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“Everybody talks about the weather, but nobody does anything about it.”

Mark Twain





Abstract

Clouds are the largest source of uncertainty in climate models. Especially the feedbacks
from thin ice clouds (cirrus) have a substantial effect on Earth’s radiation budget. They are
semi-transparent for incoming solar radiation (cooling effect), but at the same time they can
trap outgoing thermal radiation (warming effect). The level of scientific understanding of how
these counteracting effects will change in a future warming climate is still low. This is because
of the poorly understood processes involved in modelling of ice formation mechanisms and
ice cloud evolution. To narrow down these gaps, the microphysical schemes and radiation
parameterisations in current climate models have to be constrained by comparisons with ice
cloud observations.
Both, active (radar and lidar) and passive (infrared spectrometry) remote sensing observa-

tions of ice clouds are available to benchmark the models. While active remote sensing offers
comprehensive vertical information content, passive remote sensing provides an integrated
measure of the effect of clouds by exploiting radiation emitted from clouds and atmosphere
together. The translation from measurements to microphysical cloud properties is accom-
plished by the usage of ice cloud retrieval algorithms. However, these retrievals are limited in
their accuracy by crucial assumptions about microphysical properties like ice crystal shape,
and by errors in the used inversion procedure.
The goal of this thesis is to use the synergy of co-located active and passive remote sensing

observations to derive microphysical properties of ice clouds and to quantify all known sources
of uncertainty. To achieve these tasks, a three-instrument retrieval algorithm - SynCirrus - has
been developed. In this process, a radar-lidar inversion is used to derive profiles of ice particle
size and ice water content. These microphysical profiles are used as input for radiative transfer
calculations, to simulate a spectrum that can be compared with the measured spectrum
from the infrared spectrometer. In the course of this spectral analysis, the algorithm can
iterate among the relevant microphysical assumptions, to find the best matching assumptions
minimizing the spectral residuals between simulation and measurement.
The SynCirrus retrieval includes consistent microphysical assumptions in the inversion and

the forward radiative transfer part of the retrieval. To test the SynCirrus retrieval, three
studies were performed. First, sensitivity studies of the spectral residuals identified the re-
quired data quality criteria for a successful spectral discrimination and for a characterisation
of the errors of the inversion method. Second, a radar-lidar retrieval intercomparison study
was conducted. Here, the inversion procedure is tested against an established other retrieval
approach (VarCloud) using aircraft research flight data, indicating that for good data quality,
both retrievals agreed remarkably well. Finally, in a case study using SynCirrus with all
instruments at Mount Zugspitze, it was possible to bring radar, lidar and infrared radiance
measurements in accordance within the provided uncertainty estimations, for the majority of
the cases.
The research presented in this thesis is relevant and important for the goal to improve the

microphysical description of ice clouds in climate models. The presented retrieval algorithm
SynCirrus can assist to narrow down gaps in the understanding of ice clouds, by providing



x

high resolved and quality flagged microphysical profiles.



Zusammenfassung

Wolken sind die größte Unsicherheitsquelle bei Klimamodellvorhersagen. Insbesondere die
Rückkopplungen von dünnen Eiswolken (Zirren) haben einen erheblichen Einfluss auf den
Strahlungshaushalt der Erde. Sie sind halbtransparent für die einfallende Sonnenstrahlung
(kühlende Wirkung), können aber gleichzeitig die ausgehende thermische Strahlung absorbie-
ren (wärmende Wirkung). Der wissenschaftliche Kenntnisstand darüber, wie sich diese gegen-
läufigen Effekte in einem sich erwärmenden Klima verändern werden, ist noch gering. Dies ist
zurückzuführen auf die schlecht verstandenen Prozesse bei der Modellierung der Eiskristall-
bildungsmechanismen innerhalb der Zirren und der Eiswolkenentstehung. Um diese Lücken
zu schließen, müssen die mikrophysikalischen Schemata und Strahlungsparametrisierungen in
aktuellen Klimamodellen durch Vergleiche mit Eiswolkenbeobachtungen eingeschränkt wer-
den.
Sowohl aktive (Radar und Lidar) als auch passive (Infrarotspektrometrie) Fernerkundungs-

beobachtungen von Eiswolken sind für den Vergleich der Modelle verfügbar. Während die ak-
tive Fernerkundung einen umfassenden vertikalen Informationsgehalt bietet, stellt die passive
Fernerkundung eine integrierte Messung des Strahlungseffekts von Wolken bereit, indem sie
die Strahlung detektiert die von Wolken und Atmosphäre emittiert wurde. Die Übersetzung
von Messungen zu mikrophysikalischen Wolkeneigenschaften wird durch die Verwendung von
Ableitungsverfahren für Eiswolken erreicht. Allerdings sind diese Algorithmen in ihrer Ge-
nauigkeit begrenzt durch entscheidende Annahmen über mikrophysikalische Eigenschaften,
wie die Form der Eiskristalle, und durch Fehler im verwendeten Inversionsverfahren.
Das Ziel dieser Arbeit ist es, die Synergie von aktiven und passiven Fernerkundungsbe-

obachtungen zu nutzen, um mikrophysikalische Eigenschaften von Eiswolken abzuleiten und
alle bekannten Quellen der Unsicherheit zu quantifizieren. Um diese Aufgaben zu erfüllen, ist
ein Drei-Instrumente Ableitungsverfahren - SynCirrus - entwickelt worden. In diesem Prozess
wird eine Radar-Lidar-Inversion verwendet, um Profile der Eispartikelgröße und des Eiswas-
sergehalts abzuleiten. Diese mikrophysikalischen Profile werden als Input für Strahlungs-
transportberechnungen verwendet, um ein Spektrum zu simulieren, das mit dem gemessenen
Spektrum des Infrarotspektrometers verglichen werden kann. Im Zuge dieser Spektralana-
lyse kann der Algorithmus zwischen den relevanten mikrophysikalischen Annahmen iterieren,
um die am besten passenden Annahmen zu finden, die die spektralen Residuen zwischen
Simulation und Messung minimieren.
Das SynCirrus Ableitungsverfahren beinhaltet konsistente mikrophysikalische Annahmen

im Inversions- und im Vorwärtsmodell (Strahlungstransport) des Algorithmus. Um das
SynCirrus Ableitungsverfahren zu testen, wurden drei Studien durchgeführt. Erstens wur-
den durch Sensitivitätsstudien der spektralen Residuen die erforderlichen Datenqualitätskri-
terien für eine erfolgreiche spektrale Unterscheidung identifiziert, und eine Charakterisie-
rung der Fehler der Inversionsmethode wurde erarbeitet. Zweitens wurde eine Radar-Lidar-
Vergleichsstudie durchgeführt. Hier wird das Inversionsverfahren mit einem anderen etablier-
ten Ableitungsverfahren (VarCloud) unter Verwendung von Forschungsflugzeugdaten getestet.
Das Ergebnis zeigt, dass bei guter Datenqualität beide Ableitungsverfahren bemerkenswert



xii

gut übereinstimmen. Letztlich wurde SynCirrus in einer Fallstudie mit allen Instrumenten
auf der Zugspitze eingesetzt, es konnten Radar-, Lidar- und Infrarotstrahlungsmessungen in-
nerhalb der angegebenen Unsicherheitsabschätzungen, für die Mehrheit der Fälle, in Einklang
gebracht werden.
Die in dieser Arbeit vorgestellte Forschung ist relevant und wichtig für das Ziel, die mikro-

physikalischen Beschreibung von Eiswolken in Klimamodellen zu verbessern. Das vorgestellte
Ableitungsverfahren SynCirrus kann dazu beitragen, Lücken im Verständnis von Eiswolken zu
schließen, indem es hochaufgelöste und mit Qualitätsmerkmalen versehene mikrophysikalische
Profile bereitstellt.
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1. Introduction

Clouds are not only beautiful to look at, they also have a big impact on humanity’s every-
day life by influencing precipitation rate as well as the Earth’s radiation budget (ERB) and
consequently global surface temperature. Climate models predict the increase of the surface
temperature between 0.3–1.7 ◦C (RCP 2.6) up to 2.6–4.8 ◦C (RCP 8.5), based on represen-
tative concentration pathways (RCPs) for different anthropogenic greenhouse gas emissions
scenarios (Collins et al., 2013, chap. 12). The difference between 0.3 ◦C and 2.6 ◦C as well
as 1.7 ◦C and 4.8 ◦C may have drastic differences in the frequency of extreme weather events
(Bellprat et al., 2019), sea level rise (Rahmstorf, 2010) and the actions and speed required by
policymakers and political leaders to release climate protection measures. The uncertainty in
global mean temperature rise predictions is closely related to clouds and their behaviour and
frequency in a warming climate (Thompson et al., 2017). Therefore, clouds are a subject of
great scientific interest, leading the Intergovernmental Panel on Climate Change (IPCC) to
put a large focus on exploring their impact on Earth’s climate in the last two decades:

“ ...cloud feedbacks remain the largest source of uncertainty in climate sensitiv-
ity estimates. ”

Randall et al. (2007, chap. 8) in IPCC Fourth Assessment Report (AR4)

Especially, the description of high-altitude ice clouds, also called cirrus clouds, in climate
models contain large uncertainties. These clouds consist of non-spherical ice crystals with
highly variable shapes, which can scatter incoming solar radiation back to space (albedo
effect) and absorb and re-emit outgoing thermal radiation (greenhouse effect). This can
either lead to a cooling or a warming effect within Earth’s energy budget, dependent on
which effect is dominant:

“ Clouds and aerosols continue to contribute the largest uncertainty to estimates
and interpretations of the Earth’s changing energy budget. [. . . ] The role of thin
cirrus clouds for cloud feedback is not known and remains a source of possible
systematic bias. ”

Boucher et al. (2013, chap. 7) in IPCC Fifth Assessment Report (AR5)

“ The combined water-vapour and lapse-rate feedback makes the largest single
contribution to global warming, whereas the cloud feedback remains the largest
contribution to overall uncertainty. ”

Forster et al. (2021, chap. 7) in IPCC Sixth Assessment Report (AR6)

The interaction of clouds within the climate systems involve many complex physical pro-
cesses on different scales ranging from cloud condensation nuclei (nanometre) up to evolved
clouds (kilometre) during their lifecycle. Current Global Circulation Models (GCM) have a
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horizontal resolution of about 100 km. On this scale fully simulating the evolution of a cloud
which is governed by the interaction of a number of dynamical, radiative and microphysical
processes can not be resolved in such large model grid boxes (Stevens et al., 2013).
To narrow down the mentioned uncertainties, GCMs will require a more realistic description

of clouds in terms of more accurate parameterisation schemes to include important micro-
physical cloud processes below the resolution limit of current GCMs, e.g. cirrus-radiation
interactions (Ceppi et al., 2017). These parameterisations in turn have to be calibrated with
measurements. An instrument based monitoring of atmosphere and clouds can be achieved
with remote sensing techniques (Yang et al., 2018; Mace and Berry, 2017). They will supply
experimental datasets with observables which are sometimes only in a non-linear relationship
to the cloud microphysical parameters. Therefore, these required microphysical parameters
have to be translated from the measurement data via cloud retrieval algorithms (Stein et al.,
2011). Future research could use these synergy retrievals to derive long-term datasets on dif-
ferent geographical locations, to constrain cloud parameterisation schemes in GCMs, enable
theme to give more meaningful predictions of which role clouds will have in Earth’s warming
climate system and finally, to predict global warming even more accurately. The work in
this thesis focuses on developing a retrieval algorithm (SynCirrus), that maps remote sensing
observations to microphysical cloud parameters used in climate models.
Further information about the role of ice clouds in Earth’s climate, their representation in

climate models and their formation mechanisms can be found in Appendix. A, Appendix. B
and Appendix. C, respectively.

1.1. State of Scientific Knowledge
Current Status and Challenges of Cirrus Cloud Observations

The instrumental monitoring of microphysical, macrophysical and optical properties of clouds
can be divided into in situ and remote sensing observations. Whereas in situ sensors, on
aircrafts or balloons, measure directly in a cloud, remote sensing devices, located on ground,
on aircrafts or on satellites, measure cloud properties indirectly by detecting the radiation
that interacted with the cloud.
In situ data are generally very precise and often treated as “ground truth”, because they

deliver detailed information about cirrus cloud bulk properties, like ice crystal size, ice crystal
shape, ice crystal mass, ice particle size distribution (PSD) and optical parameters. The ice
crystal population is characterised by the PSD and the type of ice crystal is denoted as shape
or habit. The spatial sampling of in situ instruments is very poor, because data can only be
collected on the flight track, and the collection of data is usually bound to a field campaign and
therefore there are no continuously ongoing measurements (Lloyd et al., 2021). Comparing in
situ data from different field campaigns can shed light into how ice cloud properties change
with environmental conditions (McFarquhar et al., 2017a). Forward scattering spectrometer
probes (FSSP) are used to estimate small ice PSDs but sometimes show overestimation of
particle size (Heymsfield, 2007). Imaging sensors like optical array probes (OAP) or cloud
particle imager (CPI) are often used in aircraft campaigns and can differentiate ice crystals
between 100 to 200 µm or 35 to 200 µm, respectively (Baumgardner et al., 2017). Holographic
methods can digitally reconstruct number densities, PSD, and sizes between 23 to 1000 µm
(Fugal and Shaw, 2009). Right now, there are no universally accepted frameworks of how
to process in situ measurements to ensure intercomparison. Therefore there is a need for
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a general reference to summarise the most commonly used processing algorithms, including
their strengths and weaknesses (McFarquhar et al., 2017a).
Passive Remote sensing devices, like radio- and spectrometers, measure radiation which is

naturally available. Therefore, these sensors are only capable to provide an integrated measure
of the effect of clouds by exploiting radiation emitted from clouds and atmosphere together.
As opposed to this, active remote sensors, like radar and lidar, have their own source of
radiation. They emit radiative pulses towards the cloud and measure the time and intensity,
after the emitted pulses get reflected back by ice crystals. The magnitude of the returned
pulse and their time of flight contains information about the type of scattering particle and
their location. A relevant advantage of active sensors is, that their measured signals are range-
resolved and can shed light into vertical structure of cirrus cloud properties (Lynch et al.,
2002). Due to their different operating wavelengths, they are sensitive to different cloud
particle sizes and can provide complementary information from certain parts of the PSD. In
detail, the radar is operating on long wavelengths in the millimeter range and is sensitive
to the 6th moment of the PSD, whereas the lidar is operating on shorter wavelengths in the
nanometer range and is sensitive to the 2nd moment of the PSD. Here, “moment” refers to a
weighted integral of the PSD. Based on radar and lidar data it is possible to retrieve important
microphysical cloud parameters like the effective ice crystal size (also called effective radius
Reff) and the ice water content (IWC). Roughly speaking, Reff is a measure for the size of
cloud particles, and IWC is a measure for the amount of cloud particles. These quantities are
very sensitive to describe the interaction of radiation with a cloud state in a climate model
and therefore necessary for radiative transfer calculations (Lynch et al., 2002).
Satellite based cloud observing platforms, like the aligned A-Train constellation (cloud pro-

filing radar (CPR), Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP), Moderate
Resolution Imaging Spectroradiometer (MODIS)), allowed for the first time, to reconstruct
distributions of upper tropospheric cirrus across the globe (Stephens et al., 2002; Deng et al.,
2013). Besides their expansive global view, the additional advantage is that measuring from
space, these sensors are not too dependent on atmospheric conditions in the lower troposphere.
In this region the highest concentration of aerosols and water vapour occurs. For resolving
inhomogeneous cirrus clouds, the difference and size in footprints of radar and lidar can be
a challenge (Stephens et al., 2002). To address these footprint shortcomings as result of the
formation flying, the single platform EarthCare, launch is scheduled for 2024, will allow for
a better co-location of the measurements in order to improve the data quality for synergistic
retrieval algorithms (Illingworth et al., 2015). Among other products, EarthCare will supply
data for vertical profiles of IWC and ice particle size to enable a deeper and more accurate
insight of the role of cirrus clouds in modulating the global shortwave (SW) and longwave
(LW) radiation energy flows (Mroz et al., 2023; Mason et al., 2023).
Satellite based observations provide large length scales, horizontal resolution of about

1000 m, but are limited to temporally resolve cloud processes and no observations at all
from high latitudes are possible (“pole hole”). For this task, ground-based observations with
vertical resolutions of about 60 m, can deliver long-term data on a continuous basis with self-
operating systems. But, the biggest advantage of ground-based over satellite observations is
the high temporal resolution of long-term data for a given geographical location. They fur-
thermore can provide datasets for thin cirrus clouds, with horizontal resolutions below 300 m
(Bühl et al., 2017). There are already long-term monitoring programs, like the Atmospheric
Radiation Measurement (ARM) program (Miller et al., 2016) , Cloudnet (Illingworth et al.,
2007b) and the Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS) (Häme
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et al., 2018), that provide ground-based remote sensing data on an operational basis.
Due to their operating principle and used wavelengths, the remote sensing instruments

are sensitive to different cloud properties. Unfortunately, all of these devices have some
shortcomings in measuring cirrus parameters. For example, radars are more sensitive to ice
crystal size (6th moment of PSD, Heymsfield et al. (2014)), but cannot detect small ice crystals,
whereas lidars are more sensitive to IWC and extinction (2nd moment of PSD,Vaughan et al.
(2004)), but the lidar signal suffers from strong attenuation in optically thick ice clouds, and
spectrometers can only give information about integrated cirrus properties (Turner, 2005).
To overcome these obstacles, at least partly, sensor synergy considerations by combination of
data products from different instruments, offer great potential to retrieve cirrus parameters
(Ewald et al., 2021). Especially cloud regions where radar and lidar signals are simultaneously
available, allow a well constrained retrieval of ice crystal size and IWC (Donovan and van
Lammeren, 2001).
Future steps in remote sensing will try to investigate cirrus cloud evolution by observing

heterogeneous ice formation in ice and mixed-phase clouds. This task requires high demands
from all kind of available instruments and data processing. Due to the turbulent environ-
ment of cirrus clouds in which ice particles are formed, the identification of ice-formation
processes becomes complicated. Especially, data from active sensors can be distorted from
spectrally resolved measurements (Bühl et al., 2017). Another important questions is how
cirrus properties differ with cloud dynamics and on different geographic locations. Due to
the lack of missing satellite data, a field program executed in the Antarctic to monitor cirrus
microphysical properties is needed urgently (Heymsfield et al., 2017).

The Inverse Problem and Cirrus Cloud Retrievals

There are some prognostic quantities, like temperature, pressure or humidity that can be
measured directly by radiosondes and the comparison with the corresponding model quantities
is straightforward. However, there are some cloud parameters that can not be measured
directly. For example, important microphysical cloud parameters are the effective ice crystal
size (effective radius Reff) and the ice water content (IWC).
Fortunately, there are some remote sensing observables like radar reflectivity and lidar

backscatter signal that are, at least, non-linear functions of these cloud parameters. However,
this circumstance demands an additional need: ice cloud retrieval algorithms to translate
these measurement observables back to microphysical cloud parameters to serve as a data
basis for parameterisation schemes. In principle, a cloud retrieval is a physical model, that
inverts the measured effect of ice clouds on radiation to gain information about the actual
cloud properties (e.g. ice crystal habit). Additional information as input for the retrieval
can be used from several active and passive instruments with different spectral channels to
retrieve certain cloud parameters. The procedure is always the same, first the identification
(Yorks et al., 2021) of the cloud and then the retrieval of its microphysical properties.
The impact an ice cloud consisting of different ice crystals will have on the radiation field

can be compared with a bear leaving tracks, as illustrated in Figure 1.1. The task of a
retrieval would be to reconstruct the specific bear based on its tracks. Without any additional
information and a realistic physical model this would be a hopeless endeavor, because the
inverse problem is strongly ill-posed. Many possible “bears” could have caused the tracks.
But a realistic physical model, that includes information about typical depths and sizes of
bear tracks, can constrain the possibilities to realistic bears. However, if a polar bear and
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Figure 1.1.: The inverse problem in remote sensing can be compared with reconstructing a
bear from its tracks. An inverse model will need additional information (e.g. more
measurements) for its retrieval space and a numerical stable inversion to sample
realistic physical configurations, that could have caused the tracks. If both is
missing, the retrieval may tend to return very unrealistic “bears”. That is the
main problem in remote sensing, that multiple, in some circumstances, very dif-
ferent cloud properties can produce the same set of remote sensing observations.
Idea is based on (Bohren and Huffman, 2008) and (Mayer, 2010).

a brown bear would have the same weight and footprint size, the physical model can not
distinguish between them. Now additional information like in situ data are required to solve
the retrieval unambiguously. For ice clouds, the measurable tracks would be remote sensing
observations. In this case, a realistic microphysical model would add physical knowledge on
scattering properties, particle size distributions, ice crystal habits and roughnesses of ice cloud
particles, and their interaction with radiation.
For example, the combination of radar and lidar data into one retrieval has an advantage:

because of their different wavelengths, they are sensitive to different particle size ranges and
two simultaneous available profiles allow for a well constrained retrieval of two microphysical
properties like IWC and Reff. In contrast, retrievals only exploiting the radar signal (Hogan
et al., 2006c) could retrieve misleading properties and overestimate the particle size if the
lidar constraint is missing. The reason is the D6 dependence of the radar reflectivity, which
means that only a few small but large ice crystals can easily dominate the full radar signal
from that range gate (Field et al., 2004).
First steps in synergistic radar and lidar retrievals were made by Intrieri et al. (1993) and

extended by Donovan and van Lammeren (2001) and Tinel et al. (2005). All approaches had
in common that their methods are only applicable in cloud regions where both, radar and
lidar signals are available. Delanoë and Hogan (2008) overcome this specific limitation with
an optimal estimate framework. In cloud regions where, e.g., only radar signals are available
other information, like a temperature-dependent a-priori climatology from an in situ aircraft
database is used as a constraint.
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Radar-lidar retrievals can be extended by the use of passive instruments like infrared
spectrometer with high-spectral-resolution for radiance observations (Blanchard et al., 2017;
Ewald et al., 2021). The retrieved microphysical properties from the radar-lidar inversion can
serve as input parameters for radiative transfer calculations. These model-computed radi-
ances can be compared with the observed cloudy radiances by the spectrometer, to find the
best match in terms of the assumed cirrus properties.
The challenge of retrieval development lies in carefully consideration of errors and uncer-

tainties that are introduced by different technical sensitivities, by differences in sampling
microphysical assumptions and the use of the method itself. This is a challenge due to the
high degrees of freedom inherent in cirrus cloud nature, resulting in a large parameter space
a retrieval has to sample. Ice crystal size and IWC themself are functions of other cirrus
parameters like ice crystal habit, PSD or ice crystal surface roughness and all these quantities
can not be measured directly. Furthermore, if in situ data from the corresponding cirrus
cloud are not available, they all have to be assumed by the retrieval algorithm. This can
cause large biases, as analysed by Stein et al. (2011) in retrieval intercomparison studies.
Errors in the retrieved parameters, random or systematic, could be caused by several sources,
like limitations of instrument performance (e.g. calibration, pulse intensity, field of view),
physical assumptions in radiative transfer (e.g. ice crystal single scattering properties), as
well as, uncertainties in the used retrieval inversion method (e.g. boundary value problem,
lidar ratio) and all of them need a careful consideration.

Needs in Ice Cloud Research

In climate models, the cloud feedback is still the largest source of intermodel spread in climate
estimations (Ceppi et al., 2017). Especially the feedback from thin cirrus clouds causes large
uncertainties (Forster et al., 2021), due to the not well understood processes in modelling of
ice formation and evolution (McFarquhar et al., 2017b). To tackle these obstacles, two main
research needs can be deduced:

• Development of parameterisation schemes for shortwave and longwave radiative proper-
ties of ice clouds, including assumptions about ice crystal habit, particle size distribution
(PSD) and surface roughness.

Climate models usually use ice water mixing ratio as a prognostic variable, and therefore
they have to parameterize particle effective size Reff in order to obtain extinction βext for ra-
diation calculations. Ice cloud bulk optical single scattering properties can be parameterised
as function of effective radius (Reff) and ice water content (IWC) for different spectral ranges
(Hong et al., 2009). The development of such a parameterisation requires data of spatial and
temporal high-resolved profiles of Reff and IWC. These parameterisations can be used in
future general circulation models (GCM) for flux estimations, to gain a better estimation of
the radiative cooling or warming effect of ice clouds in a future warming climate (Van Dieden-
hoven and Cairns, 2020; Ren et al., 2021).

• Constraining process rates in microphysical schemes, used in the dynamical core of a
GCM to predict the IWC.

Microphysical parameterisation schemes in climate models try to represent the physical
behavior of different hydrometeor populations and their effects on weather and climate. These
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schemes consist of a set of parameterised rate equations that try to represent the microphysical
processes impacting cloud and precipitation particles (Morrison et al., 2020).
The desired containment can be achieved by comparisons of climate models with spatiotem-

porally high-resolved microphysical profiles retrieved from observational data and will help to
close fundamental gaps in knowledge of ice cloud physics. Because of the complex structure
of ice crystals, especially ice-phase processes like vapor diffusional growth, melting, and ag-
gregation cause large uncertainties. Furthermore, IWC-Reff correlation analysis can improve
the knowledge of ice cloud formation processes (Liou et al., 2008).

1.2. Scientific Objectives and Outline of this Work

To narrow down the mentioned gaps in the understanding of ice clouds, more temporally and
vertically high resolved observational data of recorded ice clouds are required to serve as a
solid data basis to develop parameterisations. The scientific objective of this work is:

Scientific objective: Development of a synergistic three-instrument (radar, lidar and
infrared spectrometer) retrieval algorithm - SynCirrus - for the mapping of radar, lidar
and infrared spectrometer measurements to microphysical properties (ice water content
IWC and effective radius Reff), including a comprehensive uncertainty consideration.

Based on existing radar-lidar retrieval approaches (Donovan and van Lammeren, 2001;
Tinel et al., 2005), this includes the development of preprocessing methods like cloud mask-
ing lidar signals by a wavelet-analysis, a correction for lidar multiple scattering effects, radar
signal attenuation by atmospheric gases and screening lidar signals for numerical stability in
an inversion procedure. Furthermore, the identical microphysical model, including assump-
tions about PSD and ice crystal habit, will be incorporated consistently in the radar-lidar
inversion procedure, as well as in the forward radiative transfer calculations, a part missing
in older approaches.

The structure of the SynCirrus algorithm is summarised in Figure 1.2 and was used on syn-
thetic and real data with the aim to answer the following (technical) research questions:

Research questions 1: What are the accuracy requirements to constrain the micro-
physical properties of ice clouds, based on synergistic measurements made from radar,
lidar and infrared spectrometry?

This is linked to climate models. It would be very beneficial, if the used microphysical
schemes, especially the involved rate equations, could be constrained by observational data
gained from cloud retrievals to reduce uncertainties. For ice clouds there is a huge ambiguity
because of the variety of different ice crystal habits, roughnesses and PSD parameter (type,
modality and shape). Therefore, the magnitude of the different microphysical properties
should be explored and compared with the occurring uncertainties, to decide if they can be
retrieved unambiguously with a three-instrument retrieval.
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Research questions 2: What kind of uncertainties can occur in the retrieval process,
and how do these uncertainties impact the interpretation of the retrieved results?

There is a great need to incorporate a rigorous uncertainty quantification treatment re-
lated to ice density, habit, and PSD into cloud retrievals. In general, there is an outstanding
need to quantify robustly the uncertainty of any observation used to inform microphysical
schemes, as stressed by Morrison et al. (2020). In detail, how do quantities like instrument
calibration, microphysical assumptions, retrieval techniques and atmospheric state compo-
sition influence the retrievable information content and what is the order of magnitude of
the different uncertainties. Finally, this leads to the identification of necessary prerequisites
(data quality, atmospheric conditions, additional instruments etc.) to retrieve microphysical
properties more accurately with lower errors.

Thesis Structure

This thesis is organized as follows: Chapter 2 will give an introduction into the relevant mi-
crophysical cloud parameters, radiative transfer quantities and the basic questions governing
active and passive remote sensing instruments. Chapter 3 gives an overview of the involved
measurement devices. Their parameters and uncertainties will be discussed and corresponding
data processing methods, like lidar cloud masking, radar signal attenuation and the exploita-
tion of spectral microwindows will be presented. Furthermore, the different forward model
solvers for lidar and radiative transfer are explained. Different methods for inverting the lidar
equation will be presented and discussed. An overview of the applied corrections and their im-
plications is giving in the end of this chapter. In the following Chapter 4, the framework to be
developed will be characterised, and the uncertainties are estimated with a synthetic model.
This is followed by example applications on real data: A radar-lidar retrieval intercomparison
with the VarCloud retrieval algorithm (Delanoë and Hogan, 2008) on NARVAL-I data from
the HALO aircraft research flights in the North Atlantic (Stevens et al., 2019) to test the
inversion performance, the most crucial part of the retrieval. The last part of this chapter
investigates the application of the full three-instrument retrieval on data from an instrumen-
tation based at Environmental Research Station (Umweltforschungsstation Schneefernerhaus
- UFS) on mount Zugspitze in Germany (2675 m a.s.l.). The Zugspitze is a unique site for the
application of ice cloud retrievals, because it offers extraordinarily dry conditions to provide
a high atmospheric transparency to observe cirrus clouds (Sussmann et al., 2016). Finally,
Chapter 5 gives a discussion of the results and uncertainties. This is followed by a summary
and conclusion about the findings of this thesis in Chapter 6, and ideas for future extensions
are given in Chapter 7.
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Figure 1.2.: Overview SynCirrus algorithm: Prerequisite is, that the active and passive de-
vices are located at the same site and measuring at the same time. The combined
radar and lidar measurements of a cirrus cloud are inverted to supply microphys-
ical profiles. They will be used alongside with background profiles of the atmo-
spheric composition, from re-analysis models, and both serve as input quantities
for radiative transfer calculations of the downwelling infrared radiances at the al-
titude of the infrared spectrometer, which supplies measured spectra temporally
consistent with the radar-lidar measurements. Now, both spectra can be com-
pared and evaluated mainly in the mid-infrared atmospheric window, where the
cloud radiative effect is observable. Minimizing the spectral residuals (measured
minus simulated spectrum) via iterating the possible retrieval parameter space
for microphysical assumptions will return the best match in terms of cloud prop-
erties. The significance of such a comparison would first have to undergo a careful
uncertainty consideration to analyse which properties can be discriminated from
each other.





2. Theory

In this chapter, the theoretical foundations for this thesis will be introduced. This work is
about the retrieval of microphysical properties from ice cloud observations based on sensor
synergy from active and passive remote sensing devices. Therefore, a short introduction of
how to parameterise ice cloud properties is given. Furthermore, it is sketched how these
properties are used as input for radiative transfer (RT) calculations of spectral radiances.
The basic working principles and sensitivities of the used active and passive sensors will be
mentioned and how they are linked to the microphysical cloud properties will be explained.
The chapter mainly follows Doviak and Zrnić (1993); Lynch et al. (2002); Wallace and

Hobbs (2006); Weitkamp (2006); Lohmann et al. (2016); Liou and Yang (2016) and Siebesma
et al. (2020).

2.1. Radiative Transfer

This section will introduce the underlying theory, how to simulate measurement observables,
like downwelling thermal spectral radiances from cirrus clouds. Thermal downwelling spectral
radiance is the physical observable a ground-based passive remote sensing device, like a zenith
looking infrared spectrometer would record, and the SynCirrus algorithm will use such an
infrared spectrometer (Knuteson et al., 2004a). Such a device would measure the radiation
emitted from ice crystals within cirrus clouds, as well as radiation emitted from absorbing
greenhouse gases. Therefore, following characteristics are considered:

• Light scattering and absorption by atmospheric particles (ice crystals): Clas-
sical description based on solving the macroscopic Maxwell equations and approxima-
tions for oscillating dipoles that are excited and then re-radiate.

• Absorption and emission of photons by atmospheric gas molecules: Quantum
mechanical description of interacting molecules and photons via continuum transitions
as well as electronic, vibrational and rotational line transitions. Based on spectroscopic
laboratory measurements for absorption cross-sections.

The following description is limited to an one-dimensional geometry (1D) and 3D effects are
neglected. Polarisation is neglected because the used interferometer spectra are not sensitive
to polarisation, so there is no need to simulate polarisation effects (Knuteson et al., 2004a).
Further details on the used approximations are summarised in Table 3.7 and Table 3.8, The
goal of this section is rather to introduce the radiative transfer equation, which governs how
the radiation field changes in space due to scattering, absorption, transmission, reflection and
emission processes in planetary atmospheres.
This section mainly follows (Petty, 2006), (Lynch et al., 2002), (Stevens et al., 2019) and

(Liou and Yang, 2016).



12 2. Theory

2.1.1. Basic Radiative Quantities
Radiative Properties

The energy of electromagnetic radiation, as measured by radiometry, is called radiant energy
Q with unit [J]. The radiant flux or radiant power Φ is the radiant energy reflected, emitted,
transmitted or received per unit time, and defined as Φ = dQ/dt with unit [W ]. For appli-
cations used in this thesis, the knowledge of two radiation quantities is required. The first is
the irradiance

E = dQ
dA dt [W m−2] , (2.1)

which describes the energy flux on a flat surface, e.g. specific receiver of a detector, per unit
area and unit time. The second quantity is the spectral radiance

Lλ = dQ
dA cosΘ dΩ dλ dt [W m−2 sr−1 nm−1] , (2.2)

taking into account the direction of light propagation (Θ, φ). This definition quantifies radi-
ation fully without sensor-specific information, where dΩ = sinΘdφdΘ is the unit solid angle
and the area A is defined to be perpendicular to the propagation direction of the light beam,
like described in Mayer, B. (2009, table 1).

Radiation Laws

Every material body emits thermal radiation as function of its temperature. This holds as well
for atmospheric gases and particles. According to the second law of thermodynamics, where
material bodies exchange energy until they are in a thermal equilibrium, the absorptivity αλ
and emissivity ελ will be equal for a material body in thermodynamic equilibrium. αλ and
ελ are defined as

αλ = absorbed radiant power
incoming radiant power (2.3)

ελ = radiant power of actual material body
radiant power of ideal black body , (2.4)

and both can take values between 0 and 1, where αλ = 1 and ελ = 1 describe an ideal black
body.
Kirchhoff (1866) concluded for a body of any arbitrary material, that absorbs and emits

thermal radiation in thermodynamic equilibrium, the emissivity is equal to the absorptivity:

ελ = αλ . (2.5)

This relation is known as Kirchhoff’s law of thermal radiation. It describes, that an at-
mospheric gas or particles only can emit thermal radiation in spectral areas where it has
absorption-lines or bands.
Planck’s radiation law describes the spectral density of electromagnetic radiation emitted

by a black body in thermal equilibrium (Planck, 1900)

B(λ, T ) = 2hc2

λ5
1

e
hc

λkBT − 1
[W sr−1 m−3] , (2.6)
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which describes the spectral radiance of a body with wavelength λ at absolute temperature
T , and where kB = 1.380× 10−23 J s−1 is the Boltzmann constant and h = 6.626× 10−34 J s
is the Planck constant. Integrating Planck’s law over half space and for all wavelength yields
the irradiance emitted by a black body, and is known as Stefan-Boltzmann’s law,

E =
∫ 2π

0

∫ π/2

0

∫ ∞
0

B(λ, T ) cos Θ sin ΘdφdΘdλ = σT 4 [W m−2] , (2.7)

where σ = 5.670× 10−8 W m−2 K−4 is the Stefan-Boltzmann constant. This law describes
the power radiated from a black body as function of its temperature.

The attenuation of radiation at wavelength λ, caused by absorption and scattering along a
pathway s, is related to the properties of a specific material via Beer–Lambert–Bouguer law

Lλ(s) = Lλ(0)e−
∫ s

0 βext,λ(s′)ds′ . (2.8)

The fraction of incident radiation, that is transmitted through the same material sample
is called transmittance T , and is given by

T = Lλ(s)
Lλ(0) = e−τ , (2.9)

where τ is the optical depth of the material.

2.1.2. Composition of Earth’s Atmosphere

Solar and Terrestrial Spectrum

In dependence on their wavelength, electromagnetic radiation can be classified like shown in
Table 2.1. For the most remote sensing applications it is useful to treat solar and thermal
radiative transfer separately, because they only overlap in a small wavelength interval. As
shown in Figure 2.1, shortwave solar irradiance arriving at Earth’s surface is relevant between
0.25 µm to 4 µm, whereas longwave thermal irradiance, emitted be the surface, has a significant
amount between 4 µm to 100 µm. The red area, represents the shortwave (SW) solar radifluxes
a zenith-looking sensor would observe at the surface, wheres as the pink area describes the
longwave (LW) thermal fluxes, emitted from the surface, a nadir-looking sensor would measure
at Top Of Atmosphere (TOA). The precise position of the absorption bands in the lower
panel of Figure 2.1, depends on the chemical properties of the atmospheric gases. It is clear
noticeable, that water vapour is the strongest greenhouse gas, followed by carbon dioxide and
various other minor greenhouse gases. Furthermore, Rayleigh scattering, responsible for the
blue sky, has some effect on incoming SW radiation. In summary, up to 30% of the incoming
solar radiation is captured or redistributed by the aforementioned processes. In contrary to
this, greenhouse gases can capture up to 80% of the outgoing thermal radiation (Stephens
et al., 2012).

Molecular Gases

Earth’s atmosphere contains two types of gases, those with almost constant concentrations
and those with a variable concentration. The group of constant gas concentrations include
molecules from nitrogen (N2, 78.084 %), oxygen (O2, 20.948 %) and argon (Ar, 0.934 %) and
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Table 2.1.: Classification of electromagnetic radiation according to Stamnes et al. (2017) and
DIN5031 (1984)

Subregion Range Main Characteristics
X rays λ < 10 nm Photoionizes all thermosphere species
UV 10 nm < λ < 400 nm Processes like photo-ionization/dissociation
VIS 400 nm < λ < 700 nm Scattered by clouds, aerosols, and molecules
Near IR 0.7 µm < λ < 3.0 µm Absorbed by O2, H2O, CO2 in vibrational bands
Mid IR 3.0 µm < λ < 50 µm Absorbed by O2, H2O, CO2 in vibrational bands.

Atmospheric window (used in remote sensing)
Far IR 50 µm < λ < 1000 µm Absorbed by O2, H2O, CO2 in vibrational bands

in total they represent 99.96 % of the dry atmosphere by volume, and have almost constant
values up to altitudes of about 60 km.

Then, there are carbon dioxide (CO2), whose concentration is increasing by about 0.4 %
per year as a consequence of fossil fuel combustion, absorption and release by the oceans and
of photosynthesis. Another greenhouse gas, methane (CH4), has been increasing by, 1 % to
2 % per year, due to a larger biogenic emission associated with rising human population.
Water vapor (H2O), is a highly variable gas and the strongest greenhouse gas in Earth’s

atmosphere, as indicated in Figure 2.1. The H2O concentration varies significantly in time and
space, because it is impacted by the local hydrological cycle by evaporation, condensation, and
precipitation, as well as by large-scale transport processes. Water vapor concentrations have
a strong temperature dependence, and more than 50 % of the total amount is concentrated
below 850 hPa.
Therefore, radiance simulations on the ground require knowledge of the vertical concentra-

tion of these gases. Due to the low variability of the dry components of the atmosphere, it
is sufficient to fall back on some predefined standard atmospheres for certain latitudes (An-
derson et al., 1986). In contrary to this, for water vapour as a highly variable gas and the
strongest absorbing greenhouse gas, current profiles from re-analysis data or even better from
radiosonde measurements are required.

2.1.3. Interaction of Light with Atmospheric Particles

Interaction of light with atmospheric particles, could for example take place via scattering with
ice crystals and aerosols, or via absorption with greenhouse gases. Physically, light scattering
is a process, where a particle in the pathway of an incident electromagnetic wave, will take
energy from that wave and re-radiates this energy in all directions, leading to a combination
of incident wave and scattering field. The exact space-time propagation of the incident and
scattered wave will be obtained by solving Maxwell’s equations, but analytic solutions, like
Mie-theory (Mie, 1908), can only be obtained for specific particle geometries (such as spheres,
cluster of spheres, infinite cylinders). For more complicated particle geometries, like ice
crystals, only approximate solutions are available, see Table 2.2. It is useful to distinguish the
different methods, via comparing the relative size of a scattering particle with the wavelength
of the incident wave and with the particle dimension. Therefore, the size parameter is a
helpful quantity
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Figure 2.1.: (Top panel) Radiative transfer clear-sky simulation, that shows the effect of
molecular absorption bands in Earth’s atmosphere on both, incoming solar ra-
diation and outgoing thermal radiation at the Earth’s surface. Furthermore,
the black body Planck curve for radiation emitted from Sun’s photosphere
(T'5754 K) and three representative curves for Earth’s surface temperature
(T'210 K to 310 K) are shown. The peak of the thermal spectra are normalized
with reference to the solar spectral peak. (Lower panel) Individual absorption
spectra for major greenhouse gases and Rayleigh scattering. Figure taken and
modified from Wikipedia contributors (2022).
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χ =
{2πr

λ spherical scatterer
πDmax
λ non-spherical scatterer

(2.10)

with particle radius r and maximum particle dimension Dmax. For aspherical particles like
ice crystals, the definition of a size measure is not straight forward, hence size is described
as maximum dimension of an ice crystal Dmax and for simplicity will be denoted as D in
the following. Radiation which is scattered by only one localised scattering particle, is called
single scattering. Using a radiative transfer solver like DISORT for a grid-box containing
molecules, aerosols and clouds, the single scattering properties would be provided as a linear
combination (Stamnes et al., 1988). In a scattering volume with many particles, light can
undergo many scattering events and is called multiple scattering. In the following section it
will be shown, how to take out multiple scattering calculations with radiative transfer by
using single scattering properties, gained from methods like Mie-theory. In order to take this
out, following limitations are applied, according to Hansen and Travis (1974); Liou and Yang
(2016); Mishchenko (2018):

• Only elastic scattering processes are considered. Atmospheric scattering and absorption
processes are usually considered to preserve the light frequency of the interacting wave.

• The scattering by one particle is called independent scattering, when the scattering
process is not affected by the presence of surrounding particles. This can be assumed,
because the number density of ice crystals in cirrus clouds is relatively low, and they are
separated from each other by distances, much larger than their size. The independence
of scattering by samples of ice crystals, leads to that a scattering event at one ice crystal
does not interfere with one at another ice crystal. As a consequence, scattered intensities
can be added without to regard the phases of the individual scattered waves. Thus, bulk
optical properties can be obtained by a weighted mean of single particle properties.

Spherical Scatterers

Mie theory, sometimes called Lorenz-Mie theory or Lorenz-Mie-Debye theory, provides an an-
alytic solution to the absorption and scattering of light by small spherical, circular cylindrical,
and spheroidal particles of arbitrary size and refractive index (Mie, 1908). For an isotropic
homogeneous sphere, the electric field of the scattered radiation Esca at a distance R from
the particle (in the far-field) can be represented by (Hansen and Travis, 1974)

Esca = eik(z−R)

ikR

(
S1(Θ) 0

0 S2(Θ)

)
Einc , (2.11)

where Einc is the incident field, which propagates into positive z direction and Θ is the
scattering angle. The scattered field is an outgoing spherical wave and has an angular intensity
distribution. The information about the intensity distribution is stored into the Müller Matrix
elements Si. The matrix will be calculated by expanding the electromagnetic field in spherical
basis functions. The key point of the Mie-theory is the computation of coefficients an and
bn with recursion relations. Finally, the scattering and extinction efficiency can be deduced
from them (Hansen and Travis, 1974)
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Table 2.2.: Computational methods to calculate single-scattering properties for atmospheric
particle scattering (Petty, 2006; Wriedt, 2009; Baran, 2012).

Computation Method Size Parameter χ Comment
Geometric optics > 2000 Approximate solutions to Maxwell’s
Improved geometric > 20 equations based on ray tracing.
optics method (IGOM)
Mie theory 0.2 − 2000 Solves Maxwell’s equations for elastic

scattering on spherical particles
(e.g. water droplets).

Finite-difference < 20 Solves Maxwell’s equations for elastic
time-domain (FDTD) scattering on particles of arbitrary
Amsterdam discrete < 50 shape (e.g. ice crystals).
dipole approximation (ADDA)
T-matrix < 20
Rayleigh scattering 0.002 − 0.2 Asymptotic approximation of elastic

dipole scattering (e.g. molecules).

Qsca(λ,D) = 2
χ2

∞∑
n=1

(2n+ 1)(|an|2 + |bn|2) (2.12)

Qext(λ,D) = 2
χ2

∞∑
n=1

(2n+ 1)<(an + bn) . (2.13)

The scattering and absorption efficiencies Qk are related to their cross-sections σk via

Qext/abs(λ,D) =
σext/abs(λ,D)
σgeo(D) , (2.14)

with the geometrical cross-section σgeo = π(D/2)2 and particle diameter D. Physically, the
infinite series can be interpreted as a multipole expansion of the scattered light and an/bn
stands for electric/magnetic multipol radiation. With Qsca, Qext and the single scattering
properties, which can be calculated from the Müller or transition matrix elements Si, all the
relevant input quantities, to take out Mie calculations, are known.
In Figure 2.2, Mie calculations for spherical ice particles are illustrated over a wide range

of particle sizes.

Non-Spherical Scatterer

The aforementioned theory can only be used to calculate optical input properties for ra-
diative transfer calculations in water clouds with spherical cloud droplets. Although, there
were some approaches to treat ice crystals with various “equivalent” sphere approaches, like
equivalent area spheres or equivalent volume spheres (Donovan et al., 2004; Grenfell et al.,
2005). Nowadays, modern consistent data libraries for single scattering properties of ice crys-
tals with different habits and at solar and thermal wavelengths are available (Yang et al.,
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Figure 2.2.: Scattering efficiency for spherical ice crystals interacting with an electromagnetic
wave of wavelength λ = 500 nm. In the Rayleigh-region, the efficiency is Qsca ∼
χ4, whereas in the optical-region the behavior is constant Qsca ≈ 2, due to the
extinction paradox. Calculations were taken out with libRadtran (Emde et al.,
2016).

2013). Unfortunately, there is no unified theory to calculate these optical properties across
all regimes of the size parameter χ. Therefore, Yang et al. (2013) used a combination of the
Amsterdam discrete dipole approximation (ADDA), the T-matrix method, and the improved
geometric optics method (IGOM), see Table 2.2. These methods can be distinguished on
how the Maxwell equations are solved, there are volume (FDTD, ADDA) and surface-based
(T-matrix) methods. Volume-based methods rely on discretisation of the volume of the scat-
tering particle and can be applied to any arbitrary shape, but they are numerically expensive
(Baran, 2012). Surface-based methods, like T-matrix, rely on the linearity property of the
Maxwell equations, to relate incident and scattered field via the transition matrix, and is inde-
pendent of the direction of incidence or scattered wave. Therefore, if the T-matrix is known,
the single-scattering properties can be fully calculated (Mishchenko, 1991; Mishchenko and
Travis, 1994).

Rayleigh Scattering

The Rayleigh scattering regime describes the scattering of light by small spherical particles,
that are much smaller than the wavelength of the light. In this case, it is possible to find a
simple solution by the method of asymptotic matching (Strutt, 1871, 1899). In detail, Lord
Rayleigh, considered a plane wave incident on a dielectric sphere of diameter D and with
dielectric factor |K|2, where the probability that the spherical particle scatters light at angle
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Θ is proportional to the differential scattering cross-section, dσ(Θ)/dΩ, which describes the
ratio of scattered power into the solid angle dΩ (Cox et al., 2002)

dσ(Θ)
dΩ = π4

8 |Kλ|2
(
1 + cos2 Θ

)
λ−4 D6 , (2.15)

where |Kλ|2 = |(n2
λ − 1)/(n2

λ + 2)| as function of refractive index nλ at wavelength λ,
describes how radiation propagates through the scattering medium. An integration of this
equation over the entire solid angle yields the total cross-section

σsca(λ,D) = Qsca(λ,D)σgeo(D) = 2π5

3 |Kλ|2 λ−4 D6 . (2.16)

Rayleigh scattering shows a strong wavelength dependence (∼ λ−4), which indicates that
shorter (blue) wavelengths will be scattered more strongly than longer (red) wavelengths.
The Rayleigh scattering cross-section can be used to approximate the scattering of light by
cloud particles, where the light is emitted by active remote sensing devices like radars, which
emit pulsed LW radiation in the microwave region.

Geometric Optics

Geometric optics describes light scattering by large particles χ� 1 and for spherical particles,
the scattering/extinction cross-section is given by

σext/sca(λ,D) = Qext/sca(λ,D) σgeo(D) = 2 σgeo(D) = 2 π(D/2)2 . (2.17)

In this scattering regime, Qext can be approximated with the geometrical optics result 2
(Hulst, 1981). The extinction paradox relies on diffraction around the edges, and will be
relevant in the range of visible wavelengths, where lidar sensors operate. In this shortwave
region, scattering will be the dominant contribution to extinction, and absorption effects from
hydrometeors are neglected.

Single-Scattering Optical Properties

The previous mentioned independent scattering assumption, allows to simplify calculations
of light scattering by atmospheric particles by using single-scattering properties. Within an
ice cloud a sufficiently small volume is considered, so that its single-scattering or optical prop-
erties can be defined in accordance to Maxwell’s equations. The parameters that govern
scattering are the wavelength of the incident radiation, the size and shape of the scattering
particle and the particle’s optical properties relative to the surrounding medium, described
by the refractive index. Later in this section, it will be shown, how to take out multiple scat-
tering (and absorption/emission) calculations with ice crystals, by using radiative transfer
with single-scattering properties as input.

The index of refraction is part of the macroscopic Maxwell equations, and is a dimen-
sionless number with dispersion features, that describes how fast light propagates through
a certain material. Furthermore, if the considered material exhibits significant absorption
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properties, refraction index is a complex number with real part nr and imaginary part ni and
is defined as

n(λ) = nr(λ) + i ni(λ) and nr(λ) = c0
c(λ) , (2.18)

where c0 is the vaccum and c(λ) the material dependent speed of light. The real part nr
describes the actual refraction effects, whereas the imaginary part ni allows to determine the
rate of absorption, see Figure 3.13. If an ice crystal would show no absorption, only the real-
part nr alone will be considered for the scattering process. But, when absorption is involved
in the interaction process, the amount of scattered and absorbed energy, would both rely on
the real and the imaginary part. For any calculations of solar or thermal radiative fluxes in
an atmosphere with ice or water clouds, precise values of the real and imaginary parts, at
all relevant wavelengths, are necessary to be known. Because these values will be required
for the methods listed in Table 2.2 to calculate the extinction efficiencies Qext at different
wavelengths (Warren and Brandt, 2008; Yang et al., 2013).

The single-scattering albedo ω0 is defined as the ratio of scattering and extinction cross-
section

ω0 = σsca
σext

, (2.19)

and describes the fraction of light that would be scattered out of an incident light beam or
plane wave. Further, 1−ω0 represents the fraction of the light beam, that would be absorbed.
In Figure 2.3 (c), ω0 for different ice crystals as function of the wavelength is shown.

The scattering phase matrix P(Θ) describes the angular distribution of the intensity
and polarisation of the scattered radiation. Because polarisation is not relevant in the course
of this work, it is sufficient to consider the first element of this matrix. This element is called
scattering phase function P11(Θ), and describes the probability of scattering of light into
the direction of the scattering angle Θ. It is normalised to unity∫ 2π

0

∫ π

0

P11(Θ)
4π sin(Θ)dΘdφ = 1 . (2.20)

For ice crystals assumed to be randomly oriented, this matrix contains six independent
elements (Yang et al., 2013).

The asymmetry parameter g, or asymmetry factor, is the first moment of the phase
function and used in radiative transfer considerations for the characterization of the degree
of anisotropy of single scattering. It is defined as an intensity-weighted average of the cosine
of the scattering angle

g = 〈cos Θ〉 = 1
2

∫ π

0
P11(Θ) sin Θ cos Θ dΘ , (2.21)

where P11(Θ) denotes the normalized phase function. The g-factor is directly connected
to the total scattered intensity in dependence of the scattering angle, and therefore a good
measure for the strength of forward scattering. It has the following value range −1 ≤ g ≤ 1,
where g = 1 is for forward scattering, g = −1 describes backward scattering and g = 0 is
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for isotropically scattering the same amount of light in all directions. In Figure 2.3 (d), g for
different ice crystals as function of the wavelength is presented.
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Figure 2.3.: (a) Phase functions of plates for different degrees of surface roughness, for stronger
roughnesses the phase functions gets more washed out. (b) Absorption efficiency,
(c) Single scattering albedo, (d) Asymmetry factor and Dmax = 637.5µm.

The aforementioned quantities will be the main input quantities for radiative transfer cal-
culations with ice crystals. In Figure 2.3 an overview of the single-scattering properties of the
Yang database for different ice crystal habits is given.

Molecular Absorption

Besides their kinetic energy, molecules have internal quantised energy states. There are three
different types of energy states: electronic, vibrational and rotational. Electronic quantum
states describe the energy of an electron in the molecule, vibrational states describes the
engergy associated with bond stretching and compression, and the rotational states describe
the energy due to a specific angular momentum of diatomic molecules. All of these states are
specified with their own quantum number. Absorption or emission of a photon by a molecule
will change its energy state in accordance with the photon’s energy. Photons at short visible
wavelengths have higher energies, and they participate in electronic transitions, whereas low
energy photons at long infrared wavelengths participate in vibrational or rotational transi-
tions.
To include atmospheric line absorption for various atmospheric gases into radiative transfer

simulations, knowledge of the absorption coefficients for a given wavelength λ is required

βabs,λ(p, T ) =
N∑
j=1

Sj(T )fλ,j(p, T ) , (2.22)

where, j is the index of the absorption coefficient for the jth line, S is the line-strength
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as function of temperature, and fν is the line shape factor. The line shape is a function
of pressure and temperature, and for pressure-broadened lines it would be a Lorentz line
shape, where doppler-broadened lines are characterised by a Voigt line shape. βabs,λ(p, T ) is
deposited in a high-resolution transmission molecular absorption database (Rothman et al.,
2005). Furthermore, current profiles of pressure and temperature from re-analysis or mea-
surements are required.

Radiative Transfer Equation

A major goal of this thesis is to simulate the spectrum, an zenith-looking infrared spec-
trometer would record, when cirrus clouds are present above. The basis, to model these
downwelling infrared radiances, is the 1D radiative transfer equation (RTE) (Chandrasekhar,
1960). This equation describes the light propagation through planetary atmospheres by in-
corperating the interaction with atmospheric constituents, like cloud particles, molecules and
aerosols, through scattering, absorption, transmission, reflection and emission processes. The
RTE can be derived based on Boltzmann’s equation (Stamnes et al., 2017) or based on
Maxwell’s equations (Mishchenko, 2002) or just postulated like in this thesis. In a plane-
parallel one-dimensional geometry, the monochromatic RTE at wavelength λ for a macro-
scopically isotropic medium, i.e. randomly oriented particles and molecules, could be written
as (Stamnes et al., 1988)

µ

βext,λ(z)
dLλ(z, µ, φ)

dz = −Lλ(z, µ, φ)︸ ︷︷ ︸
(a)

+Jλ(z, µ, φ) , (2.23)

where the source function Jλ is given by

Jλ(z, µ, φ) = ω0,λ(z)
4π

∫ 2π

0
dφ′

∫ 1

−1
dµ′P (z, µ, φ;µ′, φ′)Lλ(z, µ′, φ′)︸ ︷︷ ︸

(b)

+ (1− ω0,λ(z))Bλ(T (z))︸ ︷︷ ︸
(c)

,

(2.24)

where µ = cos(θ) and dµ = − sin(θ)dθ were introduced for the angular part. Here, Lλ
describe the radiance at wavelength λ, z is the altitude, βext,λ is the volume extinction coef-
ficient, ω0,λ is the single scattering albedo and Bλ(T (z)) is the Planck emission function in
dependence of the temperature T . The phase function P , depends on zenith and azimuth
angle of the incoming light direction (µ′, φ′) and scattered outgoing light direction (µ, φ). In
detail, the specific terms represent

• (a) the attenuation of an incoming light beam due to scattering and absorption by
atmospheric particles and molecules, in accordance to Lambert-Beer’s law,

• (b) the multiple scattering contribution from all directions. The phase function redirects
the incoming radiation from (µ′, φ′) to the outgoing direction (µ, φ), and quantifies the
probability for these processes to occur. The scattering volume is infinitesimal small,
i.e. optically thin but large enough to contain many scatterer,

• (c) and the thermal emission from the scattering volume element in accordance to
Planck’s law.
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In the literature, the RTE is also very often formulated in τ coordinates instead of z, via
using dτ = βext,λdz. Equations like the RTE are denoted as integro-differential equation, due
to the presence of term (b). This term, which couples radiation from all incoming directions
(µ′, φ′) to the radiation of the desired direction (µ, φ), requires a simultaneous solution for
all directions (Mayer, B., 2009). Fortunately, for the considered one-dimensional geometry
several numerical solutions exists (Stamnes et al., 1988), e.g. Section 3.3.2.

2.2. Microphysics of Cirrus Clouds

2.2.1. Optical, Micro- and Macrophysical Cloud Properties

In this section, the quantities to describe and parameterise optical, micro- and macrophysical
cloud parameters, sensitive to remote sensing measurements, are introduced. It is the goal of
cloud retrievals to derive these quantities from observational data to constrain microphysical
schemes, used in current climate models. A very short overview of the representation of cirrus
clouds in numerical weather and climate models is given. The aim is, to shortly sketch the
stages until model output quantities, that can be compared with observations, are available
and to identify them. This section mainly follows Liou and Yang (2016), Morrison et al.
(2020) and Storch et al. (1999).
As previously indicated, climate and weather models can not resolve a growth process

of an individual ice crystal and active remote sensing data can not detect the scattering
amplitude of a single ice crystal. Therefore, bulk microphysical model quantities are required,
that describe cloud processes on a larger scale, respectively on a certain cloud volume. In
practice, a cloud volume could be a grid box in a climate model or a range gate from a
radar or lidar signal return. In a cloud volume, the optical and microphysical properties of
ice hydrometeors are averaged with respect to a particle size distribution (PSD). Cloud
parameters are divided into microphysical quantities, parameters that are related to a
moment of the PSD, optical quantities, parameters describing the attenuation of radiation
in a cloud andmacrophysical quantities, describing the geometry of a cloud. For aspherical
particles like ice crystals, a size measure is not straight forward, therefore size is described
as maximum dimension of an ice crystal Dmax and for simplicity will be denoted as D in the
following. PSDs can have one (monomodal) or more (multimodal) particle modes (Mitchell
et al., 1996a; Ivanova et al., 2001) and their form can be parameterised by exponential,
lognormal or gamma distributions. Due to results from in situ measurements, most commonly
gamma-type distributions are used (Heymsfield et al., 2013). In this thesis the generalised
gamma distribution will be used (Hu and Stamnes, 1993)

N(D) =


N0
Ds

1
Γ(µ)

(
D
Ds

)µ−1
e−

D
Ds monomodal

∑2
j=1

N0,j
Ds,j

1
Γ(µj)

(
D
Ds,j

)µj−1
e
− D
Ds,j bimodal

[m−4] (2.25)

where Γ(µ) = (µ − 1)! is the gamma function and N0 is the total (volume) number con-
centration. Ds is the scale parameter, increasing the scale will increase the spread of the
distribution, whereas the shape is described by µ and will turn into an exponential distri-
bution for small values of µ < 1, and broaden the distribution for large values. For further
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calculations, it is helpful to know the different statistical moments of the PSD, because they
can be used to describe cloud microphysical properties (Siebesma et al., 2020). The PSD k-th
moment generating function for spherical particles is given by

Mk :=
〈
Dk
〉

:=
∫ Dmax

Dmin
N(D)DkdD , (2.26)

where the angel brackets denote averaging over PSD and Dmin and Dmax are the lower
and upper boundary of the maximum crystal dimension. Ice particles in cirrus clouds can
have lower densities than that of solid ice ρice = 0.917gcm−3, due to air intrusions of bubbles
(Sato and Okamoto, 2006). To account for these variations in effective ice density and due
to different particles shapes, the particle mass and projected area are often parameterised as
a power-law relationship of the maximum dimension, like (Brown and Francis, 1995; Mitchell
et al., 1996b; Heymsfield et al., 2010a; Ham et al., 2017)

m(D) = aDb [g] (2.27)
A(D) = γDδ [cm2] , (2.28)

with coefficients a in [g cm−b], b (unitless), γ in [g cm2−δ] and δ (unitless) to be determined
in fitting routines. They require different moments of the PSD for projected area and mass

〈
[A(D)]k

〉
:=

∫ Dmax

Dmin
N(D) [A(D)]k dD (2.29)

〈
[m(D)]k

〉
:=

∫ Dmax

Dmin
N(D) [m(D)]k dD . (2.30)

The dependence on the habit in the microphysical model is represented by the a, b, γ and
δ coefficients and will not be mentioned explicitly in the following formulas due to clearness
reasons. However, wherever m(D) and A(D) are mentioned, a habit dependence is present.

Another microphysical parameter to study cloud dynamics and precipitation is the ice
water content (IWC), and approximately represents the mass of ice in a cloud volume

IWC = 〈m(D)〉 =
∫ Dmax

Dmin
N(D)m(D)dD [gm−3] , (2.31)

where m(D) is the mass of an individual ice crystal that accounts for the specific shape.
For liquid water clouds the corresponding quantity, the liquid water content, is proportional
to the third moment of the PSD. The integration of IWC from cloud-base to cloud-top yields
the ice water path (IWP), which describes the total amount of ice within a cloud

IWP =
∫ zct

zcb
IWC(z)dz [gm−2] . (2.32)

The volume extinction coefficient, defined as proportional to 2nd moment
〈
D2〉 for

spherical particles, is an important parameter for determining the radiative properties of a
cirrus cloud
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βext =
∫ ∞

0
Qext(D,λ)A(D)N(D)dD

D�λ= 2 〈A(D)〉 [m−1] , (2.33)

where A(D) is the projected or cross-sectional area of the cloud particles per unit volum
and Qext is the extinction efficiency at wavelength λ. At visible wavelengths (lidar sensors),
and in accordance to the geometrical optics regime, Qext can be approximated with 2, like
known from the extinction paradox (Hulst, 1981). The vertical integral of βext, from cloud-
base to cloud-top, yields a further important optical cloud property, the dimensionless cloud
optical thickness

τ =
∫ zct

zcb
βext(z)dz , (2.34)

which describes how strong radiation would be attenuated by propagating through a cloud.
zcb and zct are the geometrical cloud base and cloud top, but from a remote sensing per-
spective, the detected cloud boundaries can differ from the real geometrical boundaries. The
reason is, that for optical thick ice clouds, the lidar signal, emitted from a ground-based sensor
can be completely attenuated before reaching the cloud top, whereas the radar, due to the
larger wavelength, will miss to detect small ice crystals.

Another parameter, to describe the radiative impact of a cloud, is the usage of an effective
particle size or effective radius to represent the size dependence of scattering and absorption
processes in radiation transfer. For spherical particles, this quantity is defined as ratio of the
third

〈
D3〉 over the second 〈D2〉 moment, as a weighted mean of the size distribution of cloud

droplets, like described in Hansen and Travis (1974). But for non-spherical particles this
definition is not usable, because the radius is not directly related to a physical or measurable
quantity and the third (second) moment is not proportional to mass (area). Therefore, many
other definitions are suggested, but there is no agreement on a convention yet (McFarquhar
and Heymsfield, 1998). Throughout this thesis, the mean effect ice crystal size will be defined
as 0.75 times the ratio of an ensemble particle volume and the particle projected area (Foot,
1988; Francis et al., 1994; Wyser and Yang, 1998; Yue et al., 2007; Hong et al., 2009)

Reff = 3
4
〈V (D)〉
〈A(D)〉 = 3

4

∫Dmax
Dmin

V (D)N(D)dD∫Dmax
Dmin

A(D)N(D)dD
[µm] , (2.35)

The integration ofReff from cloud-base to cloud-top yields the integrated effective radius
(IER), which describes the total effective particle size of the cloud

IER =
∫ zct

zcb
Reff(z) dz [µm m−2] . (2.36)

The effective radius will be important for radiative transfer (RT) calculations, because the
main optical input parameters will be parameterised as function of Reff and PSD. Reff is used
as parameter for a simplified description of cloud radiative properties, which in principle is
retrievable from remote sensing measurements. Physically, its definition can be understood
as a representative photon path for all cloud particles in the PSD (Mitchell, 2002). Although,
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effective ice crystal size would be the proper wording, effective radius is used instead in the
course of this work, because it is the common expression in literature.
The aforementioned quantities of interest are not independent of each other and can be

linked for plane-parallel, homogeneous clouds in the visible spectrum (Foot, 1988)

Reff = 3IWC∆z
2ρiceβext

[µm] , (2.37)

where ∆z is the vertical extension of a cloud layer. If one considers two clouds with the
same IWC, the cloud with a smaller Reff will have a bigger optical depth τ = βext∆z, leading
to more reflected sunlight.
The equivalent radar reflectivity factor, defined as to be proportional to the 6th mo-

ment
〈
D6〉 for spherical particles, is important for radar applications. In simple terms, this is

just a parameter of the cloud to which the detected radar signal is sensitive. For non-spherical
ice particles the volume V (D) will be replaced by m(D)/ρice to obtain

Ze = |Kice(λ, T )|2

|Kw(λ, T )|2
36

π2ρ2
ice

〈
[m(D)]2

〉
, (2.38)

where |Kw|2 (λ, T ) and |Kice|2 (λ, T ) are the dielectric factors for liquid water and solid ice,
respectively. Historically, the definition is based on Rayleigh scattering at radar wavelengths
with spherical cloud particles, where the cross-section is ∼ D6. In order, to retrieve the
effective radius from radar and lidar remote sensing data, it will be useful to introduce an
auxiliary quantity, the radar lidar effective radius (Donovan and van Lammeren, 2001,
2002). For spherical particles it is defined as Rrali

eff = 0.5
[〈
D6〉 / 〈D2〉]1/4, and for non-spherical

particles it is given by

Rrali
eff =

[ 9
16πρ2

ice

]1/4

〈

[m(D)]2
〉

〈A(D)〉

1/4

=
[
|Kw(λ, T )|2

|Kice(λ, T )|2
π

32
Ze
βext

]1/4

[µm] . (2.39)

The advantage of Rrali
eff is, that it is not direct dependent on habit and PSD, because Ze

and βext are gained from measurements without assumptions on habit and PSD. Later, the
effective radius, used in RT calculations, can be retrieved based on Rrali

eff , with a specific
function CReff for conversion

Reff = CReff(Rrali
eff ,PSD, habit) , (2.40)

which requires assumptions of the ice crystal habit and about the type, modality and pa-
rameter of the PSD. The converting function CReff will be introduced in Section 3.4.2. In
the literature, the radar lidar effective radius is often just denoted as primed quantity, R′eff.
However, to point out more clearly, that it is a different quantity and not to be mistaken with
Reff, it will be denoted by Rrali

eff in this thesis.
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For some special retrieval techniques like Tinel et al. (2005) it will be useful to introduce
the normalized number concentration parameter (Testud et al., 2001; Illingworth and
Blackman, 2002). For ice clouds it is defined as

N∗0 =
( 4
Dm

)4 IWC

πρw
, (2.41)

where Dm is the melted-equivalent mass-weighted mean diameter and ρw is the density of
liquid water. This quantity is useful, because analysis of aircraft data showed, that when
moments of the PSD are normalized by N∗0 , precise power-law relationships exist between
them (Hogan et al., 2006b).

The mentioned definitions assume only one habit per unit volume, to take a habit mix-
ture into account, substitutions for the cloud volume V (D) −→∑Nh

h=1 fh(D)Vh(D), as well as
the projected area A(D) −→ ∑Nh

h=1 fh(D)Ah(D) are required. Here Nh is the total number
of habits and fh is the fraction of a certain habit in the cloud volume’s PSD with∑Nh

h=1 fh = 1.

Important macrophysical cloud properties are the phase (liquid or ice) and the alti-
tudes of cloud base zcb and top zct. For meaningful radiative transfer and climate simulations
it is of course important to include the microphysical cloud properties at the correct alti-
tude. These geometrical quantities will be obtained from active remote sensing instruments
like radar and lidar. Because of the limitations due to their different wavelength sensitives,
it is necessary to map cloud base and top measurements to the specific sensors. Lidars are
good in detecting cloud bases zcb,li, but are limited in thick clouds, where they suffer strong
extinction and the detected zct,li is not identic with the geometric cloud top zct. On the other
side, radars do not suffer strong attenuation but detected radar cloud bases zcb,ra and tops
zct,ra are not identic with zcb and top zct when there are small ice crystals present, that lie
below the detection threshold of the radar.

The aforementioned quantities are useful, because they include the PSD. In a retrieval
algorithm, these introduced microphysical properties of ice clouds will be converted to suitable
spectral parameterised optical properties of ice crystals (Yang et al., 2013), to serve as input
parameters to take out radiative transfer calculations with the aim of simulating the spectrum
of a passive remote sensing device. Therefore, the optical single scattering properties will be
parameterised as function of the effective radius and the PSD, see Section 3.3.4.

2.2.2. Representation of Cirrus Clouds in NWP and Climate Models

Need for Physical Parameterisation

To be able to give a numerical weather or climate prediction, models need to solve primi-
tive prognostic equations. They account for conservation of momentum, mass and energy
in order to approximate the global atmospheric flow. This work is done by the dynamical
core of the model. In order to obtain solutions for the evolution of ice crystal size distri-
butions (ice mixing ratios), several physical factors are involved in the governing equations
like radiation, saturation ratio, air temperature, and horizontal and vertical motion. These
adiabatic subgrid-scale processes to treat clouds and radiation can not be described explicitly,
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and therefore have be included in parameterisations as microphysical and radiation schemes
(Storch et al., 1999; Randall, 2000).
There are different types of hierarchy in models, concerning the scale of atmospheric mo-

tion. The hydrometeor population in turbulent clouds on scales from 1 mm to 1 m, can
be explicitly represented in particle-by-particle direct numerical simulations (DNS) (Wang
et al., 2009). On larger scales, individual hydrometeors can not be represented explicitly any
more. Atmospheric scales ranging from 10 m to 100 km, allow to resolve clouds, but will re-
quire microphysical parameterisation schemes to represent unresolved microphysical processes
and hydrometeor populations statistically in large eddy simulation models (LES) (Sölch and
Kärcher, 2010). For scales larger than 100 km, both, micro- and macrophysical processes have
to be paramaterised in GCMs (Kärcher et al., 2006).

Microphysical Schemes

In atmospheric science, microphysics refer to small-scale processes, that influence clouds, ice
and precipitation particles, by diffusional growth from water vapor, evaporation, or melting
and are a very important part in predicting Earth’s weather and climate (Hofer et al., 2019).
An accurate representation of microphysical processes in models is a major challenge and

leads to large uncertainties in numerical weather and climate simulations. Because of the
impossibility of simulating all particles individually within a cloud it is difficult to describe
the representation of the population of clouds and precipitation particles. Furthermore, due
to missing knowledge of cloud physics, there are uncertainties in the underlying microphysical
process rates. These uncertainties are especially large for processes in the ice phase, such as
vapor diffusional growth, melting, and aggregation, which is due to the fact, that atmospheric
ice particles have many complex shapes with a large variety (Morrison et al., 2020).
In models, so called, microphysical parameterisation schemes are deployed. They attempt

to represent the unresolved microphysical processes and hydrometeor populations statistically.
Typically, these schemes include parameterized rate equations that correspond to microphys-
ical processes, such as diffusional growth or ice particle melting (Liou and Yang, 2016).
There are three main types of microphysical schemes: bulk, bin and particle-based La-

grangian. In bulk schemes, variables that describe bulk properties of a cloud within a grid
volume, like cloud mass, are predicted. In bin schemes, the PSD is explicitly represented
and predict variables like cloud mass for a specific size interval of the PSD. These schemes
have more predicted variables than the bulk scheme and provide more flexibility at the cost
of higher computational times. In Lagrangian based schemes, the particle population is rep-
resented by a discrete sampling of cloud and precipitation particles (Gettelman et al., 2019).
In Figure 2.4, a two-moment bulk microphysics scheme is shown.

Radiation Schemes

For the temporal integration of the basic primitive equations, the heating and cooling rates
in the atmosphere as well as the radiation fluxes of SW and LW at the surface and TOA are
required (Roeckner et al., 2003). A radiation schemes provides profiles of the net radiation
fluxes in specific spectral bands for solar and thermal radiation.
Radiative transfer with single-scattering properties require a light-scattering code and de-

tailed ice crystal size and shape distributions. These calculations are numerical very expensive
and could not be used as part of a GCM, where broadband calculations are required for every



2.2 Microphysics of Cirrus Clouds 29

Figure 2.4.: Schematic diagram of processes in the six-class, two-moment microphysics scheme
of Seifert and Beheng (2001). The rates and functional form of the different
processes, indicated by arrows, have to be constrained with observational data
gained from cloud retrievals. Figure taken from Gettelman et al. (2019).

time step and every grid point. Therefore, the calculation of broadband single-scattering
properties of cirrus clouds should be simplified. In order to achieve this, Fu and Liou (1993)
introduced parameterisation equations of broadband solar and infrared radiative properties,
where they used Reff to account for PSD effects and parameterised the single-scattering prop-
erties as function of IWC and Reff. Now, in an evolving cloud field in a model, the pa-
rameterisation of the single-scattering properties of ice crystals will include the predicted ice
water content IWC(t, x, y, z) together with ice crystal size and shape information represented
by Reff(t, x, y, z), from which the corresponding radiation field will follow. In this manner,
cirrus-radiation interactions and feedbacks can be completely included in a GCM (Liou and
Yang, 2016).

Comparison of Model Output with Observations

A fundamental difficulty in using parameterisation schemes in GCMs and NWP, is the under-
lying uncertainty in quantifying the individual microphysical process rates, particularly for
ice processes, see Figure 2.4. There are two main types of uncertainty, parametric uncertainty,
describing the uncertainty of the specific parameters used in process rate formulations, and
structural uncertainty, associated with the functional forms of the process rates, which are
both highly uncertain (Hourdin et al., 2017; Schmidt et al., 2017).
In order, to tackle these uncertainties, the microphysical schemes have to be compared

with cloud measurements. The three categories of observations, laboratory, in-situ and re-
mote sensing, have their own unique strengths and limitations. Laboratory single-particle
experiments can provide physically based parameterisations of ice particle growth from vapor
diffusion (Koenig, 1971) and riming (Hindman and Johnson, 1972), but care must be taken
when applying results from ultra-clean vacuum-chambers to surrounding effects in turbulent
atmospheric conditions. In-situ observations can provide detailed information on a particle-
by-particle basis, but are usually very limited in time and space. Active and passive remote
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sensing observations are only sensitive to vertical profiles of some specific moments of the PSD
or to integrated quantities, but they can provide continuous long term measurement data for
model comparisons in order to obtain robust and objective statistics. For this purpose, there
are many measurement networks like Cloudnet (Illingworth et al., 2007a) or the Atmospheric
Radiation Measurement (ARM) program (Stokes and Schwartz, 1994).
In solving a prognostic equation, a typical information available at each model layer is

the relative humidity, which is then converted to cloud cover and ice water content or ice
water mixing ratio by using certain parameterisation schemes. Subsequently, the main model
variables to be compared with observations, based on radar and lidar data, are cloud cover,
the fraction of the model gridbox containing clouds, and profiles of ice water content.
The vertical profiles of radar and lidar profiles are limited so very small space regions

in comparison to model gridboxes and their temporal resolution is also much higher than
the integration time of a model. To take out comparisons, the gridbox-mean’s of ice water
content and the observations will be averaged both on a common spatio-temporal grid, where
the integration time is dependent on the wind speed (Hogan et al., 2006a). There are two
approaches, in order to take out comparisons. The first, uses the model output to simulate the
instrument, via using forward operators (Mech et al., 2020), effectively comparing observables.
The second, converts the observations to cloud properties, via using ice cloud retrievals,
effectively comparing microphysics.

2.3. Remote Sensing of Cirrus Clouds

Remote sensing is the field, responsible for metrological monitoring of cloudy and clearsky
atmospheres. Due to different operating principles, it is usually separated into active and
passive remote sensing. Passive remote sensing data, gained from infrared spectrometers,
deliver spectral radiance measurements from an atmospheric column, containing information
from both, cloud and molecular emission. In turn, active remote sensing devices, like radar
and lidar, have their own light source, and monitor high range- and time-resolved vertical
intensity profiles from scattering particles in clouds and atmosphere (lidar), and clouds only
(radar).

Remote sensing of clouds include a huge variety of different techniques and instruments,
but in this section, only techniques and instruments used in this thesis are discussed. This
section mainly follows descriptions from Lynch et al. (2002); Griffiths and De Haseth (2007);
Liou and Yang (2016); Yang et al. (2018) and Siebesma et al. (2020).

2.3.1. Passive Remote Sensing

Fourier Transform Infrared Spectrometry

The introduced SynCirrus algorithm relies on measurements of downwelling infrared spec-
trial radiances from thermal emission processes in the atmosphere. These measurements are
carried out by an accurately calibrated ground-based Fourier transform spectrometer (FTS).
Their working principle is based on Fourier transform infrared (FTIR) spectrometry tech-
niques. In a Michelson-type interferometer (Michelson and Morley, 1887) adapted for FTIR
measurements, light from a polychromatic infrared source is collimated and directed into the
aperture. A configuration of a fixed and a movable mirror as well as a beam splitter allows
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the measurement of the interferogram in dependence of the optical path difference (OPD).
The OPD ∆x denotes the difference in optical path length between the two arms of to the
interferometer. An interferogram is recorded by varying the retardation ∆x and recording
the signal from a detector for various values of this retardation L(∆x). The values ∆x of the
OPD are required with a very high accuracy for a proper analysis of the recorded interfero-
gram and usually interferometer using an internal helium-neon laser aligned with the beam,
where the wavelength is known. In spectrometry it is common to use wavenumbers instead
of wavelengths, because this unit is proportional to energy

ν̃ = 1
λ

. (2.42)

Furthermore, it makes comparing and measuring band widths more easy, because the spec-
trum will be easier to read. On the linear wavelength-scale, the spectrum would be broad
and spread out some feature in one region, and compressed features in another region, which
makes it difficult to identify them visually. In contrary, wavenumbers will provide more sym-
metric peak shapes and are just more practical in usage (Griffiths and De Haseth, 2007).

The interferogram L(∆x) can be related to the thermal radiance spectrum L(ν̃) via Fourier
transform and vice versa:

L(∆x) =
∫ ∞
−∞

L(ν̃) cos(2πν̃∆x)dν̃ (2.43)

L(ν̃) =
∫ ∞
−∞

L(∆x) cos(2πν̃∆x)dx . (2.44)

In Equation (2.44) of the Fourier transform pair, the complete spectrum at infinitely high
resolution could be measured. In theory, this is synonymous when the moving mirror of the
interferometer could be varied on an infinitely long distance. But in experimental practice,
the fact of measuring the signal only over a limited retardation is possible, and this will
cause the effect of measuring the spectrum only at a finite resolution, depending on the finite
maximum path difference OPDmax. The best resolution of an interferometer is obtained by
(Griffiths and De Haseth, 2007)

∆ν̃ = 1
OPDmax

. (2.45)

Restricting the maximum retardation of an interferogram to OPDmax, results in multiplying
the hole interferogram by a truncation function, called the apodization function A(∆x), which
is defined as

A(∆x) =
{

0 if −OPDmax ≤ ∆x ≤ OPDmax

1 if ∆x > |OPDmax| ,
(2.46)

leading to

L(ν̃) =
∫ ∞
−∞

L(∆x) A(∆x) cos(2πν̃∆x) dx . (2.47)
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From a mathematical point of view, the effect of the multiplication of the interferogram with
a window function, like A(∆x), is equal to the convolution of the spectrum with a function,
called instrumental line Shape ILS(ν̃). Therefore, the observed radiance will be described by

Lobs(ν̃) = L(ν̃) ~ ILS(ν̃)

=
∫ ∞
−∞

L(ν̃) ILS(ν̃ − ν̃ ′) dν̃ ′ . (2.48)

The ILS, in turn, is the Fourier transform of the apodization function

ILS(ν̃) = FT [A(∆x)]

= 2OPDmax
sin(2πν̃OPDmax)

2πν̃OPDmax
. (2.49)

Therefore, to be able to compare simulated with measured spectra, simulated spectra with
a higher resolution than the device first have to be convolved with the ILS.

For the near IR, the thermal emission by the instrument is very small compared to the
measured downwelling solar radiances. But in the mid and far IR, however, the spectral
radiances measured from the atmospheric scene are comparable to the thermal emission by
the instrument, at least for lower atmospheric layers, where the temperatures are comparable
with the ambient temperature of the instrument.

An approach, introduced by Revercomb et al. (1988), uses the complex Fourier transform
to represent the interferogram in an alternative form to Equation (2.43)

L(∆x) = 1
2

∫ ∞
−∞

C(ν̃) eiφ(ν̃) ei2πν̃∆xdν̃ , (2.50)

where φ (ν̃) is the phase response of the instrument, which characterises the optical and
electrical dispersion of the instrument. For the uncalibrated magnitude spectrum C(ν̃), it
is assumed, that the system has a linear response function r(ν̃) and an instrument emission
offset L0(ν̃)

C(ν̃) = rν̃

[
L(ν̃) + L0(ν̃)

]
. (2.51)

Therefore a calibration procedure would require two reference blackbodies, with known
constant temperatures, to calculate the two unknowns r(ν̃) and L0(ν̃). The emission of
these blackbodies is described by the Planck function for a blackbody with a constant cold
temperature B(ν̃, Tcol) and a constant hot temperature B(ν̃, Thot).
Revercomb et al. (1988) emphasised, that a two-point calibration for FTIR spectrometer,

only including the magnitude spectrum, lead to brightness temperature errors because of a
source-dependent phase response, caused by emission from the interferometer of the beam
splitter. Their new analysis includes the complete complex spectra obtained from Fourier
transforming the measured interferograms instead of only using the magnitudes

C ′(ν̃) = FT [L(∆x)] = r(ν̃)
[
L(ν̃) + L0(ν̃)eiφ0(ν̃)] eiφ(ν̃), (2.52)
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where φ0 is the difference from the normal phase of the anomalous phase associated with
the combined radiance from the many emitting components of the instrument. This leads to
a new two-point blackbody calibration equation, including the differences of the full complex
spectra

L(ν̃) = <
[
C(ν̃)− Ccol(ν̃)
Chot(ν̃ − Ccol(ν̃

]
[B(ν̃, Thot)−B(ν̃, Tcol)] +B(ν̃, Tcol) (2.53)

to ensure, that the complex phase and the offset contribution do not bias a radiative
calibration anymore. This procedure is relevant, because the measured radiance spectrum
after calibration with Equation (2.53) will be compared with a simulated spectrum as part of
the SynCirrus algorithm.
In this work, spectrometry data from the Atmospheric Emitted Radiance Interferometer

(Knuteson et al., 2004a,b), recorded at Mount Zugspitze, are used. In Figure 2.5, an example
measurement is illustrated.
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Figure 2.5.: Illustration of downwelling atmospheric radiances recorded with an AERI. Also
denoted are the absorption regions for the main atmospheric constituents and
the Planck function for the ambient temperature. The clear sky and clouded
radiances were recorded at 2012-11-23 06:23 UTC and 16-10-06 00:17 UTC, re-
spectively.

2.3.2. Active Remote Sensing
While passive remote sensing devices monitor radiation emitted naturally by a cloudy atmo-
sphere, active sensors have their own source to emit pulsed radiation towards atmospheric
scatterers. The detected intensity of the backscattered pulses and their time-of-flight, provides
insight about the type of scatterer and its location, respectively.
An advantage of active senors is, that they can deliver vertical resolved profiles proportional

to cloud properties. Passive sensors, measuring only vertically integrated measures of cloud
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properties, and suffer the limitation that the observed radiances are weighted towards the
values at cloud base (ground-based configuration). But passive sensor have larger field of
views, where active sensors can only sample smaller portions of an atmospheric scene.
There are many different operating principles for lidars (backscatter, HSRL, Raman, DIAL)

and different frequency ranges for radars (clouds, rain, wind) used for active remote sensing.
In the following section the focus will be on the basics of an elastic backscatter lidar and a
cloud radar.

Similarities of Radar and Lidar

Besides the wavelength of their light source, radar (microwave spectrum) and lidar (visible
spectrum) devices share many properties. Both rely on scattering which is important in the
microwave and the visible spectrum of radiation. For the most applications they have a
narrow field of view, and therefore the detected intensity is dominated by pulses that were
only scattered once by an atmospheric scatterer in backward direction. For some applications,
the field of view is already large enough, that multiple scattered radiation will be detected
along-side single scattered radiation. Because multiple scattered radiation takes longer to
reach the detector, it will be interpreted by the detector as coming from higher altitudes.
These multiple scattering effects have to be accounted for in a retrieval algorithm, when
retrieving microphysical cloud properties, see Section 3.4.4.
In general, single scattering by an atmospheric target, is given by the active remote sensing

equation (Lynch et al., 2002; Siebesma et al., 2020)

PSS(R, λ) = Csys Ggeo(R, λ) βsca,π(R, λ) T 2(R, λ) , (2.54)

where R is the distance from a zenith-looking active sensor to the target or just the range, λ
is the wavelength of the instrument’s light source, Csys is the specific system constant (instru-
ment hardware like transmitted power PTx), Ggeo(R, λ) is the range dependent measurement
geometry, βsca,π(R, λ) is the back scatter coefficient, describing the radiation scattered once
by the targets within the pulse volume, before reaching the detector (θ = π), T 2(R, λ) is the
two-way transmission term, describing atmospheric attenuation, and P(R, λ) is the received
power from an atmospheric scatterer at position z. In principle, Equation (2.54) is essentially
the RTE in a scattering media with a single direction P (θ = π). The geopotential height z is
related to the range R via the altitude zins of the instrument, z = zins +R. Depending on the
wavelength of the emitted pulses, Equation (2.54) will take a concrete form, due to the differ-
ent scattering regimes. For scattering effects in backward direction, the term βsca,π(R), gives
information about the size of the scatterer, and the extinction term T (R, λ), provides insight
about the particle number density or just the optical thickness of a cloud layer. Furthermore,
it is assumed that there is an underlying PSD describing the different sizes and cross-sections
σsca,π,i of the target particles in the pulse volume. Because the wavelength is a fixed parame-
ter by the light source of the sensor, it will not be mentioned in the following formulas. The
distances between the scattering hydrometeors are very small compared to distances to the
detector. Therefore, only the range R from the detector to the sample volume of the pulse is
relevant.
Some radar and lidar devices can emit linear polarised radiation for target classification. If
the detected radiation would retain its linear polarisation, the scatterer would have been a
spherical particle. Because the SynCirrus algorithm does not exploit this information, polar-
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isation will not be considered in this section.

Differences between Radar and Lidar

Lidars use laser light sources at visible wavelengths. Because visible wavelengths are much
smaller than ice crystal sizes, the scattering efficiency will take a constant value Qext ≈ 2
and the backscatter coefficient is given by σsca,π ∼ D2, like aforementioned for the geometric
optics regime as described by Equation (2.17). The signal contributions are from cloud
particles, aerosols and Rayleigh scattering from atmospheric gas molecules. In optically thick
ice clouds, the lidar signal would be completely attenuated before reaching the cloud top.
This is a serious limitation lidars used for ice cloud remote sensing suffer from. The main
microphysical quantity of interest in lidar measurements is the extinction coefficient βext (∼
2nd moment of PSD), which will be obtained via the inversion of the lidar signal, making
assumptions about the atmospheric scatterers in that process.
Radars on the other side, use a magnetron light source that produce pulsed microwave

radiation. In this part of the spectrum, the wavelengths are much longer than typical ice
crystal size and their backscatter cross section is in the Rayleigh regime σsca,π ∼ D6, like
indicated by Equation (2.16). Therefore, the detected radar signal can be dominated by only
a few but very large ice crystals. A limitation of radars is, due to their large wavelengths, they
are not sensitive to small ice crystals. In contrary to lidars, they can penetrate even thick ice
clouds, and only suffer serious attenuation in strong precipitation clouds. The microphysical
quantity of interest in radar measurements is the equivalent radar reflectivity factor Ze (∼
6th moment of PSD), which will be obtained directly from the returned radar signal.

Radar

Radar (RAdio Detection And Ranging) instruments are operating at long wavelengths in the
microwave region, where they are able to resolve ice crystals, droplets and raindrops. Their
light source emits microwave radiation at typical frequencies of around 6 GHz(C-band: precip-
itation), 36 GHz(Ka-band: clouds) or 95 GHz(W-band: clouds). The single-scattering radar
equation for distributed meteorological targets is given by (Probert-Jones, 1962; Rinehart,
1991; Doviak and Zrnić, 1993)

PSS(R) = Crad
1
R2 βtot,sca,π(R) T 2(R) , (2.55)

where R is again the range from the sensor to the target, Crad is the hardware constant
(antenna properties etc.) and PSS(R) is the detected power by the receiver. T 2(R), sometimes
called loss factor L, describes the two-way atmospheric attenuation due to traces gases, but at
radar wavelengths this is usually only a small effect, leading to T 2(R) ∼ 1. The attenuation
at radar wavelengths will be further investigated in Section 3.2.3.
The total backscattered radiation σsca,π from the pulse volume Vpul is a sum over the

individual cross-sections per unit volume V0 and multiplied by the pulse volume afterwards
(Doviak and Zrnić, 1993)

βtot,sca,π =

∑
k∈V0

σsca,π,k
V0

 Vpul = η Vpul . (2.56)
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This introduced radar reflectivity η describes the backscatter cross-section per unit volume.
Because radar wavelengths are usually much bigger than the size of atmospheric hydrometeors,
the backscatter cross-section is in the Rayleigh regime, given by Equation (2.15) evaluated at
θ = π, leading to

η
D�λ= π5

λ4 |K(λ, T )|2
∫ ∞

0
N(D)D6dD

= π5

λ4 |K(λ, T )|2 Z [m−1], (2.57)

where it was assumed, that all the particles in the radar beam have the same dielectric
factor. If this is not true, |K(λ, T )|2 is part of the integral. Furthermore, the sum over particles
was replaced by integrating over a PSD and the radar reflectivity factor was introduced. Two
radar devices with the same hardware but different wavelengths should measure the same Z.
To make them comparable, it is useful to introduce a new auxiliary quantity, the equivalent
radar reflectivity factor Ze, which removes the wavelength dependence and is defined by

Ze = λ4

|Kw(λ, T )|2 π5
η =

Z liquid droplets
Z |Kice(λ,T )|2
|Kw(λ,T )|2 ice crystals .

(2.58)

The convention for this definition is to become Ze = Z if the targets are liquid droplets,
where |K|2 = |Kw|2. The final output from the radar is then given by

Ze(R) = PSS(R) R2 |Kw(λ, T )|2

|K(λ, T )|2
1

C∗rad

1
T 2(R) , (2.59)

with the new constant C∗rad including the pulse volume. Considering the unit of Ze, the
diameter to the sixth power gives [mm6], where the number of particles per unit volume has
units of [m−3]. The combination leads to [mm6m−3] and will not be further simplified to [m3],
because [mm6m−3] was historically the most used unit to measure raindrop diameters and
[m3] is easy to be misunderstood for volumes. Measured Ze from meteorological targets can
span a huge range of values, like 1× 10−3 mm6m−3 for fog up to 5× 107 mm6m−3 for heavy
hail (Rinehart, 1991). This large dynamic range can be presented more understandable on a
logarithmic dBZ-scale

Ze [dBZ] = 10 log10
(
Ze
[
mm6m−3

])
. (2.60)

For very high frequencies and in turn small wavelengths, the Rayleigh approximation is
maybe not longer valid for all particles from the sampling volume. If the wavelength of
the radiation will be not significantly larger than the particle sizes, but in the same order
of magnitude, Mie theory should be taken into account. This can be done by including a
correction factor in Ze, the Mie-to-Rayleigh ratio γM/R, like presented here for ice spheres
(Benedetti et al., 2003; Hogan et al., 2006c)

Ze = |Kice(λ, T )|2

|Kw(λ, T )|2
∫ ∞

0
γM/R(D)N(D)D6dD . (2.61)
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At the long radar wavelengths multiple scattering effect are usually ignored and they only
become relevant at high radar frequencies, where the signal is stronger affected by extinction.
Here, the transport mean-free-path will be comparable with the instrument footprint, which
is determined by the antenna beam-width and the platform altitude (Battaglia et al., 2010).

Lidar

Lidar (LIght Detection And Ranging) instruments are operating at short laser wavelengths
with typical values of 355 nm (near-UV: trace gases, aerosols, clouds), 532 nm (green spectrum:
trace gases, aerosols, clouds) or 1064 nm(near-infrared: trace gases, aerosols, clouds). The
single-scattering lidar equation for an elastic backscatter lidar in its most common form is
given by (Weitkamp, 2006)

PSS(R) = Clid
1
R2 βsca,π(R) exp

[
−2
∫ R

0
βext(R′)dR′

]
, (2.62)

where R is again the range or the altitude relative to a vertically pointing active sensor, Clid
is the system’s hardware representing constant, R−2 is the geometric factor of the receiver
area and PSS is the detected backscattered power from an atmospheric scatterer, a dimen-
sionless number of the detected photons per range-bin. The total backscatter and extinction
coefficients are describing the atmospheric properties. Because the short lidar wavelengths
are sensitive to many atmospheric constituents, the coefficients are composed as a sum of the
molecular part (air molecules, sometimes called Rayleigh-atmosphere or Rayleigh-signal) and
the particular part (ice crystals, cloud droplets, aerosol particles)

βsca,π(R) = βsca,π,par(R) + βsca,π,mol(R) (2.63)
βext(R) = βext,par(R) + βext,mol(R) . (2.64)

With the detected power PSS(R) there is only one known measured profile, but four un-
known profiles for the molecular and particular backscatter and extinction coefficients. Con-
sidering cloud applications, it is not necessary to know all these four profiles simultaneously.
One is only interested in that part of the backscatter and extinction profile, which was caused
by scattering of cloud particles. Within the cloud, the molecular return is negligible in com-
parison to the cloud return, and therefore it is possible to treat the cloud and the cloud
free parts of the lidar signal as a single-component atmosphere, reducing the problem to two
unknown profiles. To eliminate one of the two unknowns in Equation (2.62), it is assumed,
that the ratio of βext and βsca,π can be guessed on a physical reasonable basis. This ratio is
called lidar ratio

LR(R) = βext(R)
βsca,π(R) = 1

ω0(R) P (θ = π) , (2.65)

with single-scattering albedo ω0 and phase function P for 180°. This quantity can be
assumed, guessed or calculated with methods introduced in Table 2.2.
The lidar equation assumes, that detected photons were only scattered once, but this

assumption is only correct for a very narrow field-of-view of the instrument. For larger field-
of-view configuration multiple scattering effects have to be taken into account. Simulations
indicated, that only photons that have not left the field-of-view are relevant in multiple
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scattering processes, once they left this area the probability is very low, that they will reach
the detector after several scattering events (Hutt et al., 1994). Therefore, the main part of
multiple scattered photons came from forward scattered photons, that undergo one or many
forward scattering events until they got scattered back towards the detector (Bissonnette
et al., 1995). Because of multiple scattering effects, the detected signal is higher, than just the
part from single scattering and this signal will be interpreted incorrect by Equation (2.62) as
higher transmission. Subsequently, multiple scattering will lead to an underestimation of the
extinction coefficient. Therefore, the multiple scattering signal, looks like a single scattering
signal with reduced optical thickness. This fact allows an easy approximation: Platt (1973)
introduced an multiple scattering factor, ηMS, to correct the two-way transmittance for the
contribution from multiple scattering

PMS(R) ≈ Clid
1
R2 βsca,π(R) exp

[
−2 ηMS

∫ R

0
βext(R′)dR′

]
. (2.66)

In the single scattering approximation, ηMS is equal to 1 and for multiple scattering effects,
ηMS takes values below unity. In Equation (2.66), ηMS is assumed to be constant throughout
the hole cloud layer, but this is only true for thick liquid clouds like shown by Weinman (1976)
and Platt (1981). For ice clouds, ηMS is in principle dependent on the range and the ice crystal
scattering phase function and in turn on their particle properties (PSD, refractive index) and
takes typical cirrus values of below 0.5 (Platt, 1981). There are computational algorithms
for an accurate estimation of the multiple scattering lidar signal based on the instrument
parameters (wavelength, field-of-view) like introduced by Eloranta (1998) and Hogan (2006,
2008); Hogan and Battaglia (2008).
The different methods of how to retrieve βext by inverting the lidar signal will be discussed
in Section 3.4.3.

2.3.3. Benefit of Sensor Synergies

Like aforementioned, different remote sensing devices are sensitive to different cloud prop-
erties. Radars are more sensitive to size and therefore useful to retrieve Reff-profiles, where
lidar in turn are more sensitive to particle concentration and useful to retrieve βext-profiles.
Passive imager or spectrometer have many different wavelength channels to retrieve informa-
tion about atmospheric constituents, where especially the spectral bands in the atmospheric
window between 8 µm to 14 µm can provide valuable information about integrated cloud
properties (Chang et al., 2017).
Retrieval algorithms that are based on the data from only one instrument suffer serious

limitations. Retrievals based on multi-channel passive remote sensing data can only provide
integrated information about optical thickness τ and particle size Reff (Nakajima and King,
1990). Radar-only based retrievals can derive IWC only with large errors up to 200 %, due to
the fact of the high moment of the PSD in Ze measurements, where the signal is dominated
by large particles (Brown et al., 1995). In detail, these radar-only retrievals use power-law
relationships like Ze = gIWCh with coefficient g and h to be determined. Because no other
constraints are availabe, these coefficients can only be determined on a climatologial scale, e.g.
from in-situ measurements with aircrafts, which can introduce a large bias on the retrieval
results (Hogan et al., 2006b). Due to the lack of size information, the same principle is used
in lidar-only retrievals, which use IWC = c(βext)d empirical relationships to retrieve IWC
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(Heymsfield et al., 2014). But these lidar-only retrievals suffer as well on large errors (Avery
et al., 2012).
In turn, radar-lidar retrievals would avoid these large spread of possible values and offer

the possibility for a well constrained size retrieval. Like defined in Equation (2.35) and
Equation (2.39) for Reff and Rrali

eff respectively, size quantities require two moments to the
PSD. Therefore, with two measured observables, sensitive on two PSD moments, it is possible
to retrieve the two unknown microphysical properties βext and Rrali

eff , which in turn can be
converted to IWC and Reff as input for RT calculations via assuming PSD and ice crystal
habit. In order to retrieve cloud properties from combined radar and lidar measurments it
is necessary, that the cloud signals from both devices show a large vertival overlap. Due
to their different wavelength sensitives, lidars can miss detecting cloud top due to strong
attenuation in thick clouds, whereas radars could miss small ice crystals around cloud top
and base, if they are below their detection threshold. With a large overlap from both cloud
signals, it is ensured, that they have detected the same cloud vertically, and a meaningful
retrieval of the microphysical cloud profiles is possible (Stein et al., 2011). The still remaining
uncertainties, due to the lack of information about PSD and ice crystal habit, can be reduced
via including data from a passive imager to the sensor synergy approach. Here, different
variations of PSD and ice crystal habit configuration for the IWC and Reff profile can be
used in RT simulations to obtain different spectra and compare them with recordings of the
passive imager. The configuration causing the lowest spectral residuals can be a indicator for
good assumptions of PSD and ice crystal habit.





3. Methods
In this chapter, the main idea of the retrieval algorithm will be presented. The developed
ice cloud retrieval relies on data from radar, lidar and infrared spectrometry. Therefore, the
involved instruments, their parameters and data proceeding procedures will be introduced.
Furthermore, the details of the two branches of the retrieval algorithm will explained: A
radar-lidar inversion and forward radiative transfer calculations of the spectrometer. Finally,
a categorised overview of the used methods and codes, a flowchart of the hole algorithm and
all the assumptions used in the algorithm are presented.

3.1. Basic Idea
The main idea of the proposed retrieval algorithm is based on a comparison of a measurement
with a modeling scenario as sketched in Figure 3.1. The first step will be to develop a radar-
lidar inversion procedure to derive microphysical profiles from co-located radar and lidar
observations. They are suitable instruments for cloud observations, because they operate at
different wavelengths, and therefore they are sensitive to different sizes of ice cloud particles
and subsequently to different moments of the cloud’s particle size distribution (PSD). These
two independent measurements allow a well-constrained retrieval of ice water content IWC
and effective radius Reff. The second step will be to use a three-instrument retrieval framework
to validate the radar-lidar inversion results with other observations. It is helpful to use an
instrument working at other wavelengths as the active sensors, to evaluate the radar-lidar
retrieval performance. The derived profiles of IWC and Reff will be used alongside profiles of
traces gases and prognostic variables from re-analysis models (Dee et al., 2011) and different
microphysical assumptions to simulate the spectrum of the infrared spectrometer. Now, it
is possible to minimise the spectral residuals between measured and simulated spectrum by
iterating the possible microphysical assumptions.
Concerning the used terminology, SynCirrus describes a three-instrument retrieval based

on radar, lidar and infrared spectrometry data. The radar-lidar inversion is a sub-retrieval
of SynCirrus and is only responsible for deriving IWC and Reff for given set of ice crystal
assumptions. SynCirrus will then use the derived microphysical profiles for forward radiative
transfer calculations to minimise the spectral residuals with measurements from the co-located
infrared spectrometer. In the literature, such a spectral comparison between multiple different
measurements or simulation techniques is often denoted as radiative closure study or closure
experiment (Sussmann et al., 2016). A radiative clousure experiment is a tool, that allows
to evaluate retrieved microphysical properties (Comstock et al., 2007), or to validate and
improve the spectroscopic parameters (absorption models and spectral line parameters) used
in line-by-line radiative transfer models (Turner et al., 2004). However, the SynCirrus algo-
rithm minimises the spectral residuals for different assumptions and tries to retrieve the best
matching microphysical assumptions. Therefore, it is more appropriate to describe SynCirrus
as three-instrument retrieval instead of a closure study, because the spectrometer is not an
independent measurement anymore but rather a part in the retrieval procedure.
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Figure 3.1.: Overview of the proposed measurement and modelling scenarios for co-located
measurements based on radar, lidar and infrared spectrometry as input for a
synergistic retrieval algorithm to derive microphysical profiles from ice clouds with
examples of typical measured cloud signals. The radar signal is more sensitive to
particle size (Reff) and the lidar signal is more sensitive to the ice water content,
due to their wavelength influenced sensitivity on different moments of the PSD.
The hydrogen molecule is representative for the absorption by all atmospheric
traces gases.
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3.2. Instruments and Data Processing

3.2.1. Setups and Instrumentations

For this work, two types of data were used. The first data were recorded during the NAR-
VAL-I aircraft field campaign (Konow et al., 2018). This campaign had the aim to validate
various remote sensing measurements on board of the HALO aircraft with satellite measure-
ments. The High-Altitude LOng-endurance (HALO) aircraft instrumental payload includes
a microwave radiometer, a lidar, a cloud radar and dropsondes, and is operated by the Ger-
man Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt, DLR). These data were
interesting, because the results of the developed radar-lidar ice cloud retrieval could be com-
pared with results from a well established method, that uses a different approach (VarCloud,
Delanoë and Hogan (2008)). It is helpful to check, where the radar-lidar inversion is perform-
ing well, and if all the included corrections like for lidar multiple scattering and numerical
stability are working correctly. In this campaign, the used radar was working on a frequency
of 35.5 GHz (8.45 mm) and lidar used the 532 nm wavelength channel. The data from the
instruments used during NARVAL-I are summarised in Table 3.1.
The second dataset was recorded at two measurement sites at Mount Zugspitze (summit

station and research station UFS). The instrumentations on both sites are operated by the
Institute of Meteorology and Climate Research Atmospheric Environmental Research (Insti-
tut für Meteorologie und Klimaforschung Atmosphärische Umweltforschung, IMK-IFU). This
place offers very dry atmospheric conditions at high altitudes with no saturated spectral re-
gions of the AERI instrument, and is therefore a formidable place to exploit spectrometer
data for a cloud retrieval or for a radiative closure study (Sussmann et al., 2016). Radiative
comparisons between simulated and measured infrared radiances are helpful to analyse the
retrieved microphysical content from an ice cloud by exploiting radar and lidar signals. The
main idea is to use the retrieved microphysical profiles as input for a radiative transfer solver
to compute a radiance spectrum. Iterating over the retrieval assumptions (ice properties and
retrieval technique) in order to minimize the spectral residuals between simulation and obser-
vations, will help to find the best matching microphysical assumptions. On the two Zugspitze
sites, the used radar was working on a frequency of 36.0 GHz (8.33 mm), the ceilometer used
the 1064 nm wavelength channel and the AERI spectrometer was detecting radiances in the
thermal infrared spectral range from 550 cm−1 to 3000 cm−1 (3.3 µm to 18.2 µm). The in-
strument specifications used at Zugspitze sites are given in Table 3.2. VarCloud could not be
used to evaluate the data from Mount Zugspitze, because it requires calibrated lidar signals
and only ceilometer data were available for cloud measurements.
In Figure 3.2, the mentioned ground-based (Mount Zugspitze summit station and UFS)

and aircraft (HALO during NARVAL-I) instrumental setups are illustrated.

3.2.2. Lidar Signal Processing

Difference between detected Cloud Boundaries by Radar or Lidar

Radar-lidar cloud retrievals are only applicable to parts of the signal, where both, radar and
lidar have detected a cloud simultaneously in the corresponding range gates. Due to their
different sensitivities, cloud base and top detected by a lidar does not have to be identic with
their radar counter-parts. Where a radar could miss small ice crystals in a cloud, a lidar
would suffer strong attenuation in optical thick clouds, unable to detect cloud top properly
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(Wang and Sassen, 2001) in ground-based configuration. Therefore, the signals of radar and
lidar have to be preprocessed separately to detect clouds and find possible vertical high signal
overlap regions, suitable for usages in cloud retrievals, afterwards. Due to the large wave-
length emitted by radars pulses, there will be no significant return from hydrometeors smaller
than cloud particles. But lidars are able to record various atmospheric targets. Here, a main
differentiation is required between cloud and aerosol layers, and subsequently a more detailed
signal analysis have to be used. There are different established methods for detecting the plan-
etary boundary layer (PBL), based on gradient (Wang and Sassen, 2001) or wavelet analysis
(Brooks, 2003; Baars et al., 2008). All of them, try to separate significant signal features,
from the noise background. In the following, a cloud detection algorithm will be introduced.
The existing methods for PBL detection, based on the wavelet covariance transform, will be
extended to detect cloud boundaries.

Signal to Noise Ratio

All lidar measurements, especially from ceilometers, are influenced by noise. To distinguish,
usable signal parts from noise dominated parts, the signal-to-noise ratio (SNR) should be
considered. SNR values of 1 or higher are usually considered to be trustworthy, depending
on the concrete meteorological application. The photons detected by a lidar obey a Poisson
distribution, where the noise is denoted by the square root of the signal (Elbaum and Diament,
1976). To estimate the SNR, the background signal Pbg, and the number of laser pulses n
during the average time for a recorded measurement should be known (Heese et al., 2010;
Mattis and Clough, 2014). If these quantities are not provided, the noise can be estimated,
via calculating the standard deviation σ of the lidar signal in the far range of the lidar signal,

Table 3.1.: Technical specifications of the active remote sensing sensors on the HALO aircraft
during the NARVAL-I campaign, which will be used in the retrieval algorithm.

Radar Lidar

name HAMP MIRA WALES

type pulsed Ka-band, polarimetric high-power/performance
airborne water vapor

Doppler
millimeter-wavelength radar differential absorption lidar

wave-
length/frequency 8.45 mm/35.5 GHz 532 nm/563.5 THz

+ two other channels
field of view - 1.6 mrad
(receiver)
beam divergence 0.56° 1.0 mrad

(emitter) (6 dB two-way attenuation
angle)

calibration offset +7.6 dBZ -

references Görsdorf et al. (2015); Ewald
et al. (2019) Wirth et al. (2009)
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Table 3.2.: Technical specifications of the active and passive remote sensing sensors at UFS
and on summit platform of Mt. Zugspitze, which will be used in the retrieval
algorithm.

Radar Lidar

name MIRA-36 JenOptik CHM15k
“NIMBUS”

type vertical pointing pulsed low-power elastic
Ka-band, polarimetric

Doppler backscatter lidar

millimeter-wavelength radar (ceilometer)
location UFS, 2671 m a.s.l. UFS, 2668 m a.s.l.
wave-
length/frequency 8.33 mm/36.0 GHz 1064 nm/281.8 THz

field of view - 0.45 mrad
(receiver)
beam divergence 0.56° 0.3 mrad

(emitter) (6 dB two-way attenuation
angle)

magnetron pulse
power 27 kW -

pump laser pulse
energy - 7 µJ

time resolution 10 s 15 s
range resolution 30 m 5 m to 15 m
calibration
uncertainty 1.3 dBZ -

calibration offset +4.2 dBZ -

references Görsdorf et al. (2015); Ewald
et al. (2019); DLR (2022)

Wiegner et al. (2014);
Wiegner (2018); Luf (2022)

Infrared Spectrometer

name ER-AERI
type ground-based Fourier transform spectrometer for the measurement of

downwelling infrared thermal emission at the Earth’s surface
location Zugspitze Summit station, 2961 m a.s.l.
zenith field of
view 46 mrad

time resolution ∼8 min
(including data transfer and Interferometer scan period)

viewing • ambient blackbody calibration reference (ABB, 113 s)
modes • hot blackbody calibration reference (HBB, 113 s)

• zenith atmospheric view (SKY, 214 s)
measurement
sequences . . . , HBB, ABB, SKY | ABB, HBB, SKY | HBB, ABB, SKY, . . .

spectral coverage 550 cm−1 to 3000 cm−1 (3.3 µm to 18.2 µm)
spectral
resolution 0.5 cm−1 (max OPD of 1 cm)

radiometeric Absolute accuracy: < 1 % of ambient blackbody radiance
calibration Reproducibility: < 0.2 % of ambient blackbody radiance
noise < 0.4 mWm−2sr−1cm−1 for 670 cm−1 to 1400 cm−1

references DeSlover et al. (1999); Knuteson et al. (2004a,b); Rettinger (2019)
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LIDAR RADAR

AERI

Figure 3.2.: (left) Instrumental setup for a three-instrument retrieval framework at Mount
Zugspitze. The derived microphysical profiles from radar (MIRA) and lidar
(ceilometer) measurements, located at UFS, will be used as input for RT calcula-
tions (libRadtran). The simulated spectrum will be compared with the measured
spectrum from the AERI instrument, located at the summit platform. (right)
Combination of lidar (WALES) and radar (HAMP MIRA) measurements from
the HALO Aircraft. Lidar (green) and radar (red) provide vertical profiles along
the flight-track while overflying ice clouds. Pictures are taken, modified and
combined from www.auf-den-berg.de, Yang et al. (2005b) and Schäfler et al.
(2018).

usually the last 100 range gates, where only noise is present (Durieux and Fiorani, 1998). In
summary, the SNR is given by

SNR(R) =


nP (R)√

nP (R)+nPbg
n and Pbg provided

P (R)
σ else.

(3.1)

In part (a2) of Figure 3.3, an example SNR profile, measured at UFS is shown.

Wavelet Covariance Transform

In lidar signals, detected cloud boundaries and PBL show a sharpe increase of the signal.
These signatures have to be identified with signal processing routines. Recent studies, showed
that wavelet based techniques are less affected by signal noise than the variance and gradient
method (Baars et al., 2008). Wavelet based transformations are “local” transformations,
suitable to detects sharp signal transitions, caused by clouds or aerosol layers. The localised
transform Wf (d, t) of a function f(R) is

Wf (d, t) = 1
dp

∫ Rmax

Rmin
f(R) h

(
R− t
d

)
dR , (3.2)

www.auf-den-berg.de
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where d is the dilation and t is the translation parameter. The function f(R) is the range-
corrected lidar signal P (R)R2 and the lower and upper limits of the profile are denoted as Rmin
and Rmax, respectively. The step function h(R− t/d) is called the Haar function, sometimes
Haar wavelet, and is defined as

h

(
R− t
d

)
=


+1 t− d

2 ≤ R ≤ t
−1 t ≤ R ≤ t+ d

2
0 elsewhere ,

(3.3)

and has to fulfill some criteria like zero mean and an adequate decay in frequency space
(Gamage and Hagelberg, 1993). Wf (d, t) is denoted as wavelet transform for p = 1/2 (Daubechies,
1988; Grossman, 1989; Meyer, 1989) and as wavelet covariance transform (WCT) for p = 1
(Gamage and Hagelberg, 1993). In contrary to the wavelet transform, the WCT is not a norm
preserving transformation. In the course of this thesis, p is always assumed to be 1. For the
Haar wavelet, like shown by Gamage and Hagelberg (1993), the WCT can be rewritten as

Wf (d, t) = covf,h(d, t) (3.4)
= rf,h(d, t) [covf,f (d, t)]1/2 , (3.5)

(3.6)

where rf,h(d, t) is the correlation between the functions f and h, and covf,f (d, t) is the
covariance of f with itself. rf,h(d, t) is a measure to describe the similarity in shape between
f and h in a close area around t, and will equally weight signals f of arbitrary amplitude but
of similar shape. Therefore, rf,h(d, t) can not distinguish noise from desired signal parts. But
covf,f (d, t) is a measure of the variance of the signal f in an area around translation t, and
provides a mean of distinguishing of noise and desired signal. Hence, Wf (d, t) is measure for
the similarity of f and h, and the form of h is chosen to locate sharp transitions in f , like
caused by cloud boundaries and the PBL in lidar signals. In part (b2) and (c2) of Figure 3.3,
an example of the Haar wavelet’s shape to detect sharp signal transitions is illustrated.

Detection of Alpine PBL

Brooks (2003), showed the utility to use thresholds to separate noise from desired signal
and identify the PBL altitude based on WCT analysis. The Haar wavelet has a maximum
amplitude of 1, and therefore the range-corrected lidar signal first has to be normalised by
the maximum of the PBL, to be usable in a WCT analysis. Because the PBL is temporal
much less variable than cloud boundaries, it is useful for the signal normalisation. The extent
of the Haar function, the dilation d, is chosen a priori, so the WCT becomes a function of the
translation t only, which is mainly the location of the step in h. The dilation is an important
parameter for the edge detection and its size should cover the transition zone. A good value
of d was found to be 490 m. For much smaller values of d, the noise will dominate the WCT
profile of P (R)R2, and much larger values can lead to a cut-off of the lower and upper parts
of the profile, but they are critical for the detection of a shallow PBL. Hence, Wf (d, t) is a
similarity measure of P (R)R2 and Haar function h, Wf (d, t) will take a local maximum at
the top height of the PBL (see (b3) of Figure 3.3). The first guess for detection of the the



48 3. Methods

PBL top requires the WCT to pass a wavelet threshold THWCT,PBL = 0.06 (green line in
(b3) of Figure 3.3) and the height of local maximum of the WCT above THWCT,PBL will be
identified as the PBL top height.

Detection of Cloud Base

The signatures of cloud boundaries in the P (R)R2 signal, always show a steep increase at
cloud base and a subsequent strong decrease of the signal, due to the Lambert-Beer term in
the lidar equation, until cloud top or the signal will become fully attenuated before reaching
it. Because of these characteristic signatures, the WCT can be used for cloud detection as
well. Like illustrated in (c3) of Figure 3.3, the WCT first becomes negative at cloud base until
it reaches a local minimum, and then becomes positive until reaching the local maximum.
Hence, the first guess for cloud top can be identified at the height where the WCT falls
between a negative wavelet threshold value of THWCT,base = 0.3, see green line in (c3) of
Figure 3.3. Because of the noise presence two criteria have to be added to establish a more
robust cloud base detection: (i) the WCT has to fall below the threshold THWCT,base for at
least N = 15 consecutive range gates, to ensure that the identified cloud base was not caused
by a noisy signal part. (ii) The vertical moving average of the SNR(R) profile, with 4 range
gates filter length, has to exceed a SNR threshold THSNR,base = 2.5 for a certain number of
consecutive range gates again. The WCT threshold is very good to estimate a first guess of
the cloud base and the criteria (i) and (ii) will move the detected cloud base a little bit up if
necessary, to have numerically more robust results.

Detection of Cloud Top

The detection of cloud top is similar to the base detection. A wavelet criteria will provide
the first guess for cloud top and two following signal criteria (i) and (ii) will investigate the
signal quality and lower the detected cloud top if necessary. The wavelet criteria to identify
cloud top relies on calculating the cumulative WCT (CWCT)

Cum(Wf (d, t)) :=
∫ t

cb
Wf (d, t′)dt′ , (3.7)

where cb is the already detected cloud base. As indicated in (d3) of Figure 3.3, the cumula-
tive WCT, starting from detected cloud base is negative and becomes smaller until reaching a
local minimum. Now, the CWCT, increases until it reaches positive values around cloud top.
The first guess for detecting cloud top is, where CWCT first exceeds the wavelet threshold of
THWCT,base. As for cloud base, the signal quality criteria (i) and (ii) are applied and would
lower the detected cloud top a little bit, if necessary.

Application to Datasets

Depending on the wind speed and the structure of the cloud, the lidar signals could be
temporal averaged to reduce noise, before using them in a WCT analysis. The used thresholds
were found to deliver good results but have to be chosen a priori and they would differ for a
different lidar system. To have a fully consistent procedure, one could use a machine learning
based preprocessing, to be independent of specific lidar system parameters (Wang et al., 2020;
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Figure 3.3.: Schematic illustration of the steps in the cloud detection algorithm for a ceilome-
ter backscatter profile recorded at UFS (2017-05-10 23:52:10 UTC). Due to the
high altitude of the ceilometer location, it is recording an alpine PBL, a PBL
associated with mountain regions. Its signal is much weaker and temporal more
variable than the ordinary PBL. The negative signal parts of the range-corrected
ceilometer signal P (R)R2 are caused by background subtraction. The temporal
filter length of the signals is 2.5 min.
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Figure 3.4.: Flowchart to illustrate the steps involved in the cloud detection algorithm.
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Figure 3.5.: (left) Range-corrected lidar signal P (R)R2, measurement recorded from a
Ceilometer at UFS at 17th November, 2012. (right) Corresponding cloud masked
dataset after WCT analysis. For very low signal values, the SNR threshold is
not exceeded and therefore no clouds will be detectable.

Yorks et al., 2021). In Figure 3.5, an example of a cloud masked dataset, recorded from a
ceilometer at UFS, is shown.

3.2.3. Radar Signal Processing

Ewald et al. (2019) explored, that measured radar reflectivities from HAMP MIRA had to
be corrected for an offset of +7.7 dB. Because the MIRA radar used at UFS is similar
constructed, its data have to be corrected as well, but there are some differences between
aircraft and ground-based instrumentation (Ewald, 2019), lowering the offset to +4.2 dB, like
shown in Table 3.3.

Correction of Radar Signal Attenuation

The observations made by molecular spectroscopy showed, that there are electronic, vibra-
tional, or rotational transitions of quantised states of molecules in the gas phase. Electronic
transitions have energies in the optical and UV range, vibrational transitions occur between
different vibrational levels of the same electronic state and have energies in the IR range, and
rotational transitions occurring mostly between rotational levels of the same vibrational state
and have energies in the microwave region (Demtröder, 2010). Therefore, when dealing with
radar waves, only rotational transitions are important, and under atmospheric circumstances,
these transitions are broadened proportional to the air pressure and due to the Doppler effect
(Maryott and Birnbaum, 1962). Radars with frequencies higher than 94 GHz are generally
considered to be unsuitable for ground-based observations of ice clouds, due to the strong
water vapour and oxygen absorption in the boundary layer (Hogan et al., 2006c). Below
frequencies of 100 GHz, the gaseous attenuation of a radar beam is dominated by oxygen
and water vapour, as illustrated in Figure 3.6 (a). For high ice clouds in altitudes of 10 km
the two-way gaseous attenuation of a radar beam at 36 GHz, can amount up to 1.5 dB and
lies in the same order of magnitude as the calibration uncertainty, as shown in Figure 3.6
(b). Therefore, a correction on the radar reflectivity must be applied for the attenuation by
intervening atmospheric gases

Ze,corr(z) = Ze(z) + 2
∫ z

0
Kf

[
P (z′), T (z′), RH(z′)

]
dz′ , (3.8)
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Table 3.3.: Overview of the different contributions to the radar calibration offset, relevant for
NARVAL-I and UFS data. The parameters are according to Ewald et al. (2019,
Table. 2) and (Ewald, 2019).

Parameter Original Ewald Study Offset HAMP-MIRA Offset UFS-MIRA

receiver and
transmitter
waveguides

- 1.5 dB +1.5 dB -

finite receiver
bandwidth - 1.2 dB +1.2 dB +1.2 dB

belly pod
radome 1.0 dB 3.0 dB +2.0 dB -

peak antenna
gain 49.75 dBi 50.0 dBi -0.5 dB -0.5 dB

antenna
half-power
beamwidth

0.6° 0.56° +0.6 dB +0.6 dB

RF front-end
noise figure 8.8 dB 9.9 dB +1.1 dB +1.1 dB

RF noise
bandwidth 5 MHz 7.5 MHz +1.8 dB +1.8 dB

total offset +7.7 dBZ +4.2 dBZ
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Figure 3.6.: Theoretical values for signal attenuation of radio waves by atmospheric gases
using re-analysis data from 22nd October, 2013 for the gridbox including Mt.
Zugspitze at two different altitudes. (a) Attenuation caused by H2O or O2 alone,
and (b) Attenuation caused by H2O and O2 for two different altitudes. The
meteorologic parameters at 2.96 km a. s. l are 52 % relative humidity, 277 K,
714 hPa and water vapour mass density of 3.24 g m−3, and at 7.0 km a. s. l
are 29 % relative humidity, 249 K, 423 hPa and water vapour mass density of
0.22 g m−3.
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where Ze, P , T and RH denote the measured attenuated radar reflectivity factor (dBZ),
the air pressure, the temperature and the relative humidity, respectively. The coefficient Kf

is the one-way specific attenuation from atmospheric gases (dB km−1) for frequency f and is
calculated based on ITU (2013) or with the pyMPM code based on the model presented in
(Liebe et al., 1993). In Equation (3.8), the assumption was used, that the radar attenuation by
ice clouds can generally be considered to be negligible up to 94 GHz (Hogan and Illingworth,
1999), and hence it is sufficient to only calculate the attenuation up to the ice cloud base.
For the inclusion of liquid water clouds and melting ice, there would be a significantly higher
attenuation and the two-way gaseous attenuation factor has to include liquid water content
additionally (Lhermitte, 1990; Hogan et al., 2005).

3.2.4. Interferometer Spectra Processing

Uncertainty from Spectral Radiance Measurements

AERI measurements provide absolute downwelling atmospheric emitted infrared radiances
with high spectral accuracy (0.4821 cm−1,Knuteson et al. (2004b)). To give a meaningful
comparison of them with RT simulations, the uncertainties for recording spectral radiances
should be investigated. Following Knuteson et al. (2004a,b), there are three main sources
of uncertainty. First, there is the AERI measurement noise, an estimate of this radiance
measurement noise is automatically generated by the AERI software within the radiometric
calibration procedure according to the method established by Revercomb et al. (1988); Suss-
mann et al. (2016). A noise reduction of about 50 % can be achieved by applying a principal
component analysis filter (PCA, Turner et al. (2006)) to the spectra. The other two radiance
uncertainties are associated with the radiometric calibration errors. The calibration uncer-
tainty is estimated to be less than 0.67 % (2 σ), and the repeatability (precision) is assumed
to be 0.13 % (2 σ) of the ambient blackbody radiance, like shown by Knuteson et al. (2004b).
The resulting radiance uncertainties are shown in Figure 3.7 for a clear sky and a clouded
scene. The dominant part of the uncertainties is caused by the radiometric calibration. For
clear sky closure experiments, the AERI uncertainty should be considered, but for spectra
recorded from clouded scenes the radiometric calibration error is negligible in comparison to
uncertainties caused by the retrieval method (Blanchard et al., 2017). Hence, due to the high
spectral and absolute accuracy, AERI measurements are considered to be suitable for spectral
comparison with RT simulations of clouded scenes.

Selection of Spectral Microwindows in Atmospheric Spectroscopy

Spectrometer measurements include mainly contributions from line absorption (typically from
water vapour), continuum absorption (the sum of the contributions of absorption in the far
wings of the line), and cloud absorption. Due to the spectral resolution of the AERI of
0.4821 cm−1, it is possible to find spectral microwindows of cloud absorption between gaseous
absorption lines. Therefore, microwindows are the least-absorbing regions within the spectral
bandpass of the instrument and offer the possibility to evaluate spectral comparisons in the
least “contaminated” regions, which relieves the analysis of cloud microphysics by separating
the uncertainty in the strength and width of the individual absorption lines (DeSlover et al.,
1999; Yang et al., 2005a; Guo et al., 2005; Turner, 2005). In Table 3.4, a number of low-
absorption regions, that will be used for analysing the impact of clouds on a spectrum, are
listed and illustrated in Figure 3.8.
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Figure 3.7.: Contributions to uncertainty budget in AERI measurements from 18th October,
2013 with radiance spectra recorded from a clouded (23:39:17 UTC) and a clear
sky scene (03:52:48 UTC).

There are different strategies possible, to exploit the information content represented by
the recorded spectral radiances in the microwindows. In retrievals, the spectral residuals
(measured spectrum minus best-fitting simulated spectrum) could be calculated by simple
formations of means in the microwindows or by using optimal estimation methods (von Clar-
mann and Echle, 1998). The number and location of microwindows is somehow arbitrary, as
long as they are chosen in the atmospheric infrared window, similar results can be obtained
with different sets of microwindows (Turner, 2005).
In contrary to single or multi-channel broadband thermal radiometers, high resolution spec-

trometer and the propositioning exploitation of consecutive spectral grid points in microwin-
dows offers several advantages. For example, distortions in the shapes of spectral lines, can
cause an overestimation of the measured radiances at some spectral grid points, but can also
cause an underestimation of the measured radiances at some others points, consequently the
usage of well-chosen microwindows allows for a partly compensation of these effects. Further-
more, systematic errors in retrievals typically translate into typical structures of the residual
spectrum, an information that would be lost with only using a single spectral grid point (von
Clarmann and Echle, 1998; Blanchard et al., 2017).

3.2.5. Target Classification

Before the cloud-masked data can be evaluated, it is important to determine the nature of
the target in each observed pixel on the interpolated common radar-lidar grid. Currently,
the SynCirrus algorithm can only retrieve ice cloud properties, but liquid water and mixed-
phase clouds could be included in the future. The cloud phase information is also very
important for radiative transfer calculations, see Figure 3.13. The presence of liquid water
layers in the measured profile, can lead to a significant reduction of the detected infrared
radiances compared to, when only ice is present. Therefore, simulated infrared radiances
would be overestimated, if they do not account for the liquid part of the profile. Hence,
the algorithm searches for cloud areas, where the temperature is below -38 ° ◦C, because for
these temperatures clouds consist almost exclusively of ice crystals (Korolev et al., 2017).
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Figure 3.8.: Used microwindows between strong absorption lines. AERI measurement from
23rd November, 2012 with radiance spectra for clouded (00:16:59 UTC) and a
clear sky scene (06:23:17 UTC).

Table 3.4.: Selection of microwindows regions, according to (DeSlover et al., 1999; Turner,
2005).

Window Region
[
cm−1] Region [µm]

1 770.900 to 774.800 12.972 to 12.907
2 785.917 to 790.739 12.724 to 12.646
3 809.061 to 812.919 12.360 to 12.301
4 815.330 to 824.491 12.265 to 12.129
5 828.348 to 834.617 12.072 to 11.982
6 842.814 to 848.118 11.865 to 11.791
7 860.172 to 864.030 11.626 to 11.574
8 872.227 to 877.531 11.465 to 11.396
9 891.996 to 895.853 11.211 to 11.163
10 898.264 to 905.497 11.133 to 11.044
11 929.606 to 939.731 10.757 to 10.641
12 959.982 to 964.323 10.417 to 10.370
13 985.056 to 998.075 10.152 to 10.019
14 1076.670 to 1084.867 9.288 to 9.218
15 1092.100 to 1098.850 9.157 to 9.100
16 1113.316 to 1116.691 8.982 to 8.955
17 1124.406 to 1132.603 8.894 to 8.829
18 1142.246 to 1148.032 8.755 to 8.711
19 1155.265 to 1163.462 8.656 to 8.595
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The results were compared and cross-checked with the target categorization used in Cloudnet
(Hogan and O’Connor, 2004a; Hogan et al., 2006a; Illingworth et al., 2007b; Delanoë and
Hogan, 2010).

3.2.6. Meteorological Re-Analysis

Among the variable greenhouse gases in Earth’s atmosphere, the strongest contribution is from
water vapour, as mentioned in Section 2.1.2. To be able to undertake reasonable radiative
transfer calculations, at least, current profiles of temperature, pressure and the water vapor
concentration need to be known. If close-by radiosonde data are not available, these profiles
can be obtained by meteorological re-analysis, at the cost of a higher uncertainty. Re-analysis
data are based on the assimilation of quality-checked observational data into calculations
based on weather and climate models. These data offer global fields at different altitude
model levels of various parameters and are calculated backwards over a long period of time
using all suitable observational data available, with the aim to provide a temporally and
spatially highly resolved homogeneous dataset. In this thesis, meteorological data from the
European Center for Medium-Range Weather Forecasts (ECMWF) ERA-Interim re-analysis
(Dee et al., 2011; Hoffmann et al., 2019) were used. ERA-Interim data offer a horizontal
resolution of approximately 80 km on 60 vertical model levels and 37 vertical pressure levels,
from the surface up to a pressure of 0.1 hPa. The temporal grid provides these profiles
in steps of 6 h at 0, 6, 12 and 18 UTC every day. The used ERA-Interim quantities are
temperature, relative and specific humidity, surface geopotential, surface pressure, surface
temperature, surface dew point and model levels. The suitable ECMWF grid box is for the
geographical location of Mount Zugspitze is chosen by applying the Haversine formula which
determines the shortest distance between two points on the surface of a sphere given their
longitudes and latitudes (Chopde and Nichat, 2013). With the pressure level coefficients
and the surface pressure, the air pressure on model levels can be calculated. The specific
humidity at surface can be calculated using surface temperature, surface pressure and surface
dew point temperature by using the Clausius-Clapeyron equation. With these quantities
and the virtual temperature, using the hydrostatic equation, the pressure differences can be
converted to height differences. Finally, the water vapour number density can be calculated
with the ideal gas equation using air pressure, specific humidity and temperature. All the
used and mentioned conversion formulas can be found in Berrisford et al. (2011) and Stull
(2015).

3.3. Radiative Transfer Simulations

3.3.1. Library for Radiative Transfer - libRadtran

Radiative transfer (RT) calculations to simulate the AERI spectrum were taken out by using
the libRadtran software package (Mayer and Kylling, 2005; Emde et al., 2016). Besides RT
radiance calculations, libRadtran was also used for Mie calculations. The main tool of this
software library is uvspec which contains several solvers for the RT equation. As input,
uvspec requires a description of the atmospheric state, e.g. atmospheric profiles of trace
gases and cloud profiles of ice water content and effective radius. Several parameterisations
can be chosen, to convert the atmospheric state into single-scattering or optical properties,
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see Section 2.1.3, and then they will be passed to the RTE solver to take out calculations
monochromatically or in desired wavelength bands.
In the thermal infrared region, there are thousands of narrow absorption lines, due to several

vibrational or rotational transitions in molecules from atmospheric gases. To handle spectral
regions, that are affected by molecular absorption, libRadtran offers different parameterisa-
tions. Among others, there is the reptran parameterisation, where integrals over spectral
intervals are parameterized as weighted means over representative wavelengths (Gasteiger
et al., 2014). For “exact” spectral calculations, it is possible to rely on Line-By-Line (LBL)
models, where libRadtran offers the possibility to use predefined spectrally resolved absorp-
tion cross-section profiles from LBL models like ARTS (Eriksson et al., 2011; Buehler et al.,
2018), which in turn are using spectroscopic databases like HITRAN as input (Rothman et al.,
2005, 2009).

Figure 3.9.: Schematic illustration of a multilayered plane-parallel horizontally homogeneous
medium. The optical properties of a layer is characterized by its optical thickness
τp, the single-scattering albedo ω0,p, and the scattering phase function Pp. They
are constant within each layer, but allowed to vary from layer to layer. Figure
taken from Stamnes et al. (2000).

3.3.2. 1D Radiative Transfer Solver - DISORT

The DIScrete ORdinate Radiative Transfer procedure (DISORT), proposed by Chandrasekhar
(1960) and implemented by Stamnes et al. (1988), is a numerical method to approximately
solve the RT equation for a multi-layered plane-parallel atmosphere in one-dimensional ge-
ometry, see Figure 3.9. The main idea is, to apply three types of discretisations to the RTE
and transform the pairs of coupled integral-differential equations into a simpler system of
linear coupled ordinary differential equations. These equations are finally converted into a
high-dimensional linear algebra system, which is solved like an eigenvalue problem (Stamnes
et al., 2000; Liang, 2004).
The purpose of the first two discretisations, is to factor out the azimuthal dependence. The
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scattering particles in an atmospheric layer are assumed to have random orientations and
therefore ω0 does not explicitly depend on the direction of the incident beam and the phase
function P only depends on the angle between incident and scattered beam, P (τ, µ, φ;µ′, φ′) =
P (τ, cos Θ). Due to this restriction, it is possible to expand the phase function into a series
of Legendre polynomials Pl

P (τ, cos Θ) =
2N−1∑
l=0

(2l + 1) glPl (cos Θ) , (3.9)

where gl are expansion coefficients. Applying the addition theorem for spherical harmonics,
allows to transform the Legendre polynomials Pl into a Fourier cosine series (Stamnes et al.,
2000; Kokhanovsky, 2021) of φ (Kokhanovsky, 2021). Because of this, it is useful to use the
second discretisation to similarly expand the radiance into a Fourier cosine series as well

L(τ, µ, φ) =
2N−1∑
m=0

Lm(τ, µ) cos [m (φ0 − φ)] . (3.10)

These two discretisations will split the RTE into a set of 2N independent integro-differential
equations, one for each azimuthal radiance component Lm, it uncouples the Fourier compo-
nents, and they do not depend on azimuth angle any more.
The final discretisation uses the method of discrete ordinates, to sample µ for the zenith

angle distribution. Therefore, the angular integrals of the RTE will be approximated via the
Gaussian quadrature rule (Stamnes et al., 2000)

∫ 1

−1
L(τ, µ)dµ ≈

N∑
j=−N

wjL(τ, µj) , (3.11)

where wj is the quadrature weight and µj is called discrete ordinate. The quadrature
weights are orthogonal polynomials, that can be integrated, but the quadrature rule will
only be an accurate approximation to the integral above, if L(τ, µ) is well-approximated by
a smooth Legendre polynomial of degree 2N − 1 or less on [−1, 1]. The use of Gaussian
quadrature guarantees that the phase function will be normalized, implying that energy is
conserved for the computations. The number of streams is given by 2N and libRadtran uses
16 streams as default.
These three discretisations allow for a compact matrix formulation of the RTE for every

layer in Figure 3.9. Because the resulting form of the RTE is linear in radiance, its gen-
eral solution is given by the sum of two separate solutions, the homogeneous (no thermal
source) and particular solution. The required boundary conditions are given by solving linear
algebraic equations for the arbitrary constants of the homogeneous solution (Kokhanovsky,
2021).
The most important feature of DISORT is, its unconditionally stability for an arbitrarily

large number of quadrature angles (streams) and arbitrarily large optical depths (Stamnes
et al., 1988).

3.3.3. Treatment of Molecular Absorption

The passive atmospheric sounder AERI is able to record the downwelling infrared radiances
with a high spectral resolution (0.5 cm−1) and is therefore formidable to be used in so-called
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clearsky radiative closure experiments (Turner et al., 2004; Sussmann et al., 2016). The idea
is, to compare measured radiance spectra with simulations (high spectral accuracy) of the
spectra driven by coincident-state measurements. When the radiative closure of measured
minus simulated spectral radiances will show spectral residuals, they can be minimised by
adjusting the atmospheric state input parameters of the model. Hence, a closure study is a
quality measurement experiment for the downwelling infrared radiance and helps to validate
and improve the absorption models and spectral line parameters used in spectral high resolved
radiative transfer models. For comparisons, the RT model should be calculated on a higher
spectral resolution than the AERI and the synthetic radiance spectra have to be convolved
with a sinc-type instrumental line shape accounting for the maximum OPD (Knuteson et al.,
2004b).
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Figure 3.10.: Simulated spectra for a cloud with τ = 2.25, using different molecular parame-
terisation schemes.

Therefore, clearsky closure comparisons require modeling the radiative impact of molecules
and to include radiative processes such as pure rotational absorption/emission in the far
infrared (FIR) and vibration-rotation absorption/emission in the mid-infrared (MIR) and
the near infrared (NIR). Quantum mechanical selection rules for absorption and emission
lead to atmospheric band-type spectra with thousands of individual spectral lines. The most
accurate, but very time-consuming, method of simulating these processes is a fully resolved
Line-By-Line approach (Eriksson et al., 2011).
Clearsky radiative closure studies for the full infrared spectrum are helpful to gain in-

sight about uncertainties related to the spectroscopic line parameters (e.g., line strength and
pressure-broadened half width), but for retrieving ice cloud properties, it is more useful to
rely on the analysis of radiances in microwindows, like indicated in section 3.2.4. The uncer-
tainties introduced by the assumptions in a cloud retrieval are probably much larger than the
uncertainties in spectroscopic line parameters. Furthermore, if the spectral residuals between
an exact method (LBL) and a parameterisation of molecular absorption (e.g. REPTRAN,
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max resolution of 1.0 cm−1) are much smaller, than spectral residuals caused by retrieval
assumptions, it is possible to compare the AERI spectrum with a simulated spectrum on a
coarser grid than 0.5 cm−1, like shown in Section 4.1.1.

Line-By-Line

The LBL method is considered to be an “exact” computation of radiative transfer in the
gaseous absorbing/emitting inhomogeneous atmosphere and it includes all (known) gas ab-
sorption lines in the wavenumber range from 0 to 17.900 cm−1 (Rothman et al., 2005). In
order, to be able to resolve individual lines, the absorption coefficient must be computed
at wavenumber intervals, that are smaller than the line half-width. The HITRAN database
includes more than 1 million line parameters and includes the species H2O, CO2, O3, N2O,
CO, CH4 and O2.

REPTRAN

To speed up the costly calculations of spectral ranges affected by fine-structured absorption
features of gases, different parameterisation approaches are used. The most prominent, is the
correlated k-distribution (CKD) method (Fu and Liou, 1992). In this method, the frequency
grid will be sorted according to the absorption coefficient at different frequencies. The result
is a re-ordered frequency grid, where the spectrum is smooth and monotonic, and therefore it
can be approximated with only a few frequency grid points and linear interpolation between
them. The disadvantage of the CKD method is that the exact sorting depends on pressure,
temperature, and trace gas concentration, and it is thus not straightforward to determine the
optimal compromise for a frequency grid sorting (Gasteiger et al., 2014).
An alternative parameterisation to the CKD method, is to approximate spectrally in-

tegrated radiances by weighted means of radiances at so-called representative frequencies
or wavelengths (Buehler et al., 2010). This method was extended to cloud parameters by
Gasteiger et al. (2014). The underlying assumption of this method is that the radiance at
a single frequency will be representative for the radiance at some other frequencies, where
atmospheric optical properties are considered as similar. Thus, the integrated radiances for
a broad instrument channel can be approximated as (Gasteiger et al., 2014)

Lint =
∫ λmax

λmin
L(λ)R(λ)dλ ≈

[∫ λmax

λmin
R(λ)dλ

] Nrep∑
irep=1

L(λirep)wirep

 , (3.12)

where R(λ) is the spectral weighting function of the spectral interval. The selection of an
optimum set of representative wavelengths is based on accurate LBL simulations for Top-Of-
Atmosphere radiances of a highly variable set of atmospheric states (Emde et al., 2016).

In Figure 3.10, high resolution line-by-line calculations are compared with coarser REP-
TRAN calculations for the infrared window range.

3.3.4. Ice Crystal Optical Properties

To take out RT calculations with ice crystals in cirrus clouds, the single-scattering proper-
ties given by Yang et al. (2013) were used in this thesis. Yang et al. (2013) provides an
extensive database of ice crystal optical properties for 11 different ice crystal habits assuming
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three-dimensional random orientations. In detail, it contains the extinction efficiency, single-
scattering albedo, asymmetry parameter, six independent non-zero elements of the phase
matrix, and all given in the spectral range from 0.2 µm to 100 µm. The included ice crystal
habits are droxtals, prolate spheroids, oblate spheroids, solid and hollow columns, compact
aggregates composed of eight solid columns, hexagonal plates, small spatial aggregates com-
posed of 5 plates, large spatial aggregates composed of 10 plates, and solid and hollow bullet
rosettes. For each habit, particle projected area and particle volume is given, and the max-
imum dimension of each habit ranges from 2 µm to 10 000 µm. Furthermore each ice crystal
habit is given at three different surface roughness conditions (smooth, moderately roughened,
and severely roughened).

Figure 3.11.: Ice crystal habits given in Yang database. Figure taken from Yang et al. (2013).

The spatial orientation of non-spherical ice crystals in cirrus clouds is a significant factor
for RT calculations in the atmosphere (Yang et al., 2000). Models usually distinguish between
horizontally (e.g. plates) and randomly oriented ice crystals (e.g. aggregates) in non-turbid
atmospheres. Yang et al. (2018) showed, that it is quite reasonable to assume ice particles
to be randomly oriented for passive remote sensing applications. In that case, the single-
scattering properties for a sample of non-spherical ice crystals have to be averaged over Euler
angles (α, γ), that specify the orientation

P (cos Θ,∆φ) = 1
2πσsca

∫ 2π

0

∫ π/2

0
P (α′, γ′; cos Θ,∆φ)σsca(α′, γ′) sinα′dα′dγ′ (3.13)

σext,sca = 1
2π

∫ 2π

0

∫ π/2

0
σext,sca(α′, γ′) sinα′dα′dγ′ , (3.14)

where (α,α′) are zenith angles with respect to the orientation of the ice particle, and (γ,γ′)
correspond to the azimuthal angles (Liou and Yang, 2016). In case, all non-spherical ice
particles would have rotational symmetry (e.g., circular cylinders), then the phase function
is independent of the azimuthal angle ∆φ = (φ− φ′).
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For surface roughness, the normal distribution of the surface slope of an ice crystal’s surface
is described by

P (Zx, Zy) = 1
σ2
surπ

exp
(
−
Z2
x + Z2

y

σ2
sur

)
, (3.15)

following the approach from Cox and Munk (1954), where Zx and Zy denote the local slope
variations of the particle’s surface along the two orthogonal directions x and y. The parameter
σsur is used to quantify the degree of surface roughness: smooth surface (σsur = 0), moderate
surface roughness (σsur = 0.03), and severe surface roughness (σsur = 0.5).

3.3.5. Microphysical Model and Single Scattering Properties

In order, to be able to retrieve useful microphysical ice cloud properties, it is necessary, that
the two branches of the thee-instrument retrieval (SynCirrus ), see Figure 1.2, make consistent
assumptions about the underlying microphysical model. The first branch, the radar-lidar
inversion procedure, mainly uses assumptions about habit geometry and PSD. The second
branch, the RT calculations, extends this to single-scattering properties. The different ice
crystal databases available in the scientific community (Yang et al., 2005b; Baum et al., 2005;
Yue et al., 2007; Baran, 2009; Baum et al., 2011; Yang et al., 2013), have significant differences
concerning their assumptions about ice habits etc., and therefore it is necessary to use the
same database consistent in both retrieval branches.
As described in section Section 2.2.1, bulk microphysical properties are required to param-

eterise ice cloud properties to be used by a RTE solver. Thus, and for operational retrieval
usage, the single-scattering properties have to be averaged over various particle size distribu-
tions with an assumed ice crystal habit, and have to be tabulated in lookup tables (LUTs)
for use in RT calculations.
Assuming, a monomodal generalised gamma distribution, there are two independent pa-

rameters, the scale Ds and the shape µ, that have to be fixed. To build up a LUT, it is
useful, to calculate the bulk-optical properties on an equidistant effective radius grid, includ-
ing values from 5 µm to 160 µm in steps of 5 µm, and on an equidistant shape parameter grid,
ranging from −1 to 11 in steps of 1 (Heymsfield et al., 2013). Thus, for a given Reff, habit
and µ, the scale parameter Ds will be determined by solving the equation

Reff
!= 3

4
〈V (D,Ds, µ)〉
〈A(D,Ds, µ)〉 , (3.16)

for all the LUT grid points. Therefore, the ice crystal optical bulk properties will be
calculated via integrating the Yang database according to

〈βext(Reff, µ)〉 =
∫Dmax
Dmin

N(D,µ)Qext(D)A(D)dD
ρice

∫Dmax
Dmin

N(D,µ)V (D)dD
(3.17)

〈ω0(Reff, µ)〉 =
∫Dmax
Dmin

N(D,µ)ω0(D)Qext(D)A(D)dD∫Dmax
Dmin

N(D,µ)Qext(D)A(D)dD
(3.18)

〈Pij(Reff, µ, θ)〉 =
∫Dmax
Dmin

N(D,µ)Pij(D, θ)ω0A(D)Qext(D)dD∫Dmax
Dmin

N(D,µ)A(D)Qext(D)ω0(D)dD
, (3.19)
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for every ice crystal habit and surface roughness included in the database, where ρice is
the density of ice, Pij denotes the six independent phase matrix elements and Qext is the
extinction efficiency coefficient.
In Figure 3.12, the absorption and scattering efficiency spectra are shown in order to illus-

trate the spectral sensitivity of these important radiative transfer parameters. It can be seen,
that the thermal IR channels of the absorption efficiency become increasingly less sensitive
to particles larger than about 100 µm.
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Figure 3.12.: (left) Absorption efficiency spectra for ice crystals across a range of Reff val-
ues. (right) Scattering efficiency spectra for a range of different PSD shape
parameters µ. Both spectra are for plate like ice crystals with smooth surface
roughnesses, obtained by integrating the Yang database.

3.3.6. Magnitude of Processes Contributing in Thermal Infrared Spectrum
The AERI detects downwelling radiation from 3.3 µm to 18.2 µm in the Mid-wavelength in-
frared region. As shown in Figure 2.1, the most of the radiative energy emitted by the Earth
and atmosphere is found in the thermal infrared band from 4 µm to 100 µm. It is apparent,
that a wavelength of approximately 4 µm clearly separates the bands containing 99 % of the
solar radiation from that containing 99 % of the terrestrial emission. Only for a narrow range
of wavelengths in the environment of 4 µm, both terrestrial and solar radiation have to be
considered because they are in a similar order of magnitude.
In both spectral regions, the dominant particle-radiation interaction process is different.

Scattering by cloud particles or gas molecules, is much less important when the gains of the
intensity field due to scattering along a particular viewing direction are negligible compared
to losses caused by extinction and gains because of thermal emission. These conditions
are usually fulfilled for atmospheric radiation in the thermal IR band. Here, the longer
wavelengths would require larger particles than molecules and cloud particles to be capable
of undergoing scattering events appreciably. But for precipitation particles like raindrops,
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snowflakes and hailstones scattering can not be neglected. These findings are summarised in
Figure 3.13 (a) and (b). Knowing, that absorption is the most dominant process contributing
to the measured AERI spectrum, the question arises which set of microwindows would be
beneficial to explore the radiative impact of ice crystals from cirrus clouds. In Figure 3.13 (c)
it is demonstrated, that the set of microwindows from Table 3.4 is suitable for the mentioned
task, because it exploits regions where the absorption of ice is greater than that of liquid
water.

1000.0 1500.0

wavenumber [cm−1]

10−5

10−4

10−3

10−2

10−1

100

101

102

ra
di

an
ce

[m
W

/
(m

2
sr

cm
−

1
)]

(a)

scattering processes

all processes

total scattering

cloud scattering

gas molecules scattering

1000.0 1500.0

wavenumber [cm−1]

100

101

102

ra
di

an
ce

[m
W

/
(m

2
sr

cm
−

1
)]

(b)

absorption processes

all processes

total absorption

cloud absorption

gas molecules absorption

500.0 750.0 1000.0 1250.0

wavenumber [cm−1]

10−1

I
m

[n
(ν

)]

(c)

absorption water vs. ice

water

ice

10.0 6.67
wavenumber [µm]

10.0 6.67
wavenumber [µm]

20.0 13.33 10.0 8.0
wavenumber [µm]

Figure 3.13.: Mid IR radiance spectrum divided into (a) scattering and (b) absorption pro-
cesses by the respective atmospheric constituents, showing the dominance of ab-
sorption. (c) Using microwindows, where the imaginary party of the refractive
index for water and ice is different in the Mid IR spectrum. Used MIE-TOOL
from libradtran (Emde et al., 2016).

3.3.7. Reduction of the Radiance Spectrum to a Scalar Quantity using
Microwindows

As described in section 3.2.4, passive remote sensing instruments such as the AERI provide
broad spectral content and sufficient spectral resolution to discriminate between gaseous emit-
ters (e.g. carbon dioxide, water vapor) and suspended matter (e.g. aerosols, water droplets
and ice crystals in clouds). To analyse the downwelling infrared spectral signatures of clouds
it is better to exploit the radiances in microwindows, see Table 3.4. In these spectral regions
they are least-contaminated by line absorption and the cloud properties in these microwin-
dows are essentially unchanged. This allows the radiances to be averaged from higher spectral
resolution to that of the width of the microwindow.
There are different possibilities to use the microwindows in a retrieval algorithm. Turner

(2005) used them in the framework of an iterative optimal estimation approach, where they
calculated a retrieval state vector and its covariance in microwindows, after looping over
all the microwindows, the cloud emissivity was computed and compared to the observed
emissivity spectrum. Chang et al. (2017) made an entropy based information content analysis,
designed to select optimal channels for ice cloud retrievals. The analysis is for satellite-based
hyperspectral instruments such as the Atmospheric Infrared Sounder (AIRS).
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For the purpose of simplicity, a scalar quantity associated with every spectrum will be
defined in this thesis, and is used to investigate the radiative impact on several parameters
in upcoming parameter studies

Ewin,obs/sim = 1
Nsp

Nwin∑
k=1

Nlin,k∑
l=1

LAERI/DISORT [ν̃l] , (3.20)

where the normalisation factor Nsp = ∑Nwin
k=1

∑Nlin,k
l=1 l is given by the number of spectral

sampling points, Nwin is the number of used spectral windows and Nlin,k is the number of
spectral grid points for the k-th microwindow. The corresponding spectral residuals between
observed and simulated spectrum are defined as the absolute value of their difference
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Figure 3.14.: (a) Different microwindow sets used for reducing the hole spectrum to a scalar
quantity. (b) Simulated AERI radiances at UFS using DISORT in combination
with REPTRAN for different COT ranging from 0.1 w to 9.1 with constant ef-
fective radius Reff = 50µm and droxtal as ice crystal habit. Spectrum averaged
in microwindows, defined by Ewin,sim, as function of COT for scattering (c) and
absorption (d) processes.
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∆Ewin = 1
Nsp

Nwin∑
k=1

Nlin,k∑
l=1
|LAERI[ν̃l]− LDISORT[ν̃l]| . (3.21)

The number and location of the used microwindows in the retrieval algorithm is somehow
arbitrary, but should lie in the primary spectral regions of 8 µm to 10 µm and 10 µm to 13 µm.
A consequence of this choice, is that similar results can be obtained with different sets of
microwindows. This is illustrated in Figure 3.14 (a), where the values of Esim as a function of
cloud optical thickness values are shown for different sets of microwindows, based on Table 3.4.
So, to reproduce the results, the same microwindows have to be used. The average quantities
Ewin,sim, Ewin,obs and ∆Ewin have the same unit as the irradiance E. Figure 3.14 (b) shows
simulated AERI spectra for increasing values of cloud optical thickness, and illustrates a
saturation effect for higher COT values. In Figure 3.14 (c) and (d), Ewin,sim is shown as
function of COT and for different interaction processes. Comparing the results, exhibits that
the dominant contribution of Ewin,sim is given by absorption of cloud particles.

3.4. Radar-Lidar Cloud Retrieval
3.4.1. Possibility to use Combinations of Radar and Lidar in Cloud Retrievals
Ice cloud microphysical properties (i.e. effective radius, IWC) can be retrieved by different
methodologies based on radar-only (Hogan et al., 2006c), lidar-only (Heymsfield et al., 2013),
radar-lidar-combination (Donovan and van Lammeren, 2001; Tinel et al., 2005) or a combi-
nation of more remote sensing instruments (Boers et al., 2000; Donovan et al., 2005; Delanoë
and Hogan, 2008). All approaches have considerable uncertainties, especially if they only
rely on one instrument. Dual wavelength approaches are another possibility to increase the
information content (Matrosov et al., 2005).

Radar-Only Retrievals

Derivations of liquid water content from only radar reflectivity measurements have been sug-
gested by Atlas (1954). In detail, he suggested to use empirical power law relationships, that
relate radar reflectivity to liquid water content. In a similar fashion, ice water content can
be retrieved from radar measurements as well. Because radar reflectivity factor depends on a
much higher moment of the PSD than IWC (6th vs. 3rd moment), the retrieved results of IWC
show errors up to a factor of 2 (Brown and Francis, 1995). Hogan et al. (2006c) developed
empirical relationships for a 35 GHz by comparing coordinated aircraft in situ measurements
and scans by a 3 GHz radar and added atmospheric temperature, which essentially contains
size information

log10 (IWC) = (0.000242)ZeT + 0.0699Z − 0.0186T − 1.63 (3.22)
log10 (βext) = (0.000337)ZeT + 0.0683Z − 0.0171T − 3.11 , (3.23)

where T is the temperature and Ze is the equivalent radar reflectivity factor. Their results
indicated a lowering of the uncertainty for temperatures from −30 ◦C to −10 ◦C, but still
underestimate the IWC by a factor of 2 at colder temperatures. Please note, that in this
approach, the ice crystal habit and the PSD type and parameter are fixed and not free
parameters.
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Lidar-Only Retrievals

Lidar-only retrievals are especially necessary for measurements below radar’s detection thresh-
old. Here, the extinction is first retrieved by inverting the lidar equation (Klett, 1985), and
similar to radar-only retrievals, the retrieved extinction can then be related to the IWC by
using empirical power low relationships. Heymsfield et al. (2013) introduced relationships,
that can be used to derive IWC and effective diameter Deff from extinction βext

IWC = βext
0.91

3 Deff (3.24)

Deff = αeβT , (3.25)

where T is the temperature, α and β are temperature depended coefficients. Again, like
in the radar-only approach, the ice crystal habit and the PSD type and parameter are not
included as free parameters in these retrievals.

Combined Radar-Lidar Retrievals

Combined radar-lidar retrievals have the advantage, that they are well-defined because they
can fall back on measurements sensitive to two different PSD moments, enabling them to
derive particles size directly. Donovan and van Lammeren (2001) and Tinel et al. (2005)
have developed a technique where they obtain an auxiliary quantity, the radar-lidar effective
radius, from the ratio of equivalent radar reflectivity factor and attenuation-corrected lidar
extinction coefficient. With assumptions about ice crystal habit and PSD type and shape
parameter, the radar-lidar effective radius

Rrali
eff =


1
2

[
〈D6〉
〈D2〉

]1/4
spherical ice crystal[

9
16πρ2

ice

]1/4 [〈[m(D)]2〉
〈A(D)〉

]1/4
non-spherical ice crystal

(3.26)

can be converted to the microphysical effective radius Reff. Here, the extinction coefficient
βext will be obtained via inverting the lidar equation (Klett, 1985), and the radar reflectivity
factor Ze is a direct measurement quantity. The radar-lidar ratioQsca,π(35.5GHz)/Qext(532nm)
is a well-defined unique quantity, for ice crystals sizes D much bigger than the lidar wave-
length λlid (optical scatterer: βext ∝

〈
D2〉), and much smaller than the radar wavelength λrad

(Rayleigh scatterer: Ze ∝
〈
D6〉).

The utility of this auxiliary quantity is illustrated in Figure 3.15. In the left plot, the
radar-lidar ratio is a function of the microphysical effective radius Reff and depends also on
the PSD parameter µ, but using the ratio as a function of Rrali

eff , see right plot, removes the
PSD parameter dependence for a wide range of Rrali

eff values. In both plots, the limits of
the methods are indicated. For large Rrali

eff , Reff values of about 200 µm, the ratio loses its
well-defined Rrali

eff
4 dependence, because at the frequency of 35 GHz, the ice crystals can no

longer be considered as Rayleigh scatterer. For small Rrali
eff and Reff values, in turn, the ice

crystals can no longer be considered as optical scatterer with respect to the lidar wavelength.
But, the wide range of Rrali

eff and Reff values with a well-defined Rrali
eff

4 dependence is sufficient
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Figure 3.15.: Ratio of 35.5 GHz radar reflectivity backscatter to 532 nm lidar extinction effi-
ciency for ice spheres for two PSD (mono-modal gamma type) shape parameters
of µ (1 and 5) as a function of (left) microphysical effective radius Reff, (right)
and radar-lidar effective radius Rrali

eff . For simplicity, the calculations were per-
formed using Mie theory and assuming ice spheres, but could be repeated with
the methods mentioned in Table 2.2, assuming irregular ice crystal shapes.

enough to cover the most ice crystal sizes occurring in nature (Donovan and van Lammeren,
2001; Donovan et al., 2001).
Other retrieval methods, like Okamoto et al. (2003) or Delanoë and Hogan (2008), use

forward algorithms instead of inverting the lidar equation. Here, they iterate over different
microphysical input profiles to simulate radar and lidar measurements, and minimise the
difference between observations and forward simulations to obtain the best matching micro-
physical profiles.

3.4.2. Microphysical Model and Radar-Lidar Inversion

Power Law Relationships for Non-Spherical Ice Crystals

As mentioned in Equation (2.28), the mass and projected area of non-spherical ice crystals
can be described with power law relationships like m(D) = aDb and A(D) = γDδ. This
approach is similar to earlier studies from Donovan and van Lammeren (2001); Fontaine
et al. (2014); Ham et al. (2017), and allows to take into account variations of the density of
ice crystals due to their different crystal habits. In Table 3.5, the coefficients used in this
thesis and their root-mean-square-errors (RMSEs) are summarised. The coefficients γ and
δ are obtained via linear regression between log(D) and log[m(D)], the a and b coefficients
are gained similarly. The mass m(D) and area A(D) are, besides optical properties, included
in the Yang database as well. Some habits have a constant ice crystal aspect ratio for all
maximum dimensions from 2 µm to 10 000 µm, and some habits have piecewise defined aspect
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Table 3.5.: Power law fit coefficients derived from linear regression for mass a, b and area γ,
δ. The correlation coefficients is > 0.99. For changing aspect ratios of the ice
crystals the root mean square error (RMSE) increased.

habit a
[
g m−b

]
b [1] RMSE mass γ

[
g m2−δ] δ [1] RMSE area

constant
aspect ratios:

droxtal 347 664.232 3.000 1.188 × 10−12 0.673 2.000 9.054 × 10−15

plate aggregates 20 844.151 3.000 8.139 × 10−15 0.261 2.000 2.320 × 10−16

(10 elements)
plate aggregates 32 843.488 3.000 1.414 × 10−14 0.234 2.000 1.977 × 10−16

(5 elements)
column aggregates 65 545.423 3.000 1.582 × 10−14 0.356 2.000 1.761 × 10−22

(8 elements)

changing
aspect ratios:
solid column 15 877.266 2.730 1.277 × 10−6 0.121 1.840 7.436 × 10−9

hollow column 13 231.055 2.730 1.064 × 10−6 0.121 1.840 7.436 × 10−9

plate 738.526 2.472 2.608 × 10−10 0.073 1.801 1.993 × 10−9

solid 2209.362 2.653 1.072 × 10−7 0.074 1.830 1.164 × 10−9

bullet rosette
hollow 2339.869 2.686 9.533 × 10−8 0.074 1.830 1.164 × 10−9

bullet rosette

reference:
sphere 480 663.676 3.000 0.785 2.000

ratios. Therefore, using power laws with a single fit coeffiencient and exponent for the hole
range of the maximum dimension D, will create a larger RMS error. The different ice crystal
aspect ratios are summarised in Yang et al. (2013, Table 1).
Besides using habit dependent power law coefficients, it also possible to use temperature

dependent coefficients, obtained from in situ observations, like in Heymsfield et al. (2013).
In earlier studies, like Brown and Francis (1995) and Francis et al. (1998), they had to use
fixed m−D and A−D relationships, regardless of temperature and habit, due to the lack of
suitable additional data.

Conversion Rrali
eff → Reff

To be able to calculate cloudy radiance spectra, one requires cloud optical properties like Reff
and IWC derived from ice cloud retrieval algorithms based on observations from radar and
lidar. Generally, these properties depend on many parameters, like PSD type, PSD modality,
PSD shape parameter and ice crystal habit, that are unknown and have to be assumed by
the retrieval algorithm, because from radar and lidar measurements only two equations are
available to fix parameters. Therefore, it is important to relate the microphysical effective
radius Reff with the help of the auxiliary quantity Rrali

eff to the observations from radar (Ze)
and lidar (βext) as function of the mentioned free parameters, the retrieval have to assume.

These relations can be derived by using Equation (2.38) (Ze), Equation (2.33) (βext), Equa-
tion (2.35) (Reff), Equation (3.26) (Rrali

eff ) and a generalised monomodal gamma distribution
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as PSD. The next step is to integrate the maximum crystal dimension D from 0 to ∞ in
the given PSD moments 〈Mi(D)〉. For spherical particles the relation between microphysical
effective radius and radar-lidar effective radius is given by

Reff =
[

(2 + µ)3

(3 + µ)(4 + µ)(5 + µ)

]1/4

Rrali
eff , (3.27)

and the relationship of Reff as a direct function of measurement quantities is specified by

Reff =
[

(2 + µ)3

(3 + µ)(4 + µ)(5 + µ)

]1/4 [ |Kw|2

|Kice|2
π

32
Ze
βext

]1/4

. (3.28)

The extension to non-spherical ice crystals via m−D and A−D power law relationships
requires the inclusion of the corresponding prefactor and exponents like

Reff =
[ 3aΓ(b+ µ)

4γρiceΓ(δ + µ)

] [16πρ2
iceγΓ(δ + µ)Rrali

eff
4

9a2Γ(2b+ µ)

] b−δ
2b−δ

(3.29)

Reff =
[ 3aΓ(b+ µ)

4γρiceΓ(δ + µ)

] [ |Kw|2 π2ρ2
iceγΓ(δ + µ)Ze

|Kice|2 18a2Γ(2b+ µ)βext

] b−δ
2b−δ

, (3.30)

where Γ(n) = (n − 1)! denotes the Gamma function. Again, Equation (3.30) summarises,
that Reff is a function of ice crystal habit and PSD settings (type, modality and shape para-
mater). Equation (3.30) is a generalised form of Equation (3.28). The specific relations for
spherical particles can be restored by inserting the assumptions about spherical ice crystals
(a = ρiceπ/6, b = 3, γ = π/4 and δ = 2). For bimodal gamma distributions it is not possible
to derive analytical expressions and numerical methods have to be used instead.
In Figure 3.16 the dependence of the ratio Rrali

eff and Reff is illustrated for different ice
crystal habits and PSD shape parameters. Especially for habits, where the ice crystal aspect
ratio is piecewise defined, the ratio will not be a constant function of Rrali

eff anymore. Rrali
eff is

used as independent variable, because it is not dependent on ice crystal habit and PSD shape
parameters.

Corrections due to Changing Ice Crystal Aspect Ratios

As indicated in Section 3.4.2, some ice crystal habits have constant or piecewise defined
aspect ratios. This may cause deviations in the retrieval procedure and should be estimated.
In Figure 3.17, the results of a synthetic parameter study are illustrated. Here, cloud input
parameter Reff is varied and if the habit and the PSD shape parameter are known, the
deviation ∆Reff = Reff(input) − Reff(retrieved) should be zero. But for ice crystal habits
with piecewise defined aspect ratio, deviations ∆Reff up the the order of 10 µm can occure.
This is an artefact of using only single fit coefficients a and γ, and single exponents b and δ
over the hole range of the maximum ice crystal dimension D from 2 µm to 10 000 µm. These
deviations can be corrected by adding a correction function fcorr to compensate the deviation.
The corrected microphysical effective radius is then given by

Reff,corr = Reff,uncorr + fcorr(Reff,uncorr,PSD,habit) . (3.31)
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Figure 3.16.: Dependence of the ratio Reff/R
rali
eff as a function of Rrali

eff on habit and PSD shape
parameter of a mono-modal gamma distribution. The ratio shows a significant
dependence for a variation of habits (top left) and a variation of the PSD shapes
(bottom left). For these habits, the ice crystal aspect ratio is piecewise defined
in certain ice crystal size intervals. For other habits, where ice crystal aspect
ratio stays constant, the variation of habits (top right) and the variations of the
PSD shape (bottom right), is constant for changing Rrali

eff values.
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Figure 3.17.: Dependence of effective radius deviation ∆Reff as a function of Rrali
eff on (left)

habit and (right) PSD shape parameter of a mono-modal gamma distribution.
Due to piecewise defined ice crystal aspect ratios and only using a single A−D
and m − D relationships for all D, the occurring deviations ∆Reff have to be
compensated by a function fcorr(Reff,uncorr,PSD,habit). For all other habits,
there is no deviation.
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The usage of piecewise defined versions of the conversion formula Equation (3.30) would
require a numerical implementation, because an analytical form can only be derived for inte-
gration limits of D from 0 to ∞.

3.4.3. Solutions of the Lidar Equation
There are different procedures to solve the lidar Equation (2.62). The majority of them are
based on signal inversion to extract the backscatter βsca,π(R) and extinction βext(R) coefficient
profiles from the detected power PSS(R). These methods are separated into one-component
atmospheres with two unknowns profiles (Klett, 1981), or two-component atmospheres with
four unknowns profiles (Fernald et al., 1972; Fernald, 1984; Sasano et al., 1985). The first
one is called Klett inversion/algorithm, whereas the second is called Klett-Fernald-Sasano
algorithm. As already mentioned, the developed retrieval algorithm uses the radar and lidar
cloud signal profiles themselves as main source of information. Considering the cloud part of
the lidar signal, the scattered part from molecules is much weaker than that of ice crystals,
and can therefore be neglected, leading to one-component solution methods.
A more convenient and easier way to handle lidar signal, is to use the range-corrected power

S(R) = PSS(R)R2 . (3.32)

Using S(R) and assuming a constant, the so-called lidar ratio as liner law for all ranges

LR = βext
βsca,π

, (3.33)

between backscatter and extinction coefficient, the corresponding differential equation to
the integral Equation (2.62) is given by

d log[S(R)]
dR = 1

βext(R)
dβext(R)

dR − 2βext(R) . (3.34)

In general the lidar ratio LR depends on particle size, shape, and orientation, and assuming
LR the to be constant through the hole profile, is identic with assuming to have the same
type of particles along the lidar beam.
Klett (1981) found out, that this type of a ordinary non-linear differential equation has the

same structure as the Bernoulli (Bernoulli, 1695) or homogeneous Riccati equation (Riccati,
1724) and a general solution in terms of a boundary value βext(Rfar) can be obtained

βext(R) = S(R)
S(Rfar)
βext(Rfar) + 2

∫ Rfar
R S(R′)dR′

, (3.35)

where Rfar is the far-end measurement distance from a zenith looking lidar sensor. With
other words, Rfar denotes the last range gate, where the lidar has detected a cloud signal.
The solution form of Equation (3.35) allows to retrieve the extinction profile via inversion
of the lidar signal and is called “backward solution”, because in the denominator is a plus
sign and the integration direction is “backwards” from Rfar (cloud top) to Rnear (cloud base).
The corresponding “forward solution”, includes a minus sign in the denominator and the
integration direction is from Rnear to Rfar. However, this solution will not be numerical stable,
and even small deviations from the boundary value βext(Rnear) can not assure convergence
for R > Rnear, whereas the forward solution starting at βext(Rfar) will quickly converge to
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the “true” extinction profile for R < Rfar, if the error in the specified extinction boundary
value is not unreasonably large. The disadvantage of the “backward solution” is, that the
lidar signal quality is often worse at inversion start Rfar, especially for optically thick clouds.
If the boundary value βext(Rfar) can be estimated without large errors, the extinction cloud
profile can be retrieved via Equation (3.35) (Klett, 1981).

Estimation of the Boundary Value via Rrali
eff -Gradient and Clid-Constant Method

To have a self-consistent inversion method, that only relies on the cloud part of the lidar
signal, Donovan and van Lammeren (2001) developed an iterative procedure, that estimates
the extinction boundary value at the far-end of the measurement distance βext(Rfar) with the
help of the radar signal at Rfar. They showed, that it is much easier to estimate Rrali

eff (Rfar)
instead of βext(Rfar), because the extinction at Rfar (cloud top) is difficult to specify since
cloud extinction values at a single point can vary by several orders of magnitude, whereas the
range of Rrali

eff (Rfar) values is smaller. In detail, they estimated Rrali
eff in a realistic range from

1 µm to 1000 µm, and via Equation (2.39), one obtains the corresponding βext(Rfar) for the
signal inversion. They defined two cost functions JRD and JLC, both depend on the boundary
value Rrali

eff (Rfar), and are given by

JRD[Rrali
eff (Rfar)] =

Nfar∑
i=Nfar−NRG

[ d
dR log

(
Rrali
eff (Ri)

)]2
, (3.36)

JLC[Rrali
eff (Rfar)] = S(Rfar)

βext(Rfar, Rrali
eff (Rfar))

e2τcld(Rrali
eff (Rfar)) , (3.37)

where JLC is defined slightly different in this thesis, and use their product as function of
Rrali
eff (Rfar) to estimate a boundary value

minimize
Rrali
eff (Rfar)

Jtot[Rrali
eff (Rfar)] = JRD[Rrali

eff (Rfar)] JLC[Rrali
eff (Rfar)] . (3.38)

The first cost function JRD penalises gradients of log(Rrali
eff ) in the NRG farthest range

gates (NRG ≈ 20) of the cloud signal. The subscript RD is for radius derivatives. Because
the natural logarithm of Rrali

eff is used, the exponent 1/4 will have no impact on the retrieved
results. The minimum of this cost function will return a reasonable estimate for the boundary
value and inserting this into Equation (3.35) will allow to retrieve the extinction profile. The
term S(Rfar)/βext(Rfar) in the denominator of Equation (3.35) is inverse proportional to the
lidar ratio LR, and the minimising procedure effectively returns those values of the LR, that
produce a plausible βext(R) profile and are in accordance with the information available from
the radar.
But, this method has limitations for large Rrali

eff (Rfar), where the cost function JRD becomes
insensitive and stays constant (see Figure 3.18 (c) and (d)). To overcome this limitation,
Donovan and van Lammeren (2001) introduced a second cost function JLC, a rearrangement
of Equation (2.62) for the lidar constant and evaluated it at Rfar. This cost function helps to
restrict the estimation of the boundary value for large Rrali

eff (Rfar), where JLC will increase and
serves as an additional consistency check for unrealistic values of the lidar constant. Here,
τcld denotes the guessed optical cloud thickness for values of Rrali

eff (Rfar) in a realistic range
from 1 µm to 1000 µm, and the subscript LC stands for lidar constant.
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In summary, JRD will give a good estimation of the boundary value, especially for small
guessed values of Rrali

eff (Rfar) and JLC will discriminate unrealistic high values of Rrali
eff (Rfar), if

JRD did not find a minimum. So, putting them together will give a robust estimation of the
boundary value via minimising their product cost function Jtot.
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Figure 3.18.: Simulated radar and lidar signals (a) and (d). Result of the retrieved Rrali
eff (R)

profiles (b) and (e). Estimation of the boundary value Rrali
eff (Rfar) via different

costfunctions (c) and (f). (a) - (c) is for low optical thickness and (d) - (f) is for
high optical thickness.

In Figure 3.18 the usage of the cost function estimation method is illustrated for synthetic
radar and lidar data, generated from constant microphysical profiles with Rrali

eff = 90µm. Two
cases are considered for a cirrus cloud with a low (τ = 0.3) and a high (τ = 4.2) optical
thickness, and both located at an altitude between 10 km to 12 km. In Figure 3.18 (a) and
(d) the synthetic radar and lidar signals are illustrated, for low and high COTs, respectively.
For a low cloud optical thickness, the lidar signal is able to fully penetrate the cloud and
only loses about 45 % of its signal in the course of the attenuation process. However, for the
case with a high cloud optical thickness, the lidar signal is strongly affected by attenuation,
and only has 2 % left after interacting with the cloud particles. Here, attenuation caused
by atmospheric gases is neglected and the radar attenuation by ice clouds can generally be
considered to be negligible (Hogan et al., 2006c). In Figure 3.18 (b) and (e) the retrieved
Rrali
eff (R) profiles based on the Jtot = JRDJLC estimation are shown, the cost function found

the correct boundary value to start the inversion (blue curve). Furthermore, the effect of
errors in underestimating (orange curve) and overestimating (brown curve) of the boundary
value are shown. Here, the boundary value was intentionally guessed with a deviation of
±30 % from the true boundary value. Even with a wrong guessed boundary value, the Klett
inversion will force the Rrali

eff (R) profile to converge towards the true profile, but this will need
some range gates, and this distance will increase for larger deviations of the boundary value.
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In detail, the distance required until convergence is accomplished, is dependent on the cloud
optical thickness, the thicker the cloud, the shorter the distance until convergence. There is
also a difference between under- and overestimating the boundary value, because of the pro-
portionality Rrali

eff ∝ β
−1/4
ext , an underestimation of Rrali

eff (Rfar) corresponds to an overestimation
of βext(Rfar). Therefore, convergence is reached after a shorter distance when overestimat-
ing βext(Rfar) or underestimating Rrali

eff (Rfar), because this is associated with a higher optical
thickness. As seen in the Figure 3.18 (c) and (f), the product cost function JRDJLC has a clear
minimum, where the true value of Rrali

eff (Rfar) is located (blue curve). JRD has limitations for
large Rrali

eff (Rfar), here the cost function only takes constant values and is not able to discrim-
inate unrealistic boundary values (purple curve). Therefore, JLC is required as an additional
consistency check for large Rrali

eff (Rfar) values. On its own, JLC can not give a precise estimation
of the boundary value, but it can discriminate unrealistic large Rrali

eff (Rfar) values (cyan curve).

Estimation of the Boundary Value via N∗0 -Iteration Method

Tinel (2002) and Tinel et al. (2005) developed a different method to estimate the boundary
value for the lidar inversion. They used the complete radar and lidar cloud signal to constrain
both measurements in relation to each other. The used integral constrain is given by∫ Rfar

Rnear
βext(R)dR = m

∫ Rfar

Rnear
[N∗0 (R)](1−n)KndR , (3.39)

where, Rnear and Rfar correspond to cloud base and top, respectively. The left side is
the cloud optical thickness based on lidar quantities, and the right side is based on radar
quantities, m and n are coefficients gained from aircraft in situ measurements with a 94 GHz
radar (Tinel et al., 2005, Table 1). N∗0 is the normalised number concentration, an auxiliary
quantity, and K is the specific radar attenuation, based on the Hitschfeld-Bordan equation
(Hitschfeld and Bordan, 1954). Based on this integral relation, they derived an implicit
equation in βext(Rfar), which is given by

βext(Rfar) = βatt(Rfar)
2
∫ Rnear
Rfar

βatt(R′)dR′

{
exp

(
2βext(Rfar)
[f(Rfar)]1−n

∫ Rnear

Rfar
[f(R)]1−n

[
[f(R)]1−bZba(R)

[f(R)]1−bZba(Rfar) +
[

βext(Rfar)
m[f(Rfar)N∗0 ]1−n

]1/n
I(R,Rfar)

]n
dR
)
− 1

} , (3.40)

where

I(R,Rfar) = 0.46b
∫ Rfar

R
[f(R′)]1−bZba(R

′)dR′ , (3.41)

and the attenuated backscatter is denoted by

βatt(R) = βsca,π(R) exp
[
−2
∫ R

0
βext(R

′)dR′
]

, (3.42)

the coefficients a, b,m and n, are again given by Tinel et al. (2005, Table 1), and f(R) is a
function introduced to stabilize the numerical process. This implicit equation is solved by an
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iterative numerical procedure, which is initialised byN∗0 = 1010 and f(R) = 1. The hypothesis
of this procedure is, that the best found βext(R) profile will have the least fluctuation of the
normalised particle number concentration with height. The physical foundation behind this
is, that ice particle growth by vapor deposition and riming will lead to a change in particle
size, but not affecting the number of particles (Tinel et al., 2005). Please note, although
only data from 36 GHz radars are used in this thesis, the numerical method was originally
developed with coefficients gained from a 94 GHz radar. Therefore, testing the implemented
numerical procedure in this work, is achieved by the evaluation of so-called “blind tests”.
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Figure 3.19.: Evaluation of blind-profile 1 and 3 from Hogan et al. (2006b). (a) Simulated
radar and lidar signals for profile 1. (b) Simulated radar and lidar signals for
profile 3. (c) Estimating of boundary value via Equation (3.40). (d) Retrieved
extinction profiles for both blind-profiles.

Here, Hogan et al. (2006b) used ice size distributions measured during an aircraft campaign,
with a 94 GHz radar and a 355 nm lidar, to simulate radar and lidar profiles measured from
space. The data and complete descriptions of the blind-test scenarios can be found at Hogan,
R. J. (2003) and Hogan et al. (2006b), respectively. In Figure 3.19, the results of evaluating
profile 1 (variable LR, τcld = 4.7) and profile 3 (constant LR, τcld = 5.0) are illustrated. As
indicated in Figure 3.19 (c), the algorithm converges for both profiles in less than 6 iterations.
The retrieved extinction profiles in Figure 3.19 (d), are in good agreement with the results
given in Hogan, R. J. (2003, Fig. 3). Please note, due to the aircraft-geometry, the boundary
value βext(Rfar) is located at cloud base and not at cloud top, like for the aforementioned
ground-based-geometry.
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Estimation of the Boundary Value via Rayleigh Calibration Method

The aforementioned methods, relied on the radar signal for determining the extinction bound-
ary value. But, it is also possible to determine the boundary value based on the lidar signal
with additional information about the atmospheric composition. This so-called Rayleigh-
calibration uses the lidar signal attenuation, caused by the cloud, to estimate the cloud optical
thickness. Then, different βext(Rfar) are guessed, until a value converges with the retrieved
optical thickness from the signal loss. The applicability of this method make some demands
on the lidar signal quality. In detail, the method requires the lidar signal to be free of aerosol
at some range before and after penetrating the cloud. Then, the atmosphere in these parts,
only consists of molecules and is therefore sometimes called Rayleigh-atmosphere.
The advantage is, that the extinction of a molecular or Rayleigh-atmosphere can be de-

scribed theoretically by (Fröhlich and Shaw, 1980)

βext,mol(z) = 8π3

3λ4 ·
1

Ns(z)

[
n2
a − 1
n2
a + 1

]2 6 + 3δ
6− 7δ ·

T0
p0
· p(z)
T (z) , (3.43)

where Ns is the number of molecules, na is dimensionless refractive index of air, δ is the
depolarisation factor, λ is the lidar wavelength in [µm], p(z) is the air pressure in [hPa] and
T (z) is the air temperature in [K]. Using reasonable values, like described in (Wiegner, 2017;
Freudenthaler et al., 2018) the equation can be simplified to

βext,mol(z) = 2.795 · 10−4 · p(z)
T (z) · λ

−4.08 . (3.44)

Hence, with the knowledge of well measured temperature and pressure profiles from close
radiosondes or re-analysis data, the molecular extinction can be determined. Because the
molecular lidar ratio is a constant and given by LRmol = 8π

3 , the molecular lidar signal can
be completely calculated. In detail, considering a two-component atmosphere, that is free of
clouds and aerosol for R > Rmol,start

PSS(R)R2 = βsca,π,mol(R) Clid exp
[
−2
∫ Rmol,start

0
{βext,mol(R′) + βext,par(R′)}dR′

]

exp
[
−2
∫ R

Rmol,start
βext,mol(R′)dR′

]
(3.45)

= Bmol(Rmol,start, R)βsca,π,mol(R) exp
[
−2
∫ R

Rmol,start
βext,mol(R′)dR′

]
,

where the fit coefficient Bmol was introduced. For a pure molecular atmosphere, Bmol
represents the slope of the Rayleigh signal and is calculated by

Bmol(Rmol,start, R) := PSS(R)R2

βsca,π,mol(R) exp
[
−2
∫ R
Rmol,start

βext,mol(R′)dR′
] . (3.46)

So, the lidar signal can be calibrated via comparison of the slope of the actual measured
lidar signal with the calculated molecular signal. The quality of the molecular fit in an interval
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(Rmol,start, Rmol,end) can be characterised by its percentage error

∆Bmol(Rmol,start, Rmol,end) = σBmol

Bmol
, (3.47)

where especially after penetrating the cloud, the lidar signal and therefore the fit quality
will decline. If there are two molecular regions before (R1, R2) and after (R3, R4) interaction
of the lidar beam with the cloud, the cloud optical thickness can be calculated from the signal
attenuation via

τcld = 1
2 log

[
Bmol(R1, R2)
Bmol(R3, R4)

]
. (3.48)
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Figure 3.20.: Rayleigh fit method to calculate cloud-optical thickness for (a) synthetic single-
scattering lidar data, and for (b) a real multiple scattering lidar (WALES, Wirth
et al. (2009)). The calculation of lidar signals based on different FOVs was taken
out with a lidar multiple scattering model developed by Hogan (2006, 2008);
Hogan and Battaglia (2008).

The hole procedure works as follows: First the cloud masks identifies the signal parts before
and after the cloud, then several molecular fit coefficient Bmol are calculated. Here, the length
of the fit intervals (R1/3, R2/4) can lie between 1.5 km to 3.5 km, the altitude of these intervals
will be increased in steps of 100 m and for all steps, Bmol coefficients are calculated. In the
end, the value of Bmol with the lowest error, before and after the cloud, will be used as final
value to calculate the cloud optical thickness. In Figure 3.20 the procedure is illustrated
for (a) a synthetic lidar signal with noise, and (b) for a real lidar signal, recorded at the
NARVAL-I campaign. Please note, that Equation (3.4.3) is based on the single-scattering
lidar equation. Therefore, if a lidar with a larger FOV is used, multiple-scattering effects
have to be included. The procedure will estimate τMS, which is lower than the desired τSS,
because the corresponding lidar signal was increased by multiple scattered photons, leading
to lower cloud attenuation. τSS can be either be retrieved, via dividing τMS with a multiple-
scattering factor ηMS or with an procedure, like described in Wandinger (1998).
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Other Approaches for the Estimation of the Boundary Value

In the course of this thesis, other approaches have been developed and will be mentioned here
for completeness:

• Backward vs. forward Klett-inversion: Here, the boundary values will be guessed
for the forward Klett-inversion (start integration at cloud top Rrali

eff (Rfar)), like described
in Section 3.4.3, and additional for the backward Klett-inversion (start integration at
cloud base Rrali

eff (Rnear)). The guessed boundary value, which minimises the difference
of these two extinction profiles was used as retrieved boundary value.

• Characterise similarities between Pobs(R) and Psim(R) and minimize devia-
tion: Here, a optimisation algorithm (e.g. truncated Newton method) is used to min-
imise the RMSE between the measured and a forward simulated lidar signal, based on
retrieved microphysical profiles. The algorithm needs initial conditions for the boundary
value (Rrali

eff (Rfar)) and the cloud lidar ratio LR.

• Characterise and minimize vertical fluctuation: This method calculates the left-
and right-handed envelopes (via Hilbert transformation) of the retrieved microphysical
profiles for different guessed Rrali

eff (Rfar). Then, a fit function is used to characterise
the fluctuation of the profiles with height. Finally, the profile which caused the lowest
vertical fluctuation returns the used boundary value.

• Characterise similarities between P (R) and IWC(R) and minimize deviation:
As shown in Figure 4.20 (b) and (c), the retrieved ice water content and extinction
resembles the range-corrected lidar signal S(R). This similarity can be characterised,
after normalising the value ranges, for different Rrali

eff (Rfar), like described in the pre-
vious methods. Minimizing the cost function Jtot, should retrieve the best matching
microphysical profile to the given lidar signal:

minimize
Rrali
eff (Rfar)

J [Rrali
eff (Rfar)] =

√√√√ 1
N

N∑
i

[
S(Ri)

‖S(Ri)‖max
− βext(Ri, Rfar)
‖βext(Ri)‖max

]2
, (3.49)

where N is the number of range gates inside the detected cloud. This method is more
independent from the gradient of Rrali

eff .

The aim was, to have additional criteria, that are not dependent on the Rrali
eff (R) gradient,

because that would be a limiting condition for considering real data. For the used synthetic
test data, the aforementioned methods were not sensitive enough to be an improvement and
could only reproduce some former results.

3.4.4. Multiple Scattering Correction
As mentioned in the previous section, lidar cloud measurements are affected by multiple-
scattering (MS) effects, especially for optically thicker clouds and/or for large receiver FOVs.
The single-scattering (SS) lidar equation assumes, that the detected photons were only scat-
tered once, and interprets detected MS photons mistakenly as a higher transmission leading to
a lower optical thickness. Therefore, the contribution of photons to the lidar signal, that have
undergone more than one scattering event cannot be ignored. In contrary, millimeter-wave
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radar measurements are typically only affected by MS effects, when observing deep convective
clouds from space, and can be neglected for observing ice clouds.
MS effects are only relevant when MS photons have not left the receiver’s FOV. Then, the
probability that they re-enter the FOV and are scattered toward the receiver is very low,
like indicated by simulations (Wandinger, 1998). Because the receiver FOVs are usually very
small, only scattering processes in forward or backward direction will be detected. Forward
scattering has the much higher probability and therefore MS processes are mainly the conse-
quence of one or more forward scattering events, after a backward scattering event. Therefore,
the amount of photons detected that are from multiple scattering events depend mainly on
the width of the FOV, the covered volume and the width and intensity of the diffraction peak.
Especially in cloud measurements, where particles are large in relation to the wavelength of
the laser, MS effects are intense.
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Figure 3.21.: (left) Simulated multiple scattering lidar signal for following parameters: FOV
of 1.6 mrad, wavelength of 532 nm, Reff of 60 µm and LR of 30. (right) Iterative
correction of the cloud optical thickness for a retrieval with a multiple scattering
procedure like sketched in Figure 3.22.

Because, not considering the effects of multiple scattering in a cloud retrieval would lead
to a considerable underestimation of the extinction coefficient and cloud optical thickness, an
iterative correction procedure was developed like sketched in Figure 3.22. The approach is
similar to previous methods like described in Donovan and van Lammeren (2001) and Gouveia
et al. (2018). An accurate forward model (Hogan, 2006, 2008; Hogan and Battaglia, 2008) is
used, that allows the calculation of the intensity of multiple scattered photons by clouds in
lidar signals. The method’s focus is to obtain the best estimate of the SS lidar signal, and to
use it for the retrieval of the SS microphysical profiles. In detail, a lidar forward model for
the treatment of multiple-scattering effects has been incorporated into the inversion process.
To account for MS effects, the first inversion is performed on the observed lidar signal Pobs,
then the retrieved extinction profile and effective radius profiles are used in the MS model to
estimate the ratio RMS/SS of MS signal to SS signal (Weitkamp, 2006)

PMS(R,Θ) = PSS(R)RMS(R,Θ) = PSS(R) [1 + Fd(R,Θ) + Fg(R,Θ)] , (3.50)

where Θ is the half-angle receiver field of view and Fd and Fg are diffraction scattering alone
and all other scattering processes, respectively. Based on the results, the multiple-scattering
ratio RMS/SS is then re-calculated and used to update the estimation of the SS lidar profile.
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The process is repeated until the retrieved cloud optical thickness has converged.
An example of the correction procedure is given in Figure 3.21, for a cloud optical thickness

of τSS = 2. In the left plot, the MS lidar signal looks like a SS lidar signal with reduced
optical thickness. In the right plot, the correction results are represented, usually within a few
iterations, the retrieved cloud optical thickness will converge (purple curve). The method also
has some limitations, if for example the radar signal would have a calibration offset. Because
the radar signal is used to estimate the boundary value βext(Rfar) for the inversion start, an
under- (cyan curve) or overestimation of βext(Rfar) will lead to constant bias. Therefore, the
correction procedure is dependent on calibrated radar data.
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Figure 3.22.: Flowchart to illustrate the certain steps involved in the multiple scattering cor-
rection algorithm.
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3.5. Synergy Thee-Instrument Retrieval - SynCirrus
The SynCirrus algorithm was mainly implemented in Python and uses the external scientific
computational codes for radiative transfer (DISORT, libRadtran (Mayer and Kylling, 2005;
Emde et al., 2016)), lidar multiple scattering (MULTISCATTER, (Hogan, 2006)) and gas
attenuation at radar wavelengths (Liebe-Model, (Liebe et al., 1993)) within functions calls
when they are required. A flow-chart diagram is given in Figure 3.23. The used retrieval
methods, computational codes, campaign data and references included in the framework are
categorised and listed in Table 3.6. The physical assumptions used in the development of the
three instrument algorithm are summarised in Table 3.7 and Table 3.7.
At the beginning, the measured radar and lidar signals, as well as the temperature, pressure

and water vapour profiles from re-analysis are interpolated on a common grid. Then, both
signals are cloud-masked and overlap regions are identified, as described in Section 3.2.2. The
AERI and radar-lidar data are temporally mapped, according to the instrument’s sky-phase,
the measuring interval between the calibration intervals. Furthermore, the radar and lidar
signals have to be corrected for gas attenuation (see Section 3.2.3) and numerical stability
(see Section 4.2.3), respectively. The single lidar profiles are inverted using three different
methods, as explained in Section 3.4.3. The retrieved extinction profile is corrected for mul-
tiple scattering effects (see Section 3.4.4) and according to the assumptions about ice crystal
habit and PSD (see Section 3.4.2), the profiles of Reff and IWC are subsequently derived.
The different habits are assumed in form of different mass-diameter and area-diameter rela-
tionships, based on an effective ice particle density. The used power law coefficients are given
in Table 3.5. To quantity the uncertainty, these calculations are repeated 5 to 10 times within
the uncertainty intervals for the radar calibration uncertainty ∆Ze, PSD shape parameter µ
and boundary value estimation error ∆Rrali

eff . The estimation of ∆Rrali
eff is based on took-up

tables for different COTs and normalised gradients of Rrali
eff , as presented in Figure 4.9. The

retrieved profiles of Reff and IWC are used as input for RT calculations, to simulate a spec-
trum at the location of the AERI. The RT calculations are based on a microphysical model
(see Section 3.3.5), according to the same assumptions as in the inversion procedure. There-
fore, the used single scattering properties based on Yang et al. (2013), were pre-calculated for
different ice crystal habits and PSD parameter. Finally, the measured and simulated spectra
are compared exploiting spectral microwindows, as explained in Section 3.3.7, to find the best
matching assumptions in minimizing the spectral residuals.
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Table 3.6.: A categorised overview of the used computational codes, models, instruments and
the associated retrieved quantities within the SynCirrus retrieval.

sounding active passive in-situ
type Radar Lidar IR spectrometer weather-balloon

device
(campaign/
location,

parameter)

MIRA-36
(UFS & NARVAL1,

λ = 8.6 mm)

Jenoptik CHM15k
(UFS, λ = 1064 nm,
FOV=0.45 mrad )

WALES (NARVAL1,
λ = 532 nm,

FOV=1.6 mrad)

AERI-ER
(Summit St. Zugspitze

400 cm−1 to 3000 cm−1)

Vaisala RS41/RS92
radiosondes

(Oberschleissheim)

Vaisala RD-94
dropsondes
(NARVAL1)

observed
quantity
[unit]

(dimensions)

equivalent reflectivity
factor Ze

[dBZ],
[
mm6

m3

]
(time, height)

lidar power PMS
[#photons]

(time, height)

spectral radiance Lλ[
mW

m2 sr cm−1

]
(time, wavenumber)

temperature [K],
pressure [hPa],

mixing ratio [g/kg],
relative humidity [%],

all (time, height)

uncertainty/
specification

∆Ze = 1.3 dBZ
calib. not

relevant when using
Klett inversion

resolution: 0.5 cm−1

calib. bias < 0.66%
calib. precision < 0.13%
of ambient BB radiance

0.3 ◦C < 16 km
4 % RH

0.3 < 100 hPa

references Görsdorf et al.
(2015)

Wiegner et al. (2014)
Wirth et al. (2009)

Knuteson et al. (2004a)
Knuteson et al. (2004b)

Jensen et al. (2016)
Stevens et al. (2019)

modelling - - - -

forward
and

re-analysis
models

analytic expression
Equation (2.38)
(Rayleigh regime
for 8.6 mm radar),

attenuation by gases
with Liebe-model
using pyMPM
version 0.1.0

multiscatter
version 1.2.11

libRadtran
version 2.0.4

RT-solver: Disort
(16 streams)
molecular

parameterisation:
Line-By-Line < 1 cm−1

REPTRAN ≥ 1 cm−1

ECMWF
ERA-Interim

references Liebe et al. (1993) Hogan (2006) Emde et al. (2016) Dee et al. (2011)

ice ice bulk density is described by look-up table: PSD-shape µ(T )
from

microphysic mass-diameter m(D) and area-diameter bulk optical properties temperature relation

model A(D) relationships and integrated were integrated for
different PSD-types, derived from in-situ

(exchange-
able) over PSD, m(D) and A(D) from

PSD-modalities,
PSD-shapes, crystal
roughnesses and Reff,

data, Heymsfield
et al. (2013)

Yang et al. (2013)
single-scattering data

from Yang et al.
(2013)

uncertainty:
∆µ(T ) = ±2

lidar combination of methods from Klett (1981), temperature [K]
inversion Donovan and van Lammeren (2001), and pressure [hPa]

technique Tinel et al. (2005) and Rayleigh - for Rayleigh
calibration

calibration e.g. described
in Cadet et al. (2005)

retrieved
and effective radius Reff [µm] spectral radiance Lλ,

water vapour,
[molecules/cm−3]

calculated ice water conent IWC [g/m3]
[

mW
m2 sr cm−1

]
, (time, height)

quantities extinction βext [1/m] (time, wavenumber)
[unit] all in (time, height)

(dimension)
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Passive RS:
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Start
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• temporal data adjust-
ment:
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sky-phase
• correct radar signal for
gas attenuation
• reduce lidar signal to
fulfill numerical stability
of inversion, if necessary

Estimate boundary
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- loop over methods:
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eff -gradient
• N∗0 -iteration
• Rayleigh fit

Retrieve microphysical
profiles:
• Reff(habit,PSD, R)
• IWC(habit,PSD, R)

Microphysical
assumptions:
• habit
• PSD-type
• PSD-modality
• PSD-shape µ

Retrieve extinction
profile:
βext(R) via Klett-inversion

multiple-scattering
correction

of lidar signal

uncertainty estimation
(N runs):
• Ze(R)± 1.3dBZ
• µ(T )± 2
• ∆Rrali

eff from
LUT(τ , gradient)

Passive RS:
• Interferometer spectra

Radiative transfer:
simulate radiances Lsim,λ

at AERI’s location
+ uncertainties

Microphysical
assumptions:
• habit
• PSD-type
• PSD-modality
• PSD-shape µ

Atmospheric
state:
temperature,
water vapour
and pressure from
• radiosondes
• Re-analysis

Spectral analysis:
minimize spectral
residuals in win-

dow regions∑Nwim
i Lsim,λi − Lobs,λi

Output-profiles:
(lowest spectral residuals)

βext, Reff and
IWC + errors

End

Figure 3.23.: Flowchart of the SynCirrus algorithm for the retrieval of Reff, IWC and βext by
using, 35 GHz radar and lidar signals and IR-spectrometer data.
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Table 3.7.: Part I - Overview of used assumptions in the SynCirrus retrieval algorithm.

Assumption Explanation/Implication

Retrieval Technique

Single habit approximation (SHA):
Lidar ratio LR is assumed to be vertically constant in
order to use single-component Klett-inversion.

LR depends on particle size, shape, and orientation and
therefore, assuming a constant LR implies to have the
same type of particles along the beam. Therefore,
the retrieval has to assume a single habit for a cloud
(Klett, 1981; Zhou et al., 2018).

Microphysics

PSD parameters (type, modality and shape) are assumed
to be vertically constant for a cloud.

PSD-shape parameter is approximated by a temperature
relation µ(T ) found via in-situ measurement and the
uncertainty for typical cloud measurements is covered
assuming µ± 2 (Heymsfield et al., 2013).

The ice bulk density ρb is assumed to be equal to the
density of solid ice ρice (=0.917 g cm−3).

Ice particles in clouds can have a smaller density than the
solid ice particle due to air bubbles. Therefore,
Sato and Okamoto (2006) defined the ice bulk density ρb
as the ratio of ice mass to exterior volume of ice particles
including air bubbles, and ρb = ρice if there are no air
bubbles. Because a maximal change of ρb ranging from
0.60 g cm−3 to 0.917 g cm−3 would only cause a difference
lower than 1 dBZ in Ze (Sato and Okamoto, 2006),
(Ham et al., 2017).

Size and Orientation Aspects

Cloud ice particles are assumed to be randomly oriented

The fraction of oriented ice particles is very low at cold
cloud temperatures (Liou and Yang, 2016, Fig. 7, Fig. 6a).
In that case, the single- scattering properties for a sample
of non-spherical ice crystals can be averaged over
Euler angles.

At a radar wavelength of 8.6 mm, ice crystals are
considered as Rayleigh scatterer

For ice crystals scattered at a radar wavelength of 8.6 mm
and Reff < 200 µm, Mie effects can be neglected and the
Ze can be described with Equation (2.38) instead of
T-matrix radar scattering model
(Benedetti et al., 2003, Fig. 2)

At lidar wavelength < 1064 nm, ice crystals are
considered as optical scatterer

The accuracy of the optical scatterer-approximation
depends on the ratio of the lidar wavelength to the size
and shape of the ice crystal. For hexagonal crystals, the
approximation is accurate for values of 2πDmax/λ > 100
(Donovan et al., 2004).

Radar Signal

Multiple-scattering effects at radar wavelength of 8.6 mm
are negligible for ice clouds

In general, multiple-scattering of the radar signal by cloud
particles can be neglected for non-precipitating clouds
(Battaglia et al., 2010).

Attenuation of the radar signal is only accounted for
gases and can be neglected in ice clouds

At higher frequencies a correction of the radar signal must
be made for attenuation by intervening atmospheric gases
(specifically water vapor and molecular oxygen). But, radar
attenuation by ice clouds can generally be considered to be
negligible up to 94 GHz (Hogan and Illingworth, 1999).

Instrument Parameter

Difference in radar and lidar footprints are < 0.363 dBZ.
The effect of this error is equivalent to a variation of Ze
around the order of the radar calibration uncertainty.

The difference in the pulse volume of an ice cloud sampled
will have an impact on the retrieved results, due to cloud
inhomogeneity, especially from satellites
(European-Space-Agency, 2001; Hogan et al., 2006b). But,
for ground based instruments this difference should be
< 1.5dBZ (Hogan, 2001a,b,c).
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Table 3.8.: Part II - Overview of used assumptions in the SynCirrus retrieval algorithm.

Assumption Explanation/Implication

Radiative transfer

Only elastic scattering is considered
Atmospheric scattering and absorption processes are
usually considered to preserve the light frequency of
the interacting wave.

Independent scattering approximation (ISA):
A single ice crystal in a cloud scatters light in exactly the
same way if there would be no surrounding ice crystals

Can be assumed, because the number density of ice
crystals in cirrus clouds is relatively low, and they are
separated from each other by distances, much larger than
their sizes. Therefore scattering events at different ice
crystals do not interfere with each other and phases can be
neglected. This concept allows the usage of energy
quantities instead of the electromagnetic field, which
allows using simplifications like taking out radiative
transfer calculations with bulk single scattering properties.

Neglecting to simulate polarisation

The AERI uses a gold-coated mirror to switch between the
zenith sky viewing mode and the calibration reference
sources. The polarisation insensitivity of bare gold to the
angular rotation of the scene mirror is used to avoid a
polarisation sensitivity of the interferometer, because this
would lead to a calibration error, since the reference sources
are located at ±60° from the vertical sky view.
(Knuteson et al., 2004a)

Plane-parallel approximation (PPA):
Atmospheric and ice cloud layers are considered to vary
much more rapidly in the vertical than the horizontal

These assumptions are used because in plane-parallel
atmospheres it is possible to solve the radiative transfer
equation (Petty, 2006). However, ice cloud inhomogeneity
can introduce errors, called plane-parallel bias.

Independent pixel approximation (IPA):
A cloudy pixel (or column) is considered to be radiatively
independent of its neighboring pixels

This assumption allows no horizontal transport of radiation
and tries to avoid the plane-parallel bias, by not averaging
the ice cloud properties.
However, the non-consideration of the horizontal transport
of radiation causes errors, because so-called 3D effects
like enhanced cloud top cooling and additional cloud side
cooling are not included (Mayer, B., 2009).

On small spatial scales around 100 m, like
the cloud-base footprints of the instruments, the errors for
neglecting 3D RT effects and ice cloud inhomogeneity
can lead to a COT-error of below 30 % and
a Reff-error below 5 % Fauchez et al. (2018).
The critical error is the COT-error, because the COT
has the biggest impact on the infrared spectrum. However,
5 % is below the typical error of the other retrieval
uncertainties.





4. Results
This chapter summarises the results for the application of the SynCirrus retrieval. In the
first part, the resolution of the framework concerning determination of ice crystal habits is
investigated by evaluating the spectral residuals in sensitivity studies with synthetic data,
based on a 1D model adjusted for the location Mount Zugspitze. The explored findings will
help to develop data quality criteria, needed for retrieval results with low errors. The second
part focuses on the radar-lidar retrieval-part of the algorithm and compares the results with
other retrievals by evaluating real data from the NARVAL-I field aircraft campaign. The
chapter closes with showing the full three-Instrument retrieval applied on remote sensing
data obtained from radar, lidar and infrared spectrometer synergy at Mt. Zugspitze.

4.1. Parameter Studies with Synthetic Model
To be able to retrieve microphysical cloud properties like ice crystal habits from the SynCirrus
algorithm, the uncertainties of the algorithm should be quantified at different stages. The
last step of the algorithm is to simulate a radiance spectrum with the retrieved Reff and IWC
profiles from radar and lidar cloud measurements. This spectrum will then be compared with
the measured spectrum from the infrared spectrometer. For the spectral comparison, a scalar
quantity to assess the spectral residuals is used, and the magnitude of the spectral residuals
caused by different origins will be analysed. This is necessary, because it is important to know,
if spectral residuals caused by instrument uncertainties are smaller or larger as residuals caused
by microphysical assumptions like the ice crystal habit. To execute this task, the different
known origins for spectral perturbation will be divided into:

• Radiative transfer settings: Is related to the spectral resolution of RT calculations
(Line-By-Line vs. REPTRAN).

• Ice cloud microphysics: This includes all states of the retrieval space like the choice
of the ice crystal habit, the roughness of the ice crystals, the type of the PSD, the
modality of the PSD and the PSD shape parameter µ.

• Instrument parameters: Intended are instrument footprints, the radar calibration
uncertainty ∆Ze, the lidar SNR and the cloud detection differences caused by the dif-
ferent scattering regimes of the emitted electromagnetic pulses characterised by the
radar-lidar vertical cloud signal overlap. Concerning the infrared spectrometer, the
calibration uncertainty and reproducibility will be investigated.

• Atmospheric state: Meant are, how perturbations in cloud base height and the atmo-
spheric profiles of traces gases and prognostic variables will impact the radiative transfer
part of the algorithm.

• Radar-lidar retrieval technique: Here, the different methods for evaluating the
boundary value for the lidar inversion, the assumptions of a constant cloud lidar ratio
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in the Klett algorithm and the effects of lidar multiple scattering correction have to be
investigated.

The analysis of the spectral residuals will help to develop criteria on the data quality and
the meteorological situation, needed to gain useful retrieval results with low uncertainties.
For this purpose a 1D model was developed to create synthetic measurement data as input
for the SynCirrus algorithm based on a microphysical ice cloud model in accordance with the
Yang database. In these studies, two parameters will be varied. The cloud optical thickness,
because it has the biggest impact on the radiance spectrum, and always a parameter from the
above mentioned categories. The default settings of the model are summarised in Table 4.1.
The parameters to be varied will be mentioned in the certain sections. Of course, such a
1D model has limitations compared to a 3D model, but it includes the main sensitivities,
important in the retrieval procedure, like the sensitivities on D6 (radar), D2 (lidar), water
vapour (infrared spectrometer), ice microphysical model (RT and inversion) and retrieval
technique assumptions.

Table 4.1.: Default parameter settings for microphysical and geographical parameter used in
synthetic model.

Microphysical cloud parameter Geographical parameter

effective radius Reff 50 µm passive sensor altitude 2961 m.a.s.l.
lidar ratio LR 30 sr−1 cloud base height 8000 m.a.s.l.
ice crystal habit droxtal cloud top height 9000 m.a.s.l.
PSD type gamma distribution vertical resolution 15 m
PSD modality monomodal profiles of water ECMWF
PSD shape µ 2 vapour, ozone, 5th October, 2013

temperature (18h - 24h)
and pressure at grid box:

47.5 latitude
10.75 longitude

profiles of carbon AFGL - midlatitude
dioxide, nitrogen, winter
air and oxygen

4.1.1. Sensitivity on Absorption Parameterisation: Line-By-Line vs. REPTRAN

For a retrieval to be used operational, it would be desirable, if it is based on fast numerical
calculations, because sampling the full retrieval space will take some time. Concerning the
SynCirrus algorithm, the computational bottleneck is the calculation of the radiance spec-
trum based on Line-By-Line calculations. A possible speed up is to use REPTRAN instead
of Line-By-Line calculations, because they require less amounts of memory, can include more
vertical sampling points and are generally much faster, but at the expense of a lower spectral
resolution.
REPTRAN offers spectral resolutions between 15 cm−1 (coarse) and 1 cm−1 (fine), but the

AERI measures with a higher resolution of 0.5 cm−1. Therefore, the LBL calculations are
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Figure 4.1.: (a) Scalar quantity Esim for different absorption parameterisations. (b) Spectral
residuals among different absorption parameterisation in comparison with amount
of variation caused by different ice crystals habits.

taken out at a resolution of 0.05 cm−1 and are then convolved with the ILS afterwards. The
question that arises is, if the spectral residuals, exploited in microwindows, between LBL and
REPTRAN absorption parameterisations are larger than the differences between important
microphysical properties like the ice crystal habits. In Figure 4.1 (a), the quantity Ewin,sim is
shown as function of cloud optical thickness values for different absorption parameterisation
schemes and indicates, that the difference between LBL and REPTRAN-fine is much smaller
than the difference between LBL and REPTRAN-coarse. In Figure 4.1 (b), the residuals
∆Ewin between LBL and REPTRAN-fine/coarse are shown for different cloud optical thick-
ness values and compared with the standard deviation, caused by the different ice crystals
habits. The plot basically shows, that for cloud optical thickness values larger than 0.5 it
is sufficient to use REPTRAN-fine because the differences between the habits can still be
resolved, but for very thin cirrus clouds, radiative transfer calculations should be taken out
based on LBL absorption parameterisations.

4.1.2. Sensitivity on Microphysical Model Assumptions

Ice Crystal Habits and Surface Roughnesses

As introduced in Chapter 3.4, radar-lidar cloud retrievals allow a well-defined retrieval of two
microphysical properties (IWC and Reff) from two measurement quantities. However, for ice
clouds, IWC and Reff are in turn functions of microphysical ice crystal properties themselves.
Because, no further measurements are available to fix them, they have to be assumed by the
retrieval. The same happens with the PSD. In Section 3.4.2, the impact of ice crystal habit
and PSD shape on particle size was investigated. It was shown, that the choice of a wrong ice
crystal habit has the bigger impact and can lead to a conversion of Reff being off by a factor
of about 2.5, whereas wrong choices of PSD shapes µ only lead the conversion to be off by a
factor of about 1.2.
The interesting questions is, how these choices will impact the radiative transfer. Therefore,

simulations are taken out, where the standard deviation of the radiance quantity, defined in
Equation (3.3.7), is calculated for a set of habits, roughnesses and PSD shapes µ given by the
integrated Yang database. This quantity will be calculated for different cloud optical thickness
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Figure 4.2.: Analysis of the variation of the residuals ∆Ewin for different microphysical prop-
erties as function of cloud optical thickness.

values and will give insights about the magnitude of variation to be expected in the radiance
spectra. This will help to figure out which are the dominant microphysical contributions and
so finally which are the important assumptions, the retrieval space should iterate over. In
Figure 4.2 the results are summarised and show, that the standard deviation of the set of
ice crystal habits has the largest variation, whereas the standard deviation of the ice crystal
roughnesses have the smallest variation. Because, there is one order of magnitude between
them, it is appropriate to reduce the microphysical assumptions to ice crystals habits only
as the dominant contribution, and fix the ice crystal roughness to be smooth and describe
the PSD shape parameter by a temperature relation found by in situ aircrafts measurements
(Heymsfield et al., 2013)

µ(T ) = 1− 0.84− 0.0915 T − 2.936× 10−3 T 2

−3.653× 10−5 T 3 − 2.157× 10−8 T 4 . (4.1)

In the following parameter studies, the impact of the certain parameters will be investigated
by comparing their spectral residuals with the standard deviation of the set of ice crystal
habits. This will show how large the variation of the parameters are allowed to be. Unless
their residuals are smaller than the standard deviation of the set of ice crystal habits, the ice
crystal habit variation will be the dominant contribution and in principle could be resolved
by the retrieval algorithm. Please note, that the former findings are only valid in the infrared
spectral region where absorption by cloud particles is the dominant interaction process, see
Section 3.3.6. In the solar spectral region, the ice crystal roughness has a significant impact
on the phase function, especially for scattering in forward directions, and therefore has to be
incorporated by retrieval algorithms (Yang et al., 2018).
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Monomodal vs. Bimodal PSD Model

As mentioned in Section 2.2.1, there are various approaches for using different PSDs in re-
mote sensing applications, but most commonly gamma-type distributions are used (Hu and
Stamnes, 1993; Heymsfield et al., 2013). Besides the certain type of distribution, their modal-
ity is a further unknown quantity and will complicate the relationship between Reff and Rrali

eff
in that sense, that analytic relationships, like in Equation (3.30), can no longer be derived.
But, results from in situ measurements showed, that mid-latitude cirrus often recorded bi-
modal size spectra with a large particle population in the small particle mode and a weaker
population in the large particle mode (Mitchell et al., 1996a; Ivanova et al., 2001). Also remote
sensing applications showed sometimes better results with assumed bimodal PSDs (Donovan
and van Lammeren, 2001, Fig. 19). The questions is, how big is the retrieval error when
falsely assuming a monomodal instead of a bimodal PSD. Therefore, the ratio of the particle
population of the small versus the large particle mode N0,1/N0,2 will be varied. The param-
eters are chosen to be similar to measured by in situ instruments (Ivanova et al., 2001). The
results are summarised in Figure 4.3 and basically show, that the second large particle mode
can be neglected for N0,1/N0,2 > 103 for the chosen parameters. The large diversity of dif-
ferent approaches for PSDs reflect the complexity of the various particle growth mechanisms
in ice clouds and also the challenges of recording PSDs with in situ aircrafts (Baumgardner
et al., 2012, 2017). For the following parameter studies, a ratio of N0,1/N0,2 > 103 is assumed
and only monomodal PSD are used.
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Figure 4.3.: (a) Examples for monomodal and bimodal PSDs. For simplicity, the PSDs are
normalised to N0,1 = 1. The parameters for the larger occupied mode are: shape
µ1 = 3 and scale diameter Ds,1 = 10µm. The parameters for the smaller occupied
mode are shape µ2 = 1 and scale diameter Ds,2 = 50µm. (b) Error of retrieved
optical thickness (given τ = 2), and (c) deviation of retrieved effective radius Reff,
when assuming a monomodal instead of a true bimodal normalised gamma PSD
for different ratios of the two occupation numbers N0,1/N0,2. (d) Comparison of
spectral residuals.
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4.1.3. Impact of Reff and τ on Infrared Radiance Spectrum

The two main microphysical input quantities for RT calculations are profiles of IWC or βext
and Reff. To investigate the impact both quantities have on the infrared radiance spectrum,
averaged in spectral microwindows, one of the quantities is varied while the other was held
constant. In Figure 4.4 (a), the cloud optical thickness was held constant and the wide range
of different Reff only have a small impact on the radiance spectrum. This is because, cloud
scattering does not have a big impact in the infrared region, as shown in Figure 3.13 (a). In
contrary to this, in Figure 4.4 (b), Reff was held constant, and the cloud optical thickness
was varied, identifying the cloud optical thickness as the main impact parameter, because
cloud absorption is the dominant interaction process within the atmospheric window region,
see Figure 3.13 (b). Figure 4.4 (c) and (d) shows the percentual deviations on the infrared
radiance spectrum, averaged in spectral microwindows, caused by Reff and τ deviations. The
implication from Figure 4.4 (c) and (d) is, that in the thermal infrared spectrum it is really
important to retrieve IWC or βext accurately. Because the lidar signal is the basis to retrieve
βext, real good lidar measurements should be available.
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Figure 4.4.: (a) Variation of Reff for constant COT and (b) variation of COT for constant Reff.
(c) Impact of deviations in Reff on the radiance observable for different COT.
(d) Deviations in COT for different Reff have a bigger impact on the radiance
observable.
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4.1.4. Sensitivity on Instrument Parameters

Up to the present, the included instruments were assumed to be noise free, nearly infinitely
sensitive and perfectly calibrated. The following section will consider the errors on the re-
trieved parameters caused by instrument noise and calibration uncertainty, and estimates the
magnitude of the spectral residuals from these perturbations.
The most important quantity for the radar is the calibration uncertainty ∆Ze. The radar in-

strument noise is negligible compared to the lidar noise, and its specific effect on the retrieved
profiles is insignificant (Hogan et al., 2006b). However, the calibration uncertainty ∆Ze will
not only appear as fluctuation on the retrieved Reff and βext profiles, like shown in Figure 4.5
(c1) to (c3), it will also impact the determination of the boundary value βext(Rfar) by the cost
function Jtot, which relies on radar measurements around the far end of the measurement dis-
tance at cloud top. In Figure 4.6 (a1) to (a4), the results are summarised. Especially, for thin
clouds, the wrong estimation of the boundary value caused by radar calibration uncertainty
will cause large errors, because the Klett algorithm can not converge to the real extinction
for low optical thickness values. For τ > 1, the errors in the microphysical profiles caused
by ∆Ze are negligible, and also the spectral residuals will lie below the variation caused by
different ice crystals habits like shown in Figure 4.6 (a4). The given calibration uncertainty
∆Ze of the Mira-36 radar is estimated to be 1.3 dBZ (Görsdorf et al., 2015).
For the lidar, the most important parameter will be the SNR. Because the Klett inversion

is used within the retrieval algorithm, only relative changes in the lidar signal are relevant and
the absolute calibrated value is not important. The boundary value for the inversion start
will be determined by the help of the radar signal around cloud top, making lidar calibration
obsolete for the Jtot-method. To understand the impact of the lidar SNR, it is useful to
distinguish the cases for low and high cloud optical thickness. For low τ , the lidar beam can
fully penetrate the cloud, as shown in Figure 4.5 (a1) to (a3). The smaller the SNR, the
bigger the fluctuations in the retrieved Reff and βext profiles. Here, the SNR is defined as
SNR(R) = P (R)/σ, like described in Section 3.2.2. The quantity SNRmax describes the ratio
of the maximal SNR(R) value inside the cloud in relation to the noise floor, characterised
by σ in the last signal range gates. For high τ , the lidar signal will be strongly attenuated
by the cloud particles, like illustrated in Figure 4.5 (b1) to (b3). Now, the error changes
drastically, because the lidar signal at the inversion start is in the same order of magnitude
like the instrument noise. Especially, around the inversion start, large errors will be the
consequence for small SNR values, unless the lidar signal grows out of the noise floor, the
inversion will be numerical unstable. In Figure 4.6 (b1) to (b4), the error on the integrated
microphysical quantities caused by the lidar SNR is illustrated. The bigger the SNR, the
smaller the errors, until a certain optical thickness is reached where the signal at inversion
start is so strongly attenuated, that it will be in the order of magnitude of the noise floor.
The residuals in Figure 4.6 (b4) exhibit a minimum, because we are considering the absolute
values of the residuals. Typical values for the SNR within a cirrus cloud (τ < 2) are around
30 for a ceilometer and 3000 for the WALES lidar.
The impact of radar calibration uncertainty ∆Ze and lidar SNR are contrary to each other,

where ∆Ze is causing errors mainly for low optical thickness values, the lidar SNR tends to
cause errors for high optical thickness values.
A further important parameter is the radar-lidar vertical signal overlap, because the re-

trieval can only be applied in regions where signals from both sensors are available. Due to
their different wavelengths, the instruments have different sensitivities and will not detect the
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same cloud boundaries.
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Figure 4.5.: (a1) - (a3) Range-corrected lidar signal, retrieved Reff and βext profiles for low,
and (b1) - (b3) high optical cloud thickness values showing the impact of different
used SNR. (c1) - (c3) Radar signal, retrieved Reff and βext profiles showing the
impact of different radar calibration uncertainties ∆Ze.

The lidar will in addition of it, suffer strong signal attenuation inside the cloud, making
it difficult to detect cloud tops in optically thick clouds. For simplicity, we only consider
the case, that the missing radar and lidar signal part will be taken away at the cloud top
region. This corresponds with the more frequent situation, that the lidar signal suffers from
attenuation towards cloud top in ground-based instrument configuration, and we neglect the
case where the radar is missing to detect small ice crystals at cloud base and top below the
radar sensitivity threshold. In Figure 4.6 (c1) to (c4), the results of different radar-lidar signal
overlaps are illustrated. Especially in Figure 4.6 (c4) it becomes obvious, how important it is,
that there will be a large signal overlap. For signal overlaps of 80 % and smaller, the residuals
will be already bigger than the variation of the ice crystal habits.
For the infrared spectrometer, the possible calibration bias of < 0.67 % of the ambient

black body radiance, is the biggest part in the uncertainty budget, but more important is the
calibration precision (reproducibility) of < 0.13 % of the ambient black body radiance, see
Section 3.2.4. For an assumed ambient black body temperature of −10 ◦C, the calibration
bias is shown in Figure 4.6 (b4) and the calibration precision is shown in Figure 4.6 (c4). Due
to the high calibration precision it is possible to differentiate between ice crystal habits.
The estimation of the effect of differences in radar and lidar footprints is beyond the scope

of this work, and would require simulations with two-dimensional cloud fields. An estimation
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Figure 4.6.: (a1) - (a4) Mean error of retrieved Reff, error of retrieved IWP, error of retrieved
τ and spectral residuals as function of cloud optical thickness for different radar
calibration uncertainties ∆Ze. (b1) - (b4) Same, but for different lidar SNRs,
and (c1) - (c4) for different radar-lidar signal overlaps.

was taken out by the European Space Agency, with the result, that the RMS difference in
mean radar reflectivity or mean lidar backscatter, would be less than 8 % for a typical cirrus
cloud (European-Space-Agency, 2001; Hogan et al., 2006b). This was confirmed by further
spectral analysis of airborne lidar data, that are very similar to results from a ground-based
lidar, based on two-dimensional cloud fields, and showed deviations of 0.363 dB (8 %) (Hogan,
2001a,b,c). Errors of this magnitude will be smaller than the expected uncertainty in radar
calibration and errors in the used radar-lidar synergy retrieval techniques.
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4.1.5. Sensitivity to Atmospheric Composition

While the microphysical profiles of ice clouds are gained from radar and lidar measurements,
the atmospheric profiles of traces gases and prognostic variables are obtained from in situ
measurements or from meteorological re-analysis models. These atmospheric profiles are re-
quired as input for RT calculations and will have a substantial effect on the radiance spectrum.
Therefore, their uncertainties will be investigated in this section.
As mentioned in Section 2.1.2, the current atmosphere of the Earth is composed of two

groups of gases, one with almost permanent concentrations and the other with variable con-
centrations. In this study, the relevant permanent constituents for RT simulations like ni-
trogen (N2), oxygen (O2), argon (Ar), carbon dioxide (CO2), nitrous oxide (N2O) and ozone
(O3) are denoted as “permanent gases” and all of them will be varied simultaneously. Al-
though ozone varies significantly with space and time it is assigned to this group, because its
variability is much lower than the variability of water vapour (H2O), the main variable gas
under consideration.
In Figure 4.7 the impact of the variation of the different parameters is summarised. For

estimating the water vapour profiles with an error less than 9.5 %, the different ice crystal
habits could be distinguished by a residual analysis, because the variations of the ice crystal
habits are significant bigger than the residuals caused by perturbing the water vapour profiles,
see Figure 4.7 (a). For the simultaneous variation of the permanent gases, the different ice
crystal habits could be distinguished even for perturbations of the profile concentration up
to 22.5 % like shown in Figure 4.7 (c). Therefore, water vapour profiles should be used from
radiosonde measurements or at least from meteorological re-analysis. Re-analysis offers water
vapor mixing ratios at a temporal resolution of 6 h with a precision of better than 9.4 % for
the location UFS, like shown by Sussmann et al. (2016). The profile concentrations of the
other gases, in turn, does not have to be that precise in time and space too, and can be taken
from climatological data for middle latitudes. Figure 4.7 (d) illustrates, that perturbations
of the temperature profile at the maximum of 1 K for cloud optical thickness values lower
than 5 will still allow a spectral separation of ice crystal habits. Here, an improvement
can be achieved by iterative combining the spectrometer and re-analysis data in a boundary
layer temperature inversion like described in Esposito et al. (2007). Furthermore, it is also
interesting to study the impact, a wrong “placement” of the cloud would have on the radiance
spectrum. This could occur, if radar and lidar would not be able to accurately detect the
same cloud boundaries because of their different sensitivities. In Figure 4.7 (b), it is shown,
that displacements bigger than 100 m will have a large impact, especially for large optical
thickness values. This indicates, that in the thermal spectral region it is important to use
data, where the cloud boundaries detected by radar and lidar are not differing much.

4.1.6. Sensitivity to Retrieval Technique

Effect of Non-Constant LR

As explained in Section 3.4.3, the solutions of the lidar equations are based on the assumption
of a constant profile of the lidar ratio LR. But in situ field campaigns showed, that the LR
actually varies with altitude and temperature and can span values of 29± 12 sr for temper-
atures from −75 to −48 ◦C (Chen et al., 2002). Therefore, this section will assume the LR
to vary through the cloud profile and investigate the impact on the retrieval results. Like for
understanding the impact of the lidar SNR, it is again useful to distinguish the cases for low
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Figure 4.7.: Analysis of the spectral residuals for perturbations caused by (a) variation of
the water vapour profile, (b) different placements of the cloud base height, (c)
variations of the permanents gases and (d) variations of the temperature profile.

and high cloud optical thickness.
In Figure 4.8 (a) the lidar signals for a low optical thickness (τ = 1) and different varying LR

profiles are presented. Because the extinction profile is constant, the backscatter coefficient
carries the modulation of the LR with an attenuation caused by the optical depth of the cloud.
In Figure 4.8 (b), the retrieved extinction profiles are shown for using the truth boundary
value (dashed line) and for using the boundary values estimated by the cost function Jtot (solid
line). Because the Klett inversion assumes a constant LR, the variation of the backscatter
coefficient can not be compensated and the retrieved extinction profile shows a variation
similar to the lidar ratio LR, which can cause an overestimation up to 150 % at inversion
start. Same behavior is shown for the retrieved Reff profile in Figure 4.8 (c) with errors up
to −13 µm at inversion start.
For a high optical thickness (τ = 9), the variations of LR will not have a significant impact

on the lidar signal, due to the strong attenuation, like presented in Figure 4.8 (d). For the
retrieved extinction (Figure 4.8 (e)) and effective radius profiles (Figure 4.8 (f)) the errors
went down to 26 % and −3 µm at inversion start. The differences between truth and estimated
boundary value are marginal.
In summary, even for varying the LR the lidar inversion will stay numerical stable, but

where the current LR value is higher than the mean value of the profile will lead to an
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Figure 4.8.: (a) - (c) Impact of non-constant lidar ratios on the lidar signals, the retrieved
extinction and effective radius profiles for low optical thickness of τ = 1. (d) - (f)
The same like above but for high cloud optical thickness of τ = 9.

underestimation of the extinction, and conversely when the current LR value is lower than
the mean value. The lower deviations in retrieved particle size showed, that this quantity
is not so sensitive to LR variations. In this parameter study the extreme case was studied,
where the LR differs at inversion start from the mean LR. Depending on the concrete profile
of the LR, and for considering vertically integrated quantities (τ , IWP ), there will be a
certain cancellation in the errors caused by a variable LR.

Boundary Value Estimation (Jtot) - Effect of Non-Constant Rrali
eff Profile

So far, the examples, like given in Figure 3.18, only included cases, where the true micro-
physical profiles were constant with height, but this can not be assumed for all clouds. To
investigate the effect of non-constant microphysical profiles, synthetic data were generated,
were the optical cloud thickness is varied between 0.1 to 5 and the mean normalised gradient of
the radar-lidar effective radius [1/Rrali

eff ][dRrali
eff /dR] is varied between −0.5 km−1 to 0.5 km−1.

Then the deviation between the “true” and the retrieved boundary value is characterised. It
is assumed, that the clouds have a linear decreasing (negative slope) or increasing (positive
slope) microphysical profile of Rrali

eff (R), and that the lidar ratio is constant with height at
LR = 30. The number of farthest range gates is assumed to be NRG = 30 and the normalised
gradient of Rrali

eff (R) is averaged along this distance.
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Figure 4.9.: Sensitivity study for the error in the boundary value estimation ∆Rrali
eff (Rfar) as

function of the normalised gradient [1/Rrali
eff ][dRrali

eff /dR]. Different cloud optical
thickness values are shown for cost functions based on radius derivatives JRD (a),
based on lidar constants JLC (b) and based on their product Jtot = JRDJLC (c).
(d) - (f) like above, but as three-dimensional surface plot.

In Figure 4.9 the results are summarised and indicate, that the precision of the estimation
depends in a complex fashion on the cloud optical thickness, the normalised gradient of
Rrali
eff (R) and its sign, confirming previous results from (Donovan and van Lammeren, 2001).

Figure 4.9 (a) and (c) indicate, that the error will be very high for low optical thickness values
and negative slopes of Rrali

eff (R) around cloud top. For positive gradients, the error will be
below 30 %, even for low cloud optical thickness values. These result can serve as a LUT to
give a rough error estimation on the retrieved profiles. Please note, that the presence of noise
will increase these errors, because the usable lidar signal will be reduced until the SNR will
be high enough to evaluate the signal.

Boundary Value Estimation (Jtot-cost function) - Effect of Few Very Large Particles in
Radar Pulse Volume

Due to the D6 dependence of the radar reflectivity, the detected radar signal from a cloud
volume can be dominated by a few but very large particles. This can have an effect on the
inversion procedure, because the Jtot-method uses the radar signal to estimate the boundary
value, like illustrated in Figure 4.10. Here, the difference ∆Dmax between two PSD-modes
was varied, see Figure 4.10 (a). The first PSD mode has a usual width (µ = 4), where the
second mode, including a few but very large particles, has a very narrow width (µ = 20).
In Figure 4.10 (b), the difference for calculating the boundary value Rrali

eff (Rfar), with and
without a large particle PSD mode, are compared with each other. Depending on the amount
of big particles in the narrow particle mode, substantial deviations will arise for much smaller
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∆Dmax. This indicates, that it is better to use a boundary estimation method, that relies on
a lower moment of the PSD, like the Rayleigh calibration method, if possible.
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Figure 4.10.: Impact of a few but large particles in the radar signal on the range gate used
for inverting the lidar equation. (a) PSDs for all particles and for big particles
only. (b) Iteration of the distance ∆Dmax between the two PSD modes.

Boundary Value Estimation (Rayleigh Calibration) - Effect of Different Footprints and
Wavelengths

As mentioned in Section 3.4.3, for lidars with a large FOV, multiple-scattering effects have
to be included. The method will estimate τMS, a lower value than the wanted τSS.

In Figure 4.11 (a) the impact of the lidar wavelength on the fit result is shown. Here,
typical parameter for a low-power lidar (ceilometer) are compared with parameter from a
high-power lidar (WALES, Wirth et al. (2009)). The larger wavelength of the ceilometer
causes a much weaker Rayleigh signal, due to the λ−4.08 dependence, and in turn a larger
fit error. The fit error increases for larger optical thickness values, due to the higher signal
losses after passing the cloud. In Figure 4.11 (b), the impact of multiple-scattering effects
due to large detector FOVs on the error of the retrieved cloud optical thickness is presented.
Here, the larger FOV of the WALES shows especially for τ values between 0 , to 1 , a strong
underestimation of the cloud’s optical thickness. This underlines, that especially for larger
FOVs, a multiple-scattering correction is necessary.

Retrieval Errors

In Figure 4.12 the errors caused by the retrieval techniques and its assumptions are sum-
marised.
In Figure 4.12 (a1) - (a4), the effect of ignoring multiple scattering effects in lidar signals

in the retrieval procedure are illustrated for parameters similar to a high power lidar with a
FOV of 1.6 mrad and a wavelength of 532 nm (Wirth et al., 2009) and a ceilometer with a
FOV of 0.45 mrad and a wavelength of 1000 nm (Wiegner et al., 2014). The plots show, that
neglecting the effects of multiple scattering in a cloud retrieval would lead to a considerable
underestimation of integrated ice water path, Figure 4.12 (a2), and cloud optical thickness,
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Figure 4.11.: The uncertainty of the Rayleigh fit method dependent on the lidar beam wave-
length and the detector FOV are shown in (a) and (b), respectively. The calcula-
tion of lidar signals based on different FOVs was taken out with a lidar multiple
scattering model developed by Hogan (2006, 2008); Hogan and Battaglia (2008).

Figure 4.12 (a3). The curves are similar to Figure 4.11 (b), but show a large error, because
here the Jtot-cost function was used for the estimation of the boundary value. For the retrieval
of particle size, the deviations are not very large. The spectral residuals for not including MS
effects are bigger than the variation caused by different ice crystal habits, indicating that MS
have to be included for separating ice crystal habits, see Figure 4.12 (a4).
In Figure 4.12 (b1) - (b4), the errors caused by different deviations of the lidar ratio profile

as function of the cloud optical thickness are shown. The deviations in retrieved particle size
(∆IER), are smaller than the errors in optical thickness (∆τ) and ice water path (∆IWP ).
The impact on integrated quantities is only significant for low optical thickness values, for high
optical thickness values the effect can be ignored, see Figure 4.12 (b2) and (b3), respectively.
The reason is again, that there will be a quick convergence of the Klett inversion for high
τ , even for large errors of the boundary value. The permanent underestimation of ∆τ and
∆IWP is caused by the fact, that the lidar ratio profile was chosen to have the biggest
overestimation over the mean value of 30 sr at inversion start, like sketched in Figure 4.8.
For an underestimation of the mean value of the lidar ratio at inversion start, the behavior
would be vice versa and for an exact matching of the mean value, the effect of a varying sinus
lidar ratio profile would be cancelled out by integration. For small deviations of the lidar
ratio profile, spectral residuals will be smaller than the variation of the ice crystal habits, see
Figure 4.12 (b4). There is a minimum, because the absolute value is used for the log plot of
the residuals.
The most relevant parameter is the estimation of the boundary value. The comparison with

real data will show that there can be deviations up to 40 %, like described in Section 4.2.4.
Especially for low optical cloud thickness values, there can be huge deviations in the retrieved
integrated quantities τ and IWP , see Figure 4.12 (c2) and (c3), respectively. To have the
spectral residuals below the variation of the different ice crystals, the boundary value error
∆βext(Rfar) should be around 1 %, which is hardly feasible in reality. Even in aerosol lidar
remote sensing an error of 1 % would require a smoothing of the data for around two hours
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(Freudenthaler et al., 2018). But cirrus clouds with their typical inhomogeneous structure
allow only integration times of below a few minutes depending on the wind speed. Therefore,
for low optical thickness values, it is highly recommendable to determine the boundary value
with the Rayleigh calibration method, like introduced in Section 3.4.3.
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Figure 4.12.: (a1) - (a4) Error of retrieved integrated Reff (∆IER), error of retrieved IWP,
error of retrieved τ and spectral residuals as function of cloud optical thickness
for different errors of the boundary value at inversion start. (b1) - (b4) Same
like above, but for different variations of the lidar ratio profile, and (c1) - (c4)
for lidar single vs. multiple scattering.
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4.2. Radar-Lidar Cloud-Retrieval Intercomparison using NARVAL-I
Data

4.2.1. The NARVAL-I Field Campaign

The two Next-Generation Aircraft Remote Sensing for Validation (NARVAL-I/II) field cam-
paigns had the aim to validate the various remote sensing measurements on board of the
HALO aircraft with satellite measurements, and perform an intercomparison between them.
The High-Altitude LOng-endurance (HALO) aircraft provides measurements of microwave
radiometer brightness temperatures, lidar backscatter, radar reflectivity and linear depolar-
isation ratio, and dropsonde atmospheric profiles from aircraft campaign over mid-latitude
Atlantic out of Iceland (Konow et al., 2018). The gained data were combined with in situ
measurements from dropsondes, because these sensors enable a characterization of the ther-
modynamic (temperature and water vapor), dynamic (large-scale winds and vertical velocity),
and particulate (hydrometeors, clouds, and aerosols) state of the atmosphere over the area
of the flight tracks. The HALO is used as an airborne cloud observatory with the goal to
capture cloud structures, cloud development and the surrounding environment in order to
generate test cases to validate climate models (Stevens et al., 2019).

4.2.2. Case Study - NARVAL-I Research Flight - 18th January, 2014

In this section, three different cloud-retrievals methods will be compared with each other to
evaluate the performance of the different retrievals on real data. The remote sensing payload
of HALO during NARVAL-I did not include an interferometer, so only the radar-lidar retrieval
part of SynCirrus can be compared with the other methods. They are listed in Table 4.2.

Table 4.2.: Different retrieval methods to be tested on NARVAL-1 data.

retrieval name SynCirrus VarCloud Radar-Only

assumptions on
microphysical

model:

• different habits can be
assumed according to
Yang et al. (2013)

• ice particle mass follows the
relations from
Brown and Francis (1995)
• area-size relationship
is taken from
Francis et al. (1998)

• ice particle mass follows the
relations from
Brown and Francis (1995)
• area-size relationship
is taken from
Francis et al. (1998)

solution
methodology:

• costfunction Jtot that
penalises gradients in
Rrali
eff and Clid,

Donovan et al. (2000)
• N∗0 -inverse model,
Tinel et al. (2005)
• Rayleigh calibration
to retrieve cloud optical
thickness

• optimal estimation method,
that minimizes the difference
between observations and
forward models,
Delanoë and Hogan (2008)

• based on empirical formulas
for IWC and βext as
function of Ze and T ,
Hogan et al. (2006c),
see Equation (3.22) and
Equation (3.23)

This comparison has two aims: First, to investigate the impact of the different retrieval
techniques on the retrieved microphysical profiles. Second, to quantify the bias between
using radar and lidar or only radar data. The NARVAL-I data were used, because they were
evaluated with the VarCloud-algorithm, and this method is very interesting because it uses a
total different retrieval-approach: forward instead of inverse modelling. Another advantage is,
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that NARVAL-I data provide measurements with a high-power lidar (WALES), which allows
to use the Rayleigh calibration, presented in Section 3.4.3, for guessing the boundary value.
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Figure 4.13.: NARVAL-I data from research flight on 18th January, 2014. Recorded (a) Lidar
and (b) radar data. Data after Cloud masking (c), and separated after which
instrument detected how much of the measured cloud (d)

.

In Figure 4.13, a part of the research flight, which recorded 120 radar and lidar profiles
during a cloud measurements is presented. Due to the high speed of the HALO aircraft the
data have to be recorded with a high temporal sampling rate of 1 s. In Figure 4.13 (d),
the cloud masked data are separated into which instrument did record a certain fraction of
the total measured cloud by radar and/or lidar. Of course, it would be desirable, when both
instruments would “see” the same cloud, but as indicated by Figure 4.13 (c), the radar missed
small ice particles on cloud top (green area, lidar only), whereas the lidar is not able to detect
ice cloud particles at cloud base (red area, radar only) due to signal attenuation.

4.2.3. Numerical Accuracy and Stability - Erroneous Extinction Spikes

The backward Klett-inversion is accurate for retrieving the extinction profile, but not perfectly
stable for cases, where the lidar runs out of signal (Hogan et al., 2006c, profile 6). When
the lidar runs out of steam at the far end of the measurements distance, the lidar signal
becomes unreliable at inversion start, and this can produce an erroneous spike in the retrieved
extinction profile. In Figure 4.14 (a) this unstable behavior is illustrated, here the lidar signal
loses signal with a high rate of change in the farthest range gates of the cloud signal, caused
by an optically denser part around the cloud base. Without correction, this behavior will lead
to an unrealistic high extinction at inversion start, see dashed line Figure 4.14 (d), where the
retrieved extinction is compared with the result from the VarCloud retrieval.
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Figure 4.14.: NARVAL-I data from research flight at 12:57:09 on 18th January, 2014. (a)
Lidar looses signal power with a high rate at the far end of the measurements
distance. (b) Magnitude of change rate of the numerator and denominator parts
of the Klett-inversion formula. (c) Method to identify unstable signal part. (d)
Retrieved extinction profiles with and without correction compared with result
from VarCloud retrieval.

The reason for this spike can be understood, when considering the numerator and denom-
inator of the Klett-inversion formula separately (Equation (3.35)). Therefore, in Figure 4.14
(b) the magnitudes of the normalised gradients of the numerator (simply the range-corrected
lidar signal) and denominator of the Klett-inversion formula are compared. Here, due to the
high rate of change of the signal loss, the numerator has a much higher rate of change than
the denominator, leading to unrealistic high extinction profiles around the inversion start.
To avoid this behavior, the lidar signal will be analysed and the part with the high rate of
change of the signal loss will be identified and removed from the usable lidar signal. For this
purpose, like shown in Figure 4.14 (c), the normalised gradient of the range-corrected lidar
signal is used, then its standard deviation is calculated and finally that part of the signal will
be removed after the signal exceeds the lower boarder of σ for five consecutive range gates
(75 m). The number of consecutive range gates is arbitrary and depends on the noise of the
lidar signal. Now, performing the Klett-inversion on the reduced lidar signal returns a much
lower extinction which is in accordance with the results from VarCloud, see Figure 4.14 (d).
Although, reducing the lidar signal means reducing the extinction, it will produce a smaller
error than using the full signal (τ = 1.26 vs. τ = 1.98) with an erroneous spike at inversion
start. This method does not always find the unstable signal part perfectly, but good enough
to improve the retrieved extinction profiles and avoid erroneous spikes.
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4.2.4. Comparison of Cloud Optical Thickness

In Figure 4.15, the retrieved cloud optical thickness values (COT) by different retrieval meth-
ods are compared with each other. Here, the VarCloud algorithm, a well tested retrieval (Stein
et al., 2011) and mainly used for data gained by aircrafts or satellites, is used as comparison
reference (purple dashed line).
In Figure 4.15 (a) to (d), the results for the COT retrieved by the Rayleigh calibration

method (Section 3.4.3) are presented. The lidar signal quality is assessed via searching for
high lidar SNR areas (Figure 4.15 (a)) and marked by the shaded area. The lidar SNR can be
increased by temporal averaging, but due to the high speed of the aircraft it is only possible
to use integration times up to 5 s. For areas with high lidar SNR, the fit error of the Rayleigh
calibration is low (Figure 4.15 (c)) and therefore a very reliable region to apply the retrieval
method, like shown in Figure 4.15 (d). Here, the VarCloud and the Rayleigh calibration
method are in accordance for the area with high lidar SNR, for the other regions the lidar
signal was already attenuated and therefore missed substantial parts near cloud top. The
multiple scattering correction factor ηMS was estimated by the MULTISCATTER code to be
0.7 for WALES instrument parameter.

In Figure 4.15 (e) to (g), the impact of the correction method to avoid erroneous extinction
spikes is investigated. In Figure 4.15 (g), the error of the boundary value is estimated with a
LUT, see Figure 4.9. The input parameters of the LUT are the mean normalised gradient of
Rrali
eff around inversion start and the retrieved COT. The correction method reduces the mean

estimated error for overestimating Rrali
eff (Rfar) from +40% to +8.1% and for underestimating

from −5.1% to −3.8%, in the shaded area. The very high spikes in the retrieved COT that
are still present, are caused by situations with multiple clouds detected in a profile, and
especially the thin clouds at higher altitudes can cause large errors when using the Jtot cost
function, see findings in Section 4.1.6. In Figure 4.15 (e) and (f) the retrieved COT via the
Jtot costfunction and the N∗0 inverse model, are compared with the VarCloud results. After
the correction, the Jtot-method and N∗0 -method produce comparable τ values like VarCloud,
in the shaded area.
In Figure 4.15 (h), the τ results from VarCloud are compared with the empirical Radar-

Only retrieval. In the shaded area, where both instruments have a high overlap, using radar
data only will lead to an overestimation of τ , due to the strong D6 dependence of Ze. At
12:57:58 or at 12:58:40, where the lidar signal is already strongly attenuated around the
inversion start, see fit-error in Figure 4.15 (b), the results of VarCloud and Radar-Only are
in accordance with each other, because the empirical relations from Radar-Only are used
as prior within the VarCloud algorithm, when the lidar is lacking data. In Figure 4.15 (i)
and (j) the importance of including multiple scattering effects is shown. Without multiple
scattering correction the COT is underestimated up to 50 % in the shaded area by the Jtot
and N∗0 -method. A comparison of the retrieved COT in the shaded area, between VarCloud
and the four methods radar-only, Jtot, N∗0 inverse model and Rayleigh calibration, showed
that they have mean deviations of 128 %, 19 %, 22 % and 14 %, respectively.
In conclusion, two data criteria should be fulfilled to apply radar-lidar retrievals (shaded

areas). First, both instruments should have a very high vertical signal overlap about 90 %,
but a complete overlap is very rare, because in thin ice clouds, the radar will probably miss to
detect the small ice crystals at cloud base. Secondly, the lidar signal should not be strongly
attenuated after interacting with the cloud and still have a high SNR at inversion start. This
can be evaluated by considering the fit-error of the Rayleigh signal at the far end of the
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Figure 4.15.: Optical thickness retrieved with different retrievals on NARVAL-I data from
research flight at 18th January, 2014. (a) - (d) Aspects of Rayleigh calibration
method. (e) - (g) Impact of correction for numerical stability. (h) Comparison
with Radar-Only retrieval. Multiple vs. single scattering results are shown in
(i) and (j).
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inversion.

4.2.5. Comparison of Extinction and Radar-Lidar Effective Radius Profiles
To assess the skill of the algorithms in retrieving vertical profiles of βext and Rrali

eff , the value
ranges will be compared with the VarCloud results. Optical thickness is an vertically inte-
grated quantity and errors in the retrieval procedure of the extinction coefficient fluctuate
around the true value, and so they may largely cancel in some way. Therefore, the retrieved
values will be compared directly value by value. The retrieval algorithms assume different ice
microphysical models and therefore, the comparison uses Rrali

eff instead of Reff, because this
quantity is, like βext, independent of habit and PSD assumptions. The comparison uses 35
profiles for times between 12:57:00 and 12:57:34, shaded areas in Figure 4.15, where the data
quality is good enough to ensure a meaningful comparison, and the results are shown in Fig-
ure 4.16. The highest bias is caused by the Radar-Only retrieval, because it only exploits data
from the radar. The lowest Rrali

eff -bias is given by the Jtot-method, here the values are in good
accordance with the VarCloud results. Considering extinction, the lowest bias is returned by
the N∗0 -method, but the bias given by Jtot-method is only hardly bigger. It is interesting to
mention, that although, the N∗0 -method has the lowest extinction bias, the Rrali

eff -bias is quite
large. This is an artifact of the inverse model coefficients, which were derived for a 94 GHz
radar, but the HALO payload included a 35 GHz radar. Whereas lidar data are sensitive to
βext (∼ D2), the radar data are sensitive to Ze (∼ D6) and using “wrong” coefficients will
show to have a bigger impact on particle size measures like Rrali

eff . So, deriving coefficients for
an inverse model with a 35 GHz will lower the Rrali

eff -bias.
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Figure 4.16.: Comparison of retrieved values for Rrali
eff and βext for different retrieval methods.

Radar-Only vs. VarCloud is shown in (a1) and (a2). SynCirrus with Jtot-
method vs. VarCloud is presented in (b1) and (b2). SynCirrus with N∗0 -method
vs. VarCloud is illustrated in (c1) and (c2)

.
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4.3. Three-Instrument Study with SynCirrus using UFS Data

4.3.1. The Location at Mount Zugspitze

The measurement sites at Mt. Zugspitze, the Schneefernerhaus (UFS, 2656 m a.s.l., radar
and lidar) and the platform at the summit station (2961 m a.s.l., infrared spectrometer)
offer unique conditions to use spectrometer data in a three-instrument cloud retrieval or for
radiative closure studies. Both sites are not remote and accessible by cable cars and offer
extraordinary dry conditions and low aerosol loads. The aerosol optical depth will be a factor
of 10 lower than at typical lowland midlatitude sites. These conditions are particularly helpful,
because lidar signals will not be weakened by aerosol layers and the recorded downwelling
radiances will benefit from the high atmospheric transparency because the used spectral
microwindows will become more transparent, especially in the strong pure rotational band of
water vapor, making it more reliable to compare measured radiance spectra with simulations
of the spectra driven by sensor synergy. Furthermore, the easy access allows to maintain long
term studies (multi-annual) with the benefit of attaining improved data statistics compared
to field campaigns, which would be helpful to develop radiative ice cloud parameterisations
usable in GCMs (Tobin et al., 1999; Sussmann et al., 2016).

4.3.2. Data Quality and Data Correction

The operators of the differential absorption lidar (DIAL) and the AERI at Mt. Zugspitze,
the IMK-IFU, were mainly focused in recording data for clear sky radiative closure studies
(Sussmann et al., 2016; Reichert et al., 2016; Reichert and Sussmann, 2016). Therefore, there
were not so many data including clouds, that could be used in this study. Furthermore, the
DIAL was out of service for a larger part of the observation period, making it necessary to
use low power ceilometer data instead of high power DIAL data. As pointed out by Ewald
et al. (2019), Mira-36 radar data should be corrected for a reflectivity calibration offset.

Lidar - Evaluating Ceilometer Signal Quality

Due to the aforementioned reasons, low power ceilometer data were used instead of high
power DIAL data. In general, ceilometers have some disadvantages when using their data in
cloud retrievals: they use weaker laser pulses, which lowers their ability to penetrate clouds,
their larger wavelength will reduce the quality of the Rayleigh-fit (Equation (3.4.3)), and
their detectors are prone to resort in saturation from cloud signal returns (Wiegner, 2018).
The question is, to which extent ceilometer data can be used for a Rayleigh calibration to
invert the lidar equation. In Figure 4.17 (a) - (c), the quality of the Rayleigh calibration is
investigated for a daytime measurement, using a cloud signal, and in Figure 4.17 (d) - (f),
the same analysis is repeated for a nightly recorded clear sky signal. Since the lidar SNR
depends on background radiation, nighttime measurements without recording radiation from
the sun are preferable. To have usable lidar signals for a Rayleigh calibration, the fit error
after penetrating the cloud should be below 50 %, like shown in Figure 4.15 (c). But, as
shown in Figure 4.17 (c), even for large temporal average times up to 80 min, the fit error
of the Rayleigh calibration after penetrating the cloud is still in the order of 100 %, and in
the first minutes even two orders of magnitude higher. Even for the best conditions during
nighttime, and without signal attenuation caused by a cloud, a Rayleigh calibration in the
upper atmosphere were cirrus clouds reside is not trustworthy, see Figure 4.17 (f). Because of
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ice cloud horizontal inhomogeneity, it is necessary to have short sampling times of maximally
a few minutes, depending on the wind speed (Fu et al., 2000; Hogan and Illingworth, 2003).
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Figure 4.17.: Analysis of the ceilometer signal for its usability of a Rayleigh calibration for
daytime (a) - (c), and nighttime (d) - (f) measurements

Therefore, the Rayleigh calibration method can not be used with ceilometer data to solve
the lidar equation. Furthermore, as shown in Figure 4.16 (c1), the N∗0 -iteration method
can not be used as well, because this method requires either data from a 94 GHz radar,
or the derivation of new coefficients for a 36 GHz radar, based on in situ aircraft data. In
conclusion, the only working method to solve the lidar equation with data recorded at UFS,
is the combined Rrali

eff -gradient and Clid-constant Jtot-cost function method.

Radar - Problems with Vertical Upwinds

The mountain location of the radar has the effect, that the assumption used for devices at
non-alpine regions, that upward or downward motion at the altitude of the device is zero and
consequently the cloud particle fall velocities are in equilibrium is not valid anymore, because
winds with vertical velocity components can come up the slope from the valley. These strong
vertical movements over mountains will lead to a broadening of the velocity doppler spectrum.
Because of these strong vertical movements the equilibrium falling speed will be reduced and
the velocity doppler spectrum is broadened. The consequence is, that the doppler spectrum
can not be used as trustworthy retrieval input quantity to derive particle size and ice water
content (Häring, 2016), based on methods like described in (Matrosov et al., 2002).
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These findings are relevant for the retrieval of cloud properties based on radar measurements
only. At the cost of higher uncertainties, one can overcome this limitation in using the
empirical relationships in Equation (3.23) and Equation (3.22), like described in Section 3.4.1.

Radar - Correction of Reflectivity Calibration Offset

Ewald et al. (2019), presented in their study, that effective reflectivities measured by HAMP-
MIRA during previous HALO aircraft campaigns had to be corrected by +7.7 dB, see Ta-
ble 3.3. In detail, they characterized the internal calibration of the instrument via analysing
the individual instrument components in the laboratory, and these findings were cross-checked
with external reference sources like the ocean surface backscatter and different air- and space-
borne cloud radar instruments.

Because the HAMP-MIRA and the UFS-MIRA are similar constructed, suggests that UFS-
MIRA data have to be corrected as well. In contrary, to the aircraft-configuration of HAMP-
MIRA, the UFS-MIRA is used in ground-based-configuration and therefore the offset compo-
nents of the two-way attenuation by additional waveguides and the belly pod radome, both
specific airplane installations, can be taken out of consideration Ewald (2019), resulting in a
likely calibration offset of +4.2 dB.

The applied radar reflectivity calibration offset can be approximately validated by a two-
instrument retrieval framework based on radar and AERI measurements only. Extinction
coefficient and ice water content, neglecting ice crystal habits, can be retrieved via the em-
pirical relationships Equation (3.23) and Equation (3.22), respectively. Based on these rela-
tionships, they only require radar reflectivity Ze and temperature to retrieve microphysical
profiles, then radiance spectra at the location of the AERI instrument can be simulated.
These calculations will be repeated after applying different radar calibration offsets between
0.0 dB and 10.0 dB, and minimizing the spectral residuals of simulated vs. measured spectra
will return the best matching calibration offset for every profile. In Figure 4.18, the results
were presented for radar and AERI data recorded on 22nd October, 2013 between 01:48:12
and 03:45:29. In Figure 4.18 (a), paired data of the retrieved reflectivity offsets which caused
the lowest spectral residuals and retrieved cloud optical thickness values are presented. Here,
only data were shown, were it was possible to determine a minimum between offsets ranging
from 0.0 dB to 10.0 dB, excluding the two boundary values. The histogram in Figure 4.18
(b), shows the counts for the different reflectivity offsets. The database for the empirical
Ze − T relationships showed large scatter for small extinction values and lower scatter for
bigger extinction values (Hogan et al., 2006c). Therefore, reducing the data to cases with
higher retrieved optical cloud thickness values (τ > 1), will help to lower the uncertainties of
the results. Furthermore, it is helpful to restrict the data to cases, where the radar alone was
able to detect a large proportion of the cloud, at least more than 90 % of the detected common
radar-lidar cloud profile. The data reduction causes a lowering of the mean reflectivty offset
from 5.23 dB to 4.09 dB, which is closer to the assumed offset of 4.2 dB. For trustworthier
results, more data and better statistics are required, and temperature profiles from local ra-
diosondes instead of re-analysis data could also help to reduce the uncertainties, but it seems
reasonable to correct the UFS radar data by +4.2 dB.
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Figure 4.18.: (a) Illustration of retrieved minimal reflectivity offset vs. retrieved cloud opti-
cal thickness, based on radar and AERI data recorded on 22nd October, 2013
between 01:48:12 and 03:45:29 at Mt. Zugspitze. (b) Ocurrence of the retrieved
minimal reflectivity offsets.

4.3.3. Case Study - 22nd October 2013

Potential measurement candidates for an ice cloud study should provide regions with high
radar-lidar vertical signal overlap of the detected cloud profile, see Figure 4.6 (c4). Further-
more, a certain amount of temporal homogeneity, due to the large temporal integration time
of the AERI instrument compared to the sampling times of the radar and lidar devices, should
be given. The case study, recorded at 22nd October, 2013 from 01:48:12 to 03:45:29, offers
both high and low radar-lidar overlap regions and is therefore a good candidate to see, where
the SynCirrus algorithm could produce useful results and where not.

Radar-Lidar Inversion

In Figure 4.19 (a) and (b), the used radar reflectivities and range corrected lidar signals are
shown for data acquired for 22nd October, 2013 by a MIRA-36 radar and a Jentoptik ceilome-
ter. The temperature were lying mainly below −38 ◦C, indicating that the observed cloud is
in the ice phase. Exploiting measurement data from a co-located microwave radiometer at
UFS, the Cloudnet target categorization determines that the observed cloud was composed
of ice as well (Hogan and O’Connor, 2004b).
The comparison of the detected cloud boundaries shows, that the lidar signal usually pene-

trates the entire cloud layers, whereas the radar is only be able to detect similar cloud bases,
missing only the very small ice crystals directly at the cloud base, but fails to detect the
cloud tops around an altitude of 12 km. Between altitudes ranging from 10.2 km to 12 km it
is assumed that the particles in this area are too small to give rise to an usable radar signal,
indicating that the ice crystals in that layer have probably an effective radius below a few
microns. Only between 02:08:00 and 02:22:00, both instrument have a large overlap of the
detected cloud regions, as presented in (c) and (d).
The results of the radar-lidar inversion procedure, using the Jtot-cost function, are presented

in Figure 4.19 (e) - (h). The retrieved profiles of βext (e) and Rrali
eff (f), will be converted
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Figure 4.19.: Observed radar (a) and lidar (b) data at UFS for 22nd October, 2013. Detected
cloud boundaries (c) and fractions separated by instrument (d). Inversion results
for Rrali

eff (e), βext (f), and for the RT input quantities Reff (g) and IWC (f),
assuming droxtal as ice crystal habit.
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to profiles of Reff (g) and IWC (h), using assumptions on PSD and ice crystal habit, like
described in Chapter 3.4. The retrieved values for IWC, mainly ranging from 1× 10−4 g m−3

to 1× 10−2 g m−3, and Reff, mainly ranging from 30 µm to 100 µm, are in accordance with
what is usually observed in ice clouds (Stein et al., 2011).
From 453 profiles in total, 9 profiles located around 01:56:00 and 02:14:00, were excluded

from the evaluation, because the presence of noise, attenuation of the lidar signal, or the
absence of a strong enough radar return made a representative and numerical stable inversion
impossible.

Comparison with AERI Results

In Figure 4.20, the full procedure for the SynCirrus retrieval is illustrated. First, the mean
temperature of the cloud is used with Equation (4.1.2), to determine the shape parameter µ for
the assumed monomodal gamma PSD, see Figure 4.20 (a). This parameter has to be consistent
in the radar-lidar inversion as well as in radiative transfer calculations. In Figure 4.20 (b)
and (c), it is shown that the retrieved effective radius profile resembles the measured radar
reflectivity profile, whereas the retrieved ice water content profile resembles the measured
lidar backscatter signal. This is an artifact of the different sensitivities of the instruments
concerning the PSD moments of the microphysical properties. In Figure 4.20 (d), the observed
zenith downwelling radiance spectrum is compared with the simulated spectrum based on the
above mentioned microphysical profiles as input quantities at 02:08:44. Finally, Figure 4.20 (e)
compares the radiance observables evaluated in the different spectral microwindow regions for
every time step from AERI with simulations assuming droxtals or solid columns as ice crystal
habit. The step size structure results from the large AERI sampling time of approximately
8 min. In Figure 4.20 (f) compares the spectral residuals of observation minus simulation with
the variation given by the standard deviation of the set of all assumed ice crystal habits. It
is seen, that only in three AERI sampling intervals the residuals are below the variation of
the ice crystal habits. This, in turn, indicates that the failing to retrieve cloud microphysics
within uncertainties in the other intervals, can not arise from assuming the wrong ice crystal
habit, rather pointing to other errors in the retrieval procedure, that have to be investigated.

4.3.4. Analysis of Retrieval Quality
The presented ice cloud study in Figure 4.20 (e) and (f) showed large deviations between
observation and simulation, making it impossible to retrieve ice crystal habits. Therefore,
the numerical stability of the retrieval procedure and the data quality has to be further
investigated.

Increasement of SNR at Inversion Start

Due to the low power of the ceilometer, the signal quality at cloud top is very poor and the
signal is strong oscillating between negative and positive values. Negative values occur due
to an applied dark current correction (Wiegner, 2018). Therefore, removing signal parts with
the method presented in Section 4.2.3 is not enough and more parts of the lidar signal and
consequently of the radar signal can not be used in the inversion. Whereas for the WALES
data only a few range gates had to be removed, the poor ceilometer data quality required
the removal of up to 50 signal range gates. In Figure 4.21 (a) the lidar SNR before and after
removing the poor quality oscillating signal parts is illustrated. Especially, the boundary value
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Figure 4.20.: Steps within the SynCirrus retrieval procedure, observed at 22nd October,
2013. Estimation of the shape parameter for the gamma PSD (a). The certain
intermediate results of the ice cloud study, the retrieved Reff (b), the retrieved
IWC (c) and the calculated radiance spectrum based on these profile (d),
for a representative point at 02:08:44 and assuming droxtals as ice crystal
habit. The radiance observable, averaged over the given microwindows, for the
AERI observations and the RT simulation assuming droxtals (e). The spectral
residuals between observation minus simulation, assuming droxtals, in relation
to the habit variation (f). The step size behavior of in (e) and (f) is caused by
the used long AERI calibration intervals.
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error decreases for higher SNR, like illustrated in Figure 4.21 (b), and the mean estimated
error of Rrali

eff (Rfar) was lowered from +138%/− 3% to +36%/− 14%.

Temporal Alignment of Radar and Lidar Data on AERI Sky-Phase

The AERI systems alternates between three different viewing modes: the ambient blackbody
calibration reference (2.0 min), the hot blackbody calibration reference (2.0 min), and the
zenith atmospheric view (3.5 min). With additional data transfer time, the temporal sampling
rate is 7.5 min (Knuteson et al., 2004a). Hence, for spectral comparisons with RT calculations,
based on input from radar and lidar synergy, it will be beneficial to temporally restrict
the radar and lidar profiles to the corresponding zenith atmospheric view of the AERI. In
Figure 4.21 (c) and (d) the results are presented. However, the temporal data restriction to
use only sky-phase AERI data leads to an increasement of mean residuals from 4.07 mW m−2

to 4.18 mW m−2. The reason for this unexpected deviation is caused by the fact, that the
instruments are located at positions further away from each other, than the footprint sizes of
the individual instruments and will be discussed in the following section.

Separate Locations of Active and Passive Sensors

All sensors are ground-based and near-zenith viewing instruments, observing a vertical atmo-
spheric column. The upcoming question is, under which circumstances the active and passive
sensors are detecting the same cloud volume, when they have different field of views and are
placed on different locations.
Therefore, the cloud volumes, sampled by radar pulses or the lidar laser beam have to be

compared with the field of view of the infrared spectrometer. As mentioned in Table 3.2, the
radar beam divergence αrad is 9.8 mrad, the lidar beam divergence αlid is 0.3 mrad and the
AERI full-angle field of view γ is 46 mrad. For a cirrus with a cloud base at an altitude of
8 km, observed with the configuration like presented in Figure 4.22, the radar, lidar and AERI
would have footprint diameters of 52 m, 1.5 m and 245 m at cloud base, respectively. Thus,
an AERI observed scene’s footprint at 8 km is up to 150 times larger than the lidar or up to 5
times larger than the radar. There are several situations imaginable, where these differences
could cause a bias. Examples are, when active sensors detecting the edge of a cloud that is
completely within the AERI-FOV, or active sensors have little breaks in cloud covers, but
the AERI detects a cloud radiative signature anyway of the breaks, because of its large FOV,
or the active sensor’s FOV is completely cloud free, but a small part of a cloud is entering
the large AERI FOV causing a cloud radiative signature as well. In all cases, the measured
radiance would be larger than from simulations based on radar and lidar measurements.
A further complexity arises, when the instruments are not placed together. The used radar

and lidar instruments are located at UFS, whereas the AERI is placed 290 m higher and
670 m away on a platform at the summit station of Mt. Zugspitze. Therefore, the minimum
distance Ri, relative to UFS, before the different field of views began to overlap will increase.
According to the geometric considerations from Figure 4.22, this distance can be estimated
via

Ri =
DUS + ZUS tan(γ/2)
sin(αi/2) + tan(γ/2) , (4.2)

where Ri stands for the distance Rrad or Rlid, and αi stands for the angle αrad or αlid. For
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Figure 4.21.: (a) Increasement of lidar SNR by the removal of the most upper signal range
gates around cloud top, and (b) its effect on the estimation of the boundary
value error. Temporal alignment of radar and lidar data on AERI sky-phase for
the radiances averaged in microwindows (c) and (d) residuals.

the radar, there will be no footprint overlap before the emitted pulse propagated for a distance
of 21.8 km and for the lidar a distance of 24.8 km. Theses distances are far beyond the range
of the instruments, and where cirrus clouds occure. Thus, for all detected cloud volumes
there will be an additional spatial offset between radar/lidar and AERI observations, see Fig-
ure 4.22 (b). For the case study, there was an average zonal wind of around 15.5± 0.3 m s−1

in east direction and an averaged meridional wind of around 0.6± 0.2 m s−1 in south direc-
tion, according to re-analysis data and averaged from 00:00:00 to 04:00:00 UTC for altitudes
between 8 km to 10 km, where the cloud did reside. Because the ratio of the magnitude of the
wind components do not match the ratio of the geographic distances between Zugspitze and
UFS, it is not possible to match the cloud pixel in the data between radar-lidar and AERI
by applying a temporal offset on the radar-lidar data. In Figure 4.23 temporal sequences of
the recorded data from the three instruments are illustrated. The sequence is constrained to
cases, where the COT is first increasing and then decreasing in the interval from 01:57:00 to
02:27:00. Where radar and lidar record a maximum signal at the same time (green signal at
02:17:00), the AERI records its maximum spectrum 5 min later (blue spectrum at 02:22:00).
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Figure 4.22.: (left) Comparison of the characteristics for radar and lidar beam divergence
in relation to the AERI field of view. The active sensors are located at UFS,
whereas the AERI is located on the summit station of Mt. Zugspitze. According
to Table 3.2, the used radar beam divergence αrad is 9.8 mrad, the lidar beam
divergence αlid is 0.3 mrad and the AERI field of view γ is 46 mrad. Figure not
true to scales. (right) Different footprint diameters of the instruments (1.5 m
for lidar, 52.2 m for radar and 245.3 m for AERI) for a cloud with a cloud base
altitude of 8 km, similar to the case study from 22nd October, 2013. Pictures
are taken and modified from www.auf-den-berg.de and Google Maps (2023).

www.auf-den-berg.de
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This underlines the aforementioned spatial offset.
Depending on horizontal cloud inhomogeneity and horizontal cloud extent, this offset can

cause a large bias between the simulated and measured spectrum. But a precise analysis
of the magnitude of the bias caused by not overlapping FOV’s, would require 3D radiative
transfer simulations with at least 2D cloud fields, and is beyond the scope of this work.
The mentioned differences would be definitely smaller for instruments located together and

for atmospheric scenes with slowly varying or uniform cloud scenes instead of broken cloud
cover conditions, or cirrus inhomogeneity temporally on bigger scales than the AERI’s sky
phase, but they are rare to observe (DeSlover et al., 1999).
The original idea for this thesis was, to use the same data, that were measured in a previ-

ous multiannual campaign focusing on clear sky cases for a water vapour closure experiment
(Sussmann et al., 2016; Reichert et al., 2016; Reichert and Sussmann, 2016). For this cam-
paign it was necessary to place the AERI on the summit station and not at the lower UFS,
where the radar and lidar are located. In all regarded cases within the observational period
from 2013 to 2018, there was no case, where the magnitude and direction of the meridional
and zonal wind components matched the spatial distances, see Figure 4.22, that would have
allowed the application of a temporal offset.
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Figure 4.23.: (a) Retrieved cloud optical thickness based on radar-lidar and radar-only mea-
suements. Recorded AERI spectra (b), recorded radar (c) and lidar signals (d)
show maxima at different times: radar-lidar at 02:17:00 (green signal) and AERI
at 02:22:00 (blue spectrum) indicating that the instruments are not able to de-
tect the same cloud scene simultaneously, because the spatial separation of the
instruments is considerably bigger than the footprint of each instrument.





5. Discussion
In the following chapter, the findings from Chapter 4 are discussed and compared to previous
results from current literature. Identified strengths and shortcomings of the used methods
are mentioned, data quality criteria are summarised, and suggestions for future work are
mentioned.

5.1. Used Retrieval Techniques
Ice cloud retrieval algorithms are required to translate remote sensing observations to mi-
crophysical properties. The retrieved microphysical profiles are required to parameterise
radiation schemes and to constrain microphysical schemes in General Circulation Models
(GCMs). Retrieval algorithms differ mainly in their assumptions, used instruments and their
methodical complexity. In the case of radar and lidar measurements of ice clouds, there are
two measured quantities (lidar backscatter signal βsca,π and radar reflectivity Ze) but six un-
knowns microphysical properties (ice water content IWC, effective radius Reff, particle size
distribution (PSD) knowledge, like PSD-type and PSD-shape parameter µ, ice crystal habit
and lidar ratio LR) resulting in an under-constrained problem, where the radar-lidar retrieval
has to assume the missing information by iterating over a realistic retrieval space. It was
demonstrated in Section 4.1.6 that among these assumptions by far the biggest uncertainty
comes from the estimation of a constant lidar ratio LR. This is synonymous with estimating
the boundary value for inverting the lidar equation by using the Klett algorithm (Donovan
and van Lammeren, 2001; Tinel et al., 2005; Hogan et al., 2006b).
Demanding the lidar ratio LR to be constant with height, is a prerequisite of the Klett

algorithm. It effectively means that only one type of scatterer can be assumed along the
measured profile (Klett, 1981). It was demonstrated that this limitation has no effect on the
numerical stability of the radar-lidar retrieval, when the true LR profiles are variable with
height. Strongly variable LR profiles (value range ∆LR > 12) can have a substantial effect
on low optical thickness values on the retrieved IWC profile, but only a small effect on the
retrieved Reff profile.
Because the boundary value estimation is the most dominant uncertainty contribution, the

three-instrument retrieval includes three different estimation methods from previous studies,
shortened as Jtot, Jray and IN∗0 . The letter J describes methods based on minimizing a cost
function, whereas the letter I describes an iterative method by solving an implicit equation.
They all have specific strengths and weaknesses, as discussed in Table 5.1. The Jray-method
is causing the lowest errors, but requires very good lidar signals and a cloud optical thickness
(COT) below 2. The method is based on evaluating the signal attenuation loss of the lidar
signal by calculating a Rayleigh fit before and after interaction of the lidar beam with the ice
cloud. The biggest advantages are that this method is neither prone to erroneous extinction
spikes nor to biases caused by a few big particles in the evaluated pulse volume, when using
radar signals. The Jtot-method is based on penalising unrealistic gradients of log(Rrali

eff ) and
is always applicable when radar and lidar signals are available, it only requires a calibrated
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radar signal. But, strong negative gradients of Rrali
eff at inversion start or a few large particles

in the evaluated radar range gates can cause large errors. A wrong estimation of the boundary
value is especially a problem for ice clouds with low COT (< 1), because the Klett inversion
formula can not force the retrieved extinction profile to converge with the true profile fast
enough. For high COT (> 3), even large estimation errors of ±30 %, will only have an impact
on the upper third of the profile after inversion start, for lower range gates a convergence with
the true profile is achieved. This is in accordance to previous studies (Hogan et al., 2006b).
The IN∗0 -iteration method assumes to return the best results in case of the least fluctuation
of particle number concentration with height. The underlying physical principle is, that ice
particle growth by vapor deposition and riming leads to a change of particle size, but not
in the number of particles (Tinel, 2002). Evaluated real data, showed a lower mean bias (<
7 %) for retrieved extinction values, when using the IN∗0 method. This could be an evidence,
that it is physical more reasonable to assume N∗0 constant near cloud top instead of Rrali

eff .
But this method requires an inverse model based on in situ data, developed for a certain
radar frequency, and the inverse model for a 36 GHz radar is missing. This caused a large
bias (19 %) for retrieved particle size. Both, the Jtot and IN∗0 method suffer from the same
contradictory behaviour, that on one side a high COT will help to achieve a convergence
between the true and the retrieved profile faster, but on the other side a high COT will make
it very difficult to estimate the boundary value with a low error, because there will be no
usable lidar signal with high SNR at inversion start.

It was pointed out in the literature, although it is a big challenge, that there is an out-
standing need to include coherent uncertainty estimations in any retrieval algorithm (Morrison
et al., 2020). That is of fundamental importance, because the retrieved results are required
for comparisons with model simulations, model parameterisation development, and under-
standing ice cloud processes (Comstock et al., 2007). The approach, used in the SynCirrus
algorithm, is to focus on the main uncertainty contributions, coming from the radar calibra-
tion and the estimation of the boundary value. The radar calibration is varied within its
uncertainty range, whereas the boundary value uncertainty is estimated with the help of a
look-up table. This 1D approach has its limitations, a 3D simulation would be more accurate,
but the main sensitivities (COT, gradient of Rrali

eff ), are included and the order of magnitude
for the error can be estimated.

At the moment, optimal estimation methods are the most promising retrieval approaches
to tackle inverse problems in remote sensing of ice clouds (Stein et al., 2011; Ewald et al.,
2021). Their main advantage is, that the underlying mathematical formalism automatically
provides a consistent and rigorous treatment of estimating errors caused by uncertainties
from measurements and assumptions (Delanoë and Hogan, 2008). Furthermore, additional
instruments can easier be incorporated in the retrieval framework, by an extension of the
input state vector. But, there is a need to better understand the errors’ order of magnitude
in cases where the information content is low. This refers to cases, where the retrieval can not
exploit the lidar signal and mainly relies on the radar signal. In such cases, the information
is completed with the prior from empirical relations, like Ze − IWC − T from Hogan et al.
(2006c), and the retrieval results tend to converge to these climatological results. Although,
the empirical relations have reported very high errors, the optimal estimation framework,
returns error estimations in the same order of magnitude, as when both, radar and lidar
signals, are available. Another obstacle is, that it is not easy to include different ice crystal
assumptions in the forward scattering models used by optimal estimation frameworks, because
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Table 5.1.: Overview of advantages and disadvantages of the different methods for estimating
the boundary value, for inverting the lidar equation in cloud retrievals.

solution methodology advantages disadvantages

Rralieff -Gradient (Jtot):
• uses Klett-inversion for a
single component atmosphere
to retrieve βext and Reff profiles
• boundary value was
constrained with support of radar
signal by finding the minimum of
an cost function which penalises
gradients of log(Rrali

eff )
• used in:
Donovan and van Lammeren (2001)

• self-consistent, only requires
lidar and radar signal
• does not require signal parts
outside of cloud
(e.g. molecular signal)
• no calibration of lidar signal
required
• microphysical assumptions
(habit, PSD) can be incorporated
consistently in inversion and
RT path
• uncertainty estimation
with LUT

• prone to erroneous extinction
spikes when lidar runs out of
signal at inversion start
• uses only signal parts at the
start of the inversion for boundary
value estimation (weaker constraint)
• few large particles at inversion
start can dominate the radar signal
and lead to wrong boundary values
• large errors for low optical cloud
thickness values and negative
gradients
• can only use constant LR
→ has to assume a single habit
for a cloud profile
• needs signals from both, radar
and lidar and a high signal overlap
to yield reliable results

.
N∗0 -Iteration (IN∗

0
):

• uses Klett-inversion and
Hitschfeld-Bordan equation
• boundary value will be
constrained by estimation of cloud
optical thickness with an implicit
equation based on an inverse model
• used in: Tinel et al. (2005)

• uses all signal range gates
within cloud for boundary value
estimation (stronger constraint)
• does not require signal parts
outside of cloud
(e.g. molecular signal)
• microphysical assumptions
(habit, PSD) can be incorporated
consistently in inversion and
RT path

• prone to erroneous extinction
spikes when lidar runs out of
signal at inversion start
• requires microphysical
inverse model based on
aircraft in-situ data for used radar
frequecy
• can only use constant LR
→ has to assume a single habit
for a cloud profile
• needs signals from both, radar
and lidar and a high signal overlap
to yield reliable results
• uncertainty estimation
is hardly feasible

Rayleigh calibration (Jray):
• based on a fit of the lidar
signal to the molecular
atmosphere before and after cloud
• boundary value was
constrained by estimation
of cloud optical thickness due to
signal loss
• used in: Cadet et al. (2005)

• avoids erroneous extinction
spikes at inversion start
• can give a good estimation of
the boundary value for low cloud
optical thickness values
• fit error can be used as
data quality criteria

• requires high lidar SNR
especially after penetration of cloud
• for large lidar FOVs, the
derived optical cloud thickness
must be corrected for multiple
scattering effects and correction
requires size information from
LUT or radar
• can not be used with ceilometers
(low power and too weak molecular
signal)
• can only be used for low
optical cloud thickness values (. 2)
• can not be used with
ceilometer wavelengths

Optimal estimation
(VarCloud):
• optimal estimation scheme
based on fast forward models for
included instruments
• a cost function for the
obervation vector was minimized
• used in:
Delanoë and Hogan (2008)

• can also be used when
only radar or only lidar
signals are available
• avoids erroneous extinction
spikes at inversion start
• numerical stable even when
lidar runs out of signal
• additional instruments can
easy be incorporated in
optimal estimation framework
• lidar ratio LR can be
variable → different habits
can be assumed for a cloud profile
• mathematically consistent error
propagation is included in
formalism automatically

• minimization procedure
can lead to a local instead
of a global minimum
• for profiles e.g. with
large radar only part, the
result can tend to climatology
relationships
• microphysical information
content is difficult to be separate
from optimal estimation framework
• lidar signal must be calibrated
• cost function requires good
uncertainty estimations
• inconsistency between RT and
radar-lidar forward model,
concerning microphysical model
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the included look-up tables first must be extended on ice crystal habit, roughness and PSD, to
be consistent with the RT assumptions, like demanded by McFarquhar and Heymsfield (1998).
Therefore, a better understanding of how the measured information content is exploited by
an optimal estimation framework is required. This knowledge can be gained, by further
comparisons with inversion approaches, like used in this thesis.

5.2. Radar-Lidar Retrieval Intercomparison
The aim of the retrieval intercomparison, was to test the radar-lidar retrieval part of the
three-instrument retrieval framework. In particular, the different boundary value estimation
methods (Jtot, Jray and IN∗0 ) as well as the multiple scattering correction should be tested
with high quality lidar data fromWALES. The data were taken during the NARVAL-I aircraft
field campaign. The results were compared with totally different retrieval approaches based on
optimal estimation (VarCloud - Delanoë and Hogan (2008)) and empirical relations (Radar-
Only - Hogan et al. (2006c)). Currently, VarCloud is the most promising retrieval approach in
remote sensing of ice clouds (Stein et al., 2011; Delanoë et al., 2013; Ewald et al., 2021). For
high-quality flagged data (COT < 2, Rayleigh fit error < 10 % and radar-lidar vertical signal
overlap > 90 %), the Rayleigh calibration method showed good agreement (bias < 20 %) with
the VarCloud results. After correction of the lidar signals, to avoid erroneous spikes in the
retrieved extinction profile, good agreement between VarCloud and the two methods (Jtot
and IN∗0 ) could be achieved as well. The methods evaluating radar and lidar signals, had a
lower bias with VarCloud than the empirical relations method, using the radar signal alone.
The low bias result could only be achieved when including a multiple scattering correction.

5.3. Three-Instrument Retrieval with Zugspitze Data
The developed SynCirrus retrieval algorithm was applied on data from the two sites at
Mount Zugspitze, where passive and active remote sensing data were available, in contrary
to the NARVAL-I campaign, were only radar and lidar data from clouds were available. The
Zugspitze offers extraordinarily dry conditions and provides a high atmospheric transparency
to observe cirrus clouds. The radar and lidar instruments are located at UFS, while the in-
frared spectrometer AERI is located at the summit observatory. Because cloud measurements
were only available from a ceilometer, it was not possible to use the Rayleigh calibration for
the estimation of the boundary value for radar-lidar inversion, because the laser wavelength
of the ceilometer only generates a weak Rayleigh signal, which in turn causes large fit errors.
The IN∗0 could not be used, because there is no inverse model for a 36 GHz radar. Such an
inverse model provides coefficients of the power-law relationships corresponding to different
particle size range (Tinel et al., 2005). Only the Jtot is applicable, but this method is prone
to erroneous extinction spikes or large particle biases at inversion start. The UFS cloud radar
data were corrected before usage, following Ewald et al. (2019).
In Section 4.3.3 the result of the ice cloud case study showed that for the main part of the

evaluated data the SynCirrus algorithm could find a microphysical state, based on radar and
lidar data, to explain the AERI spectrum within their uncertainties. But, a discrimination
between different ice crystal habits was not possible due to large mean boundary value errors
of +36%/ − 14%, caused by poor ceilometer signal quality (WALES caused only an error of
+8.1%/ − 3.8%). As described in Section 4.3.4, the biggest obstacle in the ice cloud study
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was the fact, that the measurement devices are separated from each other at distances much
larger than the cloud base footprint sizes of the individual instruments. Because of these
non-overlapping FOVs, the data to be used require a higher degree of horizontal homogeneity,
which is especially for cirrus clouds hard to observe.

5.4. Retrieval of Ice Cloud Properties and Requirements on Data
Quality

In order to be able to make a statement, which microphysical properties can be retrieved
from the synergy of active and passive remote sensing, the order of magnitude of the thermal
spectral residuals, caused by different uncertainty sources, should be known. The spectral
residuals are defined as difference between radiative transfer simulations towards spectral in-
frared measurements. However, for the synthetic parameter studies, the spectral residuals
were used to investigate the impact of certain parameters on the spectrum. To assess these
residuals, a synthetic 1D model was used in Section 4.1, and based on a microphysical cloud
state, the different measurements for radar, lidar and infrared spectrometer were simulated.
Using the simulated radar and lidar data, the retrieval returns different microphysical cloud
states, depending on the retrieval assumptions. The measurements were perturbed by in-
strument noise and the retrieval results were iterated for different microphysical assumptions.
Based on the retrieved microphysical profile, a spectrum is calculated and compared with
the “true” one, by exploiting spectral microwindows between absorption lines. Such a 1D
model is not as accurate as a 3D model and assumptions have to be applied, summarised
in Table 3.7 and Table 3.8, but the important sensitivities (radar - D6, lidar - D2, radiative
transfer simulation - water vapour, microphysical assumptions) can be included and their
effects on the retrievable information content can be investigated. The error for neglecting
radiative 3D effects in the thermal spectral range is below 30 % for effective ice crystal sizes
and below 5 % for the cloud optical thickness, and both errors are below the typical errors
caused by the retrieval technique Fauchez et al. (2018).

The different sources of uncertainties were identified and categorised into radiative transfer
settings (Line-By-Line vs. reptran), ice cloud microphysical assumptions (ice crystal habit
and roughness, the type of the PSD, the modality of the PSD, PSD shape parameter), in-
strument parameters (radar calibration uncertainty, lidar SNR), atmospheric state knowledge
(temperature and water vapour uncertainty) and retrieval technique (constant lidar ratio as-
sumption, uncertainty in estimation of the boundary value). Based on the executed parameter
studies a set of parameters could be identified that will cause low retrieval errors making it
possible to distinguish different ice crystal habits, and they are summarised in Table 5.2.
Based on the application on synthetic and real data, criteria for high quality data, to retrieve
reliable microphysical profiles, can be identified: low Rayleigh fit error of the lidar signal after
cloud-lidar beam-interaction, high radar-lidar vertical signal overlap and low spectral residu-
als between AERI and simulated retrieved spectrum. Among the microphysical parameters
for a monomodal gamma PSD, the ice crystal habit has the biggest impact on the thermal
spectral residuals. But even with high quality data it is not possible to discriminate between
the different habits, because the boundary value estimation error is only allowed to be below
±1 %. But, realistic values are between ±36 % (ceilometer) and ±8 % (WALES). An error in
the order ±1 % can only be achieved after integration times of around 2 h, like done in aerosol
remote sensing (Freudenthaler et al., 2018; Freudenthaler, 2019). But in contrary to aerosol
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Table 5.2.: Required knowledge on specific parameters and their accuracy for successful re-
trievals of ice crystals habits, when only using remote sensing data from radar,
lidar and infrared spectrometer.

Parameter Value Comment

Microphysical Model Assumptions

Ice Crystal
Surface

Roughnesses:

not
relevant

In the used longwave thermal spectral range of 700 cm−1 to 1200 cm−1 the
surface roughness can be neglected but for shortwave radiation it can have a
substantial impact

PSD-Shape
(Monomodal):

not
relevant

Does only have a minor effect on the spectral residuals and can be
approximated by PSD shape µ(T ) from Heymsfield et al. (2013)

Occupation
of Modes
(Bimodal):

N0,1/N0,2
> 103

If there is a certain occupation in the large particle mode, the retrieval
formulas based on a monomodal PSD will return wrong results. With in
situ measurements the PSD could be determined.

Radar-Lidar Retrieval Technique

Boundary
Value Error:

∆Rrali
eff (Rfar)
. 1 %

Small errors are hardly to achieve, because retrievals tend to overestimate
the boundary value ∆Rrali

eff (Rfar) up to 40 %. An error reduction can be
achieved when using the Rayleigh calibration for low τ , and the Jtot and N∗0
cost function for high optical thickness values. Attention should be paid on
extinction spikes at inversion start, like described in Section 4.2.3.

Lidar Ratio
Variation:

∆LR
. 2 sr

The lidar ratio can vary within a cloud profile, depending on temperature and
scatterer composition. Magnitude could be estimated with
lidar ratio-temperature relations (Cazenave et al., 2019)

Multiple
Scattering:

include
For real lidars with a large FOV like WALES (1.6 mrad), there will be a
substantial signal part from multiple scattering, which the retrieval should
account for

Radar-Lidar
Signal Overlap:

& 90 %
To achieve such a high radar-lidar signal overlap, cloud optical thickness values
should be below 2. 100 % will never be reached, because
radar has a limited sensitivity. Thus small ice crystals at cloud base can not
be detected by radar.

Rayleigh-fit
error . 10 %

A low Rayleigh-fit error of the lidar signal after cloud penetration is an
indication, that the retrieved boundary value has a small error and that the
lidar signal was not attenuated critically. This enables a numerical stable
inversion of the lidar signal. Low fit errors only occure for a COT below 2 and
lidars with a suitable wavelength and high pulse power.

Instrument Parameters

Radar
Calibration
Uncertainty:

∆Ze
. 0.3 dBZ

The Mira-36 has a ∆Ze of 1.3 dBZ (Görsdorf et al., 2015), a typical value for
radar calibration uncertainties and smaller uncertainties are difficult to achieve.

Lidar
Cloud SNR: SNR & 1000 For cloud optical thickness values below 2, typical SNR values are around 30 for

a ceilometer and around 3000 for a high power lidar.

Knowledge of Atmospheric Composition and Meteorological Conditions

Water
Vapour

Uncertainty:

. 10 %
Sussmann et al. (2016) showed, that deviations between re-analysis and
radiosondes are below 10 % for UFS. ERA-Interim data are precise
enough but improvements can be achieved with using radiosondes.

Trace Gases
Uncertainty:

. 50 % No TCCON data are required, all permanent traces can be estimated with
data from standard atmospheres for midlatitudes.

Temperature
Uncertainty:

∆T
. 1 K

For cloud optical thickness values below 5, it is sufficient to use temperature
data from meteorological re-analysis.

Type of
Cloudiness:

different
instrument

FOVs

Preferential atmospheric conditions would provide slowly varying or
uniform cloud scenes, unbroken cloud cover. To temporally resolve
cirrus inhomogeneity, AERI’s sky observing phase should be in the order
of <30 seconds, to avoid biased-scenarios like described in Section 4.3.4.
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processes, the important cloud dynamics happens on time scales of below a few minutes. Fur-
thermore, the unawareness about the PSD can create large errors, when the retrieval assumes,
for example, a monomodal instead of a bimodal distribution. Hence, mulitfrequency-radar
and multiwavelength-lidar or in situ data are required to have a meaningful constraint of the
PSD.

5.5. Suggestions for Future Work
Based on the results of this thesis and the state of the art in current literature, the following
seems to be the way forward towards better retrievals.
A necessary improvement for retrievals at Mt. Zugspitze would be the placement of all

active and passive sensors at the same location to have a maximal overlapping footprint.
Instruments not seeing the same part of the cloud, can cause large biases, especially for hor-
izontal inhomogeneous cloud properties.

Further important improvements and extensions are:

1. Instead of a ceilometer, a high power lidar at a wavelength of 355 nm or 532 nm is
required to use the Rayleigh calibration for estimating the boundary value and to pen-
etrate clouds more effectively, and their detectors are not so limited to saturation from
signal returns of thick clouds with high signal amplitudes. Furthermore, the high SNR
makes the inversion procedure numerical stable, ensuring trustworthy results.

2. The sampling rate of the AERI should be reduced from 8 min to 20 s, to be able to
resolve fast changing cirrus microphysical dynamics on a higher resolution. The costs of
higher radiometric calibration uncertainties are negligible in comparison to the retrieval
uncertainties.

3. A low altitude site location in the arctic without strong vertical updrafts would also
offer dry conditions and allow to exploit the radar doppler velocity via correlation be-
tween particle sizes and parameters of the fall velocity–size. Therefore, based on known
approaches, it would be possible to include ice crystal habit assumptions in radar-only
regions (Matrosov et al., 2002).

4. Calibration of the radar should be ensured by participating in cloud radar calibration
network. Is important for the retrieval quality in general and very important for the
boundary value estimation with Jtot cost function in particular. The Aerosol, Clouds
and Trace Gases Research Infrastructure (ACTRIS) is making steps towards uniform
calibration strategies (Toledo et al., 2020).

5. Further signal analysis in the cloud masking algorithm is required to identify regions,
where the radar misses very small ice crystals. These regions would include usable
information content for a ice cloud study.

6. Using mulitfrequency radars and multiwavelength lidars would enrich the information
content of the observations in sampling the ice PSD more effectively (Bringi et al., 1986;
Gaussiat et al., 2003; Kneifel et al., 2011, 2015; Tridon et al., 2017; Wang et al., 2017;
Okamoto et al., 2020; Zhang et al., 2021).
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7. The ice crystal roughness can only be assumed in the RT path of the retrieval. To
include the roughness in the radar-lidar inversion path, high resolution measurements
of the lidar ratio are required (Saito et al., 2022).

8. Adding a passive spectrometer, recording radiances in the solar spectral range, would
help to retrieve information about ice crystals. In the solar spectral range short wave
scattering is dominant and the ice crystal roughnesses and habits have an impact on the
scattering phase function (Yang et al., 2013; Ewald et al., 2021). The spectrometer of
the Munich Aerosol Cloud Scanner would be a suitable instrument (Ewald et al., 2016).

9. Usage of in situ data to cross-check the retrieval assumptions about ice crystal habit,
roughness and PSD. Although in situ measurements are considered as “ground truth”,
there are errors and biases that should be considered before comparison with remote
sensing data. Baumgardner et al. (2017) stated, that the derivation of size and con-
centration below ice crystal sizes of 100 µm is uncertain to approximately ±50 % and
±100 %, respectively, with increasing uncertainty as the particle size decreases. Another
issue is the size of the sampling volume for collocation between in situ and ground-based
instruments. Therefore, Finlon et al. (2016) suggest in situ data should be between
250 m and 500 m, less than 25 m in altitude, and within 5 s of collocated remote sensing
data.

10. Reduction of fit errors in m(D) and A(D) expressions, by using second-order polyno-
mials, like suggested in (Erfani and Mitchell, 2016).

11. Usage of radars with a sensitivity of -60 dB would allow to detect 98 % of ice clouds
with an optical depth above 0.05 (Illingworth et al., 2007b; Protat et al., 2006).

12. Usage of polarimetric radar and lidar quantities to constrain the wealth of ice micro-
physical assumptions (Myagkov et al., 2016; Melnikov, 2017).

13. Development of an inverse model at a radar frequency of 36 GHz, to be able to use the
iteration method from Tinel et al. (2005) for particle sizes as well.

14. Radiosonde data are not stringently required, but would definitely decrease the uncer-
tainties to some extent for Rayleigh calibration and RT calculations.

15. To include radiative 3D effects and cirrus inhomogeneity Fauchez et al. (2018), the 3D
radiative transfer solver MYSTIC could be used (Mayer and Kylling, 2005; Emde et al.,
2016),
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Ice clouds significantly impact the Earths radiation budget (ERB). They reflect a certain part
of incoming shortwave solar radiation back to space (cooling - solar albedo effect), and at the
same time they absorb longwave upwelling infrared radiation emitted by Earth’s surface
(warming - infrared greenhouse effect). To quantify the net effect, cirrus parameters like
dominant ice crystal habit, cloud coverage, ice crystal sizes, geographical position, optical
thickness values, ice particle size distribution (PSD) and ice crystal roughness should be
known. Therefore, knowledge about the ice cloud microphysical properties ice water content
(IWC) and effective radius (Reff) is important, because they are very sensitive to the radiation
budget and thus climate evolution. However, these quantities are indirect dependent on the
PSD and ice crystal habit (Heymsfield et al., 2017). Hence, knowledge of ice crystal properties
is important. To gain observational data in order to close gaps in the understanding of ice
clouds, these microphysical quantities can be derived by a retrieval algorithm exploiting active
and passive remote sensing observations.
Therefore, the aim of this work was the development of an algorithm for a synergistic three

instrument retrieval framework, based on active and passive remote sensing, to provide and
constrain valuable information about ice clouds. It can be concluded that an operational
working algorithm - SynCirrus - was achieved and applied to synthetic and real data from
two campaigns.

Scientific objective: Development of a synergistic three-instrument (radar, lidar and
infrared spectrometer) retrieval algorithm - SynCirrus - for the mapping of radar, lidar
and infrared spectrometer measurements to microphysical properties (ice water content
IWC and effective radius Reff), including a comprehensive uncertainty consideration.

The first step was to develop a radar-lidar inversion procedure to derive microphysical
profiles from the measured profiles. Ground-based radar and lidar are favorable instruments
for cloud observations, because they operate at different wavelengths, and therefore they are
sensitive to different cloud particle sizes and, hence, to different moments of the cloud’s PSD.
This difference in particle size sensitivity is an advantage and allows for a well-constrained
retrieval of IWC and Reff. Furthermore, they provide substantial vertical and temporal
coverage (unlike in situ observations) of microphysically relevant processes, and are capable of
vertically resolving the full depth of a cloud at a high temporal coverage (unlike polar-orbiting
satellites) (Comstock et al., 2007). The most crucial part, with the largest uncertainty in the
retrieval procedure is the inversion of the lidar equation by estimating a boundary value
for the Klett-inversion formula of the extinction coefficient. To tackle this, the algorithm
uses three different methods from previous studies with different strengths and weaknesses,
depending on signal quality and cloud optical thickness, as sketched in Table 5.1. According
to the assumptions of an ice crystal microphysical model, the retrieved profiles of βext and
Rrali
eff are converted to profiles of IWC and Reff.
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The second step was to use a three-instrument retrieval framework to validate the retrieval
results with other observations. For this purpose, an instrument is needed working at other
wavelengths than the active sensors, to provide independent measurements for assessment of
retrieval performance. Although, the Atmospheric Emitted Radiance Interferometer (AERI),
as a passive sensor, only provides the measurement of vertically integrated infrared radiances
at the surface, it has many advantages to be used in such an ice cloud study. It has a narrow
FOV, which reduces the contributions of 3D effects and better complements the narrow field
of views (FOVs) of radar and lidar, and it records downwelling infrared radiances on a high
spectral resolution with very low calibration uncertainties. The atmospheric window region
around 8 µm to 13 µm of the observed infrared spectrum is kind of transparent for molecular
absorption and emission, but water vapour contributes significantly to the measured spectrum.
Hence, the AERI location is chosen to be on a mountain site because a high altitude offers
extraordinarily dry conditions to obtain data from cirrus clouds (Sussmann et al., 2016;
Blanchard et al., 2017). Furthermore, the high-spectral-resolution measurements allow to
exploit spectral microwindows, that lie between gaseous absorption lines. Additional to the
choice of the site, this further reduces the contribution of water vapour and other trace gases
on the recorded infrared radiances. The previous derived IWC and Reff profiles were used for
radiative transfer simulations of downwelling infrared radiances with the aim to simulate the
spectrum of the AERI device. Now, it was possible to minimise the spectral residuals between
measured and simulated spectrum by iterating the possible microphysical assumptions.
The developed retrieval algorithm (SynCirrus) involves preprocessing routines, like cloud

masking the lidar signal based on wavelet analysis, correction of the radar signal for gaseous
attenuation and the possibility to investigate a radar calibration offset in using radar and
AERI data only. The radar-lidar inversion path of SynCirrus exploits power law relation-
ships about mass and projected area for different microphysical assumptions, whereas the
radiative transfer (RT) path for the simulation of infrared spectra uses look-up tables for
the bulk optical properties for the same microphysical assumptions. This allows to include
the same assumptions about ice crystal habit, type, modality and shape parameter of the
PSD consistently in both framework paths. The underlying microphysical model is exchange-
able, making it possible to compare different models with remote sensing observations. The
framework includes a set of different boundary value estimation methods and corresponding
uncertainty estimations. The uncertainties of the estimations are derived from look-up tables,
based on synthetic simulations. To reduce erroneous extinction spikes (Hogan et al., 2006b),
where the lidar runs out of signal, the retrieval uses a numerical stability procedure. The
retrieval corrects power law fit deviations caused by changing ice crystal aspect ratios, and
multiple-scattering effects of the lidar signal are included iteratively in the inversion proce-
dure. A speed-up for operational usage is achieved by using the REPTRAN parameterisation
instead of Line-By-Line calculations for the forward RT simulations of infrared radiation.

The main improvements of the algorithm in comparison to former studies are:

1. Consistency of microphysical models used in both branches of the three-instrument
retrieval: radar-lidar inversion and radiative transfer forward model.

2. Improvements in the retrieval workflow. New data preprocessing routines were included,
like extension of the wavelet analysis of the lidar signal to include the detection of cloud
tops, screening for numerically stable lidar profiles, correction of varying aspect ratios,
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and the usage of infrared spectrometer data together with radar signals to estimate pos-
sible radar calibration offsets. Improvements in the radar-lidar inversion were achieved
by usage of multiple methods to estimate the boundary value to solve the lidar equation.

3. Comprehensive uncertainty quantification of the involved quantities: the microphysical
model, the instrument parameter, atmospheric state knowledge and assumptions in the
inversion technique, and the identification of main uncertainty contributors.

The three-instrument retrieval SynCirrus was developed to investigate the following (tech-
nical) research questions:

Research questions 2: What kind of uncertainties can occur in the retrieval process,
and how do these uncertainties impact the interpretation of the retrieved results?

To answer this question, the occurring uncertainties were categorised into uncertainties
based on microphysical model assumptions, instrument parameters, atmospheric state as-
sumptions and retrieval technique. Assuming a monomodal gamma distribution for the PSD,
the ice crystal habit has the biggest impact on the infrared radiance spectrum. At radar
wavelengths the scattering return is dominated by large particles, due to the 6th moment de-
pendence. Therefore, radars can not detect small ice crystals at the cloud boundaries, where
ice nucleation creates small crystals. In contrary, at shorter lidar wavelengths, these small
ice crystals can be resolved, but the lidar backscattered signal will be quickly attenuated in
optically thick parts of the cloud towards the top. Simulations with synthetic data show, that
a radar-lidar vertical signal overlap & 90 % is required, to be able to discriminate the certain
habits for different cloud optical thickness values (COTs). It was further demonstrated that
without high signal to noise ratio (SNR) values at inversion start the retrieval becomes nu-
merically unstable, producing unreliable profiles. This is because of “memory” effects. They
contain the impact of noise at inversion start and the cumulative effect from there to the
current point of evaluation (Comerón et al., 2004). The effect of radar noise can be neglected
(Hogan et al., 2006b), but it was demonstrated, that for low COTs, the radar calibration
uncertainty will exacerbate the determination of ice crystal habits.
The Klett inversion formula has to assume the lidar ratio to be constant with height. For

the extreme case, when the true lidar ratio varies strongly at inversion start, this can in-
troduce large retrieval errors for low COTs. However, for cases where it only varies within
the cloud but not at inversion start, there will some degree of cancellation in the errors for
vertically integrated quantities (Hogan et al., 2006b). The biggest uncertainty within the
three-instrument retrieval framework lies in the determination of the boundary value for in-
verting the lidar equation. The discrimination of certain ice crystal habits would require
a very small boundary value error (Rrali

eff [Rfar]) below ±1 %, but for real data the error is
much higher, making it impossible to retrieve ice crystal habits with this three-instrument
configuration. Furthermore, the precise uncertainty quantification of this error source is very
difficult, and it was only possible to give an error estimation based on look-up tables, calcu-
lated with synthetic data.
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Research questions 1: What are the accuracy requirements to constrain the micro-
physical properties of ice clouds, based on synergistic measurements made from radar,
lidar and infrared spectrometry?

To answer this question, the developed SynCirrus retrieval was applied on real data from
two different campaigns. First, a radar-lidar retrieval intercomparison study with NARVAL-I
aircraft data, demonstrated that for high quality lidar signals (high radar-lidar vertical signal
overlap and low Rayleigh fit error), the retrieved profiles of SynCirrus and the established
retrieval VarCloud (Delanoë and Hogan, 2008) coincided remarkably well, although the two
retrieval methods are fundamentally different, following an inversion versus optimal estimate
approach, respectively. The application of the complete three-instrument retrieval at Mount
Zugspitze showed, that it was possible to achieve an accordance between simulated and mea-
sured radiance spectra for the majority of the analysed cases within the uncertainty range.
However, the uncertainty range was very large because of the usage of a ceilometer instead
of a high power lidar, causing numerical instability in the inversion procedure, due to a low
SNR.
Retrievals of microphysical properties, especially ice water content IWC are difficult to be

verified precisely because there is no global IWC “truth” on a comparable spatial and tem-
poral grid (Avery et al., 2012). Former studies showed deviations between the mean retrieved
IWC and mean predicted IWC between 50 % to 200 % for pure ice clouds (Hogan et al.,
2006c; Avery et al., 2012), and mean IWC deviations between different retrieval methods of
around 50 % (Stein et al., 2011). The boundary value errors of Rrali

eff [Rfar] were in the order of
±35 % with a ceilometer (UFS data) and around ±8 % for a high power lidar (NARVAL-I),
and resulting in errors for the IWC of the same magnitude because they are proportional
to each other. Errors of below ±10 % for single retrieved profile of IWC would cause lower
deviations for further comparisons with the predicted mean IWC from a model. Therefore,
the confinement on high quality data can greatly contribute to improve the prediction of ice
water content in climate models. In summary, microphysical properties of ice clouds can be
constrained with a three instrument retrieval, but high demands on data quality are neces-
sary, like a calibrated radar, a high power lidar, AERI integration times below 1 min and
cloud optical thickness values below 2 , and to have a high vertical radar-lidar signal overlap
beyond 90 %.
Future developments will need to focus on including more sensors to improve the retrievable

information content. Furthermore, in situ data are required for cross-checking the assumptions
of ice crystal shape and PSD, made by the retrievals, until they become more reliable. For
this goal, optimal estimate approaches are ideal. In optimal estimate approaches additional
instruments can easily be incorporated into the measurement state vector of the framework,
and they automatically provide a mathematically consistent error propagation (Delanoë and
Hogan, 2008). However, physical inversion retrievals with a primary sensitivity, here the 2nd
and 6th moment of the PSD, appear to be more “transparent”. They are required for cross-
checking data with the used primary sensitivities, because it seems, that the mathematical
optimal estimation framework sometimes generates too small errors, when an information in
form of a measurement is missing.
The developed retrieval could be used on Antarctic sites, if a similar instrumentation as

used in this work is available, where satellite data are missing (Howat et al., 2019).
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The research presented in this thesis is pertinent and important to the goal of reducing
uncertainties related to the description of ice clouds in climate models. The presented three-
instrument retrieval SynCirrus can help to narrow down gaps in the understanding of ice
clouds, by supplying high resolved and quality flagged microphysical profiles for the devel-
opment of radiative parameterisations and tuning-constrains for microphysical schemes, both
needed in future GCMs. It can not provide information about cirrus ice crystal types, because
the errors in the retrieval technique are bigger than the radiative impact from different micro-
physical assumptions. This prevents the discrimination among different ice crystal habits, and
more active and passive sensors, and especially in-situ devices, are indispensable to sample
the cirrus PSD more effectively.





7. Outlook

Apart from the focus on remote sensing techniques of ice clouds in this thesis, it would
be helpful to extend the focus of future research. To be able to narrow down gaps in the
understanding of ice clouds and their role in a future warming climate, a better harmonisation
between the needs of climate models and the capability of remote sensing techniques could
be achieved with new retrieval design studies.

Modelling

A possible start could be a numerical laboratory for the comparison of two models with
different resolutions. The first model is a Global Circulation Model (GCM) and the second
model is high-resolved local cloud model, modelling only one grid box of the GCM. Both
models will receive the same main input and predict the behavior of a cirrus cloud. The
high-resolved cloud model will incorporate important features of ice clouds, like the vertical
distribution of different ice crystal habits, roughnesses and particle size distributions (PSDs).
Furthermore, the high-resolved cloud model will use instrument simulators, like Silber et al.
(2022), to produce a set of remote sensing observations, that will serve as input for a cloud
retrieval, like developed in this thesis. Based on the retrieved data, parameterisations could
be developed and used in the coarse GCM. The magnitude of the deviations for the model
observables in both models could help to identify, which microphysical variables should be
known more precisely and what are the maximal errors allowed on the retrieved results of these
variables. This could mark clearly the needs a cloud retrieval should be capable of, concerning
the required retrieved information content and uncertainty estimations. In a next iteration
this will help to clarify, if current remote sensing techniques are able to meet the required
uncertainty expectations. For example, would it be useful, that a cloud retrieval makes
assumptions about the vertical distribution of ice crystal habits, or is it enough to assume
just a dominant habit, because it can not be resolved by a physical parameterisation. It would
be helpful to know, how retrieval uncertainties would impact a developed parameterisation,
or in other words how big are retrieval errors allowed to be. In any case, it would be very
beneficial to constrain the requirements on a cloud retrieval based on model requirements.

Remote Sensing Techniques

For cloud retrieval development, it would be very helpful to have some good high quality
reference datasets of ice clouds (optically thin or thick, pure ice or mixed-layer), where dif-
ferent current and future retrievals could be tested. Such datasets should include multiple
active sensors on different wavelengths/frequencies to sample the cloud PSD more effectively,
multiple remote sensing devices in the solar and thermal spectral range, radiosondes and in
situ data from an aircraft or a weather balloon, to get indications about the “real” PSD
and ice crystal habits. An analysis on the quality of the retrieval results based on different
permutations of used input measurements/devices would be very helpful to define minimal
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requirements for a retrieval algorithm to derive certain microphysical variables alongside de-
sired uncertainty quantification. For example, the North Slope of Alaska (NSA) atmospheric
observatory at Utqiaġvik (formerly Barrow) provides a promising set of ground-based instru-
ments (Stamnes et al., 1999; Verlinde et al., 2016). These datasets are not only important to
compare physically based inversion retrievals with optimal estimation approaches, but will be
needed to train machine learning models (Wang et al., 2020) or future retrievals based on deep
convolutional neural networks (Schimmel et al., 2022). Good quality reference datasets would
definitely help to investigate the strengths and shortcomings of different cloud retrievals and
would give promising starting points to improve them (Comstock et al., 2007; Stein et al.,
2011).



A. Appendix: Ice Clouds and Climate

Behavior of Clouds in a Warming Climate

Clouds cover roughly 70% of the Earth’s surface (Stubenrauch et al., 2013) and due to their
frequent occurence, influence weather and climate in multiple ways. For example, they cou-
ple hydrological processes in the atmosphere and in the ground through precipitation, they
redistribute sensible and latent heat and momentum and have a substantial effect on Earth’s
radiation budget (ERB) through reflection, absorption, and emission of radiation (Arakawa,
1975; Ceppi and Hartmann, 2016).
An understanding of the impact clouds will have on the climate and climate change begins

with Earth’s energy budget, which describes the flows of energy within the climate system.
In a world without global warming the radiative energy fluxes between incoming shortwave
(SW) solar (0.2-5 µm) and outgoing longwave (LW) thermal infrared (5-100 µm) radiation
would be in balance. To describe an externally imposed perturbation of Earth’s radiative
energy budget, the IPCC employed the term radiative forcing (RF) (in W m−2), where a
positive radiative forcing has a warming effect and a negative radiative forcing has a cooling
effect (Myhre et al., 2013). Furthermore, a distinction is made between forcing agents caused
by natural changes, e.g. solar irradiance or stratospheric aerosols from volcanic eruptions,
and anthropogenic changes, e.g. greenhouse gases, tropospheric aerosols or land-use. These
external forcings are the initial drivers of the climate system, and perturbate Earth’s energy
balance with space.
Humanity impacts the climatic effect of clouds in a warming climate, mainly via two dif-

ferent processes. The first, is the warming of the surface which increases the greenhouse gas
emissions that in turn will change the behavior of clouds. The second anthropogenic activ-
ity, is the increased amount of pollutants that have increased the amount of aerosols in the
atmosphere. These tiny particles like sulphates can serve as cloud cloud condensation nuclei
(CCN) or ice nucleating particle (INP) for cloud formation. In this context there are two
important aerosol-cloud interaction processes, the first indirect effect of aerosols leads to a
larger SW cloud albedo and reflects more sunlight, because cloud droplets have become more
in number with smaller sizes (Twomey et al., 1984). Secondly, these smaller droplets may
slow down precipitation, and extend the lifetime of a cloud via the second indirect effect of
aerosols (Albrecht, 1989), which can may influence the hydrological cycle (Rosenfeld et al.,
2012).
Because the climate system involves many complex processes which are coupled to each

other, the consequences of these climate responses in changing one climate variable can affect
another. This creates a feedback loop, where a portion of the output from the process of the
climate system is added to the input and subsequently alters the outcome. These changes in
the net energy budget at the Top-Of-Atmosphere (TOA) in response to changes of global mean
surface temperature are called climate feedbacks and can either amplify (positive feedback) or
reduce (negative feedback) the effects of climate forcings and their unit is given in W m−2 K−1

(Boucher et al., 2013). The largest positive climate feedback is the water vapour feedback with
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Table A.1.: Development of important cloud parameter and their uncertainties (Randall et al.,
2007; Boucher et al., 2013; Forster et al., 2021).

cloud parameter AR4 (2007) AR5 (2013) AR6 (2021)

net cloud
feedback[

W m−2 K−1] not provided 0.6
(−0.2 to 2.0 )

0.42
(−0.1 to 0.94 )

effective RF
aerosol-cloud
interaction[

W m−2]
−0.7

(−1.8 to −0.3 )
−0.45

(−1.2 to 0.0 )
−0.84

(−1.45 to −0.25 )

a value of 1.85±0.32 W m−2 K−1 as quantified in Liu et al. (2018). Due to his strong infrared
absorption bands, water vapour is the most import greenhouse gas and in a warming climate,
the concentration of atmospheric water vapour will increase and amplify the greenhouse effect
in absorbing more thermal radiation that would otherwise be emitted to space. The main
cloud feedback parameters are given in Table A.1.
The coupling between cloudiness and surface air temperature is called cloud feedback, and

it is the dominant source of spread among GCM climate sensitivity studies, because clouds
contribute in creating both, positive and negative feedbacks (Ceppi et al., 2017). Clouds
influence the TOA fluxes mainly in two contrary ways: the albedo effect is responsible for
enhancing the amount of reflected incoming solar radiation by a cooling of ∼− 50 W m−2,
whereas the greenhouse effect is leading clouds to trap outgoing LW thermal radiation and
therefore reduces the longwave flux leading to a warming of∼30 W m−2 (Stephens et al., 2012).
This radiative imbalance of ∼− 20 W m−2 at TOA, describes the cloud radiative effect (CRE)
between a cloudy and a clear-sky model atmosphere and shows that Earth would undergo a
significant warming (up to 20 K) if there were no clouds present in the atmosphere (Liou and
Yang, 2016).
Now, the important question arises, of how the cloud response to anthropogenic greenhouse

warming will affect a future climate. At the moment, there are strong evidences (theory,
modelling and observations), that there will be, on a globally averaged scale, a positive net
cloud feedback of 0.42 W m−2 K−1 with a very likely but large uncertainty range of −0.10
to 0.94 W m−2 K−1, stating that clouds possibly will amplify global warming (Forster et al.,
2021). There are two main underlying cloud processes involved in models to explain this
warming. First, the amount of low clouds will decrease (Schneider et al., 2019), leading to
less reflection of incoming SW radiation and secondly, in a warming climate the altitude of
high clouds will increase (Zelinka et al., 2012), enable them to re-emit the absorbed outgoing
LW radiation at colder temperatures and therefore trapping more energy (Norris et al., 2016).
The net cloud feedback represents the sum of regional different cloud regimes, because the
different SW and LW cloud feedbacks are far from being spatially homogeneous. Especially,
the tropical high-cloud amount feedback, including ice clouds, is not well specified in models,
and it is only possible to assess it with low confidence, leading to the largest uncertainty
contribution within the cloud feedback framework (Ohno et al., 2019; Forster et al., 2021).
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Cirrus (Ci) Cirrocumulus (Cc) Cirrostratus (Cs)

Figure A.1.: Examples of different cirrus types. Cirrus (Ci) are fibrous, threadlike, white
feather ice clouds whose form resembles hair curls. Cirrostratus (Cs) are milky,
translucent cloud veil of ice crystals, and they can sometimes cause halo ap-
pearances around moon and sun. Cirrocumulus (Cc) are fleecy ice clouds of
white flakes. These pictures are taken from the 2018 annual report of German
Meteorological Service (DWD) at www.dwd.de.

Climate Effectiveness of Cirrus Clouds

Cirrus clouds are high-altitude (> 8 km), long-lived ice clouds that have, due to their frequent
occurrence, a strong effect on ERB and therefore a considerable contribution to the total
cloud feedback as well (Lee et al., 2009b). They form in the upper troposphere in often
thermodynamically stable environments with temperatures usually below −30 ◦C, they have
a large average global cloud cover of almost 20% (Sassen et al., 2008), exhibit horizontal
inhomogeneity for their bulk ice density (Zhou et al., 2018) and are frequently located near
the tropical tropopause (Dessler et al., 2006). For temperatures below −38 ◦C, clouds consist
almost exclusively of ice crystals, and they are called cirrus clouds or just cirrus, whereas
clouds for temperatures ranging from −38 ◦C to 0 ◦C are called mixed-phase clouds, due
to the coexistence of supercooled liquid droplets and ice crystals. They are also of high
atmospheric relevance due to their occurring frequency (Korolev et al., 2017). Dependent
on their morphology, the World Meteorological Organization (WMO, 2017) categorised them
into three types: cirrus (Ci), cirrostratus (Cs), and cirrocumulus (Cc). Typical examples can
be seen in Figure A.1. Mixed-phase or liquid clouds who are lifted by atmospheric updrafts
to altitudes where temperatures <− 38 ◦C, are considered as cirrus.
These cirrus clouds have a number of unique features: besides their high-altitude and global

occurrence, they consists almost solely of non-spherical ice crystals with manifold different
orientations, shapes, surface roughnesses and sizes (Bailey and Hallett, 2004). In contrary
to low-altitude liquid clouds, with exclusively spherical droplet particles, the determination
of the radiative properties of cirrus clouds is different and much more complex (Yi et al.,
2017). These clouds visible optical depths, which is a measure of the attenuation of solar
light by cirrus’s ice crystals, can range up to 6. However, most values are below 0.1 (Kox
et al., 2014). A satellite-based analysis showed, that the cloud feedback, only based on cirrus
clouds, is estimated to be positive, with a value of 0.20± 0.21 W m−2 K−1 (Zhou et al., 2014),
indicating that the cirrus feedback is a substantial part of the net cloud feedback. The study
further indicated, that the amount and altitude of cirrus clouds will may increase as a response
of global warming.

www.dwd.de


144 A. Appendix: Ice Clouds and Climate

Furthermore, air traffic can induce cirrus clouds via line-shaped contrails, developing into
extensive contrail cirrus clouds, if they fly in high and cold altitudes. The contribution of air
traffic to anthropogenic climate forcing is approximately 5 % (Lee et al., 2009a). The total
global net RF associated with aviation-induced cirrus clouds in climate change projections,
is estimated to increase by a factor of three to be around 160 mW m−2 K−1, like described
in Bock and Burkhardt (2019). On a global scale, there is no observable effect on the mean
surface temperature, but these forcings can be much higher regionally (Boucher et al., 2013).
Cirrus clouds play a crucial role in the hydrological circle, because warm rain formation

is not enough to explain the most of the global precipitation. In the tropics, subtropics,
midlatitude and polar regions 30%, 40%, 80%, and >90%, respectively, of all precipitation
events (>1 mm d−1) involve formation and growth processes of ice crystals in cirrus clouds
(Field and Heymsfield, 2015). In the tropics, warm rain precipitation is accountable for 31%
of the total rain amount (Lau and Wu, 2003), whereas in the mid-latitudes warm rain is only
responsible for less than 10% of the total precipitation (Mülmenstädt et al., 2015).
Especially, the behavior of thin cirrus clouds, with very low optical depths (< 0.3), play a

key role in RF considerations and subsequently on climate change, due to their large spatial
extent and their strong interaction with the radiation field. They significantly modify the SW
and LW radiation fluxes. In principle, they can reflect, absorb and transmit the incoming
solar radiation and at the same time, they can reflect, transmit and re-emit already absorbed
outgoing longwave radiation. Concerning ERB and climate considerations, two processes are
competing: the reflection of solar radiation (solar albedo effect) results in a cooling, whereas
the trapping of longwave infrared radiation (infrared greenhouse effect) causes a warming
(Liou, 1986). Both radiative effects are functions of fundamental cirrus parameters like their
coverage, position, thickness, ice crystal size and shape distributions. In contrary to the
scattering and absorption by spherical droplets (Lorenz-Mie theory) in water clouds, there is
no exact solution for the scattering of light by all the different non-spherical ice crystals, that
are present in Earth’s atmosphere (Liou and Yang, 2016).
Right now, GCMs show considerable variation and shortcomings in their representations

of high cirrus clouds in the upper troposphere, concerning their formation mechanisms and
microphysical properties. For example, Mitchell et al. (2008) indicated, that the variation of
cirrus parameters like the number of small ice crystals (<60 µm) in a one year simulation can
have significant effects on ERB. In detail, they showed a 12% increase of cloud ice as well as
a 5.5% increase of global cirrus cloud coverage, causing a net cloud forcing of −5 W m−2 K−1

in the tropics, which would warm the upper tropical troposphere over 3 ◦C, comparable to
effects of CO2 doubling. Therefore, there is an urgent need of adequate, high-quality global
observations to constrain and calibrate GCM simulations to narrow down uncertainties in the
rate and geographical pattern of climate change (Heymsfield et al., 2017).



B. Appendix: Challenges of Modeling Cirrus
Clouds in Climate Models

Generally, climate models are required to understand and interpret the effects of greenhouse
radiative perturbations on cloud regimes as well as radiative forcings on temperature fields.
However, the atmosphere is a complex system with a huge variety of multidimensional cou-
pled processes on different spatial scales. Especially, cloud formation processes range from
micrometer scale of CCN/INP, up to evolved clouds with a size of hundreds of kilometers.
Such a huge range of scales can not be resolved using numerical simulations on computers,
even not in the near future (Boucher et al., 2013, Figure 7.8). Climate models consist of many
coupled components. For example, they have a dynamical core to model the movement of
air, thermodynamics, as well as heat and use approximations for radiative transfer to model
the spatial change of the radiation field through the atmosphere (Mayer, B., 2009). There are
several quantities to describe a cloud state in a GCM: e.g. there are macrophysical properties
like horizontal cloud cover, geometrical thickness, altitude, temperature, location and there
are microphysical properties like the ice water content (IWC), ice water path (IWP), effective
ice crystal size (sometimes effective radius Reff or just particle size D), cloud phase, particle
size distribution (PSD), ice crystal habit and roughness and optical properties like the optical
depth and single scattering properties, necessary for radiative transfer calculations (Lynch
et al., 2002).
The description of physical phenomena within GCMs relies on the solution of prognostic

differential equations and is limited on the size of the spatial (1 km to 100 km) grid, depending
on the temporal resolution (1 min to 6 h) (Jansson et al., 2022). However besides those so-
called gridscale processes, which are described explicitly, there are relevant processes for future
weather and climate, that can not be resolved at this resolution and with these equations.
These subgrid-scale physical processes which can not be explicitly resolved by the model grid
have to be included as physical parameterisations. These schemes provide terms that are
added to the prognostic variable, which they are influence, and therefore are often formulated
as complex (non-linear) function of the grid box mean value of exactly this prognostic variable
(Lynch et al., 2002; Bacer et al., 2018; Stubenrauch et al., 2019). Examples for such unresolved
parameterized processes are cloud microphysics, turbulence, and convection (Gu et al., 2003;
Ceppi et al., 2017). A further complexity arises, because they are entangled with each other.
For example, when tropical cirrus clouds appear optically to be thin, the reason could be that
model’s convection transports not enough amount of ice into the clouds or the microphysical
assumptions are maybe misleading. Furthermore, if convection would be the reason, is it
because it occurs not frequently enough or is it simply not strong enough and how are these
outcomes related to an overestimation of precipitation in the same region, are questions that
could come up (Siebesma et al., 2020; Tully et al., 2021).
In the fifth phase of the Climate Model Intercomparison Project (CMIP6, (Li et al., 2020)),

the cloud feedback was still by far the largest source of intermodel spread in equilibrium
climate sensitivity (ECS) estimates for the global-mean surface temperature as response to
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RF of CO2 doubling (Ceppi et al., 2017; Stevens et al., 2016). Heymsfield et al. (2017) pointed
out, that one possible reason is, that the dynamical processes involved in cirrus formation
are different in different geographical areas and lack a proper resolution in GCMs. Related
processes, like the transport of very small amounts of water vapour to and within the upper
troposphere, suffers the same lack of vertical resolution of only 10-20 model layers. The
global annual mean cirrus CRE, estimated by the ECHAM6-HAM2 general circulation model
(Gasparini and Lohmann, 2016) has a value of 5.7 W m−2, which is larger than estimates from
satellite observations, which received values of 1.3 W m−2 (Chen et al., 2000) and 2.4 W m−2

(Hartmann et al., 1992).
Within the last two decades, a milestone in cirrus cloud modeling was accomplished, by

including prognostic equations capable of predicting the IWC of high-altitude cirrus clouds
in GCMs. This was important, because it supplied a physically based cloud microphysics
scheme, and it provided insights for investigating cirrus-radiation interactions in GCMs (Liou
et al., 2008). But, the interaction of ice crystal size, an independent parameter that impacts
the radiative transfer within cirrus clouds, was not properly included in GCMs. Therefore,
deviations could occur: for a given fixed IWC, smaller ice crystal sizes would reflect more
SW radiation than larger ones, due to their larger optical depth. This is similar to what was
described by Twomey et al. (1984) for water clouds. Back then, it was a common practice in
GCM to use simple and coarse mean effective ice crystal size-approaches or to use temperature
to determine ice crystal size, based on ice microphysics observations by aircraft campaigns
(Kristjánsson et al., 2005; Gu and Liou, 2006). In their study, Liou et al. (2008) further
showed, that the inclusion of ice crystal size-IWC correlations exhibit smaller uncertainties for
radiative forcing values, revealing that ice crystal size is an excellent parameter for calculations
of the radiation field and much better than temperature based parameterisations. In detail,
the significant horizontal and vertical variability inherent in cirrus clouds (Buschmann et al.,
2002) will lead to provoke spatial variations concerning radiative heating and cooling rates
like investigated from Gu and Liou (2006) in numerical studies with GCMs. Therefore, a
profound knowledge of the spatial variability of ice crystal size and IWC would serve as an
additional constraint, where the GCM representation of cirrus clouds would benefit from.
To narrow down uncertainties in the predicted cirrus cloud feedback for GCM, innovative

ice crystal size-IWC correlation parameterisations based on theory and observation must
be developed. To achieve this, in-situ measurements and high resolved spatial-temporal
profiles from remote sensing devices, both from different geographic locations are required,
that provide measurement quantities from which profiles of cirrus properties like ice crystal
size and IWC can be retrieved.



C. Appendix: Formation of Ice Crystals in
Cirrus Clouds

Prerequisites for Ice Formation

Ice particle formation in the upper troposphere happens in regions, where the air is super-
saturated with respect to ice. In general, saturation describes a thermodynamic state of
equilibrium between water vapour and liquid water or between water vapour and ice (Ko-
rolev and Mazin, 2003). This state of equilibrium is characterised by the saturation vapour
pressure and shows a non-linear increase with increasing temperature (Clausius-Clapeyron
equation). Here, vapour pressure means the partial pressure of water vapour and the sum of
all partial pressures is the total atmospheric pressure. Above this equilibrium state, the air
is said to be supersaturated with respect to water/ice and water vapour condenses/deposits
faster than it evaporates/sublimates, subsequently reducing the water vapour concentration
back to the equilibrium value.
In the atmosphere, regions that are supersaturated with respect to ice, occur mainly via

large-scale vertical movements along a frontal boundary or at small-scale vertical circulations
originated in jet streams, convective clouds, gravity waves or via orographic lifting (Heyms-
field et al., 2010b; Gierens and Brinkop, 2012; Heymsfield et al., 2017). In detail, when a
moist parcel of air is lifted, it undergoes adiabatic cooling and expansion until it reaches a
temperature, where the moist air parcel is supersaturated with respect to water/ice and water
vapour is available to participate in different nucleation mechanisms. In an adiabatic process,
there will be no exchange of mass with the environment and therefore the specific humidity
of the air parcel remains constant during the uplifting process.
In the upper troposphere it is possible for liquid water to remain unfrozen down to tem-

peratures of −38 ◦C, and this is approximately the threshold temperature for detecting ho-
mogeneous freezing (DeMott et al., 2003). This metastable phase, a phase only existent on a
limited time scale, of unfrozen cold water is called supercooled. While liquid cloud droplets
are formed exclusively via heterogenous condensation of water vapour on aerosol particles, the
formation of ice crystals can happen via homogeneous freezing, via heterogenous ice nucleation
with the help of INPs, or a mixture of both (Vali et al., 2015). Heterogenous ice nucleation
can take place on different pathways, depending on temperature and supersaturation. Nu-
cleation defines the first step in a phase transition, where a cluster of a thermodynamically
stable phase (ice nuclei) forms and grows within the surrounding metastable parent phase of
supersaturated water vapor (deposition nucleation) or supercooled liquid water (freezing nu-
cleation). The following step (crystal growth) starts, when the microscopic ice nuclei reaches
a certain size, they are now activated to ice crystals, and they can grow via accumulation of
more water molecules on their surface, until there is a macroscopic crystalline area (Lohmann
et al., 2016).
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Homogeneous Ice Nucleation

Homogeneous ice nucleation occurs at temperatures below −40 ◦C and the relative humidity
(ice) is between 140 - 170% (Heymsfield et al., 2017). The term “homogeneous” denotes the
case, where no foreign substance surface’ is available to serve as a catalyser to accelerate the
nucleation process by reducing the energy barrier. Due to the thermal molecular movement in
supersaturated water vapour or in supercooled water droplets, statistical fluctuations of water
molecular arrangement with correct orientations produce a stable, ice-like cluster structure,
that can serve as an embryonic ice nuclei, where more water molecules can accumulate onto.
Only about 250 molecules are necessary to form such a cluster at temperatures of −40 ◦C.
There are two types of homogeneous nucleation, depending on their parent phase. Homo-
geneous deposition nucleation is the formation of ice based on water vapor. Because of the
very high supersaturation necessary for the homogeneous deposition nucleation of ice, it never
occurs in the atmosphere. Homogeneous freezing nucleation is observed in supercooled liquid
droplets without any foreign substance to catalyse the process. Theory and experiments in-
dicated, that droplets smaller than 5 µm will freeze spontaneously at temperatures of about
−40 ◦C, whereas larger droplets will freeze at slightly warmer temperatures (Liou and Yang,
2016).

Heterogenous Ice Nucleation

Heterogenous ice nucleation occurs at temperatures below 0 ◦C and the relative humidity (ice)
is between 100 - 140% and is the dominant ice nucleation process in mixed-phase clouds but
also occurs in cirrus clouds (Cziczo et al., 2013). It involves foreign substances as INP to
impact the nucleation to the effect, that it takes place at lesser supersaturation or super-
cooling than the aforementioned homogeneous ice nucleation. The INP provides a surface
onto which water molecules can impinge and bond together, and form aggregates with an
ice like structure. The larger such an aggregate is, the more likely it is to be stable with a
larger lifetime. Heterogeneous ice nucleation is more poorly understood than homogeneous
ice nucleation because there is a variety of ways to form ice in the atmosphere. Each of them
is fundamentally different from one another. They can be again distinguished by the parent
phase: Heterogenous deposition nucleation is based on supersaturated water vapor on an INP,
whereas heterogenous freezing nucleation occurs on INPs within a supercooled liquid droplet.
Heterogenous deposition nucleation is the only mechanism, where liquid water is presumed

to be absent and water vapor deposits directly on a deposition nucleus, like mineral dust
(Cziczo et al., 2013). The solute effect for liquid droplet nucleation lowered the equilibrium
saturation vapor pressure, but is not important for ice nucleation, because salts are excluded
from the ice-crystal lattice as water freezes (Brine rejection). Therefore, the size and crystal
structure of the ice nucleus is more important and deposition is unlikely to happen on particles
of sizes lower than 0.1 µm. Decreasing temperatures and larger supersaturation will increase
deposition nucleation.
Heterogenous freezing nucleation can be divided into several modes. Immersion/condensation

freezing refers to ice nucleation initiated by an INP, located within the body of a liquid droplet,
while the air is cooling. There have been minor terminology differences based on the historical
description of the immersed INP, but the two mechanisms are now considered to be synony-
mous (Heymsfield et al., 2017). Contact freezing occurs when an uncontaminated supercooled
liquid droplet comes into contact with an INP at the air–water interface. If the supercooled
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Figure C.1.: Microphysical ice crystal nucleation and growth processes in a convective cloud
with all relevant phases of water in the atmosphere. Figure taken from Lohmann
et al. (2016).

droplet is colder than the critical temperature of the INP, it will freeze almost instantly. It is
defined to be a separate process from immersion freezing because of empirical evidence that
some INPs are more effective in this mode, than when immersed in liquid (Shaw et al., 2005;
Vali et al., 2015).
Although there is a huge amount of different CCNs in the atmosphere, ice nuclei are rarely

to be found, independent of their origin. One of the most effective material being used as an
artificial INP is silver iodide, which has been shown to nucleate ice at temperatures of −3 ◦C
(Vonnegut, 1947; Stull, 2015, Table 7-2).

Growth of Ice Crystals and Secondary Ice Particle Production

Once the ice crystals are nucleated, they can grow via several processes like diffusion deposition
and accretion (riming, aggregation, collision–coalescence) until they reach sizes large enough
to precipitate. In dependence of the temperature and supersaturation in the cloud, the ice
crystals grow up to different, mainly hexagonal-based forms, called ice crystal habits. While
first ice crystals have to form on INPs, further ice crystals can be produced by secondary
processes where the primary ice crystals are “multiplied” via ice enhancement (Pruppacher
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Figure C.2.: Schematic of the most common primary ice crystal habits: (a) plate, (b) column
and (c) aggregate. Figure taken and modified from Lohmann et al. (2016).

and Klett, 2010).
Ice crystal growth by diffusion deposition is a direct consequence of the differences in the

saturation vapor pressure between ice and liquid water. When the first ice crystals in a cloud
are nucleated, there will be a mixture of ice crystals, supercooled liquid droplets and water
vapour. Due to the higher binding energy in an ice crystal, the saturation vapour pressure
over ice will be lower than over liquid water. Therefore, cloud air which is saturated with
respect to liquid water is strongly supersaturated with respect to ice. As a result, there
will be a vapour pressure gradient and the water vapour moves from the supercooled liquid
droplets to the lower pressure surrounding ice crystals, leading them to grow at the expense of
supercooled droplets. This action is called Wegener–Bergeron–Findeisen process (Wegener,
1911; Bergeron, 1935; Findeisen, 1938) with a maximum growth rate at a temperature of
−12 ◦C (Lynch et al., 2002). Subsequently, there will occur a sub-saturation with respect to
water and the supercooled liquid droplets evaporate to maintain water saturation, delivering
additional water vapour for ice crystal growth.
Ice crystal growth called accretion (riming, aggregation, collision–coalescence) takes place

after diffusional growth and ensures further grow via collision and coalescence of two different
hydrometeors. These collision processes are caused by differences in fall velocities of the
involved hydrometeors or by turbulence. After the collision, cloud droplets can freeze onto
the ice crystal, it behaves like a collector, and grows in mass. Immediate freezing of droplets
on an ice phase hydrometeor is called riming and could be the most important explanation for
ice enhancement. Typical hydrometeors caused by riming are graupel, if particles stay below
2.5 mm, or hailstones for extreme riming events like convective storms in summer. Aggregation
denotes the clumping of ice crystals to form snowflakes. When two ice particles collide, the
probability of adhesion is governed by temperature and the type of the ice particle, more
complex crystals like dendrites, are prone to adhere to one another due to entanglement in
collision, whereas two solid plates will tend to deflect on each other (Liou and Yang, 2016).
The aforementioned ice nucleation and growth processes are schematically illustrated in

Figure C.1.

Ice Crystal Morphology

When ice crystals fall and move by wind and turbulence in the atmosphere, they enter regions
with different temperatures and supersaturation levels, and they are the main parameters who
determine the specific shape, also called habit, a ice crystal will grow up to. The most common



151

Figure C.3.: Ice crystal habits as a function of temperature and supersaturation with pictures
from laboratory and atmospheric field measurements. Figure taken from Bailey
and Hallett (2009).

primary habits are plates and columns and aggregates of them, like illustrated in Figure C.2.
When ice crystallisation takes place, the water molecules will form hydrogen bonds with
each other, which strongly affects the ice crystal structure, when the molecular tetrahedral
arrangements lead to hexagonal based ice lattices. Ice crytals can grow along their basal face
as needle or column, or they can grow along their prism face as plate-like crystal, whereas
aggregates form via collisions of ice crystals on rather high temperatures. The requirement
of minimizing the surface energy per volume controls the temperature and supersaturation
dependent growth rate maxima, and shifts the equilibrium shape of the crystal between
different ice crystal habits (Nelson, 2001; Pruppacher and Klett, 2010; Lohmann et al., 2016).
Figure C.3 illustrates different regimes of single habit formation as function of temperature

and ice supersaturation, which were investigated by Bailey and Hallett (2009) with data from
laboratory results and in situ measurements with a CPI. Three major areas of ice crystal
habit can be seen at the different temperature intervals. For temperatures between −70 ◦C
and −40 ◦C, columnar polycrystals are the dominant habit, whereas between −40 ◦C and
−20 ◦C plate-like polycrystals are the preferable habit. Below −20 ◦C, the observed crystal
morphology shows a mix of plates and short columns for low ice supersaturation. With
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increasing supersaturation more complex structures such as hollow columns or dendrites occur
as habit.
As in situ and remote sensing measurements indicated, the surfaces of ice crystals are not

always exactly smooth, particularly if they undergo collision and riming processes. A famous
example is the 22° circular halo, a optical phenomenon, where increasing surface roughness of
the ice crystals decreases the halo visibility, as quantified by the so-called halo ratio (Forster
et al., 2017).
Both, ice crystal habit and surface roughness are strongly impacting the scattering proper-

ties and consequently the radiative properties of cirrus clouds, and should be properly included
and represented in climate models and cirrus retrievals to ensure a realistic description.
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