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Zusammenfassung

Klassische Feldkonfigurationen sind in der Grundlagenphysik häufig anzutreffen. Obwohl die
ultimative Beschreibung eines Systems quantenbasiert ist, sind klassische Hintergründe recht
genau für die Beschreibung von Zuständen mit hoher Belegung und sie sind von zentraler Be-
deutung für eine Vielzahl von Phänomenen, von der Kosmologie des frühen Universums bis zur
Astrophysik. Daher ist diese Arbeit der umfassenden Untersuchung verschiedener phänomenolo-
gischer und theoretischer Aspekte im Zusammenhang mit dieser Klasse von Systemen gewidmet.

Im ersten Teil dieser Arbeit untersuchen wir die Auswirkungen einer supraflüssigen Phase der
dunklen Materie auf die Entstehung und Entwicklung von Halos aus dunkler Materie. Obwohl
das Standardparadigma der kalten dunklen Materie (Cold Dark Matter, CDM) erfolgreich auf
großräumige Beobachtungen eingeht, tauchen mehrere offene Probleme auf, wenn der Rahmen
auf die Dynamik von Galaxien angewendet wird. Die Diskrepanz zwischen den Eigenschaften
von galaktischen Halos, die aus CDM-Simulationen gewonnen werden, und den und den aus
Beobachtungen abgeleiteten Eigenschaften ist allgemein als small-scale problems bekannt. Mo-
tiviert durch diese Probleme untersuchen wir die Phänomenologie der einfachsten Modells su-
perflüssiger dunkler Materie, die Theorie eines Skalarfeldes mit abstoßenden quartischen Selbst-
wechselwirkungen ist. Wenn die dunkle Materie aus sub-eV Skalarbosonen besteht, zeigen wir,
dass neue emergente kollektive Phänomene diese Diskrepanzen verkleinern können.

Der zweite Teil der Arbeit ist dem Verständnis kohärenter Zustände in wechselwirkenden
Quantenfeldtheorien gewidmet. Dieser Teil zielt darauf ab, eine Verbindung zwischen der semik-
lassischen Näherung, die üblicherweise zur Untersuchung hochbesetzter Systeme verwendet
wird, und der vollständigen Quantendynamik herzustellen. Indem wir uns auf die Theorie
eines skalaren Feldes mit quartischen Wechselwirkungen konzentrieren, untersuchen wir die
Auswirkungen, die kumulative Quanteneffekte auf die Dynamik kohärenter Zustände haben
können. Wir zeigen, dass die klassischen Hintergründe dieser Theorie keine Gleichgewicht-
skonfigurationen sind, da sie dazu neigen, durch die Annihilation von Quantenbestandteilen
mit Nullimpuls in relativistische Teilchen erschöpft zu werden. Dieses Ergebnis wird durch die
Berechnung der zeitlichen Entwicklung der Ein-Punkt-Funktion des Feldoperators für nicht ge-
quetschte kohärente Zustände, die homogene Konfigurationen beschreiben, gefunden. Während
diese Ergebnisse zuvor mit Hilfe der S-Matrix-Analyse abgeleitet wurden, bestätigen wir sie in
diesem Teil mit Hilfe des Schwinger-Keldish-Formalismus.

Außerdem diskutieren wir das Problem der anfänglichen Zeitsingularitäten, die kohärente
Zustände beeinflussen. Dabei handelt es sich um eine Reihe von Divergenzen, die in den Ko-
rrelationsfunktionen auftreten und die nicht durch Renormierung der Theorie beseitigt wer-
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den können. Die wichtigste Auswirkung dieser Pathologien ist, dass nicht gequetschte ko-
härente Zustände als konsistente Zustände in wechselwirkenden Quantenfeldtheorien abgetan
werden müssen, zumindest bei perturbativen Berechnungen. Schließlich zeigen wir, dass diesel-
ben Schlussfolgerungen auch für kohärente Zustände mit Quetschungen gelten. Obwohl diese
Zustände die anfängliche Zeitsingularität bei der ersten Schleifenordnung in der semiklassischen
Expansion beheben, aber bei höheren Ordnungen gelingt ihnen dies nicht. Nur durch die Betra-
chtung nicht-gaußscher Zustände kann diese Klasse von Divergenzen beseitigt werden.
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Abstract

Classical field configurations are frequently encountered in fundamental physics. Although the
ultimate description of a system is quantum, classical backgrounds are quite accurate for describ-
ing states of high occupancy and they are of central importance in a variety of phenomena, from
early universe cosmology to astrophysics. Therefore, this thesis is dedicated to the comprehen-
sive investigation of various phenomenological and theoretical aspects associated with this class
of systems.

In the first part of this thesis, we study the effects that a superfluid phase of dark matter has
on the formation and evolution of dark matter halos. Although the standard Cold Dark Matter
(CDM) paradigm successfully addresses large-scale observations, several open problems emerge
when the framework is applied to the dynamics of galaxies. The mismatch between the proper-
ties of galactic halos obtained from CDM simulations and the ones inferred from observations
is commonly known as small-scale problems. Motivated by these issues, we study the phe-
nomenology of the simplest dark matter superfluid, which is the theory of a scalar field with
repulsive quartic self-interactions. If dark matter is comprised of sub-eV scalar bosons, we show
that new emergent collective phenomena can ameliorate these challenges.

The second part of the thesis is devoted to understanding coherent states in interacting quan-
tum field theories. By focusing on the theory of a real scalar field with quartic interactions,
we investigate the implications that cumulative quantum effects can have on the dynamics of
coherent states. We show that the classical backgrounds of this theory are not equilibrium con-
figurations, as they are prone to be depleted by the annihilation of zero momentum quantum
constituents into relativistic particles. This result is found by computing the time-evolution of
the one-point function of the field operator, for non-squeezed coherent states describing homoge-
neous configurations. While these findings were previously derived using the S-matrix analysis,
in this part we confirm them using the Schwinger-Keldish formalism.

Also, we discuss the issue of initial time singularities that affect coherent states. These are a
set of divergences that appear in the correlation functions and that cannot be removed by renor-
malizing the theory. The main implication of these pathologies is that non-squeezed coherent
states have to be dismissed as consistent states in interacting quantum field theories, at least
in perturbative computations. Finally, we show that the same conclusions apply to squeezed
coherent states. Although these states can address the initial time singularity at the one-loop
order in the semiclassical expansion, they fail to do that at higher orders. Only by considering
non-gaussian states, this class of divergences can be removed.
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Chapter 1
Dark Matter and Small Scale
Structures

Cosmological and astrophysical observations show that 26% of the energy density in our Uni-
verse consists of Cold Dark Matter [1]. The ΛCDM model, in which dark matter is introduced
as a cosmological pressure-less fluid, is in very good agreement with observations, enabling the
accurate modelling of large-scale structure formation [2] and of the temperature anisotropies in
the Cosmic Microwave Background [1].

Nevertheless, several problems are encountered when the framework is applied to galactic
scales, where certain puzzles emerge when predictions from N-body simulations of collisionless
dark matter are compared to observations. Before delving into the possible solutions to these
discrepancies, we dedicate this section to explaining two of the main problems we are going to
discuss in the rest of this thesis: the core-cusp problem and the excess of substructures predicted
by ΛCDM [3].

1.1 The Core-cusp problem
In the ΛCDM model, quantum primordial fluctuations generated during cosmic inflation are
stretched on cosmological scales, becoming the seeds of the inhomogeneous structure we detect
today. Once these fluctuations reenter the horizon, they recollapse. The outcome of this process
on small scales are Virialized halos, which are overdense regions with an enclosed mass of

M =
4π
3

R3
virδ ρm. (1.1)

Here, δ ∼ 200 is the virial overdensity parameter, which defines the average density of the
halo once compared to the background cosmological density. It is important to note that the
definition (1.1) carries a degree of arbitrariness, as it relies on the specific value of the parameter
δ. The value δ ∼ 200 is chosen to match the theoretical virialized overdensity obtained from
an ideal spherical collapse of a dark matter region [4]. Additionally, this relation provides the
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2 1. Dark Matter and Small Scale Structures

conventional definition of the "virial radius," denoted as Rvir , which is typically regarded as the
characteristic size of the halo.

The formation of small-scale structures is a highly non-linear problem, which is usually ap-
proached numerically. N-body simulations of collisionless dark matter predict that the density
distribution of dark matter halos is expected to have an almost linear scaling in inner regions,
according to the phenomenological law [5]

ρ(r) ∼ r–γ , with γ ∼ 0.8 – 1.4 (1.2)

and gets steeper outside. Different phenomenological density distributions can interpolate be-
tween the scaling of inner and outer regions. The most famous one is the Navarro-Frank-White
profile [6]

ρnfw(r) =
ρ0

r
rs

(
1 + r

rs

)2 . (1.3)

Here, ρ0 is the characteristic density parameter of the halo and rs is the scale radius. The latter
is usually connected to the virial radius by the concentration parameter c = Rvir/rs, which in
turn is connected to ρ0 by the phenomenological mass-to-concentration relation [7]. Although
the profile (1.3) provides a fairly good fit for the density distribution of simulated halos, several
alternatives [8–11] can be considered as well. However, for the sake of the discussion in this
thesis, the NFW profile is sufficient for providing a qualitative picture of the phenomenology of
small-scale structures.

While simulations can accurately describe clusters and large galaxies, they often exhibit sig-
nificant discrepancies when it comes to dwarf galaxies, where they overpredict the central density
of halos and incorrectly depict the slope of the dark matter density distribution, particularly in
central regions. It is usually stated that simulations tend to favour dark matter halos which are
dense and cuspy, although observations often indicate that certain density distributions are bet-
ter described by central cores. An example illustrating this can be found in Figure 1.1, which
presents the rotation curves of various dwarf galaxies [12]. The coloured dots represent the ob-
served data points, while the black (coloured) solid lines depict the corresponding simulated ro-
tation curves obtained from cosmological hydrodynamical simulations, without (with) baryons.
The panel showcases a group of dwarf galaxies whose density distribution from simulations de-
viates significantly from the observed data. We see that the reconstructed rotation curves display
diverse shapes compared to simulations. Also, simulated halos show a consistent overabundance
of dark matter at small radii [12].

Finally, let us briefly discuss possible solutions to these discrepancies that can be found
within the ΛCDM model itself. It is claimed that the feedback from the collective baryonic
effects in galaxies can drastically change the density profile of halos, compared to dark-matter-
only simulations. Hydrodynamical simulations have shown the importance of these effects in
modelling the central region of halos, where supernovae energy [13–16] and density fluctuations
induced by star formation [17–20] can stimulate the formation of cores. In fact, the ejection
of baryonic matter reduces the gravitational force, consequently allowing the halo to expand,
resulting in a shallow central core. Halos with an efficient star formation are notably impacted,
exhibiting significant deviations from simulations of standard cold dark matter. In contrast, halos
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1.2 Missing satellites and "too big-to-fail" 3
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Figure 1.1: Rotation curves of four irregular dwarf galaxies [12]. Coloured dots represent data
points, while solid lines are rotation curves obtained from hydrodynamical simulation, with the
black (coloured) lines representing simulation without (with) baryons. As we can see, there is a
mismatch of simulated rotation curves with respect to the observed ones.

with minimal baryonic content tend to evolve in alignment with the predictions of standard cold
dark matter simulations. Therefore, the main signature of these effects is the correlation between
the properties of the core and the cumulative mass of stars formed in the halo [21,22]. However,
in light of this correlation, it seems difficult to explain the dynamics of Low Surface Brightness
galaxies, which are galaxies mostly comprised of dark matter. Although poor in baryons, these
galaxies present density distributions which deviates significantly from CDM predictions, as in
the case of the dwarf galaxy IC2574 depicted in Fig. 3.5.

1.2 Missing satellites and "too big-to-fail"
The halo mass function quantifies the number of halos dNhalo within a specific mass interval
dMhalo and it provides a robust prediction of simulations within ΛCDM. A noteworthy feature
is that, as we increase the mass of resolved subhalos, the mass function consistently exhibits a
monotonic decrease across all discernible mass ranges. In particular, it predicts that a Milky-
Way-like galaxy should be the host of ∼ 103 subhalos, with a mass bigger than M ≳ 107M⊙
[23–25] (See also black and grey lines of Figure 1.2).

However, this property is in discrepancy with the observed number of satellites orbiting in
the Milky Way, where approximately 50 satellites within the first 300 kpc from the galactic
centre have been detected, with the lighter resolved one with a mass of M ∼ 300M⊙ [27]. This
mismatch gives the name to the famous Missing Satellite Problem, namely that the inferred mass

3



4 1. Dark Matter and Small Scale Structures

Figure 1.2: Figure from [26]: number of subhalos at redshift z = 0 above a given maximum sub-
halo circular velocity Vmax, as a function of Vmax. Notice that the square of the maximum circu-
lar velocity can be linearly related to the mass of the subhalo. The grey and black lines provide
the number of subhalo from simulations of Cold Dark matter, without and with baryons respec-
tively. Cyan and Magenta lines represent the subhalo abundance in models of Self-interacting
Dark Matter, without and with the effect of baryons respectively.

function is not as steep as the one predicted by simulations. Although in recent years more faint
satellites have been discovered and it remains plausible that a lot more can be detected in the next
years, it is unlikely that this huge discrepancy in the abundance can be fully reconciled without
a further understanding of the model.

In this direction, an important point to consider is that less massive subhalos might be highly
inefficient in forming stars, rendering them completely dark. This possibility is supported by
semi-analytic models of galaxy formation, where supernova feedback and ultraviolet (UV) back-
ground from reionization are extremely efficient in limiting the formation of stars in low-mass
halos [28–33]. In the first case, if the supernova energy couples to the galactic medium, it can
remove the baryonic content from the centre of the halo, regulating, or even quenching, star for-
mation [34, 35]. Concerning the latter instead, UV-background originated during the phase of
reionization of the universe can heat up the baryonic content, preventing its collapse [36–41].
Therefore, in this context, the issue of missing satellites can be reframed as the challenge of un-
derstanding under what conditions the simulated subhalos can efficiently support star formation
and, by extension, become detectable.

However, in the past years, this approach also highlighted a third shortcoming of the ΛCDM
model. High-resolution N-body simulations of Milky Way-like galaxies reveal that the most mas-
sive dark matter subhalos within the host galaxy exhibit central densities which are significantly
higher than those associated with the satellites inhabiting the Milky Way. In other words, this
result suggests that galaxies should be able to form in less massive halos, such as the ones found

4



1.3 Alternative models of dark matter 5

in the Milky Way, but fail to do so in the most massive halos, hence the name too-big-to-fail
problem [42, 43].

1.3 Alternative models of dark matter
Although a better understanding of the physics of baryons is important to characterize the evo-
lution of dark matter halos, it is still unclear if this can be enough to overcome the problems
highlighted before. This is particularly true for certain tight phenomenological scaling relations
that do exist between the dark matter and baryon properties of halos. An example of this is the
baryonic Tully-Fisher relation [44], which correlates the baryonic content of the halo with its
asymptotic circular velocity, as

Mbar ∼ V4
max. (1.4)

The peculiarity of this relation is that it holds for an extremely wide range of halo masses, from
clusters down to extremely faint sub-halos which are dark matter-dominated. Although it was
claimed that certain scaling relations between dark matter and baryons should be present also for
ΛCDM [45], the extension to low-mass halos is still challenging to reproduce.

Motivated by this, in this thesis we explore a complementary approach to ameliorate or over-
come the aforementioned small-scale problems. In contrast to focusing on the baryonic sector,
we highlight that introducing additional properties to dark matter, which are effective at galactic
scales, can lead to a more favourable galactic-scale behaviour. The main assumption we want to
challenge is that the collision-less and pressure-less fluid approximation remains valid down to
galactic scales. Specifically, if dark matter can source a positive pressure that is effective only
on scales smaller than a few kiloparsecs, this has the potential to significantly influence the dy-
namics of dark matter in dense regions of halos, such as the core, and to damp the formation of
substructures.

The way these effects are introduced depends on the model at hand. One of the most popular
proposals is Self-Interacting Dark Matter (SIDM) [46], where the standard weakly interacting
massive paradigm is modified by introducing self-interactions among dark matter particles. By
choosing a scattering cross section of order σ/m ≲ 1 cm2/g, scatterings may drive a dark matter
redistribution from inner to outer regions, alleviating the central cusp of the NFW profile. While
maintaining the successes of Cold Dark Matter on large scales, Self-Interacting Dark Matter is
capable of reproducing certain shapes of rotation curves observed in dwarf galaxies [47–49]. It
also ameliorates the too-big-too-fail problem observed in the Milky Way, Andromeda, and the
Local Group [26] and, in the absence of baryons, it can suppress the formation of subhalos in
dark-matter-only simulations (as depicted in Fig.1.2).

A second widely studied possibility is that the wave nature of particles becomes important
at galactic scales so that the approximation of dark matter as a classical fluid breaks down. This
case is described by models of Fuzzy Dark Matter (FDM) [50,51]. By introducing a dark matter
field with a mass of m ≃ 10–21 eV, the wave properties of particles become important on the kpc-
scale. In particular, due to the Heisenberg uncertainty principle, it becomes inefficient confining
particles below their de Broglie wavelength λdb ∼ (mv)–1. The manifestation of this property is
the quantum pressure, a statistical pressure of quantum origin which quantifies these effects. We
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6 1. Dark Matter and Small Scale Structures

discuss more in detail this class of model in Chapter 3. The main phenomenological implication
of Fuzzy Dark Matter is the suppression of substructures below the scale λdb, as well as the
formation of cores in inner regions of halos of the same peculiar size. See [52, 53] for recent
numerical studies.

However, in this thesis, we focus on a third scenario, which lies at the intersection between
these two. In particular, we study the phenomenology of a sub-eV dark matter candidate with
self-interactions, capable of undergoing a superfluid phase transition in galactic halos [54–56].
We discuss how a sub-eV dark matter field, if assisted by self-interactions, is capable of generat-
ing an interesting phenomenology at galactic scales, which can ameliorate the core-cusp problem
and also the excess of substructures, similar to the model of SIDM and FDM. However, before
discussing this scenario in Chapter 3, we dedicate the next chapter to reviewing the theory of
superfluidity.

6



Chapter 2
Superfluidity

This chapter is dedicated to reviewing the effective field theory of Superfluidity, a crucial tool
that we use in the next chapter for understanding the behaviour of a superfluid phase of dark
matter in the galactic environment.

Superfluidity is a set of remarkable hydrodynamic properties that certain fluids exhibit when
cooled below a certain critical temperature. One of its most notable features is the phenomenon
of superflow, which was observed for the first time in 1937 by P. Kapitza [57] and independently
by J.F. Allen and A.D. Misener [58] in liquid helium. They observed that when helium is cooled
below 2.17 K, it develops a frictionless flow, allowing it to move seamlessly through narrow
capillaries without dissipating energy.

This chapter provides a comprehensive overview of the low-energy dynamics of superfluids at
zero temperature. Specifically, we describe how the macroscopic properties of a superfluid arise
from its low-energy spectrum of perturbations, the phonon spectrum, according to Landau’s the-
ory of superfluidity. In turn, we review how the nature of these perturbations is a collective quan-
tum effect, with phonons emerging as the gapless excitations of the interacting Bose-Einstein
condensate that the superfluid constituents form below a certain critical temperature.

2.1 A macroscopic description: the two-fluid model
The pioneering work of Fritz London was the first to connect the frictionless phenomenology
of a superfluid to the microscopic behaviour of its constituents [59]. London proposed that the
macroscopic phenomenology of superfluids could be the result of the Bose-Einstein condensa-
tion of Helium atoms at a microscopic level. This idea was based on the observation that quantum
fluctuations become the dominant contribution to the kinetic energy of liquid Helium below the
superfluid critical point. Although this initial attempt did not explain the emergence of dissipa-
tionless flow, it laid the groundwork for understanding superfluidity as a macroscopic quantum
effect [60].

The idea of Bose-Einstein condensation was further developed in the two-fluid model of su-
perfluidity, first proposed by L. Tisza [61]. At temperatures below a critical point Tc, a portion nsf
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8 2. Superfluidity

of the total number density of Helium atoms undergoes condensation into the ground state via
a Bose-Einstein condensation, while the remaining density nnorm is distributed among excited
states. The ratio of these two components is a function of the temperature

nnorm
nsf

=
( T

Tc

)s
. (2.1)

The value of s depends on the specific system of interest, with s = 3/2 reproducing the tempera-
ture dependence of the normal component for an ideal gas, while larger values of s are expected
for strongly interacting systems. Equation (2.1) suggests that the system can be effectively treated
as a mixture of two fluids, with a normal component of density nnorm and a superfluid compo-
nent of density nsf. Only the normal component would experience a dissipative motion while the
superfluid component, being effectively at zero temperature, is collisionless.

In 1941, L. Landau [62] introduced a revised and corrected version of the two-fluid model.
Landau’s main objection to Tisza’s model was that liquid helium could not be regarded as an
ideal gas. He argued that self-interactions play a significant role in the dynamics of the two fluids.
For example, the non-interacting approximation is inadequate in explaining why the superfluid
component does not encounter friction when flowing through a capillary, considering that relative
motion typically results in interactions between the helium atoms in the condensed phase and the
walls of the capillary.

By giving up any microscopic interpretation, Landau proposed a description of superfluidity
in terms of phonons, the low-energy excitations of the superfluid component1. While retaining
Tisza’s conceptual framework of a coexisting normal component and a superfluid component
in finite-temperature superfluid helium, Landau described the dynamics of the system only in
terms of the low-energy excitation of the superfluid. In other words, according to Landau’s
picture, the minimal excitation of a superfluid is not a single Helium atom, but a long-wavelength
excitation of the system. With this substitution, Landau was able to qualitatively account for
the self-interacting nature of the helium fluid. It is worth noting that Landau’s model does not
require condensation as a fundamental ingredient. The treatment is done by quantizing the long-
wavelength perturbations of the fluid and the dispersion of those perturbations is taken as input
from experiments. However, Bose-Einstein condensation provides a theoretical basis for why
phonons have the experimentally observed spectrum, as shown by N.N Bogolyubov [63] in 1946.

For the upcoming discussions, the qualitative intuition from the two-fluid model is sufficient,
as the superfluids discussed in the following sections can be approximated to have zero temper-
ature. We redirect the reader to the following review [64] for a more quantitative discussion of
the two-fluid model. Before moving to the description of superfluidity in terms of the modern
effective field theory language, let us derive the frictionless behaviour of the superfluid compo-
nent from the phenomenology of its low-energy perturbations, according to Landau’s approach.
A fluid moving in a capillary with a velocity v⃗s carries, in the rest frame of the capillary itself, an
energy

E = Ekin + ωk + k⃗ · v⃗s, (2.2)

1Landau’s two-fluid model describes the normal fluid component in terms of phonon and roton degrees of free-
dom since it was applied to explain superfluidity of liquid helium.
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2.2 The low energy effective field description of superfluidity 9

where ωk and k⃗ are the energy and momentum of an excitation, while Ekin is the kinetic energy of
the fluid. In order to have a frictionless motion, the relative velocity has to satisfy the condition

vs < min
k

ωk
k

. (2.3)

In this way, the combination ωk + k⃗ · v⃗s is always positively defined and no dissipation can take
place in the fluid. In order for the system to experience superfluidity, condition (2.3) implies that
any energy excitation has to satisfy

lim
k→0

ωk ≃ γkm, with m ≤ 1. (2.4)

If this condition is not satisfied, any arbitrary small vc can excite an arbitrary weak perturbation
of the condensate, allowing a dissipation. It is straightforward to check that the perturbations of
superfluid Helium (See Fig. 2.1) satisfy the condition (2.3). In particular, the phonon dispersion
relation reads

ωk ≃ csk, cs =
∂P
∂ρ

, (2.5)

where cs is the sound speed of the system. In terms of them, condition (2.3) reads

vs < cs → no dissipation. (2.6)

This is the famous Landau’s criterion for superfluidity, which states that a superfluid experiences
a superflow if the relative velocity of the external perturbation and the fluid is smaller than the
sound speed of the system.

2.2 The low energy effective field description of superfluidity

While providing a qualitative picture of a superfluid in terms of its long-wavelength perturba-
tions, the two-fluid model does not address either the origin of the spectrum of the perturbations
or the role that the constituent particles of the system have in the phase transition itself.

The rest of this chapter is devoted to understanding superfluidity from the quantum field the-
ory point of view. At the microscopic level superfluidity is deeply connected to the concept of
Bose-Einstein condensation. Given a system of bosons, a superfluid can be described by a field
configuration which spontaneously breaks time-translation and the U(1) symmetry of the sys-
tem2. Also, constituent particles must interact through repulsive interactions for the system to
experience superfluidity. Only in this way, phonons can be identified as the Goldstone boson of
the spontaneously broken symmetries of the system and the macroscopic superfluid phenomenol-
ogy can be reproduced correctly.

2Here, we have in mind a system of complex scalar bosons. However, the same result can be obtained by
considering real bosons, since in the non-relativistic limit the number of particles is conserved.
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10 2. Superfluidity

εp
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ph
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Figure 2.1: Figure from the review [64], which shows the spectrum of perturbations of Superfluid
Helium as a function of the transferred momentum p. On the left of the maximum, there is the
phonon part of the spectrum, characterized by linear dependence on momentum. The region
around the minimum is the roton part of the spectrum, which is quadratically dependent on the
momentum.

2.2.1 A pedagogical example: quartic superfluids
The simplest example of a superfluid is a system of two-body interacting scalar bosons. Follow-
ing the review of [64, 65], we introduce a complex scalar field Φ endowed by a quartic potential

L = ∂µΦ+∂µΦ – m2 ∣∣Φ∣∣2 –
λ

2
∣∣Φ∣∣4 . (2.7)

Notice that interactions have to be repulsive for the system to experience superfluidity. The field
configuration corresponding to the superfluid solution is hence given by

Φ = Veiµt, (2.8)

where the parameter µ is the relativistic chemical potential of the system. In particular, the
configuration (2.8) is a solution of the field equation as long as µ satisfies the relation

µ2 = m2 + λV2. (2.9)

The parameter V is the order parameter of the solution. It is connected to the total number of
particles of the system by the relation

n = 2µV2, (2.10)

derived by evaluating the non-relativistic U(1) charge along the solution (2.8). Here, n is the
number density of the system. Two symmetries are spontaneously broken by the superfluid
solution: time translations and U(1). However, the following linear combination of generators is
preserved by the configuration (2.8)

H̄ = H – µQ (2.11)

10



2.2 The low energy effective field description of superfluidity 11

and therefore only one massless Goldstone boson emerges in the theory, which is identified with
the phonon field.

To derive the properties of the Goldstone, we perturb the classical solution

Φ = (V + h) ei(µt+π). (2.12)

We can plug-in the field decomposition in the original Lagrangian (2.7) and write down the
Lagrangian for the angular field π and the radial field h

Lpert = ḣ2 – (∇h)2 +
{
π̇2 – (∇π)2 + 2µπ̇ –

λ

2
(V + h)2 + λV2

}
(V + h)2 . (2.13)

At this point, we would like to derive the Lagrangian density of the angular mode π. However,
by a close inspection of the Lagrangian (2.14), we see that this is not an easy task, because the
radial and angular modes are kinetically mixed by the relativistic chemical potential. Several
approximations can be adopted to simplify this procedure. First of all, because we are interested
in non-relativistic condensates, we can ignore ḣ2 and π̇2.

The second approximation we can take is a leading order description in spacial derivatives.
As one would notice by performing a fully-fledged relativistic analysis of the spectrum [66], the
theory has a gapped and a gapless mode, obtained as linear combinations of π and h. Because the
gap is

√
2m2 and we are interested in low-energy physics, the massive mode is non-dynamical

at the energy scales of interest. This implies we can drop spacial derivatives acting on the radial
mode h. Still, one has to be careful on this point. Due to the kinetic mixing, corrections that are
brought in by the aforementioned terms are suppressed only by factors of k/mcs, where k is the
typical transferred momentum of the problem and cs is the sound speed of the condensate. This
implies, as we will see in the next sections, that these corrections can also be important in the
non-relativistic regime if momenta bigger than mcs are involved.

With these approximations, the low-energy Lagrangian is determined by

Lpert =
{

– (∇π)2 + 2µπ̇ –
λ

2
(V + h)2 + λV2

}
(V + h)2 , (2.14)

which is a polynomial function of the radial field h. In particular, the latter can be integrated out
exactly and the low-energy Lagrangian for π reads

Lπ =
1

2λ

{
2µπ̇ –

(
∇⃗π

)2
+ λV2

}2
(2.15)

By deriving the quadratic part of this Lagrangian and by canonically normalizing the phonon
field π, it is straightforward to see that the field is gapless

L(2)
π =

1
2
π̇2 –

1
2

c2
s
(
∇⃗π

)2
, where c2

s =
λn

4m3 , (2.16)

where the canonical rescaling π →
√
λ

2m π has been performed. Here, we approximated the rela-
tivistic chemical potential µ with the scalar field mass. As we can see, there is a massless boson
in the spectrum of perturbation as expected, with a linear dispersion relation

ωk = csk. (2.17)
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12 2. Superfluidity

Therefore, π can be identified with the phonon field, the low-energy and long-wavelength gapless
perturbation of the superfluid.

2.2.2 The P(X) description
The previous example shows that the phonon field emerges in the low-energy effective descrip-
tion as the Goldstone boson of the spontaneously broken U(1) charge and time translation. One
could wonder how much the previous derivation depends on the choice of the initial lagrangian
density (2.7). To investigate this, let us go back to the phonon Lagrangian obtained from the λΦ4

theory and let us rearrange it into

Lπ =
2m2

λ

{
π̇ –

(
∇⃗π

)2

2m
+ mc2

s

}2
≡ 2m2

λ
X2. (2.18)

Here, we defined the perturbed chemical potential X, which is the non-relativistic chemical po-
tential µNR = mc2

s corrected by incorporating the effect of the collective fluctuations of the
condensate.

What we learn from (2.18) is that the leading order low-energy description of the fluctua-
tions of a superfluid is given by a function of the perturbed chemical potential. This property
is general and can be derived from symmetry principles [67]. The potential, which mediates
self-interactions, fixes the functional dependence of theory on X (e.g. λΦ4 is equivalent to a X2

theory, while λΦ6 to X3/2), but it does not determine the form of X, which is constrained by
symmetries.

Let us derive this explicitly by building the general effective field theory of phonons in a
zero-temperature superfluid. As it is customary while building an EFT, we have to fix the degrees
of freedom content of the theory and its symmetries. Concerning the first, we understood that
phonons are Goldstone bosons and therefore can be parameterized by the phase of the condensate
wavefunction θ. The underlying assumption is that this degree of freedom is the only degree
of freedom of the low-energy dynamics of the system. Concerning symmetries, because θ is
connected to the phase of a U(1) invariant system, the Lagrangian has to be invariant under a
shift symmetry

θ → θ + a. (2.19)

Therefore, θ can only enter in the Lagrangian through derivatives, that is as ∂µθ. Nevertheless,
we want a Lorentz invariant theory, therefore we conclude that the most general low-energy
Lagrangian is given by

L = P(Xrel), where Xrel = ∂µθ∂µθ. (2.20)

In this case, Xrel is the only Lorentz invariant quantity (at the lowest order in derivatives) that can
be built from θ and that satisfies the shift-invariance.

We keep constraining the form of the phase θ by studying the charge associated with the
spontaneously broken U(1) and the energy-momentum tensor of the theory. By computing the
former, we find that the number density stored in the configuration is

n = P′(Xrel) θ̇. (2.21)

12



2.2 The low energy effective field description of superfluidity 13

To have a non-zero and constant number density for the superfluid background, we need the
background value of ˙̄θ to be constant, which implies that θ̄ = µrelt. Here µrel is the relativistic
chemical potential. If we introduce fluctuations of the phase, we find

θ = µrelt + π, (2.22)

where π is the phonon field. If we consider the non-relativistic limit of Xrel, we find

Xrel = ∂µθ∂µθ ≃ m2 + 2m

µNR + π̇ –
(∇⃗π)2

2m

 = m2 + 2m X. (2.23)

This proves that the non-relativistic and low-energy theory of phonons depends only on the per-
turbed chemical potential X.

Finally, we may provide an interpretation for the function P. By deriving the pressure of the
system from the energy-momentum tensor that the background configuration sources, we find
that

Tij = δijP(µNR) (2.24)

at the leading order in derivatives. Therefore, the function P is the equation of state of the
superfluid evaluated on the background chemical potential µ. It is straightforward to check that,
by choosing P(X) = X2, the lagrangian (2.18) is found up to a normalization factor. This shows
that the theory of the long-wavelength perturbations of a superfluid is obtained by considering the
equation of state for the background and replacing the density with the non-relativistic chemical
potential, according to (2.23).

It is also possible to couple the superfluid to an external field χ. Again, the coupling has to
be a function of X. If we want to couple the number density of the external probe to the number
density of the configuration, the only possibility is to write down the Lagrangian

L = P(X) + gn(X)χ2. (2.25)

In general, interaction vertices can be obtained by expanding the Lagrangian density (2.25)
around the unperturbed chemical potential µNR. For example, terms quadratic in perturbations
are found by expanding up to the second order

L(2)
π =

1
2
π̇2 +

1
2

c2
sπ∆π where c2

s =
P′′

µP′ . (2.26)

As we can see, π is indeed the phonon field, since it is gapless and it has a linear dispersion
relation. Interaction vertices can be found by further expanding the Lagrangian around X = µNR.
In general, coefficients of this series are given by the derivatives of the pressure with respect to
the chemical potential, which can be fixed by measuring the equation of state of the system.

To conclude this part, the P(X) formalism is a useful tool that offers a leading-order descrip-
tion of the low-energy degrees of freedom in a superfluid, requiring only the equation of state
of the unperturbed condensate. However, this formalism is limited to zero-temperature super-
fluids. Although the cosmological and astrophysical systems discussed in the next chapters are
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14 2. Superfluidity

essentially at zero temperature, we briefly mention that this formalism can be extended to include
finite-temperature corrections. This can be done by following the derivation of [68], in which
finite temperature effects are incorporated by including a second fluid component, carrying its
own degrees of freedom, equivalently to Tisza’s two-fluid model.

2.3 Beyond the leading order description
Effective field theories have a cutoff which determines their regime of validity. For example,
the leading order description of the previous section becomes ill-defined for energy scales bigger
than

Λ = mc2
s . (2.27)

Shortcomings of this cutoff can immediately be seen from (2.25), in particular, if we want to
study the effect that a point particle χ with a non-relativistic velocity v ≫ cs can have on the
system. What takes place, in this case, is that the probe particle can interact with the superfluid
background and excite a hard phonon with momentum k > mcs. This limit lies beyond the
regime of validity of the P(X) description and higher-order corrections need to be considered. In
particular, it was shown that certain effects (e.g. dissipation effects of a supersonic probe moving
in the superfluid background [69]) can correctly be captured only if higher-order corrections in
spacial derivatives are taken into account.

This is the topic of this section. Let us go back to the Lagrangian (2.14) and this time let us
keep track of higher-order terms

Lpert = – (∇h)2 +
{

– (∇π)2 + 2µπ̇ –
λ

2
(V + h)2 + λV2 – g|χ|2

}
(V + h)2 . (2.28)

Here, we also introduced an external complex probe χ, coupled to the original microscopic
degree of freedom of the theory Φ by

L = –g|χ|2|Φ|2. (2.29)

We can proceed by integrating out the h field, by solving its equation of motion perturbatively in
π. First, we start by solving the equation of motion for h at the linear order. A consistent solution
is determined by

h =
2Vµ

–∆ + 2λV2 π̇. (2.30)

By plugging in this solution in the Lagrangian for perturbation (2.28), we can derive the quadratic
lagrangian3

L(2) =
1
2

(
π̇2 + c2

sπ∆π – π
∆2

4m2π

)
. (2.32)

3Here, we canonically normalized the phonon field by applying the field redefinition

π →

√
–∆ + 2λV2

8V2µ2 π. (2.31)
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2.3 Beyond the leading order description 15

As we can see, by including higher order derivative corrections, the dispersion relation of the
phonon field is extended with a term quadratic in momentum

ω2
k = c2

s k2 +
k4

4m2 . (2.33)

As expected, the second term of the right-hand side dominates over the first one for momenta
k ≫ 2mcs. In this regime, the dispersion relation of the phonon field reduces to the dispersion
relation of a free non-relativistic particle. This identification becomes exact in the cs → 0
limit and it suggests that, in a λΦ4 theory, a hard phonon (k ≫ 2mcs) can be identified with
propagating free constituent Φ. Although this can be generalized to any power-law potential, let
us stress that long-range self-interactions can invalidate this identification. An example of this is
represented by Superfluid Helium, in which long-range forces between atoms generate a much
richer phenomenology above the cutoff 2mcs, such as maxons and rotons.

Let us sum up the picture. When it is unperturbed, a zero-temperature superfluid is described
by a classical field configuration of finite charge density. It represents a highly occupied state of
constituent particles Φ, which are off-shell due to self-interactions. When the superfluid is per-
turbed, for example by a propagating external probe χ coupled to the original degree of freedom
Φ, phonons are excited. The connection between these collective excitations and the original de-
grees of freedom of the system depends on the energy that the perturber dumps in the system. If
k ≪ 2mcs, repulsive self-interactions are efficient enough to stabilize the system. In this case, if
a constituent is excited out of the condensed phase, the momentum it acquires is not high enough
to win over self-interactions. Therefore, it starts dumping energy to neighbour particles, which in
turn are excited out of the condensed phase. This perturbation propagates as a sound wave in the
superfluid bulk. In contrast, if the transferred momentum is such that a phonon with k ≫ 2mcs
can be excited, the constituent has enough energy to win over self-interactions and it propagates
in the superfluid bulk as an almost on-shell particle. Notice that, in Bogoliubov approximation,
this point is quite straightforward, since Bogoliubov transformations become trivial in this limit.

2.3.1 Higher order processes in the hard-phonon limit
(Part of this section, in particular the analysis 1 → 3 decay processes and the following three
subsections is based on to this thesis, presented partially also in [70])

We keep investigating the relation between phonons π and constituent particles Φ by going
beyond the quadratic theory. Let us still consider a λΦ4 theory and focus on the cubic La-
grangian for perturbations. This can still be derived by plugging in the linear solution (2.30)
in the lagrangian density (2.28). By including also interactions of the probe particle χ with the
bulk, the cubic Lagrangian reads [69]

L(3) = –
√

2gV |χ|2
π̇√

–∆ + 4m2c2
s

–
1

4µ2
π̇√

–∆ + 4m2c2
s

(√
–∆ + 4m2c2

s ∇⃗π
)2

+
1

2
√

2V

 π̇√
–∆ + 4m2c2

s

2
–∆√

–∆ + 4m2c2
s
π̇, (2.34)
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16 2. Superfluidity

where the phonon field has been canonically normalized.
Now, we can test if the discussion of the previous section is correct by computing the decay

rate of the process
χ(pi) → χ(pf ) + π(k). (2.35)

If a hard phonon π can be associated with a moving constituent Φ, we expect that the process
(2.35) is describing the scattering of a probe particle on a zero-momentum superfluid constituent,
which is then kicked out from the condensed phase by the event. Therefore the decay rate of the
(2.35) should be equivalent to a 2-body scattering rate after the limit pi ≫ mcs is taken.

Let us show this by following the derivation of [69]. From the Lagrangian density (2.34), the
amplitude of the process (2.35) reads

Aχ→χ+π = –i
gV√
2m

k, (2.36)

where we also set on-shell the final radiated phonon. By computing the decay rate, we find

lim
(mcs)/(Mvi)→0

Γχ→χ+π =
(

g2

16π (m + M)2

)
nsf vi, (2.37)

where vi and M are the initial velocity and mass of the probe χ. Here, we considered the double-
scaling limit vi → ∞ and cs constant, since the sound speed also depends on the parameter of
the theory. The decay rate (2.37) matches the 2-body scattering rate of the process

χ(p1) + Φ(0) → χ(p3) + Φ(p4) (2.38)

if we identify the 2-body scattering cross section σ = g2/16π (m + M)2. This confirms that hard
phonons can be associated with propagating constituents. It is also possible to show that the
same applies to the process

π(pi) → π(pf ) + π(k). (2.39)

This case is intriguing because, in the limit of pi/mcs → ∞, the interaction rate vanishes too
since the superfluid reduces to a non-interacting Bose-Einstein condensate. However, if we keep
the first subleading correction, the rate (2.39) becomes equivalent to a two-body scattering rate
in which all initial and final particles have the same mass m.

We keep pushing forward the identification of phonons as moving particles by computing the
process

χ(pi) → χ(pf ) + π(k1) + π(k2). (2.40)

We anticipate that the rate of the scattering process involving one χ particle and two Φ particles
goes to zero as the sound speed approaches zero since the |Φ|2|χ|2 potential alone cannot account
for a single χ particle to excite two constituent Φ particles unless we reintroduce collective
effects, and therefore c2

s corrections. On the other hand, if we consider a |χ|2|Φ|4 potential, the
interaction vertex should allow for three-to-three scatterings and the interaction rate is expected
to be non-zero also in the limit of vanishing sound speed.
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2.3 Beyond the leading order description 17

Figure 2.2: Feynmann diagrams describing a probe χ radiating two phonons in the shift-invariant
parametrization. In the limit of vanishing sound speed, this is equivalent to a prob particle χ
scattering on a superfluid constituent and kicking it out from the condensate phase.

Let us show this in a general way, by replacing the |χ|2|Φ|2 coupling with the general power-
law vertex

L ⊃ –
g

n – 1
|χ|2|Φ|2n–2 n ≥ 2, (2.41)

where n = 2 is the case we have been considering so far. According to what we said, only in
this case the rate (2.40) is expected to vanish. To compute the interaction rate of a perturber
χ radiating two phonons while moving in the superfluid bulk, we need the cubic and quartic
Lagrangian obtained from the potential (2.41). This is obtained by integrating out the radial field
h up to the second order in perturbations and therefore we have to solve its quadratic equation of
motion. In this case, the second-order solution is determined by

h(2) =
1

–∆

(
4m2Vπ̇

1
–∆ π̇ – (∇⃗π)2 – g|χ|2V2n–3

)
(2.42)

Here, we dropped c2
s terms since we are interested in zero-order contribution in the sound speed.

By plugging in the solution in the lagrangian density we find

L =
gV2n–4

4m2 |χ|2
1

–∆ (
√

–∆∂iπ)2 –
(2n – 3)gV2n–4

2
|χ|2

(
π̇√
–∆

)2
(2.43)

– gV2n–4|χ|2
1

–∆

[(√
–∆π̇

) π̇√
–∆

]
.

Phonon self-interactions, which we need up to the cubic order, are unchanged by the new inter-
action (2.41). In Fig.2.2, we may find the Feynmann diagrams the contribute to the two-phonon
radiation process. Partial amplitudes read

A1 =
gv2n–4

2m2 k1k2

(
2k1k2 cos θ

k2
1 + 2k1k2 cos θ + k2

2
– n + 1

)
(2.44)

A2 =
gv2n–4

2m2
k1k2(k2

1 + k2
2)

k2
1 + k2

2 + 2k1k2 cos θ
, (2.45)
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18 2. Superfluidity

where A1 and A2 are, respectively, the amplitude of the left and right diagram of Fig. 2.2. Here,
k1 and k2 are the momenta of final emitted phonons, while θ is the relative angle between them.
Also, we imposed the energy-momentum conservation on the virtual phonon. The sum of the
two amplitudes reads

A1 + A2 = –
gv2n–4(n – 2)

2m2 k1k2. (2.46)

As we may see, the sum (2.46) vanishes for n = 2, as predicted. In this case, the potential
(2.41) cannot generate a three-body point-like scattering without taking into account the self-
interactions of Φ.

2.3.2 Hard-phonon limit in linear parametrization
If the sound speed of the condensate is kept finite, the shift-invariant parametrization (2.12) is
quite convenient to study the dynamics of perturbations of the finite charge solution. Neverthe-
less, when the cs → 0 limit is considered, there does exist a more suitable parametrization of
fluctuations, which is the linear parametrization

Φ = (V + h + iπ) eiµt. (2.47)

To show this, let us re-derive the theory of perturbations starting from the lagrangian density

L = ∂µΦ+∂µΦ – m2 ∣∣Φ∣∣2 – g|Φ|2|χ|2. (2.48)

Here, we drop self-interactions since we are interested in the cs → 0 limit of the theory. The
advantage of this parametrization is that, in the limit of vanishing sound speed, phonon self-
interactions vanish too. Because of this, it is possible to compute all vertexes involving the |χ|2

operator times an arbitrary number of π fields, by simply solving the equation of motion for h at
the linear order in perturbations. Higher order corrections would only source higher order terms
in χ, such as |χ|4, |χ|6, etc.

By following the same derivation of the previous sections, we derive the following La-
grangian for perturbations

L =
1
2
π̇2 + π

∆2

4m2π –
√

2gv|χ|2
π̇√
–∆

–
g
2

|χ|2
( π̇√

–∆

)2
+
(√

–∆
2m

π

)2 . (2.49)

The dispersion relation of the phonon mode misses the term linear in momentum as expected,
since we dropped self-interactions. Therefore, the system behaves like a non-interacting Bose-
Einstein condensate. Now, we can focus on interactions of the probe particle χ and with the
phonon field. The term linear in the phonon field matches the one obtained from the shift-
invariant parametrization. In contrast, the term quadratic in the phonon field is different and
more compact. In this case, we only have a point-like vertex and the second diagram of Fig.
2.2 is missing. Nevertheless, the result is equivalent: the amplitude of the process (2.40) derived
from (2.49) vanishes once the two final phonons are put on-shell.
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2.3 Beyond the leading order description 19

Finally, if we do the same for a g
2 |χ|2|Φ|4 interaction vertex, the interaction Lagrangian for

perturbation reads

L ⊃ –
√

2gv3|χ|2
π̇√
–∆

–
gV2

2
|χ|2

3
(

π̇√
–∆

)2
+
(√

–∆
2m

π

)2+

– 2gV |χ|2
( π̇√

–∆

)3
+
(

π̇√
–∆

)(√
–∆

2m
π

)2
–

g|χ|2

8

( π̇√
–∆

)4
+ 2

(
π̇√
–∆

)2 (√
–∆

2m
π

)2

+
(√

–∆
2m

π

)4 (2.50)

We may now read the amplitude of a χ perturber radiating one/two/three and four phonons
through the potential (2.50). Assuming on-shell final particles, those reads:

A (χ → χπ) = i
gV3
√

2m
k, (2.51)

A
(
χ → χπ2

)
= –

gV
2m2 k1k2 (2.52)

A
(
χ → χπ3

)
= A

(
χ → χπ4

)
= 0 (2.53)

As we can see, the amplitude of a χ probe radiating two phonons is not trivial and matches
the one obtained in the shift-invariant parametrization. At the same time, processes involving
more than two final phonons lead to null amplitude once evaluated for on-shell particles. This is
consistent with the idea that the potential |χ|2|Φ|4 cannot mediate a process where three or four
constituents are kicked out of the condensate by the perturber χ unless self-interactions between
constituents are invoked.

2.3.3 Three body scattering rate
We have demonstrated that a probe particle χ that radiates a phonon π is equivalent to the scatter-
ing of the same probe particle on a superfluid constituent Φ, once the limit cs → 0 is considered.
We have shown this for the specific two-body interaction |χ|2|Φ|2.

In this section, we exploit this property in a reverse way and use it to compute the three-body
scattering rate of

χ(pi) + Φ1(0) + Φ2(0) → χ(pf ) + Φ1(k1) + Φ2(k2), (2.54)

by introducing the potential self-interacting potential

–
g
2

|χ|2|Φ|4. (2.55)

Here, we set the mass of the probe particle M = m to simplify the computation and we work in
the zero sound speed limit. Also, in this limit, the interaction rate of this process is expected to
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20 2. Superfluidity

be similar to the three-body scattering rate in λ|Φ|6, although we discuss in details this point in
the next section.

In contrast to quartic potentials, where the single-phonon radiation is the only non-zero decay
channel, sextic potentials exhibit two main processes that contribute to the three-body scattering
rate as discussed in the previous section. By summing them, we may evaluate the interaction rate
of the process (2.56) by computing

Γ (χ + Φ + Φ → χ + Φ + Φ) ≡ Γ (χ → χ + π) + Γ (χ → χ + π + π) . (2.56)

The connection of the second process on the right-hand side with the constituent picture is
straightforward: it is the scattering rate of a probe particle χ interacting with two superfluid
constituents and kicking them out of the condensed phase. In the mean field description, two
phonons are radiated by the probe, one for each constituent that has been put in motion.

The first process is also interesting. In this case, the probe particle χ interacts with two
constituents but transfers its momentum only to one of them. As a result, only one final phonon
appears in the mean-field description since only one constituent is removed from the condensed
phase. The sum of these two contributions determines the total three-body scattering rate.

Let us evaluate the partial interaction rates. The first term of the right-hand side is obtained
from (2.37) by setting M = m and by adding a factor of V4. For the second term, we follow the
approach of [71]. Partial rates read

Γ (χ → χ + π) =
g2n3

sf
256πm4 vi, Γ (χ → χ + π + π) =

g2n2
sf

1024πm
v4

i . (2.57)

Here, vi is the velocity of the incoming perturber χ. By summing over the two partial contribu-
tions, the total rate of a probe particle χ scattering over two constituents Φ reads

Γ (χ + Φ + Φ → χ + Φ + Φ) =
g2n2

sf
1024π4m

v4
i

1 +
nsfλ

3
db

2

(
v
vi

)3
 . (2.58)

The first and second terms in Eq. (2.58) correspond to the contribution from two-phonon
and one-phonon radiation, respectively. It’s worth noting that in the second term in parentheses,
we identified the de Broglie wavelength of a constituent particle λdb = 2π/(mv), where v is the
velocity dispersion of the system of bosons Φ. By recognizing this, we can draw the following
conclusions:

• If the system is not degenerate, that is nsfλ
3
db ≪ 1, the three-body scattering rate is domi-

nated by the process where χ transfers its momentum to both the particles at rest4. This is
consistent with the classical intuition, which suggests that during the scattering of a probe
on two particles at rest, both of them are more likely to be put in motion due to the larger

4One could question that this result does not holds the non-degenerate limit since the derivation is performed
in a mean-field approximation. Nevertheless, notice that the rate of a probe χ radiating a phonon matches (2.37)
the two-body scattering rate of two isolated particles. This seems to indicate that we can extend the result of a
mean-field computation to non-degenerate systems.
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2.3 Beyond the leading order description 21

phase space of this case. Notice that this conclusion also applies to an incoming perturber
scattering on a degenerate condensate, when the perturber has a velocity much bigger than
the internal velocity dispersion of the system.

• If the de Broglie volume is highly occupied and the velocity of the perturber is similar or
smaller than the velocity dispersion of the system, the scattering rate is dominated by the
process where χ transfers its momentum only to one constituent particle Φ. This behaviour
is in accordance with the Bose-Einstein statistics, which suppresses processes in which
particles are injected into non-degenerate states, compared to processes where final states
are highly occupied. Hence, processes in which only one particle is excited into a high
momentum empty state exhibit Bose enhancement when compared to processes where
both constituent particles are extracted from the condensate. This enhancement of the
single-phonon channel compensates for the smaller phase space available for such events
in comparison to the two-phonon case.

Finally, the same conclusions will apply if the probe particle χ is replaced with a constituent
particle Φ. In this case, the interaction rate matches (2.58), up to an overall order one overall
factor that takes into account the different symmetry factors of the process.

2.3.4 Relaxation rate of a degenerate gas of three-body interacting parti-
cles

The exercise of the previous section, the derivation of the three-body scattering rate (2.57), has
important implications in the context of the dynamics of many-body systems. In particular, it
can be exploited to derive the thermalization time of a three-body interacting system. This is an
important time scale, as it allows us to characterize the time it takes for a system to get to ther-
mal equilibrium due to its own internal interactions. For a two-body interacting system, it can be
approximated as the time it takes for every single particle of the system to interact at least once.
In other words, a good estimate is provided by the inverse of the relaxation rate, which in turn is
approximated by the interaction rate [72–74]. Therefore, we may use the aforementioned iden-
tification to estimate the relaxation time for a gas in which constituents interact mainly through
three-body interactions. This can be a difficult computation if performed in terms of constituents,
but it becomes simpler if performed in the language of the long-wavelength fluctuations

First, we should consider whether the rate given in Equation (2.58) can be applied as an
approximation to describe a general three-body scattering, so when the system in question is
not a condensate but a typical gas. In these cases, the two constituent particles do not have
zero momentum and a different, more complex kinematic should in principle be considered.
However, in the same way as a two-body interacting system, for three-body interactions, the rate
(2.58) provides a good order one approximation for the relaxation rate if the gas of particles is
non-degenerate. In other words, we have

t–1
rel ∼ Γ (χ → χ + π + π) , (2.59)

where χ plays the role of a Φ constituent and we identify v ∼ vi. Notice that we ignored the
single phonon channel, which is negligible if the system is not degenerate. This result provides an
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22 2. Superfluidity

approximate result since the different initial kinematics of a general scattering should contribute
with an order one factor.

Unfortunately, in the case of a degenerate gas of Φ particles, we cannot directly apply the
formula (2.59) to evaluate the relaxation rate. The scattering rate we derived in the previous part
has a specific physical meaning: it describes an excited particle scattering over a condensate of
zero momentum constituents. In contrast, the phase space of a gas of degenerate particles which
is not at equilibrium is expected to be comprised of a lot of high occupied energy levels. This
implies that it is extremely likely that constituent particles of the gas would be scattered into
highly occupied energy levels, and not empty ones as in the case of the condensate solution. The
outcome of this is that scatterings between particles are now enhanced by Bose-enhancement
factors N , which roughly counts the number of particles per de Broglie volume of the specific
energy levels which are involved in the process. We can estimate it as

N = nλ3
db, (2.60)

with n average number density of the gas5.
If we compute the relaxation rate starting from the three-body interaction rate, we have to add

n factors of N in front of the partial rates involving phonons, where n is the number of constituent
particles whose momentum changed in the scattering process [73, 75], without counting χ 6.
Because each phonon is associated with a constituent particle that changed the energy level, we
have to add a factor of N per every phonon that is radiated.

Therefore, the relaxation rate for a degenerate gas of bosons interacting mainly through three-
body interactions read

t–1
rel ∼ N Γ (χ → χ + π) + N 2Γ (χ → χ + π + π) ∼ N 2 3g2n2

2048π4m
v4, (2.61)

where we set the velocity of the perturber (in this case a Φ particle) equal to the velocity dis-
persion of the gas. Here, we neglected certain symmetry factors that should be reintroduced for
simplicity and we redirect the reader to [70] for these details. It is important to note that, in a
non-degenerate gas, only the two-phonon channel contributes to the relaxation rate. However, in
the degenerate case, both the single and two-phonon channels contribute equally to the relaxation
rate.

5This also explains why we can directly use the three-body scattering rate derived for a condensate solution to
describe the case of a gas of non-degenerate particles. When evaluating the relaxation rate, the Bose-enhancement
factor only appears to count the degeneracy of final states [75]. In the case of the scattering of a particle over the
condensate or of three particles in the vacuum, the final states are non-degenerate and the only distinction between
these scenarios is the kinematics.

6Although we are implicitly assuming that the χ particle is identical to a Φ particle, the number of Bose factors
that enter in the relaxation rate for a degenerate system is equal to the number of final particles involved in the
scattering minus one and therefore we can ignore χ in the counting.
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2.4 Superfluidity and Gravity 23

2.4 Superfluidity and Gravity
Up to this point, we have described how the dynamics of the low-energy degrees of freedom of
a superfluid can be addressed. While this formalism is sufficient for studying the properties of
the superfluid phase in laboratory settings, it lacks a fundamental ingredient for its application to
galactic dynamics: gravity. As a result, this section aims to conclude the discussion of the EFT
of superfluidity by incorporating the effect of gravity. Specifically, we will focus on the theory
of phonons in the presence of gravity, while the analysis of self-gravitating classical profiles will
be discussed in the next chapter.

Concerning the P(X) approach, gravity can be introduced by incorporating its effects in the
chemical potential of the system [76]. Given the Newtonian potential φ(x), its effect on the
superfluid bulk can be described by introducing a new perturbed chemical potential

X′ = µ – mφ(x) + π̇ +
(∇π)2

2m
. (2.62)

and the most general Lagrangian density is now determined by P(X′). Nevertheless, in this dis-
cussion, we want to be as general as possible and keep also higher-order derivatives corrections.
We briefly review the derivation of this case, by following [77].

We start by considering a quartic superfluid minimally coupled to gravity

S =
∫

d4x
√

–g
{

R
16πG

+ ∂µΦ+∂µΦ – m2|Φ|2 –
λ

2
|Φ|4

}
, (2.63)

where R is the scalar curvature. Again, we can introduce the solution (2.12) and study the
dynamics of its perturbations. In this case, we also have to track the gravitational degree of
freedom. Since we are interested in non-relativistic superfluids, we consider the weak-field limit
of gravity

ds2 = (1 – 2φ) dt2 – δijdxidxj. (2.64)

In this case, the Lagrangian for perturbations reads

L =
1

8πG
φ∆φ + h∆h + 2m (V + h)

{
µ – mφ + π̇ –

(∇⃗π)2

2m

}
–
λ

2
(V + h)4 . (2.65)

We integrate out h and the Newtonian potential φ(x), assuming that the latter is sourced by
a homogeneous configuration. The resulting quadratic canonically normalized Lagrangian for
perturbations is

L =
1
2
π̇2 +

1
2
π

(
m2

g + c2
s ∆ –

∆2

4m2

)
π + ..., (2.66)

where mg = 4πGρ is the Jeans mass. The presence of gravity introduces an additional tachyonic
term in the dispersion relation of phonons, which now reads

ω2
k = –m2

g + c2
s k2 +

k4

4m2 . (2.67)
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24 2. Superfluidity

This modification leads to the instability of condensates which are large enough, driven by the
tachyonic modes they exhibit. In the subsequent section, we demonstrate that this instability is
reminiscent of the well-known Jeans instability, and it suggests that self-gravitating superfluid
configurations become unstable beyond a certain size, as their self-interactions are inadequate to
counteract the gravitational collapse.

24



Chapter 3
Superfluid Dark Matter

This chapter is devoted to studying the phenomenology of a dark matter superfluid, with a par-
ticular emphasis on the consequences that this phase of dark matter can have on the formation
and evolution of halos. Most of the content of this chapter is based on an original work of the
author of this thesis, that was published in [70] and [78].

The idea of dark matter existing in the form of condensates at characteristic galactic densities
can be summarized in two different but complementary proposals, which mainly differ by the
impact that dark matter self-interactions have on the dynamics of the condensed phase (see [79]
for a general review). To be as general as possible, let us consider a homogeneous configuration
of real scalar bosons with repulsive quartic self-interactions, which are minimally coupled to
gravity. The resulting Lagrangian reads

L =
1

8πG
φ∇⃗2φ +

i
2
(
ψ∗∂tψ – ψ∂tψ

∗) –
|∇⃗ψ|2

2m
–

λ

16m2 |ψ|4 – m2|ψ|2φ, (3.1)

where φ is the Newtonian potential as in the previous chapter. Since dark matter has to behave
as a non-relativistic fluid on cosmological scales, here we considered the non-relativist limit
of the Lagrangian (2.63) 1. In line with the previous section, we introduce a highly occupied
configuration of zero momentum bosons, the dark matter condensate, with a non-relativistic
energy density determined by

ρ ≃ m2|ψ|2. (3.2)

By reading the Lagrangian (3.1), we realize that the internal dynamics of the system at a
certain scale k–1 depends on the relative magnitude of the third and fourth term at that particular
scale. If dark matter self-interactions are negligible at galactic scales (kpc), then we have models
of Fuzzy dark matter [50, 51]. By introducing scalar bosons with a mass m ∼ 10–21 eV as
constituents of the condensate, the de Broglie wavelength λdb ∼ (mv)–1 of dark matter particles

1More precisely, this is the non-relativistic approximation of the real counterpart of the Lagrangian (2.63).
The two formulations are equivalent in the non-relativistic approximation since number-changing processes
are suppressed in this limit. The non-relativistic limit is obtained by introducing the decomposition ϕ̂ =

1√
2

(
ψeimt + ψ∗e–imt) and averaging over time-scales larger than m–1.
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26 3. Superfluid Dark Matter

at typical galactic densities becomes ∼ kpc sized, making manifest their wave-like nature at these
scales.

Because the wavefunction of particles spreads over the size λdb due to the Heisenberg un-
certainly principle, substructures which are smaller than this scale are efficiently fuzzed out by
the positive quantum pressure. Since this positive pressure can lead to the formation of quasi-
homogeneous regions in dark matter halos, the model was originally proposed to ameliorate
the excess of dark matter in inner regions of halos and the excess of substructures predicted by
N-body simulations2. Over time, these claims have been supported by several numerical investi-
gations [52, 80, 81].

On the other hand, if the fourth term of (3.1) dominates over the third one at typical galac-
tic scales, self-interactions can profoundly change the phenomenology of the condensate, as
discussed in Chapter 2. Hence, a second and complementary approach — as proposed by J.
Goodman in [54] — is to consider condensates whose dynamics is dominantly driven by micro-
scopic repulsive self-interactions, hence superfluids. In this case, a quasi-homogeneous core may
form in central regions of halos due to the positive pressure sourced by interactions. The model
was originally introduced as an improved alternative to models of self-interacting dark matter,
since degenerate condensates can sustain macroscopic configurations also at zero temperature,
preventing the gravo-thermal collapse characteristic of SIDM models [46, 82, 83].

Later, the model was claimed to be ruled out in [84]. By assuming a specific finite-temperature
equation of state for the superfluid, the global thermal equilibrium of the dark matter halo, the
spherical symmetry of the condensate wave function, and the bullet cluster constraint, the au-
thors demonstrated that it is not possible to derive dark matter density profiles which are con-
sistent with observations. While the shortcomings of the equation of state have been addressed
in [85, 86], this chapter is devoted to revising the leftover underlying assumptions. In particular,
we show that it is possible to relax the assumption of global thermal equilibrium, and also that
the spherical symmetry of the wavefunction of the halo is untenable within the context of this
model.

Finally, let us mention that Dark Matter Superfluidity has been revitalized in the past years by
the complementary approach proposed in [55,56]. In these papers, the dynamics of the superfluid
phase is exploited to generate long-range interaction between baryons, which are mediated by
phonons. The only additional ingredient is the coupling of the baryonic sector to the dark matter
sector of the theory. It was shown that by choosing a particular microscopic dynamics for the
dark matter fluid, that is a specific form of the P(X) Lagrangian, it is possible to generate an
emergent force between baryons that can emulate the behaviour of the Modified Newtonian
Dynamics (MOND) [87–89], as long as baryons are submerged within the dark matter superfluid.

2The quantum pressure is a statistical pressure peculiar to non-homogeneous configurations. It is determined
by evaluating the leading non-relativistic spacial component of the energy-momentum tensor. We may obtain an
estimate of this component of the pressure by evaluating the kinetic term of (3.1) using i∇⃗ψ ∼ R–1ψ, with R the
scale of the inhomogeneity. By replacing the field value with the density ρ, we arrive at

P ∼
(

h̄2

m2R2

)
ρ. (3.3)
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3.1 Hydrodynamic properties of the Dark Matter Superfluid 27

The model is also successful in reproducing the large-scale predictions of ΛCDM and the mass
function of clusters. The possibility of having long-range forces also in non-interacting Bose-
Einstein condensates was studied in [90], while the implications of dark matter superfluidity in
the context of dynamical friction have been discussed in [77]. In this chapter, we will not explore
this particular realization, as we are not introducing any coupling between the baryonic and dark
sectors.

3.1 Hydrodynamic properties of the Dark Matter Superfluid
To start describing the phenomenology of a dark matter superfluid, it is convenient to study
the hydrodynamic properties of the theory (3.1). Let us consider a classical field configuration
of finite energy density ρsf. As discussed in the previous chapter, the low-energy spectrum of
perturbation in the presence of gravity reads

ω2
k = –4πGρsf + c2

s k2 +
k4

4m2 . (3.4)

By analysing the spectrum (3.4) we see that perturbations which are softer than the characteristic
scale

k2
j = 2m2c2

s

–1 +

√√√√1 +
4πGρ
m2c4

s

 (3.5)

are unstable. The mode kj is the Jeans momentum and it determines the characteristic scale
ℓ = 2πk–1

j , commonly known as Jeans scale. The latter can be interpreted as the size above
which self-gravitating configurations are unstable and would collapse gravitationally [91].

We can examine two limits of (3.5), which depend on which contribution between the quadratic
and quartic term of (3.4) dominates at the scale of the collapse k ∼

√
4πGρ. These two regimes

are identified by the magnitude of the parameter

ξ =
m2c4

s
4πGρ

. (3.6)

If the parameter ξ is small, the Jeans scale reduces to the characteristic Jeans scale of the Fuzzy
dark matter model [50, 51]

ℓ ≃
(

π3

Gρm2

)1
4

, ξ ≪ 1. (3.7)

In this case, the gravitational collapse is prevented by the quantum pressure of the field configu-
ration. Hence, in the rest of this thesis we refer to this case as degeneracy pressure case.

If ξ ≫ 1, then the collapse is prevented by the pressure generated by the repulsive self-
interactions and the Jeans scale reduces to [92]

ℓ ≃
(
πc2

s
Gρ

)1
2

, ξ ≫ 1. (3.8)
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Figure 3.1: Density profile of a self-gravitating superfluid configuration (3.13). Here, two-body
interactions source the pressure that stabilizes the configuration. The diameter of the configura-
tion is equal to the Jeans length of the system.

We refer to this case as interaction pressure case, since the gravitational collapse is prevented by
the pressure provided by the self-interactions.

Since interactions source positive pressure, the theory admits non-topological soliton solu-
tions, derived as the stationary non-relativistic self-gravitating configurations of the theory. To
find their density profile, we solve the equation of hydrostatic equilibrium3, combined with Pois-
son’s equation

1
ρ

dP
dρ

= –∇⃗φ (3.10)

∇2φ = 4πGρsf. (3.11)

To solve this system, we also have to provide the equation of state of the superfluid. For the
theory at hand, we have

P =
λρ2

8m4 . (3.12)

Notice that this form of the pressure is legitimate only in the regime ξ ≫ 1, hence as long as the
quantum pressure is negligible compared to the interaction pressure.

By plugging in the pressure (3.12) in the equation of hydrostatic equilibrium, we derive the
density profile of the superfluid soliton [54, 94]

ρ(r) = ρsf
sin(2πr/ℓ)

2πr/ℓ
. (3.13)

3This equation is derived by considering the equation of motion of ψ, derived from (3.1). Using the Madelung
decomposition [93]

ψ =
√
ρ

m
eiα, v⃗ =

1
m

∇⃗α, (3.9)

equation (3.10) is obtained as the equation for the velocity field v⃗ in the stationary limit ∂t⃗v = ∇⃗ · v⃗ = 0.
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3.2 Formation of the superfluid phase 29

The scale ℓ is the Jeans scale in the interaction pressure case and ρsf is the superfluid soliton cen-
tral density. Notice that, for two-body interacting superfluids, this scale is density-independent.
In Fig. 3.1, we plot the density profile of the soliton (3.13). The Jeans scale exactly represents
the diameter of the configuration. Also, we see that the density profile is almost homogeneous
in inner regions, due to the positive pressure provided by self-interactions.

3.2 Formation of the superfluid phase
Having depicted the hydrodynamic properties, we derive what are the minimal conditions that
would lead to the formation of the superfluid phase in galaxies.

In Chapter 2, we discussed the relation between superfluidity and Bose-Einstein condensa-
tion. Based on that discussion, one might have inferred that achieving local thermalization is
a prerequisite for condensation. However, this point requires some further elucidation. Con-
densation may occur as long as the de Broglie volume of the system is highly occupied, and
this condition is independent of thermal equilibrium. This takes place in models of Fuzzy Dark
Matter for example, in which self-interactions are never efficient enough for establishing equi-
librium. Therefore, with the previous section in mind, we define the coherence scale ℓc of the
system, namely the scale below which superfluid properties may transpire and the gas of dark
matter particles can be considered as an effective condensate. This is set by [73]

ℓc ≃ min
(2π

k∗
,λdb

)
with λdb =

2π
mv

(de Broglie wavelenght). (3.14)

Here, v is the velocity dispersion of the system. In other words, the coherence length is set as
the minimum between the scale of gravitational stability and the de Broglie wavelength. Let us
investigate what properties dark matter should have to determine a coherence length which is
kpc-sized. Without thermalization (so without a mechanism that would push all particles in zero
momentum state), the typical velocity dispersion of dark matter particles in galaxies is v ≃ 10–3

and extremely light masses (m ≃ 10–21 eV) are required to have coherence over the kpc scales.
This is because it is the de Broglie wavelength that sets the scale of coherence unless masses
lighter than the fuzzy dark matter scales are considered, which is a scenario highly constrained
by observations [95–97].

In contrast, if a local thermal equilibrium is established, the coherence length is determined
by the Jeans scale. This is because thermalization and relaxation processes efficiently reshuffle
the dark matter phase space, by creating a highly occupied zero momentum state 4. Therefore,
in practice, one needs to invoke thermalization for a kpc-sized core to be formed in galaxies, for
moderately sub-eV particles.

Following what we said, the formation of a macroscopic superfluid phase of dark matter sets
in if the following two conditions are satisfied:

4Intuitively, if dark matter reaches equilibrium and all particles are pushed into a zero momentum state, the
velocity dispersion of the configuration approaches 0 and (mv)–1 → ∞. In this case, the coherence length (3.14) is
determined by the Jeans scale.
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30 3. Superfluid Dark Matter

• The system is in local equilibrium. This is achieved if particles have sufficient time to
interact, allowing them to establish a Bose-Einstein statistics. The time it takes to reach
the equilibrium can be estimated as the time it takes for each particle to scatter at least
once [74]. The longer one waits, compared to this time scale, the more certain one can be
for being close to equilibrium. For typical dark matter halos, density distributions are not
homogeneous and it is expected that high-density regions thermalize first. Because of this,
we may define a new peculiar scale of the halo, the thermal radius RT , which is the radius
within which dark matter is in thermal equilibrium.

• The de Broglie wavelengths of particles overlap. This property is not implied by the previ-
ous condition, as systems can be in thermal equilibrium, but not in a degenerate state. The
degeneracy of a thermal system is achieved if the system itself is colder than the critical
temperature Tc ∼ n2/3/m; with n denoting the particle number density at galactic scales.
As for local thermal equilibrium, we may also identify a peculiar scale of the dark matter
halo which is connected to the property of degeneracy. We call it the degeneracy radius
Rdeg.

To sum up, the phenomenology of dark matter halos in the theory (3.1) depends on different
emergent length scales. The first is the thermal radius RT . It sets the radius within which dark
matter interactions are efficient enough to have dark matter particles in thermal equilibrium. The
second scale is the degeneracy radius Rdeg, which sets the region of the halo in which the de
Broglie wavelengths of dark matter particles overlap. Finally, we have the Jeans scale ℓ, which
sets the size of a gravitational stable superfluid configuration.

Understanding the hierarchy between these scales is fundamental in order to depict the final
density profile of the halo. Therefore, in the next sections, we provide a comparison of RT , Rdeg
and ℓ for different values of the mass m and of the coupling λ.

3.2.1 Comparing RT and Rdeg: degenerate and non-degenerate thermal-
ization

In this section, we compare the thermal radius RT and degeneracy radius Rdeg. In particular, we
focus on the different physical effects that would emerge when one of these scales is larger than
the other.

To do so, it is crucial to define the density distribution of dark matter in galaxies. Following
the discussion of Chapter 1, the formation of a dark matter halo is a highly non-linear process
and the outcome of the collapse in the absence of baryons is usually approximated with the NFW
density profile (1.3), which we report here again for convenience

ρ(r) =
ρ0

r
rs

(
1 + r

rs

)2 . (3.15)

Following what takes place in models of self-interacting dark matter, the initial stages of
the formation of halos are expected to be analogous to non-self-interacting dark matter [74].
Therefore, the density profile (3.15) should provide a reasonable ansatz for the distribution of
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dark matter in the halo before self-interactions become efficient enough to reshuffle the density
distribution. We consider it as the initial input of the computations that will follow. For the
numerical estimates that will follow, we use MDM = 1012M⊙, the concentration parameter c =
RV/rs = 6 and the Virial radius RV = 200 kpc, corresponding to the parameters of Milky-Way-
like halos.

Both the condition of degeneracy and the formation of a thermal profile are expected to
be more easily satisfied in central regions of halos, in which densities are higher than in the
outskirts. We start by analysing what are the minimum requirements to have degenerate dark
matter in galaxies. In the first approximation, given a density distribution ρ(r), a gas of particles
is degenerate if there is more than one particle per de Broglie volume. Therefore, the dark matter
halo is degenerate in regions that satisfy the condition

r < Rdeg, Rdeg : nλ3
db ∼

ρ(Rdeg)
m

(2π
mv

)3
= 1, (3.16)

where we defined the degeneracy radius Rdeg as the distance from the galactic density at which
we have exactly one particle per de Broglie volume. As we see, this is uniquely determined by
the mass of the dark matter particle. For typical Milky Way-like galaxies, we find

Rdeg ≫ 10kpc =⇒ m ≪ 50 eV (3.17)

Let us stress that halos are completely degenerate, so Rdeg ≫ RV , if dark matter particles lighter
than 1 eV are considered.

Concerning the region of the halo which is in equilibrium, this is identified by the region
within which particle interactions had the chance to interact at least once during the lifetime of
the halo. We define the thermal radius RT , as the radius of this region. The interaction rate plays
a central role in determining RT and its explicit form depends on whether dark matter was already
degenerate at RT or not. This is because, for degenerate particles, the interaction rate is enhanced
by the Bose-enhancement factor N , which counts the number of particles in a de Broglie volume.
Therefore, the relaxation rate is approximately determined by [72, 75]

Γ = (1 + N )
σ

m
ρv , N =

ρ

m

(2π
mv

)3
, (3.18)

where v(r) =
√

GM(r)
r is the orbital velocity of dark matter particles, M(r) is the mass of the halo

enclosed in an orbit of radius r, and σ/m is the two-body scattering cross section determined by

σ

m
=

λ2

128πm3 . (3.19)

Notice that we use interchangeably v to indicate the velocity and the velocity dispersion, which
we assume are of the same order. As we see, if particles are not degenerate, the relaxation rate
reduces to the standard 2-body scattering rate in vacuum. However, if the condition of degeneracy
is satisfied, the relaxation rate is boosted by a factor of N .
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32 3. Superfluid Dark Matter

According to what we said, the thermal radius is defined as the radius within which particles
had the chance to scatter at least once in the lifetime of the halo [74]. Assuming tg ∼ 13 Gyrs,
we have

RT : Γ|r=RT tg = 1, (3.20)

where tg is the age of the halo. One could question if using tg as the time scale for thermalization
is a good working assumption. What we are implicitly assuming is that it is possible to ignore the
phase-space reshuffling of Φ due to dynamical effects within the galaxy. If this is not justified,
the dynamical time tdyn = r/v is more appropriate to determine the thermal radius. However, it
was shown in [78] that the qualitative picture of the discussion would stay the same if we repeat
the analysis using the dynamical time.

Now, superfluidity takes place within the smaller radius among RT and Rdeg. We identify the
two cases of degenerate and non-degenerate thermalization, depending on the relation of these
two scales.

(i) If RT > Rdeg, then the relaxation rate of the system at RT is approximated by the standard
2-body interaction rate in the vacuum. The evolution of the phase space would track the
one of non-degenerate self-interacting dark matter models. The final structure of the halo
would contain three phases: an outskirt r > RT > Rdeg of non-degenerate particles with a
non-equilibrium phase space distribution, a non-degenerate intermediate region RT > r >
Rdeg in which particles would have the chance to experience interactions, and a central
region within r < Rdeg < RT where the superfluid phase transition would take place.

(ii) If Rdeg > RT , the relaxation rate is boosted by the degeneracy factor. The structure of the
halo is simpler in this case and it is comprised of an outskirt of degenerate particles which
did not have the chance to interact and a central superfluid region.

We study these two scenarios separately in the following subsections.

Case (i) Non-degenerate Thermalization

In the first case, the dark matter gas reaches equilibrium outside the region in which particles are
degenerate, that is Rdeg < RT . In this case, the thermal radius RT is determined by solving the
equation

Γtg =
σ

m
ρ(RT )v(RT )tg = 1 . (3.21)

In the case of non-degenerate thermalization, the thermal radius is only a function of σ/m. Con-
cerning the dependence of (3.21) of the NFW profile, this is a non-linear function of RT , ρ0 and
rs. However, it simplifies if we focus on the two relevant regimes RT ≪ rs and RT ≫ rs

RT ≃ rs
(
ρ0rs

√
2πGρ0

σ

m
tg
)γ

, with γ =

2, for RT ≪ rs

2/7, for RT ≫ rs
(3.22)

Notice that if RT ≪ rs, the ratio RT /rs is a sensitive function of the density profile. Therefore,
different initial density distributions could significantly change this ratio.
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As expected, for larger σ/m, the dark matter gas reaches equilibrium at lower densities. By
using the typical NFW parameters of a Milky-Way-like galaxy and the average density ρ ≃
10–25g/cm3 , we find the following compact expression for the thermal radius:

RMW
T ≃ rs

(
σ/m

cm2/g

)γ
(3.23)

Although it would seem that only σ/m determines the thermal radius RT , the relation holds
as long as N is small at RT , so it holds for dark matter masses significantly heavier than the eV
scale.

This is the important message: given masses above the eV-scales, we can already understand
what kind of superfluid solitons we may expect in the superfluid region, assuming the maximum
interaction cross-section σ/m ∼ 1 cm2/g. This is the value that saturates the bullet cluster bound
and we derive again in the second part of this chapter. By plugging in these values in (3.8), we
get that a stable superfluid soliton cannot be bigger than

ℓ ≲ 5 · 10–2 pc . (3.24)

which is roughly the size of the solar system. In other words, if we want to consider coherence
lengths which have an astrophysical size, we cannot rely on non-degenerate thermalization.

Case (ii): Degenerate Thermalization

The second scenario we want to explore involves the possibility that Rdeg > RT . This implies that
we have to consider particles which are lighter than the eV-scale. The derivation of the thermal
radius tracks the previous case, with the only difference that we have to use the interaction rate
for degenerate particles

Γtg =
σ

m
ρ(RT )v(RT )N tg = 1 , with N =

ρ

m

(2π
mv

)3
≫ 1 . (3.25)

We may consider the two limiting cases

RT ≃ rs

(
4π2ρ0
Gm4r2

s

σ

m
tg

)δ
, with δ =

1/3, for RT ≪ rs

1/5, for RT ≫, rs
(3.26)

which, for a Milky Way-like halo, reduces to

RMW
T ≃


60 · rs

[
σ/m

cm2/g

(
m
eV

)–4
]1/3

, for RT ≪ rs

10 · rs

[
σ/m

cm2/g

(
m
eV

)–4
]1/5

, for RT ≫ rs

(3.27)

Notice that for degenerate dark matter, the combination of parameters that regulates the size of
the thermal core is (σ/m) m–4, as it was previously shown in [56]. Also, in the case of non-
degenerate thermalization, the ratio RT /rs is mildly dependent on the NFW parameters rs and ρ0.
Therefore, this result is not expected to be sensitive to a fine-tuning of the NFW parameters.

As we are going to show in the next section, for sub-eV masses it is possible to consider
slices of the parameter space in which ℓ is kpc-sized.
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34 3. Superfluid Dark Matter

3.2.2 Comparing the RT and ℓ: gravitational stability of the superfluid
phase

The parameter space which is favourable for generating macroscopic superfluid solitons is the
one in which thermalization takes place in a degenerate environment. We focus on this case and,
to keep the analysis compact, we consider the scenario in which the whole halo is degenerate
(Rdeg > RV ), implying that dark matter particles are sub-eV.

The second (and most important) comparison we have to make concerns the thermal radius
RT and the Jeans scale ℓ. Depending on the hierarchy of the two scales, we have the two following
scenarios

• If ℓ > RT , so if thermal equilibrium is established in scales smaller than the scale of
gravitational stability, a stable superfluid core of size RT would form in inner regions of
the dark matter halo. However, as we will demonstrate, this scenario cannot take place if
the main contributor to the pressure responsible for stabilizing the core is the interaction
pressure.

• If ℓ < RT , the region of the halo which is in equilibrium is wider than the size of a stable
superfluid soliton. Therefore, the thermal core is gravitationally unstable and prone to
fragmenting in a collection of superfluid solitons due to Jean’s instability.

In the interaction pressure regime (ξ ≫ 1) the Jeans scale and the thermal radius depend on
different combinations of λ and m. Nevertheless, the case ℓ > RT is precluded and only the case
in which the thermal core is unstable is physical. We can see this from Fig 3.2. There, the Jeans
scale ℓ (black lines) and the thermal radius RT (coloured lines) are plotted for different values
of m and λ. The flat part of the Jeans scales corresponds to the quantum pressure case (ξ ≪ 1),
while the tilted part is the interaction pressure case (ξ ≫ 1). It can be observed that the scenario
where ℓ > RT takes place only for Jeans scales which are quantum pressure dominated. Also,
this outcome is not dependent on the specific definition of the thermal radius we have employed:
shaded coloured regions illustrate how the thermal radius would be affected if we change the
minimum number of scatterings needed to define RT , in the range 1-10. As we can see, the result
is qualitatively similar.

To conclude, a thermalized region of size RT within the model and the parameter space at
hand is unstable and prone to fragmenting in a collection of superfluid droplets due to gravita-
tional instability.

3.2.3 Tidal effects
According to the analysis of the previous section, the thermal core is prone to fragmenting in
a collection of superfluid droplets of size ∼ ℓ. Nevertheless, this analysis assumes that the
spectrum of perturbations of the superfluid solution is determined, with good approximation, by
(3.4).

An underlying assumption that was made in [77] to derive the phonon spectrum in the pres-
ence of gravity is that the superfluid bulk is self-gravitating and is not affected by any external
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Figure 3.2: In this figure, the thermal radius and the Jeans scale are compared for different values
of the mass m and the scattering cross section σ/m. Black lines represent the parameter space that
gives a Jeans scale of 0.1 kpc/ 2 kpc/ 6 kpc in degenerate regions of the Milky Way dark matter
halo, assuming a particle species governed by the Lagrangian (3.1). These lines are obtained
by a numerical evaluation of the Jeans scale (3.5). The tilted part of the curve represents the
interaction pressure regime of the theory (ξ ≫ 1), while the flat part (ξ ≪ 1) is the degeneracy
pressure regime. Blue/Orange/Red dashed curves correspond to the parameter space in which the
thermal radius is 0.1 kpc/2 kpc/6 kpc respectively. The portion of a specific ℓ line that resides to
the left of the corresponding RT line gives the parameter space of gravitationally stable thermal
cores. As we can see, only flat segments fall within this regime, implying that the existence of
stable thermal regions is feasible only if ξ ≪ 1. Coloured shaded regions show how RT changes
if we vary the number of scatterings that each particle has to undergo to achieve equilibrium, in
the range 1-10. On the right of the grey line, the Milky Way dark matter halo is in global thermal
equilibrium.
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36 3. Superfluid Dark Matter

potential. While this assumption is reasonable for superfluid solitons residing in the galactic
centre, solitons which are far enough in the outskirts of the halo feel the gravitational poten-
tial of the ones within their orbit. Consequently, these solitons experience tidal forces that, as
we will demonstrate, significantly impact their dynamics, ultimately resulting in efficient tidal
disruption.

To quantify these effects, it is useful to revisit what tidal forces are. In a two-body system,
tidal forces are gravitational effects that stretch the bodies along the line connecting their centres
of mass. Tidal effects are particularly effective when one of the two bodies is more massive than
the other. In the extreme case, if tidal forces are sufficiently strong, the less massive body can
undergo tidal disruption, since its own gravitational field is not strong enough to prevent its parts
from being torn away by the more massive companion body.

To quantify the strength of these effects, it is convenient to introduce the tidal radius rtid,
which quantifies the strength of the tidal field of a body of mass M on a lighter body of mass m.
This reads [98]

rtid = r
(m

M

)1/3
(3.28)

and it determines the size of a body which is stable under tidal deformations. In particular, tidal
disruption takes place if the size of the lighter body is bigger than the tidal radius itself 5. If we
apply the definition of tidal radius (3.28) to the setup we are studying, tidal forces are strong
enough to shatter a soliton if rtidal > 0.5 ℓ. The result of this process is the disruption of the
soliton into a collection of superfluid debris.

To estimate the tidal radius, let us consider a soliton orbiting at a radial distance r from
the galactic centre. This soliton is affected by the tidal interactions with all the other solitons
and debris which are enclosed within its orbit and we quantify these effects by introducing the
effective mass M = M(r). This effective mass is a key parameter in determining the efficacy of
tidal effects in erasing solitons.

Concerning the mass of the soliton, this is simply obtained by integrating the density distri-
bution (3.13) up to ℓ. The result reads

msoliton =
ρsolitonℓ

3

2π
. (3.29)

But what mass distribution should we consider for evaluating M(r)? We assume it resembles a
course-grained version of the NFW profile we started with. This assumption can be justified as
follows: while we have described the formation of superfluid solitons as a simplified sequence of
three events—thermalization, phase transition, and fragmentation of the thermal core—in reality,
these processes are expected to occur concurrently. Small high-density regions of the halo are
anticipated to thermalize, become superfluid, and merge, eventually forming solitons of size ℓ.
Thermalization continues to affect regions of lower density, giving rise to additional solitons.

5While tidal disruption may not occur immediately when rsize ≲ rtidal, it is important to note that tidal de-
formations can still take place. In cases of significant deformation, after several cycles, the orbiting probe can
become stretched to the extent that its size along the stretched direction approaches that of the tidal radius. This
can ultimately result in the shattering of the body. This effect has been studied in FDM solitons orbiting in a
Navarro-Frank-White profile [99].
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Therefore, we expect that the average density of each soliton is connected to the local density of
the halo in which it formed. Since we initially used the NFW profile as our input, it is reasonable
to assume that the course-grained density distribution of the superfluid droplets within a radius r
would also follow an NFW-like profile.

With this assumption, the ratio of the tidal radius over the Jeans scale approximately reads

rtidal
ℓ

≃
(
ρsoliton
40ρ(r)

)1/3
. (3.30)

In other words, solitons which are stable are the ones that have a central density which is at least
40 times the mean density of the environment in which they form. However, this assumes that
none of them would move around and eventually cross the galactic centre. Assuming random
motion, a better estimate is that stable solitons should satisfy the condition

ρsoliton > 40ρ0 (3.31)

to not being tidally disrupted, where ρ0 is the NFW characteristic density.

3.2.3.1 Survival rate of solitons

The final step is to apply this analysis to the collection of solitons residing in the Milky Way
halo. In particular, one could ask how many of these solitons are expect to survive.

In general, it is possible to associate any unstable mode of momentum k < kJ — as given by
the dispersion relation (3.4) — with a length scale R. The mass encompassed within this scale is
precisely what would end up in forming a specific soliton of size ℓ. Therefore, the longer is R,
the heavier the soliton formed from the collapse of the fluctuation will be. However, fluctuations
R > ℓ are exponentially suppressed if compared to fluctuations of size ℓ, so that heavy solitons
are extremely unlikely to form [91].

If we make the assumption that the formation of a soliton occurred through the collapse of
a self-gravitating sphere and that tidal effects come into play at a later stage, we can deduce the
peculiar length R∗ which would result in a tidally stable soliton. To do that, we equate the mass
contained in a fluctuation of size R∗, to the one of a stable soliton. We find

Mfluct ≃ ρNFW(r)R3
∗ =

40ρ0ℓ
3

2π
= msoliton =⇒ R∗ ≥ 2ℓ, (3.32)

where we implemented the relation (3.31) after the second equality. Therefore, we see that
fluctuations which are slightly larger than the Jeans scale would result in stable solitons. Of
course, this assumes that ρnfw(r) is of order ρ0, which only takes place in inner regions of the
halo. As solitons start forming in the outskirts, the starting density would be an order (or two)
of magnitude smaller than ρ0, so that, the minimum stable fluctuation becomes R∗ ∼ 4 and only
extremely large (and statistically unlikely) fluctuations would form stable solitons.

Finally, let us say that the process of forming solitons is a highly non-linear problem and
its analysis has to be approached numerically. In particular, the working assumption that tidal
effects are not affecting the collapse is unrealistic for most of the solitons, since both the collapse
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and tidal disruption take place on the same time scale ℓ ≃ 1/
√

Gρ, making the previous analysis
not applicable for this scenario. However, in this case, we expect that tidal effects should be
even more important and could also prevent the soliton forms in the first place, as the dynamics
of the collapse could be highly distorted once compared to the self-gravitating ideal case. Also,
the collapse of a homogeneous configuration could not be completely appropriate to describe
the formation of self-gravitating solitons of kpc-size, since the original NFW profile may not be
considered as a homogeneous configuration over these scales. We leave a more detailed analy-
sis of these shortcomings to future works, where the dynamics of these solitons is numerically
implemented.

Therefore, the final picture is that only one (or a few) central solitons are expected to survive,
while the ones that would be formed in the outskirts are expected to be efficiently tidal disrupted
into a collection of superfluid debris.

3.3 Bounds
Before summing up the final picture, we explore the constraints that can be imposed on the
parameter space of the model. Self-interactions are extremely important in characterizing the
superfluid phase of the halo, but several astrophysical and cosmological bounds can be put on
their strength. In this section, we study how these would translate into bounds on the properties
of the superfluid solitons.

3.3.1 Bounds from the Bullet Cluster
The most famous astrophysical constraint on the strength of dark matter self-interactions is de-
rived from the analysis of the Bullet Cluster [100–102]. This is a system of two merging clusters,
in which the main one, the target, collided with a smaller one, the bullet. The result of the colli-
sion is an offset of the gas component with respect of the dark matter component of each cluster.
The main interpretation that allows us to reproduce the setup is that the dark matter component
did not interact during the collision, differently from the gaseous component.

In terms of the microscopical properties of dark matter, this is possible if the mean number of
scatterings that a dark matter particle from the bullet cluster underwent while crossing the target
cluster was smaller than one

⟨nsc⟩ < 1, (3.33)

where the mean number of scatterings is averaged over all the bullet cluster dark matter particles.
The mean number of scatterings is estimated in terms of the scattering rate Γ as

⟨nsc⟩ = Γ 2RV
vin-fall

, (3.34)

where vin-fall ≃ 10–2 is the in-fall velocity and RV ≃ 2 Mpc is the target cluster virial radius.
For the incoming estimates, we assume a characteristic mean density of ρNFW = 10–25g/cm3,
which is the average density of the target cluster within 500 kpc from its centre [103].
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Now, a crucial point is the interaction rate that enters in (3.34). If dark matter that comprises
the bullet and target cluster halo is not degenerate, then the interaction rate is determined by
the standard 2-body scattering rate in the vacuum. By plugging this relation in (3.34) and by
evaluating it for typical cluster parameters, we find the well-known bound

σ

m
≲ 1

cm2

g
, if Γ =

σ

m
ρ vin-fall. (3.35)

However, if the dark matter mass is lighter than a few eV, dark matter particles are expected
to be degenerate in the cluster halos. This implies that the interaction rate which regulates the
evolution of the bullet cluster event is enhanced by the Bose enhancement. This property affects
the bullet cluster bound by introducing an additional factor of N in the interaction rate. The
bullet cluster bound for degenerate particles reads

σ

m
≲

1
N

cm2

g
≃ 10–2

( m
eV

)4 cm2

g
, if Γ = N σ

m
ρ vin-fall. (3.36)

It is important to question to what extent this enhanced version of the bullet cluster bound is
applicable. Although the degeneracy of dark matter can enhance self-interactions, this is true as
long as the degenerate outskirt comprises the majority of the dark matter of the halo. However,
if most of the dark matter is in the superfluid phase, this condition does not occur. We have
already seen this scenario back in Section 2.3.3 - 2.3.4, where the rate of a particle scattering
over a superfluid background (2.37) was not Bose enhanced. Therefore, we expect that the
enhanced bullet cluster bound relaxes to the ordinary non-degenerate version if self-interactions
are efficient enough that the majority of particles in the halo had the chance to interact several
times. As a rough estimate, we may expect that this takes place if RT > Rcluster

V , which is achieved

if the cross-section is stronger than σ
m > 3

(
m
eV

)4 cm2

g .
We sum the bullet cluster bound for sub-eV particles in the following way

• Cross sections smaller than
σ

m
≲ 10–2

( m
eV

)4 cm2

g
(3.37)

are allowed. In this case, only the central part of the halo is in thermal equilibrium, while
the outskirt of the halo is still degenerate, but not thermal.

• Cross sections in the regime

10–2
( m

eV

)4 cm2

g
≲
σ

m
≲ 3

( m
eV

)4 cm2

g
(3.38)

are NOT allowed. In this case, halos of clusters have a non-negligible degenerate dark
matter component, which during cluster collisions would not behave as a collisionless
fluid.
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• Cross section in the regime

3
( m

eV

)4 cm2

g
≲
σ

m
≲ 1

cm2

g
(3.39)

are also allowed. In this case, the halo is completely in the superfluid phase, with a central
region comprised of a superfluid core and an outskirt of superfluid debris. The interaction
rate is not enhanced by N due to the specific dark matter phase space distribution of this
scenario.

3.3.2 Bounds from Matter Radiation Equality
A complementary bound on the strength of self-interactions is derived from the analysis of the
pressure sustained by the cosmological dark matter condensate during recombination.

Large scale structure formation and the analysis of the cosmic microwave background support
the idea that dark matter had to behave as dust at matter radiation equality. For the model at
hand, if particles were produced by vacuum misalignment [104–106], then we have to ask that
the cosmological condensate had to be non-relativistic at that time. This is equivalent to asking
that

P
ρ

∣∣∣
equality

=
λρequality

8m4 ≪ 1, ⇒ σ

m
≪
( m

2 × 10–5

)5 cm2

g
. (3.40)

Notice that this represents a bound on the maximum Jeans scale today. We can see this because
the constraint (3.40) is also a constraint on the sound speed of the condensate at recombination.
However, the bound on the Jeans scale is extremely mild and gives ℓ ≲ O(100) kpc.

A complementary, yet stronger, bound, comes from the analysis of large scale structure for-
mation. In particular, to reproduce the correct matter power spectrum, the beginning of structure
formation requires the presence of the pressureless dark matter as early as when baryons had
a temperature T ∼ keV. Of course, this provides a bound which is stronger than (3.40). In
particular, the maximum Jean’s scale allowed would shrink down to

ℓ ≲ 10 kpc. (3.41)

This is motivated by the numerical analysis [107], which concluded that the Jeans scales bigger
than ℓ > 1 kpc are disfavored at the 2.4σ level. Nevertheless, differently from the bullet cluster
bound, both the constraints from matter radiation equality and structure formation assume a
specific evolution history of the condensate. In particular, it is fundamental that dark matter
behaved as a cosmological scalar field starting from its production up to today. Also, these
bounds rely on the production mechanism. In other words, it is possible to overcome these
bounds, if the evolution history of the dark matter candidate is found to be different between
today and the temperature T ∼ keV.

3.3.3 Evaporation of the dark matter condensate
The last bound we want to consider concerns the evaporation of the scalar condensate due to
quantum effects. As we will elaborate in the following chapter, the analysis we performed here
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assumes that the classical solution that approximates the superfluid background provides a good
description of the system for any given duration. However, this assumption cannot be extended
arbitrarily, due to the intrinsic quantum properties of the setup we are studying.

A superfluid can be considered as a condensate of zero momentum bosons. If we consider
real bosons, then processes in which four zero-momentum bosons annihilate into two relativistic
particles are allowed. This class of number-changing processes can drain the number of con-
stituent particles of the condensate phase, by transforming them into radiation. The time scale
for which these effects become dominant is the quantum break-time, which for the system at
hand is given by [108–110]

t–1
q.b. = λ

(
λn
m3

)3
m. (3.42)

This sets the time scale after which quantum effects drained an order one fraction of the classical
solution, and the approximation we used to study the setup cannot be trusted anymore.

In principle, one should evaluate the effect of the evaporation of the condensate along the full
evolution history of the condensate, from the matter equality up to today. However, to provide a
conservative and more simple bound, we impose that the quantum break time satisfies the bound

tq.b < tequality ⇒
(
σ/m

cm2/g

)
≪
( m

4 · 10–6 eV

)5/2
, (3.43)

where we considered typical galactic densities to derive the bound on the right. Notice that this
bound is not applicable if the dark matter superfluid is made up of complex scalar bosons.

3.4 Final Picture
Finally, we are ready to sum up the expected density distribution of superfluid dark matter in
halos, as depicted in the previous sections.

• The region r ≲ ℓ of the halo hosts the central superfluid soliton. By assuming a central
density of ρ0 ∼ 10–25g/cm3, the mass of the central soliton is expected to be

M ≃ 2 × 105
(

ℓ

kpc

)3
M⊙. (3.44)

• The region ℓ ≲ r < RT of the halo is comprised of streams of superfluid debris origi-
nating from the tidal disruption of outer solitons. These debris behave as non-interacting
objects since the interaction between condensates should not be Bose-enhanced, unless
a consistent degenerate and out-of-equilibrium fraction of dark matter is generated by the
disruption of solitons. Because of the non-interacting nature of these fragments, the course-
grained density distribution of this region should resemble an NFW profile. This region
also hosts solitons that are dense enough to not be tidally disrupted.
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42 3. Superfluid Dark Matter

• In the region RT ≲ r ≲ RV , dark matter particles did not have the chance to interact
once during the lifetime of the halo. Their velocity distribution is similar to the one of
standard Cold Dark Matter, although with a highly degenerate phase space (due to the
sub-eV mass range). This is the region responsible for the enhanced bullet cluster bound
since the interaction of these regions in cluster collisions would be enhanced by the out-
of-equilibrium phase space. If clusters are in equilibrium (RT > RV ), this region is absent
and the bullet cluster bound relaxes to its non-degenerate counterpart.

Finally, let us discuss the parameter space of the theory. Figure 3.3 displays different values
of the Jeans scales for various values of the mass and the cross-section. Specifically, the solid,
dashed, and dotted lines correspond to parameter spaces for which the Jeans scale is equal to
ℓ = 30 kpc, ℓ = 2 kpc, and ℓ = 0.1 kpc, respectively. Furthermore, the green region delineates
the parameter space wherein the main component to the ground state pressure is the quantum
pressure. In this regime, dark matter halos are similar to the ones described by models of Fuzzy
dark matter and therefore are not considered in this work.

Concerning regions excluded by the bounds highlighted in the previous sections, the light
and dark purple regions are excluded by the bound (3.40) and (3.43) respectively. The first
corresponds to condensates that are relativistic at matter radiation equality. If we demand that
condensates had to be non-relativistic already at T = keV, then the excluded region is extended
up to in between the dashed and solid black lines. The dark purple region corresponds to conden-
sates that would have evaporated into dark radiation and only applies to condensates comprised
of real scalar bosons.

Finally, the red stripe corresponds to the bullet cluster bound. Here, we can identify two
allowed sub-regions. The white region on the left of the stripe corresponds to halos in which
only central regions present a superfluid phase. In this case, we have that RT < RV and only
cores up to ℓ ∼ 6 kpc are allowed. Bigger values are not allowed by the bullet cluster bound
unless the halo is completely in equilibrium. The white region of the right side corresponds to
dark matter halos which are completely in equilibrium (RT > RV ). In this case, Jeans scales
up to O(100 kpc), as long as the bullet cluster bound can be relaxed for halos in global thermal
equilibrium. If the bound from structure formation is invoked, then the maximum ℓ is 10 kpc.

3.5 Addressing small-scale problems with dark matter super-
fluidity

Finally, we show that the properties of the superfluid phase and the density profile depicted in the
previous section can address and ameliorate the core-cusp problem and the excess of substructure
predicted by CDM.

3.5.1 Core-cusp problem and Rotation curves
One of the main implications of dark matter superfluidity is its potential to ameliorate the core-
cusp problem by introducing an effective positive pressure, sourced by the condensed phase of
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Figure 3.3: Parameter space of the model (3.1). Solid/Dashed/Dotted line represents the parame-
ter space for which ℓ is 30 kpc/2 kpc/0.1 kpc, respectively. The green region gives condensate in
which the Jeans scale is determined in the degeneracy pressure regime. The red stripe is excluded
by the bullet cluster bound. The light purple region is excluded by the condition that the dark
matter condensate was non-relativistic at matter radiation equality. The dark purple region is
excluded by the condition that the condensate was not evaporated completely at matter radiation
equality.
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Figure 3.4: Left Panel: Dark Matter density profile of the central soliton. In this figure, we
analyse three distinctive cases. The first is the soliton in the absence of without (dashed grey),
which matches the density profile (3.13). Then we introduce baryons, which we describe us-
ing the spherical-exponential profile (3.45). Here, we consider the cases L = 1 kpc (orange)
and L = 10 kpc (red), corresponding respectively to a cusped and quasi-homogeneous baryonic
distribution. Right panel: Rotation curves derived from the dark matter density distribution in
the left panel.

dark matter and by self-interactions. In particular, the presence of one or a few central superfluid
solitons within galactic halos is expected to transform cusped density profiles, typical of Cold
Dark Matter halos, into flatter and cored profiles, in a similar way to models of Fuzzy Dark
Matter. An interesting implication of the quartic model considered in the chapter is that the
size of the central soliton is independent of its central density. This can be exploited to explain
the contrasting phenomenology observed in the rotation curves of Milky Way-like galaxies and
dwarf galaxies [111], as depicted in Chapter 1.

To provide an explicit example, we consider a set of parameters that gives a Jeans scale
ℓ ∼ 30 kpc, corresponding to superfluid solitons of radius r ∼ 15 kpc. Notice that in order to
consider solitons of this size, clusters should be in global thermal equilibrium in order to avoid
the enhanced bullet cluster bound. Now, concerning Milky-Way-like galaxies, this would imply
that rotation curves would display a mild rise in the first ∼ O(10) kpc (corresponding to the
central core) and then become flat once entering the outskirt of degenerate superfluid debris.
However, the case of dwarf galaxies would be completely different, as the central core of small
halos would comprise the majority of the dark matter of the halo and rotation curves would only
have the linearly growing part. This would represent the the Low Surface Brightness (LSB)
galaxy IC2574 depicted in Fig 1.1, in which the baryonic component is faint and diffuse.

However, this would not explain the different shapes of rotation curves displayed by dwarf
galaxies in Fig 1.1. In the context of Dark Matter superfluidity in small halos, it is important to
characterize the distribution of baryons. To illustrate this point, we introduce the toy baryonic
distribution [56]

ρbaryon(r) =
γ

4πL3 e–r/L. (3.45)

This is a two-parameter exponential profile, with L representing the ’scale radius’ of the dis-
tribution and γ the total mass of the system. We focus on the two specific cases L = 1 kpc
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and L = 10 kpc, corresponding to a cusped and a quasi-homogeneous baryonic distribution,
respectively. Also, we fix the central density of the dark matter soliton and of the baryonic dis-
tribution, in such a way that the enclosed mass in the soliton satisfies Mbaryon = 2 × 109M⊙
and Mdark matter = 1010M⊙, which are the fitted baryon and dark matter mass of the LSB galaxy
IC2574 [112].

Having introduced all the ingredients (dark matter and baryons), we study how the density
profile of the central soliton changes if we introduce the baryon distribution (3.45). Although
we cannot track the dynamics of the gas of superfluid debris analytically that resides outside
the central soliton, being this a highly non-linear problem, the density distribution of the central
superfluid core in the presence of baryon can be studied by solving the equation for hydrostatic
equilibrium and the Poisson equation

∆Φ = 4πG
(
ρdm + ρbaryon

)
(3.46)

1
ρdm

dP
dr

= –∇⃗Φ (3.47)

The numerical solutions are given in the figures 3.4 and 3.5. In the left panel of Figure 3.4, differ-
ent density profiles are given for different baryonic distributions. The grey line corresponds to a
central soliton without baryons, while the orange and red lines are, respectively, in the presence
of a cusped quasi-homogeneous baryon distribution. As expected, the more concentrated the
baryons are, the more the soliton shrinks and the central density increases. The effect on rotation
curves is given in the right panel of the analogous figure. As we can see, for quasi-homogeneous
baryon distribution, rotation curves rise slowly, in a similar way to dark matter only solitons.
However, once a central baryon distribution is introduced, we see a sharp rise followed by a
quasi-flat part. In Fig.3.5, partial contributions to the orbital velocity are given. As we can see, in
the case of spiked distributions, the sharp rise is mostly driven by baryons, while in the outer part,
the dark matter catches on. In the case of quasi-homogeneous baryonic distribution, the effect of
baryons is always subleading. Therefore, the way of accounting for the variety of rotation curves
is similar to the case of SIDM [26], where the presence of baryons in central regions erases the
quasi-homogeneous region generated by dark matter interactions.

3.5.2 Efficient erasure of substructures from hierarchical structure forma-
tion

To address the problem of the missing satellites, we notice that the positive pressure sourced by
self-interactions, combined with tidal effects, is extremely efficient in erasing substructure from
hierarchical structure formation.

According to the discussion of the previous sections, structure formation is expected to pro-
ceed in a similar way to standard dark matter, since the effect of self-interactions is negligible at
cosmological scales. Numerical simulations for CDM and SIDM [26, 113] predict that the mass
function of resolved subhalos within a host galaxy spans over the range 4.5 km/s < Vmax< 40
km/s, where Vmax is the maximum subhalo circular velocity. We can read these data from Fig
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Figure 3.5: Dark matter and baryon partial contributions to the rotation curves, for L = 1 kpc (Left)
and L = 10 kpc (Right).

1.1. By converting this in terms of the subhalo mass, we get that the expected mass range of
these substructures is

5 × 106M⊙ ≲ Msub-halos ≲ 5 × 107M⊙ (3.48)

These structures form way before the superfluid phase transition takes place and, as time pro-
ceeds, their dark matter content reaches equilibrium. Eventually, the phase transition takes place
and the density profile of the subhalos relaxes to (3.13). Being small, the dark matter content of
these subhalos is expected to be located in a single core.

However, based on the constraint (3.31), only solitons which are massive enough can survive
tidal disruption in the host halo, with the mass threshold determined by

M >
40ρ0
2π

ℓ3 =⇒ M > 107
(

ℓ

kpc

)3
M⊙. (3.49)

This implies that, if the Jeans scale is bigger than a few kpc, almost all substructures from
hierarchical structure formation would be efficiently tidally disrupted once captured by the host
galaxy.
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Chapter 4
Coherent States and the Quantum
Dynamics of Highly Occupied
Systems

In the previous chapters, we described the macroscopic properties of the superfluid phase by
introducing the quantum fluctuations of a particular classical scalar field configuration. Never-
theless, this is a mere approximation since the dynamics of a quantum system is governed by the
Hamiltonian evolution of its associated quantum state. The specific approximation we studied,
in which the classical solution is the order parameter of the expansion defines the semiclassical
approximation [114, 115].

Although the semiclassical approximation can be highly accurate in describing specific phys-
ical scenarios, such as the dynamics of highly occupied systems, an open question remains re-
garding the potential importance of subleading cumulative quantum effects in fully character-
izing the behaviour of certain setups. For example, a series of papers [108, 109, 116–120] has
shown that these quantum effects play a significant role in altering the late-time dynamics of vari-
ous cosmological relevant systems, such as de Sitter spacetimes1, Black Holes and Cosmological
condensates. See [123, 124] for implications on the onset of Cosmic Inflation.

In these papers, the analysis of cumulative quantum effects is performed by invoking the
corpuscular resolution of highly occupied systems. By parametrizing the initial state of the sys-
tem in terms of a coherent state of constituent particles, semiclassical and sub-leading quantum
properties are then studied by computing the transition amplitudes of processes involving con-
stituents, such as scatterings or decays. The dynamics is organized in terms of a N–1 expansion,
where N sets the number of asymptotic constituents involved in the process at hand, with the
property that only classical contributions survive in the limit N → ∞.

The time scale after which cumulative quantum effects (so the N–1 corrections to the dynam-
ics) may invalidate the semiclassical expansion sets the quantum break time tq.b. of the system.

1See also [121, 122] for a different approach to de Sitter instabilities at the quantum level.
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48 4. Coherent States and the Quantum Dynamics of Highly Occupied Systems

Different behaviours have been found by studying the emergence of this time scale in different
setups. In systems exhibiting a classical (or Lyapunov) instability, the quantum break time reads

tq.b. ∼ γ–1 log N, (4.1)

where γ is the Lyapunov exponent of the semiclassical instability. The concept of the quantum
break-time was initially introduced in the context of this category of systems in the paper [125], in
which authors focused on the case of non-relativistic and overcritical (αN ≫ 1, with α quantum
coupling) superfluids. The generalization to the relativistic case was performed in [126, 127].

On the other hand, if the system does not exhibit any Lyapunov instability, the maximum
quantum break time is set to

tq.b. ∼ α–1tcl, (4.2)

where tcl is the time scale after which the classical equation of motion becomes non-perturbative
in classical non-linearities. This is the case which is relevant for de Sitter spacetimes and Black
Holes, derived for the first time in [119]. Notice that there can be drastic differences between
systems exhibiting Lyapunov instabilities and ones that do not. As shown in [128], the quantum
break time for subcritical superfluids scales as

√
N, in contrast with the logarithmic scaling (4.1)

of the overcritical analogues2.
An interesting implication of this is that quantum effects could transform a stationary clas-

sical solution into an unstable quantum configuration. As we stressed, there are no classical
solutions in quantum field theories. This is an approximate concept since solutions of the Euler-
Lagrange equation are not (in general) solutions of the equivalent Heisenberg equation for the
one-point function of the field operator, in an interacting quantum field theory. This mismatch
defines the quantum back-reaction of modes on the classical background. Neglecting the back-
reaction is not always a good approximation and its validity should be checked on a case-by-case
basis.

For example, if the theory at hand allows for number-changing processes, such as the theory
of a real scalar field with self-interactions, then a highly occupied configuration of zero momen-
tum constituents could be depleted by the annihilation of constituent bosons. These processes
may generate a mismatch between the classical solution and the one-point function of the field
operator, leading to a departure of the quantum order parameter3 from its classical counterpart
and eventually invalidating the semiclassical description. It is important to highlight that the
assessment of the backreaction within the semi-classical framework can be approached using
various methods. For a comprehensive overview, we refer the reader to [132, 133]. However, in
this chapter, we discuss the advantages of studying the time evolution of the state itself.

2It is claimed that the memory burden [129] is another phenomenon that could strongly influence the quantum
breaking in systems with enhanced memory capacity. These are systems exhibiting an abundance of microstates
which are energetically cheap to populate. Certain critical systems belong to this category. If they start to decay, the
information stored backreacts on the system itself, leading to quantum breaking. This effect is important for black
holes, for example, as it would change their evolution at latest after the half-evaporation time [130].

3In this thesis, we investigate systems in which the one-point function of the field operator serves as the expansion
parameter of the dynamics. However, in general, any higher-order correlation function can serve this purpose. For
instance, in the case of the BCS theory [131], the correlation function ⟨ψ†ψ⟩ provides the expansion parameter,
while for the quark condensate this role is played by the charge operator ⟨ψ̄ψ⟩.
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Although the corpuscular picture is a strong tool for understanding the dynamics of the afore-
mentioned systems, it provides approximate results, since certain properties of the dynamics
cannot be easily computed. Therefore, in this chapter, we investigate the quantum dynamics
of highly occupied systems by studying the evolution of correlation functions in the interaction
picture formalism. By using the standard Schwinger-Keldish approach, we connect the results
obtained in the S-matrix formalism with the more standard correlation function analysis. One of
the main advantages of this formulation is that it allows to compute the evolution of a quantum
state starting from finite time. This analysis has two purposes: we are confirming the corpuscular
analysis by using different techniques and we investigate the consistency of coherent states, once
they are embedded in the full quantum field theory framework.

The model we study is the theory of a real scalar field with quartic interactions, with the
Hamiltonian density determined by

Ĥ =
1
2
π̂2(x) +

1
2
∂iϕ̂(x)∂iϕ̂(x) +

1
2

m2ϕ̂2(x) +
λ

4!
ϕ̂4. (4.3)

Finally, let us stress that the content of this chapter is drawn from the series of papers [110, 134]
in which the author of this thesis played a significant role as one of the primary contributors.

4.1 Introduction to Coherent states
Coherent states were originally introduced by Erwin Schrödinger in 1926 [135]. They are derived
as the Gaussian wave packets of the harmonic oscillator, obtained by solving the Schrödinger
equation for this particular system. By centering the Gaussian distribution around two external
parameters, it becomes possible to construct a wave packet that minimizes the uncertainty prin-
ciple while maintaining non-zero expectation values for the position and momentum operators in
the classical limit. Although it was known that coherent states could describe systems of mini-
mum uncertainty, it was only forty years later that Roy J. Glauber could show their importance in
understanding the wave-particle duality of photons in quantum optics. He demonstrated that co-
herent states provide the theoretical framework to comprehend the disappearance of this duality
as the classical limit of a coherent electromagnetic wave is approached [136].

In this section, we provide the theoretical groundwork of Coherent states in interacting quan-
tum field theories [137,138]4. The simplest coherent states that can be constructed starting from
a real scalar field operator ϕ̂(x) and its conjugate momentum π̂(x) are known as non squeezed co-
herent states. These are states of minimum uncertainty, in which the latter is equally distributed
in the canonical variable and its conjugate momentum. They are also typically characterized by a
set of c-number functions ϕcl(x), πcl(x) that determine the initial conditions of the system. Their
general form can be expressed as follows

|C⟩ = e
– i

h̄
∫

d3x
(
ϕcl(x)π̂(x)–πcl(x)ϕ̂(x)

)
|Ω⟩, (4.4)

4See also [110, 139] for a general overview on the dynamics on quantum field theories and [140] for their
evolution in quantum mechanics.
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50 4. Coherent States and the Quantum Dynamics of Highly Occupied Systems

where |Ω⟩ is the vacuum of the interacting theory, with the field operator and its conjugate mo-
mentum satisfying canonical commutation relations. It is straightforward to show that the initial
conditions for the expectation value of the field operator and of the conjugate momentum over
the state |C⟩ are uniquely determined by the c-number functions as

⟨C|ϕ̂|C⟩(t = 0) = ϕcl(x) , (4.5)
⟨C|π̂|C⟩(t = 0) = πcl(x) . (4.6)

If ϕcl(x) and πcl(x) stay finite as h̄ approaches zero, the properties of the state in this limit can
be completely captured by the classical evolution of the c-number functions. Consequently, in
the classical limit, the state defined by equation (4.4) exhibits the same dynamics as the classical
configuration characterized by the same set of ϕcl(x) and πcl(x).

The behaviour of correlation functions evaluated over |C⟩ is one of the main properties of
non-squeezed coherent states. In particular, any product of operators that is bracketed over this
state is shifted by the c-number functions as follows

⟨C|O(ϕ̂, π̂)|C⟩ = ⟨Ω|O(ϕcl(x) + ϕ̂, πcl(x) + π̂)|Ω⟩. (4.7)

This relation follows from the application of the Baker–Campbell–Hausdorff formula, canonical
commutation relations and the linear nature in ϕ̂ and π̂ of the exponent that enters in (4.4). See
Appendix A for more details. The overall exponential factor of (4.4) is usually known as the shift
operator since it induces a shift of the field operator it acts on according to (4.7).

This property of the shift operator entails the initial conditions that the state itself imprints on
any correlation function. For example, we can check how non-squeezed coherent states deter-
mine the initial conditions for the two-point correlation function. At initial time, the expectation
value of the quadratic field correlator on the state |C⟩ reads

⟨C|ϕ̂(x, 0)ϕ̂(y, 0)|C⟩ = ϕcl(x)ϕcl(y) + ⟨Ω|ϕ̂(x, 0)ϕ̂(y, 0)|Ω⟩ , (4.8)
⟨C|π̂(x, 0)π̂(y, 0)|C⟩ = πcl(x)πcl(y) + ⟨Ω|π̂(x, 0)π̂(y, 0)|Ω⟩ . (4.9)

It is important to note that we have not invoked any specific properties of the theory, except for
canonical commutation relations. Nevertheless, the expressions for initial conditions (4.5) and
(4.9) are exact and merely rely on the fact that the one-point expectation value vanishes on the
vacuum.

4.2 Depletion of the scalar condensate: S-matrix analysis
The theory of a real scalar field with quartic interactions is a good example of a theory where
quantum effects can drastically change the late-time dynamics of a highly occupied system. In
the classical theory, stationary solutions with finite amplitudes can be found by solving the clas-
sical equations of motion. However, when quantum effects are taken into account, this property
is spoiled. The underlying reason is that the self-interacting potential of the theory (4.3) mediates
number-changing processes, which depletes the condensate of zero-momentum particles. Notice
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Figure 4.1: Depletion channel in which four zero momentum constituents of a condensate of
real scalar bosons annihilate into two relativistic bosons. This is the leading channel and the net
result is a depletion of the condensed phase and the production of radiation.

that this class of processes would not take place for complex scalar bosons, since the underlying
U(1) global symmetry of the theory would forbid number-changing processes.

A quantitative estimate of these effects can be obtained from S-matrix considerations. This
analysis was performed in the context of the axion condensate in [108] (also see [141]). We
sum up here the main results of the aforementioned papers. Let us introduce a state of N zero-
momentum bosons

|N⟩ =
(

a†
0

)N
|Ω⟩, (4.10)

which describes a system in which all particles are in a zero momentum configuration. Here,
we are ignoring the off-shell nature of these particles due to interactions. This is a good ap-
proximation only for time scales shorter than tcl, which correspond to the time scale after which
classical non-linearities become significant. Within the theory (4.3), several processes may drain
the condensate. Due to phase space considerations and multiplicity counting, the main process
that contributes to the depletion of the condensate is the annihilation of four quantum constituents
into two excited bosons

|N⟩ → |N – 4⟩ ⊗ |k1k2⟩, (4.11)

with the final bosons having a relativistic momentum k⃗1,2 = ±m. This is expected to be the
leading process as long as the combination of parameters λh̄N is smaller than one. In the next
section, we show that this corresponds to a system in which it is possible to perform a loop
expansion. The effect of the multiplicity counting can be understood in terms of Bose-Einstein
statistics. Due to the symmetry of the wavefunction, at zero temperature, a significant number of
bosons are inclined to condense into the same energy level. Conversely, processes that remove
particles from the condensed phase become increasingly less likely as more particles are removed
and pushed into excited states. This explains qualitatively why, among the class of processes
|N⟩ → |N – 2m⟩ ⊗ |ki...km⟩, the channel with m = 2 is the dominant one.

Having said that, the interaction rate describing the conversion of four quantum constituents
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into two relativistic particles may be estimated as

Γ4→2
V

∼
(
λn
m3

)4
m4 (4.12)

Within the parenthesis, we identify the collective coupling, which can be interpreted as the cou-
pling times the number of particles in a volume of size m–3. The rate (4.12) sets the time scale
in which quantum effects start changing the late-time dynamics of the system when compared
to the classical approximation. The time scale in which an order one fraction of the condensed
phase is depleted reads

Γ tq.b.
N

= 1 −→ t–1
q.b. = λ

(
λn
m3

)3
m (4.13)

Here, tq.b is the quantum break-time. In terms of the parameters of the coherent state, the quan-
tum break time (4.13) can be recast into

t–1
q.b ∼

λ4ϕ6
cl

m5 , (4.14)

with the number of particles per unit volume equal to n ≃ 2mϕ2
cl.

In other words, considerations about the nature of the constituents of the condensate predict
that the number of quantum constituents should decrease with time. In the next section, we
demonstrate that this estimate of the time scale of the depletion is consistent with a rigorous
analysis of the dynamics of the coherent state corresponding to a homogeneous condensate.

4.3 Depletion of the scalar condensate: Coherent state analy-
sis

In this section, we derive the depletion of the condensed phase of a collection of zero-momentum
real scalar bosons by analysing the evolution of the coherent state corresponding to a homoge-
neous field configuration

|Ch⟩ = exp
{

–i
∫

d3xϕ0π̂(x)
}

|Ω⟩. (4.15)

Here, ϕ0 is a constant number, connected to the one-point function of the field operator at the
initial time, according to (4.5). The initial time expectation value of the conjugate momentum is
set to zero.

The first step is to choose the observable built from the coherent state |Ch⟩ which encodes
the depletion of the condensate due to number changing processes. The most natural candidate
is the one-point function of the field operator. This can be inferred by noting that the number of
particles in the system can be estimated by considering the expectation value of the Hamiltonian
per unit of mass. Since the expectation value of the field operator at the initial time is the only
parameter we introduced, it is not surprising to find that

⟨Ch|N̂ |Ch⟩(t = 0) ∼ mϕ2
0 + m⟨Ω|ϕ̂2(x, t)|Ω⟩ (4.16)
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In the same spirit as a superfluid, the expectation value of the field operator is associated with
the number of particles stored in the condensed phase. Any depletion of the condensed phase is
expected to result in a depletion of the amplitude of the one-point function ⟨Ch|ϕ̂|Ch⟩(t). At the
same time, the resulting creation of relativistic bosons is going to populate excited states, leading
to a deviation of the expectation value ⟨Ch|ϕ̂2|Ch⟩ – ⟨Ch|ϕ̂|Ch⟩2 from its vacuum counterpart. In
other words, 4 → 2 processes are expected to induce the decoherence of the state and, at the
same time, diminish the amplitude of the correlation function ⟨Ch|ϕ̂|Ch⟩.

4.3.1 Interaction picture formalism
The one-point function of the field operator can be computed in several ways. The first approach
is to directly evaluate the correlation function ⟨Ch|ϕ̂|Ch⟩ in the interaction picture formalism.
This can be done following the standard textbook derivation [142] and the evaluation of this
correlation function with this method is reported in Appendix A of the paper [110].

We sum up the procedure in this subsection. The starting point is to split the full Hamiltonian
into its quadratic part and the interacting Hamiltonian. In the case of λϕ̂4(x), it implies the
decomposition

Ĥ = Ĥ0 + Ĥint, with Ĥint =
∫

d3x
λ

4!
ϕ̂4. (4.17)

We define the Interaction Picture field, as the field that evolves according to the quadratic Hamil-
tonian H0

ϕ̂I(x, t) = eiH0(t–t0)ϕ̂(t0, x)e–iH0(t–t0). (4.18)

In terms of a ladder expansion, we decompose the interaction picture field in terms of free waves
as

ϕ̂I(x, t) =
∫ d3p

(2π)3
1√
2ωp

(
ap⃗ e–iωp(t–t0)+ip·x + a†

p⃗ eiωp(t–t0)–i⃗p·x
)

, (4.19)

where t0 (which in our case is going to be set to zero) is the fiducial time at which the ladder
expansion is defined and ωp =

√
p2 + m2.

If λ is small, the time evolution is in first approximation captured by H0 and correlation
functions can be expanded in terms of the interaction picture field operator. Correlation functions
are evaluated in series of the interaction Hamiltonian by expanding

⟨C|O(ϕ̂, π̂)|C⟩(t) = ⟨0|eiϕ0
∫

d3x′π̂I(0,x′)UI(0, t)O(ϕ̂, π̂)UI(t, 0)e–iϕ0
∫

d3x′′π̂I(0,x′′)|0⟩, (4.20)

with O an arbitrary combination of field operators and conjugate momenta5. We also define the
free vacuum |0⟩ as the vacuum annihilated by the interaction picture ladder operator ap⃗. The
operator

UI(t, t0) =
∫ t

t0
dt′HI(x, t′) (4.21)

5Here, we considered only evolution operators U(t0, t) that we need to study the problem at hand up to one-loop
corrections. The full correlation function written in terms of interaction picture operators and free vacuum includes
an overall normalization factor ⟨U(–T , T)⟩–1 and two additional evolution operators UI(T , 0) and UI(–T , 0), which
have to be inserted respectively between the left (right) free vacuum and the left (right) shift operator, with T → ∞–.
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is the evolution operator in the interaction picture, which controls the order of the expansion.
Because the effect we expect is order λ4, the relation (4.20) has to be evaluated up to the fourth
order in the interaction Hamiltonian.

The main advantage of this method is that it allows for a straightforward evaluation of a
correlation function once the state of the system is specified. However, there are also significant
drawbacks. One major downside is that, by applying the interaction picture formalism, the full
self-interacting potential is treated as a perturbation. This implies that any correlation function
built from |Ch⟩ is plagued by spurious secular classical instabilities, that have to be resummed.
We see this by noting that the classical equation of motion of the theory (4.3) admits a non-trivial
solution in terms of Hypergeometric functions. However, the shift operator in the interaction
picture would affect the perturbative expansion (4.20) by shifting field operators only by the free
solution of the equation of motion. This is straightforward if we note that

eiϕ0
∫

d3x′π̂I(0,x′)ϕI(x, t)e–iϕ0
∫

d3x′′π̂I(0,x′′) = ϕ0 cos mt + ϕ̂I(x, t). (4.22)

Consequently, at every order in Hint, certain contributions appear, aimed at restoring non-linearities
in the shift (4.22). As shown in [110], the effect of these corrections is to replace the free solution
to the equation of motion which is introduced by the shift operator into the one-point function of
the field operator itself. In other words, their resummation is achieved if we impose by hand that
the coherent state |Ch⟩ shifts any field operator ϕ̂I by ⟨Ch|ϕ̂|Ch⟩, and then we drop the spurious
contributions6.

4.3.2 Background field method formalism
There is an equivalent derivation of the one-point function of the field operator that is more con-
venient to overcome these downsides. This is the background field method revisited for coherent
states (see e.g. [115]). The equivalence of the two methods is shown in [110]. To build the
formalism, we start by considering the Heisenberg field equation for the field operator ϕ̂(x, t)

□ϕ̂ + m2ϕ̂ +
λ

3!
ϕ̂3 = 0, (4.23)

As we said, the effect of the non-squeezed coherent state is to shift any power of the field operator
by the one-point function of the field operator itself. Because of this, we can implement this shift
by hand if we perform the following field redefinition

ϕ̂(x, t) = Φ(t) + ψ̂(x, t) with ⟨Ch|ψ̂(x, t)|Ch⟩ = 0. (4.24)

Here, Φ(t) = ⟨Ch|ϕ̂|Ch⟩ is the one-point function of the field operator by definition and it implies
that ψ̂(x, t) has no expectation value when evaluated over |Ch⟩. We also want to stress that the
decomposition of the field operator (4.24) is an exact statement.

6This may appear tautological, since the one-point function of the field operator over |Ch⟩ seems to evolve
according to a Hamiltonian that depends on the one-point function itself. However, the n-loop contribution to the
1-point function is determined by a Hamiltonian that depends only on the previous n–1 contributions. This property
allows for a perturbative time evolution, making the expansion consistent as long as a loop-expansion is allowed.
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By plugging this decomposition in the equation of motion for the field operator, it is possible
to derive a set of two differential equations, one for the one-point function of the field operator
Φ(t) and one for the fluctuation field ψ̂(x, t). The first equation is obtained by considering the
expectation value of the full equation over |Ch⟩ and using the property that the expectation value
of the fluctuation field vanishes over the coherent state. We get

Φ̈(t) + m2Φ(t) +
λ

2
⟨Ch|ψ̂2(x, t)|Ch⟩Φcl(t) + O(̄h2) = 0 (4.25)

where we dropped terms that would contribute starting from higher h̄ orders. The second equa-
tion, which determines the dynamics of ψ̂(x, t), is obtained by subtracting the equation (4.25)
to the full shifted equation. By multiplying the new equation on the left by an additional factor
of ψ̂(y, t) and by considering the expectation value of |Ch⟩, we obtain the following equation of
motion for the two-point correlation function of the fluctuation field

⟨Ch|ψ̂ (y, t)
(
□ – m2 –

λ

2
Φ2(t)

)
ψ̂ (x, t) |Ch⟩ + ... = 0 (4.26)

where we dropped contributions which would contribute at higher orders in the loop expansion.
The system of equations (4.25)-(4.26) provides the full one-loop dynamics of the system. It is
important to note that, since we are only concerned with the tree-level corrections to UP(t), the
Φ(t) term appearing in (4.26) can be approximated by the classical solution of the equation of
motion.

One may ask what is the role of the state |Ch⟩ in this decomposition. At this stage, we only
assumed that the loop expansion could be performed, and any state would have produced the
same outcome. However, the non-squeezed coherent state |Ch⟩ fixes the initial conditions that
we have to impose to solve the system of equations (4.25)-(4.26). In this case, it implies that
the initial time one-point function has to be determined by ϕ0, while the two-point function
of the field operator ψ̂ by its vacuum value, as indicated by (4.8). It is also important to note
that this is different from what would happen if we were to use the crude interaction picture
formalism to evaluate the evolution of these correlation functions since the master formula (4.20)
automatically accounts for these properties.

It is possible to evaluate the aforementioned system of equations at one-loop. This is done
by solving the equation for the quadratic correlation function by writing the formal solution

⟨Ch|ψ(x, t)ψ(y, t)|Ch⟩ =
∫ d3p

(2π)32ωp
|Up(t)|2ei⃗p·(⃗x–⃗y). (4.27)

Here, the dispersion relation that enters the ladder expansion is the same one of free fields in
the vacuum. This property is fixed by |Ω⟩ on which the coherent state is built. We are going
to show in the next section that this property has strong implications on the perturbativity of
non-squeezed coherent states.

If we plug this ansatz back in the equation of motion (4.26), we derive the following differ-
ential equation for Up(t) (

∂2
t + ω2

p +
λ

2
Φcl(t)

2
)

Up(t) = 0. (4.28)
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56 4. Coherent States and the Quantum Dynamics of Highly Occupied Systems

The equation (4.27) has no exact analytic solution, but it can be solved perturbatively in λ or
it can be evaluated numerically. Finally, we plug in the solution to the equation of motion for
the quadratic correlation function back in (4.25) and we solve for the one-point function. This
approach was implemented in the paper [115] to study the 1-loop dynamics of a condensate of
real scalar bosons, although different initial conditions — and therefore a different initial state
— were considered.

Still, the procedure depicted above does not suit completely what we want to achieve. To
establish a connection between the S-matrix approach and the evolution of the Coherent state, we
have to be perturbative in terms of quantum non-linearities. By solving the system of equations
in the aforementioned way, we are considering the depletion of the 1-point function due to the
sum of all the |N⟩ → |N – 2m⟩ ⊗ |ki...km⟩ decay channels. This class of processes contributes to
the depletion with the same power of h̄ and therefore the full resummed 1-loop dynamics would
account for their combined effect. However, what we want to do is isolate the m = 2 channel and
show that it dominates the dynamics, according to the S-matrix analysis.

To remain perturbative in λ, while summing over classical non-linearities, we use a hybrid
approach in between the background field method and the crude interaction picture formalism.
By focusing on the equation (4.25), we rewrite the correlation function quadratic in the fluctua-
tion field in terms of the original ϕ field as

⟨Ch|ψ̂2(x, t)|Ch⟩ = ⟨Ch|ϕ̂2(x, t)|Ch⟩ – ⟨Ch|ϕ̂(x, t)|Ch⟩2. (4.29)

Then, we evaluate all the correlation functions entering in the right-hand side up to order λ3

using the interaction picture formalism (4.20). In this way, the equation (4.25) can be brought to
the following form

(
∂2

t + m2
)

Φ(t) +
λ

3!
Φ3(t) = –

λ

2
Φ(t)⟨ϕ̂2⟩ +

λ2

2
Φ(t)

∫ t

0
dt1Φ2(t1)S1(t, t1)

–
λ3

2
Φ(t)

∫ t

0
dt1

∫ t1

0
dt2Φ2(t1)Φ2(t2)S2(t, t1, t2)

+
λ4

8
Φ(t)

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3Φ2(t1)Φ2(t2)Φ2(t3)S3(t, t1, t2, t3) + ...

(4.30)

Here, ⟨ϕ̂2⟩ is the expectation value taken over the free vacuum of the theory |0⟩, while Si functions
read

S1(t, t1) =
∫ d3p

(2π)3(2ωp)2 sin
(
2ωp(t – t1)

)
(4.31)

S2(t, t1, t2) =
∫ d3p

(2π)3(2ωp)3

(
cos

(
2ωp(t1 – t2)

)
– cos

(
2ωp(t – t1)

) )
(4.32)

S3(t, t1, t2, t3) =
∫ d3p

(2π)3(2ωp)4

(
sin

(
2ωp(t – t3)

)
– sin

(
2ωp(t1 – t3)

)
+ (sin

(
2ωp(t – t1)

)
cos

(
2ωp(t2 – t3)

) )
. (4.33)
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Figure 4.2: The numerical solution of Eq. (4.30), with different O(λ) terms. The green line
corresponds to the classical solution of the equation of motion while the black line to the one-
point correlation function up to λ3 and h̄ corrections. No qualitative deviations are seen between
those two lines. The situation is drastically different if λ4 terms are included (red line). At this
order, the 4 → 2 annihilation channel of constituent particles is included, leading to a depletion of
the amplitude of the one-point function of the field operator. The blue line represents the scaling
t–1/3 which is obtained by performing a full one loop-analysis. As we may see, it matches the
scaling of depletion obtained from the λ4 term, confirming that 4 → 2 is the main depletion
channel.

Also, free solutions are replaced by the 1-point function itself and reducible diagrams are dropped,
according to the resummation scheme we depicted in the first part of this section. The functions
Si can be interpreted as the quantum corrections to the equation of motion for the one-point
function of the field operator, sourced by specific powers of λ.

The evaluation of these correlation functions is accompanied by the appearance of divergent
contributions, which can be removed by regulating and renormalizing the theory. We postpone
this analysis to the next section, but we see that we may remove divergences if we rewrite the
equation (4.30) in terms of the physical mass and coupling, according to the prescriptions

m2
ph = m2 +

λ

2
⟨ϕ2⟩, λph = λ – 3λ2

∫ d3p
(2π)3 . (4.34)

Coupling renormalization is obtained by isolating the divergent term in the S1 contribution and
redefining the coupling of the cubic term λΦ3. Notice that these are the same prescriptions that
we would introduce to renormalize scattering computations.

Once divergences have been removed from Eq. (4.30), it is possible to solve numerically the
integro-differential equation to find the one-point function Φ(t) as a function of time. Details
of the numerical evaluation are given in [110]. The final result is reported in Fig (4.2). If
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58 4. Coherent States and the Quantum Dynamics of Highly Occupied Systems

only λ2 and λ3 corrections are included, the evolution of Φ(t) is qualitatively similar to the
behaviour of the classical solution to the equation of motion. These are represented in Fig. (4.2)
by the dashed green (classical solution) and dotted black line (one-point up to λ3). We see
that quantum corrections induce a small dephasing of the classical solution, while the amplitude
remains unaffected.

The situation is different at order λ4, which is precisely the order at which 4 → 2 processes
are expected to contribute to the depletion of the condensate, as shown by the estimate of the
quantum break time (4.14) obtained in the S-matrix analysis. This identification is also confirmed
by noting that the λ4 term contributes to the variation of the amplitude of the one-point function
as

t–1
depl ∼ Φ̇

Φ ∼
λ4ϕ6

0
m5 , (4.35)

which matches parametrically the quantum break time derived (4.14).
The last step is to show that the λ4 term of (4.30) determines the leading behaviour of Φ(t).

To see this, it is sufficient to note from Fig. 4.2 that the amplitude of the one-point function of
the field operator depletes according to the scaling t–1/3. This is the well-known scaling that has
been found in the full 1-loop analysis [114], which resums the effects of all the h̄-order depletion
channels, confirming that 4 → 2 scatterings are the leading depletion processes.

4.4 Initial time singularity and Squeezed coherent states
In this section, we address the issue of the initial time singularity [115,143,144] associated with
Coherent states. To introduce the problem, it is convenient to highlight what are the pathologies
that appear in the evolution of the one-point function of the field operator, evaluated over the
non-squeezed coherent state (4.15). To do this, let us go back to the equation of motion for the
field operators (4.30) and let us focus on λ2 terms. We rewrite the aforementioned equation as(
∂2

t + m2
ph
)

Φ(t) +
λph
3!

Φ3(t) = –
λ2ϕ2

0
2

Φ(t)
∫ t

0
dt1Φ2(t1)

∫ d3p
(2π)3(2Ep)3 cos

(
2Ep(t – t1)

)
+ ...

(4.36)

The term on the right-hand side is obtained by regulating the S1 integral. In particular, to extract
the divergent contribution, we integrate by part the overall time integral of S1. The boundary term
evaluated over t1 = t can be combined with the cubic term of the left-hand side of equation (4.30)
into λph. The leftover time integral is manifestly finite and can be ignored in this discussion.
What we have to focus on is the right-hand side of equation (4.36), which corresponds to the
boundary term evaluated on t1 = 0. We see that this term is manifestly finite as long as t ̸= 0, but
it becomes divergent at the initial time. In other words, it appears that the equation of motion for
the one-point function could present certain divergent terms at the initial time that could spoil
the dynamics of the correlation function itself. Nevertheless, if we solve the equation of motion
for Φ(t) and we focus on the term generated by this specific contribution, we obtain

Φ(t) = ... +
λ2ϕ3

0
64π2 t2 log(mt). (4.37)
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The one-point function of the field operator remains a finite quantity at the initial time, but its
second-time derivative acquires a logarithmic divergence.

Why does this divergence appear? We notice that if we consider the non-renormalized equa-
tion of motion (4.30), all quantum non-linearities vanish at the initial time, including the S1
source term. Therefore, performing the renormalization of the theory at the initial time would
imply that there are no divergences that can be combined with the bare coupling to obtain the
physical coupling. However, standard counterterms still have to be introduced to remove diver-
gences that are radiatively generated at late time and, in doing that, these are moved in the initial
time field acceleration.

One could question if having a field acceleration which is divergent at the initial time may
represent a problem at all. However, there is a second and more severe problem which appears if
initial time singularities are not addressed, namely the divergence of the energy which the field
configuration is sourcing. Let us consider the expectation value of the full Hamiltonian over
non-squeezed coherent states for the theory (4.3) (see [139])

⟨C|Ĥ|C⟩ =
1
2

∫
d3x

{
π2

cl +
(
∇ϕcl

)2 +
(

m2 +
λ

2
⟨Ω|ϕ̂2(x)|Ω⟩

)
ϕ2

cl +
λ

12
ϕ4

cl

}
. (4.38)

Here, we considered the non-homogeneous coherent state (4.4) and we have adjusted the bare
vacuum energy in a way that the expectation value (4.38) vanishes if we set ϕcl and πcl to zero.

The bare mass term m comes in pair with the divergent contribution ⟨Ω|ϕ̂2|Ω⟩. At the leading
order in h̄, this corresponds to the same bubble divergence that we absorbed in the redefinition
of the mass in (4.34). However, the analogous contribution to the coupling constant is absent
in (4.38) implying that, in the same way as the initial field acceleration, the energy stored in
the coherent state is sourced by the bare coupling constant, and not by its physical counterpart.
However, the missing divergence is not localized at the initial time in the case of the energy,
being the expectation value of the total Hamiltonian conserved.

The discrepancy between the divergences at the initial time provided by a state and the stan-
dard vacuum divergences is commonly referred to as an Initial Time Singularity [115,145–148].
The name arises from the observation that, when we examine the evolution of the expectation
value of the field operator, we discover that the missing S-matrix singularities are perturbatively
generated at t > 0. However, these singularities are not initially present and, through the process
of renormalization, they are effectively shifted at the initial time. In an equivalent way, but which
emphasizes the severity of the problem, the initial time singularity can be understood from (4.30)
and (4.38) as the inability to make both the total energy of the system and the one-point function
of the field operator finite by introducing time-independent counterterms.

Here, we conclude our discussion about non-squeezed coherent states. Non-squeezed coher-
ent states such as (4.4) can be considered physical members of the Hilbert space of the theory
(4.3) only if we determine a procedure to remove the discrepancy between initial time and late
divergences. Since we know that the bare coupling constant is infinite at any given order in
perturbation theory, the only possibility for the coherent state in question would be if the bare
coupling comes out finite after resuming all infinite contributions. A similar argument should
apply to some of the divergent contributions to the mass which, as we are going to see in the last
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60 4. Coherent States and the Quantum Dynamics of Highly Occupied Systems

part of this chapter, may generate initial time singularities starting from the 2-loop dynamics. Of
course, this solution would go beyond the domain of perturbation theory and therefore we con-
clude that Coherent states as (4.4) cannot provide a finite perturbative description of a physical
system.

4.4.1 Squeezed coherent states as the regulator of the one-loop dynamics
The natural follow-up question concerns finding the minimal modification to the coherent state
(4.4) that would restore a perturbative behaviour and that can remove any eventual initial time
singularity. The starting point is to remind the reader that mode functions at the initial time are
defined in terms of the vacuum dispersion relation. This is due to the fact that the connected part
of the initial time two-point function is equivalent to the vacuum one and entails that the function
Up(t) defined (4.27) is equal to one at t = 0.

It was noticed in [115] in the context of a semiclassical computation that initial time-singularities
vanish at one-loop if the mode functions of the fluctuation field ψ̂(x) at initial time are defined in
terms of the shifted mass mexc

7, instead of vacuum mass m, with

m2
exc = m2 +

λ

2
ϕ2

0. (4.39)

This result seems to indicate that the root of the problem comes from the two-point correlation
function (4.8) and the fact that its fluctuation part is independent of ϕ0. In standard semiclassical
computations, the shifted mass (4.39) precisely yields the background-dependent contribution to
correlation functions that one would need at the initial time to restore the perturbativity. However,
the non-squeezed coherent state (4.15) initializes the connected part of correlation functions as
if they are in the interacting vacuum, as we see from (4.8) and (4.9). Therefore, no notion of
background appears.

To overcome this issue, we have to fix the state of the system to provide the following initial
conditions of the quadratic correlation functions

⟨CS|ϕ̂(x, 0)ϕ̂(y, 0)|CS⟩ = ϕ2
0 +

∫ d3p
(2π)3

ei⃗p·(⃗x–⃗y)

2
√

p2 + m2 + λ
2ϕ

2
0

, (4.40)

⟨CS|π̂(x, 0)π̂(y, 0)|CS⟩ =
∫ d3p

(2π)3
1
2

ei⃗p·(⃗x–⃗y)
√

p2 + m2 +
λ

2
ϕ2

0 . (4.41)

which, as we demonstrate, provides the correct initial time divergences.
This raises the question of what this implies in terms of the state of the system. It was noted

in [115] that, to provide a notion of shifted mass at the initial time, we have to implement a
Bogoliubov transformation on the fluctuation field ψ(x, t). Because a Bogoliubov transformation
can be equivalently parameterized by replacing the vacuum state of the theory with a squeezed

7We have to keep in mind that, differently from a U(1) invariant theory, there is no notion of shifted mass at
all times, being Φ2(t) a manifestly time-dependent quantity, and that (4.39) should be considered as an initial time
statement.
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vacuum [149], a good guess for restoring the perturbative aspects of the dynamics is to consider
the following realization of a unitary squeezed coherent state

|CS⟩ = exp
{

–
i
h̄

∫
d3xϕ0 π̂(x)

}
|S⟩ , with |S⟩ = e–iŜ|Ω⟩ (4.42)

where |S⟩ is the squeezed vacuum, with the one-point function of the field operator vanishing
on this state. Squeezed coherent states can be understood as states which still saturate the un-
certainty principle but with an unequal distribution of uncertainties. In other words, one of the
uncertainties (either field or momentum) is reduced, while the other is increased, compared to
the non-squeezed case.

We still focus our discussion on a homogeneous scalar field configuration. In terms of the
field operator and conjugate momentum, a unitary squeezing can be represented by an exponen-
tial operator quadratic in the field content acting on the true vacuum of the theory. For the system
at hand, we consider the following unitary realization

Ŝ =
1
2

∫
d3xd3y D(x – y)

{
ϕ̂(x)π̂(x) + π̂(x)ϕ̂(y)

}
D(x – y) = –

1
4

∫ d3p
(2π)3 log

Ep
ωp

eip·(x–y),

(4.43)
where D(x – y) is a c-number function connected to the initial conditions we want to imprint
in correlation functions. Here, we fixed the squeezing operator to reproduce the initial time
quadratic correlation functions (4.40)-(4.41), hence removing the initial time singularity at 1-
loop order. We also defined Ep =

√
ω2

p + λ
2ϕ

2
0 as the dispersion relation written in terms of the

shifted mass. As we are going to see later, there are different choices of the squeezing operator
for which the initial time-singularity is removed. However, all D(x – y) should have a specific
high-k limit, in accordance with the one of (4.44).

In the case of squeezed coherent states, it is convenient to expand Ŝ in terms of creation and
annihilation operators, obtaining the compact expression

Ŝ =
i
4

∫ d3p
(2π)3 ln

Ep
ωp

(
apa–p – a†

pa†
–p
)

. (4.44)

When evaluating correlation functions over the squeezed state, the presence of the squeezed
vacuum corresponds to implementing a Bogoliubov transformation on the creation and annihi-
lation operators (see Appendix A). This transformation allows us to compute any correlation
function over the state |CS⟩ by replacing the field content with a new one given by:

ϕ̂s = eiSϕ̂e–iS =
∫ d3p

(2π)3
√

2Ep

(
apeip·x + a†

pe–ip·x) , (4.45)

π̂s = eiSπ̂e–iS = (–i)
∫ d3p

(2π)3

√
Ep
2

(
apeip·x – a†

pe–ip·x) , (4.46)

These new operators are then evaluated on the true vacuum |Ω⟩. It is important to note that due
to the presence of squeezing, the mode expansion involves the energy Ep instead of the usual
frequency ωp, which instead appears in the case of a non-squeezed coherent state.

61



62 4. Coherent States and the Quantum Dynamics of Highly Occupied Systems

In terms of the modified coherent state (4.42), the expressions of the field acceleration and of
the total energy of the system acquire the following form

∂2
t ⟨CS|ϕ̂|CS⟩(t = 0) = –ϕ0

(
m2 +

λ

2
⟨S|ϕ̂2|S⟩

)
–
λ

3!
ϕ3

0 , (4.47)

⟨CS|Ĥ|CS⟩ =
∫

d3x
[

1
2

(
m2 +

λ

2
⟨S|ϕ̂2|S⟩

)
ϕ2

0 +
λ

4!
ϕ4

0

+
1
2

⟨S|
{
π̂2 +

(
∇⃗ϕ̂

)2
+ m2ϕ̂2 +

λ

4!
ϕ̂4
}

|S⟩

–
1
2

⟨Ω|
{
π̂2 +

(
∇⃗ϕ̂

)2
+ m2ϕ̂2 +

λ

4!
ϕ̂4
}

|Ω⟩
]

; (4.48)

Again, the last two lines of (4.48) originate from the fact that the bare vacuum energy parameter
has been adjusted so that ⟨Ω|Ĥ|Ω⟩ = 0 and they are the analogs of (4.25) and (4.38).

We can show now that both these observables are free from initial time singularities. To do
this, we have to show that 1-loop prescriptions (4.34) can make both the energy and the field
acceleration finite at the initial time. Let us begin by checking the latter. If we plug in the
modified quadratic correlation function (4.40) in the 1-loop equation of motion, we find

∂2
t ⟨CS|ϕ̂|CS⟩(t = 0) = –ϕ0

m2 +
λ

2

∫ d3p
(2π)3

1

2
√

p2 + m2 + λ
2ϕ

2
0

 –
λ

3!
ϕ3

0 , (4.49)

where on the right-hand side we recognize the Coleman-Weinberg potential [150]. To see explic-
itly that the standard (S-matrix) 1-loop renormalization prescription for the quartic theory at hand
renders (4.49) finite, let us expand the integrand in the Taylor series in the coupling constant. Up
to finite contributions it reduces to

λ

2

∫ d3p
(2π)3

1

2
√

p2 + m2 + λ
2ϕ

2
0

=
λ

2
⟨ϕ̂2⟩ –

λ2

2
ϕ2

0

∫ d3p
(2π)3(2ωp)3 + (finite) . (4.50)

The first term is the standard bubble diagram that contributes to mass renormalization, which we
also encountered in the analysis of non-squeezed coherent states. However, in the case of the
squeezing, we also have an additional logarithmic divergence, represented by the second term.
It is straightforward to see that this combines with the cubic term of (4.49) into λph according to
(4.34) and we can repackage the equation of motion into

∂2
t ⟨CS|ϕ̂|CS⟩(t = 0) = –m2

phϕ0 –
λph
3!
ϕ3

0 + (finite) . (4.51)

Here (finite) stands for the finite corrections that originate from the effective potential a la
Coleman-Weinberg.

The procedure outlined above also addresses the one-loop singularities of the Hamiltonian,
when applied to equation (4.48). Naively, it may not appear to be so, since the same correla-
tion function that generates the divergence in the equation of motion cannot produce the neces-
sary divergence to renormalize the coupling of the λϕ4

0 term in the Hamiltonian. However, in
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4.5 Initial time singularity at two-loops and non-Gaussian states 63

this scenario, we must also take into account the contributions from the second and third lines.
Specifically, in the case of the squeezed vacuum, these lines generate an additional non-trivial
correction. By considering all of these factors together, we find that the renormalization of the
potential is achieved in the Hamiltonian by the same squeezing that removes divergences in the
equation of motion for the one-point function.

After this discussion, it is evident that we are not bound to choose the squeezed vacuum |S⟩
in a way that (4.40) and (4.41) are generated at the initial time. The only part required by con-
sistency is the divergent part of the aforementioned correlation functions at space-coincidence.
In other words, we have the freedom to incorporate any finite contribution, representing specific
physical excitations of particles. Concretely, we could have chosen a dispersion relation Ep in a
way that two-point correlation functions at the initial time would have read

⟨S|ϕ̂(x, 0)ϕ̂(y, 0)|S⟩ =
∫ d3p

(2π)3
ei⃗p·(⃗x–⃗y)

2
√

p2 + m2

1 –
λϕ2

0
4

1
p2 + m2


+
∫ d3p

(2π)3 ei⃗p·(⃗x–⃗y)f (p) , (4.52)

⟨S|π̂(x, 0)π̂(y, 0)|S⟩ =
∫ d3p

(2π)3
1
2

ei⃗p·(⃗x–⃗y)
√

p2 + m2

1 +
λϕ2

0
4

1
p2 + m2


+
∫ d3p

(2π)3 ei⃗p·(⃗x–⃗y)g(p) , (4.53)

with f (p) and g(p) being arbitrary functions regular in p → 0 limit and decaying faster than p–3

for large momenta. In their absence, the (finite)-terms are also absent from the above equations.
This is the current state of affairs regarding the expectation values of the field and the Hamil-

tonian in a scalar field theory with quartic interaction, at one loop. The bottom line of the
discussion is that, to restore the perturbative aspects of the dynamics, a certain class of squeezing
operators has to be considered, to restore certain divergences at the initial time.

4.5 Initial time singularity at two-loops and non-Gaussian states
In this section, we extend the analysis of initial time singularities to the two-loops order. To
highlight the shortcomings of the previous section when considering higher loop corrections, it
is convenient to study the time evolution of the one-point function of the field operator at order
λ2 and h̄2.

Let us consider, the equation of motion of the one-point function of the field operator, evalu-
ated over the non-squeezed coherent state (4.15). This reads

Z∂2
t ⟨Ch|ϕ̂|Ch⟩ = –Zϕ0

(
m2 +

λ

2
⟨Ω|ϕ̂2|Ω⟩

)
–
λZ2

3!
ϕ3

0 –
λZ2

3!
⟨Ω|ϕ̂3|Ω⟩. (4.54)

Since we study the dynamics at two loops, the field redefinition ϕ →
√

Zϕ has been performed
in order to provide the field renormalization. Also, we keep the overall Z-coefficients on the
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64 4. Coherent States and the Quantum Dynamics of Highly Occupied Systems

left and right-hand sides, as it turns out to be convenient for renormalizing. By evaluating the
correlation functions in interaction picture up to h̄2λ2 corrections, the aforementioned equation
reduces to [110]

Z
(
∂2

t + m2
)

Φ(t) +
Z2λ

3!
Φ3(t) +

λ

2
⟨ϕ2⟩Φ(t) –

λ2

2
Φ(t)

∫ d3p
(2π)3(2ωp)2

∫ t

0
dt1Φ2(t1) sin 2ωp(t1 – t)+

–
λ2

3

∫ d3pd3q
(2π)6(8ωpωqωp+q)

∫ t

0
dt1Φ(t1) sin[

∑
ωi)(t – t1)]+

–
λ2

2
⟨ϕ2⟩Φ(t)

∫ d3p
(2π)3(2ωp)3 ... = 0, (4.55)

with
∑
ω = ωp + ωq + ωp+q. The second and third line are the additional h̄2λ2 corrections to the

equation of motion. We show now that their divergent part is removed if we impose the standard
two-loop vacuum renormalization prescription for the mass and the field operator.

The interesting term is the nested momentum integral of the second line, which corresponds
to the so-called setting sun diagram appearing in the vacuum analysis. To identify its diver-
gent contributions, we integrate it by part three times. With that, we can extract two divergent
contributions and the associated initial time singularities

λ2

3

∫ d3pd3q
(2π)6(8ωpωqωp+q)

∫ t

0
dt1Φ(t1) sin[(

∑
ωi)(t – t1)] ≃

λ2

3

∫ d3pd3q
(2π)6(8ωpωqωp+q)

1∑
ωi

{
Φ(t) – Φ(0) cos

(∑
ωit
)

–
Φ̈(t)

(
∑
ωi)2 +

Φ̈(0)
(
∑
ωi)2 cos

(∑
ωit
)}

,

(4.56)

where we neglected finite terms. It is straightforward to check that the first and third terms of
(4.56) correspond to the standard mass and field divergences sourced by the setting sun diagram.
This is confirmed by regulating the integrals in dimensional regularization and comparing the
result of the integration to its vacuum analogous [151]. By using the following prescriptions

Z = 1 –
λ2

3

∫ d3pd3q
(2π)6(8ωpωqωp+q)

1
(
∑
ωi)3 , (4.57)

m2
ph = Zm2 +

(
λ

2
–
λ

2

∫ d3p
(2π)3(2ωp)3

)
⟨ϕ̂2⟩ –

λ2

3

∫ d3pd3q
(2π)6(8ωpωqωp+q)

1∑
ωi

, (4.58)

the equation of motion can be made finite at a late time. Nevertheless, once the prescriptions
are imposed, initial time singularities appear, corresponding to the second and fourth terms of
(4.56). As we can see, these integrals are finite if t > 0, but are divergent at initial time.

4.5.1 The failure of the squeezing operator at two-loops
A follow-up question regards the possibility of using the squeezing operator to fix the problem
of initial time singularities also at the two-loops order.
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4.5 Initial time singularity at two-loops and non-Gaussian states 65

We begin by examining the additional divergences that the squeezed coherent state (4.44) —
the same squeezed state we introduced at one-loop — might introduce at the two-loops order. If
we compute h̄2-corrections to the bubble diagram evaluated on this state, only the first two-loop
divergence of (4.58) is generated. This is accomplished by including corrections that arise from
projecting the interacting vacuum of the theory onto the non-interacting one, giving

⟨S|ϕ̂2(x, 0)|S⟩ =
∫ d3p

(2π)32Ep

{
1 –

λ⟨ϕ2⟩
(2ωp)2

}
. (4.59)

However, notice that this term would have been generated also for non-squeezed coherent states,
just with Ek replaced by ωk. This is expected since the bubble diagram is the only divergence
that is present also for non-squeezed coherent states. Notice that the cubic correlation function
⟨S|ϕ̂3|S⟩ is still zero also at h̄2 order. However, the setting sun divergence is missing.

The second possibility could involve constructing a new squeezing operator designed to pro-
duce the missing divergence, represented by the setting sun contribution. Let us write explicitly
the form of the quadratic correlation function that would make the mass in the equation of motion
finite, by introducing the setting sun divergence. We would have

⟨S′|ϕ̂2|S′⟩ =
∫ d3p

(2π)32Ep

(
1 –

λ2

3

∫ d3q
(2π)32EqEq+p

1∑
Ei

)
, (4.60)

with
∑

E = Ep + Eq + Ep+q. There are two main issues in the correlation function (4.60).
First, we see that the new correction is independent of ϕ0 and therefore would not vanish in
the absence of the condensate. Second, the squeezing operator we have to consider would alter
quadratic correlation functions in a way that would make the two-point function at point splitting
divergent. We conclude that the quadratic correlation function and the squeezing operator cannot,
by themselves, address the two-loop divergences generated by the setting sun contribution.

4.5.2 Non-gaussian states and the T̂ operator
To solve the issue of the initial time singularity at two loops, it seems necessary to explore
different states. In particular, because the quadratic correlation function cannot address the issue
of the initial time singularity, it seems necessary to explore states for which the initial time cubic
correlation function is not trivial.

Following this, we introduce the following class of non-gaussian states

|CT⟩ = exp
{

–
i
h̄

∫
d3xϕ0 π̂(x)

}
|T⟩ with |T⟩ = e–iŜe–iT̂ |Ω⟩, (4.61)

where we introduced the T̂ operator, cubic in the field operator and in the conjugate momen-
tum8. In terms of creation and annihilation operators, we demand that T̂ satisfies the following

8This class of operators in the field space can be written as T̂ =
∫

d3x d3y d3z Mαβγ(x, y, z)Φα(x)Φβ(y)Φγ(z),
with Φ1 = ϕ̂ and Φ2 = π̂.
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decomposition

T̂ = i
λ

6

∫ d3pd3q

(2π)6
√

8EpEqEp+q

apaqa–p–q – a†
pa†

qa†
–p–q∑

Ei

(
ϕ0 –

(ϕ̈)0
(
∑

Ei)2

)
, (4.62)

where coefficients have been fixed to generate the correct initial time divergences, as we are going
to show. Notice that, at this order of perturbation theory (λ2 and h̄2), we can use interchangeably
Ek and ωk to define T̂ . This stops being true if we extend our analysis to λ3 divergences.

The order of appearance of the T̂ and Ŝ in (4.62) is not arbitrary. In particular, when arranged
in this way, correlation functions can be evaluated by first applying shifts and rotations as one
would do with squeezed coherent states and then acting with the T̂ operator. In other words, we
can write

⟨CT |O[ϕ̂, π̂]|CT⟩ = ⟨Ω|ϕ0 + e–iT̂ ϕ̂seiT̂ , e–iT̂ π̂seîT |Ω⟩. (4.63)

In contrast to the squeezing operator Ŝ, where its effect can be resummed into ϕs, it is not possible
to resum up the rotation induced by T̂ into a closed form. Nevertheless, since we are interested in
computing only two-loop corrections to the one-point function, we can expand the exponential
operators in a series of commutators and consider only the first and second corrections (see
Appendix A.1). With these, we can compute the first correction to the quadratic and cubic
correlation function, finding

⟨T |ϕ̂2|T⟩0 =
∫ d3p

(2π)32Ep

1 –
λ⟨ϕ2⟩
(2ωp)2 + λ2

∫ d3q
(2π)38EpEqEp+q

(
ϕ0∑

Ei
–

(ϕ̈)0
(
∑

Ei)3

)2 ,

(4.64)

⟨T |ϕ̂3|T⟩0 = –λ
∫ d3pd3q

(2π)64EpEqEp+q

1∑
Ei

(
ϕ0 –

(ϕ̈)0
(
∑

Ei)3

)
. (4.65)

Here, correlation functions are given at point coincidence and it can be shown that they are finite
if evaluated at different points.

In the next part, we show that these initial time correlation functions have the appropriate
behaviour to make the expectation value of the Hamiltonian and the 1-point function of the field
operator finite. Before doing that, let us derive the action of the T̂ operator on the creation
operator ap

(aT )p = ap –
∫ d3k1

(2π)3 γp,k1 a†
k1

a†
–k1–p+

+
∫ d3k1d3k2

(2π)6 γp,k1γk1,k2

(
ak2ak1a†

k1+k2–p + a†
k1+k2–pak1ak2

)
+ ... (4.66)

Here, γki,kj is a general momentum-dependent coefficient that parametrizes T̂ (see again Ap-
pendix A.1). By analysing (4.66), it is evident that it is not possible to resume (4.66) in any
particular form unless a specific form of γki,kj is chosen. This is different to what takes place for
the squeezing operator.
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4.5.3 Solving the initial time singularity with T̂

Finally, we show that the T̂ operator provides the correct behaviour of the quadratic and cubic
correlation functions to fix the initial time singularity sourced by the setting sun diagram, at two
loops.

We show this in two steps, first by analysing the equation of motion of the field operator and
then by checking the expectation value of the Hamiltonian. Concerning the first, we have

Z∂2
t ⟨CT |ϕ̂|CT⟩(t = 0) = –ϕ0

(
Zm2 +

λ

2
⟨T |ϕ̂2(x)|T⟩0

)
–
λZ2

3!
ϕ3

0 –
λ

3!
⟨T |ϕ̂3(x)|T⟩0 . (4.67)

Here, we can ignore the new correction to the quadratic correlation function, since its contribu-
tion is cubic in the coupling constant. By plugging in the cubic correlation function and focussing
on divergent terms, we find

Z∂2
t ⟨CT |ϕ̂|CT⟩(t = 0) = –(ϕ̈)0

λ
2

3!

∫ d3pd3q
(2π)64EpEqEp+q

1(
Ep + Eq + Ep+q

)3


ϕ0=0

– ϕ0

{
Zm2 +

λ
2

–
λ2

2

∫ d3p
(2π)3(8Epω2

p)

 ⟨ϕ2⟩ –
λ2

3

∫ d3pd3q
(2π)68EpEqEp+q

1
Ep + Eq + Ep+q

}
ϕ0=0

(4.68)

We see that the second term of the first line corresponds to the wave function divergence and is
removed by imposing the Z prescription (4.57). The same applies to the second line if we impose
the physical mass prescription (4.58).

Similar to the squeezing operator, this result is not surprising since we fixed the T̂ to provide
all the initial time divergences that would make the equation of motion finite. The real deal is to
check that the same state makes also the expectation value of the Hamiltonian finite. For that, let
us start by considering

⟨CT |Ĥ|CT⟩ =
∫

d3x
[

Z
2

(
m2 +

λ

2
⟨T |ϕ̂2|T⟩

)
ϕ2

0 +
λZ2

4!
ϕ4

0 +
λ

3!
⟨T |ϕ̂3|T⟩ϕ0+

+
1
2

⟨T |
{
π̂2 +

(
∇⃗ϕ̂

)2
+ m2ϕ̂2 +

λ

4!
ϕ̂4
}

|T⟩

–
1
2

⟨Ω|
{
π̂2 +

(
∇⃗ϕ̂

)2
+ m2ϕ̂2 +

λ

4!
ϕ̂4
}

|Ω⟩
]

. (4.69)

At first glance, the cubic correlation function does not combine with the mass term as it does in
the equation of motion, due to the different overall coefficient. Also, in the case of the Hamil-
tonian, we do not have any classical kinetic energy and the term proportional to ϕ̈0 remains
unaddressed. However, in the case of (4.69), the second line provides a non-negligible contribu-
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tion. By a direct evaluation, we have

1
2

⟨T |π̂2 +
(
∇⃗ϕ̂

)2
+m2ϕ̂2|T⟩ =

1
2

⟨S|π̂2 +
(
∇⃗ϕ̂

)2
+ m2ϕ̂2|S⟩

+
λ2ϕ0
3!2

∫ d3pd3q
(2π)68EpEqEp+q

1∑
Ei

(
ϕ0 –

2(ϕ̈)0
(
∑

Ei)2

)
+ (finite) + O(λ3).

(4.70)

Once we plug the relation (4.70) in the expectation value of the Hamiltonian, we see that the
mass divergence is generated with the correct coefficient, while terms proportional to ϕ̈ drops
out.
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Chapter 5
Conclusions and Outlook

5.1 Dark Matter and Superfluidity

The first part of this thesis was devoted to understanding how collective effects, such as Bose-
Einstein condensation and Superfluidity, could affect the dynamics of dark matter in halos. The
guiding motivation is the mismatch between the dynamics of dark matter inferred by local ob-
servations and the one predicted by N-body simulations. An important tool we exploited is
the Effective Field Theory of Superfluidity, in which the macroscopic properties of a superfluid
are understood in terms of the Bose-Einstein condensation of its microscopic self-interacting
constituents. After reviewing the theory, we investigated the relation between the quantum
constituents of the condensate and phonons, the long-wavelength fluctuations of the superfluid
background. In particular, we studied the matching between hard phonons and propagating con-
stituent particles and exploited this property to evaluate the thermalization time of a gas of three-
body interacting particles.

Then, following the papers [70, 78], we depicted the simplest theory of dark matter super-
fluidity, where a sub-eV scalar field endowed by repulsive self-interactions, is introduced as a
potential dark matter candidate. In particular, we have shown that inner regions of galactic halos,
where dark matter thermalization is efficient enough to trigger a superfluid phase transition, are
unstable and prone to fragmenting in a collection of superfluid solitons due to Jeans instability. If
parameters of the theory are chosen accordingly, these solitons can have a size which is slightly
bigger than the kpc-scale. Also, if tidal effects are taken into account, most of the solitons which
are not residing in the galactic centre would not survive tidal disruption and would be reshuf-
fled in a fluid-like state that is not expected to rethermalize due to the peculiar structure of its
phase space. The final density distribution of the halo is expected to be characterized by a quasi-
homogeneous central region, surrounded by a coarse-grained NFW envelope and could explain
both the core-cusp problem and the excess of substructures predicted by models of Cold Dark
Matter.

There are several aspects of this first part of the thesis that require further investigation. An
open question concerns the possibility of having a coupling between the superfluid component
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and the baryonic sector along the line of [55, 90], able to generate a phonon-mediated force
in the superfluid medium which is gravity-competing. Although it seems that these emergent
forces can be effective in decelerating macroscopic probes [152], it could be interesting to make
a theoretical analysis of what kind of coupling would be consistent with observations and what
would not.

Finally, it would also be interesting to look for possible observational signatures associated
with a superfluid phase of dark matter. An example is the suppression of dynamical friction
experienced by orbiting probes moving in the superfluid background [77]. In the upcoming
paper [153], we assess the role of dynamical friction in determining the dynamics of binary
systems moving in a superfluid environment enhanced by a density spike. We show that the
suppression of dynamical friction in these systems may help to discriminate between models of
Cold Dark Matter and Superfluid Dark Matter.

5.2 Coherent states and Highly occupied systems

In the second part of the thesis, we studied coherent states in interacting quantum field theories.
After reviewing the basic notions associated with this class of states, we studied the time evolu-
tion of the one-point function of the field operator in the theory of a real scalar field with quartic
interactions.

In particular, we began by focusing on a non-squeezed coherent state describing a homoge-
neous configuration, corresponding to a condensate of zero momentum real bosons. We demon-
strated that the amplitude of the one-point function of the field operator is damped if h̄λ4 quantum
corrections are included, in contrast to the oscillatory behaviour of the solution to the classical
equation of motion. We have shown this with two equivalent methods: by evaluating the one-
point function of the field operator in the interaction picture and by applying the background
field method. The root of this effect is the annihilation of four constituents of the condensate
into two relativistic particles, which confirms the results of [108]. This is a pure quantum effect
which strongly backreacts on the classical background after the time

tdepl ∼

λ4ϕ6
0

m5

–1

, (5.1)

which is identified with the quantum break-time of the system.
Finally, we investigated the problem of the initial time singularities. These are divergences

that appear in the expectation value of the Hamiltonian and in the initial time field acceleration,
and that cannot be removed by renormalizing the theory. To overcome this issue, specific prop-
erties have to be given to the state itself. We demonstrated that both non-squeezed and squeezed
coherent states are affected by this class of divergences and that non-gaussian generalizations
have to be considered.

The results obtained in this section can serve as the starting point for numerous additional
investigations. For example, it would be interesting to study the implications of initial time
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singularities in gauge theories, along the lines of [154]. In the context of a homogeneous back-
ground of U(1)-charged complex bosons, one might anticipate that the gauge field at the initial
time should exhibit a shifted-mass prescription of the form

m2
A ∼ e2ϕ2

0, (5.2)

sourced by the scalar field background. Here, e is the gauge coupling of the theory.
It may also be interesting to see if the dynamical effects, such as the depletion of conden-

sates due to quantum effects, are also present in gravity. For example, a follow-up work in this
direction is the application of the background field method to study the dynamics of the de Sitter
background, driven by a spectator scalar field ϕ. The aim is to understand if any time-dependent
quantum correction to the one-point function of the metric appears at a certain order in quan-
tum perturbation theory, indicating that the de Sitter solution is depleted by quantum effects in
agreement with the predictions of [119, 122].
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A.1 Correlation functions over squeezed and non-Gaussian
states

In this appendix, we explain the procedure to evaluate correlation functions, built using the states
|C⟩, |S⟩ and |T⟩.

We start by recalling a notable identity involving unitary operators. Let us consider the state
|U⟩ = e–iÛ |Ω⟩, with Û hermitian, and the general function of the field operator and conjugate
momentum O(ϕ̂, π̂). Then, correlation functions satisfy the relation

⟨U|O
(
ϕ̂, π̂

)
|U⟩ = ⟨Ω|eiÛO

(
ϕ̂, π̂

)
e–iÛ |Ω⟩ = ⟨Ω|O

(
eiÛϕ̂ e–iÛ , eiÛπ̂e–iÛ)|Ω⟩. (A.1)

In the last step, we expanded the general operator O(ϕ̂, π̂) in a series of the field and momentum,
and inserted the combination eiÛ ×e–iÛ in between every power of π̂ and ϕ̂. Then, we resummed
the series.

We see that the state |U⟩ implements a rotation of the field operator and conjugate momentum,
according to

ϕ̂ → eiUϕ̂ e–iU , (A.2)

π̂ → eiUπ̂ e–iU . (A.3)

These relations can be evaluated by applying the Baker–Campbell–Hausdorff formula as

eiÛ ϕ̂ e–iÛ = ϕ + [iÛ, ϕ̂] +
1
2

[iÛ, [iÛ, ϕ̂]] +
1
3!

[iÛ, [iÛ, [iÛ, ϕ̂]]] + ..., (A.4)

and the same applies to the conjugate momentum.
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Non-squeezed coherent state

By making explicit choices of Û, we can evaluate the series of commutators. For example, if
we consider a Û which is linear in the field operator, only the first commutator of the series
(A.4) is non-null. This is the case of non-squeezed coherent states. We can see this explicitly by
considering the specific operator

f̂ =
∫

d3xϕ0π̂, (A.5)

and plugging it in the place of Û. The result reads

eif̂ ϕ̂e–if̂ = ϕ0 + ϕ̂, (A.6)

reproducing the relation (4.7).

Ŝ-state

If we choose an operator which is quadratic in the field and conjugate momentum, we have the
case of the |S⟩ state. Let us analyse this case explicitly by considering the following general
realization of Ŝ

Ŝ =
1
2

∫ d3k
(2π)3

(
αk ak a–k + α∗

k a†
k a†

–k

)
. (A.7)

Here, we decided to work in momentum space for convenience. In this case, the series of com-
mutators can be resummed into

ϕ̂s =
∫ d3k

(2π)3√
2ωk

{(
cosh |αk| + i sinh |αk|eiθk

)
ak +

(
cosh |αk| – i sinh |αk|e–iθk

)
a†

–k

}
eik·x,

(A.8)

π̂s = (–i)
∫ d3k

(2π)3

√
ωk
2

{(
cosh |αk| – i sinh |αk|eiθk

)
ak –

(
cosh |αk| + i sinh |αk|e–iθk

)
a†

–k

}
eik·x,

(A.9)

with ϕ̂s = eiŜϕ̂e–iŜ and π̂s = eiŜπ̂e–iŜ. Also, we decomposed αk = |αk|eiθk . Notice that if we
choose

αk =
i
2

log
Ek
ωk

, (A.10)

the rotations (4.45) and (4.46) are reproduced.

T̂-state

Finally, let us conclude the discussion by choosing an operator which is cubic in the number of
fields

T̂ =
1
3

∫ d3kd3k′

(2π)6

{
γ∗

k,k′a
†
ka†

k′a
†
–k–k′ + γk,k′akak′a–k–k′

}
. (A.11)
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Again, for convenience, we work in momentum space. In this case, the series of commutators
cannot be resummed. Nevertheless, we may compute the first-order corrections to the quadratic
and cubic correlation functions by evaluating the first two commutators of the series

ϕ̂T =ϕ̂ + i
∫ d3kd3k′

(2π)6 √
2ωk

(
γk,k′ak′a–k–k′e–ik·x – γ∗

k,k′eik·xa†
k′a

†
–k–k′

)

+
1
3

∫ d3kd3k′d3k′′

(2π)6√
2ωk

γk,k′γ∗
k,k′′eik·x

(
a†

k′′ak′a–K + ak′a†
k′′a–K + ak′a–Ka†

k′′

)
+ h.c + ... ,

(A.12)

with ϕ̂T = eiT̂ ϕ̂e–iT̂ . This is the order of approximation we need for the two-loop analysis of
Section 4.5.3.
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