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Summary

Summary

Many applications naturally yield data that can be viewed as elements in non-linear
spaces. Consequently, there is a need for non-standard statistical methods capable of
handling such data. The work presented here deals with the analysis of data in complex
spaces derived from functional L2-spaces as quotient spaces (or subsets of such spaces).
These data types include elastic curves represented as d-dimensional functions mod-
ulo re-parametrization, planar shapes represented as 2-dimensional functions modulo
rotation, scaling and translation, and elastic planar shapes combining all of these invari-
ances. Moreover, also probability densities can be thought of as non-negative functions
modulo scaling.

Since these functional object data spaces lack a natural Hilbert space structure, this
work proposes specialized methods that integrate techniques from functional data anal-
ysis with those for metric and manifold data. In particular, but not exclusively, novel
regression methods for specific metric quotient spaces are discussed. Special attention is
given to handling discrete observations, since in practice curves and shapes are typically
observed only as a discrete (often sparse or irregular) set of points. Similarly, density
functions are usually not directly observed, but a (small) sample from the correspond-
ing probability distribution is available. Overall, this work comprises six contributions
that propose new methods for sparse functional object data and apply them to relevant
real-world datasets, predominantly in a biomedical context.

Based on the square-root velocity (SRV) framework, Paper I develops methods for
modeling Fréchet means of irregularly/sparsely observed curves modulo re-parametri-
zation using splines. It also provides identifiability statements for individual spline
representations under re-parametrization, which are also relevant to subsequent con-
tributions. In Paper II, this approach is extended to elastic plane shapes, that is 2-
dimensional curves modulo translation, rotation, scaling, and re-parametrization. This
extension is achieved by identifying the real plane with the complex numbers and estab-
lishing a connection between full Procrustes mean estimation to covariance estimation
in irregular/sparse functional data analysis.

Paper III extends unconditional mean estimation for curves modulo re-parametri-
zation to regression, that is to conditional mean estimation given covariates. It also
discusses the generalization of ’linear’ regression to quotient metric spaces arising from
actions by isometries in a broader context. In complement to this, Paper IV focuses
on inelastic plane curves as response objects in a generalized additive regression model,
taking into account the Riemannian manifold structure of the shape space. In this
case, the conditional mean shape is modeled by a geodesic response function, while
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Summary

residuals and distances are determined by the shape geometry. To estimate the model, a
Riemannian L2-Boosting algorithm is proposed. Combining both regression approaches,
Paper V presents a regression method for elastic shapes that respects all invariances:
rotation, translation, scaling, and re-parametrization.

Paper VI focuses on 1-dimensional probability density functions, which are defined
as equivalence classes modulo scaling and can be identified with a subspace of the
separable Hilbert space L2 by the centered log-ratio transformation. Building on this
correspondence, this contribution proposes Functional Principal Component Analysis
(FPCA) for densities based on discrete samples drawn from each density. To achieve
this, the underlying functional densities are treated as latent variables within a maxi-
mum likelihood framework, and model estimation is carried out using a Monte Carlo
Expectation Maximization (MCEM) algorithm.
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Zusammenfassung

Zusammenfassung

Viele Anwendungen liefern Daten, die natürlicherweise als Elemente in nichtlinearen
Räumen aufgefasst werden können. Daher besteht ein Bedarf an speziellen statistis-
chen Methoden, die mit solchen Daten umgehen können. Die hier vorgestellte Arbeit
befasst sich mit der Analyse von Daten in komplexen Räumen, die von funktionalen
L2-Räumen als Quotientenräumen (oder Teilmengen solcher Räume) abgeleitet sind.
Zu diesen Datentypen gehören elastische Kurven, die als d-dimensionale Funktionen
modulo Reparametrisierung dargestellt werden können, 2-dimensionale Formen, die als
Funktionen modulo Rotation, Skalierung und Translation darstellbar sind, und elastis-
che 2-dimensionale Formen, die alle diese Invarianzen kombinieren. Darüber hinaus kön-
nen auch Wahrscheinlichkeitsdichten als nichtnegative Funktionen modulo Skalierung
aufgefasst werden.

Da die oben genannten funktionalen Objektdatenräume keine natürliche Hilbert-
Raumstruktur haben, werden in dieser Arbeit spezielle Methoden vorgeschlagen, die
Techniken der funktionalen Datenanalyse mit denen für metrische Daten und für Daten
auf Riemannschen Mannigfaltigkeiten integrieren. Insbesondere, aber nicht ausschließ-
lich, werden neue Regressionsmethoden für spezifische metrische Quotientenräume dis-
kutiert. Besonderes Augenmerk wird auf den sinnvollen Umgang mit diskreten Beobach-
tungen gelegt, da in der Praxis Kurven und Formen typischerweise nur als diskrete
(oft spärliche oder unregelmäßige) Punktmengen beobachtet werden. Ebenso werden
Dichtefunktionen in der Regel nicht direkt beobachtet, sondern es steht eine (kleine)
Stichprobe aus der entsprechenden Wahrscheinlichkeitsverteilung zur Verfügung. Insge-
samt umfasst diese Arbeit sechs Beiträge, die neue Methoden für spärliche funktionale
Objektdaten vorschlagen und sie auf relevante reale Datensätze vorwiegend in einem
biomedizinischen Kontext anwenden.

Basierend auf dem Square-Root-Velocity (SRV) Ansatz werden in Paper I Methoden
zur Modellierung von Fréchet-Mitteln von unregelmäßig/spärlich beobachteten Kurven
modulo Re-Parametrisierung mit Splines entwickelt. Außerdem werden Identifizier-
barkeitsaussagen für einzelne Splinedarstellungen unter Re-Parametrisierung gezeigt,
die auch für nachfolgende Beiträge relevant sind. In Paper II wird dieser Ansatz auf
elastische 2-dimensionale Formen, d.h. 2-dimensionale Kurven modulo Translation, Ro-
tation, Skalierung und Re-Parametrisierung erweitert. Diese Erweiterung wird durch
die Identifikation von R2 mit den komplexen Zahlen und durch die Verbindung der
Procrustes-Mittelwertschätzung mit der Kovarianzschätzung, die zur Analyse von un-
regelmäßigen/spärlich beobachteten funktionalen Daten verwendet wird, erreicht.

Paper III erweitert die Mittelwertschätzung für Kurven modulo Reparametrisierung
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Zusammenfassung

auf die Regression, d.h. auf die bedingte Mittelwertschätzung für gegebene Kovari-
aten. Darüber hinaus wird in einem allgemeineren Kontext die Verallgemeinerung der
„linearen“ Regression auf metrische Quotientenräume diskutiert, die sich aus Aktionen
durch Isometrien ergeben. Ergänzend dazu konzentriert sich Paper IV auf unelastische
ebene Kurven als Response in einem verallgemeinerten additiven Regressionsmodell,
wobei die Riemannsche Mannigfaltigkeitsstruktur des Formraums berücksichtigt wird.
In diesem Fall wird die bedingte mittlere Form durch eine geodätische Antwortfunktion
modelliert, während die Residuen und Abstände durch die Formgeometrie bestimmt
werden. Zur Schätzung des Modells wird ein Riemannscher L2-Boosting-Algorithmus
vorgeschlagen. Die Kombination beider Regressionsansätze führt in Paper V zu einer
Regressionsmethode für elastische Formen, die alle Invarianten berücksichtigt: Rota-
tion, Translation, Skalierung und Reparametrisierung.

Paper VI konzentriert sich auf eindimensionale Wahrscheinlichkeitsdichtefunktionen,
die als Äquivalenzklassen modulo Skalierung definiert sind und durch die zentrierte Log-
Ratio-Transformation mit einem Unterraum des separablen Hilbert-Raums L2 identi-
fiziert werden können. Aufbauend auf dieser Identifikation wird eine funktionale Haup-
tkomponentenanalyse (FPCA) für Dichten vorgeschlagen, die auf diskreten Stichproben
basiert, von denen jede als unabhängige Stichprobe aus der Verteilung mit der jeweili-
gen Dichte betrachtet wird. Dazu werden die zugrundeliegenden funktionalen Dichten
als latente Variablen in einem Maximum-Likelihood Ansatz behandelt und die Mod-
ellschätzung mit einem Monte-Carlo-Expectation-Maximization (MCEM) Algorithmus
durchgeführt.
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1. Introduction

This thesis is dedicated to the statistical analysis of functional object data. Functional
object data, also referred to as next-generation functional data (Wang et al., 2016),
include objects that are elements of a complex data space derived from a functional
L2 space, the space of square integrable functions. Specifically, this work considers
functional object data spaces that can be obtained as quotient spaces of subsets of L2

with respect to certain equivalence relations.
To enable a meaningful analysis of this type of data, the contributions of this thesis

are guided by two fundamental methodological approaches: functional data analysis
(FDA), in particular for handling sparsely observed functions, and object (oriented)
data analysis (ODA), a framework that summarizes methods tailored for observations
in more complex and potentially nonlinear spaces. For functional data, methods have
been developed to deal with discrete, error-prone observations of the functions. This
work is intended to contribute to the development of such methods for functional object
data as well, and therefore we present in the following relevant methods from both FDA
( Section 1.1) and ODA ( Section 1.2). A more detailed description of the functional
object data spaces considered in this thesis is then given in Section 1.3, before an
overview of the contributions of this thesis in the context of functional object data
analysis is given in Section 1.4.

1.1. Functional Data Analysis
Functional data analysis (FDA) focuses on the analysis and theoretical study of ran-
dom variables and their corresponding observations that are defined by their functional
behavior. Unlike traditional statistical analysis of scalar or vector variables, FDA con-
siders the units of observation themselves to be functions. These functions can take
various forms, such as curves, surfaces, or images, depending on the dimension of their
domain and image. Examples of such functional data in various fields include mortality
and fertility rates over time (Hyndman and Ullah, 2007), temperature and precipita-
tion measurements over time (Ferraty and Vieu, 2006) or over a 2-dimensional spatial
domain (Cressie and Wikle, 2011) and 3-dimensional hand trajectories of participants
in a neurological experiment (Gallivan and Chapman, 2014).

The origins of functional data can be traced back at least to the work of Ramsay
(1982), while Ramsay and Silverman (2005, first published in 1997) made the sub-
ject of FDA available to a wide audience. This book introduced basic concepts such
as functional data smoothing and registration, functional principal components, and
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1. Introduction

functional linear regression models, all while focusing on independent and identically
distributed (i.i.d.) samples of curves measured on dense, common grids. For a more
theoretical perspective on FDA and methods applicable to functional data observed
on sparse and irregular grids, researchers can refer to the work of Hsing and Eubank
(2015). Besides, books of Ferraty and Vieu (2006) and of Horváth and Kokoszka (2012)
should be mentioned as comprehensive literature on FDA.

This section highlights fundamental techniques in FDA that are relevant to the contri-
butions presented in this thesis. In doing so, the discussion focuses on one-dimensional
functional data f : I → R defined on a real interval I, where the parameter t ∈ I is de-
noted as “time” unless otherwise specified for better readability. Formally, an observed
function f is thereby interpreted as a realization of a continuous stochastic process
{F (t)}t∈I in the Hilbert space L2, the space of square-integrable functions.

1.1.1. Smoothing

In practice, functional data is usually not observed completely, but only at a finite
number of discrete time points t1 < · · · < tm ∈ I, m ∈ N, possibly with additional
noise. This means that instead of observing a function f(t) for all t ∈ I, usually only a
discrete sample yj from Yj = f(tj)+ ϵj with independent random error ϵj and E(ϵj) = 0
for j = 1, . . .m is available. A common approach is then to apply a suitable smoothing
technique to obtain a continuous representation of the underlying functional data while
preserving the essential features of the observed curves.

There are several strategies for effectively smoothing functional data. One widely
used method is kernel smoothing, which is based on the concept of kernel density
estimation (Rosenblatt, 1956; Parzen, 1962). The kernel density estimator for a data
set y1, . . . , ym ∈ R, which is sampled from a probability distribution with density g :
R → R+, is constructed as

ĝ(y) = 1
mh

m∑
j=1

K
(
y − yj

h

)
,

where h > 0 is the bandwidth and K : R → R+ is the kernel function. Although any
continuous probability density functions can be chosen for the kernel K, symmetric
functions like uniform, quadratic, or Gaussian kernels are typically preferred. From
this, one can derive the Nadaraya-Watson estimator (Nadaraya, 1964; Watson, 1964)
for functional data

f̂(t) =
∑m

j=1 yjK
(

t−tj

h

)
∑m

j=1 K
(

t−tj

h

) . (1.1)
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1.1. Functional Data Analysis

This estimator is also used to estimate nonparametric regression models. Please refer
to the textbook of Härdle et al. (2012) for a discussion of common nonparametric and
semiparametric modeling techniques, including the choice of the bandwidth parameter h
which controls the smoothness of the estimated function. In general, a larger bandwidth
results in a smoother estimate, but may fail to capture fine details. Conversely, a smaller
bandwidth allows the estimate to closely follow the fluctuations in the data, thereby
capturing intricate structures. However, choosing a bandwidth that is too small can
result in a noisy estimate that follows the data points too closely and does not provide a
reliable representation of the underlying function (bias-variance tradeoff). In practice,
the optimal bandwidth is usually determined by cross-validation.

Another smoothing technique is to represent functional data by a linear combination
of a finite number of basis functions bk : I → R, where k = 1, . . . , N , N ∈ N (Ramsay
and Silverman, 2005). The basis coefficients ξk, k = 1, . . . , N of the underlying function
f can then be estimated from the equation yj = f(tj) + ϵj = ∑N

k=1 ξkbk(tj) + ϵj for all
j = 1, . . . ,m via least-squares, that is

ξ̂1, . . . , ξ̂N = argminξ1,...,ξN

m∑
j=1

(
yj −

N∑
k=1

ξkbk(tj)
)2

(1.2)

which is a linear regression problem with coefficients ξ1, . . . , ξN . Appropriate basis
functions should be selected to enable a smooth representation of the data, while the
number of basis functions, similar as the bandwidth for kernel smoothing, controls how
closely the estimated curve fits the observed points. Prominent choices of basis functions
include polynomial, Fourier, wavelet, and spline basis functions. The emphasis here is
on bases that span a locally polynomial space, the spline space. A spline is composed
of polynomials of fixed degree ndeg between a given set of knots and is ndeg − 1 times
differentiable on the entire interval. For a comprehensive understanding of splines,
including a precise definition and insightful discussion, see the work of de Boor (2001).
This source also provides an overview of appropriate bases for spline spaces.

In particular, the B-spline basis introduced by Schoenberg (1946) has proven to be
particularly convenient, since it consists of splines with local support defined by a
recursion formula that can also be used to provide analytically available derivatives
and integrals. In addition, the work of Eilers and Marx (1996) has contributed to the
popularity of B-splines by implementing a penalty mechanism to address the delicate
issue of knot selection. Their proposal involves the use of a large number of equidistant
knots along with a differential penalty applied to adjacent B-spline coefficients. In this
framework, the smoothness of the resulting fitted curve is controlled by a roughness
penalty parameter (also called smoothing parameter), with a large penalty resulting in a
nearly constant function and a penalty equal to zero yielding the unpenalized estimate.

3



1. Introduction

The optimal roughness penalty parameter can again be chosen by cross-validation.
Alternatively, Wand (2003) points out the strong analogy between smoothing and linear
mixed model estimation. This correspondence leads to an estimate for the roughness
penalty parameter via restricted maximum likelihood (REML) estimation.

Although a penalized approach diminishes the emphasis on precise knot selection, it
remains an active research area. For example, a recent paper by Basna et al. (2022)
presents a method that assumes flexible knot locations and estimates them along with
the spline coefficients.

1.1.2. Mean and Covariance Function

Just as in univariate or multivariate data analysis, a central goal of FDA is to describe
the location and variability of the observed functions. Formally, this corresponds to
estimating the mean and the covariance function of the underlying stochastic process
{F (t)}t which are given as the pointwise mean and covariance function

µ(t) = E(F (t)), C(t1, t2) = Cov(F (t1), F (t2))

for all t, t1, t2 ∈ I. For a set of fully observed functional observations f1, . . . , fn sampled
independently from the process {F (t)}t these characteristics µ and C of the process
can be estimated as

µ̂(t) = 1
n

n∑
i=1

fi(t) for all t ∈ I

Ĉ(t1, t2) = 1
n

n∑
i=1

(fi(t1) − µ̂(t1))(fi(t2) − µ̂(t2)) for all t1, t2 ∈ I. (1.3)

Similar to covariance estimators for multivariate data, the divisor n − 1 can be used
instead of n to obtain an unbiased estimator.

However, since the functions are usually observed only at discrete time points and
with possible additive error, only these discrete, erroneous values can be used to estimate
the mean and covariance. One option is to estimate the underlying curves using the
methods described in Subsection 1.1.1, and then use these estimates in the formulas
given in (1.3).

Particularly simple forms for mean and covariance are obtained if one uses basis
representations f̂i(t) = ∑N

k=1 ξ̂ikbk(t) for all i = 1, . . . , n, t ∈ I with same basis functions
for each i = 1, . . . , n for the estimation of the underlying functions. Then the estimate
for the mean becomes

µ̂(t) = 1
n

n∑
i=1

N∑
k=1

ξ̂ikbk(t) =
N∑

k=1
ξkbk(t)

4



1.1. Functional Data Analysis

for all t ∈ I, with ξk = 1
n

∑n
i=1 ξ̂ik being the mean of the estimated basis coefficients

and, similarly, the estimate for the covariance becomes

Ĉ(t1, t2) =
N∑

k=1

N∑
l=1

bk(t1)bl(t2)Σ̂kl where Σ̂kl = 1
n

n∑
i=1

(ξ̂ik − ξk)(ξ̂il − ξl)

for all k, l = 1, . . . N is the covariance of the estimated coefficients.
However, this two-step approach is only reasonable if a sufficient number of observa-

tions yij at time points tij ∈ I, j = 1, . . . ,mi are available for each curve fi, i = 1, . . . , n.
In particular, one needs more observations than basis coefficients for each curve, or one
must rely on a penalized estimate for each underlying function. An alternative approach
exploits the fact that in the Hilbert space L2 the mean can be represented as the mini-
mizer of the sum of squared distances to the mean, i.e. µ̂ = argminµ∈L2

∑n
i=1 ∥fi −µ∥2

L2 .
Choosing a basis representation b1, . . . , bN and approximating the square of the L2 dis-
tance by the squared sum of distances at the observed time points provides the estimate
µ̂ = ∑N

k=1 ξ̂kbk where

ξ̂1, . . . , ξ̂N = argminξ1,...,ξN

n∑
i=1

mi∑
j=1

(
yij −

N∑
k=1

ξkbk(tij)
)2

.

Consequently, the mean µ̂ is estimated in the same way as the basis representation
for each of the underlying functions in 1.2, except that the pooled data from all of the
underlying functions are used simultaneously to estimate the mean. As a result, one
can use any of the various basis functions described in Subsection 1.1.1 for estimation.
In particular, a B-spline basis can be employed in combination with an additional
roughness penalty.

Similarly, for sparsely observed functional data, it is unreliable to estimate the covari-
ance function based on pre-smoothed individual functional observations f̂i, i = 1, . . . , n,
as pointed out by Yao et al. (2005). They suggest estimating the covariance function
C : I×I → R by local linear smoothing of the empirical covariances (yij1 −µ̂(tij1))(yij2 −
µ̂(tij2)) at observed pairs of time points tij1 , tij2 with j1, j2 ∈ I, j1 ̸= j2 and i = 1, . . . , n.
Note that the observations on the diagonal, i.e. the observed variances, are not in-
cluded in the estimation of the covariance. This is because the measurement error ϵj,
j = 1, . . . ,mi appears in the covariance Cov(Yij, Yij) = Var(Fi(tij)) + Var(ϵji) but not
in the covariance of different time points, since the measurement error is assumed to be
independent.

Thus, the optimization problem for this covariance smoothing procedure is very sim-
ilar to that of the smooth mean estimation. The difference is that the domain of the
covariance function C is I × I, i.e. two-dimensional. Consequently, a method suitable
for this domain is required. One approach is to select a univariate basis representation

5



1. Introduction

and then use the products of these basis functions to obtain a basis with the desired
domain. Using a B-spline basis as the univariate basis results in the so-called tensor
product splines (e.g. Wood, 2017). These, in turn, can be accompanied by a roughness
penalty to achieve additional smoothing, with the penalty parameter chosen either via
REML (Goldsmith et al., 2013) or (an approximation of) leave-one-subject-out cross-
validation (Xiao et al., 2018). Extensions of this covariance smoothing approach (e.g.
Di et al., 2014; Cederbaum et al., 2018) have also been considered for more complex
data structures.

While Xiao et al. (2018) and Cederbaum et al. (2018) account for the symmetry
constraint of the covariance matrix, covariance estimates obtained by the covariance
smoothing techniques described above are not guaranteed to be positive semidefinite
in general. An alternative approach that incorporates this constraint is to estimate
the covariance by estimating a reduced-rank mixed-effects model, which results in a
reduced-rank covariance (James et al., 2001). This model has been estimated more ef-
ficiently using the Newton-Raphson procedure on the Stiefel manifold (Peng and Paul,
2009). Recently, a novel low-rank covariance estimator which is guaranteed to be pos-
itive semidefinite has been developed by Wang et al. (2022), utilizing the reproducing
kernel Hilbert space framework.

1.1.3. Functional Principal Component Analysis

Covariance functions capture the variability present in observed functions. However,
analyzing and understanding this variability using these covariance functions, which are
a two-dimensional surfaces, is not very intuitive. Another key tool within FDA that
provides a clearer visual representation and meaningful decomposition of the variability
present in functional data is functional principal component analysis (FPCA).

FPCA extends principal component analysis (PCA), a technique widely used in mul-
tivariate data analysis, and adapts it to the realm of functional data. Analogous to
PCA, FPCA transforms the coordinate system to an orthonormal coordinate system
such that the first new basis function, the first functional principal component, is the
direction along which the functional data f1, . . . , fn varies the most. Subsequent func-
tional principal components are orthogonal to the previous ones and capture the re-
maining variance in the data, ranked in decreasing order of magnitude of the variance.
Hence, in total there are n functional principal components.

As Ramsay and Silverman (2005) observe, computing the functional principal com-
ponents that successively maximize the explained variance is equivalent to solving the
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1.1. Functional Data Analysis

eigenequation〈
1
n

n∑
i=1

fi(·)fi(t2) , ϕ
〉

L2

=
∫

I

1
n

n∑
i=1

fi(t1)fi(t2)ϕ(t1)dt1 = λϕ(t2) (1.4)

for a functional principal component ϕ ∈ L2 with ∥ϕ∥L2 = 1 and corresponding eigen-
value λ ∈ R. Thus, like multivariate PCA, FPCA can be framed as an eigenvalue
problem, which is also true in general Hilbert spaces.

Assuming the mean 1
n

∑n
i=1 fi is as usually subtracted from the observations before

computing the FPCA, we have 1
n

∑n
i=1 fi = 0 and the bivariate function (t1, t2) →

1
n

∑n
i=1 fi(t1)fi(t2) gives an estimate for the covariance function in the case of completely

observed functional data f1, . . . , fn. One way to account for the fact that functional
data are typically observed discretely is again to smooth the data before computing
the principal components (Besse and Ramsay, 1986; Ramsay and Dalzell, 1991), where
an additional penalty term can also be used to obtain further regularized principal
components (Silverman, 1996; Huang et al., 2008).

However, as Yao et al. (2005) point out, relying on pre-smoothed functional obser-
vations for FPCA does not lead to robust results for sparsely observed functions. In
this case, an alternative characterization of FPCA using the spectral decomposition of
the covariance operator C : L2 → L2, f 7→

∫
I C(t1, ·)f(t1)dt1 of the underlying stochas-

tic process {F (t)}t∈I as proposed in Dauxois et al. (1982) is beneficial. Indeed, the
Karhunen-Loève theorem (Karhunen, 1946; Loève, 1946) gives the decomposition of
the process {F (t)}t∈I as

F (t) = µ(t) +
∞∑

k=1
Zkϕk(t) (1.5)

where ϕk, k ∈ N are the orthonormal eigenfunctions of the covariance operator C for
the eigenvalues λ1 ≥ λ2, · · · ≥ 0, respectively, and Zk are the uncorrelated principal
component scores with E(Zk) = 0. For more details on this widely used representation
of second-order stochastic processes (i.e with mean and covariance functions) refer to
Hsing and Eubank (2015).

It is evident that both perspectives of FPCA, maximizing the explained variance
and decomposition of the covariance of the underlying stochastic process, lead to the
same functional principal components if the covariance function C for the underlying
stochastic process {F (t)}t∈I is estimated as the covariance of the fully observed (or
previously smoothed) functions, given in (1.3). However, an eigenvalue analysis of
the covariance operator also defines FPCA for sparse observations, since one can use
any estimator for the covariance function. In particular, one can use an estimator
that is better suited for sparse observations, i.e. covariance smoothing, as discussed in
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Subsection 1.1.2. Moreover, the stochastic process perspective has also led to further
developments, such as FPCA for multivariate functions observed on different domains
(Happ and Greven, 2018) and principal components for nested functional observations
(Di et al., 2014).

Similar to estimating the mean and the covariance function, particularly neat forms
of the principal component functions can be obtained by using the same basis to rep-
resent all functions f̂i(t) = ∑N

k=1 ξ̂ikbk(t) with t ∈ I for all i = 1, . . . , n. In this case
the functional principal component decomposition can be computed by solving the ma-
trix eigenequation Σ̂Gψ = λψ for ψ ∈ RN and λ ∈ R, where Σ̂ with entries Σ̂kl,
k, l = 1, . . . , N is the estimated covariance of the basis coefficients as given in Equation
(1.3) and G is the Gram matrix corresponding to the basis b1, . . . , bN ∈ L2. That is,
G has entries Gkl =

∫
I bk(t)bl(t)dt for k, l = 1, . . . , N . Denote by ψi = (ψi1, . . . , ψiN)T ,

i = 1, . . . , N the solutions to the above eigenequation. Then, the functional principal
components are obtained as ϕi = ϕ̃i

∥ϕ̃i∥L2
with ϕ̃i(t) = ∑N

k=1 ψikbk(t) and with correspond-
ing eigenvalues λi for all i = 1, . . . , N (cf. Ramsay and Silverman, 2005; Reiss and Xu,
2020). Note that in this case the number of principal components is not only bounded
by the number of observations n but also by N , the number of basis functions with
N ≤ n.

When tensor product splines are used to smooth the covariance function, the compu-
tation of the functional eigenvalues can be reformulated as a matrix eigenvalue problem,
similar to the case if one uses a fixed basis for pre-smoothing as described above. Thus,
using a tensor product basis for smoothing yields an explicit spline representation of
the estimated eigenfunctions (Reiss and Xu, 2020).

Similar to PCA, the calculation of scores, i.e. projections of the data onto the func-
tional principal components, is crucial. These scores can serve multiple purposes. They
can be used to obtain a low-dimensional representation of the original functions via trun-
cating the sum in Equation (1.5), hence only considering a small number of principal
component functions. These low-dimensional approximations of the original functions
can then be used for further statistical analyses such as regression, clustering, classifi-
cation or visualization. Furthermore, the scores themselves can also be used for similar
analysis purposes.

If the functions fi, i = 1, . . . , n are densely observed or pre-smoothed versions are
used, the principal component scores ⟨ϕk, fi⟩L2 , k ∈ N can be computed using numerical
integration routines. However, this can be inaccurate if the curves are sparsely observed.
Therefore, Yao et al. (2005) propose PACE (Principal Component Analysis through
Conditional Expectation), where they predict the scores as expectations conditional on
the observed data, similar to the prediction of random effects in a linear mixed model.
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1.1. Functional Data Analysis

1.1.4. Regression for Functional Response

The objective of regression is to establish a relationship between one or more indepen-
dent variables, often referred to as covariates, and a dependent variable, known as the
response. While classical regression analysis (e.g. Fahrmeir et al., 2013) assumes that
all variables are scalar or multivariate vectors, FDA introduces three different scenar-
ios (see e.g. Morris, 2015; Greven and Scheipl, 2017): functional covariates and scalar
or multivariate response (scalar-on-function), functional response and scalar covariates
(function-on-scalar), and functional covariates and response (function-on-function). As
parts of this thesis are concerned with (flexible) regression for functional object data as
the response given scalar covariates, here function-on-scalar regression is most relevant
among those and will be reviewed in more detail in the following. Nonetheless, it is
important to note that methods developed for function-on-function regression are also
useful, since function-on-scalar regression can be seen as a special case of function-on-
function regression with constant functions as covariates.

The simplest case of function-on-scalar regression, the linear model for the functional
observations fi given scalar covariates xi1, . . . , xiK for all i = 1, . . . , n, is defined as

fi(t) = β0(t) +
K∑

k=1
xikβk(t) + ϵi(t) (1.6)

for all t ∈ I. Here β0 ∈ L2 is a functional intercept, β1, . . . , βK ∈ L2 denote the effect
functions and ϵi ∈ L2 are i.i.d. error functions for all i = 1, . . . , n with E(ϵi(t)) = 0 for
all t ∈ I pointwise. This function-on-scalar model can also be seen as a special type of
varying coefficient model (Hastie and Tibshirani, 1993).

Estimating model (1.6) based on discrete observations yij at time points tij, j =
1, . . . ,mi for all i = 1, . . . , n can, like mean estimation, be done using a basis ex-
pansion for the coefficient functions βk, k = 1, . . . , K. If the remaining errors ϵi(tij),
j = 1, . . . ,mi, i = 1, . . . , n are further assumed to be independent, this results in a
linear regression problem for estimating the basis coefficients, which can be approached
using penalized least squares estimation (Reiss et al., 2010). However, errors ϵi(tij) for
observations of the same function, i.e. for same i = 1, . . . , n, are typically correlated.
To account for this Reiss et al. (2010) iterate between estimating the covariance of
the error function and penalized generalized least squares estimation of the basis co-
efficients while Guo (2002) introduce random effects for each function to account for
within-function correlation. The latter has also been used to account for the correlation
between dimensions of multivariate functions (Volkmann et al., 2023).

It is noteworthy that, as with unconditional mean estimation, there are several dif-
ferent modeling and fitting approaches besides spline expansions for the (often assumed
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smooth) intercept and effect functions. If the observations on each function occur at
the same time points, Fan and Zhang (2002) suggest fitting separate linear models at
each time point and then smoothing the resulting coefficient functions. Hoover et al.
(1998) and Wu and Chiang (2000) examine the use of kernel methods to estimate the
coefficient functions, while Xie and Kong (2023) and Reimherr et al. (2023) use a re-
producing kernel Hilbert space representation of the regression function, the latter even
on certain manifolds, which are more complex domains than the interval I ⊂ R.

Note that the linear function-on-scalar model (1.6) discussed up to this point can be
extended in multiple ways. For the more general function-on-function model, a com-
prehensive framework for these extensions is presented in Greven and Scheipl (2017).
In this paper, the authors discuss how established models for scalar data, including
generalized, mixed and additive models, can be extended to accommodate functional
data. In this context, one possible extension of the linear function-on-scalar model is to
include non-linear effects of the scalar covariates. Besides additive structures (Scheipl
et al., 2015), i.e. regression functions that are sums of non-linear functions in each co-
variate, interactions of covariates (Liu et al., 2023) and fully flexible regression functions
based on neural network architecture (Luo and Qi, 2023) have been considered.

Another topic of recent interest is how to select the variables that actually affect the
functional response, in the case of many potentially relevant scalar covariates, i.e., for
large K. This variable selection problem has been addressed using various penalization
approaches (Chen et al., 2016; Barber et al., 2017; Mirshani and Reimherr, 2021; Cai
et al., 2022) including LASSO and elastic net type penalization. In contrast, by fitting
their models with gradient boosting (e.g. Hofner et al., 2014), Brockhaus et al. (2017)
and Stöcker et al. (2021) incorporate variable selection via early stopping.

1.1.5. Registration

A central aspect of the analysis of functional data discussed so far is that observations
of different functions at the same time point t can be compared, e.g., to estimate a
pointwise mean. However, this is not always the case for observed functional data.
Often the beginning of the observed time interval varies (time shift), or the time is
stretched or compressed. Thus, methods are required to align the time patterns of
the observed curves. For an overview of existing approaches refer to Marron et al.
(2015). An essential part of each of these approaches is to define a measure of the
(dis)similarity of two functions and to give a set of possible time transformations, called
re-parametrizations or warping functions.

Since the dissimilarity of two functions f1, f2 ∈ L2 is usually measured by their L2

distance (with smaller distances corresponding to greater similarity), it seems natural
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to formulate the alignment problem as an optimization problem, where one seeks to
minimize this dissimilarity, i.e. find argminγ∈Γ ∥f1 − f2 ◦ γ∥L2 for a set of suitable re-
parametrization/warping functions Γ = {γ : I → I}. A common assumption here is
that γ ∈ Γ is monotonically increasing and surjective (onto). However, this choice of
similarity measure and unrestricted warping is problematic, since the resulting align-
ment is not symmetric, which means aligning f2 to f1 will not be equivalent to aligning
f1 to f2. Furthermore, the so-called “pinching” effect (Marron et al., 2015) can occur,
that is infγ∈Γ ∥f1 − f2 ◦ γ∥L2 can be zero even if f2 is not a warped version of f1.

To overcome this “pinching” problem, one can limit the slope of the warping functions.
This can be done by restricting the set of possible warping functions (Ramsay and
Silverman, 2005; Vitelli et al., 2010) or adding a regularization term to the dissimilarity
measure, which is done in various dynamic time warping algorithms, where the first
derivative of the warping function is penalized (Sakoe and Chiba, 1978; Keogh and
Ratanamahatana, 2005). Ramsay and Li (1998) combine both approaches and use a
penalized basis representation for the warping functions, which is similar to Wrobel et al.
(2019) for a different similarity measure suited to discrete observations on exponential
family functions. Alternatively, a distribution can be assumed for the warping functions
in a Bayesian model (Cheng et al., 2016; Lu et al., 2017). These penalized or Bayesian
approaches can also be extended to incompletely observed functions (Bauer et al., 2021;
Matuk et al., 2021).

But since all of these approaches restrict the amount of warping, they do not impose
a proper metric on the space of functions modulo re-parametrization, and any further
analysis is not independent of the initial parametrizations of the observed functions. In
contrast, Srivastava and Klassen (2016) manage to define a proper metric on the set of
absolutely continuous curves A (which is a subspace of L2) modulo translation (adding
a constant) and re-parametrization by considering the Fisher-Rao Riemannian metric
as a dissimilarity measure. They show that for two absolutely continuous functions f1

and f2, the Fisher-Rao metric simplifies to the L2-distance after applying the square-
root-velocity (SRV) transformation to both functions f1, f2 defined as

qi(t) =


ḟi(t)√
|ḟi(t)|

if ḟi(t) ̸= 0

0 if ḟi(t) = 0
for i = 1, 2. (1.7)

Here, ḟi denotes the first derivative of fi with respect to the time t ∈ I.
Since this distance is invariant under simultaneous warping of both functions, mini-

mizing it over all admissible warping functions yields a proper distance on the quotient
A/Γ modulo translation, where Γ is the set of monotonically increasing, onto and dif-
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ferentiable warping functions. More precisely, this elastic distance d is given as

d([f1], [f2]) = inf
γ∈Γ

∥q1 − (q2 ◦ γ)
√
γ̇∥L2 , (1.8)

where [f1], [f2] ∈ A/Γ denote equivalence classes with respect to warping. For more
details on the SRV framework see Srivastava and Klassen (2016).

In this framework, to obtain an alignment for a set of observed functions f1, . . . , fn,
n ∈ N one first computes the Fréchet mean [µ̂] ∈ A/Γ with respect to the elastic
distance, i.e., the minimizer of the sum of squared distances to the observed functions
(see Subsection 1.2.1 for a precise definition). Then, the functions aligned to this mean
[µ̂] are considered to be “aligned” to each other.

Although the mean [µ̂] is completely invariant under the initial parametrization of the
observed functions, one must be careful with the interpretation of it and the aligned
functions. One point to note is that often, for example for visualization or further
analysis, a representative of the equivalence class [µ̂] needs to be chosen. Srivastava
and Klassen (2016) propose to choose the representative such that the average warping
of the observed functions is zero. However, this means that this representative, and
thus the functions optimally aligned to that representative, are not independent of the
initial parametrization of the observed functions. This must be taken into account in
any further analysis such as FPCA or regression. A second point is that the alignment
with respect to the elastic distance (1.8) is not transitive. This means that although
the functions aligned to the mean are considered to be an aligned set of functions, any
two functions in this set are in general not aligned to each other with respect to the
elastic distance (1.8).

Therefore, although the SRV framework allows for a fully invariant analysis with
respect to the parametrization of the observed functions, it is typically used more for
separating the variation of the observed functions into amplitude (the orbit of a function
modulo warping) and phase (warping) variation. In contrast, Pegoraro and Secchi
(2023) propose a fully parametrization invariant analysis by representing functions as
merge trees, which are identical if and only if the functions are in the same orbit modulo
warping.

In summary, there are various methods available to analyze functions observed with
different temporal patterns. For 1-dimensional functions, a completely parametrization
invariant analysis seems to be often not desired, though, since the remaining information
contains only the height of the extrema and their order. In contrast, for functions in 2
or 3 dimensions, the equivalence classes modulo re-parametrization are just the images
of the functions (plus the orientation, i.e. in which direction the image of a function
(the curve) is traversed). In this case, analysis of the image is often desired, for example
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if they represent the outline of an object. See Subsection 1.3.2 for more details on how
the SRV framework can be used for an elastic analysis of such curves.

1.2. Selected Methods from Object Data Analysis

The data objects in this thesis can naturally be understood as observations in quotient
spaces of L2 function spaces. These object spaces are inherently more complex than
the Hilbert space L2 discussed in the previous section, which serves as a model space
for functional data. In particular, quotient spaces typically lack a linear structure,
meaning that addition and scalar multiplication are not defined in these spaces. As
a result, concepts developed for functional data such as FPCA (Subsection 1.1.3) and
regression (Subsection 1.1.4) are not readily applicable, requiring the development of
methods tailored to handle complex data structures.

To summarize the statistical analysis of complex data objects, the term “object ori-
ented data analysis” was introduced by Wang and Marron (2007). Thus, object-oriented
data analysis, or shorter object data analysis (e.g. Patrangenaru et al., 2018), is con-
cerned with the analysis of non-Euclidean data, i.e., data that cannot be represented by
unconstrained scalar numbers or multivariate vectors. In this sense, FDA is a special
case of ODA, where the functions in L2 are the data objects. However, L2 has a linear
structure, allowing many standard Euclidean concepts, such as mean and covariance, to
be extended to functional data by pointwise analogies, as demonstrated in the previous
section.

The focus in this section is on methods for object data that have no natural repre-
sentation in a Hilbert space, but can be conceptualized as elements of an object space
with at least a metric structure. Examples of such metric object data are the infinite
dimensional covariance functions along the frequency spectrum for different languages
(Pigoli et al., 2014) and phylogenetic trees, which provide graphical representations
of evolutionary relationships (Holmes, 2003). However, some object data can also be
understood as elements of a curved space, i.e. a manifold, which is called a Riemannian
manifold if it is equipped with smoothly varying inner products and thus with a metric
and a local notion of angles. Examples of object data spaces that have the structure of a
Riemannian manifold are the unit sphere which serves as an object space for directional
data (e.g. wind direction in Mardia and Jupp, 2000), the space of symmetric positive
definite matrices used for functional connectivity analysis of Magnetic Resonance Imag-
ing (MRI) data (You and Park, 2021) and Stiefel and Grassmanian manifolds used in
computer vision and pattern recognition (Turaga et al., 2008).

These examples demonstrate that the term “object (oriented) data analysis” covers
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a wide range of data problems that are modeled in a variety of mathematical object
spaces. Each of these spaces requires specialized analysis methods. For a comprehensive
introduction and overview of this topic, the textbook authored by Marron and Dryden
(2021) provides valuable insights and discusses potential analysis approaches for several
illustrative examples. The goal of this section is to highlight object data analysis meth-
ods that are relevant to this thesis, with an emphasis on methods that require only a
metric structure. In the following we assume that the data objects υ1, . . . , υn, n ∈ N are
elements of an object space Υ which is at least equipped with a metric dΥ : Υ×Υ → R.

1.2.1. Fréchet Means

The Fréchet mean (Fréchet, 1948), also sometimes known as Karcher mean (Karcher,
1977) in particular on Riemannian manifolds, generalizes the notion of a central or
average object of a set of objects from Euclidean to metric spaces. For a set of observed
data objects υ1, . . . , υn ∈ Υ the Fréchet mean µ̂F R is defined as an element in Υ that
minimizes the sum of squared distances from µ̂F R to each of the observed objects. That
is

µ̂F R = argminµ∈Υ

n∑
i=1

dΥ(υi, µ)2. (1.9)

In Euclidean spaces, the Fréchet mean is the same as the conventional arithmetic
mean. Other familiar location parameters can be obtained as Fréchet means when
alternative distances or powers of distances are used. For example, the median can be
obtained as the minimizer of the sum of absolute distances. Note that µ̂F R ⊆ Υ is a
set of objects, which may be the empty set if the minimum in Equation (1.9) is not
attained, or may contain multiple elements in Υ if the minimum is not unique. However,
in Euclidean spaces as well as in general Hilbert spaces the minimum is unique (see e.g.
Panaretos and Zemel, 2020), i.e. the Fréchet mean contains a single element.

For a random variable U : Ω → Υ defined on a probability space (Ω,F , P ), one
can define the population mean, called the expected element, analogous to the Fréchet
mean. By replacing the sum of the squared distances with the expectation of the squared
distance, the expected element of U becomes argminµ∈Υ EP (dΥ(U, µ)2). In this sense
Fréchet means are empirical versions of expected elements and a set version of the law
of large numbers holds (Ziezold, 1977) , i.e. the set of empirical Fréchet means converges
to the set of expected elements.

However, expected elements, just like Fréchet means, are also set-valued and can be
either empty or can contain more than one element. Consider for example a uniform
distribution on the set Υ = [−1, 1]\{0}. In this case the expected element is the empty
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set. Contrarily, for the uniform distribution on a sphere every point on the sphere is
a valid Fréchet mean. The study of what conditions can be imposed on the metric
space Υ and on the distribution of the random variable U to guarantee the existence
and uniqueness of the minimizer is of ongoing interest. For example Le (1998) considers
Fréchet means on (discrete) shape spaces, Charlier (2013) discusses distributions on the
circle and Panaretos and Zemel (2020) consider Fréchet Means in a Wasserstein Space.

1.2.2. Regression in Metric Spaces

In addition to describing the location of observed objects using the Fréchet mean, it
is often also desired to establish a relationship between objects and covariates within
a regression model. In this subsection the focus is on objects υ1, . . . , υn in the metric
space Υ as response variables and scalar or multivariate covariates x1, . . . ,xn ∈ Rd.
This regression setting may be called object-on-scalar regression, which mimics the
term function-on-scalar regression used in FDA.

However, unlike the response space L2 in FDA, Υ has no notion of linearity, there-
fore one cannot perform addition and scalar multiplication, which is used to define
function-on-scalar regression. Moreover, regression for functions in L2 yields a point-
wise perspective, which allows, for example, to assume a pointwise distribution for the
response, but such a pointwise perspective cannot be taken for responses in Υ. If Υ
inherits only a metric structure, any intrinsic regression model can only be based on
that metric.

One approach is to extend kernel regression by generalizing the Nadaraya-Watson
estimator (1.1) from Euclidean data to metric data. This estimator gives the predicted
response for a covariate value x as a weighted average of the observed values, where the
weights depend on the proximity of the observed covariates to x. To obtain an analogous
estimator for a metric response, one can replace the weighted average by a weighted
Fréchet mean (Hein, 2009; Davis et al., 2007). Thus, a nonparametric object-on-scalar
regression estimator can be expressed as

υ̂(x) = argminυ∈Υ

∑n
i=1 dΥ(υ, υi)2K

(
x−xi

h

)
∑n

i=1 K
(

x−xi

h

) ,

where K is an appropriate multivariate kernel function. Typical kernels assign a higher
weight to observations xi that are closer to x and a lower weight to those farther away.

In contrast to this local averaging approach, in order to generalize linear regression
Petersen and Müller (2019) developed a global model they call Fréchet regression. They
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estimate their model also as a weighted Fréchet mean

υ̂(x) = argminυ∈Υ

n∑
i=1

ωidΥ(υ, υi)2,

but with the weights ω1, . . . , ωn obtained from standard linear regression as ωi = 1 +
(xi − x̄)⊤Σ̂−1(x− x̄) with x̄ = 1

n

∑n
i=1 xi being the mean of the observed covariates and

Σ̂ = 1
n

∑n
i=1(xi − x̄)(xi − x̄)⊤ their empirical covariance matrix. Petersen and Müller

(2019) show that if Υ is a separable Hilbert space (e.g. L2) their model coincides with
the usual linear regression model.

Note that the weights used for Fréchet regression, unlike the weights used in the
Nadaraya-Watson estimator, can be negative, resulting in a global behavior of the
regression estimate. However, both approaches only implicitly define the regression
function as a weighted Fréchet mean, so no global model parameters such as intercept
or slope are estimated. Such interpretable model parameters seem difficult to define in
general metric spaces, but there have been proposals for the case where Υ additionally
has the structure of a Riemannian manifold, which are briefly presented in the following.

1.2.3. Regression on Riemannian Manifolds

Since (connected) Riemannian manifolds inherit a metric (see Lee, 2018, for an intro-
duction to Riemannian manifolds), the methods discussed in the previous subsection
can also be applied if Υ is a Riemannian manifold. But unlike in general metric spaces,
on Riemannian manifolds there is the notion of the tangent space Tυ0Υ at a point
υ0 ∈ Υ which gives a parametrization of all geodesics passing through υ0. This yields
an interpretation of υ0 as an intercept and the velocity β ∈ Tυ0Υ with which υ0 is
traversed as a slope parameter. With this observation, several authors (Shi et al., 2009;
Fletcher, 2013; Niethammer et al., 2011) propose geodesic regression as a generalization
of simple linear regression for one scalar covariate.

For this geodesic model, the conditional distribution of U ∈ Υ given a covariate x ∈ R
as

U = Exph(x)(ϵ) with h(x) = Expυ0(βx), (1.10)

where ϵ is a random variable taking values in Th(x)Υ. Thereby, the exponential map
Expυ0(β) for a given point υ0 ∈ Υ takes the tangent vector β ∈ Tυ0Υ and maps it to
the point on the geodesic starting in υ0 with velocity β after one time step.

For observations υ1, . . . , υn ∈ Υ and observed covariates x1, . . . , xn ∈ R the geodesic
regression model can be estimated via least squares, that is

(υ̂0, β̂) = argminυ0,β

n∑
i=1

dΥ(Expυ0(βxi), υi)2. (1.11)
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Fletcher (2013) proposes to use a gradient decent algorithm to find the minimizer of
(1.11) which requires the computation of the inverse of the exponential map, called log
map as well as taking derivatives of these. This means that for a given manifold, the
concrete computability of the estimators depends on the availability of expressions for
these functions.

The geodesic regression model (1.10) has been extended to include non-linear effects.
For example Hong et al. (2014) still consider geodesic paths but with varying speed, and
Hinkle et al. (2014) include polynomials as a generalization of geodesics. Furthermore,
the geodesic model has been extended to multiple regression, i.e. including multivariate
covariates (Cornea et al., 2017), and also to incorporate additive model terms (Lin et al.,
2022).

1.3. Functional Object Data

In this section, a brief description of the quotient spaces derived from the function space
L2, which are considered in this thesis, will be provided. This includes a discussion of
how these spaces can be equipped with an appropriate metric. For more detailed
information, the reader is encouraged to consult the corresponding chapters below.

1.3.1. Functional Shapes

In this thesis, one of the quotient spaces under consideration is introduced for the
purpose of modeling the shape of an object. In this context, the term “shape” refers to
“what is left when the differences which can be attributed to translations, rotations, and
dilatations have been quotiented out”(Kendall, 1984, p. 82). This informal definition
originally motivated the field of statistical shape analysis, where a shape is defined as
a collection of m ∈ N landmark points in a Euclidean space Rd, d ∈ N (see e.g. Dryden
and Mardia, 2016).

This shape analysis of point configurations can be extended to continuous shapes
defined by continuous multivariate functions (Srivastava and Klassen, 2016), similar
to how multivariate data analysis has been adapted to the analysis of functional data
(see Section 1.1). More precisely, a functional shape is given by an equivalence class
of continuous functions f : I → Rd, d ∈ N with respect to the invariances translation,
rotation and rescaling (dilatation). Formally, these equivalence relations ∼ are defined
for f 1,f 2 : I → Rd as

• translation: f 1 ∼ f 2 ⇔ ∃a ∈ Rd such that f 1 = f 2 + a,
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• rotation: f 1 ∼ f 2 ⇔ ∃Q ∈ SO(d) such that f 1 = Qf 2. Here SO(d), denotes
the special orthogonal group, also called rotation group, which is the group of
orthogonal matrices in Rd×d with determinant 1,

• rescaling: f 1 ∼ f 2 ⇔ ∃α > 0 such that f 1 = αf 2.

In order to apply methods from object data analysis (Section 1.2) to the shape equiv-
alence classes defined by one or more of the above invariances, it is necessary to equip
the set of equivalence classes with at least a metric. For translation, this is straightfor-
ward, since in this case every equivalence class can be identified with an element in L2

0,
the space of square-integrable functions with integral zero constraint, which is a Hilbert
space.

This is different from rescaling, where the equivalence classes can be identified with
elements on the unit sphere S(L2) in L2, which is a nonlinear space, i.e. does not have
a Hilbert space structure. For this identification one needs to exclude the 0 element,
which is also done in the following discussion. To equip L2 modulo rescaling with a
suitable distance, various metrics defined on the unit sphere can be used. For example
simply the metric of L2 restricted to the unit sphere S(L2), or the geodesic distance,
induced by the Riemannian manifold structure of S(L2). Furthermore, a Procrustes-
type distance has been proposed, which is defined as infα>0 ∥f 1 − αf 2∥L2 for f 1 and
f 2 on the sphere S(L2).

Since the special orthogonal group SO(d) acts by isometries, for the set of equivalence
classes modulo rotation, a metric is canonically given by the quotient metric (Burago
et al., 2001) as infQ∈SO(d) ∥f 1 − Qf 2∥L2 for [f 1], [f 2] ∈ L2/SO(d), which has the same
form as the Procrustes distance for scaling. For this reason the distance combining
both has been termed full Procrustes distance in statistical shape analysis (Dryden
and Mardia, 2016, e.g.) and this term will be used for continuous shapes analogously
here. That means that the full Procrustes distance for continuous shapes, i.e. functions
modulo translation, rotation and rescaling is given as infQ∈SO(d),α>0 ∥f 1 − αQf 2∥L2 for
[f 1], [f 2] ∈ S(L2

0)/SO(d), where L2
0 is the subspace of L2 with functions integrating to

zero.
One additional point worth noting is that, in the special case of planar shapes (i.e.

equivalence classes of functions mapping to R2), the identification with the complex
plane C allows us to represent rotation as multiplication with imaginary elements.
Consequently, simultaneous rotation and rescaling can be expressed as multiplication
by a complex number, which means that the corresponding equivalence classes can be
associated with the complex sphere. Thus, in this case, the equivalence classes with
respect to both rotation and rescaling can be equipped with a Riemannian manifold

18



1.3. Functional Object Data

structure, similar to how it has been done for planar landmark shapes in Kendall (1989).
However, as pointed out there, in higher dimensions, even the landmark shape space
lacks a manifold structure. Therefore, one cannot expect functional shapes in three or
more dimensions to possess one.

1.3.2. Elastic Curves and Shapes

For the functional shapes discussed in the previous subsection, usually only the image
of the functions is of interest, not the parametrization by coordinate functions. Thus,
in addition to invariance with respect to translation, rotation, and rescaling, one might
also be interested in invariance with respect to re-parametrization. In fact, there are
also numerous scenarios where exactly the image of the function is what represents
the objects of interest, such as handwritten symbols or object outlines, where size and
orientation might be considered important. In these cases, one might seek an analysis
of functions that is invariant with respect to parametrization, but not invariant with
respect to traditional shape invariances.

In situations where the focus is on the image of a continuous function f : I → Rd,
d ∈ N, it is referred to as a curve in the following. Note, however, that the term
“curve” can be somewhat ambiguous, sometimes referring to either the image or the
entire function. Therefore, the term “elastic curves” is used to indicate that equivalence
classes of functions modulo re-parametrization are the objects of interest.

To conduct a statistical analysis of these objects, it is necessary to establish a metric
on the resulting quotient space modulo re-parametrization. Srivastava et al. (2011)
propose to use the elastic distance discussed for 1-dimensional functions in Subsection
1.1.5. Analogous to (1.8), this distance for two absolutely continuous curves f 1,f 2 :
I → Rd can be calculated as infγ∈Γ ∥q1 − (q2 ◦ γ)

√
γ̇∥L2 where qi(t) = ḟ i(t)√

∥ḟ i(t)∥
if

ḟ i(t) ̸= 0 and zero otherwise for t ∈ I and i = 1, 2. Here ḟ i = (ḟi1, . . . , ḟid) denotes the
coordinate-wise derivative with respect to t, ∥ḟ i(t)∥ is its usual Euclidean norm in Rd

and Γ is the set of monotonically increasing, onto and differentiable warping functions.
Since the elastic distance is a proper metric on the quotient space of absolutely contin-

uous curves modulo translation and parametrization, it enables completely parametriza-
tion invariant analysis. Unlike for one-dimensional functions, it is quite obvious that
this is often the desired property. For example, if a two-dimensional function is used
to represent the outline of an object, only the image itself is relevant, not the speed at
which the parametrization traverses the outline, while for one-dimesional functions a
restricted/penalized re-parametrization might be more appropriate.

Figure 1.1 illustrates this contrast between the one-dimensional and the two-dim-
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Figure 1.1.: Planar cow shape (left, obtained from the R-package “fdasrvf” Tucker, 2020) parametrized
by different 2-dimensional functions f i : [0, 1] → R2, i = 1, 2, 3, for which both coordinate functions fi1(t)
and fi2(t), t ∈ [0, 1] are displayed (right).

ensional case. In this example, the cow shape (obtained from the R-package “fdasrvf”
Tucker, 2020) on the left is the image of all three two-dimensional functions shown on
the right. While it is not clear whether a separate analysis of the coordinate functions
should consider all three of them identically, it seem natural that, if the cow shape is
the object of interest, the analysis should not depend on which of the three functions
was used to create the shape.

Combining shape invariances with re-parametrization invariance, Srivastava et al.
(2011) originally introduced the elastic distance in the context of functional shape
data analysis, where they also proposed combined distances for all invariances rotation,
scaling, translation, and parametrization. In other words, they already introduced the
elastic analysis of functional shapes, which are referred to as elastic shapes in this thesis.

1.3.3. Densities

In a similar way, probability density functions f : I → R+ can be modeled as equivalence
classes of the function space L2 modulo rescaling, to account for the constraint that
densities must integrate to one. For densities however, directly defining a distance
on the quotient, as it was done for (elastic) shapes in the previous subsections, is less
convenient, since this quotient must additionally be restricted to non-negative functions.

Different transformations of density functions into a Hilbert space have been proposed
to accommodate both constraints, including the log hazard transformation, the log
quantile density transformation and the centered log ratio (clr) transformation (see e.g.
Petersen and Müller, 2016). In particular, the clr transformation establishes a one-
to-one correspondence between squared-log integrable (proper and improper) density
functions and the separable Hilbert space L2

0, the space of square-integrable functions
that integrate to zero. As a result, the clr transformation induces a Hilbert space
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structure on the squared-log integrable (proper and improper) density functions, known
as the Bayes Hilbert space (Egozcue et al., 2006; van den Boogaart et al., 2014).

To be more precise, rescaling establishes also an equivalence relation ∼ on the set
of squared-log integrable (proper and improper) functions, denoted as B = {f =
exp(g)|g ∈ L2(I)}. The resulting quotient set, denoted as B = B/∼, comprises equiva-
lence classes [f ] for f ∈ B. This set equipped with the operations [f1]⊕[f2] = [f1 ·f2] for
all [f1], [f2] ∈ B (addition), α ⊙ [f ] = [fα] for all [f ] ∈ B, α ∈ R (scalar multiplication)
and the scalar product defined by ⟨[f1], [f2]⟩B = 1

2|I|
∫

I

∫
I log

(
f1(x)
f1(y)

)
log

(
f2(x)
f2(y)

)
dx dy for

all [f1], [f2] ∈ B is referred to as the Bayes Hilbert space and it is isometrically iso-
morphic to L2

0. Note that to allow this identification of B with L2
0, the set of density

functions must be restricted to the square-log integrable densities and must be extended
to include improper density functions. But every equivalence class in B can either be
uniquely represented by a proper density function or contains only improper densities.

In addition to the Hilbert space structure, alternative metrics have been explored
for the space of probability density functions. In particular, the Wasserstein distance
(Panaretos and Zemel, 2019) is a popular choice for probability measures, while the
Fisher-Rao metric (Srivastava et al., 2007) introduces a manifold structure on the space
of density functions. However, identifying density functions with L2

0 offers the advantage
of performing statistical modeling in this well-known function space, which in principle
allows to directly derive methods originally developed for functional data, such as FPCA
(Hron et al., 2016) or regression (Scimone et al., 2021; Maier et al., 2022).

In practice, however, density functions are often unobserved and accessible only
through discrete samples from the distributions given by each density function. This
differs from the setting of discretely observed functions considered in FDA (Section 1.1),
since observations from a distribution with a given density are not observations of the
density with potential additive error, which would be needed to directly apply methods
for sparsely observed functions. To deal with the typically discrete observations in the
case of density functions, the common approach has been to estimate the observed den-
sities using pre-processing techniques. These include methods such as aggregating the
data using kernel density estimates (Maier et al., 2022), or using compositional spline
estimates based on histogram data, as proposed by (Machalová et al., 2021).
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1.4. Overview of Thesis Contributions in the Context of
Functional Object Data Analysis

As discussed in Section 1.1, there is a wide range of methods available for functional
data, including mean estimation, FPCA and flexible regression models capable of han-
dling sparse observations and error-prone data. This work aims to help bridge the
gap to the methods from ODA (Section 1.2) available for functional object data spaces
discussed in Section 1.3.

To this end, Paper I and Paper II add to Fréchet mean estimation for elastic curves
and shapes, respectively, in the square-root-velocity (SRV) framework in the case of
irregularly or sparsely observed curves. This is achieved by introducing splines for
modeling the mean in Paper I, and showing that certain splines are identifiable modulo
re-parametrization. These methods are available in the R-packages “elasdics” (Steyer,
2022) and “elastes” (Pfeuffer et al., 2023).

Paper III, IV and V add to regression methods available for elastic curves, shapes
and elastic shapes, respectively. In particular, Paper III proposes a generalization of
linear regression not only for these response spaces but also for quotient spaces under
an action by isometries, which do not need to inherit a manifold structure.

Paper VI develops FPCA for density functions in the Bayes Hilbert space taking into
account that usually there is only a discrete sample from each density available.
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2. Paper I: Elastic Analysis of Irregularly or
Sparsely Sampled Curves

Paper I introduces spline functions to model Fréchet means (Subsection 1.2.1) of irreg-
ularly and sparsely observed curves within the square-root-velocity (SRV) framework
(Subsection 1.3.2). It establishes identifiability statements for individual spline repre-
sentations under reparameterization and addresses their limitations. Additionally, the
paper demonstrates the application of the elastic distance for clustering and classifica-
tion. This is exemplified by clustering undocumented walking paths on the Tempelhof
field in Berlin and computing smooth mean paths for them. In a second application, the
paper classifies spirals drawn in a test for Parkinson’s disease based on their distance
to a smooth mean. All methods are made readily available in the R-package “elasdics”.
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Abstract
We provide statistical analysis methods for samples of curves in two or more
dimensions, where the image, but not the parameterization of the curves, is
of interest and suitable alignment/registration is thus necessary. Examples are
handwritten letters, movement paths, or object outlines. We focus in particu-
lar on the computation of (smooth) means and distances, allowing, for example,
classification or clustering. Existing parameterization invariant analysismethods
based on the elastic distance of the curves modulo parameterization, using the
square-root-velocity framework, have limitations in common realistic settings
where curves are irregularly and potentially sparsely observed.We propose using
spline curves to model smooth or polygonal (Fréchet) means of open or closed
curves with respect to the elastic distance and show identifiability of the spline
model modulo parameterization. We further provide methods and algorithms to
approximate the elastic distance for irregularly or sparsely observed curves, via
interpreting them as polygons. We illustrate the usefulness of our methods on
two datasets. The first application classifies irregularly sampled spirals drawn
by Parkinson’s patients and healthy controls, based on the elastic distance to a
mean spiral curve computed using our approach. The second application clusters
sparsely sampled GPS tracks based on the elastic distance and computes smooth
cluster means to find new paths on the Tempelhof field in Berlin. All methods
are implemented in the R-package “elasdics” and evaluated in simulations.

KEYWORDS
curve alignment, Fisher–Rao Riemannian metric, functional data analysis, multivariate
functional data, registration, square-root-velocity transformation, warping

1 INTRODUCTION

In the biomedical sciences, data are increasingly collected
that take the formof open or closed curves 𝜷 ∶ [0, 1] → ℝ𝑑,
𝑑 ∈ ℕ. Examples for such curves in two or three dimen-
sions are (human) movement patterns (e.g., Backenroth
et al., 2018), handwritten letters or symbols (e.g., Dryden
and Mardia, 2016; Isenkul et al., 2014), protein structures
(Srivastava et al., 2010), or the outline of an (e.g., anatomic)
object, such as the corpus callosum (Joshi et al., 2013). The
two applications we consider in this paper concern a spiral

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Biometrics published by Wiley Periodicals LLC on behalf of International Biometric Society.

drawing test for the detection of Parkinson’s disease, and
GPS-recorded movement tracks. In most of the named
cases, only the image of the curve represents the object of
interest. An “elastic” analysis is then required, that is, a
statistical analysis of the curves’ image inℝ𝑑 that does not
take their parameterization over [0, 1] into account and
is invariant under different parameterizations. Ideally, it
should also yield an optimal alignment of different curves
to allow point-to-point comparison, as illustrated in the
example in Figure 1. As in this example, curves are often
observed at a differing number of discrete points. The aim

Biometrics. 2023;79:2103–2115. wileyonlinelibrary.com/journal/biom 2103



2104 STEYER et al.

F IGURE 1 Two toy examples of sparsely and irregularly observed curves in ℝ2 with observed points indicated as black dots and linear
interpolation (first three columns). Ideally, the analysis should yield an optimal alignment of different curves to allow comparison of
corresponding points such as bumps and other features (the mouth of the fish/the branches of the trees). Smooth or polygonal spline means
(last column in dark gray) are computed using our methods, with black dots indicating values at the model-based spline knots

of this paper is to extend elastic statistical methodology
to such realistic cases where curves are irregularly and
sparsely sampled. In particular, we develop suitable elastic
spline models for (Fréchet) mean curves of samples of
such curves, and show that certain first- and second-order
splines meet the identifiability properties required in a
modulo parameterization context. These means can be
smooth curves, such as shown for the fish in Figure 1, or
polygonal curves, better suited for curves with sharp cor-
ners like the trees in Figure 1. To this end, we also propose
suitable algorithms for alignment and distance computa-
tion of irregularly or sparsely sampled curves—necessary
for mean computation, but also useful for distance-based
analyses such as clustering or classification. In partic-
ular, we derive a useful simplification of the warping
(reparameterization, alignment) problem when
interpreting the observed curves as polygons.
The alignment problem for curves in ℝ𝑑 is closely

related to the registration problem in functional data anal-
ysis (Ramsay and Silverman, 2005), which corresponds
to the case 𝑑 = 1. For two functions 𝑓1 and 𝑓2, warping
has commonly been treated as an optimization prob-
lem inf 𝛾∈Γ ‖𝑓1 − 𝑓2◦𝛾‖𝐿2 on a suitable function space
Γ of warping functions 𝛾. This choice is problematic as
inf 𝛾∈Γ ‖𝑓1 − 𝑓2◦𝛾‖𝐿2 does not define a proper distance on
the space of curves modulo parameterization. The map-
ping is not symmetric and can be zero even if 𝑓2 is not
a warped version of 𝑓1, which is related to the so-called

“pinching” problem (Marron et al., 2015). Intuitively, this
“pushes” the integrationmass to parts of the domainwhere
𝑓1 and 𝑓2 are close. To avoid this “pinching” effect, a regu-
larization term can be added to the loss function (Ramsay
and Silverman, 2005). This is done in various dynamic
time warping algorithms, where usually large values of the
derivative of the warping function are penalized (Sakoe
and Chiba, 1978). Alternatively, one can choose a small
number of basis functions for the warping or combine
both approaches to use penalized basis functions (Ramsay
and Li, 1998). Moreover, Bayesian approaches to model-
ing warping functions have been suggested (e.g., Lu et al.,
2017, or Matuk et al., 2021 for sparse one-dimensional
functions).
All of these approaches restrict the amount of warp-

ing; thus, the analysis is not completely independent of
the observed parameterization. This seems more suitable
for one-dimensional functions (𝑑 = 1) where one seeks to
separate phase (parameterization) and amplitude (image)
but considers both as informative. If we analyze curves
in ℝ𝑑, 𝑑 > 1, however, we are usually only interested in
the image representing the curve, that is, the equivalence
class of the curve with respect to (w.r.t.) parameterization,
whichmakes penalized, restricted, or Bayesian approaches
for the warping less suitable.
Srivastava et al. (2010) propose a proper metric on

the resulting quotient space via minimizing the dis-
tance between the square-root-velocity (SRV) transformed
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curves. For more details on this framework, see Srivastava
and Klassen (2016) and Subsection 2.1. Their perspective
is focused on the curves as functions (rather than dis-
crete observations) that, in practice, requires interpolating
the curves on a regular grid for the mean computation.
This works well in the case of densely observed curves.
Often, however, for example, in our applications, curves
are only observed at a relatively small number of discrete
points, where the number differs between curves (sparse
and irregular setting). We show in examples that (elastic)
methods designed for densely observed curves have limita-
tions for such sparse settings. This problem is well known
in functional data analysis (𝑑 = 1), where spline represen-
tations or other smoothing methods are frequently used
to model sparsely and/or irregularly observed functions
(e.g., Greven and Scheipl, 2017; Yao et al., 2005).
The main contributions of this paper thus are to care-

fully introduce spline functions to model elastic (Fréchet)
mean curves in ℝ𝑑 on SRV or curve level, to show that
the proposedmodel is identifiable via its spline coefficients
modulo parameterization, and to discuss limitations of this
identifiability. This extends approaches for functional data
to curves in ℝ𝑑, 𝑑 ≥ 2 and to the elastic setting.
As part of the mean estimation, but also of interest in its

own right, we also develop algorithms to align open and
closed curves if at least one of them is piecewise linear, for
instance, a sparsely observed curve treated as a polygon,
and show local maximization properties of our algorithm
for open curves. We show the usefulness of our methods
for statistical analysis of irregularly or sparsely observed
curves in two applications to a Parkinson spiral drawing
test and to GPS movement tracks, involving mean compu-
tation, clustering, and classification of curves. Proofs of all
formal statements are provided in Web Appendix B.

2 ELASTIC ANALYSIS OF OBSERVED
CURVES

In Section 2.1, we briefly review the SRV framework for
analyzing curves modulo parameterization. Then, in Sec-
tions 2.2 and 2.3, we introduce our methods for elastic
distance computation for irregularly or sparsely sampled
curves, a building block for the spline-based Fréchet mean
that we propose, and additionally of interest for distance-
based analysismethods such as clustering or classification.
In Sections 2.4 and 2.5, we introduce spline functions to
model smooth or polygonal elastic mean curves and dis-
cuss identifiability of these modulo parameterization in
Section 2.6. For all proposed methods, we focus on open
curves for better readability and present adapted versions
for closed curves in Web Appendix A.

2.1 Square-root-velocity framework

Srivastava et al. (2010) show that for two absolutely con-
tinuous curves 𝜷1 and 𝜷2, the Fisher–Rao metric can be
simplified to the 𝐿2-distance between the corresponding
SRV-curves, which can be minimized over the warping to
obtain an elastic distance between the two curves.

Definition 1 Elastic distance; Srivastava et al., 2010. Let
𝜷1, 𝜷2 ∶ [0, 1] → ℝ𝑑 be absolutely continuous and [𝜷1] and
[𝜷2] their respective equivalence classes modulo param-
eterization and translation. Then the elastic distance
between [𝜷1] and [𝜷2] is

𝑑([𝜷1], [𝜷2]) = inf
𝛾1,𝛾2∈Γ

‖(𝐪1◦𝛾1) ⋅
√
𝛾1 − (𝐪2◦𝛾2) ⋅

√
𝛾2‖𝐿2 , (1)

with Γ being the set of boundary-preserving diffeomor-
phisms 𝛾 ∶ [0, 1] → [0, 1], ‖𝐪‖2𝐿2 = ∫ 1

0
‖𝐪(𝑡)‖2𝑑𝑡 and SRV

transformations 𝐪1 and 𝐪2 of 𝜷1 and 𝜷2 defined via

𝐪𝑖(𝑡) =

⎧
⎪⎨⎪⎩

𝜷̇𝑖 (𝑡)√
‖𝜷̇𝑖 (𝑡)‖

if 𝜷̇𝑖(𝑡) ≠ 0

0 if 𝜷̇𝑖(𝑡) = 0

for 𝑖 = 1, 2.

Here, (𝐪𝑖◦𝛾𝑖) ⋅
√
𝛾̇𝑖 is the SRV transformation of the repa-

rameterized curve 𝜷𝒊◦𝛾𝑖 , 𝑖 = 1, 2.

Srivastava and Klassen (2016) showed that it is sufficient
to align one of the curves in (1),

𝑑([𝜷1], [𝜷2]) = inf
𝛾∈Γ

‖𝐪1 − (𝐪2◦𝛾) ⋅
√
𝛾̇‖𝐿2 . (2)

Moreover, they pointed out that to obtain a proper quo-
tient space structure on the space of absolutely continuous
curves, we need to consider the closure of SRV-curves
w.r.t. parameterization as equivalence classes. That is, for
a curve 𝜷 with SRV transformation 𝐪, [𝜷] consists of all
curves whose SRV transformation is in the closure of
{(𝐪𝑖◦𝛾) ⋅

√
𝛾̇|𝛾 ∈ Γ}.

Note that any analysis based on this elastic distance will
be modulo translation as a result of taking derivatives. If
the position of the curve in space is of interest, it has to
be analyzed separately. On the other hand, if curves are
used to model shape objects, translation invariance is a
desired property. In classic shape data analysis (Dryden
and Mardia, 2016), the analysis should additionally be
invariant under rotation and scaling, and parameteriza-
tion invariance presents a further key aspect in functional
shape analysis (Srivastava and Klassen, 2016). In this
paper, we solely discuss parameterization invariance and
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2106 STEYER et al.

give examples of handwritten spirals and GPS tracks
where this elastic analysis is suitable.
A solution to the variational problem in the distance

(2) is usually approximated using a dynamic program-
ming algorithm or gradient-based optimization (e.g., in
Srivastava et al., 2010). Both approaches discretize the
warping space Γ. The dynamic programming algorithm,
for instance, assumes a discrete grid for the domain of
the warping function. An extension by Bernal et al. (2016)
allows for an unequal number of points on both curves and
improves computation time. Lahiri et al. (2015) provide an
algorithm to align two piecewise linear curves and show
that an optimal warping exists if at least one curve is piece-
wise linear. Such an optimal warping also exists if both
curves are continuously differentiable (Bruveris, 2016).

2.2 Elastic distance for discretely
observed curves

In practice, we observe curves in ℝ𝑑, 𝑑 ∈ ℕ, not continu-
ously but only discretely via evaluations of these curves on
discrete (and potentially sparse and curve-specific) grids.
An elastic analysis needs to explicitly address this point.
We propose to treat a discretely observed curve 𝜷 as a
polygon parameterized with constant speed between the
observed corners 𝜷(𝑠0), … , 𝜷(𝑠𝑚). This is illustrated in the
toy examples (Figure 1) with observed points marked as
black dots and the polygon connecting the observations
indicated by gray lines. If, as in this example, no param-
eterization over [0,1] is given for the observed points, we
will parameterize the polygon by arc length. Note that we
address the case of sparsely observed curves here, whereas
the problem of fragmented curves (i.e., curves with unob-
served start or end points) generally cannot be handled by
the proper distance defined in (1).
If 𝜷 is such a polygon, the problem of finding an optimal

reparameterized curve 𝜷◦𝛾 to another arbitrary curve can
be simplified (similarly as in Lahiri et al., 2015). We show
that instead of solving the minimization problem (2) over
the space Γ of warping functions, we only need to solve
a maximization problem over a subset of ℝ𝑚−1 w.r.t. the
new parameterizations 𝑡1 = 𝛾−1(𝑠1), … , 𝑡𝑚−1 = 𝛾−1(𝑠𝑚−1)

at the observed corners.

Lemma 1. Let 𝜷 be a polygon in ℝ𝑑 with constant speed
parameterization between its corners 𝜷(𝑠0), … , 𝜷(𝑠𝑚). For its
piecewise constant SRV transformation 𝒒, denote 𝒒|[𝑠𝑗 ,𝑠𝑗+1]
= 𝒒𝑗 ∈ ℝ𝑑 for all 𝑗 = 0,… ,𝑚 − 1. Let 𝜷 be an absolutely
continuous curve with SRV transformation 𝒑, ‖𝒑‖∞ < ∞.
Then calculating the optimal 𝛾 in (2) to obtain the elastic
distance 𝑑([𝜷], [𝜷]) is equivalent to the following problem:

Maximize Φ(𝒕) =

𝑚−1∑
𝑗=0

√√√√(𝑠𝑗+1 − 𝑠𝑗)∫
𝑡𝑗+1

𝑡𝑗

⟨𝒑(𝑡), 𝒒𝑗⟩2+ 𝑑𝑡

(3)

w.r.t. 𝒕 = (𝑡1, … , 𝑡𝑚−1), 0 = 𝑡0 ≤ 𝑡1 ≤ ⋯ ≤ 𝑡𝑚 = 1,

where ⟨⋅, ⋅⟩+ denotes the positive part of the scalar product
in ℝ𝑑. For a maximizer 𝒕 of (3), there is a 𝛾 ∶ [0, 1] → [0, 1]

with 𝛾(𝑡𝑗) = 𝑠𝑗 for all 𝑗 = 1,… ,𝑚 − 1 that minimizes (2).

The proof includes an explicit construction of the mini-
mizing warping function 𝛾 ∈ Γ̄ (or a minimizing sequence
of warping functions), where Γ̄ is the set of absolutely
continuous curves 𝛾 ∶ [0, 1] → [0, 1], onto and with 𝛾̇ ≥ 0

almost everywhere. The statement for Γ follows as Γ is
dense in Γ̄ and the warping action of Γ̄ continuous (Bru-
veris, 2016). Thus, the warping problem can be simplified
if one of the SRV-curves is piecewise constant, indepen-
dent of the form of the second SRV-curve 𝒑. If 𝒑 is at least
continuous, for example, the SRV-curve of a model-based
smooth mean curve like the fish mean in Figure 1 on
the top right, the loss function in (3) is differentiable. We
propose to tackle the remaining maximization problem
with a gradient descent algorithm that can handle linear
constrains (for instance, method BFGS in constrOptim
from R-package “stats;” R Core Team, 2020) and provide a
derivation of the gradient in Web Appendix B.

2.3 Elastic distance for two piecewise
linear curves

We present an algorithm that can be used to find an opti-
mal warping function, and therefore, compute the elastic
distance, when both curves are piecewise linear. This is rel-
evant either because wemodel one of the curves as a linear
spline (mean) (see Subsection 2.4), as we do for the tree
shapes in Figure 1, or becausewewant to compute the elas-
tic distance between two observed curves, for example, two
different discretely observed fish or trees. The latter allows
any distance-based analysis of the data such as clustering
or classification.
To obtain an optimal warping for a curve with piecewise

constant SRV transformation 𝒒 to a curve with SRV trans-
formation 𝒑, we first note that the maximization in one
𝑡𝑗 direction of the objective function in (3) only depends
on the current values of 𝑡𝑗−1 and 𝑡𝑗+1 for any 𝒑. If 𝒑 is
also a piecewise constant SRV-curve, we can even derive
a closed-form solution of the maximization problem in (3)
w.r.t. each 𝑡𝑗 ∈ [𝑡𝑗−1, 𝑡𝑗+1] (cf. Web Appendix B). Hence,
we propose a coordinate wise maximization procedure in
Algorithm 1, iterating updates of odd and even indices.
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The warping problem for two (open) piecewise linear
curves has been previously discussed by Lahiri et al. (2015).
They propose a precise matching algorithm, which pro-
duces a globally optimal reparameterization of 𝒒, but is
arguably demanding to implement. Our algorithm can be
seen as an alternative,which ismuchmore straightforward
to understand and to extend to the closed case (cf. Web
Appendix A) not explicitly addressed by Lahiri et al. (2015).
We provide an implementation in the R-package “elas-
dics.”Although our algorithmdoes not guarantee finding a
globally optimal solution, we observe convincing results in
simulations (Section 3) and can prove local maximization
in the following sense:

Theorem 1. Every accumulation point of the sequence
(𝒕(𝑘))𝑘∈ℕ = (𝑡

(𝑘)
1 , … , 𝑡

(𝑘)
𝑚−1)𝑘∈ℕ resulting from Algorithm 1 is

a local maximizer of Φ in (3).

To prove this theorem, we first establish that the direc-
tional derivatives exist and are nonpositive for all coor-
dinate directions. Then we show that this carries over
to all directional derivatives using local concavity of the
objective function.
If the sequence (𝒕(𝑘))𝑘∈ℕ has more than one accumula-

tion point, they all give the same value Φ(𝒕). They then
correspond to different reparameterizations of the sec-
ond curve, but give the same distance between the two
curves. This can happen as the warping problem does
not guarantee unique solutions (see Web Appendix C for
an example). In practice, one can pick any maximizing
𝒕 to obtain a locally optimal warping function. As we
cannot guarantee this 𝒕 to also be a global maximizer,
we propose using varying starting points to find a global
maximum.

Our algorithm computes the elastic distance between
two piecewise linear and continuous curves. These curves
form a subspace in the space of absolutely continuous
curves and are called splines of degree 1. For modeling
smooth (differentiable) curves, for example, for a mean
function, a spline space of a higher degree may be more
suitable.

2.4 Modeling spline curves or spline
SRV-curves

As common in functional data analysis (Ramsay and Sil-
verman, 2005), we like to model curves or means for
samples of curves as splines. This is in particular beneficial
for sparsely observed curves, which cannot be evaluated
at arbitrary points. Moreover, splines impose parsimo-
nious models for smooth curves, which can help to avoid
overfitting the observed curves given limited information.

Definition 2 (Spline curves). We call 𝝃 = (𝜉1, … , 𝜉𝑑)
𝑇 ∶

[0, 1] → ℝ𝑑 with 𝑑 ∈ ℕ a 𝑑-dimensional spline curve of
degree 𝑙 ∈ ℕ0 if all its components 𝜉1, … , 𝜉𝑑 ∶ [0, 1] → ℝ

are spline curves of degree 𝑙 with a common knot set
0 = 𝜅0 < 𝜅1 < ⋯ < 𝜅𝐾−1 < 𝜅𝐾 = 1 for some 𝐾 ≥ 2. That
means that 𝜉1, … , 𝜉𝑑 are piecewise polynomial of degree
𝑙 between the knots 𝜅0, … , 𝜅𝐾 , as well as continuous and
(𝑙 − 1)-times continuously differentiable on the whole
domain [0,1] for 𝑙 ≥ 1. Denote by  𝑙

𝐾;𝜅0,…,𝜅𝐾
the set of all

such spline curves.

We can either model the curve 𝜷 as a 𝑑-dimensional
spline curve, or its SRV transformation𝒑 (see Figure 2). If 𝜷
is a spline of degree 𝑙 ≥ 2, the corresponding SRV-curve 𝒑
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2108 STEYER et al.

F IGURE 2 Left: Two-dimensional curves and corresponding SRV transformations. Spline curves are plotted as red curves with their
values at knots marked as black dots; other curves are gray. Note that the SRV-curve in the sixth panel is piecewise constant in 𝑡 and 𝑡 is not
visible in the image. Right: Smooth means (with 11 knots each) for four spiral curves based on linear splines on SRV level. The dashed mean
curve is based on assuming piecewise linear observations for the integral approximations and the solid mean curve is based on the integral
approximation using the mean value theorem

will not be a spline curve. The same holds true for curve
𝜷 if 𝒑 is a spline of degree 𝑙 ≥ 1. Only if 𝜷 is piecewise
linear (𝑙 = 1), then both 𝜷 and its piecewise constant SRV
transformation are splines.However, if we use linear spline
curves, we need a large number of knots to obtain simi-
larly smooth curves as using linear splines on SRV level,
and thus, expect less parsimonious models.
To use these spline curves or spline SRV-curves asmodel

spaces modulo warping, we need to ensure model iden-
tifiability, that is, that each equivalence class contains at
most one spline curve. The unique spline representative
then allows to identify and interpret the equivalence class
of a curve modulo warping via its spline basis coefficients.
We will see in Subsection 2.6 that this is true for quadratic
or cubic splines on curve level and for linear spline SRV-
curves (under mild conditions). Linear spline curves are
identifiable under additional assumptions.
Therefore, we can use the space of cubic, quadratic, or

linear spline curves as a model space for smooth curves.
However, using quadratic or cubic splines on the curve
level would not imply a vector space structure on the
SRV level, where the distance is computed. We therefore
propose to consider linear spline (and thus continuous)
SRV-curves to model smooth curves. If 𝒑 is a continuous
SRV transformation of 𝜷, the backtransform 𝜷(𝑡) = 𝜷(0)

+ ∫ 𝑡

0
𝒑(𝑠)‖𝒑(𝑠)‖𝑑𝑠 is differentiable, as the norm ‖ ⋅ ‖ is also

continuous. Alternatively, constant spline SRV-curves can
be used to model less regular, polygonal mean curves. We
thus work with a linear or constant spline model on SRV
level in the following.

2.5 Elastic means for samples of curves

As the space of curvesmodulo parameterization and trans-
lation does not form a Euclidean space, standard statistical
techniques for describing probability distributions cannot
be applied directly. In particular, we cannot define the
expected value as an integral or the mean as a weighted
average, which would require a linear structure of the
space. To generalize the mean as a notion of location to
arbitrary metric spaces, Fréchet (1948) proposed to use its
property of being the minimizer of the expected squared
distances.

Definition 3 Fréchet mean; Fréchet, 1948. Let (Ω, , 𝑃)
be a probability space and  a metric space with dis-
tance function 𝑑, equipped with the Borel-𝜎-Algebra. For
a random variable 𝑋 ∶ Ω →  , we call every element in
arginf𝐴∈ 𝑬𝑃(𝑑(𝑋,𝐴)

2) an expected element of𝑋. For a set
of observations 𝑥1, … , 𝑥𝑛 ∈  , we define the Fréchet mean
as an element in arginf𝐴∈

∑𝑛

𝑖=1 𝑑(𝑥𝑖, 𝐴)
2.

Thus, Fréchet means are empirical versions of expected
elements and neither of them need to exist or be unique.
For a uniform distribution on the sphere, for example,
every point on the sphere is a valid Fréchet mean. This
nonuniqueness can occur for the elastic distance as well,
see the example given in Web Appendix C. Nevertheless,
Ziezold (1977) showed a set version of the law of large
numbers for the Fréchet mean, whichmeans that for inde-
pendently and identically distributed random variables
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STEYER et al. 2109

𝑋1,… , 𝑋𝑛 ∶ Ω →  , the set of Fréchet means converges to
the set of the expected elements.
As discussed in the previous subsection, we propose to

use linear or constant splines on SRV level as model spaces
for the Fréchet mean. For a set of curves with SRV trans-
formations 𝒒1, … , 𝒒𝑛 and for a given degree 𝑙 ∈ {0, 1} and a
given set of knots 𝜅0, … , 𝜅𝐾 , we thus define

𝒑̄ ∈ arginf
𝒑∈ 𝑙

𝐾;𝜅0,…,𝜅𝐾

𝑛∑
𝑖=1

inf
𝛾𝑖

‖‖‖𝒑 − (𝒒𝑖◦𝛾𝑖)
√
𝛾̇𝑖
‖‖‖
2

𝐿2
(4)

as the SRV transformation of the spline Fréchet mean
(i.e., SRV transformation of the Fréchet mean restricted
to the spline SRV space) w.r.t. the elastic distance (2). The
corresponding restricted Fréchet mean 𝜷 is thus either
a polygon or a smooth curve. Similarly to the proposal
of Srivastava and Klassen (2016) for densely observed
curves, we tackle the minimization problem (4) with an
iterative approach in Algorithm 2, alternating between

fitting the mean and optimizing the warping for each of
the observations, but now using our warping approach
for sparse curves and modeling the mean with a constant
or linear spline. If we were to model the Fréchet mean
in a spline space on curve level instead of SRV level, the
mean fitting step would be a minimization problem in
a nonlinear space, hence more challenging. That is why
we refrain from using splines on curve level, although we
show that quadratic and cubic splines are identifiable via
their coefficients as well (Theorem 2).
For the warping step, we update the optimal warpings

𝛾𝑖 of the observed curves 𝜷𝑖 , 𝑖 = 1, …𝑛 via interpreting
them as observed polygons with piecewise constant
SRV transformations 𝒒𝑖 , 𝑖 = 1, …𝑛, as in Lemma 1. We
tackle the remaining maximization problem (3) using
a gradient descent algorithm as discussed before if 𝒑̄

is piecewise linear and Algorithm 1 if 𝒑̄ is piecewise
constant. In the 𝐿2 spline fitting step, the integrals

‖𝒑̄ − (𝒒𝑖◦𝛾𝑖)
√
𝛾̇𝑖‖2𝐿2 in the sum need to be approximated,

because the curves 𝜷𝑖 are only observed on a finite
grid 0 = 𝑠𝑖,0 ≤ 𝑠𝑖,1 ≤ ⋯ ≤ 𝑠𝑖,𝑚𝑖

= 1, and the SRV-curves
𝒒1, … , 𝒒𝑛 are thus unobserved. One option is to assume
that the SRVs 𝒒𝑖 of the observed curves are piecewise
constant as in the warping step. As 𝒑̄ is piecewise lin-
ear, (𝒒𝑖◦𝛾𝑖)

√
𝛾̇𝑖 also is (see proof of Lemma 1 in Online

Appendix B), which leads to a closed-form solution of the
integral. Alternatively, we derive an approximation of the
integrals in the 𝐿2 fitting step of Algorithm 2 using the
mean value theorem and the monotonicity of the warping
inWebAppendix B.5. Both approaches lead to a (weighted)
least-squares problem for the spline coefficients of 𝒑̄. (An
adapted algorithm for closed curves in Web Appendix A
uses an additional penalty for openness with increasing
weight.) We compare them using an example in Figure 2
on the right, where the second approach here leads to a
better fit of the estimated spiral shape (and is used in the
following).

2.6 Identifiability of spline curves

We model curves or means for samples of curves using
basis representations. If we study equivalence classes of
curves modulo reparameterization, we have to ensure
unique spline representatives in each class, meaning that
elements of the quotient space are identifiable via their
basis coefficients. To see why this is not self-evident,
consider as a simple counterexample in ℝ1 the space
of quadratic polynomials 𝑃 ∶ [0, 1] → ℝ, a subspace of
the quadratic spline space. Note that 𝛾𝑎(𝑥) = 𝑎𝑥2 + (1 −

𝑎)𝑥 defines a feasible warping function for all 𝑎 ∈]0, 1[,
because 𝛾𝑎 is differentiable with 𝛾′𝑎(𝑥) ≥ 0 and 𝛾𝑎(0) = 0,
𝛾𝑎(1) = 1. Hence, all quadratic polynomials of the form
𝑃(𝑥) = 𝑝1𝛾𝑎(𝑥) + 𝑝0 with 𝑝0, 𝑝1 ∈ ℝ are elements of the
same equivalence class, although they have varying basis
coefficients 𝑎𝑝1, (1 − 𝑎)𝑝1 and 𝑝0 for 𝑎 ∈]0, 1[ w.r.t. the
monomial basis expansion. This counterexample shows in
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2110 STEYER et al.

particular that one-dimensional spline functions do not
have unique representatives in the space of functionsmod-
ulo reparameterization. Moreover, every 1d function is in
the orbit of a linear spline with at least as many knots
as the function has local extrema. As identifiability is
essential in any modeling approach, it is fortunate that
in contrast to 𝑑 = 1, we can show that in ℝ𝑑 with 𝑑 ≥ 2,
nearly all quadratic or cubic spline curves have unique
basis representations.

Theorem 2. Let 𝑑 ≥ 2 and𝑸,𝑷 ∶ [0, 1] → ℝ𝑑 be quadratic
or cubic spline curves, where 𝑸 has a nonlinear image
between each of its knots. Moreover, let 𝛾 ∶ [0, 1] → [0, 1] be
monotonically increasing and onto. Then 𝑷 = 𝑸◦𝛾 ⇒ 𝛾 =

𝑖𝑑.

Thus, nearly all equivalence classes modulo reparam-
eterization contains at most one spline curve. Hence we
can identify these curves modulo warping via their spline
basis coefficients. The only exception are splines with lin-
ear image, which occur if and only if the splines in each
coordinate direction are multiples of each other modulo
translation. Note that we do not make any assumptions on
the knots here, in particular the knots could be different
for 𝑸 and 𝑷. That means there is almost always a unique
representative modulo warping in

⋃
𝐾,𝜅0,…,𝜅𝐾

 𝑙
𝐾;𝜅0,…,𝜅𝐾

for
given 𝑙 = 2, 3, that is, in the union of all spline spaces with
varying (also varying number of) knots. Considering only
quadratic or cubic splines is crucial, as this statement is not
true for nonprime spline degrees.We show a counterexam-
ple for splines of degree four inWebAppendixC. The result
for cubic spline curves also implies uniqueness of represen-
tatives for linear spline SRV-curves, another useful result
for identifiable modeling of elastic curves.

Corollary 1. Let 𝜷1, 𝜷2 ∶ [0, 1] → ℝ𝑑 with SRV functions 𝒒1
and 𝒒2, respectively. If 𝒒1 and 𝒒2 are nowhere constant linear
splines and 𝒒2(𝑡) = 𝒒1(𝛾(𝑡))

√
𝛾̇(𝑡), then 𝒒1 = 𝒒2.

In summary, the space of linear SRV spline curves seems
particularly suitable tomodel smooth elastic curves as they
are identifiable, that is, there is a unique representation in
this space, and the corresponding curves are differentiable,
which leads to visually smooth curves. In our toy example,
we used linear spline SRV-curves to model the smooth fish
mean (Figure 1, top right).

Remark 1 (Linear spline curves). Linear spline curves or
equivalently piecewise constant SRV-curves are identifi-
able via their spline basis coefficients modulo warping, if
we consider one spline space 1

𝐾;𝜅0,…,𝜅𝐾
but not the union

of several such spaces, and assume that the curve is not dif-
ferentiable at all of its knots (i.e., no knot is superfluous).
For an illustration, see Web Appendix C.

Hence, with this weaker identifiability result, piecewise
constant SRV-curves are a suitable model space as well,
with curvesmodeled as polygons. This is more appropriate
for mean curves that are assumed to have sharp corners,
like the trees in Figure 1.
As we use these spline spaces for estimation of smooth

or polygonal curves, we need the following result on conti-
nuity of the embedding. It allows us to interpret estimated
coefficients—for instance, compare the coefficients of two
estimated group means to investigate local differences—
as it ensures convergence of the spline coefficients if we
construct a converging sequence of curves. For instance,
we aim to construct such a sequence for the elastic mean
in Algorithm 2. We show that this continuity property
holds whenever the model space Ξ is a (subset of a) finite-
dimensional spline space of the following form. Note that,
for simplicity, we do not consider unions of spline spaces
here.

Definition 4. Let Ξ be one of the following for given fixed
𝐾 ≥ 2, 0 = 𝜅0 < ⋯ < 𝜅𝐾 = 1: (i) a subset of  𝑙

𝐾;𝜅0,…,𝜅𝐾
, 𝑙 =

2, 3, which consists of identifiable splines as described in
Theorem 2, additionally centered (i.e., with integral zero)
to account for translation; (ii) a set of identifiable curves
with linear spline SRV-curves in 1

𝐾;𝜅0,…,𝜅𝐾
from Corol-

lary 1; or (iii) the set of curves with piecewise constant
SRV-curves in 0

𝐾;𝜅0,…,𝜅𝐾
from Remark 1.

Lemma 2 (Topological embedding). Let 𝑓 ∶ (Ξ, ‖ ⋅ ‖) →
(, 𝑑) be the embedding of the spline coefficients defining the
functions in Ξ, equipped with the usual Euclidean distance
‖ ⋅ ‖, into the space  of absolutely continuous curves w.r.t.
the elastic distance 𝑑. Then 𝑓 is a topological embedding,
that is, 𝑓 is a homeomorphism on its image.

Thus, the distance of spline coefficients and the elas-
tic distance of curves modulo translation are topologically
equivalent on suitable spline spaces. Consequently, a
sequence of curves converges w.r.t. the spline coefficients
if, and only if, it converges w.r.t. the elastic distance. Over-
all, we see that any spline model Ξ in Definition 4 yields
an identifiable model for the Fréchet mean of observed
curves, with the possibility to interpret spline coefficients.
This also holds for converging series of estimators which
we aim to construct in our algorithms.

3 SIMULATION

We test our methods, which we made available for pub-
lic use in the R-package “elasdics,” on simulated data.
A first simulation focuses on the special case of equal
numbers of observed points on the curves, where we can
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STEYER et al. 2111

compare our methods to an existing implementation of
the SRV framework in the R package “fdasrvf” (Tucker,
2020) based on Srivastava et al. (2010). Results presented
in Web Appendix D show that Algorithm 1 (and its vari-
ant for closed curves) produce clearly better alignment for
sparsely and irregularly sampled curves. The correspond-
ing average elastic distance is smaller for our method in
all cases, for example, a reduction of 25% and 26% on aver-
age for 30 observed points per curve in the open and closed
setting, respectively. As expected, this difference decreases
if 90 points of the closed butterfly shapes are selected (1%
reduction on average), as in this case, the points are nearly
observed on a regular, fairly dense grid, which is the set-
ting “fdasrvf” is designed for. This simulation also shows
that a highly unbalanced distribution of observed points on
the curves causes difficulties for the mean computation in
“fdasrvf” as well, which is not the case for our methods.
Here wemainly discuss the second simulation, focusing

on the convergence and the identifiability of the newly pro-
posed splinemeans and their associated coefficients. Aswe
vary the number of points per curve, there is no competitor
to compare our methods with. For a given template curve
𝜷 with known B-spline coefficients 𝜗1, … , 𝜗𝐵, we gener-
ate a sample of observed curves 𝜷1, … , 𝜷𝑛 by indepen-
dently sampling the coefficients 𝜗𝑖,𝑏 ∼  (𝜗𝑏, 𝜎

2) for all
𝑖 = 1, … , 𝑛, 𝑏 = 1,… , 𝐵. If the template curve is closed,
we additionally close the sampled curves via minimiz-
ing a penalty function penalizing openness in gradient
direction. The penalty is given inWeb Appendix A for esti-
mating a closed mean. The points 𝑡𝑖,1, … , 𝑡𝑖,𝑚𝑖−1 on which
𝜷𝑖 is observed are sampled uniformly on [0, 1], where
the number of observed points 𝑚𝑖 is sampled uniformly
either from {10, … , 15} (very sparse and unbalanced) or
{30, … , 50} (less sparse but unbalanced).
Examples for curves sampled with standard deviation

𝜎 = 4 from a heart-shaped template curve, modeled as
linear spline on SRV level with 10 equally spaced inner
knots, are displayed in Figure 3. Two further examples
for open curves are given in Web Appendix C. The sam-
ples in the very sparse setting are hardly recognizable as
heart shapes (Figure 3, right). However, the elastic mean
curve over 𝑛 = 5 observations, estimated using the true
knot set and linear SRV splines to allow a comparison
of estimated and true coefficients, represents the original
heart surprisingly well even in this challenging setting. We
repeated this simulation 100 times each for varying num-
bers of observations 𝑛 ∈ {5, 20} and observed points per
curve𝑚𝑖 (Figure 3, left). For𝑚𝑖 ∈ {10, … , 15} observations
per curve, we generally obtain a heart-shapedmean,which
seems smaller and shows less pronounced features than

the template. Increasing the number of observed curves
from 𝑛 = 5 to 𝑛 = 20 decreases the variance of the mean
curve, but a certain bias due to undersampling the curves
remains. Likewise, the variance of the spline mean coef-
ficients is smaller for 𝑛 = 20 than for 𝑛 = 5, but their
distribution is still not centered at the coefficients of the
template (indicated as black dots in Figure 3).
If we increase the number of points on each curve to

𝑚𝑖 ∈ {30, … , 50}, the estimated means w.r.t. the elastic dis-
tance adapt closer to the template. Moreover, the variance
of the estimated spline coefficients decreases as well as
their distance to the template. The reduction of variance
indicates convergence of the spline coefficients for 𝑛 → ∞,
although we do not expect them to precisely converge to
the coefficients of the template in this simulation setup,
not even if 𝑚𝑖 → ∞ for all 𝑖 = 1, … , 𝑛. This is because
we draw the sample curves 𝜷1, … , 𝜷𝑛 such that 𝜷 is the
mean w.r.t. the 𝐿2 distance on SRV level, but this does in
general not imply that 𝜷 is the mean w.r.t. the elastic dis-
tance. Nevertheless, we expect this difference to be small,
as the coefficients in the rightmost boxplot are close to the
black dots that indicate the template’s coefficients. In addi-
tion, their low variance for 𝑛 = 20 confirms our theoretical
results on identifiability of spline coefficients in our model
(Corollary 1) and continuity of the embedding (Lemma 2).
As expected, the run time of our elastic mean algorithm

grows with the number of observed curves as well as with
the number of observed points per curve. On a standard
Windows PC, we report run times of 19 s (𝑛 = 5) and 30 s
(𝑛 = 20) on average for onemean in the very sparse setting.
In the less sparse setting, 𝑚𝑖 ∈ {30, … , 50}, the run times
increase to 22 and 88 s for 𝑛 = 5 and 𝑛 = 20, respectively.
So far, we have discussed the convergence of correctly

specified spline means, as in this case, convergence of
elastic means corresponds to convergence of the corre-
sponding spline coefficients (Lemma 2). As correct spec-
ification is questionable in practice, we demonstrate the
behavior of our methods in the case of model misspecifi-
cation (varying spline degree and number of knots) in a
further simulation given in Web Appendix D. We observe
that both smooth and polygonalmeans reproduce the orig-
inal template well and that results are not very sensitive
to the number of knots, given that it is sufficiently large.
Generally, the elastic distance to the template decreases
for an increasing number of knots. Distances to the tem-
plate are smaller for the smooth than for the polygonal
modelmeans for a fixed number of knots, and decrease to a
lower level, indicatingmore parsimoniousmodels and less
undersampling bias for truly smooth means when using
linear SRV-curve models.
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2112 STEYER et al.

F IGURE 3 Top left: Smooth means (in gray) computed for a set of 𝑛 simulated curves drawn from the heart-shaped template curve
(in black) via sampling its B-spline coefficients from a normal distribution with standard deviation 𝜎 = 4 and𝑚𝑖, 𝑖 = 1, … , 𝑛 points observed
per curve. The means are computed using linear SRV splines and the same knot set as the template (10 equally spaced inner knots). Bottom
left: Corresponding distribution of spline mean coefficients (in gray) and template coefficients (in black). Right: Simulated data 𝑖 = 1, … 5with
observed values marked as black dots and corresponding smooth elastic means over 𝑛 = 5 observations in gray

4 APPLICATIONS ON REAL DATA

As our main goal is to develop statistical (elastic) anal-
ysis methods for discretely observed data curves, we
demonstrate their practicality on two datasets.

4.1 Classifying spiral curve drawings for
detecting Parkinson’s disease

(Isenkul et al., 2014) provide a dataset of spiral curve
drawings by Parkinson patients and healthy controls in
a so-called Archimedes spiral-drawing test, which is a
common, noninvasive tool for diagnosing patients with
Parkinson’s disease. The data have been obtained in two
different settings: In the “static spiral test,” the partici-
pants had to follow a template on a digital tablet; in the
“dynamic test,” the template curve appeared and disap-
peared in certain time intervals. We propose an intuitive
classifier mimicking a doctor’s decision of the form: Clas-
sify as “Parkinson” if the distance of the drawn curve to the
template curve exceeds a threshold for one or for both of
the settings. As the template curve has not been recorded,
we use the elastic mean (see Subsection 2.5) of all curves

from the static spiral test with piecewise constant splines
and 201 knots on SRV level, instead. Then we compute the
elastic distance of each observed spiral curve to the tem-
plate using Algorithm 1. We report a leave-one-curve-out
cross-validated accuracy of 72.5% for the static, 90.0% for
the dynamic setting, and 92.5% for the classifier based on
both, which indicates good separation in particular for the
dynamic spiral test.
A detailed description of our analysis and a comparison

to the methods implemented in the “fdasrvf” package can
be found in Web Appendix E. Our methods lead to bet-
ter classification accuracy in this application and themean
calculation proves to be faster.

4.2 Clustering and modeling smooth
means of GPS-tracks

The second dataset is an example of increasingly common
human movement data and comprises GPS waypoints
tracked on Tempelhof Field, a former airfield (up to 2008)
in Berlin, which is now used as a recreation area. The
dataset consists of 55 paths with 15–45 waypoints each,
recorded by members of our working group using their
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STEYER et al. 2113

F IGURE 4 Top left: The observed trajectories with elements of the four largest clusters indicated by color. Bottom left: Longitude and
latitude for the trajectories (with the four largest clusters indicated by the same colors) over relative time. Top right: Smooth means modeled as
linear SRV-curves with 10 inner knots for the four largest clusters and centered at the mean center of the observed paths per cluster to account
for translation. Bottom right: Cluster means plotted on Microsoft Bing Map accessed via the R package “OpenStreetMap” (Fellows, 2019)

mobile phones for tracking. Due to the variety of mobile
devices used, the number of points per curve differs consid-
erably, resulting in irregularly and quite sparsely observed
data. We are solely interested in analyzing the paths
(Figure 4, bottom right) the participants walked on, not the
trajectories over time. Separately looking at longitude and
latitude over time suggests that the individuals had quite
different walking patterns and did not move with constant
speed. This implies that standard (nonelastic) functional
data analysis is not suitable here.
Clustering and smooth mean estimation allow us to

recover the paths that the individuals walked on. In a fur-
ther step, these could be used to identify new paths on
Tempelhof field not yet included in existingmaps. In a first
step, the tracks are clustered using average linkage based
on the elastic distance and the elbow criterion for stopping.
Here we apply Algorithm 1 to approximate the pairwise
distance between the sparsely observed open tracks. In a
second step,we compute a smooth elastic Fréchetmean for
each of the four largest clusters using Algorithm 2 and lin-
ear splines on SRV level with 10 inner knots. The clustering
result displayed in Figure 4, top row, is visually satisfying.
Looking at longitude and latitude separately clearly indi-
cates that clustering based on the 𝐿2 distance would not
work well.
The smooth mean curves for each of the four largest

clusters (Figure 4, top right) seem to describe the observed
tracks well, despite the dimension reduction (24 spline

coefficients compared to 30–90 observations per curve)
and also match the actual paths visible in the satellite
image (Figure 4, bottom right) provide by Microsoft Bing
and made available for R in the package “OpenStreetMap”
(Fellows, 2019).

5 DISCUSSION

Although our approach addresses the discrete and often
sparse nature of observed curves explicitly, the interpreta-
tion as polygonswith observed values at the corners under-
estimates the curvature of the real unobserved curves.
This leads to a kind of shrinkage bias for the estimated
elastic mean for sparsely observed curves. Although this
bias toward curves with smaller curvature decreases with
increasing observations per curve, it would be of interest
to develop correction methods for (very) sparse settings in
future work.
We have shown that the SRV splines modulo parame-

terization used for modeling the elastic mean is in general
identifiable via their coefficients and we have confirmed
this result in simulations. Although we did not explic-
itly address the choice of the optimal number of knots
for such splines, a further simulation has shown that the
estimation of the mean curve is not sensitive to the spe-
cific spline degree and choice of knots, given the number
of knots is sufficiently large. As the union of any spline
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2114 STEYER et al.

space with fixed degree but varying knots is dense in
the space of absolutely continuous curves w.r.t. the elas-
tic distance, using an increasing number of knots would
ensure that the mean curve can be arbitrarily well approx-
imated. For a finite dataset, this would lead to overfitting
the curves though, which may be addressed via penal-
ized estimation, although the interpretation of coefficients
and convergence properties would need to be studied in
this setting.
Another appealing direction for further research is to

include our methods for sparsely and irregularly sampled
curves in existing approaches for functional shape analy-
sis. Here the curves have to be aligned w.r.t. scaling and/or
rotation in addition to the alignment w.r.t. parameteriza-
tion and translation. As this is usually done iteratively, it
seems promising to combine this with the iterative warp-
ing and mean fitting steps in our methods. Furthermore,
elastic mean estimation for irregularly and/or sparsely
sampled curves can be seen as a first step toward elastic
regression models for such data. That means our meth-
ods might be useful building blocks for modeling curves
or shapes depending on covariates using splines.
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SUPPORT ING INFORMATION
Web Appendices A, B and C referenced in Section 2 and
Web Appendix D referenced in Sections 3 and 4 are avail-
able with this paper at the Biometrics website on Wiley
Online Library. All developed methods are implemented
in the R-package elasdics (Steyer, 2021) available on CRAN
and the code to reproduce the findings of this paper is
available in the Supporting Information of this article.
Figure 1: First three iterations of the algorithm for

closed mean curves on a toy dataset
Figure 2: Left: Two piecewise linear curves in gray with

Frechet mean curves in red and blue
Figure 3: Three constant SRV splines (right) with

corresponding linear spline curves (middle)
Figure 4: Comparison of the optimal alignment pro-

duced by ourmethod CWOand the one computedwithDP
Figure 5: Elastic means for irregularly sampled curves
Figure 6:Example simulated data in gray with observed

values marked as black dots and corresponding smooth
elastic means over n = 5 observations in blue
Figure 7: Top: Smooth means (in blue) computed for a

set of n curves drawn from the open template curve (in red)
via sampling its B-spline coefficients from a normal distri-
bution with standard deviation 𝜎 = 0.3 and𝑚𝑖, i=1, . . . , n
points observed per curve
Figure 8: Top: Smooth means (in blue) computed for

a set of n curves drawn from the open template curve (in
red) via sampling its B-spline coefficients from a normal
distribution with standard deviation 𝜎=0.4 and𝑚𝑖, i=1,...,
n points observed per curve

Figure 9: Left: Smooth mean based on linear splines on
SRV level with varying number of knots and therefore coef-
ficients computed on a sample of 20 curves with mi 𝜖30, 50
points per curve
Figure 10: Left: Spiral curves drawn by either a healthy

control group or by patients with Parkinson’s disease in
two different settings
Figure 11: Left: Distance of the curves drawn by the

participants to the mean spiral curve for both settings
Figure 12: Optimal warping in both settings separated

by the actual status and the predicted status using the clas-
sifiers based on only the corresponding distance each and
leave-one-out cross-validation
Table 1: Classification accuracy in the dynamic setting

with a varying fraction of points per curve
Table 2:Comparison of the classification accuracy in the

dynamic setting with a varying number of points per curve
Table 3: Run-times for the mean computation of the

spiral data in seconds
Figure 13: Left: Comparison of means for the spirals in

the static setting with 100 observations per curve

Data S1

How to cite this article: Steyer, L., Stöcker, A.,
and Greven, S. (2023). Elastic analysis of irregularly
or sparsely sampled curves. Biometrics, 79,
2103–2115. https://doi.org/10.1111/biom.13706
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3. Paper II: Elastic Full Procrustes Analysis of
Plane Curves via Hermitian Covariance
Smoothing

In Paper II, elastic (Fréchet) mean estimation for irregularly/sparsely sampled curves
is extended to elastic planar shapes (see Subsection 1.3.2), referring to 2-dimensional
curves with respect to translation, rotation, rescaling, and reparameterization. This is
achieved by combining the elastic distance with the full Procrustes distance for shapes
(Subsection 1.3.1). The focus on planar shapes allows for the identification of shapes
with complex-valued functions, which helps to establish a link between full Procrustes
mean estimation and covariance estimation in irregular/sparse functional data analysis.
For this purpose, Hermitian covariance smoothing is developed as a generalization of
symmetric covariance smoothing (Subsection 1.1.2) for complex-valued stochastic pro-
cesses. This allows the derivation of an estimator of the full Procrustes mean when the
shapes are sparsely observed. The performance of the elastic shape mean estimation is
then illustrated in the phonetic analysis of tongue shapes during speech production.

Contributing article:
Stöcker, A., Pfeuffer, M., Steyer, L., and Greven, S. (2022). Elastic Full Procrustes
Analysis of Planar Curves via Hermitian Covariance Smoothing. arXiv pre-print,
arXiv:2203.10522

Declaration on personal contributions:
Based on Almond Stöcker’s proposal for estimating means of functional two-dimensional
shapes, the author of this thesis and Almond Stöcker jointly developed the idea of an
elastic extension and co-supervised Manuel Pfeuffer’s master’s thesis on this topic. The
author provided advice in all phases of the project and made significant contributions
to the proofs. This work is also part of Almond Stöcker’s dissertation.
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Elastic Full Procrustes Analysis of Plane Curves via
Hermitian Covariance Smoothing

Almond Stöcker1,2,∗, Manuel Pfeuffer1, Lisa Steyer1, and Sonja Greven1

1Chair of Statistics, School of Business and Economics, Humboldt-Universität zu Berlin,
Unter den Linden 6, 10099 Berlin, Germany

2Department of Mathematics, École polytechnique fédérale de Lausanne (EPFL),
Station 8, CH-1015 Lausanne, Switzerland

December 15, 2022

Abstract

Determining the mean shape of a collection of curves is not a trivial task, in particular when curves
are only irregularly/sparsely sampled at discrete points. We newly propose an elastic full Procrustes
mean of shapes of (oriented) plane curves, which are considered equivalence classes of parameterized
curves with respect to translation, rotation, scale, and re-parameterization (warping), based on the square-
root-velocity (SRV) framework. Identifying the real plane with the complex numbers, we establish a
connection to covariance estimation in irregular/sparse functional data analysis. We introduce Hermitian
covariance smoothing and show how to employ this extension of existing covariance estimation methods
for obtaining an estimator of the (in)elastic full Procrustes mean, also in the sparse case not yet covered
by existing (intrinsic) elastic shape means. For this, we provide different groundwork results which are
also of independent interest: we characterize (the decomposition of) the covariance structure of rotation-
invariant bivariate stochastic processes using complex representations, and we identify sampling schemes
that allow for exact observation of derivatives/SRV transforms of sparsely sampled curves. We demon-
strate the performance of the approach in a phonetic study on tongue shapes and in different realistic
simulation settings, inter alia based on handwriting data.

Keywords: Complex Gaussian process; Functional data; Phonetic tongue shape; Principal component
analysis; Shape analyis; Square-root-velocity.

1 Introduction
When comparing the shape of, say, a specific outline marked on medical images across different patients,
the concrete coordinate system used for recording is often arbitrary and not of interest: the shape neither
depends on positioning in space, nor on orientation or size. Analogously, the outline can be mathematically
represented via a parameterized curve β : [0, 1] → R2, but the particular parameterization of the outline
curve is often not of interest, only its image. We study datasets where an observational unit is the shape
of a plane curve, defined as equivalence class a) over the shape invariances translation, rotation and scale
and b) over re-parameterization. More specifically, we generalize the notion of a full Procrustes mean
from discrete landmark shape analysis (Dryden and Mardia, 2016) to elastic shape analysis of curves, in
particular to achieve improved estimation properties in irregular/sparsely measured scenarios compared
to existing “intrinsic” elastic mean shape estimation methods relying on geodesic distances. To allow this
generalization of landmark shape means to curves, we also present two results characterizing the covariance
structure of rotation-invariant bivariate stochastic processes via their complex representations. To enable
derivative-based elastic analysis of sparsely/irregularly sampled curves, which are common in practice but
for which existing methods have problems, we provide a result on the feasibility to exactly observe the
necessary derivatives under such sampling. While these results are important building blocks in preparing
the proposed elastic Full Procrustes mean estimation, they are also of independent interest in their own
right.

For landmark shapes, different notions of mean shape are well-established including, in addition to the
full Procrustes mean, in particular also the intrinsic shape mean, i.e. the Riemannian center of mass in the
shape space. Dryden et al. (2014) discuss properties of different shape mean concepts, pointing out that the
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full Procrustes mean is more robust with respect to outliers than the intrinsic mean or the partial Procrustes
mean fixing scale to unit size. Further discussion of these three mean concepts, which all present Fréchet
means based on different distances, can be found in Huckemann (2012). The full Procrustes mean also
arises as the mode of a complex Bingham distribution (Kent, 1994) on (unit-norm) landmark configurations
X ∈ Ck of k landmarks, which is commonly used to model planar landmark shapes, identifying the real
plane R2 ∼= C with the complex numbers. Moreover, it corresponds to the leading eigenvector of the
complex covariance matrix of X, an important point we generalize for the estimation strategy proposed for
curve mean shapes in this paper.

Compared to landmark shapes, different additional challenges arise for shapes of curves: invariance
with respect to re-parameterization (warping) is one that is highly related to the registration problem in
function data analysis (FDA, Ramsay and Silverman, 2005). In the context of shape analysis of curves,
Srivastava et al. (2011) propose an elastic re-parameterization invariant metric, allowing to define a proper
distance between two curves via optimal warping alignment. Greatly simplifying the formulation of the
metric by working with square-root-velocity (SRV) transformations of the curves, this lead to a rapidly
growing literature on functional shape analysis of curves in the SRV-framework (see e.g., Srivastava and
Klassen, 2016). However, so far the focus lay on elastic generalization of the intrinsic shape mean instead
of the (potentially more robust) full Procrustes mean which we generalize here. In simulations, we illustrate
how the novel elastic full Procrustes mean estimation yields improved mean estimates in irregularly/sparsely
sampled data (sometimes even as an estimator of the intrinsic shape mean, compared to existing estimators
designed for this alternative mean).

Sparsely/irregularly observed curves have been considered in the SRV-framework by Steyer et al.
(2022), however, only restricting to re-parameterization invariance and not investigating shape means. Such
data with a comparatively low number of samples per curve often results in practice when the sampling rate
of a measurement device is limited, or the resolution of images used for curve segmentation is coarse. In
FDA, sparse/irregular functional data is commonly distinguished from dense/regular data, as it requires
explicit treatment. Models for sparse/irregular data are often based on smooth (spline) function bases and
commonly involve assumption of (small) measurement errors on the discrete curve evaluations (Greven and
Scheipl, 2017).

Focusing on shape analysis of sparsely/irregularly measured curves, we consider the full Procrustes
mean concept particularly attractive due to its robustness known from landmark shape analysis, and due to
its direct connection to the covariance structure of the data, which allows relying on a core estimation strat-
egy in sparse/irregular FDA: following Yao et al. (2005), covariance smoothing has become a major tool
for sparse/irregular FDA, allowing to reconstruct the functional covariance structure based on sparse evalu-
ations. Cederbaum et al. (2018); Reiss and Xu (2020) discuss (symmetric) tensor-product spline smoothing
for this purpose, considering univariate functional data. Happ and Greven (2018) generalize univariate
approaches to conduct functional principal component analysis also for multivariate sparse/irregular data.

In this paper, our contributions are to 1. characterize the complex covariance (decomposition) of rotation-
invariant bivariate stochastic processes. This gives us the basis to 2. develop Hermitian covariance smooth-
ing, which we 3. use to propose a covariance-based estimation method for the 4. novel (elastic) full Pro-
crustes means we propose as a more robust notion of elastic shape mean, with a particular focus also on
sparsely/irregularly sampled curves. For such realistic curve measurements we 5. characterize scenarios
where exact sampling of the necessary SRVs/derivatives is feasible.

In the following, we first discuss in Section 2 complex stochastic processes as random elements of
Hilbert spaces, illustrating their convenience for rotation-invariant bivariate FDA and propose Hermitian
tensor-product smoothing for complex functional principle component analysis. This lays the groundwork
for the second part of the paper in Section 3, where we introduce the notion of elastic (and inelastic) full
Procrustes mean shapes of plane curves based on the SRV-framework. We show conditions under which
exactly observing SRVs (i.e., curve derivatives) of sparsely/irregularly measured curves is feasible and
propose estimation of their full Procrustes means via Hermitian covariance smoothing. Finally, we present
an elastic full Procrustes analysis of tongue outlines observed from participants of a phonetic study and
validate the proposed approach in three simulation scenarios in Sections 5 and 4. Proofs for all propositions
are given in an online supplement. A ready to use implementation is offered in the R-package elastes
(github.com/mpff/elastes).
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2 Hermitian covariance smoothing

2.1 Complex processes and rotation invariance
Although functional data analysis traditionally focuses on Hilbert spaces over R (compare, e.g., Hsing
and Eubank, 2015), underlying functional analytic statements cover Hilbert spaces over C as well (e.g.,
Rynne and Youngson, 2007). This lets us formulate principal component analysis for complex-valued
functional data and underlying concepts in analogy to the real case in the following. Subsequently, we
present two results on the relation of complex to bivariate (real) functional data and on the convenience of a
complex viewpoint under rotation invariance that will be key in our estimation approach. Although complex
stochastic processes have been discussed in the literature (Neeser and Massey, 1993), we are not aware of
any previous discussion of the results we present in this section. In the complex viewpoint, the real plane
R2 is identified with the complex numbers C via the canonical vector space isomorphism κ : C → R2,
z 7→ z = (<(z),=(z))> mapping z ∈ C to its real part <(z) and imaginary part =(z). By z† we denote
the complex conjugate <(z) − i=(z) of z ∈ C, with i2 = −1, or more generally the Hermitian adjoint
(conjugate transpose) for complex matrices or operators. Rotation of z ∈ R2 by ω ∈ R radians simplifies
to scalar multiplication exp(iω) z ∈ C in complex representation.

Let Y be a complex-valued stochastic process with realizations y : T → C in L2(T ,C), where T is
a compact metric space with finite measure ν. Here, T = [0, 1] is typically the unit interval with ν the
Lebesgue measure, and t ∈ T is referred to as “time”. The complex, separable Hilbert space L2(T ,C) of
square-integrable complex-valued functions is equipped with the inner product 〈x, y〉 =

∫
x†(t)y(t) dν(t)

for x, y ∈ L2(T ,C) and the corresponding norm ‖ · ‖.
Definition 1. i) Y is called random element in a real or complex Hilbert space H if 〈x, Y 〉 is measurable

for all x ∈ H and the distribution of Y is uniquely determined by the (marginal) distributions of 〈x, Y 〉
over x ∈ H.

ii) The mean µ ∈ H and covariance operator Σ : H → H of a random element Y are defined via
〈µ, x〉 = E (〈Y, x〉) and 〈Σ(x), y〉 = E (〈x, Y − µ〉〈Y − µ, y〉) for all x, y ∈ H.

In the following, we assume Y is a random element of L2(T ,C). Being self-adjoint and compact,
its covariance operator Σ admits a representation Σ(f) =

∑
k≥1 λk〈ek, f〉ek via countably many eigen-

functions e1, e2, · · · ∈ L2(T ,C), Σ(ek) = λkek, with real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0 of Σ (see
Supplement). The {ek}k form an orthonormal basis of the Hilbert subspace formed by the closure of the
image of Σ. The random element can be represented as Y = µ +

∑
k≥1〈ek, Y − µ〉ek with probability

one. The scores Zk = 〈ek, Y − µ〉, k ≥ 1, are complex random variables with mean zero and covariance
Cov (Zk, Zk′) = E (〈Y − µ, ek〉〈ek′ , Y − µ〉) = λk1{k′}(k), where 1S(t) = 1 if t ∈ S and 0 else for a set
S.

Y is canonically identified with the bivariate real process Y = κ(Y ) = (<(Y ),=(Y ))>, random
element in the Hilbert space L2(T ,R2) with the inner product of x = κ(x),y = κ(y), x, y ∈ L2(T ,C),
defined by 〈x,y〉 =

∫
< (x(t))< (y(t)) dν(t) +

∫
= (x(t))= (y(t)) dν(t) = < (〈x, y〉).

Theorem 1. Define the pseudo-covariance operator Ω of Y with mean µ by 〈Ω(x), y〉 = E (〈Y − µ, x〉〈Y − µ, y〉)
for all x, y ∈ L2(T ,C), and let Σ denote the covariance operator of Y = κ(Y ). Then the covariance and
pseudo-covariance operators Σ and Ω of Y together determine Σ via

κ−1 ◦Σ ◦ κ = (Σ + Ω)/2.

Aiming at shape analysis, we are particularly interested in rotation-invariant distributions L(Y) of Y =
κ(Y ), corresponding to L(Y ) = L(exp(iω)Y ) for all ω ∈ R. In this case, L(Y ) is typically referred to as
‘proper’, ‘circular’ or ‘complex symmetric’ (Neeser and Massey, 1993; Picinbono, 1996; Kent, 1994) and
the simplification by taking a complex approach becomes evident:

Theorem 2. A random element Y in L2(T ,C) with covariance operator Σ with eigenbasis {ek}k and
corresponding eigenvalues {λk}k follows a complex symmetric distribution if and only if all scores Zk =
〈ek, Y − µ〉 with λk > 0 do, and additionally the mean of Y is µ = 0. In this case,

i) the pseudo-covariance Ω of Y vanishes, i.e. Ω(y) = 0 for all y ∈ L2(T ,C), and the covariance
operator Σ of the bivariate process Y = κ(Y ) is completely determined by Σ;

ii) the pairs ek = κ(2−1/2ek), e−k = κ(i 2−1/2ek) ∈ L2(T ,R2) yield an eigendecomposition Σ(f) =∑
k 6=0 λk〈ek, f〉ek of Σ. With probability one, Y =

∑
k 6=0 ekZk with uncorrelated real scores Zk

with mean zero, variance var (Zk) = λk and κ(Zk) = (Zk,Z−k)>.
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While rotation invariance of L(Y) leads to even multiplicities in the eigenvalues of the bivariate covari-
ance operator Σ, it does not pose a constraint on the complex eigenvalues and eigenfunctions of Σ, which
would complicate the eigendecomposition. Here, rotation invariance of L(Y) instead translates to complex
symmetry of the distribution of the scores Zk.

Mean and covariance structure of Y can also be approached from the point-wise mean µ∗(t) = E (Y (t))
and Hermitian covariance surface C(s, t) = E

(
(Y (s)− µ∗(t))†(Y (t)− µ∗(t))

)
= C(t, s)†. Under com-

plex symmetry, we obtain again µ∗(t) = 0, while the auto-covariances E(<(Y (s))<(Y (t))) = E(=(Y (s))=(Y (t))) =
< (C(s, t)) and cross-covariances E(<(Y (s))=(Y (t))) = −E(=(Y (s))<(Y (t))) = = (C(s, t)) of the
bivariate Y are completely determined by C(s, t), as shown in the Supplement. The integral operator
Σ∗(f)(t) =

∫
C(s, t)f(s) dν(s) on L2(T ,C) induced by the covariance surface again constitutes a com-

pact and self-adjoint operator and admits, as such, an eigendecomposition. In fact, under standard assump-
tions such as continuity of µ∗(t) and C(s, t), Fubini allows switching integrals and the point-wise mean
µ∗ = µ coincides with the mean element and the operator Σ∗ = Σ with the covariance operator. In this
case, the eigendecomposition of Σ also yields a decomposition

C(s, t) =
∑

k≥1

λke
†
k(s)ek(t)

of the covariance surface.

2.2 Hermitian covariance estimation via tensor-product smoothing
Based on a densely/regularly sampled collection of realizations y1, . . . , yn : T → C (with equal grids) of a
complex symmetric process Y , the covariance surfaceC(s, t) of Y can be estimated by the empirical covari-
ance surface Ĉemp.(s, t) = 1

n

∑n
i=1 y

†
i (s)yi(t) for each pair of grid-points s, t. This is, however, not pos-

sible in a sparse/irregular setting where only a limited number of evaluations yi(ti1) = yi1, . . . , yi(tini) =
yini are available for i = 1, . . . , n such that, for a given (s, t)-tuple, Ĉemp.(s, t) would only be based on
few observations if computable at all. Consequently, some kind of smoothing over samples becomes nec-
essary and, following the seminal work of Yao et al. (2005), covariance estimation in the sparse/irregular
functional case has widely been approached as a non-/semi-parametric regression problem. We proceed
accordingly in the complex case and model E

(
Y †(s)Y (t)

)
= C(s, t) with a (smooth) regression estima-

tor Ĉ(s, t) fitted to response products y†ijyi̈ at respective tuples (tij , ti̈) ∈ T 2, for j, ̈ = 1, . . . , ni and
i = 1, . . . , n. Here, it is often reasonable to assume that, in fact, only measurements ỹij = yij + εij are
observed with εij = εi(tij) uncorrelated measurement errors originating from a white noise error process
ε(t), t ∈ T . This leads to a combined covariance C̃(s, t) = C(s, t) + τ2(t) 1{s}(t) with τ2(t) = var(ε(t))
the variance function of ε(t). Assuming C(s, t) continuous, τ2(t) can be distinguished as a discontinuous
“nugget effect” at s = t.

Generalizing the approach of Cederbaum et al. (2018) for real covariance surfaces to the complex case,
we propose to model C(s, t) using a Hermitian tensor-product smooth

C(s, t) ≈
m∑

g=1

m∑

k=1

ξgkfg(s)fk(t) = f>(s) Ξ f(t) = vec(Ξ)>(f(t)⊗ f(s))

with real-valued basis functions fk : T → R, k = 1, . . . ,m, stacked to a vector f(t) = (f1(t), . . . , fm(t))>,
and a Hermitian coefficient matrix Ξ = {ξkk′}kk′ = Ξ† ∈ Cm×m ensuring C(s, t) is Hermitian as
required, with vec stacking the columns of a matrix to a vector. Both the symmetry of the real part
<(Ξ) = <(Ξ)> and the anti-symmetry of the imaginary part =(Ξ) = −=(Ξ)> present linear constraints.
As such they can be implemented via suitable basis transforms D< (f ⊗ f)(s, t) and D= (f ⊗ f)(s, t)
of the tensor-product basis (f ⊗ f)(s, t) = (f1(s)f>(t), . . . , fm(s)f>(t))> with transformation matrices
D< ∈ R(m2+m)/2×m2

and D= ∈ R(m2−m)/2×m2

for the symmetric and anti-symmetric part, respectively.
Since Rm×m is a direct sum of the vector spaces of symmetric and antisymmetric m×m matrices, D= can
be obtained, e.g., as basis matrix of the null space of D<. A possible construction of D< is described by
Cederbaum et al. (2018). In addition to the covariance, we also model the error variance τ2(t) ≈ ξ>τ fτ (t)
expanded in a real function basis fτ (t). Here, it might be convenient to employ the same basis fτ (t) = f(t),
or to assume constant error variance by setting fτ (t) = 1 for all t. At any twith τ2(t) = 0, the measurement
error is excluded from the model. The coefficients vec

(
Ξ̂
)

= D<ξ̂<+ i D=ξ̂= of the covariance estimator
Ĉ(s, t) minimize the penalized least-squares criterion

PLS(Ξ, ξτ ) =
∑

i,j,̈

∣∣∣f>(tij) Ξ f(ti̈) + ξ>τ fτ (tij) 1{̈}(j)− y†ijyi ̈
∣∣∣
2

+ PEN(Ξ, ξτ )
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with quadratic penalty term PEN. They are seperately obtained for the real and imaginary part of the covari-
ance using PLS = PLS< + PLS= via the well-known linear estimators ξ̂< ∈ R(m2+m)/2, ξ̂τ ∈ Rmτ mini-
mizing PLS< =

∑
i,j,̈(ξ

>
< D< (f ⊗ f)(tij , ti̈) + ξ>τ f(tij) 1{̈}(j)−<(y†ijyi ̈))

2 + η< ξ><D<P⊗D><ξ<+

ητ ξ
>
τ Pτ ξτ , and ξ̂= ∈ R(m2−m)/2 minimizing PLS= =

∑
i,j,̈(ξ

>
= D= (f ⊗ f)(tij , ti̈) − =(y†ijyi ̈))

2 +

η= ξ>=D=P⊗D>=ξ=. Smoothing parameters ητ , η<, η= > 0 control the penalty induced by the matrices
Pτ and P⊗ = P ⊗ Im + Im ⊗ P constructed from a suitable penalty matrix P ∈ Rm×m for the basis
coefficients of f(t) and the m × m identity matrix Im. Assuming the error variance not too heteroge-
neous over t, the matrix Pτ should typically penalize deviations from the constant. Based on a working
normality assumption, η<, ητ and η= are obtained via restricted maximum likelihood (REML) estimation
(Wood, 2017), avoiding computationally intense hyper-parameter tuning. For practical use, we extended
the R package sparseFLMM (Cederbaum, 2018) to also offer anti-symmetric tensor-product smooths for
the package mgcv (Wood, 2017) used for estimation. For asymptotic theory on the used penalized spline
estimators, please see Wood et al. (2016).

After estimation, eigenfunctions ek and eigenvalues λk of the covariance operator Σ of Y are estimated
by the corresponding eigendecomposition Ĉ(s, t) =

∑
k≥1 λ̂kê

†
k(s)êk(t) of the respective covariance oper-

ator Σ̂. Based on Ξ̂ and the Gram matrix G = {〈fk, fk′〉}mk,k′=1, the right eigenvalues of the matrix G−1Ξ̂

yield the eigenvalues λ̂k of Σ̂. The corresponding eigenvectors θ̂k yield the eigenfunctions êk(t) = θ̂>k f(t)

of Σ̂ for k = 1, . . . ,m. To ensure positive-definiteness, eigenfunctions with λk ≤ 0 are omitted from the
basis. Nonnegativity of τ2 is enforced post-hoc by setting negative values to zero.

3 Elastic full Procrustes analysis

3.1 Full Procrustes analysis in the square-root-velocity framework
To now propose (elastic) full Procrustes means for plane curves, we first introduce some underlying con-
cepts and notation. We understand a parameterized curve as a function β : [0, 1] → C, which is assumed
absolutely continuous such that the component-wise derivative β̇(t) = d

dt< ◦ β(t) + i ddt= ◦ β(t) exists
almost everywhere and also the integral ϕβ(t) =

∫ t
0
|β̇(s)| ds < ∞ exists for t ∈ [0, 1]. Denoting the set

of absolutely continuous functions [0, 1] → C by AC([0, 1],C), we further assume β ∈ AC∗([0, 1],C) =
AC([0, 1],C) \ {t 7→ z : z ∈ C} excluding constant functions as degenerate curves. Then β has positive
length L(β) = ϕβ(1) > 0, and a constant-speed parameterization α = β ◦ ϕ−1

β always exists, when taking
the generalized inverse ϕ−1

β (s) = inf{t ∈ [0, 1] : sL(β) ≤ ϕβ(t)}, s ∈ [0, 1]. Two parameterized curves
β1, β2 ∈ AC∗([0, 1],C) are said to describe the same curve if they have the same constant-speed parameter-
ization α1 = α2, which yields an equivalence relation β1 ≈ β2. An oriented curve is then defined as equiva-
lence class with respect to ‘≈’. If the context allows it, we commonly refer to both oriented plane curves and
their parameterized curve representatives β simply as “curve”. A diffeomorphism γ : [0, 1]→ [0, 1] which
is orientation-preserving, i.e., with derivative γ̇(t) > 0 for t ∈ [0, 1], is called warping function and the set
of such warping functions is denoted by Γ. With obviously β ◦ γ ≈ β, warping can equivalently be used to
define equivalence of parameterized curves (see, e.g, Bruveris, 2016, which we also recommend for further
details). Abstracting also from the particular coordinate system for C, the shape of an (oriented) curve
with parameterization β is then defined by [β] = {β̃ ∈ AC([0, 1],C) : u β̃ + v ≈ β for some u, v ∈ C},
its equivalence class under translation by any v, rotation by u/|u| = exp(iω), ω ∈ R, re-scaling by |u|,
and warping. This presents our ultimate object of interest. In establishing a metric on the quotient space
B = {[β] : β ∈ AC∗([0, 1],C)}, we follow and extend the idea of the full Procrustes distance in landmark
shape analysis and define

dΨ([β1], [β2]) = inf
a≥0,vi∈C,
ωi∈R,γi∈Γ

‖ Ψ (exp(iω1) β1 ◦ γ1 + v1)− a Ψ (exp(iω2) β2 ◦ γ2 + v2) ‖ (1)

for β1, β2 ∈ AC∗([0, 1],C), with a pre-shape map Ψ : AC∗([0, 1],C) → L2([0, 1],C), β 7→ q discussed
below allowing to base computation on the L2-metric while optimizing over all involved invariances. Acting
differently than the other curve-shape preserving transformations (see, e.g., Srivastava and Klassen, 2016,
Chap. 3.7), scale invariance is generally accounted for by a normalization constraint ‖Ψ(β)‖ = ‖q‖ = 1
for all β. Fixing a = 1 in (1) would yield a partial-Procrustes-type distance instead. Replacing also the
norm by the arc length on the L2-sphere would correspond to an intrinsic shape distance. To obtain a proper
and sound metric, Ψ has to be carefully chosen. It is well-known that directly applying the L2-metric on
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the level of parameterized curves β is problematic, since in this case the warping action of γ ∈ Γ is not by
isometries (Srivastava and Klassen, 2016).

We set Ψ̃(β) to the SRV-transformation (Srivastava et al., 2011), representing a curve β by its square-
root-velocity (SRV) transform q : [0, 1] → C given by q(t) = β̇(t)/|β̇(t)|1/2 wherever this is defined
and q(t) = 0 elsewhere. Indeed, q is square-integrable with ‖q‖2 =

∫ 1

0
|q(t)|2 dt = L(β). Since

Ψ̃ (uβ ◦ γ + v) (t) = (u/|u|1/2) q◦γ(t)γ̇(t)
1/2, warping and rotation act by isometries with ‖Ψ̃(a exp(iω)β1◦

γ + v)− Ψ̃(a exp(iω)β2 ◦ γ + v)‖ = a1/2‖Ψ̃(β1)− Ψ̃(β2)‖ for any two curves β1, β2 and γ ∈ Γ, a ≥ 0,
ω ∈ R, u, v ∈ C. The L2-metric on the SRV-transforms induces a metric on the space of parameterized
curves modulo translation (Bruveris, 2016). It is commonly referred to as “elastic” metric due to the iso-
metric action of γ allowing to construct a metric on oriented curves via optimal warping alignment. Ψ̃ is
surjective but not injective, with Ψ̃−1({Ψ̃(β)}) = {β + v : v ∈ C} ⊂ [β]. Without loss of generality, we
can, thus, set Ψ̃−1(q)(t) =

∫ t
0
β̇(s) ds =

∫ t
0
q(s)|q(s)| ds when discussing shapes [β].

Proposition 1. With Ψ(β) = Ψ̃(β/L(β)) = Ψ̃(β)/‖Ψ̃(β)‖ the normalized SRV-transform, dΨ defines a
metric on B, referred to as elastic full Procrustes distance dE . It takes the form

d2
E([β1], [β2]) = inf

u∈C,γ∈Γ
‖q1 − u q2 ◦ γ γ̇1/2‖2 = 1− sup

γ∈Γ
|〈q1, q2 ◦ γ γ̇1/2〉|2

for qi = Ψ(βi) unit-norm SRV-transforms of curve shape representatives β1, β2 ∈ AC∗([0, 1],C).

With a metric at hand, we may proceed by considering random shapes and define the concept of a
Fréchet mean induced by the metric (compare, e.g., Huckemann, 2012; Ziezold, 1977). A random element
A in a metric space (A, d) is a Borel-measurable random variable taking values in A. A (population) Fréchet
mean or expected element m ∈ A is defined as a minimizer of the expected square distance

E
(
d2(m, A)

)
= σ2 = inf

a∈A
E
(
d2(a, A)

)
.

assuming a finite variance σ2 <∞.

Definition 2. A random (plane curve) shape [B] is a random element in the shape space B equipped
with the elastic full Procrustes distance dE . We call a Fréchet mean [µE ] ∈ B of [B], represented by
µE ∈ AC∗([0, 1],C), an elastic full Procrustes mean of the random shape [B].

As distance computation is carried out on SRV-transforms, it is, however, typically more convenient to
consider the mean shape on SRV-level, i.e. via a distribution L (Q) of a random element Q = Ψ(B) in the
Hilbert space L2([0, 1],C) inducing the shape distribution L([B]).

Proposition 2. Consider a random element Q in L2([0, 1],C) with ‖Q‖ = 1 almost surely. The elastic
full Procrustes means [µE ] of the induced random shape [B] = [Ψ−1(Q)] are determined by their SRV-
transform ψE = Ψ(µE) fulfilling

ψE ∈ argmax
y:‖y‖=1

E
(

sup
γ∈Γ
|〈y,Q ◦ γ γ̇1/2〉|2

)
= argmax

y:‖y‖=1

E
(

sup
γ∈Γ
〈y,Q ◦ γ γ̇1/2〉〈Q ◦ γ γ̇1/2, y〉

)
. (2)

When fixing γ in Equation (2), the maximum of the quadratic form is obtained at the leading eigenvector
of the covariance operator of Q◦γ γ̇1/2, which is carried out in detail in Proposition 3 considering inelastic
full Procrustes means of shapes of parameterized plane curves. This allows use of Hermitian covariance
smoothing, introduced in Section 2.2, for shape mean estimation. Inelastic mean estimation will present a
building block in elastic mean estimation but is also interesting in its own right, especially in data scenarios
involving natural curve parameterizations.

Proposition 3. For β ∈ AC∗([0, 1],C) define the shape of a parameterized plane curve as (β) = {uβ+v :
u, v ∈ C}. Then

i) the inelastic full Procrustes distance d6E((β1), (β2)) = infu∈C ‖q1−uq2‖with ‖qi‖ = 1 for Ψ(βi) = qi,
i = 1, 2, defines a metric on the shape space B̃ = {(β) : AC∗([0, 1],C)} of parameterized plane
curves and can be expressed as d2

6E((β1), (β2)) = 1− |〈q1, q2〉|2;

ii) multiplication by 〈q1, q2〉†/|〈q1, q2〉| = argminu:|u|=1 ‖q1 − uq2‖ yields rotation alignment of β2 to
β1;
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iii) for a complex symmetric random element Q in L2([0, 1],C) with covariance operator Σ, let Y1 = {y :
Σ(y) = λ1y} denote the spectrum of the leading eigenvalue λ1 of Σ. Then, (Y1) = {(y) : y ∈ Y1}
is the set of Fréchet means of the random shape (B) = (Ψ−1(Q)) in B̃ with respect to d 6E , which
we refer to as inelastic full Procrustes means. In particular, the leading eigenfunction ψ 6E = e1 of
an eigendecomposition of Σ yields an inelastic full Procrustes mean (µ6E) of (B) with SRV-transform
ψ6E = Ψ(µ6E). It is unique if λ1 has multiplicity 1. The variance of (B) is σ2

6E = E(d2
6E((µ6E), (B))) =

1− λ1.

Motivated by Proposition 3 iii), we propose to estimate ψ6E as leading eigenfunction ê1 of Ĉ(s, t) ob-
tained by Hermitian covariance smoothing in Section 3.3, as part of the estimation procedure of ψE . How-
ever, before that we first address the question of how it is still possible to work with derivative-based
SRV-curves even in the sparsely observed setting so common in practice.

3.2 The square-root-velocity representation in a sparse/irregular setting
In practice, the shape of an (oriented) plane curve is observed via a vector b = (b0, . . . bn0

)> ∈ Cn0+1 of
points, which can be considered evaluations β∗(t∗j ) = bj of some continuous parameterization β∗ : [0, 1]→
C of the curve at arbitrary time points t∗0 < · · · < t∗n0

. However, fixing the time grid, the derivatives β̇∗(t∗i )
are not observable. Instead, evaluations of an SRV-transform describing the curve can be directly obtained
from the finite differences ∆j = bj−bj−1, if the curve segments β∗

(
(t∗j−1, t

∗
j )
)
⊂ C between the observed

points in b have no edges or loops:

Theorem 3 (Feasible sampling). If β∗ is continuous and β∗ : (t∗j−1, t
∗
j )→ C is injective and continuously

differentiable with β̇∗(t) 6= 0 for all t ∈ (t∗j−1, t
∗
j ), for j = 1, . . . , n0, then for any time points 0 < t1 <

· · · < tn0
< 1 and speeds w1, . . . , wn0

> 0, there exists a γ ∈ Γ such that

q(tj) = w
1/2
j (β∗(t∗j )− β∗(t∗j−1)) = w

1/2
j ∆j (j = 1, . . . n0)

for the SRV-transform q of β = β∗ ◦ γ.

We call a vector of sampling points b of a curve feasible if the conditions of Lemma 3 hold. This is
always fulfilled if there is a β∗ ∈ (β) such that β∗ is continuously differentiable with non-vanishing deriva-
tive on all (0, 1) and, in particular, if it describes an embedded one-dimensional differentiable submanifold
of R2. If, instead, the curve has edges, they must be contained in b, as well as a point inside of each loop
(i.e. within each closed curve segment).

Note that while discrete observations often result in approximate derivative computations, Theorem
3 ensures that the derivative-based SRV-transform can be exactly recovered on a desired grid - up to
a re-parameterization not essential in an analysis invariant to re-parameterization. Selected time points
t1 < · · · < tn0

and speeds w1, . . . , wn0
> 0 implicitly determine the parameterization. In principle,

they could be arbitrarily selected due to parameterization invariance of the analysis, but with regard to
mean estimation it is desirable to initialize them in a coherent way. Without any prior knowledge, con-
stant speed parameterization of underlying curves β presents a canonical choice. To approximate this,
we borrow from constant speed parameterization β̂ of the sample polygon with vertices b, implying a
piece-wise constant SRV-transform q̂(t) =

∑n0

j=1 qj 1[sj−1,sj)(t) of β̂ with SRVs qj = ∆j |∆j |−1L1/2(β̂),
with L(β̂) =

∑n0

j=1 |∆j | the length of the polygon. The nodes sj =
∑j
l=1 |∆j |/L(β̂) indicate the ver-

tices β̂(sj) = bj , j = 0, . . . , n0. In accordance with that, we set q(tj) = qj and select time points
tj = (sj + sj−1)/2 in the center of the edges, for j = 1, . . . , n0. Depending on the context other choices
might be preferable, but we generally expect this choice to imply reasonable starting parameterizations.

3.3 Estimating elastic full Procrustes means via Hermitian covariance smoothing
Consider a collection of sample vectors bi ∈ Cni+1 of n curves βi ∈ AC∗([0, 1],C), i = 1, . . . , n,
realizations of a random plane curve shape [B]. For scale-invariance, sample polygons are normalized to
unit-length. Moreover, the bi are assumed feasibly sampled to represent them by evaluations qi(tij) = qij
at time points tij , j = 1, . . . , ni, of the SRV-transform qi of βi as described in the previous Section 3.2. We
model an elastic full Procrustes mean [µ] of [B] via the SRV-transform ψ of µ ∈ AC∗([0, 1],C) expanded
as ψ(t) =

∑m
k=1 θkfk(t) = θ>f(t) in a basis f(t) = (f1(t), · · · fm(t))> of functions fk ∈ L2([0, 1],R),

k = 1, . . . ,m, with complex coefficient vector θ = (θ1, . . . , θm)> ∈ Cm. For the basis, piece-wise linear
B-splines of order 1 present an attractive choice, since they have been proven identifiable under warping-
invariance (Steyer et al., 2022) while still implying continuity of ψ and a differentiable mean curve µ.
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The idea of alternating between a) mean estimation on aligned data and b) alignment of the data to the
current mean is used for estimation of landmark full Procrustes means (Dryden and Mardia, 2016, p. 139)
and intrinsic elastic mean curve shapes (Srivastava and Klassen, 2016, p. 319). We follow a similar strategy
to find an estimator ψ̂(t) = θ̂>f(t) for ψ but estimate an inelastic full Procrustes mean in a) and base
the estimate on Hermitian covariance smoothing for irregularly/sparsely sampled curves. The covariance
estimate is also used for estimating normalization and rotation alignment multipliers, which are not directly
computable for sparse curve data. For warping alignment in b), we utilize the approach of Steyer et al.
(2022), which has proven suitable also for irregularly/sparsely sampled curves. The single steps of the
algorithm are detailed in the following and a discussion of its empirical performance is given in the next
section.

Initialize in iteration h = 0 SRV-representations q[h]
i (t

[h]
ij ) = q

[h]
ij with q[0]

ij = qij and t[0]
ij = tij as in

Section 3.2 for all i, j, and repeat the following steps for h = 1, 2, . . . :

I. Covariance estimation: We estimate the covariance surface C [h](s, t) of a complex symmetric pro-
cess Q underlying q

[h]
1 , . . . , q

[h]
n with a tensor-product estimator Ĉ [h](s, t) = f(s)>Ξ̂[h] f(t) with

coefficient matrix Ξ̂[h] ∈ Cm×m. While for dense sampling, an estimate can be directly obtained
from the covariance of the 〈q[h]

i , fk〉 (see Supplement), we propose Hermitian covariance smoothing
as described in Section 2 for sparse/irregular data. This yields eigenfunctions ê[h]

k and eigenvalues λ̂[h]
k ,

k = 1, . . . ,m, of the corresponding covariance operator Σ̂[h], as well as an estimate τ̂2[h](t) ≥ 0 of
the variance of a white noise zero mean residual process ε(t) at t ∈ [0, 1], if measurement uncertainty
on observations Q(tij) + ε(tij) is assumed.

II. Mean estimation: Set ψ̂[h](t) = ê
[h]
1 (t) = θ̂

[h]>
1 f(t) to the leading eigenfunction of Σ̂[h] obtained

from the leading right eigenvector θ̂[h]
1 of G−1Ξ̂[h] with Gramian G of f . This yields an inelastic

full Procrustes mean estimate [µ̂[h]] = [Ψ−1(ψ̂[h])] of the curves with the current parameterization
(Proposition 3), presenting the current estimate of the elastic full Procrustes mean.

III. Rotation alignment and re-normalization: For u[h]
i =

(
z

[h]
i1 /|z

[h]
i1 |
)†

(L[h](βi))
−1/2 with z[h]

i1 =

〈ê[h]
1 , qi〉, the multiplied u[h]

i q
[h]
i has norm 1 and is rotation aligned to ψ̂[h]. We estimate u[h]

i by û[h]
i

for i = 1, . . . , n based on the covariance estimation by plugging in conditional expectations ẑ[h]
i1 =

E
(
〈ê[h]

1 , Q〉 | Q(tij) + ε(tij) = q
[h]
ij , j = 1, . . . , ni

)
and L̂[h](βi) = E

(
‖Q‖2 | Q(tij) + ε(tij) =

q
[h]
ij , j = 1, . . . , ni

)
under a working normality assumption, an estimation approach in the spirit of

Yao et al. (2005). Expressions can be found in the Supplement.

IV. Warping alignment: Based on its rotation aligned SRV evaluations, the ith curve is (approximately)
warping aligned to µ̂[h] using the approach of Steyer et al. (2022), where SRV-transforms are approx-
imated as piece-wise constant functions q̂[h]

i (t) ≈ q
[h]
i (t) to find the infima of ‖µ̂[h] − q̂[h]

i ◦ γi γ̇
1/2
i ‖

over γ1, . . . , γn ∈ Γ. This yields new parameterization time-points t[h+1]
ij , j = 1, . . . , ni, and corre-

sponding SRVs q[h+1]
ij = w

[h]
ij û

[h]
i q

[h]
ij , with w[h]

ij > 0 depending on the t[h]
ij and t[h+1]

ij , passed forward
to proceed with the next iteration at Step I. Details can be found in the Supplement.

Stop the algorithm when ‖ψ̂[h] − ψ̂[h−1]‖ is below a specified threshold in Step II. An additional exe-
cution of Steps III and IV then yields rotation aligned representations of approximately unit-length curves
and current time points.

4 Adequacy and robustness of elastic full Procrustes mean estima-
tion in realistic curve shape data

Familiar everyday shapes offer an ideal platform for evaluation of shape mean estimation, allowing for
intuitive visual assessment of results. We consider three different such datasets for investigating the per-
formance of elastic full Procrustes mean shape estimation and comparing it to other mean concepts: 1.
digit3.dat from Dryden and Mardia (2016), in R package shapes, comprising a total of 30 handwrit-
ten digits “3” sampled at 13 landmarks each; 2. irregularly sampled spirals β(t) = t exp(13 i t), t ∈ [0, 1],
with random ni ∈ {17, . . . , 22} sampling points per spiral or with ni ∈ {4, . . . , 7} in a very sparse setting,
additionally provided with small measurement errors and random rotation, translation and scaling; and 3.
handwritten letters “f ” extracted from the handwrit data in Ramsay and Silverman (2005), in R package
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fda, comprising 20 repetitions of the letter with a total of 501 samples per curve. While we focus on one
letter here for simplicity, example fits on the entire “fda” writings can be found in Figure S1 in the Online
Supplement.

Based on digit3.dat, we compare our elastic full Procrustes mean estimator µ̂E with its inelastic
analog µ̂6E and with an elastic curve mean estimator µ̂C taking shape invariances not into account (fitted with
R package elasdics). Moreover, we investigate fitting performance of µ̂E for n = 4, 10, 30 observed
digits in a simulation. All estimators are fitted using piece-wise constant and piece-wise linear B-splines
with 13 equally spaced knots on SRV-level applying 2nd order difference penalties in the covariance es-
timation for µ̂E and µ̂6E . No penalty is available for µ̂C . Figure 1 shows the estimates fitted on the first
n = 4 digits in the dataset. Without warping alignment, µ̂6E does not capture the pronounced central nose
in the digit “3” as distinctly as µ̂E . The difference is somewhat smaller when fitting on all n = 30 digits
(not shown), yet only marginally. Since the data is roughly rotation and scaling aligned, µ̂C is very close
to µ̂E when fitting on all digits. When fitting only on the first n = 4 digits in the data, however, µ̂C sub-
stantially deviates, in particular for the smooth estimator using linear splines, as shown in Figure 1 (top
left). This can presumably be attributed to a) µ̂C being more affected by the one outlying “3” (top-left) than
µ̂E , and b) the nose pointing into different directions depending on the handwriting. Overall, deficiencies
in warping and rotation alignment tend to mask features in the curve shapes by averaging over different
orientations and parameterizations, similarly to the effect of measurement error in covariates in a regression
model. With missing scale alignment, the shape of the estimated mean is mainly driven by the shape of the
largest curve(s) in the data. Good estimation quality is also confirmed in simulations that compare elastic
full Procrustes mean estimates µ̂l, l = 1, . . . , 101, estimated on independently drawn bootstrap samples of
the digits (with n = 4, 10, 30), with the mean µ estimated on the original dataset and taken as true mean.
While single mean estimates for as few curves as n = 4 might considerably deviate, the majority visually
resembles µ well, including µ̂(0.75) where µ̂(a) denotes the bootstrap estimator with d(a) the a-quantile of
the distances dl = dE([µ̂l], [µ]), l = 1, . . . , 101. Except for two outliers, all estimates with n = 10 and
n = 30 are better than µ̂(0.75) for n = 4 (Figure 1, top middle).

We illustrate the role of sparsity in shape mean estimation in the spiral data with its varying level of
detail over the curve (i.e. varying curvature) and random irregular grids sampled roughly at constant angle
distances (Figure 1, bottom). Elastic full Procrustes mean estimates are based on piece-wise linear splines
on SRV-level with 20 knots and 2nd order penalties in covariance smoothing. With a moderate number
of sample points ni ∈ {17, . . . , 22}, the estimate based on n = 9 curves regains the original spiral shape
close to perfectly. Only the inner end of the spiral with the most curvature shows some deviation. With
ni ∈ {4, . . . , 7} and n = 20, the estimator does not capture the higher curvature in the inner part of
the spiral but otherwise fits its shape well despite extreme sparsity. In sparse functional data analysis,
borrowing of strength across curves allows for consistent estimation of principle components based on a
minimum number of sampling points ni for each curve under mild conditions (Yao et al., 2005). However,
this cannot equally be expected under shape invariances, as indicated by the fact that no shape information
remains when curves are observed at ni < 3 points, and in particular when warping-alignment can only be
approximated on sparse samples. Still, we observe that bias becomes vanishingly small when the sampling
points cover the curve sufficiently well. As this is often the case in real data, elastic full Procrustes mean
estimation performs reliably well in practice already for comparably sparse data in our experience.

Based on n = 20 handwritten letters “f ”, we compare to R package fdasrvf (Tucker, 2017), which
offers state-of-the-art elastic (intrinsic, not full Procrustes) shape mean estimation for regularly and densely
observed curves. To test different degrees of sparsity, we consider three scenarios with npoints = 10, 20, 30
sampling points per curve. For each, we draw l = 1, . . . , 101 bootstrap samples with n1 = · · · = n20 =
npoints points subsampled from the total recorded points of each “f ” giving a higher acceptance probability
to points important for curve reconstruction. This leads to datasets of sparse but still recognizable letters.
For all three settings our elastic full Procrustes mean estimator is fitted using piece-wise constant B-splines
with 30 equally spaced knots on SRV-level and applying a 2nd order difference penalty in the covariance es-
timation. This leads to polygonal means on curve level as in fdasrvfwhere the number of knots is, unlike
in our approach, always equal to npoints. As they estimate a different, intrinsic shape mean based on the
elastic geodesic shape distance ρ, a fair comparison is not possible. We thus tailor the comparison to favor
fdasrvf by comparing (also our full Procrustes) to their intrinsic shape mean on the full data, and using
their distance ρ. Figure 1 (top right) illustrates performance based on their “true mean” [µ], estimated on the
complete original data. In the very sparse npoints = 10 setting, differences in the mean concept are clearly
dominated by the gain of using our mean estimator, which shows stable estimates gradually improving with
npoints. With more densely observed curves the differences in fitting performance become smaller and the
fdasrvf implementation gains a distinct computational advantage due to quadratic increase of the design
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Figure 1: Top left: Different digit “3” mean curves (black: order 1, grey: order 0 B-splines on SRV-level)
estimated on the first n = 4 sample polygons in digit3.dat shown in the bottom-right. Top center:
Simulation results from 101-fold bootstrap samples of different sample sizes on digit3.dat. Four boot-
strap estimates as examples of cases with relatively high deviations from µ (95% and for n = 4 also 75%
distance quantiles) are depicted in the bottom and marked in the top panel (filled dots). Here, distances to
[µ] are provided relative to the standard deviation σ estimated on the original dataset (as described below
in Section 5). However, in some sense, σ is an underestimate as it does not include variation induced by
irregular/sparse sampling. Top right: Performance comparison of our elastic full Procrustes mean and the
fdasrvf elastic intrinsic mean estimator based on 101-fold boostrap with npoints = 10, 20, 30 points
sampled per letter “f ”. Top shows the distribution of geodesic distances of estimated means to the overall
intrinsic mean “f ” [µ] (computed with fdasrvf). For fdasrvf, three outliers for npoints = 10 and one
for npoints = 20 above 0.6 are omitted for the sake of visibility. Bottom shows example means of median
geodesic distance in each setting. Bottom: Elastic full Procrustes means estimated on the spiral samples
polygons displayed to their right, in front of the original spiral (grey, dashed line).
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matrix dimension in Hermitian covariance smoothing. While also in the npoints = 30 scenario fitting time
remains below 1.5 minutes on a standard computer, it can dramatically increase with the numbers of knots
and sampling points. In dense scenarios, we, thus, recommend utilizing an alternative covariance estimator
for elastic full Procrustes mean estimation as described in the Online Supplement. Still, also in this denser
setting, our approach estimating the elastic full Procrustes mean is at least as good in recovering the elastic
intrinsic mean as fdasrvf which is, unlike our estimator, designed to estimate this mean.

5 Phonetic analysis of tongue shapes
The modulation of tongue shape presents an integral part of articulation (Hoole, 1999). Several authors in-
vestigate the shape variation in different phonetic tasks by analyzing tongue surface contours during speech
production (Stone et al., 2001; Iskarous, 2005; Davidson, 2006) to obtain insights into speech mechan-
ics. They model tongue contour shapes with (penalized) B-splines fitted through points marked on the
tongue surface in ultrasound or MRT images of the speaker profile. While different measures to regis-
ter/superimpose the tongue contour curves are undertaken, shape and warping invariances are not explicitly
incorporated into their statistical analysis so far. In particular, reducing tongue shapes to one dimensional
curves over an angle as in Davidson (2006) brings the problem that the different functions (due to different
tongue shapes for different sounds) extend over different angle domains, which is ignored in the analysis.
We suggest elastic full Procrustes analysis to appropriately handle the inherently two-dimensional curves.
This approach accounts for the lack of a coordinate system in the ultrasound image, different positioning of
ultrasound devices and size differences of speakers (Procrustes analysis) as well as flexibility of the tongue
muscle to adjust its shape (elastic analysis). We illustrate the approach in experimental data kindly provided
by Marianne Pouplier: tongue contour shapes are recorded in an experimental setting from six native Ger-
man speakers (S = {1, . . . , 6}) repeating the same set of fictitious words, such as “pada”, “pidi”, “pala”
or “pili”. The words implement different combinations of two flanking vowels in V = {a ∗ a, i ∗ i}
around a consonant in C = {d, l, n, s}. Each combination is repeated multiple times by each of the speak-
ers (1-8 times), observing tongue contour shapes formed at the central time point of consonant articulation
(estimated from the acoustic signal). In total, this yields n = 299 sample polygons with nodes bi ∈ Cni ,
i = 1, . . . , n, each sampled at ni = 29 points from the tongue root to the tongue tip. A feature vector
Xi = (vi, ci, si)

> ∈ X = V × C × S identifies the word-speaker combination of the ith curve. We
investigate the different sources of shape variability (consonants, vowel context, speakers, repetitions) by
elastic Full Procrustes analysis on different levels of hierarchy. Let [µ̂A] ∈ B denote the elastic full Pro-
crustes mean estimated for all i with Xi ∈ A ⊂ X . Figure 2 depicts the overall shape mean [µ̂X ], separate
means [µ̂{(c,v)}×S ] for the consonants c ∈ {d, s} in both vowel contexts v ∈ V , and speaker-word means
[µ̂{(c,v,s)}] reflecting individual articulation by speaker s ∈ S . Not displayed consonants “l” and “n” yield
very similar shapes as “d”. Shape means are estimated using linear B-splines on SRV level with 13 equidis-
tant knots and a 2nd order difference penalty for the basis coefficients. Homogeneous measurement error
variance is assumed. Fitting the overall mean in this setting takes about 3 minutes on a standard computer.

For quantitative assessment of the hierarchical variation structure, we consider the conditional variances
σ2
A = E(d2

E([B], [µA]) | X ∈ A) with X constrained on a subset A ⊂ X . Motivated by σ2
A = 1 − λA,1

(Proposition 3 iii) with λA,1 the largest eigenvalue of the respective conditional covariance operator, we
estimate σ̂2

A = 1 − λ̂A,1(
∑m
k=1 λ̂A,k)−1 with λ̂A,1, . . . , λ̂A,m the positive eigenvalues of the covariance

operator obtained in the final iteration of estimating [µA]. In a dense setting, where observations can be
exactly normalized, the estimator σ̌2

A = 1− λ̂A,1 can be used directly, since when ‖Q‖ = 1 almost surely
also E(‖Q‖2) =

∑
k≥1 λk = 1. In a sparse setting, however, dividing by

∑m
k=1 λ̂A,k in σ̂2

A ensures
non-negative variance estimates.

In analogy to standard analysis of variance, we define the coefficient of determination for A1 in some
decomposition A1 × A2 = X as R2

A1
= 1 − (|X | σ̂2

X )−1|A2|
∑
a∈A1

σ̂2
{a}×A2

reflecting the variance
reduction achieved by conditioning on the features in A1. Inspecting these measures underpins the visual
impression from Figure 2: although the tongue movement is induced by consonant pronunciation, the vowel
context appears more dispositive for the tongue shape during articulation explaining more than half of the
total variation (R2

V = 0.68, R2
C = 0.11), which increases only to R2

V×C = 0.73 when also distinguishing
consonants. Comparing the different vowel contexts, we observe nearly double variation for a ∗ a than for
i ∗ i with σ̂2

{a∗a}×C×S/σ̂
2
{i∗i}×C×S = 1.95, which might potentially relate to different pronunciations of

“a” in German dialects. When considering single word articulation of a speaker (R2
V×C×S = 0.93) about 7

percent of the variation remain as residual variance, indicating that, while there is still non-negligible intra
speaker variation, the inter speaker variance is considerably higher.
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Figure 2: Left: schematic illustrating the tongue muscle modulation when pronouncing “isi” and “asa”.
Dashed lines correspond to the respective mean shapes in the right plot. With its multiple and multi-
directional fibers, the tongue muscle almost fills the entire oral cavity and can flexibly adjust its shape. In
particular, not only tongue tip but also tongue root can move relatively freely. Right: elastic full Procrustes
mean tongue shape estimates for different levels of aggregation. Tongue shapes are depicted in Bookstein
coordinates, i.e. with the tongue roots at β(0) = 0 and the tongue tips at β(1) = 1. Each panel shows
the overall mean shape in the dataset (light gray, thick long-dashed line), the vowel-consonant mean shape
(black, dashed line), and speaker-wise mean shapes (dark gray, solid lines) for each combination. In each
panel, original sample polygons (light red, thin lines, dots at sample points) are added for the speaker with
most intra-speaker variation (which is the same speaker except for “idi”).

Recorded via ultrasound images, the shape of tongue surface contours modulo the respective invariances
presents a natural object of analysis. Yet, if suitable reference landmarks allowed, the information on
positioning, size, orientation and warping of the curve could also be separately investigated.

6 Discussion
While we find good performance of the proposed elastic full Procrustes mean estimator in realistic irreg-
ular/sparse curve data, future work should focus on theoretical assessment of estimation quality as well
as inference. In particular, evaluation of the bias introduced by sub-optimal alignment of curves based on
single discrete measurements is a topic of its own that would be of interest, as well as characterization of
suitable sampling schemes where the bias is empirically negligible, which often appears to be the case in
practice.

In this paper, we focus on open rather than closed curves, since the presented covariance-based esti-
mation approach is particularly natural in this case. Constraining curves β to be closed, i.e. β(0) = β(1),
induces the non-linear constraint

∫ 1

0
q(t)|q(t)| dt = 0 on SRV-level, which prevents direct application of

Proposition 3 in the estimation. To still obtain a closed mean estimator for closed observations, the pre-
sented estimator could be closed along the lines of Srivastava and Klassen (2016, Chapter 10.6.2) either
post-hoc or in each step of the fitting algorithm.

As it can be analytically computed, inelastic full Procrustes analysis can also serve as a good starting
point for estimating other types of shape means of plane curves. In addition, the estimated covariance
structure supports estimation of inner products in sparse/irregular data scenarios, which are involved also
in estimation of, e.g., other types of shape means. The presented results thus have relevance beyond the
estimation of the (elastic) full Procrusted mean for plane shapes.
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A Hermitian covariance smoothing

A.1 Complex processes and rotation invariance
In the following, we detail prerequisites on linear operators and proof Theorem 1 and 2. Subsequently,
Proposition 5 substantiates the relation of complex and real covariance surfaces indicated in the main
manuscript.

We widely follow Hsing and Eubank (2015) in their introduction of functional data fundamentals, but
re-state required statements underlying Section 2.1 for the complex case, since they nominally focus on
real Hilbert spaces. Moreover, we give a Bochner integral free definition of mean elements and covariance
operators to avoid introduction of additional notions.

Let H denote a Hilbert space over C or R.

Theorem 4. Let Ω be a compact self-adjoint operator on H. Then there exists a sequence of countably
many real eigenvalues λ1, λ2, · · · ∈ R of Ω with corresponding orthogonal eigenvectors e1, e2, · · · ∈ H
and λ1 ≥ λ2 ≥ . . . such that {ek}k (called eigenbasis of Ω) is an orthonormal basis of the closure Ω(H)
of the image of Ω and for every x ∈ H

Ω(x) =
∑

k≥1

λk〈ek, x〉ek.

Proof. Compare Rynne and Youngson (2007), Chapter 7.3.

Definition 3. Let Y be a random element in H with E
(
‖Y ‖2

)
<∞. Then

i) the mean element µ ∈ H of Y is defined by 〈f, µ〉 = E (〈f, Y 〉) for all f ∈ H.

ii) the covariance operator Σ : H → H of Y is defined by 〈Σ(e), f〉 = E (〈Y − µ, f〉〈e, Y − µ〉) for all
e, f ∈ H.

Proposition 4. Consider µ and Σ as above.

i) µ and Σ are well-defined.

ii) Σ is a nonnegative-definite (thus self-adjoint), trace-class and, hence, also compact linear operator.

Proof. i) Since E
(
‖Y ‖2

)
<∞, Jensen’s inequality yields E (‖Y ‖) <∞, and therefore E (〈f, Y 〉) <∞

and also E (〈Y − µ, f〉〈e, Y − µ〉) < ∞ for all e, f ∈ H. Uniqueness of µ and Σ follows from the
Riesz Representation Theorem.

ii) Set µ = 0 without loss of generality. Self-adjointness 〈Σ(e), f〉 = E (〈Y, f〉〈e, Y 〉) = 〈e,Σ(f)〉 and
nonnegative-definiteness 〈Σ(e), e〉 = E (〈Y, e〉〈e, Y 〉) = E

(
|〈e, Y 〉|2

)
immediately follow from the

definition. Σ is trace-class, since for an orthonormal basis {ek}k of H it holds that
∑

k

〈Σ(ek), ek〉 =
∑

k

E
(
|〈ek, Y 〉|2

)
= E

(
‖Y ‖2

)
<∞

as assumed in the definition. Trace-class operators are compact.

Corollary 1. The covariance operator Σ of Y with E(‖Y ‖2) < ∞ has an eigenbasis as descibed in
Theorem 4.

Proof. Immediately follows from Theorem 4 and the self-adjointness and compactness of Σ shown in
Proposition 4.

We proceed by proving Theorem 1 and 2 in the main manuscript characterizing the relation of the
covariance of a complex process Y and the covariance of the corresponding bivariate real process Y:

Theorem 1. For x, y ∈ L(T ,C) and assuming µ = 0 without loss of generality, < (〈Σ(x) + Ω(x), y〉)) =
< (E (〈x, Y 〉〈Y, y〉+ 〈Y, x〉〈Y, y〉)) = < (E (2< (〈Y, x〉) 〈Y, y〉)) = 2E (< (〈Y, x〉)< (〈Y, y〉)) = 2〈Σ(κ(x)), κ(y)〉.
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Theorem 2. From complex symmetry of L(Y ) it follows that L(exp(iω)Zk) = L(〈ek, exp(iω)Y 〉) =
L(Zk), 〈µ, f〉 = E(〈Y, f〉)=E[〈−Y, f〉] = 0, and 〈Ω(e), f〉 = E(〈Y, e〉〈Y, f〉)=E(−〈Y, e〉〈Y, f〉) = 0 for
all ω, k, e, f , which yields the first direction of the characterization via scores and, together with Theorem 1,
statement i). ii) follows from Theorem 1, statement i) and the fact that if Zk is complex symmetric, κ(Zk)
has uncorrelated components with equal variance. Since exp(iω)Y =

∑
k≥1 exp(iω)Zkek almost surely if

µ = 0, the second direction of the characterization via scores follows.

Proposition 5. Analogous to Σ, the bivariate covariance surface C(s, t) of Y = κ(Y ) in L2([0, 1],R2) is
characterized by the matrix of covariance and cross-covariance surfaces

C(s, t) =

(
E (< (Y (s))< (Y (t))) E (= (Y (s))< (Y (t)))
E (< (Y (s))= (Y (t))) E (= (Y (s))= (Y (t)))

)

=
1

2

(
< (C(s, t) +R(s, t)) = (R(s, t)− C(s, t))
= (C(s, t) +R(s, t)) < (C(s, t)−R(s, t))

)

determined by the pseudo-covariance surface R(s, t) = E (Y (s)Y (t)) in addition to the complex covari-
ance surface C(s, t).

Proof.

C(s, t) +R(s, t) = E
(
Y †(s)Y (t) + Y (s)Y (t)

)
= E ((2< (Y (s)) + 0)Y (t))

= 2E (< (Y (s))< (Y (t)))︸ ︷︷ ︸
1
2<(C(s,t)+R(s,t))

+2i E (< (Y (s))= (Y (t)))︸ ︷︷ ︸
1
2=(C(s,t)+R(s,t))

C(s, t)−R(s, t) = E
(
Y †(s)Y (t)− Y (s)Y (t)

)
= E ((0− 2i= (Y (s)))Y (t))

= −2i E (= (Y (s))< (Y (t)))︸ ︷︷ ︸
1
2=(R(s,t)−C(s,t))

+2 E (= (Y (s))= (Y (t)))︸ ︷︷ ︸
1
2<(C(s,t)−R(s,t))

which shows the desired form.

B Elastic full Procrustes analysis

B.1 Full Procrustes analysis in the square-root-velocity framework
In the following, we start by proving Proposition 3 and use Proposition 3 i) to show Proposition 1 before
proving Proposition 2 subsequently.

Proposition 3 i) and ii). d6E defines a metric on B̃:

d2
6E((β1), (β2)) = inf

u∈C
‖q1 − u q2‖2 = inf

u∈C

[
1−

=r1 exp(iω1)︷︸︸︷
u 〈q1, q2〉︸ ︷︷ ︸

=r2 exp(iω2)

−u†〈q2, q1〉+ |u|2
]

= inf
r1>0, ω1∈R

[
1− r1r2 exp(i (ω1 + ω2))− r1r2 exp(−i (ω1 + ω2)) + r2

1

]

= inf
r1>0, ω1∈R

[
1− 2r1r2 cos(ω1 + ω2) + r2

1

] ω1=−ω2= inf
r1>0

[
1− 2r1r2 + r2

1

]
(3)

= inf
r1>0

[
1− r2

2 + (r1 − r2)2
] r1=r2= 1− |〈q1, q2〉|2 = ‖q1 − 〈q2, q1〉q2‖2 (4)

Clearly, d6E is well-defined (i.e., does not depend on the choice of βi ∈ (βi)), symmetric, positive. It is zero
if and only if |〈q2, q1〉| = 1 and, hence, (β1) = (

∫ t
0
q1(s)|q1(s)| ds) = (〈q2, q1〉

∫ t
0
q2(s)|q2(s)| ds) = (β2).

To show the triangle inequality let (β3) ∈ B̃ with q3 = Ψ(β3) and v∗ = 〈q2, q1〉. Then d 6E((β1), (β3)) =

infu∈C ‖q1 − u q3‖
L2

≤
tr. ineq.

‖q1 − v∗ q2‖︸ ︷︷ ︸
(4)
= infv∈C ‖q1−v q2‖

+ inf
u∈C
‖v∗ q2 − u q3‖

︸ ︷︷ ︸
=|v∗| infu∈C ‖q2−u q3‖

|v∗|≤1

≤ d 6E((β1), (β2)) + d6E((β2), (β3)).

This shows i). ii) directly follows from (3), since exp(−iω2) = 〈q1, q2〉/|〈q1, q2〉|.
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Proposition 3 iii). min(β)∈B̃ E
(
d2
6E((β), (B))

)
= miny:‖y‖=1 E

(
1− |〈y,Q〉|2

)
= 1−maxy:‖y‖=1 E

(
|〈y,Q〉|2

)
.

Hence, ψ6E ∈ argmaxy:‖y‖=1 E
(
|〈y,Q〉|2

)
, and E

(
|〈y,Q〉|2

)
= 〈y,Σ(y)〉 = 〈y,∑k λk〈ek, y〉ek〉 =∑

k λk|〈ek, y〉|2 ≤ λ1

∑
k |〈ek, y〉|2 = λ1‖y‖2 = λ1, due to λk ≤ λ1 and ‖y‖ = 1, with equality attained

by all y = x
‖x‖ with x ∈ Y1. This also yields (µ6E) and σ2

6E .

Proposition 1. dE defines a metric on B and allows for the provided expression:

d2
E([β1], [β2]) = inf

a≥0,vi∈C,ωi∈R,γi∈Γ,i=1,2
‖ exp(iω1) q1 ◦ γ1γ̇

1/2
1 − a exp(iω2) q2 ◦ γ2γ̇

1/2
2 ‖2

(∗)
= inf

u∈C,γ∈Γ
‖q1 − u q2 ◦ γ γ̇1/2‖2 (∗∗)

= 1− sup
γ∈Γ
|〈q1, q2 ◦ γγ̇1/2〉|2

where (∗) follows from isometry of rotation and warping action setting u = a exp(i (ω2 − ω1)), γ =
γ2 ◦ γ−1

1 ; and (∗∗) is analogous to the proof of Proposition 3.
As Γ acts on B̃ by isometries, infu∈C,γ∈Γ ‖q1−u q2◦γ γ̇1/2‖ = infγ∈Γ d6E((β1), (β2)) is a semi-metric.

To see that it is also positive-definite, assume dE([β1], [β2]) = 0. Consider any minimizing sequence {ul}l
with 0 = dE([β1], [β2]) = infγ∈Γ liml→∞ ‖q1 − ulq2 ◦ γγ̇1/2‖. Then, {ul}l is bounded, since |ul|‖q2‖ =
infγ∈Γ |ul|‖q2 ◦ γγ̇1/2‖ = infγ∈Γ ‖ulq2 ◦ γγ̇1/2‖ ≤ infγ∈Γ ‖ulq2 ◦ γγ̇1/2 − q1‖ + ‖q1‖ = ‖q1‖ and
‖q2‖ > 0 since β1 is assumed non-constant. Hence, there is a convergent sub-sequence limh→∞ ulh = u,

and 0 = infγ∈Γ limh→∞ ‖q1 − ulhq2 ◦ γγ̇1/2‖ continuity
= infγ∈Γ ‖q1 − u q2 ◦ γγ̇1/2‖ which is known to be

a metric on q1 = κ(q1),q2 = κ(q2) ∈ L2([0, 1],R2) (Bruveris, 2016). Hence, also [β1] = [β2] which
completes the proof.

Proposition 2. In analogy to Proposition 3, min[β]∈B E
(
d2
E([β], [B])

)
= miny:‖y‖=1 E

(
1− supγ∈Γ |〈y,Q ◦ γ γ̇1/2〉|2

)
=

1−maxy:‖y‖=1 E
(
supγ∈Γ |〈y,Q ◦ γ γ̇1/2〉|2

)
.

B.2 The square-root-velocity representation in a sparse/irregular setting
Theorem 5. Let β : [0, 1]→ C be continuous, injective, and, for all t ∈ (0, 1), continuously differentiable
with β̇(t) = d

dt<◦β(t) + i d
dt=◦β(t) 6= 0. Then, there exists a c ∈ (0, 1) such that β̇(c) = δ (β(1)−β(0))

for some δ > 0.

Proof. Let ρ = < ◦ β and ζ = = ◦ β denote the real and imaginary part of β. Without loss of generality
assume β(0) = 0 and β(1) = i. Choose 0 ≤ t0 < t1 ≤ 1 with ρ(t0) = ρ(t1) = 0 such that ζ(t) ≥ ζ(t0)
for all t ∈ [0, 1] with ρ(t) = 0 and ζ(t) ≤ ζ(t1) for all t ∈ [t0, 1] with ρ(t) = 0. If ρ(t) = 0 for all
t ∈ [t0, t1] and, hence, β̇(t) = i ζ̇(t) within (t0, t1), the Mean Value Theorem directly yields existence
of the desired c ∈ (t0, t1). We may, thus, assume ρ(t) 6= 0 for some t ∈ [t0, t1], say, with ρ(t) > 0.
Accordingly, a maximizer c ∈ [t0, t1] with ρ(c) = maxt∈[t0,t1] ρ(t) > 0 lies in (t0, t1) and ρ̇(c) = 0, since
ρ is continuously differentiable. Hence β̇(c) = iζ̇(c) 6= 0 as β is regular. t0 6= t1 and c all exist due to
compactness/continuity arguments.

We will now assume δ = ζ̇(c) < 0 and show that this leads to a contradiction. With some upper/lower
bounds ρsup > ρ(c)(> 0) and ζinf < mint∈[0,1] ζ(t), we construct the open polygonal curve α : [c, 1]
connecting the points a1 = β(c), a2 = ρsup + iζinf , a3 = iζinf and a4 = β(t0) ≤ 0. Then β1[t0,c] +α1[c,1]

is a simple closed continuous curve on [t0, 1], hence splits C into two connected open components, the
interior component A ⊂ C which is bounded and the exterior component U = C \ Ā (Jordan curve
theorem) where Ā denotes the closure of A. The path φ : [0,∞) → C, r 7→ β(t1) + r i does not intersect
the boundary β([t0, c]) ∪ α([c, 1]) = Ā ∩ Ū for all r ≥ 0, since, by construction, ζ(t1) > =(ak) for
k = 2, . . . , 4 and, for all t ∈ [t0, c] with ρ(t) = 0, ζ(t1) > ζ(t) as ζ(t1) ≥ ζ(t), c < t1 and β injective.
Thus, φ lies entirely in A or in U . Since A is bounded, the path and, in particular, φ(0) = β(t1) ∈ U . Due
to the construction of α and injectivity of β that do not permit intersection of the boundary (Jordan curve),
β(t) lies in A for all t > c if it lies within A for some t > c. This makes the local behavior at c crucial.
Thus, the assumption of ζ̇(c) < 0 entailing β(t) ∈ A for some t > 0 yields, in particular, β(t1) ∈ A and,
hence, the desired contradiction.

Corollary 2 (Feasible sampling). If β∗ : [0, 1] → C is continuous and β∗ : (t∗j−1, t
∗
j ) → C continuously

differentiable for j = 1, . . . , n0, t∗0 < · · · < t∗n0
with non-vanishing derivative, then for any time points

0 < t1 < · · · < tn0
< 1 and speeds w1, . . . , wn0

> 0, there exists a γ ∈ Γ such that for the SRV-transform
q of β = β∗ ◦ γ, q(tj) = w

1/2
j (β∗(t∗j )− β∗(t∗j−1)) = w

1/2
j ∆j for all j = 1, . . . n0.
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Proof. Since this is a local property, it suffices to consider the case of n0 = 1 and t∗0 = 0, t∗1 = 1.
By Theorem 5, there exists c ∈ (0, 1) with β̇(c)∗ = a∆1 for some a > 0. Choose γ ∈ Γ such that

γ(t1) = c and γ̇(t1) = w1a
−2. Then, q(tj) = β∗ ◦ γ(tj) ˙γ(tj)

1/2
= a∆1w

1/2
1 a−1 = w

1/2
1 ∆1 for all

j = 1, . . . , n0.

B.3 Estimating elastic full Procrustes means via Hermitian covariance smoothing
In the following, we provide additional details for three steps in our proposed elastic full Procrustes mean
estimation algorithm. We commence with proposing a more efficient covariance estimation procedure
for data with densely observed curves and continue with a discussion of conditional complex Gaussian
processes in Proposition 6 underlying our estimation of length and optimal rotation of curves. Finally, we
detail the warping alignment strategy proposed for the re-parameterization step.

Covariance estimation for densely observed curves: If curves y1, . . . , yn, are sampled densely enough,
covariance estimation can be achieved computationally more efficient than by Hermitian covariance smooth-
ing. In fact, for say ni > 1000 samples per curve andm basis functions f = (f1, . . . , fm)> for each margin,
setting up the joint (

∑n
i=1 n

2
i )×(m2 ±m)/2 design matrices for tensor-product covariance smoothing may

also cause working memory shortage. Using the notation of Section 2.2, we obtain a tensor-product covari-
ance estimator Ĉ(s, t) = f>(s) Ξ̂ f(t) of the same form by setting Ξ̂ = 1

n

∑n
i=1 ϑ̂iϑ̂

†
i to the empirical

covariance matrix of complex coefficient vectors ϑ̂i = (ϑ̂i1, . . . , ϑ̂im)> ∈ Cm of basis representations
yi(t) ≈

∑m
k=1 ϑ̂ikfk(t) for i = 1, . . . , n. Partitioning the data into N1 ∪ · · · ∪ NN = {1, . . . , n} sub-

sets for computational efficiency (which might simply be given by Ni = {i}), the estimators ϑ̂i are fit by
minimizing the penalized least-squares criterion

PLS(ϑi<,ϑi=) =
∑

i∈Nl

ni∑

j=1

∣∣yij − ϑ>i<f(tij)− iϑ>i=f(tij)
∣∣2 + ηϑ>i<Pϑi< + ηϑ>i=Pϑi=

with ϑi< = <(ϑi) and ϑi= = =(ϑi), for l = 1, . . . , N . In principle, real and imaginary parts can
be separately fit with the same smoothing parameter η ≥ 0 in both parts to achieve rotation invariant
penalization. As in Section 2.2, we use the mgcv framework for fitting (Wood, 2017) using restricted
maximum likelihood (REML) estimation for η. To speed up computation, η can be estimated only on N1

and fixed for l = 2, . . . , N , or set to η = 0 if no measurement error is assumed or no penalization is desired.
The residual variance yields a constant estimate for τ2. Using for instance mgcv’s “gaulss” family, a
smooth estimator τ̂2(t) could be obtained as well but is not detailed here.

Rotation and length estimation: As proposed by Yao et al. (2005) for predicting scores in functional
principal component analysis, we propose to use conditional expectations under a working normality as-
sumption to incorporate the covariance structure of the data into estimation of inner products and quadratic
terms. These are used for predicting basis coefficients of a curve (Proposition 6 iii) Equation (5)), its opti-
mal rotation to the mean (6), its length (7), and its distance from the mean (8) or another given curve. We
provide required conditional expectations covering both the case of a positive white noise error variance
τ2(t) > 0 and of no white noise error (τ2(t) = 0) for each time point t. The distinction runs through all
formulations and reading might be more convenient when assuming either of the cases is always fulfilled.

Proposition 6 (Conditional Gaussian process). Consider a random element Y in a complex Hilbert space
H of functions T → C defined on some set T . Assume Y =

∑m
k=1 Zkek finitely generated with prob-

ability one from a finite set e(t) = (e1(t), . . . , em(t))> of functions ek ∈ H with regular Gramian
G = {〈ek, ek′〉}k,k′ ∈ Cm×m and with Z = (Z1, . . . , Zm)> following a complex symmetric multivari-
ate normal distribution with positive-definite covariance matrix Λ. Let further denote ε an uncorrelated
complex symmetric error process on T with variance function τ2 : T → R. We consider a sequence of
n∗ = n0 + n+ points t1, . . . , tn∗ ∈ T and values y1, . . . , yn∗ ∈ C with τ2(t1), . . . , τ2(tn0

) = 0 and
τ2(tn0+1), . . . , τ2(tn0+n+

) > 0. Write E = {ek(tj)}jk = (E>0 ,E
>
+)> for the n∗ × m design matrix

of function evaluations subdivided into E0 ∈ Cn0×m and E+ ∈ Cn+×m containing the evaluations with
zero and positive error variance, respectively, and analogously y = (y1, . . . , yn∗)

> = (y>0 ,y
>
+)> for the

values and T+ = Diag(τ2(t1), . . . , τ2(tn+
)) for the diagonal n+ × n+ noise covariance matrix. Let

r0 = rank(E0) denote the rank of E0 and Q = (M,N) be an m × m Hermitian matrix such that M
is m × r0 and N spans the null space of E0. Q is obtained, e.g., by the QR-decomposition E>0 = QR.
By convention, matrices are set to 0 if their rank is zero (i.e., if m − r0, n0, or n+ = 0, respectively).
Conditioning on Y (tj) + ε(tj) = Z>e(tj) + ε(tj) = yj for j = 1, . . . , n∗ we obtain:
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i) Z = Z+ + z0 is split into a random part Z+ = NZ̃+ constrained to the linear sup-space span(N)
spanned by N, with Z̃+ a complex random vector of length m − r0, and a deterministic part z0 =

M
(
M†E†0E0M

)−1

M†E†0y0. In fact, under the given assumptions z0 = M(ME0)−†y0 with prob-

ability one, but the generalized inverse is robust with respect to the case where y0 /∈ span(E0), i.e.
where no measurement error is assumed but the curve cannot be exactly fit by the chosen basis.

ii) Z̃+ follows a complex normal with covariance S =
(
N†
(
E†+T−1

+ E+ + Λ−1
)

N
)−1

, mean ẑ+ =

SN†
(
E†+T−1

+ (y+ −E+z0)−Λ−1z0

)
and zero pseudo-covariance.

iii) For x ∈ H and gx = (〈e1, x〉, . . . , 〈em, x〉), this provides conditional means

ẑ = E (Z | Y (tj) + ε(tj) = yj , j = 1, . . . , n∗) = Nẑ+ + z0 (5)
E (〈Y, x〉 | Y (tj) + ε(tj) = yj , j = 1, . . . , n∗) = ẑ†gx (6)
E
(
‖Y ‖2 | Y (tj) + ε(tj) = yj , j = 1, . . . , n∗

)
= tr (S G) + ẑ†Gẑ. (7)

E
(
|〈Y, x〉|2 | Y (tj) + ε(tj) = yj , j = 1, . . . , n∗

)
= g†xS gx + gxẑ

†ẑ g†x. (8)

Proof. The computation is analogous to the real case. Defining Y = (Y (t1), . . . , Y (tn∗)
>, i.e. Y = EZ,

and ε = (ε(t1), . . . , ε(tn∗))
>, the distribution of Z̃ = Q†Z = (M†Z,N†Z)† = (Z̃†0, Z̃

†
+)† conditional on

Y + ε = y has a density proportional to

pZ̃(z̃ | Y + ε = y) ∝ pZ̃,Y +ε(z̃,Y + ε) ∝ pZ,ε(
=Mz̃0+Nz̃+︷︸︸︷

Q z̃ ,y −EQ z̃)

∝ exp

(
−1

2
z̃†Q†Λ−1Qz̃

)
·

· exp

(
−1

2
(y+ −E+Q z̃)†T−1

+ (y+ −E+Q z̃)

)
1{y0}(E0Q z̃)

(∗)∝ exp

(
−1

2

(
z̃†+N†Λ−1N z̃+

)
−<

(
z̃†+N†Λ−1z0

))
·

· exp

(
−1

2
z̃†+N†E†+T−1

+ E+N z̃+ + <
(
z̃†+N†E†+T−1

+ (y+ −E+z0)
))

1{M†z0}(z̃0)

∝ exp

(
− 1

2
z̃†+ N†

(
Λ−1 + E†+T−1

+ E+

)
N

︸ ︷︷ ︸
=S−1

z̃++

+ <
(

z̃†+ N†
(
E†+T−1

+ (y+ −E+z0)−Λ−1z0

)

︸ ︷︷ ︸
=S−1ẑ+

))
1{M†z0}(z̃0)

∝ exp

(
−1

2
(z̃+ − ẑ+)

†
S−1 (z̃+ − ẑ+)

)
1{M†z0}(z̃0).

Solving y0 = E0Qz̃ = E0Mz̃0 for z̃0 yields (∗) and shows i). Deriving the kernel of a Gaussian, the
remainder of the computation shows ii). In iii), (5) and (6) follow directly by linearity and (7) from variance
decomposition (omitting conditions for brevity):

E
(
‖Y ‖2

)
= E

(
〈
m∑

k=1

Zkek,

m∑

k=1

Zkek〉
)

= E
(
Z†GZ

)
= E

(
tr
(
ZZ†G

))

linearity
= tr

(
E
(
ZZ†

)
G
)

= tr
((

Var (Z) + E (Z)E (Z)
†
)

G
)

ii)
= tr (S G) + ẑ†Gẑ.

The computation for (8) is analogous.

Warping alignment: Generally, we consider it advisable to base warping alignment of the ith curve
directly on its original SRV-evaluations q[h]

i1 , . . . , q
[h]
ini

but, when considerable measurement error presents
an issue, it might also be useful to employ a smoothed reconstruction q̃i : [0, 1]→ C of the SRV-transform
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in the assumed basis. Based on the working normality assumption used also for length and rotation estima-
tion, such a reconstruction is obtained as q̃[h]

i (t) = (ẑ
[h]
i /‖ẑi‖)>ê[h](t) with ẑ

[h]
i = (ẑ

[h]
i1 , . . . , ẑ

[h]
im)> the

predicted score vector for the eigenbasis ê[h] = (ê
[h]
1 , . . . , ê

[h]
m )>.

Following Steyer et al. (2022), warping alignment to µ̂[h] is conducted using another, polygonal approxi-
mation of the curve given by a piece-wise constant approximation q̂[h]

i ∈ L2([0, 1],C) of q[h]
i . With a hyper-

parameter ρ ∈ [0, 1], we control the balance between original q[h]
ij (for ρ = 0) and smoothed reconstruction

q̃i (for ρ = 1) and set q̂[h]
ij = û

[h]
i

(
% q̃

[h]
i (t

[h]
ij ) + (1− %) q

[h]
ij

)
at nodes s[h]

i0 = 0, s[h]
ij = 2t

[h]
ij − s

[h]
ij−1,

j = 1, . . . , ni. This defines q̂[h]
i (t) =

∑ni
j=1 q̂

[h]
ij 1

[s
[h]
ij−1,s

[h]
ij )

(t) already rotated by û[h]
i .

Warping alignment to µ̂[h] is achieved for i = 1, . . . , n by finding an optimal q̂∗i ∈ L2([0, 1],C) with

‖q̂∗i − ψ̂[h]‖ ≤ ‖q̂[h]
i ◦ γ γ̇1/2 − ψ̂[h]‖ for all γ ∈ Γ (9)

where the polygon approximation yields a practically feasible optimization problem and has proven suitable
for sparse/irregular curves (Steyer et al., 2022). As shown by Steyer et al. (2022), the optimizers of (9) have
the form q̂∗i (t) =

∑ni
j=1 wi(t) q̂

[h]
ij 1

[s
[h+1]
ij−1 ,s

[h+1]
ij )

(t) almost-everywhere, where, denoting a+ = max{a, 0}

for a ∈ R, the functionswi : [0, 1]→ R are given byw2
i (t) = (s

[h]
ij − s

[h]
ij−1)<

(
ψ[h](t)†q̂[h]

ij

)2

+
/
∫ s[h+1]

ij

s
[h+1]
ij−1

<
(
ψ[h](t)†q̂[h]

ij

)2

+
dt

for t ∈ [s
[h+1]
ij−1 , s

[h+1]
ij ), and fully determined by the warped time points

(s
[h+1]
i1 , . . . , s

[h+1]
ini−1) = arg max

0=si0≤···≤sini=1

ni∑

j=1

(
(s

[h]
ij − s

[h]
ij−1)

∫ sij

sij−1

<
(
ψ[h](t)†q̂[h]

ij

)2

+
dt
)1/2

.

If s[h+1]
ij = s

[h+1]
ij−1 for some j, there is a minimizing sequence of functions of the form given for q̂∗i . After op-

timization over the s[h]
ij with R package elasdics (Steyer, 2021), we set new t

[h+1]
ij = (s

[h+1]
ij−1 + s

[h+1]
ij )/2

and q[h+1]
ij = w∗j q

[h]
ij withw∗ij = (s

[h]
ij −s

[h]
ij−1)1/2 (s

[h+1]
ij −s[h+1]

ij−1 )−1/2 for s[h+1]
ij > s

[h+1]
ij−1 and omit double

time points for j = 1, . . . , ni. The chosen time-points hereby approximate t[h+1]
ij ≈ t∗ij ∈ (s

[h+1]
ij , s

[h+1]
ij−1 )

with wi(t∗ij) = w∗ij existing by the Mean Value Theorem.

C Adequacy and robustness of elastic full Procrustes mean estima-
tion in realistic curve shape data

While we focus on the first letter “f ” in our simulation studies, Figure 3 exemplifies elastic full Procrustes
mean estimation on the entire “fda” handwritings contained in the dataset handwrit.dat in the R pack-
age fda (Ramsay and Silverman, 2005). To visualize different degrees of sparsity, means are fitted after
subsampling recorded points to ni = npoints, i = 1, . . . , n, n = 20, random sampling points for each curve
placing higher acceptance probability on points more important for curve reconstruction, as illustrated in the
bottom of the figure. Means are fitted using piece-wise constant 0 order B-splines with 70 knots applying a
2nd order difference penalty in the Hermitian covariance estimation. This results in a nice gradual evolution
from a rough “fda” approximation for npoints = 21 to a detailed handwritten “fda” for npoints = 71.
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Figure 3: Top: Elastic full Procrustes means estimated over 20 handwritten “fda”s sampled with different
degrees of sparsity. Bottom: Underlying datasets with 20 curves from the handwrit.dat dataset sub-
sampled with higher acceptance probability on points important for curve reconstruction. Points sampled
for each curve are connected by light-grey lines.
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4. Paper III: Regression in Quotient Metric
Spaces with a Focus On Elastic Curves

Paper III extends the unconditional (Fréchet) mean estimation for curves modulo re-
parametrization (Subsection 1.3.2) considered in Paper I to regression in this metric
space. It also proposes “quotient regression” as a generalization of “linear” regression
to quotient metric spaces arising from actions by isometries (e.g. rotation) in a broader
context. In this way, this paper also contributes to the few available options for regres-
sion in metric spaces (Subsection 1.2.2). The proposed regression method is applied to
outlines of the human hippocampus from magnetic resonance imaging (MRI), where
the shape of the irregularly sampled hippocampus is modeled using age, Alzheimer’s
disease, and sex as covariates. All methods are made readily available in the R-package
“elasdics”.

Contributing article:
Steyer, L., Stöcker, A. and Greven, S. (2023). Regression in quotient metric spaces
with a focus on elastic curves. arXiv pre-print, arXiv:2305.02075

Declaration on personal contributions:
The main parts of this research were carried out by the author, including the implemen-
tation in the R package “elasdics”. Sonja Greven and Almond Stöcker were involved in
this project with important advice and discussions. Almond Stöcker also assisted in the
conceptualization of the research objectives.
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ABSTRACT

We propose regression models for curve-valued responses in two or more dimensions, where only the
image but not the parametrization of the curves is of interest. Examples of such data are handwritten
letters, movement paths or outlines of objects. In the square-root-velocity framework, a paramet-
rization invariant distance for curves is obtained as the quotient space metric with respect to the
action of re-parametrization, which is by isometries. With this special case in mind, we discuss the
generalization of ’linear’ regression to quotient metric spaces more generally, before illustrating the
usefulness of our approach for curves modulo re-parametrization. We address the issue of sparsely
or irregularly sampled curves by using splines for modeling smooth conditional mean curves. We
test this model in simulations and apply it to human hippocampal outlines, obtained from Magnetic
Resonance Imaging scans. Here we model how the shape of the irregularly sampled hippocampus is
related to age, Alzheimer’s disease and sex.
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1 Introduction: Regression for metric spaces

Regression is a widely used statistical technique for exploring the relationship between covariates and response vari-
ables. In the simplest case of linear regression, these variables are elements in the Euclidean space and the relationship
between the variables is assumed to be affine linear. Since linear operations are also defined in general Hilbert spaces,
the linear regression model can be extended to these spaces (Ramsay and Dalzell, 1991) and in particular to functional
data in 𝕃2 (Ramsay and Silverman, 2005). For more general (metric) response spaces, analogues of linear models are
less straightforwardly to define.
The focus of this paper is to develop an ’elastic’ regression model for curves modulo parametrization. More precisely,
we consider the quotient space ∕Γ as response space, where  is the set of absolutely continuous curves 𝒚 ∶ [0, 1] →
ℝ𝑑 , 𝑑 ∈ ℕ, and Γ is the set of boundary-preserving diffeomorphisms 𝛾 ∶ [0, 1] → [0, 1]. These curves occur naturally
when we look at the outlines of (e.g., anatomical) objects such as the corpus callosum (Joshi et al., 2013) where only the
image but not the parametrization of the curves is of interest. Furthermore, handwritten letters or symbols (e.g. Dryden
and Mardia, 2016b), protein structures (Srivastava et al., 2010) or centerlines of the internal carotid artery (Sangalli
et al., 2009) can be viewed as curves modulo parametrization in 2d or 3d. In this work, we investigate the variability in
outlines of (a representative slice of) the hippocampus of patients suffering from Alzheimer’s disease and of a control
group, with the aim of differentiating changes due to Alzheimer’s from normal aging (Fig. 3). These outlines were
extracted from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (Petersen et al., 2010).
In this elastic setting, the response space is a quotient space that only has a metric space structure with no notion of
linearity, such that linear models cannot be directly defined. It seems natural to use constant speed geodesics instead of
affine linear functions in metric spaces, since they coincide in the case of vector spaces. Fletcher (2013) considers such
a geodesic regression model for a scalar covariate and the response variable being an element of a smooth Rieman-
nian manifold. Here, the tangent bundle of the manifold serves as a convenient parametrization of the set of possible
geodesics. Conversely, in general metric spaces, there is no such parameterization of the geodesics. Hence, although
a geodesic regression model could be defined here as well, the estimation of the minimizing geodesics is difficult to
accomplish and the result difficult to interpret. For this reason, to our knowledge, the geodesic model has not been
considered for general metric spaces.
Petersen and Müller (2019) develop a non-geodesic global regression model for responses that are elements of general
metric spaces and Euclidean covariates. The regression function here is implicitly defined for each possible combination
of covariate values as a (potentially negatively) weighted Fréchet mean. This means that no global model parameters
are estimated, which makes interpretation difficult. Overall, defining a regression model in general metric spaces that
is both interpretable and computable appears difficult if not infeasible. To build such a model for response data in a
metric space, it thus seems necessary to make use of the specific structure of the response space.
Besides our current structure of interest ∕Γ, there are various situations where observations can be naturally seen
as elements of a quotient space, for instance if the objects of interest are either subject to certain invariances or not
fully observed. Classic examples arise in statistical shape data analysis (Dryden and Mardia, 2016a), where objects
are considered invariant under translation, rotation, and scaling, as well as occasionally also under reflection, or a
subset of these invariances. Other examples include analysis of unlabeled networks (Calissano et al., 2023), data on a
Grassmannian (Hong et al., 2016), data of 3D rotations (Fletcher, 2013), compositional data (Pawlowsky-Glahn et al.,
2015) and density data (van den Boogaart et al., 2014). Srivastava and Klassen (2016) also combines parametrization
invariance with statistical shape analysis – to analyze shapes of curves and also surfaces – and, more recently, also with
analysis of unlabeled graphs to model brain arterial networks (Guo et al., 2022).
Given the relevance and variety of data in quotient spaces in the literature, we will motivate our elastic regression model
for curves in ∕Γ with a more general discussion of a regression approach for responses in certain quotient metric
spaces. More precisely, we will consider quotient spaces where the distance is induced by an isometric group action,
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since this is the case for ∕Γ if we equip  with a semi-metric based on the Fisher-Rao metric(Srivastava et al., 2010).
This semi-metric can be simplified to the 𝕃2 distance using the square-root-velocity (SRV) transformation (essentially
𝒚 ↦ 𝒚̇(𝑡)√‖𝒚̇(𝑡)‖ , 𝒚 ∈ ) and minimization over all possible re-parametrizations in Γ yields a suitable “elastic” distance
on ∕Γ modulo translation. While not all of the above examples correspond to such isometric group actions, they
comprise – besides re-parameterization groups – also rotation, reflection and permutation groups.
The considered approach, which we refer to as “quotient regression”, is straight-forward and natural in two ways: a)
the structure of the model predictor is simply obtained by projecting a suitable predictor in the original space to the
quotient, and b) the model is fit based on the distance in the quotient metric space obtained by minimizing the distance
in the original space over all possible group actions. Due to the more general perspective, beyond the target “quotient
linear regression” for elastic curves, our results on consistency and existence of estimators, as well as inclusion of
geodesics in the model space, are also applicable to other quotient regression scenarios. It also allows us to point out
close connections to approaches for other response quotient metric spaces, such as the recent approach of Calissano et al.
(2022) for unlabeled network responses, corresponding to quotient linear regression over the permutation group, and
intrinsic Riemannian regression for responses in shape spaces (Cornea et al., 2017), combining rotation invariance with
invariance with respect to non-isometric re-scaling. Curves in ∕Γ, in particular, have not been directly considered
before as responses in an elastic regression model. One existing approach (Tucker et al., 2019) examines the case of
elastic curves as covariates instead. They introduce elastic functional principal component regression (fPCR) for scalar
response variables and 1d-functions as covariates. Here they first align the data curves to their Fréchet mean and then
perform principal component analysis (PCA) for both the aligned curves as well as the optimal re-parametrizations and
use both parts in a functional regression model. (Guo et al., 2020) proceed similarly but use the principal component
scores of the pre-aligned SRV curves as covariates and response in a regression model.
Given this related work, we consider regression (on SRV or on curve level) after pre-aligment natural benchmarks to
our model. Specifically, we compare our quotient linear model for curves to 1) linear regression after pre-alignment, a
simpler approach that can be used for regression in the quotient of any Hilbert space, 2) to linear regression on curve
instead of SRV level basing only alignment on the SRV framework, 3) to the combination of the simplifications in
1) and 2), and 4) to Fréchet regression (Petersen and Müller, 2019) for general metric spaces, which we adapt and
implement for this purpose for the case of ∕Γ. In simulation studies, we illustrate when a clear performance gain by
our model can be expected and when alternatives yield comparably good results.
In applications, such as in our example of hippocampus outlines, it is often necessary to handle sparsely or irregularly
observed curves. We achieve this via employing spline bases, as often done in (sparse) functional data analysis. This
is motivated by the work of Steyer et al. (2022) on spline-based unconditional elastic mean estimation, where we
show identifiability of spline coefficients modulo parameterization and the adequateness of the approach for sparsely
or irregularly observed curves. We provide a ready-to-use implementation of our elastic regression model in the R
package elasdics. In a simulation study, we validate bootstrap confidence regions either based on spline coefficients
- specific to our spline-based modeling - or more generically on distances, and discuss when each is recommended in
practice. Both approaches enable data based model selection and assessment of estimation uncertainty. The proposed
inference methods allow us to reveal and assess systematic patterns in the hippocampus outlines, which are visually
hard to distinguish due to considerable subject-to-subject variation (Fig. 3). Specifically, we are able to compare the
effect of Alzheimer’s disease to that of normal aging – two mechanisms that have been related to each other in the
literature before (Henneman et al., 2009) – in a more detailed and visually intuitive way (Fig. 4).
We proceed as follows. In Section 2, we first construct the model for responses in general quotient metric spaces before
developing the elastic model and our estimation strategy in the particular case of curves modulo parameterization.
Here we build on the spline modeling and alignment methods for sparsely and irregularly sampled curves developed
in Steyer et al. (2022). In Section 3, we present different alternatives to our model, which have not yet been discussed
in this form in the literature, either, but deemed natural competitors by us. Section 4 proposes inference methods for
our model. Section 5 compares the performance of our model with the alternative methods described in Section 3 and
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validates inference based on the spline coefficients. Finally, in Section 6, we use our method to model the outline of
the human hippocampus as a function of age, Alzheimer’s disease status and sex, before concluding in Section 7.

2 Quotient space regression and the particular case of elastic curves

Regression models for elastic curves are a particular case of regression models for quotient metric spaces, where the
quotient is induced by an isometry, and we will define a regression model for the quotient by using the structure of the
original space. In the case of elastic curves, the reparametrization group acts by isometries on 𝕃2, the space of SRV-
transformed curves (cf. Srivastava and Klassen, 2016). This means the original space here is 𝕃2, which is a Hilbert
space and therefore has a linear structure and allows us to base our models on linear regression in 𝕃2. With this goal
in mind, it is worthwhile to begin with a more general discussion of regression models in metric spaces. In particular,
we discuss reasonable model spaces  for regression in quotient spaces ∕𝐺 over a more general original space  on
which the group 𝐺 acts by isometries. This is of independent interest and shows direct connections to regression for
unlabeled networks (Calissano et al., 2022) and on shape/form spaces (Cornea et al., 2017; Stöcker et al., 2023).
As stated by Petersen and Müller (2019) in very general terms, traditional regression for the mean is naturally gener-
alized to metric spaces by modeling the conditional Fréchet mean given covariates. This generalizes the least squares
problem via replacing the Euclidean metric in the risk minimization with the distance in the metric space. More pre-
cisely, for  being the space of covariates, ( , d) a metric space, and (𝑋, 𝑌 ) random variables taking values in  × ,
the conditional Fréchet mean of 𝑌 given 𝑋 is given by

(𝑌 |𝑋 = 𝑥) = argmin
𝜇∈ 𝔼(d(𝑌 , 𝜇)2|𝑋 = 𝑥). (1)

Petersen and Müller (2019) point out that without assuming an algebraic structure on  , it is not feasible to directly
define a parametric regression model, that is to define a suitable function space  such that 𝑥 ↦ (𝑌 |𝑋 = 𝑥) is an
element of  . For this reason, they develop a generalization of multiple linear regression as a set of weighted Fréchet
means, where the weights are given by a known function of the covariates. This allows them to define a regression
model in general metric spaces without an explicit model equation or global model parameters. In contrast, as soon as
there is any additional structure given on  , it can potentially be used to motivate a suitable function space  , which
we refer to as model space in the following.
Definition 2.1 (Model-based conditional Fréchet mean). Given a model space , we define the model-based conditional
Fréchet mean as

𝑓 ∗ = argmin
𝑓∈ 𝔼(𝔼(d(𝑌 , 𝑓 (𝑋))2|𝑋)) = argmin

𝑓∈ 𝔼(d(𝑌 , 𝑓 (𝑋))2), (2)

assuming the total variation 𝔼(d(𝑌 , 𝑓 (𝑋))2) < ∞ is finite for some 𝑓 ∈  .

Note that, in contrast to Equation (1), the minimization is here over  rather than point-wise over  and that, in
general, there does not exist a unique minimizer but 𝑓 ∗ ⊆  is a set of models. 𝑓 ∗(𝑥) = (𝑌 ∣ 𝑋 = 𝑥) coincide,
if the model is correctly specified. In practice, this is of course hard to verify and it might be more truthful to model
𝑓 ∗ and assume that it reasonably approximates (𝑌 ∣ 𝑋 = 𝑥). Since the distinction is subtle, we nonetheless simply
refer to 𝑓 ∗(𝑥) = (𝑌 ∣ 𝑋 = 𝑥) as conditional Fréchet mean in the following, when  is clear from the context, while
considering 𝑓 ∗ as given in Definition 2.1.
For a corresponding estimator 𝑓 ⊆  of 𝑓 ∗ the following properties are desirable: a) good interpretability, presenting
one central advantage of using the structure of  , b) consistency and c) computational feasibility, which is practically
necessary. While interpretability and computation depend on the structure and will be discussed for quotient space
regression in Section 2.1, we may discuss consistency already here at a higher level of generality.
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For a given model space  consider the conditional sample Fréchet mean

𝑓 = 𝑓𝑛 = argmin
𝑓∈

𝑛∑
𝑖=1

d(𝑦𝑖, 𝑓 (𝑥𝑖))2 (3)

for a given set of observations {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1,… , 𝑛} drawn independently from (𝑋, 𝑌 ). We first show that the estimator
𝑓𝑛 ⊂  , again in general not a unique function, is a consistent estimator of 𝑓 ∗ in very general metric spaces  in the
weaker sense established by Ziezold (1977) for the (unconditional) Frechét mean. He showed that for independently and
identically distributed random variables the set of empirical Fréchet means converges to the set of expected elements.
Since also neither the (conditional) Fréchet mean (1) nor its empirical analogue, the (conditional) sample Fréchet mean
(3) need to be unique, we can only expect a set version of consistency to hold here as well.
Lemma 2.2 (Consistency). Let  be compact and  separable. Let  ⊆ 𝐶( ,) be a subset of the continu-
ous functions from  to  equipped with the metric d (𝑓1, 𝑓2) = sup𝑥∈ d(𝑓1(𝑥), 𝑓2(𝑥)), ∀𝑓1, 𝑓2 ∈  and let
𝔼(d(𝑌 , 𝑓 (𝑋))2) < ∞ ∀𝑓 ∈  . Then 𝑓𝑛 is a strongly consistent estimator of 𝑓 ∗ ⊆  in the sense of Ziezold (1977),
that is

⋂∞
𝑛=1

⋃∞
𝑘=𝑛 𝑓𝑘 ⊆ 𝑓 ∗.

This statement is a consequence of a theorem on strong consistency of generalized Fréchet means (Huckemann, 2011),
here given as Theorem A.2. See Subsection A.1 for more details. Lemma 2.2 shows that the sample conditional Fréchet
mean is a consistent estimator (for 𝑛 → ∞) for continuous regression models, which means that consistency does not
impose serious constraints on the quotient metric spaces for which we will define our regression model.
Note that this statement on consistency also holds true if 𝑓 ∗ = ∅, i.e if there is no 𝑓 ∈  which minimizes the total
variation. To ensure 𝑓 ∗ ≠ ∅ strong additional assumptions on  need to be imposed such as in the following statement
(proof in Appendix A.2).
Lemma 2.3 (Existence). Let  be compact,  complete and  ⊆ 𝐶( ,) closed and totally bounded. Then 𝑓 ↦

𝔼(d(𝑌 , 𝑓 (𝑋))2) attains its minimum on  , i.e. 𝑓 ∗ ≠ ∅.

To motivate now a natural and interpretable model space  , linear regression will serve as a prototype: in the case
where  is a Hilbert space and  ⊂ ℝ𝑘,  can be chosen as the space of affine linear functions  →  . The
minimization problem in (3) then yields an analytical solution, the minimizer 𝑓 is unique and corresponds to the usual
linear predictor 𝑓 (𝑥1,… , 𝑥𝑘) = 𝛽0 +

∑𝑘
𝑗=1 𝛽𝑗𝑥𝑗 with coefficients estimated analogously as for  = ℝ. That is for a

design matrix Ξ = (𝑥𝑖𝑗)𝑖=1,…,𝑛;𝑗=0,…𝑘 with 𝑥𝑖0 ≡ 1 and 𝐲 = (𝑦1,… , 𝑦𝑛) ∈ ⊗𝑛
𝑖=1 , a minimizing function 𝑓 ∈  is

given by the coefficients
𝜷̂ = (𝛽0,… 𝛽𝑘)𝑇 = (Ξ𝑇Ξ)−1Ξ𝑇 𝐲, (4)

where the matrix times vector multiplication in ⊗𝑛
𝑖=1 is defined as in ℝ𝑛 and Ξ𝑇Ξ is assumed to be invertible. A

proof for this statement can be found in Ramsay and Dalzell (1991). Since general metric spaces, however, lack the
notion of linearity, linear models cannot be directly defined here. Instead, we will use the quotient space structure to
motivate a suitable generalization.

2.1 Regression in quotient metric spaces

Since we are considering regression in quotient metric spaces arising from an isometric group action, we briefly review
the relevant concepts before defining our regression model for quotient spaces. We first summarize how a quotient space
resulting from an isometric group action can be turned into a metric space.
Definition 2.4 (Quotient metric space). Let ( , d) be a metric space and 𝐺 a group acting on  by isometries. The
quotient pseudometric d𝐺 is defined as

d𝐺(𝑦1, 𝑦2) = inf
𝑔∈𝐺

d(𝑦1, 𝑔◦𝑦2)
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for all 𝑦1, 𝑦2 ∈  . Since d𝐺 defines an equivalence relation on  via 𝑦1 ∼ 𝑦2 ⇔ d𝐺(𝑦1, 𝑦2) = 0, there is a natural
quotient metric space (∕ d𝐺, d𝐺) of  under the action 𝐺. Elements of ∕ d𝐺 are denoted by [𝑦] for 𝑦 ∈  , and d𝐺
naturally defines a metric on the equivalence classes in ∕ d𝐺.

A proof that d𝐺 is indeed a pseudometric on  and therefore a metric on ∕ d𝐺 can be found in Burago et al. (2001).
We will denote (∕𝐺, d𝐺) = (∕ d𝐺, d𝐺), although the topological quotient ∕𝐺 defined via the equivalence relation
𝑦1 ∼ 𝑦2 ⇔ ∃𝑔 ∈ 𝐺 ∶ 𝑦1 = 𝑔◦𝑦2 and ∕ d𝐺 do in general not coincide. In fact, d𝐺 does not in general define a metric
on the topological quotient ∕𝐺, since there can be elements with d𝐺(𝑦1, 𝑦2) = 0 for which there is no 𝑔 ∈ 𝐺 such that
𝑦1 = 𝑔◦𝑦2. Nevertheless, the notation ∕𝐺 is common, for example in the SRV-framework (Srivastava and Klassen,
2016), where ∕Γ is used instead of ∕𝑑 to denote the set of equivalence classes with respect to the elastic distance 𝑑,
and we thus use it here for consistency. This notation emphasizes the dependence on the group 𝐺 instead of the metric
d𝐺 it induces.
The following lemma shows that separability and completeness carry over from the original space  to the quotient.
Thus, assumptions on ∕𝐺 (e.g. such as needed in Lemma 2.2 and 2.3) can be reduced to those on  .
Lemma 2.5. i)  separable ⇒ (∕𝐺, d𝐺) separable.

ii)  complete ⇒ (∕𝐺, d𝐺) complete.

A proof for these statements can be found in the appendix. For the special case of elastic curves, 2.5 ii) was also shown
in Bruveris (2016, Lemma 13).

2.1.1 Quotient regression models

Given the construction of such a quotient metric space (∕𝐺, d𝐺), there is a natural way to induce a model space  for
regression on ∕𝐺 from a given model space Φ of functions 𝜑 ∶  →  . Given Φ, e.g. affine linear functions for the
case of  a Hilbert space, we let  be the space of (point-wise) projections 𝑥 ↦ [𝜑(𝑥)] of functions 𝜑 ∈ Φ on ∕𝐺
which we denote by Φ⫽𝐺 = {𝑓 ∶  → ∕𝐺, 𝑥 ↦ [𝜑(𝑥)] ∣ 𝜑 ∈ Φ}. Φ⫽𝐺 is the quotient space of Φ with respect to
the equivalence relation 𝜑1 ∼ 𝜑2 ⇔ ∀𝑥 ∈  ∶ 𝜑1(𝑥) ∼ 𝜑2(𝑥). We refer to regression with model space  = Φ⫽𝐺
for a conditional Fréchet mean in ∕𝐺 as quotient regression (over Φ). Note that we now focus on regression on ∕𝐺
instead of the original space  , i.e we replace  by ∕𝐺 in Definition 2.1, while keeping the model space denoted as
 for simplicity.
Definition 2.6 (Quotient regression). Let 𝑥1,… , 𝑥𝑛 ∈  be realizations of a random variable𝑋 and let [𝑦1],… , [𝑦𝑛] ∈∕𝐺 be realizations of a random variable [𝑌 ] taking values in ∕𝐺, where ( , d) is a metric space and 𝐺 a group
acting on  by isometries. Then, for a model space Φ = {𝜑 ∶  → } we define the quotient regression model (over
Φ) on ∕𝐺 as the conditional Fréchet mean ([𝑌 ]|𝑋 = 𝑥) = 𝑓 ∗(𝑥) assuming

𝑓 ∗ = argmin
𝑓∈Φ⫽𝐺

𝔼(d𝐺([𝑌 ], 𝑓 (𝑋)))2),

which is estimated as 𝑓 (𝑥) = 𝑓𝑛(𝑥) = [𝜑̂(𝑥)] with

𝜑̂ = argmin
𝜑∈Φ

𝑛∑
𝑖=1

d𝐺([𝑦𝑖], [𝜑(𝑥𝑖)])2 = argmin
𝜑∈Φ

𝑛∑
𝑖=1

inf
𝑔𝑖∈𝐺

d(𝑔𝑖◦𝑦𝑖, 𝜑(𝑥𝑖))2. (5)

While it is not immediately clear that quotient regression is a good model for every combination of  , 𝐺 and Φ, we
will, in this section, give some evidence that it is in several cases. In particular, we will later illustrate its benefits
in our example of elastic curve modeling based on a multiple linear spline predictor. Another example of quotient
regression with model space Φ = {𝜑 ∶ ℝ𝑘 →  , 𝜑 affine linear} has been suggested by Calissano et al. (2022) for the
special case of  being the set of networks and 𝐺 being the permutation group on the set of nodes. In particular, our
result on consistency for the quotient regression model (Corollary 2.7) also applies to their case. Note that, by contrast,
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approaches inducing a probability distribution on ∕𝐺 via some distribution on  (such as in, e.g. offset normal shape
distributions, Dryden and Mardia, 2016a, Chap. 11) are, in general, fundamentally different from our distribution-free
approach that constructs the model space via projection while the mean is defined to minimize the distance d𝐺.
Consistency of the quotient regression model carries over from Lemma 2.2 using that separability of ∕𝐺 (based on
Lemma 2.5 i)) and continuity of Φ⫽𝐺 ⊂ 𝐶( ,∕𝐺) carry over from  and Φ, respectively.
Corollary 2.7 (Consistency for quotient regression). Let  be compact and  separable. Let Φ ⊆ 𝐶( ,) be a
subset of the continuous functions from  to  , Φ⫽𝐺 equipped with the metric dΦ⫽𝐺, and 𝔼(d(𝑌 , [𝜑(𝑋)])2) < ∞ for
all 𝜑 ∈ Φ. Then 𝑓𝑛 is a strongly consistent estimator of 𝑓 ∗ ⊆  in the sense of Lemma 2.2.

We can also formulate requirements as in Lemma 2.3 to ensure that the quotient regression model is not empty. Note
that all requirements are given for the original space  and the model space Φ instead of ∕𝐺 and  .
Corollary 2.8 (Existence for quotient regression). Let  be compact,  complete and Φ ⊆ 𝐶( ,) closed and totally
bounded. Then 𝜑 ↦ 𝔼(d𝐺([𝑌 ], [𝜑(𝑋)])2) attains its minimum on Φ.

In the remainder of this subsection, we discuss computational aspects of quotient regression estimators. Here, quotient
regression offers a straight-forward estimation scheme if, for realizations 𝑦̃1,… , 𝑦̃𝑛 of a random variable 𝑌 in the ori-
ginal space , an estimator 𝜑̃ of𝜑∗ = argmin𝜑∈Φ 𝔼[d(𝑌 , 𝜑(𝑋))2] is available: in this case, we address the minimization
problem in (5) via alternating 1) updating 𝑓 (𝑥) = [𝜑̂(𝑥)] by setting 𝜑̂ to the 𝜑̃ fitting the data (𝑦̃𝑖, 𝑥𝑖), 𝑖 = 1,… , 𝑛 for
current response realizations 𝑦̃𝑖 ∈ [𝑦𝑖] ⊂  , and 2) optimally aligning the data, i.e. finding 𝑦̃𝑖 = argmin𝑦∈[𝑦𝑖] d(𝑦, 𝜑̃(𝑥𝑖))for each 𝑦𝑖 and a current estimator 𝜑̃ ∈ Φ.
Alternating algorithms are natural in settings such as ours and corresponding estimation schemes have successfully
been used for estimation of Fréchet means in different quotient space scenarios, including, for instance, conditional
mean estimation for unlabeled networks (Calissano et al., 2022) or unconditional estimation of Procrustes means in
shape analysis (Dryden and Mardia, 2016a), of elastic mean curves (Steyer et al., 2022), elastic mean shape (Srivastava
and Klassen, 2016), and elastic full Procrustes mean shape estimation (Stöcker et al., 2022).
In practice it is necessary to compute numerical approximations 𝜑̃ ∈ Φ and 𝑦̃𝑖 = 𝑔̃𝑖◦𝑦𝑖 for some 𝑔̃𝑖 ∈ 𝐺, where true
optima need not be unique or even exist in general. The algorithm iteratively reduces the loss in each step and returns
a single 𝑓 ∈ Φ⫽𝐺 even in cases where the set of empirical conditional Fréchet means does not contain exactly one
function. The resulting estimator 𝑓 is expected to give a good fit to the data even if technically there exists a 𝑓 ∈ 
with a (slightly) lower empirical loss. Such differences are likely to be small compared to the variability introduced by
finite samples, and the practically relevant issue of multiple local minima can be addressed by testing different initial
values.

2.1.2 Quotient geodesic regression and geodesics on the quotient space

For the case of a Riemannian manifold  , geodesic regression has been discussed by various authors (e.g., Fletcher,
2013) as natural generalization of simple linear regression on a single covariate 𝑥 ∈  ⊂ ℝ to curved spaces. In the
context of manifolds, geodesics are typically defined as curves 𝑐 ∶ (−𝜀, 𝜀) →  around some 𝝁 = 𝑐(0) with a constant
velocity 𝜷 = 𝑐̇(0) in the tangent space 𝑇𝝁 at 𝝁. Locally, they correspond to paths of shortest length. For general
metric spaces, and in particular for a quotient metric space ∕𝐺 with some general 𝐺, “geodesics” commonly directly
refer to shortest paths, due to the lack of a manifold structure. As such they are less tangible, do not offer the same
parameterization in terms of “intercept” 𝝁 and “slope” 𝜷, and the set of geodesics in ∕𝐺 does, in general, not yield a
convenient model space  .
The next lemma gives a characterization of the shortest paths and therefore geodesics on the quotient metric space
(∕𝐺, d𝐺) if ( , d) is a length metric space, i.e. if the distance 𝑑 coincides with the intrinsic metric, which is the
infimum of the lengths of all paths from one point to another.
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Lemma 2.9 (Shortest paths in quotient metric spaces). Let ( , d) be a length metric space and 𝐺 a group acting on
 by isometries. Let 𝑦1, 𝑦2 ∈  and assume there is a 𝑔̃ ∈ 𝐺 with d𝐺([𝑦1], [𝑦2]) = d(𝑦1, 𝑔̃◦𝑦2), in which case we call
𝑦1 and 𝑔̃◦𝑦2 aligned. Furthermore assume there is a shortest path 𝛾 ∶ [𝑎, 𝑏] →  with 𝛾(𝑎) = 𝑦1 and 𝛾(𝑏) = 𝑔̃◦𝑦2,
i.e 𝛾 is a continuous function connecting 𝑦1 and 𝑔̃◦𝑦2 with minimal length. Then [𝛾] is a shortest path in (∕𝐺, d𝐺)
between [𝑦1] and [𝑦2], where [𝛾] is the projection of 𝛾 onto ∕𝐺, i.e. [𝛾](𝑡) = [𝛾(𝑡)] for all 𝑡 ∈ [𝑎, 𝑏].

A proof of this statement based on the argumentation of Burago et al. (2001) can be found in the appendix. It shows
that shortest paths in the quotient metric space, and therefore geodesics, are essentially a subset of those in the original
space ( , d), for which start 𝑦1 and end point 𝑦2 are aligned, that is argmin𝑔∈𝐺 d(𝑦1, 𝑔◦𝑦2) = id.
Lemma 2.9 tells us how to compute shortest paths between two given points in the quotient space with respect to the
quotient metric. Yet, finding the geodesic in ∕𝐺 that minimizes the squared loss in (3) with respect to d𝐺 is still not
feasible in general settings, and there is even no numerical estimation algorithm available that would promise at least
reasonable practical solutions. This is, in particular, the case in our motivating example of elastic regression.
As suitable alternative, we suggest quotient geodesic regression for the case where  carries a Riemannian manifold
structure (or in particular a Hilbert space structure) that allows for geodesic (or linear) modeling Φ, and show that the
resulting model space Φ⫽𝐺 in fact contains the geodesics in ∕𝐺. Moreover, Simulation 5 (Fig. 7) in Section 5 gives
one illustrative example of a non-geodesic model 𝑓 ∈ Φ⫽𝐺 that is likely desirable to also have included in the model
space, a further argument for a larger model space in practical data scenarios.

Definition 2.10 (Quotient geodesic regression). Referring to the setting of Definition 2.6, we call quotient regression
on a single covariate 𝑋 in  ⊂ ℝ for a response [𝑌 ] in ∕𝐺 quotient geodesic regression if Φ is the set of geodesics
on  .

Given the requirements on  ,  and (𝑋, 𝑌 ) in Lemma 2.2, quotient regression yields a consistent estimator 𝑓 for all
true 𝑓 ∗ ∈  = Φ⫽𝐺. Accordingly, in particular all true 𝑓 ∗ that are geodesics in ∕𝐺, which form a subset in this
space (see Lemma 2.9), can be consistently estimated by quotient geodesic regression, using the quotient Φ⫽𝐺 of the
geodesics Φ in  as a larger model space than the geodesics in ∕𝐺.

2.1.3 Quotient linear models

In quotient geodesic regression, we considered the special case of simple regression with a single covariate 𝑥 ∈  ⊂ ℝ.
We now consider multiple regression with covariates 𝒙 ∈  ⊂ ℝ𝑘 as a basis for our main goal of elastic regression,
and focus in the following on linear models. To facilitate a suitable linear structure, we consider the important special
case where  is a Hilbert space, where geodesics are straight lines and the model space Φ can be chosen as (a linear
subspace of) the space of affine linear functions  →  . In Section 2.1.4, we will then also briefly discuss extensions
to the more general case where  is a Riemannian manifold.

Definition 2.11 (Quotient linear regression with multiple scalar covariates). Let 𝒙𝑖 = (𝑥𝑖,1,… , 𝑥𝑖,𝑘)⊤ ∈  ⊂ ℝ𝑘,
𝑖 = 1,… , 𝑛 be realizations of a random vector 𝑿 = (𝑋1,… , 𝑋𝑘)⊤ and let [𝑦1],… , [𝑦𝑛] ∈ ∕𝐺 be realizations of
a random variable [𝑌 ] taking values in ∕𝐺, where ( , ‖ ⋅ ‖ ) is a Hilbert space and 𝐺 a group acting on  by
isometries. Then the quotient linear regression model is a quotient regression over a model space Φ of affine linear
functions  →  given by (𝑘 + 1) parameters in a subspace  ⊂  , that is  = Φ⫽𝐺 with elements

𝑓 ∶ ℝ𝑘 → ∕𝐺; 𝒙 = (𝑥1,… , 𝑥𝑘)⊤ ↦

[
𝛽0 +

𝑘∑
𝑗=1

𝛽𝑗𝑥𝑗

]
,
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where we assume ([𝑌 ]|𝑋1 = 𝑥1,…𝑋𝑘 = 𝑥𝑘) = 𝑓 (𝒙) =
[
𝛽0 +

∑𝑘
𝑗=1 𝛽𝑗𝑥𝑗

]
and the coefficients 𝛽0,… , 𝛽𝑘 ∈  ⊂ 

are estimated as

(𝛽0,… , 𝛽𝑘) = argmin
𝛽0,…,𝛽𝑘∈

𝑛∑
𝑖=1

d𝐺([𝑦𝑖], [𝛽0 +
𝑘∑

𝑗=1
𝛽𝑗𝑥𝑖,𝑗])2 = argmin

𝛽0,…,𝛽𝑘∈
𝑛∑
𝑖=1

inf
𝑔𝑖∈𝐺

‖‖‖‖‖‖
𝛽0 +

𝑘∑
𝑗=1

𝛽𝑗𝑥𝑖,𝑗 − 𝑔𝑖◦𝑦𝑖
‖‖‖‖‖‖

2


. (6)

Thus, the estimated regression function becomes 𝑓 (𝒙) = [𝛽0 +
∑𝑘

𝑗=1 𝛽𝑗𝑥𝑗].

For a quotient over a linear space, this generalizes the definition of the univariate quotient geodesic model 2.10 since
for 𝑘 = 1 and  =  the set of constant speed geodesics coincides with the set of affine linear functions Φ and therefore
 = Φ⫽𝐺 = {𝑓 ∶ ℝ → ∕𝐺, 𝑥1 ↦ [𝛽0 + 𝛽1𝑥1]} is the set of projections of constant speed geodesics.
The following corollary shows that the model space Φ⫽𝐺 of quotient linear regression includes geodesics on ∕𝐺
not only in coordinate directions but also in any direction in the covariate space that is a convex linear combination of
coordinate directions. We proof this statement in the appendix via showing that the set of elements which are aligned
to one point form a convex cone (Lemma A.3).
Corollary 2.12. Let ( , ‖ ⋅ ‖ ) be a Hilbert space and 𝐺 act on  by isometries. Let 𝑓 ∶ [0, 1]𝑘 →

∕𝐺, (𝑥1,… , 𝑥𝑘)𝑇 ↦ [𝛽0+
∑𝑘

𝑗=1 𝑥𝑗𝛽𝑗] with 𝛽0, 𝛽1,… , 𝛽𝑘 ∈  be such that 𝛽0+𝛽𝑗 is aligned to 𝛽0 for all 𝑗 = 1,… , 𝑘.
Then 𝑓 |𝑥𝑗 ∶ [0, 1] → ∕𝐺, 𝑥𝑗 ↦ [𝛽0 + 𝑥𝑗𝛽𝑗] is a constant speed geodesic for all 𝑗 = 1,… , 𝑘 due to Lemma 2.9.
Furthermore, let 𝜆1,… , 𝜆𝑘 ∈ [0, 1] with

∑𝑘
𝑗=1 𝜆𝑗 = 1. Then

𝑓 ∶ [0, 1] → ∕𝐺, 𝑥 ↦

[
𝛽0 + 𝑥

𝑘∑
𝑗=1

𝜆𝑗𝛽𝑗

]

is a constant speed geodesic in ∕𝐺 between [𝛽0] and [𝛽0 +
∑𝑘

𝑗=1 𝜆𝑗𝛽𝑗].

This generalizes geodesics to the multiple covariate setting as well as possible given the lack of a linear space structure
for ∕𝐺. Such a quotient linear model has been suggested by Calissano et al. (2022) for the special case of  being
the set of networks and 𝐺 being the permutation group on the set of nodes. Our construction shows that their model is
an example of a general class of models, which can be defined for the quotient of an arbitrary Hilbert space by a group
which acts on  by isometries, and points out the inherent connection to other such cases.
In practice, the coefficients 𝛽𝑗 will usually be modeled within a suitable finite-dimensional subspace  ⊂  , such that
also Φ ≅ 𝑘+1 will be finite-dimensional. While Φ⫽𝐺 then no longer necessarily contains the geodesics on ∕𝐺
precisely, it may still yield good approximations to them. That the model space Φ ⊆ 𝐶( ,) is a finite dimensional
subspace allows us to conclude that the regression model is non-empty under weaker assumptions than in Lemma 2.8.
Theorem 2.13 (Existence in finite dimensional model spaces). Let  be a Hilbert space,  ⊂ ℝ𝑘 compact and
Φ ⊆ 𝐶( ,) a finite dimensional subspace. If [𝑌 ] is bounded and supp(𝑋) =  , there is a minimizer of Ψ(𝜑) =
𝔼(d𝐺([𝑌 ], [𝜑(𝑋)])2) in Φ.

A proof of this statement can be found in the appendix. It shows that for any finite dimensional model space Ψ we can
expect 𝑓 ∗ ≠ ∅, i.e. that the quotient regression model 𝑓 ∗ in Definition 2.6 is not the empty set.

2.1.4 Side-remark on quotient regression over a Riemannian manifold

While for a single covariate geodesic regression is the canonical generalization of simple linear regression to a Rieman-
nian manifold  , transfer of multiple linear regression to curved spaces is somewhat less straight-forward. Yet, a still
natural option is given by generalized linear model (glm) type intrinsic regression (Zhu et al., 2009; Cornea et al., 2017)
with a “Riemannian Log-link”, i.e. with the model space Φ consisting of functions 𝜑 ∶ 𝒙 ↦ Exp𝛽0 (𝛽1𝑥1 +⋯+ 𝛽𝑘𝑥𝑘)
with intercept 𝛽0 ∈  , coefficients 𝛽1,… , 𝛽𝑘 ∈ 𝑇𝛽0 in the tangent space at 𝛽0, and the Riemannian exponential
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map Exp at 𝛽0 as response-function. The model models and estimates the conditional Fréchet mean with respect to
the intrinsic Riemannian distance d and reduces to geodesic regression for 𝑘 = 1. Quotient intrinsic regression over a
Riemannian manifold can then be defined using  = Φ∕∕𝐺 with the above glm-type intrinsic Φ. Intrinsic regression
on Kendall’s shape space Σ𝑚 of 2D landmark configurations 𝒚 ∈ ℂ𝑚 modulo translation, scale and rotation, discussed
as an example by (Cornea et al., 2017), can, in fact, be considered a special case of quotient intrinsic regression with
 = 𝕊2(𝑚−1) the sphere of dimension 2(𝑚 − 1), Φ the model space of intrinsic regression on 𝕊2(𝑚−1), and the 2D rota-
tions 𝐺 = {exp(𝜔

√
−1) ∣ 𝜔 ∈ [−𝜋, 𝜋)} the isometric group action. In this case, ∕𝐺 = Σ𝑚 carries itself a Riemannian

manifold structure (of the complex projective space Σ𝑚 ≅ ℂ𝑃𝑚−2). For shapes in higher dimensions, ∕𝐺 does not
carry a manifold structure anymore (Huckemann et al., 2010), but an analogous quotient intrinsic regression model
could also be formulated. Additionally, an intrinsic regression model of the 2D form/size-and-shape space of 𝒚 mod-
ulo translation and rotation (Stöcker et al., 2023) with  = ℂ𝑚−1 yields another example of quotient linear regression.
Hence, intrinsic regression on manifolds does not only yield a further, more general, underlying model space Φ for
quotient regression, but also further motivation for the quotient (linear) model approach, since in special cases intrinsic
regression models on manifolds present specially tailored quotient regression models.

2.2 Elastic regression for curves via quotient linear models in the SRV framework

In this subsection we will develop quotient regression for the particular case of curves modulo re-parametrization (and
translation) in order to obtain an elastic regression model for curves. To achieve that the re-parameterization group Γ
acts by isometries, we will not consider the quotient space regression model for the curves 𝒚 directly, but for their SRV
transformation. Considering SRV transforms in the Hilbert space 𝕃2 of square integrable functions 𝑞 ∶ [0, 1] → ℝ𝑑

induces a suitable metric on the space of absolutely continuous curves  modulo translation.
Lemma 2.14 (SRV transformation (Srivastava and Klassen, 2016)). The SRV transformation 𝑄 defined via

𝑄(𝒚)(𝑡) =
⎧⎪⎨⎪⎩

𝒚̇(𝑡)√‖𝒚̇(𝑡)‖ if 𝒚̇(𝑡) ≠ 0

0 if 𝒚̇(𝑡) = 0,

gives a one-to-one correspondence between the absolutely continuous curves  modulo translation and the Hilbert
space 𝕃2, on which Γ = {𝛾 ∶ [0, 1] → [0, 1] ∣ 𝛾 monotonically increasing, onto and differentiable} acts by isometries.

More precisely, the action of Γ on the SRV transformed curves becomes Γ × 𝕃2 → 𝕃2, (𝛾, 𝒒) = (𝒒◦𝛾)
√
𝛾̇ , which is by

isometries since ‖(𝒒1◦𝛾)
√
𝛾̇ − (𝒒2◦𝛾)

√
𝛾̇‖2𝕃2 = ∫ 1

0 (𝒒1(𝛾(𝑡)) − 𝒒2(𝛾(𝑡)))2𝛾̇(𝑡)𝑑𝑡 = ∫ 1
0 (𝒒1(𝑡) − 𝒒2(𝑡))2𝑑𝑡 = ‖𝒒1 − 𝒒2‖2𝕃2for all 𝛾 ∈ Γ. That means we can define an elastic distance d on ∕Γ modulo translation as the quotient metric (d𝐺 in

Definition 2.4) on 𝕃2∕Γ.
Definition 2.15 (Elastic distance (Srivastava and Klassen, 2016)). Let [𝒚1], [𝒚2] be equivalence classes in ∕Γ modulo
translation. Then the elastic distance

d([𝒚1], [𝒚2]) = inf
𝛾1,𝛾2∈Γ

‖𝑄(𝒚1◦𝛾1) −𝑄(𝒚2◦𝛾2)‖𝕃2 , (7)

is a proper metric. Here ‖𝐪‖𝕃2 = (∫ 1
0 ‖𝐪(𝑡)‖2𝑑𝑡)1∕2, 𝐪 ∈ 𝕃2, denotes the usual 𝕃2 norm.

Thus, we can define a quotient regression model for SRV curves modulo re-parametrization as in Subsection 2.1. We
formulate a regression model for the elastic curves themselves using the inverse of the SRV transformation 𝑄, which
is given via 𝑄−1(𝒒)(𝑡) = ∫ 𝑡

0 𝒒(𝑠)‖𝒒(𝑠)‖ 𝑑𝑠 for all 𝒒 ∈ 𝕃2.
Definition 2.16 (Quotient SRV-linear regression for elastic curves). Let 𝒙𝑖 = (𝑥𝑖,1,… , 𝑥𝑖,𝑘)⊤ ∈ ℝ𝑘, 𝑖 = 1,… , 𝑛 be
realizations of a random vector 𝑿 = (𝑋1,… , 𝑋𝑘)⊤ and 𝒒1,… , 𝒒𝑛 ∈ 𝕃2 be SRV transformations of realizations of a
random variable [𝒀 ] taking values in ∕Γ, where  is the set of absolutely continuous curves from [0, 1] to ℝ𝑑 and
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Γ the set of monotonically increasing, onto and differentiable re-parametrizations. On curve level, the quotient linear
regression model then becomes

𝑓 (𝒙) = 𝑓 (𝑥1,… , 𝑥𝑘) = ([𝒀 ]|𝑋1 = 𝑥1,… , 𝑋𝑘 = 𝑥𝑘) =
[
𝑄−1 (𝜑(𝒙))

]

with linear predictor

𝜑(𝒙) = 𝜷0 +
𝑘∑

𝑗=1
𝜷𝑗𝑥𝑗

on SRV-level. The coefficients 𝜷0,… , 𝜷𝑘 ∈ 𝕃2 of the regression function are estimated as

argmin
𝜷0,…,𝜷𝑘∈𝕃2

𝑛∑
𝑖=1

inf
𝛾𝑖∈Γ

‖‖‖‖‖‖
𝜷0 +

𝑘∑
𝑗=1

𝜷𝑗𝑥𝑖,𝑗 − (𝒒𝑖◦𝛾𝑖)
√
𝛾𝑖
‖‖‖‖‖‖

2

𝕃2

.

We further assume that the parameters lie in a spline space, that is 𝜷𝑗(𝑡) =
∑𝑀

𝑚=1 𝝃𝑗,𝑚𝐵𝑚(𝑡), 𝑗 = 1,… , 𝑘, where
{𝐵𝑚, 𝑚 = 1,…𝑀} is a spline basis (e.g. linear B-splines) and 𝝃𝑗,𝑚 ∈ ℝ𝑑 for all 𝑗 = 1,… , 𝑘 and 𝑚 = 1,… ,𝑀 . We
showed identifiability modulo warping of splines from several spline spaces in Steyer et al. (2022).
For SRV-transforms 𝑄(𝒀 ) this model directly corresponds to a quotient linear model (Definition 2.11, with original
space  = 𝕃2 and the respective isometric group action Γ implied by re-parameterization of a curve 𝒚 for its SRV
transform 𝒒 = 𝑄(𝒚). As such, it enjoys consistency in the sense of Corollary 2.7 and, using the finite-dimensional
spline space for modeling, also existence of a Fréchet mean, i.e. 𝑓 ∗ ≠ ∅, as we showed in Theorem 2.13 in a more
general setting. Due to Lemma 2.14we can equivalently understand the model on curve level.
The minimization needed to estimate this quotient regression model for elastic curves is tackled via alternating between
fitting a function-on-scalar model in each of the 𝑑 dimensions for fixed 𝛾𝑖, and updating the optimal re-parametrizations
𝛾𝑖, 𝑖 = 1,… , 𝑛 for fixed 𝜷s, see Algorithm 1 below. The two alternated steps are generic in the sense that suitable
warping and L2 fitting steps can be combined that are tailored to the situation at hand (e.g. densely vs. sparsely observed
curves). In our own implementation in the R-package elasdics (Steyer, 2022), since the data 𝒒𝑖, 𝑖 = 1,… , 𝑛 are SRV
transformations of usually discretely observed curves, we use our methods specifically developed in Steyer et al. (2022)
for potentially sparse settings for both steps. That is we replace 𝒒𝑖 by 𝒒𝑖, the SRV transformation of the polygon 𝒚̌𝑖
which is constructed via connecting the observed points linearly and choosing a constant speed parameterization. Note
that this parameterization does not play a role for our model itself but only provides a suitable initial value. Also
note that the relevant error made in this approximation, i.e. the difference between the polygon 𝒒𝑖 and the unobserved
curves 𝒒𝑖, is the one at the SRV level. Accordingly, relatively densely observed points drawn with error at the curve
level cause large errors at the SRV level (since the polygonal approximation corresponds to computing derivatives via
finite differences). In this case it can be advantageous to coarsen the observed points first or to smooth them by a spline
approximation on curve level.
Note that the spline model assumption is not compatible to a geodesic model assumption. Although geodesic lines are
contained in the quotient space regression model assumption as shown in Lemma 2.9, geodesics between two spline
curves do in general not lie in a spline space (see Subsection A.7), since aligning one spline curve to another does in
general not result in a spline curve. Thus, a model can not be a geodesic model and a spline model at the same time,
but we can use a spline model to approximate a geodesic model.

2.3 Extensions to closed curves

Since the space of SRV curves belonging to closed curves, {𝒑 ∈ 𝕃2| ∫ 1
0 𝒑(𝑡)‖𝒑(𝑡)‖𝑑𝑡 = 𝟎 ∈ ℝ𝑑}, does not form

a linear subspace in 𝕃2, regression of closed curves cannot be treated analogously to that of open curves. While
in principle it would be possible to consider the space of closed curves as a submanifold of 𝕃2 and then define the
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Algorithm 1: Quotient SRV-linear regression for elastic open curves
Input: data pairs (𝒙𝑖, 𝒒𝑖), 𝑖 = 1,… , 𝑛, where 𝒒𝑖 are the SRV transformations of observed polygons 𝒚̌𝑖 and

𝒙𝑖 = (𝑥𝑖,1,… , 𝑥𝑖,𝑘) ∈ ℝ𝑘, 𝑖 = 1,… , 𝑛 are observed covariates; convergence tolerance 𝜖 > 0
Compute initial estimate 𝜷̂0,𝑛𝑒𝑤,… , 𝜷̂𝑘,𝑛𝑒𝑤 = argmin𝜷0,…,𝜷𝑘∈𝕃2

∑𝑛
𝑖=1 ‖𝜷0 +

∑𝑘
𝑗=1 𝜷𝑗𝑥𝑖,𝑗 − 𝒒𝑖‖2𝕃2 ;

Set 𝜷̂𝑗,𝑜𝑙𝑑 = Inf ∀𝑗 = 0,… , 𝑘;
while max𝑗=0,…,𝑘 ‖𝜷̂𝑗,𝑜𝑙𝑑 − 𝜷̂𝑗,𝑛𝑒𝑤‖2𝕃2 > 𝜖 do

𝜷̂𝑗,𝑜𝑙𝑑 = 𝜷̂𝑗,𝑛𝑒𝑤 ∀𝑗 = 0,… , 𝑘;
𝛾𝑖 = argmin𝛾

‖‖‖𝜷̂0,𝑜𝑙𝑑 +
∑𝑘

𝑗=1 𝜷̂𝑗,𝑜𝑙𝑑𝑥𝑖,𝑗 − (𝒒𝑖◦𝛾)
√
𝛾‖‖‖

2

𝐿2
, ∀𝑖 = 1,… , 𝑛 ; // warping step

𝜷̂0,𝑛𝑒𝑤,… , 𝜷̂𝑘,𝑛𝑒𝑤 = arginf𝜷0,…,𝜷𝑘∈𝕃2
∑𝑛

𝑖=1
‖‖‖𝜷0 +

∑𝑘
𝑗=1 𝜷𝑗𝑥𝑖,𝑗 − (𝒒𝑖◦𝛾𝑖)

√
𝛾𝑖
‖‖‖
2

𝕃2
// 𝐿2 spline fit via least-squares

return 𝜷̂𝑗 = 𝜷̂𝑗,𝑛𝑒𝑤 ∀𝑗 = 0,… , 𝑘

quotient regression model on this submanifold modulo warping, to the best of our knowledge there are no methods to
compute minimizing geodesics on this submanifold. (Srivastava and Klassen (2016) provide algorithms for numerical
computation of geodesics between two closed curves – extending this to finding a minimizing geodesic through a
sample of curves is, however, not straightforward). For this reason, we do not focus on closed curves here. However, as
closed curves often appear naturally in practical applications, we describe at least a heuristic method for the regression
of closed curves based on quotient regression for open curves. This method is also implemented in the R-package
elasdics (Steyer, 2022).
Specifically, we treat the curves as open curves in the 𝕃2 fitting step, but restrict the splines we use for modeling their
SRV transforms to be closed (which is necessary but not sufficient for closedness of the modeled curves, ensuring
matching derivatives at starting and end points). Then we close the predictions via projecting them onto the space
of derivatives belonging to closed curves: Since we model the SRV transform 𝒑 as a spline and therefore bounded
curve, the corresponding derivative 𝒑‖𝒑‖ is also bounded and therefore in 𝕃2. Hence we can consider the space
{𝒑‖𝒑‖ ∈ 𝕃2| ∫ 1

0 𝒑(𝑡)‖𝒑(𝑡)‖𝑑𝑡 = 0}, which is a linear subspace of the Hilbert space 𝕃2, and compute the orthogonal
projection of 𝒑‖𝒑‖ onto this space as 𝒑‖𝒑‖ − ∫ 1

0 𝒑(𝑠)‖𝒑(𝑠)‖𝑑𝑠. Thus, the prediction on curve level becomes 𝑡 ↦

∫ 𝑡
0 𝒑(𝑠)‖𝒑(𝑠)‖𝑑𝑠 − 𝑡 ⋅ ∫ 1

0 𝒑(𝑠)‖𝒑(𝑠)‖𝑑𝑠, which is a closed curve. We use these closed predictions in the iterative
algorithm 1 to replace the 𝜷̂𝑗,𝑜𝑙𝑑 when aligning the observations in each iteration (warping step). See Algorithm 2 in
the Appendix for details.

3 Alternative regression approaches

Although there are so far no direct competitors available to our quotient regression for curves modulo re-
parametrization, we discuss in the following different approaches that we consider natural alternatives. Comparison to
these alternatives may be relevant beyond our specific focus as they exemplify a) pre-alignment as natural alternative
to quotient regression with responses in any quotient metric space, b) statistical modeling on curve level with only
alignment based on SRV transforms, and c) usage of a generic approach for metric spaces without using the quotient
structure. The first three alternatives we give are new proposals reflecting combinations of a) and b), while for c)
Fréchet regression in Subsection 3.3 constitutes an existing general approach, which has to be adapted to and imple-
mented for our setting, and for which we give a novel concrete implementation for the elastic regression case. All
methods discussed here will then be used as comparison methods to benchmark our quotient regression approach in
simulations in Section 5.
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3.1 Regression after pre-alignment

For elastic regression as for general quotient metric spaces ∕𝐺 where ( , ‖ ⋅ ‖ ) is a Hilbert space, an obvious
competitor of the quotient linear model is to fit a linear model on the original space  after once pre-aligning the data
𝑦𝑖, 𝑖 = 1,… , 𝑛 to its (marginal) Fréchet mean 𝜇0 = arginf𝜇∈ ∑𝑛

𝑖=1 d𝐺([𝑦𝑖], [𝜇])
2. Here, we consider the model with

predictor 𝑓 ∶ 𝑥 ↦ [𝜑(𝑥)] and the estimator 𝜑̂(𝒙) = 𝛽0 + 𝛽1𝑥1 +⋯ + 𝛽𝑘𝑥𝑘 given by

𝜷 = (𝛽0,… , 𝛽𝑘)⊤ = argmin
𝛽0,…,𝛽𝑘∈

𝑛∑
𝑖=1

‖‖‖‖‖‖
𝛽0 +

𝑘∑
𝑗=1

𝛽𝑗𝑥𝑖,𝑗 − 𝑔∗𝑖 ◦𝑦𝑖
‖‖‖‖‖‖

2


where 𝑔∗𝑖 = argmin𝑔∈𝐺 ‖𝜇0 − 𝑔◦𝑦𝑖‖ . Here we assume that there exists an optimal alignment to the mean for all
𝑦𝑖’s. The minimiser 𝜷 can be computed as 𝜷 = (𝚵⊤𝚵)−1𝚵⊤(𝐠∗◦𝐲), where 𝚵 ∈ ℝ𝑛×𝑘 is the design matrix and 𝐠∗◦𝐲 =
(𝑔∗1◦𝑦1,… , 𝑔∗𝑛◦𝑦𝑛)

⊤ ∈ ⊗𝑛
𝑖=1 .

Although the model space Φ also consists of affine linear functions in  , this is not an intrinsic regression, i.e. we do
not truly consider its projection to the quotient Φ⫽𝐺 as model space on ∕𝐺 here. That means no attempt is made to
minimize the empirical risk (6) with respect to the quotient space distance d𝐺 and therefore, this risk will always be
greater than or equal to that for the quotient space regression model.
In the specific case that we want to model curves with respect to the elastic distance (7), this means computing a linear
model for the SRV transformed curves in 𝕃2 after pre-aligning the corresponding data curves to the elastic mean. That
is

(𝜷̂0,… , 𝜷̂𝑘) = argmin
𝜷0,…,𝜷𝑘∈𝕃2

𝑛∑
𝑖=1

‖‖‖‖‖‖
𝜷0 +

𝑘∑
𝑗=1

𝜷𝑗𝑥𝑖,𝑗 − (𝒒𝑖◦𝛾𝑖)
√
𝛾𝑖
‖‖‖‖‖‖

2

𝕃2

with 𝛾𝑖 = argmin𝛾∈Γ ‖𝝁0 − (𝒒𝑖◦𝛾𝑖)
√
𝛾𝑖‖𝕃2 and 𝝁0 is the SRV transformation of the elastic mean curve. (Guo et al.,

2020) propose a similar procedure, where they then use the principal component scores of the pre-aligned SRV curves
in a simple regression model. In contrast, we use splines to model the 𝜷s and the alignment methods developed in
Steyer et al. (2022) to enable fitting of irregularly and/or sparsely observed curves and to allow better comparison with
our quotient regression model for elastic curves (Definition 2.16). We refer to this procedure as ’pre-align, srv fit’ in
the following.

3.2 Alternative procedures with fit on curve level

Considering pre-alignment of the data curves 𝒚1,… , 𝒚𝑛 with SRV transformations 𝒒1,… , 𝒒𝑛 to their elastic mean curve
a pre-processing step, it might also deem natural to compute the regression model on curve level instead of on SRV
level. We call this approach ’pre-align, curve fit’. Here, the fitted predictor is given by 𝒇̂ (𝒙) = 𝜷̂0 + 𝜷̂1𝑥1 +⋯+ 𝜷̂𝑘𝑥𝑘
with

(𝜷̂0,… , 𝜷̂𝑘) = argmin
𝜷0,…,𝜷𝑘∈𝕃2

𝑛∑
𝑖=1

‖‖‖‖‖‖
𝜷0 +

𝑘∑
𝑗=1

𝜷𝑗𝑥𝑖,𝑗 − 𝒚𝑖◦𝛾∗𝑖

‖‖‖‖‖‖

2

𝕃2

where 𝛾∗𝑖 = argmin𝛾∈Γ ‖𝝁0 − (𝒒𝑖◦𝛾)
√
𝛾‖𝕃2 and 𝝁0 is again the SRV transformation of the elastic mean curve. This

is tempting in particular if we want to fit closed curves since, on curve level, closed curves can be modeled without
further modifications using a closed spline basis for the model coefficients 𝜷0,… , 𝜷𝑘.
We further consider a heuristic procedure in which we alternate between optimal alignment and regression fit as in the
quotient regression approach, but fit the linear model on curve level rather than on SRV level (’iterate align, curve fit’).
This is not a suitable method for fitting the quotient regression model with respect to the elastic distance, because the
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elastic distance becomes the usual 𝕃2 metric only for SRV transforms. Fitting the linear model on curve instead of
on SRV level will not return a minimizer of the squared elastic distances to the data curves. In fact, there is no risk
function that this algorithm aims to minimize, and the procedure is thus only defined by the iterative algorithm rather
than being the fitting algorithm of a regression model.
Moreover, both procedures with linear model fit on curve level do not include geodesics with respect to the elastic
distance in their model space, i.e., they are not suitable to generalize linear regression in this sense.

3.3 Fréchet regression

So far we considered models that exploit the linear space structure of either the space on SRV or on curve level to define
regression models for curves with respect to the elastic distance. In contrast, Petersen and Müller (2019) developed a
regression model they call Fréchet regression for random objects lying in arbitrary metric spaces with covariates in ℝ𝑘,
which does not rely on any linear structure. They achieve this by noting that in standard linear regression, the regression
function can be viewed as a function mapping the input 𝒙 ∈ ℝ𝑘 to a weighted mean of the 𝑦𝑖, where only the weights
depend on 𝒙. Their Fréchet regression model then extends standard linear regression by using the same weights with an
arbitrary metric instead of the Euclidean distance, i.e. using a weighted Fréchet mean. Although this implicitly defines
a regression model for arbitrary metric spaces, without explicit model equation however, details and complexity of
the estimation depend on the specific space considered. Petersen and Müller (2019) discuss in their paper the case of
propability distributions equipped with the Wasserstein metric as well as the case of covariance matrices. For both
cases, there is an implementation in the R package frechet(Chen et al., 2020). To the best of our knowledge, the case
of curves with respect to the elastic distance has not yet been considered, so we describe below how we estimate the
Fréchet regression model in this case.
For observed curves with SRV transforms 𝒒1,… , 𝒒𝑛 ∈ 𝕃2, the predictor 𝒇 for an input vector 𝒙 ∈ ℝ𝑘 is given by

𝒇 (𝒙) = argmin
𝒑∈𝕃2

𝑛∑
𝑖=1

𝑠(𝒙𝑖,𝒙) inf𝛾𝑖∈Γ
‖𝒑 − (𝒒𝑖◦𝛾𝑖)

√
𝛾𝑖‖2𝕃2 ,

via a point-wise optimization function where the weights (Petersen and Müller, 2019) are given as 𝑠(𝒙𝑖,𝒙) =
1+ (𝒙𝑖 − 𝒙̄)⊤𝚺̂−1(𝒙− 𝒙̄). Here 𝒙̄ = 1

𝑛
∑𝑛

𝑖=1 𝒙𝑖 is the mean of the observed covariates and 𝚺̂ = 1
𝑛
∑𝑛

𝑖=1(𝒙𝑖 − 𝒙̄)(𝒙𝑖 − 𝒙̄)⊤

their empirical covariance matrix. Thus, for a given input value 𝒙 ∈ ℝ𝑘, the conditional mean response curve is
computed as a weighted Fréchet mean with respect to the elastic distance using weights 𝑠(𝒙𝑖,𝒙). For the particular
case of the space of SRV curves with the elastic metric, we propose to consider the observed polygons 𝒚̌1,… , 𝒚̌𝑛
with SRV transformations 𝒒1,… , 𝒒𝑛 as we do for our quotient space regression model to handle discretely observed
curves. Then we estimate the weighted Fréchet mean via alternating between updating the optimal re-parametrizations
𝛾𝑖 ∈ Γ as argmin𝛾𝑖∈Γ ‖𝒑 − (𝒒𝑖◦𝛾𝑖)

√
𝛾𝑖‖𝕃2 for a given 𝒑 ∈ 𝕃2, using our alignment methods developed in Steyer

et al. (2022) to align discretely observed curves to a model based curve, and computing the weighted 𝕃2-mean
argmin𝒑̄

∑𝑛
𝑖=1 𝑠(𝒙𝑖,𝒙)

‖‖‖𝒑̄ − (𝒒𝑖◦𝛾𝑖)
√
𝛾̇𝑖
‖‖‖
2

𝕃2
for given alignments 𝛾𝑖. For the mean estimation step we propose to use

splines, as we do for the quotient regression model. Details are given as Algorithm 3 in the Appendix.
One disadvantage of this approach is that the regression function is not given by a set of parameters, such as slopes
and intercepts. In fact, for every given input vector 𝒙 ∈ ℝ𝑘, the value of the regression function has to be estimated
separately as a weighted mean. This makes interpretation of the model more challenging and estimation more time
consuming. One advantage in the SRV context is that handling closed curves is straightforward, as we can compute
closed (weighted) Fréchet means using results in Steyer et al. (2022).
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3.4 Differences in curve alignment implied by the different approaches

To gain an understanding of the differences between the proposed approaches, we compare how the observed
curves are aligned during the fitting process and discuss the implications of these differences in specific data scen-
arios. When fitting the quotient regression model, we align the observed curves 𝒚̌𝑖 to the model based predictions
𝑄−1(𝜷̂0 +

∑𝑘
𝑗=1 𝜷̂𝑗𝑥𝑖,𝑗) for all 𝑖 = 1,… , 𝑛. This means that each observed 𝒚̌𝑖 is aligned to a model-based curve that is

expected to have similar features as the observation. Likewise, in the ’iterate align, curve fit’ approach, the observed
𝒚̌𝑖 is aligned to its associated prediction.
In contrast, the pre-alignment methods ’pre-align, srv fit’ and ’pre-align, curve fit’ align the curves to the elastic mean,
hence may not properly align certain features of the curves if these features occur in specific directions of 𝒙 that are
missing in the mean curve. Similarly, in the fitting algorithm for the Fréchet regression model (Algorithm 3) the
observed curves 𝒚̌𝑖 are aligned to the model prediction for each considered new value of 𝒙, which is usually different
from 𝒙𝑖. Accordingly, we also expect less convincing results for this model in situations where certain features of the
curves occur only for some values of 𝒙 but not for others.
Overall, we expect all five methods to provide satisfactory results in scenarios where all observed curves have similar
features, and that the quotient regression model outperforms the fits after pre-alignment as well as the Fréchet regression
model when some features are missing in the elastic mean curve respectively some of the curves. For the ’iterate align,
curve fit’ approach, the behavior is more difficult to anticipate, as its iterative procedure optimizes no loss function. We
will investigate these expectations for model performance in simulations in Section 5. Besides that Section 5 will also
cover simulations on methods of inference in quotient regression, which we describe beforehand in the next section.

4 Inference and model selection

4.1 A generalized coefficient of determination

Both Fréchet regression and the quotient regression are defined as empirical risk minimization problems in one way or
another. Petersen and Müller (2019) generalize the coefficient of determination 𝑅2 to models with values 𝑦1,… , 𝑦𝑛,
𝑛 ∈ ℕ in metric spaces ( , d). For an estimated model equation 𝑓 their Fréchet coefficient of determination is given as

𝑅̃2 = 1 −
∑𝑛

𝑖=1 d(𝑦𝑖, 𝑓 (𝒙𝑖))
2

∑𝑛
𝑖=1 d(𝑦𝑖, 𝜇̂0)2

where 𝜇̂0 = argmin𝜇∈ ∑𝑛
𝑖=1 d(𝑦𝑖, 𝜇)

2 is the Fréchet mean of the data. Note that if constant functions are contained
in the model space in which 𝑓 is estimated, we have 𝑅̃2 ∈ [0, 1] as for 𝑅2 in standard linear regression. In this case
testing the global null hypothesis of no effect, that is 𝑓 (𝒙) ≡ 𝜇0 constant, is equivalent to testing 𝐻0 ∶ 𝑅̃2 = 0.
The distribution of the test statistic 𝑅̃2 under 𝐻0 is available via permutation re-sampling of the data, i.e randomly
permuting the labels of the response variable 𝑦𝑖 while keeping the covariates 𝒙𝑖 fixed. They further suggest to use an
adjusted coefficient of determination 𝑅̃2

adj = 1 − (1 − 𝑅̃2) 𝑛−1
𝑛−𝑘−1 for model selection, where 𝑘 accounts for the number

of covariates 𝒙𝑖 = (𝑥𝑖1,… , 𝑥𝑖𝑘)𝑇 in the model.

4.2 Distance-based bootstrap confidence regions

To obtain confidence regions for the predicted curves we propose to bootstrap the data (𝒙𝑖, 𝒚̌𝑖), 𝑖 = 1,… , 𝑛 to obtain an
approximate sample of the model predictions, 𝒚̂1,… , 𝒚̂𝑁𝑏𝑜𝑜𝑡

, for a given 𝒙. From this we construct a (1−𝛼)-confidence
region as a generalized convex hull (Edelsbrunner et al., 1983, 𝛼-shapes), of the (centered, i.e we subtract the center of
mass for each predicted curve) ⌈(1 − 𝛼)𝑁𝑏𝑜𝑜𝑡⌉ closest curves to the bootstrap mean with respect to the elastic distance.
Note that when the bootstrapped curves form a relatively dense set, directly plotting the (1-𝛼) closest curves gives a
good and simple visual approximation to plotting the generalized convex hull in practice.
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4.3 Bootstrap confidence regions based on spline coefficients

Inference as described above can be conducted for approaches without a parametric model equation, such as Fréchet
regression, and parametric models, such as the quotient regression model, which provide estimates for intercept and
slope parameters. However, since our quotient linear model for elastic curves is a parametric model, we are not only
interested in the global null hypothesis of none of the covariates having an effect, but also want to assess the relevance
of individual parameters. We propose to test individual hypotheses by bootstrapping the data (𝒙𝑖, 𝒚̌𝑖), 𝑖 = 1,… , 𝑛 to
obtain an approximate sample from the distribution of the estimated model parameters 𝜷̂0,… , 𝜷̂𝑘. Confidence regions
for the parameters can then be constructed from this sample and used to decide whether a particular parameter, for
instance 𝜷𝑗 = 𝟎 corresponding to no effect, is plausible given the observed data, as detailed below.
Our proposed representation of the coefficient functions 𝜷𝑗(𝑡) =

∑𝑀
𝑚=1 𝝃𝑗,𝑚𝐵𝑚(𝑡), 𝑡 ∈ [0, 1], 𝑗 = 1,… , 𝑘 has the

additional advantage that using a linear combination of spline basis functions 𝐵𝑚(𝑡), 𝑚 = 1,… ,𝑀 with local support,
such as B-splines, also allows to test local individual hypotheses on subintervals of [0, 1], i.e. to test where a given
covariate affects the response curve. We have shown in Steyer et al. (2022) that linear splines on SRV level (among
other splines) are identifiable via their spline coefficients modulo parametrization, and that the mapping between the
spline coefficients and the elastic curves is a homeomorphism. We can thus use the variation in the spline coefficients as
representative of that in the estimated effects and construct alternative confidence regions as outlined in the following.
Note that this alternative to Section 4.2 is, however, only recommended when estimates are sufficiently concentrated,
as we will briefly discuss in Section 4.4.
We construct a (1 − 𝛼)-confidence region for 𝜷𝑗 based on the bootstrapped spline coefficients 𝝃(𝑏)𝑗,𝑚, 𝑏 = 1,… , 𝑁𝑏𝑜𝑜𝑡 as
the 𝑑-dimensional ellipse

𝐶𝑗,𝑚,𝛼 = {𝝃 ∈ ℝ𝑑|(𝝃 − 𝝃̄𝑗,𝑚)𝑇 𝚺̂
−1
𝑗,𝑚(𝝃 − 𝝃̄𝑗,𝑚) ≤ 𝑐𝑗,1−𝛼},

where 𝝃̄𝑗,𝑚 = 1
𝑁𝑏𝑜𝑜𝑡

∑𝑁𝑏𝑜𝑜𝑡
𝑏=1 𝝃(𝑏)𝑗,𝑚 is the bootstrap mean, 𝚺̂𝑗,𝑚 = 1

𝑁𝑏𝑜𝑜𝑡−1
∑𝑁𝑏𝑜𝑜𝑡

𝑏=1 (𝝃(𝑏)𝑗,𝑚 − 𝝃̄𝑗,𝑚)(𝝃
(𝑏)
𝑗,𝑚 − 𝝃̄𝑗,𝑚)𝑇 is the boot-

strap sample covariance and 𝑐𝑗,𝑚,1−𝛼 the empirical (1 − 𝛼)-quantile of the studentized bootstrap sample {(𝝃(𝑏)𝑗,𝑚 −

𝝃̄𝑗,𝑚)𝑇 𝚺̂
−1
𝑗,𝑚(𝝃

(𝑏)
𝑗,𝑚 − 𝝃̄𝑗,𝑚)|𝑏 = 1,… , 𝑁𝑏𝑜𝑜𝑡} for all 𝑗 = 1,… , 𝑘. From this confidence regions for the coefficients 𝝃𝑗,𝑚

on can proceed to construct pointwise confidence regions for the corresponding effect functions 𝜷𝑗 . Moreover, 𝐶𝑗,𝑚,𝛼
can also be used to test the local individual hypothesis 𝐻0,𝑗,𝑚 ∶ 𝝃𝑗,𝑚 = 𝟎 by checking for overlap with 𝟎. Using these
confidence regions for the single spline coefficients, we construct a joint (1 − 𝛼)-confidence region for the matrix of
spline coefficients 𝝃𝑗 = (𝝃𝑗,1,… 𝝃𝑗,𝑀 )𝑇 ∈ ℝ𝑀×𝑑 corresponding to the effect function 𝜷𝑗 as 𝐶𝑗,𝛼 =

⨉𝑀
𝑚=1 𝐶𝑗,𝑚, 𝛼𝑀

,
where 𝛼

𝑀 is a Bonferroni-type correction of the confidence level. Hence 𝑃 (𝝃𝑗 ∈ 𝐶𝑗,𝛼) = 𝑃 (
⋂𝑀

𝑚=1{𝝃𝑗,𝑚 ∈ 𝐶𝑗,𝑚, 𝛼𝑀
}) =

1 − 𝑃 (
⋃𝑀

𝑚=1 {𝝃𝑗,𝑚 ∉ 𝐶𝑗,𝑚, 𝛼𝑀
}) ≥ 1 −

∑𝑀
𝑚=1 𝑃 ({𝝃𝑗,𝑚 ∉ 𝐶𝑗,𝑚, 𝛼𝑀

) ≥ 1 − 𝛼, if 𝐶𝑗,𝑚, 𝛼𝑀
is a valid confidence region, i.e.

fulfills 𝑃 ({𝝃𝑗,𝑚 ∉ 𝐶𝑗,𝑚, 𝛼𝑀
) ≤ 𝛼

𝑀 .
The constructed confidence region can be utilized to test the individual hypothesis 𝐻0,𝑗 ∶ 𝜷𝑗 = 𝟎. This is done by
rejecting 𝐻0,𝑗 if and only if 𝟎 ≠ 𝐶𝑗,𝑚, which is equivalent to 𝝃̄𝑇𝑗,𝑚Σ̂

−1
𝑗,𝑚𝝃̄𝑗,𝑚 ≥ 𝑐𝑗,1− 𝛼

𝑀
for at least one 𝑚 = 1,… ,𝑀 . We

thus use max{𝝃̄𝑇𝑗,𝑚Σ̂
−1
𝑗,𝑚𝝃̄𝑗,𝑚|𝑚 = 1,… ,𝑀} as a test statistic. Since the resulting test relies on the local representation

property of the spline coefficients for the effect functions and, as a bootstrap method, also on the interchangeability
of the data generating distribution with the empirical distribution, we examine the validity and power of the test in a
simulation in the following subsection.

4.4 Distance vs. spline coefficient based confidence regions

The idea of the spline coefficient based confidence regions proposed in Section 4.3 is based on the assumption that the
distribution of the 𝜷̂𝑗 , or alternatively the bootstrap samples 𝜷̂(𝑏)

𝑗 , is reflected well by an elliptical distribution of the re-
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spective spline coefficients 𝝃̂(𝑏)𝑗 . Despite identifiability of the used piece-wise linear splines modulo re-parameterization
(Steyer et al., 2022), this does not necessarily have to be the case. In particular, if two estimators 𝜷̂(1)

𝑗 and 𝜷̂(2)
𝑗 differ too

much, different curve alignment may result in the 𝑚-th spline coefficients 𝝃̂(1)𝑗,𝑚 and 𝝃̂(2)𝑗,𝑚 of each of them corresponding
to different segments of the curves, which might occur especially when we estimate very flexible curves with many
basis functions relative to the sample size. In these cases, inference based on the spline coefficients will lead to a loss
in power due to the added variability of the parameterization, and the distance-based methods described in Section
4.2 should be used. Conversely, if the estimators 𝜷̂(𝑏)

𝑗 are sufficiently concentrated, spline coefficient based methods
allow for local investigation and might yield more power since they make use of elliptical confidence regions rather
than depending on the distance to the bootstrap mean only.

5 Simulations

We first compare in simulations the quotient regression model with the alternative procedures presented in Section 3.
Then, in the second part of this section, we examine the test for the parameters of the quotient regression model based
on the bootstrapped spline coefficients.

5.1 Comparison of model performance

We compare the quotient linear model to the procedures described in Section 3. To this end, we choose three simulation
scenarios for each of which we add errors of different magnitude and draw a varying number of points per curve. The
predictive performance is then determined on an independent test set drawn according to the same principle, using the
mean squared (elastic) distance (MSE) of the new observations to their predicted curves. Evaluation on a test set rather
than on a true underlying model is necessary because quotient regression as well as Fréchet regression are defined as
risk minimazion problems and no distribution is available that would allow us to draw random curves with a specific
conditional Fréchet mean structure. With the auxiliary sampling scheme used instead, we may specify a template
model but there is no precise ‘true’ model explicitly available that we can compare the model estimates to. Each of the
3 × 4 = 12 simulations is then repeated 100 times to obtain a stable estimate of the MSE.

MSE Average run time in seconds
sce-
nario

sim sd 𝜅𝑖 ∈ quotient
space
regres-
sion

pre
align,
SRV
fit

iterate
align,
curve
fit

pre
align,
curve
fit

Fréchet
regres-
sion

quotient
space
regres-
sion

pre
align,
SRV
fit

iterate
align,
curve
fit

pre
align,
curve
fit

Fréchet
regres-
sion

1 1 0.4 [15, 20] 0.57 0.66 0.65 0.71 0.59 12 5 9 5 56
1 2 0.8 [15, 20] 0.88 0.95 0.96 1.00 0.89 13 5 10 5 67
1 3 0.4 [30, 40] 0.32 0.39 0.37 0.44 0.33 83 28 54 24 528
1 4 0.8 [30, 40] 0.74 0.82 0.80 0.85 0.76 51 18 34 17 338
2 5 0.2 [15, 20] 0.35 0.59 0.38 0.54 0.37 14 14 25 14 105
2 6 0.4 [15, 20] 0.43 0.67 0.46 0.62 0.45 4 4 8 4 33
2 7 0.2 [30, 40] 0.19 0.41 0.22 0.37 0.22 16 11 28 10 141
2 8 0.4 [30, 40] 0.31 0.55 0.35 0.50 0.34 16 11 31 11 195
3 9 0.1 [15, 20] 0.78 0.89 0.81 0.93 0.84 32 90 44 82 1922
3 10 0.2 [15, 20] 1.37 1.49 1.39 1.52 1.41 38 102 58 97 1769
3 11 0.1 [30, 40] 0.95 1.06 0.95 1.08 0.99 14 47 22 47 707
3 12 0.2 [30, 40] 2.80 2.96 2.79 2.95 2.81 13 48 20 48 528

Table 1: Mean squared elastic distance (MSE) estimated out of sample (smallest per row in bold) and average run time
of one estimation for the five methods in three different scenarios with a varying error magnitude (sd) and number of
points drawn per curve, where the number of points 𝜅𝑖 is drawn uniformly on a given range (15 to 20 or 30 to 40 points
per curve). This gives a total of 12 simulations (sim).

The three different simulation scenarios differ regarding which curves are used as models for 𝑥 = −1 and for 𝑥 = 1 and
whether the trajectory between them is modeled linearly on SRV or on curve level. For the first scenario (simulations
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1-4, see Fig. 1 (left) for an example of simulation 1), we use similar fish shapes to model the curves for 𝑥 = −1 and for
𝑥 = 1, and consider the geodesic between them (i.e. linear on SRV level with curves aligned). This setting is meant to
be advantageous to methods using pre-alignment to the mean curve (fish), which should give good alignment among
all curves, and we expect that all five methods should be able to model this type of data well. In contrast, in the second
scenario (simulations 5-8, see Fig. 1 (middle) for an example of simulation 5) we also consider a linear relationship of
the covariate 𝑥 with the SRV curves, but not a geodesic (i.e. no alignment with respect to the elastic distance between
endpoints) between the curves for 𝑥 = −1 (fish with open mouth) and 𝑥 = 1 (fish with closed mouth). This seems
natural since aligning the modeled curves here would not match the back end of the open mouth (𝑥 = −1) with the tip of
the closed mouth (𝑥 = 1). In this setting we expect that pre-aligning the data to the elastic mean will not properly align
the open/closed mouth of the fish and therefore the quotient linear model is beneficial. In the last simulation scenario
(simulations 9-12, see Fig. 1 (right) for an example of simulation 11), we consider model misspecification in the sense
that the effect of the covariate 𝑥 ∈ [−1, 1] is simulated linearly on curve instead of on SRV level. Additionally, in
this setting we investigate the quality of our approach to modeling smooth, closed contours, here simulating closed
quadratic spline curves.
To generate observations for the first scenario, we first obtain 𝑛 = 11 smooth curves for 𝑥 = −1,−0.8,… , 0.8, 1 as the
convex combinations of the SRV transformed modeled curves for 𝑥 = −1 and 𝑥 = 1. Next we evaluate them on a regular
grid of 51 points from which we compute 50 SRV vector via finite difference approximation of the derivative. After
adding a Gaussian 1st order random walk error with standard deviation 𝑠𝑑 to these SRV vectors we back transform them
to the curve level and select 𝜅𝑖 of the resulting 51 points, where 𝜅𝑖 is drawn uniformly on the given interval, to obtain
sparse/irregular settings. Here we choose relatively small standard deviations 𝑠𝑑 for the additional noise compared to
the effect, since we want to focus on demonstrating structural differences between possible effects on the curves and
how the different methods handle those.
Each of the five regression models/procedures is fitted to these data assuming linear SRV splines with 11 knots for
the quotient space regression model, the fit on SRV level after pre-alignment and the Fréchet regression model, and
quadratic splines also with 11 knots for the models with fit on curve level. This results in the same model flexibility for
all five models modulo translation. Since in this scenario, the modeled curves for 𝑥 = −1 and 𝑥 = 1 are approximately
aligned, we expect all five methods to give reasonable results. This is confirmed visually in the model predictions
(Fig. 1, left, and Fig. 6), but the MSEs in rows 1-4 of Tab. 1 reveal that the quotient space regression model performs
best for this scenario and all combinations of 𝑠𝑑 and 𝜅𝑖 .
The data for the second scenario, i.e., simulations 5-8, are generated in the same way as the data for the first scenario,
except that the shape of the modeled curves for 𝑥 = −1 and 𝑥 = 1 differs more and we do not consider the geodesic
between them as the generating model. Since in this scenario the modeled curves have sharp edges around the mouth,
we use constant splines on SRV-level corresponding to linear splines on curve level and 51 knots for all five procedures
(see Fig. 1, middle, and Fig. 7 for an example of simulation 5). In this setting pre-aligning the data to the elastic mean
(which also corresponds to the model prediction for 𝑥 = 0 of the Fréchet regression model) will not properly align the
open/closed mouth of the fish. Thus, a procedure that pre-aligns and then fits a model is not able to fit the open mouth
of the fish for 𝑥 = −1 (see Fig. 1, middle). Similarly, for the Fréchet model fit the open mouth appears too small, as
well as the whole predicted curve for 𝑥 = −1 and 𝑥 = 1. This is the case since for fitting the Fréchet model, we also
align fish with open and closed mouth, since for each new value of 𝑥, we align all data curves to the corresponding
new prediction (cf. Algorithm 3). Hence in this setting only the quotient regression model gives visually satisfying
results, which is also reflected in the MSEs of the five models (Tab. 1, simulations 5 to 8). Here the MSE is always
the smallest for the quotient regression model followed by Fréchet regression and the heuristic procedure of iterating
between alignment and curve-level fit. We expect this to be the case in general if features of the curves (as for example
the open mouth of the fish) that occur in certain directions of 𝑥 are missing in the mean curve.
For the last simulation scenario (simulations 9 to 12) we not only choose the model to be linear on curve instead of on
SRV level and use closed quadratic spline curves here to generate smooth, closed contours, we also add the random

18



Regression in quotient metric spaces with a focus on elastic curves A PREPRINT

x =
 −

1
x =

 0
x =

 1

−3 0 3 −3 0 3

−2

0

2

−2

0

2

−2

0

2

y1

y 2

x =
 −

1
x =

 0
x =

 1
−3 0 3 −3 0 3

−2

0

2

−2

0

2

−2

0

2

y1

x =
 −

1
x =

 0
x =

 1

−3 0 3 −3 0 3

−2

0

2

−2

0

2

−2

0

2

y1

model quotient
 regression

pre align,
 srv fit

iterate align,
 curve fit

pre align,
 curve fit

Fréchet
 regression

simulated
 data

Figure 1: Predictions for 𝑥 = −1, 0, 1 for one typical selected run of simulation 1 (left), simulation 5 (middle) and
simulation 11 (right). The predictions for all 𝑥 values of the same runs can be found in the appendix (Fig. 6, Fig. 7
and Fig. 8, respectively).

walk error with standard deviation 𝑠𝑑 directly to the 𝜅𝑖 selected points, and not to the observed SRV vectors. This
leads to observed curves that suit a curve-level functional model better than an SRV-level model, both in terms of their
relationship with the covariate and in terms of error structure. We choose this setting, which neither fits well with
the quotient linear model nor with Fréchet regression, to demonstrate the robustness of our method and to validate the
adapted algorithm for closed curves (Algorithm 2 in the Appendix). For the quotient linear model and the pre-align,
SRV fit procedure we use closed linear splines with 21 knots on SRV-level and the procedure for closing the splines
described in Subsection 2.3. For the procedures with fit on curve level we use quadratic closed splines with 21 knots
and for the Fréchet regression model we use linear SRV splines with 21 knots and the algorithm for estimating closed
mean curves of Steyer et al. (2022) adapted for weighted mean estimation (Algorithm 3 in the Appendix). See Fig. 1,
right, and Fig. 8 in the appendix for an example of simulation 11. Even in this unfavorable setting the quotient linear
model performs best in three out of four simulations. Only in the case of 𝜅𝑖 ∈ [30, 40] points per curve and 𝑠𝑑 = 0.2,
the procedure where we iterate between alignment and curve-level fit performs slightly better in terms of the MSE (Tab.
1). This can be explained by the fact that in this case the points are observed relatively densely and therefore errors at
the curve level cause large errors at the SRV level (since we calculate the derivative via finite differences).
Visually, the quotient regression model and iterating between alignment and curve-level fit gives satisfying results,
while if we fit a model after pre-alignment, the predicted curves for 𝑥 = −1 and 𝑥 = 1 appear too small (see Fig.
1, right). This can again be explained by the fact that alignment to the mean does not automatically result in good
alignment among the curves. This is similarly problematic for Fréchet regression. Here, the prediction for 𝑥 = 1
appears too large and the prediction for 𝑥 = −1 is a bit too bulky on the left.
Overall, in the 12 simulations, the quotient regression model performed best in terms of the MSE among the five
estimation methods considered, followed by Fréchet regression and the alternation between curve level fitting and
alignment. Also, the average time required for one computation is relatively small for the quotient regression model
compared to the other methods, especially for the more complex simulations 5 to 12 (Tab. 1), while it naturally takes
somewhat longer than methods with pre-alignment only in most scenarios. The increased run times for methods with
pre-alignment in scenarios with closed curves (simulation 9-12) stem from the fact that they involve unconditional
elastic mean computation explicitly optimizing for closed mean curves (Steyer et al., 2022) whereas quotient regression
utilizes the simplified approach described in Section 2.3. In part, this also explains the long run times of Fréchet
regression in these scenarios, building on an adapted version of this unconditional elastic mean computation. Fréchet
regression, however, also generally takes longer than the other methods, since optimization must be performed for
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each value of 𝒙 separately; here for our small 𝑛 = 11 and single covariate we used all observed covariates 𝑥 =
−1,−0.8,… , 0.8, 1. This means that for this model the computation time increases not only with the number 𝑛 of
observed curves but also with the number of predictions for covariate combinations desired.

5.2 Inference based on spline coefficients

Another advantage of the quotient regression model over Fréchet regression is that it yields parameter estimates for each
covariate. These are useful not only for interpretation but also for model inference. In this simulation, we investigate and
validate the bootstrap based tests described in Section 4 for the slope parameters of the quotient regression model. In
particular, we focus on the more difficult case of the test based on the associated spline coefficients, which additionally
allows to investigate local properties of the slope parameters.
For this purpose, we generate SRV curves as linear splines with 6 equidistant knots as a function of two covariates. To
see how the test behaves with stronger and weaker effects, a strong effect 𝜷̃1 is used for the association with 𝑥1 and a
weaker, local effect 𝜷̃2 is assumed for the relation with 𝑥2, with 𝜷̃2(𝑡) = 0 for 𝑡 >= 0.4 (cf. Fig. 2). In addition, we
assume that there is a third covariate 𝑥3, which is independent of the observed curves.
For the simulation, we first draw samples of sample size 𝑛 ∈ {10, 30, 60} of the covariates 𝑥𝑗𝑖 ∼ Unif(−1, 1) for
𝑗 = 1, 2, 3 and 𝑖 = 1,… , 𝑛. Then, similar as in the previous subsection, for 𝑖 = 1,… , 𝑛 we randomly select 10 to 15
points on the curve 𝑄−1(𝜷̃0+ 𝜷̃1𝑥1𝑖+ 𝜷̃2𝑥2𝑖). Note, that this procedure will not generate observations from the quotient
regression model with parameters 𝜷̃0, 𝜷̃1 and 𝜷̃2, as the sampling of the points on the curve generates a not further
defined error in the quotient space. Since the quotient regression model is defined only as a minimization problem and
there is no generating probability distribution available to sample curves from this model for given model parameters but
we have to rely on the described auxiliary sampling scheme. In general, this implies that the model will be misspecified,
i.e. ([𝑌 ]|𝑥1, 𝑥2, 𝑥3) ≠ [𝑄−1(𝜷̃0+ 𝜷̃1𝑥1+ 𝜷̃2𝑥2)] for the quotient regression model and the data generated as described
above. As a consequence, if we estimate (𝜷0, 𝜷̂1, 𝜷̂2, 𝜷̂3) = argmin

(𝜷0,𝜷1,𝜷2,𝜷3)∈𝕃2

𝑛∑
𝑖=1

𝑑(𝒚𝑖, 𝜷0 + 𝜷1𝑥1𝑖 + 𝜷2𝑥2𝑖 + 𝜷3𝑥3𝑖)2

with respect to the elastic distance, the parameters 𝜷0, 𝜷̂1 and 𝜷̂2 will be different to 𝜷̃0, 𝜷̃1 and 𝜷̃2 even if 𝑛 → ∞.
However, 𝜷̂3 → 𝟎 if 𝑛 → ∞ holds, since 𝑥3 and the curves are assumed to be independent. For the test of the slope
parameters, this means that rejections of 𝐻01 ∶ 𝜷1 = 0 and 𝐻02 ∶ 𝜷2 = 0 correspond to the test’s power, while those
of 𝐻03 ∶ 𝜷3 = 𝟎 should keep the type one error rate here specified as 𝛼 = 0.05. Looking at the tests for the individual
spline coefficients 𝝃2,𝑚, 𝑚 = 1,… , 6 of 𝜷2, we expect the null hypotheses 𝝃2,1 = 𝟎 and 𝝃2,2 = 𝟎 to be rejected, but
because of the above argument, the other spline coefficients are not guaranteed to be zero.
To obtain an estimate of the rejection probability for the tests of the coefficients being zero given the sample size 𝑛 ∈
{10, 30, 60} and the number of bootstrap repetitions 𝑁𝑏𝑜𝑜𝑡 ∈ {100, 500, 1000}, we draw 1000 times a sample consisting
of curves 𝒚1,… , 𝒚𝑛 with covariates 𝑥1𝑖, 𝑥2𝑖, 𝑥3𝑖, 𝑖 = 1,… , 𝑛 as described above. Next, we draw bootstrap replicates
𝒚(𝑏)1 ,… , 𝒚(𝑏)𝑛 , 𝑏 = 1,… , 𝑁𝑏𝑜𝑜𝑡, from the sample and reject the null hypothesis 𝐻0𝑗 ∶ 𝜷𝑗 = 𝟎 if 𝝃̄𝑇𝑗,𝑚Σ̂−1

𝑗,𝑚𝝃̄𝑗,𝑚 ≥ 𝑐𝑗,1− 𝛼
𝑀

,
where 𝑐𝑗,1− 𝛼

𝑀
is the 1 − 𝛼

𝑀 percentile, for any of the spline coefficients 𝝃𝑗,𝑚, 𝑚 = 1,… ,𝑀 = 6 of 𝜷𝑗 (as described
in more detail in Section 4). The estimated rejection probability (Tab. 2) then is the relative proportion of the 1000
repetitions in which the null hypothesis is rejected.
For the data constellation described above, table 2 indicates that the rejection probability of 𝐻03 keeps the 𝛼 level of
5% if the number of bootstrap replications is sufficiently large, i.e. at least about 500-1000. In this setup, the weak
effect 𝜷2 is found to be significant in 67% and 97% of the cases and the strong effect 𝜷1 even in 100% of the cases
for 𝑛 = 30 and 60, respectively. To see if the distinction of zero and non-zero effects is also possible for parts of the
curves, we consider in Fig. 2 (right) the rejection probabilities for the tests of the individual spline coefficients.
The plot indicates that the null hypotheses for coefficients of 𝛽1 are mostly rejected (rejection probabilities 0.15, 1.00,
1.00, 1.00, 0.95, and 1.00 for coefficients 1-6, respectively) while for 𝛽2 the coefficients changing the lower part of the
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𝑛 𝑁𝑏𝑜𝑜𝑡 𝐻01 ∶ 𝜷1 = 𝟎 𝐻02 ∶ 𝜷2 = 𝟎 𝐻03 ∶ 𝜷3 = 𝟎
10 100 0.66 0.07 0.02
10 500 0.42 0.01 0.00
10 1000 0.38 0.01 0.00
30 100 1.00 0.76 0.12
30 500 1.00 0.67 0.06
30 1000 1.00 0.67 0.05
60 100 1.00 0.97 0.10
60 500 1.00 0.96 0.05
60 1000 1.00 0.96 0.04

Table 2: Estimated rejection probability of the null hypothesis 𝐻0𝑗 ∶ 𝜷𝑗 = 0, 𝑗 = 1, 2, 3, for a sample of size 𝑛 and 𝐵
Bootstrap replications.
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Figure 2: Left: Effect of 𝑥1 given 𝑥2 = 0 (top) and of 𝑥2 given 𝑥1 = 0 (bottom) estimated on a large simulated sample
(n = 500) as an approximation of the closest model to the true model in our model space. Middle: Distribution of
bootstrapped coefficients 𝝃(𝑏)𝑗,𝑚, 𝑚 = 1,… , 6, 𝑗 = 1 (top) and 𝑗 = 2 (bottom) over the 1000 repetitions for the setting
with 𝑛 = 60 and 𝑁𝑏𝑜𝑜𝑡 = 1000; the coefficients of the effect estimated on the large sample are displayed as blue dots.
Coefficients 𝝃𝑗,1,… , 𝝃𝑗,6 correspond to regions on the curves from the top anti-clockwise to the right. Right: Rejection
probabilities for the tests of the individual spline coefficients.

curves, 𝝃4, 𝝃5 and 𝝃6, are mostly not rejected (rejection probabilities 0.19, 0.94, 0.13, 0.03, 0.02 and 0.02 for coefficients
1-6, respectively), which is consistent with the absent visible effect (Fig. 2 , left). The distribution of the bootstrapped
coefficients 𝝃(𝑏)𝑗,𝑚 (Fig.2 , middle) essentially scatters around the estimated optimal parameters for large sample size (n
= 500), which we use as an approximation of the closest model to the true model in our model space. This indicates
good identifiability of the regression model via its spline coefficients.
We further repeat the simulation for n = 60 and B = 1000 with 11 instead of 6 knots still using linear SRV splines
for data generation and for modeling to check that the tests are also valid for more complex curves with more spline
coefficients. Here we observe a rejection probability of 100% for 𝐻01 and 𝐻02 and of 6% for 𝐻03. The high rejection
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probability also for the smaller effect 𝜷2 probably results from the fact that we did not succeed in simulating a local
effect (see Fig. 9 in the appendix). However, the coefficients appear to be well identified here as well. To keep the
significance level of 𝛼 = 0.05 for 𝐻03 exactly, more observations would be necessary for this larger number of spline
coefficients.
Overall, we conclude from this simulation that it is possible to test the significance of the slope parameters for the
quotient space regression model using the corresponding spline coefficients. As this requires that the model is well
identified by the spline coefficients, the sample size should be large enough to ensure that the spline coefficients of the
different bootstrap model estimates represent equivalent parts of the curves. In particular, for a larger number of spline
coefficients allowing flexible modeling of curves, a relatively large number of observations is needed to a) maintain the
𝛼 level in the bootstrap setting and b) obtain reasonable power. We also discuss the choice of test based or not based
on spline coefficients in the context of the application in the next section.

6 Investigating the effect of age and Alzheimer’s disease on hippocampus outlines via
elastic regression

Hippocampal volume loss is associated with both Alzheimer’s disease and normal aging (Henneman et al., 2009).
Moreover, Frisoni et al. (2008) showed that these covariates affect the hippocampal surface locally using parametric
surface mesh models. The surface mesh model, however, depends on a meaningful parametrization of the shape. In
contrast, we investigate local effects on the hippocampal volume by modeling the shape of the hippocampus. However,
it’s essential to note that when we refer to ’shape’ we do not mean the classical shape spaces that consider point
configurations modulo rotation and scaling. Instead, our approach focuses on curves modulo reparametrization and
translation, using the two-dimensional outlines in a quotient linear model that defines an elastic model of the outlines
modulo re-parametrization without dependence on any chosen parametrization.

6.1 Data acquisition and preparation

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD). In addition to the MRI images, ADNI also provides semi-automated segmentations of the hippocampus
created using a high-dimensional brain mapping program SNT, which was commercially available from Medtronic
Surgical Navigation Technologies (Louisville, CO). For more details on this procedure and a comparison with manual
segmentation of the hippocampal volumes, see Hsu et al. (2002). For our analysis, we use all available hippocampal
masks of the 101 Alzheimer’s disease (AD) patients and 138 controls (CN) obtained from the MRI images of the first
scanning session. To apply our quotient regression model to the hippocampus data, we need to extract two-dimensional
outlines (Fig. 3, right) from the three-dimensional hippocampal masks (Fig. 3, left). To do this, we perform the
following steps for the left and right hippocampus separately. First, each hippocampus is rotated around the left-right
axis using principal component analysis so that its first principal component lies in the horizontal plane. Then we
project the data onto the horizontal plane and use the function ocontour from the R-package “EBImage” (Pau et al.,
2010) to extract a closed outline curve. After alignment to the overall mean, the outlines of the hippocampus are sliced
at the tail in the same location to obtain meaningful open curves, since the hippocampus merges into the fornix at
the tail, i.e. it is not anatomically closed. In the last step the number of points per curve is reduced to improve the
computational efficiency of model estimation, via keeping only points whose time stamps are at least 0.015 apart after
alignment to the overall mean.
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Figure 3: Left: Three-dimensional left hippocampal mask for one person. Right: Open outlines of the left hippocampus
for different age groups separately for Alzheimer’s disease (AD) patients and control group (CN).

The result of this preprocessing are left and right hippocampal outlines of 101 Alzheimer’s disease (AD) patients and
138 control subjects (CN) with 33 to 48 points per curve. The explanatory variables considered are Age, Group =
AD, CN and Sex = M, F of the subjects. These covariates are roughly balanced, the mean age for AD and CN is 76
years, ranging from 57 to 89 and 62 to 90 years, respectively, and about 49% of the subjects in both groups are female.
Visual inspection of the outlines, taking into account the covariates Age and Group (Fig. 3, right), reveals no clear
relationship with the shape of the hippocampus. This might be due to the large overall variance of the outlines.

6.2 Regression analysis of hippocampal shapes

To see how age, Alzheimer’s disease and the sex of a subject influence the shape of the hippocampus, we model the
hippocampus outlines using the quotient linear model for elastic curves (Def. 2.16). Precisely, we assume

([𝒀 ]|𝑥Age, 𝑥Group, 𝑥Sex) = [𝑄−1 (𝜷0 + 𝜷Age𝑥Age + 𝜷Group𝑥Group + 𝜷Sex𝑥Sex
)
],

where the conditional Fréchet mean ([𝒀 ]|𝑥Age, 𝑥Group, 𝑥Sex) of the hippocampal outlines is defined with respect to
the elastic distance on the product space of elastic curves for the left and right hippocampus. That is d(𝒚1, 𝒚2) =√

dleft(𝒚1,left, 𝒚2,left)2 + dright(𝒚1,right, 𝒚2,right)2 with 𝒚𝑖 = (𝒚𝑖,left, 𝒚𝑖,right), 𝑖 = 1, 2, where dleft and dright are the
separate elastic distances for the left and the right hippocampal curves, respectively. With this product space
distance, the optimization problem defining the metric regression model argmin𝑓∈ ∑𝑛

𝑖=1 d(𝒚𝑖, 𝑓 (𝒙𝑖))
2 becomes

argmin𝑓∈ ∑𝑛
𝑖=1 dleft(𝒚left, 𝑓left(𝒙𝑖))2+

∑𝑛
𝑖=1 dright(𝒚right, 𝑓right(𝒙𝑖))2 with 𝑓 = (𝑓left, 𝑓right) and therefore can be solved

separately for the left and right hippocampal shapes.
The parameters 𝜷0, 𝜷Age, 𝜷Group, 𝜷Sex ∈ 𝕃2 of this intrinsic metric regression model are estimated using linear spline
functions with 21 equidistant knots for the left and the right hippocampus each. Since this leads to piecewise linear
predictions on SRV level, the predicted outlines are smooth curves (Fig. 4). Linear effects on SRV level are visualized
on curve level by varying one covariate at a time to illustrate effect directions via corresponding predictions.
As expected, we observe similar effects for left and right hippocampus and the hippocampal volume decreases with
age and for AD patients. Moreover, the Sex effect appears to be small compared to Age and Group effect. Since age
and Alzheimer’s disease appear at first glance to have a comparable effect on the hippocampus, the question arises to
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Figure 4: Effects displayed via model predictions with one varying covariate at a time. As a common reference, the
remaining covariates are set to Age = mean(Age) = 76, Group = CN, and Sex = M. For the binary covariates Group
and Sex, bootstrap predictions (lighter color) are added to the model predictions.

what extent the covariates Age and Group affect the shape of the hippocampus differently. To answer this, we use the
linear structure underlying the quotient regression model and project 𝜷̂Group onto 𝜷̂Age. The scalar projection of 𝜷̂Group
onto 𝜷̂Age is 12.8 years, which means that having Alzheimer’s diseases shrinks the hippocampus about as much as 12.8
years of aging would do, but the angle between 𝜷̂Group and 𝜷̂Age is 47 degree, which means only about half of the Group
effect shows in the same direction as the Age effect does. To visualize the remaining effect, we plot the prediction for
a subject with Alzheimer’s disease alongside the prediction for a model where the Group effect is replaced by its linear
projection on the Age effect (Fig. 5, left). This allows us to see which parts of the hippocampus are effected differently.
While both age and Alzheimer’s disease reduce the volume at the �� ��1 label in Fig. 5 (left), the width of the hippocampal
head, i.e., the distance between �� ��2 and �� ��4 , appears to be reduced substantially more by AD than by normal aging. In
contrast, the distance between �� ��1 and �� ��3 appears to be similarly affected by both covariates, although for the right
hippocampus this distance might be smaller for AD patients compared to someone in the control group who is 12.8
years older.
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Figure 5: All non mentioned covariates are fixed to Age = mean(Age) = 76, Group = CN, and Sex = M. Left: Prediction
for AD compared to the prediction for a model where the Group effect is replaced by its linear projection onto the Age
effect. Labels indicate prominent features. Middle: Bootstrap predictions for Age effect. Right: Difference of the MSE
of the models with an omitted covariate and the MSE of the full model computed on the out-of-bootstrap sample.
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6.3 Model inference for the hippocampus regression model

To assess the significance of the estimated effects, we apply the model inference and selection tools described in
Section 4 to this regression model for the hippocampal shapes. First, we test the global null hypothesis 𝐻0 that none
of the covariates Age, Group, and Sex has an effect by using the Fréchet coefficient of determination 𝑅̃2 as a test
statistic and approximating its distribution under 𝐻0 through permutation sampling (number of samples = 500). We
observe 𝑅̃2 = 0.033, which is significantly different from the estimated mean under 𝐻0 (𝑅̃2 = 0.016, p-value of
the one-sided t-test < 2.2 × 10−16). Next we compare the adjusted coefficients of determination 𝑅̃2

adj for all possible
sub-models to decide which covariates improve the model fit. Here, the largest value is obtained for the full model
(𝑅̃2

adj = 0.021, see Tab. 3), while all reported values for 𝑅̃2 and 𝑅̃2
adj are relatively small. Thus, although explaining

only a small proportion of the total variation, with a larger remaining fraction corresponding to individual variation
among individuals, all variables considered can be deemed relevant based on this criterion.
To account for the variability of the model predictions, we draw 1000 bootstrap samples and estimate the model para-
meters on each. The distribution of the bootstrapped spline coefficients is shown in Fig. 10 and 11 in the appendix.
The large variation in some of the bootstrap coefficients, much larger than for the bootstrap predictions in Fig. 4 and
Fig. 5, middle, indicates that a test based on the coefficients might lose power due to warping variability, as discussed
for a setting with many spline coefficients (here 42 2-dimensional coefficients per covariate for left and right in total)
in Section 4.4. Therefore, we construct confidence regions directly for the predictions. To this end, for each prediction,
we compute the bootstrap predictions for the same combinations of covariates as well as their distance from the ori-
ginal model prediction. We then construct the simultaneous 95% confidence region based on the closest 950 bootstrap
predictions. The result for the binary effects Group and Sex is shown in Fig. 4. For the continuous covariate Age,
we show the bootstrap predictions with confidence regions for Age = 66 and Age = 86 in Fig. 5, middle. Note that
the resulting confidence regions not only include the variance of the effects, but also that of the intercept. It can be
seen that the confidence regions constructed in this way clearly separate the Alzheimer’s group from the control group,
whereas the confidence regions for Sex overlap in all parts of the hippocampus. For Age, there are parts (especially
at the head of the hippocampus) where the regions are separated, as well as parts where no clear separation is found.
This is consistent with the previously obtained results that the group effect is the most pronounced and the Sex effect
is the least evident.
In addition, we evaluate the importance of the included covariates by comparing how much the model estimation error
increases when we remove single covariates from the model. Here we look at the difference of the mean squared error
(MSE) of the model with an omitted covariate and the MSE for the full model (Fig. 5, right), where we estimate the
MSE for each bootstrap model on the out-of-bootstrap sample. That is, we evaluate the model prediction on the data
that were not used for model estimation on the bootstrap sample (about 36.8% of the data). On average, we compute
an out-of-bootstrap MSE of 13.34 for the full model and 13.37, 13.43 or 13.31 for a model without Age, Group or Sex
effect, respectively. Omitting one effect increases the MSE for 740, 943 and 263 out of 1000 bootstrap samples for the
Age, Group and Sex effect, respectively. Thus, based on these two variables improving the out-of-bootstrap prediction
error in most of the samples, we would choose the model including Age and Group but no Sex effect.

6.4 Discussion of the hippocampus application

Overall, Alzheimer’s disease has the largest and most stable effect on the hippocampus among the covariates considered.
The direction of this effect, i.e., the way the hippocampus shrinks, differs from normal aging. Although females appear
to have slightly smaller hippocampi, this Sex effect is not clearly significant in our model. In further studies, it would
be interesting to include in the analysis the mild cognitive impairment (MCI) group, for whom hippocampal masks are
also available from ADNI. Since this group is known to be heterogeneous, with likely unknown subgroups, we did not
include them in this study. In addition, it may be worthwhile to explore more complex model equations, for example,
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including further covariates or interaction effects (e.g. of Age and Sex) and to examine if and how the effects differ
between the left and right hippocampus.

7 Conclusion and Outlook

In this work, we developed an elastic regression approach, which we motivate as a special case of a general type of
regression models we call quotient linear regression, for curves with respect to the elastic distance as response values
and multiple scalar covariates. It allows modeling curves in two or more dimensions, e.g. outlines of anatomical
features, while being invariant to their parameterization. Using the projections of affine linear functions as the model
space for the SRV transformed curves permits iterative estimation of the model by alternating between alignment and
estimation of a functional linear model. We provide an implementation of this algorithm in the R-package elasdics
(Steyer, 2022).
To deal with sparsely and/or irregularly observed curves, we use splines to model the SRV curves. Since certain of
these splines are identifiable modulo parameterization, inference based on the estimated spline coefficients is possible
in these cases and also allows to investigate local effects. Here, however, as with our proposed inference methods
based on distances and/or on the predicted curves, we rely on re-sampling methods such as bootstrap and permutation
re-sampling. Further research will be needed to develop tests and confidence sets with formal guarantees.
Placing the proposed elastic regression model into the more general context of quotient (linear) regression, allows us
to point out direct connections to similar approaches on other quotient spaces in literature and to present results on
properties of the model space, consistency and existence of Fréchet mean estimation in a higher level of generality.
Moreover, we also pave the way to for quotient regression beyond linear model spaces:
Using affine linear functions as underlying model space includes constant speed geodesics in the quotient space of
curves modulo re-parameterization, but is somewhat more flexible. Using this larger space not only enables the es-
timation strategy described above, but we have also shown through examples (in the simulations in Section 5) that
geodesic regression lines alone are not sufficient to model all changes to curves that naturally appear in practice, and a
larger model space thus is beneficial. However, our proposed model space is still linear in the SRV space, which may
be too restrictive for some real data applications. To allow more flexible smooth dependence of curves on covariates,
quotient models could be extended to an additive linear regression model.
Another appealing direction for further research is to develop the quotient regression model for elastic shapes, i.e. curves
modulo translation, scaling, rotation and parametrization, which goes beyond quotient spaces of a Hilbert space. Along
the lines of Section 2.1.4, this space can be seen as the quotient of the sphere, which is a submanifold of 𝕃2, on which the
product of the rotation and re-parametrization groups acts by isometries. Such a model could be implemented building
on ’generalized linear’ regression models on the sphere as suggested in Stöcker et al. (2023) for planar (in-elastic)
shapes and forms.
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A Proofs and Computations

A.1 Proof of Lemma 2.2

Huckemann (2011) generalizes the notion of the Fréchet mean to the Fréchet 𝜌-mean:
Definition A.1 (Fréchet 𝜌-mean). Let 𝑋,𝑋1, 𝑋2,… be random elements mapping from a probability space Ω,, to
a topological space Q. Let (𝑃 , 𝑑) be a topological space with distance 𝑑. For a continuous function 𝜌 ∶ 𝑄×𝑃 → [0,∞]
define the set of population Fréchet 𝜌-means of 𝑋 in 𝑃 by

𝐸(𝜌) = argmin
𝜇∈𝑃

𝔼(𝜌(𝑋, 𝜇)2).

For 𝜔 ∈ Ω, denote by

𝐸(𝜌)
𝑛 (𝜔) = argmin

𝜇∈𝑃

𝑛∑
𝑖=1

𝜌(𝑋𝑖(𝜔), 𝜇)2

the set of sample Fréchet 𝜌-means.

With this definition, the usual Fréchet mean is a special case where 𝜌 is the distance function. Similarly as for
Fréchet means, one can show that sample Fréchet 𝜌-means are consistent in the sense of Ziezold (1977), that is
⋂∞

𝑛=1
⋃∞

𝑘=𝑛 𝐸
(𝜌)
𝑘 (𝜔) ⊆ 𝐸(𝜌) for almost all 𝜔 ∈ Ω.

Theorem A.2 (Huckemann (2011)). Let 𝜌 ∶ 𝑄×𝑃 → [0,∞[ be a continuous function on the product of a topological
space with a separable space with distance (𝑃 , 𝑑). Then strong consistency holds in the Ziezold sense for the set of
Fréchet 𝜌-means in 𝑃 if:

(i) 𝑋 has compact support, or if

(ii) 𝔼(𝜌(𝑋, 𝑝)2) < ∞ for all 𝑝 ∈ 𝑃 and 𝜌 is uniformly continuous in the second argument.

Our statement on consistency is then a straightforward consequence using (ii), with  ×  taking the role of 𝑄 and
( , 𝑑 ) that of (𝑃 , 𝑑).

Proof of Lemma 2.2. Define 𝜌 ∶  ×  ×  → [0,∞), 𝜌(𝑥, 𝑦, 𝑓 ) = 𝑑(𝑦, 𝑓 (𝑥)). This loss function 𝜌 is continuous in
the first two arguments since 𝑑 as a metric and 𝑓 are continuous. Furthermore, 𝜌 is uniformly continuous in the last
argument since for all 𝑥 ∈  , 𝑦 ∈  and 𝑓, 𝑓 ∈  it holds that 𝑑(𝑦, 𝑓 (𝑥)) ≤ 𝑑(𝑦, 𝑓 (𝑥))+𝑑(𝑓 (𝑥), 𝑓 (𝑥)) via the triangle
inequality and therefore because of symmetry: |𝑑(𝑦, 𝑓 (𝑥)) − 𝑑(𝑦, 𝑓 (𝑥))| ≤ 𝑑(𝑓 (𝑥), 𝑓 (𝑥)) ≤ 𝑑 (𝑓, 𝑓 ). 𝐶( ,) is
separable by the proof of Theorem 2.4.3 in Srivastava (1998) and therefore  is separable as a subspace of a separable
metric space.

A.2 Proof of Lemma 2.3 and Lemma 2.8

Proof. 𝐶( ,) is complete since  is complete (e.g., Burkill and Burkill, 1970, Theorem 3.45) and therefore  in
Lemma 2.3 and Φ in Lemma 2.8 complete as a closed subsets. Thus  and Φ are compact since they are complete and
totally bounded. Since 𝑓 ↦ 𝔼(d(𝑌 , 𝑓 (𝑋)) and 𝜑 ↦ 𝔼(d([𝑌 ], [𝜑(𝑋)]) are continuous as a compositions of continuous
functions, they attain their minimum on  and Φ, respectively.

A.3 Proof of Lemma 2.5

Proof. i) Since  is separable, there is a countable, dense subset  ⊆  . Let [𝑦] ∈ ∕𝐺. Since  is
dense in  , there is a sequence (𝑧𝑘)𝑘∈ℕ ⊂  such that lim𝑘→∞ 𝑧𝑘 = 𝑦. Therefore lim𝑘→∞ 𝑑𝐺([𝑧𝑘], [𝑦]) ≤
lim𝑘→∞ 𝑑(𝑧𝑘, 𝑦) = 0. Hence {[𝑧]|𝑧 ∈ } is a countable, dense subset in ∕𝐺 and ∕𝐺 thus separable.
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ii) Let ([𝑦𝑘])𝑘∈ℕ ⊂ ∕𝐺 be a Cauchy sequence. W.l.o.g. assume 𝑑𝐺([𝑦𝑘], [𝑦𝑘+1]) <
1
2𝑘 for all 𝑘 ∈ ℕ, otherwise

consider a subsequence (and ([𝑦𝑘])𝑘∈ℕ as a Cauchy sequence will converge to the same limit if it exists). We
construct a sequence (𝑔𝑘)𝑘∈ℕ ⊆ 𝐺 such that (𝑔1◦… ◦𝑔𝑘−1◦𝑦𝑘)𝑘∈ℕ is a Cauchy sequence in  . To do so set
𝑔1 = id and for 𝑘 ≥ 2 assume we already picked 𝑔1,… , 𝑔𝑘−1. Then choose 𝑔𝑘 such that

𝑑(𝑔1◦… ◦𝑔𝑘−1◦𝑦𝑘, 𝑔1◦… ◦𝑔𝑘◦𝑦𝑘+1) <
1

2𝑘−1
.

This is possible since 𝑔1,… , 𝑔𝑘−1 are isometries and therefore

inf
𝑔∈𝐺

𝑑(𝑔1◦… ◦𝑔𝑘−1◦𝑦𝑘, 𝑔1◦… 𝑔𝑘−1◦𝑔◦𝑦𝑘+1) = inf
𝑔∈𝐺

𝑑(𝑦𝑘, 𝑔◦𝑦𝑘+1) = 𝑑𝐺([𝑦𝑘], [𝑦𝑘+1]) <
1
2𝑘

.

Thus, (𝑔1◦… ◦𝑔𝑘−1◦𝑦𝑘)𝑘∈ℕ is a Cauchy sequence and converges to a 𝑦 ∈  , since  is complete. Hence
𝑑𝐺([𝑦𝑘], [𝑦]) = 𝑑𝐺([𝑔1◦… ◦𝑔𝑘−1◦𝑦𝑘], [𝑦])

= inf
𝑔∈𝐺

𝑑(𝑔1◦… ◦𝑔𝑘−1◦𝑦𝑘, 𝑔◦𝑦) ≤ 𝑑(𝑔1◦… ◦𝑔𝑘−1◦𝑦𝑘, 𝑦)
𝑘→∞
←←←←←←←←←←←←←←←←←←←←←→ 0.

As ([𝑦𝑘])𝑘∈ℕ has a limit in ∕𝐺, ∕𝐺 is complete.

A.4 Proof of Theorem 2.13

Proof. We first show that Ψ is coercive, that is Ψ(𝜑) → ∞ if ‖𝜑‖Φ → ∞. To do so note that
𝑑𝐺([𝑌 ], [𝜑(𝑋)]) = inf

𝑔∈𝐺
‖𝑌 − 𝑔◦𝜑(𝑋)‖ ≥ ‖𝑔◦𝜑(𝑋)‖ − ‖𝑌 ‖

≥ ‖𝜑(𝑋)‖ − 𝐶1

for some 𝐶1 ∈ ℝ, where the first inequality is due to the triangle inequality and the second due to the assumption that
[𝑌 ] is bounded. Therefore,

Ψ(𝜑) = 𝔼(𝑑𝐺([𝑌 ], [𝜑(𝑋)])2) ≥ 𝔼((‖𝜑(𝑋)‖ − 𝐶1)2) ≥ (𝔼(‖𝜑(𝑋)‖ ) − 𝐶1)2

due to Jensen’s inequality since 𝑥 ↦ (𝑥−𝐶1)2 is convex. Note that𝔼(‖𝜑(𝑋)‖ ) defines a norm onΦ since supp(𝑋) = 
and all 𝜑 ∈ Φ are continuous. Since all norms are equivalent on Φ (finite dimensional vector space) this means
𝔼(‖𝜑(𝑋)‖ ) → ∞ if ‖𝜑‖Φ → ∞ and therefore Ψ(𝜑) → ∞ if ‖𝜑‖Φ → ∞.
Since Ψ is continuous as a composition of continuous functions and coercive it attains its minimum. This is a standard
argument that we repeat here for the sake of completeness. Pick a 𝜑0 ∈ Φ. Since Ψ is coercive, there is a 𝐶2 ∈ ℝ
such that Ψ(𝜑) ≥ Ψ(𝜑0) + 1 if ‖𝜑‖∞ ≥ 𝐶2. Hence inf‖𝜑‖∞≤𝐶2

Ψ(𝜑) = inf𝜑∈ΦΨ(𝜑). Since {𝜑 ∈ Φ|‖𝜑‖∞ ≤ 𝐶2} is a
closed and bounded subset of a finite dimensional vector space, it is compact (Heine-Borel) and therefore Ψ attains its
minimum on {𝜑 ∈ Φ|‖𝜑‖∞ ≤ 𝐶2}, which is also a global minimizer.

A.5 Proof of Lemma 2.9

Proof. Since ( , 𝑑) is a length metric space and 𝛾 a shortest path, for the length 𝑙(𝛾) of 𝛾 it holds by definition that

𝑙(𝛾) = sup
𝑎=𝑡0<𝑡1<⋯<𝑡𝑛=𝑏

𝑛−1∑
𝑖=0

𝑑(𝛾(𝑡𝑖), 𝛾(𝑡𝑖+1)) = 𝑑(𝑦1, 𝑔̃◦𝑦2),
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where 𝑡0, 𝑡1,… , 𝑡𝑛, 𝑛 ∈ ℕ is a partition of [𝑎, 𝑏]. The length of [𝛾] is bounded from above by the length of 𝛾 as

𝑙([𝛾]) = sup
𝑎=𝑡0<𝑡1<⋯<𝑡𝑛=𝑏

𝑛−1∑
𝑖=0

𝑑𝐺([𝛾(𝑡𝑖)], [𝛾(𝑡𝑖+1)])

= sup
𝑎=𝑡0<𝑡1<⋯<𝑡𝑛=𝑏

𝑛−1∑
𝑖=0

inf
𝑔∈𝐺

𝑑(𝛾(𝑡𝑖), 𝑔◦𝛾(𝑡𝑖+1))

𝑔= id≤ sup
𝑎=𝑡0<𝑡1<⋯<𝑡𝑛=𝑏

𝑛−1∑
𝑖=0

𝑑(𝛾(𝑡𝑖), 𝛾(𝑡𝑖+1)) = 𝑙(𝛾)

for all partitions 𝑎 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 𝑏, 𝑛 ∈ ℕ. To see that 𝑙([𝛾]) = 𝑙(𝛾) choose the trivial partition 𝑎 = 𝑡0 < 𝑡1 = 𝑏
and observe

𝑙([𝛾]) ≥ 𝑑𝐺([𝛾(𝑡0)], [𝛾(𝑡1)]) = inf
𝑔∈𝐺

𝑑(𝛾(𝑎), 𝑔◦𝛾(𝑏)) = 𝑑(𝑦1, 𝑔̃◦𝑦2) = 𝑙(𝛾). (8)

Thus, [𝛾] is a shortest path in ∕𝐺 as 𝑙([𝛾]) = 𝑑𝐺([𝑦1], [𝑦2]) and 𝑙([𝛾̃]) ≥ 𝑑𝐺([𝑦1], [𝑦2]) as in (8) for all other paths 𝛾̃ .

A.6 Proof of Corollary 2.12

This corollary is an immediate consequence of the following lemma.
Lemma A.3. Let ( , ⟨⋅⟩) be a real inner product space and 𝐺 act on  by isometries with 𝑔◦0 = 0 for all 𝑔 ∈ 𝐺. Let
𝑦1, 𝑦2 ∈  be aligned to 𝑦0 ∈  and 𝛼1, 𝛼2 ≥ 0. Then 𝛼1𝑦1 + 𝛼2𝑦2 is aligned to 𝑦0, which means the set of elements
which are aligned to 𝑦0 is a convex cone.

Proof. Let 𝑦 ∈  be aligned to 𝑦0 ∈  , that is ‖𝑦0 − 𝑦‖ = inf𝑔∈𝐺 ‖𝑦0 − 𝑔◦𝑦‖. This is equivalent with ‖𝑦‖2 = ⟨𝑦, 𝑦⟩
to

‖𝑦0 − 𝑦‖2 = inf
𝑔∈𝐺

⟨𝑦0 − 𝑔◦𝑦, 𝑦0 − 𝑔◦𝑦⟩
= ‖𝑦0‖2 + inf

𝑔∈𝐺
{⟨𝑔◦𝑦, 𝑔◦𝑦⟩ − 2⟨𝑦0, 𝑔◦𝑦⟩}

= ‖𝑦0‖2 + ‖𝑦‖2 − 2 sup
𝑔∈𝐺

⟨𝑦0, 𝑔◦𝑦⟩ (𝑔 isometry)
= ‖𝑦0 − 𝑦‖2 + 2⟨𝑦0, 𝑦⟩ − 2 sup

𝑔∈𝐺
⟨𝑦0, 𝑔◦𝑦⟩.

Hence, 𝑦 ∈  being aligned to 𝑦0 ∈  is equivalent to sup𝑔∈𝐺⟨𝑦0, 𝑔◦𝑦⟩ = ⟨𝑦0, 𝑦⟩.
Let 𝑔 ∈ 𝐺, thus 𝑔 is a bijective isometry on a real vector space with 𝑔◦0 = 0, which means 𝑔 is linear by the Mazur-Ulam
theorem (Väisälä, 2003). Hence, for 𝑦1, 𝑦2 ∈  being aligned to 𝑦0 ∈  and 𝛼1, 𝛼2 > 0 it holds that

sup
𝑔∈𝐺

⟨𝑦0, 𝑔◦(𝛼1𝑦1 + 𝛼2𝑦2)⟩ = sup
𝑔∈𝐺

[
𝛼1⟨𝑦0, 𝑔◦𝑦1⟩ + 𝛼2⟨𝑦0, 𝑔◦𝑦2⟩

]

≤ 𝛼1 sup
𝑔∈𝐺

⟨𝑦0, 𝑔◦𝑦1⟩ + 𝛼2 sup
𝑔∈𝐺

⟨𝑦0, 𝑔◦𝑦2⟩ (𝛼1, 𝛼2 ≥ 0)
= 𝛼1⟨𝑦0, 𝑦1⟩ + 𝛼2⟨𝑦0, 𝑦2⟩ (𝑦1, 𝑦2 aligned to 𝑦0)
= ⟨𝑦0, 𝛼1𝑦1 + 𝛼2𝑦2⟩

On the other hand, we observe sup𝑔∈𝐺⟨𝑦0, 𝑔◦(𝛼1𝑦1 + 𝛼2𝑦2)⟩ ≥ ⟨𝑦0, 𝛼1𝑦1 + 𝛼2𝑦2⟩ if we take 𝑔 = id and therefore
𝛼1𝑦1 + 𝛼2𝑦2 is aligned to 𝑦0.
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Proof of the Corollary. 𝛽0 +
∑𝑘

𝑗=1 𝜆𝑗𝛽𝑗 =
∑𝑘

𝑗=1 𝜆𝑗(𝑦0 + 𝛽𝑗) is aligned to 𝛽0 according to Lemma A.3 and, thus, 𝑓 is
a shortest path in ∕𝐺 as 𝑥 ↦ 𝛽0 + 𝑥

∑𝑘
𝑗=1 𝜆𝑗𝛽𝑗 is linear and therefore a shortest path in the inner product space 

(Lemma 2.9).

A.7 Geodesics in 𝕃2∕Γ cannot be modeled with splines

We construct a counterexample that shows that geodesics between two spline curves in 𝕃2∕Γ do not necessarily lie in
a spline space. Even though we only show this for a specific example, we expect this to be true for most spline curves
and that the geodesic will only actually lie in a spline space in exceptional cases.
Consider the linear SRV spline curves 𝑞1(𝑡) =

( 1
2𝑡+1

) and 𝑞2(𝑡) =
( 0
1
), 𝑡 ∈ [0, 1]. Since 𝑞2 is constant, the optimal

warping 𝛾 of 𝑞2 to 𝑞1 is given via

𝛾̇(𝑡) =
⟨𝑞1(𝑡),

( 0
1
)⟩+

∫ 1
0 ⟨𝑞1(𝑡),

( 0
1
)⟩+𝑑𝑡

= 2𝑡 + 1
∫ 1
0 2𝑡 + 1𝑑𝑡

= 𝑡 + 0.5, (9)

using the formula derived in the online supplement B.1 of Steyer et al. (2022). Here < ⋅, ⋅ >+ denotes the positive
part of the scalar product. Hence 𝑞2(𝛾(𝑡))

√
𝛾̇(𝑡) =

( 0
1
)√

𝑡 + 0.5 is optimally aligned to 𝑞1. This means the geodesic
between [𝑞1] and [𝑞2] in 𝕃2∕Γ is given by

𝜉 ∶ [0, 1] → 𝕃2∕Γ

𝑥 ↦
[
(1 − 𝑥)

( 1
2𝑡+1

)
+ 𝑥

( 0
1
)√

𝑡 + 0.5
]
.

Thus, 𝜉 lies in a spline space only if 𝜉(0.5) contains a spline, i.e there is a warping function 𝛾̃ ∶ [0, 1] → [0, 1] such that

I. 0.5
√

̇̃𝛾 and

II. (𝛾̃ + 0.5)
√

̇̃𝛾 + 0.5
√
(𝛾̃ + 0.5) ̇̃𝛾

are splines of some degree 𝑚. From I. we conclude that 𝛾̃ is a spline of degree 2𝑚 + 1, 𝑚 ∈ ℕ0. But this means
(𝛾̃(𝑡)+0.5) ̇̃𝛾(𝑡) is a piecewise polynomial with degree 4𝑚+1, hence its square root √(𝛾̃ + 0.5) ̇̃𝛾(𝑡) cannot be piecewise
polynomial. This contradicts the assumption that II. is a spline.
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A.8 Additional algorithms

Algorithm 2: Quotient space regression for elastic closed curves
Input: data pairs (𝒙𝑖, 𝒒𝑖), 𝑖 = 1,… , 𝑛 where 𝒒𝑖 are the SRV transformations of observed polygons and

𝒙𝑖 = (𝑥𝑖,1,… , 𝑥𝑖,𝑘), 𝑖 = 1,… , 𝑛 are observed covariates; convergence tolerance 𝜖 > 0
Compute initial estimate 𝜷̂0,𝑛𝑒𝑤,… , 𝜷̂𝑘,𝑛𝑒𝑤 = arginf𝜷0,…,𝜷𝑘∈𝕃2

∑𝑛
𝑖=1 ‖𝜷0 +

∑𝑘
𝑗=1 𝜷𝑗𝑥𝑖,𝑗 − 𝒒𝑖‖2𝕃2 ;

Set 𝜷̂𝑗,𝑜𝑙𝑑 = Inf ∀𝑗 = 0,… , 𝑘;
while max𝑗=0,…,𝑘 ‖𝜷̂𝑗,𝑜𝑙𝑑 − 𝜷̂𝑗,𝑛𝑒𝑤‖ > 𝜖 do

𝜷̂𝑗,𝑜𝑙𝑑 = 𝜷̂𝑗,𝑛𝑒𝑤 ∀𝑗 = 0,… , 𝑘;
for 𝑖 ∈ 1,… , 𝑛 do

𝒑𝑖 = 𝜷̂0,𝑜𝑙𝑑 +
∑𝑘

𝑗=1 𝜷̂𝑗,𝑜𝑙𝑑𝑥𝑖,𝑗 ; // compute predicted SRV curves

𝒗𝑖(𝑡) = 𝒑𝑖‖𝒑𝑖‖ − ∫ 1
0 𝒑𝑖(𝑠)‖𝒑𝑖(𝑠)‖𝑑𝑠; // compute derivative of closed predicted curves

𝛾𝑖 = arginf 𝛾
‖‖‖‖

𝒗𝑖√‖𝒗𝑖‖
− (𝒒𝑖◦𝛾)

√
𝛾
‖‖‖‖
2

𝕃2
; // warping step

𝜷̂0,𝑛𝑒𝑤,… , 𝜷̂𝑘,𝑛𝑒𝑤 = arginf𝜷0,…,𝜷𝑘∈𝕃2
∑𝑛

𝑖=1
‖‖‖𝜷0 +

∑𝑘
𝑗=1 𝜷𝑗𝑥𝑖,𝑗 − (𝒒𝑖◦𝛾𝑖)

√
𝛾𝑖
‖‖‖
2

𝕃2
// 𝕃2 spline fit via least-squares

return 𝜷̂𝑗 = 𝜷̂𝑗,𝑛𝑒𝑤 ∀𝑗 = 0,… , 𝑘

Algorithm 3: Fréchet regression for elastic curves
Input: data pairs (𝒙𝑖, 𝒒𝑖), 𝑖 = 1,… , 𝑛 where 𝒒𝑖 are the SRV transformations of observed curves and

𝒙𝑖 = (𝑥𝑖,1,… , 𝑥𝑖,𝑘), 𝑖 = 1,… , 𝑛 are observed covariates with mean 𝒙̄ = 1
𝑛
∑𝑛

𝑖=1 𝒙𝑖 and empirical
covariance matrix 𝚺̂ = 1

𝑛
∑𝑛

𝑖=1(𝒙𝑖 − 𝒙̄)(𝒙𝑖 − 𝒙̄)𝑇 ; new covariate values 𝒙̃1,… , 𝒙̃𝑁 ; convergence tolerance
𝜖 > 0

Compute initial mean 𝒑̄𝑙,𝑛𝑒𝑤 = arginf 𝒑̄
∑𝑛

𝑖=1
‖‖𝒑̄ − 𝒒𝑖‖‖2𝕃2 , 𝑙 = 1,… , 𝑁 ;

for 𝑙 = 1,… , 𝑁 do
𝑠𝑙,𝑖 = 𝑠(𝒙𝑖,𝒙𝑙) = 1 + (𝒙𝑖 − 𝒙̄)𝑇 𝚺̂−1(𝒙𝑙 − 𝒙̄) ∀𝑖 = 1,… , 𝑛 ; // compute weights
Set 𝒑̄𝑙,𝑜𝑙𝑑 = Inf;
while ‖𝒑̄𝑙,𝑜𝑙𝑑 − 𝒑̄𝑙,𝑛𝑒𝑤‖ > 𝜖 do

𝒑̄𝑙,𝑜𝑙𝑑 = 𝒑̄𝑙,𝑛𝑒𝑤;
𝛾𝑖 = arginf 𝛾

‖‖‖𝒑̄𝑙,𝑜𝑙𝑑 − (𝒒𝑖◦𝛾)
√
𝛾̇‖‖‖

2

𝕃2
, ∀𝑖 = 1,… , 𝑛 ; // warping step

𝒑̄𝑙,𝑛𝑒𝑤 = arginf 𝒑̄
∑𝑛

𝑖=1 𝑠𝑙,𝑖
‖‖‖𝒑̄ − (𝒒𝑖◦𝛾𝑖)

√
𝛾̇𝑖
‖‖‖
2

𝕃2
// weighted 𝕃2 spline fit

return 𝒑𝑙 = 𝒑̄𝑙,𝑛𝑒𝑤 for all 𝑙 = 1,… , 𝑁

For the the weighted 𝕃2 spline fit step note that the average of the weights fulfills
1
𝑛

𝑛∑
𝑖=1

𝑠𝑙,𝑖 = 1 + 1
𝑛

𝑛∑
𝑖=1

(𝒙𝑖 − 𝒙̄)𝑇 𝚺̂−1(𝒙𝑙 − 𝒙̄) = 1 + (1
𝑛

𝑛∑
𝑖=1

𝒙𝑖 − 𝒙̄)𝑇 𝚺̂−1(𝒙𝑙 − 𝒙̄) = 1
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and therefore the weighted 𝕃2 mean in the spline fit step can be written as

arginf
𝒑̄

𝑛∑
𝑖=1

𝑠𝑙,𝑖
‖‖‖𝒑̄ − (𝒒𝑖◦𝛾𝑖)

√
𝛾̇𝑖
‖‖‖
2

𝕃2
= arginf

𝒑̄

𝑛∑
𝑖=1

(𝑠𝑙,𝑖 ‖𝒑̄‖2 − 2𝑠𝑙,𝑖⟨𝒑̄, (𝒒𝑖◦𝛾𝑖)
√
𝛾̇𝑖⟩2𝕃2 )

= arginf
𝒑̄

𝑛∑
𝑖=1

(‖𝒑̄‖2 − 2⟨𝒑̄, 𝑠𝑙,𝑖(𝒒𝑖◦𝛾𝑖)
√
𝛾̇𝑖⟩2𝕃2 )

= arginf
𝒑̄

𝑛∑
𝑖=1

‖‖‖𝒑̄ − 𝑠𝑙,𝑖(𝒒𝑖◦𝛾𝑖)
√
𝛾̇𝑖
‖‖‖
2

𝕃2
.

This means we can find a solution for the weighted least-squares via fitting a spline to the pseudo data 𝑠𝑙,𝑖(𝒒𝑖◦𝛾𝑖)
√
𝛾̇𝑖,

𝑖 = 1,… , 𝑛. I.e, we can use the 𝕃2 spline fit step described in Web Appendix A of Steyer et al. (2022) to also fit
the weighted 𝕃2 mean. In particular this allows us to compute closed weighted means and therefore perform Fréchet
regression for closed elastic curves.

B Additional plots and tables

B.1 Additional simulation results

We show here the prediction for all covariates 𝑥 = −1, 0.8,… , 0.8, 1 for the simulation runs we picked as an example
in Section 5. All runs of simulations 1-4 show similar results as displayed in Fig. 6 but differ in the number of observed
points and the added noise to the observations. Likewise, Fig. 7 shows an example of the second scenario (Simulations
5-8) and Fig. 8 an example of the third scenario (Simulations 9-12).
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Figure 6: Predictions for an exemplarily selected run of simulation 1.
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Figure 7: Predictions for an exemplarily selected run of simulation 5.
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Figure 8: Predictions for an exemplarily selected run of simulation 11.
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Figure 9: Results for the simulation for 𝑛 = 60 and 𝑁𝑏𝑜𝑜𝑡 = 1000 using 11 instead of 6 spline coefficients per
dimension. Left: Effect of 𝑥2 given 𝑥1 = 0 estimated on a large simulated sample (n = 500) as an approximation
of the closest model to the true model in our model space. Note that the curves are translation invariant, hence the
effect appears to be small in the left part of the curve. Middle: Distribution of mean bootstrapped coefficients 𝝃̄2,𝑚,
𝑚 = 1,… , 12 over the 1000 repetitions; the coefficients of the effect estimated on the large sample are displayed as blue
dots. Coefficients 𝝃𝑗,1,… , 𝝃𝑗,11 correspond to regions on the curves from the top anti-clockwise to the right. Right:
Rejection probabilities for the tests of the individual spline coefficients.

B.2 Additional application results

full no Age no Group no Sex only Group only Sex only Age
0.021 0.014 0.010 0.019 0.007 -0.001 0.011

Table 3: Adjusted coefficients of determination 𝑅̃2
adj for all possible sub-models.
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Figure 10: Distribution of the bootstrapped coefficients 𝝃𝑏𝑗,𝑚 ∈ ℝ2, 𝑚 = 1,… , 21, 𝑗 ∈ {Age, Group, Sex}, 𝑏 =
1,… , 1000 of the left hippocampus.
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Figure 11: Distribution of the bootstrapped coefficients 𝝃𝑏𝑗,𝑚 ∈ ℝ2, 𝑚 = 1,… , 21, 𝑗 ∈ {Age, Group, Sex}, 𝑏 =
1,… , 1000 of the right hippocampus.
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5. Paper IV: Functional Additive Models on
Manifolds of Planar Shapes and Forms

In addition to Paper III, Paper IV focuses on regression for functional planar shapes
as response objects, i.e., on equivalence classes of functions taking values in R2 with
respect to translation, rotation, and rescaling, but not reparameterization. This implies
that the response space has a Riemannian manifold structure (see Subsection 1.3.1),
which means that the conditional mean shape can be modeled by a geodesic response
function, with residuals and distances determined by the shape geometry, as discussed
in Subsection 1.2.3. To demonstrate the effectiveness of these methods, illustrations
are provided from a morphological study of sheep bone shapes and from the analysis of
cell shapes generated in biophysical simulations.

Contributing article:
Stöcker, A., Steyer, L. and Greven, S. (2023). Functional Additive Models on Mani-
folds of Planar Shapes and Forms. Journal of Computational and Graphical Statistics,
to appear, 1-24. DOI: 10.1080/10618600.2023.2175687
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ABSTRACT
The “shape” of a planar curve and/or landmark configuration is considered its equivalence class under
translation, rotation, and scaling, its “form” its equivalence class under translation and rotation while scale
is preserved. We extend generalized additive regression to models for such shapes/forms as responses
respecting the resulting quotient geometry by employing the squared geodesic distance as loss function
and a geodesic response function to map the additive predictor to the shape/form space. For fitting the
model, we propose a Riemannian L2-Boosting algorithm well suited for a potentially large number of
possibly parameter-intensive model terms, which also yields automated model selection. We provide novel
intuitively interpretable visualizations for (even nonlinear) covariate effects in the shape/form space via
suitable tensor-product factorization. The usefulness of the proposed framework is illustrated in an analysis
of (a) astragalus shapes of wild and domesticated sheep and (b) cell forms generated in a biophysical model,
as well as (c) in a realistic simulation study with response shapes and forms motivated from a dataset on
bottle outlines. Supplementary materials for this article are available online.
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1. Introduction

In many imaging data problems, the coordinate system of
recorded objects is arbitrary or explicitly not of interest. Sta-
tistical shape analysis (Dryden and Mardia 2016) addresses this
point by identifying the ultimate object of analysis as the shape
of an observation, reflecting its geometric properties invariant
under translation, rotation and rescaling, or as its form (or size-
and-shape) invariant under translation and rotation. This article
establishes a flexible additive regression framework for modeling
the shape or form of planar (potentially irregularly sampled)
curves and/or landmark configurations in dependence on scalar
covariates. A rich shape analysis literature has been developed
for 2D or 3D landmark configurations—presenting for instance
selected points of a bone or face—which are considered elements
of Kendall’s shape space (see, e.g., Dryden and Mardia 2016).
In many 2D scenarios, however, observed points describe a
curve reflecting the outline of an object rather than dedicated
landmarks (Adams, Rohlf, and Slice 2013). Considering outlines
as images of (parameterized) curves shows a direct link to
functional data analysis (FDA, Ramsay and Silverman 2005)
and, in this context, we speak of functional shape/form data
analysis. As in FDA, functional shape/form data can be observed
on a common and often dense grid (regular/dense design) or on
curve-specific often sparse grids (irregular/sparse design). While
in the regular case, analysis often simplifies by treating curve
evaluations as multivariate data, more general irregular designs
gave rise to further developments in sparse FDA (e.g., Yao,
Müller, and Wang 2005; Greven and Scheipl 2017), explicitly
considering irregular measurements instead of pre-smoothing
curves. To the best of our knowledge, we are the first to consider

CONTACT Almond Stöcker almond.stoecker@hu-berlin.de School of Business and Economics, Humboldt-Universität zu Berlin, Berlin, Germany.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JCGS.

irregular/sparse designs in the context of functional shape/form
analysis.

Shapes and forms are examples of manifold data. Petersen
and Müller (2019) propose “Fréchet regression” for random
elements in general metric spaces, which requires estimation
of a (potentially negatively) weighted Fréchet mean for each
covariate combination. Their implicit rather than explicit model
formulation renders model interpretation difficult. More explicit
model formulations have been developed for the special case of a
Riemannian geometry. Besides tangent space models (Kent et al.
2001), extrinsic models (Lin et al. 2017) and models based on
unwrapping (Jupp and Kent 1987; Mallasto and Feragen 2018),
a variety of manifold regression models have been designed
based on the intrinsic Riemannian geometry. Starting from
geodesic regression (Fletcher 2013), which extends linear regres-
sion to curved spaces, these include MANOVA (Huckemann,
Hotz, and Munk 2010), polynomial regression (Hinkle, Fletcher,
and Joshi 2014), smoothing splines (Kume, Dryden, and Le
2007), regression along geodesic paths with nonconstant speed
(Hong et al. 2014), or kernel regression (Davis et al. 2010) and
Kriging (Pigoli, Menafoglio, and Secchi 2016). However, mostly
only one metric covariate or categorical covariates are consid-
ered, possibly in hierarchical model extensions for longitudinal
data (Muralidharan and Fletcher 2012; Schiratti et al. 2017).
By contrast, Zhu et al. (2009), Shi et al. (2009), and Kim et al.
(2014) generalize geodesic regression to regression with mul-
tiple covariates focusing on Symmetric Positive-Definite (SPD)
matrix responses. Cornea et al. (2017) develop a general Gener-
alized Linear Model (GLM) analogue regression framework for
responses in a symmetric manifold and apply it to shape analysis.

© 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by
the author(s) or with their consent.
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Recently, Lin, Müller, and Park (2020) proposed a Lie group
additive regression model for Riemannian manifolds focusing
on SPD matrices rather than shapes.

In FDA, there is a much wider range of developed regression
methods (see overviews in Morris 2015; Greven and Scheipl
2017). Among the most flexible models are Functional Additive
Models (FAMs) for (univariate) functional responses (in
contrast to FAMs with functional covariates (Ferraty et al.
2011)) with either semi- or nonparametric approaches to model
(a) response functions and (b) smooth covariate effects. For
(a), nonparametric approaches formulate estimation problems
in infinite-dimensional model spaces to motivate finite-
dimensional representations or effectively evaluate curves on
grids (e.g., Jeon and Park 2020). Semi-parametric approaches
directly employ finite expansions in spline bases (Brockhaus,
Scheipl, and Greven 2015), Functional Principal Component
(FPC) bases (Morris and Carroll 2006) or both (Scheipl, Staicu,
and Greven 2015), as well as wavelets (Meyer et al. 2015),
sometimes directly expanding functions to model on coefficients
and sometimes expanding only predictions while keeping the
raw measurements. Nonparametric approaches are formulated
in infinite-dimensional model spaces and effectively evaluate
curves on grids or apply pre-smoothing techniques (e.g.,
Jeon and Park 2020). For (b), again semiparametric penalized
spline basis approaches are employed (Scheipl, Staicu, and
Greven 2015; Brockhaus, Scheipl, and Greven 2015), or local
linear/polynomial (Müller and Yao 2008; Jeon et al. 2022) or
other nonparametric kernel-based approaches (Jeon and Park
2020; Jeon, Park, and Van Keilegom 2021). Semi- and nonpara-
metric approaches come with different theoretical and practical
advantages, but similarities such as regarding asymptotic
behavior are also known from scalar nonparametric regression
(Li and Ruppert 2008). Advantages of the semi-parametric
approach summarized in Greven and Scheipl (2017) include
its appropriateness for sparse irregular functional data and its
modular extensibility to functional mixed models (Scheipl,
Staicu, and Greven 2015; Meyer et al. 2015) and nonstandard
response distributions (Brockhaus, Scheipl, and Greven 2015;
Stöcker et al. 2021). For bivariate or multivariate functional
responses, which are closest to functional shapes/forms but
without invariances, Rosen and Thompson (2009), Zhu, Li,
and Kong (2012), Olsen, Markussen, and Raket (2018) consider
linear fixed effects of scalar covariates, the latter also allowing for
warping. Zhu et al. (2017), Backenroth et al. (2018) consider one
or more random effects for one grouping variable, linear fixed
effects and common dense grids for all functions. Volkmann
et al. (2021) combine the FAM model class of Greven and Scheipl
(2017) with multivariate FPC analysis (Happ and Greven 2018)
to model multivariate (sparse) functional responses.

This article establishes an interpretable FAM framework for
modeling the shape or form of planar (potentially irregularly
sampled) curves and/or landmark configurations in dependence
on scalar covariates, extending L2-Boosting (Bühlmann and Yu
2003; Brockhaus, Scheipl, and Greven 2015) to Riemannian
manifolds for model estimation. The three major contributions
of our regression framework are: (i) We introduce additive
regression with shapes/forms of planar curves and/or landmarks
as response, extending FAMs to nonlinear response spaces or,
vice versa, extending GLM-type regression on manifolds for

landmark shapes both to functional shape manifolds and to
include (nonlinear) additive model effects. (ii) We propose
a novel Riemannian L2-Boosting algorithm for estimating
regression models for this type of manifold response, and (iii) a
visualization technique based on tensor-product factorization
yielding intuitive interpretations even of multi-dimensional
smooth covariate effects for practitioners. Although related
tensor-product model transformations based on higher-order
SVD have been used, e.g., in control engineering (Baranyi,
Yam, and Várlaki 2013), we are not aware of any comparable
application for visualization in FAMs or other statistical models
for object data. Despite our focus on shapes and forms, transfer
of the model, Riemannian L2-Boosting, and factorized visual-
ization to other Riemannian manifold responses is intended in
the generality of the formulation and the design of the provided
R package manifoldboost (developer version on github.
com/Almond-S/manifoldboost). The versatile applicability of the
approach is illustrated in three different scenarios: an analysis
of the shape of sheep astragali (ankle bones) represented by
both regularly sampled curves and landmarks in dependence
on categorical “demographic” variables; an analysis of the effects
of different metric biophysical model parameters (including
smooth interactions) on the form of (irregularly sampled) cell
outlines generated from a cellular Potts model; and a simulation
study with irregularly sampled functional shape and form
responses generated from a dataset of different bottle outlines
and including metric and categorical covariates.

In Section 2, we introduce the manifold geometry of irregular
curves modulo translation, rotation and potentially rescaling,
which underlies the intrinsic additive regression model formu-
lated in Section 3. The Riemannian L2-Boosting algorithm is
introduced in Section 4. Section 5 analyzes different data prob-
lems, modeling sheep bone shape responses (Section 5.1) and
cell outlines (Section 5.2). Section 5.3 summarizes the results
of simulation studies with functional shape and form responses.
We conclude with a discussion in Section 6.

2. Geometry of Functional Shapes and Forms

Riemannian manifolds of planar shapes (and forms) are dis-
cussed in various textbooks at different levels of generality,
in finite (Kendall et al. 1999; Dryden and Mardia 2016) or
potentially infinite dimensions (Srivastava and Klassen 2016;
Klingenberg 1995). Starting from the Hilbert space Y of curve
representatives y of a single shape or form observation, we suc-
cessively characterize its quotient space geometry under trans-
lation, rotation and rescaling including the respective tangent
spaces. Building on that, we introduce Riemannian exponential
and logarithmic maps and parallel transports needed for model
formulation and fitting, and the sample space of (irregularly
observed) functional shapes/forms.

To make use of complex arithmetic, we identify the two-
dimensional plane with the complex numbers, R2 ∼= C, and
consider a planar curve to be a function y : R ⊃ T → C,
element of a separable complex Hilbert space Y with a complex
inner product 〈·, ·〉 and corresponding norm ‖ · ‖. This allows
simple scalar expressions for the group actions of translation

Trl = {y
Trlγ�−→ y + γ 1 : γ ∈ C} with 1 ∈ Y canonically
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Figure 1. Left: Quotient space geometry: assuming p and y centered, translation invariance is not further considered in the plot; given pole representative p, we express
y = Re(〈p,y〉)

‖p‖2 p+ Im(〈p,y〉)
‖p‖2 ip+(y− 〈p,y〉

‖p‖2 p) ∈ Y in its coordinates in p and ip direction, subsuming all orthogonal directions in the third dimension. In this coordinate system,

the rotation orbit [y]Rot corresponds to the dotted horizontal circle, and is identified with the aligned ỹ := ỹRot in the half-plane of p; [y]Rot × Scl is identified with the unit

vector ỹRot × Scl = ỹ
‖̃y‖ projecting ỹ onto the hemisphere depicted by the vertical semicircle. Form and shape distances between [p] and [y] correspond to the length of

the geodesics c(τ ) (thick lines) on the plane and sphere, respectively. Right: Geodesic line c(τ ) between p = c(0) and p′ = c(1), Log-map projecting y to ε ∈ TpM, parallel
transport Transppp′ forwarding ε to ε′ ∈ Tp′M, and Exp-map projecting ε′ onto M visualized for a sphere. Tangent spaces, identified with subspaces of the ambient
space, are depicted as gray planes above the respective poles. The parallel transport preserves all angles between tangent vectors and identifies ċ(0) ∼= ċ(1).

given by 1 : t �→ 1
‖t �→1‖ the real constant function of unit

norm; rescaling Scl = {y Sclλ�−→ λ · (y − 0y) + 0y : λ ∈ R+}
around the centroid 0y = 〈1 , y〉1 (which we consider more
natural than using 0, the zero element of Y , mostly chosen in
the literature); and rotation Rot = {y Rotu�−→ u · (y − 0y) + 0y :
u ∈ S1} around 0y with S1 = {u ∈ C : |u| = 1} =
{exp(ω

√
-1) : ω ∈ R} reflecting counterclockwise rotations

by ω radian measure. Concatenation yields combined group
actions G as direct products, such as the rigid motions G =
Trl × Rot = {Trlγ ◦ Rotu : γ ∈ C, u ∈ S1} ∼= C × S1 (see
Section S.1.1, supplementary materials for more details). The
two real-valued component functions of y are identified with
the real part Re

(
y
)

: T → R and imaginary part Im
(
y
)

:
T → R of y = Re

(
y
) + Im

(
y
) √

-1. While the complex setup is
used for convenience, the real part of 〈·, ·〉 constitutes an inner
product Re

(〈y1, y2〉
) = 〈Re

(
y1

)
, Re

(
y2

)〉 + 〈Im(
y1

)
, Im

(
y2

)〉
for y1, y2 ∈ Y on the underlying real vector space of planar
curves. Typically Re

(
y
)

, Im
(
y
)

are assumed square-intregrable
with respect to a measure ν and we consider the canonical inner
product 〈y1, y2〉 = ∫

y†
1y2dν where y† denotes the conjugate

transpose of y, that is, y†(t) = Re
(
y
)
(t)−Im

(
y
)
(t)

√
-1 is simply

the complex conjugate, but for vectors y ∈ Ck, the vector y†

is also transposed. For curves, we typically assume ν to be the
Lebesgue measure on T = [0, 1]; for landmarks, a standard
choice is the counting measure on T = {1, . . . , k}.

The ultimate response object is given by the orbit [y]G =
{g(y) : g ∈ G} (or short [y]) of y ∈ Y , the equivalence
class under the respective combined group actions G: with G =
Trl × Rot × Scl, [y] =[y]Trl × Rot × Scl = {λu y + γ 1 : λ ∈
R+, u ∈ S1, γ ∈ C} is referred to as the shape of y and, for
G = Trl × Rot, [y] =[y]Trl × Rot = {uy + γ 1 : u ∈ S1, γ ∈ C}
as its form or size-and-shape. Y/G = {[y]G : y ∈ Y} denotes
the quotient space of Y with respect to G. The description

of the Riemannian geometry of Y/G involves, in particular, a
description of the tangent spaces T[y]Y/G at points [y] ∈ Y/G,
which can be considered local vector space approximations to
Y/G in a neighborhood of [y]. For a point q in a manifold M the
tangent vectors β ∈ TqM can, i.a., be thought of as gradients
ċ(0) of paths c : R ⊃ (−δ, δ) → M at 0 where they pass through
c(0) = q. Besides their geometric meaning, they will also play
an important role in the regression model, as additive model
effects are formulated on tangent space level. Choosing suitable
representatives ỹG ∈ [y]G ⊂ Y (or short ỹ) of orbits [y]G, we use
an identification of tangent spaces with suitable linear subspaces
T[y]GY/G ⊂ Y .

Form geometry: Starting with translation as the simplest
invariance, an orbit [y]Trl can be one-to-one identified with
its centered representative ỹTrl = y − 〈y,1〉1 yielding an
identification Y/ Trl ∼= {y ∈ Y : 〈y,1 〉 = 0} with a linear
subspace of Y . Hence, also T[y]Y/ Trl = {y ∈ Y : 〈y,1 〉 = 0}.
For rotation, by contrast, we can only find local identifications
with Hilbert subspaces (i.e., charts) around reference points
[p]Trl × Rot we refer to as “poles”. Moreover, we restrict to
y, p ∈ Y∗ = Y \ [0 ]Trl eliminating constant functions as
degenerate special cases in the translation orbit of zero. For each
[y]Trl × Rot in an open neighborhood around [p]Trl × Rot which
can be chosen with 〈̃yTrl, p̃Trl〉 �= 0, y can be uniquely rotation
aligned to p, yielding a one-to-one identification of the form
[y]Trl × Rot with the aligned representative given by ỹTrl × Rot =
〈̃yTrl ,̃pTrl〉
|〈̃yTrl ,̃pTrl〉| ỹ

Trl = argmin
y′∈[y]Trl × Rot

‖y′ − p‖ (compare Figure 1).

While ỹTrl × Rot depends on p, we omit this in the notation for
simplicity. All ỹTrl rotation aligned to p̃Trl lie on the hyper-plane
determined by Im

(〈̃yTrl, p̃Trl〉) = 0 (Figure 1), which yields
T[p]Y∗

/ Trl + Rot = {y ∈ Y : 〈y,1〉 = 0, Im
(〈y, p〉) = 0} with

normal vectors ζ (1) = 1, ζ (2) = √
-11, ζ (3) = √

-1 p. Note that,
despite the use of complex arithmetic, T[p]Y∗

/ Trl × Rot is a real
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vector space not closed under complex scalar multiplication.
The geodesic distance of [y]Trl × Rot to the pole [p]Trl × Rot is
given by d([y]Trl × Rot, [p]Trl × Rot) = ‖̃yTrl × Rot − p̃Trl‖ =

argmin
y′∈[y]Trl × Rot,p′∈[p]Trl × Rot

‖y′ − p′‖. It reflects the length of the

shortest path (i.e., the geodesic) between the forms and the
minimum distance between the orbits as sets.

Shape geometry: To account for scale invariance in shapes
[y]Trl × Rot × Scl, they are identified with normalized representa-
tives ỹTrl × Rot × Scl = ỹTrl × Rot

‖̃yTrl × Rot‖ . Motivated by the normalization,
we borrow the well-known geometry of the sphere S = {y ∈
Y : ‖y‖ = 1}, where TpS = {y ∈ Y : Re

(〈y, p〉) = 0}
is the tangent space at a point p ∈ S and geodesics are great
circles. Together with translation and rotation invariance, the
shape tangent space is then given by T[p]Y∗

/ Trl × Rot × Scl =
T[p]Y∗

/ Trl × Rot ∩ TpS = {y ∈ Y : 〈y,1〉 = 0, 〈y, p〉 = 0} with
normal vector ζ (4) = p in addition to ζ (1), ζ (2), ζ (3) above.
The geodesic distance d([p]Trl × Rot × Scl, [y]Trl × Rot × Scl) =
arccos |〈̃yTrl × Rot × Scl, p̃Trl × Rot × Scl〉| corresponds to the arc-
length between the representatives. This distance is often
referred to as Procrustres distance in statistical shape analysis.

We may now define the maps needed for the regression model
formulation. Let ỹ and p̃ be shape/form representatives of [y]
and [p] rotation aligned to the shape/form pole representative
p. Generalizing straight lines to a Riemannian manifold M,
geodesics c : (−δ, δ) → M can be characterized by their “inter-
cept” c(0) ∈ M and “slope” ċ(0) ∈ Tc(0)M. The exponential
map Expq : TqM → M at a point q ∈ M is defined to
map β �→ c(1) for c the geodesic with q = c(0) and β =
ċ(0). It maps β ∈ TqM to a point Expq(β) ∈ M located
d(q, Expq(β)) = ‖β‖ apart of the pole q in the direction of β . On
the form space Y/ Trl × Rot, the exponential map is simply given
by Exp[p]Trl × Rot

(β) = [̃
pTrl × Rot + β

]
Trl × Rot. On the shape

space Y/ Trl × Rot × Scl, identification with exponential maps on
the sphere yields Exp[p]G(β) =

[
cos(‖β‖)̃pG + sin(‖β‖) β

‖β‖
]

G
with G = Trl × Rot × Scl. In an open neighborhood U , q ∈
U ⊂ M, Expq is invertible yielding the Logq : U → TqM
map from the manifold to the tangent space at q. For forms,
it is given by Log[p]Trl × Rot

([y]Trl × Rot) = ỹTrl × Rot − p̃Trl × Rot

and, for shapes, by Log[p]G([y]G) = d([p]G, [y]G)
ỹG−〈̃pG ,̃yG 〉̃pG

‖̃yG−〈̃pG ,̃yG 〉̃pG‖
with G = Trl × Rot × Scl. Finally, Transpq,q′ : TqM →
Tq′M parallel transports tangent vectors ε �→ ε′ isometri-
cally along a geodesic c(τ ) connecting q and q′ ∈ M such
that the slopes Transpq,q′(ċ(q)) = ċ(q′) are identified and all
angles are preserved. For shapes, Transp[y]G,[p]G(ε) = ε −
〈ε, p̃G〉 ỹG+̃pG

1+〈̃yG ,̃pG〉 , with G = Trl × Rot × Scl, takes the form
of the parallel transport on a sphere replacing the real inner
product with its complex analogue. For forms, it changes only
the Im

(〈ε, p̃〉) coordinate orthogonal to the real ỹ-̃p-plane as
in the shape case, while the remainder of ε is left unchanged
as in a linear space. This yields Transp[y]G,[p]G (ε) = ε −
Im

(〈̃pG/‖̃pG‖, ε〉) ỹG/‖̃yG‖+̃pG/‖̃pG‖
1+〈̃yG/‖̃yG‖,̃pG/‖̃pG‖〉

√
-1, with G = Trl × Rot,

for form tangent vectors. While equivalent expressions for the
parallel transport in the shape case can be found, for example,

in Dryden and Mardia (2016), Huckemann, Hotz, and Munk
(2010), a corresponding derivation for the form case is given in
Section S.1.2, supplementary materials including a discussion of
the quotient space geometry in differential geometric terms.

Based on this understanding of the response space, we may
now proceed to consider a sample of curves y1, . . . , yn ∈ Y rep-
resenting orbits [y1], . . . , [yn] with respect to group actions G. In
the functional case, with the domain T = [0, 1], these curves are
usually observed as evaluations yi = (yi(ti1), . . . , yi(tiki))

� on a
finite grid ti1 < · · · < tiki ∈ T which may differ between obser-
vations. In contrast to the regular case with common grids, this
more general data structure is referred to as irregular functional
shape/form data. To handle this setting, we replace the original
inner product 〈·, ·〉 on Y by individual 〈yi, y′

i〉i = y†
i Wiy′

i provid-
ing inner products on the ki-dimensional space Yi = Cki of eval-
uations yi, y′

i on the same grid. The symmetric positive-definite
weight matrix Wi can be chosen to implement an approximation
to integration w.r.t. the original measure ν with a numerical
integration measure νi such as given by the trapezoidal rule.
Alternatively, Wi = 1

ki
Iki with ki ×ki identity matrix Iki presents

a canonical choice that is analog to the landmark case for ki ≡ k.
Moreover, data-driven Wi could also be motivated from the
covariance structure estimated for (potentially sparse) y1, . . . , yn
along the lines of Yao, Müller, and Wang (2005), Stöcker et al.
(2022). While this is beyond the scope of this article, potential
procedures are sketched in Section S.7, supplementary materials.
With the inner products given for i = 1, . . . , n, the sample space
naturally arises as the Riemannian product Y∗

1/G × · · · × Y∗
n/G

of the orbit spaces, with the individual geometries constructed
as described above.

3. Additive Regression on Riemannian Manifolds

Consider a data scenario with n observations of a random
response covariate tuple (Y , X), where the realizations of Y are
planar curves yi : T → C, i = 1, . . . , n, belonging to a Hilbert
space Y defined as above and potentially irregularly measured
on individual grids ti1 < · · · < tiki ∈ T . The response object [Y]
is the equivalence class of Y with respect to translation, rotation
and possibly scale and the sample [y1], . . . , [yn] is equipped
with the respective Riemannian manifold geometry introduced
in the previous section. For i = 1, . . . , n, realizations xi ∈ X of
a covariate vector X in a covariate space X are observed. X can
contain several categorical and/or metric covariates.

For regressing the mean of [Y] on X = x, we model the
shape/form [μ] of μ ∈ Y as

[μ] = Exp[p] (h(x)) = Exp[p]

⎛
⎝ J∑

j=1
hj(x)

⎞
⎠ , (1)

with an additive predictor h : X → T[p]Y∗
/G acting in the

tangent space at an “intercept” [p] ∈ Y∗
/G. Generalizing an

additive model “Y = μ + ε = p + h(x) + ε” in a linear space,
we implicitly define [μ] as the conditional mean of [Y] given
X = x by assuming zero-mean “residuals” ε. In their definition,
we follow Cornea et al. (2017) but extend to the functional
shape/form and additive case. We assume local linearized resid-
uals ε[μ] = Log[μ]([Y]) in T[μ]Y∗

/G to have mean E
(
ε[μ]

) =
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0, which corresponds to E
(
ε[μ](t)

) = 0 for (ν-almost) all
t ∈ T . Here, we assume [Y] is sufficiently close to [μ] with
probability 1 such that Log[μ] is well-defined, which is the case
whenever 〈Ỹ , μ̃〉 �= 0 for centered shape/form representatives
Ỹ and μ̃, an unrestrictive and common assumption (compare
also Cornea et al. 2017). However, residuals ε[μ] for different
[μ] belong to separate tangent spaces. To obtain a formulation
in a common linear space instead, local residuals are mapped to
residuals ε = Transp[μ],[p](ε[μ]) by parallel transporting them
from [μ] to the common covariate independent pole [p]. After
this isometric mapping into T[p]Y∗

/G, we can equivalently define
the conditional mean [μ] via E (ε) = 0 for the transported
residuals ε.

Exp[p] maps the additive predictor h(x) = ∑J
j=1 hj(x) ∈

T[p]Y∗
/G to the response space. It is analogous to a response

function in GLMs but depends on [p]. Although covariate effects
hj(x) often only depend on an individual covariate in x for each
j, they might also depend on covariate combinations in general
to allow (smooth) interactions. While other response functions
could be used, we restrict to the exponential map here, such that
the model contains a geodesic model (Fletcher 2013)—the direct
generalization of simple linear regression—as a special case for
h(x) = βx1 with a single covariate x1 and tangent vector β .
Typically, it is assumed that h is centered such thatE (h(X)) = 0,
and the pole [p] is the overall mean of [Y] defined, like the
conditional mean, via residuals of mean zero.

3.1. Tensor-Product Effect Functions hj

Scheipl, Staicu, and Greven (2015) and other authors employ
Tensor-Product (TP) bases for functional additive model terms.
This naturally extends to tangent space effects, which we
model as

hj(x) =
∑

r,l
θ

(r,l)
j b(l)

j (x) ∂r

with the TP basis given by the pair-wise products of m linearly
independent tangent vectors ∂r ∈ T[p]Y∗

/G, r = 1, . . . , m, and
mj basis functions b(l)

j : X → R, l = 1, . . . , mj, for the
jth covariate effect depending on one or more covariates. The
real coefficients can be arranged as a matrix {θ(r,l)

j }r,l = �j ∈
Rm×mj . Also for infinite-dimensional T[p]Y∗

/G and a general
nonlinear dependence on x, a basis representation approach
requires truncation to finite dimensions m and mj in practice.
Choosing the bases to capture the essential variability in the
data, their size can be extended with increasing data size and
computational resources.

While, in principle, the basis {∂r}r could also vary across
effects j = 1, . . . , J, we assume a common basis for notational
simplicity, which presents the typical choice. Due to the
identification of T[p]Y∗

/G with a subspace of the function space
Y , the {∂r}r may be specified using a function basis commonly
used in additive models: Let b(l)

0 : T → R, l = 1, . . . , m0
be a basis of real functions, say a B-spline basis (other typical
bases used in the literature include wavelet (Meyer et al. 2015)
or FPC bases (Müller and Yao 2008)). Then we construct the
tangent space basis as ∂r = ∑m0

l=1

(
z(l,r)

p + z(m0+l,r)
p

√
-1

)
b(l)

0 ,

employing the same basis for the 1- and
√

-1-dimension before
transforming it with a basis transformation matrix Zp =
{z(l,r)

p }l,r ∈ R2m0×m implementing the linear tangent space
constraints Re

(〈∂l, ζ (r)〉) = 0 (or the empirical version) for all
∂l and normal vectors ζ (1), ζ (2), ζ (3) for forms and additionally
ζ (4) for shapes defining T[p]Y∗

/G as described in Section 2. Thus,
the tangent space basis dimension is m = 2m0 − 3 for forms
or m = 2m0 − 4 for shapes (or could, in principle, be larger if
the original basis already meets the constraints). For details
on the construction of Zp see Section S.1.3, supplementary
materials. For closed curves, we additionally choose Zp to
enforce periodicity, that is, ∂r(t) = ∂r(t + t0) for some t0 ∈ R

(compare Hofner, Kneib, and Hothorn 2016).
Given the tangent space basis, we may now modularly specify

the usual additive model basis functions b(l)
j : X → R,

l = 1, . . . , mj, for the jth covariate effect to obtain the full
functional additive model “tool box” offered by, for example,
Brockhaus, Scheipl, and Greven (2015). Typically, b(l)

j (x) =
b(l)

j (z) depending on an individual covariate, say on z, in x =
(. . . , z, . . . )�. But for a single covariate also multiple different
effects can be specified and a single interaction effect depends
on multiple covariates. A linear effect—linear in the tangent
space—of the form hj(x) = βz of a scalar (typically centered)
covariate z and β ∈ T[p]Y∗

/G is simply implemented by a single
function b(1)

j (x) = z. A smooth effect of the generic form
hj(x)(t) = f (z, t) can be implemented by choosing, for exam-
ple, a B-spline basis b(1)

j (z), . . . , b(mj)
j (z) (asymptotic properties

of penalized B-splines and connections to kernel estimators
are discussed, for example, by Wood, Pya, and Säfken (2016),
Li and Ruppert (2008)). For a categorical covariate κ in x,
with effect hj(x) : {1, . . . , K} → T[p]Y∗

/G, κ �→ βκ , the

basis bj(x)= (b(1)
j (κ), . . . , b(mj)

j (κ))� maps κ �→ eκ to a usual
contrast vector eκ with the basis being of dimension mj =
K − 1 just as in standard linear models. Here, we typically use
effect-encoding to obtain centered effects. Moreover, TP inter-
actions of the model terms described above, as well as group-
specific effects and smooth effects with additional constraints
(Hofner, Kneib, and Hothorn 2016) can be specified in the
model formula, relying on the mboost framework introduced
by Hothorn et al. (2010), which also allows to define custom
effect designs. For identification of an overall mean intercept [p],
sum-to-zero constraints yielding

∑n
i=1 hj(xi) = 0 for observed

covariates xi can be specified, and similar constraints can be
used to distinguish linear from nonlinear effects and interactions
from their marginal effects (Kneib, Hothorn, and Tutz 2009).
Different quadratic penalties can be specified for the coefficients
�j, allowing to regularize high-dimensional effect bases and
to balance effects of different complexity in the model fit (see,
Section 4).

3.2. Tensor-Product Factorization

The multidimensional structure of the response objects makes it
challenging to graphically illustrate and interpret additive model
terms, in particular when it comes to nonlinear (interaction)
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effects, or when effect sizes are visually small. To solve this
problem, we suggest to rewrite estimated TP effects ĥj with
estimated coefficient matrix �̂j as

ĥj(x) =
m′

j∑
r=1

ξ
(r)
j ĥ(r)

j (x)

factorized into m′
j = min(mj, m0) components consisting of

covariate effects ĥ(r)
j : X → R, r = 1, . . . , m′

j, in corresponding
orthonormal directions ξ

(r)
j ∈ T[p]Y∗

/G with 〈ξ (r)
j , ξ (l)

j 〉 =
1(r = l), that is, 1 if r = l and 0 otherwise. Assuming
E

(
b(l)

j (X)2
)

< ∞, l = 1, . . . , mj, for the underlying effect basis,

the ĥ(r)
j are specified to achieve decreasing component variances

v(1)
j ≥ · · · ≥ v

(m′
j)

j ≥ 0 given by v(r)
j = E

(
ĥ(r)

j (X)2
)

. In practice,
the expectation over the covariates X and the inner product
〈., .〉 are replaced by empirical analogs (compare Corollary 3,
supplementary materials). Due to orthonormality of the ξ

(r)
j ,

the component variances add up to the total predictor variance∑m′
j

r=1 v(r)
j = vj = E

(
〈ĥj(X), ĥj(X)〉

)
. Moreover, the TP factor-

ization is optimally concentrated in the first components in the
sense that for any l ≤ m′

j there is no sequence of ξ
(r)∗ ∈ Y and

ĥ(r)∗ : X → R, such that E
(
‖ĥj(X) − ∑l

r=1 ξ
(r)∗ ĥ(r)∗ (X)‖2

)
<

E
(
‖hj(X) − ∑l

r=1 ξ
(r)
j ĥ(r)

j (X)‖2
)

, that is, the series of the first

l components yields the best rank l approximation of ĥj. The
factorization relies on SVD of (a transformed version of) the
coefficient matrix �̂j and the fact that it is well-defined is a
variant of the Eckart-Young-Mirsky theorem (proof in Section
S.2, supplementary materials).

Particularly when large shares of the predictor variance are
explained by the first component(s), the decomposition facili-
tates graphical illustration and interpretation: choosing a suit-
able constant τ �= 0, an effect direction ξ

(r)
j can be visualized

by plotting the pole representative p together with Expp(τ ξ
(r)
j )

on the level of curves, while accordingly rescaled 1
τ

ĥ(r)
j (x) is

displayed separately in a standard scalar effect plot. Adjusting τ

offers an important degree of freedom for visualizing ξ
(r)
j on an

intuitively accessible scale while faithfully depicting ξ
(r)
j ĥ(r)

j (x).
When based on the same τ , different covariate effects can be
compared across the plots sharing the same scale. We suggest
τ = maxj

√vj, the maximum total predictor standard deviation
of an effect, as a good first choice.

Besides factorizing effects separately, it can also be helpful to
apply TP factorization to the joint additive predictor, yielding

h(x) =
m′∑

r=1
ξ (r)ĥ(r)(x) =

m′∑
r=1

ξ (r)
(

ĥ(r)
1 (x) + · · · + ĥ(r)

J (x)
)

,

with m′ = min(
∑

j mj, m) and again ξ (r) ∈ T[p]Y∗
/G orthonor-

mal and the corresponding variance concentration in the first
components, but now determined w.r.t. entire additive predic-
tors ĥ(r) = ∑J

j=1 ĥ(r)
j spanned by all covariate basis functions in

the predictor. In this representation, the first component yields
a geodesic additive model approximation where the predictor
moves along a geodesic line c(τ ) = Exp[p]

(
ξ (1)τ

)
with the

signed distance τ ∈ R from [p], modeled by a scalar additive
predictor ĥ(1)(x) composed of covariate effects analogous to the
original model predictor. In Section 5, we illustrate its potential
in three different scenarios.

4. Component-Wise Riemannian L2-Boosting

Component-wise gradient boosting (e.g., Hothorn et al. 2010) is
a step-wise model fitting procedure accumulating predictors
from smaller models, so called base-learners, to built an
ensemble predictor aiming at minimizing a mean loss function.
To this end, the base-learners are fit (via least squares) to
the negative gradient of the loss function in each step and
the best fitting base-learner is added to the current ensemble
predictor. Due to its versatile applicability, inherent model
selection, and slow over-fitting behavior, boosting has proven
useful in various contexts (Mayr et al. 2014). Boosting with
respect to the least squares loss function �(y, μ) = 1

2 (y − μ)2,
y, μ ∈ R, is typically referred to as L2-Boosting and simplifies
to repeated refitting of residuals ε = y − μ = −∇μ�(y, μ)

corresponding to the negative gradient of the loss function. For
L2-Boosting with a single learner, Bühlmann and Yu (2003)
show how fast bias decay and slow variance increase over the
boosting iterations suggest stopping the algorithm early before
approaching the ordinary (penalized) least squares estimator.
Lutz and Bühlmann (2006) prove consistency of component-
wise L2-Boosting in a high-dimensional multivariate response
linear regression setting and Stöcker et al. (2021) illustrate
in extensive simulation studies how stopping the boosting
algorithm early based on curve-wise cross-validation applies
desired regularization when fitting (even highly autocorrelated)
functional responses with parameter-intense additive model
base-learners and, thus, leads to good estimates even in
challenging scenarios.
When generalizing to least squares on Riemannian manifolds
with the loss 1

2 d2([y], [μ]) given by the squared geodesic dis-
tance, the negative gradient −∇[μ] 1

2 d2([y], [μ]) = Log[μ]([y]) =
ε[μ] (compare e.g., Pennec 2006) corresponds to the local
residuals ε[μ] defined in Section 3. This analogy to L2-Boosting
motivates the presented generalization where local residuals are
further transported to residuals ε in a common linear space.

Consider the pole [p] known and fixed for now. Assuming its
existence, we aim to minimize the population mean loss

σ 2(h) = E
(

d2
(
[Y], Exp[p] (h(X))

))

with the point-wise minimizer h�(x) = argmin
h:X→T[p]Y∗

/G

E
(
d2([Y],

Exp[p]
(
h(X)

)) | X = x
)

minimizing the conditional expected
squared distance. Fixing a covariate constellation x ∈ X , the
prediction [μ] = Exp[p] (h�(x)) corresponds to the Fréchet
mean (Karcher 1977) of [Y] conditional on X = x. In a finite-
dimensional context, Pennec (2006) show that E

(
ε[μ]

) = 0 for
a Fréchet mean [μ] if residuals ε[μ] are uniquely defined with
probability one. This indicates the connection to our residual
based model formulation in Section 3. We fit the model by
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reducing the empirical mean loss σ̂ 2(h) = 1
n

∑n
i=1 d2

i
([yi],

Exp[p](h(xi))
)
, where we replace the population mean by the

sample mean and compute the geodesic distances di with respect
to the inner products 〈·, ·〉i defined for the respective evaluations
of yi.

A base-learner corresponds to a covariate effect hj(x) =∑
r,l θ

(r,l)
j b(l)

j (x) ∂r , �j = {θ(r,l)
j }r,l, which is repeatedly fit to

the transported residuals ε1, . . . , εn by penalized least-squares
(PLS) minimizing

∑n
i=1 ‖εi − hj(xi)‖2

i + λj tr
(
�jPj�

�
j

)
+

λ tr
(
��P�

)
. Via the penalty parameters λj, λ ≥ 0 the

effective degrees of freedom of the base-learners are controlled
(Hofner et al. 2011) to achieve a balanced “fair” base-learner
selection despite the typically large and varying number of
coefficients involved in the TP effects. The symmetric penalty
matrices Pj ∈ Rmj×mj and P ∈ Rm×m (imposing, e.g.,
a second-order difference penalty for B-splines in either
direction) can equivalently be arranged as a mjm ×mjm penalty
matrix Rj = λj(Pj ⊗ Im) + λ(Imj ⊗ P) for the vectorized
coefficients vec (�j) = (θ

(1,1)
j , . . . , θ(m,1)

j , . . . , θ(m,mj))�, where
⊗ denotes the Kronecker product. The standard PLS estimator
is then given by vec (�̂j) = (

� j + Rj
)−1

ψ j with � j =∑n
i=1

{
Re

(
〈b(l)

j (xi)∂r , b(l′)
j (xi)∂r′ 〉i

) }
(r,l)=(1,1),...,(m,1),...,(m,mj)
(r′,l′)=(1,1),...,(m,1),...,(m,mj)

∈

Rm mj×m mj and ψ j = ∑n
i=1

{
Re

(〈b(l)
j (xi)

∂r , εi〉i
)}

(r,l)=(1,1),...,(m,1),...,(m,mj)
∈ Rm mj . In a regular design,

using the functional linear array model (Brockhaus, Scheipl,
and Greven 2015) can save memory and computation time by
avoiding construction of the complete matrices. The basis con-
struction of {∂r}r via a transformation matrix Zp (Section 3.1) is
reflected in the penalty by setting P = Z�

p (I2 ⊗ P0)Zp with P0

the penalty matrix for the un-transformed basis {b(r)
0 }r .

In each iteration of the proposed Algorithm 1, the best-
performing base-learner is added to the current ensemble addi-
tive predictor h(x) after multiplying it with a step-length param-
eter η ∈ (0, 1]. Due to the additive model structure this cor-
responds to a coefficient update of the selected covariate effect.
Accordingly, after repeated selection, the effective degrees of
freedom of a covariate effect, in general, exceed the degrees
specified for the base-learner. They are successively adjusted to
the data. To avoid over-fitting, the algorithm is typically stopped
early before reaching a minimum of the empirical mean loss.
The stopping iteration is determined, for example, by resampling
strategies such as bootstrapping or cross-validation on the level
of shapes/forms.

The pole [p] is, in fact, usually not a priori available. Instead
we typically assume [p] = argmin

q∈Y∗
E

(
d2([Y], [q])) is the overall

Fréchet mean, also often referred to as Riemannian center of
mass for Riemannian manifolds or as Procrustes mean in shape
analysis (Dryden and Mardia 2016). Here, we estimate it as
[p] = Exp[p0](h0) in a preceding Riemannian L2-Boosting
routine. The constant effect h0 ∈ T[p0]Y∗

/G in the intercept-only
special case of our model is estimated with Algorithm 1 based
on a preliminary pole [p0] ∈ Y∗

/G. For shapes and forms, a
good candidate for p0 can be obtained as the standard functional

Algorithm 1: Component-wise Riemannian L2-
Boosting

# Initialization:
Geometry : specify geometry (shape/form)

and pole representative p
Hyper-parameters: Step-length η ∈ (0, 1], number of

boosting iterations
Base-learners : hj(x) with penalty matrix Rj and

initial coefficient matrix �j = 0
for j = 1 to J do # Prepare penalized
least-squares (PLS)
# set up m mj×m mj matrix:� j ← ∑n

i=1{
Re

(
〈b(l)

j (xi)∂r , b(l′)
j (xi)∂r′ 〉i

)}
(r,l)=(1,1),...,(m,1),...,(m,mj)
(r′,l′)=(1,1),...,(m,1),...,(m,mj)

end
repeat # boosting steps

for i = 1, . . . , n do # Compute current
transported residuals

[μi] ← Exp[p](h(xi))

ε[μi] ← Log[μi]([yi])
εi ← Transp[μi],[p](ε[μi])

end
for j = 1, . . . , J do # PLS fit to
residuals
# m mj vector: ψ j ←∑n

i=1

{
Re

(
〈b(l)

j (xi)∂r , εi〉i
)}

(r,l)=(1,1),...,(m,1),...,(m,mj)

�̂j = {θ̂ (r,l)
j }r,l ← Solve((

� j + Rj
)

vec(�) = ψ j)

end
ĵ ← argmin

j∈{1,...,J}
∑n

i=1 ‖εi − ∑
r,l θ̂

(r,l)
j b(l)

j (x)∂r‖2
i ;

# Select base-learner

�ĵ ← �ĵ + η �̂ĵ ; # Update selected
model coefficients

until Stopping criterion (e.g., minimal cross-validation
error)

mean of a reasonably well aligned sample y1, . . . , yn ∈ Y of
representatives.

The proposed Riemannian L2-Boosting algorithm is avail-
able in the R (R Core Team 2018) package manifoldboost
(github.com/Almond-S/manifoldboost). The implementation is
based on the package FDboost (Brockhaus, Rügamer, and
Greven 2020), which is in turn based on the model-based boost-
ing package mboost (Hothorn et al. 2010).

5. Applications and Simulation

5.1. Shape Differences in Astragali of Wild and
Domesticated Sheep

In a geometric morphometric study, Pöllath, Schafberg, and
Peters (2019) investigate shapes of sheep astragali (ankle bones)
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Figure 2. Left: Shares of different factorized covariate effects in the total predictor variance. Right: Factorized effect plots showing the two components of the status effect
(rows): in the right column, the two first directions ξ

(1)
1 , ξ (2)

1 ∈ T[p]Y∗
/ Trl + Rot + Scl are visualized via line-segments originating at the overall mean shape (empty circles) and

ending in the shape resulting from moving 1 unit into the target direction (solid circles; large: landmarks; small: semi-landmarks along the outline); in the left column, the
status effect in the respective direction is depicted. As illustrated in the middle plot, an effect of 1 would correspond to the full extend of the direction shown to the right.

to understand the influence of different living conditions on the
micromorphology of the skeleton. Based on a total of n = 163
shapes recorded by Pöllath, Schafberg, and Peters (2019), we
model the astragalus shape in dependence on different vari-
ables, including domestication status (wild/feral/domesticated),
sex (female/male/NA), age (juvenile/subadult/adult/NA), and
mobility (confined/pastured/free) of the animals as categorical
covariates. The sample comprises sheep of four different popu-
lations: Asiatic wild sheep (Field Museum, Chicago; Lay 1967;
Zeder 2006), feral Soay sheep (British Natural History Museum,
London; Clutton-Brock et al. 1990), and domestic sheep of
the Karakul and Marsch breed (Museum of Livestock Sciences,
Halle (Saale); Schafberg and Wussow 2010). Table S1 in Section
S.3, supplementary materials shows the distribution of available
covariates within the populations. Each sheep astragalus shape,
i = 1, . . . , n, is represented by a configuration composed of 11
selected landmarks in a vector ylm

i ∈ C11 and two vectors of
sliding semi-landmarks yc1

i ∈ C14 and yc2
i ∈ C18 evaluated

along two outline curve segments, marked on a 2D image of the
bone (dorsal view). Several example configurations are displayed
in Figure S1, supplementary materials. In general, we could sep-
arately specify smooth function bases for the outline segments
yc1

i and yc2
i , respectively. Due to their systematic recording,

we assume, however, that not only landmarks but also semi-
landmarks are regularly observed on a fixed grid, and refrain
from using smooth function bases for simplicity. Accordingly,
shape configurations can directly be identified with their eval-
uation vectors yi = (

ylm�
i , yc1�

i , yc2�
i

)� ∈ C43 = Y , and
the geometry of the response space Y∗

/ Trl × Rot × Scl widely cor-
responds to the classic Kendall’s shape space geometry, with the
difference that, considering landmarks more descriptive than
single semi-landmarks, we choose a weighted inner product

〈yi, y′
i〉 = y†

i Wy′
i with diagonal weight matrix W with diagonal(

1�
11, 3

14 1�
14, 3

18 1�
18

)� assigning the weight of three landmarks to
each outline segment. We model the astragalus shapes [yi] ∈
Y∗

/ Trl × Rot × Scl as

[μi] = Exp[p]
(
βstatusi + βpopi

+ βagei
+ βsexi + βmobilityi

)

with the pole [p] ∈ Y∗
/G specified as overall mean and the

conditional mean [μi] ∈ Y∗
/ Trl × Rot × Scl depending on the effect

coded covariate effects xij �→ βxij ∈ T[p]Y∗
/ Trl × Rot × Scl. For

identifiability, the population and mobility effects are centered
around the status effect, as we only have data on different popu-
lations/mobility levels for domesticated sheep. All base-learners
are regularized to one degree of freedom by employing ridge
penalties for the coefficients of the covariate bases {b(l)

j }l while
the coefficients of the response basis (the standard basis for
C43) are left un-penalized. With a step-length of η = 0.1, 10-
fold shape-wise cross-validation suggests early stopping after 89
boosting iterations. Due to the regular design, we can make use
of the functional linear array model (Brockhaus, Scheipl, and
Greven 2015) for saving computation time and memory, which
lead to 8 sec of initial model fit followed by 47 sec of cross-
validation. To interpret the categorical covariate effects, we rely
on TP factorization (Figure 2). The first component of the status
effect explains about 2/3 of the variance of the status effect and
over 50% of the cumulative effect variance in the model. In that
main direction, the effect of feral is not located between wild and
domestic, as might be naively expected. By contrast, the second
component of the effect seems to reflect the expected order
and still explains a considerable amount of variance. Similar to
Pöllath, Schafberg, and Peters (2019), we find little influence of
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age, sex, and mobility on the astragalus shape. Yet, all covariates
were selected by the boosting algorithm.

Visually, differences in estimated mean shapes are rather
small, which is, in our experience, quite usual for shape data.
With differences in size, rotation and translation excluded
by definition, only comparably small variance remains in
the observed shapes. Nonetheless, TP factorization provides
accessible visualization of the effect directions and allows to
partially order the effect levels in each direction.

5.2. Cellular Potts Model Parameter Effects on Cell Form

The stochastic biophysical model proposed by Thüroff et al.
(2019), a Cellular Potts Model (CPM), simulates migration
dynamics of cells (e.g., wound healing or metastasis) in two
dimensions. The progression of simulated cells is the result
of many consecutive local elementary events sampled with a
Metropolis-algorithm according to a Hamiltonian. Different
parameters controlling the Hamiltonian have to be calibrated
to match real live cell properties (Schaffer 2021). Considering
whole cells, parameter implications on the cell form are not
obvious. To provide additional insights, we model the cell form
in dependence on four CPM parameters considered particularly
relevant: the bulk stiffness xi1, membrane stiffness xi2, substrate
adhesion xi3, and signaling radius xi4 are subsumed in a vector
xi of metric covariates for i = 1, . . . , n. Corresponding sampled
cell outlines yi were provided by Sophia Schaffer in the context
of Schaffer (2021), who ran underlying CPM simulations and
extracted outlines. Deriving the intrinsic orientation of the cells
from their movement trajectories, we parameterize yi : [0, 1] →
C, clockwisely relative to arc-length such that yi(0) = yi(1)

points into the movement direction of the barycenter of the
cell. With an average of k = 1

n
∑n

i=1 ki ≈ 43 samples per
curve (after sub-sampling preserving 95% of their inherent
variation, as described in Volkmann et al. 2021, supplement),
the evaluation vectors yi ∈ Cki are equipped with an inner-
product implementing trapezoidal rule integration weights.
Example cell outlines are depicted in Figure S4, supplementary
materials. The results shown below are based on cell samples
obtained from 30 different CPM parameter configurations. For
each configuration, 33 out of 10.000 Monte Carlo samples were
extracted as approximately independent. This yields a dataset of
n = 990 = 30 × 33 cell outlines.

As positioning of the irregularly sampled cell outlines yi, i =
1, . . . , n, in the coordinate system is arbitrary, we model the cell
forms [yi] ∈ Y∗

/ Trl + Rot. Their estimated overall form mean [p]
serves as pole in the additive model

[μi] = Exp[p]
(
h(xi)

)
= Exp[p]

(∑
j

βjxij +
∑

j
fj(xij) +

∑
j �=j̈

fjj̈ (xij, xij̈ )
)

where the conditional form mean [μi] is modeled in dependence
on tangent-space linear effects with coefficients
βj ∈ T[p]Y/ Trl × Rot and nonlinear smooth effects fj for covariate
j = 1, . . . , 4, as well as smooth interaction effects fjj̈ for each pair
of covariates j �= j̈ . All involved (effect) functions are modeled
via a cyclic cubic P-spline basis {b(r)

0 }r with 7 (inner) knots and
a ridge penalty, and quadratic P-splines with 4 knots for the

covariates xij equipped with a second-order difference penalty
for the fj and ridge penalties for interactions. Covariate effects
are mean centered and interaction effects fjj̈ (xj, xj̈ ) are centered
around their marginal effects fj(xj), fj̈ (xj̈ ), which are in turn
centered around the linear effects βjxj and βj̈ xj̈ , respectively.
Resulting predictor terms involve 69 (linear effect) to 1173
(interaction) basis coefficients but are penalized to a common
degree of freedom of 2 to ensure a fair base-learner selection.
We fit the model with a step-size of η = 0.25 and stop after
2000 boosting iterations observing no further meaningful risk
reduction, since no need for early-stopping is indicated by 10-
fold form-wise cross-validation. Due to the increased number
of data points and coefficients, the irregular design, and the
increased number of iterations, the model fit takes considerably
longer than in Section 5.1, with about 50 initial minutes followed
by 8 hr of cross-validation. However, as usual in boosting,
model updates are large in the beginning and only marginal in
later iterations, such that fits after 1000 or 500 iterations would
already yield very similar results.

Observing that the most relevant components point into
similar directions, we jointly factorize the predictor as ĥ(xi) =∑

r ξ (r)ĥ(r)(xi) with TP factorization. The first component
explains about 93% of the total predictor variance (Figure S3,
supplementary materials), indicating that, post-hoc, a good
share of the model can be reduced to the geodesic model
[μ̂i] = Exp[p](ξ (1)ĥ(1)(xi)) illustrated in Figure 3. A positive
effect in the direction ξ (1) makes cells larger and more keratocyte
/ croissant shaped, a negative effect—pointing into the opposite
direction—makes them smaller and more mesenchymal shaped
/ elongated. The bulk stiffness xi1 turns out to present the
most important driving factor behind the cell form, explaining
over 75% of the cumulative variance of the effects (Figure S2,
supplementary materials). Around 80% of its effect are explained
by the linear term reflecting gradual shrinkage at the side of the
cells with increasing bulk stiffness.

5.3. Realistic Shape and form Simulation Studies

To evaluate the proposed approach, we conduct simulation stud-
ies for both shape and form regression for irregular curves. We
compare sample sizes n ∈ {54, 162} and average grid sizes k =
1
n

∑n
i=1 ki ∈ {40, 100} as well as an extreme case with ki = 3 for

each curve but n = 720, that is, where only random triangles
are observed (yet, with known parameterization over [0, 1]).
We additionally investigate the influence of nuisance effects
and compare different inner product weights. While important
results are summarized in the following, comprehensive visual-
izations can be found in Section S.5, supplementary materials.

Simulation design: We simulate models of the form [μ] =
Exp[p]

(
βκ + f1(z1)

)
with overall mean [p], a binary effect with

levels κ ∈ {0, 1} and a smooth effect of z1 ∈ [−60, 60]. We
choose a cyclic cubic B-spline basis with 27 knots for T[p]Y∗

/G,
placing them irregularly at 1/27-quantiles of unit-speed param-
eterization time-points of the curves. Cubic B-splines with four
regularly placed knots are used for covariates in smooth effects.
True models are based on the bot dataset from R package
Momocs (Bonhomme et al. 2014) comprising outlines of 20 beer
(κ = 0) and 20 whiskey (κ = 1) bottles of different brands.
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Figure 3. Center: the main direction ξ(1) of the model illustrated as vectors pointing from the overall mean cell form [p] (gray curve) to the form Exp[p](ξ (1)) (filled
dots), which are both oriented as cells migrating rightwards. Left: Effects of the bulk stiffness xi1 into the direction ξ(1) . A vertical line from 0, corresponding to [p], to
1, corresponding to the full extent of ξ(1) , underlines the connection between the plots and helps to visually asses the amount of change for a given value of xi1. Right: The
overall effect of xi1 and membrane stiffness xi2, comprising linear, smooth and interaction effects, as a 3D surface plot. The heat map plotted on the surface shows only the
interaction effect f (1)

12 (xi1, xi2) illustrating deviations from the marginal effects, which are of particular interest for CPM calibration.

A smooth effect is induced by the 2D viewing transformations
resulting from tilting the planar outlines in a 3D coordinate
system along their longitudinal axis by an angle of up to 60
degree toward the viewer (z1 = 60) and away (z1 = −60)
(i.e., in a way not captured by 2D rotation invariance). Estab-
lishing ground truth models based on a fit to the bottle data,
we simulate new responses [y1], . . . , [yn] via residual resam-
pling (Section S.5, supplementary materials) to preserve realistic
autocorrelation. Subsequently, we randomly translate, rotate and
scale y1, . . . , yn ∈ Y somewhat around the aligned shape/form
representatives to obtain realistic samples.

The implied residual variance 1
n

∑n
i=1 ‖εi‖2

i = 1
n

∑n
i=1 d2

i
([yi], [μi]) on simulated datasets ranges around 105% of the
predictor variance 1

n
∑n

i=1 ‖h(xi)‖2
i = 1

n
∑n

i=1 d2
i ([μi], [p])

in the form scenario and around 65% in the shape scenario.
All simulations were repeated 100 times, fitting models with
the model terms specified above and three additional nuisance
effects: a linear effect βz1 (orthogonal to f1(z1)), an effect f2 of
the same structure as f1 but depending on an independently
uniformly drawn variable z2, and a constant effect h0 ∈ T[p]Y∗

/G
to test centering around [p]. Base-learners are regularized to 4
degrees of freedom (step-length η = 0.1). Early-stopping is
based on 10-fold cross-validation.

Form scenario: In the form scenario, the smooth covariate
effect f1 offers a particularly clear interpretation. TP fac-
torization decomposes the true effect into its two relevant
components, where the first (major) component corresponds
to the bare projection of the tilted outline in 3D into the
2D image plane and the second to additional perspective
transformations (Figure 4). For this effect, we observe a median
relative mean squared error rMSE(ĥj) = ∑n

i=1 ‖ĥj(xi) −
hj(xi)‖2

i /
∑n

i=1 ‖h(xi)‖2
i of about 3.7% of the total predictor

variance for small data settings with n = 54 and k = 100 (5.9%
with k = 40), which reduces to 1.5% for n = 162 (for both

k = 40 and k = 100). It is typical for functional data that, from
a certain point, adding more (highly correlated) evaluations per
curve leads to distinctly less improvement in the model fit than
adding further observations (compare, e.g., also Stöcker et al.
2021). In the extreme ki = 3 scenario, we obtain an rMSE of
around 15%, which is not surprisingly considerably higher than
for the moderate settings above. Even in this extreme setting
(Figure 4), the effect directions are captured well, while the size
of the effect is underestimated. Rotation alignment based on
only three points (which are randomly distributed along the
curves) might considerably differ from the full curve alignment,
and averaging over these sub-optimal alignments masks the full
extend of the effect. Still, results are very good given the sparsity
of information in this case. Having a simpler form, the binary
effect βκ is also estimated more accurately with an rMSE of
around 1.5% for n = 54, k = 100 (1.9% for k = 40) and less
than 0.8% for n = 162 (for both k = 40 and k = 100). The pole
estimation accuracy varies on a similar scale.

Shape scenario: Qualitatively, the shape scenario shows a
similar picture. For k = 40, we observe median rMSEs of 2.8%
(n = 54) and 2.2% (n = 162) for f1(z1), and 1.5% and 0.6%
for the binary effect βκ . For k = 100, accuracy is again slightly
higher.

Nuisance effects and integration weights: Nuisance effects in
the model where generally rarely selected and, if selected at all,
only lead to a marginal loss in accuracy. The constant effect is
only selected sometimes in the extreme triangle scenarios, when
pole estimation is difficult. We refer to Brockhaus et al. (2017),
who perform gradient boosting with functional responses and
a large number of covariate effects with stability selection, for
simulations with larger numbers of nuisance effects and fur-
ther discussion in a related context, as variable selection is not
our main focus here. Finally, simulations indicate that inner
product weights implementing a trapezoidal rule for numerical
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Figure 4. Left: First (row 1) and second (row 2) main components of the smooth effect f1(z1) in the form scenario obtained from TP factorization. Normalized component
directions are visualized as bottle outlines after transporting them to the true pole (gray solid outline). Underlying truth (solid lines / shaded areas) are plotted together with
five example estimates for n = 162 and k = 100 (black solid lines) and the extremely sparse ki = 3 setting (gray dashed lines). Center: Conditional means for both bottle types
with fixed metric covariate z1 = 0 in the shape scenario with n = 54 and k = 40. Five example estimates (black solid outlines) are plotted in front of the underlying truth
(shaded areas). Right: rMSE of shown example estimates (jittered diamonds) contextualized with boxplots of rMSE distributions observed in respective simulation scenarios.

integration are slightly preferable for typical grid sizes (k =
40, 100), whereas weights of 1/ki equal over all grid points within
a curve gave slightly better results in the extreme ki = 3 settings.

All in all, the simulations show that Riemannian L2-Boosting
can adequately fit both shape and form models in a realistic sce-
nario and captures effects reasonably well even for a comparably
small number of sampled outlines or evaluations per outline.

6. Discussion and Outlook

Compared to existing (landmark) shape regression models, the
presented approach extends linear predictors to more general
additive predictors including also, for example, smooth nonlin-
ear model terms and interactions, and yields the first regression
approach for functional shape as well as form responses. More-
over, we propose novel visualizations based on TP factorization
that, similar to FPC analysis, enable a systematic decomposition
of the variability explained by an additive effect on tangent
space level. Yielding meaningful coordinates for model effects,
its potential for visualization will be useful also for FAMs in
linear spaces and also beyond our model framework, such as
we exemplarily illustrate for the nonparametric approach of Jeon
and Park (2020) in Section S.8, supplementary materials.

Instead of operating on the original evaluations yi ∈ Cki

of response curves yi as in all applications above, another fre-
quently used approach expands yi, i = 1, . . . , n, in a common
basis first, before carrying out statistical analysis on coefficient
vectors (compare Ramsay and Silverman (2005), Morris (2015),
and Müller and Yao (2008) for smoothing spline, wavelet or
FPC representations in FDA or Bonhomme et al. (2014) in
shape analysis). Shape/form regression on the coefficients is, in
fact, a special case of our approach, where the inner product is
evaluated on the coefficients instead of evaluations (Section S.6,
supplementary materials).

The proposed model is motivated by geodesic regression.
However, in the multiple linear predictor, a linear effect of a
single covariate does, in general, not describe a geodesic for
fixed nonzero values of other covariate effects. Or put differently,
Exp[p] (h1 + h2) �= ExpExp[p](h1) (h2) �= ExpExp[p](h2) (h1)

in general. Thus, hierarchical geodesic effects of the form
ExpExp[p](h1) (h2), relevant, i.a., in mixed models for hierar-
chical/longitudinal study designs (Kim et al. 2017), present
an interesting future extension of our model. Moreover, an
“elastic” extension based on the square-root-velocity framework
(Srivastava and Klassen 2016) presents a promising direction for
future research, as do other manifold responses.

Supplementary Materials

Supplementary material with further details is provided in an online sup-
plement.
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6. Paper V: Elastic Shape Regression for
Plane Curves

Paper V develops a quotient regression model introduced in Paper III for the quotient
of the shape manifold introduced in Paper IV and the action of re-parametrization,
which is by isometries. In this way, it combines regression for elastic curves with
additive regression for functional planar shapes as a response given scalar covariates,
i.e. it respects all invariances: rotation, translation, rescaling and re-parametrization.
In addition, the necessary constraints needed to model symmetric shapes are provided,
along with a demonstration of the interpretability of estimated nonlinear covariate
effects in an analysis of bottle shapes.

Contributing article:
Stöcker, A., Steyer, L. and Greven, S. (2022). Elastic Shape Regression for Plane
Curves. Unpublished manuscript
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Elastic Shape Regression for Plane Curves
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Abstract

For outline data such as arising for anatomical shapes in biomedical imaging, often only
the shape of the outline rather than the used coordinate system or the parametrization of the
outline curve are of interest. The square-root-velocity framework provides a basis for “elastic”
statistical analysis of variability in the shapes of such curves, allowing to incorporate invariance
with respect to the curve parameterization integrally into the data geometry, in addition to
traditional shape invariances with respect to rotation, translation and scaling. However, little
work has been down so far on elastic modeling of such data in dependence on covariates. We
introduce an approach based on generalized additive regression that transfers the accustomed
flexibility for scalar data to response shapes of plane curves, and provide necessary constraints
required for modeling symmetric shapes. We illustrate interpretability of estimated non-linear
covariate effects in an analysis of bottle shapes.
Keywords: Functional data, additive regression, square-root-velocity, geometric data, semi-
parametric modeling

1 Introduction

Understanding shape variability of curves, for instance recorded in medical imaging, promises im-
portant insights in the areas of life sciences and beyond. In many data problems, say, when an-
alyzing outlines of a particular brain area across different patients, the coordinate system applied
for recording is likely arbitrary and size differences in patients are often not of interest. This has
motivated statistical shape analysis (Dryden and Mardia, 2016) to define the shape of a plane curve
as equivalence class modulo the shape invariances of translation, rotation and scale, equipped with
a Riemannian manifold structure. Similarly, a curve is naturally described in parameterized form
as a function, yet potentially only the image of the curve is of interest and analysis should then
be invariant under re-parameterization (“warping”) – a problem closely related to the registration
problem in functional data analysis (Marron et al., 2014). The square-root-velocity (SRV) frame-
work (Srivastava and Klassen, 2016) provides a basis for statistical analysis of such shapes of curves
modulo all mentioned invariances employing an “elastic” distance: Unlike for other approaches,
re-parameterization proves isometric here, allowing to induce a quotient space distance on shapes
of curves as infimum distance over its parameterizations. While first approaches to regression in
this framework with shapes of curves as covariates are presented by Ahn et al. (2018) and Tucker
et al. (2019), regression for such shapes as response variable are so far restricted to the work of Guo
et al. (2020), who model tangent space principal component representations after warping alignment.
However, this does not incorporate the elastic quotient space distance integrally into the model fit.
Related regression models for (one-dimensional) functional data with warping-alignment (but no
shape alignment) in the response were proposed by Matuk et al. (2021) and Hadjipantelis et al.
(2014, 2015).
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We introduce functional additive regression-type models (Greven and Scheipl, 2017; Morris, 2015)
to flexibly model shapes of plane curves in dependence on covariates and base the entire model esti-
mation on the elastic quotient space distance, which arises in the SRV framework and incorporates
all considered invariances. The proposed approach extends earlier inelastic shape regression (Stöcker
et al., 2022) combining gradient boosting for functional additive models (Brockhaus et al., 2015) with
ideas of regression for manifold-valued responses (Cornea et al., 2017). Moreover, we consider the
important special case of modeling curves with axial symmetry, and provide and implement corre-
sponding required symmetry constraints. The approach is provided in the R package manifoldboost
(github.com/Almond-S/manifoldboost/tree/elastic).

In Section 2, we provide a brief introduction into SRV-representation of plane curves (Section 2.1)
and discuss generalized additive models from an object data perspective (Section 2.2) to motivate
the proposed regression approach presented in Section 2.3. Having introduced the general model, we
discuss constraints for modeling axial symmetric closed curves in Section 2.4 and present an elastic
Riemannian L2-Boosting approach for model fitting in Section 2.5. In Section 3, we analyze bottle
design based on outline shapes (Section 3.1) and use the analysis to motivate a simulation study
investigating the impact of invariances on fitting performance (Section 3.2). Section 4 concludes
with a discussion and outlook.

2 Elastic functional additive shape regression

2.1 Representation of shapes of plane curves in the SRV-framework

Identifying the real plane R2 ∼= C with the complex numbers for convenience, we consider a param-
eterized plane curve an absolute continuous function y : I → C defined on an interval I, where we
assume y to be non-constant to avoid the degenerate case of a curve describing only a point and
write y ∈ AC∗(I). For any such y, the component-wise derivative ẏ(t) = dy(t)/dt exists for almost
all t ∈ I and there exists a monotonously increasing warping function γ : I → I re-parameterizing
the curve as u = y ◦ γ with constant speed, i.e. with |u̇(t)| constant for all t (e.g., Bruveris, 2016).
Two parameterized curves y1, y2 ∈ AC∗(I) are called equivalent if they have the same constant speed
parameterization u1 = u2, defining an oriented curve as their equivalence class. Although both are
commonly referred to simply as “curves”, we explicitly write [y]w for the oriented curve described by
a parameterized curve y for clarity. Mapping into an arbitrary coordinate system, the shape [y]s of
y is defined as its equivalence class [y]s = {λ exp(

√
−1ω)y + z | λ > 0, ω ∈ R, z ∈ C} over re-scaling

by λ, rotation by ω radian, and translation by z. The definition directly carries over to the shape
of [y]w as union over its representatives [y] =

⋃
y∈[y]w

[y]s presenting our object of primary inter-

est. The square-root-velocity (SRV) transform (Srivastava and Klassen, 2016), mapping y 7→ q with
q(t) = ẏ(t)/

√
|ẏ(t)| where defined and q(t) = 0 elsewhere, establishes an surjective map from AC∗(I)

to L2
C(I), or briefly L2

C, the Hilbert space of square-integrable complex-valued functions defined on
I (Bruveris, 2016). Loosing translation in the derivative, this yields a one-to-one identification of
[y]s with [q]s = {λ2 exp(

√
−1ω)q | λ > 0, ω ∈ R} on SRV-level. The quotient space of such [q]s with

q ̸= 0 corresponds to the complex projective space PL2
C with a well-known symmetric Riemannian

manifold structure (e.g., Klingenberg, 1995). This link is analogous to Kendall’s shape space (e.g.,
Dryden and Mardia, 2016) and a more detailed motivation of the geometry for modeling shapes of
parameterized plane curves can be found in Stöcker et al. (2022). Inducing the geometry, however,
via the SRV-representation of the curves allows to establish a suitable, elastic metric on [AC∗(I)],
the space of oriented plane curve shapes [y], as introduced by Srivastava et al. (2011) and defined
below in Section 2.3. Modeling such [y] as response objects in dependence on covariates is the target
of this paper.
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2.2 Generalized additive regression for modeling object data

Ever since Hastie and Tibshirani (1986) proposed generalized additive models as extension of gener-
alized linear models (Nelder and Wedderburn, 1972) to non-linear covariate effects, a wealth of often
inter-combinable extensions have been proposed (partly summarized in textbooks such as Fahrmeir
et al., 2013; Wood, 2017; Stasinopoulos et al., 2017) leading to a versatile regression framework for
statistical analysis in various data problems. While approaches so far have predominantly focused
on scalar response variables Y , we take a geometric object data perspective on generalized additive
models here to provide a roadmap for our model for shapes of plane curves. Their general model
structure

g(µ) = f(x) = f1(x) + · · ·+ fJ(x)

consists of three components: a target parameter µ of the distribution of Y depending on covariate
values x, an additive predictor f(x) =

∑J
j=1 fj(x), and a link function g linking µ to the predictor.

Most commonly, µ presents a conditional mean of Y . The Fréchet mean (Fréchet, 1948; Ziezold,
1977) presents a general mean concept assuming Y a random element in a metric space (Y, d), i.e. a
Borel-measurable map from some probability space into Y. For simplicity, covariates X are assumed
a random vector of scalar covariates x ∈ X in the following. A conditional Fréchet mean µ of Y , as
modeled e.g. in the “Fréchet Regression” approach of Petersen and Müller (2019), is defined as a
minimizer of the conditional expected squared distance

E
(
d2(µ, Y ) |X = x

)
= σ2

x = inf
µ′∈M

E
(
d2(µ′, Y ) |X = x

)

assuming finite variance(s) σ2
x < ∞ and the model, which potentially restricts µ to some subspace

M ⊆ Y. When d is the geodesic distance on a Riemannian manifold Y, the Fréchet mean is
typically referred to as intrinsic mean or Riemannian center of mass (Karcher, 1977; Afsari, 2011).
In Euclidean spaces, it corresponds to the usual expected value.

While additive models have also been formulated on Lie groups (Lin et al., 2020), an approach
extending and in the tradition of generalized linear models requires a linear structure for the space
of the predictor, i.e. for the predictor f : X → V to map the covariates into a vector space V.
The predictor values can then be mapped into the space of the responses using a suitable response
(inverse link) function g−1. In practice, f(X ) typically restricts to a finite-dimensional subspace of
V with a basis v1, . . . , vK ∈ V. This lets us follow an analogous approach to Brockhaus et al. (2015);
Scheipl et al. (2016) for functional data, modeling covariate effect functions fj(x) as

fj(x) =
K∑

k=1

H∑

h=1

θjhkbjh(x)vk

expanded in a finite tensor-product basis of the basis {vk}k and some effect basis bjh : X → R, h =
1, . . . ,H. Estimating fj(x) then reduces to estimating the H×K coefficient matrix Θj = {θjhk}h,k.
This approach effectively models each basis coefficient for the vk as an additive function of the
covariates. The tensor-product effect structure thus prepares the ground for directly building on
covariate effects established for scalar additive models. Typical example effects of a metric covariate
x1 in x include linear effects fj(x) = βx1 (specifying bj1(x) = x1, H = 1) and smooth spline effects
with {bjh}h, say, a B-spline basis, where coefficient β like all fj(x) here is an element of V. Effects
of a categorical covariate x2 ∈ {1, . . . , L} are implemented by mapping the lth level to a contrast
vector bj(l) as in linear regression. Interactions and other types of effects are possible, and effect
visualizations can be achieved by tensor-product factorization (Stöcker et al., 2022).
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The link function g is commonly assumed invertible with the response function g−1 : V → M
mapping the predictor to the desired model spaceM for the response. Its choice is usually motivated
by properties of the involved spaces, and aims at offering a natural and convenient interpretation.
For the special case where Y has a (symmetric) Riemannian manifold structure, the Riemannian
exponential map Expp : TpY → Y takes a prominent role here, mapping a tangent vector v ∈ V =
TpY in the tangent space of Y at p ∈ Y to a point in Y. Although other options are possible (Cornea
et al., 2017), the Exp map was established as a response function in generalized-linear-regression-
type models for manifold-valued responses by Zhu et al. (2009); Shi et al. (2009); Kim et al. (2014);
Cornea et al. (2017); Stöcker et al. (2022) generalizing geodesic regression (Fletcher, 2013) to multiple
regression. Geodesic regression is the direct generalization of simple linear regression: a covariate
value of x1 = 1 of a single linear effect is mapped from the “intercept” p to µ = Expp(βx1) at a
distance d(µ, p) = ∥β∥ corresponding to the norm of the “slope” β ∈ TpY. Conversely, this yields a
Riemannian Logp-link function given by the inverse of Expp, which can unrestrictively be assumed
to exist almost surely for symmetric Riemannian manifolds (Pennec, 2006; Cornea et al., 2017). The
Logp-link maps y ∈ Y to the tangent space TpY, which is equipped with a Hilbert space structure
corresponding to the Riemannian metric on Y.

For other cases than Riemannian manifolds, suitable choices of V and of the response function
are less straightforward. For elastic shape analysis, we propose in the following to build on the
Riemannian manifold structure and choice of tangent space V of the inelastic shape case, but to
adjust the response function appropriately.

2.3 Functional additive regression for shapes of plane curves

Consider a sample of plane curves y1, . . . , yn ∈ AC∗(I) recorded together with vectors of scalar
covariates x1, . . . ,xn. We model the conditional Fréchet mean [µi] of their shapes [yi], i = 1, . . . , n,
considering the ([yi],xi) independent realizations of response-covariate tuples with the response
presenting a random element in the metric space ([AC∗(I)], d). The elastic distance d on the shape
space [AC∗(I)] proposed by Srivastava et al. (2011) is induced as

d([y1], [y2]) = inf
γ∈Γ

dPL2
C
([q1]s, [q2 ◦ γ

√
γ̇]s) = inf

γ∈Γ,ω∈R
dS(q1, exp(ω

√
−1)q2 ◦ γ

√
γ̇)

by the geodesic distance dPL2
C
on the complex projective space of the [qi]s, where qi denotes the SRV-

transform of yi, i = 1, 2. The set Γ of warping functions γ contains the strictly increasing surjective
differentiable functions γ : I → I. When modeling closed curves on the interval I = [t0, t1], i.e. with
yi(t0) = yi(t1), Γ in addition contains all functions γ : t 7→ t+ τ − (t1− t0)1(t1−τ,t1](t) that shift the
starting point by τ ∈ [0, t1−t0], where 1U (t) = 1 if t ∈ U is contained in the set U and 0 otherwise, as
well as concatenations of functions in Γ. The metric on PL2

C is in turn induced from the submanifold
geometry of the Hilbert sphere S = {q ∈ L2

C | ∥q∥ = 1} ⊂ L2
C, where ∥q∥ = (

∫
I |q(t)|2 dt)1/2 denotes

the standard norm on L2
C. The geodesic distance dS(q1, q2) on the sphere reflects the arc-length

between unit-norm representatives q1 and q2 with ∥qi∥ = 1. This corresponds to scaling curves
[yi]w to unit-length. Due to the SRV-representation, not only rotation by ω radian but also re-
parameterization by γ ∈ Γ acts by isometries, i.e. for common actions exp(ω

√
−1) yi ◦ γ, i = 1, 2,

the L2
C inner product ⟨q1, q2⟩ = ⟨ exp(ω

√
−1) q1 ◦γ

√
γ̇, exp(ω

√
−1) q2 ◦γ

√
γ̇ ⟩ is left unchanged. This

allows to define the quotient space distance d as infimum over distances in the original space. While
we focus on d in the following, related alternative elastic distances on shapes of plane curves have
been proposed, including the geodesic distance on the subspace of closed curves (Srivastava et al.,
2011), a more general family of elastic distances (Kurtek and Needham, 2018), and the elastic full
Procrustes distance (Stöcker et al., 2022).
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We model the mean shape [µi] for the ith observation via the SRV-transform mi of a unit-length
curve mean representative µi ∈ AC∗(I) using an additive model of the form

[µi] = g−1
[ψ]

(
f(xi)

)
= g−1

[ψ]

( J∑

j=1

fj(xi)
)

induced by the Riemannian (inelastic) functional additive model

mi = Expp
(
f(xi)

)

on SRV-level: we choose the Riemannian exponential Expp(β) = cos(∥β∥)p + sin(∥β∥)β/∥β∥ on S
as response function mapping the additive predictor f(x) along great-arcs. Constraining tangent
vectors β ∈ TpS to the subspace horizontal to rotation, this also corresponds to the Riemannian
exponential on PL2

C and lets us identify T[p]sPL2
C with the subspace Vp = {q ∈ L2

C | ⟨q, p⟩ = 0}
orthogonal to p ∈ S (compare, e.g., Stöcker et al., 2022; Dryden and Mardia, 2016; Klingenberg,
1995). Thus, common basis functions ṽk : I → R, k = 1, . . . ,K + 1, used for functional additive
models (Scheipl et al., 2015), such as polynomial splines, can be utilized for constructing tensor-
product effects fj(x) after linear transformation to a constrained basis vk , k = 1, . . . ,K, spanning
a K-dimensional subspace of Vp (analogous to Stöcker et al., 2022). To obtain a transparent model
space, we assume that the same basis {vk}k is utilized for all f1, . . . fJ and also p, such that also
m is in its span. Steyer et al. (2021) show identifiability of a representation of SRV-transforms in
a B-spline basis of order one under warping, ensuring that for this choice, we can un-restrictively
assume that g[ψ]([µ]) = Logp(m) yields a valid link function of the target mean shape [µ] modulo
re-parameterization. The intercept p is typically specified as the SRV-transform of a representative
ψ ∈ AC∗(I) of the unconditional Fréchet mean [ψ] of the marginal distribution of [y1], . . . , [yn].
Correspondingly, effects fj(x) are typically constrained to be centered to zero mean

∑n
i=1 fj(xi) = 0.

Basing our implementation in the R package manifoldboost on the package FDboost, an overview
over implemented covariate effects is provided by Brockhaus et al. (2020).

2.4 Modeling symmetric and closed shape means

In many data scenarios, such as the bottle design data presented in Section 3.1, it is desirable to
model mean curves as symmetric by imposing respective constraints. For convenience, we consider
curves defined on I = [−1, 1] in the following and call a function f : [−1, 1]→ C even if f(t)† = f(−t)
and odd if f(t)† = −f(−t) for all t ∈ [−1, 1], where z† = ℜ(z) −

√
−1ℑ(z) denotes the complex

conjugate of z ∈ C. [µ] is called (axis)symmetric if there is an odd µ ∈ [µ] (i.e. µ is symmetric about
the imaginary axis) or, equivalently if there is an even µ ∈ [µ] (i.e. µ is symmetric about the real

axis). The back-transform given by µ̃(t) :=
∫ t
0
m(s)|m(s)| ds (i.e. µ̃ = µ− µ(0)) is odd whenever its

SRV-transform m is even (see Appendix A.1)). Hence, we ensure symmetry of the mean shape [µ] by
constraining the modeled m to be even. This can be implemented by utilizing even basis functions
vℜk : [−1, 1] → R for its real part and odd basis functions vℑk : [−1, 1] → R for its imaginary part
in the effect functions (with the same notion of odd/even in the real special case). Constraining
a B-spline basis to even or odd splines presents linear constraints, which we implement via basis
transforms for general use in the R package mboost (Hothorn et al., 2010).

In contrast to symmetry, closedness of curves – also often desired in practice – poses a more
challenging, non-linear constraint. Under symmetry, however, we argue that good results can already
be expected with only a simpler closedness constraint on SRV-level. The (shape of the) oriented
curve [µ]w is closed if any and hence all µ ∈ [µ]w are closed. If µ is closed and continuously

5



differentiable in the vicinity of µ(−1) = µ(1), also its SRV-transform m is closed. The package
mboost already offers a linear constraint for closed (cyclic) B-splines (Hofner et al., 2016), which
we employ for m. However, closedness of m is not sufficient for closedness of µ̃ but leaves a gap
δ = µ̃(1)− µ̃(−1) between its end-points. The geometry of closed curves in the SRV-framework has
been considered in the literature (Srivastava et al., 2011; Srivastava and Klassen, 2016) but involves

the non-linear constraint δ =
∫ 1

−1
m(s)|m(s)| ds = 0. Instead, we focus on implementation of the

symmetry constraint here and naively close µ̃ with a small line segment between the endpoints of
both sides of the curve. While extending curves by a line segment to a closed curve is always possible,
the symmetry constraint ensures that transitions are differentiable in typical cases (for details see
Appendix A.1). This pragmatic solution will, thus, be satisfactory in many data problems of this
type, avoiding further restrictions of the geometry and more expensive computations.

2.5 Model fitting using elastic Riemannian L2-Boosting

For model estimation, we adapt Riemannian L2-Boosting (Stöcker et al., 2022) to elastic fitting
in the SRV-framework. Component-wise gradient boosting (Bühlmann and Hothorn, 2007) is a
forward step-wise estimation procedure offering inherent variable selection and a high flexibility to
fit with respect to various loss functions (Mayr et al., 2014a,b) by effectively fitting gradients of
the target loss with separate “base-learners” with respect to penalized least-squares. The dual reg-
ularization imposed by the base-learner penalty and informed early stopping make boosting also
well-suited for high-dimensional (functional) responses (Stöcker et al., 2018; Lutz and Bühlmann,
2006). In the case of the quadratic loss, gradient boosting reduces to L2-Boosting (Bühlmann and
Yu, 2003) corresponding to iterative re-fitting of model residuals. Stöcker et al. (2022) generalize
conventional Euclidean L2-Boosting to Riemannian L2-boosting fitting base-learners to transported
residuals (Cornea et al., 2017) in an approach based on the functional data extension (Brockhaus
et al., 2015) of the boosting framework of Hothorn et al. (2010). Computing transported resid-
uals, however, involves concatenation of the Riemannian Log-map and parallel transport, which
are, as such, not available in our case. Hence, we borrow the Log-map from PL2

C after preceding
warping-alignment, which is along the lines of Srivastava and Klassen (2016). This analogous to the
procedure for rotation and, after full alignment with respect to rotation and warping, the length of
the residual reflects the distance d([µ̂i], [yi]) of a prediction [µ̂i] to the respective shape [yi]. Using
this generalization, we fit our additive model for shapes of plane curves in the SRV-framework with
respect to the quadratic elastic loss d2([µ̂], [y]), estimating the conditional Fréchet mean by succes-
sively reducing the empirical risk

∑n
i=1 d

2([µ̂i], [yi]) over observations i = 1, . . . , n analogously to the
Riemannian case. After initialization, the proposed boosting algorithm (Algorithm 1) repeatedly

adds to the model predictor f̂(x) by iteratively A) computing warping-aligned transported resid-
uals, B) fitting them with the base-learners corresponding to predictor components fj(x), and C)
updating the best-performing base-learner, until a stopping criterion is met. The single steps are
detailed in the following.
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Algorithm 1: Elastic Riemannian L2-Boosting

Fix intercept p, specify step-length η > 0 and base-learner penalty, initialize
f̂(x) = 0;
repeat

A) Computing residuals:
foreach i = 1, . . . , n do

Predict mean shape representative µ̂i based on current predictor f̂(xi) ;

Warping-align yi
align to µ̂i7−→ ỹi ;

Map ỹi{SRV-trafo7−→ q̃i
Log7−→ ε̃i

Transp7−→ εi to transported residual εi ∈ T[p]sPL2
C ;

end
B) Fitting baselearners:
foreach j = 1, . . . , J do

Fit jth base-learner to residuals εi, i = 1 . . . , n, to obtain f̌j(x) ;
Determine insample performance ;

end
C) Updating the predictor:

Set f̂(x)← f̂(x) + ηf̌j(x) for the best performing base-learner j ;

until stopping criterion is met ;

Initialization: The algorithm presupposes a fixed intercept p. However in practice, p is typically
estimated as SRV-transform p̂ of a curve representative ψ̂ of an estimate [ψ̂] of the overall Fréchet
mean shape [ψ] of the response. We obtain p̂ from an intercept model (i.e., with a single constant
base-learner) fitted in a previous Riemannian L2-Boosting run. This fit is based on a preliminary
intercept p0 fitted for instance as L2

C-average on reasonably aligned curve data. Some alternatives
to this choice are described in Section 3.2.

A) Computing residuals: In the Riemannian manifold of shapes of prameterized curves [yi]s
predicted as [µ̂i]s via the SRV-transform m̂i of the predicted curve representative µ̂i, transported
residuals εi are defined as follows: first, a local residual ϵ̃i ∈ T[m̂i]sPL2

C in the (linear) tangent space
is obtained as ϵ̃i = Log[m̂i]s([qi]s) from the SRV-transform qi of yi. Due to the geometry of PL2

C, this
can effectively be computed using the Log-map on the sphere S as ϵ̃i = Logm̂i

(q̃i) when q̃i ∈ [qi]s
and m̂i are rotation-aligned (compare, e.g., Huckemann et al., 2010). The local residuals reflect
the distance ∥ϵ̃i∥ = d([m̂]s, [qi]s) and correspond to the negative gradient ϵ̃i = −∇[m̂]sd

2([m̂]s, [qi]s)
pointing into the direction of loss-reduction (Pennec, 2006). However, for i = 1, . . . , n, they are
elements of different spaces. Parallel-transport Transp[m̂i]s,[p]s : T[m̂i]sPL2

C → T[p]sPL2
C isometrically

maps the local residuals to transported residuals εi = Transp[m̂i]s,[p]s(ε̃i) in the space Vp ∼= T[p]sPL2
C

of the linear predictor. In Riemannian L2-Boosting (Stöcker et al., 2022), transported residual εi
are repeatedly fit to reduce the loss. Details concerning the involved maps can be found, e.g., also
in Cornea et al. (2017); Huckemann et al. (2010).
As rotation, warping presents an isometric action. To fit shapes of curves [yi] also involving warping-
invariance, we proceed analogously to rotation, and warping align yi to µi before computing trans-
ported residuals on the parameterized curve shapes [ỹi]s of the aligned representatives ỹi ∈ [yi] as
described above. Due to alignment and concatenation of length-preserving maps, the quadratic loss
on predictor-level ∥Logp(m̂i)− ϵi∥2 = d2

PL2
C
([m̂i]s, [q̃i]s) ≈ d2([µ̂i], [yi]) approximates the target elas-

tic loss. Hence, fitting warping-aligned transported residuals on predictor level, we may reduce the
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loss on the level of curve shapes. Perfect equality in the second relation would require simultaneous
rotation and warping alignment, but we approximate it by subsequent alignment for computational
efficiency.

B) Fitting base-learners: Base-learners are associated with the additive model components
fj(x), j = 1, . . . , J , by considering them as individual predictors fitted to a sample of pseudo-
responses ϵi ∈ Vp in the Hilbert space Vp at covariate values xi ∈ X , i = 1, . . . , n. As ele-
ments of Vp, they are fitted with respect to the penalized least-squares criterion to obtain f̌j =

argminfj
∑n
i=1 ∥fj(xi)−ϵi∥2+penj(fj). Using tensor-product effects fj(x) =

∑K
k=1

∑H
h=1 θjhkbjh(x)vk

and a non-negative definite quadratic penalty term penj(fj), f̌j is given by the well-known linear
estimator for the vector of coefficients θjhk. Typically, penj(fj) is induced by suitable penalties for
the basis {vk}k in V and the scalar effect basis {bjh}h. For B-splines, ridge or higher-order differ-
ence penalties on the coefficients θjhk present convenient choices (for details see, e.g., Brockhaus
et al., 2015; Stöcker et al., 2022). For comparability across base-learners, the penalties are typically
specified to achieve the same effective degrees of freedom (Hofner et al., 2011) for j = 1, . . . , J .
The in-sample performance of the jth base-learner is then measured in terms of its residual sum of
squares rssj =

∑n
i=1 ∥f̌j(xi)− ϵi∥2.

C) Updating the predictor: In each boosting iteration, only the base-learner with lowest rssj
is added to the current predictor, weighted with a step-length of typically η = 0.1. If a base-learner
is never selected, the corresponding covariate effect drops out of the model. If it has been selected
already, the addition results in a coefficient update.

Stopping the algorithm early provides important means of regularization in high-dimensional
data scenarios (Mayr et al., 2012). We select the stopping iteration via curve-wise cross-validation.
For functional responses, this has proven a valuable tool to avoid over-fitting also in scenarios with
high auto-correlation without explicit modeling of the covariance structure (Stöcker et al., 2018).

In practice, curves yi, i = 1, . . . , n, are recorded at discrete sampling points and computations
involving L2

C inner products are approximated by numerical integration as described by Stöcker
et al. (2022). For warping-alignment based on discretely recorded curves, we rely on the approach
of Steyer et al. (2021) and its implementation in the R package elasdics (Steyer, 2021).

3 Analysis of bottle design

3.1 Modeling bottle outline shapes

Shapes of everyday objects yield an ideal platform for illustration and evaluation of shape analysis,
providing intuitive visual access to assess even small changes in shape. Bonhomme et al. (2014)
provide a dataset of whisky and beer bottle outlines of 20 different brands, each with their charac-
teristic designs. Based on the n = 40 recorded curves yi, i = 1, . . . , n, we model their conditional
mean shape [µi] with representatives µi ∈ AC∗(I) in dependence on their bottle type (whisky/beer)
and size in centiliter (covariates xi = (xtype,i, xsize,i)

⊤) as

[µi] = g−1
[p] (αtype,i + βxsize,i + βtypexsize,i + f(xsize,i) + ftype(xsizei))
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Figure 1: Left: Shares
∑n
i=1

(
f̂
[k]
j (xi)

)2
/
∑n
i=1

∑J
j=1 ∥f̂j(xi)∥2 of the variance of each (centered)

factorized effect component f̂
[k]
j (x) selected into the model in overall predictor variance. Bars for its

factorization components are stacked for each base-learner. Right: Estimated elastic mean shape of
beer and whisky bottles setting size-effects f̂(xsize) + f̂type(xsize) = 0. Bottle outlines are plotted
aligned to the estimated overall mean shape (grey line) and corresponding time-points are connected
by line segments.

via the unit-norm SRV-transform

mi = Expp(αtype,i + βxsize,i + βtypexsize,i + f(xsize,i) + ftype(xsize,i))

of µi with an effect-coded binary effect xtype 7→ αtype ∈ Vp and, for size, a linear effect with coeffi-
cient β and a smooth effect f(xsize) centered around the linear effect, as well as their interactions with
type. The effect functions f and ftype are modeled as cubic B-splines and m and p with piece-wise
linear B-splines with symmetry and closedness constraints (adjusting penalty matrices correspond-
ingly). In covariate direction, a second order difference penalty on coefficients implements equal effec-
tive degrees of freedom for all base-learners. For model fitting, the densely observed response curves
are regularly evaluated at 100 points following a consistent parameterization scheme (constant-speed
between landmarks). Although irregular sampling is possible, the regular design allows use of the
functional linear array model (Brockhaus et al., 2015) for efficient computations (ca. 70 seconds for a
single fit followed by 7.6 minutes of cross-validation on a regular computer without parallelization).
After 10-fold curve-wise cross-validation, the algorithm with step-length η = 0.1 is stopped after 30
iterations resulting in an estimated predictor f̂(xtype, xsize) = α̂type+ f̂(xsize)+ f̂type(xsize) omitting
linear terms for size. The effect of type is illustrated in Fig. 1 presenting the largest effect in the
model. As typical for shape variation, differences are comparably small after registration. Yet, they
reflect characteristic design patterns, with whisky bottles exhibiting more pronounced “shoulders”
and more tendency towards vaulted bottle necks.

For visualization of the size effect in Fig. 2, we employ tensor-product factorization (Stöcker

et al., 2022) to decompose f̂(xsize) =
∑K′

k=1 v̂
[k]f̂ [k](xsize), with K

′ the minimum of marginal basis
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Figure 2: The two leading size-effect components f̂ [1](xsize) (black solid lines) and f̂ [2](xsize) (black
dashed lines), explaining around 13.2% and 2.2% of the predictor variance respectively, depicted
together with their respective directions v̂[1] and v̂[2]. Directions are illustrated by showing bottle
outlines represented by ζ = Expp(v̂

[k]) aligned to the overall mean shape (gray). Accordingly, the

shown changes in the bottle outlines reflect an effect of f̂ [k](xsize) = 1, k = 1, 2.

dimensions, into independent effect components f̂ [k] : [0, 100] → R presenting scalar effects into

orthogonal effect directions v̂[k] ∈ T[p]PL2
C sorted with decreasing effect variance 1

n

∑n
i=1(f̂

[k](xsize))
2

over the data. The decomposition lets us plot the effect despite its non-linearity and allows to depict
also visually small effects on a suitable scale. Effects into the main direction v̂[1] and the second
direction v̂[2] effectively explain all predictor variance of the size-effect (Fig. 1). The first reflects a

broadening or tightening of the bottle shoulders for f̂ [1](xsize) > 0 or < 0, respectively. A positive

or negative second component f̂ [2](xsize) leads to a more wedge-shaped or more champagne-bottle-
shaped neck of the bottle. The estimated interaction effect of size and type is vanishingly small
in size and, thus, not shown. Even though the size distribution of beer (xsize ∈ [25, 75], average
x̄size ≈ 42 centiliter) and whisky bottles (xsize ∈ [70, 100], x̄size ≈ 73) in the data overlap, their
ranges clearly differ and the size-effect is highly correlated with type. Moreover, beverage brands
are not selected representatively. Hence, we avoid a deeper interpretation, remaining with the
illustration of the proposed model that capturs familiar directions of shape variability in the data.

3.2 Empirical evaluation of elastic Riemannian L2-Boosting

Performance of model-based boosting was investigated and justified in simulation studies in various
advanced modeling scenarios (e.g., Thomas et al., 2018) and also in (inelastic) modeling of functional
and shape responses (Brockhaus et al., 2015; Stöcker et al., 2022). Boosting is generally known
for its slow over-fitting behavior (Bühlmann and Hothorn, 2007). Nevertheless, early stopping is
important for variable selection (investigated, e.g., by Hofner et al., 2011; Brockhaus et al., 2018)
as well as for comparably small sample sizes of highly auto-correlated response curves in functional
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models (Stöcker et al., 2018). The SRV framework is well-established for modeling shapes of curves
(Srivastava and Klassen, 2016), good performance of the utilized warping-alignment procedure has
been shown by Steyer et al. (2021), and good fitting behavior of Riemannian L2-Boosting in a
related shape geometry has been validated by Stöcker et al. (2022). Here, we thus focus on warping
invariance in the fitting behavior of our elastic regression approach and compare this also to the role
of shape invariances. Although the model is widely invariant under warping and shape preserving
transformations, the estimate p̂ of the SRV representative p of the intercept [ψ] serves as starting
point and typically depends in turn on a starting value p̂0 depending on the starting parameterization
and positioning of the recorded curve representatives y1, . . . , yn. Initially aligning all curves to p̂,
the model fit then indirectly also depends on “reasonable” starting representatives. While indicating
a good performance overall, the simulations will hence also show that a good model fit relies on a
good fit of the intercept.

To provide a realistic scenario and control the sources of variability, we simulate datasets by
sampling from the bottle outline dataset of Section 3.1, applying random warping and/or random
positioning (i.e., random translation, rotation, and scaling) to the original curves. For random
warping, original curves are interpolated at a total of 100 points along the bottle outlines (of 123 to
193 orginal sample points), which are then considered as the observations sampled on a fixed regular
grid. All random transformations are applied with a moderate variability around the original curves,
which already exceeds the warping variability observed in usual data settings where curve data is
commonly more or less registered with similar parameterizations (for simulation details see Appendix
A.2). We sample response-covariate tuples without replacement, such that variability in scenarios
with all n = 40 observations is exclusively due to the random transformations. Scenarios with a
sample size of n = 30 also reflect generalization error, subsampling 75% of the data stratified with
respect to bottle type. In addition to these main scenarios, we also consider one n = 80 scenario
with all observations twice in the data but with different random transformations. For each scenario,
100 simulated datasets are fit with the bottle model of Section 3.1, considering the original fit as
ground truth and fixing the number of boosting iterations to 30 to speed up computations.

Given the relatively small effects and sample size and the high correlation between type and
size effects, covariate effects are captured well (Fig. 3): In the n = 30 scenario with the original
starting parameterizations and positioning of the curves, effects are mostly estimated comparably
accurately with mean squared errors (MSE) below 5% of the original additive predictor variance
in the data (corresponding to about up to 8% of the variance of the original type-effect). Outliers
are likely due to uncertainty in the choice of linear or non-linear (“smooth”) effects. Under random
warping and positioning of the curves, errors of the type-effect increase to a median MSE of 10% of
the total original additive predictor variance. Although with distinctly smaller MSE, it is evident
that random transformations affect the estimation of the effects to some extend also in scenarios
based on the entire original data (n = 40 and n = 80). Here, the more complex transformation
given by random warping shows a larger impact than random positioning, leading to larger MSE.

Tracing error resulting from the random transformations to its root, leads to the estimation of the
intercept [ψ] as overall shape mean of the curves as its cause. Our applied default estimator [ψ̂] shows

a good performance in terms of d2([ψ̂], [ψ]) << σ2
0 ranging mostly below 1% of the total variance

σ2
0 = 1

n

∑n
i=1 d

2([ŷi], [ψ]) obtained from the original model fit. Yet, the starting parameterization
still shows a strong effect, in the sense that without random warping the error decreases to nearly
zero. Visual inspection shows that, while bottle proportions (and also the direction of the type-
effect) are captured well, edges perceived as characteristic landmarks are slightly over-smoothed. As

model effects take their origin at [ψ̂], this lack of detail is carried forward to model prediction and

visualization. The over-smoothing behavior can be explained by the fact that [ψ̂] is based in turn on
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Figure 3: Top left: Distributions of intercept (overall mean) estimation accuracy (squared errors

d2([ψ̂], [ψ])/σ2
0 relative to total variance) for simulation scenarios with random warping of bottle

outline representatives y1, . . . , yn. For concise display, relative errors in scenarios without random
warping are not shown, being very small (below 2 · 10−4 for n = 30 and below 4 · 10−5 for n = 40).
Top right: Two example estimates of the bottle type effect (black) in front of the overall mean
estimate (gray), corresponding to the depiction of the original effect in Fig. 1, for simulation runs
marked with × and △ in the plot on the left. Bottom: MSE distributions for covariate effects in
the model relative to the overall variance 1

n

∑n
i=1 ∥f(xi)∥2 of the (centered) additive predictor, for

simulation scenarios with and without random positioning and warping of recorded curves. MSEs
are relative to the fit from Section 3.1 taken as true values. Bars reflecting the single effect variances
1
n

∑n
i=1 ∥fj(xi)∥2, j = 1, . . . , n, are added for individual comparison. For neither of the random

transformations, only the n = 30 setting is depicted, reflecting the generalization error of the model
with naively aligned curve data as underlying the original model fit. Other settings have zero error
here by design.
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elastic Riemannian L2-Boosting, where the preliminary intercept [ψ̂0] does depend on the specific
representatives, since its representative p0 is estimated without warping/rotation alignment as L2

C-
average of the SRV-transforms q1, . . . , qn of recorded curves. Mismatch in warping and rotation
masks distinct curve features by averaging over miss-aligned representatives (compare also Stöcker
et al., 2022,?). Hence, although in principle the original [ψ] could be retrieved from a different
starting point p0, lacking features in p0 to align to can render it difficult to fully estimate these
features in [ψ̂].

Various possibilities exist to avoid this problem by choosing a better starting point that ex-
hibits the desired features: a) in our experience also from Steyer et al. (2021), using similar initial
parameterizations (such as constant-speed parameterization) in curves y1, . . . , yn already yields a

well-working default starting point [ψ̂0] for the estimator [ψ̂] utilized in this paper, as illustrated by
the natural bottle appearance in the original model fit in 3.1. b) in particular for sparsely recorded

curves, the estimator [ψ̂eFP] of the elastic full Procrustes shape mean [ψeFP] proposed by Stöcker
et al. (2022) and implemented in the R package elastes (github.com/mpff/elastes) presents
an attractive choice for [ψ0] due to its fit based on Hermitian covariance smoothing. c) if a good
template curve is available, it can be directly used to represent [ψ0]. Such a curve might be simply
selected from the dataset. d) as an alternative to our overall elastic shape mean estimation approach,

[ψ̂] might be obtained from the implementation in R package fdasrvf (Tucker, 2017). An approach
to landmark-constrained elastic shape mean estimation was proposed by Strait et al. (2017).

Nonetheless, we keep the straightforward estimator here to illustrate the role of the intercept: as
it presents the starting point of the model fit, prediction and visualization, it has a strong impact
on the model results. Inaccuracy in details of the fit of the intercept are likely carried forward. In
general, this is not problematic, since the intercept can be estimated very accurately as overall shape
mean. However, to capture also shape details well, it is recommended to ensure that the fit of the
overall shape mean is fully satisfying, which requires a starting point that contains all important
features of the shape.

4 Discussion

Depending on the data problem, different modifications of the presented elastic regression approach
for shapes of plane curves might be of interest: further development will be needed to model (non-
symmetric) closed curves with closedness explicitly integrated into the model, while regression for
open curves is already covered in our framework. Instead of modeling the shape of the curves,
it might also desirable to model the “form” (or size-and-shape) of curves without scale invariance
(analogously to Stöcker et al., 2022), or to model curves with a fixed coordinate system without
shape invariances. Integrating different intercept options mentioned in Section 3.2 into our software
package will improve flexible usability. The architecture of our R package manifoldboost is designed
to simplify modular extension to such variations in the response geometry and model fit, adding to
the modular covariate effect specification borrowed from scalar additive models. Finally, applying
our approach to further data sets will illustrate flexibility and usefulness of the proposed model
framework for analyzing data problems of scientific interests.
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Appendix

A.1 Closing symmetric curves

To avoid non-linear constraints guaranteeing closedness of a curve µ ∈ AC∗([−1, 1]) via its SRV-
transform m, we argue that unconstrained estimation already promises satisfactory results when
modeling symmetric curves, since in this case, µ can be differentiably extended by a line segment to
obtain a closed curve under mild assumptions. For a symmetric shape [µ] of µ, we assume without loss
of generality that its SRV-transform m is even (in general it could be rotated or based on a different
parameterization). Modeling µ continuously differentiable, m is also assumed closed and continuous

in the following. In this case, also µ̇ is even and closed, and the back-transform µ̃ =
∫ t
0
m(s) ds is

odd. For simplicity and without loss of generality, we assume µ = µ̃. Our aim is to close the gap
δ = µ(−1) − µ(1) by a line segment such that the resulting curve µ∗ is differentiable. Lemma 1
below yields that under the given assumptions δ ∈ R, µ̇(0) ∈ R and µ̇(1) = µ̇(−1) ∈ R. Hence, when
considering the two symmetric sides of the curve described by µ

∣∣
[0,1]

and µ
∣∣
[−1,0]

restricting µ to the

respective interval, directions at the endpoints of the sides of µ are all orthogonal to the imaginary
axis presenting the symmetry axis. Hence, differentiable closing will be possible if µ̇(1) and µ̇(0)
have the right combination of signs, for which three cases have to be distinguished (assuming a
parameterization with µ̇(1) ̸= 0 and µ̇(0) ̸= 0 and a relevant gap δ ̸= 0):

If δ µ̇(1) > 0, µ can be directly extended to a differentiable closed curve µ∗ : [−1 − δ
2µ̇(1) , 1 +

δ
2µ̇(1) ]→ C with

µ∗(t) =





µ(t) for t ∈ [−1, 1]
µ̇(1) (t− 1) + µ(1) for t > 1

µ̇(1) (t+ 1) + µ(−1) for t < −1

If δ µ̇(0) < 0, the two sides µ
∣∣
[0,1]

and µ
∣∣
[−1,0]

of the symmetric curve can be shifted to close the

curve at -1/1 while opening it at 0. Then, we may differentiably extend them at 0 to obtain a closed
curve µ∗ : [−1 + δ

2µ̇(0) , 1− δ
2µ̇(0) ]→ C as

µ∗(t) =





µ(t− δ
2µ̇(0) )− δ

2 for t ∈ [−1 + δ
2µ̇(0) ,

δ
2µ̇(0) ]

µ(t+ δ
2µ̇(0) ) +

δ
2 for t ∈ [− δ

2µ̇(0) , 1− δ
2µ̇(0) ]

µ̇(0) t otherwise.

Although involving the shift, the second option in fact corresponds to the first after simple re-
parameterization as µ′(t) = µ(t− 1) for t ∈ [0, 1] and µ′(t) = µ(t+1) for t ∈ [−1, 1), switching t = 0
with t = ±1.

If δ µ̇(1) < 0 and δ µ̇(0) > 0, µ cannot be differentiably closed by a line segment, since µ̇(1)
points in the same direction as µ̇(0) and away from 0. We do not implement a constraint to avoid
this case, since we would hardly expect to encounter in practice: being bound to values in R by the
symmetry constraint, µ̇(1) and µ̇(0) can only point into the right direction for closing or precisely
into the opposite direction. This makes it unlikely that, when all curves y1, . . . , yn in the data are
closed and, hence, in line with the constraint, µ̇(1) and µ̇(0) still point into the wrong direction for
closing.

Lemma 1. For an even SRV-transform m : [−1, 1]→ C of a plane curve µ ∈ AC∗([−1, 1]),

i) the back-transform µ̃(t) =
∫ t
0
m(s)|m(s)| ds is odd.
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ii) the gap between the endpoints of µ is a real number δ = µ(−1)− µ(1) ∈ R.

iii) if m is closed, we have m(1) ∈ R and, hence, also µ̇(1) ∈ R.

Proof. i) follows by plugging m(t)† = m(−t) into the definition of µ̃:

µ̃(t)† =
∫ t

0

m(s)†|m(s)†| ds =
∫ t

0

m(−s)|m(−s)| ds

= −
∫ −t

0

m(s)|m(s)| ds = −µ̃(−t).

To see ii), first note that µ(t) = µ̃(t) + z for some z ∈ C and, thus, δ = µ̃(−1)− µ̃(1). Hence,

2ℑ(δ) = δ − δ† = µ̃(−1)− µ̃(1)− (µ̃(−1)† − µ̃(1)†)
= −µ̃(1)† − µ̃(1) + µ̃(1) + µ̃(1)† = 0

by repeatedly applying i). iii) immediately follows from m(1)†
even
= m(−1) closed

= m(1).

A.2 Simulating curves with random warping and positioning

To control variability of random transformations applied in the simulation study to a moderate
amount (exceeding what we expect to find in typical data but not completely arbitrary), we draw
sampling points of a randomly transformed version ỹi of an original curve yi : [0, 1] → C, given
by the sample polygon of the ith curve in our original data from 3.1 with the corresponding initial
parameterization on [0, 1], as

ỹi(tl) = λi exp(ωi) yı̈(γi(tl)) + zi (l = 1, . . . , 100)

where λi > 0, ωi ∈ R, zi = zℜi + zℑi
√
−1 ∈ C, and 0 = γi(t1) < · · · < γi(t100) = t100 are randomly

drawn independently for the ith curve in the simulated data corresponding to the ı̈th curve in the
original dataset. In scenarios with random positioning, we draw

λi ∼ Gamma(100, 100) (given with shape and rate parameter)

ωi ∼ N(0,
π2

400
), zℜi ∼ N(0, σ2

ℜ), zℑi ∼ N(0, σ2
ℑ)

where E(λi) = 1 with standard deviation sd(λi) = 0.1, the standard deviation of ωi corresponds to
a rotation about ca. 9 degrees, and σ2

ℜ and σ2
ℑ are selected to reflect the standard deviation of the

evaluations of the original curve along the real and imaginary axis, respectively. In scenarios with

random warping, we draw γ(tl) =
∑l

l′=2
∆l′∑100

l′=2
∆l′

t100 with

∆l ∼ Gamma(3, 3)

such that E(∆l) = 1 and sd(∆i) = 1
3 . Figure 4 illustrates the resulting variability with random

positioning and warping in different samples of one example bottle outline.
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Fréchet, M. (1948). Les éléments aléatoires de nature quelconque dans un espace distancié. In
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7. Paper VI: Principal Component Analysis in
Bayes Spaces for Sparsely Sampled Density
Functions

In contrast to papers I to V, paper VI does not deal with any curve or shape space, but
focuses on the analysis of one-dimensional probability density functions, considering
them as equivalence classes with respect to rescaling (see Subsection 1.3.3). It proposes
a novel approach to functional principal component analysis (FPCA, see Subsection
1.1.3) in Bayes spaces based on discrete samples drawn from each density. For mod-
eling, the isometric isomorphism between the Bayes space and L2

0, the space of square
integrable functions integrating to zero is used, and the underlying functional densi-
ties are treated as latent variables in a maximum likelihood framework. Estimation is
performed using a Monte Carlo expectation maximization (MCEM) algorithm. The
paper demonstrates the applicability of the method for analyzing the distribution of
maximum daily temperatures in Berlin over the last 70 years and the distribution of
rental prices in the districts of Munich.

Contributing article:
Steyer, L. and Greven, S. (2023). Principal component analysis in Bayes spaces for
sparsely sampled density functions. arXiv pre-print, arXiv:2309.11352

Declaration on personal contributions:
The author of this thesis has carried out major parts of the project independently, with
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ABSTRACT

This paper presents a novel approach to functional principal component analysis (FPCA) in Bayes
spaces in the setting where densities are the object of analysis, but only few individual samples
from each density are observed. We use the observed data directly to account for all sources of un-
certainty, instead of relying on prior estimation of the underlying densities in a two-step approach,
which can be inaccurate if small or heterogeneous numbers of samples per density are available. To
account for the constrained nature of densities, we base our approach on Bayes spaces, which extend
the Aitchison geometry for compositional data to density functions. For modeling, we exploit the
isometric isomorphism between the Bayes space and the L2 subspace L2

0 with integration-to-zero
constraint through the centered log-ratio transformation. As only discrete draws from each dens-
ity are observed, we treat the underlying functional densities as latent variables within a maximum
likelihood framework and employ a Monte Carlo Expectation Maximization (MCEM) algorithm for
model estimation. Resulting estimates are useful for exploratory analyses of density data, for dimen-
sion reduction in subsequent analyses, as well as for improved preprocessing of sparsely sampled
density data compared to existing methods. The proposed method is applied to analyze the distribu-
tion of maximum daily temperatures in Berlin during the summer months for the last 70 years, as
well as the distribution of rental prices in the districts of Munich.
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Principal component analysis in Bayes spaces for sparsely sampled density functions A PREPRINT

1 Introduction

A classic task in statistics is to estimate the underlying density from sample data, since density functions can be
used to describe the distribution of real-valued random variables. However, when not all observations are identically
distributed, but constitute repeated draws from a set of density functions f1, . . . , fn, e.g. for n different individuals, dis-
tributional properties of these density functions themselves may be the actual target of a statistical analysis. Examples
in which densities or distributions are considered the observational units exist in many different fields. These include
the size distributions of different zooplankton in oceanology (Nerini and Ghattas, 2007), the distributions of firm size
in econometrics (Huynh and Jacho-Chávez, 2010), mortality densities at different locations in epidemiology (Scimone
et al., 2021), and the densities of glucose levels among several diabetes patients in medical research (Matabuena et al.,
2021).

Probability density functions can be seen as a special case of functional data, but considering them as the unit of
observation poses two major challenges. First, any density function must be non-negative and integrate to one to be
valid. Second, in practice, density functions are often unobserved and accessible only through discrete samples. That
is, for each density function fi, i = 1, . . . , n there is usually only an independent and identically distributed sample
xij ∼ fi, j = 1, . . . ,mi available. Our goal is to develop a Principal Component Analysis (PCA) for densities that can
handle both of these challenges. A PCA for density data is of interest for several reasons. First, resulting estimates are
useful for exploratory analyses to better understand the main modes of variation in density data. Second, the resulting
dimension reduction allows to succinctly describe differences and trends in densities and the corresponding principal
components (PCs) can be used as a parsimonious data-driven basis in subsequent analyses, as common in functional
data analysis (Yao et al., 2005; Chiou and Li, 2007; Scheipl et al., 2015). Third, the reconstructed densities resulting
from the PCA can also be used as improved preprocessing of sparsely sampled density data compared to existing
methods, if subsequent analysis methods need observed or reconstructed density data as input (Scimone et al., 2021;
Maier et al., 2022).

Existing research has primarily addressed one of the two challenges associated with studying densities as functions,
while overlooking the other. Initially, Kneip and Utikal (2001) used functional principal component analysis (FPCA)
in the unbounded space L2 of quadratic integrable functions without considering the density constraints. They did,
however, account for discretely observed data by estimating the covariance surface based on the combined observa-
tions from all densities. In recent years, researchers have directed their attention towards incorporating the intrinsic
geometric constraints in the space of density functions. The following discussion provides an overview of their work.
However, when dealing with discretely observed data, their primary approach has been to estimate the observed dens-
ities through preprocessing steps, such as aggregating the data using histograms or kernel density estimates, and
ignoring the reconstruction uncertainty in the further analysis.

To address the density constraints, several metrics have been considered for the space of probability density functions.
In particular, the Wasserstein distance (Panaretos and Zemel, 2019) for probability measures is widely used, while the
Fisher-Rao metric (Srivastava et al., 2007) imposes a manifold structure on the space of density functions. Although
statistical analysis can be performed directly on manifolds (e.g. geodesic PCA in Wasserstein space (Bigot et al.,
2013)), it is often more convenient to map the densities to a space with a simpler structure, perform statistical analysis
there, and then back-transform the results to the original density space. Various transformations have been considered,
such as the log-hazard and log-quantile density transformations (Petersen and Müller, 2016) for mapping the density
functions to a Hilbert space. In particular, Hron et al. (2016) used the centered log-ratio (clr) transformation to
obtain FPCA for densities. The clr transformation is particularly useful here because it defines a one-to-one mapping
between the squared-log integrable (proper and improper) density functions and the separable Hilbert space L2

0, which
represents the space of square-integrable functions that integrate to zero. This means that the clr transformation also
induces a Hilbert space structure on the space of squared-log integrable (proper and improper) density functions, which
is called Bayes Hilbert space (Egozcue et al., 2006; van den Boogaart et al., 2014).
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This paper develops Functional Principal Component Analysis (FPCA) in the Bayes spaces for the setting where
only samples from the set of densities of interest are available. Our approach utilizes the observed data directly for
calculations instead of estimating the underlying densities beforehand in a two-step approach. Estimating density fi
becomes particularly challenging when dealing with small sample sizes mi in each observation unit. To address this, a
two-step approach is proposed by Qiu et al. (2022) for cases with heterogeneous sample sizes. Firstly, the underlying
process is estimated based on a subsample where each density is densely observed. Then, the remaining densities are
estimated using the process estimated in the first step as a prior. However, this approach is only feasible when there
exists a representative subset of densities that have been densely observed.

The advantage of our approach is its applicability even when all densities are sparsely observed. To achieve this, we
incorporate the observed data of all densities in a maximum likelihood framework, treating the underlying densities
as latent variables. To estimate the model, we utilize the Expectation-Maximization (EM) algorithm (Dempster et al.,
1977). As the expectation step in our framework is not analytically solvable, requiring a Monte Carlo approximation,
we base the estimation of our model on the so-called Monte Carlo Expectation-Maximization (MCEM) adaptation of
the EM algorithm (Wei and Tanner, 1990).

We organize our contributions as follows. First, in Section 2, we introduce the latent density model and develop an
MCEM algorithm suitable for this scenario. Then, in Section 3, we apply our methodology in two different applic-
ations. First, in the context of climate change and changing (extreme) temperatures in particular, we study how the
distribution of maximum temperatures during the summer months in Berlin has evolved over the last 70 years. Second,
we look at the distribution of rental prices in the different districts of Munich. In Section 4, we use a simulation to
demonstrate that our method is particularly effective for analyzing densities when few observations drawn from them
are available. Finally, we conclude the paper with a discussion in Section 5.

2 Principal component analysis (PCA) for densities based on individual samples

We consider densities as elements of the Bayes Hilbert space, which has proven to be a valuable framework for
modeling densities. In order to perform Principal Component Analysis (PCA) in the Bayes Hilbert space, which is
a separable Hilbert space, we employ the Karhunen-Loève decomposition. While PCA was originally developed as
a dimension reduction tool for finite-dimensional data, the Karhunen-Loève decomposition extends this concept to
infinite-dimensional Hilbert spaces (Hsing and Eubank, 2015).

2.1 PCA in Bayes Hilbert spaces

We start with reviewing the structure of the Bayes Hilbert space. For simplicity and as it seems natural in most
applications, we restrict ourselves in this work mainly to densities with respect to the Lebesgue measure λ defined on
a compact interval I ⊂ R although the construction can be done for general measures (van den Boogaart et al., 2014).
In Subsection 2.4, we briefly discuss how the case of compositional data can be treated in a similar way.

Theorem 2.1 (Bayes Hilbert space (Egozcue et al., 2006)). Let B = {f = exp(g)|g ∈ L2(I)} and consider the
equivalence relation f1 ∼ f2 ⇔ ∃α > 0 : f1 = αf2 for f1, f2 ∈ B. Denote by B = B/∼ the set of equivalence
classes [f ] with f ∈ B. Then B equipped with the operations

⊕ (addition) given by the pertubation operator [f1]⊕ [f2] = [f1 · f2] for all [f1], [f2] ∈ B,

⊙ (scalar multiplication) given by the powering operation α⊙ [f ] = [fα] for all [f ] ∈ B, α ∈ R and

⟨·, ·⟩B the scalar product given via ⟨[f1], [f2]⟩B = 1
2|I|
∫
I

∫
I
log
(
f1(x)
f1(y)

)
log
(
f2(x)
f2(y)

)
dx dy for all [f1], [f2] ∈ B

is a separable Hilbert space.
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As a separable Hilbert space the Bayes Hilbert space is isometrically isomorphic to any other infinite dimensional
separable Hilbert space, in particular B is isometrically isomorphic to L2

0, the space of square-integrable functions
integrating to zero, via the centered log-ratio transformation.

Lemma 2.2 (Centered log-ratio transformation). The centered log-ratio (clr) transformation

clr : B → L2
0, [f ] 7→ log(f)− 1

|I|

∫

I

log(f(x))dx (1)

is a bijective isometry with the inverse given via clr−1(g) = [exp(g)] for all g ∈ L2
0.

In particular, the clr transformation is well defined as clr([αf ]) = clr([f ]) for all f ∈ B and α ∈ R. A detailed proof
for Lemma 2.2 can be found in Appendix A.1 (compare with van den Boogaart et al. (2014) for densities on general
measure spaces). This identification of the Bayes space B with L2

0 allows statistical modeling to be performed in L2
0

instead of directly in B, allowing the application of techniques developed for functional data. In particular, Hron et al.
(2016) used this correspondence to introduce PCA in Bayes space, while Scimone et al. (2021) and Maier et al. (2022)
exploit its use for regression purposes.

Similarly, we will achieve a principal component decomposition of observed densities f1, . . . , fn, n ∈ N via con-
sidering them being the back-transforms of realizations g1, . . . , gn of a stochastic process G = {G(x)}x∈I ⊂ L2

0

characterized by its mean function µ(x) = E(G(x)) and covariance kernel K(x1, x2) = Cov(G(x1), G(x2)) for
all x, x1, x2 ∈ I . The Karhunen-Loève decomposition (Karhunen, 1946; Loève, 1946) then yields the functional
principal component representation

G(x) = µ(x) +
∞∑

k=1

Zkφk(x) (2)

where φk, k ∈ N are the orthonormal eigenfunctions of the covariance operator L2
0 → L2

0, g 7→
∫
I
K(x1, ·)g(x1)dx1

associated with the covariance kernel K and uncorrelated principal component scores Zk of decreasing importance,
with E(Zk) = 0 and Var(Zk) = σ2

k the corresponding eigenvalues, σ2
1 ≥ σ2

2 · · · ≥ 0. For more details on this
decomposition for second-order stochastic processes refer to Hsing and Eubank (2015).

For a given sample of (fully observed) functions g1, . . . , gn, n ∈ N the unknown parameters φk, Zk of this process
could then be estimated via computing the eigendecomposition of the sample covariance operator associated with the
sample covariance kernel K̂n(x1, x2) =

1
n

∑n
i=1(gi(x1)− µ̂(x1))(gi(x2)− µ̂(x2)) with µ̂(x) = 1

n

∑n
i=1 gi(x) for all

x, x1, x2 ∈ I . Thus, the eigenfunctions φk could be estimated as the eigenfunctions φ̂k of the sample covariance and
the distribution of Zk as the empirical distribution of the factor loadings zik =

∫
I
(gi(x) − µ̂(x))φ̂kdx, i = 1, . . . , n

for all k = 1, . . . , N where N is the number of non-zero eigenvalues of the sample covariance.

The correspondence of L2
0 and the Bayes Hilbert space via the clr transformation (Lemma 2.2) gives an analog principal

component decomposition to Equation (2) for densities. The process {clr−1(G)(x)}x∈I is given as

clr−1(G)(x) = clr−1(µ)(x)⊕
∞⊕

k=1

exp(Zk)⊙ clr−1(φk)(x) (3)

inheriting the properties of the decomposition of G in L2
0 via the clr transformation (Equation (1)). Namely, we obtain

orthonormal eigenfunctions since ⟨clr−1(φk), clr
−1(φl)⟩B = ⟨φk, φl⟩L2 = 0 for all k ̸= l and ∥φ∥B = ∥φ∥L2 = 1

for all k ∈ N and principal components scores exp(Zk), k ∈ N with Zk ⊥ Zl and E(Zk) = 0 for all k, l ∈ N. If
we additional assume that G is Gaussian, this also implies that the principal component scores exp(Zk), k ∈ N are
independent (and therefore also uncorrelated) and we can compute their expectation as the evaluation of the moment
generating function, i.e. E(exp(Zk)) = exp(0.5σ2

k), where σ2
k = Var(Zk).
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Note that elements in B are equivalence classes with respect to scalar multiplication. As a result, they either possess
a unique representative which is a proper density function, or solely consist of improper densities. In practical ap-
plications, the focus is often on modeling proper density functions. Consequently, it becomes necessary to impose
restrictions on L2

0 accordingly. Specifically, only those functions g ∈ L2
0 that satisfy

∫
I
exp(g(x))dx <∞ are suitable

for representing proper densities. This requirement can be effectively met, for example, by using spline representa-
tions for elements of L2

0 (Machalová et al., 2021; Maier et al., 2022) since the exponential transformation of a spline
is bounded, guaranteeing integrability over I . Furthermore, if we consider a finite set of bounded density functions
f1, . . . , fn, such as those obtained from kernel density estimates or histograms, and apply principal component de-
composition in the Bayes space (3), we are modeling only functions in the span of the data, which are also bounded.
Consequently, in such cases, the eigenfunctions (and any linear combinations of them) are inherently proper densities.

Each equivalence class [f ] in the subset of B constructed such that it contains only proper densities can be uniquely
identified with the element f̃ ∈ [f ] that satisfies

∫
I
f̃(x)dx = 1. To simplify the notation, albeit with a slight misuse,

we will refer to the equivalence class by this particular element, f̃ = [f ] in the following discussion. Hence, if [exp(g)]
contains proper density functions, i.e. if

∫
I
exp(g(x))dx is finite, we denote by

clr−1(g) =
exp(g)∫

I
exp(g(x))dx

(4)

the back-transformed element in B under the inverse clr transformation.

2.2 Likelihood formulation assuming latent densities

We have seen in the previous section that the correspondence of L2
0 and the Bayes Hilbert space via the clr trans-

formation provides a convenient approach for conducting PCA on fully observed densities, since it allows estimation
via first transforming the density functions to the Hilbert space L2 using the clr transformation, and then performing
the principal component decomposition in this well-known function space. This procedure for fully observed density
functions was previously suggested by Hron et al. (2016). However, their approach motivates the so-called simplicial
principal component analysis solely as a maximization problem. In other words, they seek to find the projections of
the observed densities that maximize the variance along their directions. While this leads to the same decomposition
for fully observed density functions when the covariance kernel is estimated using the sample covariance kernel, the
stochastic process perspective becomes especially useful in the more common scenario we have in mind.

We focus on analyzing densities that are neither directly observable nor can be satisfactorily estimated from observed
data as a preprocessing step. Instead, we assume that we have access to samples xi1, . . . , ximi , where mi ∈ N, drawn
from each probability distribution with density fi, where i = 1, . . . , n. Our objective is then to conduct Maximum-
Likelihood estimation for the parameters µ and K of the underlying process G in L2

0 based on these samples. By
estimating these parameters, we can compute the eigenvalues and eigenfunctions of the estimated covariance oper-
ator, which allows us to obtain the principal component decomposition which directly yields the principal component
decomposition in the Bayes space via the inverse clr transformation. To accomplish this, we need to make a distribu-
tional assumption for G. For simplicity, we assume that G follows a Gaussian process with a finite Karhunen-Loève
decomposition. More precisely, we assume the following model.

Definition 2.3 (Latent density model). Let GP (µ,K) be a Gaussian process with mean function µ and covariance
kernel K taking values in a finite dimensional subspace H ⊂ L2

0 consisting of bounded functions. Then we assume
the following data generating process

Xij
i.i.d.∼ clr−1(Gi) =

exp(Gi)∫
I
exp(Gi(x))dx

with Gi being independent replicates of GP (µ,K) for all i = 1, . . . , n, n ∈ N, j = 1, . . . ,mi.
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Assuming a finite dimensional subspace H is not restrictive in practice, where observed data always lies in a finite
dimensional subspace. This assumption allows us to apply maximum likelihood theory, since in this case the para-
meters µ and K of the underlying Gaussian process can be described by a finite set of real-valued parameters and
the likelihood has a similar form as the marginal likelihood of a mixed model. More precisely, we can formulate the
following corollary (proof in Appendix A.2).

Corollary 2.4. For any orthonormal basis e1, . . . , eN ⊂ L2 with H ⊆ span{e1, . . . , eN} we have that G i.i.d.∼
GP (µ,K) is equivalent to G =

∑N
k=1 θkek with θ = (θ1, . . . , θN )T

i.i.d.∼ N (ν,Σ) for µ =
∑N
k=1 νkek and

K(x1, x2) =
∑N
k=1

∑N
l=1 ek(x1)el(x2)Σkl, where Σ = (Σkl)k,l=1,...,N and ν = (ν1, . . . , νN )T .

If v1, . . . ,vN are the eigenvectors of Σ with corresponding eigenvalues σ2
1 , . . . , σ

2
N then φl =

∑N
k=1 vlkek,

l = 1, . . . , N are the eigenfunctions of the covariance operator given by the covariance function K with the same
eigenvalues σ2

1 , . . . , σ
2
N , where vl = (vl1, . . . , vlN ) for all l = 1, . . . , N .

With this equivalence, the latent density model 2.3 can also be written as

Xij
i.i.d.∼ clr−1(Gi) =

exp(Gi)∫
I
exp(Gi(x))dx

with Gi =
N∑

k=1

θikek and θi = (θi1, . . . , θiN )
i.i.d.∼ N (ν,Σ) (5)

and estimation of the parameters µ and K is equivalent to estimation of ν and Σ. Note that we do not assume
span{e1, . . . , eN} = H, we only need to cover H, since for any finite basis {e1, . . . , eN} in L2 the sum to zero
constrain carries over to the parameters ν and Σ. That means if

∫
I
ek(x)dx =

∫
I
el(x)dx for all k, l = 1, . . . , N , one

just needs to ensure that the entries in ν as well as the entries of all eigenvectors v1, . . . ,vN of Σ sum to zero.

Corollary 2.4 also implies that the maximum likelihood estimators will be asymptotically consistent, if model 2.3 is
correctly specified, that is the imageH of the the processG is actually in span{e1, . . . , eN}. An interesting question for
future research is whether in the case of misspecification, in particular when the image spaceH is not finite, a sequence
of finite-dimensional subspaces of L2 can be constructed such that the corresponding estimators are asymptotically
consistent in this case as well.

To estimate the finite dimensional parameters ν and Σ of the latent density model via maximum likelihood, we
need to maximise the likelihood function given the realizations xi = (xi1, . . . , ximi)

T from the random sample
Xi = (Xi1, . . . , Ximi

)T , i = 1, . . . , n. Let Gi =
∑N
k=1 θikek and θi = (θi1, . . . θiN )T for all i = 1, . . . , n. Then

the marginal likelihood for the parameters ν and Σ is given as

L(ν,Σ|x1, . . . ,xn) =

n∏

i=1

∫

RN

exp(
∑mi

j=1

∑N
k=1 θikek(xij))p(θi|ν,Σ)

(∫
I
exp(

∑N
k=1 θikek(x))dx

)mi
dθi. (6)

For a detailed derivation, please refer to Appendix A.3. Maximizing this marginal likelihood can be seen as an
empirical Bayes approach, where the prior for θi is a multivariate normal distribution with mean ν and covariance Σ.
Note that by p we denote a general density function, for example here p(θi|ν,Σ) denotes the density of a multivariate
normal distribution with parameters ν and Σ.

Due to the complicated nature of the likelihood function and the potential abundance of parameters in ν and Σ,
numerical optimization of (6) is challenging. Therefore, in the following section, we use the Monte Carlo Expectation
Maximization (MCEM) algorithm as a numerical method to effectively tackle this maximization problem.

2.3 Model estimation using an MCEM algorithm

The EM algorithm, developed by Dempster et al. (1977), addresses the challenge of maximum likelihood estimation
in the presence of incomplete or missing data. This algorithm provides a framework for estimating the parameters of
statistical models that involve unobserved or latent variables. It iteratively updates parameter estimates by incorporat-
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ing both observed data and estimates of the missing data. In our specific context, we want to use the EM algorithm to
handle latent, unobserved densities f1, . . . , fn, along with observed values x1, . . . ,xn sampled from these densities.
Central to the EM algorithm is the notion of the expected complete-data log-likelihood, which in our case becomes

Q(ν,Σ|ν(h),Σ(h)) = E(log(p(x1, . . . ,xn,θ1 . . . ,θn|ν,Σ)))

= E(log(p(x1, . . . ,xn|θ1 . . . ,θn))) + E(log(p(θ1 . . . ,θn|ν,Σ))) + const.

=
n∑

i=1

E(log(p(θi|ν,Σ))) + const. (7)

where the expectation is taken with respect to the conditional distribution θi|xi,ν(h),Σ(h) of the parameters θi =

(θi1, . . . , θiN )T of the latent densities for all i = 1, . . . , n given the current estimates ν(h) and Σ(h) for ν and
Σ. However, in the given setting, the conditional distribution needed to compute the expectation of the complete-
data log-likelihood is not directly available, making the computation intractable. To address this challenge, Wei and
Tanner (1990) introduce the Monte Carlo Expectation Maximization (MCEM) algorithm, which uses a Monte Carlo
approach to approximate the expected value in Q. Thus, for our particular use case, we need to generate samples
of θi|xi,ν(h),Σ(h) for all i = 1, . . . , n. In the following, we outline the procedure for obtaining these samples
and implementing the MCEM algorithm in our use case. Subsections 2.3.1 and 2.3.2 detail the E- and the M-steps,
respectively, 2.3.3 the selection of model space and initial values, and 2.3.4 summarizes the complete algorithm.

2.3.1 E-step

For all i = 1, . . . , n we approximate the conditional expectation E(log(p(θi|ν,Σ))) where the expectation is taken
with respect to θi|xi,ν(h),Σ(h) using importance sampling, which is a method for estimating properties of a target
distribution by sampling from another, auxiliary distribution. In our case we sample for all i = 1, . . . , n, r replicates of
the parameters θi of the latent densities from an auxiliary distribution with density p∗i (θi) instead of θi|xi,ν(h),Σ(h).
This yields replicates θ(1)

i , . . . ,θ
(r)
i , r ∈ N, and we approximate

E(log(p(θi|ν,Σ))) ≈
r∑

t=1

ωit∑r
t=1 ωit

log(p(θ
(t)
i |ν,Σ)) (8)

with weights ωit, t = 1, . . . , r given as ωit =
p(θ

(t)
i |xi,ν

(h),Σ(h))

p∗i (θ
(t)
i )

for all i = 1, . . . , n. For details on this method and

a comprehensive treatment of several related Monte Carlo methods, see the book by Hammersley and Handscomb
(1964).

The key to this method lies in selecting an appropriate auxiliary distribution. To achieve this, we use the eigen
decompostion of Σ(h) with sorted eigenvalues σ2

1
(h) ≥ · · · ≥ σ2

N
(h) and corresponding eigenvectors v(h)

1 , . . . ,v
(h)
N .

Then θi ∼ N (ν(h),Σ(h)) is equivalent to zi = V (h)(θi − ν(h)) ∼ N (0, diag(σ2
1
(h)
, . . . , σ2

N
(h)

)), where V (h) =

(v
(h)
1 , . . . ,v

(h)
N ) is a matrix whose columns are the eigenvectors of Σ(h). Thus sampling from θi|xi,ν(h),Σ(h) is

equivalent to sampling from the conditional distribution of the scores zi = (zi1, . . . , ziN ) given as

7
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p(zi|xi,ν(h),Σ(h)) ∝ p(xi|zi,ν(h),Σ(h))p(zi|Σ(h)) = p(xi|θi = V (h)T zi + ν(h))
N∏

k=1

p(zik|σ2
k
(h)

)

=

mi∏

j=1

clr−1

(
N∑

k=1

ν
(h)
k ek + zTi v

(h)
k ek

)
(xij)

N∏

k=1

p(zik|σ2
k
(h)

)

=
exp

(∑mi

j=1

(
µ(h)(xij) +

∑N
k=1 z

T
i v

(h)
k ek(xij)

))

(∫
I
exp

(
µ(h)(x) +

∑N
k=1 z

T
i v

(h)
k ek(x)

)
dx
)mi

N∏

k=1

p(zik|σ2
k
(h)

) (9)

where zik|σ2
k
(h) ∼ N (0, σ2

k
(h)

) for all i = 1, . . . , n and k = 1, . . . , N . Here, µ(h) =
∑N
k=1 ν

(h)
k ek is the current

estimate for the mean function and gi = µ(h)+
∑N
k=1 z

T
i v

(h)
k ek, i = 1, . . . , n are the current predictions for the latent

clr transformed densities. Here we again take the Bayesian perspective, where p(zi|xi,ν(h),Σ(h)) is the posterior
distribution for the prior N (ν(h),Σ(h)). Note that this posterior is a proper distribution if the prior N (ν(h),Σ(h)) is
proper, that is if all eigenvalues of Σ(h) are finite.

Lemma 2.5. Let σ2
1
(h)

<∞. Then
∫
RN p(zi|xi,ν(h),Σ(h))dzi <∞ for all i.

A proof for this statement can be found in Appendix A.4. This also implies that p(zi|xi,ν(h),Σ(h)) is decreasing as
∥zi∥ → ∞ and since it is also continuous, it attains its mode z∗i ∈ Rn. This is not necessarily the case ifN (ν(h),Σ(h))

is improper (see Appendix A.5 for a counterexample).

Since we assume here that the prior distribution N (ν(h),Σ(h)) is proper, the mode of the posterior distribution
z∗i = argmaxzi∈RN p(zi|xi,ν(h),Σ(h)) is attained. Hence we can choose a multivariate normal distribution centered
around the mode as an auxiliary distribution for the scores zi. We further choose the variances to be proportional to the
prior variances σ2

1
(h)
, . . . , σ2

N
(h). This means that for a tuning parameter λ > 0, we choose the auxiliary distribution

p∗i (zi) to be N (z∗
i , λdiag(σ2

1
(h)
, . . . , σ2

N
(h)

)). Usually we set λ = 1, but if one wants to explore the parameter space
for z more or less, one can also set λ larger or smaller. Consequently, once we compute the mode z∗i , sampling from
the auxiliary distribution p∗i reduces to independently sampling each element of the vector zi from a univariate normal
distribution. To numerically compute the mode, i.e., the maximizer of (9) with respect to zi, it is useful to derive the
gradient of its log transformation to apply a gradient descent algorithm.

Lemma 2.6. The gradient of the log conditional density of the scores RN → R, zi 7→ log(p(zi|xi,ν(h),Σ(h))) is
given as

∇ log(p(zi|xi,ν(h),Σ(h))) =

N∑

k=1

v
(h)
k




mi∑

j=1

ek(xij)−mi⟨fzi , ek⟩L2


−

(
zil

σ2
l
(h)

)

l=1,...,N

where fzi
= clr−1

(
µ(h) +

∑N
k=1 z

T
i v

(h)
k ek

)
for all zi = (zi1, . . . , ziN )T ∈ RN .

A detailed derivation can be found in Appendix A.6. With this readily available gradient, finding the mode becomes
numerically feasible and we can obtain i.i.d. samples for the scores zit and corresponding weights ωit ∈ N for all
t = 1, . . . , r using the importance sampling described above.

The equivalence of conditionally sampling θi or zi also yields samples θ(t)
i from θi|xi,ν(h),Σ(h) for all t = 1, . . . , r

via θ
(t)
i = ν(h) + V (h)T zit. Hence, we approximate the expected complete-data log-likelihood given in (7) by

Q(ν,Σ|ν(h),Σ(h)) ≈
n∑

i=1

r∑

t=1

ωit∑r
t=1 ωit

log(p(θ
(t)
i |ν,Σ)) + const. (10)

using the Monte-Carlo approximation given in (8) for the conditional expectation.
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2.3.2 M-step

The M-step updates the parameters ν and Σ by maximizing this approximation (10) of the Q-function. The new
estimates are then given by

(
ν(h+1),Σ(h+1)

)
= argmaxν,ΣQ(ν,Σ|ν(h),Σ(h)) ≈ argmaxν,Σ

n∑

i=1

r∑

t=1

ωit∑r
t=1 ωit

log(p(θ
(t)
i |ν,Σ)).

Since for the latent density model (5) we assume that θ(t)
i |ν,Σ follows a multivariate normal distribution with mean ν

and covariance matrix Σ, this optimization problem corresponds to a weighted maximum likelihood estimation of the
mean and the covariance matrix. Remarkably, this maximization problem also arises when the EM algorithm is used
to estimate a Gaussian mixture distribution, allowing us to derive the solution based on the computations performed
for this problem (e.g. Bishop and Nasrabadi, 2006). Hence, we compute the updates for the parameters of our model
as

ν(h+1) =
1∑n

i=1

∑r
t=1 ωit

n∑

i=1

r∑

t=1

ωitθ
(t)
i

Σ(h+1) =
1∑n

i=1

∑r
t=1 ωit

n∑

i=1

r∑

t=1

ωit(θ
(t)
i − ν(h+1))(θ

(t)
i − ν(h+1))T .

These are the weighted mean and weighted covariance matrix of the samples of the principal component scores θ(t)
i ,

i = 1, . . . , n, t = 1, . . . , r.

2.3.3 Selection of model space and initial values

In order to apply our method to real-world problems, we first need to find a suitable model space as well as suitable
initial values for the MCEM algorithm. We suggest using piecewise constant spline functions for modeling. Since the
piecewise constant functions are dense in L2, they allow us to approximate any function in L2

0, and thus any density
in B, with arbitrary accuracy if the nodes are chosen to be on a fine grid. Therefore, we fix a fine grid for the knots
κ1, . . . , κN+1 and choose as a basis the indicator functions which are one between two neighboring knots and zero
elsewhere. That is ek = 1[κk,κk+1] for all k = 1, . . . , N .

To obtain suitable initial values for ν(0) and Σ(0), we propose to first estimate the latent densities f̂1, . . . , f̂n by kernel
density estimation. We then develop their clr transformations ĝ1, . . . , ĝn in our basis e1, . . . , eN . Subsequently, we
estimate ν(0) and Σ(0) as the empirical mean and covariance of the coefficients θ1 . . . ,θn of ĝ1, . . . , ĝn, respectively.
This approach effectively restricts the model space to the span of the kernel density estimates. This could be a problem,
for example, if only a small sample of densities is available, or if the kernel density estimates are close to zero in some
parts of the support.

In this case, an alternative would be to initially select a lower dimensional, smooth spline space for modeling. If we
choose an orthonormal basis e1, . . . , eN ∈ L2

0, such as normalized versions of the orthogonal compositional splines
suggested by Machalová et al. (2021), we can choose arbitrary values for the initial mean and covariance of the
coefficients, for instance, ν(0) = 0 ∈ RN and Σ(0) = IN ∈ RN×N , the identity matrix.

On the other hand, when the number of densities n is large, which results also in a N = n basis functions by the
procedure given above, not only does computing the mode become a high-dimensional optimization problem, which
is computationally demanding, also calculating the weights ωit becomes unstable as in this case typically many of the
variances σ2

k
(h) will be very small, thus the product

∏N
k=1 p(zk|σ2

k
(h)

) will be close to zero. In this case, we suggest
reducing the dimensionality of GP (µ̂(h), K̂(h)) in each step h by setting the variances σ2

k
(h)

= 0 for k > N ′, where

9
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N ′ is a chosen value such that N ′ ≪ N . The specific value of N ′ can be determined based on the desired proportion
of variance explained, while the proportion of variance explained should be considerably greater than desired for the
final PCA.

2.3.4 Estimation of the density PCA using the MCEM algorithm

Subsections 2.3.1-2.3.3 derived all necessary ingredients to now use the MCEM algorithm to estimate the PCA. First,
we initialize ν(0) and Σ(0) according to 2.3.3. Then we iterate the following two steps until the convergence criteria
∥ν(h+1) − ν(h)∥L2 < ϵ and ∥Σ(h+1) −Σ(h)∥L2 < ϵ for a threshold ϵ > 0 are reached.

- E-step following 2.3.1,

- M-step following 2.3.2.

Estimates at convergence then approximate the maximum likelihood estimates of the observed data likelihood, that is
ν̂ ≈ ν(h+1) and Σ̂ ≈ Σ(h+1) . Finally, the equivalence given in Corollary 2.4 yields estimates for µ, φk and σ2

k in
(2) using the eigendecomposition of Σ̂, where v̂1, . . . , v̂N are the eigenvectors of Σ with corresponding eigenvalues
σ̂2
1 , . . . , σ̂

2
N . Then, the estimate for the mean is obtained as µ̂ =

∑N
k=1 ν̂kek, where ν̂ = (ν̂1, . . . , ν̂N )T . The

estimates for the eigenfunctions are given as φ̂l =
∑N
k=1 v̂lkek, where v̂l = (v̂l1, . . . , v̂lN ) for all l = 1, . . . , N with

corresponding eigenvalues σ̂2
1 , . . . , σ̂

2
N .

The scores Zik, k = 1, . . . , N for each density fi, i = 1, . . . , n are then predicted as the posterior mode given the
estimates ν̂ for the mean and Σ̂ for the covariance of the coefficients, that is ẑi = argmaxzi∈RN p(zi|xi, ν̂, Σ̂) with
ẑi = (ẑi1, . . . ẑiN ). This also yields predictions for the latent densities as f̂i = clr−1(ĝi) with ĝi = µ̂+

∑N
k=1 ẑikφ̂k

for all i = 1, . . . , n.

2.4 PCA for compositional data as a special case

Although we have limited our considerations so far to densities with respect to the Lebesgue measure, it’s important
to recognize that our methodology can be seamlessly extended to densities with respect to arbitrary measures. In the
following, we illustrate this via showing how our approach can be used to derive Principal Component Analysis (PCA)
for compositional data, namely densities with respect to the discrete measure. Notably, our method has the advantage
of being applicable to “sparsely observed” compositional data, known as count compositions in the compositional data
literature (Filzmoser et al., 2018), even when some of the categories have no observations and without imputations.

The discrete measure on the power set P({A1, . . . , Ak}) of a finite set of disjoint outcomes A1, . . . , Ak is given as
η =

∑N
k=1 δAk

, where δAk
(B) = 1, if B = Ak and δAk

(B) = 0 else, for all B ∈ P({A1, . . . , Ak}). Hence,
every probability measure on P({A1, . . . , Ak}) is given by a discrete density, i.e. probability mass function f :

{A1, . . . , Ak} → R with respect to η by the Radon-Nikodym Theorem. Here, the density f is characterized solely
by the values πk = f(Ak) for all k = 1, . . . , N , and since we consider only probability measures, it must hold that∑N
k=1 πk = 1. That means B, the set of densities with respect to the discrete measure on P({A1, . . . , Ak}) can be

identified with the simplex {π ∈ RN |∑N
k=1 πk = 1, πk ≥ 0 ∀k = 1, . . . , N} and via the discrete centered log-

ratio transformation ρ = clr(π) = (log(π1) − 1
N

∑N
k=1 log(πk), . . . , log(πN ) − 1

N

∑N
k=1 log(πk)) with the N − 1

dimensional Hilbert space H = RN0 = {ρ ∈ RN |∑N
k=1 ρk = 0} (Aitchison, 1982). If we equip this space with the

standard scalar product on RN , we obtain the Aitchison geometry on B, which defines a Hilbert space structure for
compositional data, i.e. for densities with respect to the discrete measure.

In order to use our method to perform principal component analysis for observed count compositions π1, . . . ,πn,
we need to find a suitable basis representation of H, as well as appropriate initial values for the mean and covariance
of the corresponding basis coefficients. For densities with respect to the discrete measure, kernel density estimation
cannot be employed due to the usual lack of an order relation and thus neighborhood structure to smooth over. We
therefore rely on the alternative described in Subsubsection 2.3.3 and use an orthonormal basis ofH = RN0 .

10
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There are many options since an orthonormal basis can be obtained from any basis of RN0 using Gram-Schmidt
orthogonalization. For example, Egozcue et al. (2003) suggest to use the following such basis

ek =

√
k

k + 1
(

k times︷ ︸︸ ︷
k−1, . . . , k−1,−1, 0, . . . , 0)T

with k = 1, . . . , N as an orthonormal basis of RN0 , which yields an orthonormal basis ofB via the inverse clr transform.
With this basis choice we propose to set ν(0) = 0 ∈ RN−1 and Σ(0) = IN ∈ R(N−1)×(N−1) as initial values for
the mean and covariance of the basis coefficients and proceed with the MCEM algorithm as in the continuous case
described above.

3 Applications

In this section, we demonstrate the applicability and advantages of our latent density-based PCA. We consider two
different applications. In the first application, we analyze densities describing distributions of summer daily maximum
temperatures in Berlin. In the second application, the latent densities describe the distribution of rental prices for each
district in Munich.

3.1 Distributions of daily maximum temperature in summer months per year

According to the Copernicus Climate Change Service (C3S) report (https://climate.copernicus.eu/esotc/
2022/temperature), 2022 was the second warmest year on record in Europe, with temperatures 0.9°C above the
long-term average. In particular, the summer of that year set a new mark as the hottest on record, with temperatures
1.4°C above average, topping the previous warmest summer in 2021 by 0.3°C.

These findings are consistent with the observed trend of increasing temperatures, an indicator of climate change. To
refine the analysis of summer temperature trends, we focus not on average temperatures, but on trends in the entire
distribution of daily maximum temperatures during the summer months of June, July, and August each year. That is,
we consider as observational units densities that describe the distributions of daily maximum temperatures in summer.
Thus, for every year, we treat the daily maximum temperature measured for the 92 days in June, July, and August
as observations from these densities per year. The daily maximum temperature data we use in this application have
been collected from 1951 to 2022 at a single weather observatory, which is Berlin Tempelhof. Data and metadata are
available at https://www.ecad.eu, provided by the ECA&D project (Klein Tank et al., 2002).

To visualize and describe how the distribution of daily maximum temperature has changed over the period from 1951
to 2022, we proceed as follows. First, we obtain a low-dimensional representation of the latent daily maximum
temperature densities using our latent density PCA and with kernel density estimates as initial estimates (Figure 6 in
the appendix) For technical details of the estimation please refer to Appendix B.1). Then, in Figure 1, we visualize
the first four principal components on clr level (top row), and transformed back to density level (middle row). In the
bottom row, we plot the temporal trend of the corresponding predicted scores, overlaying a scatterplot smoother and
pointwise confidence bands based on Wood (2017).

This shows that adding a multiple of the first principal component, which explains 40% of the total variability in latent
densities, to the estimated mean mainly causes a rightward shift of the density. In particular, a positive value of the first
principal component implies that high temperatures are more likely than in average years. Looking at the effect on clr
level, we notice that this is especially true for temperatures above 35°C, which are more likely to occur in years with
high first principal component scores. Notably, these first principal component scores show a clear increase over the
time course from 1951 to 2022 (Figure 1, bottom left), meaning that hot and also very hot daily maximal temperatures
in summer became more likely.
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Figure 1: Latent density PCA for daily maximum temperature (°C). Top: Effect of adding/subtracting σ̂kφ̂k to the
clr transformed mean density µ, where φ̂k is the kth principal component, with corresponding eigenvalue σ̂2

k, k =

1, 2, 3, 4. Middle: Effect on the density level, i.e. clr−1 transformations of the functions in the top row. Bottom:
Temporal trend of the corresponding predicted scores per year, with scatterplot smoother and pointwise confidence
bands overlaid.

In contrast, the scores associated with the second and fourth principal components show no or almost no visible
temporal trend. Adding these principal components to the estimated mean results in smaller changes in the shape
of the density, with subtler shifts to the right in certain areas of the density. However, adding the third principal
component to the estimated mean shifts the density towards experiencing moderate to hot temperatures (25°C-35°C)
more frequently, while decreasing the likelihood of milder temperatures (15°C-25°C). The scores associated with this
third principal component also show an increase over time.

This means that the trends of both the first and third principal component scores indicate that hot and very hot days are
becoming more likely. When we plot both scores together (Figure 2) we see that all early years, corresponding to (dark)
blue points, tend to lie in the bottom left corner, while recent years (yellow and orange points) are predominantly in the
top right corner. Thus, recent years have high first principal component scores and/or high third principal component
scores, which means the likelihood for hot and/or very hot days has been higher in these years than in earlier years.

This application shows that the estimation of the latent density model (5) is suitable for identifying a small number of
principal directions of variation in the data for densities when only discrete observations of each density are available.
These principal components can then be used to visualize the data and/or for further analysis, such as to relate them to
other scalar variables (in our case, the year of observation).

However, in this homogeneous and only mildly sparse setting with 92 observations per density, differences to the
simpler two-step approach with pre-smoothing (our starting values), a PCA obtained from the clr transformations of the
kernel density estimates (see Figure 7), are relatively small. One notable difference, though, is that in the latent density
model, the trend of the score associated with the first principal component changes more rapidly around 1990, with a
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Figure 2: Scores associated with the first and third principal components for all years.

steeper increase since that time, than that of the first principal component scores obtained in the two-step approach.
The trend in the third PC score is somewhat more pronounced as well, which may be due to unstable kernel density
estimates in areas where the densities are close to zero. In contrast to this first application, our second application has
more heterogeneous sample sizes and we will observe how this unbalanced setting affects the estimation.

3.2 Distributions of rental prices in the districts of Munich

We consider data that was collected in Munich in 2019 (the most recent year) to construct an official rent index by
estimating the rent given certain covariates of the apartments in a regression model. For details on the data collection,
the available variables, estimation and interpretation of the rent index, see (Windmann and Kauermann, 2019, in
German). A sub-dataset, which contains data on all 3255 apartments but only a subset of the covariates used for the
official Munich rent index, is provided in the supplemental material of Fahrmeir et al. (2023) and is also used here.

The goal of the analysis here is to describe the differences in the distributions of rental prices across the districts of
Munich. To do this, we model the distribution of net rents per square meter, assuming a latent density for each district.
Figure 8 in Appendix B.2 displays the histogram estimates and kernel density estimates (Gaussian kernel, bandwidth =
2) for the densities in each district. Table 1 shows that the number of observations mi, i = 1, . . . , 25 per district varies
considerably in this dataset. It ranges from 29 observations in district 23-Allach-Untermenzing to 261 observations
in district 9-Neuhausen-Nymphenburg. Below, we will compare the estimation of our latent density model (5) for
this heterogeneous sampling scheme to a two-step approach, where the densities are first estimated and then PCA is
performed.

district i name mi

1 Altstadt-Lehel 79
2 Ludwigsvorstadt-Isarvorstadt 217
3 Maxvorstadt 219
4 Schwabing-West 241
5 Au-Haidhausen 230
6 Sendling 136
7 Sendling-Westpark 95
8 Schwanthalerhöhe 110
9 Neuhausen-Nymphenburg 261

10 Moosach 81
11 Milbertshofen-Am Hart 101
12 Schwabing-Freimann 198
13 Bogenhausen 165

district i name mi

14 Berg am Laim 75
15 Trudering-Riem 92
16 Ramersdorf-Perlach 111
17 Obergiesing-Fasangarten 125
18 Untergiesing-Harlaching 151
19 Thalkirchen-Obersendling-

Forstenried-Fürstenried-Solln
160

20 Hadern 64
21 Pasing-Obermenzing 107
22 Aubing-Lochhausen-Langwied 35
23 Allach-Untermenzing 29
24 Feldmoching-Hasenbergl 38
25 Laim 135

Table 1: Munich districts: number i, name and number of observations per distric mi
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We first consider in Figure 3a the results of estimating the latent density model with kernel density estimates as initial
estimates. Details for the estimation can be found in Appendix B.2. In this model, the first principal component causes
a shift towards more expensive apartments, and looking at the effect on clr level, we see that this principal component
also primarily describes whether the occurrence of very expensive apartments (more than 25C per square meter) is
likely. Looking at which districts have a positive score for the first principal component, we see that these districts are
mainly in the city center and correspond closely to the districts that have an increasing influence on the expected net
rent in the regression model estimated in Fahrmeir et al. (2023).

The second principal component describes the presence of very cheap and expensive apartments. However, this
principal component has only a small influence on the shape of the rent per square meter density. In the latent density
model the variance of the principal components, and thus their importance, is measured at the clr level. Since in this
case the largest effect is on parts of the clr transformed densities with negative values, the multiplicative effect on the
actual densities is in parts where the density is close to zero and thus the effect, corresponding to heavier tails, is hardly
visible. It is therefore not surprising that the spatial distribution of the corresponding scores has little structure, since
the second principal component describes the occurrence of a few extreme observations in the districts.

The effect of the third principal component on the densities appears to be larger than the effect of the second principal
component, although the variability explained is smaller, as it affects areas around the mode of the distribution. For this
component, a negative score mostly describes a larger share of affordable housing (5C to 10C per square meter). These
negative scores are mainly predicted for districts in the south of Munich, i.e. 6-Sendling and neighboring districts.

Comparing the effects of the first three principal components estimated with the latent density model with the estimates
obtained using a two-step approach based on pre-smoothing with kernel density estimates (Gaussian kernel, bandwidth
= 2), we see that the estimates differ considerably. In particular, for the two-step approach, the main variation in the
scores is caused by density estimates of districts with only a small number of observations mi. That is, the most
extreme scores are estimated for district 22 with m22 = 35, district 23 with m23 = 29, and district 24 with m24 = 38,
for the first three principal components, respectively. These districts benefit from the shrinkage effect of the latent
density model, which divides the total variance into a part which is due to the underlying stochastic process for the
latent densities and a part due to sampling from them. This shrinkage causes the predictions for the densities in these
districts to be closer to the overall mean. Note also that the percentages of variance explained for the PCs shown in
figures 3a and 3b, respectively, are correspondingly relative to different total variances.

Figure 8 in the appendix shows that for these densities, the latent density predictions appear more plausible than the
kernel density estimates, especially in areas where there are few observations, i.e. for very cheap or expensive housing.
However, nearly all predicted densities appear to better reflect the underlying data using our approach, as the kernel
density estimates generally underestimate the modes. The reason for this behavior is that we had to choose a relatively
large bandwidth for the kernels to avoid estimating close to zero densities in other parts of the domain, especially for
small samples. While we use the same kernel density estimates for our approach as starting values, the influence of
such problems and the choice of the bandwidth in general is much smaller due to the later updates of the model. In
order to systematically investigate the influence of the number of observations per density on the model estimation, a
simulation is carried out in the following subsection.

4 Simulation

This subsection aims to evaluate how well our latent density model can recover the mean and covariance structure of
the latent process for a varying number of observations per density, ranging from very few observations to a moderate
number. We also compare the performance of the model with two-step approaches, where the density estimates are
obtained first, and then the PCA is performed after applying the clr transformation to each density. This corresponds to
the simplicial PCA proposed by Hron et al. (2016). For the first comparison, we obtain kernel density estimates with
a Gaussian kernel and then perform PCA on the clr transformed densities, which is also used as the initial estimate
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(a) PCA based on the latent density model.
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(b) Two-step approach using kernel density estimates and then applying PCA after clr transformation.

Figure 3: Comparison of the latent density model with a two-step approach using kernel density estimates as prepro-
cessing on the Munich rent dataset. For each method, the first row shows the effect of adding a principal component
times the corresponding standard deviation to the mean on clr level, the second row shows the same effect on density
level, and the third row shows a map of Munich districts, where the color represents the predicted scores.
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for our method. Second, we use a compositional spline estimate for the clr transformed densities, as suggested by
Machalová et al. (2021), before performing the PCA.

To this end we choose the following simulation setting. In each simulation run we simulate n = 30 densities on
the interval I = [0, 1] from a Gaussian process with true clr transformed mean function µ(x) = −20(x − 1

2 )
2 + 5

3

and only two principal components. These are given on clr level as g1(x) = 1
5 sin(10(x − 1

2 )) with corresponding
factor Z1 ∼ N (0, 0.5) and g2(x) = 1

10 cos(2π(x − 1
2 )) with corresponding factor Z2 ∼ N (0, 0.2). Note that these

functions satisfy µ, g1, g2 ∈ L2
0 and g1 ⊥ g2. The samples for the densities fi, i = 1, . . . , 30 are then obtained as

fi = clr−1(µ+ zi1g1+ zi2g2) where zi1
i.i.d.∼ Z1 and zi2

i.i.d.∼ Z2. The resulting densities are shown in Figure 5 in the
top row on the left for a simulation run with mi = 40. Finally, we sample observations xij

i.i.d∼ fi with j = 1, . . . ,mi

from each density fi, i = 1, . . . , n. For the number of observations per density we consider mi ∈ {20, 40, 80, 160}
and repeat the simulation 100 times for each mi.

For the two-step approaches we then estimate the densities, either with kernel density estimates using Gaussian kernels
with bandwidths 0.12, 0.09, 0.08, 0.07 for the different setting with mi = 20, 40, 80, 160, respectively, or using cubic
compositional splines with five knots. The kernel density estimates are also used as initial estimates for our latent
density model. The number of Monte Carlo samples in the E step 2.3.1 is chosen to be r = 10h, where h is the
iteration index, i.e., the number of samples increases over the iterations. The parameter λ for the proposal density is
set to 1. In each iteration, the dimension reduction is at most 0.0001, i.e. we keep as many principal components as
necessary to explain at least 99.999 % of the variance.

The performance of the different methods is evaluated as the distance to the oracle estimates, that are the pointwise
estimates of the mean and the covariance function based on the true underlying densities f1, . . . , fn (Figure 4) eval-
uated on a equidistant grid with 200 grid points. More precisely, we compute the distance of the mean estimates as√∫ 1

0
(µ̃(x)− µ̂(x))2dx, where µ̃ is the oracle estimate for the mean and µ̂ is the estimate of each method. Analog-

ously, the distance of the covariance functions is obtained as
√∫ 1

0

∫ 1

0
(C̃(x1, x2)− Ĉ(x1, x2))2dx1dx2, where C̃ is

the oracle estimate for the covariance and Ĉ is the estimate of each method.
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Figure 4: L2 distance of the estimated mean and covariance functions for each method to the oracle estimates based
on the true underlying densities f1, . . . , fn.

As expected, the performance of all three methods improves as the number of observations per density increases.
Still, over all values of mi ∈ {20, 40, 80, 160}, and for both the mean and the covariance function, our latent density
model has the smallest average distance to the oracle estimate over the 100 replicates. This shows that our method
outperforms both two-step approaches in this scenario. However, when comparing the two-step approaches, it is worth
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noting that kernel density estimates seem to be better for estimating the mean, while compositional splines excel at
capturing the covariance structure. For a more concrete picture of how the mean and covariance estimates for the three
methods behave relative to the oracle estimate, Figure 5 shows each for an example with mi = 40 observations per
density.

oracle latent density two−step,
kernel density

two−step,
compositional spline
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Figure 5: One randomly selected simulation run with mi = 40 observations per density. Here ’oracle’ refers to
estimation based on the true underlying densities. Top: Density estimates/predictions. Middle: Mean and first two
principal components. Bottom: Estimated covariance structure.

In this example, the estimates for the mean function, the first two principal components, and the covariance function
of the latent density model (second column) appear similar to the corresponding oracle estimates (first column). Also,
the pattern of predicted latent densities (first row, third column) is similar to the pattern of true underlying densities.
For the two-step approach based on kernel density estimates (third row), the modes of the estimated densities appear
to be too low, and although the mean has a similar shape as the oracle mean, the first two principal components, as
well as the covariance function, differ substantially from the oracle estimates.

The compositional splines used for the two-stage approach in the fourth row appear to behave similarly to the true
densities near the center of the observed interval (in≈ [0.2, 0.8]), but show implausible characteristics near the bound-
ary, i.e., near 0 and 1. This is also evident in the estimates for the mean and the first two principal components.
Similarly, the estimate for the covariance function seems to be close to the oracle estimate in the center of the I × I
domain, but not at the boundaries.
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5 Discussion

We have proposed improvements to existing PCA methods for densities in the Bayes Hilbert space, by explicitly
incorporating in a maximum likelihood approach that there are usually only discrete samples of the densities available.
This differs from two-step approaches, where the densities are first estimated in a preprocessing step and then PCA is
performed for these estimates in the Bayes Hilbert space, ignoring uncertainty arising from the first density estimation
step. We confirmed in applications and in a simulation that our latent density model can be successfully estimated
employing an MCEM algorithm, and that the estimation of the mean and covariance structure for the densities is
superior to the estimation using two-step approaches. While improvements are particularly pronounced for small
samples per density, differences persist even for moderately large samples.

Consequently, resulting estimates for the principal components using our approach are better suited for understanding
the variation in the underlying densities, and the predicted scores can be better used for dimension reduction and
for further analyses, such as to describe differences and trends in the densities. In addition, given the importance of
principal components for dimension reduction in functional data analysis (Ramsay and Silverman, 2005; Chiou and
Li, 2007), the principal components could also be used as the basis for further subsequent functional data analysis
methods, such as as a basis in which to expand model terms in a functional regression model (as for example in Yao
et al., 2005; Scheipl et al., 2015; Volkmann et al., 2023) in the Bayes Hilbert space. Finally, the predicted latent
densities could also be used for subsequent analysis, providing more reliable reconstructions of the underlying true
densities than the density estimates obtained using preprocessing with kernel density estimation or compositional
splines.

To allow maximum likelihood estimation of the principal components, we assume a normal distribution of the scores,
i.e. a Gaussian process (prior) for the latent densities, as common in many statistical methods ranging from mixed
models (Guo, 2002) to Gaussian process regression (Rasmussen and Williams, 2005). This distributional assumption
may be too restrictive in some applications, however, in such cases leading to unjustified shrinkage of the latent
densities. In future research, it would thus be appealing to extend our approach further by including a choice of
different distributions for the scores in the latent density model, e.g. to account for heavy tails.

In this paper, our primary focus was on continuous densities with respect to the Lebesgue measure on a bounded
interval. Furthermore, we provided a brief outline of a potential extension to discrete measures, which incorporates
compositional data. In addition to an application of our model to the compositional data case often encountered in
practical data scenarios, an interesting direction for future research would be a generalization of the approach and
implementation to other measures. This could include mixed discrete and continuous measures as in Maier et al.
(2022), the inclusion of unbounded domains as well as the multivariate case.
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A Proofs and Computations

A.1 Proof of Lemma 2.2

Proof. The clr transformation is well defined as
∣∣∣∣
∫

I

log(f(x))dx

∣∣∣∣ ≤ |I| ∥log(f)∥L2 <∞,

due to the Cauchy-Schwarz inequality and log(f) ∈ L2. We further compute

clr([αf ]) = log(αf)− 1

|I|

∫

I

log(αf(x))dx

= log(α) + log(f)− 1

|I|

∫

I

log(α) + log(f(x))dx

= log(f)− 1

|I|

∫

I

log(f(x))dx = clr([f ])

for all α ∈ R and f ∈ B. Since clr−1 is clearly well defined as well, we show that clr is bijective via showing

clr(clr−1(g)) = clr([exp(g)]) = g − 1

|I|

∫

I

g(x)dx = g

for all g ∈ L2
0, and

clr−1(clr(f)) =

[
exp

(
log(f)− 1

|I| log(f(x))dx
)]

=

[
f exp

(
− 1

|I| log(f(x))dx
)]

= [f ]

for all f ∈ B. The clr transformation is also an isometry as for all g1, g2 ∈ L2
0 holds

⟨[clr−1(g1)], [clr
−1(g2)]⟩B =

1

2|I|

∫

I

∫

I

log

(
exp(g1(x))

exp(g1(y))

)
log

(
exp(g2(x))

exp(g2(y))

)
dx dy

=
1

2|I|

∫

I

∫

I

(g1(x)− g1(y)) (g2(x)− g2(y)) dx dy

=
1

2|I|

∫

I

∫

I

(g1(x)g2(x)− g1(y)g2(x)− g1(x)g2(y) + g1(y)g2(y)) dx dy

=
1

2

∫

I

g1(x)g2(x)dx−
1

2|I|

∫

I

g1(y)dy

∫

I

g2(x)dx−
1

2|I|

∫

I

g1(x)dx

∫

I

g2(y)dy

+
1

2

∫

I

g1(y)g2(y)dy

=

∫

I

g1(x)g2(x)dx = ⟨g1, g2⟩L2

since
∫
I
g1(x)dx =

∫
I
g2(x)dx = 0.
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A.2 Proof of Corollary 2.4

Proof. It is trivial to see that if G =
∑N
k=1 θkek with θ

i.i.d.∼ N (ν,Σ), then G i.i.d.∼ GP (µ,K) with µ =
∑N
k=1 νkek

and K(x1, x2) =
∑N
k=1

∑N
l=1 ek(x1)el(x2)Σkl since

E(G(x)) = E

(
N∑

k=1

θkek(x)

)
=

N∑

k=1

νkek and

Cov(G(x1), G(x2)) = Cov

(
N∑

k=1

θkek(x1),
N∑

l=1

θlel(x2)

)
=

N∑

k=1

N∑

l=1

ek(x1)el(x2)Cov(θk, θl)

=
N∑

k=1

N∑

l=1

ek(x1)el(x2)Σkl. (11)

The other direction is an implication of the Karhunen-Loève decomposition. If H is N ′-dimensional, G i.i.d.∼
GP (µ,K) can be decomposed asG = µ+

∑N ′

k=1 Zkφk with φk, k = 1, . . . , N ′ being the orthonormal eigenfunctions
and uncorrelated scores Zk with E(Zk) = 0 and Var(Zk) = σ2

k.

Choose νk = ⟨µ, ek⟩L2 to be the orthonormal projection on ek and Σkl =
∑N ′

j=1 σ
2
j ⟨φj , ek⟩L2⟨φj , el⟩L2 for all

k, l = 1, . . . , N . Then we compute

N∑

k=1

νkek =

N∑

k=1

⟨µ, ek⟩L2ek = µ,

since this gives the orthogonal projection of µ on span{e1, . . . , eN} and µ ∈ H ⊆ span{e1, . . . , eN} . We further
compute using the same identity

Cov(G(x1), G(x2)) = Cov




N ′∑

k=1

Zkφk(x1),

N ′∑

l=1

Zlφl(x2)


 =

N ′∑

k=1

N ′∑

l=1

φk(x1)φl(x2)Cov(Zk, Zl)

=
N ′∑

k=1

σ2
kφk(x1)φk(x2)

which is identical to

N∑

k=1

N∑

l=1

ek(x1)el(x2)Σkl =
N∑

k=1

ek(x1)
N∑

l=1

el(x2)
N ′∑

j=1

σ2
j ⟨φj , ek⟩L2

⟨φj , el⟩L2

=
N ′∑

j=1

σ2
j

N∑

k=1

ek(x1)⟨φj , ek⟩L2

N∑

l=1

el(x2)⟨φj , el⟩L2

=
N ′∑

j=1

σ2
jφj(x1)φj(x2).

To show the correspondence of the eigenvalue decompositions we need to show that if vl = (vl1, . . . , vlN ) is an
eigenvector of Σ with corresponding eigenvalue σ2

l then φl =
∑N
m=1 vlmem is an eigenfunction of K with the same

eigenvalue σ2
l . This is true since if we plug in the formula obtained in (11) for K we obtain
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∫

I

K(x1, ·)φl(x1)dx1 =

∫

I

K(x1, ·)
N∑

m=1

vlmem(x1)dx1 =

N∑

k=1

ek

∫

I




N∑

j=1

ej(x1)Σkj




N∑

m=1

vlmem(x1)dx1

=
N∑

k=1

ek

N∑

j=1

Σkj

N∑

m=1

vlm

∫

I

ej(x1)em(x1)dx1 =
N∑

k=1

ek

N∑

j=1

Σkjvlj

=
N∑

k=1

ek (Σvl)k =
N∑

k=1

ek
(
σ2
l vl
)
k
= σ2

l

N∑

k=1

ekvlk = σ2
l φl.

A.3 Derivation of the likelihood

L(µ,K|xi, . . . ,xn) =
n∏

i=1

p(xi|µ,K) =

n∏

i=1

∫

RN

p(xi|θi)p(θi|µ,K)dθi

=
n∏

i=1

∫

RN



mi∏

j=1

p(xij |θi)


 p(θi|µ,K)dθi

=
n∏

i=1

∫

RN



mi∏

j=1

exp(
∑N
k=1 θikek(xij))∫

I
exp(

∑N
k=1 θikek(x))dx


 p(θi|µ,K)dθi

=
n∏

i=1

∫

RN

exp(
∑mi

j=1

∑N
k=1 θikek(xij))p(θi|µ,K)

(∫
I
exp(

∑N
k=1 θikek(x))dx

)mi
dθi

A.4 Proof of Lemma 2.5

Proof. To show this statement we consider the three non constant additive parts of the logarithm of the conditional
distribution log(p(zi|xi,ν(h),Σ(h))).

• The first part
∑mi

j=1

(
µ(h)(xij) +

∑N
k=1 z

T
i v

(h)
k ek(xij)

)
is linear in zi, which means there is a constant

M1 ∈ R such that it is M1zi.

• The second part is always negative, as

−mi log

(∫

I

exp

(
µ(h)(x) +

N∑

k=1

zTi v
(h)
k ek(x)

)
dx

)
≤ −mi

∫

I

µ(h)(x) +
N∑

k=1

zTi v
(h)
k ek(x)dx = 0

where the inequality is due to Jensen’s inequality and the integral is equal to zero as all functions are in L2
0.

• The third part consists of normal densities and is therefore quadratic in zi. More precisely, we have

log(
N∏

k=1

p(zik|σ2
k
(h)

)) =
N∑

k=1

−z2ik
2σ2

k
(h)

+ const. ≤ − 1

2σ2
1
(h)
∥zi∥2 + const.

Taking these three parts together this shows that there are constants M1,M2 ∈ R and M3 > 0 such that
log(p(zi|xi,ν(h),Σ(h))) ≤ −M3∥zi∥2 + M1zi + M2, which implies that p(zi|xi,ν(h),Σ(h)) is a proper dens-
ity.
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A.5 Example: The posterior mode will not necessarily be attained if the prior is improper

Proof. Consider the 1-dimensional case N = 1 with densities defined on the unit interval I = [0, 1] and only one
basis function for the clr transformed densities given as e1 = 1[0,0.5] − 1]0.5,1]. This means also the parameter space
R in this case and assuming for this parameter zi ∈ R an improper 1-dimensional normal distribution is equivalent to
assuming a flat prior.

If we further assume there is only one observation xi1 = 0.2 and for the prior mean holds ν(h) = 0 we compute

p(zi|xi1,ν(h),Σ(h)) ∝ exp(zie1(xi1))∫
[0,1]

exp(zie1(x))dx
=

exp(zi)∫
[0,0.5]

exp(zi)dx+
∫
[0.5,1]

exp(−zi)dx

=
2 exp(zi)

exp(zi) + exp(−zi)
=

2

1 + exp(−2zi)
,

which is monotonously increasing in zi ∈ R. Hence it does not attain its maximum and therefore p(zi|xi1,ν(h),Σ(h))

does not define a proper distribution in this case.

A.6 Proof of Lemma 2.6

Like in the proof of Lemma 2.5 (Appendix A.4) we consider the three non constant additive parts of the logarithm of
the conditional distribution log(p(zi|xi,ν(h),Σ(h))).

• For the linear part
∑mi

j=1

(
µ(h)(xij) +

∑N
k=1 z

T
i v

(h)
k ek(xij)

)
the gradient with respect to zi is given as

∂

∂zi

mi∑

j=1

N∑

k=1

zTi v
(h)
k ek(xij) =

mi∑

j=1

N∑

k=1

v
(h)
k ek(xij) =

N∑

k=1

v
(h)
k

mi∑

j=1

ek(xij)

• For the second part we compute the gradient as

∂

∂zi
−mi log

(∫

I

exp

(
µ(h)(x) +

N∑

k=1

zTi v
(h)
k ek(x)

)
dx

)

=
−mi

∫
I

∂
∂zi

exp
(
µ(h)(x) +

∑N
k=1 z

T
i v

(h)
k ek(x)

)
dx

∫
I
exp

(
µ(h)(x) +

∑N
k=1 z

T
i v

(h)
k ek(x)

)
dx

=
−mi

∫
I
exp

(
µ(h)(x) +

∑N
k=1 z

T
i v

(h)
k ek(x)

)∑N
k=1 v

(h)
k ek(x)dx

∫
I
exp

(
µ(h)(x) +

∑N
k=1 z

T
i v

(h)
k ek(x)

)
dx

= −mi

∫

I

exp
(
µ(h)(x) +

∑N
k=1 z

T
i v

(h)
k ek(x)

)

∫
I
exp

(
µ(h)(x) +

∑N
k=1 z

T
i v

(h)
k ek(x)

)
dx

N∑

k=1

v
(h)
k ek(x)dx

= −mi

∫

I

clr−1

(
µ(h) +

N∑

k=1

zTi v
(h)
k ek

)
(x)

N∑

k=1

v
(h)
k ek(x)dx

= −mi

N∑

k=1

v
(h)
k

∫

I

fzi
(x)ek(x)dx

where, in the first equation, we can interchange differentiation and integration applying the Leibniz rule, since
we have assumed that all clr transformed densities are bounded.
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• The third part is the sum of logarithms of normal densities. Therefore, for all l = 1, . . . , N we compute the
partial derivative with respect to zil as

∂

∂zil
log(

N∏

k=1

p(zik|σ2
k
(h)

)) =
∂

∂zil

−z2il
2σ2

l
(h)

=
−zil
σ2
l
(h)
.

Adding these three parts together gives the gradient of the logarithm of the conditional density of the scores.

B Additional plots for the applications in Section 3

B.1 Temperature data

For the temperature data, the latent density model is estimated using kernel density estimates with a Gaussian kernel
and bandwidth = 1.5 as initial estimates. The number of Monte Carlo samples in the E step 2.3.1 is chosen to be
r = 50h, where h is the iteration index, i.e., the number of samples increases over the iterations. The tuning parameter
λ for the proposal density is set to the default value 1. In each iteration, the dimension reduction is at most 0.001, i.e.
we keep as many principal components as necessary to explain at least 99.99 % of the variance.
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Figure 6: Kernel density estimates (Gaussian kernel, bandwidth = 1.5) and predicted latent densities estimated from
the latent density model (5) for the daily maximum summer temperatures in Berlin Tempelhof from 1951 to 2022. The
kernel densities are also used as initial estimates in the latent density model.

In Figure 6 we show the kernel density estimates and the predicted latent densities obtained from the latent density
model. For both, the trend towards higher temperatures is evident. Note that the variance of the predicted latent
densities is smaller than the variance of the kernel density estimates, since the latent density model effectively splits
the total variance into the variance due to the underlying stochastic process for the latent densities and the variance
due to sampling from them. Correspondingly, percentages variance explained for the PCs depicted in Figures 1 and 7,
respectively, are relative to different total variances.
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Figure 7: PCA based on the clr transformations of the kernel density estimates (Gaussian kernel, bandwidth = 1.5)
for daily maximum temperature (°C). Top: Effect of adding/subtracting σ̂kφ̂k to the clr transformed mean density µ,
where φ̂k is the kth principal component, with corresponding eigenvalue σ̂2

k, k = 1, 2, 3, 4. Middle: Effect on the
density level, i.e. clr−1 transformations of the functions in the top row. Bottom: Temporal trend of the corresponding
predicted scores per year, with scatterplot smoother and pointwise confidence bands overlaid.
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B.2 Rental prices

For the rent index data, the latent density model is estimated using kernel density estimates with a Gaussian kernel
and bandwidth = 2 as initial estimates. The number of Monte Carlo samples in the E step 2.3.1 is chosen to be
r = 100h, where h is the iteration index, i.e., the number of samples increases over the iterations. The parameter λ
for the proposal density is set to 2. In each iteration, the dimension reduction is at most 0.0005, i.e. we keep as many
principal components as necessary to explain at least 99.995 % of the variance.
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Figure 8: Histograms of rent per square meter for each district, with overlaid kernel density estimates (Gaussian kernel,
bandwidth = 2) in blue and predicted latent densities based on our proposed approach in red.
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“Elastic Analysis of Irregularly or Sparsely
Sampled Curves”

Supporting information for the contribution:
Steyer, L., Stöcker, A., and Greven, S. (2023). Elastic analysis of irregularly or sparsely
sampled curves. Biometrics, 79:2103–2115. DOI: 10.1111/biom.13706
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Web Appendix A Adaptations for closed curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Web Appendix B Proofs and computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

B.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

B.2 Gradient of the objective function function in Lemma 1 . . . . . . . . . . . . . . . . . . . . . 5

B.3 Closed form solution for the coordinate wise maximization . . . . . . . . . . . . . . . . . . . 6

B.4 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

B.5 Integral approximation for SRV-spline mean computation . . . . . . . . . . . . . . . . . . . . 10

B.6 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

B.7 Proof of Corollary 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

B.8 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Web Appendix C Examples and counterexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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Web Appendix A Adaptations for closed curves

Analogously to the warping problem for open curves (or closed curves with known start and end point) we

can formulate a similar criterion for closed curves, using a different set of warping functions. Here we assume

γ : r0, 1s Ñ r0, 1s such that there exists t0 P r0, 1s with

γpt0q “ 0, lim
tÕ1

γptq “ γp0q, lim
tÕt0

γptq “ 1,

and γ monotonically increasing and differentiable on r0, t0r and on rt0, 1s. This allow us to obtain a similar

result as in Lemma 1 for closed curves.

1



Corollary A.1 (Optimization problem for closed curves). Let p and q be as in Lemma 1 and additionally let

them be the SRV transformations of closed curves. Let p˚ be the periodic extension of p to the whole real line,

that is p˚ptq “ ppt ´ ttuq for all t P R. Then the optimization problem for closed curves is equivalent to the

following problem.

Maximize Φ˚ptq “ Φ˚pt0, t1, . . . , tm´1q “

m´1
ÿ

j“0

d

psj`1 ´ sjq

ż tj`1

tj

xp˚ptq,qjy2` dt (1)

w.r.t t0 ď t1 ď ¨ ¨ ¨ ď tm “ t0 ` 1.

For a maximizer pt0, t1, . . . , tm´1q of (1) there is a γ : r0, 1s Ñ r0, 1s with γptj ´ ttjuq “ sj for all j “

0, . . . ,m´ 1 which is a minimizer of the corresponding warping problem for closed curves.

A further advantage of Algorithm 1 is that it can be easily adapted to closed curves, which has not been

explicitly addressed by Lahiri et al. (2015). We adjust our algorithm for open polygons via appropriately

updating t0 and tm.

Algorithm 3: Elastic distance for two closed polygons

Input: piecewise constant SRV-curves p,q; convergence tolerance ε ą 0;

starting values 0 ď t
p0q
1 ď ¨ ¨ ¨ ď t

p0q
m´1 ď t

p0q
m “ t

p0q
0 ` 1 ; // e.g. relative arc length

for k P N do
for j “ 1, . . . ,m´ 1 do

if j ´ k even then
t
pkq
j “ argmax

tjP
”

t
pk´1q
j´1 ,t

pk´1q
j`1

ı Φ |
ttj1“t

pk´1q

j1
,j1‰ju

else if j ´ k odd then
t
pkq
j “ t

pk´1q
j

if k even then
t
pkq
0 “ argmax

t0Prt
pkq
m´1´1,t

pkq
1 s

Φ˚|
ttj1“t

pkq

j1
,j1‰0u

;

t
pkq
m “ t

pkq
0 ` 1

if }tpkq ´ tpk´2q} ă ε }tpk´1q ´ tpk´3q} ă ε then
return tpkq “ pt

pkq
1 , . . . , t

pkq
m´1q

The optimal warping function γ : r0, 1s Ñ r0, 1s then fullfills γptpk`2q
j ´ tt

pk`2q
j uq “ sj for all j “

0, . . . ,m´ 1. Moreover, the algorithm for computing an elastic spline mean needs to be adjusted accordingly

as well.

Remark A.2 (Smooth elastic mean for closed curves). We replace the warping step of Algorithm 2, i.e. updat-

ing the optimal parametrizations γi, by considering the corresponding minimization problem for closed curves

(1) via gradient descent or Algorithm 3 depending on the spline degree. For updating the least-squares esti-

mate for given parametrizations, we use a penalty function method to deal with the non-linear constraint of

closedness for p̄ (see for example Sun and Yuan (2006)). Thus, we add a cost function penalizing openness

with increasing weight. Precisely, in the k-th iteration step, we consider the loss function

n
ÿ

i“1

inf
γi

›

›

›
p̄´ pqi ˝ γiq

a

9γi

›

›

›

2

L2

` λk

›

›

›

›

ż 1

0
p̄ptq}p̄ptq} dt

›

›

›

›

2

,

2



with λk Ñ 8 for k Ñ 8. Since
ş1
0 p̄ptq}p̄ptq} dt “ β̄p1q ´ β̄p0q, if p̄ is the SRV of β̄, the penalty term

vanishes if and only if β̄ is closed.

Figure 1 shows three iterations of this adapted algorithm for calculating a smooth mean of four, irregularly

sampled, closed heart shapes. The initial mean (iteration 0) was computed as a least-squares-estimate assuming

the curves were parametrized by relative arc length. The sequence pλkqkPN was chosen as λk “ 10´3k for all

k P N.
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Figure 1: First three iterations of the algorithm for closed mean curves on a toy dataset.

Web Appendix B Proofs and computations

In this part of the appendix we provide proofs to all statements presented in the main article.

B.1 Proof of Lemma 1

Proof. We will proof this statement for optimization with respect to Γ̄, the set of absolutely continuous curves

γ : r0, 1s Ñ r0, 1s, onto and with 9γ ě 0 almost everywhere (a.e.). The statement for Γ follows as Γ is dense in

Γ̄ and the warping action of Γ̄ continuous (Bruveris, 2016). Hence, to compute the elastic distance between two

absolutely continuous curves with SRV transformations p,q : r0, 1s Ñ Rd we need to consider the following

minimization problem

Minimize
ż 1

0
}pptq ´ qpγptqq

a

9γptq}2 dt

w.r.t. γ : r0, 1s Ñ r0, 1sabsolutely continuous, onto and with 9γ ě 0 a.e.

The objective function can be written as

ż 1

0
}pptq ´ qpγptqq

a

9γptq}2 dt “

ż 1

0
}pptq}2 dt´ 2

ż 1

0
xpptq,qpγptqqy

a

9γptq dt

`

ż 1

0
}qpγptqq}2 9γptq dt

“}p}2L2
´ 2

ż 1

0
xpptq,qpγptqqy

a

9γptq dt` }q}2L2
.

Hence the minimization problem stated above is equivalent to

Maximize
ż 1

0
xpptq,qpγptqqy

a

9γptq dt

w.r.t. γ : r0, 1s Ñ r0, 1s absolutely continuous, onto and with 9γ ě 0 a.e.
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We assume that q is the square root velocity curve of a polygon (for example a polygon with observations

at its corners). Hence q is piecewise constant, which means there exist time points 0 “ s0 ă s1 ă ¨ ¨ ¨ ă

sm´1 ă sm “ 1 such that q|rsj ,sj`1s
“ qj P Rd for all j “ 0, . . . ,m´ 1. Since γ is increasing and onto, this

gives time points 0 “ t0 ă ¨ ¨ ¨ ă tm “ 1 such that γptjq “ sj for all j “ 1, . . . ,m. Hence the optimization

problem becomes equivalently

Maximize
m´1
ÿ

j“0

ż tj`1

tj

xpptq,qjy
a

9γptq dt

w.r.t. γ : r0, 1s Ñ r0, 1s absolutely continuous, onto, with 9γ ě 0 a.e.

and γptjq “ sj @j “ 1, . . . ,m´ 1.

We can split this optimization problem into an outer maximization over t1, . . . , tm´1 and an inner one, where

for fixed j “ 0, . . . ,m´ 1, the following maximization problem needs to be solved.

Maximize
ż tj`1

tj

xpptq,qjy
a

9γptq dt (2)

w.r.t. 9γ : rtj , tj`1s Ñ R`0 and
ż tj`1

tj

9γptq dt “ sj`1 ´ sj .

We obtain an upper bound for these objective functions using the Cauchy-Schwarz inequality. We have

ż tj`1

tj

xpptq,qjy
a

9γptq dt ď

ż tj`1

tj

xpptq,qjy`
a

9γptq dt

C.S.
ď

d

ż tj`1

tj

xpptq,qjy2` dt

d

ż tj`1

tj

9γptq dt

“

d

psj`1 ´ sjq

ż tj`1

tj

xpptq,qjy2` dt (3)

To show this upper bound is actually the supremum over all feasible functions 9γ we consider two distinct cases.

i) If
ştj`1

tj
xpptq,qjy

2
` dt ą 0 we can choose

9γptq “
psj`1 ´ sjqxpptq,qjy

2
`

ştj`1

tj
xpptq,qjy2` dt

. (4)

This choice of 9γ is feasible as it attains only non-negative values and
ştj`1

tj
9γptq dt “ sj`1 ´ sj for all

j “ 0, . . . ,m´ 1. We calculate

ż tj`1

tj

xpptq,qjy
a

9γptq dt “

ż tj`1

tj

xpptq,qjy

?
sj`1 ´ sjxpptq,qjy`
b

ştj`1

tj
xpptq,qjy2` dt

dt

“

?
sj`1 ´ sj

b

ştj`1

tj
xpptq,qjy2` dt

ż tj`1

tj

xpptq,qjyxpptq,qjy` dt

“
a

sj`1 ´ sj

d

ż tj`1

tj

xpptq,qjy2` dt,

where the last equality is due to xpptq,qjyxpptq,qjy` “ xpptq,qjy
2
`, since xpptq,qjy ă 0 implies
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xpptq,qjy` “ 0. Hence 9γ is a maximizing function.

ii) If
ştj`1

tj
xpptq,qjy

2
` dt “ 0, the objective function is bounded above by 0 due to (3) and we construct a

sequence p 9γkqkPN of feasible functions to reach that upper bound. For all k P N let

9γk “ psj`1 ´ sjqk1rtj ,tj` 1
k
s ě 0.

Hence we have for sufficiently large k P N

ż tj`1

tj

9γkptq dt “ psj`1 ´ sjq

ż tj`
1
k

tj

k dt “ sj`1 ´ sj ,

which shows that the functions 9γk are feasible for k ě 1
tj`1´tj

.

Since }p}8 ă 8 we have for sufficiently large k P N
ˇ

ˇ

ˇ

ˇ

ˇ

ż tj`1

tj

xpptq,qjy
a

9γkptq dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż tj`1

tj

|xpptq,qjy|
a

9γkptq dt

ď

ż tj`1

tj

}pptq}}qj}
a

9γkptq dt

ď }p}8}qj}

ż tj`
1
k

tj

b

psj`1 ´ sjqk dt

“ }p}8}qj}
a

sj`1 ´ sj

?
k

k

kÑ8
ÝÝÝÝÝÑ 0.

This shows that p 9γkq is a maximizing sequence of warping functions since

0 ě

ż tj`1

tj

xpptq,qjy
a

9γkptq dt
kÑ8
ÝÑ 0.

In this case, we do not find a maximizing warping function γ but a sequence of maximizing warping

functions γk.

In both cases i) and ii), the inner optimization (2) takes the value
b

psj`1 ´ sjq
ştj`1

tj
xpptq,qjy2` dt for given

j “ 0, . . . ,m ´ 1. The overall optimization thus becomes the outer optimization over the sum of these terms

with respect to t1, . . . , tm´1, i.e. takes the form (3).

B.2 Gradient of the objective function function in Lemma 1

The simplified objective function function given in Lemma 1,

Φptq “ Φpt1, . . . , tm´1q “

m´1
ÿ

j“0

d

psj`1 ´ sjq

ż tj`1

tj

xpptq,qjy2` dt

5



is differentiable if p is at least continuous. In this case the partial derivatives can be computed as

B

Btj
Φptq “

B

Btj

m´1
ÿ

k“0

d

psk`1 ´ skq

ż tk`1

tk

xpptq,qky
2
` dt

“
B

Btj

d

psj ´ sj´1q

ż tj

tj´1

xpptq,qj´1y
2
` dt`

B

Btj

d

psj`1 ´ sjq

ż tj`1

tj

xpptq,qjy2` dt

“

1
2psj ´ sj´1qxpptjq,qj´1y

2
`

b

psj ´ sj´1q
ştj
tj´1
xpptq,qj´1y

2
` dt

´

1
2psj`1 ´ sjqxpptjq,qjy

2
`

b

psj`1 ´ sjq
ştj`1

tj
xpptq,qjy2` dt

“
1

2

¨

˝

?
sj ´ sj´1xpptjq,qj´1y

2
`

b

ştj
tj´1
xpptq,qj´1y

2
` dt

´

?
sj`1 ´ sjxpptjq,qjy

2
`

b

ştj`1

tj
xpptq,qjy2` dt

˛

‚

for all j “ 1, . . . ,m´ 1. If p is piecewise linear, t ÞÑ xpptq,qjy
2
` is piecewise quadratic and one can compute

the integral in the denominator exactly.

B.3 Closed form solution for the coordinate wise maximization

For fixed j P t1, . . . ,m´ 1u and fixed 0 “ t0 ď ¨ ¨ ¨ ď tj´1 ď tj`1 ď ¨ ¨ ¨ ď tm “ 1 we need to solve

Maximize Lptjq “

j`1
ÿ

k“j

d

psk ´ sk´1q

ż tk

tk´1

xpptq,qk´1y
2
` dt (5)

w.r.t tj´1 ď tj ď tj`1.

Since p is assumed to be piecewise constant on rtj´1, tj`1s there exists tj´1 “ r0 ă ¨ ¨ ¨ ă rl “ tj`1 such

that p|rrι, rι`1r“ pι P Rd for all ι “ 0, . . . , l ´ 1. Hence the objective function restricted to rrι, rι`1r can be

written as

L|rrι,rι`1sptjq “

g

f

f

epsj ´ sj´1q

˜

ptj ´ rιqxpι,qj´1y
2
` `

ι´1
ÿ

k“0

prk`1 ´ rkqxpk,qj´1y
2
`

¸

`

g

f

f

epsj`1 ´ sjq

˜

prι`1 ´ tjqxpι,qjy2` `
l´1
ÿ

k“ι`1

prk`1 ´ rkqxpk,qjy
2
`

¸

.

This shows that for all ι “ 0, . . . , l ´ 1 there are constant values

Aι1 “ psj ´ sj´1qxpι,qj´1y
2
`

Aι2 “ psj`1 ´ sjqxpι,qjy
2
`

Bι1 “ psj ´ sj´1q

˜

rιxpι,qj´1y
2
` ´

ι´1
ÿ

k“0

prk`1 ´ rkqxpk,qj´1y
2
`

¸

Bι2 “ psj`1 ´ sjq

˜

rι`1xpι,qjy
2
` `

l´1
ÿ

k“ι`1

prk`1 ´ rkqxpk,qjy
2
`

¸

such that

L|rrι,rι`1sptjq “
a

Aι1tj ´Bι1 `
a

Bι2 ´Aι2tj
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with Aι1tj ´ Bι1 ě 0 and Bι2 ´ Aι2tj ě 0 for all tj P rrι, rι`1s. Without loss of generality we assume

Aι1, Aι2 ą 0 since otherwise the objective function is monotonic, hence attains its maximum on the boundary.

This case can be included separately below. Thus L|rrι,rι`1s is twice continuously differentiable on srι, rι`1r

with

B

Btj
L|rrι,rι`1sptjq “

1

2

˜

Aι1
a

Aι1tj ´Bι1
´

Aι2
a

Bι2 ´Aι2tj

¸

,

B2

Bt2j
L|rrι,rι`1sptjq “ ´

1

4

˜

A2
ι1

a

Aι1tj ´Bι1
3 `

A2
ι2

a

Bι2 ´Aι2tj
3

¸

ă 0.

Therefore, every maximizer tj within srι, rι`1r fulfills

Aι1
a

Aι1tj ´Bι1
“

Aι2
a

Bι2 ´Aι2tj
ô A2

ι1pBι2 ´Aι2tjq “ A2
ι2pAι1tj ´Bι1q

ô tj “
A2
ι1Bι2 `A

2
ι2Bι1

Aι1A2
ι2 `A

2
ι1Aι2

.

We conclude that every solution to the coordinate wise maximization problem (5) is contained in the set

l
ď

ι“0

trιu Y
l´1
ď

ι“0

t
A2
ι1Bι2 `A

2
ι2Bι1

Aι1A2
ι2 `A

2
ι1Aι2

u

and can compare function values of L over this set to find the maximizer.

B.4 Proof of Theorem 1

Proof. Let Φ be defined as in Equation (3),

Φptq “ Φpt1, . . . , tm´1q “

m´1
ÿ

j“0

d

psj`1 ´ sjq

ż tj`1

tj

xpptq,qjy2` dt,

with p being piecewise constant. Furthermore let ptpιqqιPN “ tp1q, tp2q, . . . be a sequence resulting from Algo-

rithm 1 and t˚ an accumulation point of ptpιqqιPN.

We proof this main result in three steps. First, we show that the accumulation point t˚ “ pt˚1 , . . . , t
˚
m´1q is

a maximizer of Φ restricted to coordinate directions. Then we conclude that Φ is semi-differentiable at t˚ for

every direction u P Rm´1. Last we use Lemma B.1 below, which establishes local concavity of the objective

function, to see that t˚ is a local maximum of Φ.

Since t˚ is an accumulation point, there is a subsequence ptpιkqqkPN with lim
kÑ8

tpιkq “ t˚. Denote by

Φ
pkq
odd :“ Φ|

ttj“t
pιkq

j , j evenu

Φpkqeven :“ Φ|
ttj“t

pιkq

j , j oddu

the restrictions of Φ at the current sequence value with either fixed odd or even coordinate entries. Φ is contin-
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uous, hence we have pointwise limits

lim
kÑ8

Φ
pkq
odd “ Φ|ttj“t˚j , j evenu “: Φ˚odd,

lim
kÑ8

Φpkqeven “ Φ|ttj“t˚j , j oddu “: Φ˚even,

with Φ˚odd,Φ
˚
even being the restrictions to odd and even coordinate directions at the accumulation point t˚.

Since at each step we either update all odd or all even entries, Φ
pkq
odd and Φ

pkq
even attain their maximum at either

the current or the next sequence value. That is

›

›

›
Φ
pkq
odd

›

›

›

8
,
›

›

›
Φpkqeven

›

›

›

8
P tΦptpιkqq,Φptpιk`1qqu

for all k P N. Thus, Φ˚odd and Φ˚even are bounded as well:

}Φ˚odd}8 “ lim
kÑ8

›

›

›
Φ
pkq
odd

›

›

›

8
ď lim

kÑ8
Φptpιk`1qq “ Φpt˚q,

since lim
ιÑ8

Φptpιqq “ Φpt˚q. We can conclude this as coordinate-wise maximization produces a monotonically

increasing sequence Φptpι`1qq ě Φptpιqq for all ι P N and the subsequence Φptpιkqq converges to Φpt˚q due to

Φ being continuous, which implies the whole sequence converges. Analogously we have }Φ˚even}8 ď Φpt˚q,

hence t˚ is a maximizer of Φ restricted to any coordinate direction (i.e. t˚j maximizes Φpt˚1 , . . . , tj , . . . , t
˚
m´1q

over tj for all j “ 1, . . . ,m´ 1).

To show that this implies that Φ is partially semi-differentiable at t˚, first note that Φ is partially semi-

differentiable at every point t “ pt1, . . . , tm´1qwith psj`1´sjq
ştj`1

tj
xpptq,qjy

2
` dt ą 0 for all j “ 1, . . . ,m´

1, since the square-root function is differentiable for strictly positive values and
ştj`1

tj
xpptq,qjy

2
` dt is piecewise

linear, thus semi-differentiable.

Assume there is a j P t1, . . . ,m´1u with psj`1´sjq
şt˚j`1

t˚j
xpptq,qjy

2
` dt “ 0. We show that Φ is still partially

semi-differentiable at t˚ in direction tj . A similar argument shows differentiability in direction tj`1.

Let L be the relevant part of the objective function function Φ in direction tj .

Lptjq “

d

psj ´ sj´1q

ż tj

t˚j´1

xpptq,qj´1y
2
` dt`

d

psj`1 ´ sjq

ż t˚j`1

tj

xpptq,qjy2` dt

We need to show that both, left and right derivatives of L at t˚j exist.

• If psj ´ sj´1q
şt˚j
t˚j´1
xpptq,qj´1y

2
` dt “ 0,

we have Lpt˚j q “ 0. This implies Lptjq “ 0 for all tj P rt˚j´1, t
˚
j`1s since t˚j is a maximizer (in tj

coordinate direction) and L is non-negative. Therefore L “ 0 which means L is differentiable on its

whole domain.

• If psj ´ sj´1q
şt˚j
t˚j´1
xpptq,qj´1y

2
` dt ą 0,

the left term of L is strictly positive in a neighborhood of t˚j and consequently semi-differentiable in

a neighborhood of t˚j . The right term Hptjq :“

c

psj`1 ´ sjq
şt˚j`1

tj
xpptq,qjy2` dt is differentiable at

t˚j since it is 0 in a neighborhood of t˚j . This is due to tj ÞÑ psj`1 ´ sjq
şt˚j`1

tj
xpptq,qjy

2
` dt being

piecewise linear, non-negative and monotonically decreasing. Since it attains 0 at t˚j , it is also 0 in a right

neighborhood of t˚j . If H were strictly positive in a neighborhood left of t˚j , its left derivative would tend

to ´8 at t˚j as Hpt˚j q = 0 and the derivative of the square-root tends to 8 for values tending linearly to
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0. But B´
Btj
Hpt˚j q “ ´8 would imply B´

Btj
Lpt˚j q “ ´8, which contradicts t˚j being a maximizer.

Taking all those cases into account we conclude that Φ is partially semi-differentiable at the accumulation

point t˚ produced by coordinate-wise maximization. Since we already know that t˚j is the coordinate-wise

maximizer of Φ for all j “ 1, . . . ,m ´ 1 in coordinate directions, the left-sided partial derivatives need to be

non-negative, the right-sided partial derivatives non-positive.

To show that this implies that t˚ is a local maximizer, consider sets U “
Śm´1

j“1 Uj X t0 ď t1 ď ¨ ¨ ¨ ď

tm´1 ď 1u such that t˚ P U and p is constant on the interior of the interval Uj ‰ H for all j “ 1, . . . ,m´ 1.

We prove that t˚ is the maximizer of Φ|U by contradiction. Assume there is a u P U such that Φpuq ą

Φpt˚q. Let αpsq “ su ` p1 ´ sqt˚ for all s P r0, 1s. Since the square-root is improperly differentiable on

r0,8r, with the derivative at 0 being8, this implies that Φ ˝ α is improperly differentiable on r0, 1s with

pΦ ˝ αq1 psq “ x
BΦ

Bt
pαpsqq,u´ t˚y “

m´1
ÿ

j“1

puj ´ t
˚
j q
BΦ

Btj
pαpsqq.

Considering the limit sŒ 0 yields

lim
sŒ0

BΦ

Btj
pαpsqq “

$

&

%

B`Φ
Btj
pt˚j q ď 0 if uj ´ t˚j ą 0,

B´Φ
Btj
pt˚j q ě 0 if uj ´ t˚j ă 0.

Hence the right-sided derivative will be attained if uj ´ t˚j is positive and the left-sided derivative if uj ´ t˚j is

negative. This implies puj ´ t˚j q limsŒ0
BΦ
Btj
pαpsqq ď 0 for all j “ 1, . . . ,m´ 1 and therefore,

pΦ ˝ αq1 p0q “ lim
sŒ0

pΦ ˝ αq1 psq “
m´1
ÿ

j“1

puj ´ t
˚
j q lim

sŒ0

BΦ

Btj
pαpsqq ď 0.

But sinceU is a convex set, Φ is concave on the interior ofU (see Lemma B.1) and therefore, as Φ is continuous,

it is concave on U . We compute

pΦ ˝ αq1 p0q “ lim
sŒ0

pΦ ˝ αqpsq ´ pΦ ˝ αqp0q

s

“ lim
sŒ0

Φpsu` p1´ sqt˚q ´ Φpt˚q

s

ě lim
sŒ0

sΦpuq ` p1´ sqΦpt˚q ´ Φpt˚q

s

“ Φpuq ´ Φpt˚q ą 0,

which contradicts pΦ ˝ αq1 p0q ď 0.

Thus, t˚ is a maximum of Φ|U . This means it is a maximum on the union of such U ’s, whose interior is

a relatively open neighbourhood of t˚ with respect to the relative topology on t0 ď t1 ď ¨ ¨ ¨ ď tm´1 ď 1u.

Hence t˚ is a local maximizer of Φ.

Lemma B.1. Let Φ be the objective function defined in Equation (3), p piecewise constant and U Ă Rm´1 a

convex set such that pptjq is constant for all j “ 1, . . . ,m and all pt1, . . . , tm´1q P U . Then Φ|U is concave.

Proof. Note that Φ is twice continuously differentiable on the interior Ů of U . We show that all second

directional derivatives B2
uuΦ are non positive. This implies the Hessian H is negative semi-definite, since

uTHu “ B2
uuΦ for all u P Rm´1. Hence Φ|U is concave.
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To show that the second derivative at t “ pt1, . . . , tm´1q P Ů is non-positive in any direction, let α P R and

u “ pu1, . . . , um´1q P Rm´1. Define

Qjpαq “ psj`1 ´ sjq

ż tj`1`αuj`1

tj`αuj

xpptq,qjy
2
` dt.

Qj is linear around α “ 0 and therefore differentiable with constant derivative Q1jpαq “: cj P R. If Qjp0q ‰ 0

for all j P 1, . . . ,m´ 1 we compute the directional derivative of the objective function function as

BuΦptq “
B

Bα

m´1
ÿ

j“1

b

Qjpαq

ˇ

ˇ

ˇ

ˇ

ˇ

α“0

“
1

2

m´1
ÿ

j“1

Q1jpαq
a

Qjpαq

ˇ

ˇ

ˇ

ˇ

ˇ

α“0

“
1

2

m´1
ÿ

j“1

cj
a

Qjpαq

ˇ

ˇ

ˇ

ˇ

ˇ

α“0

,

and the second derivative becomes

B2
uuΦptq “

B2

Bα2

m´1
ÿ

j“1

b

Qjpαq

ˇ

ˇ

ˇ

ˇ

ˇ

α“0

“ ´
1

4

m´1
ÿ

j“1

c2
j

a

Qjpαq
3

ˇ

ˇ

ˇ

ˇ

ˇ

α“0

ď 0.

If Qjp0q “ 0 for some j “, . . . ,m´ 1, we have in particular xpptjq,qjy2` “ 0 and xpptj`1q,qjy
2
` “ 0, which

meansQj is zero in a neighborhood of α “ 0. Hence the second derivative of
a

Qjpαq is zero as well and does

not contribute to the sum.

B.5 Integral approximation for SRV-spline mean computation

In the L2-step of Algorithm 2, the integrals

›

›

›
p̄´ pqi ˝ γiq

a

9γi

›

›

›

2

L2

“

ż 1

0

›

›

›
p̄ptq ´ pqiptq ˝ γiptqq

a

9γiptq
›

›

›

2
dt (6)

in the sum need to be approximated, since the curves βi are only observed on a finite grid 0 “ si,0 ď si,1 ď

¨ ¨ ¨ ď si,mi “ 1, which means the SRV-curves q1, . . . , qn are unobserved. One option is to assume that the

SRVs qi of the observed curves are piecewise constant, like we do in the warping step. Since p̄ is piecewise

linear (or even piecewise constant), pqi ˝ γiq
?

9γi will be piecewise linear as well (see proof of Lemma 1 in

Appendix B), which leads to a closed form solution of the integral. If we use this approximation of the integral,

the resulting mean tends to overfit the edges of the observed polygons (e.g. the dashed mean in Fig. 2 on the

right).

Alternatively, we derive an approximation of the integrals in the L2 fitting step of Algorithm 2 using

the mean value theorem and the monotonicity of the warping. For all j “ 0, . . . ,mi ´ 1, there is a ti,j P

rγ´1
i psi,jq, γ

´1
i psi,j`1qs with pβi ˝ γiq1pti,jq “

βipsi,j`1q´βipsi,jq

γ´1
i psi,j`1q´γ

´1
i psi,jq

and therefore

pqi ˝ γipti,jqq
b

9γipti,jq “
pβi ˝ γiq

1pti,jq
a

}pβi ˝ γiq1pti,jq}

“
βipsi,j`1q ´ βipsi,jq

a

}βipsi,j`1q ´ βipsi,jq}
b

γ´1
i psi,j`1q ´ γ

´1
i psi,jqq

.

While this is exact for unknown points ti,j , we use an approximation by assuming this mean value of the

derivative pβi ˝ γq1 is attained in the middle of the interval rγ´1
i psi,jq, γ

´1
i psi,j`1qs; hence we approximate

ti,j «
γ´1
i psi,j`1q`γ

´1
i psi,jq

2 for all j “ 0, . . . ,mi´1. Thus, for i “ 1, . . . , n, the integral in (6) is replaced by the

weighted sum
řmi´1
j“0 ωi,j

›

›p̄pti,jq ´ pqi ˝ γipti,jqq
a

9γipti,jq
›

›

2
. This leaves us with a quadratic minimization
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problem w.r.t. the spline coefficients in p̄, for which we compute the solution analytically as a generalized least

squares estimate.

There are different options to choose the weights ωi,j in this integral approximation. The weights ωi,j “

γ´1
i psi,j`1q´γ

´1
i psi,jq based on the trapezoidal rule for numerical integration give equal importance to each of

the observed curves, independent of the number of points mi observed on each of them. An alternative choice

of ωi,j “ 1 puts more weight on single observations on a specific curve. Consequently, curves or parts of

curves with more observations have higher influence on the estimated mean than curves or parts of curves with

fewer observations. The difference between this approximation (with ωi,j “ 1) and the one based on assuming

observed polygons also for the L2 spline fitting step is displayed in Fig. 2 on the right. In this example, the

estimated mean based on this discrete integral approximation (solid line) is closer to a proper spiral shape. In

the following we will use weights ωi,j “ 1 unless stated otherwise.

B.6 Proof of Theorem 2

Proof. Let Q “ pQ1, Q2, . . . , Qdq. Without loss of generality we assume d “ 2. For d ą 2 perform a

coordinate transformation such that pQ1, Q2q has a non-linear image between its knots and consider the first

two coordinates.

Hence we assume P “ Q˝γ with degpPq, degpQq P t2, 3u and Q has non-linear image between its knots.

First, we show that γ is piecewise polynomial, which implies γ is piecewise linear since degpγq ě 2 would

imply degpPq “ degpQ ˝ γq ě 4.

Let I Ď r0, 1s be an interval such that P|I and Q|γpIq are polynomials of degree P t2, 3u. That means we

can denote

Pptq “

˜

P1ptq

P2ptq

¸

“

˜

p10 ` p11t` p12t
2 ` p13t

3

p20 ` p21t` p22t
2 ` p23t

3

¸

for all t P I,

Qptq “

˜

Q1ptq

Q2ptq

¸

“

˜

q10 ` q11t` q12t
2 ` q13t

3

q20 ` q21t` q22t
2 ` q23t

3

¸

for all t P γpIq.

We compute

q13P2ptq ´ q23P1ptq “ q13Q2pγptqq ´ q23Q1pγptqq

“ q13q20 ´ q23q10 ` pq13q21 ´ q23q11q γptq ` pq13q22 ´ q23q12q γptq
2. (7)

Note that either

ˇ

ˇ

ˇ

ˇ

ˇ

q13 q12

q23 q22

ˇ

ˇ

ˇ

ˇ

ˇ

“ q13q22 ´ q23q12 ‰ 0 or

ˇ

ˇ

ˇ

ˇ

ˇ

q13 q11

q23 q21

ˇ

ˇ

ˇ

ˇ

ˇ

“ q13q21 ´ q23q11 ‰ 0, because otherwise
˜

q12

q22

¸

and

˜

q11

q21

¸

are multiples of

˜

q13

q23

¸

, which means Q has a linear image on γpIq. Thus we need to

consider two cases.

i) If q13q22 ´ q23q12 “ 0, this implies pq13q21 ´ q23q11q ‰ 0 and the claim follows via solving Equation

(7) for γptq.

ii) If c1 :“ q13q22 ´ q23q12 ‰ 0 there exists a polynomial P̃1 with degpP̃1q ď 3 and a constant c2 P R such
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that γptq “
a

P̃1 ` c2 (derive this from Equation (7) by completing the square). Thus we observe that

q12P2ptq ´ q22P1ptq “ q12Q2pγptqq ´ q22Q1pγptqq

“ q12pq20 ` q21γptq ` q23γptq
3q ´ q22pq10 ` q11γptq ` q13γptq

3q

“ q12q20 ´ q22q10 ` pq12q21 ´ q22q11q p

b

P̃1 ` c2q ´ c1

ˆ

b

P̃1 ` c2

˙3

“ c3 ` c4c2 ` c4

b

P̃1 ´ c1

ˆ

P̃1

b

P̃1 ` 3c2P̃1 ` 3c2
2

b

P̃1 ` c
3
2

˙

“ c3 ` c4c2 ´ c1pc
3
2 ` 3c2P̃1q `

´

c4 ´ c1p3c
2
2 ` P̃1q

¯

b

P̃1

with additional constants c3 :“ q12q20 ´ q22q10 and c4 :“ q12q21 ´ q22q11. Thus,

´

q12P2ptq ´ q22P1ptq ´ c3 ´ c4c2 ` c1pc
3
2 ` 3c2P̃1q

¯2
“

´

c4 ´ c1p3c
2
2 ` P̃1q

¯2
P̃1,

which shows that either c4 ´ c1p3c
2
2 ` P̃1q “ 0, which implies P̃1 is constant (since c1 ‰ 0), or every

(complex) root of P̃1 has even multiplicity, which implies that
a

P̃1 and therefore γptq “
a

P̃1 ` c2 are

polynomial.

Together this shows that γ is polynomial and therefore linear on I . Hence γ : r0, 1s Ñ r0, 1s is piecewise linear,

that means γ is differentiable everywhere but at a finite number of breakpoints 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tm “ 1.

Thus, the k-th derivative of P, k ă degpPq, can be computed as

dk

dtk
Pptq “

dk

dtk
pQ ˝ γqptq “

ˆˆ

dk

dtk
Q

˙

pγptqq

˙ˆ

d

dt
γptq

˙k

,

since d
dtγptq is piecewise constant. Assume γptq is not differentiable at tj , j “ 1, . . . ,m´ 1. Hence the (weak)

derivative d
dtγptq is not continuous at tj and we need to have

Qpkqpγptjqq “

ˆ

dk

dtk
Q

˙

pγptjqq “ 0 for all k ă degpPq,

since P is pdegpPq ´ 1q-times continuously differentiable on r0, 1s. Using a Taylor expansion of Q around

γptjq, which is identical to Q on rγptjq, γptj`1qs since Q is piecewise polynomial, we obtain:

Qpsq “

¨

˝

Q
plq
1 pγptjqq
l! ps´ γptjqq

l `Q1pγptjqq
Q
plq
2 pγptjqq
l! ps´ γptjqq

l `Q2pγptjqq

˛

‚“

¨

˝

Q
plq
1 pγptjqq
l!

Q
plq
2 pγptjqq
l!

˛

‚ps´ γptjqq
l `

˜

Q1pγptjqq

Q2pγptjqq

¸

for all s P rγptjq, γptj`1qs. Here we denote l “ degpPq. This would mean that Q has a linear image between

γptjq and γptj`1q in this case, which contradicts the assumptions. Hence γ needs to be differentiable on r0, 1s,

which implies γ is linear. Since it is monotonically increasing and onto we conclude γ “ id.

B.7 Proof of Corollary 1

Proof. Let q2
1 and q2

2 the component-wise squares of q1 and q2, respectivly. We compute

Ppsq :“

ż s

0
q2

2ptq dt “

ż s

0
q2

1pγptqq 9γptq dt “

ż γpsq

0
q2

1pt
1q dt1 “: Qpγpsqq

12



for all s P r0, 1s via substituting γptq ÞÑ t1. Here we have cubic splines P and Q on both sides. Hence we

deduce γ “ id by Theorem 2 and consequently q2 “ q1. Note that the cubic spline curve Ppsq “
şs
0 q2

2ptq dt is

linear on any interval if and only if q2ptq is constant on this interval, which is excluded by the assumptions.

B.8 Proof of Lemma 2

Proof. The embedding f is injective due to the previous results on identifiability (Theorem 2, Corollary 1,

Remark 1) and continuous as the SRV transformation is continuous (Bruveris (2016)) and infγPΓ }p ´ pq ˝

γq
?

9γ}L2 ď }p´ q}L2 for all p,q P L2.

The only part left to show is that f´1 (which exists if we restrict the co-domain of f to its image) is

continuous as well. To prove this, let pξnqnPN Ď Ξ with βn “ fpξnq for all n P N and dpβn,βq
nÑ8
Ñ 0 for the

elastic distance. Hence we have to show ξn
nÑ8
Ñ ξ for ξ :“ f´1pβq.

Denote by pn the SRV transformation of βn for all n P N and by q the SRV transformation of β. Then

dpβn,βq “ inf
γPΓ
}pn ´ pq ˝ γq

a

9γ}L2 ě inf
γPΓ

´

}pn}L2 ´ }pq ˝ γq
a

9γ}L2

¯

“ }pn}L2 ´ }q}L2 ,

which shows that } 9βn}L2 “ }pn}
2
L2

is bounded, as dpβn,βq is bounded as a convergent sequence. Since

} 9βn}L2 or }pn}L2 induces a norm on Ξ, which is a subset of a finite vector space, }ξn} is bounded as well, as

all norms are equivalent on finite vector spaces.

Consider an arbitrary subsequence of pξnqnPN. Since this subsequence is bounded in pΞ, }¨}q as well, it contains

a convergent subsequence pξnkqkPN. Let ξ˚ :“ limkÑ8 ξnk . Since the embedding f is continuous, we have

fpξ˚q “ limkÑ8 fpξnkq “ limkÑ8 βnk “ β “ fpξq and therefore ξ˚ “ ξ as f is injective. Hence, every

subsequence has a subsequence which converges to ξ with respect to } ¨ }. Thus, pξnqnPN converges to ξ in

pΞ, } ¨ }q and f´1 is hence continuous.

Web Appendix C Examples and counterexamples

C.1 Optimal warping and Fréchet means are not unique

We give an example that illustrates that both the optimal warping function minimizing the elastic distance and

the Fréchet mean for a set of curves with respect to the elastic distance are not necessarily unique. Consider

two piecewise linear curves β1 and β2 with respective piecewise constant SRV curves p and q given as

pptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

p´3, 0qT if t P r0, 0.25r

p2,´4qT if t P r0.25, 0.5r

p´4, 2qT if t P r0.5, 0.75r

p0,´3qT if t P r0.75, 1s

and qptq “

$

&

%

p´3, 1qT if t P r0, 0.5r

p1,´3qT if t P r0.5, 1s

The corresponding curves β1 and β2 are displayed in Figure 2 on the left. The objective function Φ, which

needs to be maximized in order to find the optimal warping of the second curve to the first, only depends on

one parameter t1 and is given as

Φpt1q “

g

f

f

e0.5

ż t1

0
xpptq,

˜

´3

1

¸

y2` dt`

g

f

f

e0.5

ż 1

t1

xpptq,

˜

1

´3

¸

y2` dt,

13
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Figure 2: Left: Two piecewise linear curves in gray with Fréchet mean curves in red and blue. Right: Objective
function with two modes. Both maximizer t1 “ 0.25 and t1 “ 0.75 correspond to optimal warping functions.

where

xpptq,

˜

´3

1

¸

y2` “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

92 if t P r0, 0.25r

0 if t P r0.25, 0.5r

142 if t P r0.5, 0.75r

0 if t P r0.75, 1s

and xpptq,

˜

1

´3

¸

y2` “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if t P r0, 0.25r

142 if t P r0.25, 0.5r

0 if t P r0.5, 0.75r

92 if t P r0.75, 1s

. (8)

With this we compute

Φp1´ t1q “

g

f

f

e0.5

ż 1´t1

0
xpptq,

˜

´3

1

¸

y2` dt`

g

f

f

e0.5

ż 1

1´t1

xpptq,

˜

1

´3

¸

y2` dt

“

g

f

f

e0.5

ż 1

t1

xpp1´ tq,

˜

´3

1

¸

y2` dt`

g

f

f

e0.5

ż t1

0
xpp1´ tq,

˜

1

´3

¸

y2` dt

(8)
“

g

f

f

e0.5

ż 1

t1

xpptq,

˜

1

´3

¸

y2` dt`

g

f

f

e0.5

ż t1

0
xpptq,

˜

´3

1

¸

y2` dt

“ Φpt1q,

which shows that Φ is symmetric around 0.5. Looking at the gradient of Φ given in Appendix B.2 we observe

Φ1pt1q ą 0 if t1 Ps0, 0.25rYs0.5, 0.75r and Φ1pt1q ă 0 if t1 Ps0.25, 0.5rYs0.75, 1r, which implies that both

t1 “ 0.25 and t1 “ 0.75 are local maximizer and therefore global maximizer due to Φ being symmetric. For

illustration of the objective function please refer to the right part of Figure 2.

The two maximiser of Φ correspond to two different optimal warping functions γ1 and γ2 of β2 to β1. For

t1 “ 0.25 we obtain 9γ1 according to (4) in Appendix B as

9γ1ptq “

$

’

’

&

’

’

%

0.5xpptq,p´3,1qT y2`
ştj`1
tj

xpptq,p´3,1qT y2` dt
if t P r0, 0.25r

0.5xpptq,p1,´3qT y2`
ştj`1
tj

xpptq,p1,´3qT y2` dt
if t P r0.25, 1s

“

$

&

%

0.5¨92

0.25¨92
if t P r0, 0.25r

0.5xpptq,p1,´3qT y2`
0.25¨142`0.25¨92

if t P r0.25, 1s
.
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Therefore, 9γ1ptq for t1 “ 0.25 and analogously 9γ2ptq for t1 “ 0.75 are piecewise constant with

9γ1ptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

2 if t P r0, 0.25r

c1 if t P r0.25, 0.5r

0 if t P r0.5, 0.75r

c2 if t P r0.75, 1s

and 9γ2ptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

c2 if t P r0, 0.25r

0 if t P r0.25, 0.5r

c1 if t P r0.5, 0.75r

2 if t P r0.75, 1s

,

where the constant values are given as c1 “
2¨142

142`92
and c2 “

2¨92

142`92
. Here, the form of the derivative of the

second optimal warping function γ2 of the second curve to the first curve is due to symmetry of this particular

problem. Thus, both SRV-curves

qpγ1ptqq
a

9γ1ptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

?
2p´3, 1qT if t P r0, 0.25r

?
c1p1,´3qT if t P r0.25, 0.5r

0 if t P r0.5, 0.75r
?
c2p1,´3qT if t P r0.75, 1s

and

qpγ2ptqq
a

9γ2ptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

?
c2p´3, 1qT if t P r0, 0.25r

0 if t P r0.25, 0.5r
?
c1p´3, 1qT if t P r0.5, 0.75r

?
2p1,´3qT if t P r0.75, 1s

are SRV transformations of optimally aligned curves. This also means that both L2-means of p and the SRV

transformations pq ˝ γiq
?

9γi, i “ 1, 2 of either optimally aligned β2 are SRV transformations of Fréchet means

of β1 and β2 (in red and blue in Figure 2).

To see this, let β̄ be a curve with SRV tranformation

p̄ P

"

1

2
p`

1

2
pq ˝ γiq

a

9γi

ˇ

ˇ

ˇ

ˇ

i “ 1, 2

*

.

We compute for i “ 1, 2

dprβ1s, rβ2sq ď dprβ1s, rβ̄sq ` dprβ̄s, rβ2sq

“ inf
γ
}
1

2
p`

1

2
pq ˝ γiq

a

9γi ´ pp ˝ γq
a

9γ}L2

` inf
γ
}
1

2
p`

1

2
pq ˝ γiq

a

9γi ´ pq ˝ γi ˝ γq
a

9γi
a

9γ}L2

γ“id
ď

1

2
}pq ˝ γiq

a

9γi ´ p}L2 `
1

2
}p´ pq ˝ γiq

a

9γi}L2 “ }p´ pq ˝ γiq
a

9γi}L2

“ dprβ1s, rβ2sq,

which shows that all inequalities have to be equalities and, therefore, γ the identity function. This also implies

that β̄ is optimally aligned to β1 and β2 ˝ γi, i “ 1, 2 and dprβ1s, rβ̄sq “ dprβ̄s, rβ2sq “
1
2dprβ1s, rβ2sq.

15



Hence, for every other curve β̃ it holds that

dprβ̃s, rβ1sq
2 ` dprβ̃s, rβ2sq

2 ě 2

˜

dprβ̃s, rβ1sq ` dprβ̃s, rβ2sq

2

¸2

ě
1

2
dprβ1s, rβ2sq

2

“ dprβ̄s, rβ1sq
2 ` dprβ̄s, rβ2sq

2,

where the first inequality is due to the square being convex and the second due to the triangle inequality. This

shows that every β̄ is a minimizer of the sum of squared distances and therefore a Fréchet mean. Hence, both
1
2p` 1

2pq ˝ γiq
?

9γi, i “ 1, 2 are equivalently valid SRV transformations of Fréchet mean curves.

C.2 Identifiability of constant SRV splines

−2

0

2

4

0 2 4 6 8
x1

x 2

curve image

0

2

4

6

8

0.00 0.25 0.50 0.75 1.00
t

x 1

curves

−6

−3

0

3

6

0.00 0.25 0.50 0.75 1.00
t

x 1

constant SRV splines

−2

0

2

4

0.00 0.25 0.50 0.75 1.00
t

x 2

−2

0

2

4

0.00 0.25 0.50 0.75 1.00
t

x 2
curve

1

2

3

Figure 3: Three constant SRV splines (right) with corresponding linear spline curves (middle). All three of
them have the same image displayed in black on the left.

Piecewise constant SRV-curves with varying knots are not identifiable. This means multiple constant SRV

splines or equivalently linear spline curves can have the same image, as for example the curves displayed in

Figure 3.

Fixing the set of knots determines the velocity between the knots and therefore the SRV transformation.

Only if a knot is superfluous, i.e. the assignment of the knots to the corners of the polygonal image is not

unique, there is more than one spline curve in each equivalence class for this case.

C.3 Splines of degree four are not identifiable

Spline curves with non-prime degree are not identifiable via their basis coefficients modulo warping. Consider

the following counterexample with splines of degree four. Let

Qptq “

˜

4t4 ´ 2t2

4t4

¸

and Pptq “

˜

t4 ` 2t3 ´ t

t4 ` 2t3 ` t2

¸

.

Then γptq “
a

0.5pt2 ` tq is a suitable warping function since it fulfills P “ Qpγptqq and is monotonically

increasing and onto, but monomial coefficients differ between P and Q and are thus not identifiable modulo
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warping. Note that the counterexample for splines of degree 4 could similarly be constructed for all splines

with any degree that is not a prime number. If the degree of the splines is a prime number, it seems possible

that one can show a similar identifiability result as in Theorem 2. This would imply identifiability for quadratic

SRV-curves using an analogous argument as in Corollary 1.

Web Appendix D Further simulations and supplementary plots

D.1 Simulation: Aligning sparsely and irregularly sampled curves

In this first simulation, we compare our methods (available in the R-package “elasdics” (Steyer, 2021)) for

aligning sparsely and irregularly sampled curves to the implementation of the dynamic programming (DP)

algorithm in the existing R packakge “fdasrvf” (Tucker, 2020) based on Srivastava et al. (2010). Since this DP

implementation only allows for an equal number of observed points on both curves, we restrict the simulation

to this case, although we developed our methods in particular for differing numbers of observed points per

curve. In Figure 4, we present one simulated example for open and closed curves each.

For the open setting, we choose a parameterized curve βptq “ sinptqpcosp12tq ` 2t, sinp12tq ` tqT , which

we use as a template for both curves. The first curve β1 (displayed in red in Figure 4) is obtained via sampling

an unbalanced observation grid t1, . . . , tm with m P t10, 30, 50u and adding a Gaussian random walk error

(with standard deviation sd “ 0.01) to the evaluations β1pt1q, . . . ,β1ptmq. The second curve β2 is re-sampled

100 times (displayed in grey in Figure 4) using the same sampling scheme as for β1.

For the closed setting we choose two butterfly shapes available in “fdasrvf” (Tucker, 2020). These are

discretely observed curves with 100 observations each. We down-sample the curves such that m P t30, 60, 90u

points per curve are left and such that points with high estimated curvature are more likely to be included. This

way, the images of the curves are well preserved, as we are more likely to remove points on straight lines.

Furthermore, we add an error term sinpπ j´1
m´1qεj to the j-th remaining observation for all j “ 1, . . . ,m, where

εj is distributed according to a Gaussian random walk with standard deviation sd “ 0.5 and the modification

with the sinus function ensures closedness. According to this sampling scheme, we draw one copy (plotted in

red) of β1 from the first butterfly shape and 100 copies (plotted in gray) of β2 from the second butterfly shape.

For each of the settings we compare the optimal alignment for each copy of β2 to the corresponding β1 us-

ing our coordinate-wise-optimization (CWO) algorithm with the alignment produced by the dynamic program-

ming (DP) from “fdasrvf” (Tucker, 2020). When looking at the coordinates separately, we visually observe

slightly better alignment for our method CWO compared to DP. This is also evident in a smaller average elastic

distance, e.g. on average 0.92 vs. 1.23 and 24.71 vs. 33.18 for m “ 30 in the open and closed setting, respec-

tively, and 0.67 vs. 1.19 (open, m “ 50) and 17.9 vs. 21.37 (closed, m “ 60) for moderate m. As expected,

this difference decreases if 90 points of the butterfly shapes are selected (19.07 vs. 19.28 on average), as in this

case the points are nearly observed on a regular, fairly dense grid, which is the setting the implementation in

“fdasrvf” is designed for.

A highly unbalanced distribution of observed points on the curves described above causes difficulties for the

mean computation in “fdasrvf” (Tucker, 2020) as well. Figure 5 demonstrates this for sets of partially densely

and partially sparsely observed curves each, for which we compute means with respect to the elastic distance.

The means in red, which are computed by the curve karcher mean function in “fdasrvf” (Tucker, 2020),

do not capture the image of the observed curves as well as our methods (e.g. butterfly shape in blue) which

are specifically developed for such unbalanced data. Visually, the blue butterfly shape captures small features,

like the shape of the wings and the tail, better than the red one. Since the implementation in “fdasrvf” aims at

computing a mean with respect to the geodesic shape distance, i.e. minimizes the geodesic distance on the sub-
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Figure 4: Comparison of the optimal alignment produced by our method CWO and the one computed with DP.
The 100 gray curves are sampled with m points per curve and aligned to the red curve.The first row shows the
sampled curves in the moderately sparse setting (m “ 30 or m “ 60 points per curve for the open or closed
curve, respectively). The optimal alignments found by both methods are depicted in the lower rows, with the
resulting mean elastic distances given in the headings. To make the alignment visually comparable, the aligned
curves are evaluated at the observation grid of the red curve for DP.

manifold of (closed) curves with fixed curve length, the results are not completely comparable. Nevertheless,

in particular for the open curves, which are of similar length, we expect the impact of this aspect to be relatively

small compared to the warping.

D.2 Simulation: Convergence of spline mean coefficients

Additional to the simulation for the closed heart shaped template in the main document, we observe conver-

gences of spline mean coefficients for two open templates here. The curves in Fig. 6 are sampled from linear

splines on SRV level with three or nine equally spaced inner knots, using a standard deviation of σ “ 0.3 or
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Figure 5: Elastic means for irregularly sampled curves. The observed curves are displayed in gray with black
dots at the observed points. The red mean curves are computed with the “fdasrvf” package, the blue mean
curves are computed using our methods and linear splines with 13 equally spaced inner knots or constant
splines on SRV level with 68 equally spaced inner knots for the open curves and the closed butterfly shaped
curves, respectively.

σ “ 0.4 for the spline coefficients, respectively. Fig. 7 and Fig. 8 show the distribution of the estimated means

and the corresponding coefficients for 100 repetitions of each setting. Increasing the number of repetitions

from 20 to 40 and from 40 to 100 per setting had little effect on the overall picture, which is why we consider

100 simulation runs to be sufficient. For the first template, the estimation does not improve much if we select

more points per curve. Since for this template a low number of coefficients has to be estimated, a small number

of observed points mi P r10, 15s per curve seems sufficient. The results for the second open template are

similar to the closed heart-shaped template discussed in the main paper. In all three settings, our theoretical

results on identifiability of spline coefficients (Corollary 1) and the continuity of the embedding (Lemma 2) are

confirmed.
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Figure 6: Example simulated data in gray with observed values marked as black dots and corresponding smooth
elastic means over n “ 5 observations in blue. The irregularly sampled curves are drawn from two different
templates (in red) with varying number mi of observed points per curve.
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Figure 7: Top: Smooth means (in blue) computed for a set of n curves drawn from the open template curve
(in red) via sampling its B-spline coefficients from a normal distribution with standard deviation σ “ 0.3 and
mi, i “ 1, . . . , n points observed per curve. The means are computed using linear SRV splines and the same
knot set as the template (three equally spaced inner knots)
Bottom: Corresponding distribution of spline mean coefficients (in blue) and template coefficients (in red).
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Figure 8: Top: Smooth means (in blue) computed for a set of n curves drawn from the open template curve
(in red) via sampling its B-spline coefficients from a normal distribution with standard deviation σ “ 0.4 and
mi, i “ 1, . . . , n points observed per curve. The means are computed using linear SRV splines and the same
knot set as the template (nine equally spaced inner knots)
Bottom: Corresponding distribution of spline mean coefficients (in blue) and template coefficients (in red).
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D.3 Simulation: Misspecified spline model

The last simulation elaborates on the convergence of the spline means in case of model misspecification. Figure

9 shows means with varying knots using linear SRV splines (smooth means in blue) or constant SRV splines

(polygonal means in red). All means are computed for the same set of n “ 20 heart-shaped curves, which

have been sampled as described above from the third template with mi P t30, . . . , 50u points per curve. For

a sufficient number of knots, both the smooth and the polygonal means reproduce the original heart shape

well. If we consider the number of coefficients ncoefs as a measure for model complexity, we observe that the

smooth means are closer to the template than the polygonal ones, given the same number of coefficients, with

a local minimum at the correctly specified model. This shows that one can obtain more parsimonious models

for smooth means using linear SRV-curves. Even though the distance to the template for a polygonal mean can

be reduced by using more knots, it does not seem to become as low as for the linear SRV mean.
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Figure 9: Left: Smooth mean based on linear splines on SRV level with varying number of knots and therefore
coefficients computed on a sample of 20 curves with mi P t30, 50u points per curve. The template is displayed
in black.
Middle: Polygonal mean with varying number of coefficients computed for the same sample of curves (from
the same template in black) as the smooth means on the left.
Right: Elastic Distance of the mean curves to the template curve given the number of coefficients in the mean
model. The vertical dashed line indicates the true linear spline model with 22 coefficients.

This indicates that using linear SRV splines for modeling a smooth “true” mean might reduce the bias due

to under-sampling the curves. While we see a local minimum for the ncoefs used to generate the data, close

ncoefs give similar results and in particular values larger than the true one give similarly good results, with the

distance generally decreasing in ncoefs. This indicates that results are not very sensitive to ncoefs given it is

sufficiently large.

Web Appendix E Classifying spiral curve drawings for detecting Parkinson’s disease

The Archimedes spiral-drawing test is a common, non-invasive tool for diagnosing patients with Parkinson’s

disease. Usually, the drawing task is performed on paper and analyzed by medical experts to identify deviations

of the shape to the spiral template (Alty et al., 2017). Recently, there have been approaches using digitizing

tablets to obtain more detailed data, not only on the image of the spiral curve but also on the position of the pen

at each time point (Saunders-Pullman et al., 2008; Isenkul et al., 2014).

In addition to this static spiral test, Isenkul et al. (2014) proposed a modified, dynamic spiral test, where

the template spiral curve appears and disappears (“blinks”) in certain time intervals. Fig. 10 shows the spiral

curves drawn by 25 Parkinson’s patients and 15 controls in both tests. It is visually notable that the controls
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Figure 10: Left: Spiral curves drawn by either a healthy control group or by patients with Parkinson’s disease
in two different settings. Right: The mean curve (black) of all static curves (gray) computed with respect to the
elastic distance.

follow the template more closely than the Parkinson’s patients. This difference seems to be more severe for the

dynamic spiral test.

E.1 Classification based on the elastic distance to a template

While the authors of the original study based their analysis on differences in speed distributions of both tasks,

Kurt et al. (2019) pre-aligned the spiral curves using a heuristic dynamic time warping algorithm. We follow up

on this, but instead we use the elastic distance in (1) as a proper distance. Moreover, we only consider highly

interpretable decision rules that classify an individual as being at high risk of having Parkinson’s disease if the

distance of the drawn curve to the template exceeds a threshold. This mimics the decision made by medical

experts based on the spiral drawing and allows us to assess whether the additional information on time or speed

provided by a tablet is actually necessary for good classification.

We only use 10% of the values per curve, which results in irregularly sampled curves with 55 to 269 points

each. Visual inspection indicates good agreement between the images of the down-sampled and the original

curves. In Subsection E.3 we discuss why down-sampling is necessary and how it influences the accuracy of

the classification, also comparing to “fdasrvf” in subsection E.4.

We want to base our classification on deviations from the template the participants had to follow. Since the

original parametrized template curve is not available, we compute the elastic mean (see Subsection 2.5) of all

curves from the static spiral test using piecewise constant splines with 201 knots on SRV level. We then use the

resulting polygonal mean (displayed in black in Fig. 10, top) as a template curve.

Fig. 11 shows the elastic distances of the drawn curves to the template curve. As expected, it is generally

larger for Parkinson’s patients than for controls in both settings. The scatter plot on the right indicates a strong

positive correlation between the distances in the static and in the dynamic test for healthy subjects, which is not

present for Parkinson’s patients.

We propose intuitive decision rules of the form: Classify as “Parkinson” if the distance of the drawn curve

to the mean curve exceeds a threshold. The gray areas in Fig. 11 (left and middle) indicate the corresponding

decision rule for curves in the static or dynamic test. Alternatively, we classify as “Parkinson” if either of

the two distances exceeds a respective threshold (Fig. 11, right). To estimate the thresholds, we optimize the

zero-one loss (misclassification loss), which is feasible for our small dataset and set of decision functions.

Leave-one-out cross-validation indicates 72.5% accuracy for the static, 90.0% accuracy for the dynamic

setting and 92.5% accuracy for the classifier based on both. Since for the latter we observe only one misclassi-
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Figure 11: Left: Distance of the curves drawn by the participants to the mean spiral curve for both settings.
Right: Distance of the curve in the static setting compared to the distance of the curve in the dynamic setting.
The gray areas indicate the decision rule based on the zero-one loss. Note that one observation for a Parkinson’s
patient with an extreme distance greater than 40 in the dynamic setting is not displayed.

fied observation in-sample, including additional features like the difference or the ratio of the two distances is

not advisable, but could further improve classification if more data were available. Moreover, it seems that the

spiral drawings show more variability in x-coordinate direction than in y-coordinate direction. To address this,

it could also be beneficial to explore different weights on the coordinate axes in the elastic distance computation.

To see that an elastic analysis is necessary, we compare our elastic analysis to a simpler classifier based

on the usual L2-distance. For this, we re-parametrize the curves according to relative arc length to account

for different speed patterns but do no further alignment. We obtain accuracies of 55.0% for the static setting,

80.0% for the dynamic setting and 77.5% for the classifier based on both, indicating clearly better performance

of an elastic analysis.

In conclusion, the elastic distance of the drawn curve to a template is an intuitive measure of performance

for both the static and the dynamic spiral drawing test. Using this feature, we mimic and objectify a doctor’s

medical diagnosis process, and obtain highly accurate classification. If more data were available, maybe even

from patients with related neurological conditions like essential tremor, it might also be beneficial to analyze

the whole aligned curves instead of their distances to the template, or to additionally analyze the temporal

information provided by the warping functions, which our approach allows to separate from the images but

which provide no additional information in this study.

E.2 Warping functions of misclassified subjects

Elastic alignment of the observed curves to a template allows us to separate phase and amplitude variation.

Our classifiers depend on the elastic distance, which means we rely only on the amplitude variation. To see if

the phase, that is the temporal pattern, yields additional information compared to only the image, we look in

Fig. 12 at the warping functions separated according to the classification result. This comparison of real-time

parametrization to the parametrization after alignment to the mean curve shows whether the speed patterns of

patients with Parkinson’s disease are dissimilar to those of healthy individuals.

Looking at the general pattern of the warping functions in both settings, we observe more deviation from

a smooth speed pattern in the group of Parkinson’s patients than in the control group. To decide whether

this yields additional information to the elastic distance of the curve to the template, we further inspect the

warping curves which belong to misclassified subjects. There are two Parkinson’s patients with conspicuous

speed patterns we misclassify as “control” in the static setting. Their speed pattern shows starting and stopping
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Figure 12: Optimal warping in both settings separated by the actual status and the predicted status using the
classifiers based on only the corresponding distance each and leave-one-out cross-validation.

motions, which is not present in the curves of any of the healthy control subjects. Contrarily, we do not observe

any noticeably different speed pattern for the misclassified individuals in the dynamic setting. Here the image

of the curve seems to capture all available information on the status of the participant.

E.3 Influence of down-sampling on the accuracy

Adhoc analysis of the full data is not recommended as the spirals are observed densely but with (small) errors.

This is problematic because in the SRV framework the analysis is performed at the level of the derivative and

small errors on function level can cause large errors on the level of the derivative and therefore on SRV level.

Using only a fraction of the values per curve effectively serves as a smoothing method, which reduces

variability in the observed SRV-curves. We used 10% of the values, as this gives 55 to 269 points per curve,

which seems reasonable to represent the spiral shape of the data. To investigate the influence of the coarsening

on the accuracy, we conducted our analyses again with a varying fraction of points per curve and observed the

accuracy in the dynamic spiral drawing setting (Tab. 1).

fraction of points used 0.02 0.05 0.07 0.08 0.10 0.11 0.12 0.15
accuracy 0.875 0.900 0.875 0.925 0.925 0.925 0.875 0.825

run-time mean computation 11.110 13.950 16.060 18.130 23.190 22.820 24.360 30.830

Table 1: Classification accuracy in the dynamic setting with a varying fraction of points per curve. The last line
gives the system run-times for the mean computation in seconds.

As expected, excessive thinning of the data (2%, 5% or 7%) leads to poorer classification results. However,

it seems that the classifier is not extremely sensitive to the degree of coarsening, as 8% and 11% give the

same accuracy as 10% of the data. If even more points per curve are used, the accuracy decreases again.

Since the run-times (Tab. 2) for the mean computation do not increase substantially, coarsening the curves to

a “reasonable” number of sample points seems to be more a matter of accuracy than of computation times.

Providing rigorous guidelines for identifying optimal sample frequencies in the SRV framework is, although an

interesting topic in itself, beyond the scope of this paper, which focuses on sparsely sampled curves.
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E.4 Comparison with the package “fdasrvf”

In the following, we compare the performance of our methods with the implementation in the “fdasrvf” package

for this application. Since the implementation in “fdasrvf” only allows an equal number of points per curve, we

select points on a regular time grid. Analogously to the analysis with our package “elasdics”, we first calculate

an elastic mean of the observed curves in the static setting (with the function curve karcher mean and

option rotated = "F" to exclude rotation aligment) and then calculate the distance of each curve in the

dynamic setting to this mean using their function calc shape dist.

number of points 50 100 200 400
elasdics 0.850 0.875 0.900 0.850
fdasrvf 0.800 0.850 0.825 0.850

Table 2: Comparison of the classification accuracy in the dynamic setting with a varying number of points per
curve.

Tab. 2 shows that our method shows better classification results than if the implementation in the package

“fdasrvf” is used for this application, regardless of the number of selected points per curve. Tab. 3 shows that

the computations times for the elastic mean are always lower using “elasdics” than “fdasrvf”.

number of points 50 100 200 400
elasdics 11.090 14.520 27.530 62.550
fdasrvf 25.340 110.560 491.470 2591.210

Table 3: Run-times for the mean computation of the spiral data in seconds.

The lower classification accuracy for the “fdasrvf” package is due to a worse mean computation (Fig. 13,

left). We have already seen in other scenarios that their implementation is sensitive to the grid on which the

curves are observed (cf. Fig. 5, Supporting Information). To demonstrate that this is also the case here, we

carry out a further simulation to evaluate the influence of the observation grid on the mean calculation (Fig. 13,

middle) and the accuracy (Fig. 13, right) in the dynamic setting for both packages.
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Figure 13: Left: Comparison of means for the spirals in the static setting with 100 observations per curve.
Middle: Elastic means after re-sampling the observation grid. Right: Accuracy in the dynamic setting after
re-sampling the observation grid.

Here, we first re-parametrize the curves with respect to arc length and then sample an observation grid for

each curve via Fa,bpt0, 0.01, 0.02, . . . , 0.99, 1uq where Fa,b is the cumulative distribution function of the Beta

distribution with parameters a, b „ Ur0.7,1s. Our mean is little affected by these randomly chosen observation

grids, while the “fdasrvf” mean is more scattered. Also, the accuracy in the dynamic setting varies more and is

on average lower compared to an analysis with our package.
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