , and consequently the specific heat per spin,

cO = (n− 1)kB
2

. On the other hand, a CSL may host zero modes, fluctuations that remain
within the ground state manifold, as well as quartic (x4) modes [84, 85]. This will reduce
the specific heat per spin to some characteristic fraction of c0, for example in the Heisen-
berg model on the pyrochlore lattice cSL = 3

4
kB [85]. However, this characteristic plateau

in the specific heat is often difficult to observe in experiment due to the true quantum na-
ture of the magnetic moments in a material, resulting instead in a broad bump as quantum
effects begin to take hold.

1.4.3 Spin Structure Factor

The thermodynamic quantities discussed above offer important diagnostic tools for iden-
tifying spin liquids, but are somewhat blunt, in that they do not give access to the mi-
croscopic properties of the material. Alternatively, the spin structure factor offers direct
access to the spin correlations in a material, and, is experimentally measurable, so is often
the method of choice for studying exotic magnetic phenomena.

The general form of the dynamical spin structure factor at momentum q and frequency ω

is defined as [105, 106]

Sαβ(q, ω) =
1

N

∑
i,j

∫
dt eiωteiq·(ri−rj)〈Sα(ri, t)S

β(rj, 0)〉, (1.40)

where i, j label the N lattice sites at corresponding positions ri and 〈. . . 〉 denotes the
thermal expectation value. The dynamical spin structure factor measures the excitations
of the material as a function of momentum and frequency, so can be used to measure
the dispersion relation ω(q) of, for example, magnons, as well as more exotic excitations
which may occur in classical or quantum spin liquids (see section 1.6). The spectrum of
excitations depends on the precise nature of a spin liquid and may be gapped or gapless,
with characteristic dispersions. Therefore it is difficult to speak of generic features of a
spin liquid in the dynamical structure factor. Instead, a good theoretical understanding
of the spin liquid is required to be able to make specific predictions to look out for in
experiments.

The static spin structure factor, eq. (1.22), is obtained by integrating eq. (1.40) over all
frequencies, Sαβ(q) =

∫
dω
2π
Sαβ(q, ω). This gives probes equilibrium spin correlations in
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a material so can be used to understand any magnetic ordering in the system, offering more
information than bulk magnetization measurements. Magnetic order is characterized by
the appearance of Bragg peaks at characteristic momenta. On the other hand, a spin liquid
is generically characterized by broad liquid-like features. Characteristic features of a spin
liquid may appear in the static structure factor, such as the pinch points of the Coulomb
phase, providing a clear signature by which to identify it.

Both dynamical and static structure factors can be measured experimentally using neutron
scattering. Neglecting the scattering off nuclei via the strong force, such that only the con-
tribution from scattering off the magnetic moments of atoms/ions in the material remains,
the differential cross section for unpolarized neutrons is [106]

d2σ

dΩdE
= r20

kf
ki
f(q)2

∑
αβ

(δαβ − q̂αq̂β)Sαβ(q, ω), (1.41)

where r0 is a magnetic scattering length, kf and ki the magnitudes of the wavevectors of
the outgoing and incoming neutrons respectively and f(q) an atom/ion dependent form
factor. Different components, α, β, of the structure factor can be accessed through the use
of polarization analysis [107]. By accessing the spin structure factor, neutron scattering
experiments can provide a detailed comparison to the theoretically predicted correlations
and excitations of a particular spin liquid. As a prominent example, fig. 1.6 shows a com-
parison of the structure factor measured in the dipolar spin ice material Ho2Ti2O7 and
results from Monte Carlo simulations [108].

Whilst neutron scattering experiments offer unparalleled access to spin correlations, they
can be challenging to perform. First of all, the typically weak interactions of neutrons with
matter [105] means that large samples must be used. Furthermore, if one wants spatial q
resolution, the sample must be a single crystal. The growth of large single crystals is a
subtle art and procedures to do so are the subject of a great deal of research at the inter-
section of the chemistry, physics and materials science communities [109]. Moreover, the
large flux of incident neutrons required and the difficulty of creating free neutrons typically
requires the use of large-scale specialized facilities such as nuclear reactors or spallation
sources [110]. These drawbacks, amongst others, mean that from the identification of a
new material of interest to an experimentally measured and well-understood spin structure
factor can take many years of work.

1.4.4 Pyrochlore Classical Spin Liquids

Research on materials realizing a magnetic pyrochlore lattice has focussed predominantly
on the A2B2O7 pyrochlore family (it is this class of minerals from which the lattice takes
its name) and cubic spinels, AB2O4 [111]. Of the pyrochlores, it is rare-earth pyrochlores
of the form, R2M2O7, where R is a 3+ rare-earth metal ion and M is a 4+ transition metal
ion [112], which are the most well-studied. Specifically the dipolar spin ice materials [45,
47, 79] Ho2Ti2O7 and Dy2Ti2O7 offer probably the clearest examples of classical Coulomb
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Figure 1.6: Static spin structure factors Syy(q) (SF) and Szz(q) (NSF) of Ho2Ti2O7, measured
by neutron scattering (top) and Monte Carlo simulations (bottom). z is the axis along which the
neutrons are polarized and y is perpendicular to the scattering vector. Pinch points, characteristic
of a Coulomb phase are clearly seen in the SF structure factor. Adapted from [108].

spin liquid behaviour, exhibiting the expected zero point entropy [102, 103] (fig. 1.5(b))
and pinch points in the structure factor measured by neutron scattering [108] (fig. 1.6). The
behaviour of these materials are remarkably well captured by the simple nearest neighbour
Ising model on the pyrochlore lattice [49, 113, 114].

Materials which are well approximated by the classical Heisenberg model on the py-
rochlore lattice include Y2Mo2O7 and ZnCr2O4, however in these materials disorder and
spin-orbital effects [115, 116] or further neighbour interactions [117, 118] ultimately de-
stroy the Coulomb spin liquid. Nevertheless, efforts continue to find Heisenberg py-
rochlore materials, such as NaCaNi2F7 which is thought to be well described by an S = 1

Heisenberg antiferromagnet [119].

1.5 Metal-Organic Frameworks

The compounds named above which realize magnetic pyrochlore lattices are inorganic,
but what about using organic constituents to form such a structure? In the chemistry com-



22 Background

Figure 1.7: An example of a metal-organic framework. An inorganic node and organic linker
combine to form a desired structure. Here, using different species for the linker, but the same
inorganic node, one can synthesize materials with a varying pore size. Adapted from [120].

munity, a class of materials called metal-organic frameworks (MOFs) [120] have been
the subject of intense research over the last few decades. These are made up of inorganic
nodes and organic linker units, where the linkers are generally chosen to create a desired
structure and the inorganic nodes to affect the functionality of the material. This approach
leads to a great deal of flexibility, nodes and linkers can in principle be substituted for other
compounds to engineer desired properties, as illustrated in fig. 1.7.

These materials tend to have very high porosity which leads to diverse applications from
gas adsorption and separation [121], carbon capture [122] , catalysis [123] to biomedicine [124].
They have also been studied in the context of magnetism [125], in some cases realizing
magnetically frustrated structures. Yet, there has been little study of the physical states
of matter realized at low temperatures in frustrated metal-organic frameworks, where one
might expect to find spin liquid physics. Recently, in [126], the authors studied the MOF
Na[Mn(HCOO)3] which realizes a trillium lattice. Despite ordering at low temperatures,
this displays a classical spin liquid regime at finite temperature. Thus, metal-organic
frameworks offer a flexible platform for realizing spin liquids in the solid state, which have
to date been little explored, due to challenges in synthesizing materials with sufficiently
large exchange interactions [127].



23

1.6 Quantum Spin Liquids

In section 1.4 we discussed how a CSL will typically transition to a long-range ordered
phase at some low temperature. However, what happens when this is not the case? Then,
at low enough temperatures, quantum effects will become significant, which can lead
to a quantum spin liquid (QSL). These are highly entangled states of matter which host
fractionalized excitations and emergent gauge fields [22–24]. They can be thought of as
quantum analogues of CSLs, where the degenerate ground state manifold is replaced with
a quantum superposition. They possess quantum order [44], as opposed to symmetry-
breaking long-range order, although only gapped spin liquids can properly be called topo-
logically ordered [24]. QSLs can be classified by the local symmetry of their low-energy
emergent gauge theory. In this section we will discuss a prominent example of a Z2 and a
U(1) QSL, the toric code and quantum spin ice respectively, explaining some of the key
properties which are typical of QSLs more generally. In both cases, we make clear the
connection to “parent" CSLs, from which the QSLs can be thought to emerge as a result
of the addition of quantum fluctuations of the correct form.

1.6.1 Quantum Dimer Models and the Rokhsar-Kivelson
Point

Before discussing quantum spin liquids, we make a short detour to discuss closely related
quantum dimer liquids. In some spin models, the relevant low temperature properties are
described by a quantum dimer model, whose liquid phase corresponds to a QSL state.

In a quantum dimer model [29, 91], the variables, nii′ ∈ {0, 1} occupy the links of a lattice
with sites i, i′, where nii′ = 0(1) corresponds to the absence(presence) of a dimer on that
link. Typically what is referred to as a dimer model in the literature refers to a model
of non-overlapping dimers, where the Hilbert space is constrained such that there is one
dimer touching every site of the lattice. Related models, with a constraint of two dimers
touching every site, are called quantum loop models [128] as the configurations of dimers
form closed loops on the lattice, since every site has a dimer coming “in" towards it and
back “out" again. In this section, we do not make such a distinction, our only requirement
being that the Hilbert space is constrained so that there are a constant number, n, of dimers
touching every site, where 0 < n < z and z is the connectivity of the lattice. We will see
that there is a point in the parameter space of particular forms of these models which host
an exact quantum liquid ground state [129].

Consider a quantum dimer model on the square lattice with Hamiltonian

H = −g
∑
�

(
| 〉 〈 |+ | 〉 〈 |

)
+ µ

∑
�

(
| 〉 〈 |+ | 〉 〈 |

)
= −g

∑
�

(
A� + A†

�

)
+ µ

∑
�

(
A†

�A� + A�A
†
�

)
,

(1.42)
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(a) (b)

Figure 1.8: (a) The structure of the Hilbert space, H, of a dimer model of the form eq. (1.42).
λ labels distinct topological sectors. Inside each topological sector, states are connected by op-
erators A(†)

� in a pair-wise fashion such that there is a state with each flippable plaquette flipped
and not flipped. (b) An example of the internal structure of a topological sector for n = 1. The
operators which move between the states are shown with the numbering of plaquettes indicated.
Due to the pair-wise structure there are an equal number of states with a flippable plaquette in
either of its possible configurations.

where the terms act on square plaquettes. The g term “flips" the plaquettes, whilst the µ

term counts the number of flippable plaquettes. The Hamiltonian acts on a Hilbert space
spanned by the orthonormal states, {c}, where c is a specific configuration of dimers on the
lattice. For example, if the links are occupied by spin 1/2 variables, the many-body states
in the Sz basis provide a valid orthonormal dimer basis, and there is a simple mapping
from spins to dimers. On the other hand, if the dimers are used to represent a valence
bond, i.e a spin singlet, then care must be taken to orthonormalize the valence bond basis
in order to map between the two.

Now, let us consider the structure of the Hilbert space. Starting from a particular refer-
ence configuration, we can generate all other configurations by exhaustively applying A

(†)
� .

Generically, there will be several disconnected sectors with no non-zero matrix elements
in the Hamiltonian connecting them, as illustrated in fig. 1.8. We label the sectors with λ.
For µ, g > 0, H is positive semidefinite [129] and therefore its minimum eigenvalue is 0.
Furthermore, all off-diagonal elements are non-negative, so H is stoquastic [130], and its
ground state (in each sector) can be written as

|Ψ0〉λ =
∑
c∈λ

pc |c〉 , pc > 0, ∀c ∈ λ. (1.43)

For µ = g, H can be written in terms of the projector [131]

P� =

(
| 〉 − | 〉

)(
〈 | − 〈 |

)
, (1.44)
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such that H =
∑

� P�. Since the eigenvalues of P� = 0, 1, a state with P� = 0 on
every plaquette must be a ground state. Within each sector, there will be exactly the same
number of configurations with as on each plaquette, so an equal superposition of all
configurations,

|RK〉λ ∝
∑
c∈λ

|c〉 , (1.45)

will have P� = 0 on every plaquette and is therefore a ground state. This special point
in the phase diagram is called the Rokhsar-Kivelson (RK) point and the ground state is a
quantum dimer liquid, with no broken symmetries, analogous to the paradigmatic resonat-
ing valence bond state proposed by Anderson [14].

Whether the RK point is a critical point or forms a liquid phase with finite extent in pa-
rameter space depends on the details of the model, such as the lattice geometry, as does
the local symmetry of its related gauge theory. Note that the existence of the RK ground
state is quite general, the validity of the argument only requires a Hamiltonian of the form
eq. (1.42), an orthonormal dimer configuration basis and a Hilbert space where A

(†)
� gen-

erates the configurations within a sector. We return to this point later when studying the
quantum XXZ Hamiltonian on the centred pyrochlore lattice.

1.6.2 The Toric Code: A Z2 Quantum Spin Liquid

Now moving to a system with spins as explicit variables, the toric code [54] is a 2D exactly
solvable model which hosts a Z2 QSL ground state, which, due to its relative simplicity, is
often used as the fruit fly model for studying topologically ordered states. It was introduced
as a stabilizer quantum code for (topological) fault-tolerant quantum computing. This
section was inspired by [132].

To begin with, consider the classical Ising model

H = −∆s

∑
s

As (1.46)

where
As =

∏
i∈s

Si, (1.47)

on a square lattice with periodic boundary conditions labelled by sites s, with spins Si =

±1, occupying the links. As measures the product of all spins in the “star" connected to
site s, as illustrated in fig. 1.9(a). For ∆s > 0, the ground state is where As = 1 on all
sites, i.e the ground state is defined by a local constraint, which gives rise to an emergent
eight-vertex model [81]. There are eight configurations which satisfy this constraint on a
star, all four spins up or down and the six different ways of having two spins up and two
down, which make up the analogous six-vertex model in spin ice (see section 1.2). As we
will see, there are many similarities between the model described by eq. (1.46) and spin
ice on the pyrochlore lattice.
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Figure 1.9: (a) The toric code. The links on which star, As, and plaquette, Bp operators act are
shown as well as the winding loops along which the operators that label (γv,h) and move between
(γ̃v,h) topological sectors are defined. A site, p, of the dual lattice which has sites at the centres
of square plaquettes is indicated. (b) Creating and separating a pair of spinons in the toric code.
Acting with a σx operator creates two defect stars with As = −1 (blue circles). The spinons can
be propagated by applying a string of σx operators. In the U(1) QSL on the pyrochlore lattice,
acting with Sx creates a spinon-antispinon pair on neighbouring diamond sites which can be
propagated in a similar fashion.

For a lattice, with N sites, we can estimate the ground state degeneracy, D, by applying
Pauling’s argument [82], which gives D = 2N ; the model has an extensively degenerate
ground state manifold. However, this does not take into account the boundary conditions
of the lattice. Let us define the dual lattice, with sites labelled by p, occupying the centre
of each square plaquette. If we start with a ground state configuration and flip all the
spins on a plaquette then we obtain another ground state. Therefore, starting from some
reference ground state, we can create another ground state by flipping or not flipping on all
N plaquettes of the lattice. This gives 2N−1 ground states, since with periodic boundaries
one plaquette flip can be constructed from a combination of flips on adjacent plaquettes,
so is not independent. Furthermore, one can flip a string of spins which winds around the
periodic boundaries in either the horizontal or vertical direction and remain in the ground
state. These moves cannot be constituted of plaquette flips. This gives a total of 2N+1

ground states.

The winding spin flips around the periodic boundaries take the system between different
topological sectors, whereas any combination of plaquette flips will remain within the
same topological sector. The sectors are labelled by a pair of Z2 topological invariants,
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which together creates a Z2 ⊗ Z2 object. These invariants are

Γv =
∏
i∈γv

Si = ±1, Γh =
∏
i∈γh

Si = ±1, (1.48)

where γv,h are paths intersecting the links which span the system in either the vertical or
horizontal directions respectively, as shown in fig. 1.9(a). For periodic boundary condi-
tions there are 4 topological sectors since the lattice is defined on a torus, but in general
there are 2g sectors where g is the genus of the manifold on which the lattice is defined.

An excitation is created by flipping a spin on a single link, which creates a pair of defect
stars with As,s′ = −1 on the neighbouring sites s, s′. Creating this excitation comes at
a finite energy cost of ∆E = 4∆s. By flipping a long string of spins these defects can
be separated to arbitrary distance at zero energy, so the defects are deconfined excitations.
Deconfined objects are defined as those which can be separated to infinite distance at finite
energy cost [29]. We will call these excitations spinons, as they are the fractionalization
of a spin-flip operation. The original ∆Si = 2 spin-flip fractionalizes into a pair of in-
dependent ∆Si = 1 excitations. This gives an alternative view of the moves which take
us between topological sectors as creating a pair of spinons, transporting one around the
periodic boundaries, then annihilating with the other.

Separation of a pair of spinons implies there should be some kind of local structure which
ensures that the local constraint is satisfied on the path in between the spinons. Here,
we can introduce a compact, binary electric field, ess′ ∈ {0, 1} which lives on the links
through the mapping [22]

Si → eiπess′ . (1.49)

Defining the lattice divergence, div(e)s =
∑

s′→s ess′ , where the sum is over all sites s′

connected to s, then we can rewrite

As = eiπdiv(e)s . (1.50)

Defining an electric charge through the analogue of Gauss’s law,

qs = div(e)s, (1.51)

we can now reinterpret the low energy physics in terms of the emergent field and charge.
The ground state, As = 1 for all s, corresponds to the vacuum, qs = 0 on all sites. Spinons
can be identified as electric charges which act as sources and sinks of the emergent field.
One can make a similar argument for the existence of deconfined spinons in the Ising
model on the pyrochlore lattice.

Therefore, since the ground state of this classical model is governed by a local constraint
and exhibits an extensive ground state degeneracy and emergent gauge field, it is a classical
spin liquid.

Now to construct a quantum spin liquid, we must add quantum fluctuations to the model.
The toric code is obtained from eq. (1.46) by replacing the Ising variables with Pauli z
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operators, σz
i , and adding a plaquette flip term, Bp =

∏
i∈p σ

x
i , such that the Hamiltonian

reads
H = −∆s

∑
s

As −∆p

∑
p

Bp. (1.52)

Since [As, Bp] = 0 for all s and p, [H,As] = [H,Bp] = 0, so the ground state is defined
as where As |Ψ0〉 = |Ψ0〉 and Bp |Ψ0〉 = |Ψ0〉 for all s and p. One possible ground state is

|Ψ0〉 ∝
∏
p

1 +Bp

2
⊗i |σz

i = +1〉 , (1.53)

where ⊗i |σz
i = +1〉 is a ferromagnetic product state which satisfies As = 1 and the op-

erator (1 + Bp) is a projector ensuring Bp = 1. This state is an equal superposition of all
states which satisfy As = 1, or, equivalently, an equal superposition of all loop coverings,
which are connected to ⊗i |σz

i = +1〉 by Bp [29].

How do the topological sectors of the classical model carry over to the quantum case? Pro-
moting the topological invariants in eq. (1.48) to quantum operators, we see that [H,Γv,h] =

0, so can now used to label distinct topological sectors of the Hilbert space. The operators
which change the eigenvalues obtained by acting with Γv,h are

Γ̃v =
∏
i∈γ̃v

σx
i , Γ̃h =

∏
i∈γ̃h

σx
i , (1.54)

where γ̃v,h are strings of operators along the links which go around the periodic bound-
aries, such that they intersect γv,h an odd number of times respectively, see fig. 1.9(a).
Since [H, Γ̃v,h] = 0, with periodic boundary conditions the four distinct ground states
|Ψ0〉 , Γ̃v |Ψ0〉 , Γ̃h |Ψ0〉 , Γ̃vΓ̃h |Ψ0〉 are degenerate. The degeneracy of ground states is 2g,
where g is the genus of the manifold the lattice is defined on. We see that the topologi-
cal sectors of the classical theory become topological order in the ground state, with the
degenerate ground states distinguished by the eigenvalues of Γv,h.

Analogous to the classical case, a pair of separated spinons at sites s, s′ are created by
operating with the string operator Oss′ =

∏
i∈γ̃ss′

∏
i σ

x
i on a series of links, creating a

pair of Ass′ = −1 defects with a finite energy cost of ∆E = 4∆s, independent of s, s′.
This is illustrated in fig. 1.9(b). An excited state with spinons at s, s′, Oss′ |Ψ0〉, is an
equal superposition of all possible ways of creating this pair at s, s′, so they should be
thought of as independent, deconfined particles. In the quantum model, it is also possible
to have excitations where Bp = −1, which are typically called visons. Their properties
are analogous to that of the spinons, with the operator Opp′ =

∏
i∈γpp′

∏
i σ

z
i creating a

pair of visons at dual lattice sites p, p′ with an energy cost of ∆E = 4∆p. The spinons
and visons are anyons due to their mutual statistics; exchanging the position of a spinon
and vison gives the wavefunction a fractional phase factor eiπ2 [22].

We can map the Hamiltonian to a type of electromagnetic gauge theory, which allows us
to identify the spinons and visons with electric and magnetic excitations respectively. We
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let
σz
i → eiπess′ , σx

i → eiass′ , (1.55)

where the mapping for σz
i variables is analogous to the classical case, eq. (1.50), and we

define the compact vector potential ass′ ∈ {0, π} [22]. Defining the lattice curl, curl(a)p =∑
ss′∈�p

ass′ , which is the magnetic flux through the plaquette centred on p, then

Bp = cos(curl(a)p), (1.56)

and we identify the visons as magnetic excitations, with the spinons as electric excitations,
as in the classical model. The Hamiltonian of the gauge theory is

HEM = −∆s

∑
s

eiπdiv(e)s −∆p

∑
p

cos(curl(a)p). (1.57)

It is easiest to see that the toric code is a Z2 gauge theory in the spin language. Since
[H,As] = 0, As is a local conserved quantity, so we treat it as a Gauss law, Gs = As =∏

i∈s σ
z
i . Gs generates the local gauge transformation

Gsσ
x
i′Gs = −σx

i′ , (1.58)

where i′ is a link attached to the site s, which leaves H invariant. Since G2
s = 1, the

transformation has a local Z2 structure [133]. The local values of Gs label distinct sectors
of the theory, where the ground state is in the sector with Gs = 0, corresponding to zero
electric charge, qs = 0, on all sites.

The topological order of the toric code ground state is readily diagnosed by extracting
the topological entanglement entropy [134, 135]. For the ground state of a topologically
ordered 2D system, partitioned into regions A and B, the von Neumann entropy [136] is
given by

S(ρA) = αL− γ (1.59)

in the L → ∞ limit, where S(ρA) = −TrAρA log(ρA), the reduced density matrix ρA =

TrB |Ψ0〉 〈Ψ0| and L is the length of the boundary between A and B. For a 2D model with
Abelian anyons, the topological entanglement entropy,

γ = ln

(√
Nsectors

)
, (1.60)

whereNsectors is the number of topological sectors [135], so for the toric code γ = ln 2 [137].
Thus the measurement of a constant contribution to the entanglement entropy is often used
as a diagnostic for topological order in numerical simulations, see for instance [138–141],
and has even been measured on a quantum processor [72].

The toric code can be generalized to three dimensions (on a cubic lattice) [142] with an
analogous ground state, topological degeneracy of 23 = 8 and finite topological entan-
glement entropy [143]. However, in 3D there is also a topologically trivial, constant con-
tribution to the entanglement entropy [144], so the topological contribution is not readily
extracted from numerics as in the 2D case.
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1.6.3 Quantum Spin Ice: A U(1) Quantum Spin Liquid

We have seen how adding quantum fluctuations to a classical 8-vertex model on the square
lattice can lead to a quantum spin liquid, so, similarly, what happens when we add quantum
fluctuations to nearest neighbour spin ice on the pyrochlore lattice, whose ground state is
an emergent 6-vertex model? Hermele, Fisher and Balents (HFB) [90] proposed, using
degenerate perturbation theory, that the ground state of the spin 1/2 XXZ model on the
pyrochlore lattice,

HXXZ = Jz
∑
〈ij〉

Sz
i S

z
j + J⊥

∑
〈ij〉

(
S+
i S

−
j + h.c

)
, (1.61)

in the
∣∣J⊥
∣∣ � Jz limit, could be a U(1) quantum spin liquid described by an effective

theory of frustrated compact quantum electrodynamics. This was later confirmed numer-
ically [145] and the spin liquid has come to be known as quantum spin ice.

Both the perturbative effective model and XXZ Hamiltonian have been extensively stud-
ied over the past years both numerically and with various flavours of mean-field the-
ory [145–153], such that the existence of a π-flux QSL is well-established for J⊥ > 0,
0-flux for J⊥ < 0. Recently, there has been a particular focus on the properties of the
emergent quantum electrodynamics (eQED) [154, 155], contrasting to the quantum elec-
trodynamics which describes our universe. On the experimental side, dipolar-octupolar
pyrochlores are thought to realize the XYZ variant of eq. (1.61) [156], with the candi-
date materials Ce2Zr2O7 and Ce2Sn2O7 recently showing tantalizing glimpses of the char-
acteristic eQED [61, 157], as well as signatures in other rare-earth pyrochlores such as
Pr2Hf2O7 [158].

Here, we reiterate the perturbative argument of HFB for the existence of a U(1) QSL as
the ground state of eq. (1.61), deriving an effective dimer model and lattice gauge theory.
This same approach is applied to the XXZ model on the centred pyrochlore lattice in
chapter 4. HFB use the Schrieffer-Wolff formalism [159–161] of degenerate perturbation
theory. Given a Hamiltonian H = H0 + λH1, where H0 has a degenerate ground state
with energy E0, the aim is to find an effective Hamiltonian, Heff , which describes the
effect of the perturbation H1 on the ground state manifold. In constructing the effective
Hamiltonian, the projector onto the ground state manifold, P̂ , and operator

D̂ = − 1− P̂

Ĥ0 − E0

, (1.62)

which projects onto the subspace orthogonal to the ground state manifold are useful.

For this model, eq. (1.61) is rewritten (up to a constant) as

HXXZ = H0 +H1, H0 =
Jz

2

∑
t

L2
t ,

H1 = J⊥
∑
〈ij〉

(
S+
i S

−
j + h.c

)
,

(1.63)
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whereLt =
∑

i∈t S
z
i is the tetrahedron magnetization for which the ground state constraint

of the Ising model (H0) is Lt = 0 on all tetrahedra. In the degenerate perturbation theory,
one considers the effect of H1 acting on the degenerate manifold specified by this local
constraint.

The lowest order non-constant contribution to Heff occurs at third order, where the contri-
bution to the effective Hamiltonian,

H
(3)
eff = PH1DH1DH1P, (1.64)

results in the non-constant term

H
(3)
eff = Jring

∑
7

(
S+
0 S

−
1 S

+
2 S

−
3 S

+
4 S

−
5 + h.c

)
, (1.65)

where Jring = 12(J⊥)3

(Jz)2
, the sum is over all hexagonal plaquettes of the pyrochlore lattice

(see fig. 1.4) and sites are numbered in a clockwise fashion around the hexagonal plaquette.
The correct prefactor is obtained by considering the number of different ways to construct
a valid hexagonal loop and the fact that in the virtual excited states there are always two
defect tetrahedra with Lt = 1, meaning that each D gives a factor of − 1

Jz per hexagon.
The sign of Jring can be changed by a unitary transformation which rotates a subset of the
spins [90], so that eq. (1.65) is applicable for J⊥ of either sign.

Equation (1.65) can be reinterpreted as a quantum dimer model (sees section 1.6.1) on the
diamond lattice. This is done by mapping Sz

i = 1
2
(−1

2
) → ni = 1(0), where ni measures

the presence (or absence) of a dimer on the link of the diamond lattice corresponding to
site i of the pyrochlore lattice. The ground state constraint, Lt = 0, maps to the constraint
that there must be two dimers touching every site, and ring exchange to flipping a hexagon,
as shown in fig. 1.4. Thus, as a dimer model, the effective Hamiltonian is

H
(3)
eff = Jring

∑
7

∣∣ 〉 〈 ∣∣+ ∣∣ 〉 〈 ∣∣ , (1.66)

where the Hilbert space is constrained to have two dimers touching each site, i.e it is
actually a quantum loop model.

As discussed in section 1.6.1, a Hamiltonian of the form

HRK = −|Jring|
∑
7

∣∣ 〉 〈 ∣∣+ ∣∣ 〉 〈 ∣∣+ µ
∑
7

∣∣ 〉 〈 ∣∣+ ∣∣ 〉 〈 ∣∣ (1.67)

will have an exact quantum liquid ground state at the RK point, µ = |Jring|. HFB spec-
ulated that this liquid state survives as the ground state until µ = 0 in the dimer model
and therefore the ground state of the XXZ Hamiltonian in the perturbative limit is a QSL.
Quantum Monte Carlo simulations of eq. (1.67) [145] showed that this was indeed the
case, with the quantum liquid occupying the −0.5 ≤ µ ≤ 1 region of the ground state
phase diagram.
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To further understand the low energy properties of the effective Hamiltonian, HFB derived
an effective U(1) gauge theory, which then leads to the interpretation of the spin liquid as
the deconfined phase of an emergent quantum electrodynamics. First, rather than mapping
the spins to dimers with a local 2-dimensional Hilbert space, one can instead map the spins
to (infinite-dimensional) quantum rotors (see chapter A) with angular momentum mi ∈ Z
and orientation θi ∈ [0, 2π). An exact mapping from S = 1/2 spins to quantum rotors is

Sz
i → mi −

1

2
, S±

i = e±iθi , (1.68)

provided that the constraint mi = 0, 1 is imposed, such that the dimension of the local
Hilbert space matches that of the spins. Thus in terms of rotors, eq. (1.65) can be written
as

Hrotor =
U

2

∑
i

(mi −
1

2
)2 −K

∑
7

cos(θ0 − θ1 + θ2 − θ3 + θ4 − θ5), (1.69)

where K = 2|Jring| and the first term enforces the constraint on the Hilbert space exactly
when taking the U

K
→ ∞ limit.

To proceed, the rotors can be rewritten in terms of directed link variables which are the
lattice analogue of vector fields. Labelling sites of the diamond lattice r, so the pyrochlore
site i is the link between two diamond sites rr′, a half-integer electric field can be defined,

err′ = σr(mrr′ −
1

2
), (1.70)

where σr = +(−)1 on the a(b) diamond sublattice. This is analogous to the writing of the
z component of S = 1/2 classical spins in the spin-ice representation in eq. (1.11), so this
link variable is related to the classical field defined in eq. (1.10). Similarly, we also define
a vector potential

arr′ = ηrθrr′ . (1.71)

This new pair of variables are canonically conjugate, [arr′ , err′ ] = i, as expected for an
electric field and vector potential [22]. In these variables eq. (1.69) becomes

Hrotor =
U

2

∑
〈rr′〉

e2rr′ −K
∑
7

cos(curla)7, (1.72)

where we have defined the lattice analog of the curl

(curla)7 =
∑
rr′∈7

arr′ = ar0r1 + ar1r2 + ar2r3 + ar3r4 + ar4r5 ++ar5r0 (1.73)

which is a directed sum around the hexagonal plaquette. Hrotor is invariant under the U(1)
gauge transformation

arr′ → arr′ + χ′
r − χr, (1.74)
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where χr ∈ [0, 2π), since the χr enter the curl twice with opposite sign. The associated
conserved quantity (Gauss law) is

Gr = div(e)r =
∑
r′→r

err′ = σrLr (1.75)

which can be interpreted as an electric charge, where the sum is over all sites neighbouring
the site r. The ground state manifold of the spin model corresponds to the gauge sector
with no charges.

A magnetic field is defined on the links, ss′ of the dual lattice, which pierce the centres of
hexagonal loops on the diamond lattice,

bss′ =
(curla)7ss′

π
, (1.76)

so that the effective Hamiltonian

Hrotor =
U

2

∑
〈rr′〉

e2rr′ −K
∑
〈ss′〉

cos(πbss′), (1.77)

where we have the theory in terms of electric and magnetic fields.

Let us first consider the phases of a related compact U(1) lattice gauge theory on the cubic
lattice [162], with Hamiltonian of the form

HLGT =
Ũ

2

∑
〈rr′〉

ẽ2rr′ − K̃
∑
2

cos(curlã)2, (1.78)

where
ẽrr′ ∈ {0,±1,±2, . . . }, (1.79)

rather than the half integer values of err′ . In the U
K

→ ∞ limit, the ground state has ẽrr′ =
0 on all links, excitations are gapped and electric charges experience a linear confining
potential. This phase is expected to persist over some finite region away from the U

K
→ ∞

limit. On the other hand, for small U
K

, one obtains a deconfined Coulomb phase, where
the electric charges interact via a 1/r potential and there is a gapless, linearly dispersing
photon excitation. The effective low energy description is that of Gaussian QED, with
effective Hamiltonian of the form

HQED =
1

2

∫
d3r(|E(r)|2 + |B(r)|2), (1.80)

where E and B are coarse-grained electric and magnetic fields.

There will be some transition between the two regimes at U
K

≈ 1 [90, 162]. Now for
the theory described by Hrotor, the phase in the physically relevant U

K
→ ∞ limit is not

obvious; the ground state has the constraint that err′ = ±1
2
, which can be satisfied by

a macroscopic number of configurations. HFB dub this a frustrated gauge theory. The
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question of whether the ground state of H(3)
eff is a quantum spin liquid is the same as asking

whether the deconfined phase of this theory stretches all the way to U
K

→ ∞. Since
numerical simulations [145] have shown that the ground state of the dimer form of H(3)

eff is
a quantum liquid, the theory is deconfined in the U

K
→ ∞ limit and physical gauge sector,

and therefore the effective theory is Gaussian QED, with the properties outlined above. In
particular, there is a gapless photon excitation which is associated with the ring-exchange
term acting within the Lt = 0 manifold.

What are the properties of the deconfined excitations? Consider acting with the physical
spin operator Sr̃r̃′+ , which is equivalent to acting with the electric field raising operator,
eiar̃r̃′ , where r̃ belongs to the a sublattice. The effect is to flip the direction of er̃r̃′ which
was originally pointing from r̃ to r̃′. Therefore according to eq. (1.75) we have created a
charge-anticharge pair on the sites r̃ and r̃′. By applying a succesion of eiarr′ operators,
or equivalently alternating S+

rr′ and S−
rr′ , the pair can be separated to infinite distance with

finite energy cost. This is similar to separating spinons in the toric code, which is depicted
in fig. 1.9(b). These isolated charges are spinons, where the initial ∆Sz = 1 excitation has
fractionalized into independent Sz = 1

2
excitations.

Similar to a Z2 quantum spin liquid, the ground state of the U(1) quantum spin liquid also
has a form of topological degeneracy [90, 131, 163]. In the gauge theory picture, consider
the electric flux through a plane oriented perpendicular to the cubic axis k ∈ {x, y, z},

ΦE
k =

∑
rr′∈planek

err′ , (1.81)

where the sum is over all links intersecting the plane. This is analogous to the winding
number discussed in the context of spin ice (see section 1.3.2).

Consider a particular ground state in the deconfined phase, so that it’s effective, coarse-
grained Hamiltonian is eq. (1.80). If a quantum ΦE

0 of flux is added, the lowest energy cost
is if the flux is spread evenly across the plane which has area proportional to L2, so that
Ek(r) → Ek(r)+c

ΦE
0

L2 , where c is a constant. Since the system has volume proportional to
L3, the total energy cost is ∆E =

(cΦE
0 )2

L
, which vanishes in the thermodynamic limit, so

each electric flux sector contains a degenerate ground state of the system. Microscopically,
creating one flux quantum piercing a plane perpendicular to the k̂ direction is equivalent
to creating a spinon-antispinon pair and winding one around the periodic boundary before
annihilating with its partner. The lowest energy configuration as they are separated is a
superposition of all possible field lines between them, resulting in a uniformly distributed
flux. Therefore we can label topological sectors in the ground state by the number of
electric flux quanta through planes oriented perpendicular to each of the cubic axes, which
are analogous to the topological sectors discussed for the ground state of classical spin ice.

In fact, in the quantum model, there are similar arguments for the magnetic flux, so a topo-
logical sector is characterized by six integers in total [90]. This also gives a characteristic
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finite size scaling of the energy which can be used to identify theU(1) quantum spin liquid,
as was done in [131, 145].

1.7 Summary

In this section we have discussed the properties of classical and quantum spin liquids, with
a focus on those realized on the pyrochlore lattice. Classical Ising and Heisenberg models
on the pyrochlore have a Coulomb spin liquid ground state, described by an emergent
electrostatics where excitations interact via an effective Coulomb interaction. This is a
paradigmatic example of a classical spin liquid, exhibiting:

• A ground state governed by a local constraint.
• An extensive ground state degeneracy.
• A lack of symmetry-breaking order.
• An emergent gauge field.

We presented an argument that classical spin liquids in solid-state materials are generi-
cally expected to be destroyed by effects such as small symmetry-breaking interactions or
quantum fluctuations at a low enough temperature, so will be found at slightly elevated
temperatures. We also outlined some of their experimental signatures in the magnetic
susceptibility, specific heat and spin structure factor.

We then moved on to discuss quantum spin liquids, using a quantum dimer liquid, the
toric code, and finally quantum spin ice on the pyrochlore lattice, as examples. We made
clear how classical spin liquids can be thought of as parent states for quantum spin liquids,
which are characterized by:

• A lack of symmetry-breaking order.
• Fractionalized excitations.
• Emergent gauge fields.
• Quantum order.

We explained in depth how the emergent compact quantum electrodynamics of quantum
spin ice is derived in perturbation theory from the XXZ model on the pyrochlore lattice,
as well as its topological properties and excitations.

The rest of this thesis is devoted to the study of classical and quantum spin models on
the closely related centred pyrochlore lattice. In chapter 2 we study the properties of a
classical Heisenberg model, drawing on many of the ideas presented in this section about
the classical spin liquid on the pyrochlore. Chapter 3 compares the properties of this
model (with added dipolar interactions) to experimental magnetization, susceptibility and
specific heat measurements of the metal-organic framework [Mn(ta)2], where we observe
glimpses of the experimental signatures discussed here. Finally, in chapter 4 we study the
quantum XXZ model, finding an analogous low-energy U(1) lattice gauge theory to the
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pyrochlore case, but coupled to fermionic matter. Gauge mean-field calculations and exact
diagonalization on a small cluster suggest the ground state could be a U(1) quantum spin
liquid.
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Chapter 2

Classical Minimal Models

In this chapter we present results on minimal classical spin models on the centred py-
rochlore lattice, focusing on the antiferromagnetic J1−J2 Heisenberg model. This chapter
is closely based on [1], with many of the figures and portions of the text directly repro-
duced. We find that the low energy physics is governed by a modified local constraint
where the coupling ratio η = J2

J1
determines the nature of correlations. The phase diagram

demonstrates the interplay between strong ferrimagnetic correlation at small η and the
complete decoupling of corner and vertex spins as η → ∞. In the Ising model, this opens
up a region where the ground state configuration has an effective charge on every tetrahe-
dron, modifying the U(1) topological invariant in spin ice to a Z2quantity. Similarly, in the
Heisenberg model, for γ = 1

η
. 1.25, the low temperature correlations can be understood

in terms of screening in an emergent charge fluid, where the central spins act as mobile
charges with a strength parametrized by γ. We also discuss how the centred pyrochlore
lattice can be viewed as a thin film of a four-dimensional lattice, making clear the connec-
tion to spin ice thin films [164, 165]. We elaborate on this by showing how an appropriate
model on the the two-dimensional centred kagome lattice exhibits the same phenomenon,
due to its equivalence with a thin film of the pyrochlore lattice. Furthermore, the large
ground state degeneracy of the J1 − J2 model allows one to stabilize exotic ground states,
by the addition of perturbations. We demonstrate this by stabilizing a three-dimensional
Coulomb phase through the addition of a J3 term. We leave the relevance of the J1 − J2
Heisenberg model for the metal-organic framework [Mn(ta)2] to chapter 3.

This chapter is structured as follows. We first introduce the lattice and model, then discuss
the ground state properties with Ising and Heisenberg spins using analytical arguments and
mean-field calculations. Next, we present Monte Carlo results for the Heisenberg model
at finite temperature. We then discuss the effective description of the spin liquid, before
moving on to the properties of the analogous model on the centred kagome lattice and the
effect of adding a J3 term.
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Figure 2.1: (a) The conventional 24 site cubic unit cell of the centred pyrochlore lattice with the
six sublattices labelled. (b) A single tetrahedron with J1 (nearest neighbour) and J2 (next nearest
neighbour) couplings labelled.

2.1 Lattice and Model

The centred pyrochlore lattice, shown in fig. 2.1, is obtained from the pyrochlore lattice
by the addition of a lattice site at the centre of each tetrahedron, so that sites on both the
pre-medial diamond and medial pyrochlore lattice are occupied. Explicitly, it is defined
by sites at positions

ri = RI + δµ, (2.1)

where RI are the sites of the fcc lattice (see eq. (1.2)), and µ labels the six sublattices with
basis vectors

δa = (0, 0, 0), δb =
1

4
(1, 1, 1),

δ1 =
1

8
(1, 1, 1), δ2 =

1

8
(1,−1,−1), δ3 =

1

8
(−1, 1,−1), δ4 =

1

8
(−1,−1, 1), (2.2)

in units where the cubic unit cell side length a = 1. We will typically consider cubic
systems of integer side length L with periodic boundary conditions. In what follows, sites
at the centre of a tetrahedron, µ = a, b, are referred to as central sites and those at the
vertices of the tetrahedron, µ = 1, 2, 3, 4, as vertex sites.

The minimal classical spin model we consider is the isotropic J1 − J2 model,

H = J1
∑
〈ij〉

Si · Sj + J2
∑
〈〈ij〉〉

Si · Sj, (2.3)

where the Si are n-component classical spins. The J1 terms couple the centre and vertex
spins on a tetrahedron, whilst the J2 term is the nearest neighbour interaction on the py-
rochlore lattice, coupling vertex spins as shown in fig. 2.1(b). In this chapter, without loss
of generality, we set the spin length S = |S| = 1, J1 = 1, and typically parametrize the
model with the coupling ratio η = J2/J1, using γ = 1/η instead when we would like to
work close to the pyrochlore limit (η → ∞, where centre and vertex spins are decoupled).
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Given the classical spin liquid ground state on the pyrochlore lattice (see chapter 1), in this
chapter we investigate whether the centred pyrochlore also hosts a spin liquid in models
with Ising (n = 1) and Heisenberg (n = 3) spins, as well as the nature of any such spin
liquids.

2.2 Ground State Properties

2.2.1 Local Constraint

For J2 < 0 the model is unfrustrated and the ground state is a simple ferro- or ferri-magnet,
depending on the sign of J1. In the ferrimagnet all central spins are anti-parallel to vertex
spins. We focus on the frustrated and experimentally relevant (see chapter 3) quadrant of
parameter space where J1 > 0, J2 > 0. We can map from J1 to −J1 by a global inversion
of all central spins, so the results presented here can be straightforwardly generalized to
the J1 < 0 region of the parameter space.

As on the pyrochlore, the Hamiltonian can be rewritten in terms of the tetrahedral units,
t, of the lattice,

H =
J2
2

∑
t

|Lt|2 −
N

3

(
J2
1

2J2
+ 2J2

)
, (2.4)

however, due to the presence of the centre site, we require that Lt be given by

Lt = γSt,c +
4∑

v=1

St,v, (2.5)

where γ rescales the contribution of the central spin. Centre sites are labelled by the index
c, and the sum over v runs over the vertices of the tetrahedron. The ground state is that
which minimizes Lt = |Lt| on all tetrahedra.

2.2.2 Ising Spins

To understand how the form of the Hamiltonian in equation (2.4) affects the possible
ground states, it is instructive to first consider the Ising model, with spin variables σi = ±1.
The ground state is obtained by minimizing

LI
t =

∣∣∣∣∣γσt,c +
4∑

v=1

σt,v

∣∣∣∣∣ (2.6)

on all tetrahedra, which results in the ground state phase diagram displayed in figure
fig. 2.2(d). For η < 1/3, ground state is a long-range ordered ferrimagnet with centre
spins antiparallel to vertex spins, which we dub the 4:0 state as the vertices are either
all-up or all-down on every tetrahedron. There are also a pair of extensively degenerate
disordered ground states. For η > 1 the ground state is the familiar spin ice state of the
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Figure 2.2: Ground states of the Ising model on the centred pyrochlore lattice. (a)-(c) Examples
of the allowed single tetrahedron spin configurations in each of the ground states and (d) the
ground state phase diagram. For η < 1/3 ((a)), the ground state is a long range ordered ferri-
magnet. In the region 1/3 < η < 1 ((b)) the ground state manifold is made up of 3-up/1-down
and 3-down/1-up vertex spin configurations with central spins correspondingly pointing opposite
to the net polarization on each tetrahedron. For η > 1 ((c)) the ground state is the spin ice state
of the pyrochlore lattice, with paramagnetic central spins which are decoupled from those at the
vertices. (e) Finite temperature Ising phase diagram obtained from Monte Carlo simulations.
M̄ I

t , which distinguishes the various states, is defined in eq. (2.7). The data is taken from [166].

antiferromagnetic Ising model on the pyrochlore lattice (see section 1.2). The vertex spins
of each tetrahedron must satisfy the 2-up/2-down (2:2) rule, but there is now an additional
free spin variable occupying the central sites. This doubles the number of spin config-
urations allowed on a tetrahedron in the ground state to 12 and therefore, by Pauling’s
argument [11, 82], gives a residual entropy of ln (3) per tetrahedron.

In between the ferrimagnet and 2:2 state, from 1/3 < η < 1, the ground state is where
the vertex spins have either 3-up/1-down or 3-down/1-up single-tetrahedron configura-
tions (3:1), with the corresponding central spins constrained to point antiparallel to the
net moment of the vertex spins. There are 8 possible spin configurations satisfying this
constraint, with a residual entropy of ln (2) per tetrahedron. Such 3:1 single tetrahedra con-
figurations are the same as those discussed in section 1.3.3, where defects act as charges
of the emergent field. In the presence of dipolar interactions in spin ice, these charges be-
come monopoles of the magnetic field [49]. On the centred pyrochlore, the “monopoles"
(they are not sources of a physical magnetic field) are stabilized in the ground state of a
large region of the parameter space. They are disordered and have maximal density, with
a monopole (either positive or negative) on each tetrahedron.

At, η = 1, the boundary of the 2:2 and 3:1 states, the ground state manifold contains all
compatible combinations of 2:2 and 3:1 single-tetrahedron states, with a large residual
entropy of ln (5) per tetrahedron. Here, the ground state manifold contains densities of
monopoles from 0 to Nt, where Nt is the number of tetrahedra, albeit at a fine-tuned point
in the parameter space.
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Figure 2.3: Example of a move which changes the parity of the winding number in the 3:1
ground state of the Ising model, c.f fig. 1.4. Cyan (pink) spheres represent a centre site with spin
−1(+1) and we use the spin ice convention for the spins at the vertices which are flipped during
the move. All other spins remain unchanged. The move can be viewed as switching the direction
of a pair of directed strings (highlighted) which begin and end on the same tetrahedra.

The 2:2 and 3:1 ground states can be distinguished by the topological nature of the respec-
tive ground state manifolds, characterized by a winding number or its parity respectively.
For the 2:2 states, the central spins are entirely decoupled from the vertex spins so the
U(1) topological nature of the spin ice ground state is preserved and topological ground
state sectors are labelled by the winding numbers, w = (wx, wy, wz), as discussed in sec-
tion 1.3.2. However, in the 3:1 ground state, only their parity is conserved by non-winding
operations, so one can instead define analogous Z2 topological invariants. An example of a
non-winding operation which changes the winding number, yet remains in the 3:1 ground
state, is shown in fig. 2.3. In general, any pair of strings of alternating vertex spins which
begin and end on the same tetrahedra are now flippable, by flipping both of the centre spins
at the beginning and end tetrahedra and all vertex spins in between. This is easiest to see
in the spin ice representation, where the strings of alternating vertex spins become vectors
pointing from and to the same tetrahedra.

As a result, the 2:2 and 3:1 ground states of the Ising model can be viewed as distinct
classical topological spin liquids. Spin ice thin films also feature U(1) and Z2 spin liq-
uids [165], as we discuss in section 2.4.2 there is a more explicit connection to such thin
films as a consequence of the geometry of the centred pyrochlore lattice. In the case of
spin ice thin films, the transition between topological spin liquids requires a change in
sign of the orphan bonds, whereas here this transition can occur by tuning the ratio of
exchange couplings. The different ground state manifolds of the Ising model as a function
of γ also has important consequences for the quantum XXZ model, which we investigate
in chapter 4.
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Monte Carlo simulations of the Ising model [166], including a novel loop update based
on moves of the form illustrated in fig. 2.3, find the finite temperature phase diagram in
fig. 2.2(e), where the distinct states are distinguished by the average magnetization of the
vertex spins on each tetrahedron,

M̄ I
t =

1

Nt

∑
t

∣∣∣∣∣∑
v

σt,v

∣∣∣∣∣. (2.7)

These results are in agreement with the ground state phase diagram presented here, with no
ordering detected in the putative spin liquid regimes. The specific heat and magnetization
in the various states are very well reproduced by analytical Husimi tree calculations [167],
which neglect the effect of closed loops on the lattice. It has been shown [101] that the
thermodynamic properties of many frustrated Ising models are very well-approximated by
Husimi calculations.

2.2.3 Degeneracy and Flat Bands

For the remainder of this chapter we focus on the case of Heisenberg spins, which we call
the centred pyrochlore Heisenberg antiferromagnet (CPHAF). First of all, minimizing Lt

on every tetrahedron immediately tells us that for η ≤ 1/4, the ground state is the long-
range ordered ferrimagnet, whereas for η > 1/4 the ground state is defined by the local
constraint

Lt = 0 (2.8)
for all tetrahedra. Let us consider how the form of this constraint restricts the possible
ground states of the model. For a single tetrahedron, the degree of ferrimagnetic corre-
lation decreases continuously as η is increased, from a saturated ferrimagnet at η ≤ 1/4

to decoupled centre and vertex spins as η → ∞. The corresponding Ising ground states,
4:0, 3:1, 2:2, form part of the Heisenberg ground state manifold at η ≤ 1/4, η = 1/2

and η → ∞ respectively. The degeneracy, D, of the ground state manifold may be esti-
mated for η ≈ 1 using the counting argument [83–85] discussed in section 1.2, yielding
D = 3Nt. This is a higher degeneracy than the pyrochlore Heisenberg antiferromagnet
(PHAF) ground state, where D = Nt, with the additional degeneracy arising from the
degrees of freedom carried by the (fixed length) central spin.

Furthermore, the ground state degeneracy of a spin liquid can manifest itself in momen-
tum space as degenerate flat bands, for example in the kagome [168] and pyrochlore [169]
antiferromagnets, with 1 out of 3 and 2 out of 4 flat bands respectively. In the next sec-
tion we show how both the generalized Luttinger-Tisza method and the rewriting of the
Hamiltonian in terms of a connectivity matrix reveal the disordered state of the CPHAF
is characterized by a ground state with 4 out of 6 flat bands. As a result, the ground state
provides a high-dimensional manifold to which perturbations can be added to stabilize de-
sired states, suggesting the centred pyrochlore lattice as an ideal platform for engineering
exotic states of matter. Furthermore, this large degeneracy means that, at finite temper-
ature, entropy can wash out the effect of perturbations, maintaining the behaviour of the



43

unperturbed J1−J2 model, as is discussed for the addition of dipolar interactions in chap-
ter 3.

Luttinger-Tisza method

The generalized Luttinger-Tisza (LT) method [170, 171] is a mean-field method to obtain
the energy spectrum of a classical spin Hamiltonian in momentum space. To apply the
LT, we first rewrite the Hamiltonian in Fourier space by introducing the momentum space
spin variables

Sµ
q =

1√
Nu.c

∑
I

e−iq·(RI+δµ)Sµ
I , (2.9)

where I labels the primitive unit cell, µ the sublattice of the spin and Nu.c = N/6 is the
number of primitive unit cells. This yields the Hamiltonian

H

J1
=
∑
q

∑
µ,ν

Kµν
q Sµ

q · Sν
−q, (2.10)

with (Hermitian) coupling matrix

Kµν
q (η) =



0 0 a1 a2 a3 a4
0 0 a∗1 a∗2 a∗3 a∗4
a∗1 a1 0 c12 c13 c14
a∗2 a2 c12 0 c23 c24
a∗3 a3 c13 c23 0 c34
a∗4 a4 c14 c24 c34 0


(2.11)

and components

aµ =
1

2
e−iq·δµ , cµν = η cos(q · (δµ − δν)) (2.12)

In the standard LT method [170], the strong constraint, that the spin on each lattice site is
normalized,

|Si|2 = 1, ∀i, (2.13)

is replaced by the weak constraint,∑
i

|Si|2 =
∑
q

∑
µ

Sµ
q · S

µ
−q = N, (2.14)

where the normalization is only enforced on average. Diagonalizing Kµν
q , one can propose

a ground state of the system by putting all of the weight from eq. (2.14) into the mode
at momentum q which corresponds to the minimum eigenvalue. However, this state will
only be a valid physical ground state of the system if it also respects equation (2.13). In
models with inequivalent spins, as is the case here, this standard method often fails to find
physical states.
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Figure 2.4: Energy spectrum obtained from the generalized LT method. For η < 0.25 (left),
there is a unique ferrimagnetic ground state, corresponding to the band minimum at q = 0. For
η ≥ 0.25 (right), the ground state is defined by a four-fold degenerate flat band with a gap to
excitations.

Lyons and Kaplan realized [171] that this can be remedied by modifying eq. (2.14) to the
form ∑

I

∑
µ

|Sµ
I |

2

β2
µ

=
∑
q

∑
µ

tµq · t
µ
−q = Nu.c

∑
µ

1

β2
µ

, (2.15)

where we introduced the rescaled momentum space spin variables, tµq = Sµ
q/βµ and {βµ}

are sublattice dependent parameters.

Using Lagrange multipliers to incorporate the constraint in eq. (2.15) gives the condition
that the state which minimizes the energy must satisfy the eigenvalue equation∑

ν

Lµν
q tνq = λtµq, (2.16)

with energy per unit cell
ε = λ

∑
µ

1

β2
µ

, (2.17)

where the matrix Lµν
q = βµβνK

µν
q . As before, a candidate ground state can be found by

placing all of the weight into the mode corresponding to the minimum eigenvalue (over all
q) of Lµν

q . But now the eigenvalues and eigenvectors of Lµν
q depend on the {βµ} so these

can be tuned to ensure that the proposed ground state also satisfies eq. (2.13).

For our model, we make the ansatz

βµ =

{
1, µ = a, b

β, µ = 1, ..., 4,
(2.18)
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which means the matrices in the standard and generalized variants of the LT method are
related by

Lµν
q (β, η) = βKµν

q (ηeff = βη), (2.19)

where Kµν
q is evaluated for a rescaled effective η, dependent on the β we choose. For 0 <

η < 1/4, we recover the known ferrimagnetic ground state by setting β =
√

2/(1− 3η).
On the other hand, for η ≥ 1/4, an important observation is that at ηeff = 1/

√
2 the spec-

trum of Kµν
q consists of a lower four-fold degenerate flat band and two higher dispersive

bands. This degeneracy can be preserved in the spectrum ofLµν
q for arbitrary η by choosing

β = 1/(
√
2η), ensuring

Lµν
q (β, η) ∝ Kµν

q

(
ηeff =

1√
2

)
. (2.20)

From eq. (2.17) one obtains the energy corresponding to the minimum eigenvalues

E

J1N
= − 1

6η
− 2η

3
. (2.21)

Comparing to eq. (2.4), we know that this is the ground state energy of the system for
η ≥ 1

4
. Therefore, assuming that eq. (2.13) can be satisfied by forming superpositions of

the flat band modes, we have found physical ground states of the system. Note that in this
construction β is continuous across the boundary at η = 1/4.

To summarize, for η ≥ 1/4, the CPH ground state may be described in terms of a four-fold
degenerate flat band. The full energy spectrum obtained using the generalized LT method
is displayed in fig. 2.4. Besides the increased number of flat bands, there is a gap in the
mean-field spectrum, whereas for the kagome [168] and pyrochlore [169] the spectrum is
gapless.

Connectivity matrix

Here, we apply the method from [172, 173] to the centred pyrochlore lattice, which pro-
vides complementary evidence the ground state corresponds to a four-fold degenerate flat
band for η ≥ 1/4. The Hamiltonian in the form of eq. (2.4), can be rewritten in terms of
an N/3×N connectivity matrix, At,n,

H =
J2
2

N/3∑
t=1

N∑
n,m=1

At,nAt,mSn · Sm, (2.22)

where the constant term has been dropped. The elements of A are given by

At,n =


1, if n ∈ vertices of t
γ, if n ∈ centre of t
0, otherwise.

(2.23)

The labels n,m enumerate all sites of the lattice, whereas t enumerates the tetrahedra. The
dimension of the null space of A imposes a limit on the number of zero modes of H and
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thus on the number of flat bands. For η ≥ 1/4 the minimum energy of H as written in
eq. (2.22) is zero, so these zero modes make up the ground state. Since

rank(A) ≤ N

3
, (2.24)

the dimension of the null space,

Nullity(A) ≥ N − N

3
=

2N

3
, (2.25)

by the rank-nullity theorem [174, 175]. The dimension of a band in momentum space is
N/6, so 4 out of 6 bands of the mean-field energy spectrum of the CPHAF must belong
to the ground state.

2.3 Monte Carlo Simulations

Moving beyond mean-field methods, we use classical Monte Carlo (MC) simulations to
obtain the phase diagram of the CPHAF, as well as to understand the properties of the
different phases that we find. Our MC simulations are based off of the implementation
in [176]. They were performed for cubic systems of N = 24L3 spins, where L is the
number of conventional unit cells along each Cartesian axis. We used a minimum of 105

thermalization and measurement sweeps, up to a maximum of 107 where necessary to
compensate for longer autocorrelation times at low temperatures. Each MC sweep con-
sisted of a sweep of single-spin overrelaxation [8, 177–179] and heatbath [8, 180, 181]
updates through the entire lattice.

The implementation of these updates requires the computation of the effective local field
experienced by each spin,

HH
i = J1

∑
j∈nn(i)

Sj + J2
∑

j∈nnn(i)

Sj, (2.26)

so that Si · HH
i is the total energy of all terms involving the spin at site i according to

eq. (2.3).

Equilibrium quantities computed during MC simulations include: magnetizations,

mk =
1

Nk

〈
∑
i∈k

Si〉, (2.27)

where k may include all or a subset of spins on the lattice, a ferrimagnetic order parameter,

f = 〈mcentres ·mvertices〉 (2.28)

which is −1 in the saturated ferrimagnet and 0 in a paramagnet, the nematic order param-
eter, Q(2), defined in [182], which measures quadrupolar moments, the magnetic suscep-
tibility (per site)

χ =
N

T

(
〈m2

all〉 − 〈mall〉2
)
, (2.29)
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and specific heat (per site)

c =
1

NT 2

(
〈E2〉 − 〈E〉2

)
, (2.30)

where E is the energy calculated according to eq. (2.3).

To probe spin correlations we also compute the structure factor

S(q)k =
1

Nk

∑
i,j∈k

eiq·(rj−ri)〈S(ri) · S(rj)〉, (2.31)

where i, j are indices for the sites in the set k and Nk is the number of sites in k, as well
as the structure factor of the effective field (eq. (1.10)),

Eα
µν(q) =

1

Nt

∑
I,J

eiq·(RJ−RI)〈Eα
µ (RI)E

α
ν (RJ)〉, (2.32)

where I, J label the centres of the tetrahedra and α ∈ {x, y, z} the spin components.

2.3.1 Phase Diagram

The finite temperature phase diagram obtained from MC simulations is presented in fig. 2.5.
In addition to the predicted disordered and ferrimagnetic regimes, simulations reveal a par-
tially ferrimagnetically ordered state. Furthermore, the low temperature disordered regime
of the model is characterized by two distinct correlation regimes. Some important ther-
modynamic quantities which distinguish the various low temperature states, as well as the
spin structure factors in the disordered regimes are displayed in fig. 2.6.

The low temperature states we find are:

• Ferrimagnet, 0 < η ≤ 1/4:
The state identified analytically in section 2.2.1, with saturated ferrimagnetic order
as T → 0, magnetization mall =

1
3

and f = −1. Low energy excitations about the
ground state are transverse spin waves so the specific heat c → 1 as T → 0.

• Partial Ferrimagnet (PF), 1/4 < η . 0.343(3):
This phase is characterized by unsaturated ferrimagnetic order, mall < 1/3 and
f > −1, with both continuously approaching zero as η is increased. Fluctuations
which preserve the local constraint are allowed, giving rise to zero modes which
lower the heat capacity below 1 at the boundary (η = 1/4) and to c = 1/2 for
η > 1/4. We also observe a low temperature Curie law, χT = const, a signa-
ture of a spin liquid [101], below the ordering transition. In the structure factor
we do not observe any additional features beyond those associated with peaks at
momenta corresponding to ferrimagnetic ordering. The coexistence of long-range
order and fluctuations in the PF is superficially reminiscent of magnetic fragmenta-
tion in Coulomb spin liquids [183], however as we discuss in section 2.4 we do not
expect an effective field description to capture this behaviour.
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Figure 2.5: (a) (Upper) Finite temperature phase diagram of the antiferromagnetic J1 − J2
Heisenberg model obtained from MC simulations for L = 14. Circles are where ∂Lt/∂T is a
maximum, see (b), crosses where there is a peak in the susceptibility, see (c). At T = 0, the
ferrimagnetic (ferri) phase is characterized by saturated ferrimagnetic order, whereas the partial
ferrimagnet (PF) remains unsaturated. In the spin liquid regime no ordering is observed for the
temperatures simulated and the spin structure factor evolves continuously with η. (Lower) Ap-
proximate ground state phase diagram constructed using MC results at T = 5 × 10−3. (b) The
local constraint, eq. (2.5), from MC simulations for L = 14 and various η, with interpolating
curves and the position of the maximum of ∂Lt/∂T shown with dashed lines. (c) The suscepti-
bility from MC simulations for L = 14 and various η. The locations of the maxima are shown by
dashed lines.

• Spin Liquid (SL), η & 0.343(3):
We do not identify long range order in the magnetization or nematic order parameter,
Q(2), nor do we find peaks in the specific heat or susceptibility. The susceptibility
displays a Curie law crossover, where the low temperature Curie constant decreases
continuously as η increases, reaching zero at η = 0.5, before again increasing con-
tinuously with η. As in the partial ferrimagnet, c = 1/2, indicative of the zero
modes allowed by the local constraint. We can further distinguish two different
regimes of the spin liquid by the spin structure factor. Firstly, for 0.343 . η . 0.5,
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the structure factor is characterized by broad maxima at momenta associated with
ferrimagnetic ordering (fig. 2.6(d)), indicative of short range ferrimagnetic corre-
lations in the ground state. Secondly, for η & 0.5, diffuse broadened pinch points
(bow ties) are the key features of the structure factor (fig. 2.6(e,f)). The width of
these pinch points decreases as the pyrochlore limit, η → ∞, is approached. These
regimes of the structure factor evolve continuously into one another as η crosses 0.5.

We can qualitatively rationalize the location of the different correlation regimes in parame-
ter space by inspecting the single tetrahedron configurations allowed by the local constraint
in more detail. For 1/4 ≤ η ≤ 1/(2

√
2) all vertex spins must have a component antiparal-

lel to the central spin, as illustrated in fig. 2.7. Enforcing this on closed loops in the lattice
would restrict the degree to which the central spins may deviate from pointing along a
global direction, giving rise to long-range partial ferrimagnetic order. For η > 1/(2

√
2),

a vertex spin may have a component parallel to the central spin. This would weaken the
correlations between neighbouring central spins and could destroy any long-range order
in the system. In MC simulations, extrapolating to the L → ∞ limit at T = 0.005, the
transition between the PF and SL occurs at η = 0.343(3) (fig. 2.7(a)), not too far away
from the predicted value of η = 1/(2

√
2) ≈ 0.354. A similar effect could be responsible

for the change in correlations across η = 0.5, with 1 or 2 vertex spins allowed components
parallel to the central spin for η < 0.5 and η > 0.5 respectively.
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Figure 2.6: (a-c) MC results of bulk thermodynamic quantities for various η. (a) The ferri-
magnetic order parameter (eq. (2.28)). In the range 0.25 ≤ η ≤ 0.325 its (finite) T → 0 value
decreases continuously, until vanishing in the SL phase. (b) The susceptibility exhibits a low
temperature Curie law, χT = const for η > 1/4. The low T Curie constant decreases to zero at
η = 0.5 before increasing again. (c) The specific heat, c(T → 0) → 0.5 for all η > 1/4, indica-
tive of soft fluctuation modes about the ground state manifold. (d-f) Structure factors calculated
from mean-field (eq. (2.39), left panels) and MC at T = 0.005 (right panels). For η < 0.4 ((d)),
the mean-field calculation does not capture the broad maxima observed in MC. For η > 0.5

((e,f)), the structure factor is characterized by broadened pinch points whose width decreases as η
is increased.
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Figure 2.7: (a) Finite size scaling of magnetization at T = 0.005 for various η. The markers
are MC results for system sizes L = 2 to 16, the solid lines a linear fit to the four largest system
sizes. We see that m → 0 in the infinite system size limit between η = 0.34 and 0.345. Therefore
we take the phase boundary to be at η = 0.343(3). (b,c) Diagrams representing the single tetra-
hedron spin configurations which satisfy eq. (2.8) for η = 1/(2

√
2), (b), and η = 1/2, (c), whilst

allowing for one or two spins respectively to be perpendicular to the central spin. Increasing η

decreases the effective central spin length, 1
ηSc, meaning that the perpendicular spins can acquire

a finite component parallel to the direction of the centre spin, whereas decreasing η leads to a
finite anti-parallel component for at least one of these spins. We propose this as a qualitative
explanation for the different correlation regimes we observe in our MC simulations.



52 Classical Minimal Models

2.4 Spin Liquid

Having identified a large region of the phase diagram which hosts a disordered low tem-
perature state, we now characterize its properties. MC calculations of the spin structure
factor in the η & 0.5 regime are characterized by broadened bow ties (fig. 2.8), related to
the pinch points of the pyrochlore lattice. In this section we discuss how these correlations
can be understood as the consequence of an emergent charge fluid in the Coulomb phase
framework, or equivalently, as a higher-dimensional spin liquid restricted to a thin-film.

2.4.1 Mean-field Structure Factor

To calculate the ground state structure factor in the regime governed by the local constraint,
we employ Henley’s (mean-field) projection-based approach [87]. This method is equiv-
alent to the lowest order of a large-N expansion (see for example [50] on the pyrochlore
lattice) and was recently employed to distinguish classical spin liquids from a topological
perspective [184].

We are interested in the regime where the ground state is defined by eq. (2.8), so restrict
our attention to η > 1/4. On the centred pyrochlore lattice, taking the Fourier transform
of eq. (2.5) yields

Lx(q) = γScx(q) +
4∑

m=1

e±iq·δmSm(q) = 0, (2.33)

where x = a, b labels the tetrahedra centred on the corresponding sublattice, with spin Scx

occupying the centre site. The exponent takes positive (negative) sign for x = a(b) and
the second equality is the ground state constraint. This may be rewritten in vector form as

Lx(q) = ~Lx(q) · ~S(q) = 0, (2.34)

where

~La(q) = (γ, 0, eiq·δ1 , eiq·δ2 , eiq·δ3 , eiq·δ4)T , (2.35)
~Lb(q) = (0, γ, e−iq·δ1 , e−iq·δ2 , e−iq·δ3 , e−iq·δ4)T ,

~S(q) = (Sca(q),Scb(q),S1(q),S2(q),S3(q),S4(q))
T .

The key object is the 6× 2 matrix

E =
(
~L∗
a

~L∗
b

)
, (2.36)

whose columns are the ~L∗
x. Assuming weakly interacting spins, such that the probability

distribution of spin configurations is Gaussian in the spin variables and enforcing equation
eq. (2.34) by projecting onto the subspace orthogonal to theL∗

x, the structure factor is given
by

〈Sµ(−q) · Sν(q)〉 = s20Pµν(q), (2.37)
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Figure 2.8: Spin structure factors computed from MC simulations for L = 8 at T = 0.005

for all spins (top) and only vertex spins (bottom). The structure factor of vertex spins shows
a broadening of the bow tie features as γ is increased, as well as an increase in diffuse back-
ground intensity, with the structure factor for all spins additionally showing the emergence of
new features. Adapted from [2].

where µ, ν label the sublattices, s20 is a normalization constant and

Pµν(q) = δµν − [E(E†E)−1E†]µν . (2.38)

Enforcing spin normalization on average, the structure factor over all sublattices (see
eq. (2.31)) is

S(q) =
Nu.c

N

∑
µ,ν

〈Sµ(−q) · Sν(q)〉 =
1

Tr(P)
MTPM, (2.39)

where M = (1, 1, 1, 1, 1, 1)T .

Pinch point singularities may arise in the structure factor at the q where E†E is singular.
Since

det(E†E) = (γ2 + 4)2 −

∣∣∣∣∣
4∑

m=1

e2iq·δm

∣∣∣∣∣
2

, (2.40)

for any finite γ, det(E†E) 6= 0 and thus we do not expect to find pinch point singularities
in the structure factor on the centred pyrochlore lattice. This is confirmed by our MC
simulations.

Since these mean-field structure factors correspond to T = 0, they are displayed alongside
those from low T MC simulations in figs. 2.6(d-f). We find good agreement for η > 0.5, so
expect that a long wavelength effective description is appropriate in this regime. Although
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the structure factor here does not have sharp pinch points for any finite η, the finite width
bow ties suggest a close connection to the 3D Coulomb phase on the pyrochlore lattice,
which we explore in more detail in the next section. On the other hand, for 0.25 < η < 0.5,
we find mean-field deviates from MC; it cannot properly capture the short-range ferrimag-
netic correlations which result from microscopically satisfying the local constraint. Nev-
ertheless at intermediate temperature, T ≈ 0.5, mean-field and MC are in good agreement
for all relevant η, even in the 0.25 < η < 0.5 regime, likely due to the large entropy of
the long wavelength spin liquid. This crossover from long wavelength spin liquid to short-
range ferrimagnetic correlations could also explain the bump in specific heat seen for these
values of η around T ≈ 0.1 in fig. 2.6(c) which indicates a loss in entropy.

2.4.2 Coulomb Physics

Charge Fluid Description

As discussed in section 1.3, spins on the pyrochlore lattice can be mapped to an effective
field, with the local constraint

Lp
t =

4∑
v=1

St,v = 0 (2.41)

mapping to the coarse-grained divergence-free constraint

∇ · Eα = 0. (2.42)

Now in the case of the centred pyrochlore lattice the ground state constraint, Lt = 0, can
be written as

Lp
t = −γSt,c, (2.43)

see eq. (2.5). What consequences would this have for the effective field picture?

Consider switching on a small, but finite, γ in the local constraint on only n “defect" tetra-
hedra, whilst maintaining γ = 0 on all others. Provided these defects are well separated,
after coarse graining the central spins on the defects can be viewed as n charges

∇ · Eα(Rt) = Qα(Rt) ∝ ±γSα(Rt) (2.44)

in each of the α channels with −(+) on a(b) tetrahedra. Qα ∈ [−γ, γ] and therefore γ

parametrizes the maximum charge strength. Now the low-energy picture is that of three
copies of an emergent field coupled to scalar charges on diamond lattice sites. Following
the same arguments for the pyrochlore, outlined in section 1.3.3, these charges will expe-
rience an entropic effective Coulomb interaction. Then arguments from Debye-Hueckel
theory [92, 95, 96] tell us that the field correlations must be screened as e−κr with κ ∝ γ,
as any charge in the system carries a factor of γ. In momentum space, this results in the
pinch points acquiring a finite width parameterized by κ

Eα
µν(q) ∝ δµν −

qµqν
q2 + κ2

. (2.45)
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Figure 2.9: Computing the width of pinch points in Ex
xx(q) from MC simulations. (a) The

Ex
xx(q) structure factor, eq. (2.32), as computed from MC for γ = 0.67, T = 0.005 in the [hk0]

plane. A cut is taken along the red line shown. (b) Fitting the Lorentzian in eq. (2.46) to the MC
data for various γ (the same colour scheme is used in (b) and (c)). (c) κ which parametrizes the
width of the pinch point against γ, with linear fit up to γ = 1.25. The linear relation is character-
istic of a dilute charge fluid with charge strength parameterized by γ. Adapted from [2].

Remarkably when we compute the structure factor of the CPHAF in MC simulations and
fit to the form

Ex
xx(qx, qy = 0, qz = 0) =

A

q2x + κ2
, (2.46)

wth A and κ fitting parameters, we find that κ ∝ γ over a large region of the parameter
space, 0 < γ . 1.25. These results are summarized in fig. 2.9. This is despite the fact that
the centred pyrochlore lattice corresponds to taking the limit n → Nt and Debye-Hueckel
theory is used to describe systems of dilute charges at high temperature. Here, there are
charges, albeit with strength parametrized by γ, in at least one α channel on every tetra-
hedron (the effective temperature is a priori not known). The ground state can thus be
viewed as the Heisenberg model variant of a monopole fluid in spin ice, studied in [185,
186]. This description does not impose any energetic constraints on the distribution of
central spins, only accounting for how the central spins entropically rearrange themselves
according to the effective electrostatic interactions between them. For small γ, we expect
that all possible configurations of central spins will be allowed in the ground state. How-
ever for larger γ, certain configurations may no longer be energetically feasible and thus
this view of the central spins as mobile charges will break down.

Analogy with pyrochlore thin films

Finite width pinch points have also been observed in the study of spin-ice thin-films [165],
where they are attributed to a Z2 classical spin liquid, analogous to what we found for the
Ising model on the centred pyrochlore. The connection between pyrochlore thin-films and
the centred pyrochlore lattice can be clarified by mapping the centred pyrochlore to a slab
of a 4D lattice of corner-sharing pentachora, which we term the pentachore lattice.

The slab geometry is obtained by shifting central sites of the a(b) tetrahedra alternately
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Figure 2.10: (a) Mapping of the 2D centred kagome lattice to a slab of the pyrochlore lattice in
3D, analogous to the mapping of the 3D centred pyrochlore lattice to a slab of the 4D pentachore
lattice. Left: The centred kagome lattice made up of corner-sharing centred triangles. Right:
The corresponding slab of the pyrochlore lattice. Bulk tetrahedra are grey, whereas the pink
virtual tetrahedra above and below the slab host unordered surface charges (blue) in the spin
liquid ground state. (b) Structure factor, S(q), in the [hhl0] plane calculated using the analytical
mean-field calculation with η = 1 for the 3D centred pyrochlore lattice (left) and 4D pentachore
lattice (right). The sharp pinch points on the 4D lattice along [4π, 4π, l, 0] become broadened in
the 3D case as pinch point singularities are not allowed by the symmetry of the 3D lattice.

by δt = +(−)
√
5/8, whilst the vertex spins remain in the t = 0 hyperplane, where t is

the additional Cartesian coordinate needed to describe the 4D space. Thus the slab has
open boundaries at the t = ±

√
5/8 edges. To illustrate the idea, the analogous 2D to

3D mapping from a centred kagome lattice to a slab of the pyrochlore lattice is shown in
fig. 2.10(a). We study the connection between spin liquids on the centred kagome and
pyrochlore lattices in more detail in the next section.

Returning to 4D, the slab can be generalized to a fully periodic pentachore lattice, specified
by the positions

r
(4)
I,µ = R

(4)
I + δ(4)

µ , (2.47)

with lattice vectors

R
(4)
I = n1a1 + n2a2 + n3a3 + n4a4, (2.48)

where,

a1 =
1

2


1

1

0

0

 , a2 =
1

2


1

0

1

0

 , a3 =
1

2


0

1

1

0

 , a4 =
1

4


−1

−1

−1√
5

 , (2.49)
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and basis vectors

δ
(4)
1 =

1

8


1

1

1

− 1√
5

 , δ
(4)
2 =

1

8


−1

−1

1

− 1√
5

 ,

δ
(4)
3 =

1

8


1

−1

−1

− 1√
5

 , δ
(4)
4 =

1

8


−1

1

−1

− 1√
5

 , δ(4)
c =

1

8


0

0

0
4√
5

 .

(2.50)

Note that the pentachore lattice has a 5-site basis, as the sites which in the slab geometry
can be identified with central sites of the centred pyrochlore lattice become equivalent in
the translational sense and are shared between neighbouring pentachora.

What can we say about the ground state on the periodic pentachore lattice? The general-
ization of our model will have a ground state (for η > 1

4
) defined by an analogous local

constraint to eqs. (2.5) and (2.8), on each pentachoron. Crucially, now all spins are shared
between clusters centred on a bipartite lattice. We can modify the mean-field structure
factor calculation to account for the pentachore lattice geometry by letting

~La(q) = (γeiq·δ
(4)
c , eiq·δ

(4)
1 , eiq·δ

(4)
2 , eiq·δ

(4)
3 , eiq·δ

(4)
4 )T ,

~Lb(q) = (~La(q))
∗, (2.51)

~S(q) = (Sc(q),S1(q),S2(q),S3(q),S4(q))
T ,

where (. . . )∗ is the element-wise complex conjugate and redefining the E matrix accord-
ingly. Now

det(E†E) = (γ2 + 4)2 −

∣∣∣∣∣γ2e2iq·δ
(4)
c

4∑
m=1

e2iq·δ
(4)
m

∣∣∣∣∣
2

, (2.52)

which vanishes at certain q, where the structure factor may exhibit singularities. Therefore
we see that the symmetry of the centred pyrochlore lattice (equivalent to a pentachore slab)
does not allow for sharp pinch points in the structure factor, whilst they are present for the
fully periodic 4D pentachore lattice. A comparison of the structure factor in both cases is
displayed in fig. 2.10(b).

The sharp pinch points on the pentachore lattice suggest that there is a description of the
ground state in terms of a 4D Coulomb phase. Indeed, one can define such a Coulomb
phase in terms of a four-component vector field which is the higher dimensional version
of Eα (eq. (1.10)). We introduce an orientation for the field with the unit vectors

û(4)
µ = 2

√
5 δ(4)

µ , µ = 1, 2, 3, 4, c, (2.53)

and then define the four-component vector field

Eα(R(4)
p ) = γû(4)

c Sα(R(4)
p ± δ(4)

c ) +
4∑

m=1

û(4)
m Sα(R(4)

p ± δ(4)
m ), (2.54)
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at the centre of each pentachoron, R(4)
p , for each spin component, α ∈ {x, y, z}, with

± = +(−) for a(b) pentachora. Note that the Eα
x , E

α
y , E

α
z vector components of the

Eα = (Eα
x , E

α
y , E

α
z , E

α
t ) field are proportional to the corresponding components of the

3D field. After coarse-graining, the ground state constraint, eq. (2.8), becomes

div(Eα(r(4))) = 0. (2.55)

Following the same arguments as for the pyrochlore we expect sharp pinch points in the
structure factor and a 1/r4 decay of correlations in real space. Defects would interact via a
1/r2 effective Coulomb potential; the effective theory for dilute defects is 4D electrostatics.

Returning to the pentachore slab, this can be viewed as the thinnest possible thin film which
keeps both a and b pentachora of the lattice intact. Therefore, we can understand the prop-
erties of the ground state of the Heisenberg model on the centred pyrochlore lattice in a
similar way to the spin ice thin films studied by Lantagne-Hurtubise, Rau and Gingras (L-
HRG) in [165]. There, the authors considered various geometries of thin films of nearest
neighbour spin ice, also including so-called orphan bonds; bonds at the surface which do
not belong to a bulk tetrahedron, but instead can be thought of as belonging to a fictitious
virtual tetrahedron. In our case, the central spins lie on the surface in the slab geometry,
they not only belong to a bulk pentachoron but are also the single spin of a virtual penta-
choron, see fig. 2.10(a). As a result, the closest analogue to the pentachore slab (albeit in
3D rather than 4D) studied in [165] is the [001] thin-film with orphan bonds set to zero. For
such systems, L-HRG showed that at low T the structure factor will also be characterized
by finite width pinch points, which they argue is the result of fluctuating surface charges
on the virtual tetrahedra. In our model, the flux entering/exiting a virtual pentachoron is
γSα

c , so is a continuous variable in [−γ, γ]. Note that due to the spin length constraint on
a Heisenberg spin, there must be non-zero flux entering each bulk pentachoron in at least
one of the α channels. Therefore we would also expect these fluctuating surface charges
to destroy the Coulomb phase, with a screening length proportional to γ, as seen in our
MC simulations.

The descriptions in terms of surface charges in higher dimensions or bulk charges as pre-
sented in the previous section describe the same effect. On the microsopic level, a spin at a
surface or centre belongs only to a single (bulk) unit and therefore is less constrained than
a spin shared between two corner-sharing units, modifying the allowed spin correlations
in the ground state manifold in such a way as to destroy the Coulomb phase. The analogy
between thin films and centred lattices can be useful in considering how to induce a de-
sired effect in either system through the addition of perturbations as well as giving insight
into the physics described by the bare Hamiltonian.

2.5 Centred Kagome Lattice

The mechanisms discussed on the centred pyrochlore lattice, whereby the central spins act
as mobile sources of flux, should also apply to other lattices made up of suitable corner-
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Figure 2.11: (a) Approximate zero temperature phase diagram for the J1 − J2 model on the
centred kagome lattice, obtained from low temperature MC simulations and rewriting the Hamil-
tonian in terms of the local constraint. MC simulations find an analogous partial ferrimagnetic
(PF) state to that on the centred pyrochlore in addition to the expected ferrimagnetic and disor-
dered regimes. (b) Comparison of the structure factor of the nearest neighbour Heisenberg model
on the pyrochlore lattice (left, computed using the mean-field calculation in [87]) and the centred
kagome lattice (right, computed from MC at T = 0.02 for a system size of L = 48). The sharp
pinch points on the pyrochlore become broadened upon reducing the dimension to the centred
kagome lattice.

sharing centred clusters, regardless of dimensionality or number of spins making up the
cluster. Therefore, we also investigate the Hamiltonian, eq. (2.3), on the 2D analogue of
the centred pyrochlore lattice, the centred kagome lattice (fig. 2.10(a)). Here, an additional
site at the centre of each triangular unit of the kagome lattice is coupled to the vertex spins
by J1 and the vertex spins are mutually coupled by J2.

The centred kagome lattice is defined by the position vectors

r
(2)
i,µ = R

(2)
i + δ(2)

µ , (2.56)

where R(2)
i = n1a

(2)
1 +n2a

(2)
2 , with the triangular lattice vectors a(2)

1 = 1
2
(1,−

√
3), a(2)

2 =
1
2
(−1,−

√
3) and integer n1, n2. We choose units of

∣∣∣a(2)
1

∣∣∣ = ∣∣∣a(2)
2

∣∣∣ = 1. The lattice has a
5-site basis of

δ(2)
a =

(
0

0

)
, δ

(2)
b =

(
0
1√
3

)
, (2.57)

δ
(2)
1 =

(
0
1

2
√
3

)
, δ

(2)
2 =

(
1
4
−1
4
√
3

)
, δ

(2)
3 =

(
−1
4
−1
4
√
3

)
.

Sites labelled by a(b) occupy the centre of up (down) triangles. As for the centred py-
rochlore, the Hamiltonian may be rewritten in the form of eq. (2.4), which gives rise to the
ground state constraint

LCK
t = 0, ∀t (2.58)
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for η ≥ 1/3, where

LCK
t = γSt,c +

3∑
v=1

St,v, (2.59)

with t now labelling centred triangular units. For η ≤ 1/3, the energy is minimized by the
ferrimagnetic state. Furthermore, finite size MC simulations find a partial ferrimagnetic
state, analogous to that seen on the centred pyrochlore, at low temperatures. Like the
mapping from the 3D centred pyrochlore lattice to the 4D pentachore slab, one can map
the 2D centred kagome lattice to a slab of the 3D pyrochlore lattice, as shown in fig. 2.10(a).
This is done by considering the centred kagome lattice as occupying the z = 0 plane of a
3D space, then shifting the central sites alternately up (down) to z = +(−)1/

√
6. Thus the

centred triangles become tetrahedra and we have a pyrochlore slab with open boundaries
at the z = ±1/

√
6 edges, which is the thinnest possible thin-film geometry keeping both a

and b tetrahedra intact. Adapting the mean-field calculations of section 2.4.1 to the centred
kagome,

~La(q) = (γ, 0, eiq·δ
(2)
1 , eiq·δ

(2)
2 , eiq·δ

(2)
3 ),

~Lb(q) = (0, γ, e−iq·δ(2)1 , e−iq·δ(2)2 , e−iq·δ(2)3 ),
(2.60)

and therefore

det(E†E) = (γ2 + 3)2 −

∣∣∣∣∣
3∑

m=1

e2iq·δ
(2)
m

∣∣∣∣∣
2

, (2.61)

which is non-zero for any finite γ. Therefore the disordered state will not have any singular-
ities in the structure factor, as we would expect from the arguments of previous sections.
This is confirmed by our MC simulations on the centred kagome lattice where we find
broadened pinch points in the structure factor, as shown in fig. 2.11(b). Thus, we see that
the picture of central spins acting as mobile sources of flux in the effective low energy field
theory is not unique to the centred pyrochlore lattice.

2.6 J1 − J2 − J3 Model

Returning to the centred pyrochlore lattice, we now investigate the possibility to realize
different states of matter by applying perturbations to the bare J1 − J2 Hamiltonian, tar-
geting specific regions of the degenerate ground state manifold. In particular, we consider
the effect of a J3 term coupling third nearest neighbours, i.e centre spins on adjacent tetra-
hedra.

2.6.1 Ferromagnetic J3

After the addition of a ferromagnetic J3 the ground state manifold is made up of states with
ferromagnetic centre spins and vertex spins correspondingly satisfying the local constraint.
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Figure 2.12: (a) Structure factor for η = 0.4, J3 = −0.1 at T = 0.001 computed from MC. The
colour scale is restricted to a maximum of 2 to show the coexistence of Bragg peaks from long-
range ordering of the centre spins and pinch points from the vertex spins. The width of the pinch
points continues to decrease with temperature up to the resolution allowed by the finite system
size. (b) Real space spin correlations (for perpendicular spin components to the ordering axis)
computed from MC in the [110] direction at T = 0.001. They decay as 1/r3 for all η shown,
except at η = 0.3, where we are not able to access low enough temperatures in our simulations.

Selecting the ẑ direction as that along which the centres are aligned, the local constraint
can be rewritten as

4∑
v=1

 Sx
v

Sy
v

Sz
v +

γ
4

 =
4∑

v=1

S̃v = 0, (2.62)

such that the rescaled vertex spins, S̃v can be mapped to the usual divergence-less field
of the 3D Coulomb phase (eq. (1.10)). The structure factor of S̃v should then yield sharp
pinch points as well as a 1/r3 algebraic decay in real space. This is verified in MC simu-
lations, by calculating the structure factor

S⊥(q) =
1

N

∑
i,j

S⊥
i · S⊥

j e
iq·(ri−rj), (2.63)

where S⊥
i = (Sx

i , S
y
i )

T and the orientation of the axes is chosen such that ẑ = m̂centres for
each spin configuration sampled. We find sharp pinch points for all η > 0.3 simulated.
The full structure factor, eq. (2.31), for η = 0.4 is presented in fig. 2.12(a), showing the
coexistence of Bragg peaks and pinch points. Considering the local constraint, we would
expect sharp pinch points to persist all the way down to η = 1/4, but the lower temperature
required to enter the Coulomb phase at low η and the reduced weight in the perpendicular
spin components, makes their observation challenging as this limit is approached. Fur-
thermore, we also calculate the real space spin correlations for perpendicular spin compo-
nents and find the characteristic 1/r3 decay expected for a 3D Coulomb phase, as shown
in fig. 2.12(b).

This recovery of the Coulomb phase can be easily understood in the effective field theory
picture. When the central spins order ferromagnetically they form a perfect zinc blende
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Figure 2.13: (a) The centred pyrochlore lattice with only J1 bonds shown, J3 bonds couple near-
est neighbour centres (red) sites. (b) The basic frustrated unit of the antiferromagnetic J1 − J3
model on the centred pyrochlore lattice. For J3

J1
> 1

2 the ground state is that shown with the angle
between centre spins (red) and their shared vertex spin (grey) given by cosφ = − J1

2J3
.

charge crystal in the z channel with charges Qz = ±γ on alternating diamond sublattices.
This leaves the x and y channels of the effective field with no charges, therefore restoring
the divergence-free condition of the 3D Coulomb phase. This is analogous to the situation
in spin ice thin films where one can stabilize the 2D Coulomb phase by inducing ordering
in the surface charges [164, 165].

2.6.2 Antiferromagnetic J3

Taking antiferromagnetic J3 introduces additional frustration into the model as J1 and
J3 bonds cannot be simultaneously satifised, J1 bonds connecting a pair of centre sites
through an intermediate vertex spin favours ferromagnetic order of the centres, whereas
J3 favours Néel order. For J2 = 0 one can think of the lattice as a singly decorated dia-
mond lattice, where the basic frustrated unit can be represented as a triangle, see fig. 2.13.
Minimizing the energy on a single triangle, the ground state is the same ferrimagnetic
state as in the J1 − J2 model for J3

J1
≤ 1/2, whereas for J3/J1 > 1/2 the ground state is

the canted state shown (fig. 2.13(b)), with the angle between the centres and their shared
vertex spin given by cosφ = −J1/(2J3). In the limit J3/J1 → ∞ this becomes a state
with Néel ordered centre sites which are decoupled from the vertex sites.

On the full lattice, the ferrimagnetic state remains the ground state, however for the canted
state the spiral order of the centre spins must be commensurate with closed loops on the
lattice to guarantee it remains a ground state. This requires that Nloopφ = πn where
Nloop is the number of centre sites in a given loop. For example, considering only the
shortest hexagonal loops, a commensurate spiral order of the centre sites is obtained at
φ = 2π/3 and 5π/6, corresponding to J3/J1 = 1 and J3/J1 = 1/

√
3 respectively. The
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difference in energy between the Nèel J3/J1 → ∞ ground state and the canted state
is EN − Ec = J2

1/J3. Therefore for large but finite J3 the energy difference is small.
Combined with the fact that commensurate spiral orders will not be possible on hexagonal
loops for large J3/J1, this leaves the state with Nèel ordered centres as the likely ground
state.

Returning to the J1 − J2 − J3 model and assuming Nèel ordered centre sites, the effec-
tive field felt by a vertex spin from its two neighbouring centre spins exactly cancels, and
therefore vertices become decoupled from centres. As a consequence, the lowest energy
configuration is achieved when the vertices satisfy the usual pyrochlore local constraint,
eq. (2.41). Therefore the vertex spins should realize the usual 3D Coulomb phase, which
unlike in the ferro J3 case does not require any rescaling of the spins. In MC simulations,
we find a state with Neel ordered centres and vertex spins satisfying the pyrochlore local
constraint as T → 0 (down to T = 10−3) for a system size ofL = 4 and J3 = 10. However,
upon increasing the system size, it becomes challenging to thermalize the MC simulations
at low temperature. More experimentally relevant would be a small antiferromagnetic
J3, however MC simulations also struggle to thermalize in this case, so we were unable
to identify which ground states such a perturbation would favour in the thermodynamic
limit.

2.7 Summary and Outlook

Using a combination of analytical arguments, mean-field calculations and MC simulations
we have outlined many of the key features of the antiferromagnetic J1 − J2 Heisenberg
model. The model exhibits a competition between ferrimagnetism on the one hand and the
Coulomb physics of the pyrochlore on the other, tuned by the coupling ratio η = J2/J1.
This gives rise to ordered, partially ordered and disordered low temperature states. The
disordered spin liquid can be understood up to γ ≈ 1.25 as a dilute emergent charge fluid,
where the central spins act as mobile sources of flux which are screened by the effective
field of the corner spins. Alternatively, one can view the centred pyrochlore lattice as a
thin film of a four-dimensional pentachore lattice with flux entering from the boundaries,
resulting in the same effect. Combined with the knowledge of the Ising model which we
have discussed, this provides the starting point for understanding magnetic materials on
the centred pyrochlore lattice. The highly degenerate nature of the ground state mani-
fold, combined with the emergent charge picture, suggests it is an ideal platform for en-
gineering exotic states of matter, particularly those with an interplay between order and
low-temperature fluctuations, as we showed with the addition of a J3 term.

Going forwards, there remain some open questions to fully characterize the low tempera-
ture states of the CPHAF. First of all, we do not have a precise understanding of how the
local constraint gives rise to the partial ferrimagnetic state out of the spin liquid manifold,
as well as the ferrimagnetic correlations for η < 0.5. A microscopic understanding, for
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example through an effective model on the diamond lattice which models how to satisfy
the local constraint on closed loops in the lattice, is likely the key. For η < 0.8 the ef-
fective description in terms of a dilute fluid of charges begins to break down; a correct
description would probably have to incorporate the energetic constraints on central spin
configurations, as well as corrections to the Debye-Hueckel theory arising from the fact
that the charge density becomes large. In the regime characterized by broadened pinch
points and in light of the Z2 nature of the Ising ground state over a broad range of η, future
work could investigate whether the CPHAF realizes a Z2 classical Heisenberg spin liquid
as introduced in [187].
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Chapter 3

Dipolar Interactions and [Mn(ta)2]

We now turn to understanding the low temperature magnetic properties of the metal-
organic framework material [Mn(ta)2]. First, we describe the basic properties of [Mn(ta)2],
before justifying that an appropriate model to investigate is the antiferromagnetic J1 − J2
classical Heisenberg model with the addition of dipolar interactions. We then compare
the results of magnetization measurements at temperatures above its ordering transition
(Tc = 0.43K) to Monte Carlo simulations, revealing that measurements at T above 1K are
consistent with the emergent charge fluid identified in the previous chapter. The specific
heat, which must be modelled using quantum spins, is also consistent with these param-
eters. At these temperatures, the dipolar interactions have very little effect, however, at
lower temperatures (Td = 0.25 K), they induce ordering in our model. We characterize
this order and show that the inclusion of dipolar interactions qualitatively reproduces spe-
cific heat and magnetization measurements in the regime 0.4K < T < 1K. Furthermore,
using mean-field calculations we show that the ordering in the model is robust when in-
creasing the cut-off radius of dipolar interactions. This chapter closely follows [2] with
some figures directly reproduced. It includes additional information on how theoretical
and experimental results were compared, as well as more details on the effects of dipolar
interactions in the model.
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(a) (b)

Figure 3.1: Structure of [Mn(ta)2]. (a) The full chemical structure. All Mn ions are octahedrally
coordinated by the ligands. The three N atoms of the triazolate ligand bind to three separate Mn
ions, creating the centred pyrochlore structure. (b) The same portion of the lattice but with only
Mn ions displayed, which form a centred pyrochlore lattice. The first three nearest neighbours are
indicated. Adapted from [2].

3.1 [Mn(ta)2] and the Heisenberg + dipolar model

The material in question belongs to a family of metal-azolate frameworks [M(II)(ta)2],
where M(II)=M2+ is a charge +2 transition metal ion and H-ta = 1H-1,2,3-triazole, which
deprotonates to form a charge −1 triazolate ion [188]. The triazolate ligand in these ma-
terials is tridentate, each of the three N atoms bond to distinct M ions, which generally
results in the formation of M-centred tetrahedra of M ions, as shown in fig. 3.1(a). On the
larger scale, this leads to a structure where the M ions have the same network topology
as the centred pyrochlore lattice, however there may be structural distortions (as seen in
[Cu(ta)2] [189]. Despite the possibility to study magnetic frustration in lattices closely re-
lated to the pyrochlore, the study of their magnetic properties remains limited [188–192],
largely due to the difficulty in engineering strong magnetic interactions in these materi-
als [127].

We choose to focus on M(II)=Mn(II) which has the electronic structure [Ar]3d5. Since
the Mn ions are octahedrally coordinated, they experience a cubic crystal field. Assum-
ing a high spin configuration, each of the valence d orbitals (split into t2g and eg sets) are
filled with a single unpaired electron, resulting in an effective S = 5/2 magnetic mo-
ment. X-ray diffraction measurements down to T = 5 K show that the Mn ions adopt
the undistorted centred pyrochlore lattice [2], displayed in fig. 3.1. The distances between
Mn ions are found to be rnn = 3.929 for nearest neighbours and rnnn = 6.416 for next
nearest neighbours. Previous conductivity measurements and density functional theory
(DFT) band-structure calculations [193] found a large band-gap of 3.1 eV = 36 000 K.

We would like to construct a simplified model of [Mn(ta)2] in order to understand its low-
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temperature magnetic properties. First of all, given the large bandgap and that we are
interested in its properties for T . 200 K, the material can be assumed to be insulating
and thus a model of localized magnetic moments is appropriate. Its high spin electronic
configuration has equal filling of the d5 orbitals, and thus orbital anisotropic effects will
be minimized, so we assume isotropic (Heisenberg) spin exchange interactions mediated
by the triazolate ligands. The large S = 5/2 value justifies treating the spin as a classi-
cal variable, in this case, a length 5/2 three-dimensional vector, S. In the S → ∞ limit
the partition function of the quantum spin system and its classical counterpart are equiva-
lent [194, 195], and approximations as classical spins have been successful in describing
many phenomena in pyrochlore materials with spins of similar magnitude, see for exam-
ple [196–200].

DFT calculations assuming isotropic exchange interactions find they are antiferromagnetic
and negligible beyond second nearest neighbours, with JDFT

1 ∼ 2 − 4 K, JDFT
1 /JDFT

2 ≈
1.3−1.65 and |J3| < 0.01K [2]. Both J1 and J2 have similar exchange pathways, through
two and three N atoms of the ligand respectively, whereas J3 exchange can only occur as
a high order process through J1 pathways. Dipolar interactions, which exist between any
magnetic moments, have a strength of

DS2

r3nn
=

DexpS
2

r3nn
=

g2µ2
Bµ0S

2

4πkBr3nn
≈ 0.27 K (3.1)

between nearest neighbours, where g is the Landé g-factor. For [Mn(ta)2] g was exper-
imentally determined from a Curie-Weiss fit to be 2.05 [2]. Therefore at temperatures
below 1 K dipolar interactions will be significant, and should be included in any model.
Bringing all of this together, our model for the magnetic interactions in [Mn(ta)2] is

H = J1
∑
〈ij〉

Si · Sj + J2
∑
〈〈ij〉〉

Si · Sj +
D

2

∑
i 6=j

(
Si · Sj

r3ij
− 3

(Si · rij)(Sj · rij)
r5ij

)
− h ·

∑
i

Si,

= HH +HD − h ·
∑
i

Si

(3.2)

on the centred pyrochlore lattice with classical three-component S = 5/2 spins, where
~rij = ~rj − ~ri is the displacement between sites i and j, and we have also included the
possibility of applying an external magnetic field, h, in the last term. This is the classical
Heisenberg model described in the previous chapter with the addition of dipolar interac-
tions, which we call the Heisenberg + dipolar model.

3.2 Monte Carlo Simulations with Dipolar
Interactions

Simulations are performed for the S = 1 system, with quantities appropriately rescaled
after. We set the dipolar interaction strength to the experimentally relevant value, forS = 1
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eq. (3.1) gives Dexp/r
3
nn = 0.043 K.

As was the case for the Heisenberg model, we use heatbath [8, 180, 181] and overrelax-
ation [8, 177–179] single-spin updates. This requires computing the local (effective) field
felt by each spin

Hi = HH
i +D

∑
j;rij<R

(
Sj

r3ij
− 3

Sj · rij
r5ij

rij

)
− h, (3.3)

such that Si · Hi gives the total contribution of all terms involving the spin at site i to
eq. (3.2). HH

i is the contribution from the Heisenberg terms and in the dipolar term we
introduce a cut-off radius R, such that we only consider interactions with sites j within
distance R of site i. In order to implement the computation of the dipolar contribution,
for each site i we generate a vector containing the indices of all lattice sites j which are
within the cutoff as well as the corresponding displacement rij = rj − ri, which is stored
in memory

To identify possible symmetry-broken states we measure the single-tetrahedron magne-
tizations defined in [197]. They transform under the non-trivial irreducible representa-
tions [133] of the symmetry group of a tetrahedron, thus capturing the different ways this
symmetry can be broken. Since the Hamiltonian respects the symmetries of the lattice, or-
der which breaks these symmetries will necessarily be symmetry-broken states of eq. (3.2).
For our case, it turns out that the magnetization

mT1,B,t =
−1

2
√
2

Sy
1 + Sz

1 − Sy
2 − Sz

2 − Sy
3 + Sz

3 + Sy
4 − Sz

4

Sx
1 + Sz

1 − Sx
2 + Sz

2 − Sx
3 − Sz

3 + Sx
4 − Sz

4

Sx
1 + Sy

1 − Sx
2 + Sy

2 + Sx
3 − Sy

3 − Sx
4 − Sy

4

 (3.4)

is of particular importance, where the indices label the four sub-lattices of the vertex spins,
according to the convention in eq. (2.2). In simulations we compute the magnetizations,
averaged over all a (or equivalently b) tetrahedra

m̄λ =
1

Nt

∑
t∈a

mλ, (3.5)

where Nt is the total number of a and b tetrahedra, such that the saturated value |m̄λ| = 1

corresponds to an ordered state which repeats the same maximal |mλ| configuration on
every a tetrahedron of the lattice.

3.3 Converting to Experimental Units

Here we outline how to convert the relevant quantities obtained from MC simulations to
experimental units. First of all, since in our simulations we set kB = 1, all energies are in
units of K. We work with J1 = 1 and S = 1 in simulations, so to convert temperatures
and energies we should multiply by a factor of J1S2 where J1 is the energy scale of the
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J1 exchange interaction in K. Explicitly, Texp = J1S
2Tsim. We determine J1 by fitting

the magnetic susceptibility measured in simulations to experiments. This procedure is
discussed in detail in the next section. For the specific heat (per site), we measure

csim =
1

N

∂E

∂T
=

1

NT 2

(
〈E2〉 − 〈E〉2

)
, (3.6)

so to convert to experimental units of Jmol−1K−1, we should multiply by the molar gas
constant, R = kBNA, so that cexp = Rcsim Jmol−1K−1.

For magnetic properties, the differences between quantum and classical spins must be
accounted for. We can obtain a scaling between the magnetic moments of classical, µC

z ,
and quantum, µQ

z , spins by considering the magnetic moment of a single spin in an external
field, B = µ0H , applied in the (arbitrary) z direction [100, 104],

µC
z = gµBSfL(x),

µQ
z = gµBSfB(x),

(3.7)

with the Langevin and Brillouin functions

fL(x) = coth(x)− 1

x
,

fB(x) =
2S + 1

2S
coth

(
2S + 1

2S
x

)
− 1

2S
coth

(
1

2S
x

)
,

(3.8)

where x = gµBS
kBT

B. Taking the small B limit,

µC
z = g2µ2

BS
2B +O(B3),

µQ
z = g2µ2

BS(S + 1)B +O(B3),
(3.9)

so we take the quantum-classical ratio of magnetic moments in an external field asµQ/µC =

(S + 1)/S. We assume this holds at at all temperatures and fields. Therefore, to convert
magnetization results from S = 1 simulations to experiment, we use the relation,

µexp
z = g(S + 1)mz µB per Mn, (3.10)

where g can be determined by fitting the susceptibility to experiments, as done in the next
section. mz is the z-component of the magnetization, m, measured in simulations. In a
non-zero external field, h, the z-axis is defined as the direction of this field.

The energy of a saturated magnetic moment in an external field is U exp = µ0HgµBS J,
whereas in our simulations U sim = kBJ1hS

2 J (after multiplying by J1S
2), so setting

these energies equal, to convert between the external field in simulations, h, and that in
experiments, µ0H ,

µ0H =
kBJ1S

gµB

h T. (3.11)
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Finally, we consider the magnetic susceptibility. In experiments, the molar susceptibility,

χexp(Texp) =
NA

N

(
∂µt

z

∂H

)
H→0,Texp

m3mol−1, (3.12)

is measured, where µt
z is the total magnetic moment in the z-direction, along which H is

applied. On the other hand, in simulations we measure the susceptibility per site,

χsim(Tsim) = N

(
∂mz

∂h

)
h→0,Tsim

=
N

Tsim

(
〈m2

z〉 − 〈mz〉2
)

Tsim

. (3.13)

Note, that this expression uses a single component of the magnetization, which is different
to what is often measured in MC simulations,

χabs =
N

T

(
〈m2〉 − 〈|m|〉2

)
, (3.14)

typically used to avoid issues arising due to ergodicity breaking.

Using the expressions for µexp
z and H above, which take care of the scaling of the magnetic

moment as well as of energies,

χexp(Texp) =
NAg

2µ2
Bµ0(S + 1)

kBJ1S
χsim(J1S

2Tsim) m
3mol−1. (3.15)

We now proceed to compare simulation results to experimental measurements.

3.4 Comparison to Experiment

3.4.1 Fitting Exchange Coefficients

In order to compare our model to experiment, we fit the magnetic susceptibility using the
exchange interactions J1, J2 and Landé g-factor as fitting parameters. The fitting procedure
is as follows:

• With D = 0, fix J1 and perform many simulations for different J2, obtaining a
χT (T ) curve for each.

• Find the best fit to interpolated experimental data of χT (T ), using J1 to scale T and
g to scale χ (see eq. (3.15)).

• For several of the J2, check if the optimal J1, g change when letting D = Dexp.
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Figure 3.2: (a) Comparison of magnetic susceptibility from experiment and fitted simula-
tions with (Dexp) and without (D = 0) dipolar interactions. The optimal fitting parameters
J1 = 2 K, η = 0.6625 and g = 2.05 are used. For D = 0, the fitted values for η ± 10% shift
the curve by no more than the point size. The bottom panel shows the differences between the
simulations and experiments with (orange) and without (blue) dipolar interactions, as well as
the difference between the two simulations (red). MC error for D = 0 simulations is plotted
in green. The fitting procedure was performed using interpolated experimental data above
T = 0.9 K, indicated by the dashed line. (b) Magnetization in an external field for temperatures
T = 5, 10, 15, 25 K (from top to bottom). The MC results are obtained using the optimal fitting
parameters of the susceptibility and a field applied in the cubic z-direction. (c) Specific heat
measured in experiment compared to exact diagonalization (ED) results for a single tetrahedron.
The ED results were fitted using J1 and an additional y-scaling of the specific heat. The optimal
fit was found for J1 = 1.95 K, η = 0.57 and y = 0.8.

We perform the fit for T > 0.9 K to avoid the region where the material’s ordering tran-
sition (not captured by the D = 0 model) significantly impacts the susceptibility. The
ordering transition is discussed in more detail later in this section. We find the optimal fit
for J1 = 2.0K, η = 0.6625 and g = 2.05. This is in good agreement with the exchange pa-
rameters computed from DFT, JDFT

1 = 2−4K, η = 0.61−0.77, and the g extracted from a
Curie-Weiss fit of the experimentally measured susceptibility, gexp = 2.05. A comparison
of susceptibility curves for these parameters to experiment is displayed in fig. 3.2(a). We
find that the inclusion of dipolar interactions does not affect these optimal values.

In all results presented in this section we set the dipolar cut-off at R/a = 0.55 (up to 4th
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nn) in MC simulations, where results are well-converged with respect to the inclusion of
longer range interactions, as shown in section 3.6. The experimental data appears to flatten
off at about 1K, which could be indicative of a low-temperature Curie law (section 1.4), a
signature of a classical spin liquid. However, this could also be due to the nearby transition.
The curve must flatten in order to increase again.

These parameters put [Mn(ta)2] firmly in the classical spin liquid regime of the D = 0

model, where the effective description is an emergent charge fluid. However, in experi-
ments, we see that the system orders at Tc = 0.43K, so clearly the D = 0 model is missing
an important piece of the puzzle. It turns out that setting D = Dexp induces an ordering
transition at Td = 0.25 K, the nature of which is discussed in more detail in section 3.6.
Since the susceptibility measured in experiments and simulations with and without dipolar
interactions are in good agreement for T & 1 K, we expect that they do not significantly
alter the state of the system at these temperatures, so can directly compare to experiments
using results for the D = 0 model. We investigate the effect of dipolar interactions at these
temperatures more closely in section 3.5. By the same token, experiments for T < 1 K

should be compared to simulations with dipolar interactions, as the effect of the nearby
ordering transition will be significant.

3.4.2 Magnetization and Specific Heat

Armed with the optimal parameters matching the susceptibility in simulations and exper-
iment, we now verify that other experimental features are reproduced by the model, in
particular the magnetization in an external field and the specific heat.

First, we focus on the D = 0 model, where we expect to reproduce features for T > 1 K.
We compare measurements of the magnetization in an external field to MC simulations
with the optimal fitted parameters at T = 5 − 25 K, as shown in fig. 3.2(b), where simu-
lations and experiment are in good agreement.

Our next point of comparison is the specific heat. However, the continuous nature of
the classical spins in our model means that the specific heat behaves unphysically at low
temperatures, approaching a constant, which in turn means that the entropy tends to infinity
asT → 0. Therefore, we turn to exact diagonalization (ED) of the Heisenberg Hamiltonian
with S = 5/2 quantum spins. We compute the specific heat for a single tetrahedron
of 5 spins with open boundary conditions and perform a similar fitting procedure to the
susceptibility, using J1, η and a scale factor, y, to find the optimal fit to the experimental
data. We perform the fit for T > 0.9K, finding optimal parameters of J1 = 1.95, η = 0.57

and y = 0.8. A comparison of the ED and experimental results for the specific heat are
presented in fig. 3.2(c).

Whilst computing the specific heat on a single tetrahedron is a crude approximation, it is
able to capture the location and shape of the broad bump observed in experiment remark-
ably well. Since the model has S = 5/2, numerical simulations of the quantum model are
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Figure 3.3: (a) Magnetization in an external field at temperatures T1 = 0.4 K and T2 = 1.0 K.
Simulation results are obtained for an L = 12 system with dipolar interactions (R = 0.55) and
field direction (100). There is good agreement up to |µ0H| ≈ 3 T. (b,c) Specific heat at low tem-
peratures in an external field, with MC results for the same parameters (including field direction)
as (a). Note the different x and y scales of the plots. In particular, the magnitude of the features
observed in simulations are about a factor of 2 larger than in experiments. Nevertheless the quali-
tative behaviour, with the peak broadening and shifting to higher temperatures as external field is
increased, is captured by the simulations. For both sets of simulations we verified that changing
the field direction does not qualitatively affect the results.

highly challenging and the relatively short correlation lengths for these parameters in the
model mean that a single tetrahedron may be able to capture many of the significant effects.
The broad bump coincides with the spin liquid regime of the model, see section 3.5, and
can be attributed to an increase in the specific heat upon entering the spin liquid regime
from high temperature, followed by an entropy release as quantum fluctuations begin to
modify the spin liquid manifold.

Now, let us compare experimental features in the T < 1K regime to the model with dipolar
interactions. First, we compare the magnetization, measured at T = 0.4 K and 1 K, as
shown in fig. 3.3(a). We find good agreement between simulations and experiments up to
|µ0H| = 3 T, however simulations fail to reproduce the kink observed in the T = 0.4 K

results between 4 − 5 T. Experimental measurements are performed on powder samples
so one should properly compare to simulation results averaged over all field directions,
however we found little qualitative difference in the magnetization when performing the
simulations for the field directions (100), (110), (111) and (211), so we would not expect
these results to qualitatively change after averaging.

We also compare the specific heat in the temperature regime 0.4 ≤ T ≤ 1 K for fields up
to 2.4 T, see figs. 3.3(b,c). Whilst the scale of the features in specific heat do not match
experiments, we find the same general features, with a broadening of the peak associated
with the ordering transition and a shifting of the peak to higher temperatures, as well as
the appearance of a high temperature tail, whose value increases with field strength. Here
we verified that simulations do not qualitatively change for (100) and (110) fields.
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Figure 3.4: Spin structure factors computed for an L = 8 system with R = 0.55 and fitted ex-
change parameters, J1 = 2 K and η = 0.6625. These can be compared to the structure factor
without dipolar interactions in fig. 2.8 for γ = 1.54.

Overall, we see that in the regime near and just above the transition, the model with dipolar
interactions is able to qualitatively reproduce features observed in experiment. The order-
ing temperature is underestimated, Td = 0.25K rather than 0.43K, and the magnetization
and specific heat show the same general features, but do not match quantitatively. This is
a hint that the ordering observed in experiment could be similar to that induced by dipolar
interactions (section 3.6), but our model lacks some features, whether that be quantum
effects or additional terms in the Hamiltonian, such as single-ion or exchange anisotropy,
to be able to provide a quantitative match to experiments in this temperature regime.

3.5 Finite Temperature Spin Liquid Regime

As we have seen, the model without dipolar interactions reproduces the magnetic prop-
erties measured in experiment for T & 1 K, for exchange parameters consistent with the
classical spin liquid. Introducing dipolar interactions has only a small effect on these mag-
netic properties, so it seems reasonable to expect that the spin liquid survives the inclusion
of dipolar interactions at these temperatures. In this section, we verify this explicitly by
comparing the spin structure factors at finite temperature, with and without dipolar inter-
actions.

The spin structure factor with dipolar interactions is displayed in fig. 3.4. For T & 1 K

there is no qualitative difference between the structure factor with and without dipolar in-
teractions. Going further, we compare the pinch points (bow ties) in the structure factor
of vertex spins. For T > 1 K, we find only very small deviations, on the order of a few
percent. We also observe that the width of the pinch points hardly changes with temper-
ature in the range 1 K . T . 6 K. Therefore, we conclude that above T ≈ 1 K, dipolar
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Figure 3.5: Cuts across the [hhl] plane of the vertex spin structure factor calculated for the model
with dipolar interactions. The left panel is for l = 0 and right for h = −4π. The black crosses
are from simulations without dipolar interactions at T = 1.5 K (which is representative of the
T → 0 limit) and the circles from simulations with dipolar interactions (R = 0.55) at the various
temperatures indicated. All simulations are performed for an L = 8 system and the experimen-
tally relevant parameters in fig. 3.4.

interactions do not have a significant effect and the system is in the classical spin liquid
state, characterized by broad bow ties in the spin structure factor.

The fact that dipolar interactions are so easily washed out by temperature can be attributed
to the large entropy of the classical spin liquid, as discussed in chapter 2. Since any ad-
ditional terms which are not included in our model will have a lower energy scale than
dipolar interactions, it is unlikely that these would destroy the classical spin liquid in this
finite temperature regime. Therefore we propose that [Mn(ta)2] realizes a classical spin liq-
uid, whose effective description is an emergent charge fluid, at temperatures 1 . T . 6K.

3.6 Dipolar Ordered State

To investigate the ordered state induced by dipolar interactions, we perform MC simula-
tions withL = 4, experimentally fitted exchange coefficients, J1S2 = 12.5K, η = 0.6625,
dipolar interaction strengthDexp and cut-off radii up toR/a = 0.9 (6th nearest neighbour).
We use NMC = 105 thermalization and measurement sweeps. The ordering we observe
is captured by the magnetization of centre spins, mcentres, the local constraint (eq. (2.5)),
averaged over all tetrahedra,

L̄t =
1

Nt

∑
t

Lt, (3.16)

and the magnetization corresponding to theT1,B irreducible representation, m̄T1,B
(eq. (3.4)).

Results are summarized in fig. 3.6. We verified that further increasing neither R nor L sig-



76 Dipolar Interactions and [Mn(ta)2]

nificantly alters the results.

The vector components of mcentres and m̄T1,B
reveal a delicate transition region, with

mcentres changing orientation from 1√
3
(111) → 1√

2
(110) → (100) as T is lowered (up

to permutations of the components). The orientation of m̄T1,B
also changes correspond-

ingly. The low temperature ordered state can be understood in the following way. For
R = rnn, eq. (3.2) can be rewritten in the form H =

∑
tHt + const, where

Ht =
J2
2
L2
t + 2

√
2DnnSt,c ·mT1,B ,t. (3.17)

The two terms on the right hand side cannot be simultaneously minimized since spin
weight used to satisfy the local constraint reduces the weight available to maximize

∣∣mT1,B ,t

∣∣.
Since J2 is large relative to Dnn, the dipolar interactions can be thought of as a perturba-
tion to the Heisenberg part of the Hamiltonian. Therefore to construct a ground state we
should ensure the local constraint, Lt = 0, is satisfied, which polarizes the vertex spins
on a tetrahedron antiparallel to the centre spin. Since γ < 4, the vertex spins retain some
finite weight after satisfying the local constraint which can be put into the T1,B channel to
further minimize the energy.

To verify this picture we propose a pair of single tetrahedron ansätze, corresponding to
(100) and (110) centre spin orientations,

Sc = (1, 0, 0),

S1 = (−a, b, b), S2 = (−a,−b,−b), S3 = (−a,−b, b), S4 = (−a, b,−b),

a =
γ

4
, b =

√
1

2

(
1− γ2

16

)
,

(3.18)
and

Sc =
1√
2
(1, 1, 0),

S1 = (c, c, d), S2 =
1√
2
(−1,−1, 0), S3 =

1√
2
(−1,−1, 0), S4 = (c, c,−d),

c =
2− γ

2
√
2
, d =

√
1− (2− γ)2

4
.

(3.19)
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Figure 3.6: MC results for the quantities which describe the order induced by dipolar inter-
actions. Results shown are for L = 4, experimentally relevant couplings, J1S2 = 12.5 K,
η = 0.6625, DS2

r3nn
= 0.27 K with R up to 6th nearest neighbours.(a-c) are absolute values, (d-i)

the vector components of the respective magnetizations. We verified that this ordering is robust
to the inclusion of longer range interactions (up to R/a = 4) and increasing the system size (up
to L = 8).

Repeating on every tetrahedron gives an ansatz for the entire lattice. Restoring longer range
dipolar interactions may introduce small modifications, but our simulations indicate that
these do not significantly alter the order. For example, these states very closely reproduce
the energies and magnetizations obtained from numerical minimization of eq. (3.2) on a
single tetrahedron and large-scale MC simulations at low temperature for R = rnnn, as
summarized in table 3.1. The (100) state is slightly lower in energy than the (110) state,
but at finite temperature, entropic effects, such as softer fluctuations about the ordered state
may be responsible for the observed cascade of ordering axes.

In conclusion, the T → 0 ordered state identified in MC simulations is an unsaturated
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State E/N( K) L̄t m̄A2 m̄E m̄T1,A
m̄T1,B

m̄T2

Numerical -9.05606 0.02924 0 0 0.37005 0.92901 0
Ansatz (100) -9.05481 0 0 0 0.37736 0.92607 0
Ansatz (110) -9.05462 0 0 0 0.37736 0.92500 0.04445
MC (100) -9.05625 0.02983 0.00025 0.00044 0.36999 0.92879 0.00103
MC (110) -9.05231 0.04433 0.00165 0.00258 0.36804 0.92299 0.03747

Table 3.1: Comparison of energies and vertex spin magnetizations corresponding to the irre-
ducible representations defined in [197] with R = rnnn and using the experimentally relevant
values of J1, J2, D. Numerical minimization of the energy is performed for a single tetrahedron.
The ansatz results are computed from the states defined in eqs. (3.18) and (3.19). MC results
are averaged over all tetrahedra in the lattice, at T = 1.6 × 10−4 K for the (100) result and
T = 3.9 × 10−3 K for the (110). Note mT1,A

is the total magnetization of vertex spins on
a tetrahedron so captures the finite moment of corner spins in order to ensure Lt ≈ 0. In the
numerical minimization we always find Sc = (1, 0, 0) (up to permutation of spin components)
which corresponds to mcentres = (1, 0, 0) on the full lattice.

ferrimagnet with finite magnetic moment along a cubic axis, where on each tetrahedron the
vertex spins realize a planar antiferromagnet perpendicular to this axis with the remaining
spin weight, as illustrated in fig. 3.7.

3.6.1 Mean-field Spectrum

In theR → ∞ limit of dipolar spin ice the ground state remains disordered, a result of self-
screening of the dipolar interactions [114]. It was shown within a numerical mean-field
calculation [113] that finite range dipolar interactions render the flat band in the mean-
field energy spectrum dispersive, breaking the ground state degeneracy. However, as R

becomes large the band flattens again. Since our simulations use a finite R, we verify
whether in the largeR limit the ground state degeneracy is restored, by applying this mean-
field calculation (introduced in [201]) to the centred pyrochlore. The method is essentially
a generalization of the Luttinger-Tisza method [170, 171], applied in section 2.2.3 to the

Figure 3.7: The T → 0 ordered state identified in the Heisenberg + dipolar model. Shown is the
(100) single-tetrahedron ansatz, eq. (3.18), for the fitted experimental parameter η = 0.6625.



79

Heisenberg model, to include dipolar interactions.

We want to express eq. (3.2) (with h = 0) in terms of the Fourier modes

Sα
µ (q) =

1√
Nuc

∑
I

e−iq·(RI+δµ)Sα(R+ δµ), (3.20)

with inverse
Sα(RI + δµ) =

1√
Nuc

∑
I

eiq·(RI+δµ)Sα
µ (q), (3.21)

whereα ∈ {x, y, z} labels spin components, I , the primitive unit cells, andµ ∈ {a, b, 1 . . . 4},
the sublattices. The Heisenberg part of the Hamiltonian is given by eq. (2.10), which in
the current notation is

HH =
∑
q

∑
µ,ν

∑
α,β

δαβS
α
µ (q)K

µν(q)Sβ
ν (−q), (3.22)

now with components

aµ =
J1
2
e−iq·δµ , cµν = J2 cos(q · (δµ − δν)), (3.23)

where Kµν is a matrix with the same structure as eq. (2.11).

The Si · Sj/r
3
ij part of the dipolar contribution can be written as

A =
∑
α,β

∑
I,J

∑
µ,ν

δαβ
Sα(RI + δµ)S

β(RJ + δν)

|ri − rj|3
(1− δij). (3.24)

Then taking the Fourier transform,

A =
1

Nu.c

∑
q,q′

∑
α,β

∑
µ,ν

δα,βS
α
µ (q)S

β
ν (q

′)ei(q·δµ+q′·δν)
∑
I,J

eiq·(RI−RJ )eiRJ ·(q+q′)

|ri − rj|3
, (3.25)

where we have dropped the (1 − δij) term, which ensures i 6= j, for clarity. Due to
translational invariance, q + q′ = 0, and without loss of generality setting RJ = 0, we
obtain ∑

I,J

eiq·(RI−RJ )eiRJ ·(q+q′)

|ri − rj|3
= Nu.cδq+q′

∑
I

eiq·RI

|RI + δµ − δν |3
, (3.26)

so

A =
∑
q

∑
α,β

∑
µ,ν

δαβS
α
µ (q)S

β
ν (−q)ei(q·δµ+q′·δν)

∑
I

eiq·RI

|Ri + δµ − δν |3
. (3.27)

Similarly for the −3(Si · rij)(Sj · rij)/r5ij part of HD,

B =
∑
q

∑
α,β

∑
µ,ν

−3Sα
µ (q)S

β
ν (−q)ei(q·δµ+q′·δν)

∑
I

eiq·RI (Ri + δµ − δν)
α(Ri + δµ − δν)

β

|Ri + δµ − δν |5
.

(3.28)
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Introducing the notation rµν = Ri + δµ − δν , i.e it is the displacement from a site on
sublattice ν to a site on sublattice µ (which may be in a different unit cell),

HD = A+B =
∑
q

∑
µ,ν

∑
α,β

Sα
µ (q)D

αβ
µνS

β
ν (−q), (3.29)

with
Dαβ

µν =
D

2

∑
rµν<R

eiq·rµν
(
δαβ
r3µν

− 3(rµν)
α(rµν)

β

r5µν

)
, (3.30)

and we have introduced the cut-off for the dipolar interactions.

The full Hamiltonian can then be written as,

H =
∑
q

∑
µ,ν

∑
α,β

Sα
µ (q)(K

αβ
µν +Dαβ

µν )S
β
ν (−q), (3.31)

where Kαβ
µν = δαβK

µν . Kαβ
µν and Dαβ

µν are four-dimensional tensors, which can be rewritten
as matrices, by introducing the superindex n, which runs over both α and µ. Therefore

H =
∑
q

18∑
n,m=1

Sn(q)Mnm(q)Sm(−q), (3.32)

and one obtains the mean-field spectrum for a given q by diagonalizing the 18×18 matrix

Mnm(q) =

Kµν(q) + Dxx
µν(q) Dxy

µν(q) Dxz
µν(q)

Dyx
µν(q) Kµν(q) + Dyy

µν(q) Dyz
µν(q)

Dzx
µν(q) Dzy

µν(q) Kµν(q) + Dzz
µν(q)

 , (3.33)

presented here in terms of 6 × 6 blocks. In order to construct Dαβ
µν (q), for each µ, ν pair,

all of the rµν within the cut-off are generated numerically, then the elements are filled in
according to eq. (3.30). Subsequently, Mnm(q) is diagonalized numerically at each q

value of a momentum grid, in order to obtain the mean-field spectrum as a function of q.

Since we are interested in the impact of dipolar interactions on the flat band, we use the
exchange ratio η = 1√

2
≈ 0.71, for which the Heisenberg mean-field energy spectrum

has a flat-band without reweighting the spins, as explained in section 2.2.3. This is within
10% of the fitted η obtained earlier in this chapter. We set J1 = 2K and D = 0.043r3nn K.
Results are shown in fig. 3.8. We see that the energies of the lowest band converge for
R ≥ 10, with minima at momenta such as q ≈ (3.875π, 0.125π, 0). Therefore dipolar
interactions in the large R limit appear to select an ordered state. The momentum that
minimizes the energy is incommensurate with the lattice, and the eigenvectors associated
with this mode do not give physically normalized (|Si| = 1) spins, so we cannot reliably
predict the ordered ground state from these calculations. Nevertheless, unlike dipolar spin
ice, large R dipolar interactions do not restore the ground state degeneracy, so the finite
values of R used in our MC simulations are likely sufficient to capture the correct low-
temperature behaviour.
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Figure 3.8: Lowest band of the mean-field energy spectrum with dipolar interactions for param-
eters J1 = 2 K, η = 1√

2
, D = 0.043r3nn and S = 1. (a) Convergence of the minimum energy

along the q = (h, 4π − h, 0) line for various R. (b) Using a finer h grid for R = 10 the mini-
mum is at about h = 3.875π. (c) In the [hk0] plane for R = 10. The low-energy valley along
q = (h, 4π − h, 0) is that plotted in (a,b).

3.7 Summary and Outlook

In this chapter we introduced the Heisenberg + dipolar Hamiltonian as a model for the
metal-organic framework [Mn(ta)2], justified by ab initio DFT calculations and its elec-
tronic properties. Comparison of the model to experimental measurements of the magneti-
zation, susceptibility and specific heat found that they are well approximated by the param-
eters J1S2 = 12.5K, η = 0.6625, DS2r3nn = 0.27K. Our MC simulations showed that the
dipolar interactions cause ordering into the (100) state, shown in fig. 3.7, at Td = 0.25 K.
We showed using a mean-field calculation that it is sufficient to consider dipolar interac-
tions with a finite cut-off radius in this model, unlike in dipolar spin ice. Due its large
entropy, the spin liquid, which is the ground state in the absence of dipolar interactions,
survives at finite temperatures. Its characteristic T → 0 signature, broadened bow ties in
the static spin structure factor were observed in Monte Carlo simulations for temperatures
1K . T . 6K. Therefore we propose that [Mn(ta)2] realizes a classical spin liquid in this
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temperature regime, where the effective description is that of an emergent charge fluid.

To further narrow down the effective Hamiltonian, and by extension, the states of matter
realized in the material, requires experimental probes which are more sensitive to micro-
scopic details, of which neutron scattering is the gold standard. However, extracting useful
information from neutron scattering experiments on such a compound is challenging, due
to the fact that it contains a high concentration of hydrogen atoms, which have a high inco-
herent scattering cross section [202], resulting in noisy data. Nevertheless, it is possible to
extract useful inelastic spectra in similar metal-organic frameworks [203]. In addition, this
effect can be mitigated by using deuterated ligands in the chemical synthesis, so that the
hydrogen atoms in the compound are replaced by deuterium, which has a much lower inco-
herent scattering cross section. Furthermore, experiments are limited to powder samples,
as it is currently not possible to grow large single crystals of [Mn(ta)2].

Bearing these limitations in mind, the questions which could be addressed in near-term
neutron scattering experiments include:

1. What is the ordered phase of [Mn(ta)2]? The Bragg peaks from a neutron diffraction
experiment could be compared to predictions from the Heisenberg + dipolar model
to identify the nature of the ordered state in the material. Inelastic scattering mea-
surements could also be compared to a spin wave analysis to give further insight.
Any missing terms in the Hamiltonian required to reproduce the experimental be-
haviour could be found.

2. Does [Mn(ta)2] realize the classical spin liquid for 1 K . T . 6 K? Comparison
of the powder-averaged static structure factor of the J1 − J2 model to neutron scat-
tering results in the relevant temperature regime would give a strong indication of
whether the material realizes the proposed classical spin liquid or not. Furthermore,
the dynamical spin structure factor could be obtained using the molecular dynamics
method [204], where the equilibrium spin configuration from a Monte Carlo simu-
lation is time-evolved according to the classical equations of motion, to compare to
experimental results.

The long-term goal would be to measure the q-resolved static structure factor, to see if
it agrees with the neutron scattering variant of the spin liquid structure factor in fig. 3.4,
which would first require significant advancement in the growth of single crystals.

The centred pyrochlore spin liquid naturally hosts emergent charges in the ground state,
in contrast to the charge-free vacuum of the pyrochlore spin liquid. This charge strength
could be tuned via hydrostatic pressure to modify the ratio of exchange parameters η.
Furthermore, the modularity of metal-organic frameworks offers further tunability. For
example, it is possible to synthesize materials with different metal ions on centre and vertex
sites, or modify the strength of exchange interactions by substituting ligands. Thus, metal-
azolate frameworks provide an ideal system to explore exotic states of matter within the
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framework of the emergent electrostatics and beyond. Furthermore, the frustrated centred
pyrochlore geometry raises the possibility to explore related quantum effects in metal-
azolate frameworks, by synthesizing materials with lower effective spin.

We end this chapter with a brief survey of the magnetic properties in other materials of
the [M(II)(ta)2] family. [Cu(ta)2] has an effective S = 1/2 moment, but has a structural
phase transition at lower temperatures, which distorts the centred pyrochlore lattice [189].
Magnetic susceptibility measurements indicate the formation of antiferromagnetic dimers
amongst 2/3 of the Cu ions. It could be possible to suppress the structural phase transition
by synthesizing the material with a different ligand, allowing one to study quantum mag-
netism on the centred pyrochlore. The mixed-valence framework [Fe(ta)2(BF4)x] contains
low-spin Fe3+ ions with effective S = 1/2 [191]. Magnetic susceptibility measurements
indicate strong antiferromagnetic interactions, with no long-range magnetic ordering ob-
served down to T = 3K, corresponding to a frustration factor of at least f = 27. However,
the conducting nature of these materials means that any model to study the low temperature
magnetic properties will have to be quite different from the localized moments we assume
here. Another mixed-valence framework [Cr(ta)2(CF3SO3)0.33] is found to have strong
ferromagnetic exchange interactions with long-range magnetic order at Tc = 225K [127].
The diversity of these materials means there are surely many fascinating magnetic prop-
erties which remain unexplored.
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Chapter 4

Quantum XXZ Model

We now move to investigating the possibility of realizing quantum spin liquids (QSLs) on
the centred pyrochlore lattice. A good place to start is with the S = 1/2 XXZ model on
the centred pyrochlore lattice. This is because, as in the pyrochlore case [90], one can
introduce non-trivial quantum fluctuations perturbatively to the degenerate classical spin
liquid manifold. The local constraint and associated degeneracy of the classical spin liquid
is an important precursor for the gauge structure which can support a quantum spin liquid.
Our focus is on the 1 < γ < 3 region of the parameter space, where the Ising model
ground state is a Z2 classical spin liquid with 3:1 configurations of vertex spins on every
tetrahedron. For simplicity, we restrict ourselves to the J⊥

1 , J
⊥
2 ferromagnetic regime. We

find using degenerate perturbation theory at γ = 2, up to fourth order, that the ground
state is described by a U(1) lattice gauge theory coupled to fermionic matter, where the
fermions carry an emergent electric charge. Restricting to third order, the effective Hamil-
tonian can be mapped to a family of Rokhsar-Kivelson type quantum dimer models [129],
which have an exact quantum liquid ground state at a point in their parameter space. This
provides us the framework for understanding the low-energy properties for small J⊥

1 , J
⊥
2 .

We then adapt the gauge mean-field method [149] to the centred pyrochlore lattice, find-
ing that the only self-consistent solution within a zero-flux ansatz is a U(1) quantum spin
liquid, which orders to an XY ferromagnet for large enough J⊥

2 . Finally, we perform ex-
act diagonalization calculations on a 24-site cluster, obtaining the phase boundaries for
the (3:1)⊥ regime, the region between the Ising limit and the onset of long-range XY fer-
romagnetic order. We find that the ground state in this regime has high overlap with a
QSL variational wavefunction inspired by the perturbation theory, demonstrating the per-
turbative framework remains valid away from the γ = 2 point and hinting at a quantum
spin liquid ground state. The energy spectrum, fidelities and overlaps with the variational
wavefunction suggest the possibility of multiple phases within the (3:1)⊥ regime, despite
severe finite size effects. Numerical simulations which can access larger system sizes are
called for to further investigate the nature of the ground state.
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4.1 Model

The model we study is the spin-1/2 XXZ model on the centred pyrochlore lattice

H = Jz
1

∑
〈ij〉

Sz
i S

z
j + J⊥

1

∑
〈ij〉

(
S+
i S

−
j + h.c

)

+ Jz
2

∑
〈〈ij〉〉

Sz
i S

z
j + J⊥

2

∑
〈〈ij〉〉

(
S+
i S

−
j + h.c

)
.

(4.1)

We choose to study this model inspired by the spin 1/2 XXZ model on the pyrochlore,
where it is well-established that the ground state in the perturbative J⊥ limit is a U(1)

QSL [90, 145, 151]. The idea is that quantum fluctuations produce a superposition of the
states in the ground state manifold of the Ising model. Similarly, on the centred pyrochlore
lattice, we can use our knowledge of the classical spin liquid ground states of the Ising
model (section 2.2.2) as a starting point to understand the XXZ model. Furthermore, at the
Heisenberg point J⊥

1 = Jz
1/2, J⊥

2 = Jz
2/2, the model could be relevant for understanding

the low temperature magnetic properties of S = 1/2 metal-azolate frameworks.

Let us first enumerate some of the symmetry properties of the Hamiltonian. It is useful to
rewrite the Hamiltonian as a sum over tetrahedra, t,

H =
∑
t

Ht,

Ht = Jz
1

4∑
v=1

Sz
t,cS

z
t,v + J⊥

1

4∑
v=1

(
S+
t,cS

−
t,v + h.c

)
+

Jz
2

2

∑
w 6=v

Sz
t,vS

z
t,w + J⊥

2

∑
w 6=v

S+
t,vS

−
t,w

(4.2)

where c labels centre sites and v, w vertex sites of a tetrahedron.

Since the J1 terms are bipartite in the sense that they only connect centre to vertex spins,
there are a pair of operators acting on centre spins which map between different regions
of the parameter space. Consider a unitary operator,

Uc =
∏
t

Ut,c, (4.3)

which acts only on centre sites. The only part of the Hamiltonian which does not commute
with Uc are the J1 terms

HJ1 = Jz
1

∑
t

Sz
t,c

∑
v

Sz
t,v + J⊥

1

(∑
t

S+
t,c

∑
v

S−
v +

∑
t

S−
t,c

∑
v

S+
v

)
. (4.4)

An appropriate choice ofUt,c will transform the centre spins in such a way thatU †
t,cS

α
t,cUt,c =

aSα
t,c and a can be interpreted as a transformation of the exchange interaction, Jα

1 → aJα
1 .
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Since vertex spins are coupled both to centre spins and other vertex spins, an operator of
the form eq. (4.3) but acting on all vertex spins will not transform the exchange interactions
in this way.

First, choosing Ut,c = Sx
i , the spin inversion of the z-component of all centre spins,

Xc =
∏

i∈centres

Sx
i , (4.5)

gives the mapping (Xc)
†H(Jz

1 , J
z
2 , J

⊥
1 , J

⊥
2 )Xc = H(−Jz

1 , J
z
2 , J

⊥
1 , J

⊥
2 ), that is, one can

map from Jz
1 → −Jz

1 by inverting the z-component of all centre spins.

Second, taking Ut,c = rzi (π) with the single-site π rotation operator in the local z basis,

rzi (π) =

(
−i 0

0 i

)
, (4.6)

so that the π rotation of all centre spins about the z-axis,

Rz
c(π) =

∏
i∈centres

rzi (π), (4.7)

yields the mapping (Rz
c(π))

†H(Jz
1 , J

z
2 , J

⊥
1 , J

⊥
2 )R

z
c(π) = H(Jz

1 , J
z
2 ,−J⊥

1 , J
⊥
2 ), i.e rotation

of all central spin components about the z-axis maps from J⊥
1 → −J⊥

1 . Together, these
two mappings are analogous to that in the classical Heisenberg model, where inverting all
components of the central spins maps J1 → −J1.

In this chapter, we largely present results for Jz
1 > 0, J⊥

1 < 0, but they can be generalized
to the opposite sign regions with a corresponding global inversion or rotation of the centre
spins.

4.2 Degenerate Peturbation Theory

Here, we apply degenerate perturbation theory in the J⊥
1 , J

⊥
2 � Jz

1 , J
z
2 limit, to under-

stand the effect of adding quantum fluctuations to the centred pyrochlore Ising model.
Our starting point is the 3:1 regime of the Ising model, which is a distinct classical spin
liquid to the pyrochlore ground state, in the hope that we will find phenomena beyond that
already observed in quantum models on the pyrochlore. Note the perturbative analysis of
a 3:1 manifold [205] and analytical [206] and numerical [131, 207] studies of the resulting
effective model, find an ordered ground state proximate to a quantum spin liquid. How-
ever, in our model, the manifold is not e.g 3-up/1-down on every tetrahedron, as is the
case in those studies, but may be either 3-up/1-down or 1-down/3-up. Furthermore, J⊥

1

interactions with the central spin in principle allow fluctuations between the two.
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4.2.1 Constructing Heff

We use Schrieffer-Wolff degenerate perturbation theory [159, 160] (see also appendix B
of [161] for a pedagogical explanation), following the approach of Hermele, Fisher and
Balents (HFB) for the pyrochlore [90]. The analysis on the pyrochlore was described in
section 1.6.3.

First, we split the Hamiltonian into an Ising part plus quantum fluctuations, as well as
rewriting in terms of sums over tetrahedra,

H = Hz +H⊥,

Hz = Jz
1

∑
〈ij〉

Sz
i S

z
j + Jz

2

∑
〈〈ij〉〉

Sz
i S

z
j

=
Jz
2

2

∑
t

G2
t −

Nt

4

(
(Jz

1 )
2

2Jz
2

+ 2Jz
2

)
=
∑
t

Hz
t + const

H⊥ = J⊥
1

∑
〈ij〉

(
S+
i S

−
j + h.c

)
+ J⊥

2

∑
〈〈ij〉〉

(
S+
i S

−
j + h.c

)

= J⊥
1

∑
t

4∑
v=1

(
S+
t,cS

−
t,v + h.c

)
+ J⊥

2

∑
t

∑
w 6=v

S+
t,vS

−
t,w

= H⊥
1 +H⊥

2 ,

(4.8)

where

Gt = σt

(
γSz

t,c +
4∑

v=1

Sz
t,v

)
, (4.9)

σt = +(−1) when t is on the a(b) sublattice and γ = Jz
1/J

z
2 . The ground state of Hz (the

Ising model) is determined by minimizing Gt, which gives the ground state phase diagram
in fig. 2.2. Gt is the quantity previously referred to as Lt, which defines the ground state
local constraint. We take γ = 2, such that dropping the constant term the ground state
energy of Hz is E0 = 0. Taking γ = 2 also simplifies the analysis as Hz

t eigenvalues of
a 4:0 and 2:2 tetrahedron are equivalent, see table 4.1. We also assume that J⊥

1 , J
⊥
2 are of

the same order.

Let us define the operator, P , which projects onto the ground state manifold of Hz, and

D = − 1− P

Hz − E0

, (4.10)

which projects onto the manifold of excited states with a prefactor determined by the en-
ergy of the excited state relative to the ground state. In the Schrieffer-Wolff formalism, our
goal is to construct an effective Hamiltonian, Heff , which describes the effect of H⊥ acting
within the degenerate ground state manifold, which we build up order by order.

At second order,

H
(2)
eff = PH⊥DH⊥P

= PH⊥
1 DH⊥

1 P + PH⊥
2 DH⊥

2 P.
(4.11)



88 Quantum XXZ Model

Abbreviation State |Gt| Hz
t (γ) Hz

t (γ = 2)

a a a a a4:0 |⇓↑↑↑↑〉
∣∣−γ

2
+ 2
∣∣ Jz

2

2
(−γ

2
+ 2)2

Jz
2

2

3:1 |⇓↑↑↑↓〉
∣∣−γ

2
+ 1
∣∣ Jz

2

2
(−γ

2
+ 1)2 0

2:2 |⇓↑↑↓↓〉 γ
2

Jz
2 γ

2

8

Jz
2

2

3:1∗ |⇓↑↓↓↓〉 γ
2
+ 1

Jz
2

2
(γ
2
+ 1)2 2Jz

2

4:0∗ |⇓↓↓↓↓〉 γ
2
+ 2

Jz
2

2
(γ
2
+ 2)2

9Jz
2

2

Table 4.1: Modified single tetrahedron magnetization and corresponding energy eigenvalue of
Hz

t for all single tetrahedron states. Centre spins are indicated by a double arrow, vertex spins
by a single arrow. The asterisk in the abbreviation indicates the centre spin is parallel to the net
moment of the vertices. States which are 3-up/1-down or 1-up/3-down are both referred to as 3:1
states, 4-up/0-down, 0-up/4-down as 4:0.

The two terms correspond to the two different virtual processes shown in fig. 4.1. For
γ = 2, this gives a constant term since the perturbation acts on single tetrahedra in the 3:1
manifold and all states in the ground state manifold are 3:1 on every tetrahedron. Crucially,
the energy of the intermediate (virtual) state is the same regardless of whether it is 2:2 or
4:0. Explicitly,

PH⊥
1 DH⊥

1 P = −(J⊥
1 )

2

Jz
2

∑
t

∑
v

(
S−
t,cS

+
t,vS

+
t,cS

−
t,v + h.c

)
= −3Nt(J

⊥
1 )

2

Jz
2

(4.12)

and

PH⊥
2 DH⊥

2 P = −(J⊥
2 )

2

Jz
2

∑
t

∑
v 6=w

S−
t,vS

+
t,wS

+
t,vS

−
t,w

= −3Nt(J
⊥
2 )

2

Jz
2

,

(4.13)

where the factors of 3 come from the 3 ways to get a contribution on each tetrahedron.
For a given 3:1 single-tetrahedron spin configuration, there are three vertex spins which
can exchange with the centre, or with the single anti-parallel spin respectively, which must
then be exchanged back. These terms are diagonal, mapping any ground state back to
itself. Off-diagonal terms are not possible because if one maps between distinct 3:1 single-
tetrahedron states, one would have to “repair" the defects on the adjacent tetrahedra as well
to get back to a ground state. This is only possible for operations which form closed loops
on the lattice, the shortest of which is the length-6 hexagonal loop which appears at third
order.

When γ 6= 2 (but ground states are still in the 3:1 manifold), these terms are no longer
constant. For γ < 2, 2:2 states are lower in energy than 4:0, so we expect the degeneracy of
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Figure 4.1: Processes contributing to second order terms in the perturbation theory for γ = 2,
reading from left to right. They give a constant contribution to Heff . The non-zero energies of
virtual states for relevant tetrahedra are shown underneath. The squares represent tetrahedra of
the centred pyrochlore lattice. The leftmost illustration of (a) shows the labels, i, of the displayed
and adjacent (not-displayed) tetrahedra which corresponds to the ti index for the energies.

the 3:1 manifold to be broken by the second order term, with states where the perturbation
can create the highest number of virtual 2:2 tetrahedra becoming lower in energy. Simi-
larly, for γ > 2, states where the perturbation can create the highest number of virtual 4:0
states will have lower energy. Whether this selects an ordered state or effectively reduces
the dimension of the ground state manifold is not immediately clear.

At third order, there are three non-zero terms, the triangular hopping and ring-exchange
term familiar from the pyrochlore, as well as a term analogous to PH⊥

2 DH⊥
2 P where the

centre spin mediates an effective J⊥
2 interaction, so

H
(3)
eff = 2PH⊥

1 DH⊥
1 DH⊥

2 P + PH⊥
2 DH⊥

2 DH⊥
2 P, (4.14)

where the factor of 2 comes from the fact that PH⊥
1 DH⊥

1 DH⊥
2 P is equivalent to

PH⊥
2 DH⊥

1 DH⊥
1 P (but PH⊥

1 DH⊥
2 DH⊥

1 P = 0 as the H⊥
2 term cannot flip spins which

are already parallel) and

PH⊥
2 DH⊥

2 DH⊥
2 P = H

(3)
eff (4) +H

(3)
eff (7). (4.15)

For γ = 2, the only non-constant term is the ring-exchange, since
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2
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(4.16)
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and

H
(3)
eff (4) =

(J⊥
2 )

3

(Jz
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∑
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∑
u,v,w∈4

(
S+
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+
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+
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−
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)
=
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(Jz
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2
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(4.17)

where the sum is over all u 6= v 6= w which make up a triangle on a single tetrahedron,
as shown in fig. 4.2(b), along with illusrations of all third-order processes. The prefactors
again come from counting the number of processes which return to the original 3:1 state.
For the ring-exchange term,

H
(3)
eff (7) = K1

∑
7

(
S+
v,0S

−
v,1S

+
v,2S

−
v,3S

+
v,4S

−
v,5 + h.c

)
,

= K1

∑
7

(
A7 + A†

7

) (4.18)

with K1 = 12(J⊥
2 )

3/(Jz
2 )

2. The vertex sites are labelled in a clockwise fashion around the
hexagonal loop, as shown in fig. 4.2(c). The factor of 12 comes from the choice of one of
six tetrahedra for the first J⊥

2 term, followed by a choice of one of the two other compatible
tetrahedra, which fixes the tetrahedron for the last.

As before, for γ 6= 2, these terms are more complicated, lowering the energy of states
in the 3:1 manifold which pass through virtual 2:2 or 4:0 states, for γ < 2 and γ > 2

respectively.

At fourth order, disconnected processes also enter, as one can have a pair of second order
processes on distinct tetrahedra. This means that terms of different form enter the series,
such that

H
(4)
eff = PH⊥DH⊥DH⊥DH⊥P − 1

2
PH⊥DH⊥PH⊥D2H⊥P

− 1

2
PH⊥D2H⊥PH⊥DH⊥P, (4.19)

however, since the second order processes are constant (for γ = 2), they also give a con-
stant contribution at fourth order.

Focussing on non-constant terms,

PH⊥DH⊥DH⊥DH⊥P = PH⊥
1 DH⊥

2 DH⊥
1 DH⊥

2 P + permutations

+ PH⊥
2 DH⊥

2 DH⊥
2 DH⊥

2 P + . . .

= H
(4)
eff (7) +H

(4)
eff (8) + . . . ,

(4.20)

where the six permutations of the H⊥
1 , H⊥

2 operators (1122, 1212, 1221, 2112, 2121,
2211) contribute equally to H

(4)
eff (7) and H

(4)
eff (8) is a length-8 ring-exchange, analogous
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Figure 4.2: Processes contributing to third order terms in the perturbation theory for γ = 2, with
the single-tetrahedron energies of the intermediate states shown below. (a) Shows the labels, i, of
the displayed tetrahedron and its neighbours which corresponds to the ti index for the energies.
In (b) the sites involved in the process form a triangle. (c) Shows the labelling convention for
tetrahedra making up a hexagonal loop, with vi labelling the vertex spin clockwise from the
centre of the ith tetrahedron and ci its centre spin. Only the edges of the tetrahedra making up the
loop are shown.

to H
(3)
eff (7). We find that,

H
(4)
eff (7) = K2

∑
7

(
B7 +B†

7

)
,

K2 = −12(J⊥
1 )

2(J⊥
2 )

2

(Jz
2 )

3
, B7 =

5∑
i=0

5∑
j=i+1

Bij
7,

Bij
7 =

{
S+
ci
S−
cj
S−
vi
. . . S+

vj−1
S+
vj
. . . S−

vi+5
for j − i even

S+
ci
S+
cj
S−
vi
. . . S−

vj−1
S−
vj
. . . S−

vi+5
for j − i odd

.

(4.21)

This is similar to H
(3)
eff (7), exchanging a string of spins around a hexagon, but includes

a pair of centre-vertex spin exchanges, analogous to the loop move identified in the Ising
model in section 2.2.2. The v indices in Bij

7 are defined modulo 5 and the ellipsis corre-
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2

2

H
(4)
eff (7)

Figure 4.3: A process, B03
7 , contributing to the non-constant fourth order hexagonal loop term.

The convention for labelling of the tetrahedra making up the loop is shown in fig. 4.2. Sites at the
centre of tetrahedra are red, vertices grey.

sponds to a string of alternating S+, S− operators. Explicitly writing out some of these
terms for different i, j,

B02
7 = S+

c,0S
−
c,2S

−
v,0S

+
v,1S

+
v,2S

−
v,3S

+
v,4S

−
v,5,

B03
7 = S+

c,0S
+
c,3S

−
v,0S

+
v,1S

−
v,2S

−
v,3S

+
v,4S

−
v,5.

(4.22)

We left out Bii
7 terms which have the same effect as a third order loop, with the centre spin

on tetrahedron i mediating an effective J⊥
2 term between its vertices, effectively rescaling

H
(3)
eff (7). The factor of 12 in K2 comes from the six different permutations of H⊥

1 , H
⊥
2

and the fact that for given i, j, which fixes the J⊥
1 contribution, there is a choice of two

positions on the hexagon for the first J⊥
2 contribution, which then fixes the position of the

second. For example, in fig. 4.3, the J⊥
2 flip of vertex spins can occur in either order.

For simplicity, we ignore H
(4)
eff (8); we do not expect that this term will qualitatively

change the properties of Heff .

Therefore, our effective Hamiltonian up to fourth order is

Heff = K1

∑
7

(
A7 + A†

7

)
−K2

∑
7

(
B7 +B†

7

)
, (4.23)

which acts within the 3:1 manifold.

4.2.2 Properties of Heff

We now consider the qualitative properties of Heff , extending the HFB mapping to a lattice
gauge theory so that the centre spins are included, as well as relatingHeff to quantum dimer
models.

First, the vertex spins can be expressed in terms of directed quantum rotor variables,

Sz
vi
→ σrerr′ , S±

vi
→ e±iσrarr′ , (4.24)
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where r, r′ label diamond sites (i.e the centre sites) and rr′ the link joining the two sites (i.e
the link corresponds to a vertex site). The eigenvalues of err′ are the set of all half-integers,
whereas those of arr′ ∈ [0, 2π). This rewriting is exact provided the eigenvalue constraint
err′ ∈ {−1/2, 1/2} is enforced. These variables are conjugate, [arr′ , err′ ] = i and can be
interpreted as a vector potential and electric field respectively. Using this mapping, the
effective Hamiltonian up to third order is

H
(3)
rotor = Ue

∑
〈rr′〉

e2rr′ + 2K1

∑
7

cos(curl a)7, (4.25)

where

(curl a)7 =
5∑

i=0

ariri+1
. (4.26)

We use the convention of labelling diamond sites making up a hexagonal loop in the same
clockwise fashion as for the vertex sites. To enforce the constraint on the err′ , one should
take the limit (Ue/K1) → ∞. In terms of the rotors

Gr = · · ·+ div(e)r, div(e)r =
∑
r′→r

err′ , (4.27)

where r′ are the nearest neighbours (on the diamond lattice) of the site r. This is a U(1)
lattice gauge theory, since [H(3)

rotor, Gr] = 0 and Gr generates the local U(1) transformation

arr′ → arr′ + χr′ − χr. (4.28)

Numerical simulations [145] showed that the corresponding (non-overlapping) quantum
dimer model to H

(3)
rotor is a quantum liquid, which means that H(3)

rotor is deconfined for all
Ue/K1 in the div(e)r = 0 sector of the theory. In contrast to the pyrochlore, we have
additional variables (the centre spins) which appear in the Ising ground state constraint
Gr = 0. Therefore we are interested in the properties of the theory in a different gauge
sector to the pyrochlore case, where it is a priori not known if it will be deconfined in the
(Ue/K1) → ∞ limit.

We can rewrite the centre spins as static charges,

2Sz
r → −σrqr, (4.29)

for γ = 2, and the constraint to the physical gauge sector becomes

div(e)r = qr, (4.30)

where qr ∈ {−1, 1}. Since the qr do not appear explicitly in H
(3)
rotor, the static charge con-

figuration is an external parameter we are free to choose. If the theory is deconfined in
the Gr = 0 gauge sector, then static charges will interact via a Coulomb potential. In this
case, the charge background with the lowest energy would be the Zincblende structure,
with positive and negative charges occupying each sublattice of the diamond lattice re-
spectively. In terms of spins, this corresponds to a ferromagnetic alignment of the central
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spins. Since H
(3)
eff does not couple sectors with different centre spin configurations this

implies spontaneous breaking of spatial inversion symmetry by selection of one of the two
degenerate ways to obtain a Zincblende structure. In terms of spins this is a spontaneous
breaking of spin inversion symmetry, choosing one of Sz

i = +(−)1/2 for all centre spins.
This implies the possibility of a symmetry-broken QSL phase, however the degeneracy
associated with the symmetry-breaking would generically be lifted at higher orders of the
perturbation theory.

A complementary view to the effective gauge theory is instead to think of H(3)
eff as a variant

of a dimer model (see section 1.6.1). Mapping the vertex spins to dimers, such that Sz
i =

+(−)1/2 corresponds to the presence(absence) of a dimer on the corresponding link of
the diamond lattice. In order to respect the 3:1 constraint, if the centre spin on a diamond
site is +1/2, then there must be only one dimer touching that site, whereas if the centre
spin is −1/2, then the constraint is that three dimers touch that site. Therefore, in the
dimer language,

H
(3)
eff (7) = K1

∑
7

( ∣∣ 〉 〈 ∣∣+ ∣∣ 〉 〈 ∣∣ ), (4.31)

which acts on different Hilbert spaces depending on the central spin configuration, giv-
ing rise to what can be thought of as a family of separate dimer models. The Hilbert
space can be further divided into sectors within which configurations are connected by

A
(†)
h =

∣∣ 〉 〈 ∣∣ ( ∣∣ 〉 〈 ∣∣ ). The Hamiltonian can be brought to the Rokhsar-

Kivelson (RK) form [129] by adding a “chemical potential",

HRK = −|K1|
∑
7

( ∣∣ 〉 〈 ∣∣+ ∣∣ 〉 〈 ∣∣ )+ µ
∑
7

( ∣∣ 〉 〈 ∣∣+ ∣∣ 〉 〈 ∣∣ ).
(4.32)

At the RK point, |K1| = µ, in each disconnected sector, the ground state is the equal
superposition of all valid 3:1 vertex spin configurations, a quantum dimer liquid. All of
these ground states are degenerate at the RK point, but the degeneracy will be broken away
from it. The question of whether the ground state of H(3)

rotor is deconfined is equivalent to
asking whether the quantum dimer liquid at the RK point survives to µ = 0, in the centre
spin configuration sector which has the lowest energy ground state.

Note that, for centre spins all up (or down, mapping down vertex spins to the presence
of a dimer instead), the Hilbert space of vertex spins, is the same as the Hilbert space
of non-overlapping dimers on the diamond lattice which is the model studied in [131,
206, 207]. Ref. [131] showed numerically that the quantum liquid only survives down
to µc = 0.75(2)/|K1|, where it transitions into an ordered state called the R state. This
is adiabatically connected to the µ → −∞ ground state of maximal number of flippable
plaquettes. This suggests, though does not prove, that the ground state of H(3)

eff is ordered,
since, if H(3)

rotor is deconfined in all sectors, the lowest energy charge configuration is that
corresponding to ferromagnetic centres. In that sector a confined phase is actually lower in
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energy. It is nevertheless possible that the component of the energy not coming from the
static charge configuration makes the deconfined phase of another sector lower in energy.
Furthermore, higher order terms in the perturbation theory introduce non-zero matrix ele-
ments between different centre spin configurations, which means this picture breaks down.
Even if the ground state of H(3)

eff is ordered, higher order terms could ultimately melt the
order.

Moving on to higher order, we map the centre spins to Abrikosov fermions [22], where
the mapping depends on the sublattice of the spins, such that

Sz
r = −σr

2

(
f †
r+fr+ − f †

r−fr−

)
,

S+
r =

{
f †
r−fr+, r ∈ a

f †
r+fr−, r ∈ b

, S−
r =

{
f †
r+fr−, r ∈ a

f †
r−fr+, r ∈ b

.

(4.33)

We label the fermion flavour by an electric charge +,−, since now

Gr = nr− − nr+ + div(e)r, (4.34)

so in the Gr = 0 sector
div(e)r = nr+ − nr−, (4.35)

where we have introduced the number operator nr± = f †
r±fr±. This is an exact mapping

provided the constraint nr+ + nr− = 1 is enforced, i.e there is one fermion per site. In
terms of the fermion operators,

Bij
7 =


f †
ri−fri+f

†
rj+frj−e

i(curl∗a)ij , for j − i even, ri, rj ∈ a

f †
ri+fri−f

†
rj−frj+e

−i(curl∗a)ij , for j − i even, ri, rj ∈ b

f †
ri−fri+f

†
rj+frj−e

i(curl∗a)ij , for j − i odd, ri ∈ a, rj ∈ b

f †
ri+fri−f

†
rj−frj+e

−i(curl∗a)ij , for j − i odd, ri ∈ b, rj ∈ a

(4.36)

where we define a modified curl,

(curl∗a)ij = −
j−1∑
i′=i

ari′ri′+1
+

i−1∑
i′=j

ari′ri′+1
. (4.37)

The fourth order part of the effective Hamiltonian can be written compactly as

H
(4)
eff = −K2

∑
7

5∑
i=0

5∑
j=i+1

(
B̃ij
7 + h.c

)
,

B̃ij
7 = f †

ri−fri+f
†
rj+frj−e

i(curl∗a)ij .

(4.38)

A B̃ij
7 operator hops a + fermion from site i to j and a − fermion from site j to i, flipping

the electric field on the two paths between them, thereby leaving Gr invariant. This is
shown schematically in fig. 4.4.
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+

B̃ij
7

ri

rj

ri

rj

Figure 4.4: Schematic representation of the action of the B̃ij
7 operator. The charges represent

the fermionic spinons and the grey lines the electric field, err′ . The operators act on length-6
hexagonal loops.

Thus the effective Hamiltonian, eq. (4.23), in the fermion and rotor variables is

H
(4)
rotor = Ue

∑
〈rr′〉

e2rr′ + Uf

∑
r

(
(nr+ − 1

2
)(nr− − 1

2
)

)

+2K1

∑
7

cos(curl a)7 −K2

∑
7

5∑
i=0,j=i+1

(
f †
ri−fri+f

†
rj+frj−e

i(curl∗a)ij + h.c

)
,

(4.39)

which corresponds to the physical Heff in the Ue, Uf → ∞ limit and Gr = 0 gauge sector,
which enforces the appropriate constraints on the rotors and fermions. By construction,
[H

(4)
rotor, Gr] = 0, which is a U(1) local symmetry, due to the gauge transformation

arirj → arirj + χrj − χri ,

fri+ → fri+e
−iχri , fri− → fri−e

iχri ,
(4.40)

for χr ∈ [0, 2π). Thus the effective theory is a frustrated U(1) lattice gauge theory with
fermionic matter. Due to the coupling of different central spin sectors, one cannot simply
write down a relevant RK-type quantum dimer model.

HFB discussed the topological properties of the U(1) QSL on the pyrochlore in terms of
the electric flux

ΦE
k =

∑
〈rr′〉∈plane

err′ , (4.41)

where the sum is over all links which pierce a plane oriented perpendicular to the cubic
axis, k ∈ {x, y, z}, which is analogous to the winding number in classical spin-ice. This
quantity is not conserved by H

(4)
rotor since

[ΦE
k , B̃

ij
7] = −2B̃ij

7, [ΦE
k , (B̃

ij
7)†] = (2B̃ij

7)†, (4.42)

where i, j are such that the hexagonal loop is intersected by the plane. This is the same
algebra as raising and lowering operators, where (B̃ij

7)† and B̃ij
7 raise and lower the eigen-

value of ΦE
k by 2 respectively. The B̃ij(†)

7 are analogous to the moves in the classical Ising
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model which change the winding number by ±2, illustrated in fig. 2.3. In the quantum
effective model this property of ΦE

k is a manifestation of the fact that sectors with even or
odd numbers of +1/2 centre spins have internal non-zero matrix elements but are mutu-
ally disconnected. In the charge language this translates to the fact that the difference in
population of the charge species, i.e the total charge,

Nq = N+ −N− =
∑
r

(
nr+ − nr−

)
, (4.43)

is conserved.

The question going forwards is if the ground state of eq. (4.39) is deconfined in the physical
limit and gauge sector. If so, this corresponds to a U(1) QSL, similar to the U(1) QSL on
the pyrochlore. Another possibility is for single fermions (spinons) to be deconfined but
for spinon pairs to condense, which would lead to a Z2QSL via the Higgs mechanism [22].
Also pertinent, is whether the γ = 2 point, where eq. (4.39) was derived, is a special point
in the parameter space or whether the low energy properties of the model in a broader
region of the parameter space can be understood in the lattice gauge theory/quantum dimer
model picture. In the following sections, we attempt to gain some insight using parton
mean-field and exact diagonalization calculations.

4.3 Gauge mean-field theory

Applying the gauge mean-field theory (gMFT) method, originally introduced in [149], we
investigate, at γ = 2 and assuming the ground state is deconfined, what the ground state
phase boundaries are, and whether the deconfined phase is a U(1) or Z2 QSL. Ultimately,
we construct a mean-field ground state phase diagram in J⊥

1 , J
⊥
2 space.

The convention for vectors pointing from a to b diamond sites we use is

e1 =
1

4
(1, 1, 1), e2 =

1

4
(1,−1,−1), e3 =

1

4
(−1, 1,−1), e4 =

1

4
(−1,−1, 1). (4.44)

Our starting point is the XXZ Hamiltonian written as

H =
Jz
2

2

∑
r

Q2
r + J⊥

1

∑
r

(
S+
r

∑
µ

S−
r,r+σreµ + h.c

)
+ J⊥

2

∑
r

∑
µ 6=ν

S+
r,r+σreµS

−
r,r+σreν ,

(4.45)

where
Qr = σr

(
γSz

r +
∑
r′→r

Sz
rr′

)
, (4.46)

which is the quantity we calledGr in the previous section. We explicitly make the diamond
lattice positions, r, a vector and µ, ν ∈ {1 . . . 4}. For general γ, the possible eigenvalues
of Qr are {−2 ± γ/2,−1 ± γ/2,±γ/2, 1 ± γ/2, 2 ± γ/2}. Qr is treated as the angular



98 Quantum XXZ Model

momentum of a quantum rotor, with the conjugate angular variable ζr, such that [ζr, Qr′ ] =

iδrr′ . The raising/lowering operators of Qr are

Φ†
r = eiζr , Φr = e−iζr , (4.47)

such that
[Qr,Φ

†
r′ ] = Φ†

r′δrr′ , [Qr,Φr′ ] = −Φr′δrr′ . (4.48)

The Φ
(†)
r are the annihilation(creation) operators of charge-1 bosonic spinons which must

satisfy the constraint |Φr|2 = 1. Due to the J1 terms, it is also useful to introduce charge
γ spinons,

Ψr = e−iγζr , [Qr,Ψr′ ] = −γΨr′δrr′ , (4.49)

with corresponding relations for the creation operators.

The approach can now be summarized as follows. We define an additional Hilbert space
HQ for the Qr, and consider the enlarged Hilbert space H = HQ ⊗ HS , where HS is
the Hilbert space of the spins. After constructing a parton Hamiltonian which acts in H
such that it will reproduce all the matrix elements of eq. (4.45) in Hs, we treat Qr as
independent of the spin operators, which would recover the physical theory provided we
enforce eq. (4.46) as a constraint. It is an uncontrolled approximation of the method that
this constraint is not enforced, with Qr ultimately integrated over all values in the range
[−∞,∞] [153].

Now, to construct the appropriate parton representation of the spin operators, we should
look at the effect of the J⊥

1 and J⊥
2 terms of eq. (4.45) on the eigenvalues of Qr. Consider

a state in the Sz basis, then acting with S+
r,r+σreµS

−
r,r+σreν maps

Qr → Qr, Qr+σreµ → Qr+σreµ − σr, Qr+σreν → Qr+σreν + σr, (4.50)

whereas S+
r S

−
r,r+σreµ maps

Qr → Qr + σr(γ − 1), Qr+σreµ → Qr+σreµ + σr, (4.51)

and similarly for S−
r S

+
r,r+σreµ . This is illustrated in fig. 4.5. The physical spins are decom-

posed into spinons and pseudospins, sαr ,

Sz
r = szr, Sz

r,r+σreµ = szr,r+σreµ ,

S+
r = Ψ†

rs
+
r , S+

r,r+eµ = Φ†
rs

+
r,r+eµΦr+eµ , r ∈ a,

S+
r = Ψrs

+
r , S+

r,r−eµ = Φ†
r−eµs

+
r,r+eµΦr, r ∈ b,

(4.52)

and corresponding Hermitian conjugates. The spinons account for the effect on Qr and the
pseudospins ensure the correct matrix elements. The pseudospins obey the normal spin
1/2 algebra. Vertex pseudospins can be related to the electric field and vector potential of
the perturbation theory,

szr,r′ → σrerr′ , s±r,r′ → e±iσrarr′ , (4.53)
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(a)

S+
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−
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Qr

Qr+σreν Qr+σreµ − σr
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(b)

S+
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Figure 4.5: Illustration of the effect of the J⊥
2 (a) and J⊥

1 (b) terms on the eigenvalues of Qr.
This can be incorporated into the parton decomposition of the spin operators by attaching the
appropriate spinon creation/annihilation operators.

and the centres with the fermions, as in eq. (4.33).

With this rewriting, eq. (4.45) becomes

HgMFT =
Jz
2

2

∑
r

Q2
r

+ J⊥
1

∑
µ

(∑
r∈a

(Ψ†
rΦ

†
r+eµΦrs

+
r s

−
r,r+eµ +ΨrΦ

†
rΦr+eµs

−
r s

+
r,r+eµ)

+
∑
r∈b

(ΨrΦ
†
rΦr−eµs

+
r s

−
r,r−eµ +Ψ†

rΦ
†
r−eµΦrs

−
r s

+
r,r−eµ)

)
+ J⊥

2

∑
µ6=ν

(∑
r∈a

Φ†
r+eµΦr+eνs

−
r,r+eµs

+
r,r+eν +

∑
r∈b

Φ†
r−eµΦr−eνs

+
r,r−eµs

−
r,r−eν

)
.

(4.54)

The two different species of spinons makes working with HgMFT in this form difficult.
However, for γ = 2, the theory can be simplified. The physical spectrum becomes Qr ∈
{−3,−2,−1, 0, 1, 2, 3} and the effect of the J⊥

1 term on Qr can be accounted for by letting
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Ψr = Φ2
r. Therefore, for γ = 2,

HgMFT =
Jz
2

2

∑
r

Q2
r

+ J⊥
1

∑
µ

(∑
r∈a

(Φ†
rΦ

†
r+eµs

+
r s

−
r,r+eµ + ΦrΦr+eµs

−
r s

+
r,r+eµ)

+
∑
r∈b

(ΦrΦr−eµs
+
r s

−
r,r−eµ + Φ†

rΦ
†
r−eµs

−
r s

+
r,r−eµ)

)
+ J⊥

2

∑
µ6=ν

(∑
r∈a

Φ†
r+eµΦr+eνs

−
r,r+eµs

+
r,r+eν +

∑
r∈b

Φ†
r−eµΦr−eνs

+
r,r−eµs

−
r,r−eν

)
,

(4.55)

By construction, recalling that Qr and the pseudospins should be treated as independent

variables, the quantity Gr = Qr − σr

(
2szr +

∑
µ s

z
r,r+σreµ

)
commutes with HgMFT. The

physical sector is where Gr = 0, which also enforces the constraint on the angular mo-
mentum of the quantum rotors. This is a local U(1) symmetry, HgMFT is invariant under
the gauge transformation

Φr → Φre
−iχr , s±r,r′ → s±r,r′e

±iσr(χr′−χr), s±r → s±r e
∓2iσrχr (4.56)

with χr ∈ [0, 2π), which is analogous to the gauge transformation identified in the pertur-
bation theory.

4.3.1 Mean-field Decoupling

We construct a mean-field Hamiltonan, HMF through the decoupling,

ΦrΦr′ → 〈ΦrΦr′〉+ δ(ΦrΦr′),

sαr → 〈sαr 〉+ δ(sαr ),

sαr,r′ → 〈sαr,r′〉+ δ(sαr,r′),

(4.57)

retaining terms up to first order in the fluctuations. The mean-field Hamiltonian can be
separated into a central pseudospin, vertex pseudospin and rotor part,

HMF =
∑
x=a,b

Hx +
∑
µ

Hµ +Hrotor. (4.58)

We will attempt to find a self-consistent mean-field solution for the J⊥
1,2 < 0 region of

the parameter space. Possible mean-field ground states and their associated expectation
values are summarized in table 4.2.
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State 〈szµ〉 〈s±µ 〉 〈szr〉 〈s±r 〉 〈ΦrΦr′〉 〈Φ†
rΦr′〉 〈Φr〉

U(1) QSL 0 6= 0 0 6= 0 0 6= 0 0
Z2 QSL 0 6= 0 0 6= 0 6= 0 6= 0 0

XY Ferro 0 6= 0 0 6= 0 6= 0 6= 0 6= 0

Table 4.2: Possible ground states of HMF and their characteristic pseudospin and spinon expec-
tation values. 〈Φr〉 does not enter the mean-field theory directly but a non-zero value implies
long-range off-diagonal order [149].

4.3.2 Zero-flux Ansatz

As in [150] we make a zero-flux ansatz for the ground state, arguing that replacing the
variables in eq. (4.39) with mean-field averages, the energy is minimized when ārr′ = 0

and 〈f †
r−fr+〉 = 〈f †

r+fr−〉 is real for all r. Relating these quantities to the pseudospin
expectation values,

〈s±r,r′〉 =
∣∣〈s±r,r′〉∣∣e±iσrārr′ ,

〈s+ra〉 = 〈f †
ra−fra+〉, 〈s−ra〉 = 〈f †

ra+fra−〉,
〈s+rb〉 = 〈f †

rb+
frb−〉, 〈s−rb〉 = 〈f †

rb−frb+〉,
(4.59)

where ra(b) is a diamond site on the a(b) sublattice. Therefore, we assume that the ex-
pectation values of all pseudospins are real, which corresponds to a zero-flux state. As
discussed in [150], one should in general compare the energies of mean-field ansätze with
all possible flux patterns, which correspond to different projective symmetry groups [44].
However, given the known zero-flux nature of the U(1) QSL in the pyrochlore XXZ model
with ferromagnetic J⊥, and based off the relation between the pyrochlore and centred py-
rochlore effective Hamiltonians in perturbation theory, the assumption of a zero-flux state
on the centred pyrochlore lattice for ferromagnetic J⊥

1 , J
⊥
2 seems reasonable. We also as-

sume that the other mean-field parameters respect the translational symmetry of the lattice.

Therefore the ansatz is

〈s+r,r+σreµ〉 = 〈s−r,r+σreµ〉 = 〈s±µ 〉 = ∆,

〈s−ra〉 = 〈s+ra〉 = sa, 〈s−rb〉 = 〈s+rb〉 = sb,

〈Φa
rΦ

b
r+eµ〉 = 〈Φb

rΦ
a
r−eµ〉 = αµ, 〈Φa†

r Φb†
r+eµ〉 = 〈Φb†

r Φ
a†
r−eµ〉 = α∗

µ,

〈Φa†
r+eµ−eνΦ

a
r〉 = χa

µν , 〈Φa†
r Φa

r+eµ−eν 〉 = χa∗
µν ,

〈Φb†
r+eµΦ

b
r+eν 〉 = χb

µν , 〈Φb†
r+eνΦ

b
r+eµ〉 = χb∗

µν ,

(4.60)

where ra(b) is a diamond site on the a(b) sublattice and Φa(b) indicates which sublattice the
spinon operator is acting on. Note that the perturbation theory argument for sa and sb to
be real implies that sa = sb, although we will not enforce this a priori.
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The mean-field Hamiltonians for centre spins are

Ha = J⊥
1

∑
µ

∑
r∈a

(
〈Φa†

r Φb†
r+eµ〉〈s

−
µ 〉s+r + 〈Φa

rΦ
b
r+eµ〉〈s

+
µ 〉s−r

)
,

Hb = J⊥
1

∑
µ

∑
r∈b

(
〈Φb

rΦ
a
r−eµ〉〈s

−
µ 〉s+r + 〈Φb†

r Φ
a†
r−eµ〉〈s

+
µ 〉s−r

)
.

(4.61)

Notice that J⊥
1 is coupled to mean-field expectation values of the form 〈ΦrΦr′〉, which,

when finite, imply spinon pair condensation and therefore a Z2 QSL ground state. On the
mean-field level, the J⊥

1 term causes spinon pair condensation. Defining the dot product
a · b = azbz + a+b+ + a−b− the mean-field Hamiltonians can be written as

Hx = ~hx ·
∑
r∈x

~sr, (4.62)

where
~ha = (~hb)

∗ = (hz, h+, h−) = J⊥
1 ∆(0,

∑
µ

α∗
µ,
∑
µ

αµ). (4.63)

For a generic single-spin Hamiltonian ~h · ~s, where ~h = (0, a, a∗), the eigenvalues and
eigenvectors are

λ± = ±|a|, |x±〉 =
1√
2

(
± a

|a|
1

)
, (4.64)

and therefore the ground state expectation values

〈s+〉 = − a∗

2|a|
, 〈s−〉 = − a

2|a|
. (4.65)

Evaluating these for the centre spins

sa = sb = s = −
J⊥
1 ∆

∑
µ αµ

2
∣∣∣J⊥

1 ∆
∑

µ αµ

∣∣∣ = −
J⊥
1 ∆

∑
µ α

∗
µ

2
∣∣∣J⊥

1 ∆
∑

µ α
∗
µ

∣∣∣ , (4.66)

which tells us that
∑

µ αµ is real. Furthermore, assuming that
∑

µ αµ, along with ∆, are
positive, we obtain s = 1/2, since J⊥

1 is negative.

For the vertex spins, the mean-field Hamiltonian is

Hµ = J⊥
1

∑
r∈a

[(
〈Φa†

r Φb†
r+eµ〉〈s

−
rb
〉+ 〈Φa

rΦ
b
r+eµ〉〈s

−
ra〉
)
s+µ

+

(
〈Φa†

r Φb†
r+eµ〉〈s

+
ra〉+ 〈Φa

rΦ
b
r+eµ〉〈s

+
rb
〉
)
s−µ

]
+ J⊥

2

∑
r∈a

∑
ν 6=µ

[(
〈Φb†

r+eνΦ
b
r+eµ〉〈s

−
ν 〉+ 〈Φa†

r Φa
r+eµ−eν 〉〈s

−
ν 〉
)
s+r,r+eµ+(

〈Φb†
r+eµΦ

b
r+eν 〉〈s

+
ν 〉+ 〈Φa†

r+eµ−eνΦ
a
r〉〈s+ν 〉

)
s−r,r+eµ

]
,

(4.67)
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where replacing the expectation values with the ansatz parameters,

Hµ = ~hµ ·
∑
r∈a

~sr,r+eµ , (4.68)

with

~hµ =

(
0, 2J⊥

1 sαµ + J⊥
2 ∆χ∗

µ, 2J
⊥
1 sαµ + J⊥

2 ∆χµ

)
, χµ =

∑
ν 6=µ

(χa
µν + χb

µν),

(4.69)

and

〈s+r,r+eµ〉 = 〈s−r,r+eµ〉 = ∆ = −
2J⊥

1 sαµ + J⊥
2 ∆χ∗

µ

2
∣∣2J⊥

1 sαµ + J⊥
2 ∆χ∗

µ

∣∣
= − 2J⊥

1 sαµ + J⊥
2 ∆χµ

2
∣∣2J⊥

1 sαµ + J⊥
2 ∆χµ

∣∣ ,
(4.70)

which implies χµ is real and assuming αµ, χµ are positive, we obtain ∆ = 1/2.

Moving on to the rotor part of the mean-field Hamiltonian,

Hrotor =
Jz
2

2

∑
r

Q2
r +HΦ,

HΦ = J⊥
1 ∆s

∑
µ

[∑
r∈a

(
Φ†

rΦ
†
r+eµ + h.c

)
+
∑
r∈b

(
ΦrΦr−eµ + h.c

)]
+ J⊥

2 ∆
2
∑
µ,ν 6=µ

[∑
r∈a

Φ†
r+eµΦr+eν +

∑
r∈b

Φ†
r−eµΦr−eν

] (4.71)

To solve this, we turn to a path-integral formulation in imaginary time, which allows us
to integrate out the Qr term. Our goal is to obtain expressions for the real-space correla-
tors, α(∗)

µ and χ
(∗)
µν to verify the ansatz is self-consistent. The corresponding action is (see

appendix A.1)

S =

∫ ∞

−∞
dτ

1

2Jz
2

∑
r

∂τΦr,τ∂τΦ
∗
r,τ +HΦ + λ

∑
r

(|Φr,τ |2 − 1), (4.72)

where we have introduced the Lagrange multiplier λ to enforce the |Φr|2 = 1 constraint.
One could enforce the constraint on the gauge sector, Gr = 0, through an additional La-
grange multiplier [153, 208], but for the sake of being able to solve for the Green’s func-
tions, this is not done.

We define the Fourier transform (FT)

Φx
r,τ =

1√
Nu.c

∫ ∞

−∞

dω

2π

∑
k

Φx
k,ωe

−i(ωτ−k·r), (4.73)



104 Quantum XXZ Model

whereNu.c is the number of primitive unit cells and x ∈ {a, b} labels the sublattice. Taking
the FT of eq. (4.72) results in

S =

∫ ∞

−∞

dω

2π

∑
k

~Φ†
k,ωMk,ω

~Φk,ω,

Mk,ω =


xk,ω 0 0 y∗k
0 xk,ω y∗k 0

0 yk xk,ω 0

yk 0 0 xk,ω

 , ~Φk,ω =


Φa

k,ω

Φa∗
−k,−ω

Φb
k,ω

Φb∗
−k,−ω


(4.74)

where

xk,ω =
1

2

(
ω2

2Jz
2

+ λ+ 2J⊥
2 ∆

2ck

)
, yk = J⊥

1 ∆sdk,

ck =
∑
µ,ν<µ

cos (k · (eµ − eν)), dk =
∑
µ

e−ik·eµ .
(4.75)

Mk,ω is diagonalized by

Uk =
1√
2


0 −ỹ∗k 0 ỹ∗k

−ỹ∗k 0 ỹ∗k 0

1 0 1 0

0 1 0 1

 , (4.76)

where ỹk = yk
|yk|

, with eigenvalues

l1,2k,ω = l−k,ω = xk,ω − |yk|, l3,4k,ω = l+k,ω = xk,ω + |yk|. (4.77)

The Green’s function, G(k, ω) = M−1
k,ω, component-wise is

Gαβ(k, ω) =
4∑

m=1

uα,m
k uβ,m

k

lmk,ω
, (4.78)

where the uα,m
k are the elements of the matrixUk. We want the equal time Green’s function

Gαβ(k, τ = 0) =
∫∞
−∞

dω
2π
Gαβ(k, ω), so integrating over ω using the residue theorem, then

summing over m,

Gαβ(k) =


ak 0 0 b∗k
0 ak b∗k 0

0 bk ak 0

bk 0 0 ak

 , (4.79)

where

ak =
1

2

(
1

ω−
k

+
1

ω+
k

)
, bk =

ỹk
2

(
1

ω+
k

− 1

ω−
k

)
,

1

ω±
k

=

√
2Jz

2

λ+ ε±k
, ε±k = 2

(
J⊥
2 ∆

2ck ±
∣∣J⊥

1 ∆sdk
∣∣). (4.80)
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The equal-time momentum-space correlators can be read off from eq. (4.79),

〈Φx∗
k Φx

k〉 = 〈Φx∗
−kΦ

x
−k〉 = Gαα(k) =

1

2

(
1

ω−
k

+
1

ω+
k

)
,

〈Φa∗
k Φb∗

−k〉 = G14(k) = 〈Φa
−kΦ

b
k〉 = G23(k) =

ỹ∗k
2

(
1

ω+
k

− 1

ω−
k

)
,

〈Φa
kΦ

b
−k〉 = G41(k) = 〈Φa∗

−kΦ
b∗
k 〉 = G32(k) =

ỹk
2

(
1

ω+
k

− 1

ω−
k

)
.

(4.81)

We can now express the real-space correlators α(∗)
µ and χ

(∗)
µν in terms of the expressions in

eq. (4.81). Using
Φx

r =
1√
Nu.c

∑
k

Φx
ke

ik·r, (4.82)

we obtain the relations between real and momentum-space correlators,

〈Φx∗
r Φx′

r′ 〉 =
1

Nu.c

∑
k

〈Φx∗
k Φx′

k 〉eik·(r
′−r), 〈Φx

rΦ
x′

r′ 〉 =
1

Nu.c

∑
k

〈Φx
kΦ

x′

−k〉e−ik·(r′−r).

(4.83)
Therefore, the explicit expressions for the mean-field parameters are

χa
µν = 〈Φa∗

r+eµ−eνΦr〉 =
1

2Nu.c

∑
k

(
1

ω−
k

+
1

ω+
k

)
eik·(eν−eµ) =

1

2Nu.c

∑
k

Iµν(k),

αµ = 〈Φa
rΦ

b
r+eµ〉 =

1

2Nu.c

∑
k

(
1

ω+
k

− 1

ω−
k

)
J⊥
1

∑4
ν=1 e

−ik·(eµ+eν)∣∣J⊥
1 dk

∣∣ =
1

2Nu.c

∑
k

Jµ(k).

(4.84)

In order to evaluate these expressions, one first needs to find the value for the Lagrange
multiplier, λ, which is done by enforcing the constraint |Φr|2 = 1 on average,

〈Φa∗
r Φa

r〉 = 〈Φb∗
r Φ

b
r〉 =

1

2Nu.c

∑
k

(
1

ω−
k

+
1

ω+
k

)
= 1. (4.85)

One can evaluate this expression numerically for specific J⊥
1 , J

⊥
2 and using systematic

“guesses" for λ, for example using the bisection method [209], to find λ(J⊥
1 , J

⊥
2 ) which

satisfies eq. (4.85) up to a desired accuracy.

To evaluate sums of the form
∑

k f(k), it is easier to work in units of the reciprocal lattice
vectors [149]. The reciprocal lattice vectors of the face-centred cubic lattice (with lattice
vectors defined in eq. (1.2)) are

b1 = 2π(1, 1,−1), b2 = 2π(−1, 1, 1), b3 = 2π(−1, 1, 1) (4.86)

and we define the variable q = (q1, q2, q3) through

k =
3∑

i=1

qibi. (4.87)
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For a periodic 1D system withL unit cells,
∑

k f(k) =
∑

q f(q), where q ∈ {−1/2,−1/2+

1/L, . . . , 1/2−1/L}, so that
∑

k is over the first Brillouin zone. Using the Riemann sum,∫ b

a

f(x)dx = lim
∆xi→0

n∑
i=1

f(xi)∆xi, ∆xi = xi − xi−1, x0 = a, xn = b, (4.88)

in the L → ∞ limit,
1

L

∑
k

f(k) →
∫ 1

2

− 1
2

f(q)dq (4.89)

and therefore generalizing to 3D,

1

Nu.c

∑
k∈BZ1

→
∫ 1

2

− 1
2

f(q)d3q. (4.90)

where the integral is over a cube in q space corresponding to the first Brillouin zone.

However, before proceeding to evaluate the momentum integrals one should verify the
periodicity of the summands. The sums in eq. (4.84) are in principle over all momenta
and it is only through the periodicity of the summand that one can restrict the sum to a
smaller region of momentum space. Since eµ−eν =

∑3
i=1 niai with ni integer and ai the

fcc lattice vectors, ck+bi
= ck. Furthermore, since dk =

√
4 + 2ck, we find dk+bi

= dk.
Therefore, Iµν(k) has the periodicity of a reciprocal lattice vector and to evaluate χx

µν one
only needs to integrate over the first Brillouin zone.

On the other hand, f(k) = e−ik·(eµ+eν) is antiperiodic when translating by a reciprocal
lattice vector, f(k + bi) = −f(k), and is therefore periodic after translating to the next
nearest reciprocal lattice site, f(k+bi+bj) = f(k). In this case one should sum momenta
up to the second Brillouin zone,∑

k∈BZ2

Jµ(k) =
∑

k∈BZ1

(
Jµ(k) + Jµ(k+ bi)

)
= 0, (4.91)

and therefore α
(∗)
µ = 0 for all J⊥

1 , J
⊥
2 . Jµ(q) is plotted in fig. 4.6(b) to show these prop-

erties. This means that within our ansatz there is no self-consistent Z2 QSL solution,
which originates from the fact that the spinon creation/annihilation operators in αµ act on
adjacent diamond sites, leading to this cancellation in momentum space.

Therefore the only self-consistent zero-flux QSL solution we find is the U(1) QSL where
〈s±ra〉 = 〈s±rb〉 = 〈Φa(∗)

r Φ
b(∗)
r+eµ〉 = 0, which is valid for J⊥

2 small enough that the spinons
do not condense. The condensation of spinons implies ordering to the XY ferromagnet.
For this solution, HMF is the same as for the XXZ model on the pyrochlore, thus gMFT
predicts the U(1) QSL is the ground state in the region 0 ≤ |J⊥

2 | ≤ 0.19Jz
2 [149] or

equivalently 0 ≤ |J⊥
2 | ≤ 0.095Jz

1 . The spinons condense when a singularity appears in
the momentum space Green’s function, causing the momentum integrals to diverge [149].
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Figure 4.6: (a) Sketch of phase diagram obtained from gMFT for Jz
1 = 1, Jz

2 = 0.5 and
J⊥
1 , J⊥

2 < 0. The solid line is the transition from the U(1) QSL to XY ferromagnet found
from gMFT, which occurs at the same value, J⊥

2 = 0.19Jz
2 as when applying gMFT to the XXZ

model on the pyrochlore. Note that J⊥
1 has no effect on the location of this transition in gMFT.

The blue dotted line is an estimate of the transition from comparing the energies of the XY fer-
romagnetic and 3:1 states in the classical model. (b) Plot of Jµ(q) in q = (q1, q2, 0) momentum
space for µ = 0, J⊥

1 = J⊥
2 = −0.05, λ = 1, Jz

1 = 1, Jz
2 = 0.5. In q-space the reciprocal lattice

vectors (red dots) form a cubic lattice. The first Brillouin zone is indicated by a solid line, the
second by a dashed line. One can see that Jµ(q) is not periodic after the first Brillouin zone, but
is after the second. Contributions exactly cancel when integrating over the first two Brillouin
zones which leads to α

(∗)
µ = 0 in the mean-field ansatz.

The location of the phase boundary is obtained as follows. For αµ = s = 0,

〈Φx∗
k Φx

k〉 =
√

2Jz
2

λ− 2
∣∣J⊥

2

∣∣∆2ck
, (4.92)

which first diverges when λ = λc = 12
∣∣J⊥

2

∣∣∆2, since ck = 6 at its maximum for k = 0.
This can be interpreted as the point where the chemical potential of the spinons falls below
the lowest energy of the spinon dispersion. The transition can be located as a function of
J⊥
2 by putting λc into the 〈Φ∗

rΦr〉 = 1 constraint,

〈Φa∗
r Φa

r〉 =
1

Nu.c

∑
q 6=0

√
2Jz

2

λc − 2
∣∣J⊥

2

∣∣∆2cq
, (4.93)

telling us the largest value of
∣∣J⊥

2

∣∣ at which the spinons have not condensed. Re-arranging,
this boundary is at (∣∣J⊥

2

∣∣
Jz
2

)
c

=
1

2Nu.c

(∑
q 6=0

√
1

3− 1
2
cq

)2

(4.94)

which can be evaluated numerically and extrapolated to the Nu.c → ∞ limit, which gives
the result stated above for the extent of the U(1) QSL phase.

In our zero-flux gMFT results, the QSL to XY ferromagnet transition does not depend on
the value of J⊥

1 , our gMFT ansatz fails to properly account for the fact that J⊥
1 can induce
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long-range ferromagnetic XY correlations, as well as any effects on the U(1) QSL. This is
because within the mean-field theory J⊥

1 is coupled to terms of the form 〈ΦrΦr′〉, so only
has an effect in the Z2 QSL, for which we don’t find self-consistent solutions anywhere in
the phase diagram. Furthermore, since the Gr = 0 constraint is not enforced on the rotors,
the mean-field spinon action we use is the same as for the pyrochlore except for the J⊥

1

term; the fact that a quantum spin liquid in this regime is based off a 3:1 rather than 2:2
manifold is not accounted for.

An estimate for the transition to the XY ferromagnet which accounts for the role of J⊥
1 can

be obtained by comparing the energies of a 3:1 state and XY ferromagnet in the classical
model. The classical XXZ model can be written as a sum over tetrahedra, H =

∑
tHt,

with

Ht = Jz
1S

z
t,c

∑
v

Sz
t,v + 2J⊥

1

∑
v

(
Sx
t,cS

x
t,v + Sy

t,cS
y
t,v

)
+ Jz

2

∑
w<v

Sz
t,vS

z
t,w + 2J⊥

2

∑
w<v

(
Sx
t,vS

x
t,w + Sy

t,vS
y
t,w

)
,

(4.95)

so that the energies of a 3:1 state (along z) and ferromagnetic state (along x) are

E3:1 = −Jz
1

2
, EXY = 2J⊥

1 + 3J⊥
2 . (4.96)

Setting these energies equal gives the boundary plotted in fig. 4.6(a).

Summarizing, within gMFT for γ = 2, if there is a deconfined phase, it will be a U(1)
QSL for all J⊥

1 , J⊥
2 small enough not to induce long-range XY ferromagnetic order.

4.4 Exact Diagonalization

We now study the ground state of the XXZ Hamiltonian with ferromagnetic J⊥
1,2 using

the Lanczos method (see appendix B). Although there are significant finite size effects,
this allows us to go beyond perturbation theory and gMFT, accessing the ground state for
γ 6= 2.

These calculations were performed on an N = 24 site cluster (one conventional unit cell)
with periodic boundary conditions, which is shown in fig. 4.7. Due to the small size of
the cluster, the lattice contains closed loops of length 4, in addition to the usual length-6
loops on the infinite centred pyrochlore lattice. Furthermore, loops which wind around
the periodic boundaries can be as small as length 4, which means topological features of
the model will not be evident.

This modifies the γ = 2 perturbation theory of section 4.2 by introducing non-constant
lower order loop processes, which are illustrated in fig. 4.8. At second order, the non-
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Figure 4.7: The 24 site cluster used in exact diagonalization. The tetrahedra are numbered to
show the periodic boundaries. The green and cyan highlighted paths are non-winding and wind-
ing loops of length-4 respectively, whereas the red path is the length-6 hexagonal loop. The five
(i, j) neighbour pairs with distinct distances between the sites are shown with matching dots,
with the sorted list in order of distances shown in the table.

constant contribution to PH⊥
2 DH⊥

2 P is

H
(2)
eff (�) = K�

1

∑
�

(
S+
v,0S

−
v,1S

+
v,2S

−
v,3 + h.c

)
= K�

1

∑
�

(
A� + A†

�

)
, (4.97)

whereK�
1 ∝ −(J⊥

2 )
2/Jz

2 , which is the analogue of the third order hexagonal ring-exchange
in eq. (4.18). In the dimer language,

H
(2)
eff (�) = K�

1

∑
�

(
| 〉 〈 |+ | 〉 〈 |

)
. (4.98)

At third order, one obtains the analogue of the ring exchange involving centre spins, eq. (4.21),

H
(3)
eff (�) = K�

2

∑
�

(
B� +B†

�

)
, B� =

3∑
i=0

3∑
j=i+1

Bij
� ,

Bij
� =

{
S+
ci
S−
cj
S−
vi
. . . S+

vj−1
S+
vj
. . . S−

vi+3
for j − i even

S+
ci
S+
cj
S−
vi
. . . S−

vj−1
S−
vj
. . . S−

vi+3
for j − i odd

,

(4.99)

where K�
2 ∝ J⊥

2 (J
⊥
1 )

2/(Jz
2 )

2. In fig. 4.8, we also show the fourth order non-constant
PH⊥

1 DH⊥
1 DH⊥

1 DH⊥
1 P , which has the same effect as eq. (4.97), with a pair of J⊥

1 terms
acting as a J⊥

2 term. Therefore, even with J⊥
2 = 0, one still has a non-zero ring-exchange

type term in the effective Hamiltonian. On the infinite centred pyrochlore lattice, this J⊥
1

only ring-exchange first appears at sixth order.
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Including H
(2)
eff (�) and H

(3)
eff (�) in the effective Hamiltonian does not change its symme-

try properties, one still obtains a U(1) lattice gauge theory after mapping to rotors and
fermions. Therefore, although the low-energy physics will differ in the details, calcula-
tions on small clusters still give useful insight into the model.

In our calculations we use the fact that the Hamiltonian commutes with mz =
∑

i S
z
i , di-

agonalizing the Hamiltonian in each mz sector separately. In the ground state, we measure
the correlators

Sz
ij = 〈Sz

i S
z
j 〉, S±

ij = 〈S+
i S

−
j + h.c〉. (4.100)

The N = 24 cluster contains up to 5th nearest neighbours, as shown in fig. 4.7.

To locate ground state phase boundaries, we use the second derivative of the ground state
energy, which, for example, was used in [210] to locate the boundaries of a gapless quan-
tum spin liquid on small clusters. At T = 0 the free energy reduces to the ground state
energy, which is a function of the parameters of the Hamiltonian, E0 = E0(J). There-
fore non-analyticities in the ground state energy with respect to the parameters, which are
detected via discontinuities in its derivatives, indicate a quantum phase transition [211].
As such, we measure the second derivative ∂2E0(J))/(∂J

α
i )

2, at various points and along
various directions of the parameter space J = (Jz

1 , J
⊥
1 , J

z
2 , J

⊥
2 ). In particular, since the

ground state energy is obtained on a discrete grid, we compute the finite central difference

cαi (J) =
∂2E0(J)

(∂Jα
i )

2
≈ E0(J+ δĴα

i )− 2E0(J) + E0(J− δĴα
i )

δ2
, (4.101)

to approximate the second derivative.

A quantum phase transition also implies a discontinuous change in the ground state wave-
function, which can be detected by computing fidelities,

F (J) = |〈Ψ0(J)|Ψ0(J+ δ)〉|, (4.102)

between adjacent points in the parameter space. In both cases, on small clusters, the fea-
tures associated with the phase transition will not be very sharp, so it can be challenging
to decipher whether a feature corresponds to a true phase transition in the thermodynamic
limit. In general, one should verify what happens to these features as system size is in-
creased, however, since our model is 3D, we are extremely limited in which system sizes
can be accessed in exact diagonalization.
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Figure 4.8: Loop processes in perturbation theory which arise in clusters containing length-4
closed loops. Note that the square shown is not a tetrahedron, the spins making up the loop be-
long to four tetrahedra around the outside of the loop (not explicitly shown). The labels, i, used
to label the tetrahedra, ti, are indicated in (a).
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Ground state phase diagram

In the following we set Jz
1 = 1 and tune the ratio γ through Jz

2 as well as parametrizing
J⊥
1 = −J⊥ cos θ, J⊥

2 = −J⊥ sin θ. First, we set θ = π/4, and diagonalize the Hamilto-
nian on a Jz

2 , J
⊥ grid, measuring the second derivative of the energy as well as correlators.

This is summarized in fig. 4.9.

For Jz
2 ≥ 0.36 we find that the ground state is in the mz = 0 sector. For Jz

2 smaller
than this, the ground state has finite magnetization as a result of the proximity to the Ising
ferrimagnet at Jz

2 ≤ 1/3. At larger J⊥ the ground state is the XY ferromagnet, but as
one would expect from the viewpoint of adding quantum fluctuations to the Ising model,
there are two phases for small J⊥, based off of the 3:1 and 2:2 manifolds for Jz

2 < 1 and
Jz
2 > 1 which we call the (3:1)⊥ and (2:2)⊥ states respectively. They do not show any

obvious signs of long-range order in the correlation functions. There is no direct phase
transition at finite J⊥ between the (3:1)⊥ and (2:2)⊥ states, instead always passing through
the XY ferromagnet. Our focus is on the (3:1)⊥ regime, which, as discussed in the previous
sections, could host a U(1) QSL ground state. Although, this state is fragile, surviving at
its greatest extent up to about J⊥

c /J
z
1 ≈ 0.03, this is comparable to the extent of the U(1)

QSL on the pyrochlore, which exists up to −J⊥
2,c/J

z
2 ≈ 0.05 [151].

At Jz
2 = 0.5, we also investigate the effect of different J⊥

1 , J
⊥
2 on the ground state energy

and correlations, shown in fig. 4.10. We find the anticipated XY ferromagnet ground state
for ferromagnetic J⊥

1 , which becomes a ferrimagnet for antiferromagnetic J⊥
1 , a result of

the transformation properties of the Hamiltonian discussed at the beginning of this chapter.
The (3:1)⊥ state is slightly more stable to J⊥

1 than J⊥
2 terms, likely a result of the larger

coordination number (6 vs 4) of the J⊥
2 term.

Next, we take a closer look at the (3:1)⊥ state as Jz
2 is varied. The spectrum, second

derivative and ground state fidelity are shown in fig. 4.11. There are subtle changes in
the energy spectrum as well as small features in the second derivative and ground state
fidelity across Jz

2 ≈ 0.5, which could be indicative of a qualitative change in the ground
state properties. However, the magnitude of these features is small compared to those
which appear at the phase transition to the XY ferromagnet, so could also be due to finite
size effects. We return to the question of whether Jz

2 = 0.5 is a critical point, or the (3:1)⊥

state a continuous phase across the whole region, when we compare the (3:1)⊥ ground
state to a trial wavefunction later in this section.

To investigate the effect of varying J⊥
1 /J

⊥
2 on the (3:1)⊥ state, we take a cut along J⊥ =

0.02, varying θ between 0 and π/2. For θ small, J⊥
2 ≈ 0, so the highest order non-constant

terms in the perturbation theory are those where there is ring-exchange entirely mediated
by J⊥

1 . These terms are of twice the order of their J⊥
2 counterparts, so energy gaps pro-

duced by this term will be small, as we see in the energy spectrum for low θ. On the other
hand, for θ & 3π/8 we observe that the energy gap also becomes very small. At θ = π/2

(where J⊥
1 = 0), the gap is of similar magnitude to numerical precision. This is consis-
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Figure 4.9: Ground state properties for Jz
1 = 1, J⊥

1 = J⊥
2 = −J⊥/

√
2 in the mz = 0 sector.

(Left) c⊥ computed using finite differences, which is large in magnitude along two paths in
the parameter space which meet at Jz

2 = 1. (Middle) The S±
ij correlator measured between 5th

nearest neighbours (the furthest distance possible on the N = 24 cluster). For J⊥ sufficiently
large these correlations are large and positive, indicating the transition to a long-range XY ferro-
magnet. (Right) The Sz

ij correlator between nearest neighbours. Below the transition to the XY
ferromagnet, for Jz

2 < 1, Sz
ij ≈ −0.125, indicating that the ground state is made up of a superpo-

sition of states in the 3:1 manifold, whilst for Jz
2 > 1, Sz

ij ≈ 0, consistent with a superposition of
states from the 2:2 manifold.
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Figure 4.10: Constructing a ground state phase diagram for Jz
1 = 1, Jz

2 = 0.5. (Left) The sum of
the second derivatives, c⊥1 + c⊥2 computed using finite differences. (Centre) S±

ij for 5th nearest
neighbours, showing the onset of long-range ferromagnetic XY correlations between vertex spins
for larger J⊥. (Right) S±

ij for nearest neighbours. This shows how for antiferromagnetic J⊥
1 the

ordered state at larger J⊥ is an XY ferrimagnet, with centres and vertices anticorrelated. This
must be the case given the transformation properties of the Hamiltonian discussed at the begin-
ning of this chapter. For small J⊥

1 there is an intermediate region where centres and vertices are
uncorrelated.
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Figure 4.11: Low energy properties for J⊥ = 0.01 as a function of Jz
2 . (a) The 20 lowest en-

ergy eigenvalues relative to the ground state energy, with the gap to the first excited state shown
in the inset. The gap has a local minimum at Jz

2 = 0.45, where there is a cusp in the ener-
gies of the excited states. (b) The second derivative of the ground state energy and fidelity
F = |〈Ψ0(J

z
2 )|Ψ0(J

z
2 + δ)〉|. The fidelity shows a small dip around Jz

2 = 0.5, with a corre-
sponding small dip in the second derivative which is not visible on this scale. However, these
features are small relative to the double peaks which result from transitions to and from the XY
ferromagnet. At low Jz

2 the second derivative decreases due to the nearby transition to the Ising
ferrimagnet, with the fidelity also indicating the proximity of this transition.

tent with the fact that, up to the lowest order non-constant term in perturbation theory,
the ground states in the different spin-inversion sectors will be degenerate. Furthermore
the onset of this quasi-degeneracy coincides with a small dip in the fidelity and second
derivative of the energy before a discontinuity in the fidelity at θ = π/2. The onset of this
quasi-degeneracy could correspond to a phase transition where spin-inversion symmetry
is spontaneously broken in the thermodynamic limit.

Comparison to QSL variational wavefunction

To get more insight into the nature of the ground state in the (3:1)⊥ region, we define a trial
QSL wavefunction which corresponds to the deconfined phase of the lattice gauge theory
derived in perturbation theory. We start at third order in perturbation theory, where we
discussed how in the deconfined phase, the lowest energy static centre spin configuration
would be ferromagnetic. Although, at third order, we know that the liquid state will not
be the ground state [131], we assume that higher order terms in the perturbation theory
and/or the effect of the finite system size, for example the effect of H(2)

eff (�), ultimately
melt this ordered ground state.

Therefore, our starting point is the equal weight superposition of all 3:1 configurations
compatible with centre spins all up, |RK(↑)〉. Note that the third order length-6 ring-
exchange term on the infinite lattice is not ergodic within this sector, however the second-
order length-4 ring-exchange term which exists on the finite size cluster is. Now, we also
want to include the effect of the J⊥

1 term which enters at third-order on length-4 loops
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Figure 4.12: Low energy properties for Jz
2 = 0.5, J⊥ = 0.02, whilst varying θ. (a) The 20 low-

est energy eigenvalues relative to the ground state energy, with the gap to the first excited state
shown in the inset on a log scale. The gap becomes small (of order 10−5) at θ ≈ 3π/8 where
there is also a local minimum in the energies of the excited states. (b) The second derivative of
the ground state energy and fidelity F = |〈Ψ0(θ)|Ψ0(θ + δ)〉|. The fidelity and second derivative
show a small dip at the same value of θ.

and fourth-order on length-6 loops. We observe that
∑

7(B7 + B†
7) |RK(↑)〉, where 7

represents all length-6 loops, both winding and non-winding, introduces all of the con-
figurations included by (B� + B†

�) plus some additional ones. Furthermore, since the
full Hamiltonian commutes with the spin inversion operator, X , we ensure the wavefunc-
tion is spin-inversion symmetric (X = +1) or antisymmetric (X = −1). Therefore, our
variational wavefunction is

Ψv(X,φ) ∝
(
cosφ+ sinφ

∑
7

(
B7 +B†

7

))
(|RK(↑)〉 ± |RK(↓)〉), (4.103)

where φ is parameter which may be optimized to maximize overlap with the ground state.
This wavefunction can be though of as the truncated and parameterized form of

e
∑
7(B7+B†

7)
(|RK(↑)〉 ± |RK(↓)〉). (4.104)

Since with J⊥
1 , J

⊥
2 < 0, the Hamiltonian is stoquastic, the ground state cannot have X =

−1, but we introduce this as we find the X = −1 state has high overlap with the first
excited state. For X = +1, φ = 0 the wavefunction is the spin inversion symmetrized RK
wavefunction corresponding to the ground state of the Hamiltonian

HRK(�) = −
∣∣K�

1

∣∣∑
�

(
| 〉 〈 |+ | 〉 〈 |

)
+ µ�

∑
�

(
| 〉 〈 |+ | 〉 〈 |

)
(4.105)

at K�
1 = µ� in a 3:1 Hilbert space with ferromagnetic centres.

First, we compute the overlaps of the ground and first excited states for Jz
2 = 0.5, J⊥ =

0.02, allowing θ to vary. This is the same cut in parameter space as fig. 4.12. For Jz
2 = 0.5,

the perturbation theory is directly applicable.
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Figure 4.13: (Upper panels) Overlap of the QSL variational wavefunction with the ground
state (for X = +1) and first excited state (for X = −1). For the data represented by triangles
φ is optimized to maximize the overlap, whereas for circles φ = 0, i.e it is the pure RK-like
wavefunction. The optimal φ is shown in the lower panels. The left panels are for parameters
Jz
2 = 0.5, J⊥ = 0.02, right for θ = π/4, J⊥ = 0.01.

We find that for θ & 3π/8 the overlap of the φ = 0 wavefunctions is high (at around 90%),
which is consistent with perturbation theory since J⊥

1 is small so correlations induced by
terms higher-order than the J⊥

2 ring-exchange are minimal. The closing of the energy gap,
and high overlap with the RK wavefunction, point towards a ground state well-described
by the deconfined phase of the J⊥

2 only perturbation theory. However, as discussed in
section 4.2, the ground state in the relevant effective dimer model on the infinite lattice is
actually ordered, so the fact we appear to find a liquid phase is likely a finite size effect,
in particular, the presence of length-4 loops on the lattice means that the lowest order
effective dimer model is eq. (4.105) rather than eq. (4.32).

As θ is decreased, i.e turning on J⊥
1 , the optimal φ increases, as the role of the B�,7

become more significant. The point where the optimal φ increases significantly almost
coincides with the opening of the energy gap and anomalies in the second derivative of
the energy and fidelity, so these features may be associated with a change in the ground
state wavefunction to include B7-induced correlations. The overlap with ground state
drops to below 80% at small θ, which may be the result of only including (B7 + B†

7) at
first order in the variational wavefunction.

Next, fixing θ = π/4 and J⊥ = 0.01, we compute the overlaps as a function of Jz
2 ,

this time the same path in parameter space as fig. 4.11. The ground state fidelity is over
90% for a substantial portion of the parameter space around Jz

2 = 0.5, decreasing as Jz
2

approaches the phase transition to the XY ferromagnet. The optimal φ is minimum around



117

Jz
2 = 0.47, which coincides with the local minimum in the energy gap and nearby to the

anomalous feature in the fidelity. In both paths through parameter space we see that a
closing of the energy gap and features in the fidelity coincide with larger overlap with the
RK wavefunction. For our finite size system, it is however not possible to say whether this
corresponds to a critical point, and at least for this cluster, the ground state wavefunction
is liquid-like either side of these points.

Using exact diagonalization, we have located the region in parameter space where the
ground state consists of a 3:1 manifold plus quantum fluctuations. The high overlap of a
QSL variational wavefunction we motivated from perturbation theory with the ground state
in this regime, even away from Jz

2 = 0.5, suggests that the effective lattice gauge theory
and quantum dimer models derived in perturbation theory offer the appropriate perspective
from which to understand the low-energy properties. Due to the small system size, we are
not able to establish whether this regime is a single phase or hosts several different phases.
However, we identify points at Jz

2 ≈ 0.5 and θ ≈ 3π/8 which are candidates for critical
points. Numerical simulations on larger system sizes are needed to resolve the nature of
these points, as well as to determine whether a liquid state survives to larger system sizes.

4.5 Summary and Outlook

In this chapter we studied the ground state properties of the quantum spin 1/2 XXZ model
on the centred pyrochlore lattice. In perturbation theory, for γ = 2, we derived an ef-
fective frustrated U(1) lattice gauge theory coupled to fermionic matter. The deconfined
phase of this theory, without condensation of spinon pairs, is a U(1) QSL, closely related
to that on the pyrochlore lattice. Turning to gauge mean-field for γ = 2, we found the only
self-consistent solution in our zero-flux ansatz is the U(1) QSL, identical to the mean-field
form of the U(1) QSL on the pyrochlore lattice. This suggests that, if the ground state is
deconfined, it will be a U(1) , not Z2 , QSL. This calculation, however, does not account
for the role of the 3:1 manifold. Turning to exact diagonalization on an N = 24 cluster,
we found a region in the parameter space, for small J⊥, where the ground state is a super-
position of 3:1 states, a prerequisite for realizing the QSL. We saw that the ground state in
this regime has high overlap with a QSL variational wavefunction inspired by perturbation
theory, even away from the γ = 2 point where it was derived. This indicates that the per-
turbation theory and, therefore, the effective gauge theory and associated dimer models,
provide the right framework for understanding the low-energy properties. However, these
simulations suffer from severe finite size effects, so simulations on larger system sizes are
called for to settle the precise nature of the phase(s) in the (3:1)⊥ region.

Looking ahead, exact diagonalization calculations are probably not possible for lattice
sizes large enough that, with periodic boundaries, the smallest closed loops are length-6
hexagons, which would allow us to rule out effects from lower order perturbative processes.
However, if one works instead in the reduced Hilbert space of the effective perturbative
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Hamiltonian, similar to [155] these lattice sizes are within reach. Furthermore, such an
approach could also be used to simulate the perturbative regime for J⊥ antiferromagnetic,
where, on the pyrochlore, the ground state is a π-flux U(1) QSL. This, however comes at
the cost of only being valid for γ = 2, and not for the broader parameter space. On the other
hand, one could also use quantum Monte Carlo, which does not suffer from the sign prob-
lem for ferromagnetic J⊥, to study the full XXZ Hamiltonian, similar to the calculations
performed in [151]. To identify the QSL, one could, for example, compare correlation
functions to those of the RK wavefunction for an appropriate configuration of centre spins.
One possible ordered state which would need to be ruled out, is the R state [131, 205, 206]
found at smaller µ in the effective third order dimer model for ferromagnetic centres. This
is expected to be the ground state for parameters Jz

2 = 0.5, J⊥
1 = 0,

∣∣J⊥
2

∣∣� 1, and could
occupy a finite extent in the parameter space.

If a QSL ground state is identified in the (3:1)⊥ regime, it would then be interesting to
characterize the properties of the state by interpreting the effective lattice gauge theory as
an emergent quantum electrodynamics. One could, for example, extract the fine structure
constant or speed of light for different values of the parameters in the spirit of [155].

On the experimental side, a material whose low temperature properties are described by
the XXZ model with ferromagnetic J⊥ on the centred pyrochlore lattice is probably un-
realistic, however, more promising, is the prospect of realizing a spin 1/2 material with
entirely antiferromagnetic interactions. This could be possible, for example, in a Cu(II)-
based metal-organic framework. More speculatively, perhaps it could be possible to find
effective S = 1/2 degrees of freedom in a variant with strong spin-orbit coupling, as in the
dipolar-octupolar pyrochlores [156]. In the perturbation theory, one can change the sign
of J⊥

2 terms by an appropriate unitary transformation [90], as well as changing the sign of
J⊥
1 through a global π-rotation of all centre spins about the z-axis. Therefore, the effec-

tive perturbative Hamiltonian can be mapped from the ferromagnetic to antiferromagnetic
case. A QSL ground state in the perturbative regime would likely be closely related to
the π-flux U(1) QSL on the pyrochlore. Whether such a QSL exists and its extent in the
parameter space if it does, would be interesting questions to investigate.

This work is the first step towards understanding possible QSLs on the centred pyrochlore
lattice and their effective gauge theory descriptions. Nevertheless, we already glimpse the
potential for realizing exotic U(1) lattice gauge theories with matter, which could lead to
the observation of phenomena beyond that allowed by the “standard" quantum electrody-
namics which governs our universe.
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Conclusion

In this thesis, we have presented the first studies of classical and quantum spin models
on the centred pyrochlore lattice. We found that this geometry supplements the emergent
gauge fields of ground states on the pyrochlore with charge degrees of freedom. This pro-
vides a new approach for engineering exotic states of matter, by modifying the Hamiltonian
to manipulate these charges, one can tune from ordered to disordered ground states and
the states in between. The applicability of such an approach is not restricted to the centred
pyrochlore, but could be applied to other lattice geometries based on centred (frustrated)
clusters.

Let us summarize the main results and highlight possibilities for future study. First, the
minimal Ising model on the centred pyrochlore lattice hosts a rich phase diagram, includ-
ing both Z2 and U(1) classical spin liquid ground states. Many of these features carry
over to the Heisenberg model which supports a low-temperature classical spin liquid in
a large region of the parameter space. For η & 0.5, this spin liquid is characterized by
broad bow ties in the spin structure factor, which can be rationalized as the result of expo-
nential screening of spin correlations, due to the emergence of effective electric charges
in the ground state. A complementary view is to see this as the thin-film realization of a
higher-dimensional Coulomb spin liquid. The analogous model defined on the 2D centred
kagome lattice displays these same features. Furthermore, adding a J3 term to the centred
pyrochlore Hamiltonian can order the charges in the ground state, leading to the recovery
of the divergence-free Coulomb spin liquid in three dimensions.

An interesting path forward is to study the effect of terms beyond the minimal Ising or
Heisenberg Hamiltonians, whose effects could lead to the observation of further exotic
states of matter. In particular, the centred pyrochlore geometry lends itself to studying the
interplay between order and low-temperature fluctuations.

Our motivation for studying the centred pyrochlore lattice came from its experimental
realization in the metal-organic framework [Mn(ta)2]. Comparing the properties of the
classical Heisenberg + dipolar model to the magnetization, susceptibility and specific heat
measured in experiments, we concluded that [Mn(ta)2] is well-approximated for param-
eters where our model hosts a finite temperature spin liquid regime. We also obtained a
prediction for the low-temperature ordered state, induced by dipolar interactions. These
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predictions are readily verifiable in, for example, neutron scattering experiments, where the
predicted order can be compared to Bragg peaks from neutron diffraction and the powder-
averaged static structure factor of the spin liquid compared to diffuse neutron scattering
results.

Finally, we investigated the spin-1/2 quantum XXZ model with ferromagnetic J⊥, as a
case study for the possibility of realizing quantum spin liquids on the centred pyrochlore
lattice. In perturbation theory, we identified that the low-energy effective theory in the 3:1
regime is aU(1) lattice gauge theory with fermionic matter. Gauge mean-field calculations
suggest that in the deconfined phase, spinon pairs will not condense, so corresponds to a
U(1) quantum spin liquid. Exact diagonalization calculations on a small cluster showed
that the ground state properties can be understood within the framework of the perturbative
effective theory, even away from the γ = 2 point where it was derived. These results
call for large-scale numerical simulations to ascertain whether the ground state in this
regime is indeed the conjectured U(1) QSL. Future work could investigate how this fits
into the emergent quantum electrodynamics picture of the pyrochlore lattice, since the
centred pyrochlore hosts charges in its “vacuum".

This thesis provides the framework for understanding the properties of spin models on the
centred pyrochlore lattice, hopefully there are many fascinating phenomena waiting to be
discovered.
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Appendix A

Quantum Rotors

In both perturbation theory and gauge mean-field theory for the spin 1/2 XXZ model we
map spins to O(2) quantum rotors. An O(2) quantum rotor is equivalent to a particle on a
circle, see fig. A.1, which has the degrees of freedom x1, x2, p1, p2 subject to the constraint
x2
1 + x2

2 = 1. These satisfy the canonical commutation relations, [xi, pj] = iδij . The rotor
has angular momentum L = x1p2 − x2p1 and we can reduce x1, x2 to a single degree of
freedom by setting

x1 = cos θ =
1

2
(eiθ + e−iθ), x2 = sin θ =

1

2i
(eiθ − e−iθ), (A.1)

which defines the angular variable θ. Note that

[L, x1] = −x2[p1, x1] = ix2, [L, x2] = x1[p2, x2] = −ix1, (A.2)

where these commutation relations are reproduced if

[L, θ] = −i. (A.3)

x1

x2 p1

p2

particle

θ

L

rotor

Figure A.1: An O(2) rotor (right) is equivalent to a particle constrained to move on a circle (left).
The variables describing the two systems are shown.
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The properties of the eigenstates of L and θ can be found by working in the angular rep-
resentation where L → −i ∂

∂θ
. Let the eigenstates of θ and L be |θ〉 and |L〉 respectively,

where a suitable angular representation of |L〉 is

〈θ|L〉 = eiLθ. (A.4)

Furthermore the eigenstates of θ are also the eigenstates of Φ = e−iθ. In the many-body
context we define a rotor, Lr, θr, on each lattice site such that

〈θr′ |Lr〉 = δrr′e
iLrθr , (A.5)

with the eigenstates which form a complete basis,

1 =
1

N
∏
r

∫ 2π

0

dθr |θr〉 〈θr| , (A.6)

1 =
1

N ′

∏
r

∫ ∞

−∞
dLr |Lr〉 〈Lr| , (A.7)

where N ,N ′ are normalization factors.

A.1 Path Integral Formulation

In gauge mean-field theory (section 4.3), to solve the spinon part of the mean-field Hamil-
tonian we reformulate the problem as a path integral. We want to compute ground state
expectation values

〈O〉 = 〈Ψ0|O |Ψ0〉
〈Ψ0|Ψ0〉

= lim
β→∞

〈Ψ| e−βHOe−βH |Ψ〉
〈Ψ| e−βHe−βH |Ψ〉

, (A.8)

where |Ψ〉 is an arbitrary state. In particular, we are interested in the form of the (effective)
partition function

Z = lim
β→∞

〈Ψ| e−βHe−βH |Ψ〉 . (A.9)

The Hamiltonian, H = Hrotor =
Jz
2

2

∑
r Q

2
r +HΦ(ζr) depends on the variables Qr and ζr,

which are respectively the angular momentum, Lr and angular variable, θr, of the rotors.

In anticipation of time-slicing, let the initial and final state |Ψ〉 =
∏N

r(0)=1

∣∣ζr(0)〉 =∏N
r(2n)=1

∣∣ζr(2n)〉, where the index in brackets labels the time-slice and
∏N

r(i)=1

∣∣ζr(i)〉 =

|ζ ′〉 ⊗ |ζ ′〉 ⊗ · · · ⊗ |ζ ′〉, where N is the number of lattice sites. This is the product state
with ζr = ζ ′ on all sites. Time-slicing, e−βH = (e−∆τH)n and inserting resolutions of the
identity, eq. (A.6),

Z ∝ lim
β→∞

∏
r(0)...r(2n)

∫ 2π

0

dζr(2n−1)

∫ 2π

0

dζr(2n−2)· · ·
∫ 2π

0

dζr(1)·〈
ζr(2n)

∣∣ e−∆τH
∣∣ζr(2n−1)

〉
. . .
〈
ζr(j+1)

∣∣ e−∆τH
∣∣ζr(j)〉 . . . 〈ζr(1)∣∣ e−∆τH

∣∣ζr(0)〉 ,
(A.10)
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with ∆τ = β
n
. The key quantity to evaluate is x =

〈
ζr(j+1)

∣∣ e−∆τH
∣∣ζr(j)〉. Inserting the

resolution of the identity, eq. (A.7),

x =
∏
r′(j)

∫ ∞

−∞
dQr′(j)

〈
ζr(j+1)

∣∣Qr′(j)

〉 〈
Qr′(j)

∣∣ e−∆τH
∣∣ζr(j)〉 . (A.11)

From eq. (A.5), 〈
ζr(j+1)

∣∣Qr′(j)

〉
= δr,r′e

iQr(j)ζr(j+1) . (A.12)

Then for
〈
Qr′(j)

∣∣ e−∆τH
∣∣ζr(j)〉, first write H = HQ +HΦ. Using eX̂eŶ = eX̂+Ŷ+..., and

dropping terms of greater than first order in ∆τ , anticipating the ∆τ → 0 limit we will
take later, we can write e−∆τH = e−∆τHQe−∆τHΦ . Replacing the operators with their
eigenvalues, 〈

Qr′(j)

∣∣ e−∆τH
∣∣ζr(j)〉 = δr′,re

−∆τHr(j)e−iQr(j)ζr(j) , (A.13)

where Hr is the terms of the Hamiltonian acting on the site r. Bringing this together

x =

∫ ∞

−∞
dQr(j)e

−∆τ J̃Q2
r(j)

+iQr(j)(ζr(j+1)−ζr(j))e−∆τHΦr(j) , (A.14)

where J̃ =
Jz
2

2
. Completing the square for Qr(j) and then integrating it out leaves

x ∝ e−∆τLj , Lj =
(ζj+1

rj
− ζjrj)

2

2Jz
2∆τ 2

+HΦr(j). (A.15)

Taking the continuum limit, n → ∞, and explicitly writing out the sum over lattice sites
in the exponent (which is implied by the products over lattice sites),

Z ∝
∫

Dζ eS[ζ], S[ζ] =

∫ ∞

−∞
dτL(ζr, ∂τζr) =

∫ ∞

−∞
dτ

1

2Jz
2

∑
r

(∂τζr)
2 +HΦ.

(A.16)
Since Φr = e−iζr , HΦ is interacting at all orders so to proceed we recast the functional
integral in terms of Φ,Φ∗ rather than ζ . Subject to the constraint |Φr|2 = 1, (∂τζr)2 =

∂τΦr∂τΦ
∗
r so the Lagrangian can be written in terms of the Φr. In the integrals we replace∫ 2π

0
dζr →

∫∞
−∞ dΦrdΦ

∗
r , which breaks the |Φr|2 = 1 constraint. To remedy this we

introduce a Lagrange multiplier, λ, which implements the constraint on average. Then the
partition function becomes

Z ∝
∫

D(Φ,Φ∗) eS[Φ,Φ∗], (A.17)

S[Φ,Φ∗] =

∫ ∞

−∞
dτL(Φr,Φ

∗
r, ∂τΦr, ∂τΦ

∗
r) =

∫ ∞

−∞
dτ

1

2Jz
2

∑
r

∂τΦr∂τΦ
∗
r +HΦ + λ

∑
r

(|Φr|2 − 1).

(A.18)

This is the starting point for solving the spinon part of the mean-field Hamiltonian.
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Appendix B

Exact Diagonalization

To obtain unbiased numerical results for quantum spin models on the centred pyrochlore
lattice, we diagonalize the many-body Hamiltonian [212, 213] to obtain exact energy
eigenvalues and corresponding eigenstates. For simplicity, we will describe the application
of the method to a general spin-S XXZ Hamiltonians with nearest neighbour interactions,

H = Jz
∑
〈ij〉

Sz
i S

z
j + J⊥

∑
〈ij〉

(
S+
i S

−
j + S−

i S
+
j

)
, (B.1)

which can be readily generalized to the J1−J2 case we study in this thesis. The lattice and
boundary conditions will be arbitrary for the purposes of this discussion, but we specify a
total of N lattice sites.

To represent the Hamiltonian in matrix form, we must first choose an appropriate set of
basis states. We choose to work in the Sz basis,

|n〉 =
∣∣Sz

0 , S
z
2 , . . . , S

z
N−1

〉
, (B.2)

such that each orthonormal state is specified by a unique configuration of Sz
i values. The

local dimension of the Hilbert space is d = 2S + 1, so that the total Hilbert space dimen-
sion, D = dN . A generic state is written as

|Ψ〉 =
D∑

n=1

cn |n〉 , (B.3)

which can be encoded using the length D vector

x = (c1, c2, . . . , cD)
T , (B.4)

where the cn can be chosen to be real coefficients, since the matrix form of this Hamiltonian
is real symmetric. We assign each state in the Hilbert space an integer index n. The matrix
form of the Hamiltonian, H, is obtained by computing its matrix elements

Hn′n = 〈n′|H |n〉 (B.5)
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for all n, n′.

The Jz and J⊥ terms correspond to diagonal and off-diagonal parts of the Hamiltonian
respectively, so it is useful to write

H = Hz +H⊥. (B.6)

To evaluate the H⊥ parts, we use the relations [214]

S+
i |Sz

i 〉 = αi |Sz
i + 1〉 , S−

i |Sz
i 〉 = βi |Sz

i − 1〉 , (B.7)

where

αi =
√

S(S + 1)− Sz
i (S

z
i + 1), βi =

√
S(S + 1)− Sz

i (S
z
i − 1). (B.8)

The matrix elements are given by

Hnn′ =

{
Ez, n′ = n,

E±
ij , n′ 6= n,

(B.9)

where

Ez = Jz
∑
〈ij〉

Sz
i S

z
j ,

E±
ij =


J⊥αiβj, if |n〉

S+
i S−

j−−−→ a |n′〉 ,

J⊥βiαj, if |n〉
S−
i S+

j−−−→ a |n′〉 ,
0, otherwise.

(B.10)

The notation |n〉 O−→ a |n′〉 means that the operator O maps the state |n〉 to a |n′〉, where a
is a non-zero prefactor. Note that for S = 1/2, αi and βi can only take the values 0 or 1.

Encoding Many-Body Basis States

In order to construct the Hamiltonian numerically, we first represent the basis states in an
appropriate fashion to be stored and manipulated on a computer. We map the set of Sz

i

values on each site to non-negative integers, ni ∈ {0, . . . , d − 1} (equivalent to mapping
the spins to bosons), through the relation

ni = Sz
i + S, (B.11)

such that, for S = 1/2, Sz
i = −(+)1

2
→ ni = 0(1). We can then interpret the configura-

tion corresponding to each basis state as an integer represented in base-d

|n〉 = |n0, . . . , nN−1〉 → nN−1nN−2 . . . n0
f10−→ sn, (B.12)
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|n〉 (Spins) |n〉 (Bosons) sdn (base-d int) sn (int) n (index)
|↑, ↑, ↓, ↓〉 |1, 1, 0, 0〉 0011 3 0
|↑, ↓, ↑, ↓〉 |1, 0, 1, 0〉 0101 5 1
|↓, ↑, ↑, ↓〉 |0, 1, 1, 0〉 0110 6 2
|↑, ↓, ↓, ↑〉 |1, 0, 0, 1〉 1001 9 3
|↓, ↑, ↓, ↑〉 |0, 1, 0, 1〉 1010 10 4
|↑, ↓, ↓, ↑〉 |1, 0, 0, 1〉 1100 12 5

Table B.1: Different representations of the basis states for N = 4, S = 1/2 in the mz = 0

sector. The sn values are stored in the vector s at position n. The nth coefficient of the vector
x = (c1, c2, . . . , D) is the coefficient of that basis state in |Ψ〉.

where the final arrow represents the mapping from a base-d integer to a (unique) base-10
integer, sn. We generate each configuration in the Hilbert space, then map this to an integer,
creating a sorted vector of integers,

s = (s1, s2, . . . , sD), (B.13)

i.e the nth element of this sorted vector is the integer representation of the basis state with
index n. All of these mappings between representations can be reversed.

Note that the need for the length-D vectorS can be eliminated by using a hashing algorithm
which maps directly from the bosonic configuration to the state index [215, 216]. This also
means that one does not need to search through S when computing off-diagonal matrix
elements. However, the hashing algorithms can make the implementation of symmetries
more challenging.

Full Diagonalization

If we require all eigenvalues of the Hamiltonian, for example, to compute quantities at
finite temperature, we construct the full D ×D matrix H then diagonalize it numerically.
H can be constructed using the following algorithm.

For every state index n ∈ {1, . . . , D}:
1. Obtain the integer representation, sn, of the state |n〉 by accessing the nth element

of s.
2. Convert sn to a configuration in the Sz

i representation
3. Compute the diagonal contribution Ez(n), using the expression in eq. B.10 and set

Hnn = Ez(n).
4. Compute the off-diagonal contribution. For each (i, j) nearest neighbour pair:

(a) Verify if there is a non-zero matrix element, according to eq. B.10.
(b) If so compute E⊥

ij (n), else advance to the next (i, j) pair and continue from
(a).
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(c) Convert the |n′〉 configuration to the integer sn′ .
(d) Search for the index, n′, of sn′ in s.
(e) Set Hn′n = E±

ij (n).

The typical time complexity of diagonalization of H is O(D3) [209], with a memory cost
of O(D2) if constructing the full matrix. Given D scales exponentially with the number of
lattice sites, this approach is limited to very small system sizes, for an N = 20, S = 1/2

system it would require about 1TB to store the full matrix H. Therefore, in this thesis,
we only used full diagonalization to compute finite temperature quantities of the S = 5/2

Heisenberg model on small clusters of 5 or 6 sites, see section 3.4.

Lanczos Method

Rather than constructing the full matrix, we can use the Lanczos method [217], as long as
we are only interested in the lowest few eigenvalues. In the variant we employ, we construct
H “on the fly" rather than saving it in memory. This has some cost in time complexity,
but requires less memory, which is often the limiting factor for implementing these sorts
of calculations. In the Lanczos method [213], an orthonormal basis is constructed in the
Krylov space of the Hamiltonian, a subspace of the full Hilbert space obtained by repeated
application of the Hamiltonian according to the relation

|Ψm+1〉 ∝ H |Ψm〉 − am |Ψm〉 − bm−1 |Ψm−1〉 , (B.14)

starting from an initial random state, |Ψ0〉. Here, the am and bm are coefficients chosen to
ensure the orthogonality of the states. By construction, the matrix form of the Hamiltonian
is a k × k tridiagonal matrix in this subspace, with k typically on the order of a few tens
or hundreds. The exact dimension depends on the number of Krylov states, k, required for
the eigenvalues to reach a certain convergence criterion. The limiting factor of Lanczos
calculations is the memory required to store the length-D Krylov space vectors, |Ψm〉, each
of which would require about 1TB of memory to store for an N = 40, S = 1/2 system,
approximately doubling the number of lattice sites achievable with full diagonalization.

In our implementation we use the implicitly restarted Lanczos method (IRLM) contained
in ARPACK [218], where the crux of the implementation is computing the action of the
Hamiltonian on an arbitrary state,

|Ψ′〉 = H |Ψ〉 , (B.15)

which can be deduced from the matrix-vector multiplication,

x′ = Hx. (B.16)

The procedure for the matrix-vector multiplication is as follows.
1. Initialize a vector x′ with all zeroes.
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2. For every state index n ∈ {1, . . . , D}:
(a) Obtain the integer representation, sn, of the state |n〉 by accessing the nth ele-

ment of s.
(b) Convert sn to a configuration in the Sz

i representation.
(c) Compute the diagonal contribution Ez(n), using the expression in eq. B.10

and increment the nth element of x′ by cnE
z(n).

(d) Compute the off-diagonal contribution. For each (i, j) nearest neighbour pair:

i. Verify if there is a non-zero matrix element, according to eq. B.10.
ii. If so compute E⊥

ij (n), else advance to the next (i, j) pair and continue
from (i).

iii. Convert the |n′〉 configuration to the integer sn′ .
iv. Search for the index, n′, of sn′ in s.
v. Increment the n′th element of x′ by cnE

⊥
ij (n).

In our implementation we use OpenMP [219] to parallelize the outer for loop, effectively
breaking x into smaller blocks, whose contribution to x′ is computed on separate threads.
Note that the ARPACK implementation of the implicitly restarted Lanczos method (IRLM)
is able to find degenerate eigenstates, unlike the vanilla Lanczos method, as it uses a so-
called block method [218]. Furthermore, the implicit restarting [220] maintains a low-
dimensional Krylov space by performing a QR decomposition [209] to remove unneces-
sary components.

Symmetries

To access the largest system sizes possible, exact diagonalization should be implemented
making use of discrete symmetries [221], which allows one to diagonalize smaller blocks
of H, corresponding to different symmetry sectors, separately. In our implementation, we
use the fact that mz =

∑
i S

z
i commutes with the Hamiltonian to reduce the effective

dimension of the Hilbert space. This is a simple symmetry to implement, when gener-
ating the basis, {|n〉}, one ensures only to keep those with the target mz eigenvalue. To
access larger system sizes, one could make use of the Sz spin inversion symmetry in the
mz = 0 sector, as well as translational symmetries. However, translational symmetries
are challenging to implement in an efficient way on 3D lattices.
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