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2. Introduction

In recent years, modern biology has undergone unprecedented improvement on different
levels, including genomics, transcriptomics, and proteomics. The accomplishment of the
Human Genome Project (Venter et al., 2001; Lander et al., 2001) indicates a great accom-
plishment in genomics. Genomics has important applications in the diagnosis of diseases
(Petersen et al., 2017), the development of medicine (Lu et al., 2014), synthetic biology
(Baker et al., 2011), and so on. The information from the genome is then transcribed to
RNA, the analysis of which is now known as transcriptomics, which studies the level of
gene expression (Schena et al., 1995; Cheung et al., 1999). However, it is proteins that
play key roles in the building of a cell and carry out different biochemical reactions, in-
cluding metabolism, gene regulation, catalysis, molecular signaling, and physical inter-
actions (Yates et al., 2009; Chen et al., 2020). The study of the identification, quantifica-
tion, and localization of protein components of cells is known as proteomics (Aebersold
& Mann, 2003; Yarmush et al., 2002). As an important method of the postgenomic era,
proteomics has a substantial impact on the diagnosis of diseases, prognosis, and develop-
ment of drugs (Aslam et al., 2017). Nowadays, both experimental and informatic methods
have been developed to improve the analysis of proteomic data (Mallick et al., 2010; Choi
et al., 2020). For the experimental aspect, mass spectrometers (MS) combined with liquid
chromatography (LC) is the most popular and major technology that is critical to the fast
development of proteomics (Aebersold & Mann, 2003). Through the last few decades,
MS-based proteomics has achieved great success but still faces big challenges. Diverse
technologies and strategies have been developed for different mass spectrometers, such
as bottom-up and top-down strategies, which have been widely applied in proteomics
research. The study of various levels of omics not only provides comprehensive insights
into the composition of organisms, but also provides different aspects to the analysis,
elucidate potential causative changes that lead to diseases, precision diagnosis of diseases,

and finally the development of new drugs (Hasin et al., 2017).
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Figure 2.1 The illustration of the different levels of omics studies. The information of DNA flows

to protein corresponding from genomics to proteomics.

Here, we discuss the data analysis for genomics, transcriptomics, and proteomics. Even
though advanced instruments have provided powerful methods to study omics, however,
complex data have been generated from such equipment which needs to be analyzed to
reveal the biological meaning behind them (A.L.McGuire et al., 2020; Cristoni & Ber-
nardi, 2004; Patel et al., 2021). Nowadays, both traditional statistics and machine learning
methods have been applied to analyze omic data including qualitative and quantitative
data. The identification of peptides and proteins in the organelle, cell, or tissue lysate is
the focus of qualitative proteomic data, while quantitative proteomic data often includes
the comparison of two or more biological states (Kumar et al., 2009). Computational al-
gorithms and software for both qualitative and quantitative data have been developed.
The algorithms that have been developed for omics can be used in the following applica-
tions: data preprocessing, statistical analysis, enrichment analysis, and so on (Chen et al.,
2020). Besides, machine learning or deep-learning has more applications in the analysis
of omic data, for example, the applications of machine learning to human genomics
(Alharbi WS et al., 2022), phenotype prediction from transcriptomics data (Smith AM et
al., 2020), and deciphering proteome profiling by deep-learning (Wang et al., 2020).

In this part, the major concepts of omics and related realms are introduced, then the com-
putational and statistical methods for omics are discussed. Finally, the strategies used for
the analysis of genome sequencing, gene expression, and mass spectrometry are intro-

duced which I performed for my doctoral research.
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2.1 Genomics

One century ago, the term “genome” was created to refer to the complete set of genes and
chromosomes in an organism. However, “Genomics” is an inter-discipline in biology to
study the mapping, sequencing, evolution, and editing of genomes. Genomics can be clas-
sified as “structural genomics” and “functional genomics” for different research aspects.
Structural genomics focuses on the three-dimensional construction of proteins encoded
by a certain genome (Hieter P et al., 1997). While functional genomics focuses on gene
function and regulation, such as the dynamic expression of gene products in space, time,

and disease (Przybyla L et al., 2022).

The accomplishment of the Human Genome Project (HGP) has brought fruitful contribu-
tions to the study of genomics. One major goal of the HGP was to create genetic and
physical high-resolution maps for each human chromosome (Collins FS et al., 2003). The
relative position of genes and DNA markers along the chromosome can be illustrated by
genetic and physical maps. Recombination frequencies are used to figure out how far
apart two points are on a genetic map, while the number of nucleotide pairs between loci
is used to make a physical map. Genetic maps are an indispensable resource for the crea-
tion of physical maps. Both genetic and physical maps are important to elucidate the or-

ganization of a genome.

However, the decipherment of genomic DNA sequences is just the beginning of the ex-
ploration of the biological mechanisms behind the arrangement of nucleotides along chro-
mosomes in a living organism. The generated vast amounts of sequence data trigger the
development of bioinformatics for the elucidation of the expression and functions of all
the genes in a genome. Nowadays, different computational methods have been applied to
genomic analysis, including organization, analysis, understanding, visualization, and
storage of genomic data (Diniz WIS et al., 2017). To achieve this goal, some public da-
tabases have been built to store the rapidly increasing genome data, such as European
Molecular Biology Laboratory (EMBL), DNA Database of Japan (DDBJ), GenBank at
the National Center for Biotechnology Information (NCBI); and also some functional
databases, such as Reactome and Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa M et al., 2017; Diniz WIS et al., 2017). By integrating these genomic data, the
comparison among sequences can be done through alignment to elucidate the evolution-

ary relationship between genes, individuals, organisms, and others (Junqueira et al., 2014).
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2.2 Transcriptomics

The total set of ribonucleic acid (RNA) molecules present at a particular developmental
stage or physiological condition in a cell, tissue, or organism, is known as the transcrip-
tome (Wolf JBW, 2013; Milward EA et al., 2016). All kinds of transcripts, including
mRNAs, noncoding RNAs, and small RNAs, are covered by transcriptomics. Tran-
scriptomics focuses on the study of structures, related genes, locations, functions, tran-
scription, expression levels, trafficking, and degradation (Milward EA et al., 2016). With
the study of transcriptomics, gene expression in an organism can be measured in certain
conditions or tissues, which gives insights into the regulation of genes and more details
of'an organism’s biology. Besides, the functions of previously unannotated genes can also
be inferred through transcriptomic analysis (Lowe R et al., 2017). And nowadays tran-

scriptomics also plays a key role in contemporary cancer medicine (Supplitt S et al., 2021).

The study of transcriptomics advances with the development of high-throughput technol-
ogies. RNA sequencing (RNA-seq) has been a ubiquitous technique for transcriptomic
analysis, including the discovery of novel transcripts, analysis of differential gene expres-
sion (DGE), detection of allele-specific expression, and characterization of alternative
splicing variants. Compared to other next-generation approaches, RNA-seq has higher
resolution and coverage in characterizing the dynamic nature of the transcriptome (Ku-
kurba KR et al., 2015). Besides, RNA-seq data are generated from functional genomic
elements directly, most of them are protein-coding genes. A typical RNA-Seq experiment
involves the isolation of RNA, then conversion to complementary DNA (cDNA), the
preparation of the sequencing library, and its sequencing on an NGS platform. Nowadays,
a parallel sequencing by-synthesis method is used by most high-throughput sequencing

platforms to sequence tens of millions of sequence clusters (Lowe R et al., 2017).

With the accumulation of RNA-seq data, bioinformatic approaches are necessary to be
developed to elucidate the biological meaning of such complex data. The general proce-
dure for RNA-seq data analysis includes sequenced reads stored in FASTQ-format files
generated from an NGS platform, alignment of these reads to reference genome, and gene
expression quantification (Geraci F et al., 2020). However, several challenges to infor-
matic analysis in RNA-seq need to be further addressed, such as the storage, retrieving,
and processing of huge data, the errors in base-calling, and image analysis (Wang Z et

al., 2009).
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2.3 Proteomics

Proteins are polymers of amino acids with functional groups of amino (-NH3+) and car-
boxylate (-CO2-) and a specific side chain for distinct amino acids (Nelson et al., 2005).
The structure of proteins can be defined on four distinct levels: the primary structure of a
protein is specified by the sequence of its amino acids, which then directs the secondary
structure by the proper folding of the polypeptide chain including the alpha helix, in which
corkscrew shape is folded in a region of the polypeptides; however, the other common
type of secondary structure, beta-strands are formed in a linear structure of polypeptides
by bonding together. The three-dimensional structure of proteins is formed by the chem-
ical interactions of turns and coils, resulting in the final protein (Chandrasekhar et al.,
2014). Proteins play key roles in almost all biological processes, such as catalysis
(Agarwal et al., 2006), molecular signaling (Yates et al., 2009), immune function, and
gene regulation (Chen et al., 2020). Many illnesses are caused by aberrant protein func-
tion regulation, which is an important objective of biomedical research in the develop-
ment of possible novel medications for disease therapy (LaBear, 2002). Moreover, the
combination of the information of genome and proteome has been applied to develop new

strategies for the designing of drugs for associated diseases (Chandrasekhar et al., 2014).

The term “proteome” is to describe the total number of proteins in a cell, as well as their
localizations, physical interactions, and post-translational modifications (PTMs) at any
given moment (Dupree et al., 2020; Aslam et al., 2017). The identification, quantification,
and localization of protein components in cells are the primary research aspects of prote-
omics, which extends from protein expression profiling and signaling circuit analysis to

the creation of protein biomarkers (Mallick et al., 2010; Yates et al., 2009).

Specifically, the scope of proteomics covers the following aspects: protein expression
profiling, structural and functional proteomics, and so on (Graves et al., 2002). The struc-
ture and function are two major aspects of proteins which are also the key studies of
proteomic research. For proteins, functions are determined by their structures. The pur-
pose of structural proteomics is to find all of the proteins inside a protein complex or a

particular cellular organelle, locate them, and describe their protein-protein interactions.

However, the advance of proteomics cannot be improved without the development of
associated techniques (Aslam et al., 2017), such as conventional techniques like chroma-

tography-based techniques, enzyme-linked immunosorbent assays (ELISA), and western
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blotting. Some advanced techniques, including mass spectrometry (MS), and protein mi-

croarray.
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Figure 2.2 An overview of proteomics techniques (Aslam et al., 2017).

Nowadays, MS is becoming more essential in proteomics research since it complements
other methods and can identify proteins in extremely small amounts, such as 1-10ng

(Keshishian H et al., 2007).

There are two typical strategies for MS-based proteomics: bottom-up and top-down (Kar
et al., 2017). For the bottom-up approach, peptides are generated from the digestion of
proteins, which are then analysed in a mass spectrometer (Gillet et al., 2016). However,
for top-down proteomics, intact protein ions or large protein fragments generated by elec-
trospray ionization (ESI) are subjected to gas-phase fragmentation for mass spectrometry

analysis (Toby et al., 2016; Donnelly et al., 2019; Chen et al., 2008).
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Figure 2.3 The comparison of bottom-up and top-down approaches in mass spectrometry. In the
bottom-up technique, intact proteins are digested into peptides, which are then detected and frag-
mented using a mass spectrometer. While in the top-down approach, the intact protein is ionized di-
rectly which improves the coverage of protein sequence and the detection of PTMs (Catherman A. D.

etal., 2014).

2.4 Next generation sequencing

Next generation sequencing (NGS) plays a key role in both genomics and transcriptomics.
Compared to traditional Sanger sequencing (Sanger F et al., 1977), NGS is much cheaper,
and faster, along with higher throughput in sequencing DNA. Millions of fragments of
DNA in a single sample can be sequenced together due to the massively parallel sequenc-
ing technology of NGS, which leads to an entire genome can be sequenced in less than
one day. With such high-throughput capability, NGS can identify disease-related genes
and regulatory elements by sequencing the human genome. Besides, the complexity of

genome can also be figured out through the performance of NGS (Grada A et al., 2013).

With the development of NGS, more studies including Chromatin immunoprecipitation
followed by sequencing (ChIP-seq), genome-wide association (GWA) studies, and RNA
sequencing (RNA-seq) become much easier than before (Hawkins RD et al., 2010). ChIP-
seq is a method for profiling DNA-binding proteins, histone modifications, or
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nucleosomes throughout the entire genome. Due to the remarkable advances of NGS,
ChIP-seq achieves fewer artifacts and higher resolution with a larger dynamic range than
previous methods. Transcriptional regulation can be elucidated through the genome-wide
mapping of epigenetic marks and protein-DNA interactions. The gene regulatory network
for different biological processes can be elucidated by precise mapping of binding sites
for transcription factors (TFs), key transcriptional machinery, and other DNA-binding
proteins (Farnham PJ et al., 2009; Park PJ et al., 2009). To reveal the above mechanisms,
ChIP is the main technique for the detection of protein-DNA binding in vivo (Solomon
MJ et al., 1988). Compared to the array method, the interested DNA fragments are di-
rectly sequenced rather than hybridization. The procedure of a ChIP-seq experiment is

shown in Figure 2.4.
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Figure 2.4 The procedures to perform a ChIP-seq experiment and computational analysis. (A)
Preparation and sequencing of samples. (B) Data analysis for a typical ChIP-seq assay. (Nakato R et
al., 2009).

However, there are still some challenges in both experimental and computational ChIP-
seq analysis. For the experimental aspect, the artifacts can not be eliminated, especially
at the end of each read. Besides, the enrichment of GC content in fragment selection, and
the difficulties in loading the exact amount of sample for the generation of high-quality

data. In addition, the current cost and availability of ChIP-seq still have potential space
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to ameliorate. For the ChIP-seq data analysis, the amounts of different types of data such
as image data, sequence tags, and alignment data increase dramatically, for which there
are still problems in the storage and extraction of such high-throughput data. In addition,
most non-unique tags in genome alignment are not handled properly. Besides, more reli-

able, and advanced software needs to be developed (Park PJ et al., 2009).

For transcriptomic analysis, RNA-seq has become a ubiquitous technique in gene expres-
sion studies. The quantification of gene expression includes the discovery of new tran-
scripts, and the characterization of alternative splicing variants or novel cell types. Fur-
thermore, the application of RNA-seq in clinical diagnosis has become true. Compared
to traditional hybridization-based methods, RNA-seq can break the limitation of anno-
tated genomic sequences to detect novel transcripts. Besides, RNA-seq is capable of lo-
cating precise transcription boundaries and revealing sequence variations such as SNPs
(Cloonan N et al., 2008). In addition, RNA-seq has very few background signals com-
pared to DNA microarrays, and unlimited upper levels for quantification. Thus, RNA-
seq is a high-throughput and quantitative approach to studying gene expression levels by

scanning the transcriptome. A typical RNA-seq experiment is shown in Figure 2.5.

AAAARARAA | mRMA

Q
=

RNA fragments l cDMNA

e e = (5T ibrary
with adaptors

ATCACAGTGGGACTCCATARATTTTTCT
CGARAGGACCAGCAGAANCGAGAGLN
GGACAGAGTCCCCAGCGGGCTGAMGGGG
ATGARACATTAAAGTCARACAATATGAR

|

Short sequence reads

ORF ¢
Coding sequence a

&g Bxonic reads

D= == 1] [—2 e —

B { —

. g —
Junction reads el — oly(A) end reads

—r— = = — poly|
— — == —
[— —

—_ — Mapped sequence reads

Base-resolution expression profile

RNA expression level

Nucleotide position

18



Figure 2.5 The procedure to perform a typical RNA-seq experiment. Firstly, a cDNA library is
prepared by fragmentation of either RNA or DNA for long RNAs. Then each cDNA fragment is
added with sequencing adaptors (blue) and a short sequence is generated. Three types of sequence
reads, which are junction reads, exonic reads, and poly(A) end reads, are aligned to the reference ge-
nome or transcriptome. The bottom plot shows an expression profile for genes with the usage of the

above three types of reads (Wang Z et al., 2009).

However, like other NGS techniques, RNA-seq also faces challenges on both sides of
experiments and data analysis. For the experimental aspect, the complexity of the
cDNA library building in profiling transcripts, biases generated from RNA fragmenta-
tion, and lack of strand information for cDNA analysis. Meanwhile, the challenges also
come from informatics for RNA-seq analysis. First, like other NGS approaches, the
continuously increasing amounts of data require efficient storage, retrieving, and pro-
cessing. Second, the errors come from base-calling, image analysis, and low-quality
reads. Third, efficient and simple computational algorithms need to be developed to
identify novel splicing events between two distant sequences or genes. Last, the issue
comes from the increased cost of greater sequence coverage (Wang Z et al., 2009;

Geraci F et al., 2020).

2.5 Mass spectrometry

Nowadays, MS is one of the most important techniques for proteomics because of its
ability to handle the complexities of proteomic research. Compared to other traditional
techniques, MS can achieve in-depth proteomic information. Besides, the development
of soft ionization techniques, such as matrix-assisted laser desorption/ionization
(MALDI), electrospray ionization (ESI), and liquid chromatography (LC), is crucial to
the successful performance of mass spectrometric analysis (Han et al., 2008; Aebersold

etal., 2003).

The primary structural information of proteins, the amino acid sequences, can be obtained
through MS analysis, which can then be used for the identification of proteins by search-
ing databases. Besides, the type and location of protein modifications can also be deter-
mined by MS analysis (Graves et al., 2002). The information on proteins acquired by MS
can be achieved through three stages: 1) sample preparation, 2) sample ionization, and 3)

mass analysis. The technique of liquid chromatography, such as HPLC, can meet the
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requirements for the purification and separation of peptides. Before the samples are ana-
lysed by the mass spectrometer, the molecules must be charged and dry, which can be
accomplished by ESI and MALDI mentioned above. Generally, the integrated liquid-
chromatography ESI-MS systems (LC-MS) are applied to more complex samples in con-
trast to MALDI-MS. Then, MS will measure the gas-phase ions produced by MALDI-
MS or ESI-MS, which are nebulized into tiny, highly charged droplets in an electrospray
ion source. After evaporation, the gas-phased multiply protonated peptides are subjected
to the mass analyzer of the mass spectrometer, which measures their mass-to-charge ratio
(m/z). Based on the mass spectra generated by the computer connected to the mass spec-
trometer, information about peptides and proteins can be acquired by matching against

protein sequence databases (Aebersold et al., 2003).

For the applications of MS experiments, mass analysers are indispensable to mass spec-
trometers for their ability to store and separate ions based on m/z. There are different
types of mass analysers, such as time-of-flight (TOF) and quadrupoles (Q), ion trap (IT),
Orbitrap, and ion cyclotron resonance (ICR), with different unique properties, such as
mass range, resolution, sensitivity, dynamic range, and analysis speed. These analyzers
may be used alone or in combination to maximize the benefits of each (Aebersold et al.,

2003; Yates et al., 2009).
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Figure 2.6 The workflow of MS-based proteomics experiment. Five stages for the MS-based pro-
teomics experiments are illustrated. In stage 1, the protein samples are isolated from cells or tissues
by biochemical fractionation or affinity selections. Then the proteins are digested by protease such as
trypsin to peptides in SDS-PAGE in stage 2. In stage 3, the peptides are separated by LC and eluted
into an electrospray ion source which then enter the mass spectrometer. Then the mass spectra for
given peptides are taken at a specific time point in stage 4. In the last stage, the fragmentation of these

peptides and a series of tandem mass spectrometric experiments are performed (Aebersold et al., 2003).

For the applications of MS experiments, several strategies are being widely used: data-
dependent acquisition (DDA), data-independent acquisition (DIA), multiple reaction

monitoring (MRM), and parallel reaction monitoring (PRM).

In the following part, the instruments and tools for mass spectrometry and the strategies

of DDA and DIA will be introduced in detail.
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2.5.1 The instruments and tools for mass spectrometry

A mass spectrometer consists of an ion source that converts biological molecules into
gas-phase ions, a mass analyser that measures the mass-to-charge ratio (m/z) of the ion-
ized analytes, and a detector that records the number of ions at each m/z value (Aebersold

et al., 2003; Han et al., 2008).

Matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI)
are two soft ionization techniques that transfer analytes into the gas phase without exten-
sive degradation, which enables proteins and peptides to be analysed by MS. The MALDI
method involves transferring a laser-heated matrix to an acidified analyte, which causes
the analyte's [M+H]+ ions to enter the gas phase (Yates et al., 2009). To achieve an ac-
ceptable signal-to-noise ratio for detection, the ionization of MALDI requires hundreds
of laser shots to prepare enough energy (Liao et al., 1995). Because the produced ions are
generally singly charged, MALDI is suited for top-down analysis of high-molecular-
weight proteins. However, there are some drawbacks to the MALDI technique: the low
shot-to-shot reproducibility and reliance on the sample preparation methods which leads
to the improvements of this approach, such as the matrix-free MALDI techniques SALDI
(Chen et al., 1998), DIOS (Shen et al., 2001), and atmospheric pressure MALDI (AP-
MALDI) (Laiko et al., 2000).

Another important ionization technique is ESI. Compared to MALDI, ESI is driven by
high voltage (2—6 kV) to produce ions from solution. The formation and desolvation of
analyte-solvent droplets follow the formation and desolvation of an electrically charged
spray in the physicochemical process of ESI (Yates et al., 2009). Unlike MALDI, the ions
from ESI are multiple-charged species and sensitive to analyte concentration and flow
rate. So some improvements have been proposed for ESI, such as micro and nano-ESI
(Griffin et al., 1991; Emmett et al., 1994). The two ionization methods are usually chosen

for different mass analyzers (Aebersold et al., 2003; Yates et al., 2009).

In a mass spectrometer, a mass analyser is indispensable for its ability to take and separate
ions based on the mass-to-charge ratio (m/z). The mass analyzers can be divided into two
categories: the trapping mass spectrometers, such as IT, Orbitrap, and FT-ICR; and the
scanning and ion-beam mass spectrometers, such as TOF and Q. MALDI is usually cho-
sen for TOF analyzers to measure the mass of intact peptides through pulsed analysis,
whereas ESI has mostly been used in conjunction with ion-beam and trapping equipment.

Several types of instrument configurations are widely used in proteomic research: ion
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traps, such as LIT or LTQ (Hager et al., 2003); triple quadrupoles (TQ), LTQ-Orbitrap
(Hu et al., 2005; Makarov et al., 2006), LTQ-FTICR (Syka et al., 2004; Breuker et al.,
2008), Q-TOF (Morris et al., 1996; Shevchenko et al., 1997) and IT-TOF (Collings et al.,
2001; Campbell et al., 1998). In this part, Orbitrap and Q-TOF will be introduced in detail.

The Orbitrap machine is widely used for proteomics for its high resolution (up to
150,000), high-mass accuracy (2—5 ppm), and good dynamic range greater than 10° (Hu
et al., 2005). Within an orbitrap instrument, a static electric field is created, in which ions
orbit and oscillate in the axial direction around a central electrode (Figure 2.7). A fast
Fourier transform (FFT) algorithm (Senko et al., 1996) is then used to convert the over-
lapping frequencies into mass-to-charge spectra. Because of its high mass accuracy, Or-
bitraps can perform alternate data acquisition and data analysis approaches to achieve

greater coverage and accuracy.

Figure 2.7 Cross section view of the Orbitrap mass analyzer. The injection point and pathways of
ions in the mass analyzer are indicated in red arrows and lines respectively. The two perpendicular

directions of the mass analyzer are shown in the z and r-axis (Hu et al.,2005).

Another advanced tandem mass spectrometer is a quadrupole time of flight instrument
(Q-TOF), which provides high peak capacity, resolving power (e.g., RP ~ 10000), mass
measurement accuracy (e.g., MMA ~ 10 ppm), spectral acquisition rates, and dynamic
ranges (>3 orders of magnitude). As mentioned above, Q-TOF machine is usually cou-

pled with ESI to perform better analysis than other modes.
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Figure 2.8 Schematic of the TripleTOF instrument. (a) Overall diagram of the TripleTOF. (b)
An image of the TripleTOF machine (Andrews et al., 2011).

The TripleTOF instrument is one of the hybrid Q-TOFs (Andrews et al., 2011). With its
features of high mass accuracy, resolution, speed, and sensitivity, TripleTOF is suitable
for DDA analysis. Moreover, comprehensive and specific peptide quantification by DIA,
such as SWATH (sequential window acquisition of all theoretical spectra) and MS (mass
spectrometry), can also be operated on TripleTOF (Gillet et al., 2012). Next, the two
strategies of DDA and DIA will be introduced.

2.5.2 DDA & DIA

With LC-MS/MS, DDA has been extensively utilized for the identification and quantifi-
cation of protein groups in a range of biological samples (Bateman et al., 2014; Mann et
al., 2001) for its breadth of detection, flexibility, and simplified settings and measure-
ments (Hu et al., 2016). Single precursor ions are selected by mass spectrometer based on
their abundance, which are isolated in MS1 scan and then fragmented in sequential MS2
scans in DDA mode. For each of the MS2 scans, a database search algorithm is applied
to the analysis. Through the performance of DDA, thousands of proteins can be identified.
However, the DDA approach has significant limitations: the irreproducibility and impre-
cision are produced by simply measuring the most abundant peptides, which means that
low-abundance peptides might be overlooked. Moreover, accurate quantification is hin-

dered by only one or two times of measurements for each peptide (Venable et al., 2004).
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Figure 2.9 The illustrations for strategies of DDA and DIA. DDA records MS/MS spectra from
individually isolated peptide precursors. DIA uses wide isolation windows to acquire fragment spec-
tra from multiple precursors. These mixed spectra are then deconvoluted by dedicated software

packages (Egertson et al., 2015).

DIA is a method for detecting all peptides within vast, pre-specified mass ranges by iso-
lating, fragmenting, and analyzing all precursor ions using a high-resolution mass spec-
trometer (Hu et al., 2016). The benefits of PRM (high sensitivity and reproducibility) and
DDA have been blended in DIA (broad protein coverage). Besides, DIA has higher sen-
sitivity, reproducibility, and selectivity compared to DDA mode (Figure 2.10).
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Figure 2.10 Performance profiles of DDA and DIA. Five metrics including sensitivity, reproduci-
bility, selectivity, multiplexing, and ease of assay development are shown in radar graphs. For each

metric, 4 indicates the best performance while 0 indicates the worst performance (Li et al., 2021).

Precursor ions are sampled and separated into consecutive small mass-to-charge (m/z)
windows (5-25 Da) in Q1, which are then fragmented in Q2 (Figure 2.8a). The product
ions within a certain m/z window are monitored by a high-resolution accurate-mass
(HRAM) mass analyser in an unbiased and systematic manner (Shi et al., 2016; Huang et
al., 2015). Then, highly complex MS2 spectra are generated from the co-fragmentation
of peptides that belong to the same precursor. Because the connection between the pre-
cursor and its fragments is lacking, a spectra library based on DDA investigations is re-
quired to understand such complicated MS2 spectra (Gillet et al., 2012; Ludwig et al.,
2018). The quantification analysis by DIA is generally comparable to those targeted
methods because of its high reproducibility and mass accuracy. Compared to DDA, the
mass spectra generated in DIA have an additional dimension, the retention time (RT),
which makes the information of fragment ions can be extracted over time to promote the
quantitative analysis of peptides and proteins. In general, DIA mass spectra quantitative
findings are the total of the area under the curve of each fragment ion, which is preferable

to DDA in terms of resolving quantitative information.

However, compared to some targeted methods, such as MRM and PRM, DIA has lower
selectivity and sensitivity for its highly complex MS spectra. Moreover, the sensitivity,
selectivity, and proteome coverage of a DIA assay can be affected by several factors, for
example, the instrumentation, mass-to-charge (m/z) windows width, and spectral library.
So the optimal settings for different parameters are necessary for the precise identification

and quantification results.
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2.6 Bioinformatics for NGS and MS

The development of omics is not only promoted by the improvement of instrumentation
and experimental technologies but also by bioinformatics. A huge amount of data has
been generated from different levels of omic research (Kumar et al., 2009; Magi A et al.,
2010; Cristoni S et al., 2014). The main goal of bioinformatics on omics is to organize
and interpret the biological meaning of data generated from experiments such as NGS

and MS. For the NGS, we focus on the data analysis for ChIP-seq and RNA-seq.

Qualitative and quantitative proteomics data are still two major aspects of proteomic bi-
oinformatics. Traditionally, only the most abundant proteins in gel electrophoresis can be
analysed. However, with the development of mass spectrometry, the data at the proteome
level can be analysed by computational methods. Bioinformatics for proteomics is rapidly
evolving, and fields as diverse as mathematics, statistics, and computer science have been

used to handle the challenges posed by such complex data. (Chen et al., 2020).

2.6.1 Traditional statistical methods for NGS and MS

For the data generated from the NGS technique, multiple computational methods have
been developed for ChIP-seq and RNA-seq analysis. For the ChIP-seq analysis, the main
goal is to map the interactions between proteins and DNA by the isolation of genomic
fragments which interact with antibodies or DNA-binding proteins such as TFs (Park PJ
et al., 2009). The reads generated from isolated genomic fragments mapped to the refer-
ence genome are used to identify enriched regions for functional factors (Nakato R et al.,
2021). After the mapping of reads to the reference sequence, the discrimination of ge-
nomic regions enriched with reads from ‘background’ noise is necessary. To filter out
noise coming from the background, a negative control can be used to generate a noise
pattern used to compare with real data. In this way, the enriched genomic regions in the
positive sample can be detected for further consideration, while the tags from the control
experiment can be used as a background model. However, in experiments which are lack
control samples, stochastic methods can be applied to estimate the background read levels.
The hypothesis for such cases is that each genomic region to be extracted and sequenced
has the same probability in a total random experiment. If we define the total number of
tags as ¢, and the size of the genome as g, then #/g stands for the probability of one tag

mapped in a given position. Thus, the probability of the expected number of tags within
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a genomic region can be calculated, for example, by Poisson or negative binomial distri-
butions. Then, through the sliding windows across the whole genome, the significance of
the tag enrichment can be calculated. Several ‘peak-calling’ programs have been devel-
oped, such as MACS (Cokus SJ et al., 2008), QuUEST (Valouev A et al., 2008), FindPeaks
(Fejes AP etal., 2008), HOMER (Heinz S et al., 2010), ChIPseek (Chen T-W et al., 2014),
in which several tools are prepared for ChIP-seq analysis. Moreover, the built-in back-
ground model can be used to estimate the significance of tag enrichment (Horner DS et

al., 2010).

For the RNA-seq analysis, one-end or paired-end sequencing is applied to generate se-
quence reads from total or poly-A enriched RNAs. Generally, protein-coding mRNAs are
detected based on the poly-A enrich fraction. However, the non-polyadenylated ncRNAs
can be missed in this way. Then the total RNA can be randomly amplified to have a broad
overview of the transcriptome. The read lengths range from 30bp to over 400bp, which
are generated from different NGS platforms, such as ABI SOLiD, Illumina, and Roche
454 FLX (Horner DS et al., 2010). Different read lengths are selected for various appli-
cations, the short reads with high throughput are chosen for transcript quantification by
tag profiling. While longer reads are more suitable for the determination of exon coordi-
nates and relative quantification for expressed isoforms of full length. For the detection
of novel splicing sites and variants, there are several mapping tools such as TopHat (Trap-
nell C et al., 2009), QPALMA (Bona FD et al., 2008) to split align reads against the
reference genome. However, there are also some other tools developed such as RefSeq
(Pruitt KD et al., 2007), ASPicDB (Castrignano T et al., 2008) for the correct detection
of exon boundary. Then the quality of mapped RNA-seq data needs to be assessed in
depth, which can be done with Picard (http://broadinstitute.github.io/picard/), SAMTools
(Lietal., 2009), Qualimap2 (Okonechnikov et al. 2016), RNASeQC (DeLuca et al. 2012).

For the quantification of gene expression levels, the concept of Reads Per Kilobase of
exon model per Million mapped measures (RPKM) was introduced, which is calculated

by the following Equation (1):

RPKM = 10° X — (1)
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Where C is the number of reads mapped to the exons of genes, N is the total number of
mappable reads for the experiment and L is the whole length of the exons (Mortazavi A

et al., 2008).

While the analysis of differential gene expression, several programs have been developed:
DESeq2 (Love et al., 2014), EdgeR (Robinson et al., 2010), CuffDiff2 (Trapnell et al.,
2013), which are based on the counts of reads to infer genes or transcripts to calculate the
significance of differentially expressed genes. Then the differential expressed genes can
be performed for enrichment analysis by tools such as EnrichR (Kuleshov et al., 2016) or

DAVID (Huang et al., 2018).

The first important goal of MS-based proteomics is the identification of peptides and pro-
teins, in which case the determination of the sequence of peptides is crucial. Here, data
preprocessing, statistical analysis, and enrichment analysis will be discussed for MS-
based proteomics. Two approaches, including searching against the fragmentation spectra
databases (Geer et al., 2004; Craig et al., 2004) and de novo peptide sequencing (Frank
et al., 2005; Shevchenko et al., 1997), will be introduced.
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Figure 2.11 General workflow of bioinformatic analysis in mass spectrometry-based proteomics.
(a) MA-plot for the differential abundance analysis of proteins. The X-axis indicates the log2 trans-
formed fold change and Y-axis indicates the mean protein abundance from replicates. (b) Normaliza-
tion of protein abundance data. (¢) Heatmap for protein abundance with clustering. (d) Enrichment

analysis for protein sets. The X-axis indicates the ranked positions in the protein list, Y-axis in the
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above plot indicates the ranked list metric, which in the bottom plot indicates the running enrichment
score. (e) Clustering on sample datasets based on machine learning. (f) Illustration of an interaction
network inferred from proteomics data. (g) Dimensionality reduction of proteomics expression profile

(Chen et al., 2020).

In the database searching approach, the fragmentation spectra with the highest peptide
spectrum match (PSM) score are chosen as candidates for the query peptide. So the scor-
ing function of PSMs is crucial to the database searching approach. Several tools have
been developed to calculate the PSM score in database searching, for example, SE-
QUEST's scoring system is based on a normalized cross-correlation between the m/z pre-
dicted from sequences and the fragment ions found in mass spectrometers (Eng et al.,
2008). Another popular software MASCOT (Perkins et al., 1999) applies probability-
based scoring to determine the peptide sequence. Generally, a second round of searching
against a decoy database is applied by some software, such as MASCOT (Perkins et al.,
1999) and MaxQuant (Tyanova et al., 2016), to reduce FDRs after database searching
(Elias et al., 2007).

In contrast to the database searching, Graphical Probabilistic Model (GPM) and Hidden
Markov Model (HMM) are preferable choices for the de novo peptide sequencing, such
as PepNovo (Frank et al., 2005) and NovoHMM (Fischer et al., 2005). Furthermore, to
improve speed, several programs have merged de novo peptide sequencing with a data-
base search strategy, such as InsPecT (Tanner et al., 2005) and DirecTag (Tabb et al.,
2008).

After the identification of peptides, protein inference will be performed to reconstruct the
peptide sequences into original proteins. Several models have been used during this step:
probabilistic models (Nesvizhskii et al., 2003), Hierarchical Statistical Model (Shen et
al., 2008), Bayesian inference Model (Li et al., 2009), and so on. However, for the quan-
titative analysis of proteins, two methods have been widely used: labeled methods and
label-free methods. Various bioinformatic methods have been developed for both MS1
and MS2-based labelings, such as MaxQuant (Tyanova et al., 2016), PVIEW (Khan et
al., 2009), iTracker (Shadforth et al., 2005), and IsobariQ (Arntzen et al., 2011).

Normalization is frequently required to handle MS-based proteomics data to eliminate
any non-biological related variances and make downstream analysis more trustworthy.
Several types of normalization methods have been developed based on different statistical
hypotheses, such as logarithm transformation on the intensity values, linear regression-
based normalization which are applied in RIrMA and LinRegMA (Valikangas et al.,
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2016), local regression normalization (Berger et al., 2004), variance stabilization normal-
ization (VSN) (Huber et al., 2002), quantile, median, and EigenMS (Bern et al., 2006).
Furthermore, heatmaps and hierarchical clustering are also popular methods for visualiz-
ing and preprocessing proteomic input data. Another issue that lies in MS data is the
missing values caused by stochasticity in sampling during experiments (Wei et al., 2018).
Various methods have been proposed to address this issue, such as singular value decom-
position (SVD) imputation (Bergamo et al., 2008), and empirical distribution sampling

(Berg et al., 2019).

After the preprocessing of the raw data, more statistical techniques are needed for further
analysis. One important work for proteomics analysis is differential expression profiling.
T-test and ANOVA (analysis of variance) are two frequently used statistical procedures
for determining significant changes by calculating p-values based on certain statistical
hypotheses in this kind of research. However, a relatively large variance can be introduced
because of the limited multiplexity in proteomics data. To address this issue, moderated
t-statistics from the empirical Bayes procedure for Linear Models for Microarray Data
(LIMMA) were proposed by Kammers et al. (Kammers et al., 2015). Then the FDR
threshold is indispensable for the multiple performances of statistical tests. The Benja-
mini-Hochberg procedure (Iterson et al., 2010) and FDR estimation from permutation

(Xie et al., 2005) are widely used for FDR-controlling.

Enrichment analysis is usually performed to find the overrepresented proteins in the pre-
defined gene set of interest. By performing the enrichment analysis, the systemic hypoth-
eses can be tested on proteomics data instead of the transcriptome. Some publicly avail-
able online databases, such as DAVID (Dennis et al., 2003) and STRING (Szklarczyk et
al., 2017), include the ability to do enrichment analysis on gene sets based on prior infor-
mation. PhosphoSitePlus and Signor both give enrichment analysis on modification po-
sition/type based on data gleaned via literature mining. Moreover, the enrichment analysis
usually needs consistent identifiers which are converted from different databases, in
which the conversion tasks can be carried out by some web services, such as PICR (Cote
et al., 2007) and CRONOS (Waegele et al., 2009). The Gene Ontology (GO) annotation
(Gene Ontology Consortium, 2004) is another notable use of enrichment analysis, which
employs Fisher's exact test and the hypergeometric test to clarify the biological process
in which chosen genes or proteins are engaged. In addition to the above applications,
enrichment analysis is also usually performed on regulatory pathway networks and dis-

eases, which is available on several databases, such as PANTHER (Mi et al., 2009),
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KEGG (Kanehisa et al., 2017), and Reactome (Croft et al., 2011) for different pathways
analysis. Besides, similar to gene set enrichment analysis (GSEA), protein set enrichment
analysis (PSEA) is a popular enrichment approach that calculates the enrichment score

based on the significant changes of proteins in abundance, which is available on the soft-

ware PSEA-Quant (Lavallee-Adam et al., 2014).

2.6.2 Machine learning methods for proteomics

Nowadays, more and more machine learning methods have been put into the application
to address biological questions from basic nucleotide and protein sequence analysis to
systems biology. Machine learning, compared to classical statistics, builds predictive
models based on useful features from large datasets, allowing intricate statistical princi-
ples to be learned and applied to new datasets for prediction. Based on the applications
for different tasks, machine learning can be divided into two categories: one is supervised
learning and the other is unsupervised learning. The input and output datasets are both
labeled in supervised learning, but they are not in unsupervised learning. Moreover, based
on the data types whether they are continuous or discrete, the tasks can also be divided
into classification or regression. Several classical machine learning algorithms have been
developed and applied in proteomics, such as Support Vector Machines (SVM), Bayesian
classifiers, Random Forest, and Deep Neural Networks. These algorithms have been
widely used in proteomic research. For example, the k-nearest neighbor (k-NN) algorithm
has been used to predict the protein subcellular location based on its sequence (Huang et
al., 2004). The combination of SVM and Bayesian classifier was used to predict the sur-
face residues of proteins that participate in protein-protein interactions. (Yan et al., 2004).
In addition, machine learning techniques can be used to reduce the dimensionality of
high-dimensional proteomics data, which is another key application, such as Linear Dis-
criminant Analysis (LDA), principal component analysis (PCA), and t-Distributed Sto-
chastic Neighbor Embedding (t-SNE) are popular methods which are chosen for such
propose (Chen et al., 2020).

In recent years, deep neural networks or deep-learning algorithms have been used to en-
hance feature selection, peptide identification, and protein inference for proteomics re-
search. (Meyer et al., 2021). Deep neural networks have two major types: recurrent neural

network (RNN) (Rumelhart et al., 1986) and convolutional neural network (CNN)
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(Fukushima, 1980) based on fundamental tasks such as image and natural language pro-
cessing. Different deep neural networks have different frameworks, which are character-
ized by different settings including the number of neurons, layers, and connections be-

tween layers (Wen B et al.,2020).

For the CNN, convolutional and pooling layers are fundamental to such architecture,
which are usually followed by fully connected layers to process the final output generated
from convolutional layers. In CNN, the backpropagation algorithm is used to train the
convolution kernel. An important function of CNN for processing information is to ex-
tract high-level features by sliding filters on images or sequences in convolution opera-
tions. Then the patterns captured by convolutional layers are identified by pooling layers.
The outputs from each neuron in CNN are controlled by the activation function. The
widely used functions for activation layers include tanh, sigmoid, softmax, ReLU, and
leaky ReLU. Through pooling layers, the pixel or sequence information is vectorized and
concatenated, which then flows into dense layers. At the end of CNN, a loss layer is gen-
erally connected to adjust the performance of the model. CNN has been applied in medi-
cal image and sequence data analysis (Tang B et al., 2019; Wen B et al.,2020). The frame-
work for a typical CNN is shown in Figure 2.12.
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Figure 2.12 The framework for a typical CNN (Tang B et al., 2019).

For the RNN, different architectures and strategies were proposed, which include gated
recurrent units (GRU) (Chung et al., 2014) and long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997). Like CNN, the process of information in RNN is
also trained with the backpropagation algorithm. In RNN, most of the previous infor-
mation can be utilized for the current status process, which is illustrated in Figure 2.13

and Equation (2)
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Hy = oy WihHn_y + W3 Xy + byy) (2)
where Hy stands for the hidden layer neuron, W1,» and W2, are weight matrix, b;»represent
a bias matrix, and o (+) stands for an activation function.

While the total loss L from each hidden layer is shown as Equation (3)
Lotar = Ym=1Ln = Z1I‘Y=1L(?! Y) (3)

By performing the backpropagation process, the parameters for each neuron are updated
after each iteration. For the sequence inputs, RNN processes one element each time by

using cyclic and recurrent units.

rl.i' 1

Figure 2.13 Schematic illustrations for RNN. Items X, Y, and W have the same meaning as Equation

(2); while L; stands for the loss function for a given step (Tang B et al., 2019).

However, the traditional RNN can not solve the long-time dependence problems very
well, thus GRU and LSTM were proposed to address this issue. While GRU is a simpli-
fied and efficient version of LSTM. The architecture and information flow of LSTM is
shown in Figure 2.14. In Figure 2.14, the information flow from past to new features for
the input gate is shown as the yellow track. The green track denotes both an input gate
and hidden layer neurons. While the blue track denotes the output gate which is influenced

by the yellow track.
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Figure 2.14 Schematic illustrations for LSTM. Items X, Y, and W have the same meaning as above
(Tang B et al., 2019).

For the applications of deep-learning approaches to proteomics, the predictions based on
the peptide sequences have been studied intensively, such as the retention time prediction
(Ma et al., 2018; Yang et al., 2020) and fragment ion intensities (Zhou et al., 2017; Ges-
sulat et al., 2019). The identifications of peptides and proteins are greatly improved by
deep learning, such as the acquirement of features for LC-MS (Kantz et al., 2019). More-
over, de novo sequencing is also facilitated by the application of deep learning, such as
the DeepNovo used for de novo sequencing by combining CNN and RNN (Tran et al.,
2017). In my doctoral research, all the above deep-learning techniques were used for MS-

based proteomics.
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3. Summary

Genomics, transcriptomics, and proteomics are fundamental blocks that shaped modern
biology. High throughput and large-scale techniques, such as next-generation sequencing

(NGS) and mass spectrometry (MS), have been widely used in the life sciences. Due to

the complexity of these data, the analysis needs to be done by sophisticated bioinformatic
methods. During my doctorate research, I developed new computational methods and
applied new strategies to advance the research in genomics, transcriptomics, and prote-

omics.

NGS has brought tremendous and numerous changes to genomic research by providing
higher sensitivity, sequencing depth, and throughput compared with traditional sequenc-
ing methods, such as Sanger sequencing, qPCR, and microarrays. Benefiting from the
advantages of NGS technology, RNA-seq has been widely used for the qualitative and
quantitative analysis of genome wide changes in gene expression. Chromatin immuno-
precipitation sequencing (ChIP-seq) as another popular application of NGS provides an
efficient way to analyze the interaction between proteins and DNA. During my doctoral
studies, I used these techniques to uncover the mechanisms behind the hybrid incompat-

ibility between Drosophila melanogaster and D.simulans.

The loss of HMR in D.melanogaster leads to mitotic defects, increased transcription of
transposable elements, and deregulated heterochromatic genes. Through the genome-
wide analysis of HMR’s localization by ChIP-seq, I found that genomic insulator sites
bound by HMR can be grouped into two clusters. One set is composed of gypsy insulators,
whereas the other is bordered by HP1a-bound areas of active genes. In Hmr mutant flies,
the transcription of genes belonging to the latter group is severely disrupted in larval tis-
sue and ovaries. These findings showed a novel connection between HMR and insulator

proteins, indicating a possible role for genome organization in species development.

Beyond the study of particular genes, and RNA transcripts, I also dedicated my work
towards improving proteomic research by accurately predicting fragmentation patterns of

peptides in tandem mass spectrometry (MS) with deep-learning.

MS is an important and powerful technology for proteomic research. In recent years, with
the development of both theoretical and industrial technology and methods, the research
scope of proteome has improved at an unprecedented speed. SWATH-MS is a mass spec-

trometric technique that combines the advantages of targeted data analysis and combines
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it with the speed of time-of-flight (ToF) mass spectrometers to improve peptide quantita-
tion and identification in a data-independent acquisition (DIA) mode. SWATH-MS can
analyze proteomes on a much larger scale than traditional methods such as data-depend-
ent acquisition (DDA), parallel reaction monitoring (PRM), or selected reaction monitor-
ing (SRM) due to its increased reproducibility and accuracy. Moreover, SWATH-MS
shows a significant increase in the detection rates of peptides and proteins along with

higher accurate quantifications.

However, mass spectra data generated by SWATH-MS showed a higher complexity com-
pared to the traditional DDA mass spectrometry method. Therefore, more accurate data
analysis strategies were required to address this complexity. At the beginning of my doc-
torate, SWATH-MS relied entirely on fragment libraries generated by DDA experiments,
which greatly limited the number of detectible and identifiable peptides. Hence, the ex-
tension of the search space is crucial to improve both identification and quantitation on a

proteome-wide scale, especially for SWATH-MS analysis.

With the development of new computational approaches to complex problems, more and
more biological questions were addressed successfully. In this work, we applied such
advanced methods to build a prediction framework that is composed of several tools:
dpMS for mass spectra prediction, dpRT for retention time prediction, and dpMC for
missed tryptic cleavages prediction, along with other new strategies to improve the effec-
tive search space for SWATH-MS in high quality. With the in-silico library, we can iden-
tify proteins and peptides that exceed the experimental library limitation. We demon-
strated the reproducibility and efficiency of dpSWATH across different organisms from
D. melanogaster and H. sapiens on a Q-TOF instrument. With different experimental
conditions, dpPSWATH can build highly reliable theoretical libraries for SWATH-MS
analysis. Consequently, the new searching space has improved both sensitivity and spec-

ificity for SWATH-MS analysis at a higher level.

Within this thesis I summarize three publications I (co)authored: one of which is
on the analysis of next generation sequencing, and the other two are on the work of pre-

dictions for mass spectrometry, which are listed above.
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4. Zusammenfassung

Genomik, Transkriptomik und Proteomik sind grundlegende Bausteine, die die moderne
Biologie geprdgt haben. Hochdurchsatz- und grof3 angelegte Techniken wie die Hoch-
Durchsatz Sequenzierung (NGS) und die Massenspektrometrie (MS) werden in den
Biowissenschaften in grofem Umfang eingesetzt. Aufgrund der Komplexitdt dieser
Daten muss die Analyse mit ausgefeilten bioinformatischen Methoden durchgefiihrt
werden. Wihrend meiner Doktorarbeit habe ich neue Methoden entwickelt und neue
Strategien angewandt, um die Forschung in den Bereichen Genomik, Transkriptomik und

Proteomik voranzutreiben.

NGS hat die Genomforschung in vielerlei Hinsicht verdndert, da es im Vergleich zu
herkdmmlichen Sequenzierungsmethoden wie Sanger-Sequenzierung, qPCR und
Microarrays eine hohere Empfindlichkeit, Sequenzierungstiefe und einen hoheren
Durchsatz bietet. RNA-seq profitiert von den Vorteilen der NGS-Technologie und wurde
in groBem Umfang fiir die qualitative und quantitative Analyse genomweiter
Verdnderungen der Genexpression eingesetzt. Die Chromatin-Immunprizipitations-
Sequenzierung (ChIP-seq), eine weitere Anwendung von NGS, bietet eine effiziente
Moglichkeit zur Analyse der Interaktion zwischen Proteinen und DNA. Wéhrend meines
Promotionsstudiums habe ich diese Techniken eingesetzt, um die Mechanismen hinter
der Hybridinkompatibilitit zwischen Drosophila melanogaster und Drosophila simulans

aufzudecken.

Der Verlust von HMR in D. melanogaster fiihrt zu mitotischen Defekten, erhohter
Transkription von transposablen Elementen und deregulierten heterochromatischen
Genen. Durch die genomweite Analyse der HMR-Lokalisierung mittels ChIP-seq habe
ich herausgefunden, dass genomische Isolatorstellen, die von HMR gebunden werden, in
zwei Gruppen unterteilt werden konnen. Die eine Gruppe besteht aus Gypsy-Insulatoren,
wihrend die andere von HPla-gebundenen Bereichen aktiver Gene begrenzt wird. Bei
Hmr-mutierten Fliegen ist die Transkription von Genen, die zur letzteren Gruppe
gehoren, im Larvengewebe und in den Eierstocken stark gestort. Diese Ergebnisse zeigen
eine neuartige Verbindung zwischen HMR und Isolatorproteinen, was auf eine mogliche

Rolle der Genomorganisation bei der Entwicklung von Arten hinweist.

Neben der Untersuchung bestimmter Gene und RNA-Transkripte widmete ich meine

Arbeit auch der Verbesserung der Proteomforschung durch die genaue Vorhersage von
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Fragmentierungsmustern von Peptiden in der Tandem-Massenspektrometrie (MS) mit

Hilfe von Deep-learning.

Die MS ist eine wichtige und leistungsfahige Technologie in der Proteomforschung. In
den letzten Jahren hat sich der Umfang der Proteomforschung durch die Entwicklung
sowohl theoretischer als auch experimenteller Technologien und Methoden dramatisch
verbessert. SWATH-MS ist eine massenspektrometrische Methode, die die Vorteile der
gezielten Untersuchung von individuellen Analyten mit der Geschwindigkeit von
Flugzeit-Massenspektrometern kombiniert, um die Quantifizierung und Identifizierung
von Peptiden in einer datenunabhidngigen Messung (DIA) zu verbessern. SWATH-MS
kann Proteome in einem viel groBBeren Umfang analysieren als herkdmmliche Methoden
wie die datenabhidngige Messung (DDA), die parallele Messung von
Fragmentiibergiingen (PRM) oder die Messung ausgewdhlter Fragmente (SRM), da es
eine hohere Reproduzierbarkeit und Genauigkeit bietet. Dariiber hinaus zeigt SWATH-
MS eine signifikante Steigerung der Detektionsraten von Peptiden und Proteinen

zusammen mit einer hoheren Quantifizierungsgenauigkeit.

Die mit SWATH-MS erzeugten Massenspektren sind jedoch komplexer als bei der
herkdmmlichen DDA-Massenspektrometrie. Daher sind genauere
Datenanalysestrategien erforderlich, um diese Komplexitit zu bewéltigen. Zu Beginn
meiner Promotion stiitzte sich SWATH-MS ausschlieBlich auf Fragmentbibliotheken, die
aus DDA-Experimenten stammten, was die Zahl der nachweisbaren und identifizierbaren
Peptide stark einschridnkte. Durch die von mir entwickelte Methode konnte ich den
Suchraum deutlich erweitern, um sowohl die Identifizierung als auch die Quantifizierung

auf proteomweiter Ebene zu verbessern.

Mit der Entwicklung neuer computergestiitzter Ansétze flir komplexe Probleme konnten
immer mehr biologische Fragen erfolgreich beantwortet werden. Die von mir entwickelte
bioinformatische Methode besteht aus mehreren Komponenten: dpMS fiir die Vorhersage
von Fragmentspektren, dpRT fiir die Vorhersage von Retentionszeiten und dpMC fiir die
Vorhersage tryptischer Spaltungen, um den effektiven Suchraums fiir SWATH-MS zu
erweitern. Mit der so (in-silico) generierten Bibliothek von Fragmentspektren konnte ich
deutlich mehr Proteine und Peptide identifizieren. Ich konnte die Reproduzierbarkeit und
Effizienz von dpSWATH durch Messung von Proteomen aus verschiedenen Organismen
auf einem Q-TOF-Instrument nachgeweisen. Unter verschiedenen Versuchsbedingungen

kann dpSWATH sehr zuverldssige theoretische Bibliotheken fiir die SWATH-MS-
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Analyse erstellen und damit die Sensitivitit als auch die Spezifitit der SWATH-MS-

Analyse verbessern.

In dieser Arbeit fasse ich drei Publikationen zusammen, die ich (mit-)verfasst habe: eine
davon befasst sich mit der Analyse von Next Generation Sequencing, die beiden anderen

mit der Arbeit an Vorhersagen fiir die Massenspektrometrie, die oben aufgefiihrt sind.
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5. The Drosophila speciation factor HMR localizes to genomic

insulator sites (Paper I)

The lethal interaction of the proteins encoded by the Hmr and LAr genes can cause hybrid
incompatibility between Drosophila melanogaster and D.simulans. HMR plays a key role
in the mitotic process. In this study, we analyzed the function of HMR by genome-wide
localization and chromatin immunoprecipitation. The result implicates genome organiza-
tion playing a potential role in the formation of species by analyzing the connection be-

tween HMR and insulator proteins.

Thomas Andreas Gerland, Bo Sun, Pawel Smialowski, Andrea Lukacs, Andreas Walter
Thomae, and Axel Imhof. 2017. “The Drosophila Speciation Factor HMR Localizes to
Genomic Insulator Sites.” PLOS ONE 12 (2): e0171798. doi:10.1371/jour-
nal.pone.0171798.
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Abstract

Hybrid incompatibility between Drosophila melanogasterand D. simulansis caused by a
lethal interaction of the proteins encoded by the Hmrand Lhrgenes. In D. melanogaster
the loss of HMR results in mitotic defects, an increase in transcripticn of transposable ele-
ments and a deregulation of heterochromatic genes. To better understand the molecular
mechanisms that mediate HMR's function, we measured genome-wide localization of
HMR in D. melanogastertissue culture cells by chromatin immunoprecipitation. Interest-
ingly, we find HMR localizing to genomic insulator sites that can be classified into two
groups. One group belongs to gypsyinsulators and another one berders HP1a bound
regions at active genes. The transcription of the latter group genes is strongly affected in
larvae and ovaries of Hrmrmutant flies. Our data suggest a novel link between HMR and
insulater proteins, a finding that implicates a potential role for genome organization in the
formation of species.

Introduction

Biodiversity is the result of the emergence and the extinction of species. New species form
by pre- and post-zygotic isolation mediated by genetic incompatibility [1]. One of the best
characterized examples of hybrid incompatibility is the gene pair Hybrid male rescue (Hmr)
and Lethal hybrid rescue (Lirr). Hmr and Lhr causc hybrid incompatibility between the
closely related fly species Drosophila melanogaster and 12, simulans. Hmr diverged in both
Drosophila sibling species under positive selection [2]. HMR and LHR from both species
interact physically and localize predominantly to centromeric regions [3]. A reduction of
HMR expression results in a misregulation of transposable clements, satellite DNAs and
heterochromatic genes [3-5]. The major difference between HMR and LHR in D. melanoga-
sier and D. simuluns is their substantial difference in protein amounts [3,6], which has been
proposed to result in alethal gain of function in male hybrids [3]. High levels of HMR and
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Abbreviations: BEAF-32, Boundary element
associated factor 32; ChIP, Chromatin
immunoprecipitation; €10, Centromer identifier;
CP190, Centrosomal Protein 190; CRISPR,
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Drosophia genomics resource center; gRNA, guide
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Heterochramatin Protein 1a; LHR, Lethal hybrid
rescue; Mod(mdgd), Modifier of mdgd; RNAI, RNA
interference; SuHw). Suppressor of Hairy wing;
TSS, Transcription start site,

LHR in hybrids and overexpression of these proteins in pure species lead to an increased
number of binding sites of the complex [3]. Such spreading phenomena based on protein
amount have been observed for several chromatin-associated complexes such as the dosage
compensation complex [7,8], the polycomb complex [9] or components of pericentromeric
heterochromatin [10,11]. In most cases, the precise mechanisms for targeting and spreading
are not fully understood. Interestingly, several of the components involved in these pro-
cesses show signs of adaptive evolution and differ substantially even in very closely related
organisms [12-14], This observation has spurred a model of a dynamic genome that drives
the adaptive evolution of chromatin-associated factors [15].

Eukaryotic genemes of closely related species differ mostly in the amount and sequence of
repetitive DNA [16-18]. This DNA is often derived from transposable elements, which are
highly mutagenic and are therefore under tight transcriptional control by the cellular
machinery. During evolution transposons or transposon-derived sequences occasionally
adopted structural or novel cis-regulatory functions, thereby contributing to the evolution of
new, species-specific, phenotypic traits [19-21]. Genomic insulators are a particular class of
such naovel, fast evolving, cis-regulatory elements that show signs of transposon ancestry
[22,23]. A strong expansion of these elements is observed in arthropods, which alse experi-
enced a successive gain in the number of insulator binding proteins during evolution [24]. In
fact, the Drosophila genome harbours a large variety of insulator proteins such as CTCF,
BLEAF-32, Su(Hw), Mod(mdg4) and CP190, which all affect nuclear architecture [25]. Differ-
ent Drosophila species underwent multiple genomic rearrangements and transposon inva-
sions [26,27], which presumably resulted in an adaptive response of regulatory DNA binding
factors to maintain spatial and temporal gene expression. For example, binding sites for the
insulator proteins BEAF-32 and C'I'CF show a high degree of variability when compared
among very closely related species [26,27]. The gain of new insulator sites is associated with
chromosome rearrangements, new born genes and species-specific transcription regulation
[19,23]. Similar to insulator proteins, which tend to cluster in specific nuclear regions [28],
the speciation factor HMR clusters at centromeres or pericentromeric regions in diploid
cells [3.6] but is also detected at distinct euchromatic regions along the chromosome arms in
polytene chromosomes [3]. A unifying feature for many of these sites is their close proximity
to binding sits of the Heterochromatin Protein 1 {HP1a), a HMR interactor and a well-char-
acterized heterochromatic mark.

Various studies describe HMR’s localization to heterochromatin, but the molecular
details on HMR’s binding sites and its recruitment to these sites are not well understood. To
get new insights into HMR’s association to chromatin, we measured HMR's genome-wide
localization by chromatin immunoprecipitation (ChIP) in the D. melanogaster embryonic §2
cell line. We demonstrate an extensive colocalization of HMR with a subsct of insulator sites
across the genome, HMR’s binding to genomic gypsy insulators, which constitute the major
group of its binding sites, is dependent on the residing insulator protein complex. In a sec-
ond group, HMR borders heterochromatin together with the insulator protein BEAF-32. In
agreement with previous low-resolution techniques in cell lines and fly tissue [3], these bind-
ing sites are enriched at pericentromeric regions, the cytological region 31 on the 2nd chro-
mosome and the entire 4th chromosome. At most of these sites, HMR associates to the
promoters of actively transcribed genes. Interestingly, these genes code for transcripts that
have been reported to be downregulated in Hmr mutant larvae and ovaries. Altogether, our
data provide evidence for a functional link between HMR and insulator proteins, which
potentially results in hybrid incompatibilities due to the adaptive evolution of these genome-
organizing complexes.
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Materials and methods

Cell culture and RNAi

D. melanogaster $2-DRSC cells were obtained from the DGRC and grown at 26°C in Schnei-
der’s Drosophile medium (Invitrogen) supplemented with 10% fetal calf serum and antibiotics
(100 units/mL penicillin and 100 pg/mL streptamycin).

For RNAI experiments cells were incubated in serum-free medium containing 10 mg/mL
dsRNA. After 1 hr of incubation, the serum-containing medium was supplied. Samples were
taken after 7 days. The dsRNA was prepared using the MEGAScript 1’7 T'ranscription Kit
(Thermo Fisher Scientific) following the manufacturers instructions with primers listed in 51
Table.

Chromatin immunoprecipitation, Real-Time PCR and sequencing

Tor chromatin immunoprecipitation (ChIP) cells were crosslinked with 1% formaldehyde for
5 min at room temperature. Upon cell lysis, protease inhibitors and proteasome inhibitor MG-
132 (Enzo Life Sciences) were applied. The chromatin was isolated and sheared with adaptive
focused acoustics (Covaris) to an average size of 200 base pair (bp). For each ChIP reaction,
chromatin isolated from 1-2 x 10 cells was incubated with following antibodies precoupled to
Protein A/G Sepharose: rat anti-HMR 2C10 (RRID: AB2569849) [3] with rabbit IgG anti-rat
1gG (RRID: AB2339804), mouse anti-HPla C1A9 (RRID; AB528276) [29], rabbit anti-H3
(RRID: AB302613), rabbit anti-H3K9me3 (RRID:AB2532132) and mouse anti-FLAG (RRID:
AB262044), Real-Time PCR was performed with Fast SYBR Green master mix (Applied Bio-
systems) using a LightCycler 480 II (Roche). For deep sequencing, all libraries were prepared
using MicroPlex (Diagenode) or NEBNext (NEB) Library Preparation kit and single-end, 50
bp sequenced with the Illumina HiSeq2000. An overview of all ChIP-Seq samples used and the
number of uniquely aligned sequence reads is provided as S2 Table. A list of HMR peaks used
for further analyses is provided as 83 Table. All sequencing data are publicly available as
described below.

Data analysis

‘The raw reads were aligned to the ID. melanogaster genome assembly (dm3) using Bowtie 2.2.6
with unique mapping criteria and exclusion of chromosome Uextra [30]. The raw read quality
was accessed using FASTQC 11.5 [31] and read filtering was performed using FastX 0.0.13
[32]. Sequencing tracks were visualized using IGB [33] and IGV [34] genome viewers. Peak
calling, motif search and peak annotation were performed using HOMER 4.8 with peak size of
200 bp [35] and ChIPseeks implementation of HOMER [36]. For downstream analysis, peaks
identified in two out of three biological replicates were taken. Downstream analysis steps wetre
performed using Python and R and parts of data preprocessing was done using ChipPeak Anno
[37]. For repeat analysis, reads from ChIP-Seq experiments were mapped to RepBase version
19.10 [38] using Bowtie [30]. Only uniquc reads were kept for analysis. For cach repetitive cle-
ment, the log2 fold change was calculated. Following genome-wide binding data sets derived
from 82 cells (unless stated otherwise) were used: CP190, Su(Hw), CTCF and mod{mdg4)
from GLEO GSLE41354 [39], BEAF-32 from GEO GS8E32815 [40]. RNA expression data for
untreated S2 cells was taken from GEO GSE46020. For D. melanogaster larvae and ovaries,
RNA-Seq data were taken from NCBI BioProject PRINA236022 [4] and analyses were per-
formed with cuffdiff 2 [41]. An extended description of the bioinformatics tools and methods
used is provided in §1 Methods.
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Western blot analysis

Samples were boiled in loading buffer, separated on SDS-PAGE gels (Serva), processed for
western blot using standard protocols and detected using rat anti-HMR 2C10 (1:20) (RRID:
AB2569849), rabbit anti-CP190 (RRID: AB2615894) [42], rabbit anti-H3K9me3 (1:2000)
(RRID:AB2532132) and mouse anti-Tubulin (1:800) (RRID: AB2241150} antibodics. Second-
ary antibodies included sheep anti-mouse (1:5000) (RRID: AB772210), goat anti-rat (1:5000)
(RRID: AB772207), donkey anti-rabbit (1:5000) (RRID: AB772206) coupled to horseradish
peroxidase.

Data access
ChIP-Seq data from this study are publicly available at NCBI GEO (GSE86106).

Results
Genome-wide binding map of HMR in D. melanogaster

Immunohistological studies revealed a binding of HMR to centromeric or pericentromeric
regions in diploid cells and to several enchromatic and telomeric regions in polytene chromo-
somes [3,6]. However, detailed information on HMR's binding to chromatin was so far lack-
ing. To better understand the molecular mechanisms that govern HMR’s binding within the
genome, we mapped the genomic binding sites of HMR in cultured . melanogaster $2 cells.
We used a highly specific monoclonal antibody against HMR [3] to purify associated chroma-
tin followed by next generation sequencing (ChIP-Seq) and derived a set of 794 HMR binding
sites, which were present in at least two out of three biological replicates (Fig LA}, A composite
plot of all HMR binding sites found in the genome revealed a sharp peak of HMR binding
with a width of approximately 200 nucleotides, which is reminiscent of sequence specific tran-
scription factors (Fig 1B). To validate the identified HMR binding sites, we applied multiple
strategies. First, we measured enrichment of the HMR binding sites in ChIP experiment using
an anti-FLAG antibody, an epitope that is not expressed in wild type cells (Tig 1B and S1A
Fig). Second, we performed RNAi knock-down experiments to reduce HMR protein level and
compared the enrichment of HMR between HMR RNAI treated cells and Control (Ctrl) RNAi
treated cells. Although we observe an overall reduction of HMR binding at most HMR peaks
(S1B Fig), we rarely see a complete loss of binding despite the high efficiency of the HMR
larock-down. This apparent discrepancy suggests that chromatin-bound HMR is rather resis-
tant towards a RNAi-mediated removal. The existence of such RNAi-resistant binding sites in
ChIP experiments has been observed before and was attributed to high-affinity binding sites
[43] or an incomplete removal of the chromatin-bound factors. Third, we used the CRISPR/
cas9 system to edit the HMR locus in 82 cells such that the cell line exclusively expresses an
HMR allele, which carries a double FLAG-tag at the C-terminus. ChIP-qPCR using HMR and
FLAG antibody in wild type and HMR-Flag, expressing cells showed specific and reproducible
enrichment of HMR at selected HMR binding sites (S1C Fig).

We find HMR binding sites on all chromosomes and distributed along the whole chromo-
some arms with a marked increase in peak density at pericentromeric regions and at the 4th
chromosome where we also observe a higher density of binding sites for HP1a, a known inter-
action partner of HMR [3,4] (Fig 1C and S11) Fig). Unfortunately, the centromeric regions are
not present in the current Drosophila genome assembly, preventing read mapping and analysis
in this area of the genome. However, the increased number of peaks at pericentromeric regions
(S1D Tig) is consistent with the strong centromeric HMR signal we previously observed when
staining 52 cells with an anti-HMR antibody [3]. Besides the pericentromeric region, we also
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Fig 1. Identification of HMR kinding sites in D. me/. 52 cells. (A} Venn diagram of HMR peaks showing the number

of peaks identified in three independent biological replicates. Peaks identified in at least two out of three replicates were used for
further analysis and are highlighted in grey. (B) Composite analysis of HMR and control 1IgG (anti-FLAG)} ChiP signals at genomic
HMR peak positions. (C} Histogram of HMR peak density across the left arm (2L) and right arm (2R) of the 2nd chromoscme. The
cytological region 31 and centromere-proximal regions are indicated (D) Genome browser view of HWMR, HP1a and control IgG
(anti-FLAG) ChIP signals at region 31. HMR ChlP signals obtained upen knock-down using control RNAi and HVIR RNA( are
shown with the same amplitude.
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observe a strong clustering of HMR peaks at the cytological region 31 on the left arm of the
second chromosome where we also see HMR binding in polytene chromosomes [3]. Interest-
ingly, HMR binding sites within these regions de not completely overlap with HP1a bound
regions but rather localize at their edges (Fig 1D).

HMR binding sites largely overlap with genomic insulator sites

We next asked whether HMR binding sites are enriched for specific DNA sequence motifs, A
motif analysis of HMR-bound regions revealed three DNA sequence motifs that were signifi-
cantly enriched and present in up to 26% of all HMR peaks (Fig 2A). These motifs are highly
related to the recognition motifs of the insulater DNA binding proteins Su(Hw) and BEAF-32
(S2A Fig), both containing a zine-finger DNA-binding domain [44,45], suggesting that HMR
binds to insulator regions. Indeed, we observe a substantial overlap of our HMR binding pro-
files with the published ones of known insulator proteins such as CP190, Mod(mdg4), Su
(Hw), CI'CF and BEAF32 [39,43] (Fig 2B and S2B Fig). Insulator binding sites can be subclas-
sified depending on their composition of known insulator proteins [43]. One of the best char-
acterized family of insulators are derived from the gypsy retrotransposon and are strongly
bound by Su(Hw), Mod(mdg4) and CP190 [46-48]. Consistent with the strong enrichment of
Su(Hw)-recognition motifs in the binding sites of HMR, we find about half of all HMR sites
belonging to this gypsy-like family of insulators (Tig 2B). However, only 7% of all Su(Hw)
binding sites and 11% of gypsy-like elements classified as bound by Su(Hw), Mod(mdg4) and
CP190 are also bound by HMR.

Given the extensive colocalization of HMR with non-repetitive gypsy-like insulators (Fig
2C) and the effect of a Hmr mutations on the expression of retrotransposons [3,4], we won-
dered whether HMR is also enriched at repetitive DNA. We therefore mapped sequences
obtained from our ChlP-Seq experiments using anti-HMR and anti-HP1a antibodies as well
as published binding profiles for Su{Hw), Mod{mdg4)2.2 and CP190 [39] against the RepBase
repeat database [38]. Inn agreement with previous studics we observe a strong enrichment of
HP1la at the centromeric heterochromatin-associated Dodeca satellite (DMSAT6) [49] and the
transposable elements Rtla and Rtlb (DMRT1A, DMRT1B) [50] (S2C Fig). In contrast to
HPla, the only repetitive elements that show a substantial enrichment for HMR are the retro-
transposons gypsy, and gtwin (Fig 34). At these elements HMR binds together with Su(Hw),
Mod{mdg4) and CP190 to the 5’ insulator region (Fig 3B and 52D Fig).

A key element for the formation of insulator complexes at gypsy-like elements is the pres-
ence of the CP190 adaptor protein. A reduction of CP190 levels has been shown to strongly
affect binding of insulator proteins to these elements but not to others [43]. To test whether
CP190 also impacts the binding of HMR to gypsy-like binding sites, we performed RNAi
larock-down experiments to reduce CP 190 protein level (Fig 4A) and measured HMR binding.
Strikingly, we observe a substantial reduction of HMR binding only for the gypsy-like group of
binding sites (Fig 4B and 4C), suggesting that HMR’s binding to the gypsy-like insulator class
is indeed dependent on CP190. A HMR RNAi knock-down in contrast affects HMR binding
equally in both classes (Fig 41 and 53 Fig). As insulator sites arc known to contain less nucleo-
somes [51], nucleosome occupancy can serve as a proxy for insulator complex integrity at
these sites [43]. We therefore performed a Histone H3 ChIP upon CP190 RNAi knock-down
to monitor changes in insulator complex integrity [52]. Consistent with the importance of
CP190 for maintaining the gypsy insulator, nucleosome occupancy only increases in the gypsy-
like HMR binding sites (Fig 4C). T'aken together, these results demanstrate an extensive colo-
calization of HMR with genomic insulator proteins, which play an important role in mediating
its binding to chromatin.
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HMR borders HP1a domains at active promoters

Although a large portion of HMR binding sites is associated with gyspy and gypsy-like insula-
tors, there is a considerable number of HMR-bound pealks that do not localize with Su(Hw),
Mod{mdg4) and CP190 (Fig 48}, We noticed that many of these non gypsy-like sites are in
close proximity to HP1a bound regions (Iig 1D). Indeed, when we sorted all HMR peaks
according to the presence of HP1a in their proximity, we observed an almost complete lack of
gypsy insulator binding proteins at these sites (Fig 5A). Consistent with the lack of Su(Hw)
binding to this class of HMR peaks, a motif scarch revealed no enrichment of the Su(Hw) rec-
ognition site among those peaks but rather an enrichment for BEAF-32 binding sites (Fig 5B).
To better understand a possible role of HMR at these sites, which we termed class 1 binding
sites, we analyzed them with regards to their annotation. Interestingly, almost all HP la-associ-
ated HMR binding sites {90%) are in close proximity to transcriptional start sites (TSS),
whereas the other HMR binding sites show a somewhat broader distribution among various
functional elements (Iig 5C). Strikingly, HMR binds very closely to the TSS at the boundary
between HP1a containing domains and the gene body (S4A Fig). The genes in proximity of
these HMR binding sites are classified as transcriptionally active suggesting that HMR might
prevent the repressive influence of HP1a on neighbouring genes (Fig 5D). To investigate
whether HMR loss has an impact on HP1a or H3K9me3 domains at these genomic regions,
we performed HP1la ChIP and H3K9me3 ChIP upon HMR knockdown. However, we could
not confirm extensive spreading of the heterochromatin marks HPla or H3K9me3 after HMR
loss (84C and 54D Fig). Nevertheless, the genes associated with this class of HMR binding sites
are transcriptionally down-regulated in Hmr mutant larvae and ovaries (Fig 5E, S4E Fig and
[5]). This seems to be particularly important within regions that are rich in heterochromatin
such as the 4th chromosome or the pericentromeric regions where we find the class of HPla-
associated binding sites highly enriched (Fig 5F). In summary, we can classify HMR’s genomic
binding sites into two groups: One being associated with gypsy insulators, and another one
associated with active promoters in pericentromeric heterochromatin where HMR borders
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mark the sequence that matches the published binding sites of Su(Hw) and BEAF-32 (see also S2A Fig). (C)
Distribution of class 1 and class 2 HMR peaks among various genomic landmarks. (D) Box plot showing the
normalized RNA expression of all genes and HMR-bound genes (promoter/TSS annotated) in class 1 and in
class 2. 52 cells RNA expression levels were used according to [73]. Significance of difference was estimated
with p-values calculated with Wilcoxon signed rank test [72]. (E) Box plot showing the log2 fold change of
protein coding gene transcripts of all analyzed genes and HMR-bound genes (promoter/TSS annotated) in
class 1 and in class 2 comparing Home mutant against wild type flies. The RNA-Seq data comes from
experiments done in D. mefanogaster ovaries [4]. Significance of difference was estimated with p-values
calculated with Wilcoxon rank sum test [72]. For both box plots the box represents the interval that contains
the central 50% of the data with the line indicating the median. The length of the whiskers is 1.5 times the
interquartile distance (IQD}. {Fy Histogram showing HMR peak density across the annotated . melanogaster
genome. Class 1 HMR binding sites are enriched at region 31, centromere-proximal regions and the 4th
chromosome:

d0i10.1371/journal.pone.0171798.9005

HPla-containing chromatin regions together with BEAF-32 and potentially promotes gene
transcription,

Discussion

HMR localizes to centromeric and pericentromeric regions in D. melanogaster cell lines as well
as in mitotically dividing embryonic cells where it has been suggested to act as a repressor of
transposable elements [3-5]. Mutations in Hmr lead to overexpression of satellite DNA and
transposable elements in ovaries and larvae [4]. Such a derepression is also observed in hybrid
flies [53], where HMR and LHR levels are higher than the ones in pure species and result in a
widespread distribution of the HMR/LHR complex [3]. To better understand the targeting
principles that mediate HMR binding within the D. melanogaster genome, we wondered
whether we could identify HMR binding sites by applying ChIP-Seq in the D, melanogaster 52
cell line. Combining this approach with RNAi mediated knockdown experiments we uncover
a strong colocalization of HMR with gypsy insulator binding sites and demonstrate that HMR
binding to these sites depends on the presence of the residing insulator protein complex. Nota-
bly, HMR associates only with a subset of all Su(Hw) binding sites, but almost all those sites
can be classified as gypsy-like sites bound by CP190 and mod(mdg4) in addition to Su(Hw).

Besides dispersed binding of HMR at genomic gypsy insulator sites along the chromosome
arms, we observe dense clusters of HMR binding sites around the centromere and on the 4th
chromosome where it potentially serves to separate HP1a binding domains from highly active
genes. 'This dense clustering of binding sites around the centromere correlates well with the
strong colocalization of HMR signals with the centromeric H3 variant CID in immunolocali-
zation experiments [3]. Due to its biochemical interaction and partial colocalization with the
heterechromatin protein HPla in Drosophila embryos, HMR has been suggested to be a bosa-
fide heterochromatin component [3,4,6,54]. However, in contrast to HP1a, we detect very dis-
tinct HMR binding sites within the genome. When we find HMR close to an HP1a binding
domaiy, it rather borders it than covering the whole domain. The sharp HMR binding signals
and the fact that almost all euchromatic HMR binding sites contain putative insulator ele-
ments, suggest a role of HMR in separating chromatin domains. A distinct boundary that sepa-
rates constitutive heterochromatin from the core centromere has also been postulated by
Olszak and colleagnes who suggest that transition zones between hetercchromatin and
cuchromatin are hotspots for sites of CID misincorporation [55]. Unfortunately, centromeres
are notoriously difficult to study by next generation sequencing due to their highly repetitive
nature [56,57]. In addition, the microscopic resolution is not sutficiently high to allow a dis-
tinction between a binding to the core centromere chromatin and the chromatin immediately
adjacent to it. Therefore, we cannot rule out the possibility that HMR binds large domains at
the central region of the Drosophila centromere. However, the fact that the purification of
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chromatin containing the centromeric H3 variant CID did not identify HMR [58], suggests
that it may very well also form a boundary between pericentromeric heterochromatin and the
core centromere. 'l'o which extent and by which mechanism HMR fulfils a functional role at
these genomic sites remains to be elucidated.

The genomic sites, where we find HMR bound next to an HP1a domain, are highly
enriched for recognition sites of the insulator protein BEAF-32. Interestingly, a depletion of
BEAT-32 in S2 cells results in an increased rate of mitotic defects [45], which is very reminis-
cent of the phenotype detected when HMR is depleted [3]. Similarly to flies carrying a muta-
tion in the Hmr gene, flies in which BEAF-32 is anly contributed maternally have defects in
female fertility [59,60]. BEAF-32’s role in maintaining associated promoter regions in an envi-
ronment that facilitates high transcription levels [61] has been suggested to be functionally rel-
evant for this phenotype [45]. Strikingly, we find most HMR/BEAF-32 binding sites located
between HP la containing heterochromatin and the transcription start site of a highly active
gene. HPla chromatin might fulfil a repressive function at these genomic regions and HMR
might block this repressive impact on the neighbouring gene bod}’, However, we do not see
extensive spreading of HPla or H3K9me3 upon HMR knockdown suggesting that the repres-
sive effect is not directly mediated by HP1a binding or the HMR knock down not efficient
enough. As there is evidence that HP1a can also promote gene transcription [62], HMR may
also function as a co-activator for HP1a. Currently, we therefore consider HMR binding next
to HPla containing chromatin as a unifying feature of transcriptionally affected genes but can
only speculate about potential mechanism by which HMR exerts its function.

Although HMR depletion has a substantial effect on the transcription of multiple transpo-
sons, we find HMR only enriched at the 5™ insulator region of the gypsy or glwin retrotranspo-
sons and to similar sites within the genome that are presumably derived from these elements.
ator proteins Su{Hw), CP190 and Mod{mdg4) and often dis-
play enhancer blocking activity in transgenic assays [43,63-65]. Artificial targeting of HMR to

These sites are occupied by insul

DNA placed between an enhancer and a promoter of a reporter gene can block the transcrip-
tion activity [3], suggesting that HMR may indeed play a role in setting up endogenous bound-
ary elements, Similar to what is known for Su{Hw), HMR binding to this class of binding sites
is dependent on the presence of the structural protein CP190, which has a key function in the
stabilization of insulator protein complexes [22]. However, as we do not observe a strong phys-
ical interaction between CP190 and HMR, the loss of HMR binding upon a reduction of
CP190 levels may also be the result of increased nuclecsome occupancy. Such increase in His-
tone H3 binding cannot be observed upon HMR removal suggesting that HMR acts down-
stream of CP190. Interestingly, CP190 loss impairs HMR binding to gypsy-like insulator sites
but has weak effect on HMR binding to sites containing BEAF-32 recognition motifs. Notably,
in contrast to BEAF-32, CP190 is not required for oogenesis [66], suggesting that the lack of
HMR binding to the class 1 sites may be responsible for the female sterility phenotype
observed in Hmr mutant flies.

How can we integrate our findings with the lethal phenotype of increased HMR/LHR levels
in male hybrids? It is tempting to speculate that multiple additional binding sites that are
observed in hybrids and on polytene chromosomes of fly strains over-cxpressing HMR [3]
constitute boundary regions. An increased binding to such boundaries, which have been
shown to cluster and form aggregates in vivo [48,67,68], may trigger a massive change in
nuclear architecture. In turn, this could indirectly activate multiple transposable elements sim-
ilar to what is observed when centromere clustering is disturbed [69]. Such a disturbed nuclear
architecture may then trigger the activation of a cell cycle checkpoint which has been previ-
ously suggested to be a major cause of hybrid lethality [70,71].
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Altogether, our data provide a novel link between HMR and cis-regulatory elements bound
by insulator proteins. We speculate that divergent evolution of such genomic elements and
their corresponding binding factors in sibling species is triggering hybrid incompatibilities.

Supporting information

$1 Fig. Control experiments of HMR ChIP-Seq studies. (A} Venn diagram showing the lack
of overlap between HMR peaks {peaks identified in at least two out of three independent bio-
logical replicates, highlighted in grey) and control 1gG (anti-FLAG) ChIP peaks (peol of peaks
from two independent biological replicates). (B) Changes in HMR ChIP enrichment upon
HMR RNAI versus a control RNAI (GST) in two biological replicates. Each data point repre-
sents a mapped HMR peak. The scatter plot on the left displays fold changes of normalized
HMR ChIP tag number mapped to a 200 bp HMR peak region in two biclogical replicates.
Peak regions with less than 50 aligned tags were excluded from the analysis. The histogram on
the right shows the frequency of peaks displaying a reduction of HMR binding vpon knock-
down, Shown are average values of replicate 1 and replicate 2. (C) ChIP-qPCR showing spe-
cific HMR enrichment at HMR binding sites. HMR ChIP is enriched for HMR binding sites
in both wild type and HMR-Flag, expressing cells. FLAG ChIP is enriched for HMR binding
sites only in HMR-Tlag, expressing cells but not in wild type cells lacking the Flag, epitope.
Data are represented as mean + SD of three technical replicates. (D) Genome browser view of
HMR ChIP, HP1a ChIP and contrel IgG ChIP signal at a large centromere-proximal region at
the right arm of the 2nd chromosome.

(TIF)

$2 Fig, Overlap of HMR binding sites with known insulator regions and repetitive DNA,
(A) Sequence motifs identified within Su(Hw) [39] and BEAT-32 [40] peak regions. The corre-
sponding motif logo, p-value of enrichment and percentage of regions with this motif are indi-
cated. Dashed arrows mark the sequence that matches the published binding sites of Su(Hw)
and BEAF-32. (B) Genome browser view of ChIP signals showing combinatoric binding pat-
tern for HMR and the insulator proteins CP190, Mod(mdg4), Su(Hw), CT'CF [39] and BEAK-
32 [40]. (C) Su(Hw) and HP1a ChIP tag enrichment at repetitive DNA elements. Each point in
the scatter plot represents the enrichment (log2 fold) over input and the RPKM of an individ-
ual repeat from Repbase. Repeats with less than 2-fold enrichment are not displayed. (D) ChIP
tag density of HMR and the gypsy-insulator proteins CP190, Mod(mdg4), Su(Hw) [39] across
the gypsy-twin repeat.

(T1F)

$3 Fig. Selective effect of CP190 RNAi on HMR binding to gypsy-like elements. Composite
analysis of HMR ChIP signal and Histone H3 ChIP signal at genomic HMR peak positions
according to the groups defined in Tig 4B. The ChIP signals were obtained upon control RNAi
and HMR RNAi. The HMR ChIP signals are similarly affected in both groups, whereas His-
tone H3 ChIP signals are retained.

(TIF)

$4 Fig. Additional information for HP1a-associated HMR binding sites. (A) Composite
analysis of HMR, HP1a and BEAF-32 ChIP signals at class 1 genomic sites relative to the tran-
scriptional start site (188) and the gene body. Shown are normalised and scaled read density
plots (B) Peak overlap of HMR with peaks of the insulator proteins CP190, Mod{mdg4), Su
(Hw), CT'CF [39] and BEAF-32 [40] for class 1 and for clags 2 HMR binding sites, (C) Com-
posite analysis of HPla and H3KYme3 ChIP signals at class 1 HMR binding sites after HMR
knockdown. Class 1 is defined in Fig 5A but ariented according to HP1a ChIP signal. {D)
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Western Blot analysis on cell lysates to assay protein levels after HMR knockdown. Tubulin
protein detection served as control. (E) Same as described in Fig SE, but the RNA-Seq data
comes from experiments done in D, melanogaster male larvae [4],

(TIF)

51 Table. List of primers used for CRISPR/ras9 genome editing, RNAi experiments and
ChIP Real-Time PCR. List of primers used in this study. Primers used in ChIP Real-Time
PCR were designed with help of Primer3.

(DOCX)

$2 Table. ChIP-Seq sample overview and number of uniquely aligned sequence reads.
ChIP-Seq sample overview and number of uniquely aligned sequence reads. The percentage of
uniquely mapped reads in ChIP-8eq experiments can largely vary and depends on the nature
of the ChlPed protein, Proteins that bind repetitive regions (such as HMR or HP1a) give sub-
stantially lower percentages of uniquely mapped reads.

(DOCX)

§3 Table. HMR peaks used for downstream analysis. HMR peak list derived from HOMER
peak calling on three biological replicates (Fig 14). First three columns provide information
on the peak position within the genome (chromosome, peak start and end using dm3), fol-
lowed by peak annotation obtained from ChlPseeks implementation of HOMER (Fig 5C) and
classification according to adjacent HP1a signals (Fig 5A).

(XLSX)

§1 Methods. Supporting information on methods. Hinr gene cditing using CRISPR/cas9,
extended ChlP Real-Time PCR methods, extended ChIP-seq data analysis methods.
(DOCK)
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Figure S2
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Figure S3
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Name

Sequence (5°-3%)

‘ Publication

CRISPR/cas9 systern based HMR epitope tagging

Ligd RNAif TAATACGACTCACTATAGGGCCCAATGATCC | [1]
AAAGTGTTTTTGCA

Ligd RNAir TAATACGACTCACTATAGGGAAGTAGGATGC | [1]
CTTCGCGA

oligo scaffold GTTTTAGAGCTAGAAATAGCAAGTTAAAATA | [1]
AGGCTAGTCCGTTATCAACTTGAAAAAGTGG
CACCGAGTCGGTGC

oligo CRISPR target | TAATACGACTCACTATAGCCACCGCCTTAGC | this study

with T7 prom. TCTCGAAACTTTGTTTTAGAGCTA

primer antis. scaffold | GCACCGACTCGGTGCCACT [1]

U6-gRNA sense GCTCACCTGTGATTGCTCCTAC [1]

U6-gRNA antisense GCTTATTCTCAAAAAAGCACCGACTCGGTGC | [1]
CACT

HMRtar sense TGGGCCTACGCCGTCGGTAACTTGTCCACGG | this study
CCAGTCAGGATACACTGCTCGGCAAGATGAC
GCAGCTGTTCTCTAAATACGCCAAGGTCAAT
CCGCCACCGCCTGGATCTTCCGGATGGCTCG
AG

HMRtar antisense ACGGCGAAAGTTCTTACAGAGAATATGTATG | this study
ACTAAACTACGTGTGCCAAAAGTTTCGAGAG
GAAGTTCCTATTCTCTAGAAAGTATAGGAAC
TTCCATATG

Hmyr CDS sense TATAAGCAGGTGAAGCCGAAC this study

Hmr downstream | TGCCCTCATCGCTATCATTCTG this study

antisense

RNAi knockdown experiments

CP190 RNAif TAATACGACTCACTATAGGGCCTGGCTGTGC | [2]
CTGAGA

CP190 RNAir TAATACGACTCACTATAGGGCTGGTAGACTT | [2]
ATGTCCGAAA

GSTRNAIi T TTAATACGACTCACTATAGGGAGAAGTTTGA | [3]
ATTGGGTTTGGAGTTTCC

GSTRNAIr TTAATACGACTCACTATAGGGAGATCGCCAC | [3]
CACCAAACGTGG

HMR RNAif TTAATACGACTCACTATAGGGAGAGATGTGG | [3]
AGGTCATAGAGAATCCGCCAATG

HMR RNAir TTAATACGACTCACTATAGGGAGAACCTTGT | [3]
TGTGCAGGGAGTCCTCCGTC

ChIP Real-Time PCR

21.:302129-302248 for | CACAGCAACGAAGCTCTCTG this study

21.:302129-302248 AGCATAGTGACCCGCATCTC this study

rev

3R:23793216- GAGCAAGAACAGCAGCTACTTTGT this study

23793267 for

3R:23793216- CACCTTGACGTTGTTGGGAAT this study

23793267 rev
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3RHet:2107224- AACCCTATCCAAATTTCGAACC this study
2107336 for

3RHet:2107224- AGCCAAGATGAAGTCGATGC this study
2107336 rev

4:855631-855744 for | TAAACTCAGCCCTGCATTCC this study
4:855631-855744 rev | GTGTTAAACCAATCCGAGACATC this study
2RHet:369982- CATTTGACTTCTTCGACACGAC this study
370075 for

2RHet:369982- GACACTGATTTACACAAAGCACAAC this study
370075 rev

2RHet:370407- TGCATACCCTACAAATAGTTTTGC this study
370487 for

2RHet:370407- TTGATCGGCTAAGTGAAGTGG this study
370487 rev

S1 Table. List of primers used in this study. Primers used in ChIP Real-Time PCR were

designed with help of Primer3 [4].
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Treatment Sample Number of reads Number of unique
reads
untreated HMR 1 20989662 7321851
untreated HPla 1 21130231 9615590
untreated IgG 1 15461190 8941371
untreated Input 1 17888908 10427301
untreated HMR 2 22695222 11790768
untreated HPla 2 21119605 3793451
untreated IgG 2 29198102 17068323
untreated Input 2 23224706 14681351
untreated HMR 3 21035775 11727510
untreated Input 3 23103165 14734701
untreated HPla 4 27968435 13525876
untreated Input 4 34527460 21798351
Ctrl RNAi HMR CtrlRNAi 1 24593353 8637377
Ctrl RNAi HPla CtrlRNAi 1 7603697 765717
Ctrl RNAI H3 CtrIRNAi 1 21646028 13497422
Ctrl RNAI H3K9me3 CtrlRNAi 1 20709056 9610889
Ctrl RNAi Input CtrlRNAi 1 23510417 14443029
HMR RNAi HMR HMRRNAi 1 22969101 11868648
HMR RNAI HPla HMRRNAI 1 18370927 7419588
HMR RNAI H3 HMRRNAI 1 16887197 10562127
HMR RNAi H3K9me3 HMRRNAI 1 19310617 8553421
HMR RNAi Input HMRRNA1 1 22252385 14445163
CP190 RNAi HMR _CPI190RNAi 1 23814936 10825131
CP190 RNAi H3 CPI90RNAI 1 20909517 13085885
CP190 RNAI Input CP190RNAI 1 24311469 15526600
Ctrl RNAI HMR_ CtrIRNAi 2 24910232 14947403
Ctrl RNAI Input CtrIRNAi 2 19192206 11772305
HMR RNAi HMR HMRRNAi 2 25880670 15528028
HMR RNAi Input HMRRNAi 2 26225419 16101359

S2 Table. ChIP-Seq sample overview and number of uniquely aligned sequence reads. The

percentage of uniquely mapped reads in ChIP-Seq experiments can largely vary and depends

on the nature of the ChlPed protein. Proteins that bind repetitive regions (such as HMR or

HP1) give substantially lower percentages of uniquely mapped reads [1,2].

66



References

1. Jung YL, Luquette LI, Ho JWK, Ferrari F, Tolstorukov M, Minoda A, et al. Impact of
sequencing depth in ChIP-seq experiments. Nucleic Acids Res. 2014:42: e74-e74.
doi:10.1093/nar/gku178

2. Bailey T, Krajewski P, Ladunga I, Lefebvre C, Li Q, Liu T, et al. Practical Guidelines for
the Comprehensive Analysis of ChIP-seq Data. Lewitter F, editor. PLoS Comput Biol.
2013:9: €1003326—8. doi:10.1371/journal.pcbi. 1003326

67



" 83 Table. HMR peaks used for downstream analysis.<’

HMR peak list derived from HOMER peak calling on three biological replicates (Fig
1A). First three columns provide information on the peak position within the genome
(chromosome, peak start and end using dm3), followed by peak annotation obtained
from ChIPseeks implementation of HOMER (Fig 5C) and classification according to
adjacent HP1a signals (Fig SA).<
https://doi.org/10.1371/journal.pone.0171798.s007¢

(XLSX)<
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Supplemental methods
Hmr gene editing using CRISPR/cas9

Endogenous tagging of Hmr in S2 cells was performed with support of Prof. Klaus
Forstemann and colleagues and was performed exactly as described in [1]. We used .
melanogaster 82-DRSC cells in combination with U6-driven guide-RNA construct generated

by overlap extension PCR. Amr-specific reagents are listed in S1 Table.
Extended ChIP Real-Time PCR methods

Specific primers (S1 Table) were designed with help of Primer3 [2]. After purification, input
DNA was diluted 500-fold, immunoprecipitated DNA was diluted 10-fold before Real-Time
PCR. Real-Time PCR was performed in 10 pl. reaction volume with 5 pl. 2x Fast SYBR
Green master mix (Applied Biosystems), 1 ulL 3 mM Primer forward, 1 uL. 3 mM Primer
reverse, 2 ul. DNA template and 1 pl. H20 on a LightCycler 480 II (Roche). The PCR

program was 20 seconds at 95°C; 45 cycles of 95°C for 3 seconds and 60°C for 30 seconds.

The sample’s Ct values (number of cycles required for the fluorescent signal to cross the
threshold) reported by the LightCycler 480 II (Roche) software were used to calculate the
percentage of immunoprecipitated DNA with respect to the input DNA. The percentage

(Input %o) value is
% input = e " x df x vf x 100

with ACt = Ct (Input) - Ct (ChIP), e = primer pair efficiency (close to 2 or equals 2)
calculated with LightCycler 480 II (Roche) software on a serial dilution of template DNA, df
= Dilution factor taking dilution of DNA template into account (df = 10/500, see above) and
vl = Volume factor taking starting volume of ChIP and Input into account [vf = starting

volume(Input)/starting volume(ChIP)).
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Fxtended ChIP-seq data analysis methods

The raw reads were aligned to the DD. melanogaster genome assembly (UCSC dm3) using
Bowtie (version 2.2.6) [3] and excluding chromosome Uextra [3]. Only uniquely mapped
reads are kept using samtools (version 1.2) [4]. The raw read quality was accessed using
FASTQC (version 11.5) |5] and reads filtering was performed using FastX (version 0.0.13)
[6]. Sequencing tracks of both fold enrichment and log (of base 2) transformation with
parameter settings —m FF and —m logl.R —p 0.0000] were generated using MACS (version
2.1.1) [7], which were then visualized using IGB [8] and IGV [9] genome viewers. Peak
calling was performed using HOMER 4.8 with parameter settings -style factor -size 200 -
fraglength 200 -inputFragl.ength 200 [10]. Motif search and peak annotation were performed
using ChIPsecks implementation of HOMER [11].

For downstream analysis, peaks identified in two out of three biological replicates were taken.
Downstream analysis steps were performed using Python and R and parts of data
preprocessing was done using ChipPeak Anno [12]. For the clustering of HMR peaks
according to adjacent HP 1a ChIP signals, three clusters were generated with K-means
algorithm [13].

For repeat analysis, reads from ChIP-Seq experiments were mapped to RepBase version 19.10
[14] using bowtie [3]. Only unique reads were kept for analysis. For each repetitive element
log (of base 2) fold change was calculated. For the read density tracks, deepTools (version
2.3.3.5) [15] with parameter sets --ratio ratio —-pseudocount=1 was utilized to normalize
against the control.

Following genome-wide binding data sets derived from S2 cells (unless stated otherwise)
were used: CP190, Su(Hw), CTCF and mod(mdg4) from GEQ GSE41354 [16], BEAF-32
from GEO GSE32815 [17]. RNA expression data for untreated S2 cells was taken from GEO
GSE46020. For D. melanogaster larvae and ovaries, RNA-Seq data were taken from NCBEI

BioProject PRINA236022 [18] and analyses were performed with cuffdiff 2 [19].
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6. Investigation and highly accurate prediction of missed

tryptic cleavages by deep-learning (Paper II)

Trypsin has been widely used in MS analysis for its exclusive cleavages at the C-terminus
of lysine and arginine of peptide bonds. During the past few years, people had put a lot
of effort into the highly accurate predictions of missed tryptic cleavages for the improve-
ment of identifications and quantifications of proteins. In this work, we achieved high
accuracy for the predictions of missed tryptic cleavages by deep-learning. With such a
highly accurate prediction tool, we believe people can leverage its power to improve the

performance of MS analysis.

Bo Sun, Pawel Smialowski, Tobias Straub, and Axel Imhof. 2021. “Investigation and
Highly Accurate Prediction of Missed Tryptic Cleavages by Deep Learning.” Journal of
Proteome Research. doi:10.1021/acs.jproteome.1c00346.

73



Journal of

proteome

eresearch

pubs.acs.org/jpr

Investigation and Highly Accurate Prediction of Missed Tryptic
Cleavages by Deep Learning

Bo Sun, Pawel Smialowski, Tobias Straub, and Axel Imhof*

Cite This: /. Proteome Res. 2021, 20, 3749-3757 I: I Read Online

ACCESS | il Metrics & More ‘ Article Recommendations | @ Ssupporting Information

Peptide sequences

Expenmental ..SNLNR

— Trypsin e QFLFRPHHIQKPK

. digesfion  SYTAADATLK
Protein sequences INSQIKIDAHLNK
...SNLNR({?)QFLFR{?)PH/ VCPTTE...
HIQK(?)PK(?)SYTAADA/
TLK(?)INSQIK(?)IDAHLN/ .
K(?)VCPTTE... Peptide sequences
...SNLNR(0.01)
insilico . QFLFR(0.99)PHHIQK(1.00)PK(0.02)
SYTAADATLK(0.03)
INSQIK([0.98)IDAHLNK(0.01)
VCPTTE...

digestion

ABSTRACT: Trypsin is one of the most important and widely used proteclytic enzymes in mass spectrometry (MS)-based
proteomic research. It exclusively cleaves peptide bonds at the C-terminus of lysine and arginine. However, the cleavage is also
affected by several factors, including specific surrounding amino acids, resulting in {frequent incomplete proteolysis and subsequent
issues in peptide identification and quantification. The accurate annotations on missed cleavages are crucial to database searching in
MS analysis. Here, we present deep-learning predicting missed cleavages (dpMC), a novel algorithm for the prediction of missed
trypsin cleavage sites. This algorithm provides a very high accuracy for predicting missed cleavages with area under the curves
{AUCs) of cross-validation and holdout testing above 0.99, along with the mean F1 score and the Matthews correlation coefficient
{MCC) of 0.9677 and 0.9349, respectively. We tested our algorithm on data sets from different species and different experimental
conditions, and its performance ocutperforms other currently available prediction methods, In addition, the method also provides a
better insight into the detailed rules of trypsin cleavages coupled with propensity and metif analysis, Moreover, cur method can be
integrated into database searching in the MS analysis to identify and quantify mass spectra effectively and efhiciently.

KEYWORDS: trypsin, missed cleavage, prediction, deep learning, mass spectrometry

B INTRODUCTION oversimplified cleavage rules applied in experimental data
analysis can often lead to false or inaccurate identifications and
quantifications based on the peptide spectrum matches
(PSMs).™" Accurate annotations of missed tryptic cleavages
will remove unlikely sequences and lower the complexity of the
database, which, in turn, will result in increased sensitivity and
specificity, while decreasing the analysis time,'™”

The precise quantitation of proteins in shotgun proteomics
highly depends on the number of proteotypic peptides
detected. Errors introduced by wrongly assigned peptides
carrying missed tryptic cleavages and unusual fragmentation
patterns can therefore result in inaccurate quantitation. An
improved prediction of the detectability of such peptides

Given its high specificity and stability, trypsin is the major
protease used in shotgun proteomics that cleaves the C-
terminal of arginine or lysine. The proteolytic products of
trypsin arc then analyzed by tandem mass spectrometry (MS).
Then, the generated fragment spectra of selected peptide ions
are matched to theoretical spectra for peptide identification.
However, cleavages are frequently incomplete, and the missed
cleavage rates of up to 40%' are regularly observed in large-
scale proteomic studics. So far, the probability of cleavage for
tryptic peptide prediction has been based on the Keil rules™
that describe a blockage of digestion when arginine or lysine is
followed by proline and a reduction of cleavage when acidic
amino acids flank either side of the correspending arginine and —
lysine. However, such fixed rules cannot fully explain all Received:  April 27, 2021 jroteams
experimentally observed missed cleavages, leading to a flurry of Published: June 17, 2021
approaches to better explain and predict missed cleavages."*™°

Moreover, as trypsin cleavage is essentially a probabilistic

event, no fixed rules could fully cxplain which peptide bonds

will be cleaved and which ones will not be cleaved. The

@ 2021 The Authors. Published by

O American Chemical Saciet hittps://dol org/ 10,1021 facs Jprotecine. 100346
W ACS Publications Y 3740 1. Proteome Res. 2021, 20, 3749-3757
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Table 1. Statistics for the Datasets Used in This Work®

instrument species (data source) # of total proteins groups
TTOF 5600 H. sapiens (HeLa) 4298
timsTOF Pro H. sapiens (Hela) 6946
Q Exactive H. sapiens (HeLa) 19,524
Q Exactive D. melanogaster .87
Q Exactive M. musculus 17,037
Q Exactive S. cerevisiae 4541

# of total peptides

# peptides used for dpMC [training/testing/holdout]

35,624 8756 [7092/788/876]
54,049 4616 [3739/415/462]
86,940 17,210 [13,940/1549/1721]
119,212 21,156 [17,136/1904/2116]
59,210 4640 [3758/418/464]
69,618 8896 [7205/801/890]

“Six independent data sets from different species and instruments are shown. The number of total peptides, the total protein groups in the search
raw files, and the pepﬁdes used for training and testing are listed. The number in square brackets shows the number of Peptides used for 10-fold
cross-validation and holdout testing by dpMC. Equal number of cleavages and missed cleavages are contained in each of the six data sets.

A |dentified peptides B Cleavage window labels
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Figure 1. Workflow to build dpMC. {A) Hlustrations for the peptides chosen from the search raw files that are generated from MaxQuant or
Spectronaut. {B) Cleavage windows built for the corresponding peptides in (A), the peptide sequences in cleavage windows are marked in red, the
adjacent sequences from the corresponding proteins are marked in black. The lysines or arginines in the middle position of the cleavage windows
are marked with blue frames denoting the {missed) cleavage sites. For each peptide, the corresponding label is indicated as C {cleavage) or MC
(missed cleavage) with O or 1 in the square brackets, respectively. (C) Illustration of the architecture of dpMC is shown in dotted gray block. Major
parts of the framework are shown in four solid black blocks. The probabilistic output from dpMC is shown in solid green block. C: cleavage; MC:

missed cleavage.

through an improved prediction of tryptic missed cleavages has
been shown to substantially improve the quantitation of the
corresponding protein&gim

In recent years, deep learning has been successtully applied
for different prediction tasks including natural [anguage
processing (NLP),11 picture recogniti(m,l2
forecasting™ and so forth. In this work, we leverage the
powerful capability of deep learning for the prediction of
sequence processing to make highly accurate predictions of
missed cleavages by trypsin. Long short-term memory (LSTM)
has been successfully applied in plenty of time-series work,
including NLP, labeling for pictures, and so forth. Compared
to the traditional recurrent neural network (RNN), the
temporal convolutional network (TCN) performs better on
different time series and long memory tasks including copy
memory, adding problems, and so forth. Meanwhile, the TCN
also shows advantages on flexible receptive field sizes, stable
gradients, and speed. Instead of using gated cells, the TCN
takes the advantages of one-dimensional convolutional neural

and weather
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network {1D-CNN), through the dilated connection of
neurons in different CNN layers, enabling it to keep the
distant information of long sequences.

Based on the framework we built using the algorithms
mentioned above, we achieved the testing AUC of above 0.99
for different species and experimental conditions. Moreover,
we analyzed sequence features determining the efficiency of
the cleavages and missed cleavages by trypsin from statistical
and deep-learning perspectives. Also, in order to make highly
accurate predictions for given species, experiment and
measurement setup, a ﬁne—tuning strategy was propc)sed in
this analysis. The source code of our method is available online

at https://github.com/dpMC-sun/dpMC.

H METHODS

Data Acquisition
Six data sets from the proteomes of four different species, H.

sapiens, D. melanogaster, M. musculus and S. cerevisiae, were

https://doiorg/10.1021/acs,jproteome. 100346
J. Proteome Res. 2021, 20, 37493757
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used to train, validate, and test the performance of deep-
learning predicting missed cleavages {dpMC), one of which
was recorded on TripleTOF 5600 (PXD009273'"), one on
timsTOF Pro (PXD014777"°), and four on Q Exactive
Orbitrap (PXD007158," PXD010627,"" PXD013478,' and
PXD018100"}. The details of the number of peptides used by
dpMC are shown in Table 1.

Searching of Raw Files and Preprocessing of Data

For the timsTOF Pro and Q Exactive Orbitrap data sets,
database searching was performed using MaxQuant™ and the
peptide.tat files in the repository used for dpMC analysis. For
the MaxQuant peptides.txt file, the searching parameters were
set as the description in the parameters.twt file using trypsin or
trypsin/P as enzyme cleavage rules. Only nonreverse and
nonpotential contaminant peptides with posterior error
probability (PEP) less than 0.01 were kept. For all the peptide
entries in the search results, only arginine (R} or lysine (K} in
the C-terminal of the peptides and a maximum of two missed
cleavages in the peptides were kept.

For the data sets of Hela from TripleTOF 5600, the 15
pSALIC DDA files of HeLa cell line data sets were searched by
Pulsar in Spectronaut (14.2.200619, Biognosys AG, Schlieren,
Switzerland} to generate library files used for dpMC in which
trypsin/P was set as the enzyme/cleavage rules with missed
cleavages less than 2, and the length of peptides was set in the
range from 7 to 60. Variable modifications including acetyl
(protein N-terminal) and oxidation {M)}, in addition to the
fixed modification carbamidomethyl (C) were searched.

To achieve high confident cleavage information, peptides
that were identified with and without tryptic cleavages were
discarded. A cleavage window of at most 15 amino acid length,
with 7 amino acids N-terminally and C-terminally of the
putative cleavage sites was used. As the identified peptides had
a minimum length of 7 amino acids, only the peptides
containing 7 amino acids N-terminally of the putative cleavage
site were kept, while all peptides that have at least one amino
acid C-terminally of the putative cleavage sites were kept
(Figure 1A,B, Table 1}. The cleavage windows that contain “X”
or “U” are not used for training and prediction.

Classification Algorithms

The TCN connected to bidirectional LSTM (Bi-LSTM) was
adopted to build dpMC. For dpMC, first, we encoded the
sequence of cleavage windows built from the processed
identified peptides from a search engine by one-hot encoding
with 15 time steps and 21 input dimensions that are encoded
by all 20 amino acids and one blank positional codes.

Then, the input was smoothed by 256 filters with the kernel
size of 9, through the skipped connection of 7 dilations of 1, 2,
4, 8, 16, 32, and 64 positions, respectively, to build the TCN
block with which two dense layers of 512 units and the
connection between those two layers were formed. For both
training and testing data sets, missed cleavage sequences were
marked as positive class—*1”, and the cleavage sequence was
set as negative class—“0”. The probabilistic output of the last
dense layer was between O and 1, with both indications for
cleavages and missed cleavages. We chose Saftmmcm as the
activation function of the last dense layer and categorical
crossentropyzz as the loss function with Adam™ as the optimizer
(Figure 1C and Figure $1). The outputs of dpMC are the
probabilities of both classes with arginine or lysine at position
P1 within the cleavage window. A value of 0.5 was set as the
threshold for labeling the predictions on given cleavage
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windows. Twenty epochs and 64 batch size were set as the
default values for training dpMC. dpMC was developed in
Python 3.6.5 (Anaconda3 5.2.0 64-bit) using keras {Version
2.3.1) with tensorflow-gpu (Version 1.13.1) backend. dpMC is
open-source and freely available on Github.

Validation and Testing of Prediction Performance

To test the performance of the dpMC algorithm, specific data
sets from different sources and different instruments were used.
Each data set containing an equal number of fully cleaved
peptides and peptides resulting from one or two missed
cleavages was split into two parts: 9/10 of which was used for
cross-validation and 1/10 of which was used for holdout
testing. In all 20 epochs of dpMC training, a training—
validation strategy was applied using a 10-fold cross-validation
for each of the data sets. For each cycle, 5% of the training data
sets were used for validation to calculate the validation loss;
afterward, the trained model with the minimum validation loss
was chosen for further testing {Figure S2).

In this work, sensitivity, specificity, and precision are also
known as the positive predictive value (PPV), Fl-score, and
Matthews correlation coefficient (MCC), and the area under
the receiver operating characteristic curve {AUC) was adopted
to evaluate the performance of dpMC on tryptic cleavages and
missed cleavages that are calculated as follows:

itivit s
sensttnn =
Y= T4 BN (1)
o N
Speciict = =
¢ YT TP+ TN (2)
TP
precision or PPV=——
TP + FP (3)
2TP
Fl score = ——————
2TP + FN + FP )
MOC = (TP x TN) — (FP x FN)

J(TP + FP)(TP + FN)(FP + TN)(TN + FN)
(s)
P

l iti te = —————
false positive rate LN

(6)
where TP, FP, TN, and FN are true-positive, false-positive,
true-negative, and false-negative rates, respectively. The AUC
is calculated by integrating the receiver operating characteristic
curve (ROC}, which is formed by the relation between the
sensitivity (true-positive rate) and the FP rate (eq 6) of the
classifier.

The AUC equals the probability that a classifier will rank a
randomly chosen positive example higher than a randomly
chosen negative example. An AUC of 0.5 corresponds to a
random, and an AUC of 1.0 corresponds to a perfect predictor.

Cleavages labeled as 0 and missed cleavages labeled as 1 are
used for this analysis for both ground true and predicted
values. Both the ()I:\ti.mized24 and standard cutoffs of 0.5 are
used for labeling the predicted values for further analysis,
which are labeled as 1 above the cutoffs and as O below the
cutoffs. For the 10-fold cross-validation testing, the mean
values of all measurements stated above were calculated along
with the holdout testing for further testing and comparison
with other prediction algorithms.

https://doiorg/10.1021/acs jproteome. 100346
J. Proteome Res. 2021, 20, 3749-3757
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Figure 2, Heatmap of the log ratios of missed cleavages to cleavages for each amino acid at each position around cleaved or missed cleaved sites.
(A) Heatmap based on the data sets of Hela from TripleTOF 5600. (B} Heatmap based on the data sets of M. muscudus from Q Exactive.
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of (A)

cleaved sites and (B) missed cleaved sites based on the data sets of Hela from '[riple 'OF 5600, and the probabilistic motifs of cleavage windows of
(C) cleaved sites and (1)) missed cleaved sites based on the data sets of M. muscudus from @ Exactive.

B RESULTS

Frequencies of Amino Acids in Cleavage Windows

In this work, we adopted the general maodel of the enzymatic
cleavage of subsite nomenclature by Schechter and Berger,”™**
which annotates the amino acids around the putative cleavage
sites [P§-P(7—2)-P1-P1'-P(2'-6')-P7’], where P1 denotes the
position of the potential cleavage.

In 1992, Keil summarized the digestion rules of trypsin
based on the frequencies of amino acids in P2 and P1’ around
arginine and lysine.’ Here, we considered all amino acids
within a window of 15 aminc acids around the putative
cleavage site. To determine the potential influence of a given
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amine acid on a tryptic cleavage, we calculated the log ratios of
occurrences for a given residue at a particular position in
noncleaved versus cleaved windows to reveal the propensities
of amino acids arcund P1.

QOur analysis demonstrated the previously described Keil
rules, suggesting that proline located at position P1” strongly
interferes with trypsin cleavage. Interestingly, we found that
this effect also extended to position P2’ and further amino
acids, although to a lower extent (Figure 2 and Figure 83).
Consistent with previous findings, "> the acidic amino acids
aspartate and glutemate at P2, P1’, and P2’ reduce trypsin’s
cleavage efliciency. Moreover, additional Iysine and arginine

https://doi.org#10,1021/acs jproteome, 1c00246
J Prateome Res. 2021, 20, 3749 3757

77



Journal of Proteome Research

pubs.acs.org/jpr

Table 2. K-Mer Analysis of the Most Significant Motifs”

Trplke TOF:Hela

0 Exactve i . w usculis

Ckaved W isced C kaved

Ceaved W issed Ckaved

Entiched Depleted D ep eted Enriched D epleted Enriched D ep ke ted

osition_#kn er osition #km er ositon _fkn er osition ke er osition Fkn er osition _Fkn er ositon Fke er
] F§ ] P8 K i P P& 3 P& Pl i

P L P X v ] i 4 K
PG L I I r vé Pe K
F5 E 5 ¥ FE P & IE K
P4 P 2] K i M E K
P3PLPL LE Pl K Py FLEDK K
FZ.F1 AR P2 P P2 DE P
Pl R [ Pl KD

Pl [ P1 ] K e P K
P2’ P2’ E K Pz E K
pa’ [y K ey K
P4 [y K Py K
i r3' ¥ Py ! K
e’ g r 3 K
PT PT P i P P

“The most significant motifs of Hela from Triple TOF 5600 and M. musculus from Q Exactive analyzed by kpLogo. The most significant enriched
or depleted motifs around cleaved or missed cleaved sites are shown in red.

Table 3. Performance of dpMC Evaluated on Holdout Testing Datasets with a Cutoff of 0.5

instrument species (data source) fine-tuning sensitivity
TTOF 5600 H. sapiens (HeLa) no 0.9569
TTOF 3600 H. sapiens (HeLa) yes 05569
timsTOF Pro H. sapiens (HeLa} no 0.9502
timsTOF Pro H. sapiens (HeLa} yes 09593
Q Exactive H. sapiens (HeLa) no 0.9826
Q) Fractive TI sapiens (Mela) yes 09736
(3 Dxactive 0. melanogaster no 019622
 Exactive D. melanagaster yes 0.9660
Q Exactive M. amuscuus no 0.9839
Q Exactive M. smusculus yes 0.9879
Q Exactive 8. cerevisine nae 0.9675
Q Exactive S, cerevisiae Va5 0.9567

specificity PPV Fl-scare MCC AUC
05678 05679 09624 1.9248 0.9939
05793 05791 0.9679 L9365 05959
05668 05633 0.9567 09172 (09957
0.5793 08770 0.9680 0.9387 0.9968
093538 08570 09696 0.9387 0.9939
06721 09722 09739 0.9477 0.9969
09593 019395 1.9609 09216 09938
08707 08706 0.9683 0.9367 (0.9943
09630 09683 0.9760 0.9470 09976
09815 09839 0.9859 0.9694 0.9994
05333 08572 09623 092089 05940
09626 090651 Q3609 o193 09957

“Performances of dpMC on six independent data sets from different species and instruments are shown. PPV, positive predicted valie; MCC,

Matthews correlation coefficient; and AUC, area under the curve.

residues are also enriched in peptides with a missed cleaved
site (Figure 2 and Figure §3).

In addition to these previous findings, we found that the
amino acids serine, methionine, histidine, threonine, and
cysteine apparently facilitate trypsin cleavage as they are
underrepresented at P17 in peptides containing & missed
cleavage site. Our analyses show that these amino acids also
affect the cleavage efficiency when residing at a more distal
position to various extents (Figure 2 and Figure S3).

Motifs in Cleavage Windows

To identify distinct amino acid patterns in the cleavage
window, probabilities and k-mer of amino acids were analyzed
with pLogo® and kpLogo.™ We performed the motif analysis
for single amince acid using a probabilistic approach based on
binomial testing by pLogo. As expected, lysine and arginine are
highly enriched at position P1 but virtually absent at other
positions in fully cleaved peptides (Figure 3A,C, and Figures
S44A, $4C, S4E, and $4G). In fully cleaved peptides, we do not
observe a significant enrichment of amino acid patterns arcund
Pl. However, in peptides that contain at least one missed
cleavage site, proline is frequently observed at P17, and
aspartate and glutamate are distributed in a broader range
around the missed cleavage site. Interestingly, although proline
at position P17 is the major contributor for missed cleavages in
all experiments, the relative additional contribution of aspartate
and glutamate at position P1' varies. In contrast, at P2’, the
major contribution to cleavage resistance is made by aspartate
and glutamate with only a minor, yet significant contribution of
proline. (Figure 3B, $4B, and $4H). The pLogo analysis also
shows that there is a less-pronounced effect of specific amino
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acids N-terminally of the tryptic cleavage (P1—P8). However,
P2 is clearly enriched for aspartate in peptides carrying a
missed cleavage. This is in contrast with P2’, where glutamate
has a bigger contribution. All of these detailed novel findings
that are based on the binomial probability analysis extended
our understanding of the impact of proline on missed
cleavages.

To identify potential motifs that are significantly enriched
around the cleaved or missed cleaved sites, we also performed
k-mer analysis using kpLogo.™ This different algorithm
revealed leucine as the most likely amino acid present at P3
of the cleaved sites in all data sets, regardless of the species and
instruments used (Table 2 and Tables §6 and §7). Similar to
the analysis of pLogo,” we also found lysine, arginine, proline,
aspartate, and glutamate depleted in fully cleaved peptides.

When we applied k-mer analysis to detect motifs around the
missed cleaved sites, we identified more complex motifs
compared to the ones around the cleaved sites (Table 2 and
Tables $6 and §7). This is similar to what we observed when
performing the pLogo analysis. However, kpLogo also led to
the identification of dilferent motifs such as “DK”, starting at
P2. The k-mer algorithm also suggests a stronger enrichment
of glutamate at P4 and P2’ in all data sets. Furthermore, it
hints at a stronger interference of the combination of proline at
P1" and glutamate at P2’ with the tryptic cleavage than the
pLogo analysis. Moreover, we observed the depletion of lysine,
arginine, and proline across the entire window in peptides
containing missed cleavage sites, which is in contrast with the
notion that tryptic cleavage is blocked by dibasic sites.” Our
analysis suggests that trypsin can still fully cleave a polypeptide

https://doi.org/10.1021/5cs jproteome. 100346
A Proteome Res. 2021, 20, 3749 3757
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Figure 4. ROC curves of dpMC with DeepDigest and SVM. Each ROC carve is based on the performance on corresponding holdout-testing data

sets. dpMC with fine-tuning is denoted with “I"

in the bracket, while no fine-tuning is denoted without “I” in the bracket. (A) ROC curves of

dpMC without fine-tuning are denoted as “dpMC” and DeepDigest as “DeepDigest”. The performance of dpMC without fine-tuning is plotted in
solid lines while dotted lines for DeepDigest. (B) ROC curves of dpMC with fine-tuning are denoted as “dpMC(T)” and MC:pred-SVM as “SVM”.
The performance of dpMC with fine-tuning is plotted in solid lines while dotted lines for S¥M from MC:pred.

carrying long stretches of lysine and arginine, which has been
demaonstrated before.” Despite the subtle differences, the
probabilistic approach as well as the k-mer analysis showed
that the amino acids surrounding the putative cleavage sites
substantially contribute to the cleavage efficiency in a more
complex manner than previously anticipated and should
therefore be considered when predicting tryptic peptides.
These findings prompted us to develop new deep-learning
strategies to better address this issue. Our newly developed
algorithm, dpMC, can learn even subtle pattemns from specific
data sets, thereby improving the accuracy of cleavage
prediction (see the Methods section).
Performance of dpMC on Testing Datasets

We tested the performance of dJpMC on the holdout data set
and by cross-validation testing (Figure $2). For the cross-
validation testing, the mean measurements were calculated for
each data set. Under the cutoff of 0.5, the testing on the
corresponding holdout data sets for all six data sets resulted in
the AUCs ranging from 09938 to 0.9976 for the D.
melanogaster data set and the M. musculus data set from Q
Exactive (Table 3). While upon the cross-validation testing, the
mean AUCs of the ROC range from 0.9904 to 0.9949 for the §
.cerevisine data set and the HeLla data set from Q Exactive
(Table S2). For further fine-tuning of the algorithm, some of
the best-trained models were used. For the fine-tuning of HeLa
from TripleTOF 3600, D. mielanogaster, M. musculus, and S.
cerevisize from Q Exactive, the best-trained model with a
validation loss of 0.06731 from HeLa from Q Exactive was
used. For the fine-tuning of HeLa from timsTOF Pro and Q
Exactive, the best-trained model with a validation loss of
0.02913 from M. musculus from (Q Exactive was used. For the
testing on the holdout data set, the AUCs of improved models
range from 0.9943 to 0.9994 for the D. melanogaster data set
and the M. musculus data set from Q Exactive (Table 3). The
mean AUCs of improved models range from 0.9912 to 0.9967
for the S .cerevisine data set and the M. musculus data set from
Q Exactive on the cross-validation testing data sets (Table 52).
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In addition to the performance measured with AUCs, we
checked the PPV, Fl-score, and MCC, along with sensitivity
and specificity (Table 3 and $2). For the overall measure-
ments, the high Fl-score ranging from 0.9609 to 0.9859 and
MCC ranging from 0.9193 to 0.9694 with fine-tuning on the
holdout-testing data sets suggest that dpMC achieved high
performance on the whole level of prediction on cleavages and
missed cleavages, which is also observed on the cross-
validation testing data sets. On the other side, a high PPV
achieved by dpMC coupled with high sensitivity suggests the
accurate classification of missed cleavages. Meanwhile, the
specificity also maintained at a high level indicates the high
accuracy of classilication for deaved sites. In addition to the
standard cutoff of 0.5, we also checked all the measurements
with an optimized cutoff;*** which was selected based on the
testing performance. However, the differences of all measure-
ments based on two cutofls mentioned above are very small,
which range from 0 to 0.0317 on the holdout-testing data scts
(Table 3 and $1). Therefore, in the application of dpMC, we
use the static classification threshold of 0.5, which was chosen
for the predicted labels.

Benchmarking of dpMC

We compared the performance of dpMC with known tools for
cleavage prediction such as DeepDigest,’ SVM,' and
information theory approaches within MC:pred and Peptide-
Cutter (https://www.cxpasy.org/resources/peptidecutter)
from ExPASy” (Figure 4, Figure S5, and Supplementary
Note). All the abovementioned tools, including dpMC, were
tested on the same corresponding holdout data set of the six
data sets (Table 1). For all measurements, the standard cutoff
of 0.5 and optimized cutoffs were used for benchmarking
(Tables S1-85). Tt tumed out that dpMC is much more
robust with regard to the cutoff used than the other four
algorithms. Hence, for the other programs, single optimized
cutoffs are suggested,” which hampers their general usability.
Moreover, even when using optimized cutoffs, dpMC still
clearly outperformed the other prediction algorithms.

https://doi.org/10.1021 /acs.jproteome. 1 cO0346
A Prateome Res. 2021, 20, 3749 3757
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Figure S, Heatmap and line plot of feature maps extracted from the Bi-LSTM layer. The heatmaps of activation values from $12 neurons of Bi-
LSTM in the model trained on the data sets of {A} Hel.a from TripleTOF 3600 and {B) M. musculus from € Exactive are shown in the upper part;
the line plots of ACW of the feature map are shown below the heatmaps. The positions of amino acids in the cleavage window for both the

heatmap and line plot are plotted corresponding to each other.

In addition to the algorithms mentioned above, there are
other approaches adopted to predict missed cleavages. For
example, cleavage prediction using decision trees (CP-DT®)
uses decision tree ensembles to predict the missed tryptic
cleavages; however, because of the expiration of CP-DT's
online resource, we could not compare it with dpMC, while
according to the developers, CP-DT showed a maximal AUC
of 0.90.

Features Driving Classification

Several deep-learning algorithms were adopted to build dpMC.
In order to understand the process and mechanisms behind the
decisions made on the prediction for missed cleavages, we
extracted the feature map based on the activation outputs trom
the Bi-LSTM layer. The activation function "tanh” was used in
this work, which gives both positive and negative outputs for
the prediction used for updates of weights from one neuron.
For the recurrent activation function, we chose “sigmoid”,
which is a classical method to deal with the information that
flows into neurons. The feature map of the Bi-LSTM layer
shows what features were detected and used for prediction.
The weights assigned to a specilic amino acid within the
cleavage window reveal the extent and confidence for each
amino acid position that Bi-LSTM made to predict missed
cleavages. In this work, the absolute curnulative weights
(ACWS) of all 512 [ilters from the Bi-LSTM layer for 14 amino
acids except P1 were calculated (Figure 5 and Figure $6). For
all six data sets, the apex point of ACW and the pattern of
weights at P1" are more distinct compared with other
positions, indicating that dpMC extracts most of the features
from Pl and the lowest at either P8 or P7, which fits the
previous conclusions summarized by other studies™ that the
impact of flanking amino acids on the cleavages is strong and
becomes weaker as the distance increases to the cleavage sites.
In addition, the trends of the ACW curves are dilferent for
different data scts and experimental conditions. For the data
sets from Q Exactive, the impact of the N-terminal amino acids
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is much less than that of the C-terminal amino acids of
cleavage sites (Figure 5B, and Figures $6B, $6C, and $6D),
while for the data sets from TripleTOF and timsTOF (Figure
SA and Figure S6A), the impact of the N-terminal amino acids
is more similar to that of the C-terminal amino acids. This
suggests an impact of different instruments on the detection of
missed tryptic cleavages. Combined with the previous
frequencies of amino acids for cach position and motif
analysis, the feature maps illustrate the impact of weights of
these flanking amino acids on missed tryptic cleavages.

B DISCUSSION

Mass spectrometry (MS)-based proteomic research relies on
the matching between the experimental and in silico
fragmentation patterns of peptide ions for their identification.
The generation of theoretical mass spectra in the searching
database depends on the correct prediction of trypsin cleavage
to improve the identification and quantification rates of both
shotgun data dependent acquisition (DDA) and data
independent acquisition (DIA) proteomic analysis. However,
existing tools still cannot meet the requirements for accurate
references in database searching. One reason is the deficiency
in their design and capabilities of such prediction algorithms
and the other is that even though all peptides are digested by
trypsin, the discrepancies in the efficiency of trypsin digestion
and their detection in different experimental setups lead to an
apparently different missed cleavage rate. The generalization by
fixed rules or trained models based on only a few general data
sets is usually not optimal. Therefore, a new accurate strategy
needs to be proposed and applied.

In this work, we propose a novel method, dpMC, using a
deep-learning framework to predict the probabilities of missed
cleavages by trypsin for given peptide sequences with a high
accuracy. dpMC outperforms other existing tools in different
measurements of classification on the prediction of trypsin
cleavages and missed cleavages based on the publicly available

https://doi.org/10.1021/acs jproteome.1cOU346
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trained models or algorithms. Using dpMC, one can train the
model on custom data sets that come from specific
experiments with the fine-tuning strategy. Moreover, we also
studied the mechanisms behind the cleavages and missed
cleavages by trypsin by extracting the feature maps used by
dpMC, which allows us to better understand the importance of
features for learning and decision processes in the prediction
by dpMC. Through the analysis of the frequencies and motifs
of amino acids around the cleaved or missed cleaved sites,
some conclusions are consistent with previous findings,>* and
more novel and clear investigations have been made to
improve the understanding of underlying patterns.

Database searching of mass spectra generated by the trypsin
cleavage of protein mixtures is a major aspect of the
identification and quantification of proteins in MS-based
proteomics. Missed cleavages result in an incomplete coverage
of the identified proteins and hamper protein grouping, which
is frequently used for protein quantitation. Therefore, an
accurate prediction of missed cleavages is essential for precise
protein quantitation. In addition, a more accurate prediction of
missed cleavages substantially decreases the search space and
improves the rates of identification and quan‘tiﬁcatit)rL1’2

In recent years, researchers have also put a lot of effort on
the prediction of surrogate parameters for detectability'**>**
to identify the most detectable peptides in a theoretical
proteome. These peptides are then used to generate spectral
libraries in silico, which can be used for protein identification
and quantitation in complex mixtures. The improved
prediction method for missed cleavages provided by dpMC
will greatly facilitate the identification of suited peptides that
can be used for spectral libraries.

All the functions are available in an open-source program
that researchers can easily use to perform training and
digestion for custom data sets from different species and
experiments. For each site prediction, dpMC provides both
classification and its probabilities. For the future application of
dpMC, users can integrate it into database searching
algorithms or use it directly to precalculate classifications for
specific experiments and data sets.
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of the illustration of the structure of dpMC.
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The whole dataset

90% 10%
Round1 | [1i2i3:i4:5i6:7:8:9:i10
5_% 95% T holdout datasets: used for additional holdout testing
10% 90% and comparison with other programs. The trained

model on the left 90% of the whole dataset was tested.

training datasets in cross-validation: used for train-
ingfinternal-validation during deep-learning, in which
95% used for training dpMC model, the left 5% used
for internal validation during training (20 epochs for
each round training) in order to record the performance
of model on validation datasets and control the overfit-
ting. Finally, the model with minium validation loss was
chosen for testing on the corresponding 10% testing
datasets in each round of cross-validation.

The testing datasets used for testing dpMC model
in cross-validation, which was trained on the above
training datasets. For each round of testing, the AUC
was calculated and finally the mean AUC of 10
rounds was caloulated.

Round 2 | |1

110

Round 10 1

Y
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[4)]

Figure S2. The workflow on the conduction of training, testing and validation
procedure. Both 10-fold and holdout testing are shown, also including the internal

training and validation during deep-learning by dpMC.
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Figure S5. The ROC curves of dpMC, information theory and PeptideCutter. Each

ROC curve is based on the performance on corresponding holdout testing datasets.

dpMC with fine-tuning 1s denoted with 'T" in the bracket. (A) The ROC curves of dpMC

with fine-tuning are denoted as 'dpMC(T)' and information theory from MC:pred as

'Info’. The performance of dpMC with fine-tuning is plotted in solid lines while dotted

lines for information theory. (B) The ROC curves of dpMC with fine-tuning are denoted

as 'dpMC(T) and PeptideCutter as 'Cutter’. The performance of dpMC with fine-tuning

is plotted in solid lines while dotted lines for PeptideCutter.
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Figure S6. The heatmap and line plot of feature maps extracted from Bi-LSTM layer.
The heatmaps of activation values from 512 neurons of Bi-LSTM in model trained on
datasets of (A) HeLa from timsTOF Pro, (B) HelLa from Q Exactive, (C)
D.melanogaster from timsTOF Pro and (D) S.cerevisiae from Q Exactive are shown in
upper part, the line plots of Absolute Culumative Weights (ACW) of the feature maps
are shown below the heatmaps. The positions of amino acids in the cleavage window

for both heatmap and line plot are plotted in corresponding to each other.
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Table S1. Performance of dpMC evaluated on holdout testing datasets with optimzed

cutoffs.

“Thstrument  Species (data source)  FIE (UNMES, Gensivity  opeciiciy PPV FT score MCC AUC
TTOF 5600 H.sapiens (Hela) Mo 0.9819 0.9540 0.9558 0.9687 0.9362 0.9959
TTOF 5600 H.sapiens (HeLa) Yes 0.9637 0.9747 0.9748 0.9692 0.9385 0.9959
timsT OF Pro H.sapiens (Hela) Mo 0.981% 0.9544 0.9518 0.9666 0.9366 0.9957
timsT OF Pro H.sapiens (HeLa) Yes 0.9729 0.9793 0.9773 0.9751 0.9521 0.9968

Q Exactive H.sapiens (Hela) No 0.9768 0.9663 0.9667 0.9717 0.9431 0.9959
Q Exactive H.sapiens (HeLa) Yes 0.9779 0.9721 0.9723 0.9751 0.9500 0.9969
Q Exactive D.melanogaster No 0.9736 0.9527 0.9537 0.9636 0.9265 0.9938
Q Exactive D.melanogaster Yes 0.9717 0.9688 0.9689 0.9703 0.9405 0.9943
Q Exactive M .muscrdts No 0.9597 0.9907 0.9917 0.9754 0.9509 0.997¢
Q Exactive M musculs Yes 0.9798 0.9954 0.9959 0.9878 0.9753 0.9994
Q Exactive S.cerevisiae Nao 0.9389 0.9766 0.9779 0.9883 0.9357 .90
Q Exactive S.cerevisine Tes 0.9481 0.9790 0.9799 0.9837 0.9275 0.9957

Performance of dpMC on 6 independent datasets from different species and instruments

are shown. PPV, Positive Predicted Value; MCC, Matthews Correlation Coefficient;

AUC, Area Under Curve.

Table S2. Performance of dpMC evaluated by 10 folds cross-validation with cutoff as

0.5.
Instrument Species (data source) Fine-tuning Sensitivity Specificity PPV F1l-score MCC AUC
TTOF 5600 H.sapiens (HelLa) No 0.9569 0.9500 0.9500 0.9531 0.9074 0.9920
TTOF 5600 H.sapiens (Hela) Tes 0.9567 0.9566 0.9567 0.9566 0.9135 0.9921
timsTOF Pro H.sapiens (Hela) No 0.9538 0.9632 0.9634 09583 039171 0.9217
timsT CF Pro H.sapiens (Hela) Tes 0.9654 0.9620 0.9629 0.9640 0.9275 0.9930
Q Exzactive H.sapiens (Hela) Mo 0.9697 09637 09638 0.9667 09334 0.9949
Q Exactive H.sapiens (Hela) Yes 0.9651 0.9688 0.9689 0.9675 0.9351 0.9951
Q Exzactive D.melarogaster No 0.9562 0.9650 0.9646 0.9603 09213 0.9929
Q Exactive D.melanogaster Yes 0.9569 0.9643 0.9646 0.9807 09219 0.9931
Q Exzactive Momuscudtis No 0.9732 0.9518 0.9526 09827 0.9254 0.9941
Q Exzactive Momuscudis Tes 0.9643 09779 09770 0.9704 0.9425 0.9987
Q Exzactive S.cerevisine No 0.9441 0.9604 0.9598 09517 0.9050 0.9904
Q Exactive Scerevisiae Yes 0.9501 0.9574 0.9569 0.9534 0.9076 0.9912

The mean values of each measurement index based on 10-fold cross-validation are

shown for each dataset. PPV, Positive Predicted Value; MCC, Matthews Correlation

Coefficient; AUC, Area Under Curve.

Table S3. Performance of dpMC evaluated by 10-fold cross-validation with optimized

cutoff.
Instrument Species (data source) Fine tuning Sensitivity Specificity PPV F1-score MCC AUC
TTOF 5800 H.sapiens (HeLa) Ho 0.9550 0.9621 0.9617 0.9582 09173 09920
TTOF 5600 H.sapiens (Hela) Yes 0.9658 0.9559 0.9563 0.9610 09220 09921
timsT OF Pro H.sapiens (HeLa) Mo 0.9712 0.9589 0.9605 0.9657 0.9304 09917
timsT OF Pro H.sapiens (Hela) Yes 0.9672 0.9686 0.9697 0.9683 09362 0.9930
Q Exactive H.sapiens (HeLa) Mo 0.9751 0.9626 0.9633 0.9691 09379 0.9949
Q Exactive H.sapiens (Hela) Yes 0.9701 0.9697 0.9698 0.9699 0.9398 0.9951
Q Exactive D.melanogaster Mo 0.9632 0.9629 0.9e30 0.9631 09262 09929
Q Exactive D.melanagaster Yes 0.9625 0.9¢64 0.9664 0.9643 0.9291 0.9931
Q Exactive M muscrltis Mo 0.9654 0.9737 0.972¢6 0.9688 0.9394 0.9941
Q Exactive M mtscrilts Yes 0.9764 0.9792 0.9787 0.9775 0.9557 0.9967
Q Exactive S.cerevisiae Mo 0.9423 0.9697 0.9686 0.9552 09125 0.9904
Q Exactive S.cerevisine Yes 0.9448 0.9713 0.9707 0.9574 09167 09912

The mean values of each measurement index based on 10 folds cross-validation are

shown for each dataset.
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Table S4. Performance of three existing programs evaluated on holdout testing datasets

with cutoff as 0.5,

MC:pred- DeepDigest

Instrument  Species (data source)  Sensitivity Specificity PPV F1-score MCC AUC
TTOF 5600 H.sapiens (Hela) 0.9796 0.8253 0.8504 0.9104 0.8146 0.9806
timsTOF Pro H.sapiens (HeLa) 0.9457 0.6556 0.7158 0.8148 0.6283 0.9264
Q@ Exactive H.sapiens (HeLa) 0.9710 0.7395 0.7887 0.8704 0.7303 0.9582
Q Exactive D.melanogaster 0.9585 0.7833 0.8159 0.8815 0.7534 0.9565
Q Exactive Mmusculus 1.0000 0.7083 0.7974 0.8873 0.7405 0.9783
Q Exactive S.cerevisiae 0.9372 0.7079 0.7760 0.8490 0.6628 0.9314
MC:pred-SVM
Instrument Species (data source)  Sensitivity Specificity PPV Fl-score MCC AUC
TTOF 5600 H.saptens (HeLa) 0.9728 0.7241 0.7814 0.8667 0.7195 0.9570
timsTOF Pro H.sapiens (Hela) 1.0000 0.6556 0.7270 0.8419 0.6983 0.9699
Q Exactive H.sapiens (Hela) 0.9942 0.6907 0.7629 0.8633 0.7188 0.9671
Q Exactive D.melanogaster 0.9556 0.7360 0.7839 0.8613 0.7090 0.9458
Q Exactive M.musculus 0.9919 0.6852 0.7834 0.8754 0.7114 0.9692
Q Exactive S.cerevisiae 0.9675 0.6822 0.7667 0.8555 0.6780 0.9471
MC:pred- Info
Instrument  Species (data source)  Sensitivity Specificity PPV Fl-score MCC AUC
TTOF 5600 H.sapiens (Hela) 0.5261 0.9471 0.9098 0.6667 0.5217 0.8219
1imsTOF Pro H.sapiens (HelLa) 0.7873 0.9295 0.9110 0.8447 0.7241 0.9091
Q Exactive H.sapiens (HeLa) 0.5947 0.9279 0.8920 0.7136 0.5542 0.8266
Q Exactive D.melanogaster 0.5449 0.9442 0.9072 0.6808 0.5334 0.8149
Q Exactive M.musculus 0.7177 0.9583 0.9519 0.8184 0.6965 0.8813
() Exactive S.cerevisiae 0.5758 0.9626 0.9433 0.7151 0.5838 0.8614
PeptideCutter
Instrument  Species (data source)  Sensitivity Specilicity PPV Fl-score MCC AUC
TTOF 5600 H.zapiens (HeLa) 0.2925 1.0000 1.0000 04526 0.4139 0.8347
timsTOF Pro H.sapiens (Hela) 0.4434 0.9876 0.9703 0.6087 0.5137 0.8784
Q Exactive H.sapiens (HeLa) 0.3368 0.9965 0.9898 0.5026 0.4435 0.8465
Q Exactive D.melanogaster 0.3107 0.9972 0.9910 0.4730 0.4233 0.8261
Q Exactive Mmusculus 0.4758 1.0000 1.0000 0.6448 0.5587 0.9034
(Q Exactive S.cerevisiae 0.3290 1.0000 1.0000 0.4951 0.4437 0.8433

Table SS. Performance of three existing programs evaluated on holdout testing datasets

with optimized cutoff.

MC:pred- DeepDigest

Instrument Species (data source)  Sensitivity Speci_ﬁcity PPV Fl-score MCC AUC
TTOF 5600 H.sapiens (Hela) 0.9274 0.9310 0.9317 0.9295 0.8585 0.9806
timsTOF Pro H.sapiens (HeLa) 0.8552 0.8672 0.8552 0.8552 0.7225 0.9264
Q Exactive H.sapiens (Hela) 0.9431 0.8349 0.8512 0.8948 0.7826 0.9582
Q Exactive D.melanogaster 0.8933 0.8903 0.8908 0.8920 0.7836 0.9565
Q Exactive M.musculus 0.9435 0.9120 0.9249 0.9341 0.8560 0.9783
Q Exactive S.cerevisiae 0.8463 0.8551 0.8631 0.8546 0.7015 0.9314
MC:pred-SVM
Instrument  Species (data source)  Sensitivity Specificity PPV Fl-score MCC AUC
TTOF 5600 H.zapiensy (HeLa) 0.9070 0.8966 0.89389 0.9029 0.8036 0.9570
1imsTOF Pro H.sapiens (HelLa) 0.9819 0.8506 0.8577 0.9156 0.8398 0.9699
Q Exactive H.sapiens (HeLa) 0.9152 0.9128 0.9131 09142 0.8280 0.9671
 Exactive D.melanngaster 0.8754 0.9044 0.9018 0.8884 0.7801 0.9458
Q Exactive Mmusculus 0.8992 0.9630 0.9654 0.9311 0.8639 0.9692
() Exactive S.cerevisiae 0.9113 0.8435 0.8627 0.8863 0.7565 0.9471
MC:pred- Info
Instrument Species (data source)  Sensitivity Specificity PPY Fl-score MCC AUC
TTOF 5600 H.zapiens (HelLa) 0.6667 0.8897 0.8596 0.7510 0.5707 0.8219
timsTOF Pro H.sapiens (HeLa) 0.8688 0.9129 0.9014 0.8848 0.7824 0.9091
Q Exactive H.sapiens (Hela) 0.7573 0.8663 0.8501 0.8010 0.6273 0.8266
Q Exactive D.melanogaster 0.6874 0.8903 0.8626 0.7651 0.5900 0.8149
Q Exactive Mmusculus 0.7944 0.9167 0.9163 0.8510 0.7164 0.8813
Q Exactive S.cerevisiae 0.7143 0.9229 0.9091 0.8000 0.6515 0.8614
PeptideCutter
Instrument  Species (data source)  Sensitivity Specilicity PPV Fl-score MCC AUC
TTOF 5600 H.sapiens (HeLa) 0.6825 0.8989 0.8725 0.7659 0.5955 0.8347
timsTOF Pro H.sapiens (Hela) 0.7738 0.9004 0.8769 0.8221 0.6796 0.8784
Q Exactive H.sapiens (HeLa) 0.7398 0.8581 0.8393 0.7864 0.6022 0.8465
Q Exactive D.melanogaster 0.6893 0.8742 0.8459 0.7596 0.5734 0.8261
Q Exactive Mmusculus 0.7782 0.9259 0.9234 0.8446 0.7120 0.9034
() Exactive S.cerevisiae 0.7208 0.8668 0.8538 0.7817 0.5940 0.8433
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Table S6. The significant motifs around cleaved sites identified by kplogo. The
significance of motifs refers to the corrected.p, more significant if the value is higher.
The positive statistics indicate the enriched motifs while the negative indicates the

depleted ones.

Table S7. The significant motifs around missed cleaved sites identified by kpLogo.
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Supplementary Note. Performance comparison of dpMC with other existing tools
for predictions of missed tryptic cleavages.

All the performance comparisons of dpMC with other existing tools were done using
the same corresponding holdout dataset of the six datasets (Table 1) in this study. For
the performance on missed tryptic cleavages predictions by dpMC was compared with
DeepDigest! (access date 2021-04 http://fugroup.amss.ac.cn/software/DeepDigest/
DeepDigest.html). The testing model was provided along with the code by DeepDigest
and trypsin associated files were utilized (i.e. Trypsin.h3 and Trypsin.json). For the
code running, parameters in the command line tool were specified as default but the
number of missed cleavages was set as 8 (--missedcleavages==8)to include all possible
missed cleavages in the testing datasets.

Also, we compared dpMC with both SVM? and information theory® approaches
provided within MC:pred (access date 2021-04 http://king.smith.man.ac.uk/mcpred/).
For the comparison with SVM or information theory, the predictor was selected as

"SVM" or "Info theory" correspondingly. Besides, we also compared dpMC with

PeptideCutter (access date 2021-04 https://'www.expasv.org/resources/peptidecutter)
from ExPASy*, and used the function of the "sophisticated model” on trypsin by
selecting corresponding options.

For all the above existing tools, only the predictions for each missed cleavage at P1 in
cleavage windows were used for further comparison with dpMC. No training or
refinement functions for specific datasets or for certain experimental conditions were
provided by the developers. Based on our studies we think that for an optimal

performance experiment-specific training models are required, which is provided by

dpMC.
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7. Improving SWATH-MS analysis by Deep-learning (Paper
I10)

Sequential windowed acquisition of all theoretical fragment ion spectra mass spectrome-
try (SWATH-MS) is a popular approach for MS analysis, which is a DIA method that can
be applied at an unprecedented speed. However, such analysis needs high quality and
extensive searching space to cover all the theoretical peptide candidates. Generally, the
search libraries are created by data-dependent acquisition (DDA) experiments. In order
to improve the search space of SWATH-MS analysis, we developed the tool for building
a high-quality theoretical library for SWATH-MS analysis.

Bo Sun, Pawel Smialowski, Wasim Aftab, Andreas Schmidt, Ignasi Forne, Tobias
Straub, and Axel Imhof. 2022. “Improving SWATH-MS analysis by Deep Learning.”
Proteomics, 2022, doi: 10.1002/pmic.202200179.
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1 | INTRODUCTION

Abstract

Data-independent acquisition (DIA} of tandem mass spectrometry spectra has
emerged as a promising technology to improve coverage and quantification of proteins
in complex mixtures. The success of DIA experiments is dependent on the quality of
spectral libraries used for data base searching. Frequently, these libraries need to be
generated by labor and time intensive data dependent acquisition (DDA} experiments.
Recently, several algorithms have been published that allow the generation of theoret-
ical libraries by an efficient prediction of retention time and intensity of the fragment
ions. Sequential windowed acquisition of all theoretical fragment ion spectra mass
spectrometry (SWATH-MS) is a DIA method that can be applied at an unprecedented
speed, but the fragmentation spectra suffer from a lower quality than data acquired
on Orbitrap instruments. To reliably generate theoretical libraries that can be used in
SWATH experiments, we developed deep-learning for SWATH analysis (dpSWATH}), to
improve the sensitivity and specificity of data generated by Q-TOF mass spectrome-
ters. The theoretical library built by dpSWATH allowed us to increase the identification
rate of proteins compared to traditional or library-free metheds. Based on our anal-
ysis we conclude that dpSWATH is a superior prediction framework for SWATH-MS

measurements than other algorithms based on Orbitrap data.

KEYWORDS
proteomics, deep learning, spectral Library, data independent acquisition

processes. It has the potential to revolutionize molecular diagnostics

and treatment of disease. Despite a substantial improvement of the

The analysis of the proteomic composition of biological samples
promises to provide a rich source of information, which could greatly

improve our molecular understanding of a wide range of biological

Abbreviations: BiLSTM, Bidirectional long-short term memory; CNN, Convolutional neural
network; DDA, data-dependent acquisition; DIA, data-independent acquisition; dpMC, deep
learning for missed cleavage; dpMS, deep learning for MS fragment ion prediction; dpRT, deep
learning for retention time prediction; dpSWATH, deep learning for SWATH analysis; FDR,
false discovery rate; LC-MS, Liguid chromatography coupled mass spectrometry; PCC,
Pearson correlation coefficient; PSM, Peptide spectral matches; Q-TOF, Quadrupol Time of
Flight; RNN, Recurrent neural network; RPKM, reads per kilobase per million mapped reads;
SWATH-MS, sequential window acquisition of all theoretical mass spectra.

instruments {mostly mass spectrometers) used to perform proteomic
measurements, the field still suffers from a substantial undersampling
of peptides in shot gun proteomics studies {also called data dependent
acquisition or DDA) and therefore a very low coverage of all possible
peptides. To overcome this problem data independent acquisition {DIA)
strategies have been developed that result in the fragmentation of all
possible ions, which should {at least in theory) substantially improve
peptide coverage. To achieve this task, extremely fast tandem mass
spectrometers {such a quadrupol time of flight or Q-TOF instruments)

need to be used, which results in a decrease of fragment spectrum

Proteomics 2023, 2200179
https://dol.org/10.1002/pmic. 202200179
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quality. One of these methods is the so called sequential window
acquisition of all theoretical fragment ion spectra mass spectrometry
(SWATH-MS) using a quadrupole-TOF instrument [1]. In SWATH-MS
mode, typically a precursor ion {MS1) spectrum is recorded, followed
by a series of fragment ion {MS2) spectra recordings with wide pre-
cursor isolation windows {for example 25 m/z). A comprehensive data
set is recorded through repeated cycling of consecutive precursor iso-
lation windows over a defined mass range, which includes continuous
information on all detectable fragment and precursorions[1]. SWATH-
MS has been implemented in many aspects of research, which including
quantitative proteomics [2], clinical biomarker research [3], histone
post-translational modification {PTM) analysis [4] and the analysis of
protein-protein interactomes [5].

In addition to a better peptide coverage SWATH-MS also has
advantages in reproducibility [6] and speed of analysis [7] and allows a
retrospective targeting [1], which is not possible when using targeted
workflows.

A disadvantage of all DIA methods is the requirement of spe-
cific fragment ion libraries for identification. Currently most of these
libraries are experimentally generated using DDA measurements of a
highly fractionated sample pool measured prior to SWATH-MS acqui-
sition on the same instrument [8]. A lot of efforts have been put into
building the assay library to improve the coverage and quality of pro-
teomic research [7]. In 2014, J. Wu et al. have compared the SWATH
mass spectrometry performance using local seed libraries integrated
with external assay libraries and local assay libraries alone [10] and
showed that the first one had a better performance with regard to
peptide identification and guantification. In addition, software tools
like SpectraST [11] have been developed to improve the building of
consensus mass spectrum libraries [12].

Nowadays, deep-learning methods have empowered proteomic
research. Especially the predictions based on the information inferred
from peptide sequence have gained a lot of attention, such as the
prediction of retention time [13] and fragment ion intensities [14, 15].
In addition to the prediction of peptide properties, deep-learning is
also used for the identification of peptides and proteins. For example,
the detection of LC-MS features is performed by deep-learning models
[14]. Moreover, the deep-learning approach can also be used for de
novo sequencing, such as the work that has been done by DeepNovo
[17].

More recently, tools have been developed that allow an extension
of the used libraries by applying both experimental [12, 18] and the-
oretical approaches [14, 15, 19]. However, most of the theoretical
approaches used mass spectra recorded in an orbitrap instrument,
which are of higher quality than the ones measured in a Q-TOF mass
spectrometer. To improve the SWATH-MS analysis, we developed a
novel framewark and strategy to build high-quality in silico libraries by

deep-learning.

96

2 | MATERIALS AND METHODS

2.1 | Datasets
2.1.1 | Datasets used for training and testing of
dpSWATH

We used datasets generated by TripleTOF 5600 and 6600 {ABSciex,
Concord, Ontario, Canada) from Homo sapiens and Drosophila
melanogaster, respectively. We used the DDA datasets from the
Pan-Human project {PXD000953) [12] as a pre-training datasets
for the TripleTOF 5600 measurements. All peptide spectra matches
{PSMs) of the Pan-Human project were extracted fromfile PHL pep.xm!
and split into training and testing datasets. For the training dataset,
we selected 2,000,029 unmodified PSMs containing 94,878 unique
unmodified peptides. To test the model, we used 499,99% unmodified
PSMs with 23,436 unigue peptides. No DIA datasets were used for
testing on Pan-Human project.

For further training and testing we used a DDA dataset of Hela
extracts {PXD00%273) [20]. To retrain the retention time and mass
spectral madels to build the in silica library, 12 DI A datasets were used
for DIA searching followed by identification and quantification of the
proteins.

For TripleTOF 6600, an aliquot corresponding to 500 ug of pro-
teins of a Drosophila embryo extract [21] was precipitated with TCA.
The protein pellet was dissolved in & M urea for subsequent protein
cleavage by LysC and trypsin, disulfide reduction and alkylation with
DTT and iodoacetamide, respectively. The obtained polypeptide mix-
ture was desalted over C18 stage tips before further high pH-reversed
phase separation. Individual fractions were injected onto an Exigent
425 nanolC system, operated in micro-flow mode at 5 gl/min and sep-
arated on a 300 pzm x 15 cm column directly coupled to the TripleTOF
6600 mass spectrometer {both ABSciex). For peptide separation a
50 min gradient from 2% to 35% acetonitrile in water was employed
followed by 5 min washing at 80% acetonitrile. Peptides eluting from
the column were detected in information-dependent detection mode
acquiring a survey scan fraom 350 to 1500 m/z. Maximally 20 precur-
sors with charge state 2+ or higher and a signal intensity of min. 160
counts were selected for MS5/MS analysis toobtain high guality data for
peptide identification. To further increase the number of detected pep-
tides and proteins, DDA experiments of 72 fractions of a Drosophila
embryo extract fractionated by size exclusion chromatography {Super-
ose 6 10/300 GE Healthcare, Chicago, IL). All the PSM information
was extracted using ProteinPilot {ABSciex, Concord, Ontario, Canada)
or SpectroMine {Biognosys AG, Schlieren, Switzerland) and deposited
on the Pride database {PXD038407). To evaluate the performance
of dpSWATH, the precursors of 72 fractionated DDA runs includ-
ing peptide sequences and precursor charges were extracted from
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experimental library based on the searching results of Pulsar in
Spectronaut {15.2.210819, Biognosys AG, Schlieren, Switzerland). For
the 72 fractionated library, 3655 unique peptides were extracted to
transfer-train the retention time and mass spectral models, the left
40,000 peptides with corresponding precursor charges were used to
build the validation library with prediction by dpSWATH.

For all of the training, testing and validation datasets, the fragment
ions were normalized which divided by the highest peak for each mass
spectrum. The minimum and maximum length of peptides is 7 and
60 respectively and, the precursor charge ranges from 1 to 6 and a

maximum charge of fragment ions of 2+.

212 |
library

Datasets used for building the theoretical

Fasta files of D. melanocgaster and H. sapiens were downloaded from
FlyBase {http:/flybase.org/) and UniProt (https://Awww.uniprot.org/)
respectively. Then the protein sequences were selected based on the
entries recorded in the DDA libraries. For D. melanogaster, 5006 pro-
tein groups were extracted while 10524 and 4440 protein groups
were extracted from the in Pan-Human library or the DDA experiment
prepared from Hela extracts respectively. The peptide sequences
were prepared based on the cleavage standard rules of trypsin [22].
Up to two missed cleavages and cleavages followed by proline were
predicted by dpMC. The length of the peptides is from 7 to 40
and the charges for peptides range from 2+ to 4+. Data of mRNA
expression profiles for different stages of embryos of D. melencgaster
{gene_rpkm_report_fb_ 2017 _05.tsv) were downloaded from Flybase,
while mRNA expression data for Hela cell-lines were used from the
ProteomeXchange repository {PXD009273) [20].

2.2 | Preprocessing of datasets for modeling
{dpMScore)

All datasets were preprocessed using the newly developed dpMScare
and used for both training and testing of the performance of dpSWATH
{Figure 1). dpMScore uses hierarchical clustering to choose the most
abundant and consistent fragmentation of each peptide. The dpMScore

is calculated by the following formula:
dpMScore = —In{Dist) Z 'fc H :chi expll HepilL-TT {01

where Diist is the distance among different fragmentations for the same
peptide, which ranges from 0.01 to 0.2 based on Pearson Correlation
Coefficient (PCC); Ncis the number of clusters split at one certain bar;
p; is the proportion of iy, cluster calculated by the number of fragmen-
tations in this cluster divided by the total number of fragmentations for
this peptide, which ranges from 1 to Nc.

The dpMScore was only calculated for peptides that had more than
three replicates whereas peptides with less than three replicates were

Proteomics and Systems Biokogy

kept in the training or testing datasets for dpSWATH without a score
attached to it.

2.3 | Retention time prediction

As the prediction of retention time is crucial to SWATH-MS analy-
sis, we developed dpRT as part of the dpSWATH program for a highly
accurate retention time prediction and an increased sensitivity and
identification of peptides and proteins {Figure 1, Figure S1). The frame-
work of dpRT takes advantage of both convolutional neural network
{CNN) and recurrent neural network {RNN) with self-attention mecha-
nism {Figures 1 and $1). CNN performs very well on image and lingual
work which benefits from its powerful feature extraction function. In
dpRT, we use one-dimensional CNN as feature extractor to analyze
the peptide sequence by setting the kernel size as 3. It is beneficial
for next level RNN to use these features to predict the fragment ions’
intensities. As for the RNN work, we chose two parallel kidirectional
Long-Short Term Memory {BiLSTM) layers. The BiLSTM is very good
at dealing with sequence or sentence cases, which has the advan-
tage of processing information in both directions; for each predicted
vector, BILSTM makes the prediction combining the past and future
states simultaneously. However, BiLSTM still shows lack of capabil-
ity of dealing with long sequences, which could be complemented by
the advantage of self-attention algorithm which is able to assign dif-
ferent weights to different features and has strong capability to deal
with long sequences. Besides the BiLSTM layers, we also adopted self-
attention layers to enhance the capability of model on dealing with the
distant information along the sequences. Then two dense layers with
256 units and 1 unit respectively were connected to above RNN layers

to generate the single predicted value.

2.4 | Fragment ion prediction

For the prediction of fragment ions, we developed dpMS. In dpMS,
we alsa used one-dimensional CNN as feature extractor to analyze
the peptide sequence by setting the kernel size as 2, in this way CNN
could extract features from each two adjacent amino acids which have
astrong and direct effect to the fragment ions that lies between them,
which is beneficial for next level RNN to use these features to predict
the fragment ions’ intensities. As for the RNN work, we keep the simi-
lar architecture as dpRT but modify the units of RNN and self-attention
layer with width as 49. For the fragment ions used to construct mass
spectra, we take b ions and y ions that are generated by one time-
distributed dense layer as the output layer of dpMS and the dimension
of output is 59%4.

2.5 | DDA library generation

The search engine Pulsar in Spectronaut {15.2.210819, Biognosys
AG, Schlieren, Switzerland) was used to build all the above the DDA
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FIGURE 1 Theworkflow of dpSWATH and strategies applied in this study. Datasets from either ProteinPilot or SpectroMine can be analyzed,

and the generated library can be used by Spectronaut or Skyline

libraries. The public Pan-Human library is pre-depaosited in the Spec-
tronaut software. To measure the performance of dpSWATH, we built
the experimental library of unmodified peptides with length from 7 to
60 amino acids, precursor charges from 1+ to &+ and, set Cysteine
carbamidomethylation as fixed structural madification and no variable

modification are selected. The maximum missed cleavage was set as 2.

2.6 | Construction of dpSWATH library

Afterthe prediction of fragment ions’ intensities and retention time, we
assembled the two parts’ results into .txt file which could be read by
Spectronaut. The .txt file stores all available mass spectra to build the
searching library. We put all of the 10 necessary information {Supple-
mentary Note 1) of mass spectra including the predicted fragment ions
and retention time which suggested by Spectronaut into the .txt file
{Figure 1). Besides, we also prepared the script for building the library

for Skyline.
3 | RESULTS
3.1 | Preprocessing of the datasets

Compared to an orbitrap mass spectrometer, the fragment spectraana-
lyzed within a TripleTOF mass analyzer show a higher variability [11,
23]. The selection of the representative mass spectrum is therefore
crucial for efficient identification and quantification of the correspond-
ing peptide. Currently, most spectral libraries were built with the
consensus mass spectra from PSMs using clustering algorithms such

as SpectraST [11]. The selection of the consensus spectrum is often
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based on selecting the spectra with a minimal Q-value. However, for
TripleTOF datasets, even PSMs with similar Q-values show big differ-
ences inthe intensities of individual fragment ions as shown in Figure 2.
For the training of dpSWATH, we therefore devised dpMScore to pre-
process MS datasets and select the most abundant and consistent mass
spectra for a given peptide with the same precursaor charge. In dpM-
Score, we take the similarities among mass spectra into consideration
and choose the cluster with the smallest distance and the largest num-
ber of spectra {see Section 2). In this way, the clusters of mass spectra
were not only determined by the intensities, but also by the number of

detected fragment ions and their proportions.

3.2 | Benchmarking of dpSWATH

Tandem MS spectra are strongly affected by many different experi-
mental conditions ranging from sample preparation to instrumental
set up to ambient environmental conditions such as temperature,
humidity, or electrical interference {Gallien et al.,, 2013). We thereby
designed dpSWATH insuch a way that it can be trained and tested using
data measured on multiple different instruments and under variable
conditions and used transfer learning to construct reliable libraries.

To prepare a high-quality predicted library, the algorithm should
therefore be able to efficiently extract associated features, which
affect the mass spectrum pattern and retention time. To do this, we
put the convolutional layer as the first layer to extract the features at
a deep level automatically. To address the issue of identifying very long
peptides (e.g., longer than40 amino acids), we also used a self-attention
layer to deal with longer sequence peptides {Figure S1).

First, we split the Pan-Human datasets from TripleTOF 5600 into
training, validation, and testing datasets into a ratio of 8:1:1. By
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FIGURE 2 Different massspectrapatterns for the same precursor on the same condition. {A) The line plot of mass spectra of peptide
“FTTALSFYDGYR” with precursor charge 2, the fragment ions’ names are shown in x-axis with relative intensities in y-axis. All mass spectra
pattern for this peptide are shown, the red patterns are the cluster chosen based on the dpMScore, the left gray pattern are filtered out by
dpMScore for this peptide; (B) the clustering diagram for this peptide, the index of different mass spectra for this peptide are shown in x-axis with
the distance among different mass spectra shown in y-axis. The chosen cluster are shown red corresponding to the red mass spectra in {A), which

are chosen on the threshold at distance based on PCC 0.07

applying dpMScore as described in the methods, dpMS has achieved
a median Pearson Correlation Coefficient (PCC) of 0.968 and median
dot-product of 0.973 between the observed and predicted mass spec-
tra (Figure 3A). For all validation and testing datasets, the peptides
were not shown in the training datasets. We then applied transfer-
learning on human datasets of TripleTOF 6600 with the trained
model on TripleTOF 5600 to predict the fragmentation spectra of
57157 peptides from D. melanogaster. When doing this, we achieved
a median Pearson Correlation Coefficient (PCC) of 0.980 and median
dot-product 0.983 between observed and predicted mass spectra
{Figure 3A,B}. The similarities between observed and predicted mass
spectra can directly affect the success of the identification and quanti-
tation of proteins and peptides in the downstream analysis. Compared
with DeepDIA on the same datasets, dpMS achieved much higher
accuracy, which benefits the following analysis. Besides the higher
accuracy given by dpMS, the capability of prediction for the longest
sequence has been up to 60 and up to 6 of the highest precursor

charges.

Then we applied the same strategy to the prediction of reten-
tion time. To eliminate the differences among different experiments
and facilitate the prediction, we applied indexed retention time (iRT)
throughout this study. The information of retention time can provide
a reliable coordinate for mapping corresponding peptides [24, 25]
and is usually combined with other analytical coordinates (m/z, inten-
sity) for areliable identification and quantification [25]. Therefore, we
developed dpRT as part of the dpSWATH framework to facilitate the
generation of building reliable in silico libraries (Figures 3C and S2).

Based on the high accurate prediction onmass spectra and retention
time, we benchmarked the performance of dpSWATH by integrating
the results from dpMS and dpRT on the validation datasets (see Sec-
tion 2}, which contains 40,000 peptides in the library. From the results,
we got more peptides and proteins compared to the experimental 72
fractionated library and the library built by DeepDIA (Figure 3EG).
Compared to the experimental identified 28,940 peptides and 3301
protein groups. dpSWATH identified 31,012 peptides and 3545 pro-
tein groups, which are also more than the results from DeepDIA which
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FIGURE 3 Benchmarking of dpSWATH. (A) The performance of dpMS and DeepDIA on datasets from Triple TOF 5600 and TripleTOF 6600,
the blue histograms show the distribution of PCC, while the orange histograms show the distribution of dot-product, the median PCC and
dot-product are shown. (B) The mirror plot for peptide TAPLNLHISR’ with precursor charge of 2. The experimental mass spectra is shown in upper
blue while the predicted shown in lower red. {C) The prediction of retention time by dpRT on datasets of D. melanogaster, the correlation of PCC,
interquantile range {IQR) and distance of 95% datapoints are shown; (D) the prediction of retention time by DeepDIA on the same datasets as (C);
(E) The overlapping of precursors among libraries of DDA, dpSWATH and DeepDIA. (F) The coefficient of variance (CV) of precursors for each
stage of the embryo development in D. melanogaster. (G) The overlapping of protein groups among libraries of DDA, dpSWATH and DeepDIA. (H)
The coefficient of variance (CV) of protein groups for each stage of the embryo development in D. melanogaster

identified 25,938 peptides and 2606 proteins. The libraries built by
experimental (DDA} or theoretical approaches (dpSWATH, DeepDIA)
are based on very different strategies. The DDA library was built on the
identified PSMs of given precursors, which was based on the consensus
mass spectra generation algorithm like SpectraST. For the library built
by dpSWATH, the training process was based on the filtered PSMs, and
then the mass spectra pattern and retention time were predicted by
dpMS and dpRT, respectively. The library built by DeepDIA, only the
PSMs with minimum Q-values were used for training which leads to
relatively higher specificity but lower sensitivity.

To estimate the applicability of theoretical libraries, we also mea-
sured the coefficient of variance when quantifying protein groups
from two technical replicates of five different developmental stages
of Drosophila embryos (Figure 3F,H). In each case the CV is very simi-
lar between analyses made using the dpSWATH predicted library and
derived from a DDA experiment (Figure S3A-53F). Even when com-
paring the guantification of individual precursor ions both DDA and
dpSWATH libraries performed equally well {Figure S3G). From this
comparative analysis we conclude that dpSWATH not only identifies
more peptides and protein groups, but also provides a robust and
reproducible quantitation similar to the DDA approach but on this
higher number of identified peptides.

3.3 | The interpretation of mass spectra on amino
acids level

To understand the inner mechanism of our algorithm we investigated

the amino acid contributions and therefore analyzed the impact of dif-
ferent amino acids on the prediction of the pattern of mass spectra.
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FIGURE 4 The heatmap of the correlation among amino acids
based on their features

In the process of predicting mass spectra by dpMS, the properties of
amino acids are encoded into each neuron, which is given different
weights depending on the peptide sequence. The heatmap illustrates
the weights of each amino acid assigned during predictions. We could
see that some amino acids such as the aromatic amino acids F and
Y cluster together due to their biochemical properties and structures
(Figure 4).

3.4 | Missed cleavage prediction by dpMC
In proteomic analysis, trypsin is widely used to digest proteins

into peptides. Despite being a robust and efficient protease
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tryptic cleavage rarely reaches al00% efficiency. To predict the
sites of inefficient cleavage most search engines use the Keil rules [22].
When it comes to building a large library based on entire proteomes,
one problem is how to accurately predict missed cleavages. DeepDIA
simply adopts the Keil rules to fully predict missed cleavages. To
improve this prediction, we developed dpMC [26] (Figure 5). For the
application of dpMC in dpSWATH, we also optimized parameters for
the combinations of trypsin and LysC.

Besides, since the training of dpMC is based on the detected pep-
tides in experiments, so the cleaved peptides also have the information
of detectability, which is mentioned by AP3 [27]. Thus, the candidate
peptides are most detectable for DIA analysis. In this way, we not
only reduce the search time while maintaining a high specificity, but
also improve the recovery rate and control FDR of theoretical libraries

effectively.

3.5 | SWATH-MS analysis improvement using
theoretical libraries generated by dpSWATH

Combined with the predictions of peptide fragment spectra by dpMS,
retention time by dpRT and accurate missed cleavage sites by dpMC,
we built an insilico library of all proteins detected in DDA experiments.
To generate the theoretical library, we prepared the precursor candi-
dates for each protein group detected in DDA library. This resulted in a
library based on 5006 protein groups in D. melanogaster. We prepared
the library using either the same peptide entries as observed in the
DDA library, or the library predicted from the protein groups identified
up to two missed cleaved sites by Keil rules or up to two missed cleaved
sites predicted by dpMC. Then we searched data from the correspond-
ing SWATH runs using these libraries with the same settings in Spec-
tronaut. A comparison showed that we got the most identifications
with the library built by dpSWATH with the predicted missed cleavages
by dpMC. For the DDA based theoretical library, the protein groups’
recovery rate of the library from 66.36% (3560/5006) to 95.65%
(4788/5006) of the DDA library. We also performed the searching
with directDIA 2.0 developed by Spectronaut, which showed only

025 075
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The performance of dpMC on datasets of D. melanogaster and Hela

half of the identifications compared to the library built by dpSWATH
(Figure 6).

Next, we built an in silico library referring to the peptide entries in
Pan-Human library [12] and a DDA library of Hela extracts [20] from
TripleTOF 5600. We built the libraries with similar strategies except
the library with up to two missed cleaved sites by Keil rules. Similar
to our Drosophila data set, we got the most identifications of pro-
tein groups when we searched publicly available SWATH runs of HelLa
extracts using a library built by dpSWATH with the predicted missed
cleavages by dpMC (Figures 6C, S4C,E). Also in this case, the recov-
ery rate of the Pan-Human library increased substantially from 32.40%
(3410/10524) to 69.09% (7271/10524). The recovery rate increases
when we use a library based on the entries from a DDA experiment
performed on Hela extracts, which is due to the same source. Even in
this case the library built by dpSWATH performs better than the library
built from experimental data only (86.32% (3850/4460) to 96.39%
(4299/4460)) (Figure S4E). We also performed searches using direct-
DIA 2.0 in Spectronaut, which resulted in far less identifications than
by dpSWATH (Figure 6).

The prior DDA analysis to define the proteomic space used for the
generation of a theoretical library was essential to keep a low FDR
of the DIA search. In fact, when the library is generated from the
entire proteome many DIA searches result in a low rate of peptide
identifications and quantifications, which is often due to a high FDR.
To limit the search space without the need of a prior extensive DDA
measurement we built the in silico libraries based on transcriptomic
data from the corresponding source. To do this, theoretical fragment
spectra were generated from all protein candidates where the corre-
sponding gene had an average number of reads per kilobase per million
mapped reads (RPKM) [28] greater than or equal to 1. For the different
developmental stages of D. melanogaster, this resulted in the inclu-
sion of 17299 proteins. Compared with the DDA library, this strategy
resulted in a much higher identification of protein groups (6156/3322),
and peptides (64782/31538). The same effect is also observed
when using the transcriptomic data from Hela cells where we pre-
dicted the fragment spectra of peptides derived from 8758 proteins
(Figure S4).
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melanagaster by directDIA 2.0; “dp_asDDA" indicates results from the in silico library on the same entries as DDA library; "dp_SWATH " indicates
results from the in silico library on the digested FASTA sequence of the transcriptome based library by dpMC with up to two missed cleavages
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datasets from TripleTOF 5600 refer to the PanHuman library; “DDA” indicates results from experimental Pan-Human library; “directDIA” indicates
the number of identified protein groups on Hela datasets by directDIA 2.0; “dp_asDDA" indicates results from the in silico library on the same
entries as experimental Pan-Human library; “dp_SWATH" indicates results from the in silico library on the digested FASTA sequence of the
transcriptome based library by dpMC with up to two missed cleavages combined with no missed cleavages. (D} The number of identified peptides
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A detailed analysis of the correlation between the predicted mass
spectra and the measured ones revealed the strong benefit of using
dpMScore, which turned out to be crucial for building high quality
libraries on Q-TOF datasets (Figure S5).

For the improved identifications, an estimate of the FDR con-
trol is crucial. We estimated the FDR by including predicted spectra
from other species. ldentifications from these species were counted
as false positives. For these libraries from other species, we also

digested the protein sequences with dpMC and predict the intensi-
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ties and retention time by dpMS and dpRT respectively. We prepared
the libraries of other species with the same number of proteins as
the corresponding libraries built above for D. melanogaster and Hela.
We used a S. cerevisiae library of 5006 proteins which corresponds
to D. melanogaster DDA library, the library of C. elegans and D. dis-
ceideum containing 10,524 proteins which correspends to Pan-Human
library, and the library of S.cerevisiae including 4460 proteins corre-
sponding to the HeLa DDA library. For the transcriptome wide library,
17,299 proteins and 8758 proteins from C. elegans and D. discoideum
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were prepared for entrapment library of D.melanogaster and Hela,
respectively.

We applied the entrapment strategy by pooling the entrapment
libraries with their corresponding target libraries together to check
the false positives, which revealed the false positives identified by the
interferences of each other species. By calculation of the entrapments
in the DIA searches based on DDA measurements or the transcrip-
tome, we found the FDR was slightly higher when using larger libraries.
For both DDA based libraries of D. melanogaster and HelLa, the FDR was
around 1%, while it was around 2% for the transcriptome {Figure Sé).
Such a streamlining of the library is also intrinsically achieved by the
use of an accurate prediction algorithm for missed cleavages such as
dpMC. Based on the above FDR analysis, we showed the robustness
of our method and strategy to buihighly accurate spectral libraries for
SWATH-MS analysis.

In agreement with previous findings, the correlation {PCC) between
the logarithmically transformed abundance of gene expression {RPKM)
and protein intensities is rather moderate with a PCC value of 0.55
and 0.52 for D. melanogaster and Hela respectively (Figure §7). Besides,
for different scales of libraries built for D. melancgester, the similarities
between replicates for each stage of embryo development were also
shown in Figure S8, in which the high correlations between replicates
indicate the high quality of in silico libraries built by dpSWATH.

4 | DISCUSSION

The accurate theoretical prediction of peptide fragment spectra holds
great promise for an improved quantification of entire proteomes using
DIA methods such as SWATH-MS. Recently different models were
developed to achieve a higher quality when predicting mass spec-
tra. For example, Prosit [15] uses Collision Energy as an additional
feature to train their model. However, for Q-TOF instruments the colli-
sion energy only marginally increases the accuracy of prediction [23],
suggesting that many other subtle factors that could also affect the
behavior of mass spectra. To consider such other, potentially unknown
factors, we developed dpMScare to filter out the unreliable fragments
spectra, which resulted in a more consistent and high-quality train-
ing and testing datasets for dpSWATH, in particular when using lower
quality Q-TOF data.

The highly accurate prediction of mass spectra pattern and reten-
tion time makes SWATH-MS analysis methods more widely applicable.
The reliable and effective workflow of dpSWATH, enables an fast
generation and an efficient use of theoretical libraries. Based on the
predicted library we built for D. melanogaster and H. sapiens {HelLa),
we identified more proteins and peptides compared to an experimen-
tal library. This increase an the proteome coverage will favar a more
comprehensive analysis of the biological system of interest.

During the development of the algorithm and its application to a
wide range of data sets, we realized that the selection of cansensus
fragment mass spectra based on the dpMScore clustering algorithm
is especially important for lower quality MS/MS spectra as the once
recorded with non-trapping Q-TOF instruments. As these fragment

Proteomics and Systems Biology

spectra are substantially influenced by a various extrinsic factor such
as the build of the instrument, humidity, temperature external electric
fields et cetera, we suggest building the theoretical library based onthe
training catasets on the same platform and experimental conditions.
Moreover, it turned out that the accuracy of peptide identification can
be substantially improved by reducing the search space when building
in silico libraries. In our proof-of concept studies we did this by apply-
ing a highly accurate prediction of missed tryptic cleavages using dpMC
and a restriction to the proteins that are known to be expressed in the
samples. The information about the proteins expressed in the studied
sample(s) can be relatively easily gathered by RNA-Seq analysis or by a
deep proteomic analysis of a pool of all samples. Based on our analysis,
the transcriptome-based theoretical library showed the highest iden-
tification rate while maintaining FDR as the library based on a DDA
measurement.

In summary, dpSWATH allows a robust and reliable prediction of
fragment spectra that can be used in SWATH analyses therefore allow-
ing a rapid and efficient quantification of a higher number of proteins
and peptides compared to the classical DDA experiments or DIA

experiments that rely on experimentally generated libraries.
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Figure S2. The performance of dpRT and DeepDIA on three different datasets. A, the
performance of dpRT on barrel cortex datasets. B, the performance of DeepDIA on
barrel cortex datasets. C, the performance of dpRT on Mixed proteome datasets. D,
the performance of DeepDIA on Mixed proteome datasets. E, the performance of

dpRT on Pan-Human datasets. F, the performance of DeepDIA on Pan-Human

datasets.
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Figure S3. The correlation of quantifications among technical replicates for 5 stages.
A, quantatification of precursors correlation heatmap based on 72 fractionated DDA
library. B, quantatification of precursors correlation heatmap based on 72 fractionated
dpSWATH library. C, quantatification of precursors correlation heatmap based on 72
fractionated DeepDIA library. D, quantatification of protein groups heatmap based on
72 fractionated DDA library. E, quantatification of protein groups heatmap based on
72 tractionated dpSWATH library. F, quantatification of protein groups heatmap
based on 72 fractionated DeepDIA library. G, quantatification of precursors
correlation heatmap based on among 72 fractionated DDA and dpSWATH library. H,
quantatification of protein groups correlation heatmap based on among 72

fractionated DDA and dpSWATH library.
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Figure S4. The identifications of protein groups and peptides from different libraries.
A, the number of 1dentified protein groups on D.melanogaster. "DDA" indicates
results from 72 fractionated DDA library; "dp asDDA" indicates results from the in-
silico library on the same entries as DDA library; "dp m012 " indicates results from
the in-silico library on the digested fasta sequence of the same proteins as DDA
library by Keil rules with up to 2 missed cleavages in Spectronaut; "dp mc012"
indicates results from the in-silico library on the digested fasta sequence of the same
proteins as DDA library by dpMC with up to 2 missed cleavages combined with no
missed cleavages; "dp RNA" indicates results from the transcriptome based in-silico
library. B, the number of identified peptides on D.melanogaster. C, the number of
identified protein groups on HeLa datasets from TripleTOF 5600 compared to the
PanHuman library. "DDA" indicates resutls from experimental Pan-Human library. D,

the number of identified peptides on Hela datasets from Triple TOF 5600 compared
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to the PanHuman library. E. the number of identified protein groups on Hel.a datasets

from TripleTOF 5600 compared to the pSILAC library. "DDA" indicates resutls from

experimental pSILAC DDA library. F, the number of identified peptides on Hel a

datasets from Triple TOF 5600 compared to the pSILAC library. Identifications

overlapped with the DDA-based libraries are denoted as "shared". Novel

identifications by in-silico libraries are denoted as "extra". The numbers and

sensitivities of protein groups or peptides are shown.
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Figure S5. The impact of dpMScore on the performance of dpMS. A. "dp mc012"

indicates results from the in-silico library of D.melanogaster on the digested fasta

sequence of the same proteins as DDA library by dpMC with up to 2 missed

cleavages combined with no missed cleavages; "dp RNA" indicates results from the

transcriptome based in-silico library. "Y" denotes the results were processed with
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dpMScore, "N" denotes the results were processed without dpMScore. The
correlations were calculated between the predicted intensities and the final SWATH-
MS intensities. B. The correlation between the predicted intensities and the final

SWATH-MS intensities for HelLa datasets.

110



D.melanogaster

6000 5878
4576
"
§'4ano
o 3322
£
9
o 2911
‘5. 87.63%
45 2000
£ 3
0
51 [110%] 443 12.37%]
dp_mc0di2 dp_RNA
Library
B D.melanogaster
64018
60000
o
540000
e
o
o
o
‘s
* 27995
20000 23744 88.77%
75.29%
0
118 [0.22%] 431 [0.67%]

dp_mc012  dp_RNA

Library

. Shared protein groups

. Shared peptides

6000

groups

4000

# of protein

2000

80000

60000

40000

# of peptides

20000

HeLa PanHuman
7003

6593

3410

84 [1.26%]

96 [1.35%]

DDA dp_mc012  dp_RNA

Library

HeLa PanHuman
80826

79024

27886
77.78%

27751
77.41%

207 [0.26%] 254 [0.31%]

. Extra protein groups

. Extra peptides

DDA dp_mc012  dp_RNA

Library

. Entrap protein groups

. Entrap peptides
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silico library on the digested fasta sequence of the same proteins as DDA library by
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with entrapment library built with S.cerevisiae; "dp RNA" indicates results from the
in-silico transcriptome based library pooled with entrapment library built with
C.elegans and D.discoideum;, B, the number of peptides identified by entrapment
library. C, the number of protein groups identified by entrapment library on HeLLa
compared to Pan-Human library. D, the number of peptides identified by entrapment
library on HeLa compared to Pan-Human library. Identifications overlapped with the
DDA-based libraries are denoted as "shared". Novel identifications by in-silico
libraries are denoted as "extra”. The numbers, sensitivities and entrapment

percentages of protein groups or peptides are shown.
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Figure S8. The correlation of quantifications among technical replicates for 5 stages
of different scale of in-silico libraries. A, quantatification of precursors correlation
heatmap of in-silico library generated based on the protein entries from 72
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HelL a transcriptome based dpSWATH library.
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Supplementary Note 1. The information of the generated library by dpSWATH

for Spectronaut

The generated library by dpSWATH for Sepctronaut (15.2.210819, Biognosys AG,

Schlieren, Switzerland) contains 10 necessary features in .txt format:

1.

10.

StrippedSequence. The stripped amino acid sequence of the peptide excluding
any modifications.

ModifiedSequence. To specify the amino acid sequence including modifications
in case that the peptide is modified. For now, dpSWATH only provides the fixed
modificaiton of carbamidomethyl (C), and no variable modifications were
specified.

PrecursorCharge. The peptide precursor ion charge.

iRT. The peptide retention time in the reverse phase chromatography converted
mto iRT space.

PrecursorMz. The in silico calculated m/z of the peptide precursor ion.
FragmentMz. The in silico calculated m/z of the peptide fragment ion.
FragmentType. The peptide fragment ion type. "y" ions and "b" ions are used in
this work.

FragmentNumber. The peptide frament ion number.

FragmentCharge. The peptide fragment ion charge formatted as a number.

RelativeFragmentIntensity. The relative peptide fragment ion intensity

expressed as a percentage of the most intense fragment ion.

Note: More detailed information about the above features used in the library built

by dpSWATH can be refered in the User Manual of Spectronaut.
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Supplementary Note 2. The information of the generated library by dpSWATH
for Skyline

The generated library by dpSWATH for Skyline- % contains 10 necessary features

in .xml format :

For the tag of <SPECTRUM®>, 11 features are included:
1. charge. The peptide precursor ion charge.

2. elution. The predicted retention time by dpRT.

w

elutionpeakwidthfwhm. As all the peaks were in silico generated, so we assign 0
for this element.

msid. We put 1 for this element.

precursorelution. The predicted retention time by dpRT.

precursormass. The /7 silico calculated m/z of the peptide precursor ion.
precursorsignal. We put 1 for this element.

precursorsignalacquisition. We put 1 for this element.

R A L

sumofms2counts. We leave it as blank for this element.
10. xml:id. The index for each peptide.

11. yscale. We put 1 for this element.

For the tag of <MATCH?>, 13 elements are included:

1. charge. The peptide precursor ion charge.

2. confidence. The evalution of quality for each spectrum by Skyline. In this work,
we put high confidence for each spectrum as 0.9999.

confidence prior. We put -1 for this element.

da_delta. We put 0.005 for this element.

eval. We put very small value for this element.

mod_prob. We put 0 for this clement.

A S

mz. The in silico calculated m/z of the peptide precursor ion.
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8. pid. We leave it as blank for this element.

9. pm. The indexes of the peaks recorded for given spectrum.
10. score. We put 10 for this element.

11. searches. The index for each peptide.

11. seq. The amino acid sequence of the peptide.

12. type. We put O for this element.

13. xml:id. The index for each peptide.

For the tag of < MSMSPEAKS>, 3 elements are included:

1. attributes. This is a fixed item for this element, which is " MOZ TO
CHARGE1,CHARGE STATE.PEAK HEIGHT" for the following information of
each peak.

2. size. The count of all the peaks.

3. sp. We put 0 for this element.

For the records of each peak in the body of <CDATA>, 3 features were recorded:

1. MOZTO CHARGEI1. The in silico calculated m/z of the peptide fragment ion.
2. CHARGE STATE. The peptide fragment ion charge formatted as a number.

3. PEAK HEIGHT. The relative peptide fragment ion intensity expressed as a

percentage of the most intense fragment ion.

Note: More detailed information about the above features used in the library built

by dpSWATH can be refered in the Tutorial of Skyline.
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Discussion

Genomics, transcriptomics, and proteomics have been experiencing a fast-developing pe-
riod for the benefit given by the improvement of NGS and MS. However, with the in-
crease of data generated from different NGS and MS platforms, the complexity of such
data is also posing challenges for analysis. ChIP-seq has become an indispensable tech-
nique for the analysis of the interactions between DNA and proteins. In the study of the
mechanisms of HMR in D.melanogaster, the localization of HMR to genomic insulator
sites was elucidated by ChIP-seq, which revealed the relationship between HMR and in-
sulator proteins. Meanwhile, RNA-seq has been a ubiquitous method to analyze gene ex-
pression on the transcriptomic level. Through the analysis of the expression of HMR-
bound genes by RNA-seq, we find the associated genomic insulator sites can be divided
into two clusters, in which one set is bordered by HPla-bound areas of active genes,

whereas the other is composed of gypsy insulators.

The complex fragment ion spectra generated during a data-independent acquisition (DIA)
method of proteomics experiments result in much larger and richer information to be an-
alyzed compared to the more classical data-dependent acquisition methods (DDA). One
of the challenges is posed by the construction of high-quality fragment libraries, which is
crucial for both the identification and quantification of proteins. The spectral library is
one important part of the analysis of spectra generated by DIA. Traditionally, the spectral
library is prepared by DDA experiments. However, the coverage and recovery rate of
such an experimental library cannot fully meet the requirements of DIA analysis for its
limited detected precursors. In recent years, some algorithms have been developed for
this purpose, however, the training of such models is based on Orbitrap mass spectrome-
ters, which have more consistent and higher-quality mass spectra compared to the Q-TOF
machine. On the other hand, the Q-TOF platform can provide people with a high-speed
acquisition of tandem mass spectra. In this work, we developed a framework by deep
learning, dpSWATH, to extend the search space for high-quality SWATH-MS analysis
on the Q-TOF platform. The mass spectra generated from the Q-TOF platform have lower
quality and reproducibility, which needs to filter noises and prepare more consistent mass
spectra for training models on such a platform. For this reason, we designed an algorithm,

dpMScore, to perform the clustering of mass spectra from a Q-TOF instrument.

The two major components of in silico library are the predicted intensities and retention

time of given precursors, for which we developed dpMS and dpRT. We then prepared the
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theoretically digested peptide candidates for the theoretical library for SWATH-MS anal-
ysis. Compared to the experimental library, much more peptide candidates for given pro-
tein groups can be integrated into the theoretical library for the Q-TOF platform. All the
predictions by dpSWATH can lead to more identifications and accurate quantifications
of protein groups and peptides compared to the experimental library. However, with the
increase of precursors in the theoretical library, the false positives also increase. So the
control of FDR for the precursor candidates for the theoretical library is crucial for the
building of high-quality searching space for SWATH-MS analysis. To decrease the FDR
issue for a such big searching library, we prepared the theoretical digested peptides by
dpMC, which predicts the missed tryptic cleavages. By the application of dpMC, we can
not only decrease the size of the theoretical library but also prepare the theoretical library
with more detectable precursor candidates. Based on the above strategies, we construct a

high-quality search space for SWATH-MS analysis.

Moreover, the in silico library was also built based on the transcriptome data, which
achieved more protein groups with acceptable FDR compared to the experimental library.
However, the whole proteome-wide analysis still needs to be explored. The FDR in-
creased dramatically when the number of uncertain peptide entries in the search library.
So more accurate predictions of detectable peptide candidates need to be performed for
the building of a theoretical library. Furthermore, we will continue to fuel the model with
more high-quality Q-TOF mass spectra data from more experiments or by improving the
algorithm of filtering noises, to improve the whole performance of dpSWATH model.
Thus, we believe the development of dpSWATH can improve SWATH-MS analysis on

a deeper scale with sample-specific detected candidates on proteome-wide analysis.

Recently, some other advanced SWATH-MS methods have been developed, such as the
Scanning SWATH (Messner CB et al., 2021), and Zeno SWATH MS (Wang Z et al.,
2022). By application of such techniques, more proteins are identified with less volume
of samples at ultra-fast speed compared to traditional DIA methods. However, the bioin-
formatic methods for such analysis still need to be developed and optimized, either with
traditional statistical or machine learning approaches, for example, to build project-spe-
cific in silico libraries or optimized library-free approach for ultra-fast SWATH-MS anal-

ysis.
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