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Abstract 

Background: Post-traumatic stress disorder (PTSD) and mild traumatic brain injury 

(mTBI) are considered the “signature wounds” of military veterans. As one of the most 

prevalent and debilitating symptoms, poor sleep quality belongs to the hallmarks of PTSD and 

mTBI. PTSD and mTBI share several pathophysiological features and are impacted by 

environmental, economic, social, neurophysiological, and genetic factors. Specifically, PTSD 

and mTBI have been associated with microstructural abnormalities in the brain’s white matter. 

Similarly, poor sleep quality has been linked to white matter microstructural alterations. 

However, the association between PTSD, mTBI, poor sleep quality, and white matter 

microstructure is largely unknown. The present work aims at examining the relationship 

between sleep quality and white matter microstructure in veterans with PTSD and mTBI.  

Methods: Diffusion Magnetic Resonance Imaging (dMRI) and clinical data were 

acquired from 180 male veterans participating in the Translational Research Center for TBI and 

Stress Disorders (TRACTS) study. Participants were categorized into four groups: 1) PTSD (n 

= 38), 2) mTBI (n = 25), 3) Comorbid PTSD+mTBI (n = 94), and 4) No history of PTSD or 

mTBI (n = 23). Sleep quality (Pittsburgh Sleep Quality Index; PSQI) was compared between 

groups using analyses of covariance (ANCOVAs). Linear regression models were calculated 

to assess associations between sleep quality and white matter microstructural integrity (whole-

brain free-water corrected fractional anisotropy tissue; FAT). Subsequently, interactions 

between PTSD, mTBI, sleep quality, and whole-brain FAT were assessed by applying 

mediation and moderated mediation models while considering common confounders (i.e., 

warzone-related stress, neuropsychiatric comorbidities, body mass index (BMI), psychiatric 

medication use, race, and education).  

Results: Veterans with PTSD and comorbid PTSD+mTBI reported poorer sleep quality 

compared to those with mTBI only or no history of PTSD or mTBI. Poor sleep quality was 

associated with decreased whole-brain FAT in veterans with comorbid PTSD+mTBI. 

Moreover, sleep quality mediated the association between PTSD symptom severity and 

impaired white matter microstructure, independently of warzone-related stress, 

neuropsychiatric comorbidities, BMI, psychiatric medication use, race, and education.  

Conclusion: Findings from this study suggest that sleep quality plays a vital role in 

mental and brain health of veterans. Importantly, sleep quality appears to explain the 

relationship between PTSD symptom severity and alterations in white matter microstructure. 

Future research is needed to investigate whether sleep-targeted interventions may benefit 

overall brain health in the veteran population. 
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Zusammenfassung 

Hintergrund: Die posttraumatische Belastungsstörung (PTSD) und das leichte 

Schädel-Hirn-Trauma (mTBI) sind unter Kriegsveteranen weit verbreitet. Eine gestörte 

Schlafqualität gehört zu den am häufigsten auftretenden und belastendsten Symptomen von 

PTSD und mTBI. PTSD und mTBI weisen mehrere gemeinsame pathophysiologische 

Merkmale auf und werden durch umweltbedingte, wirtschaftliche, soziale, 

neurophysiologische und genetische Faktoren beeinflusst. Insbesondere wurden PTSD und 

mTBI mit Veränderungen in der Mikrostruktur der weißen Substanz in Zusammenhang 

gebracht. Ebenso konnte eine Assoziation zwischen schlechter Schlafqualität und 

Veränderungen der Mikrostruktur der weißen Substanz gezeigt werden. Die Auswirkungen von 

PTSD und mTBI auf den Zusammenhang zwischen Schlafqualität und weißer Substanz sind 

jedoch weitestgehend unbekannt. Die vorliegende Arbeit untersucht die Beziehung zwischen 

Schlafqualität und Mikrostruktur der weißen Substanz bei Veteranen mit PTSD und mTBI. 

Methoden: Diffusions-Magnetresonanztomographie (dMRI) und klinische Daten 

wurden bei 180 männlichen Veteranen der Translational Research Center for TBI and Stress 

Disorders (TRACTS) Studie ausgewertet. Die Teilnehmer wurden in vier Gruppen eingeteilt: 

1) PTSD (n = 38), 2) mTBI (n = 25), 3) Komorbide PTSD+mTBI (n = 94), und 4) Keine 

Vorgeschichte von PTSD oder mTBI (n = 23). Schlafqualität (Pittsburgh Sleep Quality Index; 

PSQI) wurde zwischen den Gruppen mit Hilfe von ANCOVAs verglichen. Lineare 

Regressionsmodelle wurden berechnet, um die Assoziationen zwischen der Schlafqualität und 

einem Maß für die Mikrostruktur der weißen Substanz (whole-brain free-water corrected 

fractional anisotropy tissue, FAT) zu erfassen. Anschließend wurde die Interaktion zwischen 

PTSD, mTBI, Schlafqualität, und whole-brain-FAT mittels Mediations- und 

Moderationsmodellen unter Berücksichtigung klinischer Störfaktoren (kriegsbedingter Stress, 

neuropsychiatrische Komorbiditäten, Body mass index (BMI), Einnahme psychiatrischer 

Medikation, ethnische Herkunft, und Bildungsstatus) untersucht. 

Ergebnisse: Veteranen mit PTSD und komorbider PTSD+mTBI berichteten eine 

schlechtere Schlafqualität im Vergleich zu Veteranen mit mTBI, und Veteranen ohne PTSD 

oder mTBI. Schlechtere Schlafqualität wurde mit verminderter FAT der weißen Substanz bei 

Veteranen mit komorbider PTSD+mTBI in Zusammenhang gebracht. Darüber hinaus erklärte 

die Schlafqualität die Assoziation zwischen PTSD-Symptomen und der Beeinträchtigung der 

Mikrostruktur der weißen Substanz, unabhängig von erlebtem kriegsbedingtem Stress, 

neuropsychiatrischen Komorbiditäten, BMI, Einnahme psychiatrischer Medikation, ethnischer 

Herkunft, und Bildungsstatus. 
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Schlussfolgerung: Die Ergebnisse dieser Arbeit deuten darauf hin, dass Schlaf eine 

wichtige Rolle für die physische und psychische Gesundheit von Veteranen spielt. Als 

besonders prägnant zeigte sich, dass die Schlafqualität die Beziehung zwischen PTSD-

Symptomen und Veränderungen der Mikrostruktur der weißen Substanz zu erklären scheint. 

Zukünftige Forschungsprojekte sind erforderlich, um zu untersuchen, ob schlafbezogene 

Interventionen die Gehirngesundheit von Kriegsveteranen verbessern können.  



 15 

1. Introduction 

Since 2001, 2.7 million Unites States (US) service members have been deployed to war 

zones in Iraq and Afghanistan following the 9/11 terrorist attacks 1. Operation Enduring 

Freedom (OEF, Afghanistan, 2001-2014) and Operation Iraqi Freedom (OIF, Iraq, 2003-2011) 

have been the longest military operations since the Vietnam war and consisted of an all-

volunteer force with predominantly male (89%) personnel 2. The wars cost a total of 6,784 US 

lives 3, while many more service members were seriously wounded – both physically and 

mentally. The majority of OEF and OIF military personnel reported being attacked and had 

personally witnessed or known a fellow combatant who was severely or even fatally injured. 

Moreover, most were exposed to the traumatic aftermath of war, facing dead bodies or human 

remains, and injured women or children 4. Combat stress and other war-related traumatic 

incidences experienced by military personnel increase the likelihood for developing 

neuropsychiatric disorders 5–7. In fact, up to 30% of veterans returning from OEF and OIF are 

diagnosed with a neuropsychiatric condition 4,6. Post-traumatic stress disorder (PTSD) is 

particularly prevalent and comorbidity with other psychiatric conditions, such as anxiety, 

depressive, and substance use disorders, is common 4,8–11. Moreover, head trauma resulting in 

mild traumatic brain injury (mTBI) may lead to the development or exacerbation of 

psychological symptoms 12–16. 

The alarming numbers of neuropsychiatric complaints and associated substantial 

burdens pose unique challenges to the US Department of Defense (DoD) and Veterans Affairs 

(VA). Particularly, the “signature wounds” of military veterans – PTSD and mTBI – have been 

the major focus of attention 17,18. As one of the most debilitating symptoms, sleep quality 

disturbances belong to the hallmarks of PTSD 19,20. Moreover, sleep quality disturbances are 

highly prevalent after mTBI 21–23. However, until today, understanding the complex 

underpinnings of sleep quality disturbances following PTSD and mTBI is still in its infancy. 

Alterations of the brain’s white matter – the myelinated nerve fiber bundles that connect 

different brain regions 24,25 – have been suggested to play a role in sleep quality disturbances. 

Importantly, initial evidence suggests that sleep quality 26 and white matter health 27–30 are more 

severely impacted in veterans with greater symptom burden (i.e., veterans with comorbid 

PTSD+mTBI compared to PTSD or mTBI alone, or no history of PTSD or mTBI). Given that 

sleep quality disturbances can persist for years after trauma 31,32, have been linked to poor 

quality of life 33,34, and commonly fail to be alleviated with conventional treatments 35,36, a 

better understanding of the underlying pathomechanisms is urgently required. 
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The present work aims at elucidating the relationship between sleep quality disturbances 

and white matter alterations in the context of PTSD and mTBI. The structure of this dissertation 

can be summarized as follows. First, the pathogenesis of PTSD and mTBI will be outlined by 

elaborating on environmental, economic, social, neurophysiological, and genetic factors that 

contribute to altered brain macrostructure and function. Next, diffusion magnetic resonance 

imaging (dMRI) will be introduced – an advanced MRI technique for studying tissue 

microstructure in vivo 37. Specifically, dMRI studies focusing on subtle microstructural 

abnormalities in the brain’s white matter will be discussed. White matter anatomy is of major 

importance for optimal brain network functioning 38,39, and disruptions in white matter health 

have been linked to neuropsychiatric sequelae 40. In fact, white matter abnormalities have been 

individually associated with PTSD 41–58, mTBI 59–65, and sleep quality disturbances 66–77. 

However, the link between PTSD, mTBI, and sleep quality disturbances in the context of altered 

white matter is largely unknown. To shed light on the complex interplay between these factors, 

an automated white matter fiber clustering that uses machine learning to identify fiber tracts 78–

81 will be conducted. The magnitude of microstructural white matter alterations in veterans with 

PTSD, mTBI, comorbid PTSD+mTBI, or no history of PTSD or mTBI will be quantified. 

Statistical modeling will be applied to uncover the relationship between PTSD, mTBI, and sleep 

quality disturbances. Moreover, the association between sleep quality and white matter 

microstructure will be assessed among veterans with and without PTSD and mTBI. Finally, a 

conclusion on the association between the studied variables will be drawn. An outlook on 

required future research and potential treatment options for sleep quality disturbances in 

veterans with PTSD and mTBI will be provided.  
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2. Post-traumatic Stress Disorder (PTSD) 

2.1. Prevalence and Diagnosis 

Approximately 23% of military veterans returning from deployment to Iraq and 

Afghanistan are subsequently diagnosed with post-traumatic stress disorder (PTSD) 82, making 

it one of the most common psychiatric disorders in veterans 83. PTSD is a debilitating condition 

that may develop after personally experiencing or witnessing a traumatic incident that presents 

as “exposure to actual or threatened death, serious injury, or sexual violation” (p.271) 84. 

According to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition 

(DSM-5), PTSD is marked by symptoms that broadly fall into four categories: (A) Re-

experiencing symptoms associated with the traumatic incident, such as recurrent distressing 

recollections, dreams, emotional and physiological reactions to trauma cues, and/or dissociative 

reactive states (i.e., flashbacks), during which the afflicted individual experiences the traumatic 

event as actually recurring; (B) avoidance of external reminders concerning the traumatic event 

and memories that cause distress; (C) altered mood and behavior, presenting as dissociative 

amnesia, negatively distorted cognitions about self and others, excessive guilt, and anger; and 

(D) altered arousal and reactivity, including irritability, ruthless or self-destructive conduct, 

hypervigilance, poor concentration, and sleep quality disturbances 84.  

In order to be diagnosed with PTSD, the symptoms need to be present for at least a 

month, significantly affect daily life, and cannot be attributed to medication and substance use, 

or any other illness (Table 1). 

Table 1. Diagnosis of PTSD 
Table 1. Diagnosis of PTSD  
Criterion A  A traumatic event Must be met  
Criterion B  Re-experiencing symptoms At least one Criterion B symptom 
Criterion C  Avoidance symptoms At least one Criterion C symptom 
Criterion D  Negative alterations in cognition and mood At least two Criterion D symptoms 
Criterion E  Alterations in arousal and reactivity  At least two Criterion E symptoms 
Criterion F  Disturbance lasted for a month  Must be met 
Criterion G Disturbance causing impairment Must be met 
Criterion H Symptoms not due to medication, substance use, or 

other illness 
Must be met 

Note. PTSD, Post-traumatic stress disorder. This table shows the Diagnostic and Statistical Manual for Mental 
Disorders 5 (DSM-5) criteria for PTSD (p. 271) 84.  

 

 

2.2. Etiology and Pathophysiology 

2.2.1. Social, Economic, and Environmental Factors 

The development of PTSD has been linked to various social, economic, and 

environmental factors. Childhood adverse experiences, pre-existing mental disorder, lack of 

social support, low socioeconomic status, and migration have all been associated with a 
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heightened risk of PTSD following exposure to a traumatic event 85–90. Unfortunately, these 

risk factors often interact and overlap, thereby enhancing the vulnerability for developing PTSD 

after trauma. In addition, the perceived severity and nature of the traumatic event play a crucial 

role in the onset of PTSD. Man-made interpersonal trauma is more likely to elicit PTSD than 

accidents or natural disasters 91. For military veterans specifically, more frequent deployments, 

and greater severity of traumatic combat experiences are linked to an increased risk of PTSD 

development 87.  

 

2.2.2. Neurophysiological Factors 

Endocrine dysregulations of the stress response system constitute an underlying 

pathology of PTSD. In particular, the hypothalamic-pituitary-adrenal (HPA) axis is a key stress 

regulatory system that is disturbed in patients with PTSD 92 (Figure 1). In response to acute 

threat, paraventricular neurons (PVN) in the hypothalamus trigger corticotropin-releasing 

hormone (CRH) production, which in turn stimulates the secretion of adreno-corticotropin 

hormone (ACTH) from the anterior pituitary. ACTH further stimulates the secretion of the 

glucocorticoid cortisol from the adrenal cortex. As a negative feedback cycle, cortisol 

suppresses the production of CRH and ACTH from the hypothalamus and pituitary in an 

attempt to return to normal states of arousal after a stressor has ceased 93,94.  

During acute stress, an increased production of glucocorticoids is beneficial, given that 

it elevates the availability of glucose to facilitate fighting or fleeing, and preserves the 

organism’s homeostasis 95. However, as stress becomes chronic, negative feedback inhibition 

of the HPA axis is triggered by excess cortisol secretion. Thus, increased glucocorticoid 

receptor binding in the hypothalamus and anterior pituitary results in a surge of CRH secretion 
96. The heightened CRH levels lead to a down-regulation of CRH receptors in the anterior 

pituitary and consequently suppress ACTH and cortisol release. As a result, decreased cortisol 

levels have repeatedly been demonstrated in patients with PTSD 97,98. 

Eventually, these processes fail to restore the HPA activity 99, and ongoing high levels 

of CRH trigger the sympathetic nervous system and the associated secretion of catecholamines 

(mainly norepinephrine), which has been linked to symptoms of PTSD 91. In fact, increased 

arousal in the presence of diminished available cortisol to regulate the stress response 

consequently evokes uncontrolled fight or flight reactions – an underlying core feature of PTSD 
100,101. Interestingly, especially cortisol levels that are already low at the time of trauma appear 

to be particularly likely to facilitate the development of PTSD 102–104. Basal hypocortisolemia 

and the associated hyperactive sympathetic nervous system result in an over-consolidation of 
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traumatic memories and vividness of intrusions 91,105. It has, thus, been proposed that 

individuals who develop PTSD after a traumatic experience may already exhibit lower cortisol 

levels to begin with and therefore lack resilience 106,107. 
 
 
 

 
 
 
 
Figure 1. Impaired Hypothalamic-Pituitary-Adrenal (HPA) Axis Functioning in Patients with 
PTSD 
Note. HPA axis, Hypothalamic-pituitary-adrenal axis; PVN, Paraventricular neurons; CRH, 
Corticotropin releasing hormone; ACTH, Adreno-corticotropin hormone.  
This figure visualizes the impaired HPA axis functioning in patients with PTSD. As stress 
becomes chronic, increased glucocorticoid receptor binding in the hypothalamus and anterior 
pituitary results in a surge of CRH secretion. The heightened CRH levels lead to a down-
regulation of CRH receptors in the anterior pituitary and consequently suppress ACTH and 
cortisol release. As a result, decreased cortisol levels fail to inhibit CRH production and 
consequently to restore the HPA activity. 
Figure adapted from 101. 
Figure 1. Impaired Hypothalamic-Pituitary-Adrenal (HPA) Axis Functioning in Patients with PTSD 

 
 

Dysregulation of the HPA axis with a blunted cortisol response and simultaneously 

hyperactivated sympathetic nervous system belong to the core biological underpinnings of 

PTSD 99,108,109. The chronically low cortisol levels in patients with PTSD and consequently high 
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CRH production stimulate increased noradrenergic activity in the locus coeruleus. From here, 

norepinephrine projects to various brain regions involved in the stress response, such as the 

prefrontal cortex and limbic structures (i.e., amygdala, hippocampus, hypothalamus) 110. 

Excessive noradrenergic activity in the amygdala has been linked to the hyperarousal symptoms 

of PTSD 111, and the enhanced release of norepinephrine leads to a greater encoding of 

traumatic memories 112. With lower cortisol levels, the organism has fewer resources available 

for shutting down the adrenergic response, enabling damaging effects on brain structure and 

facilitating the consolidation of traumatic memories 113. The ongoing hyperarousal has further 

been associated with an implicit cognitive bias towards potentially threatening stimuli, which 

is reflected in problems with executive functioning, attention, and concentration 91. This bias 

leads to the avoidance of potentially threatening situations, thereby preventing extinction 

learning 91.  

The increased exposition of norepinephrine is followed by an enhanced release of 

proinflammatory cytokines. This, in turn, stimulates CRH secretion, which further inhibits 

cortisol release. Cortisol is needed to inhibit not only the sympathetic nervous system but also 

the proinflammatory cytokine response 99,114. Thus, a disruption in this mechanism further 

contributes to the biochemical cascade leading to the manifestation of PTSD 114. In fact, PTSD 

patients show elevated levels of inflammatory markers, such as interleukin (IL)-1β, IL-6, tumor 

necrosis factor-α (TNF-α), and c-reactive protein (CRP), indicating immune dysregulation and 

inflammation 114.  

 

2.2.3. Genetic Factors 

Twin studies have long suggested a genetic contribution to the development of PTSD. 

A recent meta-analysis proposed a heritability of approximately 5-20% for the likelihood of 

developing PTSD following a traumatic experience 115. Interestingly, some studies suggested 

that patients with PTSD do not only have a genetic risk for developing PTSD after trauma but 

also to encounter traumatic events in general 116,117.  

Importantly, environmental factors modify the genetic risk for developing PTSD, and 

especially childhood traumatic experiences influence the genetic probability 118. For example, 

the serotonin transporter gene 5-HTTLPR has not directly been linked to PTSD, but contributes 

to gene-environment interactions in eliciting PTSD 119. Individuals with the short allele exhibit 

greater amygdala activity when facing threatening stimuli, thereby facilitating fear conditioning 
120. Moreover, genes involved in the dysregulation of the stress response system, mainly the 

HPA axis and noradrenergic system, are altered in patients with PTSD 121. The FK506 Binding 
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Protein 51 (FKBP5) gene has been linked to HPA axis dysregulation, particularly of the 

glucocorticoid receptors 122. In addition, the Val158Met polymorphism of the Catechol-O-

methyltransferase gene has been linked to decreased inactivation of catecholamines 123 and 

consequently may contribute to stress response system alterations and PTSD development in 

veterans 124. Moreover, a genetic variation of the CRP gene has been linked to PTSD symptom 

severity 125, especially the hyperarousal symptoms 126. In addition, veterans with PTSD with 

the apolipoprotein E (APOE) 2 allele demonstrate significantly higher re-experiencing 

symptoms and worse memory functioning 127. 

 

2.3. Magnetic Resonance Imaging (MRI) 

Neuroimaging research contributed greatly to the understanding of PTSD 128 and mTBI 
129. During the last decades, imaging techniques, including magnetic resonance imaging (MRI) 
130, positron emission tomography (PET) 131,132, electroencephalography (EEG) 133,134, and 

magnetencephalography (MEG) 135, allowed for a non-invasive, in-vivo assessment of brain 

structure and function 136,137.  

MRI, in particular, provided some of the most intriguing insights into the 

pathophysiology of PTSD 138 and mTBI 129. Medical applications of MRI were introduced in 

the 1970s 139,140 and offered a more advanced assessment of brain tissue than previous 

techniques, such as computed tomography (CT). Due to an intense magnetic field, hydrogen 

protons in tissue (i.e., the brain) are stimulated, while the MRI machine emits radiofrequency 

pulses 129. This excites the hydrogen nuclei of water molecules in brain tissue. After each radio 

wave pulse, the hydrogen nuclei return to their position parallel to the magnetic field. During 

this so-called relaxation time, the atomic nuclei emit signals that are registered by the MRI 

device and spatially encoded into images by computer algorithms. Depending on the relaxation 

time and proton density associated with different types of tissues, differing signals are emitted, 

which is reflected in the level of brightness in the image. MRI is especially suitable for 

visualizing the contrast between the brain’s gray and white matter and cerebrospinal fluid 

(CSF), as well as hemorrhages, edema, and contusions 129,141.  

 

2.3.1. Brain Morphology and Function 

Among the most consistently observed MRI findings in patients with PTSD are the 

repeatedly demonstrated smaller hippocampal volumes 142–144, a gray matter brain structure 

associated with fear conditioning and memory functioning 145–147. While these findings were 

initially attributed to the chronicity of the disorder 148,149, twin studies suggested that decreased 
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hippocampal volumes may actually precede the onset of PTSD, as healthy identical twins of 

veterans who developed PTSD also showed reduced hippocampal volumes compared to 

combatants who did not develop PTSD after deployment 150. Nonetheless, it has been postulated 

that the manifestation of PTSD leads to a downstream of events causing death of cells and 

impaired neurogenesis, eventually resulting in volumetric gray matter reductions of the 

hippocampus 151. Particularly, glutamate signaling and proinflammatory processes interfere 

with synaptic connections and lead to atrophy of dendritic spines, thus altering gray matter 

structure 152–154. Moreover, individuals with PTSD show decreased levels of brain-derived 

neurotrophic factor (BDNF), a neurotrophin that is protective against excessive glutamate 

transmission 155. It has been suggested that the volumetric reductions of the hippocampus in 

patients with PTSD prevent extinction learning and the ability to differentiate between 

potentially threatening and safe environments 96.  

Moreover, the amygdala, a brain structure that is anatomically and functionally closely 

related to the hippocampus 156 and involved in emotional control and fear learning 157–159, shows 

structural alterations in patients with PTSD 160. Some studies suggested volumetric reductions 

of the amygdala in PTSD patients 142,161, however, two recent meta-analyses did not find 

significant differences between PTSD patients and trauma-exposed controls 142,151, while 

amygdala volume differed significantly from healthy controls 151. Structural alterations in the 

amygdala may, thus, be a marker of extended stress exposure in general, but not necessarily of 

PTSD symptomatology specifically. Figure 2 visualizes the bilateral amygdala and 

hippocampus. 

 

 

Figure 2. Amygdala and Hippocampus. 
Note. Visualization of the amygdala (turquoise) and hippocampus (yellow) in top, bottom, 
sagittal, and coronal view (from left to right). 
Figure 2. Amygdala and Hippocampus 
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2.3.2. Brain Networks  

Volumetric alterations in limbic and paralimbic gray matter structures, such as the 

hippocampus and amygdala 162–166, underlie functional connectivity network abnormalities 167. 

Especially altered amygdala-frontal connectivity is one of the core network abnormalities of 

PTSD 168,169. The medial prefrontal cortex has long been implicated in playing a major role in 

regulating emotions by suppressing fear reactions elicited by the amygdala 112. However, in 

patients with PTSD the amygdala is overly responsive, while the medial prefrontal cortex is 

less engaged 170. This is reflected in an increased blood flow in the amygdala and decreased 

flow in the medial prefrontal cortex in response to trauma stimuli 171–175. The heightened 

amygdala and simultaneously decreased medial prefrontal cortex activity prevents fear 

extinction learning 176, thereby further imprinting traumatic memories 96. Particularly PTSD 

hyperarousal and re-experiencing symptoms have repeatedly been linked to heightened 

amygdala and decreased medial prefrontal cortex activity 112,167.  

 

2.4.  Diffusion Magnetic Resonance Imaging (dMRI) 

Network functioning relies on the brain’s white matter anatomy 38,39,177. The white 

matter fiber tracts compose vast structural and functional connections between different gray 

matter structures and nodes of brain networks 24,25. Projection fibers connect sub-cortical with 

cortical areas. Association fibers link different structures within the same hemisphere. 

Commissural fibers, such as the corpus callosum, bridge the left and right hemisphere 24. White 

matter consists of an accumulation of myelin-coated axons formed into densely packed bundles 

of fibers. The high concentration of lipids in the axons’ insulating sheath lets the fiber tracts 

appear white, thus the term white matter 178. The electrically insulating myelin sheath enhances 

the signal transmission to other neurons 25, that is facilitated through a rapid nerve impulse 

conduction along small gaps in the myelin sheath (nodes of Ranvier) 179. Action potentials are 

regenerated at each node and jump along the axons, a process called saltatory conduction 180. 

Greater myelination is generally associated with much faster conduction of signals. On the 

contrary, disrupted myelination has been associated with disturbed stimulus transmission 25. 

Impaired signal transmission amongst various brain networks may further impact information 

processing in adjacent brain structures 181. This may lead to compromised cognition and mental 

health, as evidenced in numerous neuropsychiatric conditions 40, including PTSD and mTBI 27–

30,41,51–53,182,183. 

White matter properties, such as myelinization, axonal diameter and density can be 

analyzed with diffusion magnetic resonance imaging (dMRI), which is an advanced MRI 
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technique, specialized in studying tissue microstructure in vivo 37. DMRI was developed in the 

1990s 184 and determines the diffusion of water molecules in tissue 37. According to Brownian 

motion rules, water molecules move at random following a 3D Gaussian distribution when free 

and unrestricted. This is called isotropic diffusion and can be found in the CSF, whereas the 

opposite, anisotropic diffusion, refers to water molecule movement restrained by structured 

tissue, such as the brain’s white matter. The cell membranes, myelin sheath, and numerous, 

densely packed axons force water molecules to diffuse along with the fiber directions 37,185.  

DMRI measures the magnitude and directionality of diffusion 37,130 by calculating a 

diffusion tensor for three perpendicular axes of each brain voxel. This three-dimensional vector 

is represented as a diffusion ellipsoid (Figure 3). The magnitude of diffusion along each axis 

are the eigenvectors, while their length or directionality represents the eigenvalues (λ1, λ2, λ3). 

Diffusion parameters can be determined from the eigenvalues of the diffusion tensor and 

provide information on tissue microstructure. Fractional anisotropy (FA) is the most frequently 

reported diffusion metric and represented in a value between 0 (isotropic diffusion) and 1 

(anisotropic diffusion) that provides information on the diffusion directionality 186–189. Greater 

restriction of diffusion, e.g., due to greater axonal density and myelin sheath thickness, will 

thus result in higher FA values 190. On the contrary, impairments in the myelin sheath 191,192, 

edema 193, and gliosis 194 may reflect reduced FA values.  

Axial diffusivity (AD) represents diffusion parallel to the fiber and equals the largest 

eigenvalue. Radial diffusivity (RD) reflects the degree of diffusion perpendicularly to the 

primary direction and is the average of eigenvalue λ2 and λ3. AD has primarily been shown to 

reflect axonal degeneration, while RD mostly reflects myelination processes 195,196. Finally, 

mean diffusivity (MD) provides information on the overall magnitude of diffusivity in a voxel, 

independent of tissue-restricted direction, and is calculated by summing and averaging all three 

eigenvalues 197. MD is typically inversely related to FA 130.  

AD, RD, and MD all provide individual information on white matter organization. 

However, the summary measure (FA) is commonly preferred, given that it provides a proxy for 

overall white matter microstructural tissue architecture. In addition, in 2009, free-water (FW) 

imaging was developed 198, a dMRI advancement that is able to measure FW adjacent to cell 

tissue. FW imaging provides additional information over the conventionally used diffusion 

measures by separating the MRI signal into two compartments 198. The isotropic free-water 

compartment accounts for the proportion of extracellular free-water in each voxel, while the 

tissue compartment represents free-water-corrected fractional anisotropy Tissue (FATissue, FAT). 

In comparison to the conventional FA measure, FAT is more specific to fiber tract myelination, 
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axonal density, and fiber orientation, and, thus, a more precise marker for cellular white matter 

microstructure 199.  

 

 

Figure 3. Diffusion Magnetic Resonance Imaging 
Note. A) Anisotropic diffusion; B) Isotropic diffusion. AD, Axial diffusivity; RD, Radial 
diffusivity; MD, Mean diffusivity; FA, Fractional anisotropy. Figure adapted from 37. 
Figure 3. Diffusion Magnetic Resonance Imaging 

 
 

2.4.1. White Matter Diffusion 

PTSD has been associated with alterations in various white matter fiber tracts 

throughout the brain, including the major fiber tracts (i.e., arcuate fasciculus, cingulum bundle, 

inferior longitudinal fasciculus, inferior occipito-frontal fasciculus, superior longitudinal 

fasciculus, uncinate fasciculus, and corpus callosum), and with alterations in global white 

matter 41,43–58,183. Importantly, white matter alterations have not only been reported compared 

to healthy civilians 43,44,50, but also compared to trauma-exposed controls 41,46,47,49,51,52,183. For 

example, PTSD patients showed increased MD in the uncinate fasciculus compared to trauma-

exposed controls 49. Moreover, alterations in the uncinate fasciculus showed significant 

correlations with greater symptom severity, suggesting impaired communication between the 

amygdala and medial prefrontal cortex 49,200. Lower FA of the uncinate fasciculus was also 

negatively associated with re-experiencing symptoms, both acutely and sub-acutely post-

trauma, while lower fornix/stria terminalis FA correlated with greater arousal symptoms 201. 

While these findings are single observations in small to medium-sized samples, a recent meta-

analysis summarized data from different studies and identified lower FA values in PTSD 

patients compared to trauma-exposed controls in the tapetum of the corpus callosum, a structure 



 26 

that bridges the left and right hippocampus 51. Notably, the results persisted even after adjusting 

for comorbid psychiatric disorders, and medication use 51. Lower white matter FAT may reflect 

an alteration of tissue organization, such as altered myelination processes, membrane thickness, 

and axon diameter 37. Indeed, chronic stress incites inflammatory processes 114 (i.e., increased 

release of inflammatory cytokines 202,203), and excitotoxic neurotransmitter damage 204,205 (i.e., 

overly activated glutamate neurotransmission 41,205) which induce apoptosis and impair 

myelination 202,203,206.  

Even though most of the available studies reported decreased white matter 

microstructural integrity, some showed an association between PTSD and increased white 

matter microstructure. For example, decreased MD of the right cingulum bundle was shown in 

veterans with PTSD compared to those without PTSD, suggesting greater connectivity between 

the amygdala and anterior cingulate cortex 52. Moreover, a recent meta-analysis revealed 

significantly higher inferior occipito-frontal fasciculus and inferior temporal gyrus FA in PTSD 

patients 43. Notably, greater white matter FA is not always associated with better functioning 
207. For example, higher FA of the superior fronto-occipital fasciculus has been linked to re-

experiencing and dissociative symptoms 183. The alternations between regional-specific FA 

increases and decreases in patients with PTSD may suggest that not PTSD per se, but rather 

distinct symptoms of the disorder may result in different white matter changes 183. Despite the 

fact that sleep quality disturbances are a hallmark symptom of PTSD 19,20, research on the 

association between PTSD-related sleep quality disturbances and white matter alterations is 

sparse. One study showed an association between the hyperarousal symptoms of PTSD, poor 

sleep quality, and reduced FA of the right uncinate fasciculus 208. While requiring further 

research, the findings may illustrate the increased noradrenergic activity in patients with PTSD 
19,209,210, leading to impaired fronto-limbic connectivity 211,212 that is reflected in decreased 

white matter FA.   
 

 
3. Mild Traumatic Brain Injury (mTBI)  

3.1. Prevalence and Diagnosis  

Approximately 12-35% of veterans sustain a mild traumatic brain injury (mTBI) during 

military deployment 213,214. According to the American Congress of Rehabilitation Medicine 

(ACRM) diagnostic criteria, mTBI presents as disturbed brain functioning due to physiological 

head trauma, that may include immediate loss or alteration of consciousness and/or amnesia 

before or after the event 215. Common causes of mTBI in veterans are blunt and blast-related 

injuries, where the head is struck by an object or exposed to acceleration and deceleration forces 
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216. In order for a traumatic brain injury to be classified as mild, loss of consciousness must not 

exceed 30 minutes, while posttraumatic amnesia must not last longer than 24 hours. Moreover, 

the Glasgow Coma Scale score must range between 13 and 15 215.  

Sustaining a mTBI may provoke temporary symptoms that can be classified into three 

broadly defined categories: (1) Physical symptoms that present as nausea, vomiting, vertigo or 

dizziness, headache, blurred vision, sensory distortions, and sleep quality disturbances; (2) 

cognitive distortions, such as attention and concentration problems, forgetfulness and difficulty 

in decision making; and (3) emotional and behavioral symptoms, including anxiety, depression, 

irritability, and aggressive behavior 215,217 (Table 2). These impairments usually subside after 

a couple of days or weeks 218. However, around 15 to 30% of mTBI patients develop long-term 

post-concussive symptoms 218–220 that can lead to permanent disability 218–220. 

Table 2. Diagnosis of mTBI 
Table 2. Diagnosis of mTBI 
Cause 1) The head being struck  
 2) The head striking an object  
 3) The brain undergoing an acceleration/deceleration movement (i.e., whiplash) without external head 

trauma  
Definition 1) Loss of consciousness < 30 minutes  
 2) Initial Glasgow Coma Scale score of 13-15  
 3) Post-traumatic amnesia < 24 hours  
Symptoms 1) Physical symptoms Nausea and vomiting  
  Vertigo or dizziness and headaches 
  Blurred vision and sensory distortions 
  Sleep disturbances 
 2) Cognitive symptoms Attention problems 
  Concentration problems 
  Forgetfulness 
  Difficulty in decision making 
 3) Emotional and behavioral symptoms Anxiety 
  Depression 
  Irritability 
  Aggressive behavior 
Note. mTBI, Mild traumatic brain injury. This table shows the American Congress of Rehabilitation Medicine 
(ACRM) and Centers for Disease Control and Prevention 221 criteria for diagnosing mTBI. 

 

 

3.2. Etiology and Pathophysiology 

3.2.1. Social, Economic, and Environmental Factors 

Low socio-economic status 222, pre-existing psychiatric disorders 223, as well as 

traumatic combat experiences 224 are among the risk factors for sustaining a mTBI.  Alarmingly, 

sustaining a mTBI has been linked to the development of various mental disorders 225 (most 

importantly PTSD 12–16), associated with neuropsychiatric symptoms (e.g., suicidality 226, 

anger, aggressiveness 227, and sleep quality disturbances 21–23), and disadvantageous 

psychosocial outcome (e.g., impaired familial, and other social relationships 227,228, 

unemployment 229, and homelessness 230). Moreover, common risk factors for persistent post-
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concussive symptoms after mTBI are traumatic stress, history of a psychiatric disorder, 

additional physical injuries, as well as loss of consciousness and post-traumatic amnesia 231,232. 

Importantly, mTBI acquired in a deployed setting is associated with higher incidences of PTSD, 

depression, substance use, and poor sleep quality 233, indicating that military mTBI requires 

special attention and customized treatment approaches 232. 

 

3.2.2. Neurophysiological Factors 

Sustaining a mTBI may disturb HPA axis functioning in a similar way as observed in 

patients with PTSD 234–239 (Figure 1). In fact, pituitary dysfunction after mTBI is highly 

common 240–242, and involved in inducing post-concussive symptoms 243. Mechanical forces can 

lead to shearing, tearing, contusions, and hemorrhages of brain tissue 244, ischemic injury 245, 

altered blood flow, and increased intracranial pressure 246. These processes may cause post-

traumatic hypopituitarism 247. Especially the vulnerable pituitary stalk that connects the anterior 

pituitary and hypothalamus is affected by mTBI 246.  

Similar to PTSD, disturbed pituitary hormone production results in altered 

glucocorticoid signaling and consequent impaired HPA axis negative feedback control 246,248. 

ACTH deficiencies 249, subsequent decreased adrenal gland and cortisol stimulation 246,248, and 

an accumulation of anti-pituitary anti-bodies that impair the pituitary’s functioning 250 have 

been pointed back to brain trauma. Dysfunction of the HPA axis may further lead to 

inflammatory dysregulations 248. After sustaining a mTBI, microglia (central nervous system-

specific immune cells) trigger an inflammatory response by releasing proinflammatory 

cytokines, including IL-6, IL-1, and TNFα 248. These processes are needed to clear waste 

products and to re-adjust synapses after injury but become problematic if the inflammatory 

reaction is constantly activated 248. MTBI may also affect metabolic functioning 251, and alter 

lipid and glucose mechanisms 252. This may further stimulate the genesis of beta-amyloid and 

tau pathology 253, which are protein aggregates that form pathological plaques and 

neurofibrillary tangles around cells 254,255. In fact, beta-amyloid and tau protein may accumulate 

in the white matter after brain trauma 256. Alarmingly, mTBI may even show a similar 

neuropathology (i.e., accumulated tau, disseminated microgliosis, astrocytosis, and 

neurodegeneration) as seen in patients with chronic traumatic encephalopathy (CTE) – a 

neurodegenerative condition that has been linked to repetitive head impacts 257.  

The endocrine dysregulations following mTBI 239,241 increase the risk for the onset, 

exacerbation, and recurrence of stress-related conditions, including PTSD, anxiety, and 

depression 258–265. Psychiatric symptoms, in turn, perpetuate the endocrine and nervous system 
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dysregulations, resulting in a greater expression of post-concussive symptoms, including sleep 

quality disturbances 266.  

 

3.2.3. Genetic Factors 

Genetic variations that affect the inflammatory reactions and neurotrophic repairments 

after injury, and genes that alter mental and cognitive functioning are implicated in the outcome 

of brain trauma 267. Genetic polymorphisms controlling inflammatory markers, including TNF-

α, IL-1, and IL-6, have been linked to adverse outcomes after mTBI 267. Moreover, particularly 

APOE polymorphisms appear to be implicated in mTBI outcome. Carriers of the APOE4 allele 

with mTBI history have a substantially heightened risk of developing Alzheimer’s dementia 268 

and CTE 269. Moreover, they experience longer durations of loss of consciousness when 

sustaining a head trauma, exhibit worse memory functioning after injury, and suffer from a 

delayed recovery process 267. In fact, a recent study showed that mice with the APOE4 genotype 

compared to those with APOE3 exhibit a greater inflammatory response, tau accumulation, 

microglia activation, apoptosis, and lower BDNF levels after mTBI, potentially explaining 

disadvantageous injury outcome 270.  

Interestingly, the genetic makeup may not only affect how an individual recovers from 

a mTBI, but also influences the likelihood of sustaining a mTBI in the first place 271. A 

systematic review of genetic risk factors for sustaining mTBI identified that the promoter -219 

G/T polymorphism of the APOE gene is linked to increased risk for mTBI 271. Moreover, the 

BDNF Met/Met genotype (corresponding to decreased BDNF release) was linked to greater 

incidences of mTBI among military service members 271. The authors explain the latter by 

alleging that BDNF polymorphisms have been associated with certain personality 

characteristics that may incline an individual to engage in risk behaviors potentially leading to 

mTBI, such as hyperactivity, impulsivity, and aggression 271. Moreover, the BDNF 

polymorphism also affects neurochemistry and brain functioning, thereby facilitating that a 

head impact actually results in a diagnosable mTBI 271. 

 

3.2.4. Brain Morphology and Function 

A recent review summarized the current macrostructural brain findings in mTBI and 

reported alterations in brain volume and cortical thickness after mTBI 272. Tissue death in gray 

matter structures may occur particularly in the limbic system 273. Indeed, smaller hippocampal 

volumes have not only been shown in patients with PTSD, but also in those with mTBI 274–279. 

Damage to white matter tracts connected to the hippocampus may ultimately compromise 
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hippocampal structure 272, and volumetric reductions of the hippocampus have been associated 

with poor sleep quality 280–282. The amygdala is equally vulnerable to the adverse effects of head 

impacts 63,277,279. Moreover, lower cingulate gyrus and orbitofrontal cortical volume has been 

observed 283, the latter particularly in military mTBI 284–286. Volumetric alterations of the limbic 

structures after mTBI have been associated with impaired cognitive functioning, such as 

memory, attention, psychomotor speed 287–289, and with failure to resume employment 290. 

Moreover, they pave the way for the emergence of psychiatric disorders, particularly PTSD 291, 

given the limbic projections to stress response system regulation hubs, e.g., the hypothalamus 
292–294.  

Importantly, not all studies report changes in cortical thickness 277 and brain volume 
288,295 after mTBI. Increases in brain volume one year post-mTBI have been reported in 

comparison to healthy control subjects 296, which may be interpreted as a compensatory reaction 

to the injury 297. Others showed an initial increase and later decrease in cortical thickness 298–

300. Thus, brain structural alterations may vary with the acute, sub-acute and chronic stage of 

injury and according to specific mTBI symptoms. 

 

3.2.5. Brain Networks 

Similar to PTSD, the connectivity of major brain networks is impacted after mTBI 301–

305, suggesting that mTBI may lead to widespread intra- and inter-network impairments 306,307. 

Specifically, hypoactivity in the default mode network has been observed 308,309, a network that 

is involved in providing an internal representation of the outer world and is most active at rest 

when reflecting on personal experiences and memories 310. These self-referential processes 

influence social and emotional judgment and decision making 310. The main hubs of the default 

mode network are the medial prefrontal cortex, inferior parietal lobule, posterior cingulate 

cortex, lateral temporal cortex, and the hippocampal formation 310. Especially alterations in the 

anterior default mode network have been linked to psychiatric post-concussive symptoms 309, 

and functional connectivity alterations acutely after mTBI are predictive of persistent post-

concussive symptoms 311,312. Several studies have shown associations between abnormalities of 

default mode network functioning and military mTBI with comorbid post-traumatic stress 313–

316. Importantly, altered connectivity of the default mode network may further lead to 

abnormalities in associated networks and, thus, to disruption of information processing, 

cognitive and emotional control, and adequate adaptation of behavior 317–319. The findings 

suggest that mTBI leads to wide-spread impairments in large-scale brain networks 301–305, 

resulting in neuropsychiatric sequalae 309,311,312. 
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3.2.6. White Matter Diffusion 

Reduced network efficiency results from damages to connecting structures and white 

matter fiber tracts 320–322. In fact, traumatic axonal injury is the most common injury type 

following mTBI 323. Mechanical forces lead to shearing, tearing, contusions, and hemorrhages 

of axons 244 (Figure 4).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Mild Traumatic Brain Injury Traumatic Axonal Injury 

Figure 4. Mild Traumatic Brain Injury Traumatic Axonal Injury 
Note. This figure displays the twisting and tearing of an axon due to acceleration, and 
deceleration forces applied to the brain. Traumatic axonal injury may disrupt communication 
between brain areas and can lead to a cascade of biological events resulting in adverse 
neuropsychiatric symptoms.  

 

 

DMRI studies with mTBI patients report widespread lower white matter FA, 

particularly for major fiber tracts, such as the corpus callosum 59–63, inferior longitudinal 

fasciculus, superior longitudinal fasciculus, and uncinate fasciculus 63,65. While numerous white 

matter tracts are implicated after mTBI 59–65, especially the corpus callosum is affected due to 

its anatomical susceptibility to mechanical strain 324 and shear lesions 272. A meta-analysis 

revealed FA reductions, particularly in the splenium of the corpus callosum 325.  

Importantly, it has been stressed that mTBI adversity may be detectable by sensitive 

imaging methods even years after injury 326,327. Lower FA in fiber tracts throughout the brain 

has been reported after two to five years 61,328 or even ten years after mTBI 329. Interestingly, a 

recent longitudinal study revealed that while white matter FA levels one year after mTBI were 

comparable to those of control subjects, FA measures decreased later on, as shown at the five-
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year follow-up 330. The authors suggest that the results are in line with accelerated brain aging 

in mTBI patients 330,331. 

While numerous studies showed white matter degeneration after mTBI, some have 

found higher white matter FA. A meta-analysis across five military brain injury cohorts 

identified higher FA in the superior longitudinal fasciculus in comparison to control participants 
332. The finding was interpreted as a rehabilitative process of fiber restructuring after injury 333. 

White matter FA may increase especially acutely after injury 334–336 and likely reflects 

neuroinflammatory processes, such as cytotoxic edema, swelling, or neuropathological gliosis 
335,337,338. However, not all studies reveal initial increases of white matter FA, and the findings 

are highly variable in general, with some not reporting differences between mTBI patients and 

controls at all 339. Further, time since injury appears to play a crucial role in white matter 

organization after mTBI, as indicated above. In fact, findings vary greatly depending on 

whether patients have been assessed acutely, sub-acutely, or remotely after mTBI 326. 

Importantly, however, white matter alterations at all stages after mTBI have been linked to 

various post-concussive symptoms, such as impairments in working memory, processing speed, 

concentration problems, depression, irritability, aggressiveness, and sleep quality disturbances 
59,65,67,340–342. These symptoms are particularly amplified in patients who did not only sustain a 

mTBI, but also suffer from a psychiatric disorder, particularly PTSD 343. 

 

4. PTSD, mTBI, and White Matter Diffusion 

Approximately 33-39% of veterans with mTBI also meet diagnostic criteria for PTSD 
344. PTSD and mTBI do not only share various common symptoms, such as general 

psychological distress 345, depression 346,347, cognitive impairments 348,349, problems in social 

life and everyday functioning 228,350, and sleep quality disturbances 351–354, but also influence 

each other. PTSD worsens the mTBI recovery prognosis 355,356, and mTBI may lead to PTSD 

development or progression 12–16. Importantly, it has been postulated that not only does mTBI 

increase the susceptibility for developing PTSD, but an uncontrolled stress response with 

associated abnormal limbic-cortical circuitry, as seen in patients with PTSD, enables far more 

detrimental effects of a head injury 204,357.  

The great commonality of neuropsychological impairments in PTSD and mTBI 348,358, 

and particularly the emergence of PTSD following mTBI may likely be explained by the highly 

overlapping neural substrates underlying both conditions 204,272,359,360. Damage to mesial 

temporal structures, such as the amygdala and hippocampus 361, due to impact or blast-related 

acceleration and deceleration forces contribute to the emergence of both post-concussive 
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symptoms and PTSD symptomatology 204,357,362. Moreover, chronic stress leads to abnormal 

HPA axis functioning 99,101. This affects neuronal plasticity due to inflammatory processes 114, 

and excitotoxic neurotransmitter damage 204, such as overly activated glutamate 

neurotransmission 41,205. These processes may ultimately lead to apoptosis and necrosis of brain 

tissue 206. Moreover, brain structural abnormalities affect functional connectivity among large 

scale-brain networks, further reinforcing neuropsychiatric symptom burden 167,363.  

The brain’s white matter is crucial for optimal network functioning 38,39 and both 

patients with PTSD 41–58 and mTBI 59–65 exhibit marked, wide-spread alterations of white matter 

microstructure. However, despite the high co-occurrence and clinical additive effects of PTSD 

and mTBI 204,348,357,358,362, only a small number of dMRI studies examined both disorders 

together. These few studies largely suggest that patients with comorbid PTSD and mTBI might 

have even more severe white matter abnormalities than patients with either disorder alone 27–

30. Specifically, white matter impairments of limbic tracts, e.g., the uncinate fasciculus 29 and 

cingulum bundle 30, have been reported in veterans with comorbid PTSD+mTBI compared to 

those with mTBI only. Similarly, a greater number of lower FA clusters was found in veterans 

with comorbid PTSD+mTBI in comparison to those with mTBI only and healthy controls 341. 

However, counterintuitive findings have also been reported. One study showed lower internal 

capsule FA in patients with PTSD compared to comorbid PTSD+mTBI, mTBI and controls, 

and therefore indicated no evidence of an additive burden of comorbid PTSD+mTBI 364. 

Moreover, other studies revealed higher FA of major white matter tracts in veterans with 

comorbid PTSD+mTBI 27. However, it is crucial to consider that higher white matter FA is not 

always associated with better functioning 207, and may also be interpreted as an attempt of fiber 

re-organization or battling neuroinflammation 183. 

Despite these conflicting results, there is consensus that PTSD and mTBI may lead to 

impairments in white matter microstructure. Moreover, white matter microstructural alterations 

correlate with neuropsychiatric symptoms 29,341, particularly sleep quality disturbances 365. 

However, knowledge on the impact of PTSD- and mTBI-related sleep quality disturbances on 

the brain’s white matter is still limited. 

 

5. PTSD, mTBI, and Sleep Quality 

Sleep quality disturbances are highly prevalent in the veteran population 366,367, with 

70% experiencing poor sleep quality after deployment 368. In particular, sleep quality 

disturbances are a hallmark symptom of PTSD 19,20. PTSD-associated sleep quality disturbances 

encompass difficulties falling asleep, recurrent awakenings during the night, distressing 
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dreams, and not feeling rested during the day 369–371. The large majority of PTSD patients 

experiences difficulties in falling and staying asleep 33. Moreover, nightmares are particularly 

indicative of PTSD 372, and constitute a re-enactment of trauma that hinders the affected 

individual from returning to sleep due to intense anxiety after awakening 372. Moreover, sleep 

quality disturbances are common in patients with mTBI 21–23, exacerbate psychiatric symptoms 
365, and have been identified as a mediator between TBI and the emergence of PTSD 373. 

Importantly, sleep appears to be even more severely impaired in veterans with comorbid PTSD 

and mTBI compared to those with only one of the conditions 26. Sleep quality disturbances can 

persist for years after trauma 31,32, and may not remit even when other PTSD symptoms are 35,36, 

as sleep is needed for the emotional processing of traumatic events 369. Indeed, prolonged sleep 

quality disturbances hinder the recovery from PTSD 374–376 and post-concussive symptoms 377–

379, and have been linked to adverse outcomes, including reduced quality of life 365, poor 

physical and cognitive functioning 33,34, substance use 380, and suicide attempts 381. In summary, 

trauma-related sleep quality disturbances may severely affect mental and physical health 382. 

However, the underlying pathomechanisms are still poorly understood, impeding the 

implementation of proper diagnostic and treatment protocols.  

 

5.1. Etiology and Pathophysiology 

A healthy human undergoes an entire sleep cycle for four to six times per night, each 

lasting for an average of approximately 90 minutes 383. An entire sleep cycle consists of a wake 

period, three phases of non- rapid eye movement (non-REM) sleep (N1 to N3), and REM sleep. 

Sleep becomes deeper from non-REM sleep N1 to N3 and is marked by increasingly large-

amplitude EEG waves 383, explaining why non-REM sleep is commonly referred to as slow 

wave sleep 384. During the non-REM sleep stages, arousal is typically decreased, and the body 

restores its functions 211. Indeed, slow wave sleep is essential for optimal mental and physical 

functioning 384. When the morning approaches, REM sleep covers more time. During REM 

sleep, muscle tone is inhibited, and only the eyes move under the eyelids, giving REM sleep its 

name. Breathing and heart rate are more irregular, and most dreaming occurs during this stage 
383,385. Neural activity during REM sleep is comparable to wakefulness, and activity is 

especially increased in the limbic system and related areas 209,211.  

PTSD patients commonly show disruptions in REM sleep 19,386. Nightmares usually 

occur during REM sleep 19 and have been suggested to be a failed attempt of incorporating the 

lived traumatic experience into one’s world 210.  In fact, so-called restless REM sleep that is 

marked by especially high arousal and eye movements impairs the overnight resolution of 
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distress and contributes to chronic hyperarousal symptoms of PTSD 387 by maintaining 

continued amygdala reactivity 388. Moreover, in patients with PTSD light sleep is more 

prominent, while slow-wave deep sleep covers less time 210,389, which has been connected to 

increased CRH levels and CRH receptor down-regulation – a key pathology of PTSD 97,98,390. 

As a consequence, PTSD patients show an abnormally high norepinephrine activity in the brain 
19,209, which correlates with the clinical symptoms of hyperarousal 210. Norepinephrine activity 

is usually suppressed during sleep 391, however not so in patients with PTSD. PTSD patients 

lack the overnight drop in norepinephrine levels which correlates with worse sleep quality 392. 

Strikingly, analyses of sleep patterns, HPA axis functioning, EEG, and neuroimaging findings 

suggest that sleep quality disturbances, such as insomnia, reflect a hyperarousal state that 

persists throughout day and night 392,393. In accordance with the increased norepinephrine tone 

and hyperarousal, PTSD patients exhibit greater metabolism in the limbic system, brainstem, 

and cortical regions during REM sleep and while awake 394. Moreover, PTSD-related sleep 

quality disturbances have been associated with abnormal functional connectivity in fear-related 

circuits, particularly between the medial prefrontal cortex and amygdala 211,212, and with gray 

matter volume loss in limbic and paralimbic areas, such as the amygdala, hippocampus, anterior 

cingulate, and insula 395. Disconnection between frontal and limbic areas as a correlate of 

disturbed sleep quality may further contribute to emotion regulation difficulties 396, and 

impaired extinction of traumatic distressing memories 397. Altered sleep patterns and 

nightmares may, thus, especially emerge due to the disturbed interplay between the amygdala 

and medial prefrontal cortex seen in patients with PTSD 211,365. 

Biological impairments due to mTBI, such as traumatic axonal injury 323,398, may further 

exacerbate sleep quality disturbances in patients with PTSD. Moreover, mTBI may cause poor 

sleep quality even without psychiatric comorbidity 399. Dysregulation of brain circuits involved 

in circadian rhythmicity 400 (such as the brain stem, reticular activating system, hypothalamus, 

and retino-hypothalamic tract 401), damage to arousal neurons, altered glutamate signaling, and 

reduced melatonin production from the pineal gland after mTBI 402,403 likely play a role. 

Moreover, hypothalamus-synthesized hypocretin, which is involved in the alteration between 

wakefulness and sleep, is often decreased in TBI patients 404–406, and may contribute to sleep 

quality disturbances 407. Proinflammatory cytokines are elevated both in patients with PTSD 114 

and in mTBI 408, and have been linked to sleep quality disturbances 409. Increased levels of 

inflammatory cytokines may induce apoptotic processes and may impair myelination 202,203. 

Further, it was recently discovered that mTBI leads to impaired glymphatic waste clearance in 

the limbic system 410. The glymphatic system is a brain network of perivascular spaces vital for 
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flushing out accumulated neurotoxins (such as beta-amyloid and tau) that is most active during 

sleep 411–414. Impaired waste clearance of the limbic circuits may explain why sleep quality 

disturbances after TBI fuel the emergence and maintenance of psychiatric symptoms 248.  

In summary, PTSD and mTBI have been linked to physiological changes associated 

with disturbed sleep quality. In turn, sleep quality disturbances have been shown to affect brain 

structure and function. Sleep is crucial for maintaining the healthy environment the brain needs 

to perform adequately, and is directly linked to brain homeostasis 415. As sleep is involved in 

lipid biosynthesis, myelin deposition, and activates oligodendrocyte precursor proliferation 

crucial for myelin genesis, it has been argued that sleep may be particularly critical for white 

matter health 416. On the opposite, sleep quality disturbances have been linked to brain volume 

loss, decreased neurogenesis, and decreased cortical activation 417,418. As a result, poor sleep 

quality is likely to have an impact on the brain's white matter connections and, vice versa, on 

neuropsychiatric functioning. However, the complex interplay between PTSD, mTBI, sleep 

quality, and white matter is largely unknown (Figure 5).
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Figure 5. Pathophysiology of Sleep Quality Disturbances in Patients with PTSD and mTBI 
Note. PTSD, Post-traumatic stress disorder, mTBI, Mild traumatic brain injury. 
This figure outlines the emergence and maintenance of sleep quality disturbances in patients 
with PTSD and mTBI. Moreover, the potential impact of PTSD- and mTBI-related sleep quality 
disturbances on white matter microstructure is depicted.  
Figure 5. Pathophysiology of Sleep Quality Disturbances in Patients with PTSD and mTBI 

 

 

5.2. Sleep Quality and White Matter Diffusion 

As outlined above, several dMRI studies revealed microstructural alterations in major 

fiber tracts and global cortical white matter in patients with PTSD 41,51–53,182,183, mTBI 59–

63,65,325,328,419, and comorbid PTSD+mTBI 27–30. Moreover, a few studies have revealed an 

association between sleep quality disturbances and alterations in the white matter of patients 

with PTSD 208, mTBI 66,67, and otherwise healthy individuals 68–77,420. A significant association 

between the hyperarousal symptoms of PTSD, poor sleep quality, and reduced FA in the right 

uncinate fasciculus has been shown 208. The findings confirm the hypothesized dysregulation 

of noradrenergic activity in patients with PTSD 19,209,210, leading to impaired fronto-limbic 

connectivity 211,212.  Moreover, mTBI patients exhibit reduced integrity of the parahippocampal 

gyri 66, alterations in the internal capsule, corona radiata, fornix and superior fronto-occipital 
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fasciculus in association with poor sleep quality 67. The observed low FA in frontal and 

temporal lobe regions may be responsible for the disturbances in complex cognitive processes, 

such as attention and memory, commonly associated with sleep quality disturbances 421. More 

specifically, it has been suggested that sleep-related reductions in structural connectivity 

between frontal and temporal regions may impair information processing 77. In addition, various 

studies in otherwise healthy individuals 68–77,420 showed both local and widespread alterations 

of white matter microstructure in association with poor sleep quality, such as lower overall FA 

and higher MD in frontal, temporal, parietal, and occipital regions 69.  

Some studies suggested a link between poor sleep quality and disturbed synchronized 

neuronal activity, particularly reflected in impaired fronto-subcortical structural pathways 
72,73,391,422. However, across available studies, most of the major white matter tracts were 

affected by poor sleep quality 68,70–72,75,420,423, thus pointing against region- or pathway-specific 

patterns of sleep quality disturbances. Rather, disturbed sleep appears to have widespread 

effects on the brain. Supporting this, it has previously been suggested that region-specific 

impairments in brain structure associated with poor sleep quality may further affect other 

connected areas, resulting in widespread pathology 70,424.  

While previous research indicates a strong association between sleep quality and white 

matter health, to date, only very few studies investigated the relationship between PTSD, mTBI, 

sleep quality and white matter microstructure. These studies commonly failed to assess white 

matter fiber tracts of the entire brain. Moreover, while sleep quality disturbances have usually 

been investigated in relation to either PTSD or mTBI individually, the underlying connection 

between both diagnoses has rarely been explored. This is surprising, given that white matter 

fiber tracts constitute major connections across various brain networks that affect clinical 

functioning 38–40 and are commonly impacted in patients with PTSD and mTBI 27–30. Advanced 

insights on the association between structural brain health and sleep quality are needed to 

establish targeted interventions and improve long-term outcomes. 
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6. Hypotheses 

As outlined above, the interplay of social, economic, environmental, genetic, and 

neurophysiological factors leads to altered brain morphology and function that contribute to the 

emergence and maintenance of PTSD, mTBI, and associated sleep quality disturbances. 

Particularly, the brain’s white matter anatomy that connects different brain regions is of major 

importance for optimal brain network functioning and shows abnormalities in association with 

sleep quality disturbances. However, the complex interactions between PTSD, mTBI, poor 

sleep quality, and white matter microstructure are largely unknown. 

The current work focuses on elucidating the relationship between PTSD, mTBI, sleep 

quality, and white matter microstructure, leveraging a large and unique sample comprised of 

veterans returning from deployment to Iraq and Afghanistan (N = 180). Self-reported sleep 

quality is investigated in veterans with PTSD, mTBI, and comorbid PTSD+mTBI. DMRI is 

utilized to assess the associations between sleep quality and white matter microstructure. 

Veterans with PTSD, mTBI, or comorbid PTSD+mTBI are hypothesized to experience poorer 

sleep quality than veterans without a history of PTSD or mTBI 26. Based on previous studies 

that suggest a critical role of sleep for white matter microstructure 68,70–72,75,420,423, it is further 

hypothesized that poorer sleep quality is related to global white matter microstructure 

abnormalities 68,70–72,75,420,423. Subsequently, the relationship between PTSD symptom severity, 

mTBI burden, sleep quality and white matter microstructure will be explored, given that sleep 

quality disturbances are the hallmark of PTSD 19,20, mTBI may exacerbate PTSD 

symptomatology 12–16, cumulative mTBIs may increase sleep quality disturbances 425, and 

PTSD 41,43–58,183, mTBI 59–65 and sleep quality disturbances 68–77,420 have individually been 

linked to white matter microstructural alterations.  

 

I) Veterans with PTSD, mTBI, or comorbid PTSD+mTBI experience poorer sleep 

quality than veterans without a history of PTSD or mTBI. 

II) Greater PTSD symptom severity and mTBI burden are associated with poorer sleep 

quality. 

III) Poorer sleep quality is associated with abnormalities in white matter microstructure. 

IV) There is an association between PTSD symptom severity, mTBI burden, sleep 

quality, and white matter microstructure. 
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7. Methods 

7.1. Participants 

Since 2016, the Translational Research Center for TBI and Stress Disorders (TRACTS) 

study 426 has been actively recruiting military service members in an effort to understand the 

consequences of deployment-related physical and psychological trauma (VA Rehabilitation 

Research and Development National Network Research Center for Traumatic Brain Injury 

Grant (B9254-C) to Regina E. McGlinchey). OEF and OIF veterans were recruited all over 

New England and the Boston area. Written informed consent was obtained from all study 

participants, and the VA Boston Healthcare System Institutional Review Board provided 

approval for the study protocols.  

Out of the first 384 consecutively recruited veterans returning from deployment to Iraq 

and Afghanistan, 278 participants underwent an MRI assessment and provided consent for 

sharing their data with researchers of institutions cooperating with TRACTS. Out of these 278, 

25 cases failed to persist the visual neuroimaging data quality control for reasons such as 

exceeding movement during scanning. Additionally, participants with a history of moderate or 

severe TBI (n = 9), neurological illness unrelated to TBI (n = 1), DSM-IV diagnosis of a 

cognitive, psychotic or bipolar disorder (n = 1), anoxia (n = 21), meningitis or encephalitis (n 

= 2), brain surgery (n = 2), exposure to neurotoxic chemicals (n = 9),  missing clinical data (n 

= 10), female sex (n = 5), and participants who had not yet been deployed (n = 13) were 

excluded, resulting in a final sample of 180 participants. The above stated exclusion criteria 

were applied to rule out potentially confounding effects on brain structure. The participating 

veterans were classified into four groups based on lifetime diagnoses of PTSD and mTBI. The 

groups included veterans with PTSD (n = 38), veterans with mTBI (n = 25), veterans with 

comorbid PTSD+mTBI (n = 94), and veterans without a history of PTSD or mTBI (n = 23) 

(Figure 6). Lifetime diagnoses were chosen over current PTSD or mTBI diagnoses, since 

previous studies demonstrate a strong influence on gray matter and white matter structure when 

considering lifetime diagnoses 27,427, suggesting that neurobiological effects persist or even 

increase over time.  
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Figure 6. Excluded Participants and Final Sample Size 
Note. MRI, Magnetic resonance imaging; TRACTS, Translational Research Center for TBI and 
Stress Disorders; PTSD, Post-traumatic stress disorder; mTBI, Mild traumatic brain injury.  
This figure shows the number of excluded participants and the number of the total sample  
(N =180), and groups (PTSD, n = 38; mTBI, n = 25; PTSD+mTBI, n = 94; No history of PTSD 
or mTBI, n = 23). 
Figure 6. Excluded Participants and Final Sample Size 
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7.2. Diagnostic and Clinical Assessment 

7.2.1. Assessment of PTSD 

Lifetime PTSD diagnosis and current symptom severity was assessed according to the 

30-item Clinician-Administered PTSD Scale for DSM-IV (CAPS-IV) 428 by trained doctorate 

level psychologists. The CAPS-IV is a semi-structured interview that includes items that refer 

to re-experiencing, avoidance, arousal, emotional and cognitive symptoms of the traumatic 

event (e.g., B3: “Have you ever suddenly acted or felt as if (EVENT) were happening again? 

Have you ever had flashbacks about (EVENT)? Tell me more about that.”). Frequency and 

intensity scores were rated on a scale from 0 = absent to 4 = extreme/incapacitating and 

summed into a total PTSD symptom severity score. To assess PTSD symptoms other than sleep 

quality, two items (i.e., difficulty sleeping, recurrent distressing dreams) were removed from 

the scale and a sleep-corrected PTSD total score was calculated, in line with prior work 428. 

 

7.2.2. Assessment of mTBI 

The Boston Assessment of TBI-Lifetime (BAT-L) 429 was administered to assess mTBI 

history and to rate the accumulative lifetime mTBI burden. The BAT-L is a semi-structured 

interview that assesses a history of head injuries across the lifespan, with a particular focus on 

military TBI. It is sensitive to identifying approximations for altered mental status, post-

traumatic amnesia, and loss of consciousness, with a special focus on blast-related injuries that 

are commonly sustained in the military population. Moreover, the BAT-L is able to differentiate 

between physiological and psychological symptoms of head trauma 429 and distinguishes 

between mild, moderate, and severe TBIs. Mild TBI is classified into stages 1-3, where a higher 

stage refers to a greater mTBI severity. A total mTBI burden score was computed from the 

number and severity of all mTBIs pre-, during, and post-deployment. Pre-deployment mTBIs 

included mTBIs before enlistment. MTBIs during deployment referred to all deployments if 

deployed multiple times. 

In the current sample, comorbidity with mTBI was highly prevalent for all psychiatric 

diagnoses (i.e., PTSD, mood, anxiety, and substance use disorder) (Figure 7).  
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Figure 7. Proportion of mTBI in Psychiatric Diagnoses 
Note. PTSD, Post-traumatic stress disorder; mTBI, Mild traumatic brain injury.  
This figure illustrates the proportion of PTSD, substance use, mood, and anxiety disorder in 
patients with and without additional mTBI.  
Figure 7. Proportion of mTBI in Psychiatric Diagnoses 

 

 

7.2.3. Assessment of Sleep Quality 

Current sleep quality was evaluated using the Pittsburgh Sleep Quality Index (PSQI) 430, 

an 18-item self-report questionnaire measuring subjective sleep quality, sleep latency, sleep 

duration, habitual sleep efficiency, sleep disturbances, use of sleep medication, and daytime 

dysfunction on seven subscales (Figure 8). The PSQI includes a variation between open 

questions (e.g., “During the past month, how long (in minutes) has it usually taken you to fall 

asleep each night?”), and items that are scored on a 4-point scale, e.g., ranging from 0 = very 

good to 3 = very bad (e.g., “During the past month, how would you rate your sleep quality 

overall?”). A previously validated approach suggests that the seven subscales of the PSQI are 

most adequately characterized by three factors: sleep efficiency, perceived sleep quality, and 

daily disturbances 431. As displayed in Figure 8, sleep efficiency includes “sleep duration” and 

“habitual sleep efficiency”. Perceived sleep quality includes “subjective sleep quality”, “sleep 

latency”, and “use of sleep medication”. Daily disturbances encompasses “sleep disturbances” 

and “daytime dysfunction”. Higher scores on the total scale and all sub-scales refer to lower 

sleep quality. 
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Figure 8. Assessment of Sleep Quality 
Note. PSQI, Pittsburgh Sleep Quality Index 430; PSQI 3-factor structure, The PSQI subscales 
sleep efficiency, perceived sleep quality and daily disturbances refer to the Pittsburgh Sleep 
Quality Index 3-Factor Structure 431. 
Figure adapted from 431. 
Figure 8. Assessment of Sleep Quality 

 

 

7.2.4. Assessment of Comorbid Psychiatric Disorders 

The non-patient research version of the Structured Clinical Interview for DSM-IV Axis 

I Disorders (SCID-I/NP) 432 (module D: mood disorders; module E: substance use disorders; 

module F: anxiety disorders) was employed to diagnose comorbid lifetime psychiatric 

disorders. The SCID-I/NP is a semi-structured clinical interview that was administered by 

trained doctorate level psychologists. As displayed in Figure 9, many veterans presented with 

psychiatric comorbidities. 
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Figure 9. Overlap of Psychiatric Diagnoses  
Note. Total sample N = 180; PTSD, Post-traumatic stress disorder. 
Figure 9. Overlap of Psychiatric Diagnoses  

 

 

7.2.5. Assessment of Warzone Stress 

Warzone-related stress was assessed with the combat experiences and post-battle 

experiences sub-scales of the Deployment Risk & Resilience Inventory-II (DRRI-II) 433. The 

DRRI subscales (DRRI-Combat and DRRI-Other) consist of 16 questions concerning combat 

or warzone-related events (e.g., DRRI-Combat: “I personally witnessed someone from my unit 

or an ally being seriously wounded or killed”, DRRI-Other: “I saw civilians after they had 

been severely wounded or disfigured”). The DRRI-Combat subscale uses a 5-point scale (0 = 

never to 4 = daily or almost daily). The DRRI-Aftermath subscale uses a binary response format 

(0 = no and 1 = yes). 

 

7.3. Magnetic Resonance Imaging  

7.3.1. Image Acquisition 

DMRI data was acquired on a 3-Tesla Siemens TIM Trio scanner (Siemens 

Healthineers, Erlangen, Germany) at the VA Medical Center in Boston using a single-shot 

echo-planar sequence with a twice-refocused spin-echo pulse. The following sequence 

parameters were applied: 64 axial slices with no inter-slice gap, 60 gradient directions with a 
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b-value of 700 s/mm² and 10 additional scans with b = 0 gradients, TR = 10.000 ms, TE = 103 

ms, voxel size = 2x2x2 mm3, FOV = 256 mm2. 

7.3.2. Image Pre-processing 

The dMRI data was processed in several steps by employing the image processing 

pipeline of the Psychiatry Neuroimaging Laboratory (PNL), Brigham and Women’s Hospital, 

Harvard Medical School, USA 

(https://github.com/pnlbwh/pnlutil/blob/master/pipeline/README.md). First, the images were 

axis-aligned and centered to a standard position on the x-y-z axis, as well as motion- and eddy 

current-corrected by registering all gradient volumes to an undistorted b = 0 volume with an 

affine registration (FLIRT) utilizing the FMRIB Software Library (version 5.1, 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) 434,435. Image quality was visually checked for artifacts 

using 3D Slicer (version 4.5, http://www.slicer.org) 436, resulting in the exclusion of 25 

participants (e.g., due to severe motion artifact or signal drop). Artifacts are fairly common and 

can be a result of faulty scanner hardware or patient motion during MRI acquisition 437. 

SlicerDMRI 438,439 was employed to create diffusion masks covering the entire brain. Each brain 

slice was inspected visually in the axial, sagittal, and coronal view and brain masks were 

manually corrected where necessary. In case the automatically created brain mask failed to 

cover the entire brain, the mask was manually expanded. In case the skull was mistakenly 

registered as brain tissue, the mask was narrowed to fit only the brain. Manual correction of 

brain masks is important to ensure an accurate registration of brain images and to ensure optimal 

quality of further processing steps. 

 

7.3.3. White Matter Fiber Clustering 

As outlined earlier, dMRI offers a non-invasive visualization of white matter fiber tracts 

in the living brain 184. A visualization of the white matter microstructure can provide extensive 

information on brain disease, such as traumatic axonal injury, and may lead to an understanding 

of abnormal behavioral and cognitive processes 130. White fiber clustering was conducted by 

utilizing an openly accessible pipeline, whitematteranalysis software 

(https://github.com/SlicerDMRI/whitematteranalysis), to automatically perform fiber tract 

parcellation and extraction (Figure 10) 81. White matter fiber tracts were identified for each 

subject using the White Matter Analysis (WMA) package for tract parcellation. WMA is based 

on a neuroanatomist-curated white matter atlas and applies machine learning to identify fiber 

tracts in an individual 78–80. The white matter fiber clustering approach is capable of extracting 
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fiber tracts from the entire brain by organizing fiber tracts according to anatomical similarity 

and location in the brain. 

First, a two-tensor whole-brain unscented Kalman Filter (UKF) tractography was 

conducted (https://github.com/pnlbwh/ukftractography) 440,441. A two-tensor model was chosen 

to accommodate for crossing fibers 442,443. The first tensor is associated with primary fiber tract 

direction, while the second tensor represents crossing fibers. Qualitative and quantitative 

quality checks were performed using the whitematteranalysis software quality control tool 

(https://github.com/SlicerDMRI/whitematteranalysis) to ensure correctness of fiber tract 

anatomy and that the tractography was stored in the same spatial coordinate system as the atlas 

tractography data. Compared to single single-tensor tractography, the UKF approach is more 

sensitive 444–446 and exhibits greater consistency 78. Specifically, UKF tractography has a high 

ability to identify target fiber tracts correctly, even in the presence of crossing fibers 445,447. The 

sensitivity to crossing fibers has both benefits and drawbacks. Increased sensitivity can aid in 

the detection of more putative true positive fibers while also increasing false positive tracking, 

which may affect white matter parcellation reproducibility. The subsequently employed white 

matter fiber clustering can reduce this issue by including a data-driven outlier elimination 

procedure and utilizing a neuroanatomist-curated atlas of fiber tracts. 

This neuroanatomist-curated white matter atlas was trained on 100 healthy community 

subjects as input data 448. A joint alignment of the tractography of all atlas subjects was 

conducted. Based on the joint atlas input tractography, white matter fiber tracts were extracted 

and used as a reference to identify fiber tracts in the TRACTS study subjects 78–80. First, each 

TRACTS subject’s tractography was registered into the atlas space. The similarity between the 

fibers in the atlas and the fibers of the individual TRACTS participants was quantified and used 

to categorize the fibers into clusters, allotting them to the corresponding tract in the atlas 

(Figure 10). A neuroanatomist identified probable false positive clusters in the atlas (i.e., fibers 

that were obviously deviating from known anatomical trajectories). As outlined above, this 

approach enabled to substantially reduce false-positive tracking, which is a common problem 

with tractography 449. In further processing and display processes, false positive clusters were 

excluded and provided a reliable and highly accurate identification of fiber tracts 78. Thus, it 

was ensured that the tractography and tract identifications were executed consistently and in 

the same manner across all subjects. The white matter fiber clustering method has successfully 

been applied in several studies 450–452, has a high test-retest reproducibility 453, and is robust to 

individual variation in brain anatomy 454. By extracting an increased amount of fiber tracts from 

the entire brain, this approach outperformed previous automated fiber tracking methods, which 
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were restricted to extracting only major fiber tracts, missing to include all of the brain’s white 

matter 78.  

As highlighted in the introduction, a widespread effect of sleep quality on white matter 

microstructure was expected 68,70–72,77. Therefore, the entire brain’s fiber tracts were merged 

into one whole-brain white matter variable (Figure 10). Additionally, the major white matter 

fiber tracts (i.e., left/right arcuate fasciculus, cingulum bundle, inferior longitudinal fasciculus, 

inferior occipito-frontal fasciculus, superior longitudinal fasciculus, uncinate fasciculus, and 

corpus callosum) were extracted. A description of anatomical location, main functions, and 

associations with sleep quality of the major white matter fiber tracts can be found in Table 3. 

A visualization of the fiber tracts is displayed in Figure 11.  

 

7.3.4. Diffusion Parameter Extraction 

Free-water (FW) imaging was employed to obtain whole-brain voxel-wise free-water 

corrected fractional anisotropy (FAT) values of whole-brain and major fiber tract white matter 

(i.e., left/right arcuate fasciculus, cingulum bundle, inferior longitudinal fasciculus, inferior 

occipito-frontal fasciculus, superior longitudinal fasciculus, uncinate fasciculus, and corpus 

callosum). As described earlier, using FW imaging, the MRI signal is divided into two 

compartments, and is therefore able to eliminate partial volume effects of extracellular FW 

(e.g., caused by CSF contamination, edema, or atrophy) 198. The first compartment is the 

isotropic FW compartment accounting for the relative contribution of extracellular FW in each 

voxel. The second represents each voxel’s tissue compartment from which the FW-corrected 

fractional anisotropy (FATissue, FAT) can be calculated. Given the correction for FW, FAT serves 

as a more precise indicator for cellular WM architecture than the conventional FA measure 199. 

Aberrant myelination, degeneration, or atrophy processes can be more accurately depicted 

when correcting for adjacent FW 199. This is a significant improvement compared to earlier 

dMRI analyses of white matter microstructure in relation to PTSD, mTBI, and sleep quality, 

which largely relied on conventional FA measures.  

The streamline quantity in each tract was assessed to ensure that there were no 

participants with outlier values. Similarly, FAT-values were inspected for outliers. Moreover, 

all white matter tracts were subjected to a visual quality assessment to validate anatomical 

accuracy. The described quality check procedures are in line with best practices employed most 

recently 455–460. All data passed the quality checks. 

 
Figure 10. Neuroimaging Data Processing and Measure Extraction 
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Table 3. Major White Matter Fiber Tracts 

White Matter Fiber Tract Location and Function 

Arcuate fasciculus The arcuate fasciculus connects the peri-sylvian cortex with 

frontal, parietal, and temporal regions. The left arcuate 

fasciculus is primarily known for its function in language, 

while the right arcuate fasciculus is involved in visuospatial 

processing 461,462. The arcuate fasciculus has been found to be 

impacted in patients with self-reported insomnia 75. 

Cingulum bundle The cingulum bundle extends from the orbitofrontal cortices 

to the temporal pole along the dorsal corpus callosum. It is a 

major part of the limbic system and responsible for 

communication between limbic regions 463,464. Accordingly, 

the cingulum bundle has been primarily linked to emotional 

processes, but also to executive control, pain, and memory 463. 

The cingulum bundle has been associated with the re-

experiencing symptoms of PTSD 465. Therefore, nightmares 

(which are considered uncontrolled re-enactments of the 

traumatic event 372,466), may similarly be associated with 

cingulum bundle structure. Reductions in cingulum bundle 

FA have been associated with overall poor sleep quality 68. 

Moreover, an association between better sleep efficiency and 

lower cingulum bundle MD has been shown 76. 

Inferior longitudinal 

fasciculus 

The inferior longitudinal fasciculus links occipital regions 

with anterior temporal structures 467, and is essential for visual 

perception, face processing, language, and memory 467,468. 

Insomnia has been correlated with lower inferior longitudinal 

fasciculus MD 420. Moreover, there are indications of an 

association between REM sleep behavior disorder (a 

parasomnia characterized by acting out with abnormal motor 

behavior and vocalization while dreaming 469) and reduced 

inferior longitudinal fasciculus integrity 470. 

Inferior occipito-frontal 

fasciculus 

The inferior occipito-frontal fasciculus is a ventral association 

fiber tract that links the ventral occipital lobe with the 

orbitofrontal cortex 462. The inferior occipito-frontal 
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fasciculus runs in parallel to the corpus callosum, and in 

parallel to the inferior longitudinal fasciculus in the occipital 

lobe 462,471. The functions of the inferior occipito-frontal 

fasciculus are not yet entirely understood 462, however, there 

is evidence of its involvement in language processing, visual 

perception, and goal-driven behavior 472.  

An association between insomnia and lower inferior occipito-

frontal fasciculus MD has been shown 420, as well as a link 

between impaired inferior occipito-frontal fasciculus integrity 

and obstructive sleep apnea 473, a sleep-related breathing 

disorder marked by repetitive episodes of upper airway 

collapse 474. In fact, obstructive sleep apnea is common 

among veterans with PTSD and mTBI 475,476, where the 

repeated episodes of hypoxia may damage the white matter 
477–479. 

Superior longitudinal 

fasciculus 

The superior longitudinal fasciculus is a major cortical white 

matter structure (differentiated into three parts) that links the 

frontal cortex with the superior parietal lobe (superior 

longitudinal fasciculus I), angular gyrus (superior 

longitudinal fasciculus II), and supramarginal gyrus (superior 

longitudinal fasciculus III) 480. 

The superior longitudinal fasciculus has been found to be 

primarily responsible for cognitive processes, including 

processing speed, executive functioning, and attention 481–485. 

There is evidence that the superior longitudinal fasciculus is 

impacted by poor sleep quality 71, and insomnia specifically 
73,75,420. 

Uncinate fasciculus The uncinate fasciculus links the orbitofrontal cortex with the 

temporal pole 486 and belongs to the limbic system 462,487. The 

uncinate fasciculus plays a role in emotion, memory, and 

language 487–489.  

It has been suggested that uncinate fasciculus myelination 

may be negatively affected by poor sleep quality 490,491. 

Supporting this, veterans showed an association between poor 
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sleep, reduced uncinate fasciculus FA and increased 

hyperarousal 208. Moreover, patients with obstructive sleep 

apnea similarly exhibit decreased uncinate fasciculus FA 492. 

Corpus callosum The corpus callosum is the brain’s largest white matter 

structure 493, a major commissural fiber tract bridging the left 

and the right hemisphere 494. It is primarily responsible for 

signal transmission between both hemispheres, thereby 

engaging in sensory and motor processes 494, and integrating 

cognitive and social-emotional functions 493. 

Poor sleep quality has been linked to reduced corpus callosum 

integrity 71,495,496. Correspondingly, an association between 

insomnia and decreased corpus callosum FA 73 and decreased 

corpus callosum MD 420 has been shown.  

Note. PTSD, Post-traumatic stress disorder; mTBI; Mild traumatic brain injury; REM, 

Rapid eye movement; FA, Fractional anisotropy, MD, Mean diffusivity. 

Table 3. Major White Matter Fiber Tracts 
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Figure 11. Major White Matter Fiber Tracts 
Note. A) Superior longitudinal fasciculus I; B), Superior longitudinal fasciculus II; C) Superior 
longitudinal fasciculus III; D) Uncinate fasciculus; E) Cingulum bundle; F) Inferior 
longitudinal fasciculus; G) Inferior occipital frontal fasciculus; H) Corpus callosum. 
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7.4. Statistical Analysis 

Statistical analyses were conducted using IBM SPSS Statistics 27 497 and R 4.0.3 498. 

Figures were created using R 4.0.3 498 and GraphPad Prism 9 499. A hierarchical statistical 

approach was applied, conducting all analyses in the total sample and if significant in the four 

groups (PTSD, mTBI, comorbid PTSD+mTBI, no history of PTSD or mTBI; Figure 12). All 

analyses included age as a covariate and were corrected for multiple comparisons, as detailed 

in Figure 12. 
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Figure 12. Hierarchical Statistical Approach 
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Hypothesis I) 

Veterans with PTSD, mTBI, or comorbid PTSD+mTBI experience poorer sleep quality than 

veterans without a history of PTSD or mTBI. 

In line with a previous publication 26, an analysis of covariance (ANCOVA) was 

conducted to depict differences in global sleep quality across the groups (PTSD, mTBI, 

comorbid PTSD+mTBI, no history of PTSD or mTBI). If the overall ANCOVA was significant 

(p < .05), post-hoc comparisons were performed for the four groups. If the group comparisons 

for global sleep quality were found significant (p < .05/4), post-hoc comparisons between the 

four groups for sleep efficiency, perceived sleep quality, and daily disturbances (PSQI 3-factor 

structure 431) were conducted. 

 

Hypothesis II) 

Greater PTSD symptom severity and mTBI burden are associated with poorer sleep quality. 

One regression analysis was performed in the total sample, including PTSD symptom 

severity and mTBI burden as the independent variables and global sleep quality as the 

dependent variable. In the case of significant associations between PTSD symptom severity, 

mTBI burden, and global sleep quality (p < .05), the regression analysis was repeated within 

the four groups separately (PTSD, mTBI, comorbid PTSD+mTBI, no history of PTSD or 

mTBI). If a regression model was found significant in one of the groups (p < .05/4), three 

additional regression analyses were conducted, including PTSD symptom severity/mTBI 

burden as the independent variable and sleep efficiency, perceived sleep quality, and daily 

disturbances as dependent variables, respectively. 

 

Hypothesis III) 

Poorer sleep quality is associated with abnormalities in white matter microstructure. 

Next, a regression analysis was conducted in the total sample, including global sleep 

quality as the independent variable and whole-brain FAT as the dependent variable. In the case 

of a significant association (p < .05), the regression analysis was repeated within each group 

(PTSD, mTBI, comorbid PTSD+mTBI, no history of PTSD or mTBI). In the case of a 

significant association between global sleep quality and whole-brain FAT in a group (p < .05/4), 

additional regression analyses were performed to evaluate the relationship between sleep 

efficiency, perceived sleep quality, daily disturbances, and whole-brain FAT in the respective 

group. Moreover, supplementary analyses were computed to assess the link between sleep 

quality and white matter microstructure of the major white matter fiber tracts (i.e., left/right 
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arcuate fasciculus, cingulum bundle, inferior longitudinal fasciculus, inferior occipito-frontal 

fasciculus, superior longitudinal fasciculus, uncinate fasciculus, and corpus callosum) to ensure 

impairments are widespread as opposed to region-specific, therefore justifying the whole-brain 

approach.  

 

Hypothesis IV) 

There is an association between PTSD symptom severity, mTBI burden, sleep quality, and white 

matter microstructure. 

Given the significant associations between PTSD symptom severity and perceived sleep 

quality and between perceived sleep quality and white matter microstructure, a post-hoc 

mediation analysis was performed. It was investigated whether perceived sleep quality 

(mediator) mediates the association between PTSD symptoms (independent variable) and 

whole-brain FAT (dependent variable). The mediation model was calculated using Hayes 

PROCESS macro 500 for SPSS (model 4), which follows a nonparametric bootstrapping 

procedure based on n = 5,000 samples and a 95% CI. PROCESS is a tool for mediation and 

moderation analyses based on the principals of ordinary least squares regression 500. Direct and 

indirect effects are estimated in advanced models with single or multiple mediators and/or 

moderators. PROCESS is suitable for testing mechanisms and contingencies of effects 500. 

Mediation and moderation analyses can provide a broader understanding of the impact a 

variable X has on Y. X may interact with another variable M to impact Y, or a relationship 

between X and Y may be explained by M entirely 501.  

In an additional analysis, lifetime mTBI burden was included as a moderator variable in 

the above-described mediation model (Hayes PROCESS 500 model 58). Greater lifetime mTBI 

burden was expected to influence the association between PTSD symptom severity, sleep 

quality, and whole-brain FAT. The continuous lifetime mTBI burden score was chosen to be 

included in the model to account for variations of mTBI severity and symptom burden.  

Finally, the mediation and moderation analyses were repeated while controlling for 

comorbid psychiatric diagnoses (lifetime mood, anxiety, and substance use disorder, Figure 9), 

warzone-related stress, body mass index (BMI), psychiatric medication use (Figure 13), race 

(white, non-white), and completed years of education to ensure that these factors do not 

confound the primary results. Mood 502–506, anxiety 507–509, and substance use disorders 510,511, 

warzone-related stress 512–515, BMI 516–521, psychiatric medication use 522–527, race (i.e., racial 

discrimination) 528, and education 478,529 have repeatedly been associated with alterations in 

brain structure. 
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Figure 13. Overlap of Psychiatric Medications  
Note. This figure pictures the overlap of psychiatric medication use in the total sample (N = 
180).  
Figure 13. Overlap of Psychiatric Medications  
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8. Results 

This section contains the results to each hypothesis. A summarizing figure of the results 

is displayed at the end of this section (Figure 19).  

Demographic information is displayed in Table 4 and 5. The groups (PTSD, mTBI, 

comorbid PTSD+mTBI, no history of PTSD or mTBI) did not differ in age, the number of 

deployments, and the total duration of deployments. Veterans with comorbid PTSD+mTBI 

were the most severely clinically burdened group, as indicated by the high number of comorbid 

psychiatric diagnoses, psychiatric medication use, and the highest rates of mTBI in this group. 

In fact, veterans with comorbid PTSD+mTBI compared to veterans with mTBI only had higher 

incidences of military, and military blast-related mTBI. Substance use disorder was 

significantly more prevalent among veterans with comorbid PTSD+mTBI compared to veterans 

with mTBI only or no history of PTSD or mTBI. Similarly, more veterans with comorbid 

PTSD+mTBI were diagnosed with a mood disorder than veterans with mTBI only or no history 

of PTSD or mTBI. Moreover, mood disorders were more prevalent among veterans with PTSD 

only compared to veterans without a history of PTSD or mTBI. Importantly, veterans with 

comorbid PTSD+mTBI showed greater PTSD symptom severity than veterans with PTSD only.
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8.1. Sleep Quality, PTSD, and mTBI 

Hypothesis I) 

Veterans with PTSD, mTBI, or comorbid PTSD+mTBI experience poorer sleep quality than 

veterans without a history of PTSD or mTBI. 

First, the influence of a diagnosis of PTSD and mTBI on sleep quality was examined by 

employing ANCOVAS. Table 5 and Figure 14 display the differences in sleep quality between 

the groups. The PTSD and comorbid PTSD+mTBI groups demonstrated more significant 

impairments on the PSQI global sleep quality, sleep efficiency, perceived sleep quality, and 

daily disturbances scales than those with mTBI or no history of PTSD or mTBI. There were no 

significant differences in sleep quality between the PTSD and comorbid PTSD+mTBI groups. 

 
 
 
 



 63 

 
Figure 14. Sleep Quality Group Comparisons 
Note. PTSD, Post-traumatic stress disorder; mTBI, Mild traumatic brain injury; PSQI, 
Pittsburgh Sleep Quality Index 430; The PSQI subscales sleep efficiency, perceived sleep quality 
& daily disturbances refer to the Pittsburgh Sleep Quality Index 3-Factor structure 431. 
This figure illustrates the significant differences in sleep quality between groups (PTSD, mTBI, 
comorbid PTSD+mTBI, no history of PTSD or mTBI). Lower scores on the PSQI scales 
represent better sleep quality.  
PSQI Global: * Significantly higher than no history of PTSD or mTBI. ** Significantly higher 
than mTBI and no history of PTSD or mTBI. 
PSQI Sleep efficiency: * Significantly higher than mTBI and no history of PTSD or mTBI. 
PSQI Perceived sleep quality: * Significantly higher than no history of PTSD or mTBI. ** 
Significantly higher than mTBI and no history of PTSD or mTBI. 
PSQI Daily disturbances: * Significantly higher than mTBI and no history of PTSD or mTBI.  
All analyses are corrected for multiple comparisons as outlined in Figure 12. 
Figure 14. Sleep Quality Group Comparisons 
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Hypothesis II) 

Greater PTSD symptom severity and mTBI burden are associated with poorer sleep quality. 

The regression analyses revealed a significant association between PTSD symptom 

severity and poorer global sleep quality in the total sample (β = .58, t = 9.15, p < .001), whereas 

there was no significant association between mTBI burden and global sleep quality (β = .07, t 

= 1.07, p = .288). Post-hoc analyses demonstrated that more severe PTSD symptoms were 

associated with poorer global sleep quality in the PTSD, mTBI, and comorbid PTSD+mTBI 

groups. Moreover, more severe PTSD symptoms were associated with poorer perceived sleep 

quality and greater daily disturbances in the PTSD and comorbid PTSD+mTBI groups. In the 

mTBI group, more severe PTSD symptoms were associated with poorer sleep efficiency (Table 

6).  

 

8.2. Sleep Quality and White Matter Microstructure 

Hypothesis III) 

Poorer sleep quality is associated with abnormalities in white matter microstructure. 

Next, the association between sleep quality and white microstructure was explored. The 

regression analyses investigating the association between global sleep quality and whole-brain 

FAT in the total sample was significant (β = -.24, t = -3.35, p = .001). Moreover, post-hoc 

analyses revealed a significant association between global sleep quality and whole-brain FAT 

in the comorbid PTSD+mTBI group (β = -.39, t = -4.04, f2 = .18, p < .001, Table 7). 

Supplementary analyses of the major white fiber tracts similarly showed significant 

associations between global sleep quality and white matter FAT of the major fiber tracts in the 

comorbid PTSD+mTBI group (Table 8). No region-specific pattern was observed, supporting 

the hypothesis that poor sleep quality may lead to widespread white matter alterations. 

Subsequently, the relationship between the three PSQI sub-scales (sleep efficiency, subjective 

sleep quality, and daily disturbances) and whole-brain FAT was examined in the comorbid 

PTSD+mTBI group. Only perceived sleep quality was significantly associated with whole-

brain FAT (β = -.43, t = -3.86, f2 = .21, p < .001, Table 7, Figure 15). 

 

 
 
 
 
 
 
 
 

Table 6. Association between PTSD 

Symptom Severity and Sleep Quality 
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Figure 15. Association between Sleep Quality and Whole-brain FAT 
Note. PTSD, Post-traumatic stress disorder; mTBI, Mild traumatic brain injury; PSQI, 
Pittsburgh Sleep Quality Index 430; FAT, Fractional anisotropy Tissue. 
This figure illustrates the significant association between global sleep quality and whole-brain 
FAT (p < .001) and between perceived sleep quality and whole-brain FAT (p < .001). Lower 
scores on the PSQI scales represent better sleep quality.  
Figure 15. Association between Sleep Quality and Whole-brain FAT 
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Figure 16. Association between Sleep Quality and Major White Matter Fiber Tracts FAT 
Note. Post-traumatic stress disorder; mTBI, Mild traumatic brain injury; FAT, Fractional 
anisotropy Tissue; PSQI, Pittsburgh Sleep Quality Index 430; AF, Arcuate fasciculus, CB, 
Cingulum bundle; ILF; Inferior longitudinal fasciculus; IOFF, Inferior occipito-frontal 
fasciculus; SLF, Superior longitudinal fasciculus; UF, Uncinate fasciculus; CC, Corpus 
callosum. 
Figure 16. Association between Sleep Quality and Major White Matter Fiber Tracts FAT 
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8.3. Sleep Quality, PTSD, mTBI, and White Matter Microstructure 

Hypothesis IV) 

There is an association between PTSD symptom severity, mTBI burden, sleep quality, and white 

matter microstructure. 

Given the significant association between PTSD symptom severity and perceived sleep 

quality as well as between perceived sleep quality and white matter microstructure in the 

comorbid PTSD+mTBI group, additional mediation analyses were performed to assess whether 

perceived sleep quality mediates the association between PTSD symptom severity (independent 

variable) and whole-brain FAT (dependent variable). PTSD symptom severity was significantly 

associated with whole-brain FAT (b = -.00, SE = .00, t(91) = -2.88, p = .005, Figure 17 path c) 

when not including perceived sleep quality in the model. When inserting perceived sleep quality 

as a mediator, the relationships between PTSD symptom severity and perceived sleep quality 

(b = .02, SE = .00, t(91) = 5.55, p < .001, Figure 17 path a), perceived sleep quality and whole-

brain FAT (b = -.00, SE = .00, t(90) = -3.26, p = .002, Figure 17 path b), and the model’s total 

effect (F(3, 90) = 6.81, R2 = .19, p < .001) were significant. However, the direct effect of PTSD 

symptom severity on whole-brain FAT was not significant (b = -.00, SE = .00, t(90) = -.97, p = 

.331, Figure 17 path c’). Therefore, the findings indicate that the association between PTSD 

symptom severity and whole-brain FAT is fully statistically mediated by perceived sleep quality 

(completely standardized b = -.18, bootSE = .06, bootCI [-.29, -.07]).  

 

 

 

 

 

 

Figure 17. Mediation Model 
Note. PTSD, Post-traumatic stress disorder; mTBI, Mild traumatic brain injury; FAT, Fractional 
anisotropy Tissue. 
This figure illustrates the fully mediating effect of perceived sleep quality between PTSD 
symptoms and whole-brain FAT. Path a refers to the association between X and M. Path b refers 
to the association between M and Y when taking X into account. Path c represents the total 
effect of X on Y, including the axb path. Path c’ shows the direct effect of X on Y when M is 
omitted.  
 
Figure 17. Mediation Model 
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 In an additional analysis, mTBI burden was included as a moderator variable in the 

mediation model to assess whether lifetime mTBI burden significantly influences the 

relationship between PTSD symptom severity, perceived sleep quality, and whole-brain FAT. 

There was no significant effect of mTBI burden on the associations between PTSD symptom 

severity and perceived sleep quality (b = -.00, SE = .00, t(89) = -.66, p = .509) or the associations 

between perceived sleep quality and whole-brain FAT (b = -.00, SE = .01, t(88) = .08, p = .936, 

Figure 18) as revealed by non-significant moderator effects.  

 All analyses were controlled for age. Of note, when including psychiatric comorbidities 

(anxiety, depression, substance use disorder), warzone-related stress, BMI, and psychiatric 

medication use, race, and education as additional covariates in the mediation and moderated 

mediation model, results did not change significantly. 

 

 

 
 
 
Figure 18. Moderated Mediation Model 
Note. PTSD, Post-traumatic stress disorder; mTBI, Mild traumatic brain injury; FAT, Fractional 
anisotropy Tissue. 
This figure illustrates the non-significant effects of moderator W on the mediated association 
between X and Y via M. Both the association between X and M and the association between M 
and Y were not significantly moderated by W. 
Figure 18. Moderated Mediation Model 
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8.4. Summary of Results 

 

 
Figure 19. Summary of Results 

Figure 19. Summary of Results 
Note. PTSD, Post-traumatic stress disorder; mTBI, Mild traumatic brain injury; PSQI, 
Pittsburgh Sleep Quality Index 430, FAT, Fractional anisotropy Tissue. 
This figure displays the statistical approach and summary of results.  
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9. Discussion 

The current work investigated the relationship between PTSD, mTBI, sleep quality, and 

white matter microstructure in veterans. Poorer sleep quality was observed in veterans with 

PTSD and comorbid PTSD+mTBI compared to those with mTBI only or no history of PTSD 

or mTBI. Additionally, global and perceived sleep quality was associated with characteristics 

of white matter microstructure in veterans with comorbid PTSD+mTBI. Most importantly, 

perceived sleep quality fully accounted for the association between PTSD symptoms and white 

matter microstructure. This finding was independent of the mTBI burden, psychiatric 

comorbidities, warzone-related stress, BMI, psychiatric medication use, race and education. 

The findings suggest a crucial role of sleep in understanding the association between trauma-

related neuropsychiatric diagnoses and brain health.  

 

9.1. Sleep Quality, PTSD, and mTBI 

Hypothesis I) 

Veterans with PTSD, mTBI, or comorbid PTSD+mTBI experience poorer sleep quality than 

veterans without a history of PTSD or mTBI. 

In line with previous studies 26,531, veterans with PTSD or comorbid PTSD+mTBI 

experienced poorer sleep quality than veterans with mTBI only or no history of PTSD or mTBI. 

The findings underline the profound effect of post-deployment PTSD on sleep quality, that 

appears to outweigh the effects induced by head trauma alone. Indeed, sleep quality 

disturbances are a hallmark symptom of PTSD specifically 19,20, and usually range from 

insomnia, to difficulties falling asleep, and recurrent awakenings during the night due to 

nightmares 369–371. While it has been suggested that sleep quality is most impaired in those who 

suffer from comorbid PTSD+mTBI 26 the present work did not observe an additive burden of 

sleep quality disturbances in veterans with PTSD+mTBI compared to those with PTSD only. 

In fact, it is notable that – contrary to previous findings 21,532 – there was no difference in sleep 

quality between veterans with mTBI only and those without a history of mTBI. An explanation 

for this finding may be that sleep quality disturbances resolved after time, given that some 

veterans in the present study may have sustained their head trauma many years in the past. In 

fact, while many mTBI patients experience sleep quality disturbances acutely and sub-acutely 

after mTBI 533, only a small proportion of individuals with mTBI suffers from persistent post-

concussive symptoms (including sleep quality disturbances) 218–220, while residual sleep quality 

disturbances are still highly prevalent in remitted PTSD patients 35,36. Therefore, it can be 
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concluded that PTSD is a powerful indicator of poor sleep quality, even in the absence of 

comorbid mTBI.  

 

Hypothesis II) 

Greater PTSD symptom severity and mTBI burden are associated with poorer sleep quality.  

As expected, a significant association between greater PTSD symptom severity and 

poorer global sleep quality, sleep efficiency, perceived sleep quality, and more daily 

disturbances were observed across the PTSD, mTBI, and comorbid PTSD+mTBI groups. The 

findings align with previous studies, highlighting an integral role of impaired sleep quality in 

PTSD 19,20, and suggesting that veterans’ poor sleep quality originates in traumatic stress 286,531. 

The interplay of several factors may account for the association between PTSD symptom 

severity and sleep quality disturbances. Especially the re-experiencing and hyperarousal 

symptoms of PTSD contribute to poor sleep quality 210,534. HPA axis disturbances commonly 

observed in PTSD lead to alterations in sleep 535. Heightened CRH levels and a down-regulation 

of CRH receptors are core features of PTSD-related HPA axis abnormalities 97,98,390 and result 

in abnormally high norepinephrine activity in the brain 19,209. While in healthy individuals 

norepinephrine activity is suppressed during sleep 391, PTSD patients lack the overnight drop 

of norepinephrine 392 and exhibit heightened levels that persist throughout the night 392,393. 

Moreover, brain networks that are implicated in PTSD likewise impact sleep quality. For 

example, the disturbed relationship between the limbic system and the medial prefrontal cortex 

gives rise to sleep quality disturbances, including insomnia and distressing dreams 211,365. In 

fact, PTSD-typical restless REM sleep that is marked by especially high arousal and eye 

movements impairs the overnight resolution of distress, leads to continued amygdala reactivity 
388, and therefore perpetuates the chronic hyperarousal symptoms of PTSD 387. Moreover, the 

disconnection between frontal and limbic areas leads to insufficient extinction of traumatic 

memories 397 and difficulties with emotion regulation 396, resulting in a vicious cycle that 

perpetuates poor sleep quality. 

Interestingly, there was no significant association between mTBI burden and sleep 

quality. The results highlight an integral role of poor sleep quality in PTSD severity 19,20, 

underscoring that traumatic experiences might be the driving force behind sleep quality 

disturbances in veterans 286,531.  
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9.2. Sleep Quality and White Matter Microstructure 

Hypothesis II) 

Poorer sleep quality is associated with abnormalities in white matter microstructure. 

As hypothesized 66–77, a significant relationship between impaired sleep quality and 

characteristics of white matter microstructure was observed. It can be speculated that the 

observed white matter microstructural alterations can be traced back to impaired myelin repair 

and genesis processes. Previous research has demonstrated that sleep is crucial for sustaining 

white matter health, as sleep initiates myelin deposition and repair processes by fueling lipid 

biosynthesis, and activating oligodendrocyte precursor proliferation crucial for myelin genesis 
416. Myelin genesis and repair processes rely on the sufficient clearance of brain waste products 
414. The glymphatic system is an innate brain clearance system, which consists of perivascular 

spaces vital for flushing out accumulated neurotoxins, such as beta-amyloid and tau 411,413. 

Critically, the glymphatic system is most active during sleep 414, and deprivation of sleep for as 

little as one night can lead to an accumulation of brain waste products, such as beta-amyloid 
536. Therefore, it can be anticipated that poor sleep quality is linked to reduced neurotoxic 

clearance, which, in turn, leads to neurodegenerative processes including impaired myelination. 

Incomplete clearance of brain waste products has been suggested by previous research, which 

showed an association between white matter damage and increased amyloid and tau deposition 

in military veterans with comorbid PTSD+mTBI 537,538.  

The present work revealed that the association between impaired sleep quality and 

abnormal white matter microstructure pertained solely to veterans with comorbid PTSD+mTBI 

– the most clinically burdened group. Veterans with comorbid PTSD+mTBI presented with the 

highest PTSD symptom severity, a high number of comorbid psychiatric diagnoses (Figure 

20), medication use, and the highest mTBI and blast exposure rates. Deployed military 

personnel commonly experience blast-related injuries resulting from military artillery 

explosions that may cause even greater adversity than blunt injuries 539 (including swelling of 

the brain and traumatic axonal injury 216). In fact, brain structural alterations 284 and 

neuropsychological sequelae 539 appear to be more profound after blast exposures, and military 

mTBI in general may be associated with greater adversity than civilian mTBI 540. The 

combination of these factors may increase brain vulnerability 27–30,284, potentially creating a 

neural environment that leaves the brain unprotected from the harmful effects of impaired sleep 

quality. Similarly, poor sleep quality negatively impacts brain structure and function 68–

77,420,541,542, thus fueling the onset or progression of neuropsychiatric disorders and related brain 

abnormalities 365.  
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Figure 20. Overlap of Diagnoses  
Note. PTSD, Post-traumatic stress disorder; mTBI, Mild traumatic brain injury. The red-lined 
area pictures the comorbid PTSD+mTBI sample (n = 94) with overlapping substance use, 
mood, and anxiety disorder.  
Figure 20. Overlap of Diagnoses  

 
 

Lower perceived sleep quality was the only significant indicator of alterations in white 

matter microstructure when all aspects of sleep quality (sleep efficiency, perceived sleep 

quality, and daily disturbances) were considered. This finding is consistent with a prior study 

revealing that perceived sleep quality was the driving factor between overall poor sleep quality 

and reduced cortical gray matter. 542. Supporting this, it has previously been demonstrated that 

the personal perception of sleep quality is most essential for functional outcome and mental 

health in patients with PTSD 34.  

Of particular interest here, perceived sleep quality may not necessarily mirror 

objectively measured sleep quality. A recent meta-analysis did not find a difference in 

actigraphy-measured total sleep time, wake after sleep onset, sleep latency, or sleep efficiency 

between patients with versus without PTSD 543. Actigraphy is a convenient way of assessing 

sleep quality objectively by employing a small device that is worn on the wrist 544. The actigraph 

can be used over a period of time in the home environment, and measures sleep parameters, 

such as sleep latency, total sleep time, wake after onset, and sleep efficiency 544. Moreover, 

studies that included both objective measures of sleep and self-report tools, such as the PSQI, 

reported large discrepancies, indicating that veterans may rate their sleep as poorer than actually 
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assessed by actigraphy 543. However, contrary to findings on actigraphically-measured sleep 

quality, a meta-analysis on polysomnographically-assessed sleep reported a decrease in total 

sleep time, slow-wave sleep, sleep efficiency, and greater waking periods following sleep onset 

in patients with PTSD compared to healthy controls. Polysomnography is usually conducted in 

a sleep laboratory and gathers physiological parameters during sleep, utilizing EEG, 

electrooculography, electromyography, and electrocardiography, among others 545. Unlike 

actigraphy, polysomnography can discern between different sleep cycles and evaluate the 

nature of REM- and non-REM sleep 546. This feature may be of particular importance, 

considering the high prevalence of nightmares in PTSD 33.  

While polysomnography is widely recognized as the gold standard for objectively 

assessing sleep quality 19,547,548, concerns regarding its usefulness in evaluating PTSD-related 

sleep quality disturbances have been voiced. Patients with PTSD might either feel safer or more 

threatened when sleeping in a laboratory setting, which may reflect itself in altered sleep 

duration, intensity, and in the frequency of trauma-related dreams 23,543. Moreover, sleep is 

usually assessed only during one or two nights in a laboratory setting. This may miss 

intermittently occurring PTSD-related sleep quality disturbances 549 or falsely imply sleep 

quality disturbances are frequent, even if they actually only occur occasionally. Keeping these 

potentially confounding effects in mind and considering the aforementioned findings from 

actigraphy studies 543, it is questionable whether differences in sleep quality between PTSD 

patients and healthy controls truly exist, or at least to which extent. Indeed, the phenomenon of 

paradoxical insomnia – the discrepancy between subjective and objective assessments of sleep 
550 – is common among veterans with sleep disorders 551 and PTSD 552. Similarly, patients with 

mTBI report worse sleep quality disturbances than actually picked up by polysomnographic 

measures 553. General distress, continuous hyperarousal states, and a negative cognitive bias 

that impacts sleep perception are among the factors linked to paradoxical insomnia 543,551,554–

557.  

Importantly, perceived sleep quality (rather than the objective assessment of sleep) 

appears to be an adequate indicator of overall well-being. 393,557–559. This is supported by a 

recent study, showing that self-reported sleep quality is a more powerful predictor of mental 

and physical health than objectively measured sleep duration 560. Moreover, it has been revealed 

that the association between objectively measured sleep quality and quality of life appears to 

be partially mediated by perceived sleep quality 561. Perceived sleep quality is, thus, a crucial 

diagnostic assessment tool that should be employed in clinical care and future research. 

Nonetheless, future longitudinal studies are needed to further illuminate the relationship 
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between subjective and objective measures of sleep quality and their relation to brain structure 

in veterans. 

 

9.3. Sleep Quality, PTSD, mTBI, and White Matter Microstructure 

Hypothesis IV) 

There is an association between PTSD symptom severity, mTBI burden, sleep quality, and white 

matter microstructure.  

Strikingly, perceived sleep quality fully mediated the association between PTSD 

symptom severity and white matter microstructure (Figure 21). Several previous studies 

reported white matter microstructure alterations in patients with PTSD 41,51–53,182,183, and lower 

FA has been observed for several major white matter fiber tracts 41,43,151. A chronically activated 

stress response and overly activated glutamate neurotransmission affects neuronal plasticity 
41,205 and has been suggested as the link between PTSD and impaired white matter. However, 

it is notable that none of the previously conducted studies that investigated the association 

between PTSD and white matter microstructure adjusted for sleep quality disturbances or 

assessed sleep quality disturbances as an influential factor. This is striking, given that disturbed 

sleep is not only the hallmark symptom of PTSD 19,20, but also has a profound impact on brain 

structure and function 211,212,395,542. In fact, studies assessing the link between sleep and gray 

matter volume in trauma-exposed veterans previously observed that sleep quality disturbances 

may affect neural structure even independently of other psychiatric symptoms. Greater self-

reported insomnia severity has been associated with smaller hippocampal volumes in veterans 

whilst controlling for other PTSD symptoms 541. Similarly, lower self-reported sleep quality 

was linked to reduced total cortical and frontal gray matter volume in veterans, even when 

correcting for comorbid psychiatric conditions 542. 

Notably, when including PTSD symptom severity, sleep quality, and white matter in the 

same statistical model, sleep quality fully accounted for the relationship between PTSD 

symptoms and white matter microstructure. This finding suggests that poor sleep might be the 

most damaging symptom for the brain’s white matter microstructure. Moreover, the finding 

questions the interpretability of previous studies on the relationship between PTSD and white 

matter that did not consider the individual effect of sleep quality on brain structure 41,43–58,183. 

Alterations in white matter that have previously been ascribed to PTSD as a disorder per se 

may instead be attributable to one symptom (disturbed sleep quality) of the disorder. This is 

critical information for future diagnostic and treatment approaches and warrants a thorough 

assessment of sleep quality in the veteran population.  
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Figure 21. Mediating Effect of Sleep Quality  

Figure 21. Mediating Effect of Sleep Quality 
Note. PTSD, Post-traumatic stress disorder; mTBI, Mild traumatic brain injury. 
This figure depicts the fully mediating effect of sleep quality between PTSD symptom severity 
and white matter microstructure. 
 
 

There was no statistically significant influence of the mTBI burden (indicated by the 

number and severity of lifetime mTBIs) on the association between PTSD symptoms, sleep 

quality, and white matter microstructure. This is surprising, given that cumulative TBIs 

exacerbate PTSD symptomatology 12–16, and may increase sleep quality disturbances 425. Mild 

traumatic brain injury alters glutamate signaling, melatonin production 402,403, and circadian 

rhythmicity 400, thereby contributing to the development of sleep quality disturbances. 

Moreover, adverse inflammatory processes can be elicited both by psychological 114 and head 

trauma 408, contribute to sleep quality disturbances 409, and alter brain structure 202,203. As 

outlined earlier, mTBI in particular may lead to impaired glymphatic clearance of brain toxins 

during sleep 411–413. Especially impeded waste removal in the limbic system after mTBI 410 may 

fuel the emergence and maintenance of psychiatric symptoms 248 and could explain how sleep 

quality disturbances after TBI contribute to neuropsychiatric sequelae.  

While there is evidence that mTBI alters biological processes related to sleep quality 

and psychological functioning, studies focusing on the impact of increasing mTBI severity on 

sleep quality and brain structure are limited. Other than hypothesized, the current findings 
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suggest that sleep quality mediates the association between PTSD symptom severity and white 

matter microstructure independently of increased mTBI burden. While some previous studies 

report an adverse effect of more significant mTBI burden on neuropsychological functioning 

and brain structure and function 562–567, others did not  568–571. Differences in the assessment of 

mTBI burden may account for the lack of consistency in previous findings. For example, some 

studies assessed only the severity or number of mTBIs, compared to both. Moreover, the present 

study focused on mild TBI exclusively, however, it is possible that TBI burden of greater 

severity (i.e., moderate or severe TBI) would have impacted the findings. Sleep quality 

disturbances increase with TBI severity 572, and greater white matter abnormalities have been 

reported with moderate to severe compared to mild TBI 419. Future research is needed to explore 

whether mTBI of increasing severity impacts trauma-related sleep quality disturbances and 

associated brain structural alterations. 

 

9.4. Limitations and Future Directions 

Several study limitations are acknowledged. First, an entirely male sample of military 

veterans was enrolled, which may not be generalizable to the entire population of OEF/OIF 

veterans that includes women. Indeed, sleep and white matter microstructure may be affected 

by sex 573,574 and the present findings may, therefore, only pertain to a limited sample. Next, the 

varying sample sizes across the groups (PTSD, mTBI, comorbid PTSD+mTBI, no history of 

PTSD or mTBI) may have impacted statistical power and type I error rates 575,576, necessitating 

replications with balanced designs and larger samples. Further, while potentially confounding 

factors, such as psychiatric comorbidity, warzone-related stress, BMI, psychiatric medication 

use, race, and education were considered, additional stressors associated with transitioning from 

combat duty to a non-deployed setting have not been captured. Moreover, medical records for 

verifying mTBI diagnoses were not available. Instead, information on head trauma relied on 

retrospective self-recall, potentially distorting accurate reports of mTBI occurrence and severity 
577. However, the current study employed the BAT-L for identification of mTBI 429, which is 

considered the current gold standard for assessing combat-related mTBI retrospectively. 

Similarly, sleep quality was assessed with the most commonly utilized self-report tool to 

measure sleep quality (the PSQI 430) which has proven high psychometric validity and reliability 
578,579. Nevertheless, sleep quality was determined entirely based on self-report, which may not 

accurately reflect objective sleep quality 543. However, it is significant to note that perceived 

sleep quality is a valuable diagnostic tool for assessing mental and brain health 393,557–561. 
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The mediation and moderation analyses allowed for an advanced statistical assessment 

of complex interactions between the target variables. However, the cross-sectional design 

restricts the interpretability of causal relationships. It is possible that sleep quality disturbances 

were present in some veterans even before deployment and predisposed a minority group to 

develop more severe neuropsychiatric symptoms and brain structural impairments 177,580–583. 

Moreover, future studies may benefit from the inclusion of a general population control group 

to understand whether the present findings exclusively pertain to the veteran population, given 

that some civilian studies did not show an association between self-reported sleep quality and 

white matter microstructural integrity 423,584,585. Thus, future longitudinal studies, including an 

increased number of participants and a non-veteran control group, are required to elucidate the 

underlying pathomechanisms of impaired sleep quality.  

In addition, the relationship between self-reported sleep quality, objective sleep quality, 

and brain structure should be assessed. Polysomnography may serve as an important tool for 

objective sleep quality assessment 546, especially considering the high prevalence of PTSD-

related nightmares 33. The implementation of polysomnography in an ambulatory setting may 

mitigate the confounding effects attributed to a sleep laboratory environment 586 and should 

thus be pursued. An analysis of the relationship between subjective and objective measures of 

sleep and their associations with brain structure may contribute to the understanding of possible 

paradoxical insomnia in the veteran population. Future studies should also differentiate between 

sleep disorders (e.g., insomnia, nightmare disorder, obstructive sleep apnea), given that 

different aspects of sleep or distinct sleep disorders may be associated with alterations in 

specific white matter tracts. For example, nightmares, which are considered uncontrolled re-

enactments of the traumatic event 372,466, may especially affect tracts of the limbic system, such 

as the uncinate fasciculus and cingulum bundle 465. Objective measures of REM sleep should 

be supplemented with self-report questionnaires and clinical interviews specifically tailored to 

dreaming. Similarly, assessment tools primarily focusing on insomnia may assist with 

classifying behavioral and brain abnormalities specific to insomnia. 

Brain imaging analyses would benefit from a combination between structural MRI and 

fMRI to identify an association between structural brain changes and brain networks related to 

sleep quality, PTSD, and mTBI. Moreover, measuring volumetric changes and diffusivity along 

the brain’s perivascular spaces (i.e., the glymphatic system) may be a powerful way to 

complement the present findings. While changes in the glymphatic system have currently only 

been linked to military mTBI and consequent poor sleep quality 413, PTSD likely also harms 

glymphatic clearance. In healthy individuals, norepinephrine levels decline during the night and 
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the perivascular spaces of the glymphatic system enlarge to enable the removal of waste 

products from the brain 587. In fact, norepinephrine antagonists have been shown to fuel 

glymphatic clearance 588. This mechanism is likely impaired in patients with PTSD, as PTSD 

patients lack the normal drop in norepinephrine levels during the night 392. As discussed above, 

the unsuccessful clearance of neurotoxins may lead to neurodegenerative processes, including 

impaired myelination. These processes should be evaluated in association with objectively and 

subjectively measured sleep quality disturbances among military veterans. 

There is a vast array of possibilities for future research on sleep quality disturbances in 

the context of PTSD and mTBI. Concluding, a combined assessment of objective and subjective 

sleep quality, an analysis of the brain’s glymphatic system that is most active during sleep 411–

414, and a longitudinal study design belong to the core components required for future research 

on sleep in the context of PTSD and mTBI.   

 

9.5. Clinical Implications 

The insights that arise from the present findings may be of high importance for the 

clinical care of veterans with PTSD and mTBI. Service members should be evaluated for mental 

health problems and sleep quality disturbances even before deployment to assess the individual 

risk status and to implement preventive efforts. Moreover, returning veterans should be 

carefully monitored for emerging sleep quality disturbances and associated brain structural 

alterations. Novel treatment options may assist standard care procedures in alleviating sleep 

disturbances. 

 

9.5.1. Early Identification of At-Risk Patients 

 The current findings suggest a close monitoring and early treatment interventions 

regarding sleep quality complaints in veterans. Identifying at-risk patients even before 

deployment may be a powerful way to prevent patient and health-care burden. As outlined 

earlier, several environmental, social, economic, genetic, and neurophysiological factors 

influence the likelihood of developing PTSD, mTBI, and poor sleep quality. Individuals from 

a low socio-economic background 87,222, who struggle with pre-existing mental health 

conditions 87,223, including sleep quality disturbances 353,589, are more prone to developing PTSD 

and mTBI after a traumatic life experience. Indeed, poor sleep quality is not only a resulting 

symptom of deployment-related traumatic experiences, but also a risk factor for the 

development of PTSD 353,580,581,589,590, post-concussive symptoms 265,591, and associated brain 

structural impairments 177,580–583. In fact, pre-deployment sleep quality disturbances are 
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predictive of PTSD re-experiencing symptoms three- and six-months post-deployment, even 

independently of combat-stress severity 581. In line with the diathesis-stress model of PTSD 592, 

pre-existing sleep quality disturbances interact with social, environmental and biophysiological 

diatheses to elicit PTSD symptoms after a traumatic event 581,592. Individuals with a greater 

variety of premorbid factors (including sleep quality disturbances) are more vulnerable to show 

aversive reactions to even less severe stressors 592. Sleep quality disturbances are considered a 

diathesis that facilitates the development of mental health problems when encountering a 

traumatic life experience 353,580,581,589,590. Especially impairments of specific sleep stages have 

been thought to predispose veterans to exhibit mental health symptoms post-deployment 590. 

While REM sleep disturbances are a characteristic following both PTSD 19,386 and mTBI 593, 

REM sleep impairments most likely also facilitate the development of mental disorders, as it 

has been shown that impaired REM sleep is associated with lack of fear extinction and safety 

learning 594. In fact, restless REM sleep is marked by high arousal and eye movements that 

impair the overnight resolution of distress and lead to continuous amygdala reactivity 388, and 

chronic hyperarousal 387, facilitating the emergence and maintenance of psychiatric symptoms. 

Just like several environmental, social, economic, genetic, and neurophysiological 

factors influence the likelihood of developing PTSD and mTBI, disrupted sleep emerges due to 

the interplay of various etiological factors. Genetic studies suggest a heritability for PTSD 115, 

mTBI 267, and sleep quality complaints 595–597. Genes that are involved in alterations of the HPA 

axis, such as the FKBP5 gene 122, Val158Met polymorphism of the Catechol-O-

methyltransferase gene 123, and a genetic variation of the CRP gene  125 contribute to the 

development of PTSD 124, most importantly the hyperarousal symptoms 126 that have repeatedly 

been linked to sleep quality disturbances 210,534. Indeed, substantial genetic overlap has been 

identified between PTSD and sleep quality impairments, such as insomnia 598, providing an 

explanation for the common co-occurrence of the conditions and bi-directional relationship 599. 

Similarly, genetic polymorphisms that control inflammatory markers, such as TNF-α, IL-1, and 

IL-6 and those that regulate the circadian rhythm influence mTBI outcome and associated sleep 

quality disturbances 267,600–603. Indeed, insomnia symptoms that improve after standard 

treatment correlate with altered expression of inflammatory genes in military personnel 604. 

Shared genetic etiology suggests that genetic testing may be highly informative for identifying 

at-risk patients even before deployment. However, the interest in genetic testing to evaluate risk 

status for poor mental health outcome is still relatively low among veterans, calling for 

educative interventions that outline potential benefits 605. 
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Neuroimaging markers may additionally assist in identifying service members prone to 

developing poor neuropsychiatric outcome, including sleep quality disturbances. While it is 

assumed that trauma-related sleep quality disturbances affect white matter health through 

impaired glymphatic brain waste clearance 411–414, and compromised myelin deposition and 

genesis processes 416, it is similarly possible that white matter microstructural architecture that 

is already compromised before deployment predisposes for the development of sleep quality 

disturbances. In fact, while several studies have shown white matter alterations in patients with 

PTSD 41,43–58,183, it has not been evaluated whether white matter alterations before encountering 

a traumatic life event predict the development of PTSD and associated sleep quality 

disturbances. A recent study revealed that white matter alterations of fronto-limbic fiber tracts 

one month following trauma predicted PTSD symptoms after three months 606. It is conceivable 

that at-risk individuals with a genetic predisposition to developing sleep quality disturbances, 

PTSD, and persistent post-concussive symptoms exhibit structural brain alterations that render 

the brain vulnerable for poor mental outcome after trauma. As outlined earlier, smaller 

hippocampal volumes 142–144 have been suggested as a genetic predisposition to PTSD 150. 

Similarly, smaller hippocampal volumes were shown in individuals with mTBI 274–279 and have 

further been associated with poor sleep quality 280–282. Moreover, abnormalities in several 

functional connectivity networks have been linked to both PTSD 167 and mTBI 301–305. 

Especially the hyperarousal and re-experiencing symptoms of PTSD that are closely linked to 

sleep quality disturbances 210,534 have repeatedly been associated with altered amygdala-frontal 

connectivity 112,167. Similarly, mTBI has been linked to wide-spread disruptions in large-scale 

brain networks 301–305, leading to neuropsychiatric sequalae 363. In fact, disruptions in major 

networks, such as the default mode network, have been shown to mediate the association 

between sleep disturbances and mental health problems 607. Pre-existing alterations in brain 

structure and function may, thus, increase the likelihood of developing sleep quality 

disturbances (both pre- and post-deployment) that further translate into poor mental health 

outcome and compromised brain health. 

In summary, research to date suggests bi-directional relationships between sleep quality 

disturbances, brain alterations, and mental health outcome. Unfortunately, the cross-sectional 

nature of the present work precludes the inference of causal conclusions. While it has been 

suggested that sleep quality disturbances account for the relationship between PTSD symptoms 

and global white matter alterations, altered brain structure may have been present even before 

deployment and predisposed to poor outcome. Indeed, previous research suggests that various 

social, economic, environmental, genetic, and neurophysiological factors contribute to an 
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individual’s disposition for the development of PTSD and associated sleep quality disturbances. 

Future research will reveal whether neuropsychiatric screening, genetic testing, and brain 

imaging can pinpoint reliable markers to identify individuals at risk for poor outcome after 

deployment.  

 

9.5.2. Treatment of Sleep Quality Disturbances in Veterans 

The present work identified a strong relationship between PTSD symptoms and sleep 

quality disturbances. However, it is crucial to highlight that while PTSD has been shown to 

illicit sleep quality disturbances 370, sleep quality disturbances also perpetuate PTSD 

symptomatology 608. First-line treatments for PTSD frequently fail to alleviate sleep problems, 

even when other PTSD symptoms subside 35,36. Persistent disruptions in sleep quality may, in 

turn, increase the risk to maintain PTSD symptoms, resulting in a vicious cycle 36,609. On the 

contrary, treatment strategies aimed at improving sleep quality may also help with overall 

PTSD symptom resolution 20,36,610,611, given that restorative sleep is required for the remission 

of anxiety 612,613 and thus aids with the emotional processing of traumatic experiences 369. In 

fact, addressing poor sleep quality is often an essential initial treatment target when 

commencing a trauma therapy in order to strengthen the required emotional coping mechanisms 

and cognitive resources 614. Moreover, since sleep-targeted interventions are less stigmatized 

than mental health therapies, they may result in improved acceptability and compliance rates, 

encouraging more veterans to seek the necessary professional support 615. 

Cognitive behavioral therapy for insomnia (CBTi) is a widely accepted intervention for 

treating sleep quality disturbances that combines cognitive therapy and education on sleep 

hygiene and bedtime relaxation and was rated beneficial for veterans 616. As a multiple approach 

treatment that combines several different strategies, CBTi relies on cognitive therapy but also 

includes strategies for reducing hyperarousal, and promoting circadian rhythm regulation by 

following a sleep schedule 617. Maladaptive associations with bedtime or the sleeping 

environment are targeted over six to eight weeks. Patients are encouraged to set fixed sleeping 

and waking times, and to keep sleep diaries. Cognitive therapy changes distorted negative 

thoughts and believes around sleep and nighttime, while relaxation techniques are practiced to 

reduce the hyperarousal symptoms 617. Positive changes are not only seen in subjective but also 

objective measures of sleep quality, such as significant increases in REM sleep 618. Especially 

CBTi with adjunctive psychotherapy appears to be of value 616. Accompanying psychotherapy 

may include image rehearsal, rescripting, exposure, or relaxation therapy 616. The treatments 

aim at alleviating PTSD symptoms and may be especially important for patients who primarily 
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struggle with nightmares. Nightmares have been described as “uncontrolled re-exposure” of the 

traumatic event that fuel the maintenance of PTSD 466. In image rehearsal therapy, the patient 

is instructed to change the narrative and storyline of a recurrent nightmare and to rehearse the 

new positive version multiple times. Successes from practicing the new pleasant dreams have 

been observed already after a couple of weeks 619,620. Moreover, exposure therapy, a treatment 

option that is generally applied for alleviating post-traumatic memories 621, has been adapted to 

serve nightmare cessation. Exposure consists of a gradual approach to trauma-related content 

until habituation is achieved. The patient may be instructed to focus on nightmare content that 

gradually increases in intensity 376. In addition, audio recordings of imaginal exposures are used 

to practice between sessions 622. Other exposure treatments may additionally incorporate 

psychoeducation and sleep hygiene, nightmare image rehearsal therapy, and relaxation 

techniques 376. CBTi and adjunctive exposure therapy have been found to reduce both PTSD 

and insomnia symptoms and enhance quality of life 623. Moreover, it is important to note that 

in some cases CBTi is applied to stabilize a patient before even starting exposure therapy. 

Exposure therapy for PTSD can be highly challenging, and establishing adaptive coping 

mechanisms before commencing the treatment can be a great source of support 624. Sleep 

therapies may thus not only be beneficial for treating sleep quality disturbances but also prepare 

for trauma therapy.  

In addition to psychotherapy, pharmacotherapy is often used to complement other 

methods when treating sleep quality disturbances related to trauma 625. Antidepressants and 

antipsychotics exert sedative effects, but only antipsychotics have been found moderately 

effective in treating PTSD-related sleep quality disturbances 626. While benzodiazepines are 

sometimes used in the treatment of nightmares, their highly addictive nature 627 and rather 

disappointing treatment outcome do not support their appliance as a first-line treatment for sleep 

quality disturbances 626. Instead, the anti-hypertensive drug prazosin has surprisingly been 

found to reduce symptoms of insomnia, nightmares, and overall PTSD symptomatology 626,628. 

Prazosin blocks abnormally high noradrenergic activity in PTSD patients 19,209, decreases 

hyperarousal symptoms 210, and has been shown to be particularly effective against nightmares 
19,629.  

 

9.5.3. Treatment Impact on Brain Structure and Function 

While several approaches to treat sleep quality disturbances in the veteran population 

exist, their effect on brain structure and function has rarely been assessed. There is evidence 

that pharmacotherapy and psychological interventions for PTSD can exert beneficial effects on 
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brain structure and function, such as increases in hippocampal volume, a reduction in amygdala 

activity, and a concurrent increase in dorsolateral prefrontal cortex activity 522,630. However, 

research on the effect of treatment for sleep quality disturbances on brain structure and function 

is scarce. A small study with insomnia patients showed decreased activity in the precentral, 

prefrontal, fusiform, and posterior cingulate cortices in response to sleep-related stimuli after 

CBTi treatment 631. Clinical improvements in sleep quality correlated with brain activity 631. 

While this is promising, no reports on a potential history of psychological or physical trauma 

have been made in this sample. Moreover, the effect of treatment on trauma-related sleep 

quality disturbances and gray or white matter structure has not yet been explored. A few studies 

reviewed treatment effects for obstructive sleep apnea on neuropsychological outcome, and 

brain structure. Increased hippocampal and frontal gray matter volume that correlated with 

improvements in neuropsychological functioning was observed after treatment 479. Moreover, 

white matter diffusion measures that were lower than those of control participants at baseline 

approximated control levels after treatment 632. Interventions for obstructive sleep apnea, such 

as continuous positive airway pressure 587, are obviously different from the psychological and 

pharmacological interventions applied to treat trauma-related sleep quality disturbances. 

However, obstructive sleep apnea is fairly common among veterans 633 and strongly associated 

with PTSD and mTBI 475. In fact, sleep apnea  is often accompanied by other sleep disturbances, 

such as insomnia 476, and should thus be considered in future diagnostic and treatment efforts 

in the veteran population.  

Further research is required to elucidate the effects of different treatment methods for 

sleep quality disturbances on brain structure and function. Besides sleep-targeted psychological 

interventions and current pharmacotherapies, newer approaches, such as neurofeedback 634,635, 

may constitute a promising therapeutic tool for improving sleep quality and brain health. 

Neurofeedback involves the conditioned learning of self-regulating brain activity 636. 

Specifically, a positive stimulus is presented together with desired EEG activity, supporting 

certain brain states over others. In the case of sleep quality disturbances, a patient may be 

conditioned to produce more large-amplitude delta waves to decrease arousal and induce 

tranquility 637. Initial studies suggest that neurofeedback is effective in treating sleep quality 

disturbances 637,638 and PTSD symptoms 639, although future research needs to confirm the 

findings. Interestingly, neurofeedback may directly improve white matter health by increasing 

myelinization 634,635. Together with the above-mentioned psychotherapeutic and 

pharmacological interventions, neurofeedback may, thus, assist with battling trauma-related 

sleep quality disturbances and compromised brain health.  
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10. Conclusion 

Findings from the present work suggest that sleep quality plays a vital role in mental 

and brain health of veterans. Veterans with PTSD and comorbid PTSD+mTBI experienced 

poorer sleep quality than veterans with mTBI only or no history of PTSD or mTBI, 

underscoring the profound association between deployment-related PTSD and poor sleep 

quality. HPA axis disturbances and abnormally high norepinephrine activity in the brain that 

persists throughout day and night have been suggested to account for the strong relationship 

between traumatic stress and poor sleep quality. Importantly, poor sleep quality mediated the 

relationship between PTSD symptom severity and white matter microstructural alterations 

among veterans with comorbid PTSD+mTBI, independently of neuropsychiatric comorbidities, 

warzone-related stress, BMI, psychiatric medication use, race, and education. Various social, 

economic, environmental, genetic, and neurophysiological factors that impact PTSD and mTBI 

ultimately contribute to biological processes that enable and maintain sleep quality disturbances 

and brain abnormalities. It is possible that the observed white matter microstructural alterations 

emerge due to impaired myelin repair processes, given that sleep is necessary for lipid 

biosynthesis, and oligodendrocyte precursor proliferation that are crucial for myelin genesis 

and deposition. Moreover, poor sleep quality has been associated with insufficient brain waste 

clearance through the perivascular glymphatic system, which is vital for flushing out 

accumulated neurotoxins. An accumulation of brain waste products, such as beta-amyloid and 

tau, has been linked to neurodegenerative processes, including impaired myelination. Notably, 

the current work employed self-report assessments of sleep quality, precluding inferences to 

objectively assessed sleep quality. Discrepancies between self-reported and device-assessed 

sleep quality have been noted, indicating that veterans may rate their sleep as poorer than 

depicted by actigraphy or polysomnography. Future studies are needed to assess the level of 

consensus between subjective and objective measures of sleep quality. Nevertheless, self-

reported sleep quality has proven as a valuable indicator of mental and brain health that should 

be considered when investigating the impact of trauma-related sleep disturbances on white 

matter structure. Given the importance of white matter health for successful signal transmission 

amongst various brain networks and neuropsychiatric functioning, effective preventive and 

treatment strategies are urgently required. Future research is needed to examine whether novel 

sleep-targeted interventions can complement treatment-as-usual in supporting overall brain 

health of veterans suffering from PTSD and mTBI. 
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