
Thomas Lemberger

Towards
Cooperative Software Verification
with Test Generation
and Formal Verification

Dissertation an der Fakultät für Mathematik, Informatik und Statistik der Ludwig-
Maximilians-Universität München Software and Computational Systems Lab Ein-
gereicht von Thomas Lemberger am 18. Mai 2022

Thomas Lemberger

Towards
Cooperative Software Verification
with Test Generation
and Formal Verification

1. Gutachter: Prof. Dr. Dirk Beyer
2. Gutachter: Prof. doc. RNDr. Jan Strejček
3. Gutachter: Prof. Jonathan Bell, PhD

Tag der Einreichung: 18. Mai 2022
Tag der mündlichen Prüfung: 12. Dezember 2022

Dissertation an der Fakultät für Mathematik, Informatik und Statistik der Ludwig-
Maximilians-Universität München Software and Computational Systems Lab

Eidesstattliche Versicherung

(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. .5.)

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir selbstständig, ohne
unerlaubte Beihilfe angefertigt ist.

Lemberger, Thomas
Name, Vorname

Ingolstadt, 18. Mai 2022 Thomas Lemberger

Ort, Datum Unterschrift Doktorand/in

Zusammenfassung

Es existieren zwei typische Methoden für die Verifikation von Software: Testen
und formale Verifikation. Um unser Vertrauen in Software in der breiten Masse zu
erhöhen, benötigen wir Werkzeuge, die diese Methoden automatisch und zuverlässig
anwenden. Testen mit manuell geschriebenen Tests ist weit verbreitet, aber es gibt
kein standardisiertes Format für automatisch generierte Tests für die Programmier-
sprache C. Dies macht die Verwendung und den Vergleich von automatischen Test-
generatoren aufwendig. Darüber hinaus können Tests niemals volles Vertrauen in
Software bieten — sie können das Vorhandensein von Programmfehlern nachweisen,
aber nicht deren Abwesenheit. Die formale Verifikation hingegen benutzt standardi-
sierte Formate und kann die Abwesenheit von Programmfehlern nachweisen. Leider
zeigen auch erfolgreiche Techniken dieser Art Schwächen. Kombinationen von meh-
reren Techniken versuchen, die Stärken sich ergänzender Techniken zu kombinieren,
aber solche Kombinationen sind oft als zusammenhängende, monolithische Einheiten
konzipiert. Sie sind unflexibel und es ist kostspielig, Techniken auszutauschen.

Um diesen Stand der Technik zu verbessern, ermöglichen wir eine Kooperation
zwischen existierenden Verifikationswerkzeugen mit standardisierten Austauschfor-
maten, ohne dass Anpassungen an den verwendeten Werkzeugen notwendig sind.

Zunächst arbeiten wir an einer Standardisierung der automatischen Testgenerie-
rung für C. Wir erhöhen die Vergleichbarkeit von Testgeneratoren durch ein einheitli-
ches Benchmarking-Framework und zuverlässige Werkzeuge, und stellen Instrumente
zum Vergleich von Testgeneratoren und formalen Verifizierern zur Verfügung.

Als nächstes erstellen wir neue Konzepte für die Zusammenarbeit zwischen exis-
tierenden Verifizierern (sowohl Testgeneratoren, als auch formale Verifizierer). Wir
demonstrieren die Flexibilität dieser Konzepte durch mehrere Kombinationen und
durch die Anwendung auf das Problem der inkrementellen Verifikation. Weiterhin
zeigen wir, wie bestehende, stark gekoppelte Techniken der Softwareverifikation in
lose gekoppelte, eigenständige Komponenten zerlegt werden können, die durch klar
definierte Schnittstellen und standardisierte Austauschformate kooperieren.

Alle präsentierten Konzepte werden von umfangreichen Implementierungen ge-
stützt. Ausführliche experimentelle Evaluationen zeigen die Vorteile unserer Arbeit.

Durch unsere Arbeit verbessern wir die Vergleichbarkeit von automatisierten Ve-
rifikationswerkzeugen, ermöglichen Kooperationen zwischen vielen existierenden Ve-
rifikationswerkzeugen, erhöhen die Effektivität von Softwareverifikation, und schaf-
fen neue Chancen für weitere Forschung im Bereich der kooperativen Verifikation.

Abstract

There are two major methods for software verification: testing and formal verifi-
cation. To increase our confidence in software on a large scale, we require tools that
apply these methods automatically and reliably. Testing with manually written tests
is widespread, but for automatically generated tests for the C programming language
there is no standardized format. This makes the use and comparison of automated
test generators expensive. In addition, testing can never provide full confidence in
software—it can show the presence of bugs, but not their absence. In contrast, for-
mal verification uses established, standardized formats and can prove the absence of
bugs. Unfortunately, even successful formal-verification techniques suffer from dif-
ferent weaknesses. Compositions of multiple techniques try to combine the strengths
of complementing techniques, but such combinations are often designed as cohesive,
monolithic units. This makes them inflexible and it is costly to replace components.

To improve on this state of the art, we work towards an off-the-shelf cooperation
between verification tools through standardized exchange formats.

First, we work towards standardization of automated test generation for C.
We increase the comparability of test generators through a common benchmark-
ing framework and reliable tooling, and provide means to reliably compare the bug-
finding capabilities of test generators and formal verifiers.

Second, we introduce new concepts for the off-the-shelf cooperation between
verifiers (both test generators and formal verifiers). We show the flexibility of these
concepts through an array of combinations and through an application to incremen-
tal verification. We also show how existing, strongly coupled techniques in software
verification can be decomposed into stand-alone components that cooperate through
clearly defined interfaces and standardized exchange formats.

All our work is backed by rigorous implementation of the proposed concepts
and thorough experimental evaluations that demonstrate the benefits of our work.
Through these means we are able to improve the comparability of automated veri-
fiers, allow the cooperation between a large array of existing verifiers, increase the
effectiveness of software verification, and create new opportunities for further re-
search on cooperative verification.

Acknowledgements

I owe heartfelt thanks to a number of people that supported, motivated, and
sometimes endured me.

First of all, my late mum. Mum, despite your hurricane-like personality you
managed to push me towards computer science with prophetic peace. The occa-
sional snarky comment about grades aside, you never expected anything but always
believed. You put me on this path that I have been enjoying for so long.

Leonie, my wife and secret crush. Leonie, I strive for your wit and ambition.
Your hand in mine lifts the pressure of a PhD into a breeze, and I look forward to
all the things yet to come.

Dirk, my PhD supervisor. Dirk, you opened more doors than I can count. You
always had time, always understood, always provided ideas and feedback. You in-
fected me with your enthusiasm and motivated me to the sprints so important for
academic publication. I could not have asked for a better mentor.

Off the academic track, I have to thank my dad. Dad, there is little chance you
will ever understand my research topic. But I can always count on you, and your
constant care and help is of immeasurable value.

My collaborators, colleagues, and student assistants—some of you filled more
than one of these roles over the past years. In alphabetic order: Heike Wehrheim,
Jan Haltermann, Lars Grunske, Marie-Christine Jakobs, Matthias Dangl, Matthias
Kettl, and Michael Tautschnig; Gidon, Henrik, Karlheinz, Martin, Marvin, Nian-Ze,
Nico, Philipp, Po-Chun, Stefan, Stephan, Sudeep, and Thomas; Klara Cimbalnik,
Max Wiesholler, Valentin Port, and all the others. Thank you for the fun and pro-
ductive work, the ideas, chatter, and things I learned from you. A special mention is
due to Philipp. You supervised me for many years when I was a student assistant,
and by now it is uncountable how often you immediately jumped to help when there
were technical issues or I needed guidance.

Last, I want to thank Jan Strejček and Jonathan Bell: Thank you for giving
your time and effort for reviewing this thesis.

CONTENTS vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Structure . 3
1.4 Related Work . 4

2 Background 5
2.1 Control-flow Automata as Program Representation 5
2.2 Automated Test Generation . 6
2.3 Automated Formal Verification . 9
2.4 Methodology . 14

3 Towards Standardizing Test Generation (B.1–B.5) 17
3.1 A Level Playing Field for Test-Generation Comparison 17
3.2 Tooling for Comparison of Test Generators 20
3.3 From Verification Witnesses to Tests . 21
3.4 The Current State of the Art in Bug-Finding 22

4 Towards Cooperative Software Verification (B.6–B.9) 23
4.1 Encoding Condition Automata . 23
4.2 Cooperation between Test-Generators . 24
4.3 Condition Automata for Difference Verification 26
4.4 Decomposing Verification Techniques . 27

5 Future Research and Conclusion 29
5.1 Future Research . 29
5.2 Conclusion . 31

Bibliography 33

A Credits 45

viii CONTENTS

B Original Manuscripts 47
B.1 Software Verification: Testing vs. Model Checking 48
B.2 Plain Random Test Generation with PRTest (Competition Contribution) 64
B.3 TestCov: Robust Test-Suite Execution and Coverage Measurement . . . 67
B.4 Tests from Witnesses: Execution-Based Validation of Verification Results 71
B.5 Six Years Later: Testing vs. Model Checking 92
B.6 Reducer-Based Construction of Conditional Verifiers 106
B.7 Conditional Testing: Off-the-Shelf Combination of Test-Case Generators . 118
B.8 Difference Verification with Conditions . 138
B.9 Decomposing Software Verification into Off-the-Shelf Components: An

Application to CEGAR . 160

LIST OF FIGURES ix

List of Figures

2.1 A program as C code and as CFA . 6
2.2 Example for coverage measurement . 7
2.3 Test generation for program P and coverage criterion ϕ 8
2.4 Test-suite adequacy evaluation with a test oracle 8
2.5 The metadata.xml of a Test-Comp 2022 test suite 9
2.6 Shortened test XML of a Test-Comp 2022 test suite 9
2.7 Observer automaton for the safety property that reach_error() may never be

called . 10
2.8 Observer automaton for the safety property that program location l4 may

never be reached . 10
2.9 Exemplary program abstraction for Fig. 2.10 10
2.10 Concrete state space of Fig. 2.1 . 10
2.11 Verification of program P with regards to property φ 11
2.12 Validation of violation witness VW . 11
2.13 Conditional verifier . 13
2.14 Difference in state-space restriction between violation-witness automaton and

condition automaton . 13
2.15 An sv-benchmarks task-definition file . 15

3.1 Example of wrong branch-coverage report by gcov 21

4.1 Reduction of original program and condition into residual program 24
4.2 Reducer . 25
4.3 Test-Goal Extractor . 25
4.4 Difference Computation . 25
4.5 Component-based CEGAR . 27

“Have you tried turning it off and on again?”

1

1 Introduction

1.1 Motivation

Our lifes have been infiltrated by software. Odds are there is a smartphone in your arm’s
reach or a small computer around your wrist; planes, cars and bicycles increasingly rely
on software; the statistical methods of machine learning are used for personal entertain-
ment, healthcare, research, and jurisdiction. Software supercharges humanity.

This reliance can have grave consequences when software malfunctions: (a) The
heartbleed bug [132] in the cryptography library OpenSSL and the log4j bug1 in the
logging library log4j introduced severe security holes in everyday web services. The heart-
bleed bug was fixed two years after its introduction, and the log4j bug was mitigated
only eight years after its introduction. (b) The Mariner 1 spacecraft (due to a faulty
equation) [129], the Mars Climate Orbiter (due to wrong unit conversion) [14], and the
Ariane 5 rocket (due to an integer overflow) [78] all three malfunctioned due to software
bugs, leading to a combined loss of about US$ 600 million. (c) Statistical bugs in the
brain-imaging software AFNI [8] question the results of about every tenth publication on
brain-imaging research within a 15 year period, and a bug in radiation-therapy machine
Therac-25 [105] killed three patients during treatment with lethal radiation overdoses.
The “fixed” software introduced a new integer overflow that killed once more.

These examples are extremes, but, with lesser consequences, software does not behave
as intended on a daily basis: software bugs are so common that we discard them as a
law of nature: software has bugs. But it should not have to be this way.

To be able to fully trust software, many things have to come together. One piece of
this bigger puzzle is the verification of functional safety of software: the check that soft-
ware behaves as intended by their creators. Software systems are increasingly complex,
and manual verification does not scale well. In turn, we need tools that automatically
and reliably verify large-scale software for us. The holy grail we are working towards is
a tool that fully automatically verifies any given software system for us at the push of a
button, and tells us whether it is safe or not.

Because of its wide use in industry, we only consider tools for verification of C pro-
grams. We look at two categories of automatic software verification: Automated test
generation (for software testing), and formal verification (which creates formal correct-
ness proofs or counterexamples).

1
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44832

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44832

2 CHAPTER 1. INTRODUCTION

Approaches to automatically verify software [22, 26, 69] have been extensively re-
searched since Alan Turing [3], but each existing verification technique has different
strengths and weaknesses.

First, we need to understand these strengths and weaknesses. This requires the ex-
perimental evaluation of techniques on a level playing field. Tools for test generation in
C have been living next to each other in isolation and had no standardized formats for
testing or information exchange. But this is a fundamental necessity for fair evaluation
(and later cooperation). We first work towards standardizing formats and improving the
comparability of the different tools through reliable experimental evaluation.

Next, cooperation is necessary: two complementing techniques should not just work
side by side, but cooperate, exchanging information to help each other solve tasks that
neither of the techniques could solve on its own. Many research [19, 40, 89, 97, 107,
108, 109, 112, 115, 119] has combined verification techniques, but these approaches
implement combinations as cohesive units, making them monolithic; inflexible and costly
to exchange individual techniques.

We contrast this: We believe that cooperation must be possible through clearly de-
fined interfaces and in a plug-and-play fashion. This avoids technology lock-in and en-
ables quick adaption of new technologies. Such an off-the-shelf capability for cooperation
requires formats for information exchange. So, as a second step, we inspect an existing,
but hardly used exchange format for formal verification: condition automata [56]. We
make it widely applicable, explore the opportunities it yields, and transfer the concept
from formal verification to test generation.

Last, we show how existing, cohesive verification techniques can be decomposed into
individual components with clearly defined interfaces, increasing their flexibility.

We hope that these building blocks contribute towards safer software.

1.2 Contributions
We provide the following contributions:

• We are the first to provide a common framework (Section B.1) for automated test
generation in C, and we provide additional concepts and tooling for the compar-
ison (Sections B.2 and B.3) and interoperability (Section B.4) of test generators
and formal verifiers.

• We show the potential of formal-verification techniques for testing (Section B.1).
Vice versa, we make formal verification more approachable to software developers
through testing (Section B.4).

• We make the cooperation technique conditional model checking widely usable by
using C programs as medium for information exchange (Section B.6), instead of
the existing proprietary (hardly supported) format.

• We provide a conceptual framework for composition, cooperation and informa-
tion exchange between test generators, by adapting the ideas of conditional model
checking to testing (Section B.7).

• We show the flexibility of conditional model checking through the application to
incremental formal verification (Section B.8).

1.3. STRUCTURE 3

• On the example of counterexample-guided abstraction refinement, we show that
established, cohesive approaches to formal verification can be decomposed, to allow
for more flexibility and fast adaption of new techniques (Section B.9).

All of our work is supported by rigorous implementations. Throughout our work, we
developed the following tools:

• TBF (Section B.1) is an automatic test generation and execution framework for
C programs. It is able to prepare C programs for multiple (back then) state-of-
the-art test generators, create test harnesses for the generated tests from different
proprietary formats, and execute the tests.

• PRTest (Section B.2) is a test generator for C programs. It produces test inputs
with a uniform random distribution and performs incremental test-suite reduction
based on branch coverage.

• TestCov (Section B.3) is a tool for test-suite execution and coverage measure-
ment, with a focus on robust execution and reliable measurement.

• CondTest (Section B.7) is a framework for composition of test generators and
verifiers through conditional testing [58].

We have also contributed multiple components to the software-verification framework
CPAchecker [39] (Sections B.4, B.6, and B.8) and to the cooperative-verification frame-
work CoVeriTeam (Section B.9).

Our research is published in top-tier conferences, including the IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE) and the International
Conference on Software Engineering (ICSE). Our article Software Verification: Testing
vs. Model Checking (Section B.1) received the best paper award at the Haifa Verification
Conference 2017 (HVC 2017).

1.3 Structure
This work connects a selection of my academic publications and is structured as follows:
Chapter 1 explains the motivation, contributions, and related work of this thesis. Chap-
ter 2 provides a broader context and necessary background. Two chapters then provide
an overview of the selected publications: Chapter 3 is concerned with my work towards
standardizing test generation, and Chapter 4 is concerned with my work towards coop-
erative verification and cooperative testing with the help of conditions. Last, Chapter 5
presents potential for future research and concludes this work. Appendix A states my
contributions to each of the works presented in this thesis. Appendix B contains the
original print versions of the presented works.

4 CHAPTER 1. INTRODUCTION

1.4 Related Work
Each of the works in Chapter B discusses its related work separately. Here, we give an
overview on other research fields that also aim to ensure safe software. These can be put
into three categories: (1) automatically generate a correct program, (2) automatically
verify that a program is correct, and (3) interactively verify that a program is correct.

Correctness by Construction. Program synthesis [73] tries to automatically gen-
erate a program that fulfills a given specification. Many synthesis techniques are safe
by construction—i.e., it is proven that a program synthesized through these techniques
fulfills its specification. Examples are enumerative algorithms [73], deductive program
synthesis [94], counterexample-guided inductive synthesis [82, 113], and synthesis based
on constraint-solving [118]. Despite recent advances, program synthesis is mostly limited
to generating individual functions, no full programs.

Automated Formal Verification. We aim to improve the performance of automated
verification through cooperation. But research also continues on individual algorithms
and techniques:

New proof techniques [1, 50, 96, 101] try to compute program proofs faster or find
proofs for problems not solvable before.

New strategies for counterexample-guided abstraction refinement [2], improvements
to static program slicing [84], and new abstract domains [12, 20, 74] try to scale formal
verification through improved program abstractions.2

Compositional techniques [20, 37, 92, 109] analyze program procedures separately
and scale well if fitting procedure summaries are found, but inferring these procedure
summaries may be costly.

Distributed analyses [38, 83, 117] distribute the effort on multiple workers, effectively
reducing the wall time of the analysis while the effort stays the same.

Interactive Formal Verification. In contrast to fully automated verification tech-
niques, deductive verification [75] requires the user to provide contracts about the pro-
gram, usually about the program procedures’ pre- and post-conditions, as well as invari-
ants of unbounded loops. These contracts are then checked and, if correct, used by a
deductive-verification tool to check the correctness of the program.

Deductive verification scales well: Each program procedure can be analyzed indepen-
dently, and, if a procedure is proven correct, the procedure’s post-condition can be used
as summary at each call-site. But it requires the user to provide and refine the procedure
contracts to help the deductive verifier find a proof. These contracts can become lengthy
for non-trivial procedures and may require many person-hours to write.

2We also published work in this area, introducing counterexample-guided abstraction refinement for
symbolic execution [65].

5

2 Background

2.1 Control-flow Automata as Program Representation

Throughout our work, we use simplified views of programs. We assume imperative,
sequential programs. All variables are unbound integer types from Z, all program opera-
tions are defined over variables and integers. The set Vars contains all program variables.
At program entry, variables can have any value. We use two classes of program oper-
ations: variable assignments and assumptions. A variable assignment x = exp assigns
the value of an expression exp to program variable x ∈ Vars. An assumption [p] re-
stricts the program’s control flow to program states that fulfill the condition p. The
set Ops contains all possible program operations. We generally describe our approaches
for intraprocedural programs and do not consider function calls. But there are two
function-call-like exceptions with a special meaning in our representation: (1) To sig-
nal the introduction of non-deterministic values in the program, we use assignments x =

nondet(), x = __VERIFIER_nondet_int(), or the question mark x = ?. We call pro-
gram variables that are assigned a non-deterministic value input variables. In practice,
an input variable may receive its value from a sensor, a file, the program user, et cetera.
(2) To signal a specification violation, some publications use statements reach_error(),
__VERIFIER_error(), or similar. Throughout this work, we combine programs under
analysis with information that is expressed as automata or graphs. Thus, a graph-based
view of programs is helpful: We represent programs as control-flow automata (CFA) [57].
A CFA P = (L,E, l0) is a graph with nodes L (program locations), edges E ⊆ L×Ops×L
(control-flow edges), and an entry l0 (program entry). A CFA represents the program’s
control flow, starting at program entry l0. Transition from a program location l to
another l′ is possible if an edge (l, op, l′) exists between the two and there is a valid
evaluation of op according to the assumed program semantics. If a CFA node l has a
predecessor node with more than one successor node, then l starts a new branch.

Figure 2.1 shows an example program, represented in the C programming language
and as CFA. Here, variable n is an input variable. The program starts at l1. Through
evaluation of assignments x = 0 and n = nondet(), control goes to program location l3.
Locations l4 and l7 start new branches: control goes to l4 if assumption [x < n] is
satisfiable. Otherwise, control goes to l7.

We represent the program-state space as concrete states C ⊆ L× (Vars → Z), where
the first element l ∈ L represents the current location in the program.

6 CHAPTER 2. BACKGROUND

1 int main(void) {

2 unsigned int x = 0;

3 unsigned short n = nondet();

4 while (x < n) {

5 x += 2;

6 }

7 if (x % 2 == 0) {}

8 else

9 reach_error();

10 }

l1

l2

l3

l4

l5

l7

l9

l10

x = 0

n = nondet()

[x < n]

x = x + 2

[!(x < n)]

[x % 2 = 0]

[!(x % 2 = 0)]

reach_error()

0

In-

put

Figure 2.1: A program as C code and as CFA

2.2 Automated Test Generation

Software Tests. A test input t = 〈v0, . . . , vn〉 is a sequence of n input values for a
single program execution. When an input variable gets assigned a new non-deterministic
value during program execution with t, the next input value vi is used for the assignment.
For example, given the program

1 int a;

2 for (int i = 0; i < 2; i++) {

3 a = nondet();

4 }

and test input t = 〈224, 65〉, the program execution with t first assigns 224 to a, and
then assigns 65 to a. Given the program

1 int a = nondet();

2 int b = nondet();

and the same t, the program execution with t assigns 224 to a and 65 to b.
A software test consists of a test input and an expected program behavior. In our

work, the expected program behavior is extrensic to the test: When we generate a test,
only the test input is generated, no expected behavior for this input. The expected
behavior is either available separately (e.g., function reach_error may never be called,
there may be no unsigned overflow in the program), or implied (e.g., the program should
never crash). From now on we use the term test interchangeably with the term test input.
A collection of tests is called a test suite.

2.2. AUTOMATED TEST GENERATION 7

l1

l2

l3

l4

l5

l7

l9

l10

x = 0

n = nondet()

[x < n]

x = x + 2

[!(x < n)]

[x % 2 = 0]

[!(x % 2 = 0)]

reach_error()

0
Input

(a) Program with two sets of coverage goals: Cov-
erage goals for branch coverage are l4, l7, l9, l10.
Coverage goal for reach_error() is l9.

l1

l2

l3

l4

l5

l7

l9

l10

x = 0

n = nondet()

[x < n]

x = x + 2

[!(x < n)]

[x % 2 = 0]

[!(x % 2 = 0)]

reach_error()

0
Input

(b) Test coverage recorded during execution of test
with input value ‘0’: l1, l2, l3, l7, l10

Figure 2.2: Example for coverage measurement

Coverage Goals. It is impossible to proof program safety through testing for all but
the simplest programs. Instead, the confidence in a test suite’s expressiveness is indi-
cated with adequacy criteria. Adequacy criteria can be based on different information:
Examples are a behavior specification of the program (e.g., category partitions or state
transitions), extrinsic information (e.g., seeded faults or program mutations [7, 103,
104]), or the program structure (e.g., error methods, branch coverage, or modified con-
dition/decision coverage [88]). We focus on the latter. For adequacy criteria based on the
program structure, the required and actual code coverage can be precisely measured—
because of this, we call these coverage criteria. The specification language FQL [11]
provides flexible means to formally define them. A coverage criterion consists of a set of
coverage goals. A coverage goal is a projection on the CFA: a program location, edge, or
any combination thereof [11]. To cover a coverage goal, a test must cover all components
of the coverage goal in a single execution. For example, coverage goal @l3 (written in
FQL) requires a test’s execution to pass through l3, and coverage goal @l3.@l4.@l4 re-
quires a test’s execution to first pass through l3 and then at least two times through l4.
For the sake of presentation, we only consider single program locations (like @l3) as cov-
erage goals. Program transformations [98] can be used to map the coverage goals of a
coverage criterion from one to another.

We first consider the coverage criterion that all calls to function reach_error are
covered, defined in FQL as COVER EDGES(@CALL(reach_error)). For the program from
Fig. 2.1, the only call to reach_error is at l9. Let us assume we had a test suite T S{0}
that contains a single test with input value 0 for the single input variable n. Figure 2.2(b)
shows in green all program locations that T S{0} covers: l1, l2, l3, l7, and l10. Since it

8 CHAPTER 2. BACKGROUND

P

ϕ

Test-Generation
Task

Test
Generator T S

P

T S

Test-generation Task

Test Oracle
(for ϕ) %

True

False

Figure 2.3: Test generation for program P
and coverage criterion ϕ

Figure 2.4: Test-suite adequacy evaluation
with a test oracle

does not cover l9, T S{0} is not an adequate test suite. (Note that testing can not prove
that l9 is actually never reachable.)

Next, we consider the coverage criterion branch coverage, also known as decision
coverage: It requires that all branches in the program are covered by the test suite,
defined in FQL as COVER EDGES(@DECISIONEDGE). In Fig. 2.2(a), the coverage goals for
branch coverage are highlighted with a dashed, orange outline: @l4, @l7, @l9, and @l10.
Test suite T S{0} covers 2 out of 4 goals: @l7 and @l10. This is reported as 50 % coverage.

Test Generation. A test generator aims to generate a test suite for a given program
and a given coverage criterion (Fig. 2.3). While a software developer that writes tests
manually can be considered a test generator, we only consider automated generators that
are not guided by any user feedback. Different approaches exist for test generation [18,
40, 67, 76, 84, 85, 87, 91, 95, 108, 115, 116, 124]. From purely random [124], over coverage-
guided fuzzing [95, 114], to exhaustive state-space exploration [18, 40, 87]. We do not
propose new generation strategies, but use, combine, and evaluate existing tools.

Test Oracle. A test oracle (Fig. 2.4) for a given adequacy criterion receives the pro-
gram under test and a test suite and returns whether (or to which degree) this test suite
fulfills the adequacy criterion on the program under test. Up to now (2022), all four edi-
tions of Test-Comp use our tool TestCov (Section B.3) as test oracle.

Test-Suite Representation. The First International Competition on Software Test-
ing (Test-Comp 2019) [25] introduced a common format for test suites. In this format,
a test suite is represented by multiple files: A metadata.xml (Fig. 2.5) provides infor-
mation about the test suite, and for each test there is one individual file (Fig. 2.6) that
defines this test’s input values. All tools that participate in Test-Comp must output
generated test suites in this format. This improves comparability and enables an easier
integration of test generators in combination frameworks (Section B.7).

https://test-comp.sosy-lab.org/2019/
https://test-comp.sosy-lab.org/2019/

2.3. AUTOMATED FORMAL VERIFICATION 9

1 <?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
2 <!DOCTYPE test-metadata PUBLIC ”+//IDN sosy-lab.org//DTD test-format

test-metadata 1.0//EN”
”https://sosy-lab.org/test-format/test-metadata-1.0.dtd”>

↪→

↪→

3 <test-metadata>

4 <entryfunction>main</entryfunction>

5 <specification>COVER(init(main()), FQL(COVER EDGES(@DECISIONEDGE))

)</specification>↪→

6 <sourcecodelang>C</sourcecodelang>

7 <architecture>64bit</architecture>

8 <creationtime>2021-12-16T07:12:02.605508</creationtime>

9 <programhash>2f962093ad51cdfe116605a386faa8d78d826b9f</programhash>

10 <producer>FuSeBMC v.4.1.14</producer>

11 <programfile>[...]/sqlite/sqlite_merged_comb.i</programfile>

12 </test-metadata>

Figure 2.5: The metadata.xml of a Test-Comp 2022 test suite

1 <?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
2 <!DOCTYPE testcase PUBLIC ”+//IDN sosy-lab.org//DTD test-format testcase

1.0//EN” ”https://sosy-lab.org/test-format/testcase-1.0.dtd”>↪→

3 <testcase>

4 <input type=”int”>15</input>

5 <input type=”char”>0</input>

6 <input type=”char”>7</input>

7 [...]

8 </testcase>

Figure 2.6: Shortened test XML of a Test-Comp 2022 test suite. Typing values is optional.

2.3 Automated Formal Verification

Program Properties. Programs have liveness properties and safety properties [111].
A liveness property requires that a program can always reach a wanted state. A safety
property requires that a program never reaches an unwanted state. In this work, we focus
on verification techniques for safety properties. From now on, we use the terms property
and safety property interchangeably.

We can express safety properties as finite automata, called observer automata. For
a program P = (L,E, l0), an observer automaton OP = (Q, 2E , δ, q0, F) consists of a
set Q of states, the alphabet 2E of sets of CFA edges, transitions δ : Q × 2E × Q, an
initial state q0, and a set F ⊆ Q of accepting states. Accepting states represent violated
properties. Figure 2.7 shows the safety property that we focus on in most of our work: If
reach_error() is called at any point during program execution, the property is violated.

Any (set of) coverage goals can be expressed as safety property. For example, for
coverage goal @l4, the corresponding safety property is that the program may never

10 CHAPTER 2. BACKGROUND

q0 qe

(·, reach_error(), ·)
otherwise

Figure 2.7: Observer automaton for the
safety property that reach_error() may
never be called

q0 qe

(·, ·, l4)
otherwise

Figure 2.8: Observer automaton for the
safety property that program location l4
may never be reached

l1, x 7→ 0, n 7→ 0… …

l2, x 7→ 0, n 7→ 0

l3, x 7→ 0, n 7→ 0l3, x 7→ 0, n 7→ −1 l3, x 7→ 0, n 7→ 1 l3, x 7→ 0, n 7→ 2 l3, x 7→ 0, n 7→ 3 l3, x 7→ 0, n 7→ 4

l7, x 7→ 0, n 7→ 0l7, x 7→ 0, n 7→ −1

l10, x 7→ 0, n 7→ 0l10, x 7→ 0, n 7→ −1

l4, x 7→ 0, n 7→ 1

l5, x 7→ 2, n 7→ 1

l3, x 7→ 2, n 7→ 1

l7, x 7→ 2, n 7→ 1

l10, x 7→ 2, n 7→ 1

l4, x 7→ 0, n 7→ 2

l5, x 7→ 2, n 7→ 2

l3, x 7→ 2, n 7→ 2

l7, x 7→ 2, n 7→ 2

l10, x 7→ 2, n 7→ 2

l4, x 7→ 0, n 7→ 3

l5, x 7→ 2, n 7→ 3

l3, x 7→ 2, n 7→ 3

l4, x 7→ 0, n 7→ 3

l5, x 7→ 4, n 7→ 3

l3, x 7→ 4, n 7→ 3

l7, x 7→ 4, n 7→ 3

l10, x 7→ 4, n 7→ 3

l4, x 7→ 0, n 7→ 4

l5, x 7→ 2, n 7→ 4

l3, x 7→ 2, n 7→ 4

l4, x 7→ 0, n 7→ 4

l5, x 7→ 4, n 7→ 4

l3, x 7→ 4, n 7→ 4

l7, x 7→ 4, n 7→ 4

l10, x 7→ 4, n 7→ 4

......

… …

l1, true

l2, x% 2 = 0

l3, x% 2 = 0

l4, x% 2 = 0

l5, x% 2 = 0

l7, x% 2 = 0

l10, true

x = 0

n = nondet()

[x < n] [!(x < n)]

x += 2 [x % 2 = 0]

Figure 2.9: Exemplary pro-
gram abstraction for Fig. 2.10

Figure 2.10: Concrete state space of Fig. 2.1

reach l4 (Fig. 2.8). We exploit this relation in Section B.7 to make formal verifiers target
branch coverage.

Program-State Reachability. To show that a program P violates a safety property
represented by OP , verification techniques search for a counterexample to the property;
i.e., a program execution whose sequence of CFA edges are an accepted input to OP . Such
a sequence of CFA edges can also be implied by a test input. Analogous, to show that a
program fulfills a safety property, verification techniques have to show that there exists
no violating program execution. Figure 2.10 shows an excerpt of the infinite, concrete
program-state space of Fig. 2.1. The concrete states are structured according to their
predecessor-successor relation of a potential program execution. At the program entry l1,
there is an infinite number of possible concrete states for the still-unassigned program
variables x and n. We restrict our excerpt to the program-state space for x 7→ 0, n 7→ 0.

2.3. AUTOMATED FORMAL VERIFICATION 11

P 6|= φ

Unknown

P |= φ

P

φ

Verification
Task

Formal
Verifier

CW

VW

Unconfirmed

Confirmed
P

φ

VW

Witness
Validator

VW

Figure 2.11: Verification of program P
with regards to property φ

Figure 2.12: Validation of violation wit-
ness VW (analogous for correctness wit-
nesses)

At l3, because input variable n is not constrained, it may take any value. This means
that the loop in the program may be unrolled an indefinite amount of times, and that
there is an infinite number of possible concrete states.

Since testing can only prove a program safe through explicitly enumerating all feasible
program executions like this, it does not scale.

Formal Verification. Formal verification [69] checks whether a program P fulfills a
property φ, formally P |= φ. If P |= φ, we say that P is correct with regards to φ. If
P 6|= φ, we say that P is incorrect with regards to φ.

Most formal verification techniques [26] construct correctness proofs through abstrac-
tion [110]: they use an abstraction to the concrete program and exhaustively explore that
abstraction’s state space. If no state violates the program property, the program is safe
with regards to the checked property. Figure 2.9 shows an abstract state-space explo-
ration for Fig. 2.1 and the property that reach_error is never called. The exploration
uses a simplified view on predicate abstraction [123] with predicates true and x% 2 = 0.
It represents sets of concrete states through the current program location l ∈ L and
either constraint true (any concrete state at l) or constraint x % 2 = 0 (any concrete
state at l whose variable assignment fulfills x%2 = 0). Formally, the concrete state space
represented by such an abstract state is [[(l, p)]] = {(l, σ) ∈ C | σ |= p}.

The color of each abstract state in Fig. 2.9 signals the set of concrete states of
Fig. 2.10 that it represents. Because the concrete value of n is arbitrary in all abstract
states, and the value of x is known to be x % 2 = 0 at l7, the constructed abstract
state space is finite: For each program location, it only requires a single abstract state
that represents all concrete states possible at that location. Thanks to the predicate,

12 CHAPTER 2. BACKGROUND

the program abstraction can still proof that the CFA edge (l7, [!(x % 2 = 0)], l9) that
leads to reach_error() is never feasible.

Using a suitable program abstraction is essential for reliably proving a program safe.
Different approaches exist for this (e.g., [12, 15, 21, 79, 122]) with different strengths
and weaknesses. Chapter 4 works towards combining approaches to profit from their
strengths and mitigate their weaknesses.

Verification-Result Witnesses. To increase the confidence in verification results,
a formal verifier (Fig. 2.11) produces a verification-result witness: For P |= φ a cor-
rectness witness CW, and for P 6|= φ a violation witness VW. These witnesses can be
checked by independent witness validators [49]. A witness validator (Fig. 2.12) tries to
reconstruct the verification result from program P and property φ with the help of the
witness. If this is successful, the verification result is confirmed. If it is not successful,
the verification result stays unconfirmed. The verification result is not rejected per se,
because the reason for a missing confirmation is not necessarily a wrong verdict; for ex-
ample, validator CPA-w2t (Section B.4) can only validate violation witnesses that specify
all input values. A witness validator can provide additional information to a confirmed
verification result through a more detailed witness, called testification [48]. We use testi-
fication for violation witnesses in Section B.4 to generate from imprecise witnesses more
precise witnesses that contain all information that is required to create test inputs.

A witness consists of two parts: metadata about the verification task, and a witness
automaton with information that helps to recompute the claimed verification result. The
type of witness automaton differs for violation witness and correctness witness. This work
focuses on violation witnesses.

For a program P = (L,E, l0), a source-code guard e ⊆ E is a set of CFA edges. A
state-space guard ψ ⊆ C is a set of concrete program states. Set Φ contains all possible
state-space guards. Violation-witness automata use source-code guards and state-space
guards to restrict the program-state space to an (ideally small) subset that contains the
claimed property violation.

For a program P = (L,E, l0), a violation-witness automaton W = (Q,Σ, δ, q0, F) is
a finite automaton that consists of a set Q of states, alphabet Σ ⊆ 2E × Φ of source-
code guards and state-space guards, transitions δ : Q× Σ×Q, initial state q0 ∈ Q, and
accepting states F ⊆ Q that represent that the claimed property violation is reached.
For a transition (q, (e, ψ), q′), the source-code guard e allows the transition from q to q′ if
the next control-flow edge is in e. After transitioning to q′, state-space guard ψ restricts
the set of concrete program states to ψ.

In some of our work, we use violation witnesses with only source-code guards. In
consequence, we omit state-space guards in these representations of violation-witness au-
tomata —at each edge, the state-space guard is the trivial guard C.

For storage and exchange between tools, we use the exchange format1 [49] for wit-
nesses that is based on XML/GraphML [125]. This format is supported by all SV-COMP
participants since SV-COMP 2015 [30] and is—to the best of our knowledge—the only

1
https://github.com/sosy-lab/sv-witnesses

https://github.com/sosy-lab/sv-witnesses

2.3. AUTOMATED FORMAL VERIFICATION 13

P 6|= φ

P |= φ if Ψ

P |= φ

P

φ

Ψ′

Conditional
Verifier

CW

VW

Ψ

true

false

Figure 2.13: Conditional verifier

q

q0

err

Figure 2.14: Difference in state-space re-
striction between violation-witness au-
tomaton (red, dashed) and condition au-
tomaton (yellow, dotted)

widely adopted exchange format for verification-results that allows to encode semantic
information for reasoning about the result.

Conditional Verification. A verifier may neither be able to prove a property, nor
find a counterexample. Reasons could be missing language support or resource exhaus-
tion (e.g., the verification task requires more memory than available). In this case, a
conditional verifier [56] (Fig. 2.13) produces a condition Ψ under which the program is
safe. Another conditional verifier can then take Ψ as input (in addition to P and φ) to
restrict its verification work to those parts of P that are not already covered by Ψ.

The first work on conditional verification [56] (on that we also base our work with
formal verifiers [42, 44]) introduces conditions as finite automata: For a program P =
(L, l0, E), a condition is a finite automaton Ψ = (Q,Σ, δ, q0, F) of states Q, alpha-
bet Σ ⊆ 2E ×Φ of source-code guards and state-space guards, transitions δ : Q×Σ×Q,
initial state q0 ∈ Q and accepting states F ⊆ Q that represent that the program is safe
from this point forward. We say that any program execution leading to an accepting
state is covered by Ψ. But if analysis reaches a state from which no accepting state is
reachable, the program may be unsafe beyond this point. In practice, this is signaled
with sink states (states without any outgoing edges).

Similar to violation-witness automata, a condition automaton restricts the program-
state space to a sub-space of interest; but its interpretation is different: a violation-
witness automaton restricts the program-state space to only those program paths that
(it claims) end in a property violation; a condition automaton restricts the program-state
space implicitly to program paths that it could not prove safe.

Figure 2.14 illustrates this. When an analysis reaches an accepting state q ∈ F in
a violation-witness automaton, it can always stop exploration of this sub-space (red,
dashed area in Fig. 2.14) of the program-state space: either confirm a property violation
at that state, or not. When a sink state q in a condition automaton is reached, this

14 CHAPTER 2. BACKGROUND

does not claim a property violation at that state. Instead, an analysis should verify the
full state space that is still reachable from this location (yellow, dotted area below q in
Fig. 2.14). This state space may contain a property violation (in Fig. 2.14, location err).

The similarity of violation-witness automaton and condition automaton is captured
in the concept of protocol automata [48], a more generic type of non-deterministic finite
automata that does not define the meaning of accepting states. This requires additional
information about how to interpret the automaton. (for example, “like a violation-witness
automaton” or “like a condition automaton”).
Note: We silently generalized the original term conditional model checking [56] to the
more generic term conditional verification [44] to signal that this concept is not limited to
model checkers; it can be used with arbitrary types of verification techniques. Conditional
verification is the conceptual idea described above, independent of the condition type
and verifiers used. Conditional model checking is conditional verification with condition
automata and formal verifiers.

CPAchecker. CPAchecker2 [39] is a software-analysis framework with a modular struc-
ture. It consistently achieves good results at SV-COMP, is actively maintained, and is
designed for integration and combination of new algorithms. CPAchecker supports wit-
ness generation as a verifier, violation-witness [48] and correctness-witness [47] validation,
and conditional model checking [56]. For these reasons, we used it to implement multiple
of our proposed concepts.

2.4 Methodology

Often, we show the effect of the proposed concepts and tools through experimental
evaluations and comparison with the state of the art. For this, we follow the methodol-
ogy of the International Competition on Software Verification (SV-COMP) [26] and the
International Competition on Software Testing (Test-Comp) [22], explained below.

Benchmark Set. Throughout our work, we use the sv-benchmarks3 benchmark set—
the largest available benchmark set for automated software verification on C programs.
In sv-benchmarks, a benchmark task can be a verification task or a test-generation
task. A verification task [30] consists of a program (given as C source code) and a
program property to check. The benchmark task also specifies the expected verifica-
tion verdict. Multiple program properties exist in sv-benchmarks; our work focuses on
the reachability property unreach-call, which specifies that a certain error method
(__VERIFIER_error or reach_error) may never be called.

A test-generation task [32] consists of a program (given as C source code) and a cov-
erage criterion that should be fulfilled by a generated test suite. Two coverage criteria
exist: Criterion coverage-error-call requires a test suite to cover at least one call

2
https://cpachecker.sosy-lab.org/

3
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/

https://cpachecker.sosy-lab.org/
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/

2.4. METHODOLOGY 15

1 format_version: '2.0'

2

3 input_files: 'aws_add_size_checked_harness.i'

4

5 properties:

6 - property_file: ../properties/unreach-call.prp

7 expected_verdict: true

8 - property_file: ../properties/coverage-branches.prp

9

10 options:

11 language: C

12 data_model: LP64

Figure 2.15: An sv-benchmarks task-definition file

to a certain error method (__VERIFIER_error or reach_error). Criterion coverage-

branches requires a test suite to cover all program branches. For all benchmark tasks
with coverage criterion coverage-error-call it is known that at least one error-method
call is reachable in the program; i.e., the criterion can always be fulfilled. For bench-
mark tasks with coverage criterion coverage-branches, it is not known whether all
program branches are reachable. This means that there may be tasks where coverage
can not reach 100 %.

Tasks in sv-benchmarks are defined by task-definition files in the YAML format [32].
Figure 2.15 shows an example task-definition file that defines two tasks with program
'aws_add_size_checked_harness.i': One verification task with property unreach-call

(which is true; i.e., no call to the error method is reachable), and one test-generation task
with coverage criterion coverage-branches.

Benchmark tasks are grouped into categories. For example, category ReachSafety-

BitVectors contains benchmark tasks that require a verifier to reason about bitwise
operations (e.g., x « 2 or z = x ^ y) and category SoftwareSystems-AWS-C-Common-

ReachSafety contains benchmark tasks from the AWS C Common software library4.
Each benchmark program uses methods X __VERIFIER_nondet_X() to introduce

new non-deterministic values, where X is a primitive data type of C. These methods are
declared, but not implemented. Their meaning is implied through the SV-COMP and
Test-Comp rules. Example methods are int __VERIFIER_nondet_int() and float

__VERIFIER_nondet_float().

Computing Resources. In our experiments, we limit each tool execution on a bench-
mark task to the same limits as SV-COMP and Test-Comp: 900 s of CPU time and
15 GB of memory (RAM). Experiments are distributed on a cluster of equally config-
ured machines with Intel processors—the latest iteration of the cluster uses 168 machines
from 2015. Each machine runs Ubuntu Linux, has a single 8 core Intel Xeon E3-1230 v5

4
https://github.com/awslabs/aws-c-common

https://gitlab.com/sosy-lab/benchmarking/task-definition-format/-/blob/f235a18a57ac9c18597c299d9d031cd0451c5bc5/README.md
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/ad265d07a04053bfcd80626ac1d30cec2d1c254e/c/aws-c-common/aws_add_size_checked_harness.i
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/ad265d07a04053bfcd80626ac1d30cec2d1c254e/c/ReachSafety-BitVectors.set
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/ad265d07a04053bfcd80626ac1d30cec2d1c254e/c/ReachSafety-BitVectors.set
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/ad265d07a04053bfcd80626ac1d30cec2d1c254e/c/SoftwareSystems-AWS-C-Common-ReachSafety.set
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/ad265d07a04053bfcd80626ac1d30cec2d1c254e/c/SoftwareSystems-AWS-C-Common-ReachSafety.set
https://github.com/awslabs/aws-c-common

16 CHAPTER 2. BACKGROUND

CPU with 3.40GHz, and 32 GB of memory. This computing power is similar to today’s
consumer machines.

Relevant Measurements. In our evaluations, we often use two measures to compare
efficiency and effectiveness: CPU time and the overall number of results.

In contrast to the wall time, the CPU time is the process time the CPU actually
spent computing. This measurement is agnostic of slow I/O operations and the number
of CPU cores used by a tool. For example, if 4 CPU cores work 5 s each on a task in
perfect parallelism, the wall time is 5 s, but the CPU time is 20 s (4 ∗ 5 s). If a single
CPU core waits 9 s for I/O and then computes for 1 s, the wall time is 10 s, but the
CPU time is 1 s. Thus, the CPU time is useful to measure the efficiency of a tool: the
actual computing effort the tool requires to perform a task.

For verification tasks, we differentiate between the following verification results:
• Correctly solved safe task (correct proof). The tool successfully claims the program

to be correct with regards to the property.
• Correctly solved unsafe task (correct alarm). The tool successfully claims the pro-

gram to be incorrect with regards to the property.
• Incorrectly solved safe task (incorrect proof). The tool claims the program to be

correct with regards to the property, but it is actually incorrect.
• Incorrectly solved unsafe task (incorrect alarm). The tool claims the program to

be incorrect with regards to the property, but it is actually correct.
• Unknown result. The tool did not reach a verdict.
The number of correct results reflects the effectiveness of a tool, while the number

of incorrect results reflects its imprecision.
For test-generation tasks, we get the effectiveness of a tool through the achieved

coverage of the generated test-suite (measured with TestCov, Section B.3).
Other measures for performance comparisons are wall time (already mentioned),

memory usage, and energy consumption. We focus on run time to measure efficiency
instead of memory usage, because, if our approaches fail to solve a verification task, this
is almost exclusively because they reach the time limit. Energy consumption expresses
the amount of energy (in kJ) the computation of a task requires. While this correlates
with run time, there is no strict relation between the two. Thus, energy consumption
would be a valuable supplement to run time, but reliable measurement has only become
possible lately [23, 53]. To achieve reliable measurements of resource-consumption, we
use BenchExec5 [54].

5
https://github.com/sosy-lab/benchexec/

https://github.com/sosy-lab/benchexec/

17

3 Towards Standardizing Test
Generation (B.1–B.5)

3.1 A Level Playing Field for Test-Generation
Comparison

Software testing is universal in software development, but formal verification is hardly
used. In the article “Software Verification: Testing vs. Model Checking” (Section B.1),
we ignore potential other reasons for this, and examine whether testing is actually better
at finding bugs than formal verification.

Formal verification is often seen as a means to prove the safety of software, which
requires large effort and expertise. But our article shows that the program abstractions
of formal verification techniques are effective at finding bugs, as well: In some way, a
formal verifier that finds a fitting abstraction to a program is more precise than dynamic
test execution, because actually irrelevant program parts are not explored. [70]

To show this, we compare the bug-finding capabilities of existing state-of-the-art
test generators and formal verifiers for C programs. We select six test generators with
different backgrounds: two test generators use formal-verification techniques tuned for
testing [10, 34], one test generator uses symbolic execution [18], one test generator uses
concolic execution [130], and one test generator uses random fuzz testing [95]. As a
baseline, we implement a plain random tester (an early version of PRTest [124]). As
formal verifiers, we select the four top-performers at finding bugs in the International
Competition on Software Verification 2017 (SV-COMP 2017) [31].

Requirements for Reliable Comparison. For reliable comparison, it is necessary
to have a well-defined benchmark-task set in a format that all tools understand. In
addition, all tools have to use the same output format for verification results, so that
results can be processed uniformly.

These conditions are met by formal verifiers: SV-COMP [24] establishes standardized
formats [27] for verification tasks and verification results. For verification tasks, it uses
the sv-benchmarks1. This benchmark set is community-driven and constantly expanding,
contains explicitly annotated errors, puts great effort in removing all undefined behavior

1
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/

18 CHAPTER 3. TOWARDS STANDARDIZING TEST GENERATION

in programs2, and structures benchmark tasks in categories with different focus. For ver-
ification results, SV-COMP uses the exchange format for verification-result witnesses [48].

For test generators for C, there existed no comparable standard before the first itera-
tion of the International Competition on Software Testing [25]. To mitigate this, we built
the framework TBF [64] that adjusts inputs to each test generator’s expected format,
and parses test generators’ different output formats into a single unified structure.

Benchmark Set for Test Generation. The research in testing C programs has no
standard benchmark to compare against: Many works [18, 77, 90, 91, 106] use different
real-world C code, most prominently the GNU coreutils3 and GNU grep4. But this
real-world software contains undefined behavior that may be interpreted differently by
different test generators and it is unknown how many bugs exist at which locations. To
provide a well-defined alternative, we turn the verification tasks of sv-benchmarks into
test-generation tasks.

Each of the selected test generators requires the program to mark inputs for which
to generate test input in different ways:

• AFL-fuzz [95] requires a program under test to read test input from a file in any
way it likes. The file is passed to the program as command-line argument.

• CPATiger [34] uses function input() to mark input; for example x = input().
• Crest-PPC [130] uses special C macros CREST_X(x) with primitive type X to mark

program variable x of type X as input; for example CREST_int(x).
• FShell [9] assumes that any function without existing definition and any of C’s

scanf methods read input.
• Klee [18] uses the function klee_make_symbolic(”x”, &x, sizeof(x)) to mark

program variable x as input.
• PRTest [124] uses the sv-benchmarks methods. For example, the program state-

ment x = __VERIFIER_nondet_int() introduces a new input value of type int.
Of the selected test generators, only FShell and CPATiger allow to specify a cov-

erage criterion. We specify branch coverage. AFL-fuzz uses a coverage criterion similar
to condition coverage, Klee and Crest-PPC use condition coverage. PRTest does not
consider any coverage criterion, but indefinitely generates new random tests.

Test-Suite Formats. JUnit is a vastly popular framework for writing program tests
for Java and often used in test-generation research [16, 72, 127]. But no comparably
established framework exists for C. Instead, test generators for C produce test-suites in
almost arbitrary formats. The test generators that we consider use the following formats:

• AFL-fuzz [95] stores each generated test as an individual file. The (binary) content
of the file is the test input.

• CPATiger [34] stores all generated tests in a single file in a JSON-like structure.
2SV-COMP participants are incentivized to find undefined behavior in programs to improve their

tool’s performance in the competition.
3
https://www.gnu.org/software/coreutils/

4
https://www.gnu.org/software/grep/

https://www.gnu.org/software/coreutils/
https://www.gnu.org/software/grep/

3.1. A LEVEL PLAYING FIELD FOR TEST-GENERATION COMPARISON 19

• Crest-PPC [130] stores all generated tests in a single file. Each line in that file is
an individual test with comma-separated input values.

• FShell [9] stores all generated tests in a single file; in a format similar to CPATiger,
but not equal.

• Klee [18] stores each generated test as an individual file, in a proprietary binary
format. It ships a tool for both inspecting and executing the generated tests. This
tool outputs a list of the name, size and value of each input.

• PRTest [124] stores each generated test as an individual file. Each line in that file
is one input value.

TBF. Our tool TBF adds implementations for all methods __VERIFIER_nondet_X()
to match the test generator’s expectations. For example, for Crest-PPC, TBF defines:

1 int __VERIFIER_nondet_int() {

2 int __sym;

3 CREST_int(__sym);

4 return __sym;

5 }

TBF understands the six different output formats for test suites, converts them into
a uniform internal structure, and executes that the same way for each tester.

For execution, TBF defines method __VERIFIER_error in the program under test
to make its calls easily observable:

1 int __VERIFIER_error() {

2 fprintf(stderr, ” __TBF_error_found.\n”);

3 exit(1);

4 }

When __VERIFIER_error is called during a test execution, TBF reports that the
test suite successfully covered the error. This way, TBF enables us to benchmark the
bug-finding capabilities of test generators for C with the sv-benchmarks.

Results. We compare the results of the test generators executed with TBF to the
formal verifiers of SV-COMP. We use the same machines and resource limits as SV-
COMP 2017: 900 s of CPU time and 15GB of memory.

To make sure that formal verifiers do not get an advantage because they are imprecise
and guess lucky, we make sure that they are of high precision (only 3 false alarm across all
4 203 error-free verification tasks) and we run witness validation to confirm the reported
bugs. The results show that the union of all formal verifiers is able to find bugs in more
benchmark tasks than the union of all test generators: All formal verifiers find bugs in
979 tasks (with confirmed results), while test-generators only find bugs in 887 tasks.
The best individual formal verifier (based on confirmed results) is CPA-Seq [100]: it finds
bugs in 857 tasks. The best test generator is Klee [18]: it finds bugs in 826 tasks.

20 CHAPTER 3. TOWARDS STANDARDIZING TEST GENERATION

The union of all tools is also better than the union of all formal verifiers, with
1 068 tasks. This shows us that combinations between testing and formal verification
may be fruitful.

Test-Comp. In 2018, Test-Comp introduced standardized formats for both bench-
mark tasks and test suites. Thanks to this, we do not require TBF anymore, but can per-
form comparative evaluations within the Test-Comp framework. In consequence, TBF’s
tool development stopped and the repository has been archived.

3.2 Tooling for Comparison of Test Generators

Test-Generation Baseline. Verifiers are often compared to the state of the art, but
no comparison to a simple-to-understand baseline is made. This increases the risk that
some easy-to-get coverage goals or program-language features are missed by all state-of-
the-art approaches. In the article “Plain Random Test Generation with PRTest (Com-
petition Contribution)” (Section B.2), we present the tool PRTest, a plain, random test
generator for C programs. PRTest compiles a test harness that generates uniformly dis-
tributed test inputs against the program under test and executes it repeatedly. Because
programs are compiled with common C compilers and no program characteristics are
considered, PRTest supports the same language constructs that the compiler supports.
This full language support and simple approach makes PRTest a good baseline for com-
parison. It participated in all iterations of Test-Comp and continuously shows that even
the well-performing test-generation approaches have weaknesses.

For example, it is visible that in Test-Comp 2022 category Cover-Error , only the
tools FuSeBMC [86], VeriFuzz [114], and LibKluzzer [76]5 can find bugs in all the tasks
that PRTest can find the bugs for.

Reliable Coverage Measurement. In practice, to measure the code coverage of a
test suite for C, gcov6 and llvm-cov7 are used. Unfortunately, these tools do not measure
branch coverage based on the input source code, but based on an internal representation
that splits Boolean operators into multiple branches. Figure 3.1(a) shows an example for
this: Given the inputs −1 (for x) and 0 (for y), the program will enter the else-branch
and the expected branch coverage is 50%. But gcov and llvm-cov both report a coverage
of 25%, because the condition in line 6 is split into two branches internally (Fig. 3.1(b)).

In addition, there are known bugs [131] related to the tools’ coverage measurement.
Last, coverage measurement is accumulated across test executions. But test executions
may influence each other (for example, because of file-system changes), and tests may
provoke unwanted program behavior (e.g., spawning an indefinite amount of processes,
or consuming all system memory).

5LibKluzzer fails to solve one task that PRTest can solve due to an out-of-memory error
6
https://gcc.gnu.org/onlinedocs/gcc/Gcov-Intro.html

7
https://www.llvm.org/docs/CommandGuide/llvm-cov.html

https://test-comp.sosy-lab.org/2022/results/results-verified/META_Cover-Error.table.html#/table?filter=7(0*status*(category(in(correct))))
https://gcc.gnu.org/onlinedocs/gcc/Gcov-Intro.html
https://www.llvm.org/docs/CommandGuide/llvm-cov.html

3.3. FROM VERIFICATION WITNESSES TO TESTS 21

1 #include <stdio.h>
2 int main() {

3 int x; scanf(”%d”, &x);

4 int y; scanf(”%d”, &y);

5

6 if (x > 0 && y > x) {

7 return 0;

8 } else {

9 return 1;

10 }

11 }

Input: -1, 0

1*: 6: if (x > 0 && y > x) {

branch 0 taken 0% (fallthrough)

branch 1 taken 100%

branch 2 never executed

branch 3 never executed

#####: 7: return 0;

-: 8: } else {

1: 9: return 1;

-: 10: }

-: 11:}

(a) Program with two conditions for single
branch (in line 6)

(b) Branch coverage reported by gcov: 25 %. The
expected branch coverage is 50 %.

Figure 3.1: Example of wrong branch-coverage report by gcov

We solve this issue in article “TestCov: Robust Test-Suite Execution and Coverage
Measurement” (Section B.3). TestCov is a continuation of TBF’s internal test-suite ex-
ecution. It provides robust coverage measurement based on the source code (e.g., for
branch coverage) and it supports the XML-based exchange format for test-suites that
Test-Comp established.

To execute tests reliably, it uses components of BenchExec [54] to isolate individual
tests from each other (both file-system changes and resource usage), and uses program in-
strumentation to explicitly label coverage goals in the source code of the program un-
der test. It can then use gcov’s reliable statement-coverage measurement to measure the
code coverage of these inserted labels. This way, TestCov can measure branch coverage
and error coverage of individual test execution and across a full test suite. In addition,
it provides individual measurements of run time and memory consumption per test.

TestCov is under active development and has been used in all iterations of Test-
Comp to date, to measure the coverage of test suites generated by all participants. In
Test-Comp 2022 [22], TestCov successfully executed over 50 832 distinct test suites from
12 test generators, over 4 236 different test-generation tasks.

3.3 From Verification Witnesses to Tests
We have established comparability of test generators for C and shown that formal veri-
fiers are well suited for finding bugs in software. Next, we turn formal verifiers into actual
test generators, so that this potential can be used.

This has one additional advantage: Software developers are well versed in the use of
tests and debugging tools, but often have little knowledge in formal verification. So to
increase the usability of formal verifiers for bug-finding, previous work [33] on Blast pro-
posed to turn the abstract counterexamples produced by formal verifiers into executable
tests. Our article “Tests from Witnesses: Execution-Based Validation of Verification Re-

22 CHAPTER 3. TOWARDS STANDARDIZING TEST GENERATION

sults” (Section B.4) follows this idea and presents a method to convert the (abstract)
violation witnesses that every formal verifier of SV-COMP supports into executable tests.

An executable test for a found fault gives the highest possible confidence in the
reported alarm (because it can be directly observed through the execution), and it makes
subsequent work with the alarm easy, because the developer can use existing tools for
debugging. In addition, this technique allows to use any formal verifier for directed
test generation (generating a single test for a violated property), given that they support
the exchange format for witnesses—which all participants of SV-COMP do.

The article introduces two new witness validators, CPA-w2t and FShell-w2t. Both use
the article’s concept: They turn, if possible, a given violation witness into an executable
test and execute it. If the test execution confirms the alarm, the violation-witness is
accepted. Both CPA-w2t and FShell-w2t participated in SV-COMP since SV-COMP 2018.

3.4 The Current State of the Art in Bug-Finding
With the introduced approaches and the standardization through Test-Comp, we provide
a large-scale comparison of tools for formal verification and automated test generation
with regards to their bug-finding capabilities. Our article “Six Years Later: Testing
vs. Model Checking” (Section B.5) compares all SV-COMP 2023 and Test-Comp 2023
participants based on the competitions’ open data [28, 29]. This gives highest confidence
on the reported results: tool developers can configure the tools for the competition and
both the tools and the data is peer reviewed.

Compared to our previous study [64], we do not bother to report bug reports from
formal verification that are not confirmed by at least one validator in SV-COMP. In ad-
dition, we report how many of the bug reports from formal verification can be confirmed
through execution-based validation. Last, we check whether the test generators that par-
ticipate in Test-Comp are tuned towards the coverage goal coverage-error-call, and
how good the test suites generated for coverage-branches are in finding bugs.

Our study shows the following: (1) Many automated test generators have adapted
hybrid approaches to bug finding, using multiple formal techniques or mixing formal and
dynamic analysis techniques. The winner of Test-Comp 2023, FuSeBMC [86], combines
input fuzzing [93] with bounded model checking [13]. (2) Automated test generators
have greatly improved in the past years and surpass SV-COMP participants; but formal
verification is still competitive. (3) Execution-based validation of verification results
works well for a high number of results. This gives bug reports of formal verification
the same level of confidence as bugs revealed through test execution. (4) Regarding
targeting error calls, our results are not surprising, but give confidence: Almost all Test-
Comp participants target the looked-for error call in their test generation.

23

4 Towards Cooperative Software
Verification (B.6–B.9)

4.1 Encoding Condition Automata

The idea of conditional verification [56] not only proposed condition automata, but also
an exchange format for these. To the best of our knowledge, only CPAchecker supports
this format to this date. But for successful cooperation, we need more than a single
verifier. Instead of looking into reasons why the format for condition automata is not
adapted by other verifiers, and instead of proposing a new format for conditional veri-
fication, we decided to use an existing format that every verifier understands: program
source code.

Condition to Code. In the article “Reducer-Based Construction of Conditional Ver-
ifiers” (Section B.6), we define the notion of a reducer : A reducer takes a program P
and a condition Ψ for P and creates a new residual program Pr that only contains those
program executions that are not already covered by Ψ. Figure 4.1 shows an example for
this: The program in Fig. 4.1(a) and the condition in Fig. 4.1(b) can be combined into
a new residual program (Fig. 4.1(c)). This residual program does not contain any of the
original program executions that go through the else-branch (line 6 in Fig. 4.1(a)).

Combining Formal Verifiers. By encoding the information of the condition in a new
program, we can use any off-the-shelf verifier instead of a specialized conditional verifier.
We perform a large experimental evaluation with three formal verifiers: CPAchecker,
Smack and UAutomizer. Each of the three verifiers A is compared with a combination
of CPAchecker’s predicate abstraction and the reducer-based construction applied to A.
The results are encouraging: we not only prove the feasibility of the reducer-based con-
struction of conditional verifiers, but we also show the potential benefits of now-possible
tool combinations: Each of the tool combinations can solve significantly more tasks than
the respective stand-alone tool, and the overall effectiveness increases: Thanks to the
tool combinations, we can now solve verification tasks that none of the stand-alone tools
could solve before.

24 CHAPTER 4. TOWARDS COOPERATIVE SOFTWARE VERIFICATION

1 int out;

2 int val = nondet_int();

3 if (val >= 0) {

4 out = val%2 * val%3

5 } else {

6 out = -val;

7 }

8 if (out < 0) {

9 reach_error();

10 }

q0

q1

qfq2

{(l2, ·, l3)}, true

{(l3, ·, l6)}, true{(l3, ·, l4)}, true

E, trueE, true

1 int out;

2 int val = nondet_int();

3 if (val >= 0) {

4 out = val%2 * val%3

5 if (out < 0) {

6 reach_error();

7 }

8 } else { }

(a) Program (b) Condition (c) Residual program

Figure 4.1: Reduction of original program and condition into residual program

Combining Formal Verifier and Test Generator. Last, we show an additional
benefit of encoding the condition in the program: the concept of conditional verifica-
tion, previously only used as conditional model checking with formal verifiers, is now
applicable to arbitrary tools that analyze software. As example, we use test genera-
tors: We consider three test generators, AFL-fuzz, Crest-PPC, and Klee. We combine
CPAchecker’s predicate abstraction with these through our reducer-based construction,
and show that the test generators’ effectiveness in finding errors on the residual programs
increases compared to the original programs.

Later Developments. The introduction of residual programs enables an array of new
applications: Subsequent work [41] explores different detail levels of residual programs.
Difference verification (Section B.8), an application of condition automata, is usable with
any off-the-shelf verifier thanks to residual programs. MetaVal [45] transfers the idea
of encoding information as source code to violation-witness automata and correctness-
witness automata, and turns any given off-the-shelf verifier into a witness validator. And
component-based CEGAR (Section B.9) uses MetaVal to turn any off-the-shelf verifier
into one of its components.

4.2 Cooperation between Test-Generators

Through the reducer-based construction of conditional verifiers, we can use test genera-
tors as a second component in conditional verification to solve a verification task. But
we can not yet combine two test generators to solve a test-generation task.

Conditional Testing. In the article “Conditional Testing: Off-the-Shelf Combination
of Test-Case Generators” (Section B.7), we transfer the idea of both conditional veri-
fication and residual programs to automated test generation: If a test generator is not
able to create a test suite that fulfills a coverage measure to 100 %, we compute the re-
maining coverage goals and represent them as a condition. A conditional test generator

4.2. COOPERATION BETWEEN TEST-GENERATORS 25

P

Ψ

Reducer Pr

P

ϕ

T S

Test-Goal
Extractor

ψ

P1

P2

Difference
Computation Ψ

Figure 4.2: Reducer Figure 4.3: Test-Goal Ex-
tractor

Figure 4.4: Difference
Computation

can then take this condition and only generate tests for the remaining coverage goals.
As condition, we use a type tailored to test generation: We express conditions as the set
of remaining coverage goals. Because the notion of a conditional test generator is newly
proposed, there are no supporting tools yet. To remedy this, we define program reduction
and condition generation for conditional testing:

Program Reduction. We define the notion of program reducer in the context of con-
ditional testing. A reducer (Fig. 4.2) for coverage goals is a testability transformation [98]
that takes a program P and a condition Ψ (in the form of a set of coverage goals), and
returns a residual program Pr. We require a program reducer to be sound and complete
to be able to fulfill the original test-generation task across combinations. Both attributes
are defined in Section B.7.

We show three exemplary types of reducers: the identity (the program stays un-
changed), a program reducer that uses syntactic pruning of exhaustively covered pro-
gram parts, and a program reducer that annotates relevant test goals in the program,
for example to prove their (in-)feasibility with formal verifiers.

Condition Generation. We define the notion of a test-goal extractor: A test-goal
extractor (Fig. 4.3) takes a program P , a coverage criterion ϕ and a test suite T S, and
returns the set ψ of covered test goals of ϕ. The information of a sound and complete
test goal extractor (again, both attributes are defined in Section B.7) can then be used
to generate a condition by computing the set of all test goals described by ϕ, and
removing all already covered test goals from that set. At first sight it may seem like
the construction of a condition would be easier if the test-goal extractor provided the
number of currently uncovered test goals directly. But, (a) this would not fit the existing
definition of conditions, which are required to encode the covered verification space, and
(b) this would require the test-goal extractor to always know about all covered test goals,
either through re-execution of all generated tests or by being stateful.

We instantiate a test-goal extractor based on program instrumentation, test execu-
tion and line-coverage measurement.

26 CHAPTER 4. TOWARDS COOPERATIVE SOFTWARE VERIFICATION

Combinations. To get access to a large selection of tools, we use the formats that
are defined by Test-Comp and supported by all Test-Comp participants. With pro-
gram reducer and test-goal extractor, this gives access to a large selection of off-the-shelf
test generators as conditional testers.

The introduction of conditional testing allows different flavors of combinations be-
tween test generators; we propose a few conceptually (e.g., sequential, cyclic, parallel),
and then go on to show the potential benefit of conditional testing through experiments
on sequential combinations of pairs of test generators.

Turning Formal Verifiers into Test Generators. In addition, we show how to
turn any formal verifier into a test generator through the witness-to-test generation [52]
and a cyclic conditional-testing composition that restarts the formal verifier and the
witness-to-test generation until all test goals are covered or proven infeasible.

Later Developments. We implemented conditional testing in the tool CondTest.
Initially, CondTest was a stand-alone tool for composition of different test generators
and formal verifiers for test generation. Since version 3.0, the composition moved to
CoVeriTeam [55], and CondTest provides the reducers and test-goal extractor.

4.3 Condition Automata for Difference Verification

Condition automata specify the program-state space a verifier must prove safe. Origi-
nally, conditional model checking was proposed to make formal verifiers cooperate, but
the control-mechanism of condition automata can also be used for other purposes: In the
article “Difference Verification with Conditions” (Section B.8), we show the versatility
of condition automata by using them for difference verification.

Assume that we have two revisions of a program, rev. 1 and rev. 2. We trust rev. 1,
for example because it was fully verified or has been running in production for a long
time without issues. Now, we want to verify rev. 2. Since we already trust rev. 1, we do
not need to fully re-verify rev. 2—instead, it is enough to only verify those parts that
might have changed from rev. 1.

We introduce an algorithm, DiffCond, that takes two revisions of a software code
and creates a condition automaton that encodes the program-state space that is unaf-
fected by the changes from one revision to the other (Fig. 4.4). This condition can then
be given to a conditional verifier to only verify the parts of the program that may be
affected by the change.

We show the benefits of this approach on incremental verification on a large number
of benchmark tasks that we have generated from existing, strongly coupled programs.
These new benchmark tasks were adopted by the SV-COMP iterations following this
article, in the new category ReachSafety-Combinations.

https://gitlab.com/sosy-lab/software/conditional-testing/-/tree/v3.0
https://gitlab.com/sosy-lab/software/coveriteam/-/tree/5307183587525e57ed143d814dbbc46f0eeceba7/examples/CondTest

4.4. DECOMPOSING VERIFICATION TECHNIQUES 27

VW

?

7

VW

CW

3

Abstract-Model
Explorer

Feasibility
Checker

Precision
Refiner

P, φ

Verification
Task

P |= φ

P 6|= φ

CW

VW

Figure 4.5: Component-based CEGAR

4.4 Decomposing Verification Techniques

The idea of multiple components working together towards a single verification task is
visible in multiple traditional verification techniques, like CEGAR [68], k-induction [4],
and static program slicing [99, 120]. To increase flexibility, ease maintenance and make
it easier to see conceptual similarities [50], we propose to decompose existing techniques.
We do this on the example of CEGAR [68].

CEGAR. CEGAR consists of three steps: (1) An abstract model of the program-
under-verification is explored; the aim is to prove it correct with regards to a property
φ, or find a counterexample to φ. Usually, at the beginning of a verification run, this
abstract model is very coarse. If the abstract model is correct, the verification task is
solved P |= φ. (2) If a counterexample is found, it is checked for feasibility with a high-
precision technique. If the counterexample is confirmed feasible, the verification task is
solved P 6|= φ. (3) If the counterexample is infeasible, the abstract model is made more
precise so that this spurious counterexample is not encountered again in subsequent
abstract-model explorations. After this precision refinement, the cycle repeats at (1)
with the new, more precise model. These three steps are traditionally implemented as a
single algorithm.

Decomposition of CEGAR. In the article “Decomposing Software Verification into
Off-the-Shelf Components: An Application to CEGAR” (Section B.9), we show that
the three steps of CEGAR can be defined as individual software components that ex-
change information through verification artifacts. We call this concept component-based
CEGAR (Fig. 4.5).

For information exchange, we show how to use the exchange formats for verifi-
cation witnesses. This enables us to use existing tools in any of the three steps of
component-based CEGAR: Correctness-witness validators as abstract-model explorer,

28 CHAPTER 4. TOWARDS COOPERATIVE SOFTWARE VERIFICATION

violation-witness validators as feasibility checker, and violation-witness validators that
produce correctness witnesses as precision refiner.

We implement a selection of different CEGAR compositions in CoVeriTeam [55], and
show through an experimental evaluation that the technical disadvantages of this decom-
position are manageable: there is only a constant factor of run-time decrease compared
to the natively implemented CEGAR in CPAchecker.

Component-based CEGAR enables developers to exchange CEGAR components in
a plug-and-play fashion. We hope that this not only avoids the lock-in effect, but also
accelerates future research in CEGAR and serves as a positive example of decomposing
existing verification techniques.

29

5 Future Research and Conclusion

5.1 Future Research

Mutation Testing. So far, we only considered traditional coverage measures as test-
adequacy criteria. We do consider the bug-finding capabilities of test generators when we
ask them to generate a test suite that covers a specific test (coverage criterion coverage-
error-call). But mutation testing [7, 80, 103] goes beyond that: it not only evaluates
whether a test suite covers a current bug in the program, but also whether future bugs
would be detected. To include mutation testing in test-generation evaluation, TestCov
could be extended to consider the mutation testing criterion for either weakly killed [128]
or strongly killed [7] mutants. Existing mutation-testing tools [5, 71, 121] can be used
for mutant creation.

Exchange Formats for Formal Verification. In this work we considered three
exchange formats for formal verification: condition automata, violation witnesses, and
correctness witnesses. All three are based on finite-state automata and describe a sub-
space of the program-state space. Unifying the three into a single exchange format may
be useful; this would require verifiers to only implement a single format instead of three,
and it would lessen the restrictions on input/output formats, which increases the inter-
operability between verifiers.

In addition, condition automata should be examined in more detail: CPAchecker
writes a condition automaton as a precise projection of the unfinished parts of the
explored abstract program-state space, based on the currently computed state space.
These computed state spaces can be very large. In consequence, condition automata can
grow very big (millions of lines of text description). Existing work [41] approaches the
issue by reducing the size of a created residual program, but similar techniques may
be used one step earlier, when writing the original condition automaton. The effect of
different state-space traversal strategies should also be considered, to keep the unfinished
parts of the explored abstract program-state space small; the spectrum goes from depth-
first search (which keeps the description of the unfinished parts as small as possible
because only a single abstract program path is explored at a time), to breadth-first
search (which creates the maximum number of unfinished parts as all possible abstract
program paths are considered concurrently).

30 CHAPTER 5. FUTURE RESEARCH AND CONCLUSION

Residual Programs. Currently, we create residual programs for formal verification
as a product of program and condition automaton. This is precise, but may create large
residual programs because every transition path in the condition automaton is directly
encoded in the program. To create smaller residual programs, other techniques for pro-
gram reduction could be considered, for example based on static program slicing [99], as
inspired by other work on conditional model checking [102].

For test generation, we create residual programs through syntactic pruning of fully
covered program sub-trees. More elaborate testability transformations [98] could be con-
sidered to create smaller residual programs.

Combinations. To keep the design of our experimental evaluations manageable, we
only considered sequential combinations of verifiers. This means that many potential
combinations are yet unexplored. Notable mentions are cyclic combinations of sequential
tools, which have proven successful [40] for test generation in cohesive implementations,
as well as the decomposition of a verification- or test-generation-task into a set of smaller
tasks. This has been proven successful for formal verification [20, 92] and test genera-
tion [107]. Current techniques for formal verification provide no exchange format for
decomposition information, and do not allow the use of different verifiers per sub-task.
Techniques for test generation do decompose the input program, but have no means to
adjust the coverage criterion accordingly.

Decomposed sub-tasks could also be combined with strategy selection [6, 17, 46, 126]
to automatically choose a fitting verifier and configuration for each sub-task.

Information Use. We have only considered cooperation between verification tech-
niques that work towards the same goal; solving a verification task, or solving a test-
generation task. We discarded all sub-parts already solved (for example sub-trees of the
program-state space that were fully explored or test goals). Symbiotic [96] also combines
different verification tools, but uses the information differently: Results of initial (usu-
ally fast) analyses are used to simplify the verification task for a final, precise analysis.
Analyses can also encode information in condition automata as state-space guards. This
information could be used to achieve the same.

In addition, we do not check the soundness of a condition, but always assume it
is correct. This means that we may introduce irrecoverable imprecisions if an impre-
cise analysis is used. A mechanism to check imprecisions and refine them may improve
effectiveness [92].

Decomposition of existing Verification Techniques. We demonstrated the de-
composition of existing verification techniques on the example of CEGAR. More tech-
niques could be decomposed into individual software units to examine the feasibility of
decomposition on more examples and to achieve the positive effects of decomposition.
Notable mentions are CoVeriTest [40], bounded model checking [13], modular verifica-
tion [20, 92], and k-induction [51, 81].

5.2. CONCLUSION 31

5.2 Conclusion
The presented research lays the groundwork for large-scale experimental comparisons in
test generation for C programs and demonstrates the potential of cooperation in both
formal verification, test generation, and in-between.

(1) We were the first to do large-scale experimental comparisons of formal verifiers
and test generators. Succinctly, we created techniques for Test-Comp that support re-
liable experimental comparisons of test generators for C programs. Last, we closed the
gap between formal verifiers and test generators by presenting a technique that turns
any formal verifier of SV-COMP into a directed test generator.

(2) We explored the potential of cooperative software verification in different di-
rections. First, we made cooperation with conditions widely usable by encoding the
proprietary condition-automaton format as program code. Then, we introduced condi-
tional testing and enabled to turn any formal verifier into a test generator for cover-
age criteria. On the example of incremental verification, we showed the flexibility of
conditions. Last, we decomposed CEGAR into stand-alone components to demonstrate
how existing techniques for software verification can be decoupled.

Our work provides a fundamental contribution towards cooperative software verifi-
cation with automated test generation and automated formal verification, and, to this
end, a fundamental contribution to automated software verification in general.

Availability. Whenever feasible, our research is published with open access. We pro-
vide reproduction packages and the raw data of our experiments for each article.

We provide multiple links to web pages in this thesis. Because things on the in-
ternet rarely last forever, there are two ways to access archived versions of the web
pages: (1) If the URL is to a software repository on github.com or gitlab.com, use
the Software Heritage Archive: enter the URL of the repository in the search field at
https://archive.softwareheritage.org/. For example, for the original software repos-
itory https://gitlab.com/sosy-lab/software/cpachecker/, you can access its archive
through https://archive.softwareheritage.org/browse/origin/directory/?origin_

url=https://gitlab.com/sosy-lab/software/cpachecker.git. (2) For all other URLs,
use the Internet Archive Wayback Machine: prefix the original URL with https://web.

archive.org/web/ to get the latest archived web-page version. For example, for the orig-
inal URL https://test-comp.sosy-lab.org/2022/, you can access its archive through
https://web.archive.org/web/https://test-comp.sosy-lab.org/2022/.

The source of this thesis is available at https://gitlab.com/lemberger/phd-thesis.

https://archive.softwareheritage.org/
https://archive.softwareheritage.org/
https://gitlab.com/sosy-lab/software/cpachecker/
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://gitlab.com/sosy-lab/software/cpachecker.git
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://gitlab.com/sosy-lab/software/cpachecker.git
https://web.archive.org/
https://web.archive.org/web/
https://web.archive.org/web/
https://test-comp.sosy-lab.org/2022/
https://web.archive.org/web/https://test-comp.sosy-lab.org/2022/
https://gitlab.com/lemberger/phd-thesis

BIBLIOGRAPHY 33

Bibliography

[1] Aaron R. Bradley. “SAT-Based model checking without unrolling”. In: Proc. VM-
CAI. LNCS 6538. Springer, 2011, pp. 70–87. doi: 10.1007/978-3-642-18275-
4_7.

[2] Ákos Hajdu and Zoltán Micskei. “Efficient Strategies for CEGAR-Based Model
Checking”. In: J. Autom. Reasoning 64.6 (2020), pp. 1051–1091. doi: 10.1007/
s10817-019-09535-x.

[3] Alan Turing. “Checking a Large Routine”. In: Report on a Conference on High
Speed Automatic Calculating Machines. Cambridge Univ. Math. Lab., 1949,
pp. 67–69.

[4] Alastair F. Donaldson, Leopold Haller, Daniel Kroening, and Philipp Rümmer.
“Software Verification Using k-Induction”. In: Proc. SAS. LNCS 6887. Springer,
2011, pp. 351–368. doi: 10.1007/978-3-642-23702-7_26.

[5] Alex Denisov and Stanislav Pankevich. “Mull It Over: Mutation Testing Based
on LLVM”. In: Proc. ICST. IEEE, 2018, pp. 25–31. doi: 10.1109/ICSTW.2018.
00024.

[6] Alexander Knüppel, Thomas Thüm, and Ina Schaefer. “GUIDO: Automated
Guidance for the Configuration of Deductive Program Verifiers”. In: Proc. For-
maliSE@ICSE. IEEE, 2021, pp. 124–129. doi: 10.1109/FormaliSE52586.2021.
00018.

[7] Allen T. Acree, Timothy A. Budd, Richard J. Lipton, Richard A. DeMillo, and
Frederick G. Sayward. Mutation Analysis. Tech. rep. YALEU/DCS/TR155. Yale
University, Apr. 1979.

[8] Anders Eklund, Thomas E. Nichols, and Hans Knutsson. “Cluster failure: Why
fMRI inferences for spatial extent have inflated false-positive rates”. In: Proceed-
ings of the National Academy of Sciences 113.28 (2016), pp. 7900–7905. doi:
10.1073/pnas.1602413113.

[9] Andreas Holzer, Christian Schallhart, Michael Tautschnig, and Helmut Veith.
“FShell: Systematic Test Case Generation for Dynamic Analysis and Measure-
ment”. In: Proc. CAV. LNCS 5123. Springer, 2008, pp. 209–213. doi: 10.1007/
978-3-540-70545-1_20.

https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.1109/ICSTW.2018.00024
https://doi.org/10.1109/ICSTW.2018.00024
https://doi.org/10.1109/FormaliSE52586.2021.00018
https://doi.org/10.1109/FormaliSE52586.2021.00018
https://doi.org/10.1073/pnas.1602413113
https://doi.org/10.1007/978-3-540-70545-1_20
https://doi.org/10.1007/978-3-540-70545-1_20

34 BIBLIOGRAPHY

[10] Andreas Holzer, Christian Schallhart, Michael Tautschnig, and Helmut Veith.
“How did you specify your test suite”. In: Proc. ASE. ACM, 2010, pp. 407–416.
doi: 10.1145/1858996.1859084.

[11] Andreas Holzer, Christian Schallhart, Michael Tautschnig, and Helmut Veith.
“Query-Driven Program Testing”. In: Proc. VMCAI. LNCS 5403. Springer, 2009,
pp. 151–166. doi: 10.1007/978-3-540-93900-9_15.

[12] Antoine Miné. “The Octagon Abstract Domain”. In: Higher-Order and Symbolic
Computation 19.1 (2006), pp. 31–100. doi: 10.1007/s10990-006-8609-1.

[13] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. “Symbolic
Model Checking without BDDs”. In: Proc. TACAS. LNCS 1579. Springer, 1999,
pp. 193–207. doi: 10.1007/3-540-49059-0_14.

[14] Arthur G. Stephenson, Daniel R. Mulville, Frank H. Bauer, Greg A. Dukeman,
Peter Norvig, Lia S. LaPiana, Peter J. Rutledge, David Folta, and Robert Sack-
heim. Mars Climate Orbiter Mishap Investigation Board. Phase I Report. Tech.
rep. Nov. 1999.

[15] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yun-
shan Zhu. “Bounded model checking”. In: Advances in Computers 58 (2003),
pp. 117–148. doi: 10.1016/S0065-2458(03)58003-2.

[16] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball.
“Feedback-Directed Random Test Generation”. In: Proc. ICSE. IEEE, 2007,
pp. 75–84. doi: 10.1109/ICSE.2007.37.

[17] Cedric Richter and Heike Wehrheim. “Attend and represent: a novel view on
algorithm selection for software verification”. In: Proc. ASE. 2020, pp. 1016–1028.
doi: 10.1145/3324884.3416633.

[18] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. “Klee: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs”.
In: Proc. OSDI. USENIX Association, 2008, pp. 209–224.

[19] Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Gabi, Pieter
Hooimeijer, Martino Luca, Peter W. O’Hearn, Irene Papakonstantinou, Jim Pur-
brick, and Dulma Rodriguez. “Moving Fast with Software Verification”. In: Proc.
NFM. LNCS 9058. Springer, 2015, pp. 3–11. doi: 10.1007/978-3-319-17524-
9_1.

[20] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yan.
“Compositional Shape Analysis by Means of Bi-Abduction”. In: J. ACM 58.6
(2011), 26:1–26:66. doi: 10.1145/2049697.2049700.

[21] Daniel Dietsch, Matthias Heizmann, Betim Musa, Alexander Nutz, and Andreas
Podelski. “Craig vs. Newton in software model checking”. In: Proc. ESEC/FSE.
ACM, 2017, pp. 487–497. doi: 10.1145/3106237.3106307.

https://doi.org/10.1145/1858996.1859084
https://doi.org/10.1007/978-3-540-93900-9_15
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1145/3324884.3416633
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1145/3106237.3106307

BIBLIOGRAPHY 35

[22] Dirk Beyer. “Advances in Automatic Software Testing: Test-Comp 2022”. In: Proc.
FASE. LNCS 13241. Springer, 2022, pp. 321–335. doi: 10.1007/978-3-030-
99429-7_18.

[23] Dirk Beyer. “Automatic Verification of C and Java Programs: SV-COMP 2019”.
In: Proc. TACAS (3). LNCS 11429. Springer, 2019, pp. 133–155. doi: 10.1007/
978-3-030-17502-3_9.

[24] Dirk Beyer. “Competition on Software Verification and Witness Validation: SV-
COMP 2023”. In: Proc. TACAS (2). LNCS 13994. Springer, 2023, pp. 495–522.
doi: 10.1007/978-3-031-30820-8_29.

[25] Dirk Beyer. “First International Competition on Software Testing (Test-Comp
2019)”. In: Int. J. Softw. Tools Technol. Transf. 23.6 (Dec. 2021), pp. 833–846.
doi: 10.1007/s10009-021-00613-3.

[26] Dirk Beyer. “Progress on Software Verification: SV-COMP 2022”. In: Proc.
TACAS (2). LNCS 13244. Springer, 2022, pp. 375–402. doi: 10.1007/978-3-
030-99527-0_20.

[27] Dirk Beyer. “Reliable and Reproducible Competition Results with BenchExec
and Witnesses (Report on SV-COMP 2016)”. In: Proc. TACAS. LNCS 9636.
Springer, 2016, pp. 887–904. doi: 10.1007/978-3-662-49674-9_55.

[28] Dirk Beyer. Results of the 12th Intl. Competition on Software Verification (SV-
COMP 2023). Zenodo. 2023. doi: 10.5281/zenodo.7627787.

[29] Dirk Beyer. Results of the 5th Intl. Competition on Software Testing (Test-Comp
2023). Zenodo. 2023. doi: 10.5281/zenodo.7701122.

[30] Dirk Beyer. “Software Verification and Verifiable Witnesses (Report on SV-
COMP 2015)”. In: Proc. TACAS. LNCS 9035. Springer, 2015, pp. 401–416. doi:
10.1007/978-3-662-46681-0_31.

[31] Dirk Beyer. “Software Verification with Validation of Results (Report on SV-
COMP 2017)”. In: Proc. TACAS. LNCS 10206. Springer, 2017, pp. 331–349. doi:
10.1007/978-3-662-54580-5_20.

[32] Dirk Beyer. “Status Report on Software Testing: Test-Comp 2021”. In: Proc.
FASE. LNCS 12649. Springer, 2021, pp. 341–357. doi: 10.1007/978-3-030-
71500-7_17.

[33] Dirk Beyer, Adam J. Chlipala, Thomas A. Henzinger, Ranjit Jhala, and Rupak
Majumdar. “Generating Tests from Counterexamples”. In: Proc. ICSE. IEEE,
2004, pp. 326–335. doi: 10.1109/ICSE.2004.1317455.

[34] Dirk Beyer, Andreas Holzer, Michael Tautschnig, and Helmut Veith. “Informa-
tion Reuse for Multi-goal Reachability Analyses”. In: Proc. ESOP. LNCS 7792.
Springer, 2013, pp. 472–491. doi: 10.1007/978-3-642-37036-6_26.

[35] Dirk Beyer, Jan Haltermann, Thomas Lemberger, and Heike Wehrheim. “Decom-
posing Software Verification into Off-the-Shelf Components: An Application to
CEGAR”. In: Proc. ICSE. ACM, 2022.

https://doi.org/10.1007/978-3-030-99429-7_18
https://doi.org/10.1007/978-3-030-99429-7_18
https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/s10009-021-00613-3
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.5281/zenodo.7627787
https://doi.org/10.5281/zenodo.7701122
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-030-71500-7_17
https://doi.org/10.1007/978-3-030-71500-7_17
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1007/978-3-642-37036-6_26

36 BIBLIOGRAPHY

[36] Dirk Beyer, Jan Haltermann, Thomas Lemberger, and Heike Wehrheim. Repro-
duction Package (VM Version) for ICSE 2022 Article ‘Decomposing Software
Verification into Off-the-Shelf Components: An Application to CEGAR’. Zenodo.
2022. doi: 10.5281/zenodo.5918111.

[37] Dirk Beyer and Karlheinz Friedberger. “Domain-Independent Interprocedural
Program Analysis using Block-Abstraction Memoization”. In: Proc. ESEC/FSE.
ACM, 2020, pp. 50–62. doi: 10.1145/3368089.3409718.

[38] Dirk Beyer and Karlheinz Friedberger. “Domain-Independent Multi-threaded
Software Model Checking”. In: Proc. ASE. ACM, 2018, pp. 634–644. doi:
10.1145/3238147.3238195.

[39] Dirk Beyer and M. Erkan Keremoglu. “CPAchecker: A Tool for Configurable
Software Verification”. In: Proc. CAV. LNCS 6806. Springer, 2011, pp. 184–190.
doi: 10.1007/978-3-642-22110-1_16.

[40] Dirk Beyer and Marie-Christine Jakobs. “Cooperative Verifier-Based Testing with
CoVeriTest”. In: Int. J. Softw. Tools Technol. Transfer 23.3 (2021), pp. 313–333.
doi: 10.1007/s10009-020-00587-8.

[41] Dirk Beyer and Marie-Christine Jakobs. “FRed: Conditional Model Checking via
Reducers and Folders”. In: Proc. SEFM. LNCS 12310. Springer, 2020, pp. 113–
132. doi: 10.1007/978-3-030-58768-0_7.

[42] Dirk Beyer, Marie-Christine Jakobs, and Thomas Lemberger. “Difference Verifi-
cation with Conditions”. In: Proc. SEFM. LNCS 12310. Springer, 2020, pp. 133–
154. doi: 10.1007/978-3-030-58768-0_8.

[43] Dirk Beyer, Marie-Christine Jakobs, and Thomas Lemberger. Reproduction Pack-
age for Article ‘Difference Verification with Conditions’. Zenodo. 2020. doi: 10.
5281/zenodo.3954933.

[44] Dirk Beyer, Marie-Christine Jakobs, Thomas Lemberger, and Heike Wehrheim.
“Reducer-Based Construction of Conditional Verifiers”. In: Proc. ICSE. ACM,
2018, pp. 1182–1193. doi: 10.1145/3180155.3180259.

[45] Dirk Beyer and Martin Spiessl. “MetaVal: Witness Validation via Verification”.
In: Proc. CAV. LNCS 12225. Springer, 2020, pp. 165–177. doi: 10.1007/978-3-
030-53291-8_10.

[46] Dirk Beyer and Matthias Dangl. “Strategy Selection for Software Verification
Based on Boolean Features: A Simple but Effective Approach”. In: Proc. ISoLA.
LNCS 11245. Springer, 2018, pp. 144–159. doi: 10.1007/978-3-030-03421-
4_11.

[47] Dirk Beyer, Matthias Dangl, Daniel Dietsch, and Matthias Heizmann. “Correct-
ness Witnesses: Exchanging Verification Results Between Verifiers”. In: Proc. FSE.
ACM, 2016, pp. 326–337. doi: 10.1145/2950290.2950351.

https://doi.org/10.5281/zenodo.5918111
https://doi.org/10.1145/3368089.3409718
https://doi.org/10.1145/3238147.3238195
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/s10009-020-00587-8
https://doi.org/10.1007/978-3-030-58768-0_7
https://doi.org/10.1007/978-3-030-58768-0_8
https://doi.org/10.5281/zenodo.3954933
https://doi.org/10.5281/zenodo.3954933
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/978-3-030-03421-4_11
https://doi.org/10.1007/978-3-030-03421-4_11
https://doi.org/10.1145/2950290.2950351

BIBLIOGRAPHY 37

[48] Dirk Beyer, Matthias Dangl, Daniel Dietsch, Matthias Heizmann, and Andreas
Stahlbauer. “Witness Validation and Stepwise Testification across Software Veri-
fiers”. In: Proc. FSE. ACM, 2015, pp. 721–733. doi: 10.1145/2786805.2786867.

[49] Dirk Beyer, Matthias Dangl, Daniel Dietsch, Matthias Heizmann, Thomas Lem-
berger, and Michael Tautschnig. “Verification Witnesses”. In: ACM Trans. Softw.
Eng. Methodol. (2022). doi: 10.1145/3477579.

[50] Dirk Beyer, Matthias Dangl, and Philipp Wendler. “A Unifying View on SMT-
Based Software Verification”. In: J. Autom. Reasoning 60.3 (2018), pp. 299–335.
issn: 1573-0670. doi: 10.1007/s10817-017-9432-6.

[51] Dirk Beyer, Matthias Dangl, and Philipp Wendler. “Boosting k-Induction with
Continuously-Refined Invariants”. In: Proc. CAV. LNCS 9206. Springer, 2015,
pp. 622–640. doi: 10.1007/978-3-319-21690-4_42.

[52] Dirk Beyer, Matthias Dangl, Thomas Lemberger, and Michael Tautschnig. “Tests
from Witnesses: Execution-Based Validation of Verification Results”. In: Proc.
TAP. LNCS 10889. Springer, 2018, pp. 3–23. doi: 10.1007/978-3-319-92994-
1_1.

[53] Dirk Beyer and Philipp Wendler. “CPU Energy Meter: A Tool for Energy-
Aware Algorithms Engineering”. In: Proc. TACAS (2). LNCS 12079. Springer,
2020, pp. 126–133. doi: 10.1007/978-3-030-45237-7_8.

[54] Dirk Beyer, Stefan Löwe, and Philipp Wendler. “Reliable Benchmarking: Re-
quirements and Solutions”. In: Int. J. Softw. Tools Technol. Transfer 21.1 (2019),
pp. 1–29. doi: 10.1007/s10009-017-0469-y.

[55] Dirk Beyer and Sudeep Kanav. “CoVeriTeam: On-Demand Composition of Co-
operative Verification Systems”. In: Proc. TACAS. LNCS 13243. Springer, 2022,
pp. 561–579. doi: 10.1007/978-3-030-99524-9_31.

[56] Dirk Beyer, Thomas A. Henzinger, M. Erkan Keremoglu, and Philipp Wendler.
“Conditional Model Checking: A Technique to Pass Information between Veri-
fiers”. In: Proc. FSE. ACM, 2012. doi: 10.1145/2393596.2393664.

[57] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. “The
Software Model Checker Blast”. In: Int. J. Softw. Tools Technol. Transfer 9.5-6
(2007), pp. 505–525. doi: 10.1007/s10009-007-0044-z.

[58] Dirk Beyer and Thomas Lemberger. “Conditional Testing: Off-the-Shelf Combi-
nation of Test-Case Generators”. In: Proc. ATVA. LNCS 11781. Springer, 2019,
pp. 189–208. doi: 10.1007/978-3-030-31784-3_11.

[59] Dirk Beyer and Thomas Lemberger. Replication Package for Article ‘Software
Verification: Testing vs. Model Checking”, Proc. HVC ’17. 2018. doi: 10.5281/
zenodo.1158646.

[60] Dirk Beyer and Thomas Lemberger. Reproduction Package for Article ‘Five Years
Later: Testing vs. Model Checking’. Zenodo. 2022.

https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/3477579
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-030-45237-7_8
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1007/978-3-030-31784-3_11
https://doi.org/10.5281/zenodo.1158646
https://doi.org/10.5281/zenodo.1158646

38 BIBLIOGRAPHY

[61] Dirk Beyer and Thomas Lemberger. Reproduction Package for Article ‘TestCov:
Robust Test-Suite Execution and Coverage Measurement’ in Proc. ASE ’19. Zen-
odo. 2019. doi: 10.5281/zenodo.3418726.

[62] Dirk Beyer and Thomas Lemberger. Reproduction Package for ATVA 2019 Article
‘Conditional Testing: Off-the-Shelf Combination of Test-Case Generators’. 2019.
doi: 10.5281/zenodo.3352401.

[63] Dirk Beyer and Thomas Lemberger. “Six Years Later: Testing vs. Model Check-
ing”. In: Int. J. Softw. Tools Technol. Transfer (2023). Under review.

[64] Dirk Beyer and Thomas Lemberger. “Software Verification: Testing vs. Model
Checking”. In: Proc. HVC. LNCS 10629. Springer, 2017, pp. 99–114. doi: 10.
1007/978-3-319-70389-3_7.

[65] Dirk Beyer and Thomas Lemberger. “Symbolic Execution with CEGAR”. In:
Proc. ISoLA. LNCS 9952. Springer, 2016, pp. 195–211. doi: 10.1007/978-3-
319-47166-2_14.

[66] Dirk Beyer and Thomas Lemberger. “TestCov: Robust Test-Suite Execution
and Coverage Measurement”. In: Proc. ASE. IEEE, 2019, pp. 1074–1077. doi:
10.1109/ASE.2019.00105.

[67] Dongge Liu, Gidon Ernst, Toby Murray, and Benjamin I. P. Rubinstein. “LE-
GION: Best-First Concolic Testing”. In: Proc. ASE. IEEE, 2020, pp. 54–65. doi:
10.1145/3324884.3416629.

[68] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
“Counterexample-guided abstraction refinement for symbolic model checking”.
In: J. ACM 50.5 (2003), pp. 752–794. doi: 10.1145/876638.876643.

[69] Edmund Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem.
Handbook of Model Checking. Springer, 2018. isbn: 978-3-319-10574-1. doi: 10.
1007/978-3-319-10575-8.

[70] Edsger W. Dijkstra. “The Humble Programmer”. In: Commun. ACM 15.10
(1972), pp. 859–866. doi: 10.1145/355604.361591.

[71] Farah Hariri and August Shi. “SRCIROR: a toolset for mutation testing of C
source code and LLVM intermediate representation”. In: Proc. ASE. ACM, 2018,
pp. 860–863. doi: 10.1145/3238147.3240482.

[72] Gordon Fraser and Andrea Arcuri. “EvoSuite: automatic test suite generation for
object-oriented software”. In: Proc. ESEC/FSE. ACM, 2011, pp. 416–419. doi:
10.1145/2025113.2025179.

[73] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. “Program Synthesis”. In:
Foundations and Trends in Programming Languages 4.1-2 (2017), pp. 1–119. doi:
10.1561/2500000010.

[74] Arie Gurfinkel and Sagar Chaki. “Boxes: A Symbolic Abstract Domain of Boxes”.
In: Proc. SAS. 2010, pp. 287–303. doi: 10.1007/978-3-642-15769-1_18.

https://doi.org/10.5281/zenodo.3418726
https://doi.org/10.5281/zenodo.3352401
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1007/978-3-319-47166-2_14
https://doi.org/10.1007/978-3-319-47166-2_14
https://doi.org/10.1109/ASE.2019.00105
https://doi.org/10.1145/3324884.3416629
https://doi.org/10.1145/876638.876643
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1145/355604.361591
https://doi.org/10.1145/3238147.3240482
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1561/2500000010
https://doi.org/10.1007/978-3-642-15769-1_18

BIBLIOGRAPHY 39

[75] Reiner Hähnle and Marieke Huisman. “Deductive Software Verification: From
Pen-and-Paper Proofs to Industrial Tools”. In: Computing and Software Science—
State of the Art and Perspectives. Ed. by Bernhard Steffen and Gerhard J. Woeg-
inger. LNCS 10000. Springer, 2019, pp. 345–373. doi: 10.1007/978-3-319-
91908-9_18.

[76] Hoang M. Le. “Llvm-Based Hybrid Fuzzing with LibKluzzer (Competition
Contribution)”. In: Proc. FASE. LNCS 12076. Springer, 2020, pp. 535–539. doi:
10.1007/978-3-030-45234-6_29.

[77] Jacob Burnim and Koushik Sen. “Heuristics for Scalable Dynamic Test Genera-
tion”. In: Proc. ASE. IEEE, 2008, pp. 443–446. doi: 10.1109/ASE.2008.69.

[78] Jacques-Louis Lions, Lennart Lübeck, Jean-Luc Fauquembergue, Gilles Kahn,
Wolfgang Kubbat, Stefan Levedag, Leonardo Mazzini, Didier Merle, and Colin
O’Halloran. Ariane 501 Inquiry Board Report. Tech. rep. July 1996.

[79] James C. King. “Symbolic Execution and Program Testing”. In: Commun. ACM
19.7 (1976), pp. 385–394. doi: 10.1145/360248.360252.

[80] James H. Andrews, Lionel C. Briand, and Yvan Labiche. “Is mutation an appro-
priate tool for testing experiments?” In: Proc. ICSE. ACM, 2005, pp. 402–411.
doi: 10.1145/1062455.1062530.

[81] Jan Haltermann and Heike Wehrheim. “CoVEGI: Cooperative Verification via
Externally Generated Invariants”. In: Proc. FASE. LNCS 12649. 2021, pp. 108–
129. doi: 10.1007/978-3-030-71500-7_6.

[82] Susmit Jha and Sanjit A. Seshia. “A theory of formal synthesis via inductive
learning”. In: Acta Informatica 54.7 (2017), pp. 693–726. doi: 10.1007/s00236-
017-0294-5.

[83] Jiří Barnat, Jakub Havlı́cek, and Petr Ročkai. “Distributed LTL Model Checking
with Hash Compaction”. In: ENTCS 296 (2013), pp. 79–93. doi: 10.1016/j.
entcs.2013.07.006.

[84] Jiří Slabý, Jan Strejček, and Marek Trtík. “Checking Properties Described by
State Machines: On Synergy of Instrumentation, Slicing, and Symbolic Execu-
tion”. In: Proc. FMICS. LNCS 7437. Springer, 2012, pp. 207–221. doi: 10.1007/
978-3-642-32469-7_14.

[85] Joxan Jaffar, Vijayaraghavan Murali, Jorge A. Navas, and Andrew E. San-
tosa. “TRACER: A Symbolic Execution Tool for Verification”. In: Proc. CAV.
LNCS 7358. Springer, 2012, pp. 758–766. doi: 10.1007/978-3-642-31424-7_61.

[86] Kaled Alshmrany, Mohannad Aldughaim, Lucas C. Cordeiro, and Ahmed Bhayat.
“FuSeBMC v.4: Smart Seed Generation for Hybrid Fuzzing (Competition Con-
tribution)”. In: Proc. FASE. LNCS 13241. Springer, 2022, pp. 336–340. doi: 10.
1007/978-3-030-99429-7_19.

https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-030-45234-6_29
https://doi.org/10.1109/ASE.2008.69
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/1062455.1062530
https://doi.org/10.1007/978-3-030-71500-7_6
https://doi.org/10.1007/s00236-017-0294-5
https://doi.org/10.1007/s00236-017-0294-5
https://doi.org/10.1016/j.entcs.2013.07.006
https://doi.org/10.1016/j.entcs.2013.07.006
https://doi.org/10.1007/978-3-642-32469-7_14
https://doi.org/10.1007/978-3-642-32469-7_14
https://doi.org/10.1007/978-3-642-31424-7_61
https://doi.org/10.1007/978-3-030-99429-7_19
https://doi.org/10.1007/978-3-030-99429-7_19

40 BIBLIOGRAPHY

[87] Kaled M. Alshmrany, Mohannad Aldughaim, Ahmed Bhayat, and Lucas C.
Cordeiro. “FuSeBMC: An Energy-Efficient Test Generator for Finding Security
Vulnerabilities in C Programs”. In: Proc. TAP. LNCS 12740. Springer, 2021,
pp. 85–105. doi: 10.1007/978-3-030-79379-1_6.

[88] Kalpesh Kapoor and Jonathan P. Bowen. “A formal analysis of MCDC and RCDC
test criteria”. In: Softw. Test. Verification Reliab. 15.1 (2005), pp. 21–40. doi:
10.1002/stvr.306.

[89] Yunho Kim, Zhihong Xu, Moonzoo Kim, Myra B. Cohen, and Gregg Rother-
mel. “Hybrid Directed Test Suite Augmentation: An Interleaving Framework”.
In: Proc. ICST. IEEE, 2014, pp. 263–272. doi: 10.1109/ICST.2014.39.

[90] Kin-Keung Ma, Khoo Yit Phang, Jeffrey S. Foster, and Michael Hicks. “Directed
Symbolic Execution”. In: Proc. SAS. LNCS 6887. Springer, 2011, pp. 95–111. doi:
10.1007/978-3-642-23702-7_11.

[91] Koushik Sen, Darko Marinov, and Gul Agha. “Cute: A Concolic Unit Testing
Engine for C”. In: Proc. FSE. ACM, 2005, pp. 263–272. doi: 10.1145/1081706.
1081750.

[92] Leonardo Alt, Sepideh Asadi, Hana Chockler, Karine Even-Mendoza, Grigory
Fedyukovich, Antti E. J. Hyvärinen, and Natasha Sharygina. “HiFrog: SMT-
Based Function Summarization for Software Verification”. In: Proc. TACAS.
LNCS 10206. 2017, pp. 207–213. doi: 10.1007/978-3-662-54580-5_12.

[93] Jun Li, Bodong Zhao, and Chao Zhang. “Fuzzing: A survey”. In: Cybersecurity
1.1 (June 2018), p. 6. issn: 2523-3246. doi: 10.1186/s42400-018-0002-y.

[94] Zohar Manna and Richard J. Waldinger. “A Deductive Approach to Program
Synthesis”. In: ACM Trans. Program. Lang. Syst. 2.1 (1980), pp. 90–121. doi:
10.1145/357084.357090.

[95] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. “Coverage-Based
Greybox Fuzzing as Markov Chain”. In: Proc. SIGSAC. New York, NY, USA:
ACM, 2016, pp. 1032–1043. doi: 10.1145/2976749.2978428.

[96] Marek Chalupa, Anna Řechtáčková, Vincent Mihalkovič, Lukáš Zaoral, and Jan
Strejček. “Symbiotic 9: String Analysis and Backward Symbolic Execution with
Loop Folding (Competition Contribution)”. In: Proc. TACAS (2). LNCS 13244.
Springer, 2022, pp. 462–467. doi: 10.1007/978-3-030-99527-0_32.

[97] Maria Christakis, Peter Müller, and Valentin Wüstholz. “Collaborative Verifica-
tion and Testing with Explicit Assumptions”. In: Proc. FM. LNCS 7436. Springer,
2012, pp. 132–146. doi: 10.1007/978-3-642-32759-9_13.

[98] Mark Harman, Lin Hu, Robert M. Hierons, Joachim Wegener, Harmen Sthamer,
André Baresel, and Marc Roper. “Testability Transformation”. In: IEEE Trans.
Software Eng. 30.1 (2004), pp. 3–16. doi: 10.1109/TSE.2004.1265732.

[99] Mark Weiser. “Program Slicing”. In: IEEE Trans. Softw. Eng. 10.4 (1984),
pp. 352–357. doi: 10.1109/tse.1984.5010248.

https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1002/stvr.306
https://doi.org/10.1109/ICST.2014.39
https://doi.org/10.1007/978-3-642-23702-7_11
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1007/978-3-662-54580-5_12
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1145/357084.357090
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1007/978-3-030-99527-0_32
https://doi.org/10.1007/978-3-642-32759-9_13
https://doi.org/10.1109/TSE.2004.1265732
https://doi.org/10.1109/tse.1984.5010248

BIBLIOGRAPHY 41

[100] Matthias Dangl, Stefan Löwe, and Philipp Wendler. “CPAchecker with Sup-
port for Recursive Programs and Floating-Point Arithmetic (Competition Con-
tribution)”. In: Proc. TACAS. LNCS 9035. Springer, 2015, pp. 423–425. doi:
10.1007/978-3-662-46681-0_34.

[101] Kenneth L. McMillan. “Interpolation and Model Checking”. In: Handbook of
Model Checking. Springer, 2018, pp. 421–446. doi: 10.1007/978-3-319-10575-
8_14.

[102] Mike Czech, Marie-Christine Jakobs, and Heike Wehrheim. “Just Test What You
Cannot Verify!” In: Proc. FASE. LNCS 9033. Springer, 2015, pp. 100–114. doi:
10.1007/978-3-662-46675-9_7.

[103] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. “Mutation Testing Advances: An Analysis and Survey”. In: Adv. Com-
put. 112 (2019), pp. 275–378. doi: 10.1016/bs.adcom.2018.03.015.

[104] Moritz Beller, Chu-Pan Wong, Johannes Bader, Andrew Scott, Mateusz Machal-
ica, Satish Chandra, and Erik Meijer. “What It Would Take to Use Mutation
Testing in Industry - A Study at Facebook”. In: Proc. ICSE (SEIP). IEEE, 2021,
pp. 268–277. doi: 10.1109/ICSE-SEIP52600.2021.00036.

[105] Nancy G. Leveson and Clark S. Turner. “An investigation of the Therac-25 acci-
dents”. In: Computer 26.7 (1993), pp. 18–41. doi: 10.1109/MC.1993.274940.

[106] Oscar S. Dustmann, Klaus Wehrle, and Cristian Cadar. “PARTI: a multi-interval
theory solver for symbolic execution”. In: Proc. ASE. ACM, 2018, pp. 430–440.
doi: 10.1145/3238147.3238179.

[107] Pankai Jalote, Vipindeep Vangala, Taranbir Singh, and Prateek Jain. “Program
Partitioning: A Framework for Combining Static and Dynamic Analysis”. In:
Proc. WODA. Shanghai, China: ACM, 2006, pp. 11–16. doi: 10.1145/1138912.
1138916.

[108] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “Dart: Directed Automated
Random Testing”. In: Proc. PLDI. ACM, 2005, pp. 213–223. doi: 10.1145/

1065010.1065036.
[109] Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and Sai Deep Tetali.

“Compositional May-must Program Analysis: Unleashing the Power of Alterna-
tion”. In: Proc. POPL. ACM, 2010, pp. 43–56. doi: 10.1145/1706299.1706307.

[110] Patrick Cousot and Radhia Cousot. “Abstract interpretation: A unified lattice
model for the static analysis of programs by construction or approximation of
fixpoints”. In: Proc. POPL. ACM, 1977, pp. 238–252. doi: 10.1145/512950.
512973.

[111] Nir Piterman and Amir Pnueli. “Temporal Logic and Fair Discrete Systems”. In:
Handbook of Model Checking. Springer, 2018, pp. 27–73. doi: 10.1007/978-3-
319-10575-8_2.

https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-319-10575-8_14
https://doi.org/10.1007/978-3-319-10575-8_14
https://doi.org/10.1007/978-3-662-46675-9_7
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1109/ICSE-SEIP52600.2021.00036
https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1145/3238147.3238179
https://doi.org/10.1145/1138912.1138916
https://doi.org/10.1145/1138912.1138916
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1706299.1706307
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2

42 BIBLIOGRAPHY

[112] Przemysław Daca, Ashutosh Gupta, and Thomas A. Henzinger. “Abstraction-
Driven Concolic Testing”. In: Proc. VMCAI. LNCS 9583. Springer, 2016, pp. 328–
347. doi: 10.1007/978-3-662-49122-5_16.

[113] Rajeev Alur, Pavol Cerný, and Arjun Radhakrishna. “Synthesis Through Unifi-
cation”. In: Proc. CAV. LNCS 9207. Springer, 2015, pp. 163–179. doi: 10.1007/
978-3-319-21668-3_10.

[114] Ravindra Metta, Raveendra Kumar Medicherla, and Hrishikesh Karmarkar.
“VeriFuzz: Good Seeds for Fuzzing (Competition Contribution)”. In: Proc.
FASE. LNCS 13241. Springer, 2022, pp. 341–346. doi: 10.1007/978-3-030-
99429-7_20.

[115] Rupak Majumdar and Koushik Sen. “Hybrid Concolic Testing”. In: Proc. ICSE.
IEEE, 2007, pp. 416–426. doi: 10.1109/ICSE.2007.41.

[116] Sebastian Ruland, Malte Lochau, and Marie-Christine Jakobs. “HybridTiger:
Hybrid Model Checking and Domination-Based Partitioning for Efficient Multi-
Goal Test-Suite Generation (Competition Contribution)”. In: Proc. FASE.
LNCS 12076. Springer, 2020, pp. 520–524. doi: 10.1007/978-3-030-45234-
6_26.

[117] Shikhar Singh and Sarfraz Khurshid. “Distributed Symbolic Execution using Test-
Depth Partitioning”. In: CoRR abs/2106.02179 (2021). arXiv: 2106.02179.

[118] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. “From program veri-
fication to program synthesis”. In: Proc. POPL. Ed. by Manuel V. Hermenegildo
and Jens Palsberg. ACM, 2010, pp. 313–326. doi: 10.1145/1706299.1706337.

[119] Stefan Löwe, Mikhail U. Mandrykin, and Philipp Wendler. “CPAchecker with
Sequential Combination of Explicit-Value Analyses and Predicate Analyses (Com-
petition Contribution)”. In: Proc. TACAS. LNCS 8413. Springer, 2014, pp. 392–
394. doi: 10.1007/978-3-642-54862-8_27.

[120] Susan Horwitz, Thomas W. Reps, and David W. Binkley. “Interprocedural Slicing
Using Dependence Graphs”. In: ACM Trans. Program. Lang. Syst. 12.1 (1990),
pp. 26–60. doi: 10.1145/77606.77608.

[121] Thierry Titcheu Chekam, Mike Papadakis, and Yves Le Traon. “Mart: a mutant
generation tool for LLVM”. In: Proc. ESEC/FSE. ACM, 2019, pp. 1080–1084.
doi: 10.1145/3338906.3341180.

[122] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMil-
lan. “Abstractions from proofs”. In: Proc. POPL. ACM, 2004, pp. 232–244. doi:
10.1145/964001.964021.

[123] Thomas Ball, Rupak Majumdar, T. D. Millstein, and S. K. Rajamani. “Automatic
Predicate Abstraction of C Programs”. In: Proc. PLDI. ACM, 2001, pp. 203–213.
doi: 10.1145/378795.378846.

https://doi.org/10.1007/978-3-662-49122-5_16
https://doi.org/10.1007/978-3-319-21668-3_10
https://doi.org/10.1007/978-3-319-21668-3_10
https://doi.org/10.1007/978-3-030-99429-7_20
https://doi.org/10.1007/978-3-030-99429-7_20
https://doi.org/10.1109/ICSE.2007.41
https://doi.org/10.1007/978-3-030-45234-6_26
https://doi.org/10.1007/978-3-030-45234-6_26
https://arxiv.org/abs/2106.02179
https://doi.org/10.1145/1706299.1706337
https://doi.org/10.1007/978-3-642-54862-8_27
https://doi.org/10.1145/77606.77608
https://doi.org/10.1145/3338906.3341180
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/378795.378846

BIBLIOGRAPHY 43

[124] Thomas Lemberger. “Plain Random Test Generation with PRTest (Competition
Contribution)”. In: Int. J. Softw. Tools Technol. Transf. 23.6 (Dec. 2021), pp. 871–
873. doi: 10.1007/s10009-020-00568-x.

[125] Ulrik Brandes, Markus Eiglsperger, Ivan Herman, Michael Himsolt, and M. Scott
Marshall. “GraphML Progress Report”. In: Graph Drawing. LNCS 2265. Springer,
2001, pp. 501–512. doi: 10.1007/3-540-45848-4_59.

[126] Will Leeson and Matthew B. Dwyer. “Algorithm Selection for Software Verifica-
tion using Graph Attention Networks”. In: CoRR abs/2201.11711 (2022). arXiv:
2201.11711.

[127] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and Flavio
Lerda. “Model Checking Programs”. In: Autom. Software Eng. 10.2 (2003),
pp. 203–232. doi: 10.1023/A:1022920129859.

[128] William E. Howden. “Weak Mutation Testing and Completeness of Test Sets”. In:
IEEE Trans. Software Eng. 8.4 (1982), pp. 371–379. doi: 10.1109/TSE.1982.
235571.

[129] William H. Pickering. Mariner-Venus 1962. Final Project Report. Tech. rep.
NASA SP-59. July 1962.

[130] Yavuz Köroglu and Alper Sen. “Design of a Modified Concolic Testing Algo-
rithm with Smaller Constraints”. In: Proc. CSTVA@ISSTA. CEUR 1639. CEUR-
WS.org, 2016, pp. 3–14.

[131] Yibiao Yang, Yanyan Jiang, Zhiqiang Zuo, Yang Wang, Hao Sun, Hongmin Lu,
Yuming Zhou, and Baowen Xu. “Automatic Self-Validation for Code Coverage
Profilers”. In: Proc. ASE. IEEE, 2019, pp. 79–90. doi: 10.1109/ASE.2019.00018.

[132] Zakir Durumeric, James Kasten, David Adrian, J. Alex Halderman, Michael
Bailey, Frank Li, Nicolas Weaver, Johanna Amann, Jethro Beekman, Mathias
Payer, and Vern Paxson. “The Matter of Heartbleed”. In: Proc. IMC. ACM, 2014,
pp. 475–488. doi: 10.1145/2663716.2663755.

https://doi.org/10.1007/s10009-020-00568-x
https://doi.org/10.1007/3-540-45848-4_59
https://arxiv.org/abs/2201.11711
https://doi.org/10.1023/A:1022920129859
https://doi.org/10.1109/TSE.1982.235571
https://doi.org/10.1109/TSE.1982.235571
https://doi.org/10.1109/ASE.2019.00018
https://doi.org/10.1145/2663716.2663755

45

A Credits

Software Verification: Testing vs. Model Checking

This article (Section B.1) is authored by Dirk Beyer and Thomas Lemberger and pub-
lished by Springer in the proceedings of HVC 2017 [64]. The article received the best pa-
per award at HVC 2017. A reproduction package [59] is available and the tool TBF is
available open source. Thomas Lemberger is a co-author to this article and contributed
about 70 % of the article’s content.

Plain Random Test Generation with PRTest (Competition
Contribution)

This article (Section B.2) is authored by Thomas Lemberger and published by Springer in
the Journal on Software Tools for Technology Transfer (STTT), 2019 [124]. Reproduction
is possible through Test-Comp 2019 [25] and the tool PRTest is available open source.
Thomas Lemberger is the sole author of this article, so he contributed 100 % of the
article’s content.

TestCov: Robust Test-Suite Execution and Coverage Measurement

This article (Section B.3) is authored by Dirk Beyer and Thomas Lemberger and pub-
lished by IEEE in the proceedings of ASE 2019 [66]. A reproduction package [61] is
available, and the tool TestCov is available open source. Thomas Lemberger is a co-
author to this article and contributed about 90 % of the article’s content.

Tests from Witnesses: Execution-Based Validation of Verification
Results

This article (Section B.4) is authored by Dirk Beyer, Matthias Dangl, Thomas Lem-
berger, and Michael Tautschnig. The article is published by Springer in the proceed-
ings of TAP 2018 [52]. All experimental data is available1 and the tools CPA-w2t and
FShell-w2t are both available open source. Thomas Lemberger is a co-author to this
article and contributed about 40 % of the article’s content.

1
https://www.sosy-lab.org/research/executionbasedwitnessvalidation/

https://doi.org/10.5281/zenodo.1158646
https://github.com/sosy-lab/tbf/
https://gitlab.com/sosy-lab/software/prtest
https://doi.org/10.5281/zenodo.3418726
https://gitlab.com/sosy-lab/software/test-suite-validator/
https://gitlab.com/sosy-lab/software/cpachecker/-/blob/tags/cpachecker-2.1.1/scripts/cpa_witness2test.py
https://github.com/tautschnig/fshell-w2t
https://www.sosy-lab.org/research/executionbasedwitnessvalidation/

46 APPENDIX A. CREDITS

Six Years Later: Testing vs. Model Checking

This article (Section B.5) is authored by Dirk Beyer and Thomas Lemberger. It is sub-
mitted to the International Journal on Software Tools for Technology Transfer (STTT)
and currently under review. A reproduction package [60] is available. Thomas Lemberger
is a co-author to this article and contributed about 90 % of the article’s content.

Reducer-Based Construction of Conditional Verifiers

This article (Section B.6) is authored by Dirk Beyer, Marie-Christine Jakobs, Thomas
Lemberger, and Heike Wehrheim. The article is published by ACM in the proceedings of
ICSE 2018 [44]. The concept of reducer is implemented in CPAchecker, which is available
open source. Thomas Lemberger is a co-author to this article and contributed about 30 %
of the article’s content.

Conditional Testing: Off-the-Shelf Combination of Test-Case
Generators

This article (Section B.7) is authored by Dirk Beyer and Thomas Lemberger. The article
is published by Springer in the proceedings of ATVA 2019 [58]. A reproduction pack-
age [62] is available and the software CondTest is available open source. Thomas Lem-
berger is a co-author to this article and contributed about 80 % of the article’s content.

Difference Verification with Conditions

This article (Section B.8) is authored by Dirk Beyer, Marie-Christine Jakobs, and Tho-
mas Lemberger. It is published by Springer in the proceedings of SEFM 2020 [42]. A
reproduction package [43] is available and the approach is implemented open source in
CPAchecker. Thomas Lemberger is a co-author of this article and contributed about
40 % of the article’s content.

Decomposing Software Verification into Off-the-Shelf Components: An
Application to CEGAR

This article (Section B.9) is authored by Dirk Beyer, Jan Haltermann, Thomas Lem-
berger, and Heike Wehrheim. The article will be published by Springer in the proceedings
of ICSE 2022 [35]. A reproduction package [36] is available and our implementation is
available open source. Thomas Lemberger is a co-author of this article and contributed
about 40 % of the article’s content.

https://doi.org/
https://cpachecker.sosy-lab.org/
https://cpachecker.sosy-lab.org/
https://doi.org/10.5281/zenodo.3352401
https://doi.org/10.5281/zenodo.3352401
https://gitlab.com/sosy-lab/software/conditional-testing
https://doi.org/10.5281/zenodo.3954933
https://doi.org/10.5281/zenodo.5918111
https://gitlab.com/sosy-lab/software/coveriteam/-/tree/c-cegar-icse2022/examples/Component-based_CEGAR

47

B Original Manuscripts

This appendix includes all publications discussed in Chapters 3 and 4. Publications are
ordered according to their appearance in this work. In all of the listed publications,
author names are in alphabetical order.

Software Verification: Testing vs. Model Checking

A Comparative Evaluation of the State of the Art

Dirk Beyer and Thomas Lemberger

LMU Munich, Germany

Abstract. In practice, software testing has been the established method
for finding bugs in programs for a long time. But in the last 15 years,
software model checking has received a lot of attention, and many suc-
cessful tools for software model checking exist today. We believe it is
time for a careful comparative evaluation of automatic software test-
ing against automatic software model checking. We chose six existing
tools for automatic test-case generation, namely AFL-fuzz, CPATiger,
Crest-ppc, FShell, Klee, and PRtest, and four tools for software model
checking, namely Cbmc, CPA-Seq, Esbmc-incr, and Esbmc-kInd, for the task
of finding specification violations in a large benchmark suite consisting
of 5 693 C programs. In order to perform such an evaluation, we have
implemented a framework for test-based falsification (TBF) that executes
and validates test cases produced by test-case generation tools in order
to find errors in programs. The conclusion of our experiments is that
software model checkers can (i) find a substantially larger number of bugs
(ii) in less time, and (iii) require less adjustment to the input programs.

1 Introduction

Software testing has been the standard technique for identifying software bugs
for decades. The exhaustive and sound alternative, software model checking,
is believed to be immature for practice. Some often-named disadvantages are
the need for experts in formal verification, extreme resource consumption, and
maturity issues when it comes to handling large software systems.

But are these concerns still true today? We claim that the answer is No,
and show with experiments on a large benchmark of C programs that software
model checkers even find more bugs than testers. We found it is time for a
comparative evaluation of testing tools against model-checking tools, motivated
by the success of software model checkers as demonstrated in the annual In-
ternational Competition on Software Verification (SV-COMP) [4], and by the
move of development groups of large software systems towards formal verification,
such as Facebook 1, Microsoft [2, 44], and Linux [38].

Our contribution is a thorough experimental comparison of software testers
against software model checkers. We performed our experimental study on
5 693 programs from a widely-used and state-of-the-art benchmarking set.2 To
represent the state of the art in terms of tools, we use AFL-fuzz, CPATiger,

1
http://fbinfer.com/

2
https://github.com/sosy-lab/sv-benchmarks

© Springer International Publishing AG 2017

O. Strichman and R. Tzoref-Brill (Eds.): HVC 2017, LNCS 10629, pp. 99–114, 2017.

https://doi.org/10.1007/978-3-319-70389-3_7

48 APPENDIX B. ORIGINAL MANUSCRIPTS

Crest-ppc, FShell, Klee, and PRtest as software testers, and Cbmc, CPA-Seq,
Esbmc-incr, and Esbmc-kInd as software model checkers.3 The goal in our study
is to evaluate the ability to reliably find specification violations in software. While
the technique of model checking was originally developed as a proof technique
for showing formal correctness, rather than for efficiently finding bugs, this study
evaluates all tools exclusively against the goal of finding bugs.

To make the test generators comparable, we developed a unifying framework
for test-based falsification (TBF) that interfaces between input programs, test
generators, and test cases. For each tester, the infrastructure needs to (a) prepare
the input program source code to match the input format that the tester expects
and can consume, (b) run the tester to generate test cases, (c) extract test vectors
from the tester’s proprietary format for the produced test cases, and (d) execute
the tests using a test harness to validate whether the generated test cases cover
the bug in the program under test (i.e., whether at least one test case exposes
the bug). If a bug is found, the framework outputs a witnessing test case in two
different, human- and machine-readable formats: (1) a compilable test harness
that can be used to directly provoke the bug in the program through execution
and (2) a violation witness in a common exchange format for witnesses [7], which
can be given to a witness validator to check the specification violation formally
or by execution. This allows us to use input programs, produce executable
tests, and check program behavior independently from a specific tester’s quirks
and requirements. We make the following contributions:

• Our framework, TBF, makes AFL-fuzz, CPATiger, Crest-ppc, FShell,
Klee, and PRtest applicable to a large benchmark set of C programs, without
any manual pre-processing. It is easily possible to integrate new tools. TBF

is available online and completely open-source.4

• TBF provides two different, human-readable output formats for test cases
generated by AFL-fuzz, CPATiger, Crest-ppc, FShell, Klee, and PRtest,
and can validate whether a test case describes a specification violation
for a program under test. Previously, there was no way to automatically
generate test cases with any of the existing tools that are (i) executable and
(ii) available in an exchangeable format. This helps in understanding test
cases and supports debugging.

• We perform the first comparison regarding bug finding of test-case gener-
ation tools and software model checkers at a large scale. The experiments
give the interesting insight that software model checkers can identify more
program bugs than the existing test-case generators, using less time. All our
experimental data and results are available on a supplementary web page.5

3 The choice of using C programs is justified by the fact that C is still the most-used
language for safety-critical software. Thus, one can assume that this is reflected in the
research community and that the best test-generation and model checking technology
is implemented in tools for C. The choice of the particular repository is justified by the
fact that this is the largest and most diverse open benchmark suite (cf. SV-COMP [4]).

4
https://github.com/sosy-lab/tbf

5
https://www.sosy-lab.org/research/test-study/

100 D. Beyer and T. Lemberger

B.1. Software Verification: Testing vs. Model Checking 49

Related Work. A large-scale comparative evaluation of the bug-finding capabil-
ities of software testers and software model checkers is missing in the literature
and this work is a first contribution towards filling this gap. In the area of
software model checking, SV-COMP serves as a yearly comparative evaluation
of a large set of model checkers for C programs and the competition report
provides an overview over tools and techniques [4]. A general survey over tech-
niques for software model checking is available [37]. In the area of software
testing, there is work comparing test-case generators [28]. Surveys provide an
overview of different test techniques [1] and a detailed web site is available
that provides an overview over tools and techniques 6.

2 Background: Technology and Tools

In this paper, we consider only fully automatic techniques for testing and model
checking of whole programs. This means that (i) a verification task consists of a
program (with function main as entry) and a specification (reduced to reacha-
bility of function __VERIFIER_error by instrumentation), (ii) the comparison
excludes all approaches for partial verification, such as unit testing and pro-
cedure summarization, and (iii) the comparison excludes all approaches that
require interaction as often needed for deductive verification.

2.1 Software Testing

Given a software system and a specification of that system, testing executes the
system with different input values and observes whether the intended behavior is
exhibited (i.e., the specification holds). A test vector 〈η1, · · · , ηn〉 is a sequence of
n input values η1 to ηn. A test case is described by a test vector, where the i-th
input of the test case is given by the i-th value ηi of the test vector. A test suite

is a set of test cases. A test harness is a software that supports the automatic
execution of a test case for the program under test, i.e., it feeds the values from
the test vector one by one as input to the program. Test-case generation produces
a set of test vectors that fulfills a specific coverage criterion. Program-branch
coverage is an example of a well-established coverage criterion.

There are three major approaches to software test-case generation: symbolic or
concolic execution [18, 19, 29, 39, 45, 46], random fuzz testing [30, 36], and model
checking [5, 10, 35]. In this work, we use one tester based on symbolic execution
(Klee), one based on concolic execution (Crest-ppc), one based on random
generation (PRtest), one based on random fuzzing (AFL-fuzz), and two based
on model-checking (CPATiger and FShell), which we describe in the following
in alphabetic order. Table 1 gives an overview over testers and model checkers.
AFL-fuzz [17] is a coverage-based greybox fuzzer. Given a set of start inputs,
it performs different mutations (e.g., bit flips, simple arithmetics) on the existing
inputs, executes these newly created inputs, and checks which parts of the
program are explored. Depending on these, it decides which inputs to keep, and
which to use for further mutations. Output: AFL-fuzz outputs each generated

6 Provided by Z. Micskei: http://mit.bme.hu/∼micskeiz/pages/code_based_test_generation.html

Software Verification: Testing vs. Model Checking 101

50 APPENDIX B. ORIGINAL MANUSCRIPTS

Table 1: Overview of test generators and model checkers used in the comparison

Tool Ref. Version Technique

AFL-fuzz [17] 2.46b Greybox fuzzing
Crest-ppc [39] f542298d Concolic execution, search-based
CPATiger [10] r24658 Model checking-based testing, based on CPAchecker

FShell [35] 1.7 Model checking-based testing, based on Cbmc

Klee [19] c08cb14c Symbolic execution, search-based
PRtest 0.1 Random testing

Cbmc [40] sv-comp17 Bounded model checking
CPA-Seq [25] sv-comp17 Explicit-state, predicate abstraction, k-Induction
Esbmc-incr [43] sv-comp17 Bounded model checking, incremental loop bound
Esbmc-kInd [27] sv-comp17 Bounded model checking, k-Induction

test case in its own file. The file’s binary representation is read ‘as is’ as input,
so generated test cases do not have a specific format.
CPATiger [10] uses model checking, more specifically, predicate abstrac-
tion [12], for test case generation. Is is based on the software-verification tool
CPAchecker [11] and uses the FShell query language (FQL) [35] for speci-
fication of coverage criteria. If CPATiger finds a feasible program path to a
coverage criterion with predicate abstraction, it computes test inputs from the
corresponding predicates used along that path. It is designed to create test
vectors for complicated coverage criteria. Output: CPATiger outputs gener-
ated test cases in a single text file, providing the test input as test vectors
in decimal notation together with additional information.
Crest [18] uses concolic execution for test-case generation. It is search-based,
i.e., it chooses test inputs that reach yet uncovered parts of the program fur-
thest from the already explored paths. Crest-ppc [39] improves on the con-
colic execution used in Crest by modifying the input generation method to
query the constraint solver more often, but using only a small set of con-
straints for each query. We performed experiments to ensure that Crest-ppc

outperforms Crest. The results are available on our supplementary web page.
Output: Crest-ppc outputs each generated test case in a text file, listing the
sequence of used input values in decimal notation.
FShell [35] is another model-checking-based test-case generator. It uses
CBMC (described in Sect. 2.2) for state-space exploration and also uses FQL
for specification of coverage criteria. Output: FShell outputs generated test
cases in a single text file, listing input values of tests together with additional
information. Input values of tests are represented in decimal notation.
Klee [19] uses symbolic execution for test-case generation. After each step in a
program, Klee chooses which of the existing program paths to continue on next,
based on different heuristics, including a search-based one and one preventing
inefficient unrolling of loops. Since Klee uses symbolic execution, it can explore
the full state space of a program and can be used for software verification, not
just test-case generation. As we are interested in exploring the capabilities of

102 D. Beyer and T. Lemberger

B.1. Software Verification: Testing vs. Model Checking 51

testing, we only consider the test cases produced by Klee. Output: Klee outputs
each generated test case in a binary format that can be read with Klee. The
input values of tests are represented by their bit width and bit representation.
PRtest is a simple tool for plain random testing. The tool is delivered to-
gether with TBF and serves as base line in our experiments. Output: PRtest

outputs each generated test case in a text file, listing the sequence of used
input values in hexadecimal notation.

2.2 Software Model Checking

Software model checking tries to prove a program correct or find a property
violation in a program, by exploring the full state space and checking whether
any of the feasible program states violate the specification. A lot of different
techniques exist to do this. Since the number of concrete states of a program can
be, in general, infinite, a common principle is abstraction. A good abstraction is,
on the one hand, as coarse as possible —to keep the state space that must be
explored small— and, on the other hand, precise enough to eliminate false alarms.

Tools for software model checking combine many different techniques, for
example, counterexample-guided abstraction refinement (CEGAR) [21], predicate
abstraction [31], bounded model checking (BMC) [16, 22], lazy abstraction [9, 34],
k-induction [8, 27], and interpolation [23, 42]. A listing of the widely-used tech-
niques, and which tools implement which technique, is given in the SV-COMP’17
report [4] in Table 4. In this work, we use a general-purpose bounded model
checker (Cbmc), a sequential combination of approaches (CPA-Seq), a bounded
model checker with incrementally increasing bounds (Esbmc-incr), and a k-
induction based model checker (Esbmc-kInd).
Cbmc [22, 40] uses bit-precise BMC with MiniSat [26] as SAT-solver backend.
BMC performs model checking with limited loop unrolling, i.e., loops are only
unrolled up to a given bound. If no property violation can be found in the explored
state space under this restriction, the program is assumed to be safe in general.
CPA-Seq [25] is based on CPAchecker that combines explicit-state model check-
ing [13], k-induction [8], and predicate analysis with adjustable-block abstrac-
tion [12] sequentially. CPA-Seq uses the bit-precise SMT solver MathSAT5 [20].
Esbmc-incr [43] is a fork of Cbmc with an improved memory model. It uses an
iterative scheme to increase its loop bounds, i.e., if no error is found in a program
analysis using a certain loop bound, then the bound is increased. If no error is
found after a set number of iterations, the program is assumed to be safe.
Esbmc-kInd [27] uses automatic k-induction to compute loop invariants in
the context-bounded model checking of Esbmc. It performs the three phases of
k-induction in parallel, which often yields a performance advantage.

2.3 Validation of Results

It is well-understood that when testers and model checkers produce test cases
and error paths, respectively, sometimes the results contain false alarms. In order
to avoid investing time on false results, test cases can be validated by reproducing
a real crash [24, 41] and error paths can be evaluated by witness validation [7, 15].
A violation witness is an automaton that describes a set of paths through the

Software Verification: Testing vs. Model Checking 103

52 APPENDIX B. ORIGINAL MANUSCRIPTS

Result

if verdict false

Input

Program

Pre-
processor

Prepared

Program
Test-Case

Generator
Test

Cases

Test-Vector

Extractor

Test

Vectors

Witness

Generator

Harness

Generator
Harness

Test

Executor

Verdict Witness

Fig. 1: Workflow of TBF

program that contain a specification violation. Each state transition contains a
source-code guard that specifies the program-code locations at which the transition
is allowed, and a state-space guard that constrains the set of possible program
states after the transition. We considered four existing witness validators.
CPAchecker [7] uses predicate analysis with adjustable-block abstraction
combined with explicit-state model checking for witness validation.
CPA-witness2test7 creates a compilable test harness from a violation witness
and checks whether the specification violation is reached through execution.
FShell-witness2test8 also performs execution-based witness validation, but
does not rely on any verification tool.
Ultimate Automizer [32] uses an automata-centric approach [33] to model
checking for witness validation.

In this work, we evaluate the results from testers with TBF by considering
for each test case, one by one, whether compiled with a test harness and the
program, the execution violates the specification, and we evaluate the results of
model checkers by validating the violation witness using four different witness
validators. This way, we count bug reports only if they can be reproduced.

3 Framework for Test-Based Falsification

We designed a framework for test-based falsification (TBF) that makes it possible
to uniformly use test-case generation tools. Figure 1 shows the architecture of
this approach. Given an input program, TBF first pre-processes the program
into the format that the test-case generator requires (‘prepared program’). This
includes, e.g., adding function definitions for assigning new symbolic values
and compiling the program in a certain way expected by the generator. The
prepared program is then given to the test-case generator, which stores its
output in its own, proprietary format (‘test cases’). These test cases are given
to a test-vector extractor to extract the test vectors and store them in an
exchangeable, uniform format (‘test vectors’). The harness generator produces a
test harness for the input program, which is compiled and linked together with
the input program and executed by the test executor. If the execution reports
a specification violation, the verdict is false. In all other cases, the verdict

7
https://github.com/sosy-lab/cpachecker

8
https://github.com/tautschnig/cprover-sv-comp/tree/test-gen/witness2test

104 D. Beyer and T. Lemberger

B.1. Software Verification: Testing vs. Model Checking 53

int nondet_int ();

short nondet_short ();

void __VERIFIER_error ();

int main() {

int x = nondet_int ();

int y = x;

if (nondet_short ()) {

x++;

} else {

y++;

}

if (x > y) {

__VERIFIER_error ();

}

}

Fig. 2: An example C program

int nondet_int (){

int __sym;

CREST_int(__sym);

return __sym;

}

Fig. 3: A function definition
prepared for Crest-ppc

void __VERIFIER_error () {

fprintf(stderr , "__TBF_error_found .\n");

exit (1);

}

int nondet_int () {

unsigned int inp_size = 3000;

char * inp_var = malloc(inp_size);

fgets(inp_var , inp_size , stdin);

return *((int *) parse_inp(inp_var));

}

short nondet_short () {

unsigned int inp_size = 3000;

char * inp_var = malloc(inp_size);

fgets(inp_var , inp_size , stdin);

return *((short *) parse_inp(inp_var));

}

Fig. 4: Excerpt of a test harness; test vec-
tors are passed by standard input (fgets,
parse_inp)

is unknown. If the verdict of a program is false, TBF produces a self-contained,
compilable test harness and a violation witness to the user.

Input Program. TBF is designed to evaluate test-case generation tools
and supports the specification encoding that is used by SV-COMP. In this
work, all programs are C programs and have the same specification: “Func-
tion __VERIFIER_error is never called.”

Pre-processor. TBF has to adjust the input programs for the respective test-
case generator that is used. Each test-case generator uses certain techniques
to mark input values. We assume that, except for special functions that are
defined by the rules for the repository9, all undefined functions in the program
are free of side effects and return non-deterministic values of their corresponding
return type. For each undefined function, we append a definition to the program
under test to inject a new input value whenever the specific function is called.
The meaning of the special functions defined by the repository rules are also
represented in the code. Figure 2 shows a program with undefined functions
nondet_int and nondet_short. As an example, Fig. 3 shows the definition of
nondet_int that tells Crest-ppc to use a new (symbolic) input value. We display
the full code of pre-processed example programs for all considered tools on
our supplementary web page. After pre-processing, we compile the program
as expected by the test-case generator, if necessary.

Test-Vector Extractor. Each tool produces test cases as output as described
in Sect. 2.1. For normalization, TBF extracts test vectors from the generated
test cases in an exchangeable format. We do not wait until the test generator is
finished, but extract a test vector whenever a new test case is written, in parallel.

9
https://sv-comp.sosy-lab.org/2017/rules.php

Software Verification: Testing vs. Model Checking 105

54 APPENDIX B. ORIGINAL MANUSCRIPTS

α0 α1 α2

αs

αe

nondet_int()

\return == 43

nondet_short()

\return == 43

nondet_int()

\return == 1

nondet_short()

\return == 1

__VERIFIER_error()

true

nondet_int()

true

nondet_short()

true

Fig. 5: Violation witness for test vector 〈43, 1〉 and two non-deterministic methods

Harness Generator and Test Executor. We provide an effective and efficient
way of checking whether a generated test vector represents a property violation:
We create a test harness for the program under test that can feed an input value
into the program for each call to a non-deterministic function. For performance
reasons, it gets these input values from standard input. For each test vector
extracted from the produced test cases, we execute the pre-compiled test harness
with the vector as input and check whether a property violation occurs during
execution. An example harness is shown in Fig. 4.

Witness Generation. A test vector 〈η1, · · · , ηn〉 can be represented by a vi-
olation witness that contains one initial state α0, one accepting state αe, one
sink sate αs, and, for each value ηi of the test vector, a state αi with, for each
non-deterministic function occurring in the program, a transition from αi−1 to αi

with the call to the corresponding function as source-code guard and ηi as return
value for the corresponding function as state-space guard, i.e.: the transition can
only be taken if the corresponding function is called, and, if the transition is
taken, it is assumed that the return value of the corresponding function is ηi.
From αn, there is one transition to αe for each occurring call to __VERIFIER_error,
and one transition to αs for each non-deterministic function in the program.
Each such transition has the corresponding function call as source-code guard
and no state-space guard. The transitions to sink state αs make sure that no
path is considered that may need an additional input value. While such a path
may exist in the program, it can not be the path described by the test vector.
Fig. 5 shows an example of such a witness. Each transition between states is
labeled with the source-code guard (no box) and the state-space guard (boxed).
The value ‘true’ means that no state-space guard exists for that transition.

When validating the displayed violation witness, a validator explores the
state-space until it encounters a call to nondet_int or nondet_short. Then, it
is told to assume that the encountered function returns the concrete value 43,
described by the special identifier \return. When it encounters one of the two
functions for the second time, it is told to assume that the corresponding function
returns the concrete value 1. After this, if it encounters a call to __VERIFIER_error,
it confirms the violation witness. If it encounters a call to one of the two non-
deterministic functions for the third time, it enters the sink state αs, since our
witnessed counterexample only contains two calls to non-deterministic functions.

106 D. Beyer and T. Lemberger

B.1. Software Verification: Testing vs. Model Checking 55

4 Experimental Evaluation

We compare automatic test generators against automatic software model checkers
regarding bug finding abilities in a large-scale experimental evaluation.

4.1 Experiment Setup

Programs under Test. To get a representative set of programs under test, we
used all 5 693 verification tasks of the sv-benchmarks set10 in revision 879e141f11

whose specification is that function __VERIFIER_error is not called. Of the
5 693 programs, 1 490 programs contain a known bug (at most one bug per
program), i.e., there is a path through the program that ends in a call to
__VERIFIER_error, and 4 203 programs are correct. The benchmark set is par-
titioned into categories. A description of the kinds of programs in the cate-
gories of an earlier version of the repository can be found in the literature
(cf. [3], Sect. 4). For each category (e.g., ‘Arrays’), the defining set of contained
programs (.set file 12), and a short characterization and the bit architecture of
the contained programs (.cfg file 13) can be found in the repository itself.

Availability. More details about the programs under test, generated test
cases, generated witnesses, and other experimental data are available on
the supplementary web page.14

Tools. We used the test generators and model checkers in the versions specified
in Table 1. TBF15 is implemented in Python 3.5.2 and available as open-source;
we use TBF in version 0.1. For Crest-ppc, we use a modified revision that
supports long data types. For readability, we add superscripts t and m to the
tool names for better visual identification of the testers and model checkers,
respectively. We selected six testing tools that (i) support the language C, (ii) are
freely available, (iii) cover a spectrum of different technologies, (iv) are available
for 64-bit GNU/Linux, and (v) generate test cases for branch coverage or similar:
AFL-fuzz, CPATiger, Crest-ppc, FShell, Klee, and PRtest. For the model
checkers, we use the four most successful model checkers in category ‘Falsification’
of SV-COMP’17 16, i.e., Cbmc, CPA-Seq, Esbmc-incr, and Esbmc-kInd. To
validate the results of violation witnesses, we use CPAchecker and Ultimate

Automizer in the revision from SV-COMP’17, CPA-witness2test in revision
r24473 of the CPAchecker repository, and FShell-witness2test in revision
2a76669f from branch test-gen in the Cprover repository17.

Computing Resources. We performed all experiments on machines with an
Intel Xeon E3-1230 v5 CPU, with 8 processing units each, a frequency of 3.4 GHz,
33GB of memory, and a Ubuntu 16.04 operating system with kernel Linux 4.4.

10
https://sv-comp.sosy-lab.org/2017/benchmarks.php

11
https://github.com/sosy-lab/sv-benchmarks/tree/879e141f

12
https://github.com/sosy-lab/sv-benchmarks/blob/879e141f/c/ReachSafety-Arrays.set

13
https://github.com/sosy-lab/sv-benchmarks/blob/879e141f/c/ReachSafety-Arrays.cfg

14
https://www.sosy-lab.org/research/test-study/

15
https://github.com/sosy-lab/tbf

16
https://sv-comp.sosy-lab.org/2017/results/

17
https://github.com/tautschnig/cprover-sv-comp

Software Verification: Testing vs. Model Checking 107

56 APPENDIX B. ORIGINAL MANUSCRIPTS

 0.1

 1

 10

 100

 1000

 0 200 400 600 800 1000 1200 1400

C
P
U

 t
im
e
 (
s
)

n-th fastest correct result

AFL-fuzz
T

CPATiger
T

Crest
T

FShell
T

KLEE
T

PRTest
T

CBMC
M

CPA-seq
M

ESBMC-incr
M

ESBMC-kInd
M

Fig. 6: Quantile plots for the different tools for finding bugs in programs

We limited each benchmark run to 2 processing units, 15GB of memory, and
15min of CPU time. All CPU times are reported with two significant digits.

4.2 Experimental Results

Now we report the results of our experimental study. For each of the 1 490 pro-
grams that contain a known bug, we applied all testers and model checkers in
order to find the bug. For the testers, a bug is found if one of the generated
test cases executes the undesired function call. For the model checkers, a bug is
found if the tools returns answer false together with a violation witness.

Qualitative Overview. We illustrate the overall picture using the quantile
plot in Fig. 6. For each data point (x, y) on a graph, the quantile plot shows
that x bugs can be correctly identified using at most y seconds of CPU time.
The x-position of the right-most data point for a tool indicates the total num-
ber of bugs the tool was able to identify. In summary, each model checker
finds more bugs than the best tester, while the best tester (Kleet) closely
follows the weakest model checker (CBMCm).

The area below the graph is proportional to the overall consumed CPU time
for successfully solved problems. The visualization makes it easy to see, e.g., by
looking at the 400 fastest solved problems, that most testers time out while most
model checkers use only a fraction of their available CPU time. In summary, the ra-
tio of returned results by invested resources is much better for the model checkers.

Quantitative Overview. Next, we look at the numerical details as shown in
Table 2. The columns are partitioned into four parts: the table lists (i) the
category/row label together with the number of programs (maximal number of
found bugs), (ii) the number of found bugs for the six testers, (iii) the number
of found bugs for the four model checkers, and (iv) the union of the results
for testers, model checkers, and overall. In the two parts for the testers and
model checkers, we highlight the best result in bold (if equal, the fastest result
is highlighted). The rows are partitioned into three parts: the table shows first

108 D. Beyer and T. Lemberger

B.1. Software Verification: Testing vs. Model Checking 57

Table 2: Results for testers and model checkers on programs with a bug

N
o
.
P

ro
g
ra

m
s

A
F
L
-
f
u
z
z
t

C
P
A
T

ig
e
r
t

C
r
e
s
t
-
p
p
c
t

F
S
h
e
l
l
t

K
l
e
e
t

P
R
t
e
s
t
t

C
B

M
C

m

C
P
A

-
s
e
q
m

E
S
B

M
C

-
in

c
r
m

E
S
B

M
C

-
k
I
n
d
m

U
n
io

n
T
es

te
rs

U
n
io

n
M

C

U
n
io

n
A

ll

Arrays 81 26 0 20 4 22 25 6 3 6 4 31 13 33

BitVectors 24 11 5 7 5 11 10 12 12 12 12 14 17 19

ControlFlow 42 15 0 11 3 20 3 41 23 36 35 21 42 42

ECA 413 234 0 51 0 260 0 143 257 221 169 286 42 338

Floats 31 11 2 2 4 2 11 31 29 17 13 13 31 31

Heap 66 46 22 16 13 48 32 64 31 62 58 48 66 66

Loops 46 45 27 29 5 40 33 42 36 42 38 41 38 43

ProductLines 265 169 1 204 156 255 144 263 265 265 263 265 265 265

Recursive 45 44 0 35 22 45 31 42 41 40 40 45 43 45

Sequentialized 170 4 0 1 24 123 3 135 122 135 134 123 141 147

LDV 307 0 0 0 0 0 0 51 70 113 78 0 147 147

Total Found 1 490 605 57 376 236 826 292 830 889 949 844 887 1 092 1 176

Compilable 1 115 605 57 376 236 826 292 779 819 830 761 887 930 1 014

Wit. Confirmed 1 490 761 857 705 634 887 979 1 068

Median CPU Time (s) 11 4.5 3.4 6.2 3.6 3.6 1.4 15 1.9 2.3

Average CPU Time (s) 82 38 4.1 27 33 6.7 46 51 61 69

the results for each of the 11 categories of the programs under test, second the
results for all categories together, and third the CPU times required.

The row ‘Total Found’ shows that the best tester (Kleet) is able to find
826 bugs, while all model checkers find more, with the best model checker
(ESBMC-incrm) finding 15% more bugs (949) than the best tester. An interesting
observation is that the different tools have different strengths and weaknesses:
column ‘Union Testers’ shows that applying all testers together increases the
amount of solved tasks considerably. This is made possible using our unifying
framework TBF, which abstracts from the differences in input and output of
the various tools and lets us use all testers in a common work flow. The same
holds for the model checkers: the combination of all approaches significantly
increases the number of solved problems (column ‘Union MC’). The combination
of testers and model checkers (column ‘Union All’) in a bug-finding workflow
can further improve the results significantly, i.e., there are program bugs that
one technique can find but not the other, and vice versa.

While it is usually considered an advantage that model checkers can be
applied to incomplete programs that are not yet fully defined (as expected
by static-analysis tools), testers obviously cannot be applied to such programs
(as they are dynamic-analysis tools). This issue applies in particular to the
category ‘LDV’ of device drivers, which contain non-deterministic models of the
operating-system environment. This kind of programs is important because it
is successfully used to find bugs in systems code 18 [47], but in order to provide
a comparison without the influence of this issue, we also report the results
restricted to those programs that are compilable (row ‘Compilable’).

18
http://linuxtesting.org/results/ldv

Software Verification: Testing vs. Model Checking 109

58 APPENDIX B. ORIGINAL MANUSCRIPTS

For the testers, TBF validates whether a test case is generated that identifies
the bug as found. This test case can later be used to reproduce the error path
using execution, and a debugger helps to comprehend the bug. For the model
checkers, the reported violation witness identifies the bug as found. This witness
can later be used to reproduce the error path using witness validation, and an
error-path visualizer helps to comprehend the bug. Since the model checkers
usually do not generate a test case, we cannot perform the same validation
as for the testers, i.e., execute the program with the test case and check if it
crashes. However, all four model checkers that we use support exchangeable
violation witnesses [7], and we can use existing witness validators to confirm
the witnesses. We report the results in row ‘Wit. Confirmed’, which counts
only those error reports that were confirmed by at least one witness validator.
While this technique is not always able to confirm correct witnesses (cf. [4],
Table 8), the big picture does not change. The test generators do not need this
additional confirmation step, because TBF takes care of this already. There are
two interesting insights: (1) Software model checkers should in addition produce
test data, either contained in the violation witness or as separate test vector.
This makes it easier to reproduce a found bug using program execution and
explore the bug with debugging. (2) Test generators should in addition produce
a violation witness. This makes it easier to reproduce a found bug using witness
validation and explore the bug with error-path visualization [6].

Consideration of False Alarms. So far we have discussed only the programs
that contain bugs. In order to evaluate how many false alarms the tools produce,
we have also considered the 4 203 programs without known bug. All testers
report only 3 bugs on those programs. We manually investigated the cause and
found out that we have to blame the benchmark set for these, not the testers.19

Each of the four model checkers solves at least one of these three tasks with
verdict true, implying an imprecise handling of floating-point arithmetics. The
model checkers also produce a very low number of false alarms, the largest
number being 6 false alarms reported by ESBMC-incrm.

4.3 Validity

Validity of Framework for Test-Based Falsification. The results of the
testers depend on a correctly working test-execution framework. In order to
increase the confidence in our own framework TBF, we compare the results
obtained with TBF against the results obtained with a proprietary test-execution
mechanism that Klee provides: Klee-replay20. Figure 7 shows the CPU time in
seconds required by Kleet using TBF (x-axis) and Klee-replay (y-axis) for each
verification task that could be solved by either one of them. It shows that Kleet

(and thus, TBF) is very similar to Klee’s native solution. Over all verification

19 There are three specific programs in the ReachSafety-Floats category of SV-COMP
that are only safe if compiled with 64-bit rounding mode for floats or for a 64-bit
machine model. The category states the programs should be executed in a 32-bit
machine model, which seems incorrect.

20
http://klee.github.io/tutorials/testing-function/#replaying-a-test-case

110 D. Beyer and T. Lemberger

B.1. Software Verification: Testing vs. Model Checking 59

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

C
P
U

 T
im
e

 f
o
r
K
L
E
E
-r
e
p
la
y
 (
s
)

CPU Time for KLEE
T
 (s)

Fig. 7: CPU time required by Kleet and Klee-replay to solve tasks

tasks, Kleet is able to find bugs in 826 tasks, while Klee-replay is able to find
bugs in 821 tasks. There are 15 tasks that Klee-replay can not solve, while
Kleet can, and 10 tasks that Klee-replay can solve, while Kleet can not.

For Kleet, one unsolved task is due to missing support of a corner case for
the conversion of Klee’s internal representation of numbers to a test vector. The
remaining difference is due to an improper machine model: for Klee-replay, we
only had 64-bit libraries available, while most tasks of SV-COMP are intended to
be analyzed using a 32-bit architecture. This only results in a single false result,
but interprets some of the inputs generated for 32-bit programs differently, thus
reaching different parts of the program in a few cases. This also explains the
few outliers in Fig. 7. The two implementations both need a median of 0.43 s
of CPU time to find a bug in a task. This shows that our implementation is
similarly effective and efficient to Klee’s own, tailored test-execution mechanism.

Other Threats to Internal Validity. We used the state-of-the-art bench-
marking tool BenchExec [14] to run every execution in an isolated container
with dedicated resources, making our results as reliable as possible. Our exper-
imental results for the considered model checkers are very close to the results
of SV-COMP’1721, indicating their accuracy. Our framework TBF is a proto-
type and may contain bugs that degrade the real performance of test-based
falsification. Probably more tasks could be solved if more time was invested
in improving this approach, but we tried to keep our approach as simple as
possible to influence the results as less as possible.

Threats to External Validity. There are several threats to external validity.
All tools that we evaluated are aimed at analyzing C programs. It might be the
case that testing research is focused on other languages, such as C++ or Java.
Other languages may contain other quirks than C that make certain approaches
to test-case generation and model checking more or less successful. In addition,

21
https://sv-comp.sosy-lab.org/2017/results/

Software Verification: Testing vs. Model Checking 111

60 APPENDIX B. ORIGINAL MANUSCRIPTS

there may be tools using more effective testing or model-checking techniques
that were developed for other languages and thus are not included here.

The selection of testers could be biased by the authors’ background, but
we reflected the state-of-the-art (see discussion of selection) and related work
in our choice. While we tried to represent the current landscape of test-case
generators by using tools that use fundamentally different approaches, there
might be other approaches that may perform better or that may be able to
solve different tasks. We used most of the recent, publicly available test-case
generators aimed at sequential C programs. We did not include model-based
or combinatorial test-case generators in our evaluation.

For representing the current state-of-the-art in model checking, we only used
four tools to limit the scope of this work. The selection of model checkers is
based on competition results: we simply used the four best tools in SV-COMP’17.
There are many other model-checking tools available. Since we performed our
experiments on a subset of the SV-COMP benchmark set and used a similar
execution environment, our results can be compared online with all verifiers that
participated in the competition. The software model checkers might be tuned
towards the benchmark set, because all of the software model checkers participated
in SV-COMP, while of the testers, only FShell participated in SV-COMP before.

While we tried to achieve high external validity by using the largest and most
diverse open benchmark set, there is a high chance that the benchmark set does not
appropriately represent the real landscape of existing programs with and without
bugs. Since the benchmark set is used by the SV-COMP community, it might be bi-
ased towards software model checkers, and thus, must stay a mere approximation.

5 Conclusion

Our comparison of software testers with software model checkers has shown
that the considered model checkers are competitive for finding bugs on the
used benchmark set. We developed a testing framework that supports the easy
comparison of different test-case generators with each other, and with model
checkers. Through this, we were able to perform experiments that clearly showed
that model checking is mature enough to be used in practice, and even outperforms
the bug-finding capabilities of state-of-the-art testing tools. It is able to cover
more bugs in programs than testers and also finds those bugs faster. With this
study, we do not pledge to eradicate testing, whose importance and usability can
not be stressed enough. But we laid ground to show that model checking should
be considered for practical applications. Perhaps the most important insight of
our evaluation is that is does not make much sense to distinguish between testing
and model checking if the purpose is finding bugs, but to leverage the strengths
of different techniques to construct even better tools by combination.

References

1. S. Anand, E. K. Burke, T. Y. Chen, J. A. Clark, M. B. Cohen, W. Grieskamp,
M. Harman, M. J. Harrold, and P. McMinn. An orchestrated survey of methodologies
for automated software test-case generation. Journal of Systems and Software,
86(8):1978–2001, 2013.

112 D. Beyer and T. Lemberger

B.1. Software Verification: Testing vs. Model Checking 61

2. T. Ball and S. K. Rajamani. The Slam project: Debugging system software via
static analysis. In Proc. POPL, pages 1–3. ACM, 2002.

3. D. Beyer. Competition on software verification (SV-COMP). In Proc. TACAS,
LNCS 7214, pages 504–524. Springer, 2012.

4. D. Beyer. Software verification with validation of results (Report on SV-COMP
2017). In Proc. TACAS, LNCS 10206, pages 331–349. Springer, 2017.

5. D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. Generating
tests from counterexamples. In Proc. ICSE, pages 326–335. IEEE, 2004.

6. D. Beyer and M. Dangl. Verification-aided debugging: An interactive web-service
for exploring error witnesses. In Proc. CAV, LNCS 9780. Springer, 2016.

7. D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. Witness
validation and stepwise testification across software verifiers. In Proc. FSE, pages
721–733. ACM, 2015.

8. D. Beyer, M. Dangl, and P. Wendler. Boosting k-induction with continuously-refined
invariants. In Proc. CAV, LNCS 9206, pages 622–640. Springer, 2015.

9. D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model checker
Blast. Int. J. Softw. Tools Technol. Transfer, 9(5-6):505–525, 2007.

10. D. Beyer, A. Holzer, M. Tautschnig, and H. Veith. Information reuse for multi-goal
reachability analyses. In Proc. ESOP, LNCS 7792, pages 472–491. Springer, 2013.

11. D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable software
verification. In Proc. CAV, LNCS 6806, pages 184–190. Springer, 2011.

12. D. Beyer, M. E. Keremoglu, and P. Wendler. Predicate abstraction with adjustable-
block encoding. In Proc. FMCAD, pages 189–197. FMCAD, 2010.

13. D. Beyer and S. Löwe. Explicit-state software model checking based on CEGAR
and interpolation. In Proc. FASE, LNCS 7793, pages 146–162. Springer, 2013.

14. D. Beyer, S. Löwe, and P. Wendler. Reliable benchmarking: Requirements and
solutions. Int. J. Softw. Tools Technol. Transfer, 2017.

15. D. Beyer and P. Wendler. Reuse of verification results: Conditional model checking,
precision reuse, and verification witnesses. In Proc. SPIN, LNCS. Springer, 2013.

16. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proc. TACAS, LNCS 1579, pages 193–207. Springer, 1999.

17. M. Böhme, V. Pham, and A. Roychoudhury. Coverage-based greybox fuzzing as
Markov chain. In Proc. SIGSAC, pages 1032–1043. ACM, 2016.

18. J. Burnim and K. Sen. Heuristics for scalable dynamic test generation. In Proc.
ASE, pages 443–446. IEEE, 2008.

19. C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In Proc. OSDI, pages 209–224.
USENIX Association, 2008.

20. A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. The MathSAT5 SMT
solver. In Proc. TACAS, LNCS 7795, pages 93–107. Springer, 2013.

21. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM, 50(5):752–794, 2003.

22. E. M. Clarke, D. Kröning, and F. Lerda. A tool for checking ANSI-C programs. In
Proc. TACAS, LNCS 2988, pages 168–176. Springer, 2004.

23. W. Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symb.
Log., 22(3):250–268, 1957.

24. C. Csallner and Y. Smaragdakis. Check ’n’ crash: Combining static checking and
testing. In Proc. ICSE, pages 422–431. ACM, 2005.

Software Verification: Testing vs. Model Checking 113

62 APPENDIX B. ORIGINAL MANUSCRIPTS

25. M. Dangl, S. Löwe, and P. Wendler. CPAchecker with support for recursive
programs and floating-point arithmetic. In Proc. TACAS, LNCS. Springer, 2015.

26. N. Eén and N. Sörensson. An extensible SAT solver. In Proc. SAT, LNCS 2919,
pages 502–518. Springer, 2003.

27. M. Y. R. Gadelha, H. I. Ismail, and L. C. Cordeiro. Handling loops in bounded
model checking of C programs via k-induction. STTT, 19(1):97–114, 2017.

28. S. J. Galler and B. K. Aichernig. Survey on test data generation tools. STTT,
16(6):727–751, 2014.

29. P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated random testing.
In Proc. PLDI, pages 213–223. ACM, 2005.

30. P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated whitebox fuzz testing.
In Proc. NDSS. The Internet Society, 2008.

31. S. Graf and H. Saïdi. Construction of abstract state graphs with Pvs. In Proc.
CAV, LNCS 1254, pages 72–83. Springer, 1997.

32. M. Heizmann, D. Dietsch, J. Leike, B. Musa, and A. Podelski. Ultimate Au-

tomizer with array interpolation. In Proc. TACAS, LNCS 9035, pages 455–457.
Springer, 2015.

33. M. Heizmann, J. Hoenicke, and A. Podelski. Software model checking for people
who love automata. In Proc. CAV, LNCS 8044, pages 36–52. Springer, 2013.

34. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Proc.
POPL, pages 58–70. ACM, 2002.

35. A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith. How did you specify your
test suite? In Proc. ASE, pages 407–416. ACM, 2010.

36. K. Jayaraman, D. Harvison, V. Ganesh, and A. Kiezun. jFuzz: A concolic whitebox
fuzzer for Java. In Proc. NFM, pages 121–125, 2009.

37. R. Jhala and R. Majumdar. Software model checking. ACM Computing Surveys,
41(4), 2009.

38. A. V. Khoroshilov, V. Mutilin, A. K. Petrenko, and V. Zakharov. Establishing
Linux driver verification process. In Proc. Ershov Memorial Conference, LNCS 5947,
pages 165–176. Springer, 2009.

39. Y. Köroglu and A. Sen. Design of a modified concolic testing algorithm with smaller
constraints. In Proc. ISSTA, pages 3–14. ACM, 2016.

40. D. Kröning and M. Tautschnig. Cbmc: C bounded model checker (competition
contribution). In Proc. TACAS, LNCS 8413, pages 389–391. Springer, 2014.

41. K. Li, C. Reichenbach, C. Csallner, and Y. Smaragdakis. Residual investigation:
Predictive and precise bug detection. In Proc. ISSTA, pages 298–308. ACM, 2012.

42. K. L. McMillan. Interpolation and SAT-based model checking. In Proc. CAV,
LNCS 2725, pages 1–13. Springer, 2003.

43. J. Morse, M. Ramalho, L. Cordeiro, D. Nicole, and B. Fischer. Esbmc 1.22
(competition contribution). In Proc. TACAS, LNCS 8413. Springer, 2014.

44. Z. Pavlinovic, A. Lal, and R. Sharma. Inferring annotations for device drivers from
verification histories. In Proc. ASE, pages 450–460. ACM, 2016.

45. K. Sen, D. Marinov, and G. Agha. Cute: A concolic unit testing engine for C. In
Proc. ESEC/FSE, pages 263–272. ACM, 2005.

46. H. Seo and S. Kim. How we get there: A context-guided search strategy in concolic
testing. In Proc. FSE, pages 413–424. ACM, 2014.

47. I. S. Zakharov, M. U. Mandrykin, V. S. Mutilin, E. Novikov, A. K. Petrenko, and
A. V. Khoroshilov. Configurable toolset for static verification of operating systems
kernel modules. Programming and Computer Software, 41(1):49–64, 2015.

114 D. Beyer and T. Lemberger

B.1. Software Verification: Testing vs. Model Checking 63

International Journal on Software Tools for Technology Transfer
https://doi.org/10.1007/s10009-020-00568-x

COMPET IT IONS AND CHALLENGES

Special Issue: TestComp 2019

Plain random test generation with PRTest

Thomas Lemberger1

© The Author(s) 2020

Abstract
Automatic test-suite generation tools are often complex and their behavior is not predictable. To provide a minimum baseline
that test-suite generators should be able to surpass,wepresent PRTest, a randomblack-box test-suite generator forCprograms:
To create a test, PRTest natively executes the program under test and creates a new, random test value whenever an input
value is required. After execution, PRTest checks whether any new program branches were covered and, if this is the case,
the created test is added to the test suite. This way, tests are rapidly created either until a crash is found, or until the user aborts
the creation. While this naive mechanism is not competitive with more sophisticated, state-of-the-art test-suite generation
tools, it is able to provide a good baseline for Test-Comp and a fast alternative for automatic test-suite generation for programs
with simple control flow. PRTest is publicly available and open source.

Keywords Random testing · Software engineering · Software testing · Software verification · Test-Comp

1 Introduction

Automatic test-suite generation is a highly active field of
research and many successful tools exist to this date. Unfor-
tunately, most of these tools are based on sophisticated
algorithms and thus, both their code and their behavior can
be hard to understand for non-experts. In addition, these tools
and their improvements are usually only compared to each
other, but no naive baseline exists. We present PRTest, a
plain random test-suite generator that provides a solution for
both issues. PRTest is designed to be simple: its full test-
suite generation logic consists of 125 lines of code, and it uses
no heuristics or sophisticated algorithms. Instead, PRTest
provides random input generation [2]: It repeatedly executes
the program under test with random inputs and stores the
input values of an execution as a test if the execution increased
the overall coverage. Thanks to its pure randomness and
native execution of the program under test its behavior is
easy to understand and it can be used as a lower baseline for
Test-Comp.

B Thomas Lemberger
thomas.lemberger@sosy.ifi.lmu.de

1 LMU Munich, Munich, Germany

Fig. 1 Workflow of PRTest

2 Test-suite generation approach

Figure 1 shows the workflow of PRTest. PRTest consists of
two steps: (1) it compiles the input program against a test har-
ness, and (2) it natively executes the compilation result. This
execution consists of the test setup and a test-generation loop.

First, PRTest uses the clang compiler to compile the
program under test against a C harness that provides the full
test-suite generation logic (‘Test Gen. Harness’ in Fig. 1).
The harness provides: (1) a custom program entry point
for test-generation setup, (2) definitions for the Test-Comp-
specific input methods __VERIFIER_nondet_X (where X

is any primitive C type; e.g., __VERIFIER_nondet_int),
(3) a method input that creates new test inputs, and
(4) clang-specific methods that allow PRTest to track pro-
gram coverage during runtime.

123

64 APPENDIX B. ORIGINAL MANUSCRIPTS

T. Lemberger

Fig. 2 Test-harness definition of the Test-Comp-specific method
__VERIFIER_nondet_int

Fig. 3 Program logic for creating a new input value of var_size
bytes

When the compilation result is executed, the custom pro-
gram entry point initializes a random number generator and
traps signals that would usually terminate the program (e.g.,
SIGINT) as well as the exit method. This is necessary so
that PRTest is not terminated prematurely if the input pro-
gram raises a signal or calls the exit method. Then, the
test-generation loop starts and calls the original main func-
tion of the program under test on clean memory. Whenever
a method __VERIFIER_nondet_X is called in the pro-
gram under test, method input introduces a new test input
of the expected type, records it as the next test input for
the current execution, and returns it to the function call in the
program under test. When the program under test terminates,
PRTest checks whether the execution covered any new code
blocks, and if it did, the test inputs that were recorded for that
execution are stored as a new test. If no new code blocks
were covered, the test inputs are discarded. We call this
mechanism test filter. After test filtering, loop starts again
by calling the main method of the input program, creating
another random test in the process. The test-generation loop
stops if a looked-for program bug is found (in case of cate-
gory Coverage-Error) or if the process is aborted by the user.

The test harness of PRTest defines input methods
__VERIFIER_nondet_X so that they declare a new pro-
gram variable of their respective type X and call method
input to introduce a new test input of the
required size. Figure 2 shows this exemplary for method
__VERIFIER_nondet_int.

Method input receives a pointer to input variable var
that a new value should be assigned to, and the size of the
type of var in bytes. For each byte,input creates a random
byte value and stores that in an array that represents the new
value of the given size. To create random values, it uses the
random number generator rand() provided by the C stan-
dard library. After a value has been created for each byte, this
byte sequence is copied into var (Fig. 3). Method input
considers all types in their binary representation and is thus
type-agnostic: it uses a uniform distribution over arbitrary-
size binary values and is able to handle both integer and float
types.

Tomeasure code coverageof programexecutions,PRTest
uses the program instrumentation SanitizerCoverage
that is provided by clang. This instrumentation adds a spe-
cial method call at the beginning of each code block. We
define this method so that, whenever a new code block is
covered, a Boolean flag is set to indicate that the current test
covers new program behavior. This flag is then checked by
the test filter to decide whether to keep or discard a test.

The version of PRTest used in Test-Comp ’19 was
implemented as part of tbf [1]. It is written in Python 3 and
C, and uses the pseudo-random number generator provided
by the C standard library with a uniform distribution. For
reproducibility of the Test-Comp results, the seed of the ran-
dom value generator is set to the arbitrary value 1618033988,
derived from the golden ratio. Since version 2.0,1 PRTest is
a stand-alone application that does not require Python any-
more.

3 Strengths and weaknesses

Strengths PRTest does not interpret or analyze the program
under test, but executes it natively with a test-generation har-
ness. Thanks to this, PRTest is able to handle all existing
C constructs and can efficiently handle all numeric types,
including floats.

PRTest is also able to create a vast amount of tests
in a very short time: For example, for benchmark task
floats-cdfpl/square_2.i, PRTest generated over
400 000 tests per second. This allows very fast generation of
a rudimentary test suite that covers the, based on naive input-
value probability, most probable program branches. PRTest
is also very simple: The C harness, which is the only nec-
essary component to create tests, is only 125 lines of code.
The remaining code exists to determine the inputmethods for
methods outside of Test-Comp, and to transform tests into the
Test-Comp test format—functionality that is not required if
one wants to apply PRTest’s approach to a specific program
with a fixed set of input methods.

Weaknesses The uniform randomness of PRTest cannot
compete with control-flow-aware test generators if programs
contain deeply nested branches or branches that are only
entered on a small range of inputs or a single input: The prob-
ability to generate a random test that reaches the comment
‘code block’ in the following example is 1

232
≈ 2 ∗ 10−10:

1 int i = __VERIFIER_nondet_int ();
2 if (i == 1) {
3 // code block
4 }

1 https://gitlab.com/sosy-lab/software/prtest.

123

B.2. Plain Random Test Generation with PRTest (Competition Contribution) 65

Plain random test generation with PRTest

If PRTest produced tests with the same speed as for
the task floats-cdfpl/square_2.i that was mentioned
above, PRTest would have a chance of about 8% to cre-
ate a test to enter this loop within the Test-Comp time limit.
To achieve a 90% probability to produce a test that reaches
the code block, PRTest would have to create almost 10 bil-
lion random tests. For task floats-cdfpl/square_2.i,
this would take PRTest about 7 hours. The probability to
enter a program branch also exponentially decreases with
the number of conditions required to enter the branch.

In the literature, random testing is mostly used as a
complement to control-flow-aware testing techniques, for
example to provide an initial test suite [4] or to avoid other
generation techniques from getting stuck [3].

4 Tool setup

Availability PRTest is developed at Dirk Beyer’s Soft-
ware and Computational Systems Lab (SoSy-Lab) at LMU
Munich. It is open source under Apache License, ver-
sion 2.0, and available online.2 This work describes the
Test-Comp ’19 submission of PRTest—the newest ver-
sion of PRTest is available as a stand-alone program.3

Installation and Usage PRTest requires Python 3.5
or later and clang 3.9 or later. It can be installed by
following the steps described in file README.md. The fol-
lowing command line runs PRTest in its configuration for
Test-Comp ’19, for coverage-property file PROP_FILE

and input program PROGRAM.c:

./bin/tbf -i random --write -xml \
--svcomp -nondets \
--spec PROP_FILE PROGRAM.c

The created test suite will be located in directory
output/test-suite/.

Participation PRTest participated in all categories of
Test-Comp. In category Cover-Error, PRTest was not
able to get any points in sub-categories ReachSafety-
ControlFlow, ReachSafety-ECA and ReachSafety-
Sequentialized because of its weakness regarding con-
trol flow. In sub-category ReachSafety-Floats, in contrast,
PRTest even reaches the third place due to its ability to
natively handle float types. PRTest also proved useful as
a baseline to identify potential weaknesses of other partici-
pants: The result tables of Test-Comp ’19 (e.g., for branch

2 https://gitlab.com/sosy-lab/test-comp/archives-2019/blob/c991e4/
2019/prtest.zip.
3 https://gitlab.com/sosy-lab/software/prtest.

coverage4) can show scatter plots for the values of chosen
table columns. This allows a quick comparison of the cov-
erage achieved per task by the random test suites created
by PRTest and the test suites created by other participants.
If a tool achieves significantly worse results for a task than
PRTest, this may hint to a potential weakness in that tool.
Such tasks exist for all participants.

Acknowledgements OpenAccess funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Beyer, D., Lemberger, T.: Software verification: Testing vs. model
checking. In: Proc. HVC, LNCS, vol. 10629, pp. 99–114. Springer
(2017)

2. Bird, D.L., Munoz, C.U.: Automatic generation of random self-
checking test cases. IBM Syst. J. 22(3), 229–245 (1983)

3. Majumdar, R. Sen, K.: Hybrid concolic testing. In: Proc. ICSE, pp.
416–426. IEEE (2007)

4. Rojas, J.M., Fraser, G., Arcuri, A.: Seeding strategies in search-
based unit test generation. Softw. Test. Verif. Reliab. 26(5), 366–401
(2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

4 https://test-comp.sosy-lab.org/2019/results/results-verified/
META_Cover-Branches.table.html.

123

66 APPENDIX B. ORIGINAL MANUSCRIPTS

TESTCOV: Robust Test-Suite Execution
and Coverage Measurement

Dirk Beyer
LMU Munich, Germany

Thomas Lemberger
LMU Munich, Germany

Abstract—We present TESTCOV, a tool for robust test-suite
execution and test-coverage measurement on C programs.
TESTCOV executes program tests in isolated containers to
ensure system integrity and reliable resource control. The
tool provides coverage statistics per test and for the whole
test suite. TESTCOV uses the simple, XML-based exchange
format for test-suite specifications that was established as
standard by Test-Comp. TESTCOV has been successfully
used in Test-Comp ’19 to execute almost 9 million tests on
1 720 different programs. The source code of TESTCOV is
released under the open-source license Apache 2.0 and avail-
able at https://gitlab.com/sosy-lab/software/test-suite-validator.
A full artifact, including a demonstration video, is available at
https://doi.org/10.5281/zenodo.3418726.

Index Terms—Test Execution, Coverage, Test-Suite Reduction

I. INTRODUCTION

Modern test-case generators are able to generate system

tests that reveal bugs in programs like never before, but

executing these tests may lead to system failures, modifications,

information leakage, or resource exhaustion. Because of this,

program tests are often executed in virtual machines or

containers (e.g., Docker). TESTCOV provides a lightweight

solution to this: it uses an overlay file system and Linux control

groups to protect the file system from modifications and to

prevent unexpected resource usage during test execution, based

on the existing benchmarking tool BENCHEXEC [4]. Compared

to other containerization technology, BENCHEXEC does not

require the installation of any additional software or superuser

privileges during usage because it solely relies on features built

into the Linux kernel. TESTCOV provides coverage statistics for

line, branch, and condition coverage per test and for the whole

test suite, and creates plots to visualize the measured data.

TESTCOV has been used in the First International Competition

on Software Testing (Test-Comp ’19) [1] to validate the test

suites created by all 9 participants. TESTCOV uses the simple,

XML-based exchange format for test-suite specification that

was established as a standard by Test-Comp. All 9 participants

support the exchange format. In the past, test-case generators

used proprietary formats to output their generated tests, which

led to two problems: Test suites can, depending on the format,

often only be executed using auxiliary programs or not at

all, and test suites generated by different test-case generators

can not be directly compared or combined. The XML-based

exchange format solves these issues.

Supported in part by DFG grant BE 1761/7-1.

Program

under

Test

Coverage

Criterion

Test

Suite

TESTCOV
Coverage

Statistics

Executable

Reduced

Test

Suite

Fig. 1: Inputs and outputs of TESTCOV

Availability. TESTCOV is publicly available via GitLab 1 and

as an archived package [5].

Related Work. TESTCOV aims at unifying and executing test

suites that are created by test-case generators [7], [13], [6], [2],

[9], [10], [8] for C programs. KLEE [7] provides a replay library
that can be used to create a test harness from the program

under test with which it is possible to execute individual tests

in the proprietary test-case format of KLEE. The test cases

created by AFL-FUZZ
2 can be directly fed to a program. None

of the existing test executors supports tests that are created by

other test-case generators, nor the execution of a full test suite.

TESTCOV is based on BENCHEXEC; other tools for container-

ization are Docker 3, LXC 4, and Snap 5. Other projects related

to the isolation and robust execution of software bugs are

BugZoo 6 and the ManyBugs and IntroClass benchmarks [12].

II. ARCHITECTURE OF TESTCOV

Figure 1 shows the inputs and outputs of TESTCOV. TESTCOV

gets as input the C program under test, the coverage criterion

to check against, and the test suite, and creates an executable

program that can be used to feed tests to the program under

test, coverage statistics about the test suite, and a reduced

test suite that achieves the same coverage (with respect to the

coverage criterion) as the original test suite.

1https://gitlab.com/sosy-lab/software/test-suite-validator
2http://lcamtuf.coredump.cx/afl/
3https://www.docker.com/
4https://linuxcontainers.org/
5https://snapcraft.io/
6https://github.com/squaresLab/BugZoo

1074

2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE)

978-1-7281-2508-4/19/$31.00 ©2019 IEEE
DOI 10.1109/ASE.2019.00105

B.3. TestCov: Robust Test-Suite Execution and Coverage Measurement 67

1 <?xml version="1.0"?>
2 <!DOCTYPE test-metadata PUBLIC [...]>
3 <test-metadata>
4 <sourcecodelang>C</sourcecodelang>
5 <producer>testcov v3.0</producer>
6 <specification>CHECK(FQL(cover EDGES(@CONDITIONEDGE)))</specification>
7 <programfile>example.c</programfile>
8 <programhash>eeecda9cbf27c43c9017fa00dd900c19a5ec18d46303f59a6e0357db78c33849</programhash>
9 <entryfunction>main</entryfunction>

10 <architecture>32bit</architecture>
11 <inputtestsuitefile>original-suite.zip</inputtestsuitefile>
12 <inputtestsuitehash>11911d658dcfbf8501390bf0faa96eb193b11bb1</inputtestsuitehash>
13 <creationtime>2019-06-19T14:17:34Z</creationtime>
14 </test-metadata>

Fig. 2: Example metadata file of a test suite

1 <?xml version="1.0"?>
2 <!DOCTYPE testcase PUBLIC [...]>
3 <testcase>
4 <input>’b’</input>
5 <input>10</input>
6 <input>0x0f</input>
7 </testcase>

Fig. 3: Example test case of a test suite

1 #include <stdio.h>
2 #include <unistd.h>
3 extern char __VERIFIER_nondet_char();
4

5 int main() {
6 char x = __VERIFIER_nondet_char();
7 if (x == ’a’) {
8 while (1)
9 fork();

10 } else {
11 remove("important.txt");
12 if (access("important.txt", F_OK) != -1) {
13 return 1;
14 }
15 }
16 }

Fig. 4: An example program with side effects

A. Test-Suite Exchange Format

TESTCOV reads and writes test suites in the XML-based

exchange format for test suites, which consists of two parts: a

metadata file and a set of test-case files, each defining a single

test case. The metadata file is an XML file that describes

the test suite and is always named metadata.xml. Figure 2

shows an example metadata file with all available fields.

Some noteworthy fields are: the programming language of the

program under test (<sourcecodelang>), the coverage criterion

the test suite was created for (<specification>), the SHA-256

hash of the program under test (<programhash>), the program

function that is tested by the test suite (<entryfunction>),

and the system architecture the program tests were created

for (<architecture>). If the test suite is the result of another

test suite, e.g., because of test-suite reduction, the file name

of this input test suite (<inputtestsuitefile>) and its SHA-

256 hash (<inputtestsuitehash>) can also be recorded. A

test-case file (Fig. 3) contains a sequence of tags <input>

that describe the sequence of input values. The directory

structure of test suites is arbitrary, and they are given to

and created by TESTCOV as zip files for efficient storage

and convenient handling. Since the exchange format is used

in Test-Comp, many test-case generators support the format:

COVERITEST [2], CPA-TIGER
7, ESBMC [10], FAIRFUZZ [13],

KLEE [7], PRTEST [3], SYMBIOTIC [8], and VERIFUZZ [9].

B. Test Execution

For test execution, the program under test is compiled against

a test harness that consists of two parts: (1) a method get_input

7https://www.es.tu-darmstadt.de/es/team/sebastian-ruland/testcomp19/

for receiving test values, and (2) a new definition for each input

method in the program under test that delegates to get_input.
Method get_input reads test inputs from the standard input

as C-format strings and parses them into a C type. It supports

hexadecimal (e.g., 0x4a), integer (e.g., 74), floating point (e.g.,

74.5) and character representation (e.g., ’J’) for all primitive

types (up to long double), as well as single-line string inputs.

Methods from the C standard library are used for parsing.
For each input method, a new definition is introduced that

calls get_input with the corresponding format type of the

return type of the input method. For example:

int inputMethod() {
int inputVar;
get_input("%d", &inputVar);
return inputVar;

}

Given a test suite, TESTCOV first parses the metadata file to

check consistency with the input file and coverage criterion.

If one of them is not consistent, the user is informed. Then,

TESTCOV iterates over all test-case files, reads the test inputs

for each test, executes the compiled program and sequentially

passes the test inputs to the execution via standard input.
To ensure that test execution does not get stuck because of

a non-terminating test, a time limit is applied for each test

execution. In addition, if a test case contains less input values

than necessary, TESTCOV will terminate the execution once all

input values are consumed and a new one is requested.
To ensure that test executions do not alter the system of

the user, perform malicious actions, or influence each other,

TESTCOV isolates each test execution in a separate container

and control group using RUNEXEC
8, a tool provided as part of

8https://github.com/sosy-lab/benchexec/blob/2.0/doc/runexec.md

1075

68 APPENDIX B. ORIGINAL MANUSCRIPTS

Fig. 5: Plot of individual and accumulated test coverage

BENCHEXEC [4]. We configure it such that test executions in

the container have no network access, can not see or modify

other system processes, and work on an overlay file system that

prevents file modifications in the original system. Files written

inside the container are kept in memory and not written to

disk. Keeping all file modifications in memory also speeds up

test execution in the presence of file operations. Cgroups are

a Linux kernel feature that allows to restrict and measure the

resource consumption of a process and all its child processes.

TESTCOV uses this to restrict memory usage to a user-specified

maximum, to restrict computations to a specified number of

CPU cores, and to enforce the time limit on test executions.

Figure 4 shows a program with side effects. The program

takes a single character as input, here via Test-Comp-specific

method __VERIFIER_nondet_char. If the input is ’a’, a fork
bomb is started that spawns an unbounded number of processes

that will eventually fill the process table of the user’s system

and make it unusable. Otherwise, the program will delete some

file, and check whether the deletion was successful. If TESTCOV

is given a test suite that defines test cases for both branches, it

executes both branches properly, but the number of processes

is limited (by default to 5000 processes), and the file deletion

only happens in the execution’s container, not on the original

file system, and thus, no harm is done to the user’s system,

while the coverage measurement is still accurate.

C. Coverage Statistics

TESTCOV provides coverage information per test and for

the whole test suite, and creates plots for the coverage

criterion. TESTCOV reads coverage criteria in the query language

FQL [11]. Currently, it supports block, branch, and condition

coverage, as well as covering calls to an error-function. To

compute coverage, TESTCOV uses GCC instrumentation and

LCOV. LCOV stores coverage for each line and program condition

in a tracefile. LCOV claims to store branch coverage, but con-

siders each condition of a short-circuit boolean operation as a

separate branch. For example, the code in Fig. 6 consists of two

branches: the if-branch is entered if condition x > 0 || x < 0

is true, and the (implicit) else branch is entered otherwise.

LCOV considers each evaluation of the two conditions x > 0

1 int x = 1;
2 if (x > 0 || x < 0) {
3 // ...
4 }

Fig. 6: Code with short-

circuit condition ||

1 int x = 1;
2 if (x > 0 || x < 0) {
3 BRANCH_1:;
4 // ...
5 } else {
6 BRANCH_2:;
7 }

Fig. 7: Code instrumented to

compute branch coverage

and x < 0 as a separate branch and thus reports that the

program has four branches. The evaluation of the first condition

(x > 0) is always true for that program, so every program

execution takes the if-branch. Since condition x < 0 is never

evaluated, LCOV reports a branch coverage of only 25% instead

of the expected 50%. To circumvent this and implement a

proper branch-coverage measurement, TESTCOV adds program

labels BRANCH_i at the beginning of each program branch of a

program (Fig. 7) and uses the line-coverage measurement of

LCOV to check which of the added program labels are covered.

This way, TESTCOV can accurately measure branch coverage.

By default, LCOV stores only the accumulated coverage of

all program executions in a single tracefile. To get both the

accumulated coverage and the individual coverage of each

separate test case, TESTCOV manages two separate tracefiles

with LCOV: a default one that is newly created for each test

execution and only stores the coverage of that execution,

and one that contains the accumulated coverage over all test

executions. While coverage information per test is usually not

interesting for mere test execution, it can provide useful insights

for test-suite optimization and reduction. TESTCOV provides

coverage statistics as plots and as CSV files that can be easily

processed further. It provides a plot (Fig. 5) that shows: (a) the

accumulated test coverage (y-axis) after execution of the n-th

test (x-axis) of the test suite (step plot, continuous line in

Fig. 5), and (b) the test coverage of each test case (bars in

Fig. 5). The order of tests in the plot is always the same as

the order of execution. It is visible that, for the example, the

five tests that reach 75.0% coverage subsume the three tests

that reach 12.5% coverage, because the accumulated coverage

does not increase beyond 75.0% and 87.5%, resp., after any

of their executions. In addition, it is visible that only the 6th

test executed is necessary to achieve the same branch coverage

as achieved by all 9 tests of the test suite together, because it

provides, on its own, the same coverage as the accumulated

coverage of the full test suite.

D. Test-Suite Reduction

TESTCOV provides test-suite reduction through the strategy

design pattern, so different algorithms can be added in the

existing infrastructure to reduce a given test suite. By default,

TESTCOV provides the following test-suite reduction technique:

If the coverage criterion is to cover calls to an error-function,

TESTCOV creates a new test suite that consists of one test case

from the original test suite that covers that error function. If

the coverage criterion is to cover lines, branches, or conditions,

TESTCOV creates a new test suite that is potentially smaller

than the original test suite and that achieves the same coverage.

1076

B.3. TestCov: Robust Test-Suite Execution and Coverage Measurement 69

To do so, it reads the recorded accumulated coverage after each

test execution, and a test is only added to the reduced test suite

if its corresponding test execution increased the accumulated

coverage. TESTCOV executes tests in arbitrary order, so this

approach does not necessarily produce a minimal test suite,

but no additional test executions or computations are necessary

for this simple but effective reduction technique.

III. USAGE

Installation. TESTCOV requires Python 3.6 or newer. The

following command line installs TESTCOV and its dependencies

(executed from the base directory of the TESTCOV source code):

> python3 setup.py install

Execution. TESTCOV is started via command line, with three

required arguments: (1) –test-suite to specify the test suite to

execute, (2) –goal to specify the coverage criterion, and (3) the

program file. A test suite is provided as zip file, and a coverage

criterion is provided as text file in FQL syntax. The following

example command line runs TESTCOV on test suite suite.zip,

coverage criterion criterion.prp, and program prog.c:

> testcov –test-suite suite.zip –goal criterion.prp prog.c

Directory output will contain all output files, i.e., the exe-

cutable test harness, the reduced test suite, coverage statistics,

and plots (in SVG format).

Creation of a separate container for each test execution and

coverage measurement increases execution overhead because

of the additional file system operations. TESTCOV provides

optional arguments to turn these features off if they are

not required. The following command-line prints all such

arguments:

> testcov –help

Adaption of test format. To make adaption of the XML-

based test format easy for test-case generators, we provide

a small Python library called tsbuilder 9. It can be used to

programmatically create test-suite metadata and test cases in

the established exchange format for test suites.

IV. APPLICATIONS

TESTCOV has been used for Test-Comp ’19, where

it ran almost 9 million tests created by 9 different

test-case generators on 1 720 different programs and

2 different coverage criteria. TESTCOV was used for

both execution and coverage measurement during the

competition. All results of the competition are available

online.10 The tables that show results for several test-case

generators or meta categories (e.g., Cover-Branches)

only list the coverage computed by TESTCOV. The

tables for single test generators and sub-categories (e.g.,

coverage-branches.ReachSafety-Arrays-VERIFUZZ
11)

9https://gitlab.com/sosy-lab/software/test-format/tree/v2.0/python_
modules/tsbuilder

10https://test-comp.sosy-lab.org/2019/results/
11https://test-comp.sosy-lab.org/2019/results/results-verified/verifuzz.

2019-02-06_0717.results.test-comp19_prop-coverage-branches.
ReachSafety-Arrays.xml.bz2.merged.xml.bz2.table.html

provide the full data, including a stripped-down version of

plots for accumulated test coverage.

V. CONCLUSION

TESTCOV is a tool for test-suite execution on C programs that

reads test suites in the simple and standard exchange format of

Test-Comp, and performs a robust and reliable test execution.

TESTCOV uses BENCHEXEC, which in turn uses as foundation the

containers for isolated execution and control groups for resource

control that the operating-system kernel provides. The current

version provides both individual and accumulated coverage

statistics for four important coverage criteria. TESTCOV has

been successfully used for the execution of Test-Comp ’19.

While TESTCOV is implemented for C programs, the used

concepts can be easily transferred to other languages.

ACKNOWLEDGEMENTS

We thank Maximilian Wiesholler for his valuable contribu-

tions to the implementation of TESTCOV.

REFERENCES

[1] D. Beyer, “Competition on software testing (Test-Comp),” in Proc.
TACAS (3), ser. LNCS 11429. Springer, 2019, pp. 167–175. Available:
https://www.doi.org/10.1007/978-3-030-17502-3_11

[2] D. Beyer and M.-C. Jakobs, “CoVeriTest: Cooperative verifier-based
testing,” in Proc. FASE, ser. LNCS 11424. Springer, 2019, pp. 389–408.
Available: https://doi.org/10.1007/978-3-030-16722-6_23

[3] D. Beyer and T. Lemberger, “Software verification: Testing vs. model
checking,” in Proc. HVC, ser. LNCS 10629. Springer, 2017, pp.
99–114. Available: https://www.doi.org/10.1007/978-3-319-70389-3_7

[4] D. Beyer, S. Löwe, and P. Wendler, “Reliable benchmarking:
Requirements and solutions,” Int. J. Softw. Tools Technol. Transfer,
vol. 21, no. 1, pp. 1–29, 2019. Available: https://www.doi.org/10.1007/
s10009-017-0469-y

[5] D. Beyer and T. Lemberger, “Replication package for article ‘TestCov:
Robust test-suite execution and coverage measurement’ in Proc. ASE ’19,”
Zenodo, 2019. Available: https://doi.org/10.5281/zenodo.3418726

[6] J. Burnim and K. Sen, “Heuristics for scalable dynamic test
generation,” in Proc. ASE. IEEE, 2008, pp. 443–446. Available:
https://doi.org/10.1109/ASE.2008.69

[7] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proc. OSDI. USENIX Association, 2008, pp. 209–224.

[8] M. Chalupa, J. Strejcek, and M. Vitovská, “Joint forces for memory
safety checking,” in Proc. SPIN. Springer, 2018, pp. 115–132.
Available: https://www.doi.org/10.1007/978-3-319-94111-0_7

[9] A. B. Chowdhury, R. K. Medicherla, and R. Venkatesh, “VeriFuzz:
Program-aware fuzzing (competition contribution),” in Proc. TACAS (3),
ser. LNCS 11429. Springer, 2019, pp. 244–249. Available: https:
//doi.org/10.1007/978-3-030-17502-3_22

[10] M. Y. Gadelha, H. I. Ismail, and L. C. Cordeiro, “Handling loops in
bounded model checking of C programs via k-induction,” Int. J. Softw.
Tools Technol. Transf., vol. 19, no. 1, pp. 97–114, Feb. 2017. Available:
https://www.doi.org/10.1007/s10009-015-0407-9

[11] A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith, “Query-driven
program testing,” in Proc. VMCAI, ser. LNCS 5403. Springer, 2009,
pp. 151–166. Available: https://doi.org/10.1007/978-3-540-93900-9_15

[12] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. T.
Devanbu, S. Forrest, and W. Weimer, “The ManyBugs and IntroClass
benchmarks for automated repair of C programs,” IEEE Trans.
Software Eng., vol. 41, no. 12, pp. 1236–1256, 2015. Available:
https://doi.org/10.1109/TSE.2015.2454513

[13] C. Lemieux and K. Sen, “FairFuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage,” in Proc. ASE. ACM, 2018,
pp. 475–485. Available: https://www.doi.org/10.1145/3238147.3238176

1077

70 APPENDIX B. ORIGINAL MANUSCRIPTS

Tests from Witnesses
Execution-Based Validation of Verification Results

Dirk Beyer1 , Matthias Dangl1 , Thomas Lemberger1 ,
and Michael Tautschnig2

1 LMU Munich, Munich, Germany
2 Queen Mary University of London, London, UK

Abstract. The research community made enormous progress in the
past years in developing algorithms for verifying software, as shown by
international competitions. Unfortunately, the transfer into industrial
practice is slow. A reason for this might be that the verification tools
do not connect well to the developer work-flow. This paper presents a
solution to this problem: We use verification witnesses as interface between
verification tools and the testing process that every developer is familiar
with. Many modern verification tools report, in case a bug is found,
an error path as exchangeable verification witness. Our approach is to
synthesize a test from each witness, such that the developer can inspect the
verification result using familiar technology, such as debuggers, profilers,
and visualization tools. Moreover, this approach identifies the witnesses as
an interface between formal verification and testing: Developers can use
arbitrary (witness-producing) verification tools, and arbitrary converters
fromwitnesses to tests;we implemented two suchconverters.Weperformed
a large experimental study to confirmthat our proposed solutionworkswell
in practice: Out of 18 966 verification results obtained from 21 verifiers,
14 727 results were confirmed by witness-based result validation, and
10 080 of these results were confirmed alone by extracting and executing
tests, meaning that the desired specification violation was effectively
observed. We thus show that our approach is directly and immediately
applicable to verification results produced by software verifiers that adhere
to the international standard for verification witnesses.

1 Introduction

Automatic software verification, i.e., using methods from program analysis and
model checking to find out whether a program satisfies or violates a given
specification, is a successful andmature technology.The efficiencyandeffectiveness
of the available verification tools for C programs is shown in the annual
competition on software verification [5]. Despite this success story in research, the
state-of-the-art in practice is that notmany software projects have suchverification
tools incorporated into their software-development process. The reason for this gap
between availability of technology on the one side and missed opportunities on the
other side is perhaps twofold: (a) developers are frustrated by false alarms, i.e.,

c© Springer International Publishing AG, part of Springer Nature 2018
C. Dubois and B. Wolff (Eds.): TAP 2018, LNCS 10889, pp. 3–23, 2018.
https://doi.org/10.1007/978-3-319-92994-1_1

B.4. Tests from Witnesses: Execution-Based Validation of Verification Results 71

4 D. Beyer, M. Dangl, T. Lemberger and M. Tautschnig

in the past, static analyzers reported too many bugs that were not observable in
a concrete program execution, and thus, developers have lost confidence in bug
reports [20]; (b) there is a lack of appropriate interfacing, i.e., it is difficult for
developers to leverage advantages of the verification tools because they are difficult
to integrate and difficult to learn from [1].

To overcome these two problems, we propose (i) to use verifiers that produce
verification witnesses, i.e., abstract descriptions of one or more paths to a
specification violation (many such tools are already available 1), and (ii) to validate
whether a real bug has been found by constructing a test from the produced
verification witness and observing the execution of that test. This way, issue (a)
above is solved because, if the test execution does show and thus confirm the
reported specification violation, the verification result can be examined with high
confidence and on a concrete, executable example (e.g., with a debugger), and
issue (b) is solved because we bridge the gap between the, in most projects,
unfamiliar domain of verification and the established domain of testing, which
makes it easier to integrate verification into the development process.

Execution-Based Validation of Witnesses. Witness validation based on
model-checking technology works well [4,5,9,14], but the disadvantage is that due
to over-approximation, the validation might be as imprecise as the verification
step. A verification witness serves as a (potentially coarse) description of a part
of the state space of a program that contains a specification violation, and the
witness validators can confirm or reject the error report. We complement the
witness-validation technology by direct test execution: A test case (e.g., unit-test
code) is built from the violation witness, and this test case provides a precise
and transparent way to confirm and examine it. 2 By observing and analyzing an
execution that exposes undesirable behavior, developers can convince themselves
that the error report is correct, and address the reported bugs without the risk of
wasting time on a false alarm. If the execution does not violate the specification,
the witness might have represented a false alarm and the developer can assign a
lower priority to that report.

Witnesses as Communication Interface. One barrier for the adoption of
verification technology is that developers have to spend considerable time on
understanding a verification tool and on becoming familiar with it. Thus, we have
to avoid the “lock-in” effect: people might not want to decide for one particular
tool if they have to invest time again when they wish to change the decision
later. If the developer constructs the integration on top of the exchangeable
verification witnesses, i.e., using the witnesses as interface to the verification tools,
the verification tool is exchangeable without any change to the testing process. 3

1 https://sv-comp.sosy-lab.org/2017/systems.php
2 It has been shown that model checkers can be effective in constructing useful tests [12].
3 At least 21 verifiers are available that produce witnesses in the exchangeable format

(cf. Table 1, which lists the verifiers that we use in our experiments).

72 APPENDIX B. ORIGINAL MANUSCRIPTS

Tests from Witnesses 5

Fig. 1. An incorrect example C program (a), the corresponding violation witness
produced by the verifier (b), and a code fragment used to inject the extracted test values
for compilation (c)

Tests from Witnesses. In order to flexibly bridge the gap from witness to test,
we provide two independently developed implementations of tools that take as
input a program and a violation witness, and synthesize a test that is compilable
and executable. This approach provides the following three features: (1) the
result of a verification tool can be validated by compiling and executing the
corresponding test—if the test violates the specification, the verification tool
reported a correct alarm and the result can be handled appropriately; (2) the
synthesized unit tests can be stored and maintained together with the other unit
tests, but canalsobe re-constructedat any timeondemand; (3) independently from
the verification tool that produced the witness, the full repertoire for inspecting a
failing program—such as debuggers, profilers, and visualization tools—canbe used
by the developer to understand the bug that the test represents.

Experimental Study. To evaluate our proposal, we performed experiments
on thousands of witnesses. We took many C programs from the largest public
repository of verification tasks and many witness-producing verification tools,
and collected 13 200 witnesses of specification violations. We obtained another
5 766 refined witnesses using witness refinement, a procedure introduced in the
original work on verification witnesses [9]. This technique is supposed to refine
witnesses to be more concrete, so we should be able to generate better test cases
from them. In conjunction with the two existing validators, CPAchecker and
UltimateAutomizer, ourmethod significantly increases the confirmation rate: out
of the total of 18 966 witnesses, we were able to extract test cases for 10 080 of them,
meaning that we successfully created and executed the tests, and the specification
violationwas observed.Using the newapproach,we increased the confirmed results
from 12 821 to 14 727 in total.

Example. In the following, we illustrate the complete process from running a
verification task using a verifier through synthesizing the test code from the
violation witness to compiling the program and executing it.

Fig. 1. An incorrect example C program (a), the corresponding violation witness
produced by the verifier (b), and a code fragment used to inject the extracted test values
for compilation (c)

Tests from Witnesses. In order to flexibly bridge the gap from witness to test,
we provide two independently developed implementations of tools that take as
input a program and a violation witness, and synthesize a test that is compilable
and executable. This approach provides the following three features: (1) the
result of a verification tool can be validated by compiling and executing the
corresponding test—if the test violates the specification, the verification tool
reported a correct alarm and the result can be handled appropriately; (2) the
synthesized unit tests can be stored and maintained together with the other unit
tests, but canalsobe re-constructedat any timeondemand; (3) independently from
the verification tool that produced the witness, the full repertoire for inspecting a
failing program—such as debuggers, profilers, and visualization tools—canbe used
by the developer to understand the bug that the test represents.

Experimental Study. To evaluate our proposal, we performed experiments
on thousands of witnesses. We took many C programs from the largest public
repository of verification tasks and many witness-producing verification tools,
and collected 13 200 witnesses of specification violations. We obtained another
5 766 refined witnesses using witness refinement, a procedure introduced in the
original work on verification witnesses [9]. This technique is supposed to refine
witnesses to be more concrete, so we should be able to generate better test cases
from them. In conjunction with the two existing validators, CPAchecker and
UltimateAutomizer, ourmethod significantly increases the confirmation rate: out
of the total of 18 966 witnesses, we were able to extract test cases for 10 080 of them,
meaning that we successfully created and executed the tests, and the specification
violationwas observed.Using the newapproach,we increased the confirmed results
from 12 821 to 14 727 in total.

Example. In the following, we illustrate the complete process from running a
verification task using a verifier through synthesizing the test code from the
violation witness to compiling the program and executing it.

1 extern void __VERIFIER_error(void);
2 extern unsigned char
↪→ __VERIFIER_nondet_uchar(void);

3 int main(void) {
4 unsigned char a =

↪→ __VERIFIER_nondet_uchar();
5 unsigned char b =

↪→ __VERIFIER_nondet_uchar();
6 unsigned char sum = a + b;
7 unsigned char mean = sum / 2;
8 if (mean < a / 2) {
9 __VERIFIER_error();

10 }
11 return 0;
12 }

(a) Example program

q0

q1

q2

q⊥ qE

4: a == 2

o/w

5: b == 254

o/w

o/w

8,else: 8,then:

(b) Witness automaton

1 #include <stdlib.h>
2 void __VERIFIER_error() {
↪→ exit(107); }

3 unsigned char
↪→ __VERIFIER_nondet_uchar() {

4 static unsigned int
↪→ test_vector_index = 0;

5 unsigned char retval;
6 switch (test_vector_index) {
7 case 0: retval = 2U; break;
8 case 1: retval = 254U; break;
9 }

10 ++test_vector_index;
11 return retval;
12 }

(c) Injection of test values

B.4. Tests from Witnesses: Execution-Based Validation of Verification Results 73

6 D. Beyer, M. Dangl, T. Lemberger and M. Tautschnig

Figure 1a shows a program that attempts to calculate the mean of two
integer numbers, a computation that is often required in binary-search algorithms.
In lines 4 and 5, two variables a and b of type unsigned char 4 are initialized
nondeterministically, for example from user input. The subsequent lines are
supposed to calculate the mean of the two variables, by first computing their
sum in line 6 and then dividing it by 2 in line 7. If the mean of a and b has
been calculated correctly, it must not be less than half of either of the two
values. This condition is asserted in lines 8 to 10. We can check whether the
condition is satisfied by specifying that the function VERIFIER error() must not
be reachable, and then running a verifier on this verification task. The verifier
should detect and report that the assertion will be violated if the sum of a and b

exceeds the range of the data type unsigned char, causing an overflow. Figure 1b
shows a violation-witness automaton [9] that represents a counterexample to the
specification. The automaton specifies that if we assume that a is assigned the
value 2 in line 4 and b is assigned the value 254 in line 5, control will flow to the
then-branch in line 8, causing a violation of the specification. To independently
validate this witness, we can then extract the input values for a and b, and use them
to provide an implementation of the input function VERIFIER nondet uchar() and the
VERIFIER error() function as depicted in Fig. 1c. After compiling Fig. 1a and 1c

into an executable and running it, we can confirm that these input values trigger
the call to VERIFIER error() by checking its return code. We can even use a debugger
such asGDBto step through the compiled programandobserve the faulty behavior
directly. The debugger will show that the sum of a and b, respectively 2 and 254,
computed in line 6 wraps around to 0. Therefore, the mean is incorrectly calculated
as 0 in line 7. The condition in line 8 then evaluates to 1, because 0 is smaller than 1.

It must be noted that the witness depicted in Fig. 1b is very precise: it provides
a concrete counterexample with explicit values for a and b. But in general, a
violation witness may simply describe a part of the state space that contains a
specification violation, i.e., an abstract counterexample. Suppose a verifier is only
able to provide a witness that specifies that if a + b is greater than 255 in line 6, the
specification will be violated. By using witness refinement [9], we can obtain from
this abstract witness a concrete witness like Fig. 1b.

Contributions. Our approach features the following advantages:

– Verification tools sometimes produce false alarms, which can lead to severe
waste of investigation time. We synthesize tests from verification witnesses, and
consequently trust only verification results confirmed by test execution.

– There are several witness-based validators available, but our execution-based
validation of the error path can be more precise and more efficient, compared to
the previously available validators.

– Avoidance of technology lock-in: A developer’s work flow does not depend on
a particular choice of verification tool, because the developer’s infrastructure
hooks in at the witness. The developer may elect to use a different verifier, or
even use multiple verifiers simultaneously—at no additional cost.

4 The example also works for larger data types, but for ease of presentation, we aim to
keep the range of values small, so that all calculations can be followed by hand.

74 APPENDIX B. ORIGINAL MANUSCRIPTS

Tests from Witnesses 7

– Compared to working with witnesses, developers are more familiar with tests,
and more supporting tools—such as profilers, memory analyzers, and visualiza-
tion tools—are available to analyze the tests that correspond to the witnesses.

– The newly generated tests can complement the existing test suite, and the tests
as well as the witnesses can be stored and maintained as first-class objects in the
software life cycle.

Related Work. Our approach is based on a number of existing ideas, which we
outline in the following.
Verification Witnesses. We build our contributions on top of existing work on
violation witnesses [9], which we will describe in more detail in the background
section. The problem that verification results are not treated well enough by the
developers of verification tools is known and there are also other works that address
the same problem, for example, the work on execution reports [18].
Test-Case Generation.The idea to generate test cases from verification counterex-
amples is more than ten years old [6,48], has since been used to create debuggable
executables [39,42], and was extended and combined to various successful
automatic test-case generation approaches [25,27,36,46]. We complement existing
techniques in the following ways: Our technique works on the flexible exchange
format for violation witnesses. In case such a witness constitutes only an abstract
counterexample, we can use witness refinement to efficiently obtain a concrete
one [9]. Such a mechanism is not available for existing test-case generation tools.
Execution. Other approaches [16,22,35] focus on creating tests from concrete and
tool-specific counterexamples. In contrast, our approach does not require full coun-
terexamples, but works on more flexible, possibly abstract, violation witnesses.
Debugging and Visualization. Besides executing a test, it is important to under-
stand the cause of the error path, and there are tools and methods to debug and
visualize program paths [3,7,28].

2 Background

A verification witness is an exchangeable object that stores valuable information
about the verification process and the verification result. The key is that the format
is open and exchangeable, and that many verification tools support it.

Witness Construction.It has been commonly established practice for verifiers
to provide a counterexample to witness a specification violation, in particular
since counterexamples were used to refine abstract models [21]. The problem was
that these counterexamples were more or less ‘dumps’ of paths through the state
space, sometimes not human-readable, sometimes not machine-readable. Recent
efforts of the software-verification community established a common exchange
format for verification results as verificationwitnesses [9]. In this format, a so-called
violation-witness automaton (as seen in Fig. 1b) describes a state space that
contains the specification violation. This state space does not necessarily have to

B.4. Tests from Witnesses: Execution-Based Validation of Verification Results 75

8 D. Beyer, M. Dangl, T. Lemberger and M. Tautschnig

Program

Specification

Verification
Task

Verifier

Blast Cbmc CPAchecker Esbmc

Smack Ultimate
Automizer · · ·

Violation
Witness

Correctness
Witness

False

Bug found

TrueProof found

Witness

Program

Specification

Verification
Task

Refiner

CPAchecker Ultimate
Automizer

Refined
Witness

(a) Concept sketch

q0

q1

q2

q⊥ qE

6: sum == 0

o/w

7: mean == 0

o/w

8,else: 8,then:

(b) Abstract witness

q0

q1

q2

q3

q4

q⊥ qE

4: a == 2

o/w

5: b == 254

o/w

6: sum == 0

o/w

7: mean == 0

o/w

o/w

8,else:

Fig. 3. Concept of witness refinement with example abstract and refined witnesses for
the example program depicted in Fig. 1a from the introduction

represent just a single error path, but may contain multiple error paths and even
paths without a specification violation. As an example for the use of verification
witnesses, the International Competition on Software Verification (SV-COMP)
applies this format and counts a report of a found bug only if a corresponding
violation witness is reported and confirmed [4]. Figure 2 illustrates the process:
the verifiers can be exchanged according to the needs of the user, there is no risk
of technology lock-in. Figure 2 also shows that the exchange format for witnesses
has recently been extended to correctness witnesses [8]. In the remainder of this
paper, however, we will only consider violation witnesses.

Fig. 2. Software verifiers produce witnesses

(c) Refined witness

8,then:

76 APPENDIX B. ORIGINAL MANUSCRIPTS

Tests from Witnesses 9

Fig. 4. Violation-witness validation

WitnessRefinement.The originalwork onverificationwitnesses [9] contains the
proposal to consider refinement of witnesses. The idea is to take a violation witness
as input, replay it with a validating verifier, and produce a new witness that is more
detailed. A more detailed violation witness is closer to a concrete program path and
makes the validation process faster. We will later in this paper use an instance of
a witness refiner to improve witnesses from other verification tools towards being
able to successfully derive tests from witnesses. Figure 3a illustrates the optional
step of using witness-refining validators to strengthen a witness. Figure 3b shows
another, validviolationwitness for thepreviously consideredprogramfromFig. 1a.
In contrast to the witness in Fig. 1b, this witness does not specify any concrete
values for the two nondeterministic values of variables a and b, but specifies that a
property violation occurs if the intermediate variables sum and mean are both equal
to 0. This witness automaton represents a set of 256 different counterexamples:
every counterexample with values for a and b, so that a + b == 0 during execution.
Figure 3c showsaviolationwitness that is a refinement of themore abstractwitness
in Fig. 3b that additionally specifies concrete values for the two variables a and b

and thus restricts the search space in witness validation early on.

Witness Validation. Violation witnesses can be used to independently re-
establish the verification result by using a witness-based result validator that takes
the information from the witness to find a path through the state space of the
program to a specification violation. Thus, a successful validation increases trust
in the verification result, and developers no longer need to rely on the verifiers
alone. Instead, they can focus their attention on the validated results and assign a
lower priority to unconfirmed alarms. The existing witness-based result validators
employpotentially-expensivemodel-checking techniques to replay error paths that
are represented in thewitness.While this is a powerful technique (it can reconstruct
error paths even for abstract witnesses), the technique still has the limitations
of common program-analysis and model-checking techniques, namely that the
technique may over-approximate the semantics of the programming language,

Witness

Program

Specification

Verification
Task

Validator

CPAchecker

Ultimate Automizer

CPA-witness2test

FShell-witness2test

Confirmed
/ Unconfirmed

B.4. Tests from Witnesses: Execution-Based Validation of Verification Results 77

10 D. Beyer, M. Dangl, T. Lemberger and M. Tautschnig

Fig. 5. Software verification with witnesses: construction, (optional) refinement, and
validation work flow

thus potentially confirming false alarms or rejecting valid violation witnesses.
As a solution to this, we propose an execution-based approach to witness-based
result validation. Figure 4 shows the two existing validators CPAchecker and
Ultimate Automizer together with the two new, execution-based validators that
we introduce in this paper: CPA-witness2test and FShell-witness2test.

3 Tests fromWitnesses

This section introduces a new, yet unexplored, application of witnesses that can
easily be integrated into established processes for verification-result validation, as
summarized by Fig. 5. The highlighted area in Fig. 5 outlines the goal: for a given
violation witness, we want to construct a test that can be compiled and executed
to check that the bug is realizable. In particular, driven by our desire to keep the
work-flow independent from special verifiers, we want to have two independently
developed implementations of such witness-to-test tools.

Our new, execution-based witness validator does not require the aid of
model-checking techniques for validating verification results: we generate a test
harness (test code for the program), which can be compiled and linked together
with the original subject program and executed. If the execution does not trigger
the described bug, the witness is deemed spurious, i.e., not realizable.

Adding this new tool to the pool of available witness-based result validators
not only increases the diversity of validation techniques and its potential for
establishing trust in verification results, but also adds novel features to the
validation process: As a valuable by-product of a successful validation, the devel-
opers are able to obtain executable test code that is guaranteed to reproduce the
bug in their system, and they can use all of the infrastructure for inspecting and
debugging that they are trained and experienced in and that is already in place
in their development environment. For example, a C developer might simply run
GDB to step through the executable error path.

Program

Specification

Verification
Task

Blast

Cbmc

CPAchecker

Esbmc

Smack

Ultimate
Automizer

Witnesses

(a) Witness construction

CPAchecker

Ultimate
Automizer

(Refined)
Witnesses

(b) Optional witness refinement

CPAchecker

Ultimate Automizer

CPA-witness2test

FShell-witness2test

Unit Tests

Confirmed
/ Uncon-
firmed

(c) Witness validation

No refinement

78 APPENDIX B. ORIGINAL MANUSCRIPTS

Tests from Witnesses 11

Fig. 6. Flow of execution-based result validation

Figure 6 shows the complete picture of execution-based witness validation.
The verification task (a given program with a given specification) is verified by a
chosen verifier. If the verifier reports a specification violation (False, bug found) it
also produces a violation witness. (Our work does not consider the outcome True,
for which the development of practical support, such as correctness witnesses [8]
and compact proofwitnesses [32], is also a subject of ongoing research.)Thewitness
in GraphML format [15] is then given to witness2test, which synthesizes a test
harness that drives the program to the specification violation. In order to support
our claim of independence from any particular tool implementation, we implement
two completely different instances of witness2test, namely CPA-witness2test

(based on open-source components fromCPAchecker) andFShell-witness2test

(based on ideas from FShell). The test-harness and the original (unchanged)
program are then compiled and linked to obtain an executable program. The
executable program is then executed in a safe execution container. 5 If the reported
specification violation is observed during this execution, the witness is confirmed.
Otherwise the witness is not confirmed, most likely because the witness is not
precise enough or even spurious.

3.1 CPA-WITNESS2TEST

One of our implementations for the witness2test component of the architecture
outlined in Fig. 6 is CPA-witness2test, which is based on the CPAchecker

framework [11].For ourpurpose ofmatchingan inputwitness to theprogramsource
code of a verification task and generating a test harness, we configureCPAchecker

to use the witness automaton as a protocol automaton [9] to guide and restrict the
state-space exploration to the program paths that the witness represents. Unlike
observer automata [44], which we use to represent the specification and which can
only monitor the state-space exploration of an analysis, protocol automata may
also restrict the state-space exploration, for example to a specific program path,
5 We chooseBenchExec [13] as container solution, because it is also used by SV-COMP.

C Program

Specification

Verification
Task

Verifier

Proof found

Witness

CPA-witness2test FShell-witness2test

witness2test
C

Test
Harness

GCC

Executable

RunExec

Witness Spurious Witness Confirmed

False
Bug found

True

Bug foundNo bug

foun
d

B.4. Tests from Witnesses: Execution-Based Validation of Verification Results 79

12 D. Beyer, M. Dangl, T. Lemberger and M. Tautschnig

thereby guiding the analysis along that path. In our case, this path is the error
path represented by the protocol automaton. We configure the analysis to only
consider the (syntactical) branching information of the protocol automaton and to
not semantically analyze the path. During this protocol analysis, we observe which
input-value assumptions from the witness correspond to which input function or
variable of the program. By collecting this information, we are able to construct
a test vector for the program. The test vector maps an input value to each input
variable and a list of input values to each external function. We synthesize a test
harness from a test vector by providing initializations for input variables and
definitions for external functions. An external function with a list (v0, . . . , vn−1)
of n ∈ N input values is defined by using a switch statement with n cases over a
static counter variable 0 ≤ i < n that is initialized to 0 and incremented after
each call to the function. Each case of the switch statement corresponds to an input
value, such that case i selects vi. We also inject a call to the exit function so that
when we later execute the program, we can detect that the intended violation
of the specification was triggered, i.e., the program crashed precisely due to the
bug described by the witness, by checking for a specific execution return value.
Figure 1c shows the exit(107)-call in line 2 and a definition of an input function
VERIFIER nondet uchar() in lines 3 to 12 as generated by CPA-witness2test, where

the counter variable test vector index represents i. The switch statement in this
function definition provides sequential access to the two input values (2, 254) that
CPA-witness2test extracted from the witness of Fig. 1b for the program shown
in Fig. 1a.

3.2 FSHELL-WITNESS2TEST

The key design principle of FShell-witness2test is independence from existing
verification infrastructure: FShell-witness2test’s results shall—by design—be
unbiased towards any existing software-analysis framework. While this does imply
limitationson the class ofwitnesses that canbeprocessedasdiscussedbelow, it does
yield further advantages: FShell-witness2test is easy to extend for prototyping,
and does not require any background in software verification.

FShell-witness2test comprises two major parts: (1) A Python-based pro-
cessor of the witness and the input program, using pycparser 6 to generate test
vectors in a format compatible with FShell [31]. (2) A Perl script that translates
such test vectors into a test harness.

For a given verification task and witness, FShell-witness2test first parses
the specification to restrict itself to reachability properties (call to error function
should not be reachable). The witness and the C program are then handed to the
Python-based processor. The specification defines the entry function to be used by
the generated test harness.

As pycparser cannot handle various GCC extensions, input programs are
preprocessed and sanitized by performing text replacement and removal. We then
obtain the abstract syntax tree and iterate over its nodes to gather data types and

6 https://github.com/eliben/pycparser

80 APPENDIX B. ORIGINAL MANUSCRIPTS

Tests from Witnesses 13

source locations of (1) all procedure-local uninitialized variables, (2) all functions
with prefix VERIFIER nondet, and (3) all uses of such functions. We refer to the
locations of uninitialized variables and nondeterministic-input function uses as
watch points.

Finally we build a linear sequence of nodes from the GraphML encoding of the
witness. Traversing this sequence, any match of line numbers against the watch
points triggers an attempt to extract values from assumptions in the witness. If
parsing the C code that is contained in the assumption succeeds, then an input
value is recorded.

The test vector is compatible with the output of FShell; the program of Fig. 1
yields the following test vector:

IN:
ENTRY main()@[file mean.c line 1]
unsigned char VERIFIER nondet uchar()@[file mean.c line 4]=2
unsigned char VERIFIER nondet uchar()@[file mean.c line 5]=254

Such a test vector is translated to a Makefile that generates an actual test
harness, which consists of invocation code and the implementation of various
nondeterministic-input functions that are present in the program. FShell-

witness2test reports False (confirming the violation) if, and only if, the property
violation is detected in the output of the test execution.

4 Evaluation

We perform a large experimental study to demonstrate the general applicability
and the advantages of our approach.

4.1 Evaluation Goals

The goal of our experimental evaluation is to collect experience with our new kind
of result validation and to support the following claims with data for a large set of
witnesses:

Claim 1: Execution-based validators can confirm violation witnesses that the
existing validators (which are based on model-checking technology) can not
validate. Thus, execution-based validation increases the overall effectiveness.

Claim 2: Result validation based on executable tests can be faster than result
validation based on model-checking technology.

Claim 3: Violation witnesses in the common exchange format for verification
results (cf. Sect. 2) are a valuable source to synthesize test code for specification
violations to complement existing test suites.

4.2 Experiment Setup

We used the benchmarking framework BenchExec (revision fb32a3e7) to con-
duct our experiments. In order to experimentally evaluate our approach, we first

B.4. Tests from Witnesses: Execution-Based Validation of Verification Results 81

14 D. Beyer, M. Dangl, T. Lemberger and M. Tautschnig

construct a large set of witnesses that is diverse in terms of (a) subject programs
and (b) verification tools that create witnesses.

Subject Programs. For (a), we consider the largest available set of verification
tasks 7 from the community of automatic software verification and select all 5 692
verification tasks with a reachability property 8.

Verifiers. For (b), we use all verification tools that participated in SV-COMP
2017 for property ReachSafety and whose license allows us to use it 9. Table 1
lists all verifiers that we executed to produce violation witnesses. The table lists
in the first column the verifier name with a link to the project web site for more
information, and a reference to the paper describing the corresponding verifier. For
the experiments, we took the archives from the competition web site. 10

Collection of Witnesses. From the given verification tasks and verifiers, we
started verification runs and collected the obtained violation witnesses. For this
replication of the SV-COMP experiments we followed thoroughly the description
on the competition web site 10 and in the report [4]. In particular, we started
each verifier only on those verification tasks and with those parameters that were
declared by the development teams of the verifiers 11. The number of witnesses that
we obtained with this process is reported in Table 1 (col. ‘Unref.’). Because we use
all available verifiers (not only those that performed well in the competition), the
set of witnesses contains also bad witnesses (e.g., that are syntactically incorrect).
We did not want to exclude them for external validity.

To further increase the external validity of our evaluation, we additionally
produced witnesses by applying a witness-refinement technique (cf. Sect. 2) to
13 200 witnesses above. We used the witness-refiner from the CPAchecker

framework for this step.This refinement is oftenable to improve imprecisewitnesses
by adding concrete input values, and yields another 5 766 witnesses (col. ‘Ref.’) to
a total of 18 966 witnesses (col. ‘Total’) that we will run our experiments on.

In order to highlight the differences between model-checking-based validation
approaches and execution-based validation approaches, we manually crafted some
verification tasks and corresponding witnesses. These witnesses allow us a more
detailed discussion of some effects, but were not added to our set of automatically
generated witnesses.

Computing Resources. Our experiments were conducted on machines with an
Intel Xeon E3-1230 v5 CPU, with 8 processing units each, a frequency of 3.4 GHz,
33 GB of RAM, and a GNU/Linux operating system (x86 64-linux, Ubuntu 16.04
with Linux kernel 4.4). We limited the verification runs to four processing units
(i.e., two physical cores), 7 GB of memory, and 15 min of CPU time, and the
7 https://github.com/sosy-lab/sv-benchmarks/tree/423cf8c
8 We have to restrict the experiments to property ReachSafety because there were no

witness validators available for the other properties.
9 There are also two commercial verifiers that produce witnesses, but we cannot use them

due to their proprietary license.
10 https://sv-comp.sosy-lab.org/2017/systems.php
11 https://github.com/sosy-lab/sv-comp/tree/svcomp17/benchmark-defs

82 APPENDIX B. ORIGINAL MANUSCRIPTS

Tests from Witnesses 15

Table 1. Violation witnesses produced by verifiers and resulting tests

Verifier Produced witnesses Produced tests

Unref. Ref. Total Count kLOC kB # Inputs (Avg.)

2ls [45] 992 384 1 376 1 208 89.9 3 999 7.57

Blast [47] 778 202 980 327 29.0 938 0.271

Cbmc [34] 831 467 1 298 1 249 67.7 2 991 6.33

Ceagle 619 426 1 045 540 92.2 262 5.39

CPA-BAM-BnB [2] 851 175 1 026 158 42.9 1 114 0

CPA-kInd [10] 263 193 456 656 56.2 2 967 14.9

CPA-Seq [23] 883 767 1 650 838 95.5 3 895 1.79

DepthK [43] 1 159 305 1 464 1 302 65.4 3 170 2.96

Esbmc [37] 653 148 801 478 21.0 1 983 2.53

Esbmc-falsi [37] 981 395 1 376 1 133 53.7 1 906 1.81

Esbmc-incr [37] 970 392 1 362 1 126 53.5 1 896 1.82

Esbmc-kInd [24] 847 352 1 199 1 028 48.9 1 774 1.69

Forester [30] 51 0 51 0 0 0 -

PredatorHP [33] 86 61 147 80 17.2 434 0

Skink [17] 30 25 55 44 0.290 8 0

Smack [41] 871 632 1 503 1 576 128 5 654 6.09

Symbiotic [19] 927 411 1 338 589 38.1 1 375 0

SymDIVINE [38] 247 224 471 405 13.4 580 0

UAutomizer [29] 514 70 584 121 2.24 59 0

UKojak [40] 309 67 376 116 2.15 55 0

UTaipan [26] 338 70 408 121 2.23 59 0

Total 13 200 5 766 18 966 13 095 920 35 119 5.60

witness-refinement and validation runs to two processing units (i.e., one physical
core), 4 GB of memory, and 1.5 min of CPU time. All CPU times are reported with
two significant digits. The limits are inspired by SV-COMP.

Validators. We used CPA-witness2test in version 1.6.14-tap18 from CPA-
checker and FShell-witness2test in revision 2a76669f from the test-gen
branch. We used the model-checking based witness validators CPAchecker,
version 1.6.14-tap18, and Ultimate Automizer 0.1.8.

4.3 Availability of Data and Tools

All tools and all data obtained in our experiments are available via our supple-
mentary web page. 12 The verification tasks are also publicly available 7.

4.4 Results

Claim 1: Effectiveness. Table 2 reports the number of witnesses that the
individual validators were able to confirm. In the columns, it shows: the results of
12 https://www.sosy-lab.org/research/executionbasedwitnessvalidation/

B.4. Tests from Witnesses: Execution-Based Validation of Verification Results 83

16 D. Beyer, M. Dangl, T. Lemberger and M. Tautschnig

Table 2. Confirmed witnesses and verification results

Static validators Dynamic validators Union

CPAchecker Automizer Union CPA-w2t FShell-w2t Union

Confirmed witnesses 11 225 7 595 12 821 7 151 7 545 10 080 14 727
Unref. witnesses 5 750 3 450 7 214 3 506 3 459 5 082 9 056
Ref. witnesses 5 475 4 145 5 607 3 645 4 086 4 998 5 671
Incorrectly confirmed 18 7 25 6 0 6 31

Confirmed verif. results 5 751 5 643 7 215 5 377 5 755 7 292 9 057
Incorrectly confirmed 15 7 22 6 0 6 22

the static validators CPAchecker and Ultimate Automizer, as well as the union
of these two; the results of the dynamic validators CPA-w2t and FShell-w2t, as
well as the union of these two; and the results of the union of all four validators.
The union is the number of witnesses that at least one of the considered validators
was able to confirm, i.e., one of CPAchecker and Ultimate Automizer (col. 4), or
one of CPA-w2t and FShell-w2t (col. 7), or any of the four (col. 8). In the rows,
Table 2 is divided into confirmed witnesses (unrefined and refined witnesses, as
well as incorrectly confirmed witnesses) and confirmed verification results. A
witness is incorrectly confirmed if the verification result reported by a verifier
is wrong and the validator reached the same, wrong conclusion using the
verification-result witness that was provided by the verifier. Since for each
unrefined witness from a verifier, a refined counterpart may exist, the number of
confirmed witnesses is potentially double the number of verification results that
were confirmed using these witnesses. Because of this, Table 2 also reports the
number of confirmed verification results. We considered a verification result as
confirmed if at least one of itswitnesses is confirmedby theusedvalidators.This can
be the unrefined witness, or, if it exists, the refined one. The results of Table 2 show
that the static validators together confirmed a total of 12 821 verification results,
while the dynamic validators together confirmed a total of 10 080 results. Also,
the two different validation techniques confirm different results: a union of 14 727
results were confirmed by both validation techniques together. Of the verification
results that neither of the static validators was able to confirm, CPA-w2t was
able to confirm 735 and FShell-w2t was able to confirm 1 488, meaning that
the techniques complement each other well. Together, they were able to confirm
1 842 results that no static validator was able to confirm. This shows that the
independently developeddynamic techniques complement each other because they
are based on completely different technology. It is also interesting to considerwrong
witnesses, i.e., violation witnesses that constitute false alarms. In our experiments,
the verifiers produced 679 false alarms. Of these, the static approaches incorrectly
confirmed 22 wrong witnesses (of different programs), while FShell-w2t did
not wrongly confirm any false alarms. CPA-w2t confirmed 6 wrong witnesses
incorrectly, all based onprograms that contain floating-point arithmetic. For these,
CPA-w2t has only limited support. Despite that, this highlights a high precision
of our execution-based approach. In sum, using dynamic validators in addition
to static validators can significantly increase the number of successfully validated
verification results.

84 APPENDIX B. ORIGINAL MANUSCRIPTS

Tests from Witnesses 17

Table 3. Performance comparison for witnesses that all validators confirmed (CPU time
for 2 685 witnesses)

CPAchecker Automizer CPA-w2t FShell-w2t

Total time (s) 20 000 45 000 30 000 1 900
Average time (s) 7.4 17 11 0.72
Median time (s) 6.2 11 5.9 0.71

Claim 2: Efficiency. Table 3 considers only results that were confirmed by all
validators, to compare the execution performance. For the dynamic validators,
the reported run time contains all three steps: generating the test from the
witness, compiling and linking, and executing the test. The results show that the
static approaches are slow (CPAchecker and Ultimate Automizer), that the
approach that assembled a static analysis for test generation from CPAchecker

components is also slow (CPA-w2t), and that the light-weight implementation
that is specifically tailored to generating tests from witnesses is extremely
fast (FShell-w2t). Figure 7 displays quantile functions that show for each
validator the necessary maximum CPU time (y-axis) for confirming a certain
quantile of results (x-axis). We observe thatFShell-w2t significantly outperforms
all other validators.

Fig. 7. Quantile plot for CPU time consumed for validating witnesses accepted by all
validators

Interestingly, in our validation we observed that the witnesses that require the
most time to validate are witnesses that are large in size and that describe a long,
detailed error path. Most of these are produced by verifiers that use bounded model
checking, e.g., Cbmc and CPA-kInd, or by our refinement step.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 500 1000 1500 2000 2500

C
P

U
 ti

m
e

(s
)

n-th fastest confirmed witness

CPAchecker
Ultimate Automizer
CPA-witness2test
FShell-witness2test

B.4. Tests from Witnesses: Execution-Based Validation of Verification Results 85

18 D. Beyer, M. Dangl, T. Lemberger and M. Tautschnig

Claim 3: Test Generation. The last four columns of Table 1 relate the number
of witnesses that we processed to the number of produced tests for which failing
executions are realizable. With ‘produced tests’ we refer to the tests that were
produced by any of the dynamic validators and for which the test execution lead to
an observed specification violation. Note that because we collect tests from both
dynamic validators, the numbers of produced tests exceed the number of witnesses
in some rows. Since the tests are available in source code, and could be maintained
and re-used by developers in practical application scenarios, we also report the
size of these unit tests in lines of code, file size, and the average number of input
values per generated unit test. The table shows that the number of unit tests and
the accompanying size of test code that the approach can produce are significant.
The results confirm that we are able to provide an interface to verification tools via
witnesses and tests that avoids technology lock-in and which enables developers to
explore the verification results using tools and techniques they are familiar with.
Thecombinationof softwareverificationandexecution-based result validationmay
also be used to automatically extend the existing test suites of a project.

4.5 Detailed Discussion of Synthetic Examples

Now we discuss a few effects in more detail on hand-crafted example witnesses.
Bugs that occur after only few loop iterations are also known as shallow bugs, as
opposed to deep bugs that occur after many loop iterations. One of the strengths
of dynamic validation approaches is that long loops can simply be executed, while
model checkers usually need to performexpensive symbolic unrolling to reveal deep
bugs, which is therefore a more difficult task for them than discovering shallow
bugs. Thus, we expect the set of witnesses obtained from model checkers to consist
mostly of shallow bugs, while at the same time we must expect that the advantages
of test-based validation become most apparent for witnesses for deeper bugs, which
necessitate many unrollings. Therefore, we hand-crafted a small set of verification
tasks and witnesses, including the example for computing the mean from Fig. 1a in
the introduction, to exemplify the differences between the test-based approaches
and those based on model checking.

Figure 8a shows an example program intended to compare the iterative sum
of ascending values with the result of the Gauss sum formula, and a witness for a
bug in the program. The bug is located in lines 10 to 12 and causes an error for
inputs larger than or equal to 10 000. The depicted witness for this bug assigns
an input value of 10 000. Figure 8b shows an example program that increments
two variables x and y 1 000 000 times and then asserts their equality in line 12,
and a witness for a violation of this assertion. Since y is initialized to x + 1 in
line 5, the assertion will fail for any value of x. The depicted witness for this
bug assigns an input value of 0. Figure 8c shows an example program with a
variable n initialized with an input function in line 4 and copies its value to a
variable x in line 5. In the same line, a variable y is initialized to 0. Then, in
lines 6 to 9, x is decremented and simultaneously y is incremented, until x is 0,
so essentially, y counts the loop iterations, and n − x = y is a loop invariant.
Consequently, y must be equal to n at the end of the loop, and therefore the call to

86 APPENDIX B. ORIGINAL MANUSCRIPTS

Tests from Witnesses 19

Fig. 8. Hand-crafted tasks and witnesses

1 extern void
↪→ __VERIFIER_error(void);

2 extern unsigned int
↪→ __VERIFIER_nondet_uint(void);

3 int main() {
4 unsigned int n =

↪→ __VERIFIER_nondet_uint();
5 if (n < 1) return 0;
6 if (n > 1000000) return 0;
7 unsigned int sum = 0;
8 for (int i = 1; i <= n; i++) {
9 sum = sum + i;

10 if (i == 10000) {
11 sum = sum + 1;
12 }
13 }
14 if (2 ∗ sum != n ∗ (n + 1)) {
15 __VERIFIER_error();
16 }
17 return 0;
18 }

q0 q1 q⊥

qE

4: n == 10000

o/w o/w

14,else:

14,
the

n:

(a) “gauss” code, witness

1 extern void
↪→ __VERIFIER_error(void);

2 extern unsigned int
↪→ __VERIFIER_nondet_uint(void);

3 int main(void) {
4 unsigned int x =

↪→ __VERIFIER_nondet_uint();
5 unsigned int y = x + 1;
6 unsigned int i = 0;
7 while (i < 1000000) {
8 x++;
9 y++;

10 i++;
11 }
12 if (x != y) {
13 __VERIFIER_error();
14 }
15 return 0;
16 }

q0 q1 q⊥

qE

4: x == 0

o/w o/w

12,else:

12,
the

n:

(b) “loop-1” code, witness

1 extern void __VERIFIER_error();
2 extern unsigned int
↪→ __VERIFIER_nondet_uint(void);

3 int main() {
4 unsigned int n =

↪→ __VERIFIER_nondet_uint();
5 unsigned int x=n, y=0;
6 while (x > 0) {
7 x−−;
8 y++;
9 }

10 if (y == n) {
11 __VERIFIER_error();
12 }
13 return 0;
14 }

q0

q1

q⊥ qE

4: n == 0

o/w

o/w

10,else: 10,then:

q0

q1

q⊥ qE

4: n == 1000000

o/w

o/w

10,else: 10,then:

(c) “loop-2” code, witnesses

the error function in line 11 is called for any input value, so that both witnesses in
Fig. 8c are valid counterexamples. The first of these witnesses, however, describes
a violation that skips the loop entirely with an input value of 0, while the second
one, due to assigning an input value of 1 000 000, reaches the violation in line 11
only after 1 000 000 loop iterations. We expect all validators to quickly validate the
witnesses for shallow bugs, i.e., the one depicted in Fig. 1a and the first witness
in Fig. 8c, but we expect test-based validators to perform significantly better on
the witnesses for deep bugs, i.e., those depicted in Fig. 8a and 8b, and the second
witness in Fig. 8c. Table 4 reports the results for validating these tasks and largely
confirms our expectations. While CPAchecker exceeds its resource limitations
(“M” for exceeding the memory limit, “T” for exceeding the CPU time limit)
for all witnesses except for the two that represent shallow bugs, CPA-w2t and
FShell-w2t quickly confirm all witnesses (✓). It is somewhat surprising to see that
UltimateAutomizer is able to confirm the loop-2/wit-2 of Fig. 8c. Checking the
tool output, however, reveals that Ultimate Automizer ignored the input value
of n specified by the witness and used 0 instead of 1 000 000. We were also surprised
that the witnesses in the first two rows were rejected by Ultimate Automizer (✗),
but since the confirmations of the execution-based validators along with their
trustworthy executable tests give us confidence that the witnesses are correct, we
assume that the rejections are either caused by the complexity of validating the
witnesses or by an approximating behavior of Ultimate Automizer similar to the
one leading to the rejection of loop-2/wit-2. Overall, we confirm that for this
class of witnesses, dynamic approaches are more efficient and more effective than
static approaches.

B.4. Tests from Witnesses: Execution-Based Validation of Verification Results 87

20 D. Beyer, M. Dangl, T. Lemberger and M. Tautschnig

Table 4. Validation of hand-crafted witnesses

Witness CPAchecker Automizer CPA-w2t FShell-w2t

Result Time (s) Result Time (s) Result Time (s) Result Time (s)

gauss M - ✗ 11 ✓ 3.4 ✓ 0.60

loop-1 T - ✗ 9.6 ✓ 3.4 ✓ 0.60

loop-2/wit-1 ✓ 3.8 ✓ 8.0 ✓ 3.4 ✓ 0.58

loop-2/wit-2 T - ✓ 7.5 ✓ 3.2 ✓ 0.58

mean ✓ 3.5 ✓ 7.1 ✓ 3.6 ✓ 0.58

5 Conclusion

Developers are familiar with testing, and there are many tools available for bug
analysis that are based on execution, such as debuggers. We try to close the gap
between available verification tools and the desire for more precise bug finding
by leveraging verification witnesses in an exchangeable standard format. We
synthesize tests (test code) from verification results (witnesses) and check the
tests for realizability by compiling them, linking them together with the original
program, and executing the result in an isolating container. Prior to our work,
developers would execute a verification tool and obtain the verification results,
which include a violation witness in case a bug is found. Now, we can use the
violation witness to obtain a test that drives the program to the specification
violation (i.e., into the crash that the developer wants to investigate), while
at the same time, we avoid verification-tool lock-in due to the exchangeable
standard format. The approach reports only those tests to the developer that
really expose the bug; any false alarms are suppressed. The results of our thorough
experimental study are encouraging: We verified thousands of programs from the
largest publicly-available collection of C verification tasks, consisting of 73 million
lines of source code (2.3 GB), and synthesized tests that confirmed7 286verification
results exposing known bugs in 974 different verification tasks.

References

1. Alglave, J., Donaldson, A.F., Kroening, D., Tautschnig, M.: Making software
verification tools really work. In: Bultan, T., Hsiung, P.-A. (eds.) Proceedings of
ATVA 2011. LNCS, vol. 6996, pp. 28–42. Springer, Heidelberg (2011)

2. Andrianov, P., Friedberger, K., Mandrykin, M., Mutilin, V., Volkov, A.:
CPA-BAM-BnB: Block-abstraction memoization and region-based memory
models for predicate abstractions. In: Legay, A., Margaria, T. (eds.) Proceedings of
TACAS 2017. LNCS, vol. 10206, pp. 355–359. Springer, Heidelberg (2017)

3. Artho, C., Havelund, K., Honiden, S.: Visualization of concurrent program
executions. In: Belli, F., Chen, A., Lin, H., McMillin, B., Mei, H. (eds.) Proceedings
of COMPSAC 2007, pp. 541–546. IEEE (2007)

88 APPENDIX B. ORIGINAL MANUSCRIPTS

Tests from Witnesses 21

4. Beyer, D.: Reliable and reproducible competition results with BenchExec and
witnesses (report on SV-COMP 2016). In: Chechik, M., Raskin, J.-F. (eds.)
Proceedings of TACAS 2016. LNCS, vol. 9636, pp. 887–904. Springer, Heidelberg
(2016)

5. Beyer, D.: Software verification with validation of results. In: Legay, A., Margaria,
T. (eds.) Proceedings of TACAS 2017. LNCS, vol. 10206, pp. 331–349. Springer,
Heidelberg (2017)

6. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating
tests from counterexamples. In: Finkelstein, A., Estublier, J., Rosenblum, D.S. (eds.)
Proceedings of ICSE 2004, pp. 326–335. IEEE (2004)

7. Beyer, D., Dangl, M.: Verification-aided debugging: An interactive web-service for
exploring error witnesses. In: Chaudhuri, S., Farzan, A. (eds.) Proceedings of CAV
2016. LNCS, vol. 9780, pp. 502–509. Springer, Cham (2016)

8. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchanging
verification results between verifiers. In: Zimmermann, T., Cleland-Huang, J., Su, Z.,
(eds.) Proceedings of FSE 2016, pp. 326–337. ACM (2016)

9. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: Di Nitto, E., Harman, M.,
Heymans, P. (eds.) Proceedings of FSE 2015, pp. 721–733. ACM (2015)

10. Beyer, D., Dangl, M., Wendler, P.: Boosting k -induction with continuously-refined
invariants. In: Kroening, D., Păsăreanu, C.S. (eds.) Proceedings of CAV 2015. LNCS,
vol. 9206, pp. 622–640. Springer, Cham (2015)

11. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software
verification. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proceedings of CAV 2011.
LNCS, vol. 6806, pp. 184–190. Springer, Heidelberg (2011)

12. Beyer, D., Lemberger, T.: Software verification: Testing vs. model checking.
Proceedings of HVC 2017. LNCS, vol. 10629, pp. 99–114. Springer, Cham (2017)

13. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements and
solutions. Int. J. Softw. Tools Technol. Transf. (2017)

14. Beyer, D., Wendler, P.: Reuse of verification results. In: Bartocci, E., Ramakrishnan,
C.R. (eds.) Proceedings of SPIN 2013. LNCS, vol. 7976, pp. 1–17. Springer,
Heidelberg (2013)

15. Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., Marshall, M.S.: GraphML
progress report structural layer proposal. In: Mutzel, P., Jünger, M., Leipert, S. (eds.)
Proceedings of GD 2001. LNCS, vol. 2265, pp. 501–512. Springer, Heidelberg (2002)

16. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE:
Automatically generating inputs of death. In: Juels, A., Wright, R.N., De Capitani
di Vimercati, S. (eds.) Proceedings of CCS 2006, pp. 322–335. ACM (2006)

17. Cassez, F., Sloane, A.M., Roberts, M., Pigram, M., Suvanpong, P., de Aledo, P.G.:
Skink: Static analysis of programs in LLVM intermediate representation. In: Legay,
A., Margaria, T. (eds.) Proceedings of TACAS 2017. LNCS, vol. 10206, pp. 380–384.
Springer, Heidelberg (2017)

18. Castaño, R., Braberman, V.A., Garbervetsky, D., Uchitel, S.: Model checker
execution reports. In: Rosu, G., Di Penta, M., Nguyen, T.N. (eds.) Proceedings of
ASE 2017, pp. 200–205. IEEE (2017)

19. Chalupa, M., Vitovská, M., Jonáš, M., Slaby, J., Strejček, J.: Symbiotic 4: Beyond
reachability. In: Legay, A., Margaria, T. (eds.) Proceedings of TACAS 2017. LNCS,
vol. 10206, pp. 385–389. Springer, Heidelberg (2017)

20. Christakis, M., Bird, C.: What developers want and need from program analysis: An
empirical study. In: Lo, D., Apel, S., Khurshid, S. (eds.) Proceedings of ASE 2016,
pp. 332–343. ACM (2016)

B.4. Tests from Witnesses: Execution-Based Validation of Verification Results 89

22 D. Beyer, M. Dangl, T. Lemberger and M. Tautschnig

21. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

22. Csallner, C., Smaragdakis, Y.: Check ’n’ crash: Combining static checking and
testing. In: Roman, G.-C., Griswold, W.G., Nuseibeh, B. (eds.) Proceedings of ICSE
2005, pp. 422–431. ACM (2005)

23. Dangl, M., Löwe, S., Wendler, P.:CPAcheckerwith support for recursive programs
and floating-point arithmetic. In: Baier, C., Tinelli, C. (eds.) Proceedings of TACAS
2015. LNCS, vol. 9035, pp. 423–425. Springer, Heidelberg (2015)

24. Gadelha, M.Y.R., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of C programs via k-induction. STTT 19(1), 97–114 (2017)

25. Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random testing. In:
Sarkar, V., Hall, M.W. (eds.) Proceedings of PLDI 2005, pp. 213–223. ACM (2005)

26. Greitschus, M., Dietsch, D., Heizmann, M., Nutz, A., Schätzle, C., Schilling,
C., Schüssele, F., Podelski, A.: Ultimate Taipan: Trace abstraction and abstract
interpretation. In: Legay,A.,Margaria, T. (eds.) Proceedings ofTACAS2017. LNCS,
vol. 10206, pp. 399–403. Springer, Heidelberg (2017)

27. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Synergy:
A new algorithm for property checking. In: Young, M., Devanbu, P.T., (eds.)
Proceedings of FSE 2006, pp. 117–127. ACM (2006)

28. Gunter, E.L., Peled, D.: Path exploration tool. In: Cleaveland, W.R. (ed.)
Proceedings of TACAS 1999. LNCS, vol. 1579, pp. 405–419. Springer, Heidelberg
(1999)

29. Heizmann, M., Chen, Y.-W., Dietsch, D., Greitschus, M., Nutz, A., Musa, B.,
Schätzle, C., Schilling, C., Schüssele, F., Podelski, A.: Ultimate automizer with an
on-demand construction of Floyd-Hoare automata. In: Legay, A., Margaria, T. (eds.)
Proceedings of TACAS 2017. LNCS, vol. 10206, pp. 394–398. Springer, Heidelberg
(2017)

30. Hoĺık, L.,Hruška,M., Lengál,O.,Rogalewicz,A., Šimáček, J.,Vojnar,T.:Forester:
From heap shapes to automata predicates. In: Legay, A., Margaria, T. (eds.)
Proceedings of TACAS 2017. LNCS, vol. 10206, pp. 365–369. Springer, Heidelberg
(2017)

31. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: How did you specify your test
suite. In: Pecheur, C., Andrews, J., Di Nitto, E. (eds.) Proceedings of ASE 2010, pp.
407–416. ACM (2010)

32. Jakobs, M.-C., Wehrheim, H.: Compact proof witnesses. In: Barrett, C., Davies, M.,
Kahsai, T. (eds.) Proceedings ofNFM2017. LNCS, vol. 10227, pp. 389–403. Springer,
Cham (2017)

33. Kotoun, M., Peringer, P., Šoková, V., Vojnar, T.: Optimized PredatorHP and the
SV-COMP heap and memory safety benchmark. In: Chechik, M., Raskin, J.-F. (eds.)
Proceedings of TACAS 2016. LNCS, vol. 9636, pp. 942–945. Springer, Heidelberg
(2016)

34. Kroening, D., Tautschnig, M.: CBMC: C bounded model checker. In: Ábrahám, E.,
Havelund, K. (eds.) Proceedings of TACAS 2014. LNCS, vol. 8413, pp. 389–391.
Springer, Heidelberg (2014)

35. Li, K., Reichenbach, C., Csallner, C., Smaragdakis, Y.: Residual investigation:
Predictive and precise bug detection. In: Heimdahl, M.P.E., Su, Z., (eds.)
Proceedings of ISSTA 2012, pp. 298–308. ACM (2012)

36. Majumdar, R., Sen, K.: Hybrid concolic testing. In: Emmerich, W., Knight, J.,
Rothermel, G. (eds.) Proceedings of ICSE 2007, pp. 416–426. IEEE (2007)

90 APPENDIX B. ORIGINAL MANUSCRIPTS

Tests from Witnesses 23

37. Morse, J., Ramalho, M., Cordeiro, L., Nicole, D., Fischer, B.: ESBMC 1.22. In:
Ábrahám, E., Havelund, K. (eds.) Proceedings of TACAS 2014. LNCS, vol. 8413,
pp. 405–407. Springer, Heidelberg (2014)

38. Mrázek, J., Jonáš, M., Štill, V., Lauko, H., Barnat, J.: Optimizing and caching SMT
queries in SymDIVINE. In: Legay, A., Margaria, T. (eds.) Proceedings of TACAS
2017. LNCS, vol. 10206, pp. 390–393. Springer, Heidelberg (2017)

39. Müller, P., Ruskiewicz, J.N.: Using debuggers to understand failed verification
attempts. In: Butler, M., Schulte, W. (eds.) Proceedings of FM 2011. LNCS, vol.
6664, pp. 73–87. Springer, Heidelberg (2011)

40. Nutz,A.,Dietsch,D.,Mohamed,M.M.,Podelski,A.:UltimateKojakwithmemory
safety checks. In: Baier, C., Tinelli, C. (eds.) Proceedings of TACAS 2015. LNCS, vol.
9035, pp. 458–460. Springer, Heidelberg (2015)

41. Rakamarić, Z., Emmi, M.: SMACK: Decoupling source language details from verifier
implementations. In: Biere, A., Bloem, R. (eds.) Proceedings of CAV 2014. LNCS,
vol. 8559, pp. 106–113. Springer, Cham (2014)

42. Rocha, H., Barreto, R., Cordeiro, L., Neto, A.D.: Understanding programming bugs
in ANSI-C software using bounded model checking counter-examples. In: Derrick,
J., Gnesi, S., Latella, D., Treharne, H. (eds.) Proceedings of IFM 2012. LNCS, vol.
7321, pp. 128–142. Springer, Heidelberg (2012)

43. Rocha, W., Rocha, H., Ismail, H., Cordeiro, L., Fischer, B.: DepthK: A k -induction
verifier based on invariant inference for C programs. In: Legay, A., Margaria, T. (eds.)
Proceedings of TACAS 2017. LNCS, vol. 10206, pp. 360–364. Springer, Heidelberg
(2017)

44. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000)

45. Schrammel, P., Kroening, D.: 2LS for program analysis. In: Chechik, M., Raskin,
J.-F. (eds.) Proceedings of TACAS 2016. LNCS, vol. 9636, pp. 905–907. Springer,
Heidelberg (2016)

46. Sen, K., Marinov, D., Agha, G.: Cute: A concolic unit testing engine for C. In:
Wermelinger, M., Gall, H.C. (eds.) Proceedings of FSE 2005, pp. 263–272. ACM
(2005)

47. Shved, P., Mandrykin, M., Mutilin, V.: Predicate analysis with BLAST 2.7. In:
Flanagan, C., König, B. (eds.) Proceedings of TACAS 2012. LNCS, vol. 7214,
pp. 525–527. Springer, Heidelberg (2012)

48. Visser, W., Păsăreanu, C.S., Khurshid, S.: Test input generation with Java
PathFinder. In: Avrunin, G.S., Rothermel, G. (eds.) Proceedings of ISSTA 2004,
pp. 97–107. ACM (2004)

B.4. Tests from Witnesses: Execution-Based Validation of Verification Results 91

Proc. STTT 2023, © Springer

Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Six Years Later: Testing vs. Model Checking
Dirk Beyer and Thomas Lemberger

LMU Munich, Germany

The date of receipt and acceptance will be inserted by the editor

Abstract. Six years ago, we performed the first large-
scale comparison of automated test generators and soft-
ware model checkers with respect to bug-finding capabil-
ities on a benchmark set with 5 693 C programs. Since
then, the International Competition on Software Test-
ing (Test-Comp) has established standardized formats
and community-agreed rules for the experimental com-
parison of test generators. With this new context, it is
time to revisit our initial question: Model checkers or
test generators—which tools are more effective in finding
bugs in software? To answer this, we perform a compar-
ative analysis on the tools and existing data published
by two competitions, the International Competition on
Software Verification (SV-COMP) and Test-Comp. The re-
sults provide two insights: (1) Almost all test generators
that participate in Test-Comp use hybrid approaches that
include formal methods, and (2) while the considered
model checkers are still highly competitive, the considered
test generators’ bug-finding capabilities now outperform
them.

Key words: Software verification, Model checking, Pro-
gram analysis, Test-case generation, Testing, Fuzzing

1 Introduction

In previous research [26] we compare the bug-finding
capabilities of automated test generators and software
model checkers on C programs. At the time of this work,
no standardized formats existed for the experimental
comparison of test generators, so we had to manually
implement adapters for a selection of off-the-shelf test gen-
erators and our own coverage measurement. Nowadays,
the International Competition on Software Testing (Test-
Comp) [16] provides a community-set framework for the

evaluation of test generators for the C language, includ-
ing an exchange format for test suites, a large and well-
defined benchmark task set, and agreed-upon resource
limitations for benchmarking. So far, the benchmark test
tasks of Test-Comp target two goals of test generation:
“create a test suite that covers a known bug in a given
program”, and “create a test suite that covers as many
as possible branches of a given program”.

Thanks to the improvements Test-Comp brought, and
six years after our original research [26], it is time to re-
visit the comparison: Model checkers vs. test generators—
which tools are better at finding bugs in software?

We improve on the original comparison in multiple
ways: (1) For the original work, we selected an array of
test generators manually, and configured them to the best
of our knowledge. In this work, we base our comparison
only on participants of the International Competition
on Software Verification (SV-COMP) [13] and Test-Comp.
All tool configuration is provided by the participating
tool developers, and during the competition, developers
got early access to pre-run results to fix any shortcomings
of their tools evident through the benchmark set.

(2) Previously, we executed our own, novel experi-
ments. We do have high confidence in these results, but
in this work, we reuse the freely available competition
data of SV-COMP 2023 and Test-Comp 2023. Using these
results has the advantage that the data was peer-reviewed
by the tool developers before publication.

Through these two adjustments we ensure that the
used experimental data represents expert tool usage. It
also guarantees that we configured everything correctly,
and that we select tools that support all of the major
required language features.

(3) Originally, we said that a model checker found a
bug when it reports a bug and this report is confirmed by
at least one witness validator [20]. In this work, we pay
higher tribute to the actual execution of an error. We

92 APPENDIX B. ORIGINAL MANUSCRIPTS

2 Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking

separately consider whether a model checker’s bug report
can be validated through program execution [21].

(4) In the original work, we only consider the bug-
finding capabilities of model checkers and test generators,
but do not explicitly tune test generators towards finding
a bug in the program. Our expectation is that many
test generators are originally designed for traditional
coverage measures like branch coverage or condition cov-
erage, and are not optimized to create a single test for an
error location of interest. But since Test-Comp asks partic-
ipants to create a test suite that covers a known bug, the
Test-Comp test generators may be tuned towards bug find-
ing. To check the effect of this, we compare the test suites
generated by Test-Comp test generators for error coverage
and the test suites generated for branch coverage with
regards to their bug-finding capabilities.

(5) Furthermore, in the original work we compare
tools that market themselves as software model checkers
with tools that market themselves as test generators,
and give a coarse overview on the techniques they use.
Nowadays, many tools employ hybrid approaches with
multiple different techniques. Many formal methods that
are used in model checking can also be used for test gener-
ation [18], and techniques originally designed for testing
can be used as a part of model checking, for example
input fuzzing [44]. This means that a model checker and
a test generator may use the same underlying analy-
sis techniques. In this work, we consider the individual
analysis techniques in detail.

In summary, we pose the following questions:

RQ 1 Are test generators more effective in finding bugs
than software model checkers?
RQ 2 Can bug reports of software model checkers be
validated through execution?
RQ 3 Are test generators that target errors more ef-
fective in finding bugs than test generators that target
branch coverage?

To answer these questions, we use Test-Comp test gen-
erators and SV-COMP model checkers as representatives
of their respective domains, with the original competition
data. To the best of our knowledge, this is the first meta-
analysis of the two international competitions SV-COMP
and Test-Comp, and the largest evaluation that compares
the bug-finding capabilities of software model checkers
with those of test generators.

Related Work. The only large-scale comparisons of the
tools considered in this work are the annual competitions
SV-COMP [13] and Test-Comp [16], which we combine
and inspect in detail in this work.

While there are no other large-scale comparisons of
tools, there are literature surveys on test generation for
JavaScript [6], search-based testing [78], fuzzing [77], and
symbolic execution [8, 38, 84]. There are also surveys on
software-model-checking techniques [52, 68] and formal
methods in a more general sense [11, 57], as well as the
handbook on model checking [45].

Program

Coverage
Criterion

Test-generation task

Test
Generator Test Suite

Fig. 1: Workflow of a Test-Comp test generator. A test gen-
erator produces a test suite for a program under test and
a coverage criterion.

Program

Coverage
Criterion

Test Suite

Validation task

Test
Executor

Criterion fulfilled

or

%

Fig. 2: Workflow of a test executor. A test executor
computes whether (or to what percentage) a test suite
fulfills a coverage criterion for a program.

This work focuses on reachability bugs in a sequential,
self-sufficient program, similar to a failing assert state-
ment, and on tools and techniques aimed at finding such
errors. Other domains of model checking and automated
testing are, among many others, protocol verification [10],
grammar-based testing [32, 58], and mutation testing [83].

2 Background

2.1 Testing

An input function in a program is any function that
retrieves a value from the program’s environment, for ex-
ample a system call. In our work, we use special functions
__VERIFIER_nondet_X that can return any input value of
type X. For example, function __VERIFIER_nondet_int()

returns an integer input value. A test ⟨v0, . . . , vn⟩ is a
sequence of n values. When ⟨v0, . . . , vn⟩ is executed, the
i-th call to an input function is defined to return value vi.
A test suite is a set of tests.

A test t covers a program operation op if the execution
of t goes through op. A test suite covers a program
operation op if any of its contained tests covers op.

A Test-Comp test generator (Fig. 1) [16] takes as input
the program-under-test and a coverage-criterion (e.g.,
cover a call to function reach_error()), and generates as
output a test suite.

The test executor (Fig. 2) then takes as input the
program-under-test, the coverage criterion, and the gen-
erated test suite. It produces as output either that the

B.5. Six Years Later: Testing vs. Model Checking 93

Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking 3

Program

Spec
Model Checker

Verification task

Correctness
Witness

or

Violation
Witness

Fig. 3: Workflow of a model checker. A model checker
produces a correctness witness when it claims that the
program under verification fulfills the specification, or a
violation witness when it claims that the program violates
the specification.

Program

Spec

Violation
Witness

Validation task

Witness Validator

Result confirmed

or

unconfirmed

Fig. 4: Workflow of verification-result validation for vio-
lation witnesses with a witness validator. A witness val-
idator confirms the model checker’s verification result if
it can reproduce the result with the help of the witness.

coverage criterion is fulfilled, or a percentage of how
many coverage goals that are defined by the criterion are
covered by the tests in the test suite.

2.2 Model Checking

A SV-COMP model checker (Fig. 3) [13] takes as input
a program and a specification and produces one of two
outputs: If the program fulfills the specification, a cor-
rectness witness [19] is generated. If the program violates
the specification, a violation witness [19] is generated.

2.3 Witness Validation

Witness validation [19] aims to increase the trust in
results of model checking. The idea is the following: A
model checker (Fig. 3) analyzes a program with regards
to a specification. As output, it not only produces a
verification verdict “property fulfilled” or “property not
fulfilled”, but also a correctness witness or violation wit-
ness that helps to recreate the verification result. This
witness is then given to a witness validator (Fig. 4). A
witness validator takes the program-under-verification,
the original specification, and the previously produced
witness as input. It tries to reproduce the verification re-
sult with the help of the witness. If the witness validator
is successful, the result is confirmed and confidence in
the verification result increases.

1 unsigned char __VERIFIER_nondet_uchar();
2 void reach_error();
3

4 int main() {
5 unsigned char a =
6 __VERIFIER_nondet_uchar();
7 unsigned char b =
8 __VERIFIER_nondet_uchar();
9 unsigned char sum = a + b;

10 unsigned char mean = sum / 2;
11 if (mean < a / 2) {
12 reach_error();
13 }
14 }

q0

q1

q2

q⊥ qE

5: a == 62

o/w

7: b == 224

o/w

11,else:
o/w

11,then:

Fig. 5: Example program and violation-witness automa-
ton (adapted from prior work [21])

In this work, we focus on bug-finding capabilities, so
we only consider violation witnesses.

We describe violation witnesses as violation-witness
automata. A violation-witness automaton is a finite-state
automaton. It contains at its transitions source-code
guards e and state-space guards ψ to describe a sub-
set of the program state space that contains the re-
ported property violation. A source-code guard e is a
program statement identified by its source-code line num-
ber. A source-code guard can also restrict the direction of
program branchings, for example at if-statements. It only
allows the transition from one witness-automaton state
to another if the currently considered program expression
matches e and the specified program branch is entered
(if specified). A state-space guard ψ is a predicate on the
program state. It restricts the possible program states to
those that fulfill ψ. Figure 5 shows an example program
and a violation-witness automaton for the violated prop-
erty unreach-call. Automaton label o/w describes a
transition that is taken in all cases not covered by other
transitions. This violation-witness automaton describes
only the program state space that assigns a = 62 and
b = 224, which leads to an unsigned integer overflow and
makes the program enter the if-branch: The automaton
stays in state q0 until the assignment in line 5 is consid-
ered. It then transitions to q1 and restricts the considered
program states to those that fulfill a == 62 (after transi-
tioning). When line 7 is reached, it restricts the considered
program states to those that fulfill b == 224. When the
if-statement in line 11 is reached and the if-branch is
entered, the violation is reached.

SV-COMP requires participants to output violation wit-
nesses since SV-COMP 2015 [12]. It uses the XML-based
GraphML exchange format1. Figure 6 shows an excerpt
that represents the automaton displayed in Fig. 5.

Witness to Test. Execution-based witness validation [21]
takes a violation witness and tries to transform it into
an executable test. If it succeeds, the test is executed. If

1 https://github.com/sosy-lab/sv-witnesses

94 APPENDIX B. ORIGINAL MANUSCRIPTS

4 Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking

1 <graph edgedefault="directed">
2 <node id="q0">
3 <data key="entry">true</data>
4 </node>
5 <node id="q1"/>
6 <edge source="q0" target="q1">
7 <data key="startline">5</data>
8 <data key="assumption">a == (62U);</data>
9 <data key="assumption.scope">main</data>

10 </edge>
11 <node id="q2"/>
12 <edge source="q2" target="qE">
13 <data key="startline">7</data>
14 <data key="assumption">b == (224U);</data>
15 <data key="assumption.scope">main</data>
16 </edge>
17 <node id="qE">
18 <data key="violation">true</data>
19 </node>
20 <edge source="q2" target="qE">
21 <data key="startline">11</data>
22 <data key="control">condition−true</data>
23 </edge>
24 <node id="qBot">
25 <data key="sink">true</data>
26 </node>
27 <edge source="q2" target="qBot">
28 <data key="startline">11</data>
29 <data key="control">condition−false</data>
30 </edge>
31 </graph>

Fig. 6: Excerpt of the GraphML representation of the
violation-witness automaton of Fig. 5

this test execution triggers the property violation, the
verification result is confirmed.

To generate the executable test, execution-based wit-
ness validation uses the source-code guards of the violation-
witness automaton to map the corresponding state-space
guards to the program code. If every call to an input func-
tion (__VERIFIER_nondet_X) is constrained to a unique
assignment through a state-space guard (e.g., a == 62),
these unique assignments represent the test inputs—for
example ⟨62, 224⟩. These inputs are then written to a
test harness that allows the execution of the test.

Because the result is confirmed by actual program
execution, execution-based witness validation provides
the same degree of confidence in the verification result
as testing.

2.4 Benchmark Set

SV-benchmarks2 is the largest available collection of
benchmark tasks for evaluation of automated verification
techniques for the C language. SV-benchmarks contains
verification tasks and test-generation tasks.

Verification task. A verification task of SV-benchmarks
consists of a program (C code) to verify and a pro-

2 https://gitlab.com/sosy-lab/benchmarking/
sv-benchmarks/

gram property to check. Program specifications are ex-
pressed in linear temporal logic and different proper-
ties exist: both safety properties (e.g., error never reach-
able) and liveness properties (e.g., program always termi-
nates). In this work, we only consider the safety property
unreach-call, which says that no program execution
may ever call function reach_error.

Test-generation task. A test-generation task of SV-bench-
marks consists of a program (C code) to generate a
test suite for, and the coverage criterion which that
test suite should fulfill. Coverage criteria are expressed
as FQL [64] and, to date, two criteria exist: coverage-
error-call asks for a test suite that covers at least
one call to function reach_error (signals a bug), and
coverage-branches asks for a test suite that covers all
branches in the program.

Categories. SV-benchmarks groups benchmark tasks into
categories. A detailed description of the categories is
available online3. Table 1 gives an overview on the bench-
mark tasks with coverage criterion coverage-error-
call, grouped by their categories. The table shows the
category name, a description of the category, the number
of benchmark tasks in that category, and a plot that
illustrates the lines of program code per task in that
category. Each plot shows on the x-axis the number of
lines of code, and on the y-axis the number of tasks in
that category with the respective lines of code. In this
work, we only consider these benchmark tasks.

3 Evaluation

3.1 Experiment Setup

For all experiments, we use the official SV-COMP and
Test-Comp setup: Experiments run on machines with
Intel Xeon E3-1230 v5 CPUs with 3.40GHz, 8 cores,
turbo boost disabled, and 33GB of memory. For both
competitions, each run of a verification task or test-
generation task is limited to 900 s of CPU time, 15GB
of memory (RAM), and 8 CPU cores. Each violation-
witness validation is limited to 90 s of CPU time, 7GB
of memory and 2 CPU cores. Each test-suite execution
is limited to 300 s of CPU time, 7GB of memory and
2 CPU cores. Resource limitation and measurement is
performed by BenchExec4 [29].

Note. On its web page5, SV-COMP presents a run time
comparison of its participants. We refrain from such com-
parisons in this work because in Test-Comp there is noth-
ing wrong with fully using the available run time — the
tools may continue generating tests until the time limit
is hit, and they do.

3 https://test-comp.sosy-lab.org/2023/benchmarks.php
4 https://github.com/sosy-lab/benchexec
5 https://sv-comp.sosy-lab.org/2023/results/

results-verified/

B.5. Six Years Later: Testing vs. Model Checking 95

Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking 5

Table 1: Subcategories (13) of Test-Comp with coverage criterion coverage-error-call. Each plot in the column
‘Lines of Code‘ illustrates the lines of program code per task in that category. Each plot shows on the x-axis the
number of lines of code, and on the y-axis the number of tasks in that category with the respective lines of code.

Subcategory Description #Tasks Lines of Code

Arrays Require treatment of arrays 90

36 53 70
1

21

BitVectors Require treatment of bit-
operations

9

26 334 642
1

21

ControlFlow Program correctness depends
mostly on the control-flow struc-
ture and integer variables.

5

3672 7335 10999
1

21

ECA Derived from event-condition-
action systems

18

1054 747111 1493168
1

21

Floats Require treatment of floating-point
arithmetics

32

17 525 1033
1

21

Hardware Created from word-level hardware-
model-checking benchmarks

494

60 86002 171944
1

21

Heap Require treatment of data struc-
tures on the heap, pointer aliases,
and function pointers

47

31 557 1083
1

21

Loops Require treatment of (potentially
indeterminate) loops

130

21 435 849
1

21

ProductLines Represent ‘products’ and ‘product
simulators’ that are derived using
different configurations of product
lines

169

2858 3328 3799
1

21

Recursive Require treatment of recursive
functions

20

17 60 103
1

21

Sequentialized Sequentialized concurrent pro-
grams that were derived from Sys-
temC programs. The programs
were transformed to pure C pro-
grams by incorporating the sched-
uler into the C code

98

286 1621 2957
1

21

XCSP Derived from constraint-
programming benchmark tasks
of combinatorial constrained
problems

54

216 1131 2047
1

21

BusyBox Tasks from the software system
BusyBox

5

3445 4486 5528
1

21

DeviceDriversLinux64 Tasks from the Linux Driver Veri-
fication project

2

16669 16722 16776
1

21

96 APPENDIX B. ORIGINAL MANUSCRIPTS

6 Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking

3.2 Benchmark Tasks

We consider all benchmark tasks from SV-benchmarks
with coverage criterion coverage-error-call.

3.3 Considered Tools

We consider all 13 test generators that participated in
Test-Comp 2023 and the 30 software model checkers
that participated in a subcategory of SV-COMP 2023
with checked property unreach-call. Table 2 gives an
overview on a selection of verification techniques used by
each tool, based on data provided by the SV-COMP [13]
and Test-Comp [16] competition reports. The table groups
the tools on the y-axis by Test-Comp and SV-COMP partic-
ipation. Features are grouped on the x-axis in static tech-
niques, dynamic techniques, and common strategies in
verification. Within each group, entries are sorted by
the number of found bugs over all benchmark tasks. We
omit tools that did not find a single confirmed bug in
the considered verification tasks: CPA-BAM-BnB [7, 92],
CPA-BAM-SMG, Frama-C-SV [30], Goblint [88, 91],
Infer-SV [69], and Mopsa [81].

The table shows that all test generators that partic-
ipated in Test-Comp 2023 but PRTest use hybrid ap-
proaches: they employ both static and dynamic analysis
techniques.

3.4 Expanding the Study

To add new tools to the tool comparison, developers can
submit their tool to the next iterations of SV-COMP10

and Test-Comp11. For private experiments, the bench-
marking infrastructure is available online and described
on the competition websites12. Competition results can
be analyzed with our replication artifact [28].

3.5 Experimental Results

RQ 1. Are test generators more effective in finding bugs
than software model checkers? We use the original results
data of SV-COMP 2023 [14] and Test-Comp 2023 [15]. To
make the two data sets comparable, we reduce all results
for test-generation tasks in the Test-Comp data to re-
sults for a verification task with property unreach-call:
Each successful test generation for coverage criterion
coverage-error-call also produces a valid counterex-
ample for unreach-call. This means, if a test generator
successfully generates a test suite that fulfills criterion co-
verage-error-call, it also shows that unreach-call
is violated. For both SV-COMP and Test-Comp data, we

10 https://sv-comp.sosy-lab.org/
11 https://test-comp.sosy-lab.org
12 https://sv-comp.sosy-lab.org/2023/submission.php and
https://test-comp.sosy-lab.org/2023/submission.php

only consider a bug ‘found’ if it is confirmed by the com-
petition through successful violation-witness validation
or test execution.

We report the highest bug-finding capability each
tool exhibits in the competitions. The tool TracerX
only produces test suites for coverage-branches, and for
Legion/SymCC, the test suites generated for coverage-
branches cover more bugs than the test suites generated
for coverage-error-call (cf. RQ 3). For these tools,
we always consider the test suites they generated for
coverage-branches.

Table 2 shows, for each tool, the overall number of
tasks the tool found a bug in. In contrast to our original
study [26], the two test-case generators VeriFuzz [80]
(964/1 173 bugs found) and FuSeBMC [5] (939/1 173
bugs found) perform significantly better than the best
model checker, PeSCo [85, 86] (667/1 173 bugs found).
Both VeriFuzz and FuSeBMC use a combination of
bounded model checking [31] (a static technique) and
fuzzing [59] (a dynamic technique).

Two notes: (1) Some of the model checkers listed in
Table 2 are specialized tools that (a) participate only in
selected categories of SV-COMP, or (b) focus on program
proofs, not bug hunting. For these reasons, a low number
of found bugs gives no indication about the tool’s qual-
ity. For example, GDart-LLVM has the lowest overall
number of found bugs, but it only participates in cate-
gory BitVectors. The best three model checkers, PeSCo,
CPAchecker, and Esbmc-kind, participate in all relevant
categories. (2) The reported numbers do not match the
Test-Comp overall scores reported on the official results
page13 because Test-Comp performs normalization over
each categories’ task number. We do not perform nor-
malization but report the sum of all found bugs over all
categories.

The tools Esbmc-kind, Symbiotic and VeriFuzz par-
ticipate in both SV-COMP and Test-Comp. For each of
these tools, we add in superscript the competition config-
uration that received the presented result (for example
VeriFuzzSV−COMP or SymbioticTest−Comp). If results
are equal for both configurations, we say VeriFuzzBoth.

Table 3 displays the results of the selected tools per
category. For each category, the table lists data for the
three best test generators and three best model checkers
that found at least one bug in that category. If there is a
draw, all tools with the same number of found bugs and
with the same number of bugs confirmed through execu-
tion (cf. RQ 2) are displayed. To ease the differentiation
between the two groups, we prefix each test generator
with T and each model checker with M. The table lists
the total tasks in the respective category, the number of
confirmed bugs that the respective tool found, as well as
the number of bugs that the respective tool found and
that were confirmed by actual program execution. We

13 https://test-comp.sosy-lab.org/2023/results/
results-verified/

B.5. Six Years Later: Testing vs. Model Checking 97

Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking 7

Table 2: Features used by Test-Comp and SV-COMP participants and their overall results in bug finding

Static Dyn. Strategies

Participant B
ou

n
d
ed

M
od

el
C

h
ec

ki
n
g

C
E
G

A
R

E
xp

li
ci

t-
V

al
u
e

A
n
al

ys
is

k-
In

d
u
ct

io
n

N
u
m

er
ic

In
te

rv
al

A
n
al

ys
is

P
re

d
ic

at
e

A
b
st

ra
ct

io
n

S
h
ap

e
A

n
al

ys
is

S
ym

b
ol

ic
E
xe

cu
ti

on

R
an

d
om

E
xe

cu
ti

on

E
vo

lu
ti

on
ar

y
A

lg
or

it
h
m

s

A
R

G
-B

as
ed

A
n
al

ys
is

B
it

-P
re

ci
se

A
n
al

ys
is

F
lo

at
in

g-
P
oi

nt
A

ri
th

m
et

ic
s

L
az

y
A

b
st

ra
ct

io
n

In
te

rp
ol

at
io

n

A
u
to

m
at

a-
B

as
ed

A
n
al

ys
is

G
u
id

an
ce

by
P

ro
p
er

ty

T
ar

ge
te

d
In

p
u
t

G
en

er
at

io
n

A
lg

or
it

h
m

S
el

ec
ti

on

P
or

tf
ol

io

#Bugs
Found

VeriFuzz [79, 80] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 964
FuSeBMC [4, 5] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 939
FuSeBMC_IA [3] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 931
CoVeriTest [22, 67] ✓ ✓ ✓ ✓ ✓ ✓ 564
Klee [36, 37] ✓ ✓ ✓ ✓ 541
Symbiotic [40, 41] ✓ ✓ ✓ ✓ ✓ ✓ 510
TracerX [65, 66] ✓ ✓ ✓ ✓ ✓ ✓ 420
HybridTiger [35, 87] ✓ ✓ ✓ ✓ ✓ 397
WASP-C 6 ✓ ✓ ✓ 393
Esbmc-kind [55, 56] ✓ ✓ ✓ ✓ ✓ 352
PRTest [26, 73] ✓ ✓ ✓ 293
Legion/SymCC 7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 281

T
es

t-
C

om
p

Legion [74, 75] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 108

PeSCo [85, 86] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 667
CPAchecker [25, 47] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 665
Esbmc-kind [55, 56] ✓ ✓ ✓ ✓ ✓ 660
VeriAbsL [49] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 645
Graves-CPA [72] 643
VeriAbs [2, 48] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 639
Bubaak [39] ✓ ✓ ✓ 635
Cbmc [46, 70] ✓ ✓ ✓ 626
VeriFuzz [44, 79] ✓ ✓ ✓ ✓ ✓ 615
CVT-ParPort [23, 24] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 591
Symbiotic [41, 42] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 559
CVT-AlgoSel [23, 24] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 468
UAutomizer [62, 63] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 311
Divine [9, 71] ✓ ✓ ✓ ✓ ✓ ✓ 299
UTaipan [50, 60] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 294
Pinaka [43] ✓ ✓ ✓ ✓ 272
gazer-theta [1, 61] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 255
2ls [33, 76] ✓ ✓ ✓ ✓ ✓ ✓ 213
UKojak [53, 82] ✓ ✓ ✓ ✓ ✓ ✓ 189
Crux [51, 89] ✓ ✓ 176
Korn [54] ✓ ✓ ✓ ✓ ✓ 121
Theta [90, 93] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 116
Brick [34] ✓ ✓ ✓ ✓ ✓ 99
Graves-Par 8 93

SV
-C

O
M

P

GDart-LLVM 9 ✓ ✓ 1

98 APPENDIX B. ORIGINAL MANUSCRIPTS

8 Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking

Table 3: Category results of the tools listed in Table 2. Only the best test generators (T) and model checkers (M) of
each category are listed.

Total #Bugs #Bugs
Tasks Found Confirmed

by Execution

Arrays
T FuSeBMC 90 90 90
T FuSeBMC_IA 90 88 88
T VeriFuzzTest−Comp 90 88 88
M VeriAbsL 90 81 76
M VeriAbs 90 80 66
M Bubaak 90 74 74

BitVectors
T FuSeBMC 9 9 9
T FuSeBMC_IA 9 9 9

T VeriFuzzBoth 9 9 9
M SymbioticSV −COMP 9 8 8
M Esbmc-kindSV −COMP 9 8 6
M Graves-CPA 9 8 6

ControlFlow
T FuSeBMC 5 5 5
T FuSeBMC_IA 5 5 5

M SymbioticBoth 5 5 5
M Bubaak 5 4 4

T VeriFuzzBoth 5 4 4
T Klee 5 4 4
M CVT-ParPort 5 4 3

ECA
T VeriFuzzSV −COMP 18 15 13
T Klee 18 14 14
M Bubaak 18 14 12
M SymbioticTest−Comp 18 13 13
M PeSCo 18 13 12
T FuSeBMC 18 12 12

Floats
T FuSeBMC 32 32 32
T FuSeBMC_IA 32 31 31
T VeriFuzzTest−Comp 32 31 31
M Brick 32 30 29
M CVT-ParPort 32 30 24
M CPAchecker 32 30 21

Hardware
T VeriFuzzTest−Comp 494 319 319
T FuSeBMC 494 288 288
T FuSeBMC_IA 494 288 288
M Graves-CPA 494 147 102
M CPAchecker 494 127 70
M PeSCo 494 109 61

Heap
M Cbmc 47 47 43
M VeriAbs 47 47 33
M Bubaak 47 46 44
T FuSeBMC 47 45 45
T FuSeBMC_IA 47 45 45
T Klee 47 45 45

T VeriFuzzBoth 47 45 45

Total #Bugs #Bugs
Tasks Found Confirmed

by Execution

Loops
T FuSeBMC 130 128 128
T FuSeBMC_IA 130 127 127
T VeriFuzzTest−Comp 130 123 123
M VeriAbs 130 112 103
M VeriAbsL 130 100 86
M Korn 130 98 97

ProductLines
T FuSeBMC 169 169 169
T FuSeBMC_IA 169 169 169
T Klee 169 169 169

T VeriFuzzBoth 169 169 169
M Bubaak 169 169 169
M VeriAbsL 169 169 169
M CVT-ParPort 169 169 167

Recursive
T FuSeBMC 20 19 19
T FuSeBMC_IA 20 19 19
M Cbmc 20 19 19
M CVT-ParPort 20 19 19
M Graves-CPA 20 19 17
T VeriFuzzTest−Comp 20 18 18

Sequentialized
T VeriFuzzTest−Comp 98 95 95
T FuSeBMC 98 94 94
T FuSeBMC_IA 98 92 92
M PeSCo 98 86 86
M CVT-ParPort 98 86 32
M Cbmc 98 85 29

XCSP
M Cbmc 54 50 50
M CVT-AlgoSel 54 49 49

T VeriFuzzBoth 54 49 49
T WASP-C 54 49 49

M Esbmc-kindBoth 54 48 48
T FuSeBMC 54 47 47

BusyBox
T FuSeBMC 5 1 1
T Klee 5 1 1
M PeSCo 5 1 0

Total
T VeriFuzzTest−Comp 1 173 964 964
T FuSeBMC 1 173 939 939
T FuSeBMC_IA 1 173 931 931
M PeSCo 1 173 667 475
M CPAchecker 1 173 665 458
M Esbmc-kindSV −COMP 1 173 660 529

B.5. Six Years Later: Testing vs. Model Checking 99

Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking 9

Table 4: Number of bugs found by the best tool of each
category, the union of all test generators (T), the union
of all model checkers (M), and all tools.

Category Best Tool All T All M All Tools

Arrays 90 87 90 90
BitVectors 9 9 9 9
ControlFlow 5 5 5 5
ECA 15 15 14 17
Floats 32 32 32 32
Hardware 319 340 175 342
Heap 47 45 47 47
Loops 128 128 127 128
ProductLines 169 169 169 169
Recursive 19 19 20 20
Sequentialized 95 95 90 95
XCSP 50 51 50 51
BusyBox 1 1 1 2

omit the category DeviceDriversLinux64 because no tool
was able to find a bug in it.

The table shows that, for bug finding, individual
test generators perform either better or as good as individ-
ual model checkers in all categories but Heap and XCSP.
A clear divide between test generators and model checkers
exists in four categories: In Arrays, the best test genera-
tor of that category, FuSeBMC, finds a bug in 90 tasks,
while the best model checker of that category, VeriAbsL,
finds a bug in only 81 tasks. In Hardware, VeriFuzz
finds a bug in 319 tasks, while Graves-CPA finds a bug
in only 147 tasks. In Loops, FuSeBMC finds a bug in
128 tasks while VeriAbs finds a bug in only 112 tasks. In
Sequentialized, VeriFuzz finds a bug in 95 tasks while
PeSCo finds a bugs in only 86 tasks.

The presented data answers our first research question
with ‘yes’: At the current state-of-the-art for C, test gen-
erators perform significantly better in bug hunting than
model checkers.

In our previous research study [26], the different tools
complemented each other well, so that the combination
of multiple tools yielded significant improvements in the
number of bugs found. This is not true for the current
results: Table 4 shows for each benchmark category the
number of bugs found by the best tool in that category,
the union of distinct bugs found by all test generators
together (All T), the union of distinct bugs found by all
model checkers together (All M), and the union of all
considered tools (All Tools). The table shows that the
unions only yield an improvement in 5 of the 13 categories,
and that these improvements are also small. We explain
this with the fact that, in contrast to the previous study,
almost all currently considered tools already combine
multiple approaches internally (cf. Table 2), rendering
further external combinations effectless.

RQ 2. Can bug reports of software model checkers be
validated through execution? Since a failing program ex-

Table 5: Bug-finding capabilities of generated test suites
that are targeted at either coverage-error-call or co-
verage-branches. The results exclude category Hard-
ware because it is not part of the Test-Comp 2023 track
on branch coverage.

Total #Bugs Found #Bugs Found
Tools Tasks error-call branches

FuSeBMC 679 651 594
VeriFuzz 679 645 611
FuSeBMC_IA 679 643 594
Klee 679 541 285
CoVeriTest 679 479 476
Symbiotic 679 476 456
TracerX 679 - 420
HybridTiger 679 362 281
WASP-C 679 354 355
Legion/SymCC 679 279 281
Esbmc-kind 679 352 -
PRTest 679 236 236
Legion 679 108 107

ecution provides the highest level of confidence in a ver-
ification result, we separately check how many of the
confirmed verification results were confirmed not only by
a third-party tool, but by actual program execution.

For this, we use the two execution-based witness val-
idators of SV-COMP 2023, CPA-witness2test and FShell-
witness2test. Table 3 shows in its last columns the num-
ber of found bugs that are confirmed through program
execution. It is visible that the confirmation rate can
be very high, for example for Brick in category Floats
(29 of 30), for Cbmc in categories Heap (43 of 47), Re-
cursive (19 of 19) and XCSP (50 of 50), or for PeSCo in
category Sequentialized (86 of 86). On the other hand,
the confirmation rate can also be very low, even for
model checkers that perform well otherwise and in cate-
gories that other model checkers perform well in: Cbmc
gets only 29 of 85 results confirmed through execution
in category Sequentialized, and PeSCo gets only 61 of
109 results confirmed in category Hardware. This hints
to bug reports (in the form of violation witnesses) that
miss input values.

Thus, our answer to the second research question: The
data shows that the execution-based validation of verifica-
tion results is feasible and works well to provide a similar
level of confidence in the result of model checkers as in
test generators. But at the current state-of-the-art, model
checkers have to produce more precise violation witnesses
to offer the same level of confidence as test generators.

RQ 3. Are test generators that target errors more ef-
fective in finding bugs than test generators that target
branch coverage? To answer our last research question,
we consider the test suites [17] that each test generator
generated for coverage criterion coverage-branches in

100 APPENDIX B. ORIGINAL MANUSCRIPTS

10 Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking

Test-Comp 2023. We check how well these test suites per-
form for finding bugs, compared to the test suites that
testers specifically generated for bug-finding: We give
each test suite generated for coverage-branches to the
test executor of Test-Comp 2023, TestCov [27], but with
target measure coverage-error-call. The results over
all common categories are presented in Table 5.14

It is visible that 6 testers produce significantly better
test-suites for criterion coverage-error-call when told
to do so: FuSeBMC, VeriFuzz, FuSeBMC_IA, Symbi-
otic, and, with the most notable difference, Klee. This
shows that they adjust their behavior based on the cover-
age criterion provided to them. The other tools only show
very little difference between the two generated test suites
or did not provide test suites for both coverage criteria. It
is notable that the five best-performing testers all adjust
their behavior based on the coverage criterion.

This answers our third research question with ‘yes’:
Testers that actively target errors are more effective in
creating test suites for error coverage.

3.6 Threats to Validity

Internal Validity. We are confident in our analysis’s in-
ternal validity. We use the official SV-COMP 2023 and
Test-Comp 2023 data. Both competitions pay highest pri-
ority to precise measurements and reproducibility. For
validating test suites with coverage-error-call which
were generated for coverage-branches, we had to per-
form own experiments. For these, we used the official
competitions’ infrastructure to ensure correctness of re-
sults. Both our setup and the produced data are publicly
available [28] for inspection.

External Validity. We use the largest available bench-
mark set with well-defined C programs for testing. Still,
this benchmark set may not represent the full array of
real-world C programs. Similarly, because tools know the
SV-COMP and Test-Comp benchmark tasks before the
competition runs, tools that participate in SV-COMP and
Test-Comp may be tuned to the competitions’ benchmark
set, and perform worse on real-world projects.

The application domain that we can consider is lim-
ited: We consider testing of sequential, self-sufficient
C programs with a simple reachability specification, sim-
ilar to assert statements (cf. Table 1). This means that
the presented results may ignore program features and
some applications of testing, like string handling, object-
oriented programming, concurrency, or database queries.

Similarly, specific applications of verification, for ex-
ample the verification of network protocols or static ap-
plication security testing, are not considered.

We only consider programs with at least one exist-
ing bug. We do not measure how good the generated

14 This excludes category Hardware, which only exists in the track
for coverage-error-call

test suites are for detecting bugs that are newly intro-
duced in the future.

We also do not differentiate between a single found
bug and multiple found bugs. But a test suite that detects
multiple bugs in a program may be considered better than
a test suite that only detects a single bug. We consider
both options orthogonal research questions.

We only consider tools that participate in either SV-
COMP 2023 or Test-Comp 2023. This covers the latest
state-of-the-art for verification of C programs. There
may still be model checkers or test generators that did
not participate in the last iterations of SV-COMP or Test-
Comp, and which perform significantly better. In addition,
the comparison of test generators and model checkers may
differ in areas of application other than the considered.

4 Conclusion

We performed a thorough comparison of the bug-finding
capabilities for C programs of all SV-COMP 2023 and
Test-Comp 2023 participants. Through this comparison,
we were able to show that, while state-of-the-art test gen-
erators and model checkers are highly competitive, the
best considered test generators outperform the best con-
sidered model checkers in bug finding. Notably, test gen-
erators do not limit themselves to dynamic techniques,
but also use static-analysis techniques and formal meth-
ods. The best considered test generators, FuSeBMC [5]
and VeriFuzz [80], use a combination of bounded model
checking [31] and fuzzing [59].

Data-Availability Statement. The analysis and all
experimental data are archived and available at Zen-
odo [28].

Funding Statement. This work was funded by the
Deutsche Forschungsgesellschaft (DFG) — 418257054
(Coop).

References

1. Ádám, Zs., Sallai, Gy., Hajdu, Á.: Gazer-Theta: LLVM-
based verifier portfolio with BMC/CEGAR (compe-
tition contribution). In: Proc. TACAS (2). pp. 433–
437. LNCS 12652, Springer (2021). https://doi.org/
10.1007/978-3-030-72013-1_27

2. Afzal, M., Asia, A., Chauhan, A., Chimdyalwar, B., Darke,
P., Datar, A., Kumar, S., Venkatesh, R.: VeriAbs: Ver-
ification by abstraction and test generation. In: Proc.
ASE. pp. 1138–1141 (2019). https://doi.org/10.1109/
ASE.2019.00121

3. Aldughaim, M., Alshmrany, K.M., Gadelha, M.R., de Fre-
itas, R., Cordeiro, L.C.: FuSeBMC_IA: Interval anal-
ysis and methods for test-case generation (competition
contribution). In: Proc. FASE. LNCS 13991, Springer
(2023)

B.5. Six Years Later: Testing vs. Model Checking 101

Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking 11

4. Alshmrany, K., Aldughaim, M., Cordeiro, L., Bhayat,
A.: FuSeBMC v.4: Smart seed generation for hybrid
fuzzing (competition contribution). In: Proc. FASE. pp.
336–340. LNCS 13241, Springer (2022). https://doi.
org/10.1007/978-3-030-99429-7_19

5. Alshmrany, K.M., Aldughaim, M., Bhayat, A., Cordeiro,
L.C.: FuSeBMC: An energy-efficient test generator for
finding security vulnerabilities in C programs. In: Proc.
TAP. pp. 85–105. Springer (2021). https://doi.org/10.
1007/978-3-030-79379-1_6

6. Andreasen, E., Gong, L., Møller, A., Pradel, M., Selakovic,
M., Sen, K., Staicu, C.: A survey of dynamic analysis and
test generation for javascript. ACM Comput. Surv. 50(5),
66:1–66:36 (2017). https://doi.org/10.1145/3106739

7. Andrianov, P., Friedberger, K., Mandrykin, M.U., Mutilin,
V.S., Volkov, A.: CPA-BAM-BnB: Block-abstraction
memoization and region-based memory models for pred-
icate abstractions (competition contribution). In: Proc.
TACAS. pp. 355–359. LNCS 10206, Springer (2017).
https://doi.org/10.1007/978-3-662-54580-5_22

8. Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C.,
Finocchi, I.: A survey of symbolic execution techniques.
ACM Comput. Surv. 51(3), 50:1–50:39 (2018). https:
//doi.org/10.1145/3182657

9. Baranová, Z., Barnat, J., Kejstová, K., Kučera, T., Lauko,
H., Mrázek, J., Ročkai, P., Štill, V.: Model checking of
C and C++ with Divine 4. In: Proc. ATVA. pp. 201–
207. LNCS 10482, Springer (2017). https://doi.org/10.
1007/978-3-319-68167-2_14

10. Basin, D.A., Cremers, C., Meadows, C.A.: Model check-
ing security protocols. In: Clarke, E.M., Henzinger, T.A.,
Veith, H., Bloem, R. (eds.) Handbook of Model Check-
ing, pp. 727–762. Springer (2018). https://doi.org/10.
1007/978-3-319-10575-8_22

11. Beckert, B., Hähnle, R.: Reasoning and verification: State
of the art and current trends. IEEE Intelligent Sys-
tems 29(1), 20–29 (2014). https://doi.org/10.1109/
MIS.2014.3

12. Beyer, D.: Software verification and verifiable witnesses
(Report on SV-COMP 2015). In: Proc. TACAS. pp. 401–
416. LNCS 9035, Springer (2015). https://doi.org/10.
1007/978-3-662-46681-0_31

13. Beyer, D.: Competition on software verification and wit-
ness validation: SV-COMP 2023. In: Proc. TACAS (2).
pp. 495–522. LNCS 13994, Springer (2023). https://doi.
org/10.1007/978-3-031-30820-8_29

14. Beyer, D.: Results of the 12th Intl. Competition on
Software Verification (SV-COMP 2023). Zenodo (2023).
https://doi.org/10.5281/zenodo.7627787

15. Beyer, D.: Results of the 5th Intl. Competition on Soft-
ware Testing (Test-Comp 2023). Zenodo (2023). https:
//doi.org/10.5281/zenodo.7701122

16. Beyer, D.: Software testing: 5th comparative evalua-
tion: Test-Comp 2023. In: Proc. FASE. pp. 309–323.
LNCS 13991, Springer (2023). https://doi.org/10.
1007/978-3-031-30826-0_17

17. Beyer, D.: Test suites from test-generation tools (Test-
Comp 2023). Zenodo (2023). https://doi.org/10.5281/
zenodo.7701126

18. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R.,
Majumdar, R.: Generating tests from counterexamples.
In: Proc. ICSE. pp. 326–335. IEEE (2004). https://doi.
org/10.1109/ICSE.2004.1317455

19. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Lem-
berger, T., Tautschnig, M.: Verification witnesses. ACM
Trans. Softw. Eng. Methodol. 31(4), 57:1–57:69 (2022).
https://doi.org/10.1145/3477579

20. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.,
Stahlbauer, A.: Witness validation and stepwise testi-
fication across software verifiers. In: Proc. FSE. pp. 721–
733. ACM (2015). https://doi.org/10.1145/2786805.
2786867

21. Beyer, D., Dangl, M., Lemberger, T., Tautschnig,
M.: Tests from witnesses: Execution-based valida-
tion of verification results. In: Proc. TAP. pp. 3–23.
LNCS 10889, Springer (2018). https://doi.org/10.
1007/978-3-319-92994-1_1

22. Beyer, D., Jakobs, M.C.: Cooperative verifier-based test-
ing with CoVeriTest. Int. J. Softw. Tools Technol.
Transfer 23(3), 313–333 (2021). https://doi.org/10.
1007/s10009-020-00587-8

23. Beyer, D., Kanav, S.: CoVeriTeam: On-demand com-
position of cooperative verification systems. In: Proc.
TACAS. pp. 561–579. LNCS 13243, Springer (2022).
https://doi.org/10.1007/978-3-030-99524-9_31

24. Beyer, D., Kanav, S., Richter, C.: Construction of verifier
combinations based on off-the-shelf verifiers. In: Proc.
FASE. pp. 49–70. Springer (2022). https://doi.org/10.
1007/978-3-030-99429-7_3

25. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for
configurable software verification. In: Proc. CAV. pp. 184–
190. LNCS 6806, Springer (2011). https://doi.org/10.
1007/978-3-642-22110-1_16

26. Beyer, D., Lemberger, T.: Software verification: Test-
ing vs. model checking. In: Proc. HVC. pp. 99–114.
LNCS 10629, Springer (2017). https://doi.org/10.
1007/978-3-319-70389-3_7

27. Beyer, D., Lemberger, T.: TestCov: Robust test-suite
execution and coverage measurement. In: Proc. ASE.
pp. 1074–1077. IEEE (2019). https://doi.org/10.1109/
ASE.2019.00105

28. Beyer, D., Lemberger, T.: Reproduction Package for
STTT Article ‘Six Years Later: Testing vs. Model Check-
ing’. Zenodo (2023). https://doi.org/10.5281/zenodo.
10232648

29. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking:
Requirements and solutions. Int. J. Softw. Tools Technol.
Transfer 21(1), 1–29 (2019). https://doi.org/10.1007/
s10009-017-0469-y

30. Beyer, D., Spiessl, M.: The static analyzer Frama-
C in SV-COMP (competition contribution). In: Proc.
TACAS (2). pp. 429–434. LNCS 13244, Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0_26

31. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic
model checking without BDDs. In: Proc. TACAS. pp. 193–
207. LNCS 1579, Springer (1999). https://doi.org/10.
1007/3-540-49059-0_14

32. Böhme, M., Pham, V., Roychoudhury, A.: Coverage-based
greybox fuzzing as markov chain. In: Proc. SIGSAC. pp.
1032–1043. ACM, New York, NY, USA (2016). https:
//doi.org/10.1145/2976749.2978428

33. Brain, M., Joshi, S., Kröning, D., Schrammel, P.: Safety
verification and refutation by k-invariants and k-induction.
In: Proc. SAS. pp. 145–161. LNCS 9291, Springer (2015).
https://doi.org/10.1007/978-3-662-48288-9_9

102 APPENDIX B. ORIGINAL MANUSCRIPTS

12 Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking

34. Bu, L., Xie, Z., Lyu, L., Li, Y., Guo, X., Zhao,
J., Li, X.: Brick: Path enumeration-based bounded
reachability checking of C programs (competition
contribution). In: Proc. TACAS (2). pp. 408–412.
LNCS 13244, Springer (2022). https://doi.org/10.
1007/978-3-030-99527-0_22

35. Bürdek, J., Lochau, M., Bauregger, S., Holzer, A., von
Rhein, A., Apel, S., Beyer, D.: Facilitating reuse in multi-
goal test-suite generation for software product lines. In:
Proc. FASE. pp. 84–99. LNCS 9033, Springer (2015).
https://doi.org/10.1007/978-3-662-46675-9_6

36. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted
and automatic generation of high-coverage tests for com-
plex systems programs. In: Proc. OSDI. pp. 209–224.
USENIX Association (2008)

37. Cadar, C., Nowack, M.: Klee symbolic execution engine
in 2019 (competition contribution). Int. J. Softw. Tools
Technol. Transf. 23(6), 867 – 870 (December 2021). https:
//doi.org/10.1007/s10009-020-00570-3

38. Cadar, C., Sen, K.: Symbolic execution for software test-
ing: Three decades later. CACM 56(2), 82–90 (2013).
https://doi.org/10.1145/2408776.2408795

39. Chalupa, M., Henzinger, T.: Bubaak: Runtime monitor-
ing of program verifiers (competition contribution). In:
Proc. TACAS (2). LNCS 13994, Springer (2023)

40. Chalupa, M., Novák, J., Strejček, J.: Symbiotic
8: Parallel and targeted test generation (competi-
tion contribution). In: Proc. FASE. pp. 368–372.
LNCS 12649, Springer (2021). https://doi.org/10.
1007/978-3-030-71500-7_20

41. Chalupa, M., Strejček, J., Vitovská, M.: Joint forces
for memory safety checking. In: Proc. SPIN. pp.
115–132. Springer (2018). https://doi.org/10.1007/
978-3-319-94111-0_7

42. Chalupa, M., Řechtáčková, A., Mihalkovič, V., Zao-
ral, L., Strejček, J.: Symbiotic 9: String analysis and
backward symbolic execution with loop folding (com-
petition contribution). In: Proc. TACAS (2). pp. 462–
467. LNCS 13244, Springer (2022). https://doi.org/10.
1007/978-3-030-99527-0_32

43. Chaudhary, E., Joshi, S.: Pinaka: Symbolic exe-
cution meets incremental solving (competition con-
tribution). In: Proc. TACAS (3). pp. 234–238.
LNCS 11429, Springer (2019). https://doi.org/10.
1007/978-3-030-17502-3_20

44. Chowdhury, A.B., Medicherla, R.K., Venkatesh, R.:
VeriFuzz: Program-aware fuzzing (competition con-
tribution). In: Proc. TACAS (3). pp. 244–249.
LNCS 11429, Springer (2019). https://doi.org/10.
1007/978-3-030-17502-3_22

45. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.:
Handbook of Model Checking. Springer (2018). https:
//doi.org/10.1007/978-3-319-10575-8

46. Clarke, E.M., Kröning, D., Lerda, F.: A tool for check-
ing ANSI-C programs. In: Proc. TACAS. pp. 168–176.
LNCS 2988, Springer (2004). https://doi.org/10.1007/
978-3-540-24730-2_15

47. Dangl, M., Löwe, S., Wendler, P.: CPAchecker with
support for recursive programs and floating-point arith-
metic (competition contribution). In: Proc. TACAS. pp.
423–425. LNCS 9035, Springer (2015). https://doi.org/
10.1007/978-3-662-46681-0_34

48. Darke, P., Agrawal, S., Venkatesh, R.: VeriAbs: A
tool for scalable verification by abstraction (compe-
tition contribution). In: Proc. TACAS (2). pp. 458–
462. LNCS 12652, Springer (2021). https://doi.org/
10.1007/978-3-030-72013-1_32

49. Darke, P., Chimdyalwar, B., Agrawal, S., Venkatesh, R.,
Chakraborty, S., Kumar, S.: VeriAbsL: Scalable verifi-
cation by abstraction and strategy prediction (competi-
tion contribution). In: Proc. TACAS (2). LNCS 13994,
Springer (2023)

50. Dietsch, D., Heizmann, M., Nutz, A., Schätzle,
C., Schüssele, F.: Ultimate Taipan with symbolic
interpretation and fluid abstractions (competition
contribution). In: Proc. TACAS (2). pp. 418–422.
LNCS 12079, Springer (2020). https://doi.org/10.
1007/978-3-030-45237-7_32

51. Dockins, R., Foltzer, A., Hendrix, J., Huffman, B., Mc-
Namee, D., Tomb, A.: Constructing semantic models
of programs with the software analysis workbench. In:
Proc. VSTTE. pp. 56–72. LNCS 9971, Springer (2016).
https://doi.org/10.1007/978-3-319-48869-1_5

52. D’Silva, V., Kröning, D., Weissenbacher, G.: A survey
of automated techniques for formal software verifica-
tion. IEEE Trans. on CAD of Integrated Circuits and
Systems 27(7), 1165–1178 (2008). https://doi.org/10.
1109/TCAD.2008.923410

53. Ermis, E., Hoenicke, J., Podelski, A.: Splitting
via interpolants. In: Proc. VMCAI. pp. 186–201.
LNCS 7148, Springer (2012). https://doi.org/10.1007/
978-3-642-27940-9_13

54. Ernst, G.: A complete approach to loop verification with
invariants and summaries. Tech. Rep. arXiv:2010.05812v2,
arXiv (January 2020). https://doi.org/10.48550/
arXiv.2010.05812

55. Gadelha, M.Y.R., Monteiro, F.R., Cordeiro, L.C.,
Nicole, D.A.: Esbmc v6.0: Verifying C programs us-
ing k -induction and invariant inference (competition
contribution). In: Proc. TACAS (3). pp. 209–213.
LNCS 11429, Springer (2019). https://doi.org/10.
1007/978-3-030-17502-3_15

56. Gadelha, M.Y., Ismail, H.I., Cordeiro, L.C.: Handling
loops in bounded model checking of C programs via k -
induction. Int. J. Softw. Tools Technol. Transf. 19(1),
97–114 (February 2017). https://doi.org/10.1007/
s10009-015-0407-9

57. Garavel, H., ter Beek, M.H., van de Pol, J.: The 2020
expert survey on formal methods. In: Proc. FMICS. pp.
3–69. LNCS 12327, Springer (2020). https://doi.org/
10.1007/978-3-030-58298-2_1

58. Godefroid, P., Kiezun, A., Levin, M.Y.: Grammar-based
whitebox fuzzing. In: Proc. PLDI. pp. 206–215. ACM
(2008). https://doi.org/10.1145/1375581.1375607

59. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated
whitebox fuzz testing. In: Proc. NDSS. The Internet So-
ciety (2008), http://www.isoc.org/isoc/conferences/
ndss/08/papers/10_automated_whitebox_fuzz.pdf

60. Greitschus, M., Dietsch, D., Podelski, A.: Loop invari-
ants from counterexamples. In: Proc. SAS. pp. 128–
147. LNCS 10422, Springer (2017). https://doi.org/
10.1007/978-3-319-66706-5_7

61. Hajdu, Á., Micskei, Z.: Efficient strategies for
CEGAR-based model checking. J. Autom. Reasoning

B.5. Six Years Later: Testing vs. Model Checking 103

Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking 13

64(6), 1051–1091 (2020). https://doi.org/10.1007/
s10817-019-09535-x

62. Heizmann, M., Chen, Y.F., Dietsch, D., Greitschus,
M., Hoenicke, J., Li, Y., Nutz, A., Musa, B., Schilling,
C., Schindler, T., Podelski, A.: Ultimate Automizer
and the search for perfect interpolants (competition
contribution). In: Proc. TACAS (2). pp. 447–451.
LNCS 10806, Springer (2018). https://doi.org/10.
1007/978-3-319-89963-3_30

63. Heizmann, M., Hoenicke, J., Podelski, A.: Software model
checking for people who love automata. In: Proc. CAV.
pp. 36–52. LNCS 8044, Springer (2013). https://doi.
org/10.1007/978-3-642-39799-8_2

64. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.:
Query-driven program testing. In: Proc. VMCAI. pp. 151–
166. LNCS 5403, Springer (2009). https://doi.org/10.
1007/978-3-540-93900-9_15

65. Jaffar, J., Maghareh, R., Godboley, S., Ha, X.L.: Trac-
erX: Dynamic symbolic execution with interpolation
(competition contribution). In: Proc. FASE. pp. 530–
534. LNCS 12076, Springer (2020). https://doi.org/
10.1007/978-3-030-45234-6_28

66. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.:
TRACER: a symbolic execution tool for verification. In:
Proc. CAV. pp. 758–766. LNCS 7358, Springer (2012).
https://doi.org/10.1007/978-3-642-31424-7_61

67. Jakobs, M.C., Richter, C.: CoVeriTest with adaptive
time scheduling (competition contribution). In: Proc.
FASE. pp. 358–362. LNCS 12649, Springer (2021). https:
//doi.org/10.1007/978-3-030-71500-7_18

68. Jhala, R., Majumdar, R.: Software model checking. ACM
Computing Surveys 41(4) (2009). https://doi.org/10.
1145/1592434.1592438

69. Kettl, M., Lemberger, T.: The static analyzer Infer in SV-
COMP (competition contribution). In: Proc. TACAS (2).
pp. 451–456. LNCS 13244, Springer (2022). https://doi.
org/10.1007/978-3-030-99527-0_30

70. Kröning, D., Tautschnig, M.: Cbmc: C bounded model
checker (competition contribution). In: Proc. TACAS. pp.
389–391. LNCS 8413, Springer (2014). https://doi.org/
10.1007/978-3-642-54862-8_26

71. Lauko, H., Ročkai, P., Barnat, J.: Symbolic computation
via program transformation. In: Proc. ICTAC. pp. 313–
332. LNCS 11187, Springer (2018). https://doi.org/10.
1007/978-3-030-02508-3_17

72. Leeson, W., Dwyer, M.: Graves-CPA: A graph-attention
verifier selector (competition contribution). In: Proc.
TACAS (2). pp. 440–445. LNCS 13244, Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0_28

73. Lemberger, T.: Plain random test generation with
PRTest (competition contribution). Int. J. Softw. Tools
Technol. Transf. 23(6), 871–873 (December 2021). https:
//doi.org/10.1007/s10009-020-00568-x

74. Liu, D., Ernst, G., Murray, T., Rubinstein, B.: Legion:
Best-first concolic testing (competition contribution). In:
Proc. FASE. pp. 545–549. LNCS 12076, Springer (2020).
https://doi.org/10.1007/978-3-030-45234-6_31

75. Liu, D., Ernst, G., Murray, T., Rubinstein, B.I.P.: Legion:
Best-first concolic testing. In: Proc. ASE. pp. 54–65. IEEE
(2020). https://doi.org/10.1145/3324884.3416629

76. Malík, V., Schrammel, P., Vojnar, T.: 2ls: Heap analysis
and memory safety (competition contribution). In: Proc.

TACAS (2). pp. 368–372. LNCS 12079, Springer (2020).
https://doi.org/10.1007/978-3-030-45237-7_22

77. Manès, V.J.M., Han, H., Han, C., Cha, S.K., Egele, M.,
Schwartz, E.J., Woo, M.: The art, science, and engineering
of fuzzing: A survey. IEEE Trans. Software Eng. 47(11),
2312–2331 (2021). https://doi.org/10.1109/TSE.2019.
2946563

78. McMinn, P.: Search-based software test-data generation:
A survey. STVR 14(2), 105–156 (2004). https://doi.
org/10.1002/stvr.294

79. Metta, R., Medicherla, R.K., Chakraborty, S.:
BMC+Fuzz: Efficient and effective test genera-
tion. In: Proc. DATE. pp. 1419–1424. IEEE (2022).
https://doi.org/10.23919/DATE54114.2022.9774672

80. Metta, R., Medicherla, R.K., Karmarkar, H.: Ver-
iFuzz: Fuzz centric test generation tool (compe-
tition contribution). In: Proc. FASE. pp. 341–346.
LNCS 13241, Springer (2022). https://doi.org/10.
1007/978-3-030-99429-7_20

81. Monat, R., Ouadjaout, A., Miné, A.: Mopsa-C: Modular
domains and relational abstract interpretation for C pro-
grams (competition contribution). In: Proc. TACAS (2).
LNCS 13994, Springer (2023)

82. Nutz, A., Dietsch, D., Mohamed, M.M., Podelski, A.:
Ultimate Kojak with memory safety checks (com-
petition contribution). In: Proc. TACAS. pp. 458–460.
LNCS 9035, Springer (2015). https://doi.org/10.1007/
978-3-662-46681-0_44

83. Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Traon, Y.L.,
Harman, M.: Chapter six - mutation testing advances:
An analysis and survey. Adv. Comput. 112, 275–378.
https://doi.org/10.1016/bs.adcom.2018.03.015

84. Pasareanu, C.S., Visser, W.: A survey of new trends
in symbolic execution for software testing and analy-
sis. STTT 11(4), 339–353 (2009). https://doi.org/10.
1007/s10009-009-0118-1

85. Richter, C., Hüllermeier, E., Jakobs, M.C., Wehrheim,
H.: Algorithm selection for software validation based on
graph kernels. Autom. Softw. Eng. 27(1), 153–186 (2020).
https://doi.org/10.1007/s10515-020-00270-x

86. Richter, C., Wehrheim, H.: PeSCo: Predicting se-
quential combinations of verifiers (competition con-
tribution). In: Proc. TACAS (3). pp. 229–233.
LNCS 11429, Springer (2019). https://doi.org/10.
1007/978-3-030-17502-3_19

87. Ruland, S., Lochau, M., Jakobs, M.C.: HybridTiger:
Hybrid model checking and domination-based partition-
ing for efficient multi-goal test-suite generation (com-
petition contribution). In: Proc. FASE. pp. 520–524.
LNCS 12076, Springer (2020). https://doi.org/10.
1007/978-3-030-45234-6_26

88. Saan, S., Schwarz, M., Apinis, K., Erhard, J., Seidl, H.,
Vogler, R., Vojdani, V.: Goblint: Thread-modular ab-
stract interpretation using side-effecting constraints (com-
petition contribution). In: Proc. TACAS (2). pp. 438–
442. LNCS 12652, Springer (2021). https://doi.org/10.
1007/978-3-030-72013-1_28

89. Scott, R., Dockins, R., Ravitch, T., Tomb, A.: Crux:
Symbolic execution meets SMT-based verification (com-
petition contribution). Zenodo (February 2022). https:
//doi.org/10.5281/zenodo.6147218

90. Tóth, T., Hajdu, A., Vörös, A., Micskei, Z., Majzik, I.:
Theta: A framework for abstraction refinement-based

104 APPENDIX B. ORIGINAL MANUSCRIPTS

14 Dirk Beyer and Thomas Lemberger: Six Years Later: Testing vs. Model Checking

model checking. In: Proc. FMCAD. pp. 176–179 (2017).
https://doi.org/10.23919/FMCAD.2017.8102257

91. Vojdani, V., Apinis, K., Rõtov, V., Seidl, H., Vene, V.,
Vogler, R.: Static race detection for device drivers: The
Goblint approach. In: Proc. ASE. pp. 391–402. ACM
(2016). https://doi.org/10.1145/2970276.2970337

92. Volkov, A.R., Mandrykin, M.U.: Predicate abstractions
memory modeling method with separation into disjoint
regions. Proceedings of the Institute for System Program-
ming (ISPRAS) 29, 203–216 (2017). https://doi.org/
10.15514/ISPRAS-2017-29(4)-13

93. Ádám, Z., Bajczi, L., Dobos-Kovács, M., Hajdu, A.,
Molnár, V.: Theta: Portfolio of cegar-based anal-
yses with dynamic algorithm selection (competition
contribution). In: Proc. TACAS (2). pp. 474–478.
LNCS 13244, Springer (2022). https://doi.org/10.
1007/978-3-030-99527-0_34

B.5. Six Years Later: Testing vs. Model Checking 105

Reducer-Based Construction of Conditional Verifiers

Dirk Beyer
LMU Munich, Germany

Marie-Christine Jakobs∗

LMU Munich, Germany

Thomas Lemberger
LMU Munich, Germany

Heike Wehrheim∗

Paderborn University, Germany

ABSTRACT

Despite recent advances, software verification remains challenging.

To solve hard verification tasks, we need to leverage not just one

but several different verifiers employing different technologies.

To this end, we need to exchange information between verifiers.

Conditional model checking was proposed as a solution to exactly

this problem: The idea is to let the first verifier output a condition

which describes the state space that it successfully verified and to

instruct the second verifier to verify the yet unverified state space

using this condition. However, most verifiers do not understand

conditions as input.

In this paper, we propose the usage of an off-the-shelf construc-

tion of a conditional verifier from a given traditional verifier and a

reducer. The reducer takes as input the program to be verified and

the condition, and outputs a residual program whose paths cover

the unverified state space described by the condition. As a proof

of concept, we designed and implemented one particular reducer

and composed three conditional model checkers from the three

best verifiers at SV-COMP 2017. We defined a set of claims and

experimentally evaluated their validity. All experimental data and

results are available for replication.

CCS CONCEPTS

• Software and its engineering → Formal methods; Formal

software verification;

KEYWORDS

Conditional Model Checking, Formal Verification, Testing, Program

Analysis, Software Verification, Sequential Combination

ACM Reference Format:

Dirk Beyer, Marie-Christine Jakobs, Thomas Lemberger, and Heike

Wehrheim. 2018. Reducer-Based Construction of Conditional Verifiers. In

Proceedings of the 40th International Conference on Software Engineering

(ICSE 2018). ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

3180155.3180259

∗This author was partially supported by the German Research Foundation (DFG) within
the Collaborative Research Centre “On-The-Fly Computing" (SFB 901).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE 2018, May 27 – June 3, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180259

1 INTRODUCTION

Software model checking [47] has received lots of attention in

academia and industry [2, 48] in the past two decades — yet, there

are many programs that are in principle verifiable, but no existing

verifier can solve them automatically. There are many different

approaches, but none is superior. The competition on software

verification (SV-COMP) [5] gives a yearly overview over the state of

the art, in terms of both strengths of verifiers on various categories

and weaknesses as shown by a large amount of unsolved problems.

One promising idea is to combine the strengths of different

verifiers by condition passing, which was formalized as conditional

model checking (CMC) [10] six years ago. The idea is simple and

effective: The first verifier reports what it had successfully verified

and summarizes its work done as a condition. The next verifier reads

the condition and verifies only the part of the state space not yet

covered by the condition. This technique was shown to be effective,

and sometimes even more efficient. Unfortunately, it is difficult

to write a verifier that can parse the complicated conditions and

effectively reduce the state space of the verifier. This complication

is responsible for the situation that the technique is not as widely

applied as it could be: only a few conditional model checkers exist.

To solve this problem, we developed an automatic construction

template that can be used to construct a conditional verifier from

a given arbitrary classical verifier. The original work proposed

to run a product analysis that guides the state-space exploration

such that it concentrates on the state space not covered by the

condition. We propose an alternative solution, inspired by earlier

work on conditional model checking and testing [35]: We define a

program reducer, which takes as input a program and a condition,

and computes a program whose executions are restricted to those

not yet covered by the given condition. Having developed this

component once, it is easy to construct a new conditional verifier

using the equation CMC = V ◦ R, where R is the reducer, V is an

arbitrary verifier, and ◦ is the sequential application of first R to a

given program and then V to the output program of R. The new
verifier CMC is a conditional verifier that takes as input a program

and a condition. Figure 1 illustrates this composition visually. There

can be different implementations of reducers, and the reducers

might leverage a notion of abstraction, causing the residual program

to be more compact but less precise. We implemented a reducer

that is based on a product construction, i.e., program and condition

Reducer Verifier
Program

Conditional Verifier

Program

Conditi
on

Result

Figure 1: Construction of a conditional verifier

1182

2018 ACM/IEEE 40th International Conference on Software Engineering

106 APPENDIX B. ORIGINAL MANUSCRIPTS

ICSE 2018, May 27 – June 3, 2018, Gothenburg, Sweden D. Beyer, M.-C. Jakobs, T. Lemberger, and H. Wehrheim

1 int val = nondet_int();
2 if (val >= 0) {
3 int out = val%2 * val%3;

}
else {

4 int out = -val;
}

5 assert (out >= 0);
6

(a) Source code

q0

q1

qf q2

q3

q4

(1,int val = nondet_int(), 2)

(2, val < 0, 4) (2, val >= 0, 3)

(3, int out = val%2 * val%3, 5)

(5, assert(out >= 0), 6)

*

(b) Condition

1 int val = nondet_int();
2 if (val >= 0) {
3 int out = val%2 * val%3;
4 assert (out >=0);
5 }
6 else
7 ;

(c) Residual program

Figure 2: Example: (a) fragment of a C program, (b) condition generated by CPAchecker with accepting states as double circles,

assumptions elided (all true), label * subsuming all control-flow edges, and (c) residual program constructed by Reducer

are converted into automata and the reduced product automaton is

converted back to a program.

In our study, we show that the constructionworks and is effective.

We do not claim that our implementation of the reducer is the best

possible, but we show for a number of verifiers how to increase the

number of obtained results with the reducer-based construction of

conditional verifiers. The approach can in some cases even reduce

the resource consumption.

Contributions.We make the following contributions:

• We provide a reducer that understands more extensive condi-

tions than a reducer that was previously used in the context

of conditional model checking and testing [35].

• We construct a number of conditional verifiers from existing

verifiers in order to experimentally show that new combina-

tions with condition passing can significantly increase the

number of verified programs.

• We apply the concept also to test-case generation and show

that the construction effectively works.

• Our reducer and all experimental data are available for other

researchers and practitioners for replication or to strengthen

their own verification infrastructure by using newly con-

structed conditional verifiers that were not available before.

2 CONDITION-BASED REDUCERS

The objective of our work is the construction of conditional veri-

fiers. Conditional verifiers are verification tools accepting programs

together with conditions as input. A conditional verifier should

check the parts of the program not covered by the condition. To

this end, we employ reducers constructing residual programs from

conditions. We start with giving a formal account of conditions and

reducers. In our notation, we follow previous work [11].

2.1 Foundations

Programs are represented by control-flow automata1 (CFAs) C =
(L, �0,G) that consist of a set of locations L, an initial location �0,
and a set of control-flow edgesG ⊆ L×Ops×L, whereOps is the set
1CFAs are a variant of control-flow graphs [1], with operations attached to the edges.

of operations. Intuitively, a program and its CFA are semantically

equivalent because the CFA contains exactly the operations of

the program on its control-flow edges and in exactly the same

order. Our construction of reducers relies on soundly converting

programs to CFAs and back within tools. We let C be the set of all

CFAs. In our presentation, we consider operations from a simple

programming language, with assume operations and assignments

on integer variables. Our implementation covers C programs.

We let X be the set of variables occurring in the operations

Ops . A concrete data state c is thus a mapping of X to Z. A

concrete program path of a CFA C = (L, �0,G) is a sequence

(c0, �0) −д1−→ . . . −дn−−→ (cn , �n) such that c0 assigns 0 to all variables,

дi = (�i−1,opi , �i) ∈ G, and ci−1 −opi−−→ ci , i.e., (a) in case of as-

sume operations, ci−1 |= opi (opi is the assumption) and ci−1 = ci ,
and (b) in case of assignments, ci = SPopi (ci−1), where SP is the
strongest-post operator of the operational semantics. From a con-

crete program path π = (c0, �0) −д1−→ . . . −дn−−→ (cn , �n), we can derive
an execution ex (π) = c0c1 . . . cn . We let path(C) be the set of all con-
crete program paths and ex (C) be the set of executions of a CFA C .
A CFAC is deterministic (and hence representable as a C program) if

the following holds for all � ∈ L, (�,op1, �1), (�,op2, �2) ∈ G: either
op1 = op2 and �1 = �2, or op1 is an assume operation and op1 ∧ op2
is unsatisfiable.

Conditions subsume the results of verification runs on programs.

A condition basically states which paths have been explored. In

addition, a condition might involve assumptions under which the

verifier has explored a certain path. Assumptions are given as state

conditions (from a set Φ). We write c |= φ to say that a concrete

state c satisfies a state condition φ.

Definition 2.1. A condition automaton (CA) (short: condition)

A = (Q, Σ,δ ,q0, F) consists of

• a finite set Q of states and an initial state q0 ∈ Q ,
• an alphabet Σ ⊆ 2G × Φ,
• a transition relation δ ⊆ Q × Σ ×Q , and
• a set F ⊆ Q of accepting states,

and satisfies the following well-formedness condition:

¬∃(qf , ∗,q) ∈ δ with qf ∈ F ∧ q � F .

1183

B.6. Reducer-Based Construction of Conditional Verifiers 107

Reducer-Based Construction of Conditional Verifiers ICSE 2018, May 27 – June 3, 2018, Gothenburg, Sweden

We let A be the set of condition automata. Accepting states

in conditions are used to describe paths of the CFA which have

already been successfully verified. Figure 2 shows an example C

program and a condition automaton as generated by CPAchecker .

The condition shows that the verifier explored the else-branch of

the if-statement (path leading to accepting stateqf) and successfully
verified the assertion to hold on that path. Due to the non-linear

arithmetic, the verifier could not handle the then-branch, which

hence appears in the automaton on a path not entering qf .

Definition 2.2. A condition automaton A = (Q, Σ,δ ,q0, F) covers

a path π = (c0, �0) −д1−→ (c1, �1) −д2−→ . . . −дn−−→ (cn , �n) if there is a run

ρ = q0 −(G1,φ1)−−−−−−→ q1 −(G2,φ2)−−−−−−→ . . . −(Gk ,φk)−−−−−−→ qk , 0 ≤ k ≤ n, in A, s.t.

(1) qk ∈ F ,
(2) ∀i, 1 ≤ i ≤ k : дi ∈ Gi , and

(3) ∀i, 1 ≤ i ≤ k : ci |= φi .

The task of a reducer is now the generation of a new program

that contains the paths of the original program except for (at most)

those already covered by the condition.

Definition 2.3. A reducer is a mapping red : C×A→ C satisfying

the following residual condition:

Res. ∀C ∈ C,∀A ∈ A :

ex (C) \ {ex (π) | A covers π } ⊆ ex (red (C,A)) ⊆ ex (C).

In the following, we refer to the output of a reducer as the residual

program. Note that the Identity relation on CFAs, i.e., red (C,A) =
C , is a reducer, though not a very effective one. Note also that –
contrary to Czech et al. [35] – the residual condition Res is not

specific to safety properties, i.e., unreachability of error locations.

It simply states a coverage property for the residual program. Our

definitions allow us to use conditions and reducers as a means

for various combinations of verifiers. As one example, both the

condition generating verifier A as well the condition processing

verifier B could be tools generating test vectors, and together they

manage to achieve complete code coverage. Tools A and B could,

on the other hand, also both be formal software verifiers proving

validity of assertions, and together they prove safety of the program.

2.2 Implementation

A reducer takes as input a program (in the form of a CFA) together

with a condition automaton and returns a residual program. Note

that the definition of reducers gives us some freedom in construct-

ing residual programs, in particular, there is more than one residual

program possible. Here, we will present one such reducer.

Our reducer builds upon the idea of Czech et al. [35]. It constructs

the residual program by means of a parallel composition of original

program and condition, cutting off paths whenever the condition

has reached an accepting state. The construction called Reducer

is given in Alg. 1. In contrast to Czech et al. [35], Alg. 1 employs

an additional residual state qr to subsume states that the condi-
tion automaton either has not investigated, or has investigated but

under a non-true assumption. Note that Czech et al. do not need

qr because they consider a restricted class of conditions, which,
e.g., only considers true assumptions. Depending on the condition,

the reduction might restructure the program as to isolate paths

which need to be cut off. In our example (Fig. 2), the generated

Algorithm 1 Reducer

Input: CFA C = (L, �0,G) � original program

CA A = (Q, Σ,δ ,q0, F) s.t. qr � Q � condition automaton

Output: CFA Cr = (Lr , �0,r ,Gr) � residual program

1: Lr := {(�0,q0)}; �0,r := (�0,q0); Gr := ∅;
2: waitlist := Lr ;
3: while waitlist � ∅ do
4: choose (�1,q1) ∈ waitlist; remove (�1,q1) from waitlist;

5: for each д = (�1,op, �2) ∈ G do

6: if q1 ∈ Q ∧ ∃(q1, (G1, true),q2) ∈ δ s.t. д ∈ G1 then

7: for each (q1, (G1, true),q2) ∈ δ s.t. д ∈ G1 do

8: if q2 � F ∧ (�2,q2) � Lr then
9: waitlist := waitlist ∪ {(�2,q2)};
10: Lr := Lr ∪ {(�2,q2)};
11: Gr := Gr ∪

{(
(�1,q1),op, (�2,q2)

)}
;

12: else

13: if (�2,qr) � Lr then
14: waitlist := waitlist ∪ {(�2,qr)};
15: Lr := Lr ∪ {(�2,qr)};
16: Gr := Gr ∪

{(
(�1,q1),op, (�2,qr)

)}
;

17: return Cr

condition describes that paths taking the else-branch have been

successfully verified while paths taking the then-branch still need

to be explored. Hence, the reducer generates a residual program

where the assertion is moved inside the then-branch so as to ensure

that the assertion need not be checked again for the else-branch.

Theorem 2.4. Algorithm Reducer is a reducer.

Proof. Assume C,A,Cr as used in Alg. 1. We have to show

ex (C) \ {ex (π) | A covers π } ⊆ ex (Cr) ⊆ ex (C).
We separately look at the two set inclusions:

ex (Cr) ⊆ ex (C) : Let c0 . . . cn ∈ ex (Cr). Then, there exists a

path π = (c0, (�0,q0)) −д1−→ . . . −дn−−→ (cn , (�n ,qn)) ∈ path(Cr)
such that дi = ((�i−1,qi−1),opi , (�i ,qi)) and ci−1 −opi−−→ ci .
From this, we inductively construct a path π ′ of C (and

hence the execution of C):
• Induction start: take π ′ = (c0, �0).
• Induction step: assume path π ′ to be constructed up to
some (c j , �j), j < n.
We know that дj+1 = ((�j ,qj),opj+1, (�j+1,qj+1)) ∈ Gr

(as π is a path ofCr). New elements are inserted intoGr in

lines 11 and 16 of the algorithm only, while iterating over

elements ofG (line 5). Hence (�j ,opj+1, �j+1) ∈ G, and we

can extend π ′ by (c j , �j) −(�j ,opj+1, �j+1)−−−−−−−−−−−−→ (c j+1, �j+1).
ex (C) \ {ex (π) | A covers π } ⊆ ex (Cr) : Let c0 . . . cn ∈ ex (C) \
{ex (π) | A covers π }. Then, there is a path π = (c0, �0) −д1−→
. . . −дn−−→ (cn , �n) ofC that is not covered byA. Note that thus
q0 � F , as otherwise all paths are covered. We inductively

construct a path π ′ = (c0, (�0,q0)) −д
′
1−→ . . . −д

′
n−−→ (cn , (�n ,qn))

of Cr with д′i = ((�i−1,qi−1),opi , (�i ,qi)) together with a

run ρ = q0 −(G1,φ1)−−−−−−→ . . . −(Gm,φm)−−−−−−−→ qm of A s.t. 0 ≤ m ≤ n.

1184

108 APPENDIX B. ORIGINAL MANUSCRIPTS

ICSE 2018, May 27 – June 3, 2018, Gothenburg, Sweden D. Beyer, M.-C. Jakobs, T. Lemberger, and H. Wehrheim

They satisfy the following properties: (a) ∀i, 0 ≤ i ≤ n : qi �
F , (b) ∀i, 0 ≤ i < n: (�i ,qi) is an element of waitlist at
some point in time during the algorithm, and (c) at position

m the path is split into two parts, the second of which may

be empty, such that: (i) ∀i ≤ m : qi � qr , i = 0∨φi = true ∧
дi ∈ Gi , and (ii) ∀j > m : qj = qr .
• Induction start: take π ′ = (c0, (�0,q0)) and ρ = q0. Then,
q0 � F , q0 � qr , and (�0,q0) is initially in waitlist.

• Induction step: assume path π ′ to be constructed up to
some (c j , (�j ,qj)), j < n, and ρ up to some ql , l < m.

We know that дj+1 = (�j ,opj+1, �j+1) ∈ G and c j −opj+1−−−−→
c j+1 (as π is path of C). We have two cases to consider:

(1) qj � qr : Hence, qj ∈ Q and by induction hypothesis,

qj � F , qj = ql , j = l . Again two cases:
(a) ∃(qj , (G j+1, true),qj+1) ∈ δ ,дj+1 ∈ G j+1 (line 6): We

extend π ′ by (c j , (�j ,qj)) −дj+1−−−→ (c j+1, (�j+1,qj+1))
and ρ by (qj , (G j+1, true),qj+1). We have qj+1 � F
as the path π is not covered byA and ρ would witness
coverage otherwise. Hence, (�j+1,qj+1) is added to
waitlist (unless it has been in there before). We stay

in the first part of the path.

(b) Else (line 12): We switch to the second part of the

path. We extend the path π ′ by (c j , (�j ,qj)) −дj+1−−−→
(c j+1, (�j+1,qr)) and let ρ remain unchanged. We

have qr � F (as it is an extra state) and (�j+1,qr)
is added to waitlist (unless it has been in there be-
fore).

(2) qj = qr : Then, we are in the second part of the path and
proceed as in (1), case (b). �

To be usable by the condition processing verifier, the residual

CFA has to be transformed back into a C program. The residual CFA

obtained by Reducer from a deterministic CFA (i.e., a C program)

is again deterministic since the condition generated by CPAchecker

is always deterministic. Moreover, note that we currently inline

procedure calls. Thus, Reducer may fail on recursive programs.

3 REDUCER-BASED VERIFIERS

In the previous section, we introduced two reducers, Identity

and Reducer. Next, we introduce the second component of our

conditional verifiers, the off-the-shelf tools that we transform into

conditional verifiers. In this paper, we transform four verifiers and

three test-generation tools. As verifiers, we use the best three tools

CPAseq, Smack, and Ultimate Automizer from SV-COMP 2017 [5]

(Table 1 gives an overview). Additionally, we use the value analysis

from the CPAchecker framework [15], which supports condition

automata as input conditions (an in-tool CMC solution [10]) and

allows us to compare the concept of reducer-based conditional

verifiers against an in-tool solution. As test-generation tools, we

chose AFL-fuzz, Crest-ppc, and Klee. All three are open source and

have lately attracted high interest by research [17, 23, 27, 49, 55, 56,

59]. In the next paragraphs, we explain the technologies underlying

the selected verifiers and test-generation tools.

Value Analysis. CPAchecker’s value analysis is a configurable pro-

gram analysis [11]. Its reachability analysis tracks the values of

certain variables of interest explicitly while assuming that the re-

maining variables may have any possible value. The precision [11]

is increased iteratively, based on counterexample-guided abstrac-

tion refinement (CEGAR) [31] and lazy refinement [43]. To get

the best refinement, the analysis applies refinement selection [20].

Given an infeasible error path, path-prefix slicing [21] is used to

compute different overapproximations of the error path s.t. each

overapproximation replaces some assume operations with no-ops.

For each overapproximation, interpolation [18] is used to compute

a refinement candidate. In the end, the best refinement is selected.

CPAseq. CPAseq uses the CPAchecker framework [15] to run four

different analyses in sequence. Whenever an analysis gives up (due

to timeout or unknown result), the next analysis starts. A definite

answer (feasible error path or proof) of an analysis is returned

immediately. CPAseq starts with a simple value analysis without

refinement, which tracks all variable values immediately. Next, a

value analysis similar to the one described above is used. The third

analysis is a bit-precise predicate analysis [16] that uses adjustable-

block encoding [16] to compute predicate abstractions only at loop

heads. The set of predicates is determined by a combination of inter-

polation [42] and CEGAR [31] with lazy refinement [43]. The last

analysis runs k-induction in parallel with invariant generation [9].

The invariants found so far are used to improve the k-induction

step and are provided by numerical and predicate analyses.

Smack. The Smack [54] verifier consists of a translation front end

and a verification back end. First, it translates the input program

to Boogie code (via intermediate LLVM code). Based on heuristics,

the Boogie code is either verified with Boogie or Corral. Boogie [3]

proves a verification condition generated with the weakest precon-

dition calculus. Corral [50] tries to find a property violation with a

two-staged CEGAR approach. First, it uses variable abstraction to

compute an overapproximation of the program, which only consid-

ers a subset of the program variables. The variable abstraction is

adapted whenever the second CEGAR approach fails to rule out an

infeasible error path. On the second stage, Corral inlines functions

(summaries) up to a given recursion depth (loops are assumed to

be written as recursive functions). Functions are only inlined if the

function summary appears in an infeasible error path.

Ultimate Automizer. Ultimate Automizer (UAutomizer) [40, 41]

uses an automata-based verification approach. In principle, it main-

tains an overapproximation of error paths in form of an automaton.

A CEGAR approach successively refines the overapproximation,

i.e., it removes infeasible error paths, until a feasible error path is

found or the automaton language is empty. In each refinement step,

a generalization of an infeasible error path is excluded from the

current overapproximation. The generalization of the error path

is described by a Floyd-Hoare automaton [41], which associates

boolean formulas over predicates with its states. The initial state

is associated with true, accepting states are associated with false,

and transitions describe valid Hoare triples. The predicates used in

the Hoare triples are obtained via interpolation along the infeasible

error path.

AFL-fuzz. AFL-fuzz is a random fuzzing tester. Given a set of start

inputs, it performs different mutations on the existing inputs, exe-

cutes these newly created inputs, and checks whether new program

parts are explored. If this is the case, the inputs are kept and used

for further mutation. Otherwise, the inputs are discarded. 2

2AFL (American Fuzzy Lop) is available at http://lcamtuf.coredump.cx/afl/.

1185

B.6. Reducer-Based Construction of Conditional Verifiers 109

Reducer-Based Construction of Conditional Verifiers ICSE 2018, May 27 – June 3, 2018, Gothenburg, Sweden

Table 1: Overview of applied verification technologies in the verifiers

Refinement

Verifier Technique CEGAR Lazy abstraction Interpolation Bitprecise

CPAseq ARG, explicit and numerical values, predicates, k-induction � � � �
Smack property-driven reachability [24], bounded model checking [22] � � × �
UAutomizer automata, predicates � � � �

Klee. Klee [26] uses symbolic execution for test-case generation.

Symbolic execution is an extension to concrete execution of a pro-

gram. For every unknown input value to a program, a new symbolic

value is introduced that initially represents any possible value. Dur-

ing execution, the symbolic values are constrained by branching

conditions along the program (e.g., if-branches in a C program).

These constraints are used to compute whether a given program

path is feasible, and which class of input values will lead to execu-

tions that take this path. Whenever both branches are feasible in

a symbolic execution, Klee copies its current symbolic execution

state and continues to explore one branch with the current state and

the other with the copied state. After each step in a program, Klee

heuristically chooses with which of the existing execution states to

continue. Given several heuristics, Klee alternates between them.

Crest-ppc. Crest-ppc [49] is an improved version of Crest [25].

Crest uses concolic execution for testing and provides different

heuristics to achieve higher code coverage. Concolic execution is

a combination of symbolic execution and concrete execution. A

program under test is executed with concrete inputs that determine

one concrete execution path. In parallel, a symbolic execution is

performed on that path to obtain constraints over program inputs

on this path. Based on these path constraints, a constraint solver

computes new inputs that lead to the execution of another, yet

unvisited program part. New executions are performed and new

inputs are generated until all program parts are explored. Crest

uses heuristics to choose which unvisited program part to explore

next. To increase the performance, Crest-ppc adds a heuristic to

Crest that submits more calls to the constraint solver but uses fewer

constraints per call.

4 EVALUATION

4.1 Claims to be Evaluated

In the following, we list our claims and how we plan to evaluate

them. The claims are not on efficiency, but on effectiveness. That

is, we provide means for solving additional verification tasks by

investing more computing resources, but without implementing or

changing verification tools.

Feasibility Hypothesis. A reducer can be used to effectively con-

struct conditional verifiers from existing verification tools. Evalua-

tion Plan:We show this by implementing one particular instance of

a reducer, and apply our reducer-based construction of conditional

verifiers to three model checkers and three testers. The result is a

set of six conditional verifiers, and we take standard configurations

“out of the box”, without changing a single line of the verifiers.

Null Hypothesis. Applying a reducer has no effect. Evaluation

Plan:We compare the results using our reducer against the results

using the identity function as replacement for the reducer.

Claim 1. Reducer-based conditional verification is not much worse

then “native” conditional verification. Evaluation Plan: The original

proposal of CMC [10] implements the restriction of the state space

that the condition describes internally in the exploration engine

of the verifier. We claim that it also works reasonably well to use

an external reducer instead, which opens the door for constructing

new conditional verifiers without actual implementation work.

Claim 2. The technique of conditional verification can effectively

increase the number of overall solved verification tasks if additional

resources are provided. Evaluation Plan:We select a number of hard-

to-solve verification tasks and perform experiments on them using

the original verifiers and the constructed verifiers.

Claim 3. Conditional verification with condition passing can solve

verification tasks that neither CPAseq, Smack, nor Ultimate Au-

tomizer can solve. Evaluation Plan:We select from a given set of

verification tasks those verification tasks that none of the original

verifiers, but at least one of the conditional verifiers can solve.

Claim 4. The use of different conditional verifiers improves the

overall effectiveness. Evaluation Plan:We report results for different

conditional verifiers and consider verification tasks that only one

conditional combination can solve.

Claim 5. Reducer-based conditional verification is also applicable

to test-case generation. Evaluation Plan:We construct conditional

verifiers from three test-generation tools and compare the number

of generated crashing tests against the result of the test-generation

tools alone.

4.2 Setup

Computing Resources.We performed our experiments on ma-

chines with an Intel Xeon E3-1230 v5 CPU with 8 processing units

each, a frequency of 3.4 GHz, 33 GB of memory, and an Ubuntu 16.04

operating system with Linux kernel 4.4. We limited each analysis

run to 15GB of memory and a varying time limit, depending on the

experiment, and allowed it to use all 8 processing units. We report

CPU time and memory use with two significant digits.

Verification Tasks. To get a representative set of verification tasks,

we used all 5 687 programs from ReachSafety categories of the SV-

COMP benchmark set3 in revision cc49668 4. For all input programs,

we verify the property that function __VERIFIER_error is never

called. A total of 1 501 of the 5 687 programs are unsafe, i.e., the call

to __VERIFIER_error is reachable, and 4 186 programs are safe.

Tools.We used a predicate analysis for condition generation and

a value analysis for comparison with native conditional model

checking, both from the CPAchecker project. Our implementation

of a reducer is also available in the CPAchecker project. For all

experiments, we used CPAchecker from branch reducer-patch in

revision r25656. For the verifiers in the composition of our reducer

with a verifier, we use the three best tools from SV-COMP 2017,

as submitted to the competition5 (without any modifications) and

3https://sv-comp.sosy-lab.org/2017/benchmarks.php
4https://github.com/sosy-lab/sv-benchmarks
5https://sv-comp.sosy-lab.org/2017/systems.php

1186

110 APPENDIX B. ORIGINAL MANUSCRIPTS

ICSE 2018, May 27 – June 3, 2018, Gothenburg, Sweden D. Beyer, M.-C. Jakobs, T. Lemberger, and H. Wehrheim

 1

 10

 100

 1000

 1 10 100 1000

CP
U

 T
im

e
fo

r
Id

en
tit

y
(s

)

CPU Time for Reducer (s)
(a) Reducer vs. Identity (pure sequential combination)

 1

 10

 100

 1000

 1 10 100 1000

CP
U

 T
im

e
fo

r
N

at
iv

e
CM

C
(s

)

CPU Time for Reducer (s)
(b) Reducer vs. native CMC implementation in CPAchecker

Figure 3: Comparison of CPU time of different CMC solutions for predicate (100s) + value analysis

the three test-generation tools described previously. To streamline

the testing process for the test-generation tools, we use the testing

framework tbf [17] 6 in revision b60a924. We run our experiments

with BenchExec [19] (version 1.14).7

Availability. All our experimental data are available online [14].8

4.3 Experiments

Feasibility Hypothesis.We designed and implemented a proof-of

concept reducer, and licensed the reducer using the open-source

license Apache 2.0 such that other researchers can later use it.

While our implementation certainly has potential for improvement,

we show that the approach of composing a conditional verifier

from an arbitrary verifier and our reducer works in practice. We

demonstrated this by using the three best verifiers directly from

the SV-COMP web site and composed the conditional verifiers

without any change to the verifiers. In addition, we also composed

conditional verifiers from test-generation tools, in order to help

test-generators to produce crashing tests for more verification tasks.

Null Hypothesis.We have experimented with verification runs

in which we replaced our reducer by an identity function Identity,

i.e., the reducer is effectively removed from the tool chain. The first

verifier, which generates the condition, is a predicate analysis that

we restrict to at most 100 s of CPU time. For the second verifier, we

use CPAchecker’s value analysis with a time limit of 900 s.

Figure 3a uses a scatter plot to illustrate the CPU times of the

reducer-based approach using Reducer (x-axis) against using Iden-

tity (i.e., pure sequential combination). The scatter plot shows

results only for those verification tasks that at least one of the two

combinations can solve and that none of them solved incorrectly

or crashed on. Thus, the plot only displays results that have a use-

ful result. Often, the results are similar (data points close to the

6https://github.com/sosy-lab/tbf
7https://github.com/sosy-lab/benchexec
8https://www.sosy-lab.org/research/reducer/

diagonal). In this case, the predicate analysis alone already solved

the verification task. For some tasks, Reducer is slower or even

times out, due to the large size of residual programs. The reason

is that Reducer restructures the program, e.g., unfolds loops and

the program structure. The residual program becomes much larger

and more complex in its structure, which complicates the task of

the second verifier in these cases. However, there are also a set

of tasks for which Reducer is significantly faster: the data points

close to the upper border represent tasks for which the conditional

combination with Reducer solved the task while the combination

with Identity timed out. Thus, the null hypothesis is rejected.

Claim 1 (Comparison against native implementation). We

compare our proposed reducer-based approach to construct con-

ditional verifiers against the approach of the original implementa-

tion [10], which we refer to as ‘native’ approach because it imple-

ments the restriction of the state space according to the condition

internally in the verifier. We use the same setup as above, but re-

place the second verifier by CPAchecker’s value analysis with the

internal condition treatment enabled. Figure 3b shows the useful

results as scatter plot, again. Most of the data points are close to

the diagonal, i.e., the two solutions perform similarly. However, as

above, when the residual program gets too large, the reducer-based

solution sometimes uses too much time (right side). For some tasks,

the reducer-based solution is even faster than the native approach

(top). Thus, Claim 1 is valid.

Claim 2 (Effective increase of number of verified programs).

We now evaluate the claim that the use of two complementing

verifiers joined by reducer-based conditional verification can effec-

tively solve additional verification problems if additional resources

are spent on running a combination after the runs of the original

verifier. In our experiments, we always first run a conditional ver-

ifier based on predicate analysis to output the conditions, with a

time limit of 100 s of CPU time. The predicate analysis combines

lazy abstraction refinement [43] with predicate abstraction with

adjustable-block encoding (ABE) [16]. ABE is configured to abstract

1187

B.6. Reducer-Based Construction of Conditional Verifiers 111

Reducer-Based Construction of Conditional Verifiers ICSE 2018, May 27 – June 3, 2018, Gothenburg, Sweden

Table 2: Results of using a verifier on its own vs. a combina-

tion with predicate analysis and condition passing

CPAseq Smack UAuto Predicate +

CPAseq Smack UAuto

Correct 513 415 238 789 695 789

Correct proof 265 76 170 387 296 386

Correct alarm 248 339 68 402 399 403

Incorrect 0 0 7 0 0 4

Incorrect proof 0 0 4 0 0 0

Incorrect alarm 0 0 3 0 0 4

Unknown 307 405 575 31 125 27

Total 820 820 820 820 820 820

 1

 10

 100

 1000

 0 100 200 300 400 500 600 700 800

CP
U

tim
e

(s
)

n-th fastest correct result

CPA-seq
SMACK

Ultimate Automizer
Predicate + CPA-seq
Predicate + SMACK

Predicate + Ultimate Automizer

Figure 4: Quantile plots for the six verification approaches

at loop heads only. Let us refer to this verifier as A. The conditional

verifier in the second verification step is always constructed from

our reducer and an off-the-shelf verifier; we limit the CPU time

to 900 s. Let us refer to this kind of verifier as B. Verifier B tries

to solve all tasks that A was not yet able to solve, with the help

of the conditions generated by A for these tasks. The time limit

of 900 s of CPU time is considered a community standard (cf. SV-

COMP), because most verification tasks can either be solved way

below this time limit or cannot be solved at all. As verifier B, we

compose our reducer with the three best tools from SV-COMP 2017

on reachability properties: CPAseq, Smack, and Ultimate Automizer.

Many of the verification tasks in the considered task set from the

SV-COMP benchmarks are easy to solve for the standard verifiers.

For those tasks, we do not need to further experiment because

our aim is to show that the new approach can increase the overall

number of verified programs. Therefore, we restrict our experiment

to verification tasks that are hard-to-solve; in particular, we select

those verification tasks for which at least one verifier B fails but

the corresponding combination with condition passing of A and B

solves the task. This results in a benchmark set containing 820 hard-

to-solve verification tasks.

Table 2 breaks down the effectiveness of each verification ap-

proach. It lists the number of verification tasks that each verification

approach solved correctly, solved incorrectly, and which it cannot

solve (‘Unknown’). The correct and incorrect results are further

classified into answers that reported a proof and a bug, respectively.

Inspecting the numbers, we observe the following: In all three

cases, the reducer-based CMC combination with condition passing

of verifiers A and B solves significantly more tasks correctly than

verifier B alone. At the same time, the number of wrong answers

is not increased by the conditional verifier. There are two possible

reasons for this improvement: First, verifierA already accomplished

the verification task, in which verifier B has no work (suggested by

the data points on the diagonal with less than 100 s in Fig 3a). Or

second, verifier A verified a significant portion of the verification

task such that the residual program generated by Reducer becomes

easier to analyze for verifier B (suggested by the middle and lower

part of Table 3).

Figure 4 shows quantile plots for all six verification approaches.

A data point (x ,y) on such a graph means that the x fastest correct
results can be solved all in max. y s of CPU time each. We observe

that all reducer-based approaches significantly outperform their

standalone counterpart by investing max. 100 s of CPU time. These

observations together with Table 2 validate our Claim 2.

Claim 3 (Solving problems that none of the three can solve).

We consider a particular subset of the verification tasks, namely

those that none of the verifiers CPAseq, Smack, and Ultimate Au-

tomizer can solve as standard verifier but at least one combination

can. These tasks seem to be particularly hard for verifiers while not

being too hard for our approach. Table 3 shows an excerpt of those

143 programs of the task set. For each verification task (identified

by name and expected verification result), the table contains groups

of result, CPU time, and max. memory usage, for each of the three

standard verifiers and their reducer-based combination with con-

dition passing. From the table, it can be observed that Claim 3 is

valid: there exist programs that conditional combinations can solve

but none of the given standard verifiers can.

Claim 4 (Different back ends have different strengths). None

of the conditional verifiers is superior. Each verifier has its strengths:

for two verifiers B there exist verification tasks that only a combi-

nation with that verifier can solve and no other combination (cf.

Table 2). And each verifier has its weaknesses: for each verifier,

there are some verification tasks that the verifier, even in combina-

tion, cannot solve. To solve all difficult tasks, we need to leverage

different technologies. The experimental results validate Claim 4.

This last observation makes the contribution of our reducer-

based approach important: It does not make sense to extend existing

verifiers to become conditional verifiers (in terms of accepting con-

ditions as inputs), because we need many conditional verifiers. Our

approach to take an arbitrary verifier off-the-shelf and construct

a conditional verifier without implementation work significantly

improves the overall achieved verification power.

Claim 5 (Reducer-based construction works also for testing).

To demonstrate that our approach can be applied to tools other

than model checkers, we combine our Reducer with three test-

generation tools, namely AFL-fuzz (v2.46b), Crest (revision 31c32f4),

and Klee (v1.4.0). As in the other experiments, the first analysis

(which generates the condition) is the predicate analysis, again

limited to 100 s. The test-generation is limited to 900 s.

Analogous to Claim 2, we restrict the experiment to those verifi-

cation tasks that are hard-to-solve with test generation: we select

those tasks for which at least one test generator fails to uncover

a bug in, but that the corresponding combination with condition

passing can correctly solve. In addition, since testing cannot prove

correctness, we only consider verification tasks that are unsafe.

1188

112 APPENDIX B. ORIGINAL MANUSCRIPTS

ICSE 2018, May 27 – June 3, 2018, Gothenburg, Sweden D. Beyer, M.-C. Jakobs, T. Lemberger, and H. Wehrheim

Table 3: Results of verification tasks for which all considered verifiers A alone could not compute a result, but for which at least

one verifier B succeeded in a reducer-based combination with condition passing. Column R shows the expected result of the

corresponding task: either no property violation exists (T) in the program or a property violation exists (F). Column S reports

whether the task was solved by the corresponding verifier, t is the CPU time in seconds spent to achieve the corresponding

result, andM the used memory in GB.

Task R CPAseq Smack UAutomizer +CPAseq +Smack +UAutomizer
S t (s) M (GB) S t (s) M (GB) S t (s) M (GB) S t (s) M (GB) S t (s) M (GB) S t (s) M (GB)

loop-acc overflow T � 910 7.8 � 880 0.93 � 900 1.3 � 2.6 0.27 � 2.6 0.27 � 2.6 0.27

mutex_unbounded F � 910 4.9 � 0.13 0.021 � 900 0.94 � 5.6 0.32 � 5.6 0.32 � 5.6 0.32

mutex_unlock F � 320 4.9 � 0.11 0.020 � 900 1.2 � 11 0.47 � 11 0.47 � 11 0.47

lin-4.0 legousbtower F � 180 15 � 880 0.56 � 900 4.0 � 12 0.48 � 12 0.48 � 12 0.48

lin-4.0 net2272 F � 56 15 � 890 1.0 � 900 7.3 � 15 0.53 � 15 0.53 � 15 0.53

fib_longer F � 900 3.7 � 880 0.15 � 8.6 0.30 � 15 0.61 � 15 0.61 � 15 0.61

lin-3.4 vivi F � 230 15 � 880 0.25 � 48 1.3 � 15 0.59 � 15 0.59 � 15 0.59

lin-3.0 block-loop F � 900 8.5 � 880 0.48 � 900 3.8 � 16 0.51 � 16 0.51 � 16 0.51

lin-4.2 lm78 T � 950 6.8 � 890 1.2 � 910 13 � 18 0.63 � 18 0.63 � 18 0.63

lin-3.4 synaptics F � 210 15 � 880 0.43 � 900 1.6 � 18 0.62 � 18 0.62 � 18 0.62

lin-3.16 mISDN T � 910 8.8 � 950 3.0 � 900 5.7 � 26 0.96 � 26 0.96 � 26 0.96

lin-4.2 vfio F � 910 8.1 � 890 0.47 � 900 5.3 � 26 0.70 � 26 0.70 � 26 0.70

val-0.8 g_printer F � 910 8.4 � 880 0.73 � 900 5.5 � 28 0.87 � 28 0.87 � 28 0.87

val-0.6 g_printer F � 910 8.4 � 880 0.71 � 900 5.6 � 28 0.85 � 28 0.85 � 28 0.85

. . .
Problem19_label20 T � 520 15 � 880 2.8 � 900 13 � 110 0.37 � 110 0.37 � 110 0.37

Problem19_label57 T � 440 15 � 880 2.9 � 900 13 � 110 0.36 � 110 0.37 � 110 0.38

Problem19_label37 T � 440 15 � 880 3.2 � 900 13 � 110 0.38 � 110 0.37 � 110 0.37

Problem19_label15 T � 440 15 � 880 3.0 � 900 11 � 110 0.37 � 110 0.37 � 110 0.38

Problem19_label44 T � 440 15 � 880 2.9 � 900 12 � 110 0.39 � 110 0.37 � 110 0.37

Problem19_label36 T � 500 15 � 880 2.9 � 900 13 � 110 0.38 � 110 0.38 � 120 0.38

Problem19_label06 T � 460 15 � 880 2.9 � 910 14 � 110 0.37 � 110 0.38 � 110 0.36

Problem19_label56 T � 440 15 � 880 2.9 � 910 13 � 110 0.39 � 110 0.37 � 110 0.37

Problem19_label30 T � 450 15 � 880 3.2 � 910 13 � 110 0.36 � 110 0.37 � 110 0.37

Problem19_label01 T � 440 15 � 880 2.9 � 900 11 � 110 0.37 � 110 0.37 � 110 0.37

Problem19_label09 T � 550 15 � 880 3.0 � 900 11 � 110 0.37 � 110 0.37 � 110 0.37

Problem19_label40 T � 450 15 � 880 2.9 � 900 13 � 110 0.38 � 110 0.37 � 110 0.36

Problem13_label33 T � 550 15 � 880 3.1 � 900 7.2 � 110 0.29 � 110 0.30 � 110 0.32

Problem19_label05 T � 450 15 � 880 2.9 � 900 12 � 110 0.38 � 110 0.37 � 110 0.36

. . .
lin-4.2 vlsi_ir T � 910 7.9 � 890 0.97 � 900 13 � 490 10 � 130 0.67 � 150 0.77

lin-3.14 vsp1 T � 920 6.9 � 890 0.70 � 910 14 � 550 1.5 � 610 1.5 � 640 1.5

lin-3.14 vxge T � 930 11 � 190 14 � 19 0.51 � 760 1.4 � 630 1.5 � 650 1.5

lin-4.2 w83781d T � 910 6.7 � 900 3.7 � 910 14 � 690 1.5 � 660 1.4 � 660 1.5

lin-4.2 zd1211rw T � 930 6.3 � 890 0.96 � 140 11 � 720 1.5 � 670 1.5 � 660 1.5

lin-3.14 vmxnet3 T � 930 6.9 � 890 1.2 � 900 10 � 540 1.5 � 640 1.4 � 670 1.4

lin-3.14 skge T � 950 7.3 � 940 3.6 � 410 15 � 650 1.5 � 600 1.5 � 670 1.5

lin-3.16 ath5k T � 950 5.9 � 950 4.7 � 900 13 � 710 1.5 � 730 1.5 � 710 1.5

lin-3.14 ipw2200 T � 950 7.6 � 950 6.6 � 15 0.39 � 700 1.5 � 730 1.5 � 720 1.5

lin-3.14 bttv T � 950 5.8 � 910 5.0 � 20 0.51 � 720 1.5 � 770 1.4 � 750 1.5

lin-4.2 cciss T � 920 7.1 � 330 12 � 900 4.7 � 790 10 � 120 0.77 � 180 5.3

floodmax.4 T � 910 3.0 � 880 0.53 � 910 13 � 900 4.3 � 110 0.42 �1 100 7.9

sep20 T � 900 3.2 � 880 0.10 � 910 13 � 1 000 2.6 � 110 0.27 � 150 0.99

Sum 0 100 k 1 600 0 110 k 500 0 110 k 1 200 120 28 k 180 42 24 k 130 121 25 k 160

Average 720 11 800 3.5 760 8.1 200 1.2 170 0.89 170 1.1

The full version of this table can be found at https://www.sosy-lab.org/research/reducer/ .

1189

B.6. Reducer-Based Construction of Conditional Verifiers 113

Reducer-Based Construction of Conditional Verifiers ICSE 2018, May 27 – June 3, 2018, Gothenburg, Sweden

Table 4: Test generation vs. CMC combination

AFL-fuzz Crest Klee Predicate +

AFL-fuzz Crest Klee

Correct alarm 96 44 277 479 476 477

Incorrect proof 0 0 0 0 0 0

Unknown 384 436 203 1 4 3

Total 480 480 480 480 480 480

 1

 10

 100

 1000

 1 10 100 1000

CP
U

 T
im

e
fo

r
Id

en
tit

y
Re

du
ce

r
w

ith
 A

FL
-fu

zz
 (s

)

CPU Time for Reducer with AFL-fuzz (s)
Figure 5: CPU time for predicate analysis and AFL-fuzz com-

bined with Reducer (CMC) and with Identity (sequential)

As a result, we get 480 tasks. Table 4 compares the performance

of the CMC scenarios with the tester performance. Similar to Ta-

ble 2, it shows the numbers of correct alarms, incorrect proofs,

and unsolved tasks. However, it leaves out the rows related to safe

verification tasks. We see that for all three test-generation tools

the number of correct alarms of our reducer-based combination

with condition passing is higher than for the respective tester. In

general, such an improvement is not only caused by the use of the

verifier A, but often a result of the combination of tools. To further

support this statement, we present Fig. 5. It shows the CPU time of

two reducer-based CMC solutions, both using the predicate anal-

ysis mentioned above to generate conditions, using the full set of

1 501 verification tasks with expected result false. The first solution

(x-axis) uses the reducer Reducer with AFL-fuzz and the second

solution (y-axis) uses the Identity reducer with AFL-fuzz (pure

sequential combination). For better visualization, we removed the

results that the predicate analysis can solve on its own. Due to the

mentioned blowup of the residual program, the Reducer based

solution (Reducer plus AFL-fuzz) performs worse for some tasks,

but it can also solve a significant amount of tasks faster than the

pure sequential combination (Identity plus AFL-fuzz).

Size of residual programs. As already mentioned, the residual

program created by Reducer may become significantly larger than

the original program. The reason is a large amount of branching in

the condition, i.e., unfolding of loops and program structure, which

is needed to record the verification work already performed. To

study this in more detail, we compared the sizes of the original

and the residual program in terms of locations in the CFA. At

worst, the residual program was more than 10 times larger than the

original program (1 934 vs. 22 325 locations). At best, the number of

locations in the residual program is less than 1% of the number of

original program locations (200 253 vs. 127 locations). On average,

the residual program contains fewer locations (with a mean of 27 %

and a median of 14 % of the number of locations in the original

program). While the residual program can be much larger, it is

often much smaller.

4.4 Threats to Validity

We did not cross-check the reported verification results with an

independent verifier because we currently do not know how to

construct correctness or violation witnesses [7, 8] in the setting

of reducer-based conditional model checking. While we are sure

that the standalone verifiers did a proper inspection (they success-

fully participated in SV-COMP or provide a test), tools might have

guessed the correct answer when run as part of the conditional

verifier. Yet, we think that guessing is unlikely. The tools are laid out

to provide witnesses and thus properly perform their verification.

The correctness of the residual program is another threat. Like

other analysis tools, we rely on the soundness of the transformation

from program to CFA and back. Additionally, we rely on the sound-

ness of the existing condition generating tool in that the condition

only covers paths the verifier has already inspected. Furthermore,

our implementation of Reducer is a prototype which revealed bugs

during evaluation. In principle, the bugs might be the reason for

the effectiveness of the reducer-based approach. However, the bugs

we observed led the conditional verifier to report a wrong result.

Additionally, we checked the null hypothesis and claim 1 only

with a single condition generating analysis and a single conditional

verifier. Thus, the corresponding results might not be universally

valid in any reducer-based conditional-model-checking setup.

When using a combination of two verification tools with CMC, it

is also possible that the increase in solvable tasks is simply because

the different tools can solve a distinct set of tasks each in a very

short time. E.g., in our configuration, it could have been possible

that the full increase in additionally solvable tasks is only due to

a competence of the predicate analysis in quickly solving a set

of tasks that none of the other verifiers can solve. To make sure

that our considered tool combinations actually benefit from the

use of condition passing, we provided a comparison with a pure

sequential combination (Identity) that showed the general benefit.

In addition, CPAseq includes a 200 s run of predicate analysis in its

configuration—this ensures that all benefits for our combination

of CPAseq and predicate analysis are actually due to our Reducer

approach. Of the 820 tasks considered in the experiments backing

claim 2, 143 cannot be solved by any of the sequential combinations,

but only when using CMC with condition passing.

We only consider a subset of the SV-COMP tasks and the three

best verifiers from SV-COMP. These three verifiers might be tuned

to SV-COMP tasks and may perform worse on our generated resid-

ual programs. Despite this possible bias, our approach still improves

the existing verifiers. In addition, the three test-generation tools

used never participated in any edition of SV-COMP and are unlikely

biased. Our approach still shows improvements for them.

1190

114 APPENDIX B. ORIGINAL MANUSCRIPTS

ICSE 2018, May 27 – June 3, 2018, Gothenburg, Sweden D. Beyer, M.-C. Jakobs, T. Lemberger, and H. Wehrheim

5 RELATEDWORK

Our concept of reducers allows us to combine a condition generat-

ing software verifier with an arbitrary second verifier. Techniques

for combining different verification approaches have intensively

been studied in the past. The approaches are executed in paral-

lel, interleaved, or sequentially. Orthogonally, the approaches are

integrated in a white-box or black-box style. White-box combina-

tions tightly integrate typically orthogonal approaches, whereas

black-box combinations aim at a loose coupling of different tools.

Parallel Combinations. Parallel combinations are often used in a

white-box style if the analysis algorithms are similar. Typically, com-

binations [12, 32, 33] let different domains interoperate to obtain

analyses that are more precise than a product combination.

Interleaved Combinations. Interleaved combinations are often

white-box combinations that unite different techniques in one al-

gorithm. For example, SYNERGY [39] and DASH [4] perform an

alternation of test generation and proof construction. Test genera-

tion is guided by the abstract error paths and the abstraction for the

proof construction is adapted according to the tests. SMASH [38]

combines underapproximationwith overapproximation. In contrast,

abstraction-driven concolic testing [36] is a black-box integration

that alternates concolic testing with model checking. The main goal

of the model checker is to identify and exclude infeasible paths.

Given the open test goals (encoded as error locations), the model

checker builds an abstract reachability graph (ARG). The built ARGs

successively restrict the (original) program considered by the tester,

i.e., after each model-checking run the new program for the tester

becomes the intersection of its previous program with the ARG.

Sequential Combinations Testifying Verification Result.

Many sequential combinations aim at excluding false alarms after

an imprecise static analysis, typically using a black-box combina-

tion. For example, Blast [6], Check’n’Crash [34], DyTa [37], and

SANTE [28] try to build a test case for each alarm and only re-

port those alarms that are backed by a test. Post et al. [53] and

CPAchecker [57] use bounded model checking to check whether

an alarm is realizable. Residual investigation [51] tries to reduce

the number of false or irrelevant alarms. It only reports alarms for

which dynamic analysis observed program behavior indicating that

a warning is appropriate. In contrast, proof-carrying code (PCC)

approaches [44, 52] check a complete proof. Standardized verifier

exchange formats like correctness or error witnesses [7, 8] enable

cross-checks between different tools.

Sequential Combinations Splitting Verification Effort. Pro-

gram partitioning [46] suggests to use the test data to partition the

control-flow graph (CFG) into tested and not-tested. The non-tested

partition, a subgraph of the CFG, is analyzed by a static analyzer.

Conditional model checking [10] uses a sequential combination:

A first verifier constructs a condition summarizing the performed

verification, the next verifier uses that condition to steer its verifi-

cation. We use the same idea for the first verifier, but we transform

the condition into a residual program checked by the next verifier.

Multi-goal reachability analysis for testing [13] reuses the ver-

ification effort of one (test) goal for another one. The idea is to

transform the ARG that was built to achieve the test goal, s.t. it fits

for a new test goal. The test-goal automata can be seen as conditions

encoding sets of program paths.

Christakis et al. [29, 30] propose that a verifier should add pro-

gram annotations stating which assertions under which conditions

were verified. In the experiments, the static analyzer Clousot pro-

duces annotations that guide the exploration of the tester PEX.

Czech et al. [35] use conditions and a residual-program construc-

tion to combine model checking and testing in the context of safety

checking. They propose two basic program constructions. Their

synchronous composition of condition and program is similar to

our Reducer. However, they consider a restricted class of condi-

tions and thus do not need to consider assumptions nor program

paths that are not covered by the condition. The second approach

slices the program for assertions that are not fully verified.

Generating Programs fromVerification Results. Program par-

titioning [46] extracts a subgraph of the program which has not

been tested. Abstraction-driven concolic testing [36] computes a

program from the intersection of an ARG and a program. A similar

idea, namely using ARGs to generate programs, has already been

proposed in a PCC context [45, 58]. Czech et al. [35] compute a

synchronous combination of condition and program. As already

mentioned, our residual-program construction is similar to the

approach of Czech et al. [35]. Our implementation constructs an

ARG, representing the combination of condition and control-flow

graph, which is translated into a program. In contrast to program

partitioning [46], the generated programs need not be subgraphs.

6 CONCLUSION

Software verification is an undecidable problem, but still, almost all

live-critical systems are controlled by software, and thus, we need to

verify these large software systems. One research direction is to de-

velop faster verification algorithms and theories; another direction

is to leverage existing results by combinations. Our contribution

falls into the second research area. Conditional model checking is a

promising approach to combine the strengths of different verifiers.

However, it is a large effort to make a verifier understand and use

the condition that describes what the first verifier already achieved.

To solve this problem, we propose an easy, automatic template

construction that turns an off-the-shelf verifier into one that un-

derstands conditions. Our idea is to use a preprocessor, the reducer,

which takes the condition and the original program to compute

a residual program. The residual program encodes the remaining

verification task in a format that is understandable by every verifier:

program code. In this paper, we suggested one possible reducer. Our

experiments on hard tasks of the SV-COMP benchmark collection

show that our reducer-based CMC solution is effective. Using the

new combination technique, we can solve many verification tasks

that were not solvable before, and thus advance the frontier of what

is possible with existing software verifiers.

The main conclusion from our experiments is that we need many

conditional verifiers, but that it is not worth the effort to change

existing verifiers. Rather we can simply apply our construction

to get k conditional verifiers from k arbitrary existing verifiers,

without changing one line of code. Even if the task is to find crash-

ing test cases with state-of-the-art test-generation tools, we can

significantly increase the number of found bugs by using a plug-

and-play construction that does not cost any development effort,

but increases the number of valuable test cases significantly.

1191

B.6. Reducer-Based Construction of Conditional Verifiers 115

Reducer-Based Construction of Conditional Verifiers ICSE 2018, May 27 – June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. 1986. Compilers: Principles, Techniques, and

Tools. Addison-Wesley. http://www.worldcat.org/oclc/12285707
[2] T. Ball and S. K. Rajamani. 2002. The Slam Project: Debugging System Software

via Static Analysis. In Proc. POPL. ACM, 1–3. https://doi.org/10.1145/503272.
503274

[3] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. 2005. Boo-
gie: A Modular Reusable Verifier for Object-Oriented Programs. In Proc. FMCO
(LNCS 4111). Springer, 364–387. https://doi.org/10.1007/11804192_17

[4] N. E. Beckman, A. V. Nori, S. K. Rajamani, and R. J. Simmons. 2008. Proofs from
Tests. In Proc. ISSTA. ACM, 3–14. https://doi.org/10.1145/1390630.1390634

[5] D. Beyer. 2017. Software Verification with Validation of Results (Report on SV-
COMP 2017). In Proc. TACAS (LNCS 10206). Springer, 331–349. https://doi.org/10.
1007/978-3-662-54580-5_20

[6] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. 2004.
Generating Tests from Counterexamples. In Proc. ICSE. IEEE, 326–335. https:
//doi.org/10.1109/ICSE.2004.1317455

[7] D. Beyer, M. Dangl, D. Dietsch, and M. Heizmann. 2016. Correctness Witnesses:
Exchanging Verification Results Between Verifiers. In Proc. FSE. ACM, 326–337.
https://doi.org/10.1145/2950290.2950351

[8] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. 2015. Witness
Validation and Stepwise Testification Across Software Verifiers. In Proc. ESEC/FSE.
ACM, 721–733. https://doi.org/10.1145/2786805.2786867

[9] D. Beyer, M. Dangl, and P. Wendler. 2015. Boosting k-Induction with
Continuously-Refined Invariants. In Proc. CAV (LNCS 9206). Springer, 622–640.
https://doi.org/10.1007/978-3-319-21690-4_42

[10] D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler. 2012. Conditional
Model Checking: A Technique to Pass Information Between Verifiers. In Proc.
FSE. ACM, 57. https://doi.org/10.1145/2393596.2393664

[11] D. Beyer, T. A. Henzinger, and G. Théoduloz. 2007. Configurable Software
Verification: Concretizing the Convergence of Model Checking and Program
Analysis. In Proc. CAV (LNCS 4590). Springer, 504–518. https://doi.org/10.1007/
978-3-540-73368-3_51

[12] D. Beyer, T. A. Henzinger, and G. Théoduloz. 2008. Program Analysis with
Dynamic Precision Adjustment. In Proc. ASE. IEEE, 29–38. https://doi.org/10.
1109/ASE.2008.13

[13] D. Beyer, A. Holzer, M. Tautschnig, and H. Veith. 2013. Information Reuse for
Multi-goal Reachability Analyses. In Proc. ESOP (LNCS 7792). Springer, 472–491.
https://doi.org/10.1007/978-3-642-37036-6_26

[14] D. Beyer, M.-C. Jakobs, T. Lemberger, andH.Wehrheim. 2018. Replication Package
for Article “Reducer-Based Construction of Conditional Verifiers”, Proc. ICSE’18.
https://doi.org/10.5281/zenodo.1172228

[15] D. Beyer and M. E. Keremoglu. 2011. CPAchecker: A Tool for Configurable
Software Verification. In Proc. CAV (LNCS 6806). Springer, 184–190. https://doi.
org/10.1007/978-3-642-22110-1_16

[16] D. Beyer, M. E. Keremoglu, and P. Wendler. 2010. Predicate Abstraction with
Adjustable-Block Encoding. In Proc. FMCAD. IEEE, 189–197. http://ieeexplore.
ieee.org/document/5770949/

[17] D. Beyer and T. Lemberger. 2017. Software Verification: Testing vs. Model
Checking. In Proc. HVC (LNCS 10629). Springer, 99–114. https://doi.org/10.1007/
978-3-319-70389-3_7

[18] D. Beyer and S. Löwe. 2013. Explicit-State Software Model Checking Based
on CEGAR and Interpolation. In Proc. FASE (LNCS 7793). Springer, 146–162.
https://doi.org/10.1007/978-3-642-37057-1_11

[19] D. Beyer, S. Löwe, and P. Wendler. 2015. Benchmarking and Resource Mea-
surement. In Proc. SPIN (LNCS 9232). Springer, 160–178. https://doi.org/10.1007/
978-3-319-23404-5_12

[20] D. Beyer, S. Löwe, and P. Wendler. 2015. Refinement Selection. In Proc. SPIN
(LNCS 9232). Springer, 20–38. https://doi.org/10.1007/978-3-319-23404-5_3

[21] D. Beyer, S. Löwe, and P. Wendler. 2015. Sliced Path Prefixes: An Effective Method
to Enable Refinement Selection. In Proc. FORTE (LNCS 9039). Springer, 228–243.
https://doi.org/10.1007/978-3-319-19195-9_15

[22] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yun-
shan Zhu. 2003. Bounded Model Checking. Advances in Computers 58 (2003),
117–148. https://doi.org/10.1016/S0065-2458(03)58003-2

[23] M. Böhme, V.-T. Pham, and A. Roychoudhury. 2016. Coverage-based Greybox
Fuzzing as Markov Chain. In Proc. SIGSAC. ACM, New York, NY, USA, 1032–1043.
https://doi.org/10.1145/2976749.2978428

[24] A. R. Bradley. 2011. SAT-Based Model Checking without Unrolling. In Proc.
VMCAI (LNCS 6538). Springer, 70–87. https://doi.org/10.1007/978-3-642-18275-4_
7

[25] J. Burnim and K. Sen. 2008. Heuristics for Scalable Dynamic Test Generation. In
Proc. ASE. IEEE, 443–446. https://doi.org/10.1109/ASE.2008.69

[26] C. Cadar, D. Dunbar, and D. R. Engler. 2008. KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs. In Proc. OSDI.
USENIX Association, 209–224. http://www.usenix.org/events/osdi08/tech/full_
papers/cadar/cadar.pdf

[27] M. Chalupa, M. Vitovská, M. Jonás, J. Slaby, and J. Strejcek. 2017. Symbiotic 4:
Beyond Reachability (Competition Contribution). In Proc. TACAS (LNCS 10206).
Springer, 385–389. https://doi.org/10.1007/978-3-662-54580-5_28

[28] O. Chebaro, N. Kosmatov, A. Giorgetti, and J. Julliand. 2012. Program Slicing
Enhances a Verification Technique Combining Static and Dynamic Analysis. In
Proc. SAC. ACM, 1284–1291. https://doi.org/10.1145/2245276.2231980

[29] M. Christakis, P. Müller, and V. Wüstholz. 2012. Collaborative Verification and
Testing with Explicit Assumptions. In Proc. FM (LNCS 7436). Springer, 132–146.
https://doi.org/10.1007/978-3-642-32759-9_13

[30] M. Christakis, P. Müller, and V. Wüstholz. 2016. Guiding Dynamic Symbolic
Execution Toward Unverified Program Executions. In Proc. ICSE. ACM, 144–155.
https://doi.org/10.1145/2884781.2884843

[31] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. 2003. Counterexample-
guided Abstraction Refinement for Symbolic Model Checking. J. ACM 50, 5
(2003), 752–794. https://doi.org/10.1145/876638.876643

[32] P. Cousot and R. Cousot. 1979. Systematic Design of Program Analysis Frame-
works. In POPL. ACM Press, 269–282. https://doi.org/10.1145/567752.567778

[33] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
2006. Combination of Abstractions in the ASTRÉE Static Analyzer. In Proc. ASIAN
(LNCS 4435). Springer, 272–300. https://doi.org/10.1007/978-3-540-77505-8_23

[34] C. Csallner and Y. Smaragdakis. 2005. Check ’N’ Crash: Combining Static Check-
ing and Testing. In Proc. ICSE. ACM, 422–431. https://doi.org/10.1145/1062455.
1062533

[35] M. Czech, M.-C. Jakobs, and H. Wehrheim. 2015. Just Test What You Cannot
Verify!. In Proc. FASE (LNCS 9033). Springer, 100–114. https://doi.org/10.1007/
978-3-662-46675-9_7

[36] P. Daca, A. Gupta, and T. A. Henzinger. 2016. Abstraction-Driven Concolic
Testing. In Proc. VMCAI (LNCS 9583). Springer, 328–347. https://doi.org/10.1007/
978-3-662-49122-5_16

[37] X. Ge, K. Taneja, T. Xie, and N. Tillmann. 2011. DyTa: Dynamic Symbolic Ex-
ecution Guided with Static Verification Results. In Proc. ICSE. ACM, 992–994.
https://doi.org/10.1145/1985793.1985971

[38] P. Godefroid, A. V. Nori, S. K. Rajamani, and S. Tetali. 2010. Compositional
May-must Program Analysis: Unleashing the Power of Alternation. In Proc. POPL.
ACM, 43–56. https://doi.org/10.1145/1706299.1706307

[39] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K. Rajamani. 2006.
SYNERGY: A New Algorithm for Property Checking. In Proc. FSE. ACM, 117–127.
https://doi.org/10.1145/1181775.1181790

[40] M. Heizmann, Y.-W. Chen, D. Dietsch, M. Greitschus, A. Nutz, B. Musa, C. Schät-
zle, C. Schilling, F. Schüssele, and A. Podelski. 2017. Ultimate Automizer with
an On-Demand Construction of Floyd-Hoare Automata (Competition Contribu-
tion). In Proc. TACAS (LNCS 10206). Springer, 394–398. https://doi.org/10.1007/
978-3-662-54580-5_30

[41] M. Heizmann, J. Hoenicke, and A. Podelski. 2013. Software Model Checking
for People Who Love Automata. In Proc. CAV (LNCS 8044). Springer, 36–52.
https://doi.org/10.1007/978-3-642-39799-8_2

[42] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. 2004. Abstractions
from Proofs. In Proc. POPL. ACM, 232–244. https://doi.org/10.1145/964001.964021

[43] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. 2002. Lazy Abstraction. In
Proc. POPL. ACM, 58–70. https://doi.org/10.1145/503272.503279

[44] M.-C. Jakobs and H. Wehrheim. 2014. Certification for Configurable Program
Analysis. In Proc. SPIN. ACM, 30–39. https://doi.org/10.1145/2632362.2632372

[45] M.-C. Jakobs and H. Wehrheim. 2015. Programs from Proofs of Predicated
Dataflow Analyses. In Proc. SAC. ACM, 1729–1736. https://doi.org/10.1145/
2695664.2695690

[46] P. Jalote, V. Vangala, T. Singh, and P. Jain. 2006. Program Partitioning: A Frame-
work for Combining Static and Dynamic Analysis. In Proc. WODA. ACM, 11–16.
https://doi.org/10.1145/1138912.1138916

[47] R. Jhala and R. Majumdar. 2009. Software Model Checking. Comput. Surveys 41,
4, Article 21 (2009), 54 pages. https://doi.org/10.1145/1592434.1592438

[48] A. V. Khoroshilov, V. S. Mutilin, A. K. Petrenko, and V. Zakharov. 2009. Es-
tablishing Linux Driver Verification Process. In Proc. Ershov Memorial Confer-
ence (LNCS 5947). Springer, Berlin, Heidelberg, 165–176. https://doi.org/10.1007/
978-3-642-11486-1_14

[49] Y. Köroglu and A. Sen. 2016. Design of a Modified Concolic Testing Algorithm
with Smaller Constraints. In Proc. CSTVA@ISSTA (CEUR 1639). CEUR-WS.org,
3–14. http://ceur-ws.org/Vol-1639/paper-03.pdf

[50] A. Lal, S. Qadeer, and S. K. Lahiri. 2012. A Solver for Reachability Modulo
Theories. In Proc. CAV (LNCS 7358). Springer, 427–443. https://doi.org/10.1007/
978-3-642-31424-7_32

[51] K. Li, C. Reichenbach, C. Csallner, and Y. Smaragdakis. 2014. Residual Investiga-
tion: Predictive and Precise Bug Detection. ACM Transactions on Software Engi-
neering and Methodology 24, 2 (2014), 7:1–7:32. https://doi.org/10.1145/2656201

[52] G. C. Necula. 1997. Proof-Carrying Code. In Proc. POPL. ACM Press, 106–119.
https://doi.org/10.1145/263699.263712

[53] H. Post, C. Sinz, A. Kaiser, and T. Gorges. 2008. Reducing False Positives by
Combining Abstract Interpretation and Bounded Model Checking. In Proc. ASE.
IEEE, 188–197. https://doi.org/10.1109/ASE.2008.29

1192

116 APPENDIX B. ORIGINAL MANUSCRIPTS

ICSE 2018, May 27 – June 3, 2018, Gothenburg, Sweden D. Beyer, M.-C. Jakobs, T. Lemberger, and H. Wehrheim

[54] Z. Rakamaric and M. Emmi. 2014. SMACK: Decoupling Source Language Details
from Verifier Implementations. In Proc. CAV (LNCS 8559). Springer, 106–113.
https://doi.org/10.1007/978-3-319-08867-9_7

[55] H. Seo and S. Kim. 2014. How We Get There: A Context-guided Search Strategy
in Concolic Testing. In Proc. FSE. ACM, 413–424. https://doi.org/10.1145/2635868.
2635872

[56] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshi-
taishvili, C. Kruegel, and G. Vigna. 2016. Driller: Augmenting Fuzzing
Through Selective Symbolic Execution. In Proc. NDSS. The Internet Soci-
ety. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/

driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
[57] P. Wendler. 2013. CPAchecker with Sequential Combination of Explicit-State

Analysis and Predicate Analysis (Competition Contribution). In Proc. TACAS
(LNCS 7795). Springer, 613–615. https://doi.org/10.1007/978-3-642-36742-7_45

[58] D. Wonisch, A. Schremmer, and H. Wehrheim. 2013. Programs from Proofs - A
PCC Alternative. In Proc. CAV (LNCS 8044). Springer, 912–927. https://doi.org/10.
1007/978-3-642-39799-8_65

[59] Q. Yi, Z. Yang, S. Guo, C. Wang, J. Liu, and C. Zhao. 2015. Postconditioned
Symbolic Execution. In Proc. ICST. IEEE, 1–10. https://doi.org/10.1109/ICST.2015.
7102601

1193

B.6. Reducer-Based Construction of Conditional Verifiers 117

Conditional Testing
Off-the-Shelf Combination of Test-Case Generators

Dirk Beyer and Thomas Lemberger

LMU Munich, Munich, Germany

Abstract. There are several powerful automatic testers available, each
with different strengths and weaknesses. To immediately benefit from
different strengths of different tools, we need to investigate ways for
quick and easy combination of techniques. Until now, research has mostly
investigated integrated combinations, which require extra implementation
effort. We propose the concept of conditional testing and a set of com-
bination techniques that do not require implementation effort: Different
testers can be taken ‘off the shelf’ and combined in a way that they
cooperatively solve the problem of test-case generation for a given input
program and coverage criterion. This way, the latest advances in test-case
generation can be combined without delay. Conditional testing passes
the test goals that a first tester has covered to the next tester, so that
the next tester does not need to repeat work (as in combinations without
information passing) but can focus on the remaining test goals. Our
combinations do not require changes to the implementation of a tester,
because we leverage a testability transformation (i.e., we reduce the input
program to those parts that are relevant to the remaining test goals). To
evaluate conditional testing and our proposed combination techniques,
we (1) implemented the generic conditional tester CondTest, including
the required transformations, and (2) ran experiments on a large amount
of benchmark tasks; the obtained results are promising.

Keywords: Software testing · Test-case generation · Conditional model checking ·
Cooperative verification · Software verification · Program analysis · Test coverage

1 Introduction

Tool competitions in software verification and testing [1,2,26,34] have shown
that there is no tool that is superior, but that different tools and approaches have
different strengths. Therefore, we need to combine different tools and approaches.
Integrated combination approaches [8,15,19,22] have shown their potential, but
those combinations require additional implementation work.

The goal of this paper is to provide a generic framework that enables combi-
nations of tools for test-case generation without the need to change the tools:
We show how to take a set of testers ‘off the shelf’ and combine them on the

Supported in part by DFG grant BE 1761/7-1.
c© Springer Nature Switzerland AG 2019
Y.-F. Chen et al. (Eds.): ATVA 2019, LNCS 11781, pp. 189–208, 2019.
https://doi.org/10.1007/978-3-030-31784-3_11

118 APPENDIX B. ORIGINAL MANUSCRIPTS

190 D. Beyer and T. Lemberger

Program

Ψ0

Covered
Test Goals

ϕ

Coverage
Criterion

Conditional
Tester

Ψ1

Covered
Test Goals

Test Suite

Fig. 1. Conditional testing

1 int main() {
2 int x = input();
3 if (x != 161) {
4 // ...
5 } else {
6 // ...
7 }
8 }

Fig. 2. Program under test

Ψ0:
∅

ϕ:
branch
cov.

Conditional
Tester 1

input():

0
input():

0

Ψ1:
@4

Conditional
Tester 2

Ψ2:
@4+@6

input():

161
Test Suite

Fig. 3. Example usage of conditional testers

binary level. In other words, any tester can be taken as a black box, wrapped
into a new meta tester (conditional tester) by a fully automated construction,
and the new tester uses interfaces that make it possible to combine it with others
(for an overview of combination techniques for software verification see [12]).
There are several successful testers for C programs already; nine of them par-
ticipated in the competition on software testing [2] and adhere to standard
exchange formats for their input and output.

Conditional testing applies the idea of conditional model checking [7] to
testing, as illustrated in Fig. 1. A conditional tester gets as input a program
under test, a coverage criterion ϕ (e.g., ‘branch coverage’), and a condition Ψ0

that describes a set of test goals that are already covered by existing tests. With
this information, a conditional tester creates (1) a test suite that tries to cover
as many test goals of [[ϕ]] \ Ψ0 as possible, and (2) a new condition Ψ1 of test
goals that have been covered. For a coverage criterion ϕ, we use [[ϕ]] to denote
the test goals that are needed to fulfill ϕ. The condition Ψ1 covers the test goals
described by condition Ψ0 and the test goals newly covered by the created test
suite. With this interface for information passing, conditional testers can be
combined to focus on different or remaining test goals.

B.7. Conditional Testing: Off-the-Shelf Combination of Test-Case Generators 119

Conditional Testing 191

Figure 2 shows a small program that we use to illustrate conditional testing.
The program gets an arbitrary integer as input and stores it in program variable x.
The program then checks whether x is un-equal to value 161. If it is, the if-
branch is entered and some more code (// ...) is executed. Otherwise, the
else-branch is entered. The coverage criterion of branch coverage defines two
test goals for this program: (1) cover line 4 (denoted by @4 in FQL [25]), and
(2) cover line 6 (@6). A test suite that covers both test goals would contain
at least two test cases: One with input 161, and one with any other input.
A randomized tester can quickly generate a test case with an input different
from 161, because the number of possible values is very high and thus very
probable to be fulfilled by a random test case. In contrast, it is difficult for a
randomized tester to create a test case with input 161.

Let us consider the combination of a fast, but shallow randomized tester
(Conditional Tester 1 in Fig. 3) with a tester that is slower, but uses an ex-
haustive reasoning technique (Conditional Tester 2), to obtain a test suite that
covers all branches: Given the program under test, the coverage criterion ϕ =
COVER EDGES(@DECISIONEDGE) (branch coverage in FQL syntax), and the
empty condition Ψ0 = ∅ (i.e., no test goal covered yet), we run the conditional,
random tester for a short amount of time. Assume it creates several differ-
ent test cases, including one with input value 0. The created test cases cover
line 4, but do not cover line 6. Thus, the conditional tester returns Ψ1 = @4
for the now covered test goal. A second conditional tester, for example based
on symbolic execution, then gets the same program and coverage criterion, but
condition Ψ1. The conditional tester focuses on the remaining test goal of covering
line 6 and creates a test case with input 161. Now, all test goals are covered
and Ψ2 = @4+@6 describes both test goals.

Conditional testing does not prescribe a certain format or language to be
used for specifying coverage criteria and conditions. The competition on software
testing [2] uses FQL [24,25] as test-specification language, and we use FQL in
the example above to describe the condition, i.e., the already-covered test goals.
FQL is a versatile language for defining various test criteria, allows to define
explicit sets of test goals by enumerating single locations, but it also supports to
specify full program paths as test goals, as well as value constraints on variables
at certain program locations, and of course standard coverage criteria such as
branch coverage are provided. For the first version of our tool implementation
CondTest, we started with a simpler way to denote test goals.

Since existing testers do not accept conditions, we propose a testability
transformation called reducer that uses the coverage criterion and the condition
to transform the program under test into a residual program that is restricted to
those parts of the program that are needed to generate test cases for the remaining
test goals. This residual program is then given to an off-the-shelf tester (instead
of the original program under test), such that the tester is forced to generate
test cases for the remaining test goals. The resulting test suite is given to an
extractor that extracts the test goals that are covered in the original program,
and computes the new condition. This process of transforming off-the-shelf testers

120 APPENDIX B. ORIGINAL MANUSCRIPTS

192 D. Beyer and T. Lemberger

into conditional testers can be split into three independent components: reducer,
tester, and extractor. All three components are defined through their type
and soundness-requirements, and many different implementations are possible.

To show the potential of our approach, we implemented examples for reducer
and extractor. We use the common formats and infrastructure of the Inter-
national Competition on Software Testing (Test-Comp) [2] to allow plug-and-
play transformation of existing software testers (for example, CoVeriTest,
CPA/Tiger, Klee) into conditional testers.

In addition, we contribute a construction based on conditional testing that
turns an existing, formal software verifier into a conditional tester, such that
existing verifiers and existing testers can be combined as well. Formal verifiers
can be specialized for finding a counterexample to a certain specification, e.g.,
an assertion violation or a program location of interest. Verifiers have been
able to create test cases from such counterexamples for over a decade [3,39]
and can thus be used for directed generation of test cases for hard-to-reach
test goals. Our generic conditional tester can use all verifiers (31 tools in 2019)
of the International Competition on Software Verification (SV-COMP) [1]. It
uses the standard violation-witness exchange-format [4] and transforms created
witnesses into executable tests [5]. To feed test goals to verifiers, we provide a
tailored transformation that inserts function calls at test goals and defines the
specification such that the verifier shall prove unreachability of such a function
call. Since most verifiers stop their analysis after finding one counterexample
(i.e., creating a single test case), we repeatedly apply conditional testing with
the same verifier to obtain a full test suite.

Related Work. We base our work on conditional model checking [7], which
is a general concept for information exchange between different model checkers
through the use of conditions. The conditions are used to instruct the next
conditional model checker which parts of the state space it does not need to
verify because the previous model checker had successfully verified those parts
of the state space already. To transform any off-the-shelf model checker into
a conditional model checker, program reduction [9,18] was proposed and suc-
cessfully applied. We apply this general idea to testing and call it conditional
testing. The conditions of conditional testing describe parts of the program
that do not need to be tested, in terms of test goals. Similar to the reducer for
conditional model checking [9] (which cuts off program paths that are already
verified), we developed a reducer that cuts off program paths whose test goals
are already covered. Further transformation techniques that reduce programs to
only contain program paths that may be relevant for analysis include program
slicing [18,38] and program trimming [20].

Other works that allow combinations of different testing techniques exists; they
are either limited to specific test-case-generation techniques [8,28,30,31,36,40]
or require changes of the existing implementations [8,31]. In contrast, conditional
testing is completely technique-agnostic and works with existing testers ‘off the
shelf’, that is, without changing the existing testers. Some techniques of test-suite
augmentation [27,37] can be used to iteratively generate test suites with one

B.7. Conditional Testing: Off-the-Shelf Combination of Test-Case Generators 121

Conditional Testing 193

arbitrary tester, and one specific second technique that reuses the test suite
generated by the first tester. These approaches are subsumed by conditional
testing as special cases. Further combination approaches of tools for verification
and testing include the Electronic Tools Integration platform (ETI) [29,35], and
the Evidential Tool Bus (ETB) [17,32]. Conditional model checking was also
applied to combine program analysis and testing [13,16,18].

Contributions. This article describes the following contributions:

1. We introduce the concept of conditional testing (Fig. 1), which enables quick
and simple combinations of conditional testers with information passing. This
provides the interface to combine existing testers.

2. We present a construction of conditional testers from off-the-shelf test-case
generators, based on program reduction and test-goal extraction (Sect. 3).

3. We present several possible combinations for conditional testers (Sect. 4).
4. Using some of these combinations, we present a construction of testers from

off-the-shelf software verifiers, based on conditional testing (Sect. 5).
5. We have implemented the generic conditional tester CondTest, which con-

tains all components that are necessary for the above-mentioned constructions
and combinations (https://doi.org/10.5281/zenodo.3352401).

6. We show the potential of conditional testing for software via a thorough
experimental evaluation on the large Test-Comp benchmark set, consisting
of 1 720 benchmark tasks (Sect. 6).

2 Background

In the following, we remind the reader of some notions that are necessary to instan-
tiate the concept of conditional testing to software. A test vector v̄ = 〈v0, . . . , vn〉
is a sequence of program inputs vi with 0 ≤ i ≤ n. A test vector describes a test
case over the program inputs, in the order that they are passed to the program
under test. A test suite {v̄0, . . . , v̄l} is a set of test vectors v̄i with 0 ≤ i ≤ l. We
store and exchange test suites in the Test-Comp test format [2]. All Test-Comp
participants can write a generated test suite in this format, which stores a test
suite in a test-suite directory with several files in XML format: (1) one metadata
file that contains metadata about the created test suite, and (2) one additional
file for each test vector. Each test-vector file lists the test values of that test case.

We represent programs as control-flow automata (CFA) [6]. A CFA is an
automaton P = (L, l0, E) with a set L of states, initial state l0, and a set
E = L × Ops × L of edges, with set Ops of all possible program operations. The
set L of states represents the program locations, the initial state l0 represents the
entry point of the program, and each control-flow edge (l, op, l′) ∈ E represents a
program transfer where the control flows from program location l to program
location l′ and program operation op is executed. An operation is either an
assignment, an assumption, or a nop. An assignment x := exp assigns the value
of expression exp to program variable x, where exp is a either a constant or an

122 APPENDIX B. ORIGINAL MANUSCRIPTS

194 D. Beyer and T. Lemberger

l0

l3

l4 l6

l7

x := input()

[x �= 161] [!(x �= 161)]

// ... // ...

Fig. 4. CFA representation of the program in Fig. 2

arithmetic expression over constants and program variables. An assumption [p]
only transfers control from l to l′ if p is true, where p is a boolean expression
over constants and program variables. A nop is a program operation with no
effect on the program’s data state. A nop may have an arbitrary text label.
Figure 4 shows a CFA representation of the program from our introductory
example (Fig. 2). A program path π = 〈l0 op0−−→ l1

op1−−→ . . . ln−1
opn−1−−−−→ ln〉 is a

sequence of program locations that are sequentially connected through CFA edges
(li, opi, li+1) ∈ E. We write π ∈ [[P]] if π is a program path of program P . The
execution of a test vector v̄ on a CFA P results in a single, deterministic program
path 〈l0 op0−−→ . . .

opn−1−−−−→ ln〉, beginning at the program entry l0. A test vector
covers a test goal g if its execution results in a program path that reaches g.

A violation witness [4] is a non-deterministic, finite-state automaton that
describes a set of program paths from which at least one reaches a specification
violation. From each violation witness, at least one test vector can be extracted [5]
that follows a program path described by the witness.

A testability transformation [23] is a transformation P × G → P × G over
the set P of programs and the set G of test-goal descriptions. A testability
transformation τ transforms a given program P and given test goals G such
that, for τ(P,G) = (P ′,G′), the following holds: if a test-suite S covers all test
goals G′ on P ′, test suite S covers all test goals G on P . The reducer presented
in the following section will be based on a testability transformation that only
transforms the program and keeps the test goals unchanged.

3 Construction of Conditional Testers from
Existing Testers

Figure 5 shows how a conditional tester can be created from an off-the-shelf
tester. A conditional software tester gets as input a program under test P , a
coverage criterion ϕ, and a condition Ψ0 (that describes already covered test
goals). First, the set G = [[ϕ]] \ Ψ0 of remaining test goals that shall be covered
is computed. Then, a program reducer reducer takes G and P , and creates a
residual program that contains the program behavior relevant for creating test
cases that cover test goals in G and that omits other program behavior. This
residual program and coverage criterion ϕ are then given to a (classic, existing)

B.7. Conditional Testing: Off-the-Shelf Combination of Test-Case Generators 123

Conditional Testing 195

Program

ϕ

Coverage
Criterion

Ψ0

Covered
Goals

\ G

Remaining
Goals

reducer

Residual
Program

Off-the-shelf
Tester

Test Suite extractor

Ψ ′

∪

Ψ1

Covered
Goals

Fig. 5. Conditional tester testercond

tester, which creates new test cases based on them. Once the tester stops, the
original program P , the coverage criterion ϕ, and the created test suite are given
to a test-goal extractor extractor, which computes all test goals Ψ ′ in P that are
described by ϕ and that the test suite covers. Then, the newly covered goals Ψ ′

are combined with Ψ0 to get the full set Ψ1 = Ψ0 ∪ Ψ ′ of now covered test goals.
In the following, we will show requirements on the components reducer

and extractor. We consider programs in their CFA representation. For ease
of presentation, we assume that all program variables and constants are inte-
gers, and we only consider intra-procedural analysis here, i.e., programs with
a single procedure. Our approach can be naturally extended to other data
types and inter-procedural analysis. We represent test goals as CFA edges and
describe conditions as sets of test goals.1

3.1 Program Reduction

A program reducer is a testability transformation reducerG : P → P ′ that
transforms, for a given set G of test goals, a program P to a program P ′ that is
G-coverage-equivalent to P . Two programs P and P ′ are G-coverage-equivalent
if the two executions of P and P ′ on a test vector v̄ cover the same subset
Gv̄ ⊆ G of test goals. Compared to traditional testability transformation [23], the
set G of test goals is not changed by reducer (we write reducerG : P → P ′ as
abbreviation for reducer : P × G → P ′ × G). This allows us to run testers and
generated test cases on the same coverage criterion, and no mapping between
test goals is necessary. We require a program reducer to be sound and complete.
Soundness is the basic requirement for testability transformations [23]. We also
require completeness to ensure that test-case generation on the reduced program
does not miss any test goal that is reachable in the original program.
1 All coverage criteria that are based on code reachability can be reduced to reachability

of CFA edges through testability transformations [23,33].

124 APPENDIX B. ORIGINAL MANUSCRIPTS

196 D. Beyer and T. Lemberger

l0

l3

l6

l7

x := input()

[!(x �= 161)]

// ...

1 int main() {
2 int x = input();
3 if (x != 161) {
4 exit(1);
5 // ...
6 } else {
7 // ...
8 }
9 }

Fig. 6. Residual program for
test goal (l6, // ..., l7)

l0

l3

l4 l6

l4′ l6′

l7

x := input()

[x �= 161] [!(x �= 161)]

GOAL_47 GOAL_67

// ... // ...

1 int main() {
2 int x = input();
3 if (x != 161) {
4 GOAL_47:;
5
6 } else {
7 GOAL_67:;
8

//...

//...
9 }

10 }

Fig. 7. Program instrumented by Alg. 1 for
test-goal extraction

Soundness. Given a program P and a set G of test goals, the reducer reducerG
is sound if the following holds: if a test vector v̄ on program P ′ = reducerG(P)
covers a test goal g ∈ G, then v̄ on program P covers g.

Completeness. Given a program P and a set G of test goals, the reducer reducerG
is complete if the following holds: if a test vector v̄ on program P covers a test
goal g ∈ G, then v̄ on program P ′ = reducerG(P) covers g.

Identity Reducer. The program reducer reducerid is the identity, i.e., it
returns a given program without any modification.

Pruning Reducer. The program reducer reducerprune is based on syntac-
tic reachability. Given a CFA P = (L, l0, E) and a set G ⊆ E of test goals,
reducerprune computes a new CFA P ′ = (L′, l0, E′) that only contains program
locations and their corresponding edges from which a test goal is reachable.

Formally, L′ = {l ∈ L | ∃(lg, opg, l′g) ∈ G : 〈. . . op−→ l
op′
−−→ . . . lg

opg−−→ l′g〉 ∈ [[P]]}
and E′ = {(l, op, l′) ∈ E | l, l′ ∈ L′}.

Figure 6 shows the result of reducerprune{(l6,// ...,l7)}(P) for our example program
(Fig. 4), as CFA and translated to C code. Because the left branch with condition
x �= 161 can never reach test goal (l6, // ..., l7), it is removed from the CFA.
C code can not express single assumption edges, so we translate the CFA by
placing an exit-call after the first assumption that is not part of the CFA (line 4).

Proposition 1. Program reducer reducerprune is sound.

Proof. Given a program P = (L, l0, E) and a set G ⊆ E of test goals, if a
program path 〈l0 op−→ . . . lg

opg−−→ l′g〉 with (lg, opg, l′g) ∈ G exists in program
P ′ = reducerpruneG (P), then the same program path must exist in the original
program P , by construction. So if the execution of a test vector v̄ on P ′ results
in program path 〈l0 op−→ . . . lg

opg−−→ l′g . . .〉, then its execution on P will result in
the same program path, and thus also reach test goal (lg, opg, l′g).

B.7. Conditional Testing: Off-the-Shelf Combination of Test-Case Generators 125

Conditional Testing 197

Proposition 2. Program reducer reducerprune is complete.

Proof. Given a program P = (L, l0, E) and a set G ⊆ E of test goals, if a program
path 〈l0 op−→ . . . lg

opg−−→ l′g〉 with (lg, opg, l′g) ∈ G exists in program P , then the
same program path must exist in the reduced program P ′ = reducerpruneG (P),
by construction. So if the execution of a test vector v̄ on P results in program
path 〈l0 op−→ . . . lg

opg−−→ l′g . . .〉, then its execution on P ′ will result in the same
program path, and thus also reach test goal (lg, opg, l′g).

Annotating Reducer. Program reducer reducerannot is based on program an-
notations. Given a CFA P = (L, l0, E) and a set G⊆E of test goals, reducerannot
computes (analogous to adding labels,Algorithm1) anewCFAP ′=(L′, l0, E′) that
contains a call to custom method VERIFIER_error before each test goal. Method
VERIFIER_error is defined as an empty method, i.e., it has no effect on the
program state, but it can be used to guide supporting testers. Since reducerannot
does not change program behavior, it is a sound and complete program reducer.

3.2 Test-Goal Extraction

A test-goal extractor extractor takes as input a program P , a coverage crite-
rion ϕ, and a test suite, and returns as output a set Ψ of test goals that are covered
by the test suite. We require a test-goal extractor to be sound and complete.

Soundness. Given a program P , a coverage criterion ϕ, and a test suite S that
covers a set G ⊆ [[ϕ]] of test goals, then a test-goal extractor extractor is
sound, if the set Ψ = extractor(P,ϕ, S) only contains test goals that are
covered by S, i.e., Ψ ⊆ G.

Completeness. Given a program P , a coverage criterion ϕ, and a test suite S
that covers a set G ⊆ [[ϕ]] of test goals, then a test-goal extractor extractor is
complete, if the set Ψ = extractor(P,ϕ, S) contains all test goals that are
covered by S, i.e., Ψ ⊇ G.

Test-Goal Extraction Based on Test Execution. Test-goal extrac-
tor extractorexec computes covered test goals through execution. For a pro-
gram P , a coverage criterion ϕ, and a test suite S, it executes each test vec-
tor v̄i ∈ S on program P and records the CFA edges of the resulting program
path πi = 〈l0 op−→ . . .

opn−1−−−−→ ln〉. From these, it computes the set of test goals
covered by S, i.e., Ψ =

⋃
πi

{(l, op, l′) ∈ πi}.
To be able to easily identify test goals in real C code, we perform a testa-

bility transformation that adds, for each test goal g ∈ [[ϕ]], a nop with la-
bel GOAL_i_j. Test-goal extraction for branch coverage consists of four steps:
(1) Computing the set of test goals (test-goal computation), (2) adding, for
each test goal, a label to the original program that identifies that test goal
in the code (testability transformation), (3) executing the test suite on that
transformed program (test execution), and (4) checking which labels are covered
by the test suite (coverage measurement).

126 APPENDIX B. ORIGINAL MANUSCRIPTS

198 D. Beyer and T. Lemberger

Algorithm 1. Testability Transformation: addLabels(P,G)
Input: CFA P = (L, l0, E), test goals G ⊆ E
Output: CFA (L′, l0, E′) with test-goal labels
Variables: Sets waitlist, visited ⊆ L

L′, E′ = {}
waitlist, visited = {l0}
while waitlist �= ∅ do

choose li from waitlist; remove li from waitlist
for (li, op, lj) ∈ E do

L′ = L′ ∪ {li, lj}
if (li, op, lj) ∈ G then

L′ = L′ ∪ {l′i}
E′ = E′ ∪ {(li,GOAL_i_j, l′i), (l′i, op, lj)}

else
E′ = E′ ∪ {(li, op, lj) ∈ E}

if lj �∈ visited then
waitlist = waitlist ∪ {lj}
visited = visited ∪ {lj}

return (L′, l0, E′)

(1) Test-Goal Computation. As an example, we use the coverage criterion of
branch coverage. For branch coverage and a CFA (L, l0, E), we use as test
goals the set of all edges that are preceded by assume edges, i.e., [[ϕ]] =
{(l, ·, ·) ∈ E | ∃(·, op, l) ∈ E : op is assume operation}.

(2) Testability Transformation. We first translate a given program in real C code
to a CFA P . Algorithm1 takes this CFA P and creates a semantically equivalent
CFA with additional edges for program labels. For P = (L, l0, E), the new
CFA P ′ = (L′, l0, E′) is computed as follows: Initially, the sets L′ and E′ are empty.
A waitlist is initialized with the initial program location l0. As long as the waitlist
is not empty, a program location li is selected and removed from the waitlist and
each outgoing edge (li, op, lj) ∈ E is considered. First, li and lj are added to L′.

Then, if (li, op, lj) is a test goal, a new program label GOAL_i_j is introduced
just before op as follows: A new program location l′i is added to L′, and the
two edges (li, GOAL_i_j, l′i) and (l′i, op, lj) are added to E′.

If the edge (li, op, lj) is not a test goal, it is added to E′ without modifications.
After this, if lj was not encountered before, it is added to the waitlist and the set
of visited nodes. As soon as the waitlist is empty, all locations of the original CFA
have been traversed and the new CFA (L′, l0, E′) is returned. This transformation
traverses each program location only once and thus scales well. At the end, we
translate the transformed CFA back into C code.

Figure 7 shows the result of addLabels(P,G) for our example pro-
gram P (Fig. 4) and branch coverage, i.e., G = {(l4, // ..., l7), (l6, // ..., l7)}.
The figure shows the resulting CFA and the translation to C code.

B.7. Conditional Testing: Off-the-Shelf Combination of Test-Case Generators 127

Conditional Testing 199

Ψ0 Cond. Tester1

Cond. Tester2

Ψ1

Ψn

Test Suite

Fig. 8. testerseq

Ψ Cond. Tester

Test Suite

Fig. 9. testercyc

Ψ0

Cond. Tester1

Cond. Tester2

Ψ1

Ψ1
′′

∪ Ψ1

Test Suite

′

Fig. 10. testerpar

(3) Test Execution. We execute all test cases of the given test suite on the
transformed program as follows: We generate a test harness that reads test
values from the standard input and provides the test values to the C program.
We compile this test harness with the transformed program and feed each test
vector to the harness in individual executions.

(4) Coverage Measurement. We use GCov to obtain a coverage report that lists
for each line2 of the transformed C program whether it was covered by the test
suite. From this report, extractorexec extracts the program labels of test goals
that are covered, and returns the corresponding test goals.

Since extractorexec is based on concrete execution of the test suite on a seman-
tically equivalent program, the method is assumed to be both sound and complete.

4 Combinations of Conditional Testers

Conditional testing enables versatile combinations of testers. We have already
seen a sequential combination in the introduction (Fig. 3), but it is also possible to
combine conditional testers in other ways, such as in cycles, in general portfolios
(i.e., also parallel), with strategy selection, or for compositional reasoning. In the
following, we will present different possible combinations of conditional testers
to show the potential of conditional software testing. Note that all of these
combinations are themselves conditional testers, so they can be combined with
each other in any way. From now on, we will omit the program under test and
the coverage criterion in figures, to have simpler diagrams.

Sequential Tester. A sequential tester testerseq(T1, T2) (Fig. 8) consists of
two component testers T1 and T2 that are executed sequentially to generate
test cases. Several sequential testers can be used to sequentially combine an
arbitrary number of testers. For simplicity, we write testerseq(T1, T2, T3) for
testerseq(T1, testerseq(T2, T3)). Each tester provides the covered test goals

2 Since the transformed program is generated such that each operation is written on
an own line in the output code, a line uniquely identifies a test-goal label.

128 APPENDIX B. ORIGINAL MANUSCRIPTS

200 D. Beyer and T. Lemberger

Ψ0 Cond. Tester

TiT1 Tn
.

Selector

Ψ1

Test Suite

Fig. 11. testerselect

Ψ0 split

Cond. Tester1

Cond. Tester2

∪

Test Suite

Ψ0
′ Ψ1

′

Ψ1
′′

Ψ1

Ψ1
′′

Fig. 12. testercomp

after its run, and the set of remaining test goals will decrease. This can be
used to combine strengths of different testers without further knowledge about
them; testers can either get a certain time limit each, or stop early if they
encounter a program feature they don’t support.

CyclicTester. A cyclic tester testercyc(T) (Fig. 9) iteratively calls a conditional
tester T with the increasing set Ψ of covered test goals. This can be used, for exam-
ple, to restart a tester after a certain limit is reached (e.g., memory consumption
or size of path constraints in symbolic execution). In combination with testerseq,
this can also be used to cycle through a sequence of testers (round-robin principle).

Parallel Tester. A parallel tester testerpar(T1, T2) (Fig. 10) runs testers T1

and T2 in parallel on the same inputs. Each tester produces its own set Ψ ′
1, Ψ

′′
1 of

covered test goals, and their union Ψ ′
1 ∪ Ψ ′′

1 = Ψ1 is the final set of covered test
goals. Several parallel testers can be used to combine an arbitrary number of
testers, similar to testerseq. In contrast to testerseq, there is no information
exchange between testers T1 and T2, so they may do redundant work.

Strategy-Selection Tester. A strategy-selection tester testerselect(T1, . . . ,
Tn) (Fig. 11) uses a selector function to select to which of testers T1, . . . , Tn

the task of test-case generation is delegated. The selector function can be an
arbitrary function that returns one of T1 to Tn, e.g., a random selection, or
based on a selection model that selects the most suited tester based on fea-
tures of the program under test.

Compositional Tester. A compositional tester testercomp(T1, T2) (Fig. 12)
first splits the condition Ψ0 into two sets Ψ ′

0 and Ψ ′′
0 , so that Ψ0 = Ψ ′

0 ∪Ψ ′′
0 .

Then, tester T1 gets as input the first set Ψ ′
0, and tester T2 gets as input the

second set Ψ ′′
0 . Both testers work on the original program P and original coverage

criterion ϕ, but due to Ψ ′
0 and Ψ ′′

0 , the first tester only works on test goals
[[ϕ]] \ Ψ ′

0, and the second tester only works on [[ϕ]] \ Ψ ′′
0 . They produce individual

sets Ψ ′
1 and Ψ ′′

1 of covered test goals. These are then merged into the final set
Ψ1 = Ψ ′

1 ∪Ψ ′′
1 of now covered test goals. More than two testers can be combined

compositionally through nested combinations. With testercomp, work can be
split (decomposition principle), for example for parallelization or to let each
tester solve the test goals it is most suited for.

B.7. Conditional Testing: Off-the-Shelf Combination of Test-Case Generators 129

Conditional Testing 201

ϕ

P

crit-to-spec φ

Formal
Verifier Wit.

Witness-
to-test

Test
Case

Fig. 13. testerveri

Ψ

tester cond

reducer annot tester veri extractorexec

Test Suite

Fig. 14. testercycveri

5 Construction of Conditional Testers from
Existing Verifiers

It has long been possible to use formal verification of reachability properties
to generate tests [3]. Compared to testers, many formal verification techniques
specialize on finding single program paths to specific program states or program
locations of interest; this makes them suitable for hard-to-reach test goals [10].
Figure 13 shows the (non-conditional) tester testerveri(V) that is based on a
formal verifier V : First, function crit-to-spec transforms the coverage crite-
rion ϕ, based on program P , to a safety specification φ which is constructed
such that P violates φ if P covers a test goal from [[ϕ]]. Then, φ and P are given
to formal verifier V , which checks whether P satisfies φ. The verifier outputs
one or more violation witnesses if test goals are reachable. From these violation
witnesses, test cases are created by witness-to-test [5].

We use the established formats for input programs and specifications for
the reachability category of SV-COMP3 to get access to a large catalog of
tools for formal verification. There are two adaptations necessary for using SV-
COMP verifiers: (1) they are only required to support the property “no call to
method __VERIFIER_error is reachable”, and may not support more general
reachability properties, and (2) they are only required to output a single violation
witness, and thus will always lead to a test suite that only consists of one test case.

We solve both issues in the following way: We let crit-to-spec always
return the specification that no call to __VERIFIER_error is reachable. We then
take testerveri and construct from it a conditional tester based on testercond

with program reducer reducerannot and test-goal extractor extractorexec. At
this point, we have a conditional tester that uses a formal verifier to always
produce a test suite with a single test case, and that returns the set of test goals
covered by that test case. To produce a full test suite for all test goals, we use a
cyclic tester testercyc(testercond(testerveri(V))) (Fig. 14). After each test-case
generation run, the newly created test case is used by extractorexec to update
the covered test goals. Then, reducerannot will insert calls to __VERIFIER_error

for the remaining test goals, and testerveri(V) will create a new test case that
covers at least one of the remaining test goals. We use testercycveri(V) to denote
a verifier-based tester that is constructed from formal verifier V .

3 https://sv-comp.sosy-lab.org/2019/rules.php

130 APPENDIX B. ORIGINAL MANUSCRIPTS

202 D. Beyer and T. Lemberger

Through the use of any of the previously mentioned combinations, a
tester testercycveri can be combined with other conditional testers.

6 Evaluation

We evaluate our tool implementation CondTest and some combinations of
testers using conditional testing along the following claims:

C1 Conditional software testing with extractorexec and reducerprune does not
significantly impact the performance of individual testers.

C2 Sequential combinations of different testers without information exchange
can improve the coverage of generated test suites, compared to single testers.

C3 Sequential combinations of different testers with conditional software testing
can improve the coverage of generated test suites, compared to sequential
combinations without information exchange.

C4 Sequential combinations of traditional testers and verifier-based testers can
improve the coverage of generated test suites.

6.1 Setup

Implementation. We implemented a generic conditional software
tester (CondTest) according to Fig. 5, including the operators reducerid,
reducerprune, reducerannot, and extractorexec. CondTest can be instantiated
as testercond, testerseq, and testercycveri, is able to create test suites for
C programs that adhere to the Test-Comp rules [2], and is available under the
open-source license Apache 2.0. We use CondTest in version 2.04. CondTest

uses the BenchExec tool-info modules5 and benchmark definitions of Test-Comp6

and SV-COMP7 for plug-and-play integration of testers and formal verifiers.
Formal verifiers are turned into testers by wrapping them each in their own
instance of CondTest (configuration testercycveri).

Tools. We consider the best three testers of Test-Comp ’19 whose licenses al-
low evaluation and publication of results: Klee [14], CoVeriTest [8], and
CPA/Tiger

8. We use all three tools in their respective versions of Test-Comp ’19.
In addition, we select the best formal verifier for reaching program locations
of interest in testable programs according to a previous study [10], i.e., Esbmc-

kind [21]. We use Esbmc-kind in its SV-COMP ’19 version. To measure the
coverage of test suites, we use GCov 7.3.0. To ensure reproducible results, we
use the benchmarking toolkit BenchExec 1.20 [11].

4 https://gitlab.com/sosy-lab/software/conditional-testing/tree/v2.0
5 https://github.com/sosy-lab/benchexec/tree/2.0/benchexec/tools
6 https://gitlab.com/sosy-lab/test-comp/bench-defs/tree/testcomp19/
benchmark-defs

7 https://github.com/sosy-lab/sv-comp/tree/svcomp19/benchmark-defs
8 https://www.es.tu-darmstadt.de/testcomp19/

B.7. Conditional Testing: Off-the-Shelf Combination of Test-Case Generators 131

Conditional Testing 203

Environment. We perform our experiments on a cluster of 168 machines, each
with 33GB of memory and an Intel Xeon E3-1230 v5 CPU, with 3.4GHz and
8 processing units (with hyper-threading). We use Ubuntu 18.04 with Linux
kernel 4.4 as operating system. We limit each benchmark run to 4 processing
units and a time limit of 900 s. Each run of CondTest is limited to 15.5GB.
Each individual test-case generation run (e.g., execution of CPA/Tiger) is
limited to 15GB, both for native execution and as part of CondTest. This way,
each test-case generation run has the same amount of memory for both native
execution and execution within CondTest. Extractor extractorexec uses a time
limit of 3 s for each test execution, to prevent hangups in case of incomplete or
non-terminating tests. To measure the achieved coverage of the complete final
test suites, we execute test cases with a memory limit of 7GB, 2 processing
units, and a time limit of 3 h for each generated test suite. At this time
limit, no timeouts occurred during coverage measurement.

Reproducibility and Benchmark Tasks. We use all 1 720 test tasks of the
Cover-Branches category of the Test-Comp ’19 benchmark. All of our experimental
data are available online9 and through a replication package.10

6.2 Results

C1: No Significant Overhead in CondTest. Figure 15 shows the branch
coverage per task achieved by the test suites created byCoVeriTest,CPA/Tiger,
and Klee, respectively, in their original Test-Comp configurations (x-axis), and as
conditional testers testercond (y-axis) inside CondTest with reducerprune and
extractorexec (reducerprune does not really prune anything because of the full set
of test goals, but parses the program, runs the pruning algorithm, and writes out
the transformed C program; the idea is to find out whether this process is efficient
and does not negatively impact the overall process). The CPU-time limit for each
test-case generation was set to 900 s (the CPU time consumed by reducerprune

is included in the measured CPU time, and thus, implicitly subtracted from
the CPU-time available for the tester). Since extractorexec only runs after the
tester, it has no influence on the time limit in a configuration with a single tester.
For points on the diagonal, the same coverage was achieved by the original tester
and its integration in testercond; points above the diagonal represent tasks for
which testercond achieved a higher coverage, and the points below the diagonal
represent tasks for which testercond achieved a lower coverage. For CoVeriTest,
the coverage for a few tasks are a bit worse when run with CondTest (just
below the diagonal). This is because CondTest uses a different, more strict
technique to enforce the memory limit than the benchmarking tool BenchExec,
due to technical reasons. For CPA/Tiger, outliers on the left (vertical stack
of points) are due to crashes from memory exhaustion. CPA/Tiger operates
close to the memory limit for many tasks. Because of this, small variations in

9 https://www.sosy-lab.org/research/conditional-testing/
10 https://doi.org/10.5281/zenodo.3352401

132 APPENDIX B. ORIGINAL MANUSCRIPTS

204 D. Beyer and T. Lemberger

Fig. 15. Branch coverage of test suites created by original tools vs. their integration
in testercond (in percent)

Fig. 16. Branch coverage of test suites created by original tools vs. their sequential
combinations with reducerid, i.e., without information exchange (in percent)

memory usage can lead to crashes. In our experiments, for most of these tasks
it was random whether CPA/Tiger stayed closely below the memory limit, or
exceeded it and crashed. Thus, the issue is not related to CondTest, but results
from memory exhaustion of the native tester. Besides these issues, it is visible
that for all three testers, no significant differences in branch coverage exist. This
suggests that using testercond with the proposed operators reducerprune and
extractorexec does not lead to a significant negative impact on the performance
just by using the conditional-testing construction.

C2: Combinations Can Improve Coverage. Figure 16 shows the branch
coverage per task achieved by the test suites created by CoVeriTest,
CPA/Tiger, and Klee, respectively, in their original Test-Comp configura-
tions with 900 s CPU-time limit (x-axis), and the coverage per task achieved
by the test suites created by CondTest (y-axis) with the sequential com-
bination testerseq(testercond(CPA/Tiger)300, testercond(CoVeriTest)300,
testercond(Klee)300) and the reducer reducerid, i.e., without information ex-
change between the three testers. Each single conditional tester (i.e., testercond
based on CPA/Tiger, CoVeriTest, and Klee) was stopped after 300 s each,
and each full test-case generation testerseq run was stopped after a total of
900 s (the CPU time consumed by CondTest for, e.g., process management, is
included in the measured CPU time, and thus, implicitly subtracted from the
CPU-time available for the last tester, testercond(Klee)).

B.7. Conditional Testing: Off-the-Shelf Combination of Test-Case Generators 133

Conditional Testing 205

Table 1. Coverage of test suites
generated without information reuse
(reducerid) and with information
reuse through reducerprune

Task branch coverage
id → prune

mod3.c.v+sep-reducer 75.0 + 5.00 80.0
Problem07_label35 52.0 + 2.00 54.0
Problem07_label37 54.2 + 1.97 56.2
Problem04_label35 79.5 + 1.79 81.3
Problem06_label02 57.0 + 1.70 58.7
Problem06_label27 57.5 + 1.09 58.6
Problem04_label02 80.2 + 1.06 81.3
Problem06_label18 57.5 + 1.05 58.6
Problem04_label16 79.1 + 1.01 80.1
Problem04_label34 80.2 + 0.99 81.2

Table 2. Coverage of test suites gen-
erated without (prune) and with (vb)
support of Esbmc-kind

Task branch coverage
prune → vb

Problem08_label30 5.72 +56.2 62.0
Problem08_label32 5.72 +56.1 61.9
Problem08_label06 5.72 +56.1 61.8
Problem08_label35 5.72 +56.0 61.7
Problem08_label00 5.72 +55.9 61.6
Problem08_label11 5.72 +55.8 61.5
Problem08_label19 5.72 +55.7 61.5
Problem08_label29 5.67 +55.7 61.4
Problem08_label22 5.72 +55.7 61.5
Problem08_label56 5.72 +55.7 61.5

The scatter plots in Fig. 16 show that the branch coverage of the test suites cre-
ated by the sequential combination is significantly higher for a significant amount
of benchmark tasks. This shows that the used testers (with CPU time limit of
300 s) can complement each other well, and that combinations can perform better
than a single tester running for a longer time on its own (900 s CPU time limit).

C3: Condition Passing Can Further Improve Coverage. To show
that conditional software testing can lead to generated test suites
with improved coverage, we compare the branch coverage of the test
suites generated by CondTest with testerseq(testercond(CPA/Tiger)300,
testercond(CoVeriTest)300, testercond(Klee)300), and the two reduc-
ers reducerid, i.e., without information exchange, and reducerprune, i.e., with
program reduction based on syntactic reachability. Table 1 shows a comparison
of the branch coverage of test suites generated by both techniques on a selection
of benchmark tasks (programs with complicated branching), rounded to three
digits. It shows that information exchange can lead to generated test suites with
improved branch coverage, adding up to 5% branch coverage.

C4: Verifiers as Test-Generators Can Improve Coverage. To show that
verifier-based testers can generate test suites with improved coverage compared
to combinations of traditional testers, we compare the branch coverage of the
test suites generated by CondTest with testerseq(testercond(CPA/Tiger)300,
testercond(CoVeriTest)300, testercond(Klee)300) (called prune) and the test
suites generated by CondTest with testerseq(testercond(CPA/Tiger)200,
testercond(CoVeriTest)200, testercond(Klee)200, testercycveri(Esbmc)300)
(called vb). Both prune and vb use reducerprune and extractorexec. For prune,
each individual tester is stopped after 300 s. For vb, CPA/Tiger, CoVeriTest,
and Klee are each stopped after 200 s, and Esbmc runs for 300 s. The total time
of each run of CondTest is 900 s (i.e., the CPU time required by reducerprune

and extractorexec is implicitly subtracted from the CPU time available for
the last tester, i.e., Klee in prune and Esbmc in vb).

134 APPENDIX B. ORIGINAL MANUSCRIPTS

206 D. Beyer and T. Lemberger

Table 2 shows a comparison of the branch coverage of test suites gener-
ated by prune and vb, respectively, on a selection of benchmark tasks (pro-
grams with complicated branching). It shows that for some tasks, the use of
Esbmc as directed tester can greatly improve branch coverage compared to
combinations of only traditional testers, creating test suites that achieve up
to 56% additional branch coverage.

7 Conclusion

We have presented the concept of conditional testing and the tool implementation
CondTest, a versatile and modular framework for constructing cooperative combi-
nations of testers based on conditional testing. First, we defined a construction of
a conditional tester from a given existing tester, based on the components reducer
and extractor. Second, we defined a set of generic combinations that are now all
possible using conditional testing. Third, we defined a construction of a conditional
tester from a given existing verifier, based on the outlined combination opportuni-
ties. All our concepts are implemented in an adjustable framework, and we showed
the potential of some new combinations through an experimental evaluation.

There are many powerful techniques for automatic test-case generation. Our
goal is to construct even more powerful combinations by leveraging cooperation,
and we hope that our construction techniques based on conditional testing help
also other researchers and engineers to construct powerful tool combinations,
without changing the implementation of the existing tools. This contributes to op-
timally use the techniques that we have to further improve the quality of software.

References

1. Beyer, D.: Automatic verification of C and Java programs: SV-COMP 2019. In:
Proc. TACAS, Part 3, LNCS, vol. 11429, pp. 133–155. Springer (2019). https://
doi.org/10.1007/978-3-030-17502-3_9

2. Beyer, D.: Competition on software testing (Test-Comp). In: Proc. TACAS,
Part 3, LNCS, vol. 11429, pp. 167–175. Springer (2019). https://doi.org/10.1007/
978-3-030-17502-3_11

3. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating
tests from counterexamples. In: Proc. ICSE, pp. 326–335. IEEE (2004). https://
doi.org/10.1109/ICSE.2004.1317455

4. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness valida-
tion and stepwise testification across software verifiers. In: Proc. FSE, pp. 721–733.
ACM (2015). https://doi.org/10.1145/2786805.2786867

5. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses:
Execution-based validation of verification results. In: Proc. TAP, LNCS, vol. 10889,
pp. 3–23. Springer (2018). https://doi.org/10.1007/978-3-319-92994-1_1

6. Beyer, D., Gulwani, S., Schmidt, D.: Combining model checking and data-flow
analysis. In: Handbook on Model Checking, pp. 493–540. Springer (2018). https://
doi.org/10.1007/978-3-319-10575-8_16

7. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: A technique to pass information between verifiers. In: Proc. FSE. ACM
(2012). https://doi.org/10.1145/2393596.2393664

B.7. Conditional Testing: Off-the-Shelf Combination of Test-Case Generators 135

Conditional Testing 207

8. Beyer, D., Jakobs, M.C.: CoVeriTest: Cooperative verifier-based testing.
In: Proc. FASE, LNCS, vol. 11424, pp. 389–408. Springer (2019). https://doi.org/
10.1007/978-3-030-16722-6_23

9. Beyer, D., Jakobs, M.C., Lemberger, T., Wehrheim, H.: Reducer-based construc-
tion of conditional verifiers. In: Proc. ICSE, pp. 1182–1193. ACM (2018). https://
doi.org/10.1145/3180155.3180259

10. Beyer, D., Lemberger, T.: Software verification: Testing vs. model checking.
In: Proc. HVC, LNCS, vol. 10629, pp. 99–114. Springer (2017). https://doi.org/
10.1007/978-3-319-70389-3_7

11. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements and solu-
tions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019). https://doi.org/
10.1007/s10009-017-0469-y

12. Beyer, D., Wehrheim, H.: Verification artifacts in cooperative verification: Survey
and unifying component framework. arXiv/CoRR 1905(08505) May 2019. https://
arxiv.org/abs/1905.08505

13. Böhme, M., Oliveira, B.C.d.S., Roychoudhury, A.: Partition-based regression
verification. In: Proc. ICSE, pp. 302–311. IEEE (2013). https://doi.org/
10.1109/ICSE.2013.6606576

14. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proc. OSDI, pp. 209–224.
USENIX Association (2008)

15. Chowdhury, A.B., Medicherla, R.K., Venkatesh, R.: VeriFuzz: Program-aware
fuzzing (competition contribution). In: Proc. TACAS, Part 3, LNCS, vol. 11429,
pp. 244–249. Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_22

16. Christakis, M., Müller, P., Wüstholz, V.: Collaborative verification and testing
with explicit assumptions. In: Proc. FM, LNCS, vol. 7436, pp. 132–146. Springer
(2012). https://doi.org/10.1007/978-3-642-32759-9_13

17. Cruanes, S., Hamon, G., Owre, S., Shankar, N.: Tool integration with the Eviden-
tial Tool Bus. In: Proc. VMCAI, LNCS, vol. 7737, pp. 275–294. Springer (2013).
https://doi.org/10.1007/978-3-642-35873-9_18

18. Czech, M., Jakobs, M., Wehrheim, H.: Just test what you cannot verify! In: Proc.
FASE, LNCS, vol. 9033, pp. 100–114. Springer (2015). https://doi.org/10.1007/
978-3-662-46675-9_7

19. Daca, P., Gupta, A., Henzinger, T.A.: Abstraction-driven concolic testing. In:
Proc. VMCAI, LNCS, vol. 9583, pp. 328–347. Springer (2016). https://doi.org/
10.1007/978-3-662-49122-5_16

20. Ferles, K., Wüstholz, V., Christakis, M., Dillig, I.: Failure-directed program trim-
ming. In: Proc. ESEC/FSE, pp. 174–185. ACM (2017). https://doi.org/10.1145/
3106237.3106249

21. Gadelha, M.Y.R., Monteiro, F.R., Cordeiro, L.C., Nicole, D.A.: ESBMC v6.0: Ver-
ifying C programs using k-induction and invariant inference (competition contribu-
tion). In: Proc. TACAS, Part 3, LNCS, vol. 11429, pp. 209–213. Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_15

22. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Syn-

ergy: A new algorithm for property checking. In: Proc. FSE, pp. 117–127. ACM
(2006). https://doi.org/10.1145/1181775.1181790

23. Harman, M., Hu, L., Hierons, R.M., Wegener, J., Sthamer, H., Baresel, A., Roper,
M.: Testability transformation. IEEE Trans. Softw. Eng. 30(1), 3–16 (2004).
https://doi.org/10.1109/TSE.2004.1265732

136 APPENDIX B. ORIGINAL MANUSCRIPTS

208 D. Beyer and T. Lemberger

24. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: Query-driven program testing.
In: Proc. VMCAI, LNCS, vol. 5403, pp. 151–166. Springer (2009). https://doi.org/
10.1007/978-3-540-93900-9_15

25. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: How did you specify
your test suite. In: Proc. ASE, pp. 407–416. ACM (2010). https://doi.org/
10.1145/1858996.1859084

26. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D., Păsăreanu, C.S.:
Rigorous examination of reactive systems. The RERS challenges 2012 and 2013.
Int. J. Softw. Tools Technol. Transfer 16(5), 457–464 (2014). https://doi.org/
10.1007/s10009-014-0337-y

27. Kim, Y., Xu, Z., Kim, M., Cohen, M.B., Rothermel, G.: Hybrid directed test suite
augmentation: An interleaving framework. In: Proc. ICST, pp. 263–272. IEEE
(2014). https://doi.org/10.1109/ICST.2014.39

28. Majumdar, R., Sen, K.: Hybrid concolic testing. In: Proc. ICSE, pp. 416–426. IEEE
(2007). https://doi.org/10.1109/ICSE.2007.41

29. Margaria, T., Nagel, R., Steffen, B.: jETI: A tool for remote tool integration. In:
Proc. TACAS, LNCS, vol. 3440, pp. 557–562. Springer (2005). https://doi.org/
10.1007/978-3-540-31980-1_38

30. Noller, Y., Kersten, R., Pasareanu, C.S.: Badger: Complexity analysis with fuzzing
and symbolic execution. In: Proc. ISSTA, pp. 322–332. ACM (2018). https://doi.org/
10.1145/3213846.3213868

31. Qiu, R., Khurshid, S., Pasareanu, C.S., Wen, J., Yang, G.: Using test ranges
to improve symbolic execution. In: Proc. NFM, LNCS, vol. 10811, pp. 416–434.
Springer (2018). https://doi.org/10.1007/978-3-319-77935-5_28

32. Rushby, J.M.: An Evidential Tool Bus. In: Proc. ICFEM, LNCS, vol. 3785, p. 36.
Springer (2005). https://doi.org/10.1007/11576280_3

33. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000). https://doi.org/10.1145/353323.353382

34. Song, J., Alves-Foss, J.: The DARPA cyber grand challenge: A competitor’s per-
spective, part 2. IEEE Secur. Priv. 14(1), 76–81 (2016). https://doi.org/10.1109/
MSP.2016.14

35. Steffen, B., Margaria, T., Braun, V.: The Electronic Tool Integration plat-
form: Concepts and design. STTT 1(1–2), 9–30 (1997). https://doi.org/10.1007/
s100090050003

36. Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J.,
Shoshitaishvili,Y.,Kruegel,C.,Vigna,G.:Driller:Augmenting fuzzing through selec-
tive symbolic execution. In: Proc. NDSS. Internet Society (2016). https://doi.org/
10.14722/ndss.2016.23368

37. Taneja,K.,Xie,T.,Tillmann,N., deHalleux, J.: eXpress:Guidedpath exploration for
efficient regression test generation. In: Proc. ISSTA, pp. 1–11. ACM (2011). https://
doi.org/10.1145/2001420.2001422

38. Tip, F.: A survey of program slicing techniques. J. Program. Lang. 3, 121–189 (1995)
39. Visser, W., Păsăreanu, C.S., Khurshid, S.: Test input generation with Java

PathFinder. In: Proc. ISSTA, pp. 97–107. ACM (2004). https://doi.org/10.1145/
1007512.1007526

40. Zhu, Z., Jiao, L., Xu, X.: Combining search-based testing and dynamic symbolic exe-
cution by evolvability metric. In: Proc. ICSME, pp. 59–68. IEEE (2018). https://
doi.org/10.1109/ICSME.2018.00015

B.7. Conditional Testing: Off-the-Shelf Combination of Test-Case Generators 137

Difference Verification with Conditions

Dirk Beyer1 , Marie-Christine Jakobs1,2,
and Thomas Lemberger1

1 LMU Munich, Munich, Germany
2 Department of Computer Science, TU Darmstadt, Darmstadt, Germany

Abstract. Modern software-verification tools need to support develop-
ment processes that involve frequent changes. Existing approaches for
incremental verification hard-code specific verification techniques. Some
of the approaches must be tightly intertwined with the development pro-
cess. To solve this open problem, we present the concept of difference
verification with conditions. Difference verification with conditions is inde-
pendent from any specific verification technique and can be integrated
in software projects at any time. It first applies a change analysis that
detects which parts of a software were changed between revisions and
encodes that information in a condition. Based on this condition, an off-
the-shelf verifier is used to verify only those parts of the software that are
influenced by the changes. As a proof of concept, we propose a simple,
syntax-based change analysis and use difference verification with condi-
tions with three off-the-shelf verifiers. An extensive evaluation shows the
competitiveness of difference verification with conditions.

1 Introduction

Software changes frequently during its life-cycle: developers fix bugs, adapt exist-
ing features, or add new features. In agile development, software construction is
an intrinsically incremental process. Every change to a working system holds a
risk to introduce a new defect. Since software failures are often costly and may
even endanger human lives, it is an integral part of software development to find
potential failures and ensure their absence.

However, running a full verification after each change is inadequate: Changes
rarely affect the complete program behavior. For example, consider pro-
gram absSum (Fig. 1, middle). If the assignment of program variable r is changed
in the else-branch at location 5 (absSummod, Fig. 1, right), only program exe-
cutions that take that else-branch show different behavior. Program executions
that take the if-branch (highlighted in gray) are not affected by the change.
This is typical for program changes: A modified program P ′ exhibits some new
or changed program executions compared to an original program P , but some
executions also stay the same (Fig. 1, left). To ensure the safety of P ′, it is
sufficient to inspect only the changed behavior ex(P ′) \ ex(P).

Replication package available on Zenodo [12].
Funded in part by the Deutsche Forschungsgemeinschaft (DFG) – 418257054 (Coop)
and 378803395 (GRK ConVeY).
c© The Author(s) 2020
F. de Boer and A. Cerone (Eds.): SEFM 2020, LNCS 12310, pp. 133–154, 2020.
https://doi.org/10.1007/978-3-030-58768-0_8

138 APPENDIX B. ORIGINAL MANUSCRIPTS

134 D. Beyer, M.-C. Jakobs, and T. Lemberger

Fig. 1. Relation between program executions of original and modified program (left)
and an example: Program absSum (middle) and its modified version absSummod (right).
The modification at location 5 is shown in blue. Program parts unaffected by the
modification are highlighted in gray.

Many incremental verification approaches [39,40] use this insight: Regression-
test selection [62] tries to only execute those tests in a test suite that are relevant
w.r.t. the change, and incremental formal verification techniques adapt exist-
ing proofs [33,49,53,54], reuse intermediate results [16,59], or skip the explo-
ration of unchanged behavior [21,47,60,61]. However, they (a) all focus on one
fixed verification approach, (b) require a strong coupling between the original
verification approach and the incremental technique, and (c) require an initial,
full verification run. Often, this inflexibility makes an approach prohibitive.

As an alternative, we define the concept of difference verification with con-
ditions: Given the original and the changed software, difference verification with
conditions first identifies all executions that are affected by changes and encodes
them in a condition, an exchange format already known from conditional model
checking [10]—we call this first part diffCond. Then, a conditional verifier uses
that condition to verify only the changed program behavior. For this step, any
existing off-the-shelf verifier can be turned into a conditional verifier with the
reducer-based approach [13].

Difference verification with conditions allows us to (a) use varying verifica-
tion approaches for incremental verification, (b) automatically turn any existing
verifier into an incremental verifier, and (c) skip an initial, costly verification run.
Contributions. We make the following contributions:

– We propose difference verification with conditions, which is an incremental
verification approach that combines existing tools and approaches.

– We provide the algorithm diffCond, an integral part of difference verification
with conditions, which outputs a description of the modified execution paths
in an exchangeable condition format. We also prove its correctness.

– We implemented diffCond in the verification framework CPAchecker and
combined it with existing verifiers to construct difference verifiers.

– To study the effectiveness and efficiency of difference verification with condi-
tions, we performed an extensive evaluation on more than 10 000 C programs.

– diffCond and all our data are available for replication and to construct
further difference verifiers (see Sect. 7).

ex(P ′)ex(P)

0 r=0;

1 if(a<0)

2 while(a<0)

3 r=r-a;

4 a=a+1;
else

5 r=a+a+1;

6 r=r/2;

0 r=0;

1 if(a<0)

2 while(a<0)

3 r=r-a;

4 a=a+1;
else

5 r=a*(a+1);

6 r=r/2;

B.8. Difference Verification with Conditions 139

Difference Verification with Conditions 135

Fig. 2. CFA of absSum (Fig. 1), CFA of absSummod, and a condition that describes the
common executions of both programs, as created by our approach

2 Background

Programs. For ease of presentation, we consider imperative programs with
deterministic control-flow, which execute statements from a set Ops. Our im-
plementation supports C programs. Following literature [8,9,30], we model pro-
grams as control-flow automata.

Definition 1. A control-flow automaton (CFA) P = (L, �0, G) consists of

– a set L of program locations with initial location �0 ∈ L, and
– a set G ⊆ L × Ops × L of control-flow edges.
CFA P is deterministic if (�, op, �′), (�, op, �′′) ∈ G ⇒ �′ = �′′.

Figure 2 shows the CFA of the example program absSum from Fig. 1.
A sequence �0

op1→ �1 · · · opn→ �n is a syntactical path through CFA P = (L, �0, G),
if ∀i ∈ [1, n] : (�i−1, opi, �i) ∈ G. We rely on standard operational semantics
and model a program state by a pair of (1) the program counter, whose value
refers to a program location in the CFA, and (2) a concrete data state c, whose
shape we do not further specify [8]. We denote the set of all concrete data
states as C. The function spop : C → 2C describes the possible effects of
operation op ∈ Ops on concrete data state c ∈ C. Based on this, a sequence
(�0, c0)

op1→ (�1, c1) · · · opn→ (�n, cn) is a program path through CFA P = (L, �0, G), if
�0

op1→ �1 · · · opn→ �n is a syntactical path through P and ∀i ∈ [1, n] : ci ∈ spopi
(ci−1).

We denote the set of all program paths by paths(P). Program executions are
derived from program paths. If p = (�0, c0)

op1→ (�1, c1) · · · opn→ (�n, cn) is a program
path, then ex(p) = c0

op1→ c1 · · · opn→ cn is a program execution. The executions
of a program P are defined as ex(P) := {ex(p) | p ∈ paths(P)}.
Conditions. A condition describes which program executions were already veri-
fied, e.g., in a previous verification run. We use automata to represent conditions
and use accepting states to identify already verified executions [13].

`0

`1

`2 `5

`3

`4

`6

`7

r=0;

a<0 ¬a<0

a<0
¬a<0

r=r-a;a=
a+

1;

r=a+a+1;

r=r/2;

(a) Original program

`′0

`′1

`′2 `′5

`′3

`′4

`′6

`′7

r=0;

a<0 ¬a<0

a<0
¬a<0

r=r-a;a=
a+

1;

r=a*(a+1);

r=r/2;

(b) Modified program

q0

q1

q2 q3

q4

r=0;

a<0 ¬a<0

r=a*(a+1);

(c) Condition

140 APPENDIX B. ORIGINAL MANUSCRIPTS

136 D. Beyer, M.-C. Jakobs, and T. Lemberger

Definition 2. A condition A = (Q, δ, q0, F) consists of:

– a finite set Q of states,
– a transition relation δ ⊆ Q×Ops×Q ensuring ∀(q, op, q′) ∈ δ : q∈F ⇒ q′ ∈F ,
– the initial state q0 ∈ Q, and a set F ⊆ Q of accepting states.1

The goal of absSum (left program in Fig. 2) is to compute r =
∑|a|

i=0. However,
the original program is buggy: In location �5, it must compute the product of a
and a+1, not the sum. The fixed program is shown in the middle of Fig. 2—the
fix is highlighted in blue. The original and modified version of the program only
differ in the else-branch. If we assume that the original program was already
verified, we know that program executions passing through the if-branch have
already been verified and do not need to be considered during a reverification.
In contrast, executions that pass through the else-branch and reach the modified
statement must be verified. The condition shown on the right of Fig. 2 encodes
this insight. Program executions that pass through the if-branch (a < 0) lead to
the accepting state q2—we say they are covered by the condition. In contrast,
program executions that pass through the else-branch (¬a < 0) never reach q2
—they are not covered by the condition, and must be analyzed.

Definition 3. A condition A = (Q, δ, q0, F) covers an execution
π = c0

op1→ c1 · · · opn→ cn if there exists an index k ∈ [0, n] and a run
ρ = q0

op1→ q2 · · · opk→ qk, s.t. qk ∈ F and ∀i ∈ [1, k] : (qi−1, opi, qi) ∈ δ.

Next, we introduce a simple and efficient way to systematically compute a con-
dition that covers the common executions of an original and a modified program.

3 Component diffCond for Modular Construction

The ultimate goal of difference verification with conditions is to speed up reveri-
fication of modified programs. To achieve this goal, we aim at ignoring unmodified
program behavior during verification. Conditions are a well-fitting format to
describe the unmodified program behavior. However, to benefit from difference
verification with conditions, the construction of such conditions must be efficient,
i.e., consume only a small portion of the overall execution time of the verification.
Therefore, we use a syntactic approach to compute the condition, diffCond
(Alg. 1), which is linear in time regarding the size of the modified program.

diffCond gets as input the original program P and the modified program P ′.
In lines 1 to 11, diffCond traverses the modified and the original program in
parallel, stops traversal if the original and the modified program differ, and
remembers the edge that differs in the modified program.

It uses three data structures: Set E ⊆ L×L′×Ops×L×L′ stores all compared
edges (�1, op, �2) and (�′

1, op, �′
2) that are equal in both programs. These edges are

1 In general [10,13] the transition relation of a condition also specifies assumptions
on the program states. Since difference verification with conditions requires no
assumptions on the program states, we omit this additional characteristic.

B.8. Difference Verification with Conditions 141

Difference Verification with Conditions 137

Algorithm 1 diffCond(P, P ′)
Input: CFA P = (L, �0, G) // original program
Input: CFA P ′ = (L′, �′

0, G
′) // modified program

Output: A = (Q, δ, q0, F) // difference condition
Variables: Set E ⊆ L×L′ ×Ops×L×L′ of composite CFA edges equal in the original

and the modified program, set D ⊆ L × L′ × Ops × L′ of CFA edges that differ in
the modified program, set waitlist ⊆ L × L′ of program locations in original and
modified program for which to compare outgoing edges.

� Change detection
1: E := ∅; D := ∅
2: waitlist := {(�0, �′

0)}
3: while waitlist �= ∅ do
4: pop (�1, �

′
1) from waitlist

5: for each (�′
1, op, �′

2) ∈ G′ do
6: if ¬∃�2 ∈ L : (�1, op, �2) ∈ G then
7: D := D ∪ {((�1, �′

1), op, �′
2)}

8: else
9: E := E ∪ {((�1, �′

1), op, (�2, �
′
2))}

10: if (·, ·, (�2, �′
2)) /∈ E then

11: waitlist := waitlist ∪ {(�2, �′
2)}

� Condition Generation
12: Q := {q | ∃(·, ·, q) ∈ D}
13: waitlist := Q
14: while waitlist �= ∅ do
15: pop q′ from waitlist
16: for each (q, op, q′) ∈ E ∪ D with q /∈ Q do
17: Q := Q ∪ {q}
18: waitlist := waitlist ∪ {q}
19: if Q = ∅ then
20: � No difference edges, automaton always accepts
21: return ({(�0, �′

0)}, ∅, (�0, �
′
0), {(�0, �′

0)})
22: else
23: F := {q′ | ∃(q, op, q′) ∈ E ∧ q ∈ Q ∧ q′ /∈ Q}
24: Q := Q ∪ F
25: δ := {(q, op, q′) ∈ E ∪ D | q, q′ ∈ Q ∧ q /∈ F}
26:
27: return (Q, δ, (�0, �

′
0), F)

called standard edges. They are stored in the composite form ((�1, �′
1), op, (�2, �′

2)).
Set D ⊆ L×L′ ×Ops×L′ stores all edges (�′

1, op, �′
2) of the modified program P ′

that represent a change from the original program P at �1, called difference edges.
They are stored in the form ((�1, �′

1), op, �′
2). Set waitlist ⊆ L×L′ stores all pairs of

program locations (�1, �′
1) for which a program path with the same syntactic struc-

ture exist in P and P ′, and for which no outgoing edges have been considered yet.
Initially, E and D are empty—no edges were checked so far, and the algorithm

142 APPENDIX B. ORIGINAL MANUSCRIPTS

138 D. Beyer, M.-C. Jakobs, and T. Lemberger

Fig. 3. Parallel composition of absSum and absSummod as computed by diffCond

starts at the two initial program locations, i.e., waitlist = {(�0, �′
0)} (lines 1 and

2). As long as waitlist contains program locations, the algorithm picks one of them,
here depicted as (�1, �′

1) (line 4). It considers all outgoing edges (�′
1, op, �′

2) of �′
1 in

the modified program. If the same operation op does not exist at any outgoing
edge of �1, it is considered to be changed and the difference edge ((�1, �′

1), op, �′
2)

is stored in D before continuing with the next state in waitlist. However, if the
same operation op exists at an outgoing edge (�1, op, �2), it is considered to be
equal and the standard edge ((�1, �′

1), op, (�2, �′
2)) is stored in E before continuing

with the next state in waitlist. To this end, diffCond explores the syntactical
composition of the original and modified program. In addition, if the tuple (�2, �′

2)
of locations has not been detected before (line 10), it is added to the waitlist
for further exploration. Figure 3 shows the graph built from edges E (black) and
D (blue and dashed) when executing diffCond on absSum and absSummod.

To compute the condition, we first determine the condition’s states. Lines 12 to
18 compute all nodes that can reach a successor of a difference edge. Figure 3 high-
lights these nodes in green. Nodes that are not discovered in lines 12–18 cannot
lead to a difference edge and, thus, not to different program behavior. Conse-
quently, undiscovered nodes that are successors of nodes discovered in lines 12–18
become final states (line 23). Figure 3 highlights these nodes in gray (only
node (�2, �′

2)). The union of discovered and final states become our condition states.
To complete the construction, we use the pair of initial program locations as the
initial state (�0, �′

0) and add to the transition relation all transitions from E and D
that connect condition states. Figure 2c shows the condition created from Fig. 3.

Finally, note that lines 19–21 handle the special case that the set D of
difference edges is empty, thus resulting in Q = ∅ in line 19. The set D is
empty if the original and the modified program only differ in the names of their
program locations2 or if the modified program is empty ((�′

0, ·, ·) /∈ G′). In both
cases, all executions of the modified program are covered by the executions of
the original program. As a result, the condition covers all executions: its only
state is both initial and accepting state, and the condition has no transitions.

The purpose of algorithm diffCond is to compute a condition that supports
skipping unchanged behavior during reverification of a modified program.

2 In practice, this can happen if empty lines are added or removed from the program.

(`0, `
′
0)

(`1, `
′
1)

(`2, `
′
2) (`5, `

′
5)

(`3, `
′
3)

(`4, `
′
4)

`′6

(`7, `
′
7)

r=0;

a<0 ¬a<0

a<0
¬a<0

r=r-a;a=
a+

1; r=a*(a+1);

B.8. Difference Verification with Conditions 143

Difference Verification with Conditions 139

To still have a sound reverification, the produced condition must not cover
executions that do not occur in the original program. The following theorem
states this property of algorithm diffCond.

Theorem 1. Let P = (L, �0, G) and P ′ = (L′, �′
0, G

′) be two CFAs.
diffCond(P, P ′) does not cover any execution from ex(P ′) \ ex(P).

Proof. Assume ex(P ′) \ ex(P) �= ∅. Hence, diffCond(P, P ′) = (Q, δ, q0, F) is
returned in line 27. Let (Q, δ, q0, F) = A, let π = c0

op1→ c1 · · · opn→ cn ∈ ex(P ′) \
ex(P), and let ρ = q0

op1→ q1 · · · opk→ qk be a run through A, s.t. 0 ≤ k ≤ n and
∀1 ≤ i ≤ k : (qi−1, opi, qi) ∈ δ. By construction, (1) q0 /∈ F , (2) ∀1 ≤ i < k :
(qi−1, opi, qi) ∈ E ∧ qi /∈ F , and (3) (qk−1, opk, qk) ∈ E ∪ D. We need to show
that qk /∈ F . Case k = 0 follows from (1).

Next, consider the case k = n. If (qk−1, opk, qk) ∈ E, by construction there
exists syntactical path sp = �0

op1→ �2 · · · opn→ �n in P and due to program
semantics, π ∈ ex(P). Since π ∈ ex(P ′) \ ex(P), we infer (qk−1, opk, qk)∈ D and
thus qk /∈F .

Finally, consider the case k < n. If (qk−1, opk, qk) ∈ D, we infer qk /∈ F .
Assume (qk−1, opk, qk) ∈ E. By construction, there exists a syntactical path sp =
�0

op1→ �2 · · · opk→ �k in program P and a syntactical path sp′ = �′
0

op1→ �′
2 · · · opk→ �′

k in
program P ′, s.t. ∀0 ≤ i ≤ k : qi = (�i, �

′
i). Let �0

op1→ �2 · · · opk→ �k
opk+1→ �k+1 · · · opm→

�m be an extension of the syntactical path sp s.t. m = n or (�m, opm+1, ·) /∈ G.
Due to program semantics and π ∈ ex(P ′) \ ex(P), we conclude k ≤ m < n.
Due to program semantics, P ′ being deterministic, and π ∈ ex(P ′), there exists
an extension �′

0
op1→ �′

2 · · · opk→ �′
k

opk+1→ �′
k+1 · · · opm→ �′

m of the syntactical path
sp′. By construction, ∀1 ≤ i ≤ m : ((�i−1, �

′
i−1), opi, (�i, �

′
i)) ∈ E and there

exists ((�m, �′
m), opm+1, ·) ∈ D. Hence, ∀0 ≤ i ≤ m : (�i−1, �

′
i−1) ∈ Q \ F . Since

qk = (�k, �′
k) and k ≤ m, qk /∈ F .

Theoretical Limitations. The effectiveness of difference verification with con-
ditions depends on the amount of program code potentially affected by a change,
which is determined by the diffCond component. diffCond only excludes
program parts that cannot be syntactically reached from a program change.
Therefore, difference verification is ineffective if some initial variable assign-
ments at the very beginning of the program or some global declarations change.
Moreover, the structure of a program strongly influences the effectiveness of
difference verification. For example, programs like absSum∞ (Fig. 4) that mainly
consist of a loop are problematic. Program absSum∞ (Fig. 4) is similar to absSum,
but has an additional, outer loop that dominates the program. So when loca-
tion �7 is changed in absSum∞, difference verification with conditions can only
exclude the if-branch for the very first iteration of the outer loop. Thereafter,
the change in location �7 may propagate into the if-branch.

In contrast, difference verification with conditions can be effective on pro-
grams that allow the exclusion of program parts, e.g., if the program is modular
and, thus, consists of multiple, loosely coupled parts. Examples for modularity
are the strategy design pattern, object-oriented software, or software applications
with multiple program features.

144 APPENDIX B. ORIGINAL MANUSCRIPTS

140 D. Beyer, M.-C. Jakobs, and T. Lemberger

Fig. 4. Example program absSum∞ with loop dominating the whole program

When designing our experiments, we will consider these limitations of differ-
ence verification with conditions. Before we get to our experiments, we must
describe the modular composition of the diffCond component with a verifier,
which specifies the difference verifier.

4 Modular Combinations with Existing Verifiers

The diffCond algorithm can be combined with any off-the-shelf conditional
verifier [10] to produce a difference verifier in a modular way. The goal of a
difference verifier is to verify only modified program paths. To this end, it first
uses diffCond to discover potentially modified program paths and then runs a
conditional verifier to explore only those paths identified by diffCond. Figure 5
shows the construction template for difference verification with conditions. diff-
Cond gets the original and modified program as input and encodes the modi-
fied paths in a condition. The constructed condition is forwarded to a conditional
verifier, which uses the condition to restrict its analysis of the modified program to
those paths that are not covered by the condition (i.e., the modified paths). Based
on this template, we can construct difference verifiers from arbitrary conditional
verifiers. Moreover, we can construct difference verifiers from non-conditional
verifiers by using the concept of reducer-based conditional verifiers [13]. The
idea of a reducer-based conditional verifier is shown on the right of Fig. 5. To
turn an arbitrary verifier into a conditional one, a reducer-based conditional
verifier puts a preprocessor (called reducer) in front of the verifier. The reducer
gets a program and a condition and outputs a new, residual program that
represents the program paths not covered by the condition. A full verification

0 while (1)

1 r=0;

2 a=input();

3 if(a<0)

4 while(a<0)

5 r=r-a;

6 a=a+1;
else

7 r=a+a+1;

8 r=r/2;

(a) Program code

`0

`1

`2

`3 `4

`5

`6

`7

`8

r=0;

a=input();

a<0 ¬a<0

a<0

¬a<0

r=r-a;a=
a+

1; r=a+a+1;

r=r/2;

(b) CFA of program

B.8. Difference Verification with Conditions 145

Difference Verification with Conditions 141

Fig. 5. diffCond + conditional verifier = difference verifier

of this residual program is then equivalent to a conditional verification of the
original program with the produced condition. However, note that the existing
reducers are designed for model checkers and do not necessarily work with other
verification technologies like deductive verifiers.

In this paper, we transform three verifiers into difference verifiers: CPA-
Seq, UAutomizer, and Predicate. The first two are the best verifiers from
SV-COMP 2020 [5], and the third is a predicate-abstraction approach. We use
the off-the-shelf verifiers CPA-Seq and UAutomizer as non-conditional verifiers
and thus add a reducer, while we use Predicate as conditional verifier. Since
a difference verifier can now be built from any off-the-shelf verifier, we can also
combine difference verification with other incremental verification techniques.
As an example, we can use precision reuse [16]. This technique is implemented
in CPAchecker [16] and UAutomizer [49] and can be used with the previously
mentioned approaches. Next we explain the technologies of the selected verifiers.

CPA-Seq uses several different strategies from the CPAchecker verification
framework [6,11,14]. CPA-Seq first analyzes different features of the program
under verification. The program features considered are: recursion, concurrency,
occurrence of loops, and occurrence of complex data types like pointers and
structs. Based on these features, CPA-Seq uses one of five different verification
techniques (cf. [6]). For non-recursive, non-concurrent programs with a non-
trivial control flow, CPA-Seq uses a sequential combination of four different anal-
yses: It uses value analysis with and without Counterexample-guided Abstrac-
tion Refinement (CEGAR) [24], a predicate analysis similar to Predicate, and
k-induction with invariant generation [7]. Invariants are generated by numerical
and predicate analyses and are forwarded to the k-induction analysis.

UAutomizer is the automata-based approach from the Ultimate verification
framework [29,31]. It uses a CEGAR approach to successively refine an over-
approximation of the error paths, which is given in form of automata. In each
refinement step, a generalization of an infeasible error path is excluded from the
over-approximation. The generalization of the error path is described by a Floyd-
Hoare automaton [31], which assigns Boolean formulas over predicates to its states.
The predicates are obtained via interpolation along the infeasible error path [43].

Predicate is the predicate-abstraction approach from the CPAchecker
framework [14] with adjustable-block encoding (ABE) [15]. ABE is instructed
to abstract at loop heads only. CEGAR together with lazy refinement [34] and
interpolation [32] determines the necessary set of predicates.

diffCond Conditional Verifier

original program P

modified program P’

Reducer-Based
Conditional Verifier [13]

residual
program

Reducer Verifier
condition

146 APPENDIX B. ORIGINAL MANUSCRIPTS

142 D. Beyer, M.-C. Jakobs, and T. Lemberger

PrecisionReuse is a competitive incremental approach that avoids recom-
puting the required abstraction level [16]. The idea is to start with the abstrac-
tion level determined in a previous verification run. To this end, it stores and
reuses the precision, which describes the abstraction level, e.g., the set of predi-
cates to be tracked. We use the version as implemented in CPAchecker.

5 Evaluation

We systematically evaluate our proposed approach along the following claims:

Claim 1. Difference verification with conditions can be more effective than a
full verification. Evaluation Plan: For all verifiers, we compare the number of
tasks solved by difference verification with conditions and by the pure verifier.

Claim 2. Difference verification with conditions is more effective when using
multiple verifiers. Evaluation Plan: We compare the number of tasks solved by
each difference verifier with the union of tasks solved by all difference verifiers.

Claim 3. Difference verification with conditions can be more efficient than a
full verification. Evaluation Plan: For all verifiers, we compare the run time of
difference verification with conditions and of the pure verifier.

Claim 4. The run time of difference verification with conditions is dominated by
the run time of the verifier. Evaluation Plan: We relate the time for verification
to the time required by the diffCond algorithm and the reducer.

Claim 5. Difference verification with conditions can complement existing in-
cremental verification approaches. Evaluation Plan: We compare the results of
difference verification with conditions with the results of precision reuse [16],
a competitive incremental verification approach.

Claim 6. Combining difference verification with conditions with existing incre-
mental verification approaches can be beneficial. Evaluation Plan: We compare
the results of difference verification with the results of a combination of difference
verification with conditions and precision reuse.

5.1 Experiment Setup

Computing Environment. We performed all experiments on machines with an
Intel Xeon E3-1230 v5 CPU, 3.4GHz, with 8 cores each, and 33GB of memory,
running Ubuntu 18.04 with Linux kernel 4.15. We limited each analysis run to
15GB of memory, a time limit of 900 s, and 4 CPU cores. To enforce these limits,
we ran our experiments with BenchExec [17], version 2.3.

Verifiers. For our experiments, we use the software verifiers CPA-Seq3 [6,14] and
UAutomizer4 [29,31] as submitted for SV-COMP 2020, and CPAchecker [14,15]
3 https://gitlab.com/sosy-lab/sv-comp/archives-2020/-/raw/master/2020/cpa-seq.zip
4 https://gitlab.com/sosy-lab/sv-comp/archives-2020/-/raw/master/2020/uautomizer.zip

B.8. Difference Verification with Conditions 147

Difference Verification with Conditions 143

in revision 328645. CPA-Seq and UAutomizer are used as verifiers. CPAchecker
provides the verifier Predicate, but also the new diffCond component and the
Reducer component for reducer-based conditional verification. The difference
verifier based on Predicate is realized as a single run. In contrast, the difference
verifiers based on CPA-Seq and UAutomizer are realized as composition of two
separate runs. The first run executes the diffCond algorithm followed by the
reducer to generate the residual program. It is only executed once per task, i.e., the
same residual programs are given to CPA-Seq and UAutomizer. In a second run,
CPA-Seq andUAutomizer, respectively, verify the residual program. To deal with
residual programs, we increased the Java stack size forCPA-Seq andUAutomizer.

Existing Incremental Verifier. We use Predicate with precision reuse [16].

Verification Tasks. We use verification tasks from the public repository
sv-benchmarks (tag svcomp20)6, which is the most diverse, largest, and well-
established collection of verification tasks. Since difference verification with
conditions is an incremental verification approach, we require different program
versions. We searched the benchmark repository for programs that come with
multiple versions and for which at least one version is hard to solve, i.e., at least
one of the three considered verifiers takes more than 100 s for verification of
that version, but is successful. From these programs, we arbitrarily picked the
following: eca05 and eca12 (event-condition-action systems, both have 10 ver-
sions each), gcd (greatest common divisor computation, has 4 versions), newton
(approximation of sine, has 24 versions), pals (leader election, has 26 versions),
sfifo (second-chance FIFO replacement, has 5 versions), softflt (a software
implementation of floats, has 5 versions), square (square-root computation,
has 8 versions), and token (a communication protocol, has 28 versions). Unfor-
tunately, all of these programs are specialized implementations with a single
purpose. Thus, their implementation is strongly coupled and any reasonable pro-
gram change affects the complete program. As explained before, this prohibits
effective difference verification with conditions.

To get benchmark tasks that instead contain independent program parts,
we create new combinations from the selected programs. We choose two pro-
grams, e.g., eca05 and token. We then combine these two programs accord-
ing to the following scheme: We create a new program with all declarations
and definitions of both original programs, but a new main function. This new
main function randomly calls the main function of one of the two original pro-
grams. Name clashes are resolved via renaming. Figure 6 shows the conceptual
structure of each program created through this combination. For our experi-
ments, we consider the following combinations of programs: (1) eca05+token,
(2) gcd+newton, (3) pals+eca12, (4) sfifo+token, (5) square+softflt. To create
different versions of our combinations, we replace one of the two program
parts with a different version of that part. For example, to get a different

5 https://gitlab.com/sosy-lab/software/cpachecker/-/tree/230d2ca5
6 https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20

148 APPENDIX B. ORIGINAL MANUSCRIPTS

144 D. Beyer, M.-C. Jakobs, and T. Lemberger

Fig. 6. Conceptual example of combination of verification tasks

version of the original program eca05+token, we change the version of the eca05
part or the token part, but never both.

With this procedure, we get a large amount of different versions of our program
combinations. For our evaluation, we consider each pair (O,N) of versions O and N
of program combinations that fulfills the following two conditions: (1) N reflects
a change, i.e., the two programs are different. (2) Version O, version N , or both
versions are bug-free. This ensures that verification and difference verification can
only find the same bugs.With this construction of benchmark tasks for incremental
verification we get a total of 10 426 tasks that we use in our experiments.

5.2 Experimental Results

Claim 1 (Difference verification with conditions more effective).
Table 1 gives an overview of our experimental results. Each column represents
one task set. The rows refer to verifiers, i.e., pure verifiers (X) and difference
verifiers (XΔ). The last two rows are the union of the results of all three verifiers.
For each task set and verifier, the table provides the number of tasks for which
the verifier finds a proof (✓), finds a bug (!), and only the difference verifier gives
a conclusive answer (★). It also shows the number of tasks (◆) that cannot be
solved. Neither the pure nor the difference verifiers reported incorrect results.

The table shows that for each verifier there exist task sets on which the
number of solved correct tasks (✓) is higher for the difference verifier. Looking
at columns ★, we observe that typically there exist tasks that only the difference
verifier can solve. Thus, this shows that our new difference verification with
conditions can be more effective.

Difference verification with conditions is not always more effective. Especially,
CPA-SeqΔ andUAutomizerΔ sometimesperformworse.For example,CPA-SeqΔ

finds significantly less bugs than CPA-Seq for eca05+token. The reason for this
is the residual program constructed by the reducer, which is necessary to turn

0 extern int __VERIFIER_nondet_int();

1 int main1() { /* main method of task 1 ... */ }

2 /* other definitions of task 1 ... */

3 int main2() { /* main method of task 2 ... */ }

4 /* other definitions of task 2 ... */

5 int main() {

6 if (__VERIFIER_nondet_int())

7 main1();

8 else

9 main2();

10 }

B.8. Difference Verification with Conditions 149

Difference Verification with Conditions 145

Table 1. Experimental results for Predicate, CPA-Seq and UAutomizer, as pure
verifiers (X) and difference verifiers (XΔ) showing how many correct tasks (✓) and
tasks with a bug (!) are solved, how many tasks are only solved by the difference verifier
(★) and which are too hard to solve (◆)

eca05+token gcd+newton pals+eca12 sfifo+token square+softflt
(3 640) (1 924) (2 750) (1 872) (240)

✓ ! ★ ◆ ✓ ! ★ ◆ ✓ ! ★ ◆ ✓ ! ★ ◆ ✓ ! ★ ◆

PredicateΔ 1447 999 451 1194 48 572 48 1304 15 55 20 2680 655 494 98 723 81 75 70 84
Predicate 1080 944 1616 0 572 1352 0 50 2700 558 507 807 33 53 154
CPA-SeqΔ 966 671 350 2003 48 572 48 1304 183 50 233 2517 480 390 108 1002 61 69 61 110
CPA-Seq 755 1268 1617 0 572 1352 0 0 2750 372 619 881 0 75 165
UAutomizerΔ 270 260 270 3110 16 0 16 1908 0 0 0 2750 349 234 112 1289 61 45 49 134
UAutomizer 0 325 3315 0 520 1404 0 48 2702 341 258 1273 44 57 139
AllΔ 1527 999 448 1114 48 572 48 1304 183 95 228 2472 655 494 98 723 81 75 40 84
All 1080 1295 1265 0 572 1352 0 50 2700 558 626 688 55 75 110

CPA-Seq into the required conditional verifier. The created residual programs,
on which the off-the-shelf verifiers run, have a different structure than the original
program. They make heavy use of goto statements and deeply nested branching
structures. While semantically equivalent, this can have unexpected effects on
analyses: In the case of the tasks in eca05+token, CPA-Seq was not able to detect
required information about loops and thus aborts its verification. Note that this
is not a direct issue of difference verification with conditions, but an orthogonal
issue. To fix the problem, verification tools must be improved to better deal with
the generated residual programs or the structure of the residual program must be
improved. Despite of the problem with residual programs, difference verification
can solve many tasks that a full verification run cannot solve.

Since Predicate is already a conditional model checker, PredicateΔ does
not suffer from the residual program problem. Thus, the effectiveness of differ-
ence verification with conditions becomes even more obvious when comparing
Predicate with PredicateΔ. For the first three task sets, PredicateΔ solves all
tasks that Predicate solves plus a significant amount of additional tasks that
Predicate cannot solve. For the last two task sets PredicateΔ fails to solve a
few tasks that Predicate can solve. However, PredicateΔ still solves more tasks
in total. One reason for this is that the predicate abstraction used by Predicate
may compute different predicates (due to a slightly different exploration of the
state space), which may result in a more expensive abstraction, if the explored
state-space looks different. For some tasks, these different predicates may be less
suited to solve the task and thus require more time, which results in the analysis
hitting the time limit. Typically, we observe this phenomenon when Predicate
is expensive already (in our experiments, when it takes at least 700 s). While for
complicated tasks with large changes, difference verification may produce worse
results, PredicateΔ is still more effective than Predicate in all categories.

Claim 2 (Better with several verifiers). To study the usefulness of using
several verifiers in difference verification, we look at the tasks solved by the three
difference verifiers together. We observe that PredicateΔ solves the most tasks
in all task sets except for pals+eca12, in which CPA-SeqΔ is better. Moreover,

150 APPENDIX B. ORIGINAL MANUSCRIPTS

146 D. Beyer, M.-C. Jakobs, and T. Lemberger

Fig. 7. CPU time (in s) of full verification vs. difference verification, per task

when looking at AllΔ, which takes the union of all results, we observe that for
eca05+token multiple tasks without a property violation exist that cannot be
solved by the best difference verifier of this task set (PredicateΔ). Thus, the
difference verification is more effective when using several verifiers.

Claim 3 (Difference verification with conditions more efficient). We
compare the run times of the verifiers with the run times of the difference
verifiers. For all three verifiers, the scatter plots in Fig. 7 show the CPU time
required to check a task without (x-axis) and with difference verification (y-axis).
If a task was not solved, because the verifier either runs out of resources or
encountered an error, we assume the maximum CPU time of 900 s. Figures 7a
and 7b compare the two non-conditional verifiers CPA-Seq and UAutomizer,
for which we use the reducer-based conditional verifier approach. For a signifi-
cant number of tasks (below diagonal), the difference verifier is faster than
the respective verifier CPA-Seq and UAutomizer, and the tasks on the right
edge can only be solved by the difference verifier. There are tasks for which
difference verification is slower (above diagonal). Note that the problem is the
residual program, not our approach. For example, many tasks located at the
upper edge do not represent timeouts of the difference verification, but failures of
the verifier caused by the structure of the residual program. Figure 7c compares
the conditional verifier Predicate. For the majority of tasks, the CPU time
required by PredicateΔ is equal to or less than the time required by Predicate
(tasks below the line). Moreover, there are only few tasks for which PredicateΔ

is slower than Predicate (tasks above the line). The reason for this slow-down
is most likely the computation of worse predicates (see Claim 1). To sum up,
difference verification with conditions can successfully increase efficiency.

Claim 4 (Verifier dominates run time). We aim to show that the diff-
Cond component and the residual program construction (in the reducer-based
approach to construct conditional verifiers) require a negligible run time com-
pared to the complete verification run time. We show in Fig. 8a for each task
verified with CPA-SeqΔ and UAutomizerΔ, the CPU time required by the full
verification run (x-axis) and the CPU time of that run spent for diffCond plus
the reducer (y-axis). The time required by diffCond + reducer does not depend
on the run time of the verifier, and it is below 60 s for all tasks.

0 450 900
CPU time CPA-Seq

0

450

900

C
P
U

tim
e

C
P
A

-S
eq

∆

0 450 900
CPU time UAutomizer

0

450

900

C
P
U

tim
e

U
A

u
to

m
iz

er
∆

0 450 900
CPU time Predicate

0

450

900

C
P
U

tim
e

P
re

d
ic

at
e∆

(a) CPA-Seq CPA-Seq∆ UAutomizer UAutomizer∆ (c) Predicate Predicate∆, , ,(b)

B.8. Difference Verification with Conditions 151

Difference Verification with Conditions 147

Fig. 8. CPU time (in s) of (a) full difference-verification runs and the time spent
for the two diff. components diffCond + reducer, (b) Predicate with precision
reuse (Predicate���) vs. Predicate with difference verification (PredicateΔ), and
(c) PredicateΔ vs. PredicateΔ with precision reuse (PredicateΔ���)

Claim 5 (Difference verification with conditions complementary). To
show that difference verification with conditions complements existing incre-
mental verification, we need to compare difference verification with conditions
against an existing incremental approach. Looking at existing approaches that
are (1) available as replication artifact and (b) able to run on verification
tasks from sv-benchmarks, we identified two: both based on precision reuse,
one implemented in CPAchecker [16] and one in Ultimate [49]. We use the one in
CPAchecker. Figure 8b shows the CPU time of precision reuse with Predicate,
called Predicate��� (x-axis) against our difference verification with Predicate,
called PredicateΔ (y-axis). Many tasks are solved efficiently by both techniques
(large cluster in lower left). For the remaining hard tasks, difference verification
is often faster than precision reuse, or precision reuse cannot even solve the task
(points below the diagonal and on right edge). This shows that difference verifi-
cation with conditions can improve on precision reuse for a significant number
of tasks. It can thus complement existing incremental techniques.

Claim 6 (Combinations sometimes beneficial). We combined difference
verification with conditions with precision reuse, called PredicateΔ���. Figure 8c
shows that this combination rarely becomes faster than difference verification
PredicateΔ alone. In the worst case, the combination even slows down because
precision reuse tracks previously used predicates from the beginning while differ-
ence verification would only detect the necessary ones lazily. This more precise
abstraction leads to more, sometimes unnecessary computations. Nevertheless,
the combination can solve 29 tasks that neither Predicate, its difference veri-
fier, nor precision reuse can solve alone. Thus, while a combination of the two
incremental techniques is not beneficial in general, it can be.

5.3 Threats to Validity

External Validity. (1) Our benchmark tasks might not represent real program
changes, and thus, our results might not transfer to reality. However, we built
our tasks from a well-established collection of software-verification problems,

0 450 900
CPU time verification

0

450

900

C
P
U

tim
e

di
ff.

co
m

po
ne

nt
s

0 450 900
CPU time Predicate

0

450

900

C
P
U

tim
e

P
re

d
ic

at
e∆

0 450 900
CPU time Predicate∆

0

450

900

C
P
U

tim
e

P
re

d
ic

at
e∆

(a) Full verification,
diffCond + reducer

(b) Predicate���, Predicate∆ (c) Predicate∆, Predicate∆���

152 APPENDIX B. ORIGINAL MANUSCRIPTS

148 D. Beyer, M.-C. Jakobs, and T. Lemberger

which are considered relevant in the verification community. Moreover, many of
the combined programs implement known algorithms (greatest common divisor,
Newton approximation of a sine function, Taylor expansion of a square root) or
are derived from real applications (OpenSSL, SystemC design, leader election).
Also, our combination is not uncommon in practice. Such combination patterns
e.g. result from implementing the strategy pattern. Finally, our task set contains
pairs of programs whose only difference is a bug fix to eliminate the reachability
of the __VERIFIER_error() call. We believe that similar fixes are done in
practice to eliminate bugs. (2) We compared our approach only with a single
existing approach for incremental verification, and this comparison is restricted
to a single verifier. Our observations may not apply to different incremental
verification approaches or different verifiers. The same holds for the combination
of difference verification with orthogonal, incremental verification approaches.
Internal Validity. (3) The implementation of the diffCond algorithm may
contain bugs, and thus, produces conditions that also exclude modified paths. We
would expect that such a bug also excludes error paths. Since we never observed
false proofs, we assume this is unlikely. (4) Difference verification with CPA-Seq
and UAutomizer could appear improved simply because we separated verification
from the execution of diffCond+Reducer and granted both runs a limit of 900 s.
But the sum of the two times are always below 900 s for all correctly solved tasks.

6 Related Work

Equivalence Checking. Regression verification [27,28,55,56], SymDiff [23],
UC-Klee [48], and other approaches [4,26] check whether the input-output
behavior of the original and modified method or program is the same. Differential
assertion checking [38] inspects whether the original and modified program
trigger the same assertions when given the same inputs. Equivalence checking
does not need to be restricted to a simple yes or no answer. Semantic Diff [35]
reports all dependencies between variables and input values that occur either
in the original or modified program. Conditional equivalence [37] infers under
which input assumption the original and modified program produce the same
output. Over-approximation of the differences between the original and modi-
fied program was also investigated [45]. Differential symbolic execution [46]
compares function summaries and constructs a delta that describes the input
values on which the summaries are unequal. Partition-based regression verifi-
cation [19] splits the program input space into inputs on which original and
modified program behave equivalently and those on which the two programs
are unequal. Equivalence checking is not directly tailored to property verifi-
cation, but determining when the original and modified programs may behave
differently is similar to the goal of the diffCond algorithm.
Result Adaption. Incremental data-flow analysis [51], Reviser [3], and
IncA [57,58] adapt the existing data-flow solution to program modifications.
Similarly, incremental abstract interpretation [52] adapts the solution of the
abstract interpreter. Incremental model checking in the modal-μ calculus [54]
adapts a previous fixed point and restarts the fixed-point iteration. Other

B.8. Difference Verification with Conditions 153

Difference Verification with Conditions 149

approaches [18,20] model data-flow analysis and verification as computation of
attributed parse trees. A change results in an update of the attributed parse
tree. Extreme model checking [33] reuses valid parts of the abstract reachability
graph (ARG) and resumes the state-space exploration from those nodes with
invalid successors. Incremental state-space exploration [41] reuses a previous
state-space graph to prune the current exploration. HiFrog [1] and eVolCheck [25]
implement an approach that reuses function summaries and recomputes invalid
summaries [53]. UAutomizer adapts a previous trace abstraction [49], a set of
Floyd-Hoare automata that describe infeasible error paths, to reuse it on the
modified program. While result adaption uses the same verification technique
for original and modified program, our approach may use different techniques.
Reusing Intermediate Results. Green [59], GreenTrie [36], and Recal [2] sup-
port the reuse of constraint proofs. Similarly, iSaturn [44] supports the reuse of
SAT results of Boolean constraints that are identical. Precision reuse [16] reuses
the precision of an abstraction, e.g., which variables or predicates to track, from
a previous verification run. These approaches are orthogonal to our approach.
In the experiments, we even combined precision reuse [16] with our approach.
Skipping Unaffected Verification Steps. Regression model checking [60]
stops exploration of a state as soon as no program change can be reached from
that state. Directed incremental [47,50] and memoized [61] symbolic execution
restrict the exploration to paths that may be affected by the program change.
Additionally, memoized symbolic execution does not check constraints as long
as the path prefix is unchanged. The Dafny verifier rechecks methods affected
by a change reusing unchanged verification conditions [42]. iCoq [21,22] detects
and only rechecks those Coq proofs that are affected by a change in the Coq
project. These ideas are similar to ours but are tailored to specific techniques.

7 Conclusion

Software is frequently changed during development. Verification techniques must
deal with repeatedly verifying nearly the same software again and again. To be
able to construct efficient incremental verifiers from off-the-shelf components,
we introduce difference verification with conditions, which steers an arbitrary
existing verifier to reverify only the changed parts. Compared to existing tech-
niques, our approach is tool-agnostic and can be used with arbitrary algorithms
for change analysis. We provide an implementation of a change analysis as
reusable component, which we combined with three existing verifiers. In a thor-
ough evaluation on more than 10 000 tasks, we showed the effectiveness and
efficiency of difference verification with conditions.

Data Availability Statement. diffCond and all our data are available for
replication and to construct further difference verifiers on our supplementary
web page7 and in a replication package on Zenodo [12].

7 https://www.sosy-lab.org/research/difference/

154 APPENDIX B. ORIGINAL MANUSCRIPTS

150 D. Beyer, M.-C. Jakobs, and T. Lemberger

References

1. Alt, L., Asadi, S., Chockler, H., Even-Mendoza, K., Fedyukovich, G., Hyvärinen,
A.E.J., Sharygina, N.: HiFrog: SMT-based function summarization for software
verification. In: Proc. TACAS, LNCS, vol. 10206, pp. 207–213. Springer (2017).
https://doi.org/10.1007/978-3-662-54580-5_12

2. Aquino, A., Bianchi, F.A., Chen, M., Denaro, G., Pezzè, M.: Reusing constraint
proofs in program analysis. In: Proc. ISSTA, pp. 305–315. ACM (2015). https://
doi.org/10.1145/2771783.2771802

3. Arzt, S., Bodden, E.: Reviser: Efficiently updating IDE-/IFDS-based data-flow
analyses in response to incremental program changes. In: Proc. ICSE, pp. 288–
298. ACM (2014). https://doi.org/10.1145/2568225.2568243

4. Backes, J., Person, S., Rungta, N., Tkachuk, O.: Regression verification using
impact summaries. In: Proc. SPIN, LNCS, vol. 7976, pp. 99–116. Springer (2013).
https://doi.org/10.1007/978-3-642-39176-7_7

5. Beyer, D.: Advances in automatic software verification: SV-COMP 2020. In: Proc.
TACAS (2), LNCS, vol. 12079, pp. 347–367. Springer (2020). https://doi.org/10.
1007/978-3-030-45237-7_21

6. Beyer, D., Dangl, M.: Strategy selection for software verification based on Boolean
features: A simple but effective approach. In: Proc. ISoLA, LNCS, vol. 11245, pp.
144–159. Springer (2018). https://doi.org/10.1007/978-3-030-03421-4_11

7. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-refined
invariants. In: Proc. CAV, LNCS, vol. 9206, pp. 622–640. Springer (2015). https://
doi.org/10.1007/978-3-319-21690-4_42

8. Beyer, D., Gulwani, S., Schmidt, D.: Combining model checking and data-flow
analysis. In: Handbook of Model Checking, pp. 493–540. Springer (2018). https://
doi.org/10.1007/978-3-319-10575-8_16

9. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
Blast. Int. J. Softw. Tools Technol. Transfer 9(5–6), 505–525 (2007). https://doi.
org/10.1007/s10009-007-0044-z

10. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: A technique to pass information between verifiers. In: Proc. FSE. ACM
(2012). https://doi.org/10.1145/2393596.2393664

11. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: Con-
cretizing the convergence of model checking and program analysis. In: Proc. CAV,
LNCS, vol. 4590, pp. 504–518. Springer (2007). https://doi.org/10.1007/978-3-540-
73368-3_51

12. Beyer, D., Jakobs, M.C., Lemberger, T.: Replication package for article ‘Differ-
ence verification with conditions’. Zenodo (2020). https://doi.org/10.5281/zenodo.
3954933

13. Beyer, D., Jakobs, M.C., Lemberger, T., Wehrheim, H.: Reducer-based construc-
tion of conditional verifiers. In: Proc. ICSE, pp. 1182–1193. ACM (2018). https://
doi.org/10.1145/3180155.3180259

14. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software ver-
ification. In: Proc. CAV, LNCS, vol. 6806, pp. 184–190. Springer (2011). https://
doi.org/10.1007/978-3-642-22110-1_16

15. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Proc. FMCAD, pp. 189–197. FMCAD (2010)

16. Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., Wendler, P.: Precision reuse for
efficient regression verification. In: Proc. FSE, pp. 389–399. ACM (2013). https://
doi.org/10.1145/2491411.2491429

B.8. Difference Verification with Conditions 155

Difference Verification with Conditions 151

17. Beyer, D., Löwe, S., Wendler, P.: Benchmarking and resource measurement. In:
Proc. SPIN, LNCS, vol. 9232, pp. 160–178. Springer (2015). https://doi.org/10.
1007/978-3-319-23404-5_12

18. Bianculli, D., Filieri, A., Ghezzi, C., Mandrioli, D.: Syntactic-semantic incremen-
tality for agile verification. SCICO 97, 47–54 (2015). https://doi.org/10.1016/j.
scico.2013.11.026

19. Böhme, M., Oliveira, B.C.d.S., Roychoudhury, A.: Partition-based regression veri-
fication. In: Proc. ICSE, pp. 302–311. IEEE (2013). https://doi.org/10.1109/ICSE.
2013.6606576

20. Carroll, M.D., Ryder, B.G.: Incremental data-flow analysis via dominator and
attribute updates. In: Proc. POPL, pp. 274–284. ACM (1988). https://doi.org/
10.1145/73560.73584

21. Çelik, A., Palmskog, K., Gligoric, M.: iCoq: Regression proof selection for large-
scale verification projects. In: Proc. ASE, pp. 171–182. IEEE (2017). https://doi.
org/10.1109/ASE.2017.8115630

22. Çelik, A., Palmskog, K., Gligoric, M.: A regression proof selection tool for Coq.
In: Proc. ICSE (Companion Volume), pp. 117–120. ACM (2018). https://doi.org/
10.1145/3183440.3183493

23. Chaki, S., Gurfinkel, A., Strichman, O.: Regression verification for multi-threaded
programs (with extensions to locks and dynamic thread creation). FMSD 47(3),
287–301 (2015). https://doi.org/10.1007/s10703-015-0237-0

24. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794
(2003). https://doi.org/10.1145/876638.876643

25. Fedyukovich, G., Sery, O., Sharygina, N.: eVolCheck: Incremental upgrade checker
for C. In: Proc. TACAS, LNCS, vol. 7795, pp. 292–307. Springer (2013). https://
doi.org/10.1007/978-3-642-36742-7_21

26. Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating
regression verification. In: Proc. ASE, pp. 349–360. ACM (2014). https://doi.org/
10.1145/2642937.2642987

27. Godlin, B., Strichman, O.: Regression verification. In: Proc. DAC, pp. 466–471.
ACM (2009). https://doi.org/10.1145/1629911.1630034

28. Godlin, B., Strichman, O.: Regression verification: Proving the equivalence of sim-
ilar programs. Softw. Test. Verif. Reliab. 23(3), 241–258 (2013). https://doi.org/
10.1002/stvr.1472

29. Heizmann, M., Chen, Y.F., Dietsch, D., Greitschus, M., Hoenicke, J., Li, Y., Nutz,
A., Musa, B., Schilling, C., Schindler, T., Podelski, A.: Ultimate Automizer and
the search for perfect interpolants (competition contribution). In: Proc. TACAS
(2), LNCS, vol. 10806, pp. 447–451. Springer (2018). https://doi.org/10.1007/978-
3-319-89963-3_30

30. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In:
Proc. SAS, LNCS, vol. 5673, pp. 69–85. Springer (2009). https://doi.org/10.1007/
978-3-642-03237-0_7

31. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people
who love automata. In: Proc. CAV, LNCS, vol. 8044, pp. 36–52. Springer (2013).
https://doi.org/10.1007/978-3-642-39799-8_2

32. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Proc. POPL, pp. 232–244. ACM (2004). https://doi.org/10.1145/
964001.964021

156 APPENDIX B. ORIGINAL MANUSCRIPTS

152 D. Beyer, M.-C. Jakobs, and T. Lemberger

33. Henzinger, T.A., Jhala, R., Majumdar, R., Sanvido, M.A.A.: Extreme model check-
ing. In: Verification: Theory and Practice, LNCS, vol. 2772, pp. 332–358 (2003).
https://doi.org/10.1007/978-3-540-39910-0_16

34. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proc.
POPL, pp. 58–70. ACM (2002). https://doi.org/10.1145/503272.503279

35. Jackson, D., Ladd, D.A.: Semantic Diff: A tool for summarizing the effects of
modifications. In: Proc. ICSM, pp. 243–252. IEEE (1994). https://doi.org/10.1109/
ICSM.1994.336770

36. Jia, X., Ghezzi, C., Ying, S.: Enhancing reuse of constraint solutions to improve
symbolic execution. In: Proc. ISSTA, pp. 177–187. ACM (2015). https://doi.org/
10.1145/2771783.2771806

37. Kawaguchi, M., Lahiri, S., Rebelo, H.: Conditional equivalence. Tech. rep.,
Microsoft Research (2010)

38. Lahiri, S.K., McMillan, K.L., Sharma, R., Hawblitzel, C.: Differential assertion
checking. In: Proc. FSE, pp. 345–355. ACM (2013). https://doi.org/10.1145/
2491411.2491452

39. Lahiri, S.K., Murawski, A., Strichman, O., Ulbrich, M.: Program Equivalence
(Dagstuhl Seminar 18151). Dagstuhl Reports 8(4), 1–19 (2018). https://doi.org/
10.4230/DagRep.8.4.1

40. Lahiri, S.K., Vaswani, K., Hoare, C.A.R.: Differential static analysis: Opportu-
nities, applications, and challenges. In: Proc. FoSER, pp. 201–204. ACM (2010).
https://doi.org/10.1145/1882362.1882405

41. Lauterburg, S., Sobeih, A., Marinov, D., Viswanathan, M.: Incremental state-space
exploration for programs with dynamically allocated data. In: Proc. ICSE, pp. 291–
300. ACM (2008). https://doi.org/10.1145/1368088.1368128

42. Leino, K.R.M., Wüstholz, V.: Fine-grained caching of verification results. In: Proc.
CAV, LNCS, vol. 9206, pp. 380–397. Springer (2015). https://doi.org/10.1007/978-
3-319-21690-4_22

43. McMillan, K.L.: Interpolation and SAT-based model checking. In: Proc. CAV,
LNCS, vol. 2725, pp. 1–13. Springer (2003). https://doi.org/10.1007/978-3-540-
45069-6_1

44. Mudduluru, R., Ramanathan, M.K.: Efficient incremental static analysis using
path abstraction. In: Proc. FASE, LNCS, vol. 8411, pp. 125–139. Springer (2014).
https://doi.org/10.1007/978-3-642-54804-8_9

45. Partush, N., Yahav, E.: Abstract semantic differencing for numerical programs.
In: Proc. SAS, LNCS, vol. 7935, pp. 238–258. Springer (2013). https://doi.org/10.
1007/978-3-642-38856-9_14

46. Person, S., Dwyer, M.B., Elbaum, S.G., Păsăreanu, C.S.: Differential symbolic exe-
cution. In: Proc. FSE, pp. 226–237. ACM (2008). https://doi.org/10.1145/1453101.
1453131

47. Person, S., Yang, G., Rungta, N., Khurshid, S.: Directed incremental symbolic
execution. In: Proc. PLDI, pp. 504–515. ACM (2011). https://doi.org/10.1145/
1993498.1993558

48. Ramos, D.A., Engler, D.R.: Practical, low-effort equivalence verification of real
code. In: Proc. CAV, LNCS, vol. 6806, pp. 669–685. Springer (2011). https://doi.
org/10.1007/978-3-642-22110-1_55

49. Rothenberg, B., Dietsch, D., Heizmann, M.: Incremental verification using trace
abstraction. In: Proc. SAS, LNCS, vol. 11002, pp. 364–382. Springer (2018).
https://doi.org/10.1007/978-3-319-99725-4_22

B.8. Difference Verification with Conditions 157

Difference Verification with Conditions 153

50. Rungta, N., Person, S., Branchaud, J.: A change impact analysis to characterize
evolving program behaviors. In: Proc. ICSM, pp. 109–118. IEEE (2012). https://
doi.org/10.1109/ICSM.2012.6405261

51. Ryder, B.G.: Incremental data-flow analysis. In: Proc. POPL, pp. 167–176. ACM
(1983). https://doi.org/10.1145/567067.567084

52. Seidl, H., Erhard, J., Vogler, R.: Incremental abstract interpretation. In: From
Lambda Calculus to Cybersecurity Through Program Analysis - Essays Dedicated
to Chris Hankin on the Occasion of His Retirement, LNCS, vol. 12065, pp. 132–148.
Springer (2020). https://doi.org/10.1007/978-3-030-41103-9_5

53. Sery, O., Fedyukovich, G., Sharygina, N.: Incremental upgrade checking by
means of interpolation-based function summaries. In: Proc. FMCAD, pp. 114–121.
FMCAD Inc. (2012)

54. Sokolsky, O.V., Smolka, S.A.: Incremental model checking in the modal mu-
calculus. In: Proc. CAV, LNCS, vol. 818, pp. 351–363. Springer (1994). https://
doi.org/10.1007/3-540-58179-0_67

55. Strichman, O., Godlin, B.: Regression verification – a practical way to verify pro-
grams. In: Proc. VSTTE, LNCS, vol. 4171, pp. 496–501. Springer (2008). https://
doi.org/10.1007/978-3-540-69149-5_54

56. Strichman, O., Veitsman, M.: Regression verification for unbalanced recursive func-
tions. In: Proc. FM, LNCS, vol. 9995, pp. 645–658 (2016). https://doi.org/10.1007/
978-3-319-48989-6_39

57. Szabó, T., Bergmann, G., Erdweg, S., Voelter, M.: Incrementalizing lattice-
based program analyses in Datalog. PACMPL 2(OOPSLA), 139:1–139:29 (2018).
https://doi.org/10.1145/3276509

58. Szabó, T., Erdweg, S., Voelter, M.: IncA: A DSL for the definition of incremental
program analyses. In: Proc. ASE, pp. 320–331. ACM (2016). https://doi.org/10.
1145/2970276.2970298

59. Visser, W., Geldenhuys, J., Dwyer, M.B.: Green: Reducing, reusing, and recy-
cling constraints in program analysis. In: Proc. FSE, pp. 58:1–58:11. ACM (2012).
https://doi.org/10.1145/2393596.2393665

60. Yang, G., Dwyer, M.B., Rothermel, G.: Regression model checking. In: Proc. ICSM,
pp. 115–124. IEEE (2009). https://doi.org/10.1109/ICSM.2009.5306334

61. Yang, G., Păsăreanu, C.S., Khurshid, S.: Memoized symbolic execution. In: Proc.
ISSTA, pp. 144–154. ACM (2012). https://doi.org/10.1145/2338965.2336771

62. Yoo, S., Harman, M.: Regression testing minimization, selection,
and prioritization: A survey. STVR 22(2), 67–120 (2012). https://
onlinelibrary.wiley.com/doi/abs/10.1002/stvr.430

158 APPENDIX B. ORIGINAL MANUSCRIPTS

154 D. Beyer, M.-C. Jakobs, and T. Lemberger

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons licence and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

B.8. Difference Verification with Conditions 159

Decomposing Software Verification into Off-the-Shelf
Components: An Application to CEGAR
Dirk Beyer

dirk.beyer@sosy-lab.org
LMU Munich

Munich, Germany

Jan Haltermann∗
jan.haltermann@uol.de
University of Oldenburg
Oldenburg, Germany

Thomas Lemberger∗
thomas.lemberger@sosy.ifi.lmu.de

LMU Munich
Munich, Germany

Heike Wehrheim
heike.wehrheim@uol.de
University of Oldenburg
Oldenburg, Germany

ABSTRACT

Techniques for software verification are typically realized as co-
hesive units of software with tightly coupled components. This
makes it difficult to re-use components, and the potential for work-
load distribution is limited. Innovations in software verification
might find their way into practice faster if provided in smaller,
more specialized components.

In this paper, we propose to strictly decompose software ver-
ification: the verification task is split into independent subtasks,
implemented by only loosely coupled components communicat-
ing via clearly defined interfaces. We apply this decomposition
concept to one of the most frequently employed techniques in soft-
ware verification: counterexample-guided abstraction refinement
(CEGAR). CEGAR is a technique to iteratively compute an abstract
model of the system. We develop a decomposition of CEGAR into
independent components with clearly defined interfaces that are
based on existing, standardized exchange formats. Its realization
component-based CEGAR (C-CEGAR) concerns the three core tasks of
CEGAR: abstract-model exploration, feasibility check, and precision
refinement. We experimentally show that — despite the necessity
of exchanging complex data via interfaces — the efficiency thereby
only reduces by a small constant factor while the precision in solv-
ing verification tasks even increases. We furthermore illustrate the
advantages of C-CEGAR by experimenting with different implemen-
tations of components, thereby further increasing the overall effec-
tiveness and testing that substitution of components works well.

CCS CONCEPTS

• Software and its engineering → Formal software verifi-

cation; Abstraction, modeling and modularity; • Theory of

computation → Logic and verification.

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9221-1/22/05.
https://doi.org/10.1145/3510003.3510064

KEYWORDS

Software engineering, Software verification, Abstraction refine-
ment, CEGAR, Decomposition, Cooperative verification

ACM Reference Format:

Dirk Beyer, Jan Haltermann, Thomas Lemberger, and Heike Wehrheim.
2022. Decomposing Software Verification into Off-the-Shelf Components:
An Application to CEGAR. In 44th International Conference on Software

Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3510003.3510064

1 INTRODUCTION

potential
counterexample

infeasible
counterexample

precision
increment

Abstract-Model
Exploration

Feasibility
Check

Precision
Refinement

𝑃, 𝜑

Task

program
correct

program
incorrect

Figure 1: Workflow of classic CEGAR

Over the past decades, software verification has emerged as
an area with continuous research innovations and also with in-
creasing tool development. Competitions on software verification
(SV-COMP [15], VerifyThis [67]) showcase and conserve the rapid
process of tool building and application, and have also observed an
interest in standardization of verification artifacts (e.g., of verifica-
tion witnesses). The general task of automatic verification tools is
to compute a proof or counterexample for specified requirements.

Today, the majority of existing verification tools, whether config-
urable or not, are strongly cohesive software units. Though software
verification as a task clearly consists of individual subtasks, veri-
fiers are typically made up of tightly coupled, stateful components

160 APPENDIX B. ORIGINAL MANUSCRIPTS

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA D. Beyer, J. Haltermann, T. Lemberger, and H. Wehrheim

Violation
Witness

Path
Witness

Invariant
Witness

Abstract-Model
Explorer

Feasibility
Checker

Precision
Refiner

𝑃, 𝜑

Task

program
correct

program
incorrect

Figure 2: Workflow of component-based CEGAR

that operate on shared data structures. This architecture compli-
cates reuse of components, impacts scalability (e.g., parallelization)
and hampers exchange and integration of new components. In
consequence, it often requires major implementation effort to in-
tegrate innovations in verification technology into existing tools,
or is even prohibitive because the strong cohesion between ex-
isting components can not be broken easily.

To avoid this issue, we propose to employ decomposition concepts
in the construction of verifiers. Instead of having all components
integrated into a single tool, we opt for cooperative verification [41]
where independent executable units cooperate on a verification task.
Every such unit is only responsible for one well-defined subtask,
and the units communicate via clearly defined interfaces.

To investigate the feasibility of such ideas, we have realized this
strict decomposition into components for one of themost frequently
employed techniques in software verification, counterexample-

guided abstraction refinement (CEGAR) [53, 54]. CEGAR is a tech-
nique for automatically finding an abstract model of the software
to be verified which is as abstract as possible, but as precise as

necessary to successfully construct a proof of correctness or a refu-
tation. Many tools for software verification include this CEGAR
principle (e.g., [2, 4, 25, 34, 45, 47, 71, 76, 81, 83, 94, 96, 101–103]).
CEGAR is also successfully employed in other areas, like proba-
bilistic or timed-automata model checking [79, 80]. CEGAR readily
lends itself to a decomposition which we realize here as component-

based CEGAR (C-CEGAR). Figure 1 first of all illustrates the iterative
procedure of classic CEGAR: For a given level of abstraction, the
exploration of an abstract model of the software (top) either proves
the program correct and terminates the procedure, or finds a po-
tential counterexample. The feasibility check (right) analyzes the
counterexample. It either proves the counterexample feasible and
terminates the procedure, or passes an infeasible counterexample
to the next phase. The precision refinement (left) analyzes the in-
feasible counterexample and extracts from it a precision increment
refining the abstract model which the abstract-model exploration
employs in the next iteration. This cycle continues until either
a correctness or a violation proof is found.

But while this general concept of CEGAR has overall proven suc-
cessful (witnessed by CEGAR-based tools scoring high at SV-COMP),
research into specialized techniques for the three subtasks is still

ongoing. This can best be illustrated by proposals of and discus-
sions on precision refiners [37, 38, 65, 72]. Precision refinement
techniques rely on heuristics, and hence their effectiveness can
only be evaluated through experiments. Due to the tight coupling
of components in verifiers, new precision refiners can however
neither be evaluated in isolation nor can they be integrated into
existing tools without reimplementation. The past has thus un-
fortunately already seen multiple reimplementations of precision
refiners: A vast amount of tools [4, 25, 34, 45, 47, 71, 76, 83, 96, 101]
contain implementations of a refiner based on Craig interpolation
and at least three tools [34, 72, 75] contain (re-)implementations
of so called Newton refinement.

C-CEGAR overcomes these disadvantages of classic CEGAR by a
consequent decomposition, implementing each of the three con-
ceptual units as a stand-alone component and defining clear-cut
interfaces between components. Figure 2 illustrates the workflow
of C-CEGAR. For the interfaces, we employ existing standards for
verification artifacts, namely violation, path, and invariant wit-
nesses [20, 21], but also new formats. Witnesses are already pro-
duced by many verifiers, which allows us to partially reuse tools.

We have implemented C-CEGAR as a particular form of co-
operative verification, and implemented it using the framework
CoVeriTeam [33].With this implementation at hand, we have then in-
vestigated the effects of decomposition into components on the over-
all effectiveness and efficiency. Our experiments show that while
efficiency is slightly impacted by the necessity of data exchange via
external interfaces, the overall effectiveness can even be increased.
We have moreover performed the now possible independent evalua-
tion of precision refiners, comparing Craig and Newton refinement.

Novelty. We provide the following contributions:

• We develop the concept of C-CEGAR as a composition of three
independent (software) units with clearly defined interfaces
based on verification witnesses and invariant maps.

• We implement C-CEGAR for C programs using the framework
CoVeriTeam.

• We show the feasibility and effectiveness of C-CEGAR through
a sound experimental evaluation on an extensive benchmark
set with 8 347 verification tasks (written in C). We use 3 off-
the-shelf verification tools for the three base units.

• We experimentally demonstrate that C-CEGAR makes it pos-
sible to independently evaluate components like precision
refiners, which was not possible before.

• Our results are verifiable: all data and software are publicly
available for inspection and reproduction (Sect. 6).

Significance and Potential Impact. Evaluations in the research
literature and competitions show that different approaches have
different strengths to solve the problem of software verification. It
is therefore imperative to leverage the possibility of substituting
components by alternatives, instead of (re-)implementing whole
tools. Exchangeability is a key feature in component-based de-
sign and our approach can lead to components that are tuned to
excel in their specific task. SAT and SMT solvers are a success
story because there already is such a clearly defined interface
(SAT queries, SMTlib exchange format): many applications build

B.9. Decomposing Software Verification into Off-the-Shelf Components: An
Application to CEGAR 161

Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

on SAT and SMT solvers as components and many tools implement
these component interfaces [8, 9, 11, 82].

Software verification needs to be integrated into the continuous-
integration process [50], and therefore, it is important to reduce its
response time. Most of the currently available software verifiers are
not constructed in a way that supports massively parallel execution,
but the decomposition of verification techniques into stand-alone
components would enable this. With C-CEGAR, we try to improve
the state of the art in this respect. We see our work as a catalyst
for further research in the domain of CEGAR and as a first step
towards a microservice architecture for software verification.

1.1 Related Work

There is a large body of literature on decomposition, interfaces,
and cooperative verification. We restrict ourselves here to provide
a few pointers to literature that directly inspired our work.

Compositionality and Decomposition. Decomposition is a cen-
tral general problem-solving approach in computer science, and
in particular in software engineering [63, 64]. The goal is to “di-
vide and conquer”, that is, split the problem into “easier-to-solve”
sub-problems and solve them as independently as possible. Compo-
sitionality means that a system can be composed from components.

Cooperative Verification. The electronic tools integration plat-
form (ETI) [86–88, 99] was an effort to collect and conserve tools
from the formal-methods community. Wide (and public) availabil-
ity of tools is the precondition to any kind of cooperation. The
evidential tool bus [58, 59, 97] arose also in the formal-methods
community, and tries to integrate tools that cooperate, in partic-
ular, to compose assurance claims. Conditional model checking
(CMC) [26] is an approach in which several tools exchange infor-
mation about the progress of the verification. CMC introduced a
condition as artifact that describes which parts of the system are
successfully verified so far. Conditional testing [36] applies the
same idea to software testing. Sets of test goals are used as artifact
to describe what has been tested so far. Conditions are also used to
test what could not be verified [51, 60]. CoDiDroid [91] is a broker
that delegates queries to the tools that are best suited to answer
them. This way, several tools cooperate to achieve the goal.

Composition in Software Verification. There are several ap-
proaches to compose new tools from existing binary components.
Reducers [31] can be composed from off-the-shelf verifiers to con-
struct conditional verifiers and the artifact that is passed from the
reducer to the verifier is a residual program. MetaVal [40] is an
approach to construct a witness-based result validator from a pro-
gram transformer and an off-the-shelf verifier. If the specification
is large, it could be promising to decompose the specification [6].

Interfaces.Components are connected via interfaces. The interface
specifies what the outside should know about the component and
what types of data (or, more general, artifacts) are expected as input
and output. Signatures of functions are often used in programming
languages to document how a function can be used, and abstract
classes (in Java: interfaces) are used to document a cohesive com-
ponent or subsystem by a set of functions with their signatures
which describe the service that the component or subsystem deliv-
ers. Behavioral interfaces were found to be useful for concurrent

systems [61], for timed systems [62], for resources [49], for web
services [16], and for program APIs and their behavior [28, 32, 77].

Verification Artifacts and Exchange Formats. Artifacts and for-
mats that are relevant for cooperative verification were discussed
recently [41]. To give some examples, artifacts for cooperative ver-
ification can be (a) programs (exchange format C: [3]), (b) spec-
ifications (exchange format: [12, 92]), (c) results (exchange for-
mat: [20, 21, 48]), and (d) conditions (exchange format: [10, 11, 26]).

Libraries and Components. Many verification approaches are
based on formulas in a certain logic, and theorem provers [98]
or SMT solvers [11] are used to reason about the programs or
systems. SMT solvers support a standard exchange format [10],
and there are even API frameworks [46, 55, 68, 84, 85] that make
SMT-solvers exchangeable. There was already an idea to make
reachability queries via a defined interface [18], because several
verification approaches can be solved with the help of reachability
queries, such as termination analysis [56, 93], test-case genera-
tion [17, 69], Impact [42, 90], and PDR [19, 43].

CEGAR. The full, concrete system implementation is often complex
and abstraction can help to ignore details that are not important
for proving correctness or for finding bugs. CEGAR [53, 54] is an
approach that can be used to compute an abstraction of the system.
There are many verification tools that use CEGAR as a component,
for example, the most recent SV-COMP report mentions the follow-
ing: Brick, CPA-BAM-BnB [101], CPALockator [5], CPAchecker [34],
Gazer-Theta [1], JayHorn [83], PeSCo [95], UAutomizer [76], UKo-
jak [66], UTaipan [71], and VeriAbs [2]. CEGAR is a research topic
itself because of its importance [27, 37, 38, 44, 73, 90, 100].

This paper stands on the shoulders of the fine works described
above: we use CEGAR, decompose it into components, use veri-
fication witnesses as interfaces, and reuse existing components
for the construction of the components.

2 BACKGROUND

We start by explaining some basic notations and concepts.

Programs. For a simplified presentation, we assume that each pro-
gram contains at most one program statement on each source-
code line, and that the only variable type is integer (Z). Figures 3a
and 3b show two programs. For a program 𝑃 , we define the set 𝐿 of
all program locations (uniquely identifiable by source-code line),
the program counter 𝑝𝑐 ∈ 𝐿, the set 𝑋 of all program variables,
the set 𝑂𝑝 of all program operations over integer variables and the
program states𝐶 = (𝑋 → Z) ∪ ({𝑝𝑐} → 𝐿). A program state 𝑐 ∈ 𝐶

assigns a value to each program variable, and a line number to 𝑝𝑐 . A
program path 𝑐0

𝑜𝑝0−−−→ . . .
𝑜𝑝𝑛−1−−−−−→ 𝑐𝑛 is a sequence of program states,

where 𝑐0 is an initial state with arbitrary value assignments for pro-
gram variables, 𝑜𝑝𝑖 is the program statement at program location
𝑐𝑖 (𝑝𝑐), and 𝑐𝑖+1 is a possible successor state of 𝑐𝑖 after executing 𝑜𝑝𝑖 .
A control-flow automaton (CFA) (𝐿, ℓ0,𝐺) for a program 𝑃 consists of
the locations L, the program entry ℓ0 and transitions𝐺 ⊆ 𝐿×𝑂𝑝×𝐿,
modeling the execution of a statement when moving the program
counter from one location to a successor location. When control-
flow branches conditionally (e.g., because of an if-else or while),

162 APPENDIX B. ORIGINAL MANUSCRIPTS

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA D. Beyer, J. Haltermann, T. Lemberger, and H. Wehrheim

1 int main() {
2 unsigned int y = 1;
3 while (1) {
4 y = y + 2U * nondet();
5 if (y != 0) {}
6 else
7 error();
8 }
9 }

(a) Craig interpolation finds the more

meaningful precision (𝑦 mod 2 = 1) , New-

ton finds the equivalent, but more complex

precision 1 ≤ 𝑦 + 2 ∗ ⌊ ((𝑦 ∗ −1 + 1)/2) ⌋

1 int main(void) {
2 unsigned int x = 0;
3 unsigned short N = nondet();
4 while (x < N) {
5 x += 2;
6 }
7 if (x % 2 == 0) {}
8 else
9 error();
10 }

(b) Newton refinement finds the more

meaningful precision 𝑥 ≤ 2 ∗ (𝑥/2) ,
Craig interpolation enumerates all valid

assignments for 𝑥 explicitly

𝑙1

𝑙2

𝑙3

𝑙4𝑙7

𝑙5𝑙9

𝑙10

x = 0

n = nondet()

x < N

x += 2

¬(x < N)

x % 2 = 0

¬(x % 2 = 0)

error()

(c) CFA for program Fig. 3b

Figure 3: Code examples for Craig interpolation and Newton

refinement

the two corresponding edges of a CFA are labeled with the condi-
tion (e.g., for the if-branch) and the negated condition (e.g., for the
else-branch). Figure 3c gives the CFA of the program in Fig. 3b.

Software verification aims at analyzing the correctness of soft-
ware. In this work, we suppose the verifier to check C programs for
the reachability of calls to the specific error function error, which
represents a specification violation1. A program 𝑃 is correct if there
is no program path that contains the statement 𝑜𝑝𝑖 = error().
A state condition 𝜙 is a logical expression over program vari-
ables (e.g., 𝑦 = 1), used to express state-space restrictions. A
program state 𝑐 fulfills a state condition 𝜙 when 𝑐 |= 𝜙 . We de-
fine the type Φ of state conditions.

Witnesses.The interfaces in our component-based CEGAR approach
all come in the form of witnesses. An invariant witness describes a
set of potential invariants for a program, using the formal definition
of the common exchange format of correctness witness [20]2. Intu-
itively, an invariant witness automaton is a CFA equipped with in-
variants, explaining why a property is not violated on a path or in a
program. An example of an invariant witness is given in Fig. 4. More
formally, the invariant witness automaton consists of a set of states
𝑄 , an initial state𝑞0 and a transfer relation 𝛿 . A state𝑞 ∈ 𝑄 may sum-
marize several concrete states of a CFA. In the example, the state 𝑞2
represents the CFA node 𝑙3, 𝑞3 summarizes 𝑙4 and 𝑙5 and 𝑞4 summa-
rizes 𝑙7, 𝑙9 and 𝑙10. In addition, states can contain invariants, e.g. state
𝑞2 contains the invariant 𝑥 ≤ 2 ∗ (𝑥/2). A transition between two
states is labeled with the line number of a program location. If the lo-
cation is a branch or a loop-head, the transition is in addition either
1We do not lose generality, as any safety property can be reduced to the call to an
arbitrary function.
2We use the term invariant witness, as a correctness witness contains correct invariants
only, in contrast to the invariant witness.

𝑞0

𝑞1

𝑞2
𝑥 ≤ 2 ∗ (𝑥/2)

𝑞4 𝑞3

line 2

line 3, cond-true

line 4,
cond-false

line 4,
cond-true

line 5

o/w

o/w

o/w

o/w o/w

Figure 4: Invariant-witness

automaton for Fig. 3b

𝑞0

𝑞1

𝑞2

𝑞𝑒𝑟𝑟

line 2:
y = 1

line 3, cond-true

line 5, cond-false

o/w

o/w

o/w

Figure 5: (Invalid) violation-

witness automaton for Fig. 3a

labeled with cond-true or cond-false, indicating whether the
condition is assumed to be true or false. Each state has an additional
self-loop labeled 𝑜/𝑤 (otherwise) that can be taken if no other tran-
sition is applicable (when a state summarizes several CFA nodes).
Thereby, the invariant witness covers all paths present in a CFA.

A violation witness in the common exchange format for wit-
nesses [21] describes a set of program states of which at least one
represents a specification violation. These program states are de-
scribed by a violation witness automaton. A violation witness au-
tomaton is similarly defined to invariant witness automata, with
three differences: (1) As it only represents a subset of the CFA, it
may limit the CFA by not providing a 𝑜/𝑤 transition for each state,
(2) it does not contain invariants and (3) its transitions may, in
addition, contain state conditions, to model assumptions on the
programs state. Figure 5 contains a violation witness for Fig. 3a,
that describes the path of line 1 to line 7. A violation witness is
called valid, if at least one concrete path in the program matches
the described path, otherwise it is invalid. As the program in Fig. 3a
is correct, the violation witness is invalid.

To increase the confidence in verification results, SV-COMP
requires since 2017 [13] that all participating verifiers report a
violation witness or correctness witness as part of each veri-
fication result.

Precision Refiners. One component of C-CEGAR for which concep-
tually different techniques exist is the precision refinement. In our
evaluation, we will illustrate the advantage of C-CEGAR with the
possibility of an independent evaluation of precision refiners. Here,
we first of all give an example to show that different forms of pre-
cision refiners have different benefits. The programs of Figures 3a
and 3b (taken from SV-Benchmarks3) illustrate the precisions (for a
predicate domain) computed by Craig interpolation [57, 78, 89] and
Newton refinement [7]. In Fig. 3a, an indefinite while-loop adds a
non-deterministically computed even value to program variable 𝑦
(line 4) and then asserts that 𝑦 ≠ 0 (line 5). Because 𝑦 is initialized
with 1 in line 2, 𝑦 will always stay uneven and thus unequal to 0,
even if an overflow occurs. This means that the assertion always
holds. Trying to prove this, Craig interpolation (implemented in
CPAchecker [34]) computes the predicate 𝑦 mod 2 = 1 for the loop
head in line 3, which a verifier can use to construct the right level of
abstraction for proving the assertion in line 5. Newton refinement

3https://github.com/sosy-lab/sv-benchmarks

B.9. Decomposing Software Verification into Off-the-Shelf Components: An
Application to CEGAR 163

Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

(implemented in Ultimate Automizer [65]) computes a predicate with
the same meaning, but it is more complex and increases verification
overhead: 1 ≤ 𝑦+2∗ ⌊((𝑦 ∗−1+1)/2)⌋4 In Fig. 3b, a while-loop adds
value 2 to program variable 𝑥 until 𝑥 is greater than or equal to
non-deterministic value 𝑁 . Afterwards, it asserts that 𝑥 mod 2 = 0.
Because 𝑥 is initialized with 0 and𝑁 is of type unsigned short, the
loop can at most add 2∗65536 to 𝑥 . The type of 𝑥 , unsigned int, is
large enough to hold this value. Thus, there will be no overflow on
𝑥 , and 𝑥 will always be even (or 0). This means that the assertion al-
ways holds. Trying to prove this, Craig interpolation creates a large
number of predicates that enumerate all possible values for 𝑥 , i.e.,
𝑥 = 0, 𝑥 = 2, 𝑥 = 4, etc. Computing these predicates requires many
precision refinements and is costly. In contrast, Newton refinement
finds the more helpful predicate, 𝑥 ≤ 2 ∗ (𝑥/2), which encodes
𝑥 mod 2 = 0 and hints to a more suited, coarse abstraction. These
small examples show that there is no single technique that is opti-
mal for all programs. C-CEGAR is designed to open up the possibility
for systematically performing exactly these kind of comparisons.

3 COMPONENT-BASED CEGAR

For a decomposition of CEGAR, we need to identify its individual
components, and precisely define the interfaces between compo-
nents. Figure 2 depicts the resulting workflow.

3.1 Interfaces of C-CEGAR

The components of CEGAR pass (infeasible) counterexamples
and precision increments among each other. We briefly discuss
the information passed:

Paths. Both potential and infeasible counterexamples are typically
described by (sets of) program paths. Program paths are sequences
of program locations and program states. An exchange format for
paths should allow to describe program paths both concrete and
abstract, so that multiple paths can be described and information
can be restricted to the important. The exact path information
that is exchanged must balance precision and abstraction: A more
precise description of program paths avoids imprecision, but may
become very large (think about a precise description of many loop
unrollings) and lead the precision refiner to produce very specific
precision increments. A more abstract description of program paths
may guide a precision refiner to produce more generic precision
increments (which are often better), but it may also increase impre-
cision and require more time to analyze. It may be beneficial to not
only describe syntactic program paths, but to include information
about the program state, like constraints on variable values for
reaching a certain program location. This can help the feasibility
checker and precision refiner to reconstruct relevant information.

Precision Increment. The precision increment produced for an
infeasible counterexample helps the abstract-model exploration
to not explore the same infeasible counterexample again, but to
prove it infeasible. The concrete type of precision depends on the
abstract model explorer, but for communicating precision incre-
ments, we propose the use of partial invariants, i.e., invariants that
hold for a subset of program paths. From these partial invariants, an
4It can be shown that this term is equivalent to 𝑦 mod 2 = 1 based on the C datatypes.
A detailed reasoning is given on our supplementary webpage, https://www.sosy-
lab.org/research/component-based-cegar/.

𝑃, 𝜑

Task

𝜋

Invariant
Witness

Strengthener 𝑃𝜋 , 𝜑

Strengthened
Task

Off-the-Shelf
Verifier

Verdict

𝜔

Violation
Witness

Abstract-Model Explorer

Figure 6: Construction of an abstract-model explorer from

an off-the-shelf verifier

abstract model explorer can infer its precision. For example, predi-
cate abstraction can split partial invariants into atoms and create a
mapping from program locations to predicates. When exchanging
partial invariants, a balance between weak and strong invariants
must be found. In addition, most of the time, smaller invariants
are easier to parse and reuse than equivalent, but more complex
invariants (consider the example invariants of Fig. 3a).

The types of these artifacts are arbitrary and information other
than the proposed are possible. But to achieve the goals of C-CEGAR,
common (and at the best standardized) interfaces are required.
To exchange sets of program paths and precision increments,
we propose to use the existing exchange formats for verifica-
tion artifacts [21, 41]:

Violation Witness. We use violation witnesses for describing
the (potentially infeasible) counterexample obtained from the
abstract-model exploration.

Path Witness. If a violation witness is rejected by the feasibility
checker, then it describes an infeasible counterexample path and
no valid violation. To signify this change in the meaning of the
witness, we call a rejected violation witness path witness. A path
witness is passed from feasibility checker to precision refiner.

Invariant Witness. Precision increments are described by invari-
ant witnesses which give (partial) invariants in a program, e.g.,
for invariants associated to loop heads.

With the existence of a general format for witnesses [21], we thus
have tool-independent interfaces.

3.2 Components of C-CEGAR

Next, we describe the three components of C-CEGAR in more detail.
The three components use the above interfaces to pass information
from one to the next component. Furthermore, the components
take input from and provide output to the environment.

Abstract-Model Explorer. C-CEGAR uses an abstract-model ex-

plorer to compute the abstraction. The abstract-model explorer
takes two inputs: (1) the program 𝑃 under verification and the spec-
ification 𝜑 (together called task), and (2) an invariant witness, and
provides two outputs: (1) potentially the final verdict ‘correct’, and,
if the verdict is not ‘correct’, (2) a violation witness that describes
at least one potential counterexample path. The input invariant
witness describes the precision increment. The contained (partial)
invariants are parsed and used for improving the precision of the
abstraction employed during model exploration.

164 APPENDIX B. ORIGINAL MANUSCRIPTS

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA D. Beyer, J. Haltermann, T. Lemberger, and H. Wehrheim

𝑃, 𝜑

Task

𝜔

Violation
Witness

Reducer 𝑃𝜔 , 𝜑

Updated Task
with Path Program

Off-the-Shelf
Verifier

Verdict

𝜔

Path
Witness

Feasibility Checker

Figure 7: Construction of a feasibility checker from an off-

the-shelf verifier

Feasibility Checker. The feasibility checker is responsible for
checking counterexample paths for feasibility. A feasibility checker
takes two inputs: (1) the task and (2) a violation witness. It provides
two outputs: (1) potentially the final verdict ‘incorrect’ and, if the
violation witness contains no feasible counterexample path, (2) a
path witness that describes no feasible and at least one of the infeasi-
ble counterexample paths contained in the input violation witness.

Precision Refiner. The task of the precision refiner is to compute
new (refined) precision increments for the abstraction. A preci-
sion refiner takes two inputs: (1) the task and (2) a path witness.
It provides as single output an invariant witness that describes a
precision increment, computed based on the path witness.

3.3 Usage of Off-the-Shelf Components

For a realization of C-CEGAR as a cooperation of off-the-shelf com-
ponents, implementations of all three components are required.
A key advantage guaranteed by the usage of witnesses is the
fact that such components can (partially) be generated with ex-
isting off-the-shelf verifiers.

Abstract-Model Explorer.Any off-the-shelf verifier can be turned
into an abstract-model explorer (Fig. 6) by encoding the invari-
ants in the invariant witness (which the verifier might not na-
tively understand) as additional code (assertions) in the program
using MetaVal [40] — we call a task enriched with such invari-
ants strengthened task (Fig. 6). In addition, verifiers CPAchecker [34]
and UAutomizer [75] natively support parsing invariant witnesses
and using them for abstract-model exploration.

Feasibility Checker. Any existing results validator [21] for viola-
tion witnesses, of which there are plenty [14], can work as feasibil-
ity checker (Fig. 8). Furthermore, any off-the-shelf verifier can be
turned into a feasibility checker by transforming the violation wit-
ness into program code [27, 40]. This so-called path program only
encodes the program parts encoded by the witness.

Precision Refiner. Finally, we can generate precision refiners out
of invariant-generation tools (like [27]). To this end, we combine
the current task and a path witness into an updated task [31] which
only contains those parts of the program which cover the infeasible
counterexample paths contained in the path witness. This updated
task is then passed to invariant generation (Fig. 8). If an invariant
generator does not support the output format of invariant wit-
nesses, existing techniques [74] can perform this transformation.
In addition, any feasibility checker that is able to output an in-
variant witness can be used as precision refiner.

𝑃, 𝜑

Task

𝜔

Path
Witness

Reducer 𝑃𝜔 , 𝜑

Updated Task
with Path Program

Off-the-Shelf
Invariant
Generator

𝜋

Invariant
Witness

Precision Refiner

Figure 8: Construction of a precision refiner from an off-the-

shelf invariant generator

Overall, this shows the advantage of the decomposition of CEGAR:
once such a component-based framework is available, different
tools can be plugged into it, with the help of various program trans-
formations even those that do not natively support these interfaces.

4 IMPLEMENTATION

To realize a first C-CEGAR instance, we started with a decomposition
of CPAchecker’s implementation of CEGAR with predicate abstrac-
tion. Afterwards, we experimented with the usage of other off-the-
shelf components as Feasibility Checker and Precision Refiner.

4.1 CPAchecker’s Predicate Abstraction

CPAchecker [34] is a configurable tool for software verification of-
fering many different analysis techniques, especially providing
an implementation of predicate abstraction [70] using CEGAR.
It has a mature code base and has proven its ability to verify
and falsify programs by winning medals in the category Over-

all in SV-COMP ’22 for the fifth year in a row; among others,
by applying predicate abstraction.

CPAchecker’s implementation of predicate abstraction (Pred) is a
program analysis comprising two modules, a model explorer and a
combined feasibility checker and precision refiner. The analysis is
based on the CPA algorithm [29] with precision adjustment [30] and
adjustable-block encoding (ABE) [35]. In general, the analysis infor-
mation is stored in an abstract reachability graph (ARG), linking the
analysis information with CFA nodes. The analysis stores a set of
available predicates as precision for each ARG node together with a
boolean formula abstracting the current state using predicates from
the precision. Initially, only the predicates true and false are avail-
able. The abstraction is computed using the strongest-postcondition
semantics. If the model explorer finds an (abstract) path in the ARG
to an error location, this path is analyzed for feasibility.

Within Pred, a potential counterexample path is checked for
feasibility by validating the path formula which is build using the
strongest-postcondition semantics. It is represented in an inter-
nal format, similar and compatible with SMT-2-LIB [9]. The ob-
tained formula is checked for satisfiability using MathSAT5 [52].
An unsatisfiable formula indicates an infeasible path. In this case,
MathSAT5’s Craig interpolation is used to compute a precision in-
crement. The newly discovered predicates are added to the pre-
cision and the ARG is recomputed. Otherwise, a violation wit-
ness is computed for the found counterexample. In addition, the
precision is reported using a predicate map, which is a format
containing the predicates in SMT-2-LIB.

B.9. Decomposing Software Verification into Off-the-Shelf Components: An
Application to CEGAR 165

Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

1 explorer = ActorFactory.create(ProgramValidator,

2 "cpa-predicate-NoRefinement.yml");

3 checker = ActorFactory.create(ProgramValidator,

4 "cpa-validate-violation-witnesses.yml");

5 refiner = ActorFactory.create(ProgramValidator,

6 "uautomizer.yml");

Figure 9: Example configuration of C-CEGAR components in

CoVeriTeam

4.2 Decomposing CPAchecker’s Predicate

Abstraction

Besides the existing CEGAR implementation, CPAchecker also pro-
vides additional helpful configurations: (1) validating potential
counterexamples given as violation witnesses and (2) analyzing
only the part of a program described by a violation witnesses and
computing a precision increment for the infeasible part. To decom-
pose this existing implementation, we created new configurations
to ensure that only the desired functionality is executed. Thereby,
we obtained three standalone and stateless components:
Abstract-Model Explorer. This configuration computes only the
ARG and checks whether a counterexample path is present. A po-
tential counterexample path is exported as violation witnesses. The
initial precision is given as predicate map.
Feasibility Checker. To check a given violation witness for fea-
sibility, we use CPAchecker’s existing witness-based result valida-
tion [20, 21, 23], working with violation witnesses.
Precision Refiner. The precision refiner takes the path witness
as input and uses strongest-postcondition semantics to build a
path formula for each path within the witness. It then computes
Craig interpolants for each path and exports the computed in-
terpolants in a predicate map.

4.3 Implementation in CoVeriTeam

The C-CEGAR implementation using these three components,
realized using CoVeriTeam [33], is called C-Pred. CoVeriTeam is a
framework for cooperative verification, allowing for the definition
of new verifiers as compositions of stateless components. It provides
an easy-to-use language for describing the components’ inputs and
outputs as well as the communication among them. Compositions
are defined in a domain-specific language and components can
be exchanged easily (see Fig. 9 for an example).

4.4 Off-the-Shelf Components

Besides the thus constructed C-Pred, we used several off-the-shelf
components to evaluate the benefits of C-CEGAR. We searched for
tools applying techniques conceptually different to CPAchecker
which can either work with the exchange formats directly or
can analyze the corresponding path program. We have chosen
the following two tools:

FShell-witness2test. FShell-witness2test [22] is an execution-based
result validator for violation witnesses that is implemented indepen-
dent of any existing verification tool. FShell-witness2test extracts
test vectors encoded in the violation witness automaton, converts
this test vector into a compilable test harness, compiles the test

harness against the program under verification, and executes it.
If a specification violation is observed during execution, the vio-
lation witness is shown to be valid through program execution.
If no specification violation is observed during execution, the vi-
olation witness is rejected. Due to concrete program execution,
FShell-witness2test is very precise. But FShell-witness2test can only
validate violation witnesses that contain, for each non-deterministic
value in the program, a state condition that encodes the correspond-
ing concrete value. For example, FShell-witness2test would neither
be able to validate nor reject Fig. 5, because this violation-witness
automaton does not define a concrete value for the nondetermin-
istic method call nondet() in line 4 of Fig. 3a.

Ultimate Automizer. Ultimate Automizer [75, 76] is a verification
tool that uses a finite state automaton for the program and encodes
property violation as final states. Accepting runs of the automaton
are then analyzed for feasibility. By default, it applies a CEGAR
based predicate abstraction wherein the precision increment is
computed using Newton refinement. Newton refinement is concep-
tually different from Craig interpolation which is employed by the
CPAchecker precision refiner. Whenever a path in the automaton
is proven infeasible, a generalization is aimed for to reduce the ac-
cepted language of the automaton. A program is thus proven correct
if the language of the automaton is empty. Ultimate Automizer offers
the option to only analyze the paths of a program covered by a
violation witness and to store the computed precision increment in
an invariant witness. Hence, we can directly use Ultimate Automizer
as both feasibility checker and precision refiner – off-the-shelf.

5 EVALUATION

Within a C-CEGAR implementation, components can be easily ex-
changed by others which implement the same interface via dif-
ferent concepts. We thus allow researchers to focus on enhanc-
ing individual components, instead of reimplementing the whole
CEGAR scheme. For our evaluation, we are interested in examin-
ing the overhead associated with such a decomposition. Moreover,
we want to investigate whether the component-based implemen-
tation can bring an improvement over the tightly coupled one by
studying novel combinations of components.

5.1 Research Questions

We have already shown the feasibility of C-CEGAR in Sect. 4. Here,
we want to study the following three research questions:

RQ 1. How large is the overhead of a component-based approach
that uses off-the-shelf components?

RQ 2. What are the cost for using standardized formats in C-CEGAR?
RQ 3. Can the use of different off-the-shelf components in C-CEGAR

increase the overall effectiveness to solve verification tasks?

5.2 Evaluation Setup

We run our experiments on machines with an Intel Core i5-1230 v5,
3.40GHz (8 cores), 33GB of memory, and Ubuntu 18.04 LTS with
Linux kernel 5.4.0-96-generic. To increase the reproducibility of
our results, we run our experiments with BenchExec [39]. Each
verification run is limited to use 15GB of memory, 4 CPU cores,

166 APPENDIX B. ORIGINAL MANUSCRIPTS

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA D. Beyer, J. Haltermann, T. Lemberger, and H. Wehrheim

Table 1: Comparison of CPAchecker’s predicate abstraction

and the component-based version in two variations

correct incorrect

overall proof alarm proof alarm

Pred 3 769 2 556 1 213 3 9
C-Pred 3 524 2 450 1 074 0 3
C-PredWit 2 854 2 110 744 0 1

and 15min of CPU time. The used setup is comparable to the
setup used in the SV-COMP.

We use SV-Benchmarks, the largest available benchmark set for
verification of C programs, in the version used in SV-COMP ’22 5.
We use all 8 347 verification tasks with a reachability property.
A verification task can be safe (contains no violation) or un-
safe (contains a violation).

We use CPAchecker version 2.1.16, CoVeriTeam ver-
sion c-cegar-icse20227, FShell-witness2test8 and UAutomizer9

in its SV-COMP ’22 version, UAutomizer uses a wrapper script
to determine the correct configuration to use in SV-COMP. By
default, this does not produce invariant witnesses if a violation
witness is given. We communicated with the developers of
UAutomizer and adjusted the wrapper script according to their
instructions, so that UAutomizer always creates invariant witnesses.
This adjusted wrapper script (and all other data and tools) is
available in our supplementary artifact [24].

5.3 Evaluation Results

RQ 1 (Overhead of Component-Based Design). Evaluation Plan:

To analyze the cost of using a component-based approach, we
compare the effectiveness (RQ 1.1) and efficiency (RQ 1.2) of Pred,
described in Sect. 4.1, and our component-based version C-Pred,
described in Sect. 4.3. To improve comparability, we configure the
model explorers of both Pred and C-Pred to start the exploration
at the root of the ARG in each iteration.

RQ 1.1 (Effectiveness). Table 1 shows the experimental results of
the comparison: The number of tasks solved by the component-
based version C-Pred reduces from 3 769 to 3 524. There are 25 tasks
that C-Pred solves even though Pred does not, but also 270 tasks
that C-Pred fails to solve but Pred does (a 6.4% decrease). For most
of these tasks, the reason for failure is the decrease in efficiency:
When increasing the time limit for C-Pred by the factor of twelve
(to 180min), C-Pred only fails to solve 60 tasks that Pred can solve.
This is only a 1.7% decrease compared to Pred. Reason for the re-
maining 60 unsolved tasks is the feasibility checker used by C-Pred.
It (a) rejects more counterexamples because it is more precise than
the internal check of Pred, (b) explores paths with unsupported
program features that Pred does not visit, or (c) triggers SMT er-
rors because different interpolation sequences are queried. These
three issues are not related to C-CEGAR, but to the inconsistency
between the internal feasibility checker of Pred and the one used by
5https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp22
6https://doi.org/10.5281/zenodo.5898968
7https://gitlab.com/sosy-lab/software/coveriteam/-/tree/c-cegar-icse2022/
8https://gitlab.com/sosy-lab/sv-comp/archives-2022/-/raw/main/2022/val_fshell-
witness2test.zip
9https://doi.org/10.5281/zenodo.5898990

1 10 100 900

CPU time for Pred (s)

1

10

100

900

C
P

U
ti

m
e

fo
r

C
-P

r
e
d

(s
)

(a) Comparison of CPU time for

Pred and C-Pred

1.0

4.3

2.8

0.69

13

(b) Distribution of run time fac-

tor for C-Pred, compared to Pred

Figure 10: Comparison of efficiency of Pred and C-Pred

(across all successful verification runs)

C-Pred. Except for these issues, we can conclude that C-Pred has the
same expressive power and can solve the same verification tasks
as the classic version Pred (when more time is given). Because the
feasibility check of C-Pred is more precise than that of Pred, the
number of false alarms reduces from 9 to 3.

Decomposing an existing CEGAR implementation into compo-
nents has (almost) no negative effects on the effectiveness of the
approach. Moreover, the new tool can have a higher precision
because better components can be used.

RQ 1.2 (Efficiency). In general, C-Pred takes more CPU time to
compute the result. This effect is illustrated in the scatter-plot in
Fig. 10a. The plot shows all tasks that Pred and C-Pred both solved
correctly. Each point (𝑥,𝑦) represents a task where Pred takes 𝑥
CPU-seconds and C-Pred 𝑦 CPU-seconds. To visualize overlapping
datapoints, each point is displayed with a transparency of 90 %.
Figure 10a clearly visualizes that C-Pred has a lower efficiency com-
pared to Pred, whereas the factor for the increased CPU time is
bounded by roughly 10 (dashed line). More precisely, C-Pred uses
on mean average the 3.3-fold CPU time, whereas the median in-
crease is 2.8. Therefore, we provide a more precise insight on the
time differences in Fig. 10b: In 25 % of all cases, C-Pred takes at most
as much CPU time as the non-composed version (factor of 1.0).
For 50 % the increase is bounded by the factor 2.8 and in 75%
of the cases, the CPU time increases by at most 4.3. The upper
whisker at 13, which includes 99% of all data, shows that there
are some tasks for which C-Pred takes notably longer. Thus the
median is more meaningful. To increase readability, 35 outliers,
ranging from factor 13 to 31, are not shown.

We also observed that the median increase strongly correlates
with the number of CEGAR iterations needed to solve a task. Fig-
ure 11 visualizes the median increase, grouped by the number of
CEGAR iterations needed. Note that the 𝑖-th bars’swidth represents
the number of tasks that can be solved in 𝑖 iterations. When the task
can be solved within a single CEGAR iteration, in the median, the
CPU time does not increase (factor of 0.9). Almost 95 % of all tasks
are solved within at most 5 CEGAR iterations. As the number of
tasks solved with more than five iterations is smaller than 200, the

B.9. Decomposing Software Verification into Off-the-Shelf Components: An
Application to CEGAR 167

Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

1 2 3 4 5 6 7 8 9 10
Number of CEGAR iterations to solve task

M
ed

ia
n

fa
ct

or
of

in
cr

ea
se

in
ru

n
ti

m
e

0.9

3.1

4.7 4.4

8.0
7.3

6.6
6.0

6.2

5.2

Figure 11: Median factor of run-time increase by C-Pred com-

pared to Pred, for the first 10 numbers of CEGAR iterations.

The width of the bar for i corresponds to the number of veri-

fication tasks that require exactly i CEGAR iterations

1 int main(void) {
2 unsigned int x = 1;
3 unsigned int y = 0;
4
5 while (y < 1024) {
6 x = 0;
7 y++;
8 }
9 if (x == 0) {}
10 else
11 error();
12 }

(a) Program from SV-COMP,

where 𝑥 = 0 is not a valid invari-

ant at the loop head.

𝑞0

𝑞1

𝑞2

𝑞𝑒𝑟𝑟

line 5, cond-true

line 5, cond-false

line 9, cond-false

o/w

o/w

o/w

(b) Counterexample computed

by model explorer

Figure 12: Example comparing predicate map and invariant

witness as exchange formats

median may not perfectly summarize these iterations. We present
the full figure and the raw data on our supplementary webpage 10.
The additional run time consumed by C-Pred stems mostly from
the following facts: (1) Due to the three stateless components, less
caching is possible (e.g. for incremental solver usage), (2) each
component has to recompute basic information for the program,
especially the CFA, which yields non-negligible I/O-overhead, and
(3) redundant counterexample checks may be performed because
feasibility check and precision refinement are fully decoupled.

The efficiency of C-Pred decreases only by a constant factor
(median smaller than three).

RQ 2 (Cost of Standardized Formats).

Evaluation Plan: Instead of encoding the precision increment
computed by the precision using the CPAchecker internal format
predicate map, we use a standardized format, namely the invariant
witness. We call this configuration C-PredWit. We compare the
effectiveness and efficiency of C-Pred with C-PredWit.

Table 1 also contains the experimental results of C-PredWit. This
configuration can solve in total 2 854 tasks, computing 2 110 cor-
rect proofs and 744 correct alarms. Compared to C-Pred, the ef-
fectiveness reduces by 670 tasks, a decrease of around 20%. This
decrease follows mostly from the fact that the precision refiner
does not add the computed precision increment to the invariant
10https://www.sosy-lab.org/research/component-based-cegar/

1 10 100 900

CPU time for C-Pred (s)

1

10

100

900

C
P

U
ti

m
e

fo
r

C
-P

r
e
d
W

it
(s

)

Figure 13: Comparison of run time per task of C-Pred and

C-PredWit (in CPU time seconds)

witnesses. As a result, C-PredWit gets stuck in an endless loop
and eventually aborts the computation.

Since invariant witnesses are not primarily designed for the ex-
change of a precision increment, we regularly observe this behavior.
We exemplify its main reason in Fig. 12: Figure 12a contains a sim-
plified C program from our evaluation. Before the loop body is exe-
cuted for the first time, the value of 𝑥 is 1 and𝑦 has the value 0. After
the first loop iteration, 𝑥 has the value of 0 and 𝑦’s value is unequal
to 0. The model explorer computes the spurious counterexample
visualized in Fig. 12b. The path contains exactly one loop iteration
(𝑞0 to 𝑞1) and leads to the error location afterwards (𝑞1 to 𝑞2 to
𝑞𝑒𝑟𝑟). A helpful precision increment which can be used to prove
the counterexample to be spurious and the program to be correct
contains the predicate (𝑦 = 0 ∧ 𝑥 ≠ 0) for state 𝑞0 and the predi-
cate (𝑦 ≠ 0 ∧ 𝑥 = 0) for state 𝑞1. Although the invariant witnesses
format can conceptually be used to express loop unrollings and thus
can contain these two predicates, none of the precision refiners
used encode these or comparable predicates in an invariant witness.

In contrast, the predicate map used to exchange information in
C-Pred contains the predicates 𝑦 = 0, 𝑦 ≠ 0, 𝑥 = 0, and 𝑥 ≠ 0, which
enable the model explorer to remove the spurious counterexample.

Next, we compare the efficiency of C-Pred and C-PredWit. Fig-
ure 13 compares the CPU time used to compute the correct solu-
tion for a task. It is visible that, except for a few outliers, both
tools have the same efficiency.

The effectiveness of C-CEGAR reduces by 20% when using stan-
dardized formats, whereas the efficiency is not influenced.

RQ 3 (Benefit of Different Components). Finally, we ana-
lyze the advantages of the component-based design by replac-
ing the CPAchecker components by existing off-the-shelf imple-
mentations. Here, we consider two separate questions, exchang-
ing the feasibility checker in RQ 3.1 and the precision refiner
in RQ 3.2. In the following, we are using violation and invari-
ant witnesses as exchange formats.

RQ 3.1 (Benefit of Different Feasibility Checkers). Evaluation Plan:

To analyze how different feasibility checkers influence the effec-
tiveness and efficiency, we replace CPAchecker’s witness validation
with both FShell-witness2test and UAutomizer. Then, we compare
the effectiveness of the three resulting C-CEGAR configurations.

168 APPENDIX B. ORIGINAL MANUSCRIPTS

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA D. Beyer, J. Haltermann, T. Lemberger, and H. Wehrheim

Table 2: C-CEGAR using different components

RQ 3.1: C-PredWit + different feasibility checker (with precision refiner CPAchecker)
correct incorrect

overall proof unique alarm unique proof alarm

CPAchecker 2 854 2 110 494 744 441 0 1
FShell-witness2test 1 223 1 126 0 97 64 0 0
UAutomizer 1 941 1 614 4 327 29 0 1

RQ 3.2: C-PredWit + different precision refiner (with feasibility checker CPAchecker)
correct incorrect

overall proof unique alarm unique proof alarm

CPAchecker 2 854 2 110 709 744 436 0 1
UAutomizer 1 739 1 430 29 309 1 0 1

Table 2 shows the experimental results: For each of the three
configurations, it shows the overall correct results, the correct
proofs, the unique proofs, the correct alarms, the unique alarms,
the incorrect proofs and alarms, and the unknown results. A proof
or alarm is considered unique if the corresponding configuration is
the only one that achieves that result. The table shows that C-Pred
with CPAchecker as feasibility checker produces the best results.
Considering the unique results among these three configurations,
it is visible that all three feasibility checkers allow the verification
of tasks that neither of the other two configurations can solve.

C-CEGAR allows a simple exchange of feasibility checkers. The
use of conceptually different off-the-shelf checkers can increase
the effectiveness of C-CEGAR.

RQ 3.2 (Benefit of Different Precision Refiners). Evaluation Plan:We re-
place CPAchecker’s precision refiner (which uses Craig interpolation)
by an existing tool, applying a conceptually different refinement
strategy. Therefore, we use a configuration of Ultimate Automizer
for the path described in the violation witness, computing the New-
ton refinement. To the best of our knowledge, Ultimate Automizer is
the only formal-verification tool that is able to process violation wit-
nesses as additional input and that also outputs invariant witnesses.
Note that, in theory, any verification tool can be transformed to
process violation witnesses through program transformation (as ex-
plained in Sect. 3.2). Unfortunately (based on SV-COMP ’21) no other
verification tool is able to produce meaningful invariant witnesses
(this evaluation is available on our supplementary webpage 11).

Our objective is to show the most important advantage of
C-CEGAR, namely that using complementary techniques can lead
to an increased effectiveness through uniquely solved tasks. Ta-
ble 2 also contains the results for C-Pred using CPAchecker and
Ultimate Automizer as precision refiner. C-PredWit with Ultimate
Automizer as precision refiner is able to find 1 430 proofs (vs. 2 110)
and 309 alarms (vs. 744). These numbers are lower than C-PredWit
with CPAchecker as precision refiner, but this combination is still
able to find 29 proofs and 1 alarm that are not found by C-PredWit

11https://www.sosy-lab.org/research/component-based-cegar/

with CPAchecker. This shows that different precision refiners have
different strengths and weaknesses, so the easy replacement of-
fered by C-CEGAR can be beneficial.

Taking a closer look at the two tasks given as motivating exam-
ples in Fig. 3a and Fig. 3b, we observe the following: For Fig. 3b,
Ultimate Automizer is able to export a meaningful precision incre-
ment when CPAchecker in contrast starts enumerating valid as-
signments for 𝑥 . In this case, the configuration with Ultimate Au-
tomizer as precision refiner can continue the analysis and solve
tasks that cannot be solved by the other configuration. On the other
hand, the precision increment computed by Ultimate Automizer of-
ten contains correct but complex predicates, for which the model
explorer runs into a timeout. One example is given in Fig. 3a,
where the precision increment (1 ≤ 𝑦 + 2 ∗ ⌊((𝑦 ∗ −1 + 1)/2)⌋)
is logically equivalent to (𝑦 mod 2 = 1), found by CPAchecker,
but expressed in a more complex way.

C-CEGAR allows a simple exchange of precision refiners. The
use of conceptually different off-the-shelf refiners can increase
the effectiveness of C-CEGAR.

5.4 Threats to Validity

We have conducted our evaluation using the dataset SV-Benchmarks,
(https://github.com/sosy-lab/sv-benchmarks), which is the largest
publicly available benchmark set for C program verification and
also used by competitions. Although this dataset is widely used and
accepted for benchmarking, our findings may not completely carry
over to real-world C programs or other programming languages. Re-
garding resources, we limited the CPU limit to 15min and memory
to 15GB. More resources will lead to improved results; but both the
new approach and the baseline would benefit from more resources.

We considered only off-the-shelf tools that participated in
SV-COMP, because we consider them state of the art. For verification
witnesses, we used the standardized format https://github.com/sosy-
lab/sv-witnesses, which is also used in SV-COMP. Using other ex-
isting tools in addition may lead to different results. To the best
of our knowledge, there are no other standardized formats appli-
cable in the C-CEGAR setting or other tools that can process the

B.9. Decomposing Software Verification into Off-the-Shelf Components: An
Application to CEGAR 169

Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

used exchange formats properly. Even if such formats would ex-
ist or other tools are applicable but do not increase the effective-
ness, our findings remain valid. In addition, we cannot guaran-
tee that decomposing other existing CEGAR schemes into com-
ponents lead to the same results.

As the results from C-Pred and Pred show a high agreement in the
results, we are confident that the implementation does not suffer
from bugs. Anyhow, such bugs would influence the effectiveness
only negatively and our findings would remain valid.

The reported data may deviate on reproduction due to different
experimentation environments and measurement errors. To guar-
antee that our reported data has the highest precision possible, we
conducted the experiments using the benchmarking framework
BenchExec. To account for small, expected measurement errors, we
restrict the presentation of our data to two significant digits.

6 CONCLUSION

Software verification is an important and complex problems in
computer science, important because our society depends on cor-
rectly functioning software, and complex because the problem is in
general undecidable. Software engineering offers the idea of decom-
position [63, 64] to tackle complexity, in order to be able to focus
on subproblems which are easier to solve than the overall problem.

This paper investigated the problem of decomposing the often-
used CEGAR approach into components for which we can take pub-
licly available binary components (“off-the-shelf”). This opens up
many new opportunities. In particular, researchers can now focus
on developing highly tuned components for each of the subprob-
lems, and there are easy ways to parallelize software verification in
order to reduce the response time. However, tool developers also
have to make sure that their components deliver high-quality infor-
mation to other components, at the best in a standardized format.

In future work, we will investigate the decomposition of further
verification approaches as well as explore the options for paral-
lelization. An obvious first idea is to slightly change the outer
CEGAR loop in such a way that the abstract-model exploration
generates a stream of counterexamples, each of which is investi-
gated independently by feasibility checks and precision refinements
running in subprocesses, which feed the precision increments on-
the-fly back to the abstract-model exploration.

DECLARATIONS

Data Availability Statement. Our implementation is open source
and available online as part of CoVeriTeam; minor adjustments for
the C-Pred configuration were checked in to the project reposi-
tory for CPAchecker. The implementation and all experimental data
are archived and available at Zenodo [24].

Funding Statement. This work was funded by the Deutsche
Forschungsgesellschaft (DFG) — 418257054 (Coop).

REFERENCES

[1] Zs. Ádám, Gy. Sallai, and Á. Hajdu. 2021. Gazer-Theta: LLVM-Based Verifier
Portfolio with BMC/CEGAR (Competition Contribution). In Proc. TACAS (2)

(LNCS 12652). Springer, 433–437. https://doi.org/10.1007/978-3-030-72013-1_27
[2] M. Afzal, A. Asia, A. Chauhan, B. Chimdyalwar, P. Darke, A. Datar, S. Kumar, and

R. Venkatesh. 2019. VeriAbs: Verification by Abstraction and Test Generation.
In Proc. ASE. 1138–1141. https://doi.org/10.1109/ASE.2019.00121

[3] American National Standards Institute. 1999. ANSI/ISO/IEC 9899-1999: Program-

ming Languages — C. American National Standards Institute, 1430 Broadway,
New York, NY 10018, USA.

[4] Pavel Andrianov, Vadim Mutilin, and Alexey Khoroshilov. 2018. Predicate
Abstraction Based ConfigurableMethod for Data Race Detection in Linux Kernel.
In Proc. TMPA (CCIS 779). Springer. https://doi.org/10.1007/978-3-319-71734-0_2

[5] P. S. Andrianov. 2020. Analysis of Correct Synchronization of Operating System
Components. Program. Comput. Softw. 46 (2020), 712–730. Issue 8. https:
//doi.org/10.1134/S0361768820080022

[6] S. Apel, D. Beyer, V. O. Mordan, V. S. Mutilin, and A. Stahlbauer. 2016. On-the-
Fly Decomposition of Specifications in Software Model Checking. In Proc. FSE.
ACM, 349–361. https://doi.org/10.1145/2950290.2950349

[7] T. Ball and S. K. Rajamani. 2002. Generating abstract explanations of spurious
counterexamples in C programs. Technical Report MSR-TR-2002-09. Microsoft
Research.

[8] Clark Barrett, Morgan Deters, Leonardo de Moura, Albert Oliveras, and Aaron
Stump. 2013. 6 Years of SMT-COMP. J. Autom. Reasoning 50, 3 (2013), 243–277.
https://doi.org/10.1007/s10817-012-9246-5

[9] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2015. The SMT-LIB Standard:

Version 2.5. Technical Report. University of Iowa. Available at www.smt-lib.org.
[10] C. Barrett, A. Stump, and C. Tinelli. 2010. The SMT-LIB Standard: Version 2.0.

In Proc. SMT.
[11] Clark Barrett and Cesare Tinelli. 2018. Satisfiability Modulo Theories. In

Handbook of Model Checking. Springer, 305–343. https://doi.org/10.1007/978-3-
319-10575-8_11

[12] P. Baudin, P. Cuoq, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Prevosto.
2020. ACSL: ANSI/ISO C Specification Language Version 1.15.

[13] D. Beyer. 2017. Software Verification with Validation of Results (Report on
SV-COMP 2017). In Proc. TACAS (LNCS 10206). Springer, 331–349. https://doi.
org/10.1007/978-3-662-54580-5_20

[14] D. Beyer. 2020. Advances in Automatic Software Verification: SV-COMP 2020.
In Proc. TACAS (2) (LNCS 12079). Springer, 347–367. https://doi.org/10.1007/978-
3-030-45237-7_21

[15] D. Beyer. 2021. Software Verification: 10th Comparative Evaluation (SV-COMP
2021). In Proc. TACAS (2) (LNCS 12652). Springer, 401–422. https://doi.org/10.
1007/978-3-030-72013-1_24 preprint available.

[16] D. Beyer, A. Chakrabarti, and T. A. Henzinger. 2005. Web Service Interfaces. In
Proc. WWW. ACM, 148–159. https://doi.org/10.1145/1060745.1060770

[17] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. 2004. Gen-
erating Tests from Counterexamples. In Proc. ICSE. IEEE, 326–335. https:
//doi.org/10.1109/ICSE.2004.1317455

[18] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. 2004. The
Blast Query Language for Software Verification. In Proc. SAS (LNCS 3148).
Springer, 2–18. https://doi.org/10.1007/978-3-540-27864-1_2

[19] D. Beyer and M. Dangl. 2020. Software Verification with PDR: An Implemen-
tation of the State of the Art. In Proc. TACAS (1) (LNCS 12078). Springer, 3–21.
https://doi.org/10.1007/978-3-030-45190-5_1

[20] D. Beyer, M. Dangl, D. Dietsch, and M. Heizmann. 2016. Correctness Witnesses:
Exchanging Verification Results Between Verifiers. In Proc. FSE. ACM, 326–337.
https://doi.org/10.1145/2950290.2950351

[21] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. 2015. Witness
Validation and Stepwise Testification across Software Verifiers. In Proc. FSE.
ACM, 721–733. https://doi.org/10.1145/2786805.2786867

[22] D. Beyer, M. Dangl, T. Lemberger, andM. Tautschnig. 2018. Tests fromWitnesses:
Execution-Based Validation of Verification Results. In Proc. TAP (LNCS 10889).
Springer, 3–23. https://doi.org/10.1007/978-3-319-92994-1_1

[23] D. Beyer and K. Friedberger. 2020. Violation Witnesses and Result Validation for
Multi-Threaded Programs. In Proc. ISoLA (1) (LNCS 12476). Springer, 449–470.
https://doi.org/10.1007/978-3-030-61362-4_26

[24] D. Beyer, J. Haltermann, T. Lemberger, and H. Wehrheim. 2022. Reproduction
Package (VM Version) for ICSE 2022 Article ‘Decomposing Software Verification
into Off-the-Shelf Components: An Application to CEGAR’. Zenodo. https:
//doi.org/10.5281/zenodo.5301636

[25] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. 2007. The Software Model
Checker Blast. Int. J. Softw. Tools Technol. Transfer 9, 5-6 (2007), 505–525.
https://doi.org/10.1007/s10009-007-0044-z

[26] D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler. 2012. Conditional
Model Checking: A Technique to Pass Information between Verifiers. In Proc.

FSE. ACM, Article 57, 11 pages. https://doi.org/10.1145/2393596.2393664

170 APPENDIX B. ORIGINAL MANUSCRIPTS

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA D. Beyer, J. Haltermann, T. Lemberger, and H. Wehrheim

[27] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. 2007. Path Invari-
ants. In Proc. PLDI. ACM, 300–309. https://doi.org/10.1145/1250734.1250769

[28] D. Beyer, T. A. Henzinger, and V. Singh. 2007. Algorithms for Interface Synthesis.
In Proc. CAV (LNCS 4590). Springer, 4–19. https://doi.org/10.1007/978-3-540-
73368-3_4

[29] D. Beyer, T. A. Henzinger, and G. Théoduloz. 2007. Configurable Software
Verification: Concretizing the Convergence of Model Checking and Program
Analysis. In Proc. CAV (LNCS 4590). Springer, 504–518. https://doi.org/10.1007/
978-3-540-73368-3_51

[30] D. Beyer, T. A. Henzinger, and G. Théoduloz. 2008. Program Analysis with
Dynamic Precision Adjustment. In Proc. ASE. IEEE, 29–38. https://doi.org/10.
1109/ASE.2008.13

[31] D. Beyer, M.-C. Jakobs, T. Lemberger, and H. Wehrheim. 2018. Reducer-Based
Construction of Conditional Verifiers. In Proc. ICSE. ACM, 1182–1193. https:
//doi.org/10.1145/3180155.3180259

[32] D. Beyer and S. Kanav. 2020. An Interface Theory for Program Verification. In
Proc. ISoLA (1) (LNCS 12476). Springer, 168–186. https://doi.org/10.1007/978-3-
030-61362-4_9

[33] D. Beyer and S. Kanav. 2022. CoVeriTeam: On-Demand Composition of Coop-
erative Verification Systems (forthcoming). In Proc. TACAS. Springer.

[34] D. Beyer and M. E. Keremoglu. 2011. CPAchecker: A Tool for Configurable
Software Verification. In Proc. CAV (LNCS 6806). Springer, 184–190. https:
//doi.org/10.1007/978-3-642-22110-1_16

[35] D. Beyer, M. E. Keremoglu, and P. Wendler. 2010. Predicate Abstraction with
Adjustable-Block Encoding. In Proc. FMCAD. FMCAD, 189–197.

[36] D. Beyer and T. Lemberger. 2019. Conditional Testing: Off-the-Shelf Combina-
tion of Test-Case Generators. In Proc. ATVA (LNCS 11781). Springer, 189–208.
https://doi.org/10.1007/978-3-030-31784-3_11

[37] D. Beyer, S. Löwe, and P. Wendler. 2015. Refinement Selection. In Proc. SPIN

(LNCS 9232). Springer, 20–38. https://doi.org/10.1007/978-3-319-23404-5_3
[38] D. Beyer, S. Löwe, and P. Wendler. 2015. Sliced Path Prefixes: An Effective

Method to Enable Refinement Selection. In Proc. FORTE (LNCS 9039). Springer,
228–243. https://doi.org/10.1007/978-3-319-19195-9_15

[39] D. Beyer, S. Löwe, and P. Wendler. 2019. Reliable Benchmarking: Requirements
and Solutions. Int. J. Softw. Tools Technol. Transfer 21, 1 (2019), 1–29. https:
//doi.org/10.1007/s10009-017-0469-y

[40] D. Beyer and M. Spiessl. 2020. MetaVal: Witness Validation via Verification. In
Proc. CAV (LNCS 12225). Springer, 165–177. https://doi.org/10.1007/978-3-030-
53291-8_10

[41] D. Beyer and H. Wehrheim. 2020. Verification Artifacts in Cooperative Ver-
ification: Survey and Unifying Component Framework. In Proc. ISoLA (1)

(LNCS 12476). Springer, 143–167. https://doi.org/10.1007/978-3-030-61362-4_8
[42] D. Beyer and P. Wendler. 2012. Algorithms for Software Model Checking:

Predicate Abstraction vs. Impact. In Proc. FMCAD. FMCAD, 106–113.
[43] Johannes Birgmeier, Aaron R. Bradley, and Georg Weissenbacher. 2014. Coun-

terexample to Induction-GuidedAbstraction-Refinement (CTIGAR). In Proc. CAV
(LNCS 8559). Springer, 831–848. https://doi.org/10.1007/978-3-319-08867-9_55

[44] Ingo Brückner, Klaus Dräger, Bernd Finkbeiner, and Heike Wehrheim. 2007.
Slicing Abstractions. In Proc. FSEN (LNCS 4767). Springer, 17–32. https://doi.
org/10.1007/978-3-540-75698-9_2

[45] Ingo Brückner, Klaus Dräger, Bernd Finkbeiner, and Heike Wehrheim. 2008.
Slicing Abstractions. Fundam. Inform. 89, 4 (2008), 369–392.

[46] F. Cassez and A. M. Sloane. 2017. ScalaSMT: Satisfiability modulo theory in
Scala (tool paper). In Proc. SCALA. ACM, 51–55. https://doi.org/10.1145/3136000.
3136004

[47] F. Cassez, A. M. Sloane, M. Roberts, M. Pigram, P. Suvanpong, and P. González
de Aledo Marugán. 2017. Skink: Static Analysis of Programs in LLVM Interme-
diate Representation (Competition Contribution). In Proc. TACAS (LNCS 10206).
Springer, 380–384. https://doi.org/10.1007/978-3-662-54580-5_27

[48] R. Castaño, V. A. Braberman, D. Garbervetsky, and S. Uchitel. 2017. Model
Checker Execution Reports. In Proc. ASE. IEEE, 200–205. https://doi.org/10.
1109/ASE.2017.8115633

[49] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and M. Stoelinga. 2003. Resource
interfaces. In Proc. EMSOFT. Springer. https://doi.org/10.1007/978-3-540-45212-
6_9

[50] N. Chong, B. Cook, J. Eidelman, K. Kallas, K. Khazem, F. R. Monteiro, D. Schwartz-
Narbonne, S. Tasiran, M. Tautschnig, and M. R. Tuttle. 2021. Code-level model
checking in the software development workflow at AmazonWeb Services. Softw.
Pract. Exp. 51, 4 (2021), 772–797. https://doi.org/10.1002/spe.2949

[51] M. Christakis, P. Müller, and V. Wüstholz. 2012. Collaborative Verification and
Testing with Explicit Assumptions. In Proc. FM (LNCS 7436). Springer, 132–146.
https://doi.org/10.1007/978-3-642-32759-9_13

[52] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. 2013. The MathSAT5
SMT Solver. In Proc. TACAS (LNCS 7795). Springer, 93–107. https://doi.org/10.
1007/978-3-642-36742-7_7

[53] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. 2000. Counterexample-
Guided Abstraction Refinement. In Proc. CAV (LNCS 1855). Springer, 154–169.
https://doi.org/10.1007/10722167_15

[54] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. 2003. Counterexample-
guided abstraction refinement for symbolic model checking. J. ACM 50, 5 (2003),
752–794. https://doi.org/10.1145/876638.876643

[55] D. R. Cok. 2011. jSMTLIB: Tutorial, Validation, and Adapter Tools for SMT-LIBv2.
In Proc. NFM (LNCS 6617). Springer, 480–486. https://doi.org/10.1007/978-3-
642-20398-5_36

[56] B. Cook, A. Podelski, and A. Rybalchenko. 2006. Terminator: Beyond Safety. In
Proc. CAV (LNCS 4144). Springer, 415–418. https://doi.org/10.1007/11817963_37

[57] W. Craig. 1957. Linear Reasoning. A New Form of the Herbrand-Gentzen
Theorem. J. Symb. Log. 22, 3 (1957), 250–268. https://doi.org/10.2307/2963593

[58] Simon Cruanes, Grégoire Hamon, Sam Owre, and Natarajan Shankar. 2013. Tool
Integration with the Evidential Tool Bus. In Proc. VMCAI (LNCS 7737). Springer,
275–294. https://doi.org/10.1007/978-3-642-35873-9_18

[59] Simon Cruanes, Stijn Heymans, Ian Mason, Sam Owre, and Natarajan Shankar.
2014. The Semantics of Datalog for the Evidential Tool Bus. In Specification,

Algebra, and Software. Springer, 256–275.
[60] M. Czech, M.-C. Jakobs, and H. Wehrheim. 2015. Just Test What You Cannot

Verify!. In Proc. FASE (LNCS 9033). Springer, 100–114. https://doi.org/10.1007/
978-3-662-46675-9_7

[61] L. de Alfaro and T. A. Henzinger. 2001. Interface automata. In Proc. FSE. ACM,
109–120. https://doi.org/10.1145/503271.503226

[62] L. de Alfaro, T. A. Henzinger, and M. Stoelinga. 2002. Timed interfaces. In Proc.

EMSOFT. Springer, 108–122. https://doi.org/10.1007/3-540-45828-x_9
[63] W. P. de Roever, H. Langmaack, and A. Pnueli (Eds.). 1998. Compositionality:

The Significant Difference, Proc. COMPOS’97. Springer. https://doi.org/10.1007/3-
540-49213-5

[64] T. DeMarco. 1979. Structured Analysis and System Specification (facsimile ed.).
Prentice Hall. ISBN: 978-0138543808

[65] D. Dietsch, M. Heizmann, B. Musa, A. Nutz, and A. Podelski. 2017. Craig
vs. Newton in software model checking. In Proc. ESEC/FSE. ACM, 487–497.
https://doi.org/10.1145/3106237.3106307

[66] Evren Ermis, Jochen Hoenicke, and Andreas Podelski. 2012. Splitting via In-
terpolants. In Proc. VMCAI (LNCS 7148). Springer, 186–201. https://doi.org/10.
1007/978-3-642-27940-9_13

[67] Gidon Ernst, Marieke Huisman, Wojciech Mostowski, and Mattias Ulbrich. 2019.
VerifyThis: Verification Competition with a Human Factor. In Proc. TACAS

(LNCS 11429). Springer, 176–195. https://doi.org/10.1007/978-3-030-17502-3_12
[68] M. Gario and A. Micheli. 2015. PySMT: A solver-agnostic library for fast proto-

typing of SMT-Based algorithms. In Proc. SMT.
[69] P. Godefroid and K. Sen. 2018. Combining Model Checking and Testing. In

Handbook of Model Checking. Springer, 613–649. https://doi.org/10.1007/978-3-
319-10575-8_19

[70] S. Graf and H. Saïdi. 1997. Construction of Abstract State Graphs with Pvs. In
Proc. CAV (LNCS 1254). Springer, 72–83. https://doi.org/10.1007/3-540-63166-
6_10

[71] M. Greitschus, D. Dietsch, and A. Podelski. 2017. Loop Invariants from Coun-
terexamples. In Proc. SAS (LNCS 10422). Springer, 128–147. https://doi.org/10.
1007/978-3-319-66706-5_7

[72] Á. Hajdu and Z. Micskei. 2020. Efficient Strategies for CEGAR-Based Model
Checking. J. Autom. Reasoning 64, 6 (2020), 1051–1091. https://doi.org/10.1007/
s10817-019-09535-x

[73] Á. Hajdu and Z. Micskei. 2020. Efficient Strategies for CEGAR-Based Model
Checking. J. Autom. Reasoning 64, 6 (2020), 1051–1091. https://doi.org/10.1007/
s10817-019-09535-x

[74] J. Haltermann and H. Wehrheim. 2021. CoVEGI: Cooperative Verification via
Externally Generated Invariants. In Proc. FASE (LNCS 12649). 108–129. https:
//doi.org/10.1007/978-3-030-71500-7_6

[75] M. Heizmann, Y.-F. Chen, D. Dietsch, M. Greitschus, J. Hoenicke, Y. Li, A. Nutz,
B. Musa, C. Schilling, T. Schindler, and A. Podelski. 2018. Ultimate Automizer
and the Search for Perfect Interpolants (Competition Contribution). In Proc.

TACAS (2) (LNCS 10806). Springer, 447–451. https://doi.org/10.1007/978-3-319-
89963-3_30

[76] M. Heizmann, J. Hoenicke, and A. Podelski. 2013. Software Model Checking
for People Who Love Automata. In Proc. CAV (LNCS 8044). Springer, 36–52.
https://doi.org/10.1007/978-3-642-39799-8_2

[77] T. A. Henzinger, R. Jhala, and R. Majumdar. 2005. Permissive Interfaces. In Proc.

FSE. ACM, 31–40. https://doi.org/10.1145/1095430.1081713
[78] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. 2004. Abstractions

from proofs. In Proc. POPL. ACM, 232–244. https://doi.org/10.1145/964001.
964021

[79] F. Herbreteau, B. Srivathsan, and I. Walukiewicz. 2013. Lazy Abstractions for
Timed Automata. In Proc. CAV (LNCS 8044). Springer. https://doi.org/10.1007/
978-3-642-39799-8_71

[80] H. Hermanns, B. Wachter, and L. Zhang. 2008. Probabilistic CEGAR. In Proc.

CAV (LNCS 5123). Springer. https://doi.org/10.1007/978-3-540-70545-1_16
[81] Lukáš Holík, Martin Hruška, Ondřej Lengál, Adam Rogalewicz, Jirí Simácek,

and Tomáš Vojnar. 2017. Forester: From Heap Shapes to Automata Predicates
(Competition Contribution). In Proc. TACAS (LNCS 10206). Springer, 365–369.

B.9. Decomposing Software Verification into Off-the-Shelf Components: An
Application to CEGAR 171

Decomposing Software Verification into Off-the-Shelf Components: An Application to CEGAR ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

https://doi.org/10.1007/978-3-662-54580-5_24
[82] Matti Järvisalo, Daniel Le Berre, Olivier Roussel, and Laurent Simon. 2012.

The International SAT Solver Competitions. AI Magazine 33, 1 (2012). https:
//doi.org/10.1609/aimag.v33i1.2395

[83] T. Kahsai, P. Rümmer, H. Sanchez, and M. Schäf. 2016. JayHorn: A Framework
for Verifying Java programs. In Proc. CAV (LNCS 9779). Springer, 352–358. https:
//doi.org/10.1007/978-3-319-41528-4_19

[84] E. G. Karpenkov, K. Friedberger, and D. Beyer. 2016. JavaSMT: A Unified
Interface for SMT Solvers in Java. In Proc. VSTTE (LNCS 9971). Springer, 139–
148. https://doi.org/10.1007/978-3-319-48869-1_11

[85] M. Mann, A. Wilson, C. Tinelli, and C. W. Barrett. 2020. SMT-Switch: A
solver-agnostic C++ API for SMT Solving. arXiv/CoRR 2007.01374 (2020).
arXiv:2007.01374 https://arxiv.org/abs/2007.01374.

[86] Tiziana Margaria. 2005. Web services-Based tool-integration in the ETI platform.
Software and Systems Modeling 4, 2 (2005), 141–156. https://doi.org/10.1007/
s10270-004-0072-z

[87] Tiziana Margaria, Ralf Nagel, and Bernhard Steffen. 2005. jETI: A Tool for
Remote Tool Integration. In Proc. TACAS (LNCS 3440). Springer, 557–562. https:
//doi.org/10.1007/978-3-540-31980-1_38

[88] T. Margaria, R. Nagel, and B. Steffen. 2005. Remote integration and coordination
of verification tools in jETI. In Proc. ECBS. 431–436. https://doi.org/10.1109/
ECBS.2005.59

[89] K. L. McMillan. 2003. Interpolation and SAT-Based Model Checking. In Proc.

CAV (LNCS 2725). Springer, 1–13. https://doi.org/10.1007/978-3-540-45069-6_1
[90] K. L. McMillan. 2006. Lazy Abstraction with Interpolants. In Proc. CAV

(LNCS 4144). Springer, 123–136. https://doi.org/10.1007/11817963_14
[91] F. Pauck and H. Wehrheim. 2019. Together Strong: Cooperative Android App

Analysis. In Proc. ESEC/FSE. ACM, 374–384. https://doi.org/10.1145/3338906.
3338915

[92] Nir Piterman and Amir Pnueli. 2018. Temporal Logic and Fair Discrete Systems.
In Handbook of Model Checking. Springer, 27–73. https://doi.org/10.1007/978-3-
319-10575-8_2

[93] A. Podelski and A. Rybalchenko. 2005. Transition predicate abstraction and fair
termination. In Proc. POPL. ACM, 132–144. https://doi.org/10.1145/1040305.
1040317

[94] Z. Rakamarić and M. Emmi. 2014. SMACK: Decoupling Source Language Details
from Verifier Implementations. In Proc. CAV (LNCS 8559). Springer, 106–113.
https://doi.org/10.1007/978-3-319-08867-9_7

[95] C. Richter, E. Hüllermeier, M.-C. Jakobs, and H. Wehrheim. 2020. Algorithm
selection for software validation based on graph kernels. Autom. Softw. Eng. 27,
1 (2020), 153–186. https://doi.org/10.1007/s10515-020-00270-x

[96] C. Richter and H. Wehrheim. 2019. PeSCo: Predicting Sequential Combina-
tions of Verifiers (Competition Contribution). In Proc. TACAS (3) (LNCS 11429).
Springer, 229–233. https://doi.org/10.1007/978-3-030-17502-3_19

[97] John M. Rushby. 2005. An Evidential Tool Bus. In Proc. ICFEM (LNCS 3785).
Springer, 36–36. https://doi.org/10.1007/11576280_3

[98] N. Shankar. 2018. Combining Model Checking and Deduction. In Handbook of

Model Checking. Springer, 651–684. https://doi.org/10.1007/978-3-319-10575-
8_20

[99] Bernhard Steffen, Tiziana Margaria, and Volker Braun. 1997. The Electronic
Tool Integration Platform: Concepts and Design. STTT 1, 1-2 (1997), 9–30.
https://doi.org/10.1007/s100090050003

[100] Cong Tian, Zhenhua Duan, and Zhao Duan. 2014. Making CEGARMore Efficient
in Software Model Checking. IEEE Trans. Softw. Eng. 40, 12 (2014), 1206–1223.
https://doi.org/10.1109/TSE.2014.2357442

[101] Anton R. Volkov and Mikhail U. Mandrykin. 2017. Predicate Abstractions
Memory Modeling Method with Separation into Disjoint Regions. Proceedings
of the Institute for System Programming (ISPRAS) 29 (2017), 203–216. Issue 4.
https://doi.org/10.15514/ISPRAS-2017-29(4)-13

[102] D. Wang, C. Zhang, G. Chen, M. Gu, and J. Sun. 2016. C Code Verification based
on the Extended Labeled Transition SystemModel. InMoDELS 2016 (CEUR 1725).
CEUR-WS.org, 48–55.

[103] Liangze Yin, Wei Dong, Wanwei Liu, and Ji Wang. 2018. On Scheduling Con-
straint Abstraction for Multi-Threaded Program Verification. IEEE Trans. Softw.

Eng. (2018). https://doi.org/10.1109/TSE.2018.2864122

172 APPENDIX B. ORIGINAL MANUSCRIPTS

	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Structure
	1.4 Related Work

	2 Background
	2.1 Control-flow Automata as Program Representation
	2.2 Automated Test Generation
	2.3 Automated Formal Verification
	2.4 Methodology

	3 Towards Standardizing Test Generation (B.1–B.5)
	3.1 A Level Playing Field for Test-Generation Comparison
	3.2 Tooling for Comparison of Test Generators
	3.3 From Verification Witnesses to Tests
	3.4 The Current State of the Art in Bug-Finding

	4 Towards Cooperative Software Verification (B.6–B.9)
	4.1 Encoding Condition Automata
	4.2 Cooperation between Test-Generators
	4.3 Condition Automata for Difference Verification
	4.4 Decomposing Verification Techniques

	5 Future Research and Conclusion
	5.1 Future Research
	5.2 Conclusion

	Bibliography
	A Credits
	B Original Manuscripts
	B.1 HVC17
	B.2 PRTEST19
	B.3 ASE19
	B.4 TAP18
	B.5 STTT22
	B.6 ICSE18
	B.7 ATVA19
	B.8 SEFM20B
	B.9 ICSE22

