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ABSTRACT 

Brain biomarkers are patterns that relate brain structure or function to cognitive 

or clinical characteristics. Their successful identification can help in the diagnosis, 

prevention, monitoring, and treatment of neurological and psychiatric disorders. 

Abnormalities in brain structure and function have been reported in a wide range of 

neurological and psychiatric disorders, and many features common to these disorders 

are encoded in dynamic functional large-scale networks. Thus, electroencephalography 

(EEG), a non-invasive, widely-used, and cost-effective method able to capture brain 

dynamics, is a promising tool for discovering brain biomarkers. 

In Project 1, we explored a particular case of biomarker discovery in chronic pain. 

We investigated the temporal dynamics of brain activity using microstate analysis in a 

large resting state EEG dataset, including 101 patients with chronic pain and 89 healthy 

participants. We applied this novel method to chronic pain, a highly prevalent and 

severely disabling neurological condition. As chronic pain has repeatedly been associated 

with changes in brain function and incorrect processing of information, we expected to 

see differences between patients with chronic pain and healthy participants in 

microstates’ topographies or temporal characteristics. Our results indicated a decreased 

presence of microstate D in patients with chronic pain during resting state with eyes 

closed. Subgroup analysis replicated this finding in patients with chronic back pain, but 

patients with chronic widespread pain presented no differences in microstates’ 

characteristics. Thus, if future studies validate these findings, microstates’ characteristics 

could turn into diagnostic or subtyping biomarkers of chronic pain. 

In Project 2, we developed DISCOVER-EEG, an open, fully automated EEG pipeline 

to preprocess, analyze, and visualize resting state EEG data. In recent years, notable 

efforts have been made to increase the transparency of EEG research. They have yielded 

the creation of a standardized data structure for the efficient organization, sharing, and 

reuse of data (BIDS-EEG) and the development of automatic EEG preprocessing pipelines 

for specific populations, settings, and study designs. DISCOVER-EEG builds on and 

extends these advances by extracting and visualizing physiologically relevant EEG 

features (including oscillatory power, connectivity, and network characteristics) for 



 

 

 

 

5 

biomarker identification. It builds upon and combines two open-source and widely used 

Matlab toolboxes (EEGLAB and FieldTrip) and follows the most recent guidelines and 

standards for reproducible EEG research. We tested it in two large and openly available 

datasets: the LEMON dataset, including 213 healthy participants, and the TD-BRAIN 

dataset, including 1274 participants with different psychiatric conditions. We 

demonstrate the robustness of the pipeline across datasets with different characteristics 

and its reliability in capturing well-known EEG effects, such as the reduction of alpha 

power during eyes open. Finally, we provide an example analysis in the LEMON dataset 

that could inspire biomarkers of healthy aging. 

During both projects, we followed open science practices and directed our 

research toward transparency and collaboration. Therefore, this thesis’ publications, 

data, and code are openly available. In conclusion, this work adds to the understanding 

of the pathophysiology of chronic pain, facilitates and advances the analysis of large EEG 

datasets, and promotes open and reproducible research on brain function. 
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1. INTRODUCTION 

Brain disorders, including neurological and mental health disorders, are highly 

prevalent and the leading cause of disability worldwide, with depression, anxiety, and 

pain states being among the top causes of lasting disability (Vos et al., 2020). They impose 

a massive burden on patients, healthcare systems, and society, and their global cost is 

estimated in trillions (Patel et al., 2018). Still, the causes and mechanisms of these 

conditions are poorly understood, and treatments are often unsatisfactory, with small 

therapeutic responses (Leichsenring et al., 2022). Thus, further understanding of brain 

disorders to improve patient care is urgently needed. 

Translational neuroscience, i.e., the field that aims to translate basic neuroscience 

knowledge into clinical applications, plays a vital role in understanding and treating brain 

disorders. Evidence from the last decades has shown that many features common to 

neurological and mental health disorders, such as pain, anhedonia, and negative 

emotions, are encoded in dynamic large-scale brain networks (de Lange et al., 2019; 

Fornito et al., 2015). Thus, characterizing these disorders as “brain network disorders” 

could help in their understanding and treatment (Scangos et al., 2023). In this regard, 

neuroimaging modalities such as functional Magnetic Resonance Imaging (fMRI), 

Positron Emission Tomography (PET), and Electroencephalography (EEG) are essential 

to capture non-invasively alterations of brain networks.  

An increasingly rising area of translational neuroscience is the development of 

brain biomarkers (Figure 1), i.e., patterns that relate structural or functional brain 

features to cognitive or clinical characteristics (FDA-NIH Biomarker Working Group, 

2016; Woo et al., 2017). Correlating brain features to clinical outcomes, such as common 

symptoms across disorders or cognitive and affective components, has the potential to 

redefine diagnostic categories based on brain traits and even propose new treatments 

accordingly (Abi-Dargham and Horga, 2016; Woo et al., 2017). Consequently, biomarkers 

can contribute to the development of precision medicine by individualizing treatments 

for mental health disorders (Abi-Dargham and Horga, 2016) and provide new targets for 

new, non-invasive therapies, such as neuromodulation (Ploner et al., 2023).  
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Figure 1. Illustrating the relevance of brain-based biomarkers across different disease stages and 

types of disorders. Left panel: types of biomarkers according to the BEST (FDA/NIH) categories (FDA-NIH 

Biomarker Working Group, 2016). The outer circular arrow and the graded colors of the circular sectors 

indicate the different stages of the disease course, including the pre-disease stage. Right panel: top 10 level-

3 causes of disability worldwide, as accounted by the years lived with disability (YLDs) in the 2019 Global 

Burden of Disease (GBD) study (Vos et al., 2020). Blue circular sectors indicate the contribution of diseases 

with prominent sensory, cognitive, and/or affective symptoms. The outer blue circular line indicates the 

disorders that can be benefited from brain-based biomarkers. The panel was modified with permission 

from Ploner et al. (2023), © Springer Nature. 

In the following sections, we will review the biomarker framework in translational 

neuroscience and its associated challenges (section 1.1.), we will examine possible 

targets for brain biomarkers, especially measures capturing brain dysfunction during the 

resting state (section 1.2.), we will explore the advantages and challenges of 

electroencephalography for biomarker discovery (section 1.3.), and we will introduce 

chronic pain as an example of a brain disorder to which the biomarker framework can be 

applied (section 1.4). Finally, the aims and the outline of this doctoral thesis will be 

detailed (section 1.5.). 
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1.1. BRAIN BIOMARKERS IN TRANSLATIONAL NEUROSCIENCE 

Brain biomarkers can assess the risk of developing a disorder, predict disease 

progression or therapeutic responses, identify individuals that will benefit from 

treatment, and provide objective outcomes in clinical practice (Davis et al., 2020; FDA-

NIH Biomarker Working Group, 2016). Despite the unquestionable utility of biomarkers, 

identifying, developing, and validating them is a long and costly process involving many 

stakeholders, such as patients, researchers, medical doctors, the life science industry, and 

governments. In the next paragraphs, we zoom in on the first stages of biomarker creation 

and its associated challenges: generalizability, explainability, and scalability of 

biomarkers (Woo et al., 2017). 

First, large and representative datasets are needed to create biomarkers that 

generalize to different populations. Such datasets can only be compiled through 

institutional collaboration and the establishment of research consortia committed to data 

aggregation and sharing (Poldrack and Gorgolewski, 2014). An essential first step for 

collaboration was the creation of the Brain Imaging Data Structure (BIDS) standard for 

organizing, describing, and sharing neuroimaging data (Gorgolewski et al., 2016). Still, 

publicly sharing standardized data has not yet been widely adopted (Paret et al., 2022), 

and there is room for improvement in the creation of comprehensive datasets, including 

ethnicities underrepresented in science (Ricard et al., 2023).  

Second, reproducible and transparent methods are required to generate robust and 

explainable biomarkers. Neuroimaging data is characterized by its high dimensionality, 

which allows multiple ways to analyze a dataset (Botvinik-Nezer et al., 2020). This 

‘analytical flexibility’ (Parsons et al., 2022) can lead to a lack of reproducibility when only 

a written analysis description is provided. Thus, creating open and transparent 

workflows and publicly sharing the code and models used to generate biomarker 

candidates would help to mitigate this problem (Niso et al., 2022). Moreover, the trust in 

a biomarker is also influenced by the delivered measure’s complexity and potential 

failure points. Therefore, biomarkers that are simple to understand, validate, and 

interpret are more likely to be successfully translated into clinical practice (Davis et al., 

2020; Woo et al., 2017).  
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Third, easily deployable technologies are desired to render scalable biomarkers. 

Ideally, biomarkers would be developed and validated in real-world scenarios, where 

subtle pathological features of neurological and psychiatric disease might appear (Abi-

Dargham and Horga, 2016). Therefore, safe, wearable, low-cost neurotechnologies are 

desirable for developing ecologically valid biomarkers (Stangl et al., 2023). The 

improvement of technologies widely established in clinical practice, such as EEG, now 

enables the fast and easy recording of neuronal data with mobile dry-electrode systems 

with comparable data quality to conventional wet-electrode systems (Kam et al., 2019). 

These technological developments promise improvements in developing scalable brain 

biomarkers. 

From the challenges mentioned above, it is evident that transparent, collaborative 

efforts are needed to obtain clinically valid brain biomarkers. Hence, biomarker 

discovery, development, and validation in translational neuroscience should be 

addressed from an open science perspective (Allen and Mehler, 2019; Munafo et al., 2017; 

Niso et al., 2022). 

 

1.2. TARGETS FOR BIOMARKER DISCOVERY: BRAIN DYSFUNCTION 

DURING RESTING STATE 

Structural and functional changes in the brain have been reported across a wide 

range of neurological and psychiatric conditions (Fornito et al., 2015; Goodkind et al., 

2015; Uhlhaas and Singer, 2012). Recent evidence has revealed that many features 

common across brain disorders are encoded in functional large-scale brain networks (de 

Lange et al., 2019). These functional networks are intrinsic to the brain and can therefore 

be captured during resting state, i.e., when the subject does not perform any explicit task 

(Fox and Raichle, 2007). In accordance, abnormalities of brain function during resting 

state have been observed in neurodegenerative disorders (Hohenfeld et al., 2018), 

schizophrenia (Baker et al., 2019), major depressive disorder (Drysdale et al., 2017), and 

chronic pain (Kucyi and Davis, 2015) among others. Therefore, measures capturing 

network disruptions during resting state could turn into successful biomarkers of brain 

disorders. In the next paragraphs, we provide recent examples of biomarker candidates 
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based on such features, specifically functional connectivity measures and network 

measures derived from graph theory. 

Changes in functional connectivity and its dynamics have been repeatedly 

described in brain disorders during resting state (Fornito et al., 2015). For example, using 

fMRI, Drysdale et al. (2017) managed to stratify patients with major depressive disorder 

into four distinct biotypes based on their functional connectivity profiles. Biotypes 

reflected different symptomatology and predictive responsiveness to transcranial 

magnetic stimulation therapy, making them potential stratification biomarkers for 

treatment. In a different study, Lee et al. (2021) discovered a dynamic functional 

connectivity pattern with fMRI that could predict ongoing pain ratings in an experimental 

pain model. When the marker was translated to patients with chronic pain, it could also 

predict their ongoing pain ratings, showing potential as a pain monitoring biomarker. 

Functional connectivity, in consequence, can reveal patterns in brain networks able to 

subtype patients based on neuronal characteristics, predict treatment response, or 

monitor a condition. 

Brain networks can be further characterized with complex network measures 

derived from graph theory by treating brain regions as nodes, and connections between 

nodes as edges in the graph (Rubinov and Sporns, 2010). Graph theory measures can 

reduce the information encoded in sparse connectivity matrices and help in their 

interpretation, e.g., by analyzing the segregation and integration of information in the 

network. For example, changes in functional network architecture have been described 

in schizophrenia and young adults at risk of psychosis, making changes in network 

structure promising risk biomarkers for schizophrenia (Bassett et al., 2018). 

Furthermore, common disruptions in network structure have been observed across 

twelve different psychiatric and neurological conditions (de Lange et al., 2019). These 

disruptions, related to global network communication and integration, could reveal 

common mechanisms underlying brain dysfunction and have the potential to redefine 

clinical categories based on brain activity. 
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1.3. ELECTROENCEPHALOGRAPHY FOR BIOMARKER DISCOVERY 

Electroencephalography is a non-invasive neuroimaging method that captures the 

electrical activity generated primarily by pyramidal neurons in the cerebral cortex 

(Nunez and Srinivasan, 2006). Thus, oscillations are the primary subject of study of EEG. 

Compared to other neuroimaging modalities, such as PET and fMRI, EEG is a direct 

measure of neuronal activity and has a high temporal resolution, allowing the record of 

neuronal activity in the millisecond range at the cost of low spatial resolution. 

Magnetoencephalography combines some of the benefits of fMRI, PET, and EEG, as it can 

capture signals with high spatial and temporal resolution. However, compared to EEG, it 

is an expensive method, and its portability is still under development (Stangl et al., 2023). 

In brief, EEG is a well-established method that is safe, mobile, cost-efficient, and widely 

used in clinical and research contexts. All these characteristics, together with its potential 

to acquire ecologically valid signals, make EEG a particularly attractive tool for biomarker 

discovery in translational neuroscience. 

 Although EEG presents many advantages, it also has some pitfalls. For example, 

data acquisition is laborious, and traditional preprocessing and analysis of EEG data 

involve manual steps that are time-consuming, subjective, and dependent on expert 

knowledge. This results in EEG datasets often having small sample sizes. The replicability 

of EEG studies is aggravated by the multiple possibilities of correctly preprocessing and 

analyzing the data (Pavlov et al., 2021). To minimize such reproducibility issues, the 

Organization of Human Brain Mapping established general recommendations for data 

acquisition, analysis, reporting, and sharing of MEEG data and analysis (Pernet et al., 

2020a). Additionally, much progress has been achieved in automatizing and speeding up 

EEG preprocessing (Klug et al., 2022; Pedroni et al., 2019; Pernet et al., 2020b; Pion-

Tonachini et al., 2019).  

Considering the advantages mentioned above and the new developments that aim 

to overcome some of the EEG challenges, studies proposing resting state EEG biomarkers 

have started to be published. One of the earliest and most controversial EEG biomarkers 

was the ratio between power at theta/beta frequencies as a diagnostic marker of 

Attention-Deficit/Hyperactivity Disorder (Arns et al., 2013; Kiiski et al., 2020). This 

approach, as well as the majority of EEG literature of the last 80 years, relies on the static 



 

 

 

 

14 

interpretation of the EEG power spectrum into broad frequency bands termed delta, 

theta, alpha, beta, and gamma (Newson and Thiagarajan, 2019). Frequency band analysis 

aggregates brain features across time, overseeing subtle temporal structures that may 

play a significant role in the coordination of functional networks (Baker et al., 2014). 

Small sample sizes, overlooking brain dynamics, and a high risk of bias are some of the 

reasons why EEG-based biomarkers have shown mild consensus so far (Newson and 

Thiagarajan, 2019). However, new studies using larger samples and based on dynamic 

functional measures of brain activity hold great promise for the discovery of EEG-based 

biomarkers. For example, Zhang et al. (2021) stratified patients with major depression 

and post-traumatic stress disorder based on their EEG connectivity profiles and 

predicted their clinical outcome to a variety of treatments. 

Exploiting the high temporal precision of EEG to assess brain dynamics is, 

consequently, a promising approach for generating EEG biomarkers. New methods 

exploring the temporal dynamics of large-scale brain networks, such as EEG microstate 

analysis (Khanna et al., 2015; Michel and Koenig, 2018), have been popularized. 

Microstate analysis describes EEG resting state activity as a sequence of a limited number 

of voltage topographies, named microstates, that remain stable for hundreds of 

milliseconds. Microstate topographies can be reliably identified across participants, and 

their temporal characteristics (e.g., the average duration of a microstate or its 

occurrence) can be assessed in patients and healthy participants. Alterations in the 

temporal dynamics of microstates have been observed in schizophrenia (da Cruz et al., 

2020), major depression disorder (Murphy et al., 2020), and Lewy body dementia 

(Schumacher et al., 2019). Therefore, they could represent predictive, monitoring, or 

diagnostic biomarkers of neurological and psychiatric diseases. 

In conclusion, EEG can potentially unravel brain biomarkers in neuropsychiatric 

disorders due to its wide availability and its ability to capture functional brain networks 

at a high temporal resolution.  
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1.4. BRAIN BIOMARKERS IN CHRONIC PAIN 

Chronic pain is a disease that affects around 30% of people worldwide and 

severely decreases the quality of life of those affected from it (Cohen et al., 2021). Despite 

its enormous societal and economic impact, its pathophysiology is not yet well 

understood, and its treatment is insufficient (Turk et al., 2011). Improvement of pain 

management via non-addictive pharmacological therapeutics and non-pharmacological 

interventions is urgently needed (Cohen et al., 2021). Hence, it is essential to develop 

translational tools such as validated biomarkers that can help to identify individuals at 

risk of developing chronic pain after injury, improve participant selection in clinical trials 

and identify objective outcomes to quantify the response of new therapies (Cohen et al., 

2021; Davis et al., 2020; Tracey et al., 2019). 

In contrast to acute pain, which has a protective function and is essential for 

healing and survival, chronic pain is a disease on its own characterized by persisting pain 

and accompanying sensory, cognitive, and affective abnormalities (Treede et al., 2019). 

As such, structural and functional alterations of the peripheral and central nervous 

systems have been observed in chronic pain (Baliki and Apkarian, 2015; Kuner and Flor, 

2017). In the last years, converging lines of evidence have demonstrated structural and 

functional reorganization of the brain during chronic pain across spatial scales and 

species (Baliki and Apkarian, 2015; Kuner and Kuner, 2021). In particular, the prefrontal, 

sensory, motor, and cingulate cortices and subcortical areas, including the amygdala, 

hippocampus, and striatal areas, have been implicated in chronic pain (Kuner and Flor, 

2017). 

Importantly, brain areas and circuits involved in acute pain overlap but are not 

the same as those implicated in chronic pain (Baliki et al., 2006). Biomarkers of acute pain 

might have thus difficulties translating into clinical practice (Mouraux and Iannetti, 

2018). As an example, a solid and specific signature of acute pain described with fMRI, 

the Neurologic Pain Signature (Wager et al., 2013), is thought to capture the nociceptive 

component of pain but not the emotional and cognitive aspects of chronic pain (Lopez-

Sola et al., 2017). Biomarkers developed directly in patients with chronic pain, or at least 

in sustained pain models, might have better chances of being translated to clinical 

practice; see Lee et al. (2021) for a representative example. 
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As pain is an integrative phenomenon that emerges from dynamic functional 

networks (Kucyi and Davis, 2015; Ploner et al., 2017), using brain oscillations as a 

framework to discover pain biomarkers seems a promising approach. Diagnostic EEG-

based biomarkers of chronic pain present, in general, higher theta and beta power in 

patients with chronic pain compared to healthy participants (Zebhauser et al., 2022). 

Nonetheless, the risk of bias is high in many studies and domains. As mentioned earlier 

in section 1.3., focusing on dynamic brain measures might hold more promise for 

developing chronic pain biomarkers than traditional frequency band analysis. For 

instance, Ta Dinh et al. (2019) found no differences in static frequency bands between 

chronic pain patients and healthy participants. In contrast, they observed changes in 

functional connectivity and network architecture in patients with chronic pain. 

In summary, predictive, stratifying, and monitoring biomarkers are particularly 

needed to improve the understanding and management of chronic pain. The study of 

brain oscillations in clinical populations might unravel such a biomarker. However, high-

quality studies with sufficient statistical power and exhaustive validation are needed 

before obtaining a clinical biomarker of chronic pain. 

 

1.5. AIMS AND OUTLINE 

The primary goal of this thesis was to investigate non-invasive biomarkers of 

chronic pain with electroencephalography. During the process of finding such a 

biomarker, we identified the need to develop reliable and robust tools for EEG biomarker 

discovery. Therefore, a second goal was set: developing an automatic and transparent 

tool that could facilitate the aggregation, preprocessing, and analysis of resting state EEG 

data in a wide range of neuropsychiatric disorders.  

This thesis is organized in chronological order, which intends to reflect the 

challenges found during the process of finding non-invasive biomarkers in chronic pain 

and our consequent learning of new methods and perspectives. For that reason, we part 

from a particular case of biomarker discovery in chronic pain using EEG microstate 

analysis (project 1), to the creation of an automatic EEG pipeline to preprocess, visualize, 

and extract physiologically meaningful brain features that could turn into potential 

biomarkers (project 2).  
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In Project 1, we investigated the temporal dynamics of brain activity in a large 

cohort of patients with chronic pain and healthy participants using microstate analysis 

on resting state EEG. We applied this novel method to chronic pain, a highly prevalent 

and severely disabling neurological condition. As chronic pain has repeatedly been 

associated with changes in brain function and incorrect processing of information, we 

expected to see differences between microstate topographies or temporal characteristics 

between patients with chronic pain and healthy participants. Differences in microstates 

properties could turn into diagnostic or subtyping biomarkers of chronic pain. 

In Project 2, we developed DISCOVER-EEG, an open, fully automated pipeline to 

enable fast and easy preprocessing, analysis, and visualization of resting state EEG data. 

Much progress has been made recently to speed up data collection and preprocessing. 

However, no tool could preprocess and extract physiologically meaningful EEG features 

(including oscillatory power, connectivity, and network characteristics) automatically 

following the most recent EEG guidelines and standards for use in biomarker 

identification. We approached this endeavor with an open science mindset to facilitate 

the aggregation, reuse, and analysis of large EEG datasets and promote transparent and 

reproducible research on brain function.  

Finally, a common goal of both projects was to expand our knowledge of open 

science practices and direct our research toward transparency and collaboration.  

Therefore, all data and code used in this thesis are openly available. Anonymized raw 

resting state EEG data, behavioral and clinical outcomes, data derivatives, and related 

code of Project 1 are available at https://osf.io/srpbg/. The code of the DISCOVER-EEG 

pipeline, as well as script examples demonstrating its use and related data of project 2, 

are available at https://osf.io/mru42/. All raw EEG data are structured according to the 

BIDS-EEG standard (Pernet et al., 2019) to facilitate their reusability. 

  

https://osf.io/srpbg/
https://osf.io/mru42/
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2. PROJECT 1. EEG MICROSTATE ANALYSIS IN 

PATIENTS WITH CHRONIC PAIN 

This section includes the research article ‘Dynamics of brain function in patients with 

chronic pain assessed by microstate analysis of resting-state electroencephalography’, 

published under an open access license (CC BY-NC-ND) in the journal PAIN in December 

2021 (May et al., 2021). 

Authors 

Elisabeth S. May*, Cristina Gil Ávila*, Son Ta Dinh, Henrik Heitmann, Vanessa D. Hohn, 

Moritz M. Nickel, Laura Tiemann, Thomas R. Tölle, Markus Ploner 

Contributions 

Conceptualization: CGA, ESM, and MP; Methodology: CGA, ESM, and MP; Software: CGA 

and ESM; Validation: CGA and ESM; Formal analysis: CGA and ESM; Investigation: CGA, 

ESM, STD, HH, VDH, MMN, and LT; Data curation: CGA and ESM; Visualization: CGA, ESM, 

and MP; Writing – original draft: CGA, ESM, and MP;  Writing – review and editing: CGA, 

ESM, STD, HH, VDH, MMN, LT, TRT, and MP; Supervision: MP; Project administration: MP; 

Funding acquisition: MP  

 

* Elisabeth S. May and Cristina Gil Ávila contributed equally to this work and shared the 

first authorship of the article. 



Research Paper

Dynamics of brain function in patients with chronic
pain assessed by microstate analysis of resting-
state electroencephalography
Elisabeth S. Maya,b, Cristina Gil Ávilaa,b, Son Ta Dinha,b, Henrik Heitmanna,b,c, Vanessa D. Hohna,b,
Moritz M. Nickela,b, Laura Tiemanna,b, Thomas R. Töllea,c, Markus Plonera,b,c,*

Abstract
Chronic pain is a highly prevalent and severely disabling disease that is associated with substantial changes of brain function. Such
changeshavemostly beenobservedwhenanalyzing staticmeasuresof resting-state brain activity.However, brain activity varies over time,
and it is increasingly recognized that the temporal dynamics of brain activity provide behaviorally relevant information in different
neuropsychiatric disorders.Here,we therefore investigatedwhether the temporal dynamics of brain function are altered in chronic pain. To
this end, we applied microstate analysis to eyes-open and eyes-closed resting-state electroencephalography data of 101 patients
suffering fromchronic pain and 88 age- and sex-matched healthy controls.Microstate analysis describes electroencephalography activity
as a sequenceof a limited number of topographies termedmicrostates that remain stable for tens ofmilliseconds.Our results revealed that
sequences of 5 microstates, labelled with the letters A to E, consistently described resting-state brain activity in both groups in the eyes-
closed condition. Bayesian analysis of the temporal characteristicsofmicrostates revealed thatmicrostateDhas a less predominant role in
patients than in controls. As microstate D has previously been related to attentional networks and functions, these abnormalities might
relate to dysfunctional attentional processes in chronic pain. Subgroup analyses replicatedmicrostate D changes in patients with chronic
back pain, while patients with chronic widespread pain did not show microstates alterations. Together, these findings add to the
understanding of the pathophysiology of chronic pain and point to changes of brain dynamics specific to certain types of chronic pain.

Keywords: Chronic pain, Dynamics, EEG, Microstate analysis, Resting-state

1. Introduction

Chronic pain is a highly disabling disease that affects 20% to 30%of
the adult population.7,24 Its pathophysiology is not fully understood,
and treatment is often insufficient,60 imposing a tremendous burden
on patients, health care systems, and society.46 Converging lines of
evidence have shown that chronic pain is associated with extensive
changes of brain structure and function.2,29 Understanding these
changes promises fundamental insights into the underlying

pathophysiology and might eventually help to establish a much
sought-after biomarker of chronic pain.14,58

Brain function in chronic pain has mostly been assessed using
functional magnetic resonance imaging (fMRI)2 and electroenceph-
alography (EEG)/magnetoencephalography.44 Most studies have
analyzed static measures of brain activity during the resting state,
usually by aggregating a certain feature of brain function across
several minutes. However, brain activity varies over time, and it is
increasingly recognized that these temporal dynamics provide
behaviorally and clinically relevant information that complements
staticmeasures.19,45 Correspondingly, it has been proposed that the
dynamics of brain activity and connectivity critically shape the
perception of pain.28 By assessing brain activity and connectivity at
ultra-low frequencies below 0.1 Hz, recent fMRI studies have
provided support for this concept in chronic pain.3,5,10,59 However,
the temporal dynamics of chronic pain–related brain activity at
frequencieshigher than1Hzhavenot beenconsistently exploredyet.

Electroencephalography and magnetoencephalography are
well suited to study such dynamic changes of brain activity at
higher frequencies. One of the best-established methods in this
field is microstate analysis (see Refs. 25,34 for reviews) that has
revealed that temporal changes of EEG activity do not occur
randomly. Instead, EEG activity switches between a limited
number of so-called microstates. During a microstate, the EEG
topography remains stable for tens of milliseconds before
abruptly transitioning to another microstate. Electroencephalog-
raphy resting-state activity is usually well-described with 4 to 6
microstates, which are remarkably similar across participants.
Thus, microstate analysis quantifies resting-state EEG recordings
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as sequences of a limited number of microstates. The temporal
characteristics of these microstates carry important information
about mental processes.6,34 Moreover, abnormalities of temporal
microstate characteristics have been observed in different
neuropsychiatric disorders.12,38,48 During the writing of this
article, a first microstate study in patients suffering from chronic
pain was published. The results showed lower occurrence and
time coverage of microstate C in patients with chronic wide-
spread pain.20 However, these findings need to be replicated and
extended to other chronic pain conditions.

Here, we investigated whether the temporal dynamics of brain
activity are changed in a large cohort of patients suffering from
chronic pain. To this end, we applied microstate analysis to EEG
resting-state recordings of 101 patients suffering from different
types of chronic pain and 88 matched healthy control partic-
ipants. Thereby, the study aimed to further the understanding of
the pathophysiology of chronic pain and to potentially contribute
to the development of a brain-based biomarker of chronic pain.

2. Materials and methods

2.1. Participants

The current study represents a re-analysis of previously published
data obtained at the Technical University of Munich for the large-
scale study of brain dysfunction in chronic pain.54 One hundred
one patients (69 women; age5 58.16 13.6 years [mean6 SD])
suffering fromdifferent types of chronic pain and 88 age- and sex-
matched healthy controls (60 women, age 5 57.5 6 14.2 years)
participated in the study. Inclusion criteria for patients were a
clinical diagnosis of chronic pain, with pain lasting at least 6
months, and a minimum reported average pain intensity of at
least 4 of 10 during the past 4 weeks (05 no pain and 105worst
imaginable pain). Exclusion criteria for patients were acute
changes of the pain condition during the past 3 months (eg,
due to recent injuries or surgeries), major neurological diseases
(eg, epilepsy, stroke, or dementia), major psychiatric diseases
aside from depression, and severe general diseases. Patients
taking benzodiazepines were also excluded. Other medication
was not restricted and was maintained. In total, 47 patients with
chronic back pain, 30 patients with chronic widespread pain, 6
patients with joint pain, and 18 patients with neuropathic pain
were included in the study. Exclusion criteria for healthy
participants were a medical history of pain lasting more than 6
months, having any pain on the day of testing, surgery, or acute
injury during the past 3 months, and any neurological or
psychiatric diseases. All participants provided written informed
consent. The study was approved by the ethics committee of the
Medical Faculty of the Technical University of Munich and
conducted according to the relevant guidelines and regulations.

Questionnaires were used to assess pain characteristics and
comorbidities immediately before the EEG recording. All patients
completed the following questionnaires: Pain characteristics were
assessed by the short-form McGill Pain Questionnaire (SF-MPQ),33

depression by the Beck Depression Inventory II (BDI-II),4 and anxiety
by the State-Trait Anxiety Inventory (STAI).52 The medication was
quantified for all patients using the Medication Quantification Scale
(MQS),21 which quantifies a patient’s pain medication profile in a
single numerical value. Eighty-one patients additionally completed
the painDETECT questionnaire18 to assess the neuropathic pain
component, and 47 patients completed the Pain Disability Index
(PDI)16 and the Veteran’s RAND 12-Item Health Survey (VR-12)50 to
assess pain disability and quality of life, respectively. All healthy
control participants completed BDI-II and STAI questionnaires to

assess potential comorbidities. Detailed characteristics of the
participants can be found in Table 1.

2.2. Recordings

Brain activity was recorded using EEG during the resting state.
Participants were instructed to stay in a wakeful and relaxed state
without performing any particular task. For most participants, two
5-minute blocks of continuous resting-state data were recorded,
one with eyes closed and the other with eyes open. During the
eyes-open condition, participants were asked to rest their gaze
on a centrally presented visual fixation cross. The temporal order
of the blocks was counterbalanced. During the recording,
participants were comfortably seated and listened to white noise
played through headphones to mask any ambient noise. For 5
patients with chronic widespread pain and 7 healthy controls,
only one 5-minute block with eyes closed was recorded. Thus,
final sample sizes were 101 patients and 88 healthy controls for
the eyes-closed condition and 96 patients and 81 healthy
controls for the eyes-open condition.

Data were recorded with 64 electrodes and a BrainAmp MR
plus amplifier (Brain Products, Munich, Germany). The electrodes
included all electrodes from the International 10-20 system and
the additional electrodes Fpz, CPz, POz, Oz, Iz, AF3/4, F5/6,
FC1/2/3/4/5/6, FT7/8/9/10, C1/2/5/6, CP1/2/3/4/5/6, TP7/8/9/
10, P1/2/5/6/7/8, and PO3/4/7/8/9/10 (Easycap, Herrsching,
Germany). Two electrodes were placed below the outer canthus
of each eye to monitor eye movements. All EEG electrodes were
referenced to electrode FCz and grounded at electrode AFz. For
81 patients and 69 healthy controls, muscle activity was
simultaneously recorded with 2 bipolar electromyography
(EMG) electrode montages and a BrainAmp ExG MR amplifier
(Brain Products, Munich, Germany). Electromyography elec-
trodes were placed on the right masseter and neck (semispinalis
capitis and splenius capitis) muscles.13 The EMG ground
electrode was placed at vertebra C2. Data were obtained at a
sampling frequency of 1000 Hz, with 0.1-mV resolution, and were
band-pass filtered online between 0.016 and 250 Hz. Imped-
ances were kept below 20 kV.

2.3. Preprocessing

Preprocessing was performed with the Brain Vision Analyzer
software (Brain Products, Munich, Germany) on the appended
data from the eyes-open and the eyes-closed conditions. For
artifact identification, a high pass filter at 1 Hz and a notch filter at
50 Hz were applied to remove low frequency drifts and electrical
line noise, respectively. Independent component analysis was
performed.23 Components representing eye movements and
muscle artifacts were identified based on their time courses and
topographies and subtracted from the raw unfiltered EEG time
series.61 Signal jumps higher than 6 100 mV and their adjacent
time intervals (200 ms before and after the jump) were marked for
rejection. Subsequently, all data sets were visually inspected, and
remaining bad intervals were marked for rejection. Finally, data
were re-referenced to the average reference, and the reference
electrode FCz was added to the electrode array.

2.4. Microstate analysis

Microstate analysis was performed using the free academic
software Cartool version 3.8,9 MATLAB (MathWorks, Natick,
MA), and the MATLAB toolbox Fieldtrip.41 Analyses were
performed separately for the eyes-open and eyes-closed
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conditions. Each 5-minute recording was first band-pass filtered
between 1 and 40 Hz and downsampled to 125 Hz, in line with
previous studies.8,11,56 Subsequently, intervals marked as bad
during preprocessing were rejected, andmicrostate analysis was
performed using all remaining clean segments concatenated. An
overview of the microstate analysis pipeline can be found in
Figure 1.

2.4.1. Definition of microstates

We defined microstates through a well-established 2-step
clustering procedure using a modified k-means algorithm.42 In
line with previous studies,12,38,48,55 this was performed sepa-
rately for each group and condition.

The first step consisted of a k-means clustering performed at
the individual level. For each participant, EEG topographies at
global field power (GFP) peaks were clustered, yielding a variable
number of individual-level topographies. The GFP is a measure of
the instantaneous strength of EEG activity measured over the
whole scalp and mathematically defined as the SD of the signals
of all electrodes.39 EEG topographies were clustered at GFP
maxima since they represent the time points of highest signal-to-
noise ratio.39,42

The clustering algorithm requires an a priori definition of k,
which is the number of clusters into which the data will be
grouped. To select the optimal number of clusters, we performed
the clustering with different numbers of k5 1 to 12 initial clusters,
following Cartool default settings for resting-state data. First, an
initial number of k topographies was randomly selected from all
GFP-peak topographies of the individual EEG time series.
Second, the selected topographies were spatially correlated with
the remaining topographies at GFP peaks, ignoring polarity. The
spatial correlation is a scalar value computed as the Pearson
correlation coefficient between all matched electrodes of 2
different topographies.39 Third, the topographies at GFP peaks

were assigned to the cluster with the highest spatial correlation. If
the highest correlation was smaller than 0.5 in absolute value (ie,
in the range of20.5 to 0.5), the topography was not assigned to
any cluster. This threshold represents a trade-off between
rejecting too many and too few topographies during labelling
and was chosen in line with previous studies6,11,63 and the
Cartool default settings. Fourth, the center of each cluster was
computed, resulting in k new “average” cluster topographies. The
new cluster topographies were then again correlated with the
topographies at GFP peaks, closing the loop. The algorithm
stoppedwhen the variance of the clusters converged to a limit. To
overcome the random selection of the initial cluster topographies,
the clustering was repeated 100 times per set of k clusters and
the set explaining most variance of the data was selected. The
optimal number of clusters was identified for each individual
separately according to a meta-criterion with 7 independent
optimization criteria (for more details refer to Ref. 6). This
procedure resulted in 4 to 8 topographies for each participant
and condition.

In the second step, a second k-means clustering was
performed at group level, clustering the concatenated individual
topographies obtained in the previous step. For the second
clustering, an initial number of k 5 4 to 15 clusters and 200 k-
means initializations were set. Again, the polarity was ignored,
and a maximum absolute Pearson correlation coefficient higher
than 0.5 was needed for cluster assignment. The same meta-
criterion as before was used to identify the optimal number of
clusters on a group level.

This 2-step clustering is a nondeterministic algorithm and can
thus yield varying results when repeated. To assess the reliability
of our findings, we repeated the entire procedure for the definition
of group microstates 5 times for both the eyes-closed and the
eyes-open conditions. The identified optimal numbers of group
microstates were then compared across reruns. For the eyes-
closed condition, the optimal number of group microstates

Table 1

Demographic data and questionnaire results.

Patients with chronic pain (mean 6 SD) Healthy controls (mean 6 SD)

Number 101 88

Sex (m/f) 32/69 28/60

Age (y) 58.2 6 13.5 57.5 6 14.3

BDI 15.8 6 8.9 3.5 6 4.5

STAI—state 39.5 6 10.6 30.6 6 6.1

STAI—trait 44.0 6 11.2 30.9 6 7.1

SF-MPQ total pain score 27.1 6 9.4 —

Current pain intensity (0-10) 5.2 6 1.9 —

Avg. pain intensity in the past 4 wk (0-10) 5.6 6 1.6 —

Pain duration (mo) 121.8 6 114.4 —

PDQ 17.4 6 6.5 —

PDI 27.4 6 14.2 —

VR-12 PCS 31.8 6 7.8 —

VR-12 MCS 46.4 6 11.9 —

MQS 6.8 6 8.1 —

Please note that data for avg. pain intensity in the past 4 weeks, pain duration, and PDQ were only available for a subset of 81 patients. Data from PDI, VR-12 PCS, and VR-12 MCS were only available for a subset of 47 patients.

For most patients (n5 81), current pain intensity ratings were obtained from the painDETECT questionnaire, which uses a combination of numerical rating scale anchored at 0 (no pain) and 10 (max pain) with a color gradient.

For n5 20 patients with chronic widespread pain, current pain intensity ratings were obtained from the SF-MPQ, which uses a visual analogue scale anchored at 0 (no pain) and 100 (worst imaginable pain). These ratings were

divided by 10 to match rating scales across questionnaires.

Avg. pain intensity, average pain intensity in the past 4 weeks; BDI, Beck Depression Inventory; MQS, medication quantification scale; PDI, pain disability index; PDQ, painDETECT questionnaire; STAI, State-Trait Anxiety

Inventory; SF-MPQ, Short-formMcGill Pain Questionnaire; VAS, visual analogue scale; VR-12 PCS, Veteran’s RAND 12-Item Physical Component Summary; VR-12MCS, Veteran’s RAND 12-ItemMental Component Summary.
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showed considerable stability (eyes-closed; number of micro-
states for 5 reruns for patients/controls: 5, 5, 5, 4, 5/5, 5, 5, 5, 5).
For the eyes-open condition, by contrast, the optimal number of
group microstates strongly varied across reruns, especially for
patients, and could not reliably be estimated (eyes-open; number
of microstates for 5 reruns for patients/controls: 5, 6, 4, 6, 5/5, 5,
5, 4, 5). See Supplementary Figure 1 for a depiction of group-level
microstates for all reruns (available at http://links.lww.com/PAIN/
B351). In light of this lack of reliability in the eyes-open condition,
all further analyses were restricted to the eyes-closed condition
(see below for a discussion of potential reasons for this
discrepancy).

Groupmicrostates of a representative rerun of the eyes-closed
condition are shown in Figure 2A. Results of this rerun will be
exemplarily shown throughout the article. To show the reliability of
the findings, analyses of the other 4 eyes-closed reruns are also
summarized in the article and their detailed results are shown in
the supplementary material (available at http://links.lww.com/
PAIN/B351). Topographies were visually inspected and com-
pared with topographies reported in the literature. For both
groups, the first 4 topographies closely resembled the 4 well-
known “canonical” microstates A to D reported previously and
were labeled accordingly.25,27,34 The topography of the fifth
microstate closely resembled a microstate that has been
consistently reported in more recent studies,6,11,63 since an
increasing number of studies is now using a data-driven
approach to define the optimal number of microstates. We
labeled it with the letter E. Throughout the article, these 5 group-
level topographies are referred to as microstates A to E.
Similarities and differences of microstate topographies between
groups were assessed by calculating spatial correlations and
topographic analyses of variance (TANOVAs) for all microstates (A
to E), respectively. Topographic analysis of variance is a
nonparametric randomization test based on the global map
dissimilarity of individual topographies.39 The global map
dissimilarity is a measure of the difference between 2 topogra-
phies directly related to the spatial correlation.39 For each
microstate, global map dissimilarity was computed between the
microstate topographies of the patient and control groups using
Cartool.9 To obtain a P-value, this dissimilarity was compared
with a distribution of dissimilarities, which was generated by
randomly shuffling individual topographies between patient and
controls and re-computing the dissimilarity between the center
topographies of the randomized groups. The process was
repeated 5000 times. This comparison resulted in a P-value per
microstate, which was given by the proportion of permutations in
which the dissimilarity was smaller than the dissimilarity originally
observed in the data. Resulting P-values were corrected for
multiple comparisons across the 5 microstate classes using the
resampling-based false discovery rate (FDR).62 Adjusted P-
values are reported.

2.4.2. Temporal microstate characteristics

Next, we determined the temporal characteristics of the 5
microstates for both groups. To this end, individual EEG time
series were construed as time series of microstates through a
“fitting procedure,” that is, a microstate was assigned to every
time point. For each participant, the EEG topographies of all time
points were spatially correlated to the microstate topographies of
the participant’s group (patients/controls) using absolute Pear-
son correlation coefficients. Next, each EEG time point was
assigned to a microstate (A to E). To ensure a certain continuity in
the microstate time series, the relabeling was performed based

Figure 1.Microstate analysis. For each participant, the global field power (GFP) is
calculated and topographies at GFP peaks are selected for individual clustering.
Topographies at GFP peaks are clustered with a modified k-means clustering,
leading to a variable number of individual cluster topographies per individual. Next,
individual cluster topographies are concatenated and clustered on a group level.
This consistently resulted in 5 different group cluster topographies for the eyes-
closed condition, labelled as microstates A to E. Microstate topographies are then
fitted back to the individual EEG data, resulting in a labelled EEG time series in
which each time point is associated to a microstate. From the labelled EEG time
series, the temporal characteristics of microstates are derived. This analysis was
performed separately per group (patients with chronic pain and healthy controls).
EEG, electroencephalography.
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Figure 2. Microstate topographies and their temporal characteristics for all patients with chronic pain (n 5 101) compared with healthy controls (n 5 88) in the
eyes-closed condition (representative rerun). (A) Microstate topographies were defined for the entire mixed chronic pain group and healthy controls separately.
Microstates were labelled with the letters A to E according to previous literature.34 (B) Temporal characteristics. Mean duration, time coverage, frequency of
occurrence, and global explained variance of each microstate were calculated for each participant. Raincloud plots1 show unmirrored violin plots displaying the
probability density function of the data, boxplots, and individual data points. Boxplots depict the sample median as well as first (Q1) and third quartiles (Q3).
Whiskers extend from Q1 to the smallest value within Q1 2 1.5 3 interquartile range (IQR) and from Q3 to the largest values within Q3 1 1.5 3 IQR. BF, Bayes
factor in favor of the alternative hypothesis.
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on 2 criteria: (1) the correlation should be high, and (2) most
surrounding time points should belong to the same microstate.9

To fulfill this compromise between goodness of fit and
smoothness, standard temporal smoothing (window half size 5
5 and strength (Besag factor) 5 10) was applied.42,55 No label
was assigned if the highest (absolute) spatial correlation was
smaller than 0.5. On average, the percentage of unlabeled time
points was smaller than 0.1%and no differences existed between
groups (representative rerun:meanpatients5 0.080%,meancontrols
5 0.095%, t 5 0.630, P 5 0.530, BF10 5 0.190, median d 5
0.085, 95% credible interval 5 [20.190 to 0.362]; two-sided
independent-samples t tests).

Based on the time series of microstates, 4 measures were
calculated to quantify the temporal characteristics of each
microstate: mean duration, time coverage, frequency of occur-
rence, and global explained variance. The mean duration is the
average time (in milliseconds) for which a microstate persists
before transitioning to a different microstate. The time coverage is
the percentage of total time that a microstate is present. The
frequency of occurrence is the number of times that a microstate
recurs per second. The global explained variance is the
percentage of global variance that is explained by every
microstate.

Temporal characteristics ofmicrostateswere determined for all
5 reruns of the eyes-closed condition. As outlined above, the
meta-criterion indicated a number of 5 microstates for both
groups for all but 1 rerun, for which it indicated 4 optimal group-
level microstates for patients. To enable a comparison of
temporal characteristics between groups for this rerun, temporal
characteristics were determined for the 5-microstate solution of
the microstate analysis. Results of the representative rerun can
be found in Figure 2B, results for all other reruns in Supplemen-
tary Table 1 (available at http://links.lww.com/PAIN/B351).

Finally, we investigated the microstate sequence by examining
the transition probabilities from each microstate to the others for
the representative rerun.31,40,55 To this end, we computed the
matrix of transition counts among all microstates for each
participant and divided it by the overall count of transitions.

2.5. Statistical analysis

Group differences of temporal microstate measures (mean
duration, time coverage, frequency of occurrence, and global
explained variance) and transition probabilities were analyzed in
JASP version 0.13.122 using 2-sided independent-samples t
tests in both frequentist and Bayesian frameworks. For the
frequentist approach, significance level was set to 0.05. For P-
values of temporal measures, resampling-based FDR correc-
tion62 was performed in MATLAB (MathWorks, Natick, MA)
across the 5 microstates and the 4 different temporal measures,
resulting in a correction for 20 statistical tests per rerun. Adjusted
P-values62 are reported throughout the article. For the transition
matrix of the representative rerun, FDR correction was performed
across all 20 transitions. For the Bayesian analysis, default priors
(Cauchy distributions with a scale parameter r 5 0.707) were
used. In addition to t-values and FDR-adjusted P-values, results
are reported using the two-tailed Bayes factor BF10. Effect size
estimates for the BF10 are reported as the median of the posterior
d distribution together with its 95% credibility interval.

Finally, we investigated relationships between temporal
microstate measures and clinical parameters for the representa-
tive rerun using JASP version 0.13.1.22 To this end, temporal
microstate measures of microstate D (mean duration, time
coverage, frequency of occurrence, and global explained

variance) were selected for a correlation analysis, since they
consistently showed significant differences between patients and
controls across all reruns. Pearson correlations were calculated
between the microstate measures and major clinical parameters
that were available for all patients (current pain intensity, SF-MPQ
total pain score, depression [BDI], andmedication [MQS]). Please
note that for most patients (n5 81), current pain intensity ratings
were obtained from the painDETECT questionnaire, which uses a
combination of a numerical rating scale anchored at 0 (no pain)
and 10 (max pain) with a color gradient. Twenty patients with
chronic widespread pain did not complete painDETECT ques-
tionnaires. For these patients, current pain intensity ratings were
obtained from the SF-MPQ, which uses a visual analogue scale
anchored at 0 (no pain) and 100 (worst imaginable). These ratings
were divided by 10 to match rating scales across questionnaires.
Correlations were again calculated in both frequentist and
Bayesian frameworks. In the Bayesian analysis, default priors
(stretched beta priors with width 5 1) were used. Results are
reported using the Pearson correlation coefficient, its FDR-
adjusted P-value, its Bayes factor (BF10), and the 95% credibility
interval of the correlation coefficient. FDR correction ofP-values62

was performed inMATLAB (MathWorks, Natick,MA) across all 16
performed correlations.

2.6. Subgroup analyses

Finally, we investigated whether the results could be replicated
within particular patient subgroups of our mixed sample. To this
end, we repeated the definition of microstates and the in-
vestigation of their temporal characteristics in the eyes-closed
condition for the 2 largest subgroups: patients with chronic back
pain and patients with chronic widespread pain. These 2 groups
were chosen based on the sample size.With amedium effect size
Cohen’s d of 0.5 and a type 1 error of 0.05, a post hoc power
analysis revealed a power of 0.78 and 0.65 for 2-sided
independent-samples t tests comparing our healthy control
group (n 5 88) with the chronic back pain (n 5 47) and chronic
widespread pain (n 5 30) patient groups, respectively. For
patients with neuropathic pain (n 5 18) and joint pain (n 5 6),
power was even lower (0.48 and 0.29, respectively). Thus,
microstate analysis was repeated for patients with chronic back
pain and chronic widespread pain only. Individual topographies of
each patient subgroupwere selected for a new second clustering
to obtain subgroup-specific microstate topographies. Subgroup-
specific temporal characteristics were obtained through back-
fitting and were statistically compared with the temporal
characteristics of the healthy control group for each patient
group as described above. Again, 5 reruns of these subgroup
analyses were performed to assess the reliability of findings. For
each subgroup, a representative rerun is shown in the article, and
details of additional reruns are presented in the supplementary
material (available at http://links.lww.com/PAIN/B351).

2.7. Data and code availability

Electroencephalography data in BIDS format43 as well as scripts
for statistical analyses are openly available at https://osf.io/
srpbg/.

3. Results

The current study investigated whether the dynamics of resting-
state brain activity are altered in patients suffering from chronic
pain. We performed microstate analysis, which describes the
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time course of EEG activity as a sequence of a limited number of
short stable topographies termed microstates. We applied
microstate analysis to resting-state EEG activity and compared
temporal characteristics of microstates between a large cohort of
patients suffering from chronic pain and age- and sex-matched
healthy control participants.

3.1. Definition of microstates A to E in patients and controls

We identified microstates using a standard two-step k-means
clustering procedure.42 Five repetitions of the entire analysis
showed reliable microstate definitions for the eyes-closed
condition but very variable microstates for the eyes-open
condition (Supplementary Figure 1, available at http://links.lww.
com/PAIN/B351). Thus, all further analyses were restricted to the
eyes-closed condition. For this condition, the clustering pro-
cedure consistently revealed 5 different microstates in both
groups in 4 of 5 reruns. In a single rerun, only 4 microstates were
found to be optimal for patients. Throughout the article, results
and further analyses of a representative rerun with 5 microstates
for both groups are presented. Results of additional reruns are
presented in the supplementary material (available at http://links.
lww.com/PAIN/B351).

In accordance with previous studies,6,8,11,26,27,34,35,63 the
microstates were labeled as microstates A to E for both
groups. Topographies for the representative rerun are
depicted in Figure 2A. Together, these 5 microstates
explained 81.05% and 81.08% of the variance across
individuals for patients with chronic pain and healthy controls,
respectively, which is in good accordance with previous
studies.12,34,49 The high similarity of topographies between
groups was confirmed by high spatial correlations (microstate
A: r5 0.99, B: r5 1.00, C: r5 0.96, D: 0.93, and E: r5 0.92). In
addition, TANOVAs revealed subtle group differences

between topographies hardly visible to the naked eye for
microstates C to E (microstate A: P5 0.534, B: P, 0.091, C: P
, 0.001, D: P , 0.001, and E: P , 0.001).

Taken together, the clustering procedures for both groups
resulted in 5 microstate topographies, which were largely similar
between groups.

3.2. Temporal characteristics of microstates in patients
and controls

To investigate the dynamics of brain activity, we next analyzed
whether the temporal characteristics of microstates differed
between patients and healthy controls. To this end, 5microstates
were backfitted to the individual EEG time series by correlating
microstate topographies with the EEG topographies at every time
point for all reruns of the eyes-closed condition. This allowed to
assign each time point to a microstate and, thus, to construe the
EEG time series as time series of microstates.

We specifically calculated the mean duration, time coverage,
frequency of occurrence, and global explained variance of each
microstate. This was performed for each patient and each healthy
control participant. We next compared these temporal microstate
characteristics between groups for each rerun. Results are
depicted in Figure 2B and Table 2 for the representative rerun.
Results for all other reruns can be found in Supplementary Table 1
(available at http://links.lww.com/PAIN/B351). Across reruns,
microstate analysis consistently revealed strong evidence for
changes in microstate D characteristics in patients compared
with healthy participants. We found strong to very strong
evidence for a lower time coverage, a lower frequency of
occurrence, and lower global explained variance of microstate
D in patients compared with controls in all 5 reruns (Table 2,
Supplementary Table 1; all BF10. 10, all FDR-adjusted P-values
, 0.011). In addition, results showed moderate to very strong

Table 2

Comparisons of temporalmicrostatemeasures for all patientswith chronic pain (n5 101) comparedwith healthy controls (n5 88) in the

eyes-closed condition (representative rerun).

Microstate Measure t P BF10 Median effect size (d) 95% CI

A Mean dur. 21.947 0.132 0.919 20.265 20.547 to 0.012

Time cov. 21.586 0.167 0.510 20.216 20.496 to 0.061

Freq. of occ. 20.809 0.471 0.215 20.110 20.387 to 0.166

GEV 21.635 0.167 0.548 20.222 20.503 to 0.055

B Mean dur. 0.491 0.656 0.177 0.067 20.209 to 0.343

Time cov. 1.583 0.167 0.507 0.215 20.062 to 0.495

Freq. of occ. 2.316 0.072 1.892 0.317 0.037 to 0.600

GEV 0.801 0.471 0.214 0.109 20.167 to 0.386

C Mean dur. 21.356 0.230 0.373 20.184 20.463 to 0.092

Time cov. 21.777 0.154 0.686 20.242 20.523 to 0.035

Freq. of occ. 20.285 0.775 0.164 20.039 20.315 to 0.237

GEV 22.441 0.062 2.482 20.334 20.618 to 0.054

D Mean dur. 3.087 0.011 12.530 0.425 0.142 to 0.711

Time cov. 4.010 <0.001 >100 0.556 0.268 to 0.847

Freq. of occ. 3.803 0.001 >100 0.526 0.240 to 0.816

GEV 5.220 <0.001 >100 0.730 0.436 to 1.027

E Mean dur. 21.575 0.167 0.501 20.214 20.494 to 0.063

Time cov. 21.856 0.144 0.783 20.253 20.534 to 0.025

Freq. of occ. 21.333 0.230 0.362 20.181 20.460 to 0.095

GEV 22.239 0.075 1.611 20.306 20.589 to 20.027

Results of 2-sided independent-samples t-tests (frequentist and Bayesian approach) comparing the entire mixed chronic pain group with the healthy control group. P-values are FDR-adjusted. Mentioned in bold P, 0.05 and

BF10. 3, indicating at least moderate evidence for the alternative hypothesis, and in italics BF10, 1/3, indicating at least moderate evidence for the null hypothesis. Median effect sizes (d) and their respective 95% credible

interval (CI) are reported.

BF10, Bayes factor in favor of the alternative hypothesis; Freq. of occ., frequency of occurrence; GEV, global explained variance; Mean dur., mean duration; Time cov., time coverage.
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evidence for a shorter mean duration of microstate D in patients in
4 of 5 reruns (Table 2; Supplementary Table 1, available at http://
links.lww.com/PAIN/B351; BF10 . 7, FDR-adjusted P-values ,
0.016). In the fifth rerun, evidence was inconclusive (Supplemen-
tary Table 1, available at http://links.lww.com/PAIN/B351; rerun
4: BF10 5 2.211, FDR-adjusted P-value5 0.089). Regarding the
other microstates, a single rerun showed evidence for changes in
the global explained variance of microstate C, while 2 reruns
showed evidence for alterations in microstate E characteristics
(Supplementary Table 1 for details, available at http://links.lww.
com/PAIN/B351). However, these changes could not be
replicated consistently.

For the representative rerun, we further investigatedwhether the
sequences of microstates differed between groups. To this end,
transition probabilities fromeachmicrostate to all othermicrostates
were calculated. Mean transition probabilities for both groups as
well as statistical results are presented in Table 3. In line with the
analysis of temporal characteristics, we found moderate to very
strong evidence for a lower transition probability from microstates
A, B, and E to microstate D in patients compared with controls
(Table 3; A to D: P5 0.004, BF105 43; B to D: P, 0.001, BF10.
100; and E to D: P5 0.046, BF105 5; FDR-adjusted P-values). In
addition, healthy controls were more likely to transition from
microstate D to microstate B than patients (Table 3; P 5 0.003,
BF10 5 74; FDR-adjusted P-value). Evidence for differences of all
other transition probabilities was either inconclusive or against a
group difference (see Table 3 for details).

In summary, the analysis of the temporal dynamics of
microstates revealed consistent evidence for a less pre-
dominant role of microstate D in eyes-closed resting-state
brain activity of patients with chronic pain. Evidence for
changes of the temporal characteristics of microstates other
than D was inconsistent and could not be replicated across
reruns of the analysis.

3.3. Relationships between temporal microstate
characteristics and clinical characteristics

Having observed consistent evidence for changes of microstate
D temporal characteristics in patients with chronic pain, we
explored whether microstate D temporal measures were
significantly related to clinical characteristics. To this end, we
performed correlation analyses between the temporal measures
of microstate D and clinical parameters of the patients. We
specifically related microstate D characteristics obtained in the
representative rerun to the current pain intensity, the SF-MPQ
total pain score, as well as measures of depression (BDI) and
medication (MQS). Frequentist statistics did not reveal significant
correlations (Table 4; all P . 0.05, FDR-adjusted). This was
confirmed using Bayesian statistics, which consistently provided
moderate evidence for an absence of relations (Table 4; 1/10 ,
BF10 , 1/3). Thus, the results did not provide evidence for
relationships between microstate D temporal measures and
clinical characteristics.

Table 3

Comparisons of transition probabilities between microstates for all patients with chronic pain (n5 101) compared with healthy

controls (n 5 88) in the eyes-closed condition (representative rerun).

Mean trans. prob. patients with chronic pain Mean trans. prob. HC t P BF10 Median effect size (d) 95% CI

From A to B 0.229 0.251 1.335 0.305 0.363 0.181 20.095 to 0.460

From A to C 0.394 0.340 22.273 0.071 1.727 20.311 20.594 to 0.031

From A to D 0.190 0.258 3.501 0.004 42.514 0.483 0.198 to 0.772

From A to E 0.183 0.147 22.269 0.071 1.713 20.310 20.593 to 20.031

From B to A 0.244 0.218 21.524 0.238 0.466 20.207 20.487 to 0.069

From B to C 0.385 0.360 21.080 0.414 0.273 20.146 20.425 to 0.129

From B to D 0.187 0.273 4.548 <0.001 >100 0.633 0.342 to 0.927

From B to E 0.181 0.146 22.046 0.105 1.102 20.279 20.561 to 20.001

From C to A 0.265 0.216 22.470 0.071 2.647 20.338 20.622 to 20.058

From C to B 0.244 0.264 1.178 0.375 0.302 0.160 20.116 to 0.438

From C to D 0.277 0.339 2.391 0.071 2.223 0.327 0.047 to 0.611

From C to E 0.211 0.178 21.857 0.147 0.785 20.253 20.534 to 0.025

From D to A 0.192 0.191 20.052 1 0.159 20.007 20.283 to 0.268

From D to B 0.177 0.230 3.673 0.003 73.594 0.508 0.222 to 0.797

From D to C 0.412 0.400 20.498 0.860 0.178 20.067 20.344 to 0.208

From D to E 0.205 0.175 21.513 0.238 0.459 20.206 20.485 to 0.071

From E to A 0.206 0.177 22.250 0.071 1.647 20.307 20.590 to 20.028

From E to B 0.195 0.198 0.250 1 0.163 0.034 20.242 to 0.310

From E to C 0.374 0.342 21.508 0.238 0.456 20.205 20.485 to 0.072

From E to D 0.222 0.280 2.709 0.046 4.648 0.371 0.090 to 0.656

Results of 2-sided independent-samples t tests (frequentist and Bayesian approach) comparing the entire mixed chronic pain group with the healthy control group. P-values are FDR-adjusted. Mentioned in bold P, 0.05 and

BF10. 3, indicating at least moderate evidence for the alternative hypothesis, and in italics BF10, 1/3, indicating at least moderate evidence for the null hypothesis. Median effect sizes (d) and their respective 95% credible

interval (CI) are reported.

BF10, Bayes factor in favor of the alternative hypothesis; HC, healthy controls; Mean trans. prob., mean transition probability.
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3.4. Subgroup analyses

Since the patient group comprised patients with different types of
chronic pain, we finally investigated whether our main finding of a
less predominant role of microstate D in chronic pain could be
replicated in different subgroups of patients. To this end, we
repeated the definition ofmicrostates and the investigation of their
temporal characteristics in the eyes-closed condition for the 2
largest subgroups of patients, that is, patients suffering from
chronic back pain and chronic widespread pain. For patients with
chronic back pain, 5 reruns consistently revealed 5 microstates.
For patients with chronic widespread pain, 4 of 5 reruns also
revealed 5 microstates, while a single rerun revealed 6
microstates. Results of a representative rerun for each subgroup
can be found in Figures 3 and 4 and Tables 5 and 6. Results of
additional reruns are provided in Supplementary Tables 2 and 3
(available at http://links.lww.com/PAIN/B351). To enable com-
parisons of temporal characteristics, further analyses were
performed on the 5-microstate solutions of all reruns.

For patients with chronic back pain (representative rerun
shown in Figure 3), all reruns consistently showed moderate to
very strong evidence for a lower time coverage, frequency of
occurrence, and global explained variance of microstate D in
patients compared with controls (Table 5, Supplementary
Table 2, available at http://links.lww.com/PAIN/B351; all BF10
. 6, all FDR-adjusted P-values , 0.037). In addition, all but 1
reruns showed at least moderate evidence for a shorter mean
duration of microstate D in patients (Table 5, Supplementary
Table 2, available at http://links.lww.com/PAIN/B351; rerun 1:
BF10 5 0.308, FDR-adjusted P-value 5 0.517; all other reruns:
BF10. 3, all FDR-adjustedP-values, 0.038).With respect to the
other microstates, some reruns additionally showed alterations in
isolated measures of other microstates (see Supplementary
Table 2 for details, available at http://links.lww.com/PAIN/B351),
which were, however, not consistently replicated.

For patients with chronic widespread pain (representative
rerun shown in Figure 4), Bayesian statistics showed moderate
evidence against a group difference for most microstates and
temporal characteristics (Table 6, Supplementary Table 3, avail-
able at http://links.lww.com/PAIN/B351). The only significant
finding was an increased global explained variance of microstate
B in patients compared with controls in a single rerun
(Supplementary Table 3, rerun 4, available at http://links.lww.
com/PAIN/B351), which was, however, not replicated across
reruns.

Thus, although the small size of the subgroups has to be
considered, our main finding of a less predominant role of
microstate D could convincingly be replicated in patients with
chronic back pain. By contrast, patients with chronic widespread
pain did not show reliable microstate alterations.

4. Discussion

In this study, we investigated the dynamics of brain function in
patients suffering from different types of chronic pain. To this end,
we performed microstate analysis of resting-state EEG record-
ings in a large cohort of patients and age- and sex-matched
healthy control participants. In both groups, resting-state brain
activity could consistently be described as sequences of 5
microstates labeled A to E in the eyes-closed condition. However,
a varying number of microstates were obtained in the eyes-open
condition. Analyses of the temporal characteristics of these
microstates in the eyes-closed condition revealed a decreased
presence of microstate D in patients as compared to healthy
participants. No consistent evidence for differences in other
microstates was found. When investigating specific chronic pain
pathologies, these findings were replicated for patients with
chronic back pain. By contrast, patients with chronic widespread
pain did not present microstate alterations. Thus, the present

Table 4

Relationships betweenmicrostate D temporalmeasures and clinical parameters for all patients with chronic pain (n5 101) in the

eyes-closed condition (representative rerun).

Current pain SF-MPQ BDI MQS

Mean dur.

Pearson’s r 0.031 0.047 20.020 0.127

P 0.927 0.927 0.956 0.927

BF10 0.131 0.139 0.128 0.276

95% CI 20.163 to 0.224 20.148 to 0.238 20.213 to 0.174 20.069 to 0.311

Time cov.

Pearson’s r 0.036 20.035 20.002 0.058

P 0.927 0.927 0.984 0.927

BF10 0.133 0.133 0.125 0.147

95% CI 20.159 to 0.228 20.227 to 0.160 20.196 to 0.192 20.136 to 0.248

Freq. of occ.

Pearson’s r 0.067 20.072 0.084 20.073

P 0.927 0.927 0.927 0.927

BF10 0.156 0.161 0.176 0.162

95% CI 20.129 to 0.257 20.261 to 0.124 20.112 to 0.273 20.261 to 0.122

GEV

Pearson’s r 0.046 20.066 20.011 0.059

P 0.927 0.927 0.927 0.927

BF10 0.139 0.155 0.126 0.147

95% CI 20.149 to 0.237 20.256 to 0.130 20.204 to 0.183 20.136 to 0.248

Pearson correlations (frequentist and Bayesian approach) were performed for microstate D temporal measures that had consistently shown evidence for differences between patients and controls across reruns of previous

analyses. P-values are FDR-adjusted. Mentioned in italics BF10 , 1/3, indicating at least moderate evidence for the null hypothesis.

95% CI, 95% credible interval; BF10, Bayes factor in favor of the alternative hypothesis; BDI, Beck Depression Inventory; Freq. of occ., frequency of occurrence; GEV, global explained variance; Mean dur., mean duration; MQS,

medication quantification scale; SF-MPQ, short-form McGill Pain Questionnaire; Time cov., time coverage.
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Figure 3.Microstate topographies and their temporal characteristics for patients with chronic back pain (n5 47) compared with healthy controls (n5 88) in the
eyes-closed condition (representative rerun). (A) Microstate topographies were defined for the patients with chronic back pain and healthy controls separately.
Microstates were labelled with the letters A to E according to previous literature.34 (B) Temporal characteristics. Mean duration, time coverage, frequency of
occurrence, and global explained variance of each microstate were calculated for each participant. Raincloud plots1 show unmirrored violin plots displaying the
probability density function of the data, boxplots, and individual data points. Boxplots depict the sample median as well as first (Q1) and third quartiles (Q3).
Whiskers extend from Q1 to the smallest value within Q1 2 1.5 3 interquartile range (IQR) and from Q3 to the largest values within Q3 1 1.5 3 IQR. BF, Bayes
factor in favor of the alternative hypothesis.
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Figure 4.Microstate topographies and their temporal characteristics for patients with chronic widespread pain (n5 30) compared with healthy controls (n5 88) in
the eyes-closed condition (representative rerun). (A) Microstate topographies were defined for the patients with chronic widespread pain and healthy controls
separately. Microstates were labelled with the letters A to E according to previous literature.34 (B) Temporal characteristics. Mean duration, time coverage,
frequency of occurrence, and global explained variance of each microstate were calculated for each participant. Raincloud plots1 show unmirrored violin plots
displaying the probability density function of the data, boxplots, and individual data points. Boxplots depict the sample median as well as first (Q1) and third
quartiles (Q3). Whiskers extend fromQ1 to the smallest value within Q12 1.53 interquartile range (IQR) and fromQ3 to the largest values within Q31 1.53 IQR.
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findings describe microstate D–specific changes of the dynamics
of brain function in eyes-closed resting-state EEG recordings of
patients suffering from chronic pain. Beyond, they indicate that
alterations of brain dynamics as measured by microstate analysis
might be specific for certain types of chronic pain.

Our analyses reveal shorter mean duration, lower time coverage,
fewer occurrences, and less explained variance of microstate D in
patients compared with controls but no consistent alterations in other
microstates. This pattern of resultswas foundbothwhen investigating
the entire mixed chronic pain group or when specifically focusing on

Table 5

Comparisons of temporal microstate measures for patients with chronic back pain compared (n5 47) with healthy controls (n5

88) in the eyes-closed condition (representative rerun).

Microstate Measure t P BF10 Median effect size (d) 95% CI

A Mean dur. 2.234 0.093 1.802 0.368 0.026 to 0.719

Time cov. 0.957 0.523 0.291 0.156 20.180 to 0.496

Freq. of occ. 20.617 0.631 0.229 20.100 20.439 to 0.235

GEV 1.524 0.259 0.549 0.249 20.089 to 0.594

B Mean dur. 0.868 0.552 0.271 0.141 20.195 to 0.481

Time cov. 0.431 0.702 0.209 0.070 20.265 to 0.408

Freq. of occ. 20.274 0.784 0.199 20.044 20.382 to 0.291

GEV 0.572 0.631 0.223 0.093 20.242 to 0.431

C Mean dur. 0.990 0.523 0.300 0.161 20.175 to 0.502

Time cov. 1.430 0.282 0.484 0.233 20.104 to 0.578

Freq. of occ. 0.664 0.631 0.235 0.108 20.288 to 0.477

GEV 2.219 0.093 1.749 0.366 0.023 to 0.717

D Mean dur. 23.540 0.002 47.788 20.595 20.956 to 20.240

Time cov. 24.114 <0.001 >100 20.697 21.063 to 20.336

Freq. of occ. 23.711 0.002 81.160 20.625 20.988 to 20.268

GEV 24.962 <0.001 >100 20.849 21.22 to 20.480

E Mean dur. 2.000 0.118 1.160 0.329 20.012 to 0.678

Time cov. 1.672 0.215 0.678 0.274 20.065 to 0.620

Freq. of occ. 0.789 0.575 0.255 0.128 20.207 to 0.468

GEV 2.154 0.094 1.542 0.355 0.013 to 0.705

Results of 2-sided independent-samples t tests (frequentist and Bayesian approach) comparing patients with chronic back pain with the healthy control group. P-values are FDR-adjusted. Mentioned in bold P, 0.05 and BF10
. 3, indicating at least moderate evidence for the alternative hypothesis, and in italics BF10, 1/3, indicating at least moderate evidence for the null hypothesis. Median effect sizes (d) and their respective 95% credible interval

(CI) are reported.

BF10, Bayes factor in favor of the alternative hypothesis; Freq. of occ., frequency of occurrence; GEV, global explained variance; Mean dur., mean duration; Time cov., time coverage.

Table 6

Comparisons of temporal microstatemeasures for patients with chronic widespread pain (n5 30) compared to healthy controls

(n 5 88) in the eyes-closed condition (representative rerun).

Microstate Measure t P BF10 Median effect size (d) 95% CI

A Mean dur. 0.871 0.954 0.309 0.160 20.226 to 0.555

Time cov. 20.057 0.954 0.222 20.010 20.398 to 0.377

Freq. of occ. 20.086 0.954 0.222 20.016 20.404 to 0.371

GEV 0.284 0.954 0.229 0.052 20.334 to 0.441

B Mean dur. 20.293 0.954 0.230 20.054 20.443 to 0.333

Time cov. 21.173 0.954 0.405 20.217 20.615 to 0.171

Freq. of occ. 21.575 0.954 0.655 20.293 -0.696 to 0.097

GEV 20.123 0.954 0.223 20.022 20.411 to 0.364

C Mean dur. 20.654 0.954 0.267 20.120 20.513 to 0.266

Time cov. 20.958 0.954 0.331 20.177 20.572 to 0.210

Freq. of occ. 21.066 0.954 0.365 20.197 20.594 to 0.190

GEV 20.982 0.954 0.338 20.181 20.577 to 0.206

D Mean dur. 0.654 0.954 0.267 0.120 20.266 to 0.513

Time cov. 0.839 0.954 0.302 0.154 20.232 to 0.549

Freq. of occ. 0.114 0.954 0.223 0.021 20.366 to 0.409

GEV 0.717 0.954 0.277 0.132 20.254 to 0.525

E Mean dur. 20.637 0.954 0.264 20.117 20.509 to 0.269

Time cov. 20.065 0.954 0.222 20.012 20.400 to 0.375

Freq. of occ. 0.211 0.954 0.226 0.039 20.348 to 0.427

GEV 20.454 0.954 0.242 20.083 20.474 to 0.303

Results of 2-sided independent-samples t tests (frequentist and Bayesian approach) comparing patients with chronic widespread pain with the healthy control group. P-values are FDR-adjusted. Mentioned in italics BF10, 1/

3, indicating at least moderate evidence for the null hypothesis. Median effect sizes (d) and their respective 95% credible interval (CI) are reported.

BF10, Bayes factor in favor of the alternative hypothesis; Freq. of occ., frequency of occurrence; GEV, global explained variance; Mean dur., mean duration; Time cov., time coverage.
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the chronic back pain group. By contrast, no microstate alterations
were found in patients suffering from chronic widespread pain. These
findings are in contrast to the only study that applied microstate
analysis to resting-state EEG recordings of patients suffering from
chronic pain so far.20 That study found a lower occurrence and time
coverage of microstate C in eyes-open resting-state recordings of 43
patients suffering from chronic widespread pain. This difference
between studies might at least in part be due to methodological
differences. For example, the current study defined microstates
separately for patients and controls, while the previous study defined
microstates for both groups together. In addition, our sample sizewas
smaller (n 5 30 vs n 5 47), and therefore, small effects might have
been missed. Together, the 2 studies prompt further studies in larger
groups of patients, ideally from different recording sites, to resolve
these differences and to further clarify changes of microstates
common to and different in distinct chronic pain populations.

Our observations further complement recent fMRI studies that
have shown changes of the dynamics of brain function in chronic
pain at ultra-low frequencies below 0.1 Hz.3,5,10 They extend this
evidence by showing alterations of the dynamics of brain function
at frequencies higher than 1 Hz, in line with the dynamic pain
connectome concept.28,45

Microstate analysis is an emerging tool for investigating the
dynamics of brain activity. Although the functional interpretation of
microstates is not fully clear yet, microstate analysis has been
increasingly used to identify changes of brain dynamics in various
neuropsychiatric diseases25,34 that have furthered the understand-
ing of the pathology of these disorders. Beyond, alterations of
microstates characteristics might be useful as clinical biomarkers.
For instance, a recent study has identified the dynamics of
microstates C and D as a promising candidate endophenotype for
schizophrenia.12 However, our data did not provide evidence for a
correlation between alterations of microstate D and clinical
characteristics. As the brain processes discriminating patients with
chronic pain from healthy people differ from those encoding
momentary pain intensity,3,32,54,59,64 the observed changes might
reflect the abnormal disease state per se rather than its specific
characteristics. Beyond, our analyses showed that results of our
standard microstate analysis varied remarkably across repeated
runs. This was in particular the case for patient data from the eyes-
open condition, for which no stable optimal number of microstates
could be obtained. This instability is likely due to higher variance and
a stronger contamination of data by artifacts in eyes-opencompared
with eyes-closed resting-state recordings. Thus, future studies using
microstate analyses should explicitly confirm reliability of findings.

Our most consistent and replicable finding was a reduced
presence of microstate D in chronic pain. Microstate D has been
related to attentional brain networks and functions (for reviews,
see Refs. 34,51). In particular, microstate D has been associated
with brain activity in frontoparietal regions,8,11 the dorsal
attentional control network,49 and focus-switching and atten-
tional reorientation.36 Interestingly, deficits of cognitive function
and particularly of attentional switching have been extensively
reported in patients suffering from chronic pain.37 A common
hypothesis is that pain competes with other stimuli for limited
cognitive resources, thereby “demanding attention” and poten-
tially impairing higher-order attentional control mecha-
nisms.17,30,57 Thus, a decreased presence of microstate D
might represent a neurophysiological correlate of altered atten-
tional functioning in chronic pain. However, as we have not
obtained direct measures of attentional functioning, we cannot
directly test this hypothesis in this study. Future microstate
studies on chronic pain might therefore include tasks and/or
questionnaires assessing attentional functions.

Several limitations of the current study need to be discussed.
First, the specificity of the decreased presence of microstate D for
chronic pain is unclear. In particular, studies in patients suffering
from schizophrenia12,47 and major depressive disorder38 also
showed a decreased presence of microstate D. However,
investigating symptom- and disease-specificity of these findings
is challenging. Substantial progress in this endeavor requires
large samples of patients suffering from different neuropsychiatric
symptoms and diseases, standardized assessments, and,
ideally, sharing of data acquired at different sites. As a first step
in that direction, we share data and code of this study in a
standardized format with the research community. Second,
comparisons of microstate topographies showed slight but
statistically significant differences between patients and healthy
controls. However, considering these subtle differences together
with the overwhelming similarity of microstate topographies, the
microstates of both groups likely capture the same underlying
neural networks. Third, the causal relationship between altered
microstate dynamics and chronic pain is unclear. First studies
have shown that the dynamics of microstates can be changed by
neurofeedback15 and noninvasive brain stimulation.53 These
approachesmight thus be useful to prove the causal link between
changes in microstate dynamics and neuropsychiatric disorders
including chronic pain. Moreover, they highlight the potential
utility of microstate dynamics as targets for neurofeedback- and/
or brain stimulation–based treatments of chronic pain.

In conclusion, our findings provide evidence for altered and
potentially pathology-specific dynamics of brain function in a
large cohort of patients with chronic pain using EEG microstate
analysis. We particularly observed alterations of microstate D. As
this microstate has been associated with attentional brain
networks and functions, changes of microstate D might relate
to dysfunctional attentional processes in chronic pain. These
results add to the understanding of the pathophysiology of
chronic pain and indicate the need for future large-scale studies
including patients suffering from chronic pain of different types.
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DISCOVER-EEG: an open, fully 
automated EEG pipeline for 
biomarker discovery in clinical 
neuroscience
Cristina Gil Ávila  , Felix S. Bott , Laura Tiemann  , Vanessa D. Hohn , 
Elisabeth S. May  , Moritz M. Nickel  , Paul Theo Zebhauser , Joachim Gross  & 
Markus Ploner  

Biomarker discovery in neurological and psychiatric disorders critically depends on reproducible and 
transparent methods applied to large-scale datasets. Electroencephalography (EEG) is a promising 
tool for identifying biomarkers. However, recording, preprocessing, and analysis of EEG data is time-
consuming and researcher-dependent. Therefore, we developed DISCOVER-EEG, an open and fully 
automated pipeline that enables easy and fast preprocessing, analysis, and visualization of resting state 
EEG data. Data in the Brain Imaging Data Structure (BIDS) standard are automatically preprocessed, 
and physiologically meaningful features of brain function (including oscillatory power, connectivity, 
and network characteristics) are extracted and visualized using two open-source and widely used 
Matlab toolboxes (EEGLAB and FieldTrip). We tested the pipeline in two large, openly available 
datasets containing EEG recordings of healthy participants and patients with a psychiatric condition. 
Additionally, we performed an exploratory analysis that could inspire the development of biomarkers 
for healthy aging. Thus, the DISCOVER-EEG pipeline facilitates the aggregation, reuse, and analysis of 
large EEG datasets, promoting open and reproducible research on brain function.

Introduction
Biomarkers that relate brain function to cognitive and clinical phenotypes can help in the prediction, treat-
ment, monitoring, and diagnosis of neurological and psychiatric disorders1,2. �e successful identi�cation of 
biomarkers crucially depends on the application of reproducible and transparent methods3 to large-scale data-
sets4. Furthermore, to translate biomarkers into clinical practice, they need to be generalizable, interpretable, 
and easy to deploy in clinical settings.

Electroencephalography (EEG) is a promising tool for biomarker discovery, as it is non-invasive, safe, widely 
used in clinical and research contexts, portable, and cost-e�cient. Consequently, EEG biomarker candidates 
have been described in depression5–7, post-traumatic stress disorder7,8, and chronic pain9. Most of these bio-
marker candidates have been discovered in resting state data, during which spontaneous neural activity is 
captured. Still, their translation into clinical practice has not yet been successful1. �is is partly due to small 
sample sizes and the low availability of objective, transparent, and reproducible EEG preprocessing and analysis 
methods.

In recent years, notable e�orts have been made to automatize, speed up, and increase the transparency of EEG 
research. A standardized EEG Brain Imaging Data Structure (EEG-BIDS) has been created, which allows for 
the e�cient organization, sharing, and reuse of EEG data10. Moreover, automatic preprocessing pipelines have 
been developed, some for speci�c populations, settings, and study designs, including pediatric populations11,12, 
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mobile brain-body imaging13, and event-related potentials (ERPs)14,15, and others for more generic purposes15–18. 
Beyond, guidelines for the standardized reporting of EEG studies have been established19. A logical next step is 
to integrate these solutions into an automatic work�ow that can preprocess and extract physiologically inform-
ative features in large EEG datasets.

Here, we present DISCOVER-EEG, a comprehensive EEG pipeline for resting state data that extends cur-
rent preprocessing pipelines by extracting and visualizing physiologically relevant EEG features for biomarker 
identi�cation. As translation of biomarkers bene�ts from being neuroscienti�cally plausible and interpretable1, 
DISCOVER-EEG extracts EEG features, such as oscillatory power, connectivity, and network characteristics that 
have previously been related to brain dysfunction in neurological and psychiatric disorders20–23. It builds upon 
and combines two open-source and widely-used Matlab toolboxes (EEGLAB24 and FieldTrip25) and adheres to 
COBIDAS-MEEG guidelines for reproducible MEEG research19. It facilitates the aggregation and analysis of 
large-scale datasets, as it applies to a wide range of EEG setups, and fosters sharing and reusability of the data by 
handling EEG-BIDS standardized data10.

We tested DISCOVER-EEG in two large and openly-available datasets, the LEMON dataset26, which includes 
resting state EEG recordings of 213 young and old healthy participants, and the TDBRAIN dataset27, which 
includes resting state EEG recordings of 1274 participants mainly with psychiatric conditions. In both datasets, 
we demonstrate the capability of the pipeline to capture a well-known EEG e�ect: the reduction of alpha power 
during eyes open compared to eyes closed28. Finally, using the LEMON dataset, we present an example analysis 
investigating di�erences in EEG features between old and young healthy populations that could inspire the 
development of biomarkers of healthy aging. �us, the DISCOVER-EEG pipeline facilitates the preprocessing 
and analysis of large EEG datasets, promoting open and reproducible research on brain function.

Methods
Design principles. Open-source and FAIR code. We developed an automated work�ow for fast preproc-
essing, analysis, and visualization of resting state EEG data (Fig. 1) following open science and FAIR principles 
(Findability, Accessibility, Interoperability, and Reusability)29. �e code of the DISCOVER-EEG pipeline is pub-
lished on GitHub and co-deposited at Zenodo, where it is uniquely referenced by a DOI30 (Findability). �e code 
can be easily downloaded (Accessibility) and receive contributions (please refer to the section Code availability).  
To ensure its Interoperability and Reusability, the pipeline is based on two open-source Matlab toolboxes, 
EEGLAB24 and FieldTrip25, which are widely used, maintained, and supported by the developers and the neu-
roimaging community (i.e., through forums and mailing lists). Basing the pipeline on validated and established 
so¥ware ensures its compatibility with future so¥ware updates. Moreover, it facilitates interaction with experts in 
EEG analysis, who also gave advice and supported the pipeline during its development. �e code of the current 
pipeline is intended to represent a basis that will integrate and bene�t from feedback from the neuroimaging 
community.

Data reusability and large-scale data handling. As biomarker discovery needs large datasets, we designed the 
pipeline in view of data reusability and large-scale data handling. To this end, we followed the FAIR principles 
of scienti�c data management31 and incorporated the EEG-BIDS standardized data structure10 as a mandatory 
input of the pipeline. Most EEG setups and electrode con�gurations are compatible with the pipeline thanks 
to the EEGLAB plugin bids-matlab-tools. We refer the reader to the Results section for a demonstration of per-
formance across two published datasets with di�erent characteristics, such as participant sample, number of 
channels, recording length, and sampling rate.

�e pipeline was designed for resting state EEG data, during which spontaneous neural activity is recorded. 
Resting state data can be recorded easily in healthy and patient populations, in different study designs  
(e.g., cross-sectional, longitudinal), and in di�erent types of neuropsychiatric disorders. �erefore, the use of 
resting state data facilitates the application to di�erent settings and research questions. EEG recordings might 
also be accompanied by standardized patient-reported outcomes, such as the PROMIS questionnaires32, which 
can assess symptoms (e.g., pain, fatigue, anxiety, depression) across di�erent neuropsychiatric disorders and, 
thus, enable cross-disorder analyses. Together, these considerations contribute to the scalability and generaliz-
ability of the work�ow.

Ease of use, transparency, and interpretability. �e pipeline consists of a main function, main_pipeline.m, in 
which the preprocessing, feature extraction, and visualization of the data are carried out, and a params.json 
�le, in which parameters for preprocessing and feature extraction are de�ned. �is latter �le is the only one 
that needs to be con�gured by the user and can be easily adapted to dataset and/or user-speci�c demands.  
When executing the pipeline, parameters are saved to a separate json �le to ensure reproducibility. We recom-
mend DISCOVER-EEG users reporting all parameter con�gurations as well as so¥ware versions when reporting 
their �ndings.

Additionally, the pipeline focuses on transparency and interpretability of results. For that reason, single 
images and an optional PDF report can be generated for each recording to visualize the intermediate steps of the 
preprocessing (Fig. 2) and the extracted EEG features (Fig. 3). �ese visualizations can serve as quality control 
checkpoints and help to detect shorter or corrupted �les, misalignment of electrodes, or missing data through 
fast visual inspection33. In that way, we do not exclude any recordings during preprocessing based on quality 
criteria. Instead, we provide visualization tools that let the users decide how conservative to be in their analysis. 
Along with their visualization, the preprocessed data and the extracted features of each recording are saved to 
separate �les that can be later used for statistical group analysis and biomarker discovery. �ese output �les can 
be easily imported to other statistical packages or working environments, such as R34 or Python35, e.g., for apply-
ing machine learning or deep learning models.
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Preprocessing. We developed a Matlab-based EEG processing pipeline that complements previ-
ous approaches in other programming languages, such as the MNE-BIDS-pipeline (https://mne.tools/
mne-bids-pipeline/1.3/index.html) in Python. Matlab is widely used by the EEG community and enabled us 
to use well-established Matlab-based EEG toolboxes (please refer to the Design principles section) that provide 
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Fig. 1 Outline of the DISCOVER pipeline. �e le¥ column shows all preprocessing steps and extracted 
EEG features. �e right column shows visualizations for selected steps and features for one EEG recording 
of the LEMON dataset. APF = Alpha Peak Frequency; BIDS = Brain Image Data Structure; c.o.g. = center 
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robust functions for computing functional connectivity measures. �us, we followed a pragmatic approach 
towards preprocessing and adopted a simple, established, and automatic work�ow in EEGLAB proposed by 
Pernet et al.14 and originally developed for ERP data. We adapted this pipeline to resting-state data and detail the 
seven preprocessing steps below.

Loading the data. �e pipeline input must be EEG data in BIDS format10, including all mandatory sidecar 
�les. We recommend checking the BIDS compliance with the BIDS validator (https://bids-standard.github.io/
bids-validator). By default, only EEG channels with standard electrode positions in the 10-5 system36 are pre-
processed. However, it is possible to preprocess non-standard channels if all electrode positions and their coor-
dinate system are speci�ed in the BIDS sidecar �le. Optionally, a¥er loading, the data can be downsampled to a 
frequency speci�ed by the user a¥er applying an anti-aliasing �lter.

1. Line noise removal. Line noise is removed with the EEGLAB function pop_cleanline(). �e CleanLine plugin 
adaptively estimates and removes sinusoidal artifacts using a frequency-domain (multi-taper) regression tech-
nique. CleanLine, compared to band-stop �lters, does not introduce gaps in the power spectrum and avoids the 
frequency distortions �lters create. �is step was added to the Pernet et al.14 pipeline to explore brain activity at 
gamma frequencies (>30 Hz). �e line noise frequency (e.g., 50 Hz or 60 Hz) must be speci�ed in the BIDS �le 
sub-<label>_eeg.json to be appropriately removed.

2. High pass �ltering and bad channel rejection. Artifactual channels are detected and removed with the func-
tion pop_clean_rawdata(). �e �rst step of this function is the application of a high pass �lter with the function 
clean_dri�s() with a default transition band of 0.25 to 0.75 Hz. A channel is considered artifactual if it meets 
any of the following criteria: 1) If it is �at for more than 5 seconds, 2) If the z-scored noise-to-signal ratio of the 
channel is higher than a threshold set to 4 by default, 3) If the channel’s time course cannot be predicted from a 
randomly selected subset of remaining channels at least 80% of the recorded time. Channels marked as artifac-
tual are removed from the data. �e mentioned parameters are the defaults proposed by Pernet et al.14.

3. Re-referencing. Data is re-referenced to the average reference with the function pop_reref(). Optionally, the 
time course of the original reference channel can be reconstrued and added back to the data if the user speci�es 
it in the �le params.json. �e name of the reference electrode name must be speci�ed in the BIDS �le sub-<la-
bel>_eeg.json.

4. Independent Component Analysis and automatic IC rejection. Independent Component Analysis (ICA) is 
performed with the function pop_runica() using the algorithm runica. Artifactual components are automatically 
classi�ed into seven distinct categories (‘Brain’, ‘Muscle’, ‘Eye’, ‘Heart’, ‘Line Noise’, ‘Channel Noise’, and ‘Other’) 
by the ICLabel classi�er37. Note that ICA is performed only on clean channels, as bad channels detected in step 
2 were removed from the data. �erefore, the category ‘Channel Noise’ in the IC classi�cation refers to channel 
noise remaining a¥er bad channel removal in step 2. By default, only components whose probability of being 
‘Muscle’ or ‘Eye’ is higher than 80% are subtracted from the data14. Due to the non-deterministic nature of the 
ICA algorithm, its results vary across repetitions. �at is, every repetition of the ICA algorithm leads to small 
di�erences in the reconstructed time series a¥er removing artifactual components. While these deviations are 
small, we noticed that they a�ect the removal of bad time segments (step 6). For that reason, the pipeline per-
forms 10 times steps 4, 5, and 6 by default and selects the bad time segment mask most similar to the average bad 
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Fig. 2 Visualization of the outcome of the preprocessing part of the DISCOVER pipeline. Example of one EEG 
recording of the LEMON dataset. In the independent component classi�cation (second row), bad channels 
correspond to the channels that were removed in the bad channel removal step (�rst row). Bad channels were 
not included in the independent component analysis. IC = independent component.
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Fig. 3 Visualization of the outcome of the feature extraction part of the pipeline. Example for one 
recording of the LEMON dataset (same recording as Fig. 2). Power-based measures are extracted in 
electrode (power spectrum averaged across channels, APF) and source space (power topographies). 
Functional connectivity measures are estimated in source space for 100 pairs of brain regions organized 
in 7 di�erent functional networks (Visual, Somato-Motor, Salience, Ventral-Attention, Limbic, Control, 
and Default). Connectivity matrices are symmetric, and thus only lower triangular matrices are shown. 
Brain network measures are characterized by local (degree and clustering coe�cient) and global (global 
clustering coe�cient, global e�ciency, and smallworldness) graph measures computed on the thresholded 
connectivity matrices. AEC = Amplitude Envelope Correlation; APF = Alpha Peak Frequency; c.o.g. = center 
of gravity; Cont = Control; DorsAttn = Dorsal Attention; dwPLI = debiased weighted Phase Lag Index; 
SalVentAttn = Salience-Ventral Attention; SomMot = Somato-Motor; Vis = Visual.
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time segment mask across all repetitions. �is reduces the variability of rejected time segments. However, for 
computational economy, the number of iterations may be set to one in the params.json �le.

5. Interpolation of removed channels. Channels that were removed in step 2 are interpolated with the function 
pop_interp() using spherical splines38. �is step was added to the Pernet et al.14 pipeline to hold the number of 
channels constant across participants.

6. Bad time segment removal. Time segments containing artifacts are removed with the Artifact Subspace 
Reconstruction (ASR) method39 implemented in the function pop_clean_rawdata(). �is method automatically 
removes segments in which power is abnormally strong. First, a clean data segment is identi�ed according to 
the default ASR settings and used for calibration. Calibration data contains all data points in which less than 
7.5% of channels are noisy. Here, a channel is de�ned as noisy if the standard deviation of its RMS is higher than 
5.5. �erefore, the length of the calibration data depends on the speci�c recording. �en, in a sliding window 
fashion, the whole EEG signal is decomposed via PCA, and the principal subspaces of the window segment are 
compared with those of the calibration data. Segments with principal subspaces deviating from the calibration 
data (20 times higher variance) are removed. Again, default parameters are in line with Pernet et al.14.

7. Data segmentation into epochs. Lastly, the continuous data are segmented into epochs with the function 
pop_epoch(). By default, data are segmented into 2-second epochs with a 50% overlap. Although longer epochs 
might be desirable for the Alpha Peak Frequency estimation to increase frequency resolution, short epochs favor 
the reliability of functional connectivity measures40,41. �us, we propose 2-second epochs to establish a balance 
between frequency resolution, stationarity of the signal, and reliability of the later extracted features. Fi¥y percent 
overlap was chosen to provide a smooth estimation of the power spectra and mitigate the loss of signal due to 
tapering42. Epochs containing a discontinuity (e.g., because a segment containing an artifact was discarded) are 
rejected automatically. Data segmentation was adapted from Pernet et al.14, which focused on event-related data.

EEG feature extraction. DISCOVER-EEG extracts EEG features that have previously been related to di�er-
ent neurological and psychiatric disorders and have the potential to be translated into neuroscienti�cally plausible 
and interpretable biomarkers.

In electrode space, power spectra and the Alpha Peak Frequency, i.e., the frequency at which a peak in the 
power spectrum in the alpha range occurs, are extracted. Power changes in di�erent frequency bands have been 
found in a broad spectrum of neuropsychiatric disorders20, and APF has been correlated with behavioral and 
cognitive characteristics43 in aging and disease44.

In source space, two measures of functional connectivity in the theta, alpha, beta, and gamma bands, are 
extracted. Additionally, brain networks derived from these connectivity matrices are further characterized 
with common graph theory measures45. Functional connectivity is a promising biomarker candidate, as it has 
been successfully used for the classi�cation, tracking, and strati�cation of patients with several neurological 
and psychiatric disorders, such as Alzheimer’s disease46, Post Traumatic Stress Disorder8, and Major Depressive 
Disorder7,47 (for a recent review see48). In EEG, functional connectivity measures are commonly classi�ed as 
phase-based or amplitude-based, each type capturing di�erent and complementary communication processes 
in the brain49. �is pipeline thus includes a phase-based measure, the debiased weighted Phase Lag Index 
(dwPLI)50, and an amplitude-based measure, the orthogonalized Amplitude Envelope Correlation (AEC)51. 
Both functional connectivity measures are undirected and have low susceptibility to volume conduction. �e 
dwPLI is also more sensitive and capable of capturing non-linear relationships compared to other phase-based 
measures42. For each connectivity matrix, two local graph measures (the degree and the clustering coe�cient) 
are calculated at each source location, and three global graph measures (the global clustering coe�cient, the 
global e�ciency, and the smallworldness) summarize the whole network in one value.

Power and connectivity features are computed using the preprocessed and segmented data in FieldTrip. 
Graph theory measures are computed with the Brain Connectivity Toolbox45. Speci�c parameters on feature 
extraction are de�ned in the �le params.json and detailed below.

1. Power spectrum. Power spectra are computed with the FieldTrip function �_freqanalysis between 1 and 
100 Hz using Slepian multitapers with +/−1 Hz frequency smoothing. For 2-second epochs, the maximum 
frequency resolution of the power spectrum is, by de�nition, the inverse of the epoch length, i.e., 0.5 Hz. As 
frequency band limits are determined by the spectral resolution, the pipeline zero-pads the epochs to 5 seconds, 
which yields a resolution of 0.1 Hz, to better capture the frequency range of the bands. �us, the frequency band 
limits for theta, alpha, beta, and gamma are 4 to 7.9 Hz, 8 to 12.9 Hz, 13 to 30 Hz, and 30.1 to 80 Hz, respectively. 
�ese limits are de�ned by the COBIDAS-MEEG19 guidelines and maintained throughout all features. Power 
spectra are computed for every channel and then averaged across epochs and channels to obtain a single global 
power spectrum. �is global power spectrum is saved to sub-<label>_power.mat �les and visualized with the 
di�erent frequency bands highlighted in di�erent colors (Fig. 3).

2. Alpha Peak Frequency. APF is computed based on the global power spectrum in the alpha range (8 to 
12.9 Hz). �ere are two widely accepted strategies to assess the APF in the literature52. �e �rst one reports the 
frequency at which the highest peak in the alpha range occurs (peak maximum). �is comes with the problem 
that not always a peak is present in the power spectrum. �erefore, the second strategy, calculating the center of 
gravity (c.o.g.) of the power spectra in the alpha band is also frequently used53. DISCOVER-EEG reports both 
measures for estimating APF. �e peak maximum is computed with the Matlab function �ndpeaks(). If there is 
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no peak in the alpha range, no value is returned. �e center of gravity is computed as the weighted average of 
frequencies in the alpha band, each frequency being weighted by their power53. Both measures are visualized 
in the same �gure as the global power spectrum (Fig. 3). Individual APF values are also saved to the sub-<la-
bel>_peakfrequency.mat �les.

3. Source reconstruction. To mitigate the volume conduction problem when computing functional connectiv-
ity measures54, we perform a source reconstruction of the preprocessed data with an atlas-based beamforming 
approach55. For each frequency band, the band-pass �ltered data from sensor space is projected into source 
space using an array-gain Linear Constrained Minimum Variance (LCMV) beamformer56. As source model, we 
selected the centroids of 100 regions of interest (ROIs) of the 7-network version of the Schaefer atlas57. �is atlas 
is a re�ned version of the Yeo atlas and follows a data-driven approach in which 100 parcellations are clustered 
and assigned to 7 brain networks (Visual, Somato-Motor, Dorsal attention, Salience-Ventral attention, Limbic, 
Control, and Default networks). �is atlas can be easily changed according to the user’s preferences in the par-
ams.json �le. �e lead �eld is built using a realistically shaped volume conduction model based on the Montreal 
Neurological Institute (MNI) template available in FieldTrip (standard_bem.mat) and the source model. Spatial 
�lters are �nally constructed with the covariance matrices of the band-passed �ltered data and the described 
lead �elds. A 5% regularization parameter is set to account for rank de�ciencies in the covariance matrix, and 
the dipole orientation is �xed to the direction of the maximum variance following the most recent recommen-
dations58. �e power for each source location is estimated using the spatial �lter and band-passed data. A visu-
alization of the source power in each frequency band (Fig. 3) is provided by projecting the band-speci�c source 
power to a cortical surface model provided as a template in FieldTrip (surface_white_both.mat).

4. Functional connectivity. A¥er creating spatial �lters in the four frequency bands, virtual time series in the 
100 source locations are reconstructed for each frequency band by applying the respective band-speci�c spatial 
�lter to the band-pass �ltered sensor data. �en, the two functional connectivity measures (dwPLI and AEC) 
are computed for each frequency band and combination of the 100 reconstructed virtual time series. Average 
connectivity matrices for each band are visualized (Fig. 3) and saved to separate �les (sub-<label>_<conmeas-
ure>_<band>.mat).

�e phase-based connectivity measure dwPLI is computed using the FieldTrip function �_connectivit-
yanalysis with the method wpli_debiased, which requires a frequency structure as input. �erefore, Fourier 
decompositions of the virtual time series are calculated in each frequency band with a frequency resolution of 
0.5 Hz. �ereby, a connectivity matrix is obtained for each frequency of interest in the current frequency band. 
Connectivity matrices are then averaged across each frequency band resulting in one 100 × 100 connectivity 
matrix for each frequency band.

�e amplitude-based connectivity measure AEC is computed according to the original equations with a 
custom function compute_aec, as the original implementation was not available in FieldTrip. For each epoch, 
the analytical signal of the virtual time series is extracted at each source location with the Hilbert transform. For 
each source pair, the analytical signal at source A is orthogonalized with respect to the analytical signal at source 
B, yielding the signal A⊥B. �en, the Pearson correlation is computed between the amplitude envelope of signals 
B and A⊥B. To obtain the average connectivity between sources A and B, the Pearson correlation between the 
amplitude envelopes of analytical signal A and signal B⊥A is also computed, and the two correlation coe�cients 
are averaged. In this way, we obtain a 100 × 100 connectivity matrix for each epoch. We �nally average the con-
nectivity matrices across epochs, resulting in one 100 × 100 connectivity matrix for each frequency band.

5. Brain network characteristics. Graph measures were computed on thresholded and binarized connectivity 
matrices45. Matrices were binarized by keeping the 20% strongest connections, as this threshold delivers fairly 
reproducible graph measures based on dwPLI and AEC connectivity59. Nevertheless, it is good practice to test 
the reliability of �nal results with di�erent binarizing thresholds60. �is threshold can be easily changed in the 
�le params.json.

�e computed local network measures are the degree and the clustering coe�cient. �e degree is the number 
of connections of a node in the network. �e clustering coe�cient is the percentage of triangle connections sur-
rounding a node. �e measures, thus, assess the global and local connectedness of a node, respectively.

�e computed global network measures are the global clustering coe�cient, the global e�ciency, and the 
smallworldness. �e global clustering coe�cient is a measure of functional segregation in the network and 
is de�ned as the average clustering coe�cient of all nodes. Global e�ciency is a measure of functional inte-
gration in the network and is de�ned as the average of the inverse shortest path length between all pairs of 
nodes. High global e�ciency indicates that information can travel e�ciently between regions that are far away. 
Smallworldness compares the ratio between functional integration and segregation in the network against a 
random network of the same size and degree. Smallworld networks are highly clustered and have short char-
acteristic path length (average shortest path length between all nodes) compared to random networks61. Local 
and global measures are visualized per recording and saved to �les named sub-<label>_graph_<conmeas-
ure>_<band>.mat (Fig. 3).

Results
Testing DISCOVER-EEG in two large, public datasets. We tested the DISCOVER-EEG pipeline in two 
well-documented and openly-available resting state EEG datasets, the LEMON dataset26,62, including 213 healthy 
participants, and the TDBRAIN dataset27,63, including 1274 participants, mainly with a psychiatric condition. 
Below we detail the characteristics of both datasets and the e�ects of preprocessing using the DISCOVER-EEG 
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pipeline for resting state recordings under eyes open and eyes closed conditions. �ese results demonstrate that 
the pipeline works successfully across di�erent EEG systems, electrode numbers and layouts, sampling rates, and 
recording lengths.

We additionally show that the pipeline can capture a well-known neurophysiological phenomenon in both 
datasets: the di�erence in oscillatory alpha power between eyes open and eyes closed conditions28. A compari-
son of power spectra between eyes open and eyes closed has previously been reported for the TDBRAIN dataset 
to prove the neurophysiological validity of the data27. Reproducing this e�ect with a di�erent preprocessing 
strategy for the TDBRAIN dataset and con�rming it for the �rst time for the LEMON dataset provides evidence 
for the capability of the DISCOVER-EEG pipeline to capture well-known features of EEG data.

LEMON dataset. �e LEMON dataset is a publicly available resting state EEG dataset of 213 young and old 
healthy participants acquired in Leipzig (Germany) to study mind-body-emotion interactions26. �is dataset 
is divided into two groups based on the age of the participants: a ‘young’ group (20 to 35 years old; N = 143; 
43 females) and an ‘old’ group (55 to 80 years old; N = 70; 35 females). One participant (male) had an inter-
mediate age and was not included in the posterior statistical analyses (next Results section). Resting state EEG 
was recorded with a BrainAmp MR plus ampli�er using 62 active ActiCAP electrodes (61 scalp electrodes in 
the 10-10 system positions and 1 VEOG below the right eye) provided by Brain Products Gmbh, Gilching, 
Germany. �e ground electrode was located at the sternum, and the reference electrode was FCz. �e recording 
sampling rate was 2500 Hz. Recordings contained 16 blocks of 1-minute duration, 8 with eyes closed and 8 with 
eyes open in an interleaved fashion. Before the execution of the pipeline, all blocks corresponding to eyes closed 
and eyes open conditions were extracted and concatenated by condition, including boundaries between blocks. 
In both conditions, two recordings were discarded because the data were truncated. In the eyes closed condition, 
an additional recording was discarded because there were no eyes closed marker events. �erefore, the �nal sam-
ple sizes were 210 recordings for eyes closed and 211 for eyes open. For both conditions, recordings of 8 minutes 
duration were entered into the pipeline.

TDBRAIN dataset. �e TDBRAIN dataset is a publicly available, heterogenous resting state EEG dataset 
aggregated to obtain neurophysiological insights into psychiatric disorders27. It includes 1274 participants, 
most of them su�ering from a psychiatric disorder. �e primary diagnoses are Major Depressive Disorder 
(N = 426), Attention De�cit Hyperactivity Disorder (N = 271), Subjective Memory Complains (N = 119), and 
Obsessive-Compulsive Disorder (N = 75). �e dataset also includes healthy participants (N = 47) and partic-
ipants with unknown diagnoses (N = 255). Resting state EEG was recorded with a Compumedics Quickcap 
or ANT-Neuro Wavegurard Cap using 26 EEG Ag/AgCl electrodes positioned according to the 10-10 system. 
Additionally, �ve electrodes recorded vertical and horizontal eye movements, one electrode recorded muscle 
activity at the masseter, and one electrode captured the electrocardiogram at the clavicle bone. �e ground 
electrode was placed at AFz, and recordings were referenced o¯ine to averaged mastoids (A1 and A2). �e 
recording sampling frequency was 500 Hz. Resting state data were acquired with eyes closed and eyes open in 
two respective blocks of 2 minutes duration. Some participants had more than one recording session, but only 
one recording per participant was entered into the pipeline. In total, resting state recordings for both eyes closed 
and eyes open conditions were available for 1274 individuals.

DISCOVER-EEG preprocessing. Table 1 and Fig. 4 show an overview of the DISCOVER-EEG preprocess-
ing results, comparing datasets with di�erent numbers of EEG electrodes (61 for the LEMON and 26 for the 
TDBRAIN dataset) and recording lengths (8 minutes for the LEMON and 2 minutes for the TDBRAIN datasets). 
�ese results point to a fair amount of data remaining a¥er preprocessing and are in the same range as other 
automatic preprocessing pipelines11,16. �ey could be useful in future studies interested in benchmarking di�er-
ent EEG con�gurations or EEG preprocessing strategies.

DISCOVER-EEG validation. To validate the pipeline’s outcomes, we replicated the well-known physiological 
e�ect of alpha power attenuation in eyes open compared to eyes closed conditions in both datasets. To this 
end, we estimated the power spectrum for each recording and condition as described in the feature extraction 
section. For visualization, we performed a grand average across participants and channels for each dataset and 
condition (Fig. 4). To test for di�erences between conditions, we performed a dependent samples cluster-based 
permutation test64 across frequencies in the range of 1 to 100 Hz. The tests were two-tailed and based on  
500 randomizations. Cluster-level statistics were calculated by taking the sum of the t-values within each cluster. 

Rejected channels Rejected ICs Bad segments

LEMON closed 1 ± 2 (2%) 6 ± 3 (11%) 32 ± 42 s (7%)

LEMON open 2 ± 1 (3%) 9 ± 5 (15%) 29 ± 38 s (6%)

TDBRAIN closed 1 ± 1 (5%) 1 ± 1 (7%) 5 ± 8 s (4%)

TDBRAIN open 2 ± 2 (7%) 2 ± 1 (10%) 6 ± 2 s (5%)

Table 1. DISCOVER-EEG preprocessing summary of the LEMON and TDBRAIN datasets for eyes open and 
closed conditions. Average ± standard deviation across participants is stated for the number of rejected channels, 
number of rejected ICs, and length of rejected bad time segments in seconds. �e average of each variable in 
percentage is stated between brackets. �e maximum number of ICs varied between participants as it depended 
on the number of channels that were rejected for each participant. ICs = Independent components.
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�e cluster threshold and alpha level were set to 0.05. In the LEMON dataset, a signi�cant positive cluster 
indicated higher power values in the eyes closed condition in the 1 to 37.2 Hz range (p = 0.002, cluster statis-
tic = 1310). In the TDBRAIN dataset, a positive cluster was found in the 1 to 23.2 Hz range (p = 0.002, cluster 
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Fig. 4 Overview of the LEMON and TDBRAIN datasets, results of their preprocessing for resting state eyes closed 
(blue) and eyes open (green), and average power spectra across participants and channels. Demographics includes 
a histogram depicting the age of the participants in bins of 5 years. Recordings depicts the EEG setup layout 
and the recordings’ average duration. Vertical bars in the recording duration of the LEMON dataset represent 
the boundaries between the concatenated 1-minute blocks in which the data was acquired. DISCOVER-EEG 
preprocessing presents the fractions of rejected channels, rejected ICs, and rejected time segments. Boxplots 
visualize the distribution of these variables. �e median is indicated by a red horizontal line, and the �rst and third 
quartiles are indicated with black boxes. �e whiskers extend to 1.5 times the interquartile range. Blue dots overlaid 
to the boxplots represent individual recordings. Power spectrum depicts the grand average power spectra across 
participants and channels for eyes open and eyes closed conditions. Shaded areas indicate the standard deviation of 
the power spectra across participants. Black bars over the x axis indicate frequency intervals of signi�cant clusters 
between conditions (dependent samples cluster-based permutation test). Note that in the TDBRAIN dataset, line 
noise could not be completely removed due to high levels of noise in some recordings. EC = Eyes Closed. EO = Eyes 
Open. ICs = Independent Components. *�e gender of 18 participants was missing in the TDBRAIN dataset.
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statistic = 2037) along with a negative cluster in the 25.2 to 99 Hz range (p = 0.002, cluster statistic = −3254). 
�ese results indicate lower power in the eyes open condition in the alpha range (8 to 12.9 Hz) for both datasets, 
as shown with previous analyses of the TDBRAIN dataset27.

Example analysis with DISCOVER-EEG. To exemplify how DISCOVER-EEG features could be aggre-
gated and analyzed, we conducted an exploratory analysis of the LEMON dataset to investigate age-related dif-
ferences in resting state EEG. Recently, the measure of brain age, i.e., the expected level of cognitive function of 
a person with the same chronological age, has been proven a valuable marker of cognitive decline in healthy and 
clinical populations65,66. Brain age is usually estimated by machine and deep learning models trained to predict 
the chronological age of a participant based on neuroimaging data. One criticism of these methods is their limited 
neuroscienti�c interpretability, as it is not straightforward which features the models used to predict brain age65. It 
is, therefore, highly useful to explore which physiologically meaningful brain features change with age.

To this end, we statistically compared the features automatically extracted by the pipeline in the ‘old’ and 
‘young’ groups using Bayesian statistics performed in Matlab with the bayesFactor package67 (Fig. 5). We also 
provide the scripts used to perform this group analysis and the visualization of group-level data together with 
the pipeline code.

We tested whether old participants had di�erent APF values than young participants with two-sided inde-
pendent samples Bayesian t-tests. Two tests were performed, one for each APF measure (the local maximum and 
the center of gravity). Results show very strong evidence in favor of the alternative hypothesis, i.e., a lower APF 
in the old compared to the young group, when the APF is computed as local maximum peak (BF10 = 325.5), but 
inconclusive evidence when the APF is computed as the center of gravity (BF10 = 1.1) (Fig. 5, �rst row).

We further tested whether there were di�erences in the connectivity matrices between young and old partici-
pants. For each connectivity measure (dwPLI and AEC) and frequency band (theta, alpha, beta, and gamma), we 
compared the connectivity values of each undirected source pair between the young and the old groups. �us, 
we performed 9900 two-sided independent samples Bayesian t-tests per connectivity matrix. In Fig. 5, second 
row, we depict t-values color-coded to show the direction of e�ects. Statistical tests showing strong evidence in 
favor (BF10 > 30) or against (BF10 < 1/30) of the alternative hypothesis are not faded out. We observed strong evi-
dence in favor of a reduction of phase-based connectivity in old participants, predominantly in the alpha band as 
well as a reduction of amplitude-based connectivity (Fig. 5, second row, non-masked blue values).

We �nally tested whether there were any di�erences between old and young participants in the graph meas-
ures. For the local graph measures, we performed one test per source location, i.e., 100 independent sample 
Bayesian t-tests for each graph measure, connectivity measure, and frequency band. For the global measures, 
we performed a two-sided independent sample Bayesian t-test per graph measure, connectivity measure, and 
frequency band. With regard to global measures, the most prevalent di�erences appeared at low frequencies  
(theta and alpha) using the AEC (Fig. 5, third row, blue and red dots in brain sketches have BF10 > 30).  
�e strongest e�ects concerning global measures are a reduction of global e�ciency and smallworldness of the 
older group in the beta band for the dwPLI and the alpha band for the AEC (Fig. 5, third row, raincloud plots 
with inset BF10 indicating strong evidence). Together, these results show a reduction of local connectivity at theta 
and alpha frequencies and an increase in network integration at alpha and beta frequencies in older participants.

Overall, the current �ndings align with previous EEG literature, which has reported a slowing of APF and a 
general decrease in functional connectivity and network integrity in older individuals44,68.

�is example analysis could inspire future studies aimed at discovering explainable biomarkers of healthy 
aging or risk biomarkers of cognitive decline. However, it does not intend to present a ready-to-use biomarker 
for aging, which would require validation beyond the scope of this manuscript.

Discussion
Here, we present DISCOVER-EEG, an open and fully automated pipeline that enables fast and easy aggre-
gation, preprocessing, analysis, and visualization of resting state EEG data. �e current pipeline builds upon 
state-of-the-art automated preprocessing elements and extends them by including the computation and visu-
alization of physiologically relevant EEG features. �ese EEG features follow recent COBIDAS guidelines for 
MEEG research19, are implemented in widely used EEG toolboxes, and have been repeatedly associated with 
cognitive and behavioral measures in healthy as well in neuropsychiatric populations. �erefore, they could 
represent promising biomarker candidates for neurological and psychiatric disorders.

Importantly, this pipeline presents one of many ways of preprocessing and analyzing resting state data and 
is not intended to be the ultimate solution for EEG analysis. Instead, it aims to represent a reasonable and 
pragmatic realization for accelerating the acquisition, preprocessing, and analysis of large-scale datasets with 
the potential to discover physiologically plausible and interpretable biomarkers. To this end, we adopted a pre-
viously published, simple, and robust preprocessing strategy and selected a well-de�ned set of EEG features 
that could be useful for biomarker discovery. However, this pipeline might not suit all populations, settings, or 
research paradigms, such as children, real-life ecological EEG assessments, or paradigms assessing event-related 
potentials. Additionally, speci�c EEG layouts, such as those with few electrodes and limited scalp coverage, 
might not be adequate for source localization or average referencing. However, it is compatible with di�erent 
types of EEG systems, and its focus on resting state data makes it suitable for patients and healthy populations. 
�e features extracted by DISCOVER-EEG represent a basis for developing neurophysiologically plausible and 
interpretable biomarkers of neurological and psychiatric disorders. �ey can be easily extended and adapted 
to speci�c study designs, as the modular con�guration of the code allows for substituting, removing, or adding 
speci�c steps of the preprocessing and feature extraction.

By default, the pipeline uses a realistically shaped volume conduction model based on the Montreal 
Neurological Institute (MNI) template for source localization. For optimal accuracy of source reconstruction, 
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Fig. 5 Age-related di�erences in resting state EEG between old and young participants of the LEMON dataset. 
Alpha Peak Frequency di�erences between the old and the young group are visualized using raincloud plots70. 
Connectivity di�erences between the old and young groups. Blue values indicate lower connectivity in the old 
group. All connections not showing strong evidence for or against a connectivity di�erence (1/30 < BF10 < 30) 
are faded out. Brain network di�erences between the old and young group. With regard to local graph 
measures, only locations with strong evidence for (BF10 > 30) or against (BF10 < 1/30) a di�erence in the graph 
measures are depicted. Only results in favor of a di�erence between groups were found (blue dots indicate lower 
local graph measures in the old group, and red dots indicate higher local graph measures in the old group). With 
regard to global graph measures, only BF10 showing substantial evidence for (BF10 > 3) or against (BF10 < 1/3) 
the alternative hypothesis were included as insets to facilitate the reading. AEC = Amplitude Envelope 
Correlation; BF = Bayes Factor; Cont = Control; DorsAttn = Dorsal Attention; dwPLI = debiased weighted 
Phase Lag Index; SalVentAttn = Salience-Ventral Attention; SomMot = Somato-Motor; Vis = Visual.
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individual MRIs or at least individual electrode positions could be recorded along with the EEG data. However, 
this would substantially increase the e�ort and time needed to acquire data and would hinder the fast generation 
of large new datasets. For that reason, the pipeline uses a generic template for source localization. However, it 
might be desirable to have di�erent templates that better re�ect the variability of head shapes in the future.

On a broader scope, it should always be considered whether datasets used for biomarker discovery are rep-
resentative of the population of interest or whether they are biased towards young, Caucasian, highly educated 
populations, as is o¥en the case69. �e participants of the studies used here to test the pipeline were recruited 
based on convenience sampling and, therefore, might not cover the entire population. �e creation and adop-
tion of data standards such as BIDS will help to mitigate this fact by promoting collaboration and data sharing 
around the world.

Our intention with this pipeline was to push the �eld of EEG biomarker discovery forward to acquiring and 
analyzing large datasets, as needed in neuroimaging and arti�cial intelligence. Moreover, the provided exam-
ple analysis can serve as a starting point for researchers who want to use complex measures of brain function. 
However, we do not claim to present a ready-to-use biomarker for aging, nor that the approach we propose is 
the best or only way to develop such a biomarker. Instead, it is intended as an o�er to the community to assess 
physiologically plausible and interpretable EEG features in an e�cient, transparent, and reproducible manner. 
�erefore, it can help the discovery of EEG-based biomarkers in neuropsychiatric disorders and promotes and 
facilitates open and reproducible assessments of brain function in EEG communities and beyond.

Data availability
�e LEMON dataset62 was accessed via http from the Max Plax Institute Leipzig webpage, and is described in an 
accompanying publication26.

�e TDBRAIN dataset63 was accessed from the webpage of Brainclinics Foundation, and is described in an 
accompanying publication27.

Code availability
�e EEG pipeline code is available at GitHub under the CC-BY 4.0 license, and it is co-deposited in Zenodo, and 
referenced with a unique DOI30.

�e pipeline was created and tested in Matlab 2020b (�e Mathworks, Inc.) on Ubuntu 18.04.5 LTS with the 
Signal Processing and Statistical and Machine Learning Toolboxes installed. EEGLab (v2022.0)24 with the plugins 
bids-matlab-tools (v6.1), bva-io (v1.7), �r�lt, (v2.4), cleanLine (v2.0), ICLabel (v1.3), clean_rawdata (v2.6) and 
dip�lt (v4.3) were installed and used for preprocessing. FieldTrip (revision ee916f5e5)25 was used for source 
reconstruction and EEG feature extraction, and the Brain Connectivity Toolbox (version 03 2019)45 was used for 
network analysis.
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4. DISCUSSION 

In this work, we used electroencephalography to investigate the development of 

brain biomarkers in translational neuroscience. In the first project, we explored the 

brain’s temporal dynamics with microstate analysis in a diverse group of patients with 

chronic pain. In the second project, we developed DISCOVER-EEG, an open EEG pipeline 

to automatically preprocess, analyze, and visualize resting state EEG data. Following the 

most recent EEG methods, guidelines, and standards, we explored a biomarker candidate 

in chronic pain and proposed a new tool for fast biomarker identification across 

neurological and psychiatric disorders. With an open science mindset, we aimed to 

promote transparent and reproducible research on brain function. 

 

4.1. PROJECT 1. EEG MICROSTATE ANALYSIS IN PATIENTS WITH 

CHRONIC PAIN 

In this study, we investigated brain dynamics in patients suffering from different 

types of chronic pain. We, therefore, applied microstate analysis to a large, cross-sectional 

resting state EEG dataset, including patients with chronic pain and healthy participants. 

We found that EEG data was consistently described in both groups with five microstates 

previously described in the literature and labeled A to E. Bayesian statistics indicated that 

the presence of microstate D was decreased in patients with chronic pain, while there 

was no consistent evidence for changes in other microstates. However, temporal 

characteristics of microstate D did not correlate with patients’ clinical scores. Subgroup 

analysis based on specific chronic pain pathologies replicated a decreased presence of 

microstate D in patients with chronic back pain but not in patients with chronic 

widespread pain. These results indicate that alterations of brain dynamics measured with 

microstate analysis might be specific for certain types of chronic pain. However, due to 

the limited physiological interpretability of microstates and the technical limitations of 

this method, further studies are needed to consider microstates’ characteristics a 

biomarker of chronic pain. 

 

 



 

 

 

 

51 

Limitations and future work 

 Microstates are thought to emerge from coordinated neural activity across the 

brain, with transitions between microstates usually interpreted as “sequential activation 

of different neuronal networks” (Khanna et al., 2015). Yet, the functional interpretation 

of microstates is still uncertain. Microstates have been associated across the literature 

with fMRI resting state networks, cognitive processes, and disease states (Khanna et al., 

2015; Michel and Koenig, 2018). Specifically, microstate D, which we found to be less 

present in chronic pain, has been associated with attentional brain networks and 

functions (Milz et al., 2016). Thus, our observed changes in microstate D might reflect 

attentional deficits in patients with chronic pain, which have been previously reported 

(Moriarty et al., 2011). However, as we have not obtained direct measures of attentional 

functioning in this study, we cannot test this hypothesis. Follow-up microstate studies in 

chronic pain might include tasks and questionnaires specifically assessing attentional 

functions.  

Changes in microstate D have also been observed in other brain disorders, such as 

schizophrenia (da Cruz et al., 2020) and major depressive disorder (Murphy et al., 2020). 

Therefore, microstate D alterations might not be specific to chronic pain. This, 

nevertheless, does not diminish the potential clinical utility of microstates as diagnostic 

or subtyping biomarkers of chronic pain. Symptoms such as pain and depression are 

commonly shared across neurological and psychiatric disorders. Similarly, altered brain 

functions and dynamics could be shared across neuropsychiatric disorders as well 

(Scangos et al., 2023). Further studies using cross-disorder datasets could test the 

specificity of microstate D to chronic pain or specific brain networks. 

In contrast to our results, which did not show any microstate changes in chronic 

widespread pain, a recent study published lower occurrence and time coverage of 

microstate C in resting state eyes-open recordings of patients suffering from chronic 

widespread pain (Gonzalez-Villar et al., 2020). This discrepancy might be due to our 

smaller sample size —30 patients with chronic widespread pain with respect to 47 of 

Gonzalez-Villar et al. (2020)— but also due to methodological differences between 

studies and the limitations of microstate analysis itself.  
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In microstate analysis, the definition of microstates is based on a non-

deterministic clustering procedure in which an a priori number of microstates has to be 

defined by the researcher. The non-deterministic nature of the algorithm leads to 

variability across results when repeating the analysis with the same data and parameters. 

For this reason, we reported the results of 5 repetitions of the microstate analysis, 

performed separately on resting state eyes-closed and eyes-open data. Our most 

consistent and replicable finding was a reduced presence of microstate D in chronic pain 

during resting state with eyes closed. This effect, however, could not be replicated in 

resting state with eyes open, where the number of microstates varied notably across 

repetitions.  

Additionally, the software used to define the microstates and their temporal 

characteristics was provided as a compiled executable, precluding any audit of the source 

code to quantify the sources of variability in the implementation of the algorithm. Based 

on this experience, we recommend that future studies use an open-source 

implementation of microstate analysis, such as Ragu (Habermann et al., 2018). Despite 

having fewer functionalities, Ragu provides more transparent access to microstate 

analysis. In our view, further efforts to increase the transparency and robustness of 

microstate analysis should be pushed forward. 

Conclusion 

This study contributed to the understanding of the brain dynamics of patients 

suffering from different types of chronic pain. Our results presented differences in the 

brain dynamics between patients with chronic pain and healthy participants, specifically 

a decreased presence of microstate D in patients, which putatively relates to attention 

deficits during chronic pain. Additionally, our results point towards different brain 

dynamics in patients with chronic back pain and chronic widespread pain. If future 

studies demonstrate that these results are generalizable, they could serve to establish 

new treatments based on neural features of chronic pain (Baron et al., 2023). Overall, we 

showed the utility of electroencephalography for analyzing brain dynamics in chronic 

pain. This work can inspire future studies aiming to find EEG-based biomarkers of 

chronic pain.  
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4.2. PROJECT 2. DISCOVER-EEG: AN AUTOMATIC EEG PIPELINE FOR 

BIOMARKER DISCOVERY 

In this study, we developed DISCOVER-EEG, an open, fully automated pipeline to 

enable fast and easy aggregation, preprocessing, analysis, and visualization of resting 

state EEG data. We extended state-of-the-art EEG preprocessing pipelines by integrating 

them with the computation and visualization of physiologically meaningful EEG features, 

such as oscillatory power, connectivity, and graph theory network measures. These 

features are based on the most recent EEG guidelines for MEEG research (Pernet et al., 

2020a) and have been repeatedly associated with alterations in brain disorders (Cao et 

al., 2022; Newson and Thiagarajan, 2019). Therefore, they represent promising EEG-

based biomarker candidates for brain disorders. The pipeline was tested in two publicly 

available resting state EEG datasets, the LEMON dataset, containing 213 EEG recordings 

of healthy participants (Babayan et al., 2019), and the TD-BRAIN dataset, including 1274 

participants suffering from different psychiatric conditions (van Dijk et al., 2022). We also 

performed an exploratory analysis of the LEMON dataset that could inspire the 

identification of biomarkers of healthy aging. Approaching this endeavor with an open 

science mindset, we followed the FAIR principles of scientific software management 

(Wilkinson et al., 2019). Thus, the pipeline code is publicly available and open for 

contribution (Gil Ávila et al., 2023a). With DISCOVER-EEG, we aim to facilitate the 

aggregation, reuse, and analysis of large EEG datasets and promote transparent and 

reproducible research on brain function.  

Limitations and future work 

 DISCOVER-EEG presents one out of many possible ways of preprocessing and 

analyzing resting state EEG data. Therefore, we do not intend to imply that it is the unique 

or best solution for EEG analysis, as this endeavor is neither possible nor necessary 

(Pernet et al., 2020a). Instead, DISCOVER-EEG represents a reasonable and pragmatic 

way of automatically processing resting state data to extract physiologically meaningful 

features that have the potential to turn into explainable biomarkers. To achieve this, we 

based the preprocessing on a previously published, simple, and robust pipeline for 

analyzing ERPs (Pernet et al., 2020b) and optimized it for resting state recordings. 

Consequently, specific populations, settings, and study designs might not benefit from the 
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proposed preprocessing strategy and feature extraction. We recommend applying 

DISCOVER-EEG cautiously to very contaminated data, such as that recorded in children 

or during motion, and EEG settings in which the number of electrodes is low and do not 

cover the entire scalp. In this latter case, average referencing and source reconstruction 

are not indicated.  

Despite these specific cases, DISCOVER-EEG is robust and compatible with many 

settings and study designs. We tested it on two datasets with different characteristics 

(EEG system, electrode layout, number of electrodes, sampling rate, recording length, and 

population type), and we found that the preprocessing outcome was in the same range as 

other automatic preprocessing pipelines (Gabard-Durnam et al., 2018; Rodrigues et al., 

2021). We could also replicate a well-known EEG effect in both datasets: the reduction of 

alpha power in resting state eyes open compared to eyes closed. This proves the 

reliability of the pipeline to capture a well-known effect in EEG. 

 DISCOVER-EEG features represent only a basis for developing 

neurophysiologically plausible and interpretable biomarkers. Other approaches that do 

not require the intermediate extraction of hand-crafted features, such as machine or deep 

learning, might as well complement this pipeline and contribute to the generation and 

validation of clinical biomarkers. The adaptation and extension of DISCOVER-EEG to 

specific study designs is relatively simple due to the modular structure of the code. In this 

way, specific steps of the preprocessing and feature extraction can be substituted, 

removed, or added. Future extensions of DISCOVER-EEG might include its adaptation to 

analyze ERPs, which are widely investigated in the EEG community.  

 We also included an example analysis to inspire biomarkers of healthy aging. 

Importantly, it is not our intention to present a ready-to-use biomarker, as this task 

would naturally require extensive validation. Conversely, this analysis and visualization 

are an example of how to aggregate and analyze the features extracted by the pipeline. 

They should be taken as a starting point for researchers who want to use advanced EEG 

measures of brain function.  

 Finally, as large datasets are needed for biomarker discovery, the computation 

time of preprocessing and feature extraction can increase with large datasets. Therefore, 

future work could facilitate the execution of DISCOVER-EEG on high-performance 
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clusters, which would help to reduce computation time. Using software containers, such 

as Docker or Singularity (Kurtzer et al., 2017), would be helpful for this purpose and 

ensure cross-platform compatibility. Another possibility would be integrating 

DISCOVER-EEG with platforms such as Brainlife (brainlife.io) or DataLad (Halchenko et 

al., 2021). Brainlife allows the execution of neuroimaging pipelines on the cloud, using 

data stored in publicly available repositories. DataLad complements this platform by 

allowing the version control of neuroimaging data and metadata while being integrated 

with the biggest neuroimaging data-sharing repositories. In this way, raw data and 

derivatives (outputs from processed data) could be more efficiently managed and 

tracked, further easing data reuse and providing a basis for rigor and reproducibility  

(Niso et al., 2022). 

Conclusion 

We developed an open and automatic workflow to facilitate fast preprocessing, 

analysis, and visualization of resting EEG data across neurological and psychiatric 

disorders. It produces physiologically plausible and interpretable EEG features in an 

efficient, transparent, and reproducible manner. Thus, DISCOVER-EEG promotes 

transparency and reproducibility in neuroimaging, which is essential for developing 

clinically useful biomarkers.  

 

4.3. IMPLICATIONS ACROSS PROJECTS 

In this work, we have reviewed and addressed three of the current challenges that 

the biomarker framework poses. We have supported the creation and reuse of large 

datasets by making available a large dataset of chronic pain and healthy participants in 

the BIDS-EEG structure (project 1). We have created a reproducible and transparent 

workflow for generating explainable EEG biomarkers (project 2). In both projects, we 

have used electroencephalography, a common, safe, non-invasive neuroimaging modality 

that is widely used and has the potential to be easily deployed in research, clinical and 

ecological environments. However, our contribution covers only a small part of this huge 

nascent field. Therefore, we will discuss the limitations of this thesis and future work. 

 

https://brainlife.io/
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Limitations and future work 

The work presented here includes only a subset of potential biomarker targets, 

i.e., microstates’ characteristics derived from EEG microstate analysis, power-based EEG 

measures, and functional connectivity and network measures derived from resting state 

EEG. However, exciting new measures of brain function, informative about behavioral 

and clinical characteristics, are being unraveled. For example, the excitation/inhibition 

ratio has been recently assessed non-invasively at the whole brain level with several EEG 

measures (Ahmad et al., 2022). The aperiodic (1/f) component of the power spectrum is 

a particularly promising measure that would help to better characterize the power 

spectrum (Donoghue et al., 2020; Gao et al., 2017). Additionally, intermediate brain 

phenotypes, that do not characterize a disease state per se but indicate a fragility or risk 

of developing a brain disease, are an interesting concept worth exploring. Brain age, i.e., 

the expected level of cognitive function of a person with the same chronological age, is 

one of such intermediate phenotypes (Cole and Franke, 2017; Engemann et al., 2022). 

Initial evidence indicated that brain age is predictive of the risk of developing 

cardiovascular and neurological disorders (Cole and Franke, 2017). Thus, these measures 

deserve further investigation. 

A general limitation of the biomarker framework presented here is that 

biomarkers rely mostly on correlations between brain and clinical features. However, 

correlation does not imply causation. The combination of causal information with 

neuroimaging techniques can offer new insights into the brain in health and disease 

(Siddiqi et al., 2022). Also, the integration of features from different imaging modalities 

and fields into composite biomarkers could help to mitigate this “causality gap” (Tracey et 

al., 2019). For instance, two modalities pointing to convergent results would enhance the 

credibility of the biomarker and enable stronger causal inference. New tools such as 

NeuroMaps (Markello et al., 2022) are working in this direction. Alternatively, machine 

learning and deep learning have shown considerable success in the integration of 

modalities in bioinformatics, genetics, and cancer research and hold, therefore, great 

promise in neuroscience (Abi-Dargham and Horga, 2016; Tracey et al., 2019). Future 

work assessing potential biomarkers might therefore use these algorithms as well. 
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Both projects presented in this thesis included datasets that were acquired 

through convenience sampling. This raises the question of the representativity, and 

generalizability of the results acquired in this work, but also of brain biomarkers in 

general. It is known that minority groups are underrepresented in neuroscientific 

studies, which affects the generalizability of biomarkers to different populations (Webb 

et al., 2022). Defining what is a representative population and how to gather sensible data 

regarding ethnicity is an enormous question that requires expert knowledge (Muller et 

al., 2023). Nevertheless, efforts towards the gathering of diverse and representative 

datasets that reflect the variability of human phenotypes should be encouraged. For that 

reason, integrating minority groups into research and technology development, as well 

as potentiating patient involvement, is crucial when developing new neurotechnologies, 

biomarkers, and treatments. Stakeholders’ involvement is, in consequence, essential for 

developing generalizable and inclusive biomarkers. 

 

4.4. CONTRIBUTION TO OPEN SCIENCE 

Open science practices are paramount for progressing in the neuroscience field. 

Collaboration between research sites, wide adoption of standardized data structures, 

creation of inclusive and representative datasets, and patient and society engagement, 

especially including minority groups, are essential for the development of accurate and 

inclusive biomarkers. 

This thesis aimed to conduct and promote transparent and open research on brain 

function. Our alignment with open science principles is, consequently, visible in several 

ways. First, we contributed to the sharing and reuse of neuroimaging data by making 

openly available a well-documented EEG resting state dataset of patients with chronic 

pain and healthy participants in the standard BIDS-EEG structure. Second, we promoted 

reproducibility and transparency in EEG research by developing an automatic pipeline 

for preprocessing and analysis resting state EEG data. This could facilitate the accurate 

reporting of future studies and mitigate flexible analysis and p-hacking (Munafo et al., 

2017; Parsons et al., 2022). Third, the use of Bayesian statistics in both studies allowed 

quantifying the credibility of both null and alternative hypotheses, contributing to 

reducing the problem of p-hacking and fighting the publication bias in the literature, i.e., 
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publishing only significant results (Munafo et al., 2017). Fourth, we allowed rapid 

scientific dissemination by publishing both articles as preprints in bioRxiv. Preprints are 

open-access versions of the scientific manuscript that are published before undergoing 

peer review. Open-access versions accelerate scientific discovery and collaboration and 

make knowledge accessible to both humans and machines (Niso et al., 2022). Finally, and 

in relation to the last point, the first publication was published as open access, eliminating 

the paywall barrier for this study. 

As a result, adhering to these open science practices facilitated communication 

with leaders in the field, who gave advice on the implementation of the DISCOVER-EEG 

pipeline. Also, this communication worked bi-directionally and allowed to increase the 

robustness of existing EEG methods with the reporting of bugs and suggestions to 

existing GitHub repositories. Scientific dissemination of the results via participation at 

international conferences and social media led to a rapid awareness of our research by 

the neuroimaging and pain communities and the general public. As an example, the 

publication on bioRxiv on the 20th of January 2023 of the DISCOVER-EEG preprint 

allowed thousands of researchers to discover, read, test, and use the DISCOVER-EEG 

pipeline during the review process of this manuscript (to date, 31 July 2023, bioRxiv: 

>4200 abstract reads, >1200 pdf downloads; Twitter: >34.000 views, >360 likes, >110 

tweets). 

Thus, open science accelerates research and creates a lively debate, facilitating the 

integration of comments from people all around the world. It additionally promotes 

equity and reduces socio-economic barriers. For example, sharing data and code can 

provide tools and resources to those researchers who lack the resources to acquire the 

data themselves. In conclusion, with this work, we have promoted and contributed to the 

dissemination of open science practices and encouraged the creation of high-quality 

studies and fair practices on human brain research.  
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