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Zusammenfassung

Diese Arbeit befasst sich mit zwei Effekten in makroskopischen Systemen, die nur sichtbar
werden, wenn man die Quantennatur des Systems berücksichtigt. Damit diese Effekte stark
werden, ist eine hohe Mikrozustandsentartung erforderlich, was die Untersuchung ihrer
Manifestation in de Sitter und schwarzen Löchern (SL) motiviert.

Der erste Teil befasst sich mit der quantenmechanischen Beschreibung von Phänome-
nen der Teilchenerzeugung in einem Hintergrund. Die übliche semiklassische Behandlung
solcher Szenarien erlaubt oft eine nichtperturbative Analysemethode. Wir zeigen, dass die
Auflösung des Hintergrunds als N -Teilchen-Zustand eine vollständig quantenmechanische
perturbative Analyse ermöglicht, welche die semiklassischen nichtperturbativen Ergebnisse
produziert und es erlaubt, darüber hinaus zu gehen. Sowohl in einem Modell mit zwei Ska-
laren als auch in der Skalar-QED können wir so die Teilchenerzeugung in zeitabhängigen
Feldern in Form von n → 2 Annihilationsprozessen darstellen. Rückwirkungseffekte wer-
den insbesondere im Fall n ∼ N innerhalb eines einzigen Prozesses dramatisch, d.h. das
nahezu klassische System geht nicht-graduell in einen Quantenzustand von wenigen hoch-
energetischen Teilchen über. Wir stellen fest, dass eine solche “Quantenmechanisierung”
(quantumization) im Allgemeinen stark unterdrückt ist. Im Gegensatz dazu können die
umgekehrten, “klassisierenden” (classicalizing) Übergänge, 2→ N , potentiell ohne Unter-
drückung erfolgen, da die Entartung des N -Teilchen-Zustands in einer konsistenten Theorie
ausreichend hoch sein kann. Im Fall von N → 2 bewirkt eine solche Entartung nur in dem
Maße eine Verstärkung, wie die entarteten Zustände innerhalb einer anfänglichen Super-
position abgedeckt sind. Ein SL, das durch einen gebundenen Zustand von N Gravitonen
beschrieben wird, besitzt somit einen Zustand, der gegenüber einem Einprozesszerfall insta-
bil ist. Wir kommentieren die Möglichkeit, dass ein nahezu klassisches SL das erforderliche
Maß an Superposition auf relevanten Zeitskalen erzeugt.

Der zweite Teil befasst sich mit dem so genannten Speicherlast- (memory burden) Ef-
fekt, der universell für Systeme mit hoher Speicherkapazität besteht und einen graduellen
Zerfall des Systems unterbindet. Wir untersuchen anhand eines Prototypmodells, ob die-
ser Effekt vermieden werden kann, indem gespeicherte Quanteninformation von einem Satz
von Freiheitsgraden auf einen anderen umgeschrieben wird. Wir stellen fest, dass ein solcher
durch Umschreiben ermöglichter Zerfall nur sehr langsam im Vergleich zum Anfangssta-
dium des Zerfalls voranschreiten kann, d.h. der Zerfall bleibt effektiv unterdrückt. Sowohl
bei de Sitter als auch bei SL manifestiert sich der Effekt in einer Abweichung von der
semiklassischen Entwicklung der thermischen Teilchenemission und wird spätestens nach
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einer Anzahl von Emissionen in der Größenordnung der Entropie stark. Die gespeicherte
Quanteninformation, die für den Effekt verantwortlich ist, stellt ein Quanten-Haar dar und
kann um den Wirkungseintritt herum beginnen, freigesetzt zu werden. Wenn die Inflation
nicht lange vor diesem Zeitpunkt endete, können die Abdrücke dieser primordialen Infor-
mation beobachtbar sein. Für SL eröffnet die effektive Stabilisierung nach dem Halbzerfall
in Abwesenheit anderer starker Effekte destabilisierender Art ein neues Fenster für kleine
primordiale SL als dunkle Materie.



Abstract

This thesis is concerned with two effects in macroscopic systems that are only revealed when
taking into account the system’s quantum nature. For these effects to become strong, a
high microstate degeneracy is essential, which motivates investigating their manifestation
in de Sitter and black holes (BHs).

The first part is concerned with the quantum description of phenomena of particle
creation in a background. The common semiclassical treatment of such scenarios often
allows for a nonperturbative method of analysis. We show that resolving the background
as an N -particle state allows for a fully quantum perturbative analysis that produces the
semiclassical nonperturbative results and allows to go beyond. In a model of two scalars as
well as in scalar QED, we thus produce particle creation in time-dependent fields in terms
of n → 2 annihilation processes. Effects of backreaction in particular become dramatic
within a single process in the case n ∼ N , i.e., the near-classical system non-gradually
transitions into a quantum state of a few highly energetic particles. We find that such
“quantumization” is in general highly suppressed. By contrast, the reverse, “classicalizing”
transitions, 2 → N , may be unsuppressed because the degeneracy of the N -particle state
can be sufficiently high in a consistent theory. For the case of N → 2, such degeneracy is
causing an enhancement only to the extent that the degenerate states are covered within
an initial superposition. A BH described in terms of a bound state of N gravitons thus
possesses a state unstable to single-process decay. We comment on the possibility of a
near-classical BH generating the required level of superposition on relevant time scales.

The second part is concerned with the so-called memory burden effect, which is universal
to systems of high memory capacity and stops any gradual decay of the system. We study
a prototype model to investigate whether the effect may be avoided by rewriting stored
quantum information from one set of degrees of freedom to another one. We find that such
rewriting-facilitated decay can proceed only very slowly compared to the initial stage of
decay, s.t. the decay effectively remains suppressed. In both de Sitter and BHs, the effect
manifests in a deviation from the semiclassical evolution of thermal particle emission and
becomes strong the latest after a number of emissions on the order of the entropy. The
stored quantum information responsible for the effect constitutes a quantum hair and may
start to get released around the onset. If inflation ended not long before that time, the
imprints of that primordial information can be observable. For BHs, in the absence of
other strong effects of destabilizing kind, the effective stabilization after half-decay opens
a new window for small primordial BHs as dark matter.
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Publications

The present thesis is based on research that I conducted at the LMU München as well
as the Max-Planck-Institute for Physics and the results of which have been published in
ref. [1, 2, 3]. In particular, part I of this thesis is based on work that has been done in
collaboration with Gia Dvali and has been published in

1. G. Dvali and L. Eisemann, “Perturbative understanding of nonperturbative pro-
cesses and quantumization versus classicalization,” Phys. Rev. D 106 (2022), 125019,
[2211.02618]

Part II is based on research done in collaboration with Gia Dvali, Marco Michel, and
Sebastian Zell, which has been published in

2. G. Dvali, L. Eisemann, M. Michel and S. Zell, “Universe’s Primordial Quantum
Memories,” JCAP 03 (2019), 010 [1812.08749].

3. G. Dvali, L. Eisemann, M. Michel and S. Zell, “Black hole metamorphosis and sta-
bilization by memory burden,” Phys. Rev. D 102 (2020), 103523, [2006.00011].

As is conventional in high energy physics, the authors of these papers share the principal
authorship and are listed alphabetically. The main objective of this thesis is to put the
results into context as well as present them in a unified way. Thus, the presentation in
this thesis follows that of the above papers closely, although new material has been added.
In particular, equations and figures have been reproduced ad verbatim. We also point out
that the results obtained and published in the above collaborations have since in part been
reported in the dissertations of some of the collaborators. Explicitly, results of [2] were
reported by Sebastian Zell in [4] and the results of both [2] and [3] were reported by Marco
Michel in [5].
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Chapter 1

Introduction

Context
The theory of quantum gravity is well-defined within quantum field theory for sub-

Planckian energies (see, e.g., ref. [6]). However, an open problem is not just its extension
to higher energies, the so-called UV-completion, but also to clarify what quantum gravity
predicts at low energies. Famous solutions of General Relativity, the classical theory of
gravity, such as black holes (BHs) and de Sitter spacetime are assumed to correspond to
nonperturbative states in the quantum theory that persist in the classical limit. However,
those states and their exact evolution are unknown. An active field of research therefore
is concerning quantum corrections to the known (semi-)classical evolution of those states.
With the work presented in this thesis we hope to contribute to such understanding.

BHs and de Sitter spacetime, which cannot be described within Newtonian gravity, not
only have many fascinating properties but are also at the center of several important open
questions in fundamental physics and cosmology.

Let us review some of the established properties of BHs and de Sitter as well as touch
on some ideas regarding BHs in the context of quantum gravity and particle physics in
general.

Within General Relativity, BHs are the objects of the highest possible mass density
(see, e.g., ref. [7]). They may form in the gravitational collapse of matter and subsequently
grow by accreting further matter, giving them a prominent role in astrophysical modelling
(see, e.g., ref. [8]). For an outside observer, there exists an event horizon, meaning that
no physical signal from beyond the horizon can reach the observer [7]. The Bekenstein
bound on the possible entropy of a system of finite extent [9] is saturated by BHs [10],
implying there has to be an enormous number of internal degrees of freedom that can carry
information while having an effectively vanishing energy cost of excitation. Furthermore,
that entropy scales with the area of the BH as opposed to the ordinary case of scaling
with a system’s volume [10]. BHs have been shown to radiate all existing particle species
with an approximately thermal spectrum for as long as the corresponding energy loss is
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negligible as compared to the BH mass [11], a phenomenon known as Hawking-radiation.
In cosmology, BHs have attracted attention in the context of dark matter, a type of

matter motivated by the current cosmological standard model ΛCDM and constrained by
observations to make up around 20% of the universe’s current mass (see, e.g., [12]). Cold
dark matter would be nonrelativistic and interact electromagnetically only rather weakly.
BHs that would have formed sufficiently early in the universe’s history, so-called primordial
BHs, could in principle account for part or all of the cold dark matter (see, e.g., [13]). Such
an explanation arguably would have the appeal of not requiring the existence of unknown
particles.

Via the existence of BHs, gravity likely limits the possible masses elementary particles
may have: a particle of mass much heavier than MP would have a Compton wavelength
much smaller than its gravitational radius and thus may be expected to constitute a BH.
States at the crossover with a mass around MP are expected to neither behave like a
quantum particle nor like a near-classical BH [14].

In addition to the formation from gravitational collapse, BHs are also expected to be
created in trans-Planckian particle collisions (see, e.g., [15]), matching the semi-classical
intuition that if the impact parameter is smaller than the gravitational radius corresponding
to the center of mass energy, a BH should be formed.

Combining the above expectations, the idea of self-completeness of gravity [16] entails
that there is no UV-completion of gravity in terms of additional particles but instead BHs
are the only new trans-Planckian states.

Within the idea of classicalization [17], the possibility of such a nonperturbative mecha-
nism of UV-completion is argued to generalize to quantum field theories that share certain
key properties of gravity. This would make BHs a representative of “classicalons”, the
resonances appearing at trans-cutoff energies in such a theory. As an explicit example, a
derivative self-interaction of the Higgs boson at a scale between the highest experimentally
probed one and the Planck scale could lead to classicalizing behaviour in the absence of
new elementary particles restoring perturbative unitarity [17, 18].

A proposal for a BH quantum state is provided by the N -Portrait [19], according to
which BHs are bound states of gravitons. Combined with the idea of self-completion,
this would imply that at energies both below and above MP , the degrees of freedom are
merely gravitons. We are going to come back to the N -Portrait and its implications for
the quantum evolution of BHs below.

As remarkable as some of the BH properties are, some of them have been shown to be
shared by a family of objects called “saturons” [20]: these objects are achieving maximal
and area-form entropy as well as exhibiting a slow release of information. Explicit examples
of saturon states within renormalizable quantum field theories have demonstrated that such
properties are not specific to gravity [21].

Many of the BH properties mentioned above are shared by de Sitter spacetime. In
addition, de Sitter has important applications in cosmology in the approximate description
of an inflationary stage [22] as well as of a present dark-energy-dominated stage [12]. In
high analogy to BHs, there also exists an event horizon for the observer [12]. Likewise,
particles are created in a thermal spectrum, a phenomenon known as Gibbons-Hawking-
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radiation [23]. A de Sitter patch viewed as a system of the size of the horizon, shares the
remarkable information properties of a BH: an area-form entropy saturating the Bekenstein
bound [23].

Quantum corrections to the evolution of BHs and de Sitter spacetime may be of various
kinds. Both Hawking- and Gibbons-Hawking-radiation are derived using the classical solu-
tions of a BH and de Sitter spacetime as an external background for quantum fields. Such
a semi-classical description represents a conscious approximation that necessarily breaks
down after a certain time if gravity is quantum in nature and takes part in the dynamics.

It has been argued [24] that the semi-classical description predicts the breakdown of its
validity in terms of a deviation from thermality of the radiation spectrum after a time on
the order of half-decay, even if the energy loss due to the radiation is taken into account in
terms of self-similar evaporation with a shrinking horizon and mass. In order to make more
quantitative predictions for the quantum mechanical evolution one has to, in principle, go
beyond such a description and commit to a quantum mechanical model.

Before outlining the types of quantum corrections our work is related to, let us briefly
mention other quantum corrections that have been proposed.

Within the above-mentioned N -Portrait [19], measurable effects of a global charge of a
BH have been identified, constituting a so-called BH-hair, which is absent only in the semi-
classical limit [25]. In the same quantum mechanical model, growing inner entanglement
[26] as well as growing entanglement with the radiated Hawking quanta [27] have been
found to be another cause for deviation from the semi-classical description.

An aspect of quantum mechanical evolution that part of our work concerns is non-
gradual decay. BHs are, in general, not protected by any symmetries against “explosion”
into a few particles. Within quantum field theories simpler than gravity, we investigate
condensate decay processes of many particles to two. Leaning on the N -Portrait for BHs,
we draw conclusions for BHs.

Another quantum mechanical effect that any system of high entropy has been argued to
be exposed to [28] is the so-called memory burden effect, which is a gradually building re-
sistance against any prolonged gradual decay of such a system. In the work presented here,
we investigate how this effect plays out in simplified model systems and draw conclusions
for BHs and de Sitter spacetime upon appropriate parameter choices.

Outline and Results

After giving a big picture of our work at the end of the previous section, in the following,
we are going to provide a more detailed description as well as the results of our studies.
Alongside, we are going to outline the presentation in this thesis.

Our research has been carried out along two distinct lines and correspondingly this
thesis consists of two parts.
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Chapter 2, which constitutes part I, contains our work on many-particle scattering pro-
cesses.

Within a model of two scalar fields as well as in scalar quantum electrodynamics, in 3+1
dimensions, we analyze three cases of condensate decay. Before going to a fully quantum
treatment, for each case, we find or cite the semiclassical prediction for particle creation
in the respective classical background where the energy of the produced particles is high
compared to the characteristic frequency of the background. Resolving the backgrounds in
terms of a many-particle state allows for a fully quantum description of the decay in terms
of a generic number n out of N condensate particles annihilating in a single connected
process in favour of a pair of particles. In the regime of high n, the semi-classical non-
perturbative prediction and quantum perturbative prediction match and imply a strong
suppression of the processes.

Specifically, in section 2.2, we demonstrate this for the case of a two-scalar-model with
a φ2χ2-interaction. Section 2.3 repeats the analysis for the example of a condensate of
charged scalar electrons decaying into a pair of photons with energy large compared to the
electron mass. In section 2.4, we consider a condensate of massive photons, corresponding
to an oscillating electric field, in which a pair of scalar electrons near mass threshold is
produced. In section 2.5, we establish the regimes in which the rate can be calculated
reliably in perturbation theory.

The fully quantum approach has the advantage to allow for consistently taking into
account the backreaction. This is required in particular in the dramatic case of n ∼ N ,
i.e., decay within a single process, which we focus on in section 2.6. Endowing the systems
studied with additional internal symmetries provides clear-cut examples for the potential
interplay of enhancement due to microstate degeneracy on the one hand and suppression
of the 2 → N S-matrix elements on the other. We find that as long as the system is
approximately classical, single-process decay is dominated by gradually proceeding decay
and evolution of entanglement. However, such effective stability against non-gradual decay
may be lost in the case that the system loses classicality (while remaining macroscopic)
by evolving into an entangled superposition that accesses a sufficiently large microstate
degeneracy. For the more complicated systems of BHs, this points to a mechanism of
destabilization against explosive quantum evolution.

Part II of the thesis contains our studies on the memory burden effect.
The focus of our work is to investigate to what extent the memory burden effect, which

we have briefly described in section 1, can be avoided in general and, in particular, in
BHs and de Sitter. As has been argued in [28], the quantum information stored in a
system of high entropy or, more generally, of enhanced memory capacity, microscopically
is carried in modes of near-vanishing excitation gaps and, correspondingly, the energy cost
of the stored information is raised by any departure of the system from the state around
which those near-gapless degrees of freedom exist. The memory burden effect denotes the
ensuing backreaction that slows down any such evolution. In particular, this happens in
the case of a gradual decay of the system. In the absence of an efficient release of the stored
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information to the environment, it has been argued in ref. [28] that the only conceivable
way of avoiding the memory burden effect is a process called rewriting. Namely, if the
system possesses further sets of modes that become gapless at a later stage of the decay
and onto which the system manages to offload the information in the process. The goal of
the present work is to find whether systems can realize such rewriting-powered decay at
all and to quantify the parameter dependence of the speed of such decay.

To this end, we study a prototype model (presented in section 3.1), which has been
proposed in ref. [28] as the simplest possible model exhibiting the memory burden effect as
well as the possibility of rewriting. Besides the benefit of calculational accessibility, such
an approach offers an understanding of the dynamics of the memory burden in isolation.
We thus attempt to find universal properties of systems of high entropy. The universality
of behaviour is of course limited by the onset of other effects specific to a given system.
But since for BHs the evolution past the initial stage of Hawking-like evaporation is un-
known, any insight into of the post-semiclassical stage is valuable. In addition to analytic
considerations presented in sections 3.1, 3.3, and 3.3.2, we perform an extensive numerical
time-evolution of the full system (section 3.2). The evolution reveals the conditions under
which rewriting takes place as well as the dependence on the size of the system.

In chapter 4, we investigate the implications of the above findings for the memory
burden effect in BHs and de Sitter. In section 4.1, we identify the appropriate parameter
scaling with the size of a BH and find a strong slowdown of decay after the onset of the
memory burden effect, which takes place the latest by half-decay. Since such stabilization
would imply that small primordial BHs would still exist today, in section 4.2, we com-
ment on the effects on the parameter space for primordial BHs constituting dark matter.
In section 4.1, we also comment on other possibilities for evolution past half-decay that
cannot be ruled out within the prototype model analyzed. In section 4.3 we discuss the
manifestation of the memory burden effect in de Sitter spacetime. We find a slowdown
of Gibbons-Hawking radiation accompanied by enhanced release of the stored quantum
information.
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Part I

Many-Particle Processes





Chapter 2

Perturbative Understanding of
Non-Perturbative Processes
and Single-Process Decay

2.1 Introduction
Physical effects in quantum field theory are often categorized as non-perturbative when the
associated physical quantity, e.g., a transition rate, is not given in terms of a perturbative
power series in a relevant coupling constant.

For instance, the Hawking evaporation rate of a black hole is proportional to the inverse
of the Newtonian coupling. Like many other cases of particle production from an external
classical field, this effect is therefore commonly deemed non-perturbative.

However, in many examples, resolving the background field in terms of a many-particle
state reveals that the effects may in fact be obtained perturbatively. The apparent non-
perturbativity can then be seen to be a consequence of the scaling of the mean occupation
N of the many-particle state.

For instance, a black hole in the theory of ref.s [19, 30] is resolved in terms of an N -
graviton state, where N is set by G−1

N . Hawking evaporation in that model is obtained
from a perturbative depletion process resulting from the re-scattering of the constituent
gravitons. The initial state Bose-enhancement of the process results in factors of N in the
expression for the rate, accounting for the seemingly non-perturbative scaling.

Any understanding of non-perturbative mean-field effects in a perturbative fully quan-
tum treatment also comes with the benefit to make certain corrections accessible. These
are corrections coming from quantum effects of the individual particles and are 1/N -
suppressed. In their accumulation, they may even lead to a complete breakdown of the
background-field treatment. This notion was initially introduced in the context of the
black hole N -portrait [19], and was later termed quantum breaking in ref. [26].

For the case of a black hole, it has been argued [25, 31, 27, 3] that quantum breaking
occurs the latest after the black hole has lost on the order of half its mass.
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2. Perturbative Understanding of Non-Perturbative Processes

and Single-Process Decay

The quantum resolution of backgrounds in terms of N -particle states has also been
termed “corpuscular” treatment and has been applied to a range of systems other than
black holes. The corpuscular resolution of the de Sitter metric has been explored in ref.s
[27, 32, 33, 2, 34, 35, 36]. Specifically, such representation as an N -graviton state on
top of a Minkowski-vacuum has been argued [34] to be obligatory within the S-matrix
formulation of gravity, as a classical de Sitter background does not constitute a valid S-
matrix vacuum. The corpuscular description recovers Gibbons-Hawking particle creation
[23] as a perturbative re-scattering process of the constituent gravitons into all existing
particle species. It has been argued in ref.s [27, 32, 33, 34, 35] that there are quantum
backreaction effects, in particular, related to developing entanglement, of order 1/N and
that these build up to cause a gradual breakdown of the semi-classical description.

In ref. [37], a corpuscular analysis of the decaying field of cosmic axions along the same
lines has been carried out. Ref.s [38, 39] investigate by different methods the occurrence of
quantum breaking in the evolution of coherent states. Further aspects of the corpuscular
treatment of the de Sitter metric may be found in ref.s [40, 41, 42].

In all the cases mentioned, the result of the fully quantum treatment captures the
non-perturbative semiclassical effect in the infinite-N limit.

The present study continues the above line of research through an analysis of many-
particle processes. In different quantum field theoretic systems of basic importance, we
study particle production in a background field, both in a semi-classical treatment and in
a fully quantum one.

In the quantum picture, we calculate the rate for annihilation processes involving an
arbitrary number n out of the N constituent quanta. This allows us, in particular, to
investigate the regime in which the energy of the created particles strongly exceeds the
oscillation frequency of the classical background. In that regime, we show that the leading
order perturbative prediction in the quantum treatment reproduces the non-perturbative
semiclassical prediction in the limit

g2 → 0, N

V m3 →∞, g2 N

Vm3 = fixed , (2.1)

where m is the mass of the background-field constituent particles and V is the volume.
For finite values of the coupling g2 and the particle number density N/V , loop corrections
constrain the regime of validity of the prediction. We outline that regime of n and N in
terms of g2. The advantage of the quantum treatment is the possibility of consistently tak-
ing into account effects of backreaction, such as generation of entanglement and depletion
of the initially occupied field.

We study three different cases. The first one is within a model of two scalar fields
that interact via a cross-coupling g2φ2χ2. We consider processes of χ-creation from a φ-
condensate. More precisely, in the semiclassical treatment, the fields are quantized around
the external classical φ-field that oscillates in time, giving rise to particle-creating insta-
bilities. Such models have been studied, among other things, in the context of reheating
after inflation [43].
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In the quantum treatment, the φ-condensate is instead given in terms of a state of
φ-particles at rest with an occupation peaked around N . The process of a pair of χ-quanta
being created at a certain energy is then resolved in terms of an annihilation process of
the corresponding number of n φ-particles.

In the remaining two cases, we demonstrate the presence of the correspondence in
systems with gauge symmetry. In one case we consider a pair of photons created from
a condensate of scalar electrons and positrons. In the other example, we study scalar
electron-positron creation in a time-dependent electric field or, respectively, in a many-
photon annihilation process.

A particularly interesting regime is n ∼ N , which is relevant to the understanding
of classical-to-quantum transitions and even quantum-to-classical. It is an open question
when and how fast a near-classical system can reach a regime in which the classical approx-
imation ceases to be good. This time-scale tQ has been called quantum break-time in ref.
[26]. The appropriate scale of reference is the scale inherent in the initial classical state.

In ref. [26] it was shown that quantum breaking proceeds most quickly in systems that
also possess a classical instability, i.e., a Lyapunov exponent. Namely, in such a system tQ
can scale logarithmically with the number N of the system’s constituents.

For systems without such classical instability, it has been argued that tQ is macroscopic
in N [27, 32, 33]. Such scaling is the result of a gradually proceeding transition involving
many processes of low n. This has been argued to be the dominant road to quantum
breaking for black holes [19, 25, 31, 27, 3], as well as for de Sitter [27, 32, 33, 2, 34, 35].

On the other hand, quantum breaking within a single process requires n ∼ N and is
expected to be negligible. As a name for this intriguing regime, we introduce the term
quantumization. The analysis performed here provides explicit examples in quantum field
theories of fundamental importance.

The reverse, a transition from a state of a few energetic particles to a classical state
of many soft quanta, has been termed classicalization [17, 44, 18, 45, 46, 20]. Up to the
phase space integration, both quantumization and classicalization are based on the same
S-matrix element between number eigenstates of occupation 2 and N .

The square of such matrix elements has been argued on general grounds to be bounded
from above by e−N [20]. All known explicit examples conform to this bound. In particular,
this is the case for the 2→ N graviton scattering amplitude obtained in [45]. Our results
in the present study likewise adhere to the bound and in some regimes feature an even
stronger suppression.

Apart from the S-matrix element, the effective transition rate is also determined by the
available microstate degeneracy of the final state. Since the potential degeneracy of an N -
particle is vastly higher than that of a 2-particle state, classicalization may in fact proceed
efficiently in certain theories, while quantumization is expected to be universally suppressed
[46, 20]. In particular, such interplay has been argued to be in place for black holes in their
description in the N -portrait [19]: Their high entropy balances the smallness of the 2→ N
matrix element and creation in a transplanckian collision may be unsuppressed. On the
other hand, their decay within a single process is suppressed and instead, the evolution
proceeds via gradual decay. Since efficient classicalization requires the final states to have
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an entropy close to saturating the bound, such states have been termed “saturons” [20].
The analysis presented here provides clean cases that demonstrate under what condi-

tions transitions 2→ N and N → 2 can proceed with high probability.

2.2 Case 1: φ2χ2

Let us consider the following model of two scalars:

L = 1
2∂µφ∂

µφ− 1
2m

2φ2 + 1
2∂µχ∂

µχ− 1
2m

2
χχ

2 − g2φ2χ2 . (2.2)

This permits the classical solution of one field oscillating in time and the other vanishing:

φB(t) = φ0 cos (mt) , χB = 0 , (2.3)

In a semiclassical treatment, we may quantize the fluctuations around the background
(2.3):

φ̂ = φB + δ̂φ , χ̂ = δ̂χ . (2.4)
Let us consider the initial state with no excitations around the background:

|t0〉 = |0〉δφ|0〉χ . (2.5)

The background affects the propagation of the fluctuations and makes this state unstable.
Thus, there are transitions from this “vacuum” state, for instance

0→ 2χ . (2.6)

Let us now look at the same phenomenon in a fully quantum treatment. The φ-condensate
then instead is described in terms of the initial state

|t0〉 = |N〉φ |0〉χ . (2.7)

Here, |N〉φ is supposed to denote a state of φ-particles all in the same 3-momentum mode,
namely, ~p = 0. N denotes the mean occupation number of a superposition centered around
it. In the following considerations, the difference among different superpositions vanishes
in the limit (2.1). We are going to comment on the particularly simple cases of a coherent
state and a number state. For definiteness, unless otherwise stated, in the following we
assume a number state.

With this, χ-pair creation is thus given by the processes

Nφ→ (N − n)φ+ 2χ , (2.8)

where the final φ-particles are meant to be in the mode ~p = 0 as well. Processes with
scattered φs in the final state also exist, of course. However, compared to (2.8), they are
suppressed by extra powers of the coupling g2 and vanish in the limit (2.1). An exception to
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this are diagrams with only forward-scattered φs, but they contribute to the same process
(2.8) (see also sec. 2.5).

Since the φ-field has no fundamental self-interaction, in the regime where the induced
self-coupling is negligible, the energetics of the condensate to a good approximation are
given by

N

V
= mφ2

0
2 , (2.9)

which provides a relation between the quantum and classical parameters. With this, the
limit (2.1) can be expressed in semi-classical terms as

g2 → 0 , φ2
0

m2 →∞ , g2 φ
2
0

m2 = fixed . (2.10)

In the following, we are going to analyze creation of χ-pairs both in the quantum-perturbative
and in the semiclassical-non-perturbative treatment. Although the quantum calculation is
generic, we are going to focus on the case of χ-momenta k ≡ |~k| corresponding to

n� gφ0

m
. (2.11)

2.2.1 Coherent States and Background Fields
Before we get to the actual calculations, it is worth revisiting the general correspondence
[47] between calculations in a semiclassical approximation and those done in a fully quan-
tum framework involving coherent states. Consider a coherent state |c〉 with the property
〈c|φ̂(t)|c〉 = φB(t) and 〈c|χ̂(t)|c〉 = χB(t), where φ̂(t) and χ̂(t) are evolving according to
the free Hamiltonian and φB and χB constitute classical solutions of the free Hamiltonian.
The S-matrix operator of the full theory between such a state |c〉 then coincides with the
S-matrix operator of the theory quantized in a semiclassical manner around a background:

〈c, B|Ŝ|c, A〉φ,χ = 〈B|Ŝ[φB, χB]|A〉δφ,δχ . (2.12)
Here, the states |A〉 and |B〉 denote arbitrary number eigenstates of modes that are not
part of the background. As we are going to see later, whether an expansion in powers of the
field strength converges depends also on how many particles are involved in the process.
In the perturbative regime, Eq. (2.12) in particular tells us that we have to find agreeing
results for the processes (2.6) and (2.8). The differences can be due to solely deviations
of the initial and final φ-state from |c〉. These deviations are independent of the model at
hand and vanish as ∼ N−1 in the limit (2.1). The calculations in the φ2χ2-model as well
as those in scalar QED therefore constitute explicit instances of the identity (2.12).

2.2.2 Quantum Calculation
At the leading order in g2N , the amplitude corresponding to the process (2.8) is given
in terms of a single diagram (see fig. 2.1). The accompanying factors may be found via
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Figure 2.1: Diagrammatic representation of the leading order terms in perturbation theory
contributing to the amplitude of the process (2.8). This diagram as well as the following
ones have been created using TikZ-Feynman [48].

the following bookkeeping. The number of Wick contractions and Taylor-coefficient of the
relevant term of the S-matrix operator cancel each other up to a factor of 2n/2. Projecting
each Wick contraction onto the initial state of n φ-particles in the same momentum mode
results in a factor n!/

√
n!. The squared amplitude is therefore given by 2nn!|d|2, where d

is the value of the diagram.
Let ql denote the virtual momentum in the propagator following the lth insertion of a

pair of φ-legs. Then one has qµl = 2lmδµ0 − kµ and thus the propagators contribute to d a
factor of

n/2−1∏
l=1

(
q2
l −m2

χ

)−1
= (−1)n/2−1m2−n n2 2−n (n/2)!−2 . (2.13)

The phase space integration is independent of the scattering angle since the initial state
does not carry angular momentum. Perturbatively, the energy conservation implies

nm = 2
(
m2
χ + k2

)1/2
. (2.14)

This implies a kinematic threshold for the multiplicity n given by

n > n0 ≡
2mχ

m
. (2.15)

One thus obtains for the tree-level rate for nφ → 2χ (more details on the calculation can
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be found in appendix A)

Γnφ→2χ = 1
4πV m

4

√
1− n2

0
n2n

4
(

g2

4V m3

)n
n!

(n/2)!4 . (2.16)

As can be seen from (2.16), perturbation theory does not break down for high values of n.
The initial N quanta generate a combinatoric enhancement of (see A)

CNn =
(
N
n

)
= Nn

n!

(
1 +O

(
n2

N

))
. (2.17)

With this, the leading order rate for the process (2.8) is

Γ ≡ CNnΓnφ→2χ ∼
(
e2

2n2
g2φ2

0
m2

)n
. (2.18)

Here, we have used relation (2.9), the Stirling approximation for the factorial, and omitted
factors that scale less strongly with n than exponentially.

For early times, the evolution of nk, the expected occupation number density of χs
per momentum ~k, is given by nk(t) ∼ Γ t. However, final-state Bose enhancement cannot
be neglected at later times. This leads to the enhanced effective rate of (for details, see
appendix A)

Γeff ∼
(

1 + 2nk +O
(
n2
kn

2

N

))
Γ , (2.19)

and thus
nk(t) ∼ exp (2Γt) , nk & 1 . (2.20)

Thus, the quantum rate (2.18) and the semiclassical prediction are related by

Γ ∼ ṅk
nk

. (2.21)

Effects like depletion or evolution of entanglement can of course correct the evolution
(2.20), but those corrections can be neglected as long as the number of depleted quanta is
much smaller than N .

2.2.3 Semiclassical Calculation
The equations of motion for both δφ and χ simplify in the limit (2.10). The equation for
δφ is (

∂2 +m2
)
δφ = −2

(
d2
t +m2

)
φB − 2g2χ2 (φB + δφ) = O (g) , (2.22)
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where the terms involving only the background φB vanish due to (2.3). The equation for
χ is (

∂2 +m2
χ

)
χ = −2g2χ (φB + δφ)2 = −2g2φ2

Bχ+O (g) . (2.23)

One sees that, in the limit (2.10), δφ decouples as a free field, while χ has a time-dependent
contribution to its mass due to the background.

In order to obtain the non-perturbative prediction of particle creation from the above
equations, we can follow for example ref.s [49, 50]. The evolution of the expected number
of χs in the case of a linear equation of the form (2.23) can be obtained in terms of the
mode function vk. The latter is defined via the mode expansion of the field operator as

χ̂(x) =
∫
d3k

(
vk(t)â0(~k)ei~k·~x + h.c.

)
, (2.24)

where â0(~k) and its Hermitean conjugate are the time-independent annihilation and cre-
ation operators. Only the mode function is time-dependent and follows the equation(

d2
t + ω2

k(t)
)
vk = 0 , (2.25)

with
ω2
k(t) ≡ m2

χ + k2 + 2g2φ2
0 cos2(mt) . (2.26)

The expected particle creation in terms of vk is given by

nk(t) ≡ 〈0|n̂k(t)|0〉 = 1
2ωk

(
|v̇k|2 + ω2

k|vk|2
)
− 1

2 . (2.27)

Here, n̂k is the time-evolved operator of the number density of χ-particles per mode ~k.
The initial conditions of vk are constrained by the requirement of being consistent with
the commutation relations of the operators as well as that of initially defining the lowest
energy state. The equation (2.25) with (2.26) takes the form of a Mathieu equation.

In the high multiplicity regime (2.11), the Mathieu equation allows an approximate
solution, whose derivation can be found in ref. [51]. Let us parametrize equations (2.25)
and (2.26) as

d2
tx+ ω2

0 (1 + h cos (γt)) x = 0 , (2.28)
with the correspondence

ω2
0 ↔ ωk

2 ≡ m2
χ + k2 + g2φ2

0 ,

h↔ g2φ2
0

ωk2 ,

γ ↔ 2m. (2.29)

The equation (2.28) is known to exhibit so-called parametric resonance, i.e., some of its
solutions exhibit exponential growth between the cycles of period τ ≡ 2π/γ:

x(t+ τ) = esτx(t) , (2.30)
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where s > 0 is the parameter of instability. Such scaling implies for the particle number
nk(t+ τ)
nk(t)

∼ exp(2sτ) , (2.31)

and, with coarse-graining over several periods,
ṅk
nk
∼ s . (2.32)

For h� 1, ref. [51] prove that there is parametric resonance in the bands

γ = 2ω0

l
+ ε , l ∈ N (2.33)

and that the maximal value of the exponent within these bands scales as
s ∼ hl , (2.34)

as does the width ε. From comparing (2.14) and (2.33), one sees the correspondence
l↔ n/2. With this, one sees from (2.21) and (2.32) that the quantum rate (2.18) is to be
compared with s for 2l:

s ∼ h2l ↔
(
g2φ2

0
m2

1
n2

)n
, (2.35)

where we have used (2.29) and h � 1. As can be seen, there is complete agreement with
the parametric scaling of (2.18).

2.3 Case 2: Scalar QED
As a second example, we are going to consider scalar QED without elementary self-coupling
of the scalar,

L = Dµφ(Dµφ)† −m2φ†φ− 1
4FµνF

µν , (2.36)

where Dµ ≡ ∂µ − igAµ. We are going to analyze an analogous situation as we did in the
previous example, where now the roles of φ and χ are played by the complex scalar φ and
the vector A, respectively. Specifically, we investigate in the semiclassical treatment the
out-of-the-vacuum creation of a photon pair in the background

φB = φ†B = φ0 cos(mt) , AµB = 0 . (2.37)
In the fully quantum treatment, on the other hand, we investigate the many-particle an-
nihilation processes

N

2 s
− + N

2 s
+ → N − n

2 s− + N − n
2 s+ + 2γ . (2.38)

The relation between quantum and classical parameters is now given by
N

V
= mφ2

0 . (2.39)

With this, the double scaling limit (2.1) in semiclassical terms takes the same form as
(2.10).
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2.3.1 Quantum Calculation
Since in addition to the analogous 4-point vertex g2AµA

µφ†φ there is also the 3-point vertex
igAµφ†∂µφ+h.c., rather than a single one there is now a large variety of inequivalent Wick
contractions that contribute to the process (2.38) at leading order, (Ng2)n .

However, upon projecting the Wick contractions onto the initial and final state, the
special condensate kinematics in combination with gauge redundancy makes all but one of
the corresponding diagrams vanish, which can be seen as follows. Any diagram in which
an incoming scalar pair is connected by a single 3-point vertex vanishes because the equal
momenta in the initial condensate make the derivative result in a factor of zero. This
throws out all diagrams with shapes other than the one shown in fig. 2.1, where now
the dotted lines represent a photon and the 4-point vertices drawn either represent the
elementary 4-point vertex or an effective one consisting of two 3-point vertices with one
internal φ-line,

−ig2 qµ2l+2q
ν
2l

q2
2l+1 −m2 , (2.40)

where l is the number of vertices preceding the vertex. In any diagram that involves at
least one effective vertex like (2.40), two momenta ql are contracted only with orthogonal
photon polarization vectors:

qµl εµ (ql′ , r) = 0 , ∀ l, l′ . (2.41)

The orthogonality holds only for transverse polarizations r, but non-transverse polariza-
tions do not occur, since in the numerators of the photon-propagators they are projected
out by the outgoing transverse photons. This leaves one again with only a single non-zero
diagram, namely that consisting only of elementary 4-point vertices. The value of the
diagram differs from the case of the 2-scalar model only by the factor

ε∗µ(k, r)ε∗µ(k′, r′) = δr,r′ . (2.42)

Thus the tree-level rate for n
2s
− + n

2s
+ → 2γ for each of the two polarizations coincides

with (2.16).
For an initial number of N > n condensate quanta, there is again a combinatoric

enhancement
CNn =

(
N/2
n/2

)2

∼ 2−n Nn

(n/2)!2

(
1 +O

(
n2

N

))
, (2.43)

where the Stirling approximation for the factorial has been used.
Combining this with (2.39), we obtain for the leading order rate of the process (2.38)

Γ ≡ CNnΓn
2 ,

n
2→2γ ∼

(
e2

2n2
g2φ2

0
m2

)n
. (2.44)

Here, again the Stirling approximation has been used and factors that scale less strongly
with n than exponentially have been omitted. More details on the above calculation can
be found in appendix A.
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2.3.2 Semiclassical Calculation
The limit (2.10) simplifies the equations of motion also in the present case. Further sim-
plifications arise taking into account that the background φB has a vanishing current and
obeys a harmonic equation. With the notation

x ≡ Re δφ , y ≡ Im δφ , (2.45)

the equations for δφ are therefore (
∂2 +m2

)
x = O (g) (2.46)

and (
∂2 +m2

)
y = gAµ∂µφB + g∂µ (AµφB) +O (g) . (2.47)

The equation for Aµ is

∂µF
µν = 2g2φ2

BA
ν − 2g (φB∂νy − y∂νφB) +O (g) . (2.48)

As can be seen, x decouples as a free field in the limit (2.10).
Upon projecting out the non-transverse part of Aµ, we obtain the equation for the

transverse polarizations: (
∂2 − 2g2φ2

B

)
AjT = O (g) . (2.49)

We see that, as in the 2-scalar example, the propagating photon degrees of freedom decouple
from the fluctuations δφ. The interaction of y and the Coulomb degree of freedom encoded
in A0 and AjL gives rise to creation of s+s−. We are going to restrict the analysis to
processes of photon creation and are left with analogous equations to solve, namely, (2.49)
takes the form of a Mathieu equation, that the mode functions of the two transverse photon
polarizations obey, (

d2
t + ω2

k(t)
)
vk,r = 0 , (2.50)

where now
ω2
k(t) ≡ k2 + 2g2φ2

0 cos2(mt) . (2.51)

We may again parametrize this equation as in (2.28) with an analogous version of (2.29).
With this, we obtain as the semiclassical prediction for the rate

ṅk,r
nk,r
∼
(
g2φ2

0
m2

1
n2

)n
. (2.52)

As in the previous example, we see complete agreement of parametric scaling between the
results (2.44) and (2.52).
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2.4 Case 3: Scalar QED with Massive Photon
For the third case, we consider again scalar QED, but now with a massive photon:

L = Dµφ(Dµφ)† −m2
eφ
†φ− 1

4FµνF
µν + 1

2m
2AµA

µ . (2.53)

Consider now an interchange of roles of the selectron and the photon in the previous
example. That means we are looking at pair creation in an electric field. In the semiclassical
treatment, the fields are quantized around the background

AµB = δµz
E0

m
cos (mt) , φB = 0 , (2.54)

which gives rise to out-of-the-vacuum creation of s+s−. On the other hand, in a fully
quantum treatment, this takes the form of a many-photon-annihilation process,

Nγ → (N − n) γ + s+s− . (2.55)

The quantum and classical parameters in this scenario are approximately related via

N

V
= 1

2mE2
0 . (2.56)

Thus, the semi-classical limit is given by (2.10) upon replacing φ0 by E0/m. The solution
(2.54) amounts to the background electromagnetic field

F0j = δzjE0 sin (ωt) , Fkj = 0 , (2.57)

where the frequency is given by ω = m. The field is purely electric and nonzero only in
the z-direction.

For the case of spinor QED, similar processes have been analyzed in the author’s mas-
ter’s thesis [52]. The more involved spin structure of that model allowed only for a calcula-
tion with circular photon polarizations, which compared to the case of linear polarization
leads to additional suppression of the amplitudes close to the mass threshold.

The field (2.57) can be used as an approximation, for instance, of the field created in
the antinodes of superposing laser light, on length scales short compared to the wavelength,
2π/ω. In the case of an optical or X-ray laser and the real electron mass, the minimum
number of photons required for pair creation is very large, n0 ≡ 2me/m� 1. By contrast,
in the previous examples, the threshold number was arbitrary for generic mχ and n0 = 2
due tomγ = 0, respectively. As we are going to see shortly, for the present case ofme � m,
the dominant process is the one closest to the threshold,

n = n0 + δ , 0 < δ ≤ 1 . (2.58)

For n ∼ n0, the perturbative regime (2.11) reads

gE0

mme

� 1 . (2.59)
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2.4.1 Semiclassical Result
The semiclassical rate of pair-production in an electric background field of the form(2.57)
averaged over a period of oscillation is already known and has been found in ref.s [53, 54]
(see also ref. [55]) The result is valid in the regime of n0 � 1 and E0 � m2

e/g and
interpolates between the following two asymptotic expressions. For gE0

meω
� 1, the rate is

asymptotic to

Γ ∼ V m4
e

2
√

2π4

(
gE0

me2

)5/2
exp

(
−π m

2
e

gE0

)
. (2.60)

As to be expected, this reproduces the suppression obtained by Schwinger for the case of
a constant electric field [56]. In the opposite regime, gE0

meω
� 1, the rate asymptotes to

Γ ∼ V m4
e

(2π)5/2 e
−2δ

(
ω

me

)5/2 (e
4
gE0

meω

)2(n0+δ)
Erfi

(√
2δ
)
. (2.61)

This second regime is also called the multi-photon regime and coincides with the regime
(2.59). Indeed we are going to obtain (2.61) from an n-photon process (2.55) in the
perturbative quantum calculation in the following section.

2.4.2 Quantum Calculation
In contrast to the previous example, in the present case, all the different Wick contractions
also result in non-zero diagrams. Close to the kinematic threshold, however, the amplitude
is dominated by only one particular diagram. This is again the diagram constructed purely
out of the 4-point vertex g2φ†φAµA

µ, corresponding to the diagram shown in fig. 2.1, where
now plain lines represent photons and dashed ones the selectron. Let us consider only the
contribution to the rate based on the square of that diagram and denote it by δΓ4. There
are of course contributions from interference terms as well, but they are still subleading
near the threshold. The result for this leading term may be expressed through the value
of the rate (2.16) in the 2-scalar example as

δΓ4 = 2−n−1Γnφ→2χ . (2.62)

The relative factor of 2−n is due to the lesser number of Wick contractions corresponding
to the fact that φ is a complex field. Similarly, the additional relative factor of 1/2 is
because the final particles are not identical. In all other diagrams, one or more photons
are inserted through a 3-point vertex. Let us consider the extreme case of the diagram
constructed only from 3-point vertices (see fig. 2.2). Let us again consider the contribution
to the rate from only its square and denote it by δΓ3. The calculation goes rather similar
(for details, see appendix A) and has the result

δΓ3

δΓ4
= e2n

8n

(
1− n2

0
n2

)n
∼ e2n

8n

(
2δ
n0

)n
. (2.63)
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Figure 2.2: One of the terms contributing to the amplitude of the process (2.55).

Here, the second relation is true for the dominant process (2.58). As can be seen, for
sufficiently small δ/n0, the contribution is negligible. This indicates that near the threshold
a 3-point vertex yields a suppression factor and that thus for the process (2.58) the all-4-
point diagram (fig. 2.1) approximates the amplitude well. Therefore, we have

Γnγ→s+s− = δΓ4 (1 +O (δ)) . (2.64)
The initial state Bose-enhancement contributes the same combinatoric enhancement factor
as in (2.17). With that and the relation (2.56) between N and E0, we have

Γ ∼ 1
8π3V m

4

√
1− n2

0
n2n

2
(
e

4
gE0

mem

n0

n

)2n
, (2.65)

where the Stirling approximation for the factorial has been used. To make the agreement
with (2.61) explicit, one may use the relations 1− (n0/n)2 ∼ 2δ/n0 as well as (n0/n)2n ≈
e−2δ, which hold for the process (2.58). Keeping in (2.61) only the leading order of

Erfi
(√

2δ
)

= 2
√

2
π

√
δ
(

1 + 2
3δ +O

(
δ2
))

, (2.66)

one sees that the agreement is complete. For δ � 1, the relative error is therefore ∼ δ
while for δ = 1 it is ≈ 0.6. More details on the above calculation can be found in appendix
A.

2.5 Parameter Regimes
In the previous sections, for the example of three different models, we have examined the
rate of a many-particle process of the form n → 2. In a specific regime, we obtained a
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result that scales as ∼ (g2N)n. In this section, we are going to investigate more closely
the limits of validity of this leading-order approximation. We are going to refer to the
φ2χ2-model for definiteness, but the following equally holds for the other two examples.

2.5.1 Semiclassical Limit
In the limit (2.1), simplifications of two kinds arise. One is the vanishing of the backreaction
from the created χ-particles on the initial φ-state. Another is the vanishing of any loop
corrections, which are of higher order in g2.

Consequently, any non-perturbative approach that uses a semiclassical approximation
and disregards radiative corrections becomes exact. The semiclassical calculations em-
ployed and referenced in the three examples we have examined fall into this category.

The obtained result can be interpreted as the resummation of a set of diagrams that
remain non-zero in the limit (2.1). These diagrams are of the same order in N and in
g2, i.e., ∼ (g2N)n+k. In the leading order, k = 0, they coincide with the diagrams we
have evaluated in the quantum perturbative analysis. At higher orders, k ≥ 1, those are
diagrams with k rescattered φ-particles, but all into the initial mode. They may thus be
termed forward scattering diagrams.

For the regime (2.11) (regime (2.59), respectively), which in terms of N is given by

n2 � g2N

Vm3 , (2.67)

the results of the preceding sections show that all diagrams beyond the leading order,
k ≥ 1, can safely be neglected. When moving towards the opposite regime, however,
their resummation manifests in two effects. One is an effective contribution to the particle
masses that affects the kinematic threshold. The other is a change in the behaviour of
the particle-creation rate away from a power-law growth with coupling and field strength
transitioning to a weaker scaling before the rate becomes large.

For the cases reducing to the Mathieu-equation (in sec.s 2.2 and 2.3), this corresponds
to the crossover from narrow to broad resonance. For the case of pair-creation in an
alternating electric field (sec. 2.4), the crossover can be seen in the asymptotics (2.60) and
(2.61). In the parameter plane of n and gφ0/m, the perturbative and non-perturbative
regimes can be schematically represented as in fig. 2.3. The other regimes shown will be
discussed below.

2.5.2 Finite g2

Away from the limit (2.1), the finite values of N and g2 give rise to various quantum
corrections.

Some corrections fall into the category of backreaction, such as depletion or evolution
of entanglement. These are suppressed by 1/N and thus are negligible as long as they have
not built up over a sufficiently large number of processes.
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1/g
gϕ0/m

1/g

n

Figure 2.3: Schematic representation of regime boundaries: Above the grey diagonal line,
non-perturbative corrections are negligible (see (2.67)). Additional regimes for finite g2

(and the example of negligible mχ): To the left of the blue vertical line, loop corrections
to the potential are negligible (see (2.69)); Below the blue horizontal line, contributions
of loop-induced diagrams are negligible (see (2.74)). The overlap of coloured areas is the
resulting regime in which the calculation is perturbative in both g2N and g2, i.e., both non-
perturbative and quantum corrections to the leading order approximation are negligible.
This plot and all following ones have been created using Mathematica [29].

Similarly, an extra power of the coupling g2 accompanies corrections to the amplitude
from a single loop or contributions to the total rate from processes with a single (non-
forward) scattered φ-quantum.

In the following analysis, we aim to identify and estimate additional loop effects that
could be significant even when g2 � 1. To simplify the discussion, we will focus on the
case where the mass mχ is negligible.

Effective potential

We begin by considering the 1-loop-corrected potential [57], which for χ = 0 is given by

V1Loop(φ, 0) = m2

2 φ2 + g4φ4

16π2

(
log

(
2g2φ2

µ2

)
− 3

2

)
. (2.68)

Here, the parameters are defined in the MS-scheme. For sufficiently high φ-values, the loop-
correction becomes significant and as a result both (2.3) and (2.9), which give the time
evolution φ(t) and the energetics relating N and φ0, respectively, do not hold anymore,
thus invalidating the considerations of the preceding sections. From (2.68), we see that
such quantum corrections can be neglected only as long as (with a choice of µ ∼ m)

φ0

m
� 1

g2 , (2.69)
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Figure 2.4: “Symmetrically branching tree” (SBT) diagram: Diagram contributing to
the amplitude of the process nφ → 2χ based on only a single cross-coupling vertex and
otherwise only the quartic self-coupling of φ (with the most symmetric shape possible).

which may be read as a bound on the initial state parameter N (or φ0) in terms of the
theory parameter g2 (see fig. 2.3).

Diagrams with different n-scaling

A different type of quantum correction may arise from diagrams with many loops. While
such diagrams are suppressed by much higher powers of g2 compared to the leading order,
they may compensate that suppression by a different scaling with n. The novel shapes
of Wick contractions allowed for by loops in turn may lead to a different momentum flow
through the corresponding diagram, affecting the n-scaling. Specifically, a nonzero quartic
self-coupling of the φ-field allows for the “symmetrically branching tree” (SBT) diagram
(see fig. 2.4), which is well known for its strong scaling with n [58, 59].

The elementary cross-coupling induces the required self-coupling via a χ-loop (see
fig. 2.5), which contributes to the SBT-diagram the momentum-dependent vertex

v4
(
q2
)

= − ig4

16π2

(
log

(
4q2

µ2

)
− 2 + iπ

)
+O

(
g6
)
, (2.70)

where the value of q2 depends on the position of the vertex in the diagram. From fig.s 2.4
and 2.5, one sees that m2 ≤ q2 ≤ 1

9n
2m2. Thus the momentum dependence of the vertex

is not hiding any significant n-scaling and 4!|v4| ∼ g4 is a good approximation throughout
the diagram.
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Figure 2.5: Momentum dependent 4-φ-vertex induced by a χ-loop with momenta as oc-
curring in the SBT diagram (fig. 2.4)

Let us consider the contribution to the rate from only the square of the SBT diagram.
It can be calculated in a way analogous to one found in ref.s [58, 59] (for details, see
appendix A). The following schematic representation of the result suffices for our purpose:

δΓSBT ∼
(

c

V m3

)n
n! , c ∼ g4 . (2.71)

Perturbation theory can be seen to break down for

n & nmax ≡
V m3

c
. (2.72)

The contribution (2.71) becomes significant as compared to the leading order rate (2.16)
when

n & neq ≡
√
g2/c . (2.73)

This can be seen to happen well before the breakdown. For an exact statement, further
diagrams as well as interference among them of course have to be taken into account.
However, Eq. (2.73) may serve to indicate the n-regime where contributions due to loop-
induced couplings become important.

From this, we obtain for the parametric bound of validity of the leading order approx-
imation (2.16):

n� 1
g
. (2.74)

This does not involve the initial state parameter φ0. The combination of this bound with
the previously obtained ones is shown in fig. 2.3. One sees that the combined bounds leave
a finite area in the parameter plane of n and gφ0/m where corrections of higher order in
either g2 or g2N can be neglected.
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2.6 Efficiency of Many-Particle Processes
In this section, we are going to discuss the potential for processes of high multiplicity
to be unsuppressed. For this, we are going to extend the models considered by internal
symmetries, which bring into play enhancement due to degeneracy. We also comment on
potential implications for black holes.

2.6.1 Overview
In the decay processes considered, for the case of n ∼ N , the two final particles carry an
order-one fraction of the initial energy. If the initial state is a coherent state such a process
constitutes a transition from a classical to a quantum state. In general, when and how fast
the classical approximation for a system can lose validity is still an open question.

An important concept in this regard ismacro-quantumness (introduced within the black
hole N -portrait [19]). The term macro-quantumness [31, 60] describes the observation that
quantum effects of order 1/N can lead to features that are not describable in classical terms,
such as the emergence of black hole hair [25].

In ref. [26], the question was raised about how quickly classicality breaks down, which
was termed “quantum breaking”, and the corresponding timescale was referred to as the
“quantum break-time”, tQ. This question was further explored in ref.s [27, 33].

In ref. [26]. it has been demonstrated that in an N -particle system with a Lyapunov
instability, the quantum break-time can be extremely short, with only a logarithmic de-
pendence on N ,

tQ = λ−1 ln(N) , (2.75)

with λ the Lyapunov exponent. This phenomenon was explicitly demonstrated for the case
of a 1+1-dimensional condensate of bosons on a ring with attractive interactions in [26] (a
more recent discussion of this model can be found in [61]). By contrast, if a system does
not possess any classical instability, the quantum break-time behaves differently. In such
cases, the following general bound on the quantum break-time has been argued to hold in
[33]:

tQ &
N

N2Γ2→2
. (2.76)

Here, Γ2→2 represents the re-scattering rate of a pair of constituents. The initial state
Bose-enhancement CNn = N(N − 1)/2 is what gives rise to the factor N2 in the denomi-
nator. Equation (2.76) implies that the quantum breaking of a condensate requires order
N scattering events to occur. For the self-coupled scalar example of ref. [33], expression
(2.76) was independently reproduced using different techniques in ref. [38].

Put differently, the primary mechanism for quantum breaking involves the gradual loss
of coherence due to the scattering of a small number of constituents into external quanta.
This is distinct from non-gradual single-process transitions involving many constituents.
As we have seen and will discuss further below, in stable classical systems, single-process
transitions to a quantum state are suppressed.
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We refer to these types of transitions as quantumization in this study. Although this
term can have a broader definition, we specifically use it to describe the process of tran-
sitioning from an initially classical state to a quantum state with a small number of con-
stituents. Thus, they also fall into the category of transitions from macroscopic to micro-
scopic systems.

The reverse phenomenon, where a few-particle quantum state transitions to a classical
state in a single process, has been termed classicalization [17, 44, 45, 18, 46, 20]. Our anal-
ysis provides insight into the physics of both quantumization and classicalization processes
as well as their very different manifestations.

Notably, while unsuppressed classicalization can occur in some systems, quantumization
is always suppressed. This may initially seem counterintuitive, as both processes are based
on the same fundamental phenomenon: the transition between a small and large number
of particles. Specifically, for “small” and “large” numbers let us consider a two-particle
state | 2〉 and a state |n〉 with n� 1 quanta. We are going to assume that both states can
be approximated as valid asymptotic S-matrix states.

The square of the S-matrix element | 〈2 | Ŝ |n〉 |2 constitutes the basis of both transi-
tion probabilities. It is indeed always suppressed. Using general arguments based on the
effective Hamiltonian and the locality of the Hilbert space, one can prove that at weak
coupling and large n, this element has an upper bounded (see ref. [20], which improves on
ref. [46]),

| 〈2 | Ŝ |n〉 |2 . e−n . (2.77)
However, the total transition probability is obtained by summing the squared matrix ele-
ment over the degeneracy of the final states [19],

Γi→f ∝
∑
f

| 〈2 | Ŝ |n〉 |2 . (2.78)

The degeneracy factors can be drastically different depending on whether the final state
is 〈2 | or 〈n |. Specifically, the degeneracy of n-particle states can be exponentially large
[20] whereas the degeneracy of two-particle states cannot be without compromising the
validity of the theory. This difference is the fundamental reason why quantumization and
classicalization are manifested in nature in such distinct ways.

While quantumization is always suppressed, a given degeneracy of the n-particle state
does cause an enhancement of the process n→ 2, if the initial state is in a superposition.
For n ∼ N , this would correspond to the single-process decay of a macroscopic that has
departed from classicality.

In the following two subsections, we will examine the potential for realization of n→ 2
and 2→ n processes in more detail based on our results. We will refer to the φ2χ2-model
for definiteness, although it applies to the other models as well.

2.6.2 Suppressed Processes
The inequality (2.76) gives a reason why quantumization effects are usually not observed in
everyday life. For instance, in telecommunications, the interaction between electromagnetic
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waves and charged particles does not pose a challenge in the form of transitions to mostly
quantum states. Similarly, it is not expected that objects which are not directly observed
will undergo quantumization. For example, as mentioned already in the introduction, a
black hole is not expected to decay into a pair of high-energy photons, despite the absence
of a conservation law that would forbid such a transition.

The systems studied above allow us to identify the mechanism underlying the suppres-
sion of quantumization. In these systems, the process of quantumization would involve the
transition n→ 2 with n ∼ N . In such a case, the created particle pair carries an order-one
fraction of the mean energy stored in the initial coherent state. However, since the basic
S-matrix element is suppressed, for the transition to have a chance of occurring, the rate
requires an enhancement due to combinatorial factors associated with either the initial or
final states or both.

As for the initial-state Bose enhancement, it is important to note that increasing the
initial occupation number of quanta beyond a certain level, N ∼ g−4, will render the weak
coupling treatment invalid. This is due to two reasons: firstly, in such a regime, the col-
lective interaction with all other particles substantially modifies the dispersion relation of
each individual particle. Secondly, Lyapunov instabilities occur in the condensate for such
high N , leading to a deviation of the classical background from the coherently oscillating
field (2.3). Looking at the one-loop effective potential (2.68), which corrects the free oscil-
lations for amplitudes φ0 exceeding m/g2, one arrives at the same conclusion. Therefore,
our treatment is only valid as long as the condition (2.69) is satisfied, which in terms of N
is given by

N � V m3

g4 . (2.79)

In light of the above, let us compare the minimal decay time of a condensate decaying
into a particle pair with the timescale of an oscillation, ∼ m−1, or with the timescale of
complete gradual decay,

τgradual . N Γ−1
2→2 ∼ m−1N

Vm3

g4 . (2.80)

The above upper bound is rather mild since it neglects the effects of initial state Bose-
enhancement (which is accounted for in (2.76)) as well as the cumulative Bose-enhancement
due to the created χ-particles, which corresponds to the occurrence of parametric resonance
in the Mathieu equation (2.25). However, we will demonstrate that during timescales on
the order of (2.80), non-gradual decay is still negligible.

We can introduce a parameter r to parametrize the range of n corresponding to n ∼ N ,
since the coherent superposition has non-zero support for other occupations, including
ones higher than N . We can then sum the rates for processes with N/r ≤ n ≤ r N (with
appropriate rounding, and with values of r & 10 being reasonable). This range of n remains
in the perturbative regime (2.67) as long as

r2 � NVm3/g2 . (2.81)
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Let us denote the occupation numbers in the coherent superposition by n + n′, where n′
is the number of unscattered initial quanta. To obtain an upper bound on the effective
combinatoric enhancement, we evaluate

∞∑
n′=0
|〈n′|ân|c〉|2 =

∞∑
n′=0

(
n+ n′

n

)
|〈0|ân|n〉〈n+ n′|c〉|2 = Nn

n! |〈0|â
n|n〉|2 . (2.82)

Here, the occupations of the number states such as |n〉 and of the coherent state |c〉 are all
referring to the same mode and â|c〉 =

√
N |c〉. Thus, for the rate of non-gradual decay we

have

Γn∼N ∼
r N∑

n=N/r

Nn

n! Γn→2 . (2.83)

When the result (2.16) holds for Γn→2, the timescale Γ−1
n∼N is significantly greater than

(2.80), provided that (2.81) is satisfied. On the other hand, if the scaling (2.71) is valid,
then the range of n for the summation is within the perturbative unitarity bound (2.72)
if N ≤ nmax/r, which is equivalent to (2.79). Even in this case, we observe that Γ−1

n∼N is
much larger than (2.80).

As for enhancement due to final-state degeneracy, the rate of the quantumization tran-
sition cannot be sufficiently enhanced, either, since an exponential increase in the 2-particle
degeneracy would cause the theory to be strongly coupled.

For an illustration, consider the possibility of increasing the degeneracy of final states by
introducing an additional internal quantum number, such as a “flavor” quantum number
j = 1, 2, ..., Nf , for the χ-particles. For instance, if χj forms an Nf -dimensional repre-
sentation of the SO(Nf ) symmetry group, the rate (2.16) of the transition nφ → 2χ is
enhanced by a factor of Nf . However, for the φ- and χ-particles to remain valid, i.e.,
weakly interacting, degrees of freedom, the collective coupling has to respect the bound

Nfg
4 . 1 . (2.84)

Beyond this regime, the loop expansion breaks down, and the degrees of freedom change.
The bound (2.84) prevents the final-state degeneracy from being able to compensate the
matrix element (2.77).

The above considerations also show why any non-gradual generation of entanglement
from an initially classical state should be suppressed. For example, the SO(Nf )-invariant
2-particle state

| 2〉 = 1√
Nf

Nf∑
j=1
|χj〉 × |χj〉 , (2.85)

is entangled with respect to the flavour quantum number. The rate of its creation from
the initial state of n φs, however, is likewise strongly suppressed. In a classically stable
system, rather than in a single process, the generation of entanglement happens gradually
over a time scale of (2.76) [27, 3, 35].
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2.6.3 Potentially Unsuppressed Processes
As already mentioned, in the case of classicalizing transitions, based on the inverse process
2 → n, many of the above aspects play out differently [44, 45, 46, 20]. For a given
pair of initial and final states, the absolute values of S-matrix elements for transitions in
either direction, |S2→n| and |Sn→2|, are of course exactly equal. Compared to the allowed
degeneracy of a 2-particle state, however, that of the n-particle final state may be high
enough to balance the suppression of the matrix element. Such degeneracy is the key
ingredient in the microscopic explanation of the classicalization phenomenon [46, 20].

In the example of the process 2χ → nφ, the number of final states is exponentially
enhanced if φj carries an SO(Nf ) index [20]. By symmetry, the matrix elements for
transition to each member of the same irreducible representation are equal and the rate is
enhanced by the dimensionality of the representation. In our example, an invariant state
of n φs has degeneracy CNf +n,n = (Nf +n)!/n!Nf !, which scales as en for Nf ∼ n. By this,
we do not mean to imply that a simple φ2χ2-theory necessarily exhibits classicalization at
an order-one rate, but instead wish to demonstrate the different potential of enhancement
inherent to a classicalizing transition 2→ n versus a quantumizing one, n→ 2.

Due to such enhancement actualized via the sum over final states, unsuppressed pro-
duction of n-particle states with high entropy, known as saturons, is expected in 2-particle
collisions at sufficiently high energy [20]. According to ref. [19], one known example of a
saturon in nature is given by black holes.

Several other instances of classicalization have been identified outside of gravity. In
ref. [62], it has been proposed that the Color Glass Condensate of gluons in QCD [63]
may constitute a saturated entropy state. Correspondingly, the creation of such a state
in proton collision would constitute a classicalization process. In ref. [20], it has been
suggested that confinement in QCD with a large number of colors is explained by the
formation of a saturated state of gluons due to high color degeneracy.

In ref. [64], the creation of saturon bound states in 2→ N process in the Gross-Neveu
model [65] has been analyzed. The results imply a nonperturbative enhancement of the
transition rate compensating the exponential suppression of the matrix element.

For a long time, it has been assumed [15, 66, 67, 68, 69] that the formation of a
black hole can occur with order-one probability in the collision of two particles. This
viewpoint is based in semiclassical reasoning, suggesting that a black hole will form when
energy becomes localized within its own gravitational radius. The idea of self-completion
of gravity [16] is based on this expected behaviour.

In the absence of a microscopic theory of a black hole, the quantum mechanism behind
its unsuppressed formation naturally cannot be verified or understood. Such microscopic
theory is given by the black hole N -portrait [19]. In that model, a black hole is a condensate
of N soft gravitons, with the microstate entropy scaling as ∼ N .

According to this theory, the formation of a black hole in a 2-particle collision can be
understood as a process of classicalization, 2 → N , where a highly degenerate state of N
gravitons is created [19]. Although the transition probability to each individual microstate
is suppressed by e−N due to the high multiplicity involved [45, 70], the total probability
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of black hole formation is order one. The suppression is balanced by the non-perturbative
enhancement due to the degeneracy of the N -graviton state, which accounts for the black
hole entropy [19, 45].

As is clear from the discussion in the preceding section, the many-particle nature of a
near-classical black hole also provides an explanation for its stability against a non-gradual
decay. While the decay process N → 2 shares the exponentially suppressed S-matrix
element with the formation process, 2 → N [19, 45], the final 2-particle state cannot
provide degeneracy large enough to overcome that suppression.

The concept of the decay of a black hole into a few particles may raise concern regarding
perturbative validity since the decay products gravitate. If the decay products are created
at distances not far exceeding the initial gravitational radius, their gravitational field is
not negligible. However, at the level of calculation, this is accounted for by a dressing of
the outgoing particles with a classical gravitational field in the form of a coherent state of
secondary “softer” gravitons.

As we have mentioned, while quantumizing n→ 2 transitions are always suppressed, a
transition n → 2 may still become unsuppressed after the system has lost its classicality:
a given degeneracy of the initial n-particle state does result in an enhancement if the
initial state is in a superposition of the degenerate microstates. This enhancement is
maximized by a uniform superposition in the sense that the absolutes of the coefficients
of the independent states are equal. In that case, for a number of d degenerate states, the
enhancement at the level of the square amplitude amounts to a factor of d. This is the same
degree of enhancement as brought about by the sum over final states in the case of a final-
state degeneracy of d. Let us consider as a specific example a flavour superposition of the
initial state in the process nφ→ 2χ, where again φj carries an SO(Nf ) index. Thus, in our
example, if the initial superposition is the normalized SO(Nf )-invariant sum over the entire
representation space, the resulting enhancement at the level of the squared amplitude is by
a factor of the dimensionality of the representation. For our example of an initial state of n
φs, the enhancement is therefore again by the factor of CNf +n,n = (Nf + n)!/n!Nf !. Since,
as mentioned, an initial state of such kind cannot be considered classical, such a transition
also does not fall in our category of quantumization. Nonetheless, such transitions may
play an important role in the evolution of macroscopic systems that have departed from
classicality. Over the duration of its quantum break-time, an initially near-classical system
can potentially evolve to the required level of superposition of its degenerate microstates.

In particular, for a black hole in the N -portrait, the protection against single-process
decay thus will vanish if it evolves into a superposition covering close to all of its mi-
crostates. This can potentially happen in the process of the generation of maximal inner
entanglement. Such entanglement has been argued [35] to be achievable on a time scale of
∼ N emissions. As an alternative mechanism, maximal entanglement is achieved on the
logarithmically short time scale (2.75) in the presence of a classical instability [26]. It has
been argued in ref. [3] (subject of part II of this thesis) that such instability could appear
likewise after ∼ N emissions, i.e., order half-decay.
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2.7 Summary
In this study, we have resolved non-perturbative phenomena of particle creation in coher-
ently oscillating background fields in terms of perturbative many-particle quantum pro-
cesses. This work represents a continuation of the research applied to systems like black
holes [19] and de Sitter spacetime [19, 27] (for more references, see section 2.1).

In those studies as well as in the present one, a classical background is resolved by a
quantum state with an occupation number centered around N . Here, we have investigated
high-multiplicity processes, in which a generic number n out of N quanta annihilates in
favour of an energetic pair. Specifically, we have studied in those terms three different
cases of condensate decay in the simplest interacting scalar and gauge theories in 3+1
dimensions. We have shown the agreement of the non-perturbative semiclassical prediction
and the perturbative quantum prediction in the double limit g2 → 0 , N →∞ , with g2N
fixed.

For finite values of the coupling g2, we have established the regimes of perturbative
validity for n andN in terms of g2. The fully quantum treatment allows to consistently take
into account the backreaction. This is relevant in particular in the interesting case of n ∼
N , i.e., the system decays in a single process. This also represents a transition from a near-
classical state to a quantum one, and correspondingly we have termed it quantumization.
We have found that the suppression of the N → 2 S-matrix element is so strong that
the evolution is dominated instead by gradually proceeding decay. Correspondingly, the
quantum break time tQ, after which classicality is lost, is determined by processes of low
n.

Our analysis may be directly extended to the case of particle creation in an oscillating
background spin-2 field. A state of N massive gravitons corresponding to such background
has been used as a resolution of de Sitter spacetime in ref. [33].

Thanks to their calculational accessibility, the systems studied here provide a clean lab-
oratory for gaining insight into the conditions under which processes of high multiplicity
may become efficient. To provide explicit cases, we have extended the models studied by
internal symmetries, which bring into play an enhancement due to microstate degeneracy.
We have demonstrated that within the bounds of weak coupling, the N -particle state, un-
like the 2-particle state, may accommodate a degeneracy sufficient to balance the smallness
of the matrix element.

In the case of the inverse process of 2→ N , which shares the same matrix element, the
sum over final states causes an enhancement by a factor of the number of the degenerate
microstates. Such a process is the basis of the phenomenon of classicalization [17]. It
has been argued [19, 45] that an example of the discrepancy between classicalization and
quantumization is provided by black holes conceived as N -graviton bound states: while
their creation in 2-particle collisions may be unsuppressed thanks to the high entropy,
near-classical black holes are effectively stable against explosion into a few quanta.

As for the enhancement of the transition N → 2, we have pointed out that a given
degeneracy of the initial N -particle state is actualized as an enhancement to the extent the
state is a superposition covering the degenerate microstates. In particular, for a uniform
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and Single-Process Decay

superposition over all degenerate states, the enhancement reaches the same level as in the
classicalizing case. While a system in such a state cannot be regarded as classical, and the
transition thus would not fall into the category of quantumization, a single-process decay of
a macroscopic system would be no less spectacular. We have pointed out that a black hole
can potentially evolve to the required level of superposition in the process of generating
maximal inner entanglement. The latter has been argued [35, 3, 26] to be achievable on a
time scale on the order of half-decay.

Thus, what we have demonstrated in the simple systems of oscillating fields in basic
quantum field theories in particular points to the possibility of explosive evolution of the
more complicated system of a black hole.



Part II

Memory Burden Effect
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Introduction
In this part of the thesis we present our studies related to the memory burden effect [28],
which is a phenomenon universally present in systems that achieve high memory capacity,
and its implications for black holes (BHs) and de Sitter. As we are going to explain in more
detail below, the effect consists of suppression of the system’s decay due to a backreaction
effect related to quantum information stored in the memory. The focus of our study is
on the ability of systems to avoid the memory burden effect by rewriting the information
among internal degrees of freedom. We find that the speed of decay facilitated by such
rewriting decreases with increasing system size. The universal nature of the effect suggests
applicability in particular to BHs and de Sitter as systems of maximal entropy.

Our work is part of a line of research [30, 71, 72, 73, 74, 75, 76, 77, 28, 2, 21, 78, 20]
that aims to obtain new understanding about BHs by investigating much simpler systems
that have in common a high memory capacity. Encouragingly, in those studies, many
such systems have been shown to exhibit BH-like properties. This is despite abstracting
from the geometric aspects of a BH. Since those simplified model systems in contrast to
BHs are calculationally accessible, they may in turn allow to learn about BH behaviour
beyond the validity of the semiclassical treatment. This line of research is distinct from
a line of research focusing on an explicit microscopic model of a BH in terms of a bound
state of gravitons with a wavelength on the order of the Schwarzschild radius, the so-called
N -Portrait [19].

Without loss of generality, any physical system can be described in terms of quantum
oscillators or modes. When considering a subset of those modes, their occupation pattern
|n1, . . . , nK〉 amounts to quantum information stored in the system. We can quantify
the system’s memory capacity at a given energy by the number of patterns that can be
realized within a microscopic interval around that energy [75, 77]. A high memory capacity
achieved through the above modes thus requires their gap to effectively vanish.

In [30, 71, 74, 75, 76, 77, 28, 2] it has been found that systems able to achieve high
memory capacity do so through a universal mechanism. This mechanism has been called
assisted gaplessness. As has been shown in the references cited above, in a suitable basis,
there exists a mode, which we may call control mode, whose occupation n0 controls the
gap of a set of other modes, which we may call memory modes. For a certain critical
occupation n0 = Nc of the control mode, due to the attractive interaction, the gap of the
memory modes nearly vanishes.

The memory burden effect arises due to the back-reaction of the memory modes: any
change of the control mode’s occupation away from Nc leads to a growth of the memory
modes’ gap. To the extent they are occupied, this leads to an increased energy cost of
the memory pattern. As a result, there is a building resistance against any evolution away
from the critical occupation Nc. In particular, if n0 is affected by the decay of the system,
the memory burden leads to a suppression of the decay.

From the above, it is clear that a single near-gapless mode, which is highly occupied,
will create a similar memory burden as a high number of such modes with the occupation
distributed among them. The former case has been demonstrated [79] to be at work in
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the case of a solitonic vacuum bubble whose decay is suppressed by a high occupation of
a single Nambu-Goldstone mode localized inside.

As for the case of large K, the number of near-degenerate microstates grows exponen-
tially with K. If apart from the total energy all other macro-observables also take the same
value for those memory states, this will correspond to an entropy S = ln(nst) ∼ K, where
nst is the number of distinct basic microstates |n1, . . . , nK〉. From the above, it follows
that the presence of the memory burden effect does not require the system to have high or
even maximal entropy. On the other hand, any system saturating the Bekenstein bound
on entropy will certainly exhibit the memory burden effect.

Understanding BH dynamics in terms of phenomena that are universal to systems of
high memory capacity can be valuable since BH evolution past the initial stage of Hawking
evaporation is unknown. This is because the semiclassical approximation by default cannot
take into account quantum back-reaction effects and therefore breaks down the latest after
the BH has lost on the order of half its initial mass. This means that contrary to a frequent
assumption, there is no self-similar evaporation: due to quantum effects, a newly created
BH is not equivalent to an old one that has arrived at the same mass after losing a sizeable
fraction of its initial mass. Therefore, it is important to quantify those back-reaction effects
and gain understanding of the possible BH evolution beyond half-decay.

In order to make progress in these questions, in our study, we will try to find universal
features of a system under the influence of the memory burden effect. In [28], the evolution
of a system subjected to the memory burden effect has already been analyzed. There, it
has been found that the system’s decay is stopped as soon as the memory burden effect
sets in. The time of the set-in may be specific to a given system, but cannot be later
than order half decay. A question raised in [28] is whether the memory burden can be
alleviated or avoided. There, it has been argued that barring an efficient transfer of the
stored information to the environment, the only conceivable way is via a mechanism called
rewriting. Namely, if there exist other sets of memory modes that become gapless at a
lower occupation of the control mode, N ′c. In such a case the system could synchronize the
decay with the offload of the memory pattern to the next memory sector and thus avoiding
a macroscopic increase of the energy cost for the stored quantum information.

The purpose of the present study is to investigate the mechanism of rewriting. To that
end, we are going to analyze a model considered already in ref.s [74, 75, 76, 28, 2], which
may be considered the simplest possible model exhibiting memory burden as well as the
capability of rewriting. We aim to determine under what conditions rewriting takes place
as well as the maximal speed of rewriting-powered decay depending on the parameters. In
particular, we analyze the dependence on the system size.

After the analysis of the generic prototype model, we aim to apply the findings to
the particular systems of BHs and deSitter. When choosing a scaling of the parameters
appropriate to BHs, we find that after the set-in of MB, the maximal rewriting-powered
decay speed is much smaller than the initial speed of Hawking evaporation.

As said before, the onset of memory burden takes place the latest after order half-decay.
Since as systems of maximal entropy BHs and de Sitter must be subjected to the memory
burden effect, the departure of their evolution from the semiclassical one thus has to be
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dramatic the latest by half-decay. This constitutes a rigorous finding of the present study.
The speculative part of our work concerns the evolution past half-decay. This is because,
after half decay, the universality argument regarding the memory burden effect no longer
holds since by that time other sources of quantum back-reaction, that are specific to BHs
or de Sitter, may have accumulated to result in a strong effect.

The memory burden effect on its own implies a drastically slowed down decay rate
amounting to an effective stabilization of BHs. As a different conceivable scenario, a BH
may also develop a classical instability and disintegrate on a very short time scale.

Here, we are going to speculate on the stabilization of BHs with interesting consequences
for PBHs. Since in that case, PBHs of small mass would still exist rather than having
completely evaporated, many constraints on the fraction of DM constituted by PBHs
would be invalidated. To illustrate this point, we consider some of those constraints and
point out an exemplary scenario in which light PBHs appear to be able to constitute all
of DM.

For de Sitter spacetime, we argue that the Gibbons-Hawking radiation is slowed down
after tQ, the onset of the MB. Simultaneously, the release of the quantum information
becomes less suppressed. If inflation has lasted long enough to come close to tQ, the
resulting deviation from the semiclassical evolution may have left detectable imprints in
the primordial density perturbations. Intriguingly, the quantum information thus accessible
in the CMB would have been carried through the entire inflationary history.
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Chapter 3

Avoiding Memory Burden by
Rewriting: A Prototype Model
Analysis

3.1 The Model
Following ref. [28], in this section, we are going to construct our prototype model. In
order to gain intuition about the system, we put together sectors of the model in steps,
analytically investigating its behaviour before getting to the full system, which requires
numerics to solve it.

3.1.1 Assisted Gaplessness
We are going to start with a sector of the model that is able to dynamically achieve a
numberK of gapless modes, and correspondingly a large number of degenerate states. This
part of the model follows ref.s [76, 75, 77]. Consider K bosonic modes with corresponding
creation and annihilation operators satisfying the usual relations (here and throughout
~ = 1)

[âj, â†k] = δjk , [âj, âk] = [â†j, â
†
k] = 0 , (3.1)

where k = 1, . . . K. We denote by n̂k = â†kâk and |nk〉 the number operators and its
eigenstates, respectively. εk denotes the energy gap in the free part of the Hamiltonian,
Ĥ = ∑

k εkn̂k.
The state of those K modes can be expressed in terms of the basis states

|n1, . . . , nK〉 ≡ |n1〉 ⊗ |n2〉 ⊗ · · · ⊗ |nK〉 , (3.2)

where n1, . . . nK can take arbitrary values. While the number of independent states scales
exponentially with K, they may differ significantly in energy, depending on the associ-
ated gaps εk. Neglecting interactions of the modes, two different states |n1, . . . nS〉 and
|n′1, . . . n′S〉 have energies that differ by ∑K

k=1 εk(nk − n′k). For there to be a large number
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of effectively degenerate states, the gaps εk have to be correspondingly small. Specifically,
the number of states that fits into a reference interval ∆E scales exponentially with K if
the gaps satisfy εk . ∆E/K.

Let us include another mode n̂0, with creation and annihilation operators â†0, â0 likewise
obeying Eq. (3.1). This mode differs by how it is coupling to the remaining modes via the
following attractive interaction:

Ĥ = ε0n̂0 +
(

1− n̂0

Nc

)
K∑
k=1

εkn̂k , (3.3)

with a parameter Nc � 1.
The occupation of n̂0 effectively lowers the gaps of the modes n̂k. Their effective gaps

in terms of n0 read
Ek =

(
1− n0

Nc

)
εk . (3.4)

Due to this property, we are going to refer to the mode n̂0 as the control mode and to the
modes n̂k as memory modes. For the critical occupation n0 = Nc, the effective gaps of the
modes n̂k vanish. Correspondingly, all states of the form

|n0 = Nc, n1, . . . , nK〉 (3.5)

are degenerate in energy for arbitrary values of n1, . . . , nK . The energy required to achieve
such gaplessness and corresponding memory capacity is ε0Nc.

In the situation where the maximal occupation for each n̂k is given by d, the number of
degenerate states is given by (d+ 1)K . In the case that those states constitute microstates
describing the same macrostate, the corresponding entropy is

S = K ln(d+ 1) . (3.6)

3.1.2 Memory Burden
We have noted that the occupation of the control mode affects the gap of memory modes.
As we are going to discuss now, the converse is true as well, leading to the memory burden
effect [28]. The altered effective gap of n̂0 comes to bear dynamically if the Hamiltonian
allows for the transfer of excitations between n̂0 and other modes. Consider including a
further mode m̂0 = b̂†0b̂0 with commutation relations analogous to Eq. (3.1) in the following
way:

Ĥ = ε0n̂0 + ε0m̂0 +
(

1− n̂0

Nc

)
K∑
k=1

εkn̂k + C0
(
â†0b̂0 + b̂†0â0

)
, (3.7)

The occupation number conserving coupling has strength parametrized by C0. In a state
without occupations of the memory modes, the choice of equal gaps of n̂0 and m̂0 allows
for unsuppressed oscillation between them.
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More generally, consider as the initial state

| i1〉 =

∣∣∣∣∣∣∣Nc, 0︸ ︷︷ ︸
n0,m0

, n1, . . . , nK

〉
. (3.8)

The Hamiltonian (3.7) does not allow the memory modes to take part in the dynamics and
the evolution reduces to that of a two-mode system. The solution for the initial state (3.8)
in terms of the expectation value of n̂0 is given by [28]:

n0(t) = Nc

(
1− 4C2

0
4C2

0 + µ2 sin2(
√
C2

0 + µ2/4 t)
)
, (3.9)

where we defined
µ ≡ −

K∑
k=1

εknk/Nc . (3.10)

As can be seen from (3.9), µ2/C2
0 affects both the amplitude of the oscillations and the

frequency. In terms of the effective energy gaps (3.4), µ is given by

µ =
K∑
k=1

nk
∂Ek
∂n0

. (3.11)

Let us consider exemplary parameter values of the system and the initial state that illus-
trate the effect of µ. In Fig. 3.1a, the solution (3.9) is plotted for an initial state with all
nk = 0, s.t. µ = 0. The amplitude of the oscillation of n0(t) (and m0(t) = Nc − n0(t)) is
unsuppressed, i.e., all energy stored in the mode n̂0 is offloaded to m̂0 before oscillating
back. The same behaviour would be the case if the memory modes would not be part of
the system at all. But a nonzero occupation of the memory modes changes the situation.
If nk and εk give rise to µ2/C2

0 & 1, the oscillation of n0(t) takes place with a sizeable
suppression of the amplitude. An example of this is plotted in Fig. 3.1b. Effectively, in-
formation stored in the memory modes suppresses the evolution of the control mode away
from its initial value. This is the essence of the memory burden effect.

With the system’s memory being able to constrain its evolution so strongly, a natural
question is whether there may be mechanisms to alleviate or avoid it. For given µ2/C2

0 , a
delay of the onset of the memory burden effect is achieved by the following modification
of the Hamiltonian [28]:

Ĥ = ε0n̂0 + ε0m̂0 +
(

1− n̂0

Nc

)p K∑
k=1

εkn̂k + C0
(
â†0b̂0 + b̂†0â0

)
. (3.12)

Now, the effective energy gaps are given by

Ẽk =
(

1− n0

Nc

)p
εk . (3.13)
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0 ∼C0
-1

t0

N

n0

(a) µ = 0: absence of mem-
ory burden. The expectation
value n0 oscillates freely with
full amplitude.

0 ∼C0
-1

t0

N

n0

(b) |µ| = 2.5 (and p =
1): early backreaction due to
memory burden ties n0 to its
initial value.

0 ∼C0
-1/2 ∼C0

-1
t0

N

n0

(c) |µ| = 2.5 and p = 8:
memory burden can be de-
layed up to a timescale on the
order of half decay. Backre-
action sets in at the latest at
that point and stabilizes the
system.

Figure 3.1: Plots of the time evolution of n0 for Nc = 25 and C0 = ε0/
√
Nc = 1/5. Figs.

3.1a and 3.1b follow from (3.9). Fig. 3.1c is an approximate solution of the system (3.12).

The parameter quantifying the memory burden defined in analogy to (3.11) is now

µ̃ = p
(
Nc − n0

Nc

)p−1
µ . (3.14)

Compared to the case of p = 1, this now depends on n0 and can be seen to be initially
suppressed by powers of (Nc− n0)/Nc. Even in the absence of an exact solution for p = 1,
we may expect that the onset of the memory burden effect is delayed only until µ̃ has
grown s.t. µ̃2/C2

0 & 1, i.e., in terms of n0, until

Nc − n0 & Nc

(
C0

p|µ|

)1/(p−1)

. (3.15)

While (3.9) shows that, in the case of interest, µ2/C2
0 � 1, the decay is frozen at Nc−n0 ∼

NcC
2
0/µ

2 for p = 1, (3.15) shows that the larger the value of p, the more delayed is the onset
of the backreaction to larger values of Nc−n0. So the value of p parametrizes the system’s
ability to buffer the decay: no system is of course expected to be able to maintain initially
present gapless modes despite radiating away arbitrary amounts of its mass - but different
systems may lose that ability at different stages of their decay. According to (3.15), for
arbitrarily large values of p, the onset of backreaction can in principle be delayed arbitrarily.
For plausible values of p and C2

0/µ
2, one has an onset after Nc − n0 ∼ Nc, i.e., after order

half decay. An example of such behaviour is plotted in Fig. 3.1c.

3.1.3 Rewriting
Apart from a system’s potential ability to delay the onset of the memory burden effect, it
is in principle conceivable that there are mechanisms to alleviate or avoid it, once it does
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set in.
In ref. [28], it has been argued that barring an efficient channel to transfer the informa-

tion stored in the memory modes onto external degrees of freedom, the only possible way
involves offloading the information to a different set of memory modes that interact differ-
ently with the control mode. Such rewriting of the information may ensure that the energy
cost of the information never gets too large as to freeze the decay of n0. Specifically,
following ref. [28], consider adding to the Hamiltonian a second set of memory modes,
n̂′k′ = â

′†
k′ â
′
k′ , k′ = 1, . . . , K ′, that become gapless for a lower occupation of the control

mode, n0 = Nc −∆Nc. In addition, the memory modes are coupled to allow for rewriting
to take place:

Ĥ = ε0n̂0 + ε0m̂0 +
(

1− n̂0

Nc

)
K∑
k=1

εkn̂k + C0
(
â†0b̂0 + b̂†0â0

)

+
(

1− n̂0

Nc −∆N

)
K′∑
k′=1

εk′n̂
′
k′ +

K∑
k=1

K′∑
k′=1

Ck,k′
(
â†kâ

′
k′ + h.c.

)

+
K∑
k=1

K∑
l=1
l 6=k

C̃k,l
(
â†kâl + h.c.

)
+

K′∑
k′=1

K′∑
l′=1
l′ 6=k′

C̃k′,l′
(
â
′†
k′ â
′
l′ + h.c.

)
. (3.16)

The coupling strength between the two memory sectors is set by the parameters Ck,k′ .
Similarly, we have included couplings C̃k,l between modes within each memory sector. In
order to focus on the potential rewriting phenomenon we have gone back to the choice
p = 1.

In an initial state as considered before, the second set of memory modes is not gapless:

| i〉 =

∣∣∣∣∣∣∣∣Nc, 0︸ ︷︷ ︸
n0,m0

, n1, . . . nK , 0, . . . , 0︸ ︷︷ ︸
n′1,...,n

′
K′

〉
. (3.17)

However, the expectation value of the Hamiltonian is the same for the following state:

| f〉 =

∣∣∣∣∣∣∣Nc −∆Nc,∆Nc︸ ︷︷ ︸
n0,m0

, 0, . . . , 0︸ ︷︷ ︸
n1,...,nK

, n′1, . . . , n
′
K′

〉
. (3.18)

In this state of lower occupation of n0, the second memory sector is gapless. The total
occupation in the two memory sectors,

Nm ≡
K∑
k=1

nk +
K′∑
k′=1

n′k′ , (3.19)

is conserved by the Hamiltonian (3.16).
Near the initial state (3.17), the second memory sector is certainly not effectively gapless

if ∣∣∣E ′k∣∣∣� ε0 . (3.20)
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As argued shortly below (see Eq. (3.22)), the milder bound∣∣∣E ′k∣∣∣� ε0√
Nm

(3.21)

is sufficient.
The existence of the state (3.18) makes it conceivable that the system evolves to a

state close to it by appropriately synchronizing the decay of n0 and the rewriting from
the â†k, âk-modes to the â

′†
k′ , â

′
k′-ones. However, it is not clear that the system will do so

on a relevant time scale. In order to answer this question, we are going to numerically
time-evolve the system.

3.1.4 Bounds on Couplings
The presence of the new couplings in (3.16) effectively alters the gaps of the memory
modes in the following sense. Since the gaps and couplings within each memory sector
are given in terms of a symmetric mode matrix, an orthogonal transformation exists that
diagnoalizes it. This defines a new set of decoupled memory modes with gaps depending
on the previous parameters. Requiring that those new gaps, En,eff, not be too large to
spoil the high entropy imposes bounds on the couplings. In the following, we are going to
determine those bounds.

The maximal energy difference among different memory patterns is given by NmEeff, if
Eeff is a representative value. Taking into account that En,eff may be positive or negative,
for large Nm, that maximal energy difference is more properly estimated by

√
Nm |Eeff|.

This latter estimate results in milder bounds on the couplings. In order for the different
memory states to be effectively degenerate, it is sufficient that their energy differs by less
than the elementary gap ε0, resulting in the bound 1

Eeff .
ε0√
Nm

. (3.22)

We start by determining the bounds on the couplings C̃k,l within one memory sector. We
will assume that they all take values on the same order of magnitude. If there were only
two modes in the first memory sector, the relevant part of the Hamiltonian is captured in
terms of the following mode matrix: (

0 C̃k,l
C̃k,l 0

)
. (3.23)

Therefore, requiring the bound (3.22) implies C̃k,l . ε0/
√
Nm. From here, the presence of

K modes can be taken into account in the following way. Regarding the couplings within a
single memory sector as independent samples from identical distributions with zero mean
and unit variance, the resulting matrix (an extension of Eq. (3.23) to multiple modes)

1 Note that without assuming contributions with random signs the constraint is Eeff . ε0
Nm

.
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belongs to a Wigner Hermitian matrix ensemble. Wigner’s semicircle law (as discussed
in ref. [80]) states that the spectral distribution of this matrix converges and becomes
independent of the dimension K when the matrix entries are rescaled by 1/

√
K. In order

not to disrupt the approximate gaplessness for the majority of modes we must therefore
suppress the coupling constants by this extra factor:

C̃k,l .
ε0√

Nm

√
K
. (3.24)

This conclusion can also be reached by examining the expectation value of the off-diagonal
elements in the Hamiltonian, following ref. [46]. This expectation value scales as Nm

∣∣∣C̃k,l∣∣∣
if the couplings take both positive and negative values, since then, for large Nm, N2

m non-
zero terms only make a contribution on the order of Nm. To ensure that this energy is less
than ε0, we obtain the constraint

C̃k,l .
ε0
Nm

. (3.25)

For large K, a typical occupation has Nm ∼ K, in which case the above bound agrees with
Eq. (3.24).

Now consider the cross-couplings Ck,k′ , i.e., the couplings between modes belonging to
different memory sectors. We again assume all couplings to take values of the same order
of magnitude. The mode matrix summarizing the relevant part of the Hamiltonian in that
case reads (for ∆Nc � Nc) (

0 Ck,k′
Ck,k′ εk∆Nc/Nc

)
. (3.26)

From these effective gaps and couplings, we obtain upon diagonalizing Eeff ∼ KC2
k,k′N/(εk∆Nc).

From (3.22), we then obtain the bound

Ck,k′ .

√
ε0εk∆Nc√

KNc(Nm)1/4 . (3.27)

This constraint is less strong than (3.24) since εk ≥ ε0.

3.2 Time Evolution
The numerical time-evolution can of course proceed only with all parameter values in (3.16)
specified. In order to deduce the parameter dependence of the system’s behaviour, we
repeat the evolution for many different values, as described in detail below. While we have
in mind the special case of black holes, our selection of parameters is more general. Firstly,
we set the free gaps of all memory modes in both sectors to be equal, εk = εk′ =: εm.
Additionally, we assume that all couplings Ck,k′ and C̃k,l are of similar magnitude, and
thus can be expressed as Cmfi(k, k′), where fi(k, l) takes values of order one. To break
the exchange symmetry âk ↔ âl, it is crucial that fi(k, l) are non-trivial. We choose them
such that they effectively take random values in |fi(k, l)| ∈ [0.5; 1], with both positive and
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negative signs. 2 The operator ε0 (n̂0 + m̂0) commutes with (3.16). Thus we can drop
it from the Hamiltonian, since we only consider initial states that are eigenstates of this
operator and it only leads to a trivial global phase. For convenience, we are going to use
ε0 as the basic energy unit. The above results in the following Hamiltonian:

Ĥ

ε0
= εm

ε0

(
1− n̂0

Nc

)
K∑
k=1

n̂k + C0

ε0

(
â†0b̂0 + b̂†0â0

)

+ εm
ε0

(
1− n̂0

Nc −∆N

)
K′∑
k′=1

n̂′k′ +
Cm

ε0


K∑
k=1

K′∑
k′=1

f1(k, k′)
(
â†kâ

′
k′ + h.c.

)

+
K∑
k=1

K∑
l=1
l 6=k

f2(k, l)
(
â†kâl + h.c.

)
+

K′∑
k′=1

K′∑
l′=1
l′ 6=k′

f3(k′, l′)
(
â
′†
k′ â
′
l′ + h.c.

) . (3.28)

From here on, we set ε0 = 1.
For the numerical analysis, we simplify the system by truncating all memory modes to

qubits. This leads us to consider the initial state

| i〉 =

∣∣∣∣∣∣∣Nc, 0, 1, . . . , 1︸ ︷︷ ︸
Nm

, 0, . . . , 0
〉
, (3.29)

where n̂0 is Nc-fold occupied, m̂0 is unoccupied, and the first Nm memory modes have one
excitation each.

Unless stated otherwise, we use the following parameter values

εm =
√

20 , Nc = 20 , ∆Nc = 12 , K = K ′ = 4 ,
C0 = 0.01 , Nm = 2 , (3.30)

which determine the Hamiltonian and the initial state, except for the choice of the coupling
Cm. We would like to emphasize that we have selected Nm = K/2 as it corresponds to the
most probable state for large K.3

To numerically evolve the system, we utilize the approach and software documented in
ref. [81], which is based on a Krylov subspace technique. In this method, the numerical
error, i.e., the norm of the difference between the exact time-evolved state and its numerical
approximation, is assigned a reliable upper bound. We set the error tolerance to be 10−6

for most systems, except for those with K = 8, for which we use a tolerance of 10−5.
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(a) Cm = 0.

0 2000 4000 6000 8000 10000
t

19.75

19.80

19.85

19.90

19.95

20.00
n0

0 2000 4000 6000 8000 10000
t

1.70

1.75

1.80

1.85

1.90

1.95

2.00

Σ
k
nk

(b) Cm = 0.1.
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(c) Cm = 0.30055.
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(d) Cm = 1.239.

Figure 3.2: Time evolution of the initial state (3.29) for different values of Cm. Oscillations
on a timescale of order 1 cannot be resolved graphically any more since we show very long
timescales. n0 is the expectation value of the occupation of the mode â0 and ∑k nk that
of the total occupation in the first critical sector. Time is plotted in units of ε−1

0 ~.
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3.2.1 Possibility of Rewriting
In Fig. 3.2, we present the time evolution of the initial state (3.29) for different values of
Cm. We show the expectation value n0 of the occupation number of the n̂0-mode, as well
as the expectation value of the total occupation of the first critical sector ∑K

k=1 n̂k. When
Cm = 0 (see Fig. 3.2a), we can make the replacement ∑K

k=1 n̂k → Nm and ∑K′

k′=1 n̂
′
k′ → 0,

and the system has the analytic solution (3.9). We observe that the critical sector remains
stationary, and the amplitude of oscillations of n̂0 is heavily suppressed. This is the result
of the memory burden effect[28] discussed in section 3.1.2.

For many nonzero values of Cm, the system behaves similarly (see Fig. 3.2b). Although
the time evolution of the system becomes more complicated, the amplitude of oscillations
of n0 remains small, and the critical sector effectively freezes.

However, there are certain Cm values for which the system behaves differently, and the
amplitude of oscillations of n0 distinctly increases, albeit on a significantly longer timescale
(see Figs. 3.2c, 3.2d). As expected, this behavior accompanies a change in the occupation
numbers in the critical sector. This change can occur either through an instantaneous jump
(as in Fig. 3.2c) or through synchronous oscillations with n0 (as in Fig. 3.2d). Although
the second scenario is more intuitive, both are consistent with our expectation that a
significant change in n0 can only occur if rewriting in the critical sector also takes place.

Furthermore, the occupation transfer, and thus the information rewriting, is not com-
plete. We anticipate that complete rewriting into the second sector of memory modes
is only achievable after including additional sectors to which the â′k′-modes can transfer
occupation number.

From now on, we are going to refer to the values of Cm for which partial rewriting
takes place by rewriting values. For the parameter values used here (cf. (3.30)), rewriting
values are rare. This is illustrated in Fig. 3.3a, where we plot the maximal amplitude
of oscillations as a function of Cm . We would like to mention that for other parameter
choices, the system exhibits a higher abundance of rewriting values.

We close this section with an illustration of the system’s behaviour for the choice of
p = 2 (see Eq. (3.12)). This change corresponds to replacing in the Hamiltonian 1 −
n̂0/Nc → (1− n̂0/Nc)2 and 1 − n̂0/(Nc −∆Nc) → (1 − n̂0/(Nc −∆Nc))2. As can be seen
from Eq. (3.14), the memory burden in that case is reduced: using that, for p = 1, Nc−n0
can get as large as 0.3 (see Fig. 3.3a) we see that the memory burden is smaller by a factor
of approximately 0.03. In order for the two systems p = 1 and p = 2 to have comparable
amplitudes of oscillation of n0 in the absence of rewriting (see Eq. (3.9)), we therefore need
to rescale C0 by the same factor, i.e., set C0 = 0.0003. Other than that, the parameter
choice Eq. (3.30) has been used. As described above for p = 1, we numerically evolve the

2Specifically, we set fi(k, l) =
{
Fi(k, l)− 1 for Fi < 0.5

Fi(k, l) for Fi ≥ 0.5 , where Fi(k, l) =(√
2(k + ∆ki)3 +

√
7(l + ∆li)5) mod 1. In addition, we set ∆k1 = ∆k2 = 1, ∆k3 = K + 1,

∆l1 = ∆l3 = K + 1 as well as ∆l2 = 1.
3This reasoning is only valid for macroscopic black holes with a mass much larger than the Planck

mass, M �Mp, as K is mapped onto the entropy of a black hole.
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Figure 3.3: Maximal amplitude of the expectation value of n̂0 for different values of Cm
(with initial state (3.29)).

system for different values of Cm. The maximal amplitude observed for each Cm is shown
in Fig. 3.3b. As can be seen, the qualitative behaviour of the system is the same as in the
case of p = 1.

3.2.2 Scaling with System Size
We have seen that rewriting does indeed take place for certain values of the coupling Cm
and the specific parameter values (3.30). Our next goal is to determine the dependence
of the phenomenon on the system size. More specifically, we repeat the simulations for
varied parameters in the Hamiltonian (3.28) and track the corresponding variation of the
rewriting values of Cm. In addition, we track the corresponding variation of a certain
characteristic of the rewriting process. Namely, we can define a rate Γ of rewriting as the
ratio of the maximal amplitude of n0 and the timescale on which this maximal value is
attained. Γ gets the meaning of a decay rate if the oscillation among â0 and b̂0 is mapped
on a decay. We will discuss this mapping in section 4.1.1. From here on, our analysis is
restricted to the model with p = 1.

The details of the procedure are described in the appendix B. Here, we merely cite the
observed scalings of Cm and Γ with the parameters varied:

• The initial occupation number Nc of n̂0 (which is also the critical occupation at which
the first memory sector is gapless):

Cm ∼ N−1
c , Γ ∼ N−1

c (3.31)

• The free gap εm of the memory modes:

Cm ∼ ε1m , Γ ∼ ε0m (independent) (3.32)

• The coupling C0 of â0 and b̂0:

Cm ∼ C0
0 (independent) , Γ ∼ C1.4

0 (3.33)
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• The difference ∆Nc between the critical occupations of â0 making either of the two
memory sectors gapless:

Cm ∼ (∆Nc/Nc)0.2 , Γ ∼ (1−∆Nc/Nc) (3.34)

Concerning K and K ′, we can unfortunately only study three values due to numerical
limitations, namely K = K ′ = 4, 6, 8. Nm is varied alongside as Nm = K/2. The results
are shown in Fig. 3.4. With a parameterization of the dependence on K as

Cm ∼ KβC , Γ ∼ KβΓ , (3.35)

we may attempt to obtain a bound on the K-scaling despite the scarcity of available
numerical results. When mapping the system on a BH later, it will become clear that the
interesting bounds are a lower bound on the K-scaling of Cm and an upper bound on that
of Γ.

For that, we proceed as follows. For K = 6, there are 11 rewriting values and corre-
sponding rates, (Cm,Γ), whereas for K = 8, there are more. We average the 11 data points
for K = 6 as well as 11 of the ones for K = 8. The latter are chosen to be the 11 lowest
Cm values and the 11 highest Γ values. In order to get more conservative bounds, for Cm
we exclude the data point of K = 4 and we include it for Γ. Performing a fit of (3.35) with
the resulting data, we obtain

βC & −0.7 (3.36)

and
βΓ . −0.7 . (3.37)

Despite our attempt to generate a conservative estimate, we obviously have too little data
for a reliable statement. Correspondingly, the actual values βC and βΓ may not obey the
constraints (3.36) and (3.37).

Besides our tentative finding of decreasing Γ with growing K, we have also found that
it decreases with growing Nc (see (3.31)). For a generic system, other parameters may
vary arbitrarily with growing system size. For BHs, those variations are more constrained,
as will be discussed in chapter 4. The above-mentioned findings already indicate that
rewriting becomes less efficient for larger systems.

3.3 Analytic Considerations

3.3.1 Understanding of Results
In this section, we attempt to offer some analytic understanding of our results. For the sake
of the argument, we make the simplifying assumptions thatK = K ′ and εk and εk′ =

√
Ncε0

as well as vanishing couplings between memory modes of the same sector, C̃k,l = C̃k′,l′ = 0.
εk = εk′ =

√
Ncε0. Without loss of generality, the cross-coupling matrix Ck,k′ can then
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Figure 3.4: Available data (blue dots) for the rewriting values of Cm and the rates Γ as
function of K = K ′, where we take Nm = K/2. The dashed curves are the constraints
(4.10) and (4.11), that apply to a black hole. We see clear indications that for large black
holes, rewriting is not fast enough to reproduce the semiclassical rate of evaporation.

be chosen diagonal since this can always be achieved by a unitary transformation. The
Hamiltonian (3.16) is then

Ĥ = ε0n̂0 + ε0m̂0 + C0
(
â†0b̂0 + b̂†0â0

)
+ E

∑
k

n̂k + E ′
∑
k

n̂′k

+
∑
k

Ck,k
(
â†kâ

′
k + h.c.

)
,

(3.38)

where
E ≡

(
1− n̂0

Nc

)√
Ncε0 , (3.39)

and
E ′ ≡

(
1− n̂0

Nc −∆Nc

)√
Ncε0 . (3.40)

For the initial state (3.17), n0 = Nc, and thus

E = 0 , E ′ = −
√
Nc∆Nc

Nc −∆Nc

ε0 ' −
∆Nc√
Nc

ε0 < 0 , (3.41)

where the approximate equality holds for ∆Nc � Nc. Due to the negative sign of the
second gap, there are states with energy much lower compared to the initial state (3.17).
An example is given by the state

| low〉 =

∣∣∣∣∣∣∣∣Nc, 0︸ ︷︷ ︸
n0,m0

, 0, . . . 0, n1, . . . , nK︸ ︷︷ ︸
n′1,...,n

′
K

〉
. (3.42)
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Compared to (3.17), the occupations of the memory sectors are exchanged, while n0 and
m0 are the same. The energy difference of the two states (3.42) and (3.17) is negative
and macroscopically large. In terms of the memory burden, which in this case reads
µ = −N−1/2

c ε0
∑
k nk, this energy difference can be expressed as

〈low | Ĥ | low〉 − 〈i | Ĥ | i〉 = E ′
∑
k

nk ∼ ∆Ncµ . (3.43)

As far as the expectation value of the Hamiltonian is concerned, there appears no obstacle
to intermediate deformations of the initial state (3.17) smoothly connecting to the final
state (3.18): The exchanges of excitations among nk and n′k on the one hand and n0 and
m0 on the other hand can proceed such that the associated negative and positive changes
in energy balance. From this perspective, it appears possible that the system can indeed
overcome the memory burden via rewriting. Such an expectation has also been put forward
in ref. [28]. However, our results are very different.

Rather, we find that the rewriting-facilitated decay does not proceed efficiently. In the
following, we attempt to identify the reason for this. As detailed above, the conservation
of the expectation value of the Hamiltonian requires that the degrees of freedom a0, b0 on
the one hand and ak, a′k on the other hand evolve in synchronized fashion. However, there
may of course still exist other barriers to such an evolution. One such barrier appears to
be constituted by the splitting of energy levels among the relevant degrees of freedom, as
we will now discuss in detail.

The time evolution near the initial state (3.17) can be described as a set of coupled
2× 2 problems, with the Hamiltonians

Ĥ =
∑
k

( âk â
′
k

â†k 0 Ck,k
â
′†
k Ck,k E ′

)
+

( â0 b̂0

â†0 ε0 + µ C0
b̂†0 C0 ε0

)
. (3.44)

The systems are coupled because E ′ is a function of n0 and µ is a function of ∑k nk. In
order to obtain a qualitative understanding of the behaviour of the system, we may solve
the system iteratively. In the zeroth order, E ′ and µ are treated as constants. The resulting
variations of n0 and nk obtained in this way are then fed into E ′ and µ for the next iteration
and so on. In this way, within each iteration, the systems are decoupled. Then the large
level-splittings as compared to the couplings in the above 2× 2 matrices already indicate
the suppression of the evolution. Namely, we have from (3.9)

δn0 ∼ −Nc
C2

0
µ2 and δnk ∼ −

C2
k,k

E ′2
. (3.45)

From (3.10) and (3.40), we see that the resulting variations of E ′ and µ are given by

δµ

µ
∼
C2
k,k

E ′2
and δE ′

E ′
∼ C2

0
µ2 . (3.46)
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In the next iteration, the picture remains unaffected if these relative variations are very
small. This is of course the case for C2

0 � µ2 and C2
k,k � E

′2. For any interesting parameter
choice, C2

0 � µ2 is fulfilled since otherwise there would be no strong memory burden effect
in the first place. The condition C2

k,k � E
′2 is implied by the bound on Ck,k, Eq. (3.27),

in the interesting case of Nc ∼ K ∼ Nm � 1. Explicitly, combining (3.27) and (3.41), we
obtain

C2
k,k

E ′2
.

√
Nc

K
√
Nm∆Nc

∼ 1
Nc∆Nc

. (3.47)

Thus, for large systems and relevant parameter choices, the iteration series converges
rapidly, indicating that the system is effectively confined to the initial state.

3.3.2 Role of Number Non-Conservation
In the prototype system introduced and investigated until now, the interactions are strictly
number-conserving. In this section, we are going to argue that the possible effects of
number-non-conservation cannot change our findings.

More explicitly, in the interactions considered so far, the creation of an excitation of an
â′k′-mode always comes with the destruction of an âk-quantum. Likewise, the destruction
of a particle in the control mode â0 comes with the creation of a particle in the b̂0-mode.

We have found that the memory burden effect is strong enough to halt the process
before the extra sectors (â′k′ , b̂0) can get significantly populated. This means that the
inverse transition processes can barely play a role in the time evolution of the system.

This indicates that transitions generated by the particle number non-conserving in-
teractions of similar strengths could not overcome the memory burden effect, either. In
the following, we are going to estimate this explicitly for some examples of number non-
conserving interactions.

Decay of control mode

We start by considering number non-conserving interactions between the â0- and b̂0-mode.
For this purpose, we approximate the memory burden µ as a constant parameter.

Let us replace the number conserving mixing among the â0- and b̂0-mode in (3.7) by
the following number-non-conserving one,

Ĥ = (ε0 + µ)â†0â0 + ε0b̂
†
0b̂0 + C0(â0b̂0 + â†0b̂

†
0) . (3.48)

Here we take the parameter C0 real and of the same strength as in the number-conserving
version (3.7), C0 ∼ ε0/Nc. This strength is required for a half-decay time of the â0-mode
of t ∼ Nc/ε0 when µ = 0, as follows from (3.9). At the level of our toy model, this scaling
imitates the scaling of the black hole half-decay time in units of the typical energy of the
Hawking quanta.

The following Bogoliubov transformation diagonalizes the Hamiltonian (3.48):

â0 = uα̂− vβ̂† , b̂0 = uβ̂ − vα̂† . (3.49)



56 3. Avoiding Memory Burden by Rewriting: A Prototype Model Analysis

Here, α̂ and β̂ are the eigenmodes and

v2 = 1
2

 1√
1− 4C2

0
(2ε0+µ)2

− 1

 , (3.50)

u2 = 1
2

 1√
1− 4C2

0
(2ε0+µ)2

+ 1

 . (3.51)

For Nm ∼ Nc, the memory burden is given by µ ∼ −ε0
√
Nc. With C0 ∼ ε0/Nc, from (3.50)

we have
v2 ' C2

0
µ2 ∼

1
N3
c

, u2 = 1 +O(1/N3
c ) , (3.52)

We see that the depletion coefficient v2 is tiny. Comparing this to (3.9), we see that it is
suppressed by the same factor C2

0/µ
2 as the amplitude in the case of a number conserving

mixing.
The Bogoliubov approximation offers another way of understanding why the number

conserving and number non-conserving cases behave comparably in the situation where
â0-mode is macroscopically occupied and the occupation of b̂0 never becomes high. In this
approximation, the operators of the â0-mode are replaced by c-numbers, â0 =

√
Nc , â

†
0 =√

Nc.4 The number non-conserving Hamiltonian (3.48) then is:

Ĥ = ε0b̂
†
0b̂0 + C0

√
Nc(b̂†0 + b̂0) . (3.53)

This Hamiltonian for b̂0 is diagonalized by the canonical transformation

b̂0 = β̂ − C0

√
Nc/ε0 . (3.54)

From this one sees that in the β-vacuum the occupation number of the b̂0-mode is

〈b̂†0b̂0〉 = C2
0Nc

ε20
. (3.55)

The depletion can be seen to be suppressed by C0/ε0 ∼ 1/Nc. Therefore the memory
burden effect cannot be avoided regardless of whether particle number is conserved.

Lastly, let us consider number non-conserving transitions of a â0-quantum into several
b̂0-quanta. Since each extra b̂0 has to contribute an additional factor of 1/

√
Nc to the

coefficient, i.e., the coefficient of the term â0b̂
l
0 scales as ε0/N l/2

c , the effect of such terms is
likewise negligible.

4This is justified (self-consistently) as long as the departure of â0 from
√
Nc is small.
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Decay of memory modes

When allowing for a number non-conserving decay of the memory modes, the following
issue has to be considered.

Near the initial state, the effective gap of the second set of the memory modes is negative
for odd values of p. In the case of a number conserving Hamiltonian, the sign of the gap
plays no role in the memory burden effect. This has allowed us to focus our analysis on
the simplest version of (3.13) in p = 1.

On the other hand, as soon as number non-conserving transitions among the memory
modes are admitted, a negative sign of the effective gap may lead to “tachyonic” type
instabilities in the form of excitations created out of the vacuum. Whether such instabilities
occur is completely distinct from whether the memory burden is alleviated. However, the
answer to the second question can be made unnecessarily difficult to find in the presence
of the instabilities. Therefore, below, we are going to implement a positive gap.

Let us begin by considering a Hamiltonian that mixes the memory modes in a number
non-conserving way:

Ĥ = Ekn̂k + Ek′n̂′k′+
+ Ck,k′ (âkâ′k′ + h.c.) . (3.56)

For the sake of the argument, we have simplified the structure present in the Hamiltonian
(3.16) and paired up modes from the two memory sets. This decoupling lets each pair
evolve separately with the evolution governed by a 2 × 2 matrix. The qualitative picture
is not different in the more involved scenario.

The effective gaps Ek and Ek′ as before depend on n0. This n0-dependence needs to be
such that they reach zero at different values of n0 with a macroscopic level-splitting, i.e.,

Ek = 0 , Ek′ � ε0, for n0 = Nc,

Ek′ = 0 , Ek � ε0, for n0 = Nc −∆Nc. (3.57)

For the first sector, we can, for instance, take

Ek ≡
(

1− n̂0

Nc

)
εk , (3.58)

as before. For the second sector, possibilities include

Ek′ ≡
(

1− n̂0

Nc −∆Nc

)2

εk′ , (3.59)

or

Ek′ ≡
(

n̂0

Nc −∆Nc

− 1
)
εk′ , (3.60)
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and so on.5 The coupling in Hamiltonian (3.56) has to obey the constraint (3.47) since
otherwise, the gaplessness of the memory modes would be offset just like in the number
conserving case.

For the number conserving system (3.16), in section 3.3, we have offered some analytic
understanding of why in the numerical solution one does not observe efficient occupation
transfer among the memory sectors. In essence, the reason is that the level-splitting ∆E =
Ek′ − Ek in relation to the mixing coefficient Ck,k′ stays large.

If these conditions are likewise fulfilled in the system (3.56), the number non-conserving
nature of the interactions does not change the picture. To see this explicitly, note that
(3.56) is diagonalized by the Bogoliubov transformation

âk = uα̂k − vβ̂†k′ , â′k′ = uβ̂k′ − vα̂†k , (3.61)

where

u2 = 1 + v2 , v2 = 1
2

 1√
1−

4C2
k,k′

(Ek+ Ek′ )2

− 1

 . (3.62)

Near n0 = Nc, from Eqs. (3.47) and (3.57) it follows that

v2 ∼
C2
k,k′

(Ek′)2 �
ε0√
NEk′

, u2 ' 1 , (3.63)

resulting in a highly suppressed rate of occupation transfer among the memory sectors.
Thus it can not free the control mode â0 from the memory burden on a relevant time scale.

As for higher order operators such as, e.g., âkâ′k′1 · · · â
′
k′

l
, their coefficients are suppressed

by extra powers of 1/Nc. Those operators, whether number conserving or not, are therefore
not able to significantly enhance the decay rate.

5Even a gap function such as, e.g., Ek′ ≡
(

1− Nc−∆Nc

n̂0

)
εk′ would be admissible since here we are not

restricted by renormalizability and only interested in the regime of n0 � 1.



Chapter 4

Manifestation of Memory Burden in
Black Holes and De Sitter

4.1 Black Holes

4.1.1 Parameter Mapping
We now proceed to apply our findings to black holes. Of course, we will assume that the
investigated quantum system with enhanced memory capacity reflects some fundamental
aspects of how information is stored in black holes. Ideally, we want to avoid being limited
to any particular microscopic theory of a BH and instead utilize universal properties that all
such theories should incorporate. For instance, it is expected that the existence of modes
that become gapless near a macrostate associated with a black hole is such a universal
property. Without such gapless excitations, it would be impossible to account for the
microstate entropy of a black hole. Another fact of importance is that the Bekenstein-
Hawking entropy [10] scales with the black hole mass M as

S = 4πGNM
2 , (4.1)

where GN is Newton’s constant. Thus, the number of gapless modes that a black hole can
accommodate is directly linked to its mass. Therefore, any reduction inM must impact the
energy gaps of its memory modes. Specifically, as a black hole evaporates, some previously
gapless modes must acquire gaps. This process, because of the information stored in those
modes, then leads to a memory burden effect that opposes the decrease of the black hole’s
mass. This is the primary insight we gain about black holes from our analysis. To gain a
more quantitative understanding, we aim to set the parameters of our toy model as close
as possible to the corresponding characteristics of a black hole.

For this purpose, we can use the microscopic theory of the black hole quantum N -
portrait [19] as a rough guideline. While we aim to keep our analysis as general as possi-
ble, the microscopic theory is helpful for establishing an exact parameter correspondence
between a black hole and the simple Hamiltonian presented here. Furthermore, it demon-
strates how effectively the toy model captures the essential features of the phenomenon.



60 4. Manifestation of Memory Burden in Black Holes and De Sitter

The quantum N -portrait proposes that a black hole with a Schwarzschild radius of
rg = 2GNM is a bound state of soft gravitons. These constituent gravitons contribute to
the gravitational self-energy with a characteristic wavelength given by rg. Their occupation
number is critical in the sense that it renders a set of other modes near-gapless. Those
other modes thus correspond to the memory modes of the toy model, while the constituent
gravitons play the role of the control mode.

If the occupation number of the control mode were not critical, the memory modes
would correspond to free gravitons with very high frequencies and correspondingly large
energy cost for information stored in them. These gapless modes are assumed to account
for the Bekenstein-Hawking entropy (4.1).

Within the toy model presently investigated, the system’s decay is modeled through the
coupling of â0 to b̂0, whose occupations are denoted n0 and m0. The quantum depletion
of the n0 into the initially vanishing m0 is what plays the role of Hawking radiation [11].
As the m0 increases at the expense of n0, the memory burden effect is setting in sooner or
later. The mode b̂0 is in fact only pseudo-external because the model (3.16) can oscillate
back. Hence the mapping on a truly decaying black hole holds only up to a limited time.
However, this is sufficient to draw our conclusions.1.

The validity of our model is limited for another reason. Black holes can exist for any
mass value M , requiring a tower of momentum mode sets where one of them becomes
gapless for each M . However, our model only includes two sets of momentum modes.
Therefore, as soon as a third set would begin to get occupied, our model can no longer be
applied to a black hole. Furthermore, the prototype model (3.16) is number conserving,
whereas in quantum field theory particle number is not conserved. However, as we have
explained in section 3.3.2, this difference does not affect our conclusions.

The parameters of Hamiltonian (3.16) can be chosen to replicate the typical information-
theoretic properties of a black hole. To achieve this, we first set the elementary gap to
ε0 = r−1

g , ensuring that the energy of Hawking quanta is correctly represented by r−1
g .

Next, we require that K = S to achieve the desired entropy. As a result, a typical pattern
will have Nm = S/2 since, for large black holes where S � 1, the number of patterns with
different Nm is negligible. An estimate of the memory mode gap can be obtained as follows.
Because a Schwarzschild black hole is spherically symmetric, states can be labeled by their
quantum numbers (l,m) of angular harmonics. The degeneracy of each level scales with l.
Assuming that the energy of the modes is mainly in their angular rather than radial mo-
tion, all the states until l ∼

√
K need to be occupied in order to amount to a number of K

modes. The highest mode then has an energy of εk =
√
Kε0, which we use to estimate the

free gap of the memory modes. The relative energy split among levels is not significant for
our discussion. It should be noted that this means the modes are Planckian, εk ∼ 1/

√
GN .

Lastly, the critical occupation number Nc can be chosen freely, but for specificity, we set
1The bilinear coupling between modes is motivated as the simplest possible coupling that is able to

effectively describe energy transfer between degrees of freedom. In order to model a decay more precisely,
one could instead consider a coupling to many species, C0√

F

∑F
f=1 â0b̂

†
f+h.c. (all with the same gap εf = ε0),

which could e.g., represent momentum modes of a field-theoretic system. In the limit of large F , one can
achieve strict decay with the same rate as in (3.16).
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Nc = S, motivated by the quantum N -Portrait. With that choice, the total energy of the
system also equals the mass of a Schwarzschild black hole of entropy S: M = Ncε0.

To summarize, the above fixes some of the parameters of (3.16) in terms of a black
hole’s entropy and Schwarzschild radius as follows:

ε0 = r−1
g , Nc = S , K = S , Nm = S/2 ,

εk =
√
Sr−1

g . (4.2)

As for the couplings Ck,k′ and all C̃k,l, they all must be of the same order since the gravi-
tational coupling is universal. Therefore, Eq. (3.24) results in the strongest bound on the
couplings,

Ck,k′ ∼ C̃k,l .
ε0
S
. (4.3)

This constraint as mentioned earlier is the mildest possible one and application to black
holes might actually require stronger bounds. Another issue arising in the black hole
application is the following. Just like there are the external Hawking modes, whose role
is played by the b̂0-mode, there are of course also free modes of higher momenta. In
particular, there exist external modes of the same momenta as the memory modes âk. Let
us denote those by b̂k. Being external, these modes are of course not subjected to the
assisted gaplessness and instead satisfy the dispersion relations of free quanta. Thus they
have much higher frequencies, on the order of their momenta, εk =

√
Sε0. The situation is

effectively described by the following addition to the Hamiltonian:

Ĥhigher =
K∑
k=1

εkb̂
†
kb̂k +

K∑
k=1

Ck
(
â†kb̂k + b̂†kâk

)

+
K′∑
k′=1

Ck′
(
â
′†
k′ b̂k′ + b̂†k′ â

′
k′

)
. (4.4)

The highest possible values of the couplings Ck are determined by the consistency require-
ment that they do not offset the gaplessness of the effective âk-modes. For n0 = Nc, the
corresponding coupling matrix reads (

0 Ck
Ck ε0

√
S

)
. (4.5)

Requiring that the vanishing gap be disturbed by at most ε0/
√
S, leads to C2

k/(ε0
√
S) .

ε0/
√
S, i.e., Ck . ε0. Therefore, due to the strong level splitting, a transfer of occupation

from âk to b̂k is highly suppressed and the b̂k effectively do not get populated during
the evolution. This protects the information carried by the memory modes from getting
carried away by external modes. As has been argued in ref. [28], the above observation
constitutes a microscopic explanation of why a black hole initially releases energy but
almost no information.

While this behaviour is often considered mysterious and specific o black holes, the above
shows that rather it is a universal property of systems that are in a state of enhanced
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memory capacity due to assisted gaplessness. The microscopic explanation lies in the large
level splitting between the memory modes subjected to the assisted gaplessness and their
free counterparts.

We do not include the b̂k-modes in the numerical simulations since they barely get
occupied. As for the constraint on the coupling C0, since the gravitational interaction
scales with energy, the above consideration implies

C0 .
ε0√
S
. (4.6)

4.1.2 Implications of Numerical Findings
When we employ the parameter scalings (4.2), which we have argued in the previous
section to be appropriate for a black hole, only the couplings C0 and Cm as well as ∆Nc

are independent of S. The constraint (4.6) on C0, however, does depend on S. There is
also a bound on ∆Nc, which is implied by Eq. (3.21):

∆Nc � 1 . (4.7)

Thus, putting together the observed scalings of Cm and Γ (Eqs. (3.31)-(3.33)), we obtain

Cm ∼ S−0.5+βC (∆Nc/S)0.2 & S−0.7+βC , (4.8)

and2
Γ ∼ S−1.7+βΓ . (4.9)

From Eq. (4.8) it follows that in order to obey the constraint (4.3) on the S-dependence
of Cm, the scaling of Cm with K must be bounded as

βC . −0.3 . (4.10)

Likewise, one sees from Eq. (4.9) that the rewriting-facilitated decay rate is as high as the
Hawking rate, Γ ∼ 1, only if

βΓ & 1.7 . (4.11)

Let us investigate whether our numerical results for the K-scaling of Cm and Γ can accom-
modate the requirements of Eqs. (4.10) and (4.11). As a first method, let us confront the
actual results for K = 6, 8 with the values for K = 6, 8 allowed by the combination of the
result for K = 4 and the constraints Eqs. (4.10) and (4.11). For that purpose, in Fig. 3.4,
we plot a curve through the rewriting value at K = 4 that saturates the bounds (4.10) and
(4.11). Even though many rewriting values exist at K = 6, 8, it can be seen that none of
them obeys both the bounds (4.10) and (4.11).3

2Since ∆Nc/S → 0, the rate Γ becomes independent of ∆Nc.
3In fact, none of them fulfills either condition, except for one data point at K = 6. It has a sufficiently

high rate, but its coupling strength Cm = 0.74 is far too big to satisfy the bound (4.10).
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As a second way to assess the compatibility, let us compare the constraints (4.10) and
(4.11) with the estimates (3.36) and (3.37). Although βC might be small enough, it can
be seen that βΓ is vastly different.

The above clearly indicates that for large black holes, Γ never achieves the speed corre-
sponding to the rate of Hawking-radiation, Γ ∼ 1. Therefore, within the parameter space
we have been able to access, we can conclude that the semiclassical description breaks
down when the memory burden sets in even if it is alleviated via rewriting.

A newly created black hole that has radiated away only a small fraction of its mass is
expected to be described well by the semiclassical approximation and to thus decay with
Γ ∼ 1. As we have now seen, the investigated model (3.28) with black hole scalings fails
this requirement, since rewriting does not sufficiently alleviate the memory burden effect
and the onset of the latter is effectively immediate. Thus, in black holes, this onset must
be delayed. Within the prototype model, an effective parametrization of such delay has
been introduced in terms of the parameter p in (3.12). As discussed in 3.1.2, the onset of
the memory burden effect can be delayed at most until n0 has lost order one of its initial
occupation, corresponding to the black hole losing order one of its initial mass.

When the memory burden effect does set in, we have seen that the decay rate slows
down. Let us attempt to quantify this slowdown. For this, we are going to assume that Γ
in the system (3.12) (with a parameter value p� 1 and including the coupling to another
set of memory modes) behaves analogously to the system investigated here. From (3.9),
we see that in order to realize Γ ∼ 1 before the onset of backreaction, a coupling C0 ∼ 1/S
is needed. This modifies Eq. (4.9) as follows:

Γ ∼ S−2.4+βΓ . (4.12)

As discussed above, βΓ cannot be reliably determined. However, we have found no indica-
tions that the rates Γ might grow with K (see Eq. (3.37)). It thus appears conservative to
estimate βΓ . 0. We are thus left with

Γ .
1
S2 . (4.13)

Therefore, in the absence of competing effects, a black hole’s evaporation has to slow down
dramatically at the latest after it has lost on the order of half of its initial mass.

4.1.3 Black Hole Metamorphosis
In light of our result, a pressing question is what the possible evolution of a black hole
is beyond half-decay. The possibilities for such evolution are in stark contrast to what
is rather commonly assumed, namely, that a black hole evaporates in self-similar fashion.
More explicitly, based on extrapolation from the semiclassical result of thermal evaporation,
a black hole is commonly described beyond half-decay in terms of a time-dependent mass
M(t), with corresponding time-dependent Schwarzschild-radius and temperature, rg =
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2GNM(t) and T = (8πGNM(t))−1. However, what is overlooked in such a description is
the fact that the Hawking result is derived only in the limit

GN → 0, M →∞, rg = finite . (4.14)

In this limit, also S → ∞. For finite-valued parameters, therefore, the semiclassical de-
scription necessarily breaks down before the black hole has evaporated completely. Quan-
titative arguments independent of the specific microscopic theory of a black hole have been
provided in ref. [24]. The deviations from thermal emission are quantified by the order
parameter Ṫ /T 2, which from Ṁ ∼ r−2

g follows to be

Ṫ /T 2 ∼ 1/S . (4.15)

One thus sees that only in the strict limit (4.14) thermality is recovered and a self-similar
evolution is exact [82, 83]. Without committing to any microscopic model one can therefore
not exclude that corrections to thermal emission of order ∼ 1/S do not accumulate to give
an order-one effect over the course of ∼ S emissions. In other words, the built-in control
parameter of the Hawking treatment (4.15) indicates a breakdown of the description after
roughly half-decay.

Turning to the particular microscopic black hole model of the N -Portrait, we also find
a mechanism of how the breakdown happens [19, 27, 25, 31]: After losing on the order of
half of its constituent gravitons, the black hole state is maximally entangled. This results
in a back-reaction strong enough for the semiclassical treatment to break down.

Yet another microscopic mechanism of departure from self-similar evolution due to
quantum effects is discovered in the present study. The memory burden, to which black
holes are expected to be subjected by virtue of being states of maximal entropy, induces a
new source of quantum back-reaction. In that way, the information stored in the memory
modes results in a quantum hair that has a significant influence at later stages via the
memory burden effect. The classical no-hair theorems [84, 85, 86, 87, 88, 89, 90] do not
constrain such quantum hair.

As we have found in our prototype model with parameter scalings appropriate to black
holes, the decay rate has to slow down dramatically after half-decay. In principle, we can
only speculate on what this implies for black hole evolution beyond half-decay. The two
logical possibilities seem to be: 1) An effective stabilization due to a slow-down of the
decay; 2) A classical transition into non-linear gravitational waves. The latter possibility
arises since after the description in terms of a classical black hole stops being valid, one
can no longer exclude a new classical instability occurring in the system. From now on, we
are going to concentrate on the former possibility, which of course would have interesting
implications in the context of dark matter studies.

Correspondingly, as a result of the slowed-down decay, from here on we are going to
assume an extended black hole lifetime

τ̃ & rgS
1+k , (4.16)
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where k quantifies the slowdown of the evaporation as compared to the semiclassical rate,
Γ ∼ r−1

g . The emission spectrum after half-decay is of course no longer a thermal one.
Nevertheless, we are going to suppose a typical wavelength of emitted particles on the
order of the initial Schwarzschild-radius ∼ rg for as long as the mass of the black hole is
on the order of the initial mass.

We would like to emphasize that we cannot exclude increased emission of much shorter
wavelength particles once the memory burden has come into effect. The reason is that with
increasing gap of the memory modes, their conversion into quanta with free dispersion be-
comes less suppressed. Such conversion may well be part of how a black hole’s information
gets released after it has lost a sizeable portion of its mass. This constitutes a specific
mechanism for the release of information from the black hole after Page’s time [91].

4.2 Small Primordial Black Holes as Dark Matter
There is a longstanding idea that dark matter could in part or fully consist of primordial
black holes (PBHs) [92, 93, 94, 95]. In this context, an effective stabilization of black
holes through the memory burden effect is expected to open up the parameter space.
For a complete analysis of the constraints on the initial PBH abundances, one would of
course need a more definite knowledge of the black hole evolution past half-decay. In
the following, we are first going to present some qualitative considerations on how the
constraint landscape is affected by quasi-stabilization. For a quantitative example, we
then give estimates for one specific PBH mass.

4.2.1 Effects on Bounds
There is a large variety of bounds on PBH abundances, depending on their assumed mass
spectrum (see ref.s [96, 13] for a review). Both the strength and the extent in the mass
of many of the bounds are rooted in the naive extrapolation of the semiclassical approx-
imation. If the assumption of Hawking evaporation until the end of a black hole’s life is
dropped the parameter space is correspondingly reshaped significantly.

Assuming Hawking evaporation past half-decay, one obtains that PBHs with masses
M .M∗ ≡ 5 · 1014g would have vanished until today[13]. On the other hand, an effective
stabilization setting in around half-decay allows also smaller PBHs to persist until the
present epoch. Therefore, many of the bounds on masses M . M∗ are changed. Specif-
ically, a new mass range below M∗ of PBHs as dark matter is now allowed. Let us now
qualitatively discuss examples of how existing constraints are altered. We start with bounds
coming from the observation of the galactic gamma-ray background, using as guidance ref.
[97]. Due to the relative proximity, photons from PBHs in the Milky Way halo would
mostly be due to instantaneous emission rather than past emission. Therefore the range
of existing bounds here naively includes only masses M & M∗. Since the extrapolation
of Hawking evaporation throughout the black hole evolution results in a final speed-up of
radiation, the strongest bound is onM aroundM∗. By contrast, a slowdown of evaporation



66 4. Manifestation of Memory Burden in Black Holes and De Sitter

around half-decay would strongly relax the bound close to M∗, since PBHs of such initial
masses would already be in the stabilized phase. Similarly, the newly opened-up range
of masses M . M∗ would be mildly bounded by observations of the galactic gamma-ray
background. On the flip side, the continued emission of such small PBHs would in principle
also allow for their detection. We are going to return to this in our quantitative example.

For another illustration, we can look at the effects on bounds coming from BBN, fol-
lowing ref. [98]. With Hawking evaporation valid throughout a black hole’s life, PBHs with
massesM .MN ≡ 1010g would have vanished by the onset of BBN. Thus their abundance
is commonly regarded as unbounded by BBN. If, however, such small PBHs still exist at
that time due to a slowdown after half-decay, there are again bounds implied by BBN.
Similarly to the situation of the diffuse galactic photons, the bounds in this mass range
can be expected to be rather mild, because the PBHs by the time would already have been
slowed down in their decay. Also similarly to the galactic gamma-ray background, the
strongest BBN bound on the masses M ∼MN would be relaxed. BBN bounds on masses
M � MN are unaffected by memory burden, since for the early stage of evaporation the
semiclassical approximation is still good.

4.2.2 Specific Example

We now look at a specific example where estimates indicate that small PBHs withM �M∗
can account for all of the dark matter. We would like to emphasize that we are merely
providing rough estimates and neither try to revisit all the various bounds nor look at the
entire mass range. For this purpose, let us take the case of PBHs with a monochromatic
spectrum at M ∼ 108g. Taking into account our numerical result (4.13), for definiteness,
we are going to suppose a slowed down rate Γ̃ of black hole evaporation due to the set-in
of memory burden by two powers of the initial black hole entropy: Γ̃ ∼ r−1

g /S2. For the
black hole lifetime, this corresponds to k = 2 in (4.16), meaning that the extended lifetime
τ̃ is given by τ̃ & S2τ . Here, τ is the common lifetime obtained from the extrapolated
semiclassical evolution (see e.g., ref. [13]). For our mass example, that leads to τ̃ & 1049 s,
which of course by far exceeds the age of the present universe.

We are going to look at two types of bounds on the possible PBH abundance. The first
kind of constraints are unrelated to black hole evaporation and thus are the same as for
MACHOs with the same mass. To the best of our knowledge, the abundance of MACHOs
of M ∼ 108g is unbounded (see e.g., ref.s [13, 99]). As a side remark, such bounds would
be similar to those for N-MACHOs [100]. In the remainder of this section, we are going
to consider the second category of constraints, which is related to the fact that the PBHs
radiate, albeit with a slowed-down rate.

Let us estimate whether the detection of photons can bound the exemplary PBH sce-
nario. As reasoned earlier, the expected energy of particles radiated by the slowed-down
black hole is still on the order of the initial black hole temperature, TBH = M2

p/(8πM) ∼
105 GeV. Let us first consider the galactic gamma-ray background. If the Milky Way halo
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is largely constituted by PBHs, we can estimate that they cause a diffuse photonic flux of

Φ ∼ nBHR Γ̃ ∼ 10−34/(cm2s) , (4.17)

where R ∼ 2 · 1024 cm is the typical radius of our galaxy’s halo and nBH is the number
density of PBHs in there. The density is roughly given in terms of the Milky Way mass
MMW ∼ 2 · 1042 kg as nBH ∼MMW/(MR3).

The above estimate corresponds to about one photon hitting our planet in 108 years and
thus appears far below reliable detection thresholds. Indeed, to the best of our knowledge,
no observational lower bounds exist for the diffuse flux of photons with energy Eγ ∼
105 GeV. For comparison, in the case of Eγ ∼ 103 GeV, the flux is observed to be on the
order of 10−10/(cm2s) [101].

The above consideration pertains to the direct emission of photons. There is also
secondary photon emission, resulting from other emitted particles that subsequently decay
into photons. This kind of photon emission is dominated by pion decay. However, the
effective rate for secondary emission is only higher than the primary rate by an order of
magnitude, Γ̃S ∼ 10Γ̃ (see ref. [97]). In conclusion, therefore, the galactic gamma-ray
background does not appear to constrain our mass example.

Now let us consider the extra-galactic gamma-ray background as a possible source of
bounds. If cold dark matter is mostly due to PBHs of our exemplary mass, they will cause
a flux due to secondary photon emission which is roughly given by (see ref. [98])

Φ ∼ ρDM

M
Γ̃ t0 ∼ 10−31/(cm2s) . (4.18)

Here, ρDM ∼ 2 · 10−30 g/cm3 is the present energy density of dark matter in the Universe
and t0 ∼ 4·1017 s is the age of the Universe. Like in the galactic case, the minuteness of this
flux does not allow for observational exclusion. The above flux is only due to secondary
photon emission because there exists a cosmic gamma-ray horizon effectively absorbing the
primarily emitted photons (see e.g., ref. [102]).

As for the detection of particles other than photons, no constraints appear to arise
for our PBH mass example either, unless their emission were to drastically exceed photon
emission.

In summary, none of the observations we have considered puts a bound on our numerical
example of PBHs of mass M ∼ 108g and thus it appears that such PBHs can constitute
all dark matter. As we have remarked, this does not constitute a full investigation.

In closing, we remark that apart from the constraints considered above, there is a third
category of constraints. In the case of a direct encounter of a black hole with our planet,
the related gravitational and seismic disturbances provide another detection mechanism.
Seismic perturbations have been considered in ref. [103] for the case of PBHs of M �M∗.
In the case of smaller PBHs as enabled by stabilization after half-decay, their number would
be higher and thus encounters would occur more often. Therefore, it is possible that for
some range of small masses, PBHs are much more easily detected via direct encounter as
compared to via particle emission.
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Figure 4.1: Highly schematic plots (for even values of p) of the energy thresholds of the
memory modes for the case of black holes. Different degenerate minima exist,
corresponding to different possible black hole masses.

4.3 De Sitter
The application to de Sitter spacetime and to the inflationary stage of the universe can
proceed with a high degree of analogy to the above application to black holes. An important
difference is related to the fact that, for the case of pure de Sitter spacetime, the positive
vacuum energy density Λ represents a fixed theory parameter. By contrast, the black hole
mass constitutes a state parameter, with different possible values allowed within the same
theory. The energy landscape for the memory modes corresponding to the black hole case
is qualitatively shown in fig. 4.1.

For pure de Sitter on the other hand, minima that potentially exist for values n0 =
N
′
c, N

′′
c , . . . must not be degenerate with the minimum at Nc, which is set by Λ, but instead

must lie higher. This is required by the matching to the semiclassical description of de
Sitter. Correspondingly, the offset among the minima in the semiclassical limit, S → ∞,
must scale in such a way that only the minimum n0 = Nc survives.

This may be parametrized in terms of the following modification of the part of the
Hamiltonian describing the memory sectors and their interaction with the control mode:

∆Ĥ =
(

1− n̂0

Nc

)p∑
k 6=0

εkn̂k +
((

1− n̂0

N ′c

)p
+
(

1− n̂0

Nc

)q) ∑
k′ 6=0

ε
′

k′ n̂
′

k′ + ... . (4.19)

Here, q > 0 and otherwise unknown. The resulting qualitative energy landscape is shown
in Fig. 4.2.

For inflation, H is determined by the interaction with the inflaton degree of freedom.
For as long as de Sitter represents a good approximation to the slow-rolling inflationary
spacetime, the situation is the same as for pure de Sitter.

If the offsets quantified by q are significant, rewriting is suppressed and thus the mem-
ory burden effect is inevitable. If they are negligible, there is in principle the chance
of rewriting. Motivated by the latter possibility, let us investigate the possible speed of
rewriting-facilitated decay of de Sitter.

The scaling of the parameters in the model (3.16) that is appropriate to de Sitter is
completely analogous to the case of black holes and given in terms of the Hubble scale H
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Figure 4.2: Highly schematic plots (for even values of p) of the energy thresholds of the
memory modes in a theory with cosmological constant. Only around a single value of n0
gapless modes emerge.

and the de Sitter entropy S = M2
P/H

2. The Gibbons-Hawking radiation is characterized
by the temperature T ∼ H and thus we have ε0 = H. Since the number of memory modes
K scale as the entropy, we also have K ∼ S. The total energy contained in a de Sitter
patch is given by EdS ∼ SH, which motivates the choice Nc ∼ S. As for the free gaps of
the memory modes, εk, they can again be determined without committing to an explicit
microscopic description. The quantum numbers of the memory modes are constrained
by the de Sitter symmetry that must be present in the classical limit. In particular, the
presence of spherical symmetry allows for the same argument as in the case of black holes,
implying εm ∼

√
Sε0. Likewise, regarding the parameters C0, Cm, and ∆Nc, the arguments

of the case of black holes apply and therefore they are bounded in the same way in terms
of ε0 and S.

Therefore, the conclusions for the possibility of rewriting in de Sitter coincide with
those for black holes: The parameter p must be high enough to allow for an initial phase of
near-semiclassical evolution by delaying the onset of the memory burden. After a number
of ∼ S emissions, the memory burden sets in, and rewriting is too slow to effectively
circumvent it: The rate is slowed down by at least a factor of 1/S2. Alternatively, the
offsets in (4.19) parametrized by q are strong enough to eliminate rewriting altogether.

As with BHs, we can of course not exclude the onset of other effects of quantum
backreaction. However, what can be excluded is the particular case of an appearance of
a classical instability leading to a disintegration into gravitational lumps. In contrast to
BHs, this is not possible for de Sitter since the latter is tied to a source and furthermore
is not localized.

In any case, after tQ ∼ SH−1, Gibbons-Hawking radiation effectively stops. The growth
of the effective gaps of the memory modes at the same time enhances the rate of information
release via the coupling (4.4), manifesting in non-thermal particle creation. Both effects
combine to a deviation from the semiclassical evolution given by the thermal Gibbons-
Hawking radiation.
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4.4 Summary
The present study constitutes a quantitative analysis following ideas of ref. [28]. As has
been argued there (for more references, see the introduction II), systems with a high
memory capacity, which include systems with high entropy, at the microscopic level are
in a state around which it possesses near-gapless degrees of freedom. The corresponding
near-vanishing energy cost of storing quantum information in those modes gives rise to the
effective degeneracy of a high number of states. When such a system moves away from
that state, which in particular must happen in the course of a decay of the system, the
increasing energy cost of the memory results in a backreaction resisting such evolution.
This is the so-called memory burden effect [28], which is universal to such systems. In
particular, this effect has to be present in de Sitter and black holes as systems of maximal
entropy.

It has been argued [28] that in the absence of an efficient way of releasing the stored
quantum information to the environment, there is only one possible way of avoiding or
alleviating the memory burden effect after its onset. Namely, if the system can synchronize
the decay with rewriting the information onto another set of degrees of freedom, which
become gapless at a later stage of the decay. The aim of the present work has been
to quantify the possible speed of such rewriting-facilitated decay. To this end, we have
investigated a prototype system, which has been proposed in ref. [28] as the simplest
possible model that exhibits memory burden as well as the possibility of rewriting. Such a
model of course does not constitute a full microscopic description of the more complicated
systems like black holes or de Sitter. Correspondingly, we cannot capture or exclude the
onset of potential further effects of quantum backreaction in those systems. Instead, the
model promises to capture the universal aspects of the memory burden effect.

For the application to black holes and de Sitter, we have argued that for either case,
most of the model parameters are constrained by their appropriate scaling with the entropy
S. With those scalings, the results of our numerical time-evolution of the model reveal
that rewriting-powered decay is by far not fast enough to account for the initial stage of
near-semiclassical particle emission of black holes or de Sitter and thus the memory burden
effect in those systems has to set in with a delay. We have argued that the onset must
take place the latest after ∼ S emissions. For the time of the onset, tQ, our results imply a
drastic slowdown of the decay rate, as shown for example in (4.13). We have argued that
the increased gaps of the information-carrying modes also lead to a reduced suppression
of the release of the stored quantum information to the environment. Both the slowdown
and the information release constitute a deviation from the semiclassical thermal particle
creation.

Regarding an inflationary phase of the universe, we can be sure that the graceful exit has
taken place before tQ because the semiclassical description of de Sitter can accommodate
observations with good accuracy. However, if the duration of inflation has come close
enough to tQ, the beginning deviations from the semiclassical evolution will manifest in
detectable imprints in the primordial density fluctuations. A quantitative analysis requires
a separate investigation. Remarkably, the quantum information accessible in this way is
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one that cannot be erased by an inflationary evolution and thus constitutes a primordial
cosmic memory.

For black holes, our findings imply in particular that a black hole that has lost half of
its mass is not equivalent to a young black hole of the same mass. Instead, the information
stored constitutes a quantum hair, whose effect becomes strong at later stages of the
decay. We have pointed out that due to the breakdown of the classical description after
tQ, a plausible candidate for a competing strong effect of quantum backreaction is given
by the appearance of a classical instability, giving rise to the disintegration of the black
hole into nonlinear gravitational waves. As pointed out in sec. 2.6, such instability may
give rise to an additional instability in the form of non-gradual quantum decay. Both the
scenario of extreme slowdown of decay and that of destabilization constitute a dramatic
deviation from a self-similar evolution of a black hole. An effective stabilization due to a
slowdown has interesting consequences for the dark matter candidacy of primordial black
holes (PBHs). Small PBHs, that are commonly assumed to have evaporated by now or
earlier, would instead still be present. Thus, a commonly excluded parameter space would
be reopened. To demonstrate this, we have considered a specific numerical example for
which stabilized small PBHs appear to be able to constitute all of the dark matter.
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Appendix A

Appendix Part I

In this appendix, we are going to provide the details to the perturbative quantum calcula-
tions of part I.

A.1 General Relations

Combinatorics and factorization of amplitude
For definiteness, the following discussion is going to refer to the first example, i.e., the
example of section 2.2. We comment on the extension to the other cases where needed.

The rate is given in terms of the amplitude A as

Γnφ→2χ = 1
T

∫
dΠ2χ

∣∣∣Aδ4 (. . .) (2π)4
∣∣∣2 , (A.1)

where the integration is over the phase space of the two final particles. In the case where
several particles in either the initial or final state belong to the same species, the same
Wick contraction generally gives rise to several different diagrams. A simple example of
this would be the t− and u−channel of e+e− → γγ. The number of different diagrams
corresponds to the number of different distributions of the identical particles on the external
legs. These arise upon projecting a given Wick contraction on the initial and final state.
The number of diagrams may grow as strongly as factorially with the number of identical
particles n in an external state, as can be seen as follows. It is convenient to assume the
normalization [

â~k, â
†
~q

]
= (2π)3

V
δ3 (k − q) , (A.2)

for which number eigenstates have unit norm. Via canonical commutation of the field
operator this implies

φ̂+(x) =
∫ d3k

(2π)3

√
V

2ωk
e−ikxâ~k , φ̂ = φ̂+ + h.c. . (A.3)
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Projecting a given Wick contraction on an external state of n identical particles which all
are in a different 1-particle state involves the structure

n∏
j=1

φ̂+(xj)
n∏

m=1
â†~qm
|0〉 = n!

n∏
j=1

e−iqjxj√
2ωqj

V
|0〉 , (A.4)

where all the ~qm are supposed to be different. The factor of n! at the level of the unsquared
amplitude can be seen to emerge. In the case of the n particles being in the final state,
the phase space integration over n identical particles comes of course with an extra factor
of 1/n! at the level of the amplitude squared.

In the case of n identical particles in the initial state, it is possible that some of them
are in the same one-particle state or mode. In the extreme case of all n identical bosons
occupying the same mode, one has a reduction of the effective multiplicity by a factor of
n!−1/2, as can be seen from

n∏
j=1

φ̂+(xj)

(
â†~p
)n

√
n!
|0〉 = n!√

n!
e−ip

∑n

j=1 xj

(2ωpV )n/2
|0〉 . (A.5)

This is the relevant case for the process n → 2 with condensate kinematics. In that case,
all the diagrams are actually the same and there is literally just an effective multiplicity
of n!1/2 at the amplitude level. In the same way, the leading order diagram relevant to
the process of the second example (n/2, n/2 → 2) comes with an effective multiplicity of
(n/2)!2/2.

Due to the above, a convenient way of bookkeeping in the case we approximate A in
terms of only one specific shape of Wick contraction is the following:

A = W

v! · Si · Sf · d . (A.6)

Here, v is the number of vertices and the factor 1/v! is the expansion coefficient in the
Dyson series for the S-matrix operator at order v, W is the number of Wick contractions
giving rise to the same shape, Si and Sf are the effective multiplicities of the diagram
resulting from the mechanism of (A.5). d is the value of the diagram itself and can be
factorized as

d = N ·D · E , (A.7)
where N is the product of numerators of propagators, vertices, and polarizations of external
particles; D is the factor due to the denominators of propagators; E a factor due to the
external particles except for their polarizations. For the kinematics under consideration,

nm =
(
m2
χ + k2

)1/2
, (A.8)

the latter is always (also for the processes in examples 2 and 3) given by

E = (2mV )−n
2 (nmV )−1 . (A.9)
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Initial-state Bose enhancement
For the generic case, in which part of the initial N condensate bosons go unscattered,

N → (N − n) + 2 , (A.10)

there is an effective combinatoric enhancement. To see how it depends on N and n, we
observe

〈n′~p|
n∏
j=1

φ̂+(xj)|(n+ n′)~p〉 = 〈n′~p|
√

(n+ n′)!
n′!

n!
n!
e−ip

∑n

j=1 xj

(2ωpV )n/2
|n′~p〉

=
(
n+ n′

n

)1/2

〈0|
n∏
j=1

φ̂+(xj)|n~p〉 , (A.11)

where in the last equality, (A.5) has been used.
The same result is obtained at order g2n and with the kinematics (A.8) when including

into the PSI the final n′ = N − n φ-particles. In that case the additional n′!−1 from the
PSI is balanced by the additional factor of

√
n′! appearing at the amplitude level:

1
n′!

 n′∏
j=1

V

(2π)3

∫
d3qj

 |〈~q1, ~q2, . . . , ~qn′|n′〉|2 = 1 , (A.12)

as can be seen using (A.2) and (A.5).
Therefore, the rate for the process (2.8) in examples 1 and 3 is given by

Γ ≡ CNnΓn→2 , CNn =
(
N
n

)
. (A.13)

Similarly, for the process of example 2,

N

2 + N

2 →
N − n

2 + N − n
2 + 2 , (A.14)

the rate is given by

Γ ≡ CNnΓn
2 ,

n
2→2 , CNn =

(
N/2
n/2

)2

. (A.15)

Final-state Bose enhancement
In this appendix, we are going to derive (2.19), the effective Bose enhancement for the
process (2.8) that arises due to preexisting nonzero occupation of the created χ-modes.
This represents simply a generalization of derivation for the case of n = 2, which can be
found in ref. [104]. An analogous consideration goes through for the processes examples 2
and 3.
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Because of unbroken rotation invariance, one has for the expected number of created χs
n~k = n−~k = nk, where n~k ≡ 〈t0|â

†
~k
â~k|t0〉 and k ≡ |~k|. When taking into account processes

of χs going to φs, it is important to note that processes with φ-quanta in modes ~k 6= 0
have a lesser number of factors of N compared to g2. Therefore the rate of those processes
vanishes in the limit (2.1). For finite N , these processes are of course sources of quantum
breaking. For sufficiently large N , it is enough to consider only the processes of condensate
re-population. A given momentum k kinematically fixes the number n of φ-quanta either
annihilated or created. The time-evolved state |t〉 will in general feature entanglement as
well as a mean number of φs smaller than N . As an approximation for large N , we may
still take |t〉 as a number state |N, nk〉, i.e., a state with χ-occupation of nk for all |~k| = k,
as well as a number N of condensate φ-quanta. The possible further conversions in either
direction are then

Nφ+ 2nkχ→ (N − n)φ+ 2 (nk + 1)χ (A.16)
and

(N + n)φ+ 2 (nk − 1)χ← Nφ+ 2nkχ . (A.17)
The effective rate of χ-creation is then given by the difference

Γeff ≡ ṅk = Γ→ − Γ← = Γnφ→2χ(f→ − f←) , (A.18)

where the factors f→, f← are due to both initial-state and final-state combinatoric en-
hancement. Their dependence on N, n, nk is derived below. Importantly, Γ← results from
integrating over the two χ-momenta just as Γ→ and hence they have the same kinematic
factor

√
s− 4m2

χ:

Γnφ→2χ = 1
T

∫
dΠ2χ

∣∣∣Aδ4 (. . .) (2π)4
∣∣∣2 , (A.19)

wherem2
χ may include the condensate contribution in the time-dependent or time-averaged

form. The combinatorics related to the matrix elements are

n! · 1!2 · f→ ≡
∣∣∣〈(N − n)(nk + 1)2|b̂nâ†~−kâ

†
~+k|Nn

2
k〉
∣∣∣2 = N(N − 1) · · · (N − n+ 1)(nk + 1)2

= n! ·
(
N
n

)
· 1!2 ·

(
nk + 1

1

)2

(A.20)

and

n! · 1!2 · f← ≡
∣∣∣〈(N + n)(nk − 1)2|(b̂†)nâ ~−kâ ~+k|Nn

2
k〉
∣∣∣2 = (N + 1)(N + 2) · · · (N + n)n2

k

= n! ·
(
N + n
n

)
· 1!2 ·

(
nk
1

)2

. (A.21)

The factors n! · 1! · 1! are left explicit, because they are already included in Γnφ→2χ and
therefore not to be included in the fs. We therefore have

f→ − f← = (nk + 1)2
(
N
n

)
− n2

k

(
N + n
n

)
=
(
N
n

)(
n2
k − n2

k + 2nk + 1 +O
(
n2n2

k

N

))
.

(A.22)
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Thus, absorbing the initial state Bose enhancement into the definition Γ ≡
(
N
n

)
Γnφ→2χ,

one has due to the final state Bose enhancement

ṅk ∼ (1 + 2nk) Γ , (A.23)

and for nk & 1, one has a time-evolution approximately given by nk ∼ exp (2Γt).

Phase space integration
For a scalar condensate initial state from examples 1 and 2, there is no angular momentum
and the phase space integration is trivial. Including the final state factor of E, it gives

1
2!

(
V

(2π)3

∫
d3p

)2

(2EpV )−2(2π)4δ4 (. . .)V T = 1
16πV T

√
1− n2

0
n2 , (A.24)

where 1/2! is present only for the two final particles of the same species.

Uniform representation of result
For convenience, the result can be organized by strength of scaling with n in the following
way:

Γn→2 = KnA

√
1− n2

0
n2B

nnCn . (A.25)

A.2 Leading Order Diagram for Case 1
For calculation in the φ2χ2-case, the following relations apply. The first factor in (A.6)
contributes

W

v! = 2vv!
v! , v = n/2 . (A.26)

The effective multiplicities in (A.6) are

Si · Sf = n!
n!1/2 · 2! . (A.27)

The propagators contribute to d the factor

D =
n/2−1∏
l=1

(
q2
l −m2

χ

)−1
= (−1)n/2−1m2−n n2 2−n (n/2)!−2 , (A.28)

where qµl denote the the virtual momenta in the diagram. The vertices merely contribute

N =
(
g2

Nc

)v
. (A.29)
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Due to the absence of angular momentum of the initial state, the phase space integration
is trivial and is given by (A.24). The resulting tree-level rate for nφ → 2χ for Nc = 1 is
thus

Γnφ→2χ = 1
4πV m

4

√
1− n2

0
n2n

4
(

g2

4V m3

)n
n!

(n/2)!4 . (A.30)

A.3 Leading Order Diagram for Case 2
For calculation in the first scalar QED example, the following relations apply. The first
factor in (A.6) contributes again

W

v! = 2vv!
v! , v = n/2 . (A.31)

Due to the distinguishability of s+ and s−, the effective multiplicities in (A.6) are now

Si · Sf = (n/2)!2
(n/2)! · 2! . (A.32)

The denominators of propagators are the same as in the previous case and thus again

D =
n/2−1∏
l=1

(
q2
l −m2

χ

)−1
= (−1)n/2−1m2−n n2 2−n (n/2)!−2 , (A.33)

where qµl denote the the virtual momenta in the diagram. The product of vertices and
numerators of the propagators is different from the previous case only by the scalar product
of the external polarizations, ε∗µ(k, r)ε∗µ(k′, r′) ≡ ε∗2 such that

N = g2vε∗2 . (A.34)
The phase space integration is again given by (A.24) and thus the resulting tree-level rate
for n

2s
− + n

2s
+ → 2γ is

Γn
2 ,

n
2→2γ = 1

4πV m
4

√
1− n2

0
n2n

4
(

g2

4V m3

)n ∑
r,r′ |ε∗2|2

(n/2)!2 . (A.35)

The effective rate Γ = CNnΓn
2 ,

n
2→2γ is the same as in the scalar case despite the absence

of the factor n!
(n/2)!2 ∼ 2n in the above result. This factor is compensated by the different

relation of N and φ0 (due to the different normalization of the mass term).

A.4 Leading Order Diagrams for Case 3
The process is nγ → s+s−, where we consider all photons in the same linear polarization.
For such polarization, both the 3- and the 4-vertex are non-zero. Thus the leading order
amplitude can be split as

An =
n/2∑
j=0

δAj,n−j , (A.36)
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where δAj,n−j is based on the sum of diagrams with a number j of 4−vertices and 2n− 2j
of 3−vertices. In the following we are going to find δAn,0 and δA0,n, based on the diagrams
with all-4-vertices and all-3-vertices, respectively. The approximation of the rate based on
only δAn,0 is denoted as δΓ4 and that based on δA0,n as δΓ3.

Calculation of δA0,n

The number n could be odd but has to be even for comparison with δAn,0. In the factor-
ization (A.6), one has

δA0,n = W

v! ·
n!√
n!
· 1 · d0,n , (A.37)

where W = v! = n!. For the product of propagator denominators contributing to d0,n, one
has

D =
n−1∏
l=0

i

q2
l −m2

e

= in−1 (−1)n−1n2m2

m2nn!2 , (A.38)

where qµl = lmδµ0 − kµ is the virtual momentum in the propagator after the lth insertion of
a single external photon leg. Therefore, using the Stirling approximation for the factorial,

|D|2 ∼ m4

4π2n
2 e

4n

m4n
1
n4n . (A.39)

For the product of vertices N , one has

N =
n∏
l=1

(−ig) εµ(p)
(
qµl−1 + qµl

)
= (−ig)n (−2(−kz))n = (A.40)

= (−ig)n
2 cos θ

√
s

2

√
1− n2

0
n2

n (A.41)

and therefore
|N |2 =

(
1− n2

0
n2

)n
g2nm2nn2n (cos θ)2n . (A.42)

The trivial part of the phase space integration (PSI) over E2 and |(2π)4δ4(. . .)|2 gives
(δ4(0) = V T/(2π)4)

(2mV )−n
(

V

(2π)3

∫ d3k

2EkV

)2

(2π)4δ4 (. . .)V T (cos θ)2n = (A.43)

= (2mV )−n 1
8πV T

√
1− n2

0
n2

1
4π

∫
dΩ (cos θ)2n . (A.44)

The remaining cos θ-dependent part of the PSI is
1

4π

∫
dΩ (cos θ)2n = 1

4π2π 2
2n+ 1 = 1

2n (1 +O (1/n)) . (A.45)
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There is no symmetry factor, because the final particles are not identical. For bookkeeping
purposes, below, the contributions to the quantities K,A,B,C from the representation
(A.25) below are ordered by origin as contribution from combinatorics and factor 1/T ,
trivial cos θ-independent PSI, cos θ-dependent PSI, cos θ-independent part of |N |2, cos θ-
independent part of 1/|D|2:

B = 1 · 1
2mV · 1 · g

2m2n2

√
1− n2

0
n2

2

· e4

m4n4 (A.46)

Bn =
(
e4

2
g2

V m3n2

)n (
1− n2

0
n2

)n
(A.47)

A = 0 + 0− 1 + 0 + 2 = 1 (A.48)

K = 1
T
· 1

8πV T ·
1
2 · 1 ·

m4

4π2 = 1
64π3V m

4 (A.49)

Calculation of δAn,0

n is even. The contribution δAn,0 factorizes as:

δA4 = W

v! ·
n!√
n!
· 1 · dn,0 , (A.50)

where W = v! = (n/2)! The product of propagator denominators contributes to dn,0 the
factor

D =
n/2−1∏
l=0

i

q2
l −m2

e

= in/2−1 (−1)n/2−1n2m2

mn2n
(
n
2

)
!2

. (A.51)

Therefore, using the Stirling approximation for the factorial,

|D|2 ∼ m4

π2 n
2 e

2n

m2n
1
n2n . (A.52)

For N , one has

N =
n/2∏
l=1

(
−ig2

)
ε2(p) = in/2gn , |N |2 = g2n . (A.53)

For dn,0, there are no cos θ-dependent factors arising and the PSI is given by (A.24) with
only the symmetry factor absent. For comparability with δΓ3 in the bookkeeping below,
the cos θ-dependent part of the PSI will be separated as a trivial factor of 1. The below
ordering of the contributions to the quantities K,A,B,C from (A.25) is the same as in the
case of δΓ3:

B = 1 · 1
2mV · 1 · g

2 · e2

m2n2 , Bn =
(
e2

2
g2

V m3n2

)n
(A.54)

A = 0 + 0 + 0 + 0 + 2 = 2 (A.55)

K = 1
T
· 1

8πV T · 1 · 1 ·
m4

π2 = 1
8π3V m

4 (A.56)
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Conclusion
The result based on only δAn,0 is given in terms of the leading order rate for the 2-scalar
model as δΓ4 = 2−n−1Γnφ→2χ. The origin of these factors becomes clear when comparing
the derivations: The internal selectron does not give a factor 2 at each vertex, accounting
for a factor of 2−n. The distinguishability of the final particles accounts for the remaining
factor of 2!/2!2 = 1/2.

Let us now compare δΓ3 and δΓ4. Based on the above results, we have

δΓ3

δΓ4
= 1

8 ·
1
n
· e2n

(
1− n2

0
n2

)n
∼ 1

8
1
n
e2n


(
1 +O

(
n2

0
n

))
, n� n0(

2δ
n0

+O
(
δ2

n2
0

))n
, n = n0 + δ , δ � n0

.

(A.57)

One can see that δA0,n dominates far away from threshold, but δAn,0 dominates close to
the threshold. This corresponds to the fact that each 3-vertex results in a factor of the
final selectrons’ 3-momentum, which is much smaller than their mass me near threshold
but larger sufficiently far from threshold.

A.5 SBT-Diagram

Two scalars
There are a single cross coupling vertex g2χ2φ2/Nc and v− 1 quartic self coupling vertices
γφ4/Ns, where v = n/2.

The factorization (A.6) gives

δASBT = W

v! ·
n!√
n!
· 2! · dSBT , (A.58)

with
W

v! = v!
v!

4!v−1

3!n/3 2!, v = n/2 . (A.59)

The calculation of D in (A.7) follows ref. [58]. If l = 0, 1, . . . labels the virtual momenta
in the propagators after the lth branching, then

q2
l =

(n2m)2

32l . (A.60)

To make the calculation feasible, one can replace q2
l −m2 by fq2

l , where from
8
9q

2
l ≤ (q2

l −m2) < q2
l , ∀ l , (A.61)

it follows for the value of f that
8
9 < f < 1 . (A.62)



82 A. Appendix Part I

Then, with 2 · 3L = n, one has

D =
L−1∏
l=0

(q2
l −m2)−2·3l = 1

(fm2)n
2−1

33

22n
2 1
3 3

2n
. (A.63)

For N , one simply has

N = g2

Nc

L−1∏
l=0

(
γ

Ns

)2·3l

= g2

Nc

(
γ

Ns

)n
2−1

. (A.64)

The factors resulting from the phase space integration are given by (A.24). Overall, in the
representation of (A.25), one thus has

Bn =
(
B0γ

V m3

)n
, B0 = 4!/Ns

f · 2 · 3! 2
3 · 33

∼ 1
10Ns

(A.65)

A = 4 (A.66)

K = 1
T

1
16πV T

g4/N 2
c

(4!γ/Ns)2 (fm2)2 36

24 2!4 (A.67)

≡ V m4K0g
4

γ2 , K0 ∼ 101, Nc = 1, Ns = 4! . (A.68)

Scalar QED
For the case of photon creation from the scalar electron-positron condensate (sec. 2.3), the
internal legs branching out in the diagram belong to the complex scalar and therefore the
calculation is highly analogous to the one presented in the two-scalar case.

For the Proca-case (sec. 2.4), the loop induced 4-vertex of the two-scalar case (2.70)
has an analog arising from the loop-induced terms

g4 (AµAµ)2 ,
g4

m2
e

AµA
µFαβF

αβ , . . . . (A.69)

Further 4-vertices are all O (m−2
e ) or O (m−4

e ). For the kinematics in question, all virtual
momenta in the SBT-diagram satisfy q2

l � m2
e and thus the non-derivative term (AµAµ)2

dominates over the remaining terms.
The only remaining difference with the two-scalar case is then the numerator structure

of the photon propagator. However, this plays no role in the diagram at hand: The initial
photon polarizations are εµ ∝ δµz and project out all the orthogonal ones in the photon
propagator, in particular the ones εµ ∝ qµl ∝ δµ0 . Thus the numerator can be replaced by
ηαβ and the calculation reduces to the one of the χ2φ2-model.
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Appendix Part II

In this appendix, we document how we determined the parameter scalings cited in (3.31)
- (3.34).

To find the dependence of both the rewriting values of Cm and the associated rates
Γ on a given parameter X ∈ {Nc, εm, C0,∆Nc, K}, we have time evolved the system for
different choices of X, while keeping fixed the remaining parameters at the values stated
in (3.30). For each individual choice of X, the simulations have been repeated for many
values of the coupling, Cm ∈ [0, 1] (or a larger interval), with a sampling step δCm = 10−3

or smaller.
Among the values of Cm thus sampled we have defined those as rewriting values for

which the amplitude n0 exceeded by a factor of 1.2 or more the free amplitude of n0, i.e.,
that of the case of Cm = 0. In the case of neighboring rewriting values (i.e., values differing
only by the increment δCm), we only selected that with the highest value of Γ. Around
that value, since we have found the rate to depend on Cm rather sensitively, we have then
repeated simulations with the smaller sampling step of δCm = 5 · 10−5. The eventually
selected pair of (Cm,Γ) within such finer sampling was then determined as that with the
highest rate.

Below, we further explain our procedure and present the obtained data and fits.

Nc-Scaling

Fig. B.1 shows the data used to find the dependence of (Cm,Γ) on Nc. While varying Nc,
∆Nc has also been varied with Nc/∆Nc is fixed. To fit the rewriting values, the function
fC(Nc) = a

(
Nc

22

)−b
has been used. The fit result is a ≈ 0.275 and b ≈ 0.911. To fit the

rates, the function fΓ(Nc) = A
(
Nc

22

)−B
has been used. The fit result is A ≈ 4.46 · 10−5 and

B ≈ 1.14.
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Figure B.1: Data and fits for the rewriting values of Cm and the rates Γ as function of Nc.
∆Nc has been varied to keep Nc/∆Nc fixed.
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Figure B.2: Data and fit for the rewriting values of Cm and the rates Γ as function of εm.
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Figure B.3: Data and fits for the rewriting values of Cm and the rates Γ as function of C0.

εm-Scaling

Fig. B.2 shows the data used to find the dependence of (Cm,Γ) on εm. To fit the rewriting
values, the function fC(εm) = aεm has been used. The fit result is a ≈ 0.300. The
dependence of the rate Γ on εm can be seen to be negligible compared to its dependence
on other parameters.

C0-Scaling

Fig. B.3 shows the data used to find the dependence of (Cm,Γ) on C0. The dependence
of the rewriting values on C0 can be observed to be negligible compared to its dependence
on other parameters. To fit the rates, the function fΓ(C0) = ACB

0 has been used. The fit
result is A ≈ 2.85 · 10−2 and B ≈ 1.38.

∆Nc-Scaling

Fig. B.4 shows the data used to find the dependence of (Cm,Γ) on ∆Nc. To fit the rewriting
values, the function fC(∆Nc) = a

(
∆Nc

12

)b
has been used. The fit result is a ≈ 0.300 and

b ≈ 0.207. 1 To fit the rates, the function fΓ(∆Nc) = A
(
1−B∆Nc

20

)
has been used. The

fit result is A ≈ 1.38 · 10−4 and B ≈ 1.07.

1A second scaling behavior with b ≈ −0.130 can also be observed. Since ∆Nc/Nc → 0 in the limit of a
large system, this scaling would be even less favorable for rewriting and we consequently do not consider
it.
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Figure B.4: Data and fits for the rewriting values of Cm and the rates Γ as function of
∆Nc.

K-Scaling
The exponential growth of the size of the Hilbert space with the number of modes is
a limiting factor for the numerical investigation of the K-dependence. For this reason,
we have been restricted to choices of up to K = 8. While varying K, we have also varied
Nm = K/2 in order to exclude effects due to a relative change of occupation of the memory
modes. For K = 2, the system appears to behave in a non-generic way, motivating us to
exclude that K-choice. This leaves as available choices K = 4, 6, 8.

A further challenge is due to the fact that the duration of simulations for K = 8 is
already rather long. Performing refined scans around rewriting values in order to precisely
determine the rate is thus not feasible, especially since a large number of rewriting values
exists for K = 8. As a solution, we have restricted the selection of rewriting values to
those with at least one neighboring rewriting value (i.e., separated by only the increment
δCm = 10−3). For those, the rates have been determined through a refined scan. The same
procedure has been applied to the cases K = 4 and K = 6 as well. Fig. 3.4 shows the
rewriting values thus selected and the associated rates.



List of Figures

2.1 Diagrammatic representation of the leading order terms in perturbation the-
ory contributing to the amplitude of the process (2.8). This diagram as well
as the following ones have been created using TikZ-Feynman [48]. . . . . . 14

2.2 One of the terms contributing to the amplitude of the process (2.55). . . . 22
2.3 Schematic representation of regime boundaries: Above the grey diagonal

line, non-perturbative corrections are negligible (see (2.67)). Additional
regimes for finite g2 (and the example of negligible mχ): To the left of the
blue vertical line, loop corrections to the potential are negligible (see (2.69));
Below the blue horizontal line, contributions of loop-induced diagrams are
negligible (see (2.74)). The overlap of coloured areas is the resulting regime
in which the calculation is perturbative in both g2N and g2, i.e., both non-
perturbative and quantum corrections to the leading order approximation
are negligible. This plot and all following ones have been created using
Mathematica [29]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 “Symmetrically branching tree” (SBT) diagram: Diagram contributing to
the amplitude of the process nφ→ 2χ based on only a single cross-coupling
vertex and otherwise only the quartic self-coupling of φ (with the most
symmetric shape possible). . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Momentum dependent 4-φ-vertex induced by a χ-loop with momenta as
occurring in the SBT diagram (fig. 2.4) . . . . . . . . . . . . . . . . . . . 26

3.1 Plots of the time evolution of n0 for Nc = 25 and C0 = ε0/
√
Nc = 1/5. Figs.

3.1a and 3.1b follow from (3.9). Fig. 3.1c is an approximate solution of the
system (3.12). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Time evolution of the initial state (3.29) for different values of Cm. Oscilla-
tions on a timescale of order 1 cannot be resolved graphically any more since
we show very long timescales. n0 is the expectation value of the occupation
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