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Abbreviations 

 

MS: mass spectrometry 

DDA: data dependent acquisition 

DIA: data-independent acquisition 

TOF-MS: time-of-flight mass spectrometry 

SRM: selected reaction monitoring 

PRM: parallel reaction monitoring 

MC: missed cleavages 

ROC: receiver operating characteristic 

AUC: area under the curve 

PSM: peptide spectrum matches 

LSTM: long short-term memory 

TCN: temporal convolutional network 

CNN: convoulutional neural network 

FDR: false discovery rate 

PPV: positive predictive value 

MCC: Matthews correlation coefficient 
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2. Introduction 

In recent years, modern biology has undergone unprecedented improvement on different 

levels, including genomics, transcriptomics, and proteomics. The accomplishment of the 

Human Genome Project (Venter et al., 2001; Lander et al., 2001) indicates a great accom-

plishment in genomics. Genomics has important applications in the diagnosis of diseases 

(Petersen et al., 2017), the development of medicine (Lu et al., 2014), synthetic biology 

(Baker et al., 2011), and so on. The information from the genome is then transcribed to 

RNA, the analysis of which is now known as transcriptomics, which studies the level of 

gene expression (Schena et al., 1995; Cheung et al., 1999). However, it is proteins that 

play key roles in the building of a cell and carry out different biochemical reactions, in-

cluding metabolism, gene regulation, catalysis, molecular signaling, and physical inter-

actions (Yates et al., 2009; Chen et al., 2020). The study of the identification, quantifica-

tion, and localization of protein components of cells is known as proteomics (Aebersold 

& Mann, 2003; Yarmush et al., 2002). As an important method of the postgenomic era, 

proteomics has a substantial impact on the diagnosis of diseases, prognosis, and develop-

ment of drugs (Aslam et al., 2017). Nowadays, both experimental and informatic methods 

have been developed to improve the analysis of proteomic data (Mallick et al., 2010; Choi 

et al., 2020). For the experimental aspect, mass spectrometers (MS) combined with liquid 

chromatography (LC) is the most popular and major technology that is critical to the fast 

development of proteomics (Aebersold & Mann, 2003). Through the last few decades, 

MS-based proteomics has achieved great success but still faces big challenges. Diverse 

technologies and strategies have been developed for different mass spectrometers, such 

as bottom-up and top-down strategies, which have been widely applied in proteomics 

research. The study of various levels of omics not only provides comprehensive insights 

into the composition of organisms, but also provides different aspects to the analysis, 

elucidate potential causative changes that lead to diseases, precision diagnosis of diseases, 

and finally the development of new drugs (Hasin et al., 2017). 
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Figure 2.1 The illustration of the different levels of omics studies. The information of DNA flows 

to protein corresponding from genomics to proteomics.  

 

Here, we discuss the data analysis for genomics, transcriptomics, and proteomics. Even 

though advanced instruments have provided powerful methods to study omics, however, 

complex data have been generated from such equipment which needs to be analyzed to 

reveal the biological meaning behind them (A.L.McGuire et al., 2020; Cristoni & Ber-

nardi, 2004; Patel et al., 2021). Nowadays, both traditional statistics and machine learning 

methods have been applied to analyze omic data including qualitative and quantitative 

data. The identification of peptides and proteins in the organelle, cell, or tissue lysate is 

the focus of qualitative proteomic data, while quantitative proteomic data often includes 

the comparison of two or more biological states (Kumar et al., 2009). Computational al-

gorithms and software for both qualitative and quantitative data have been developed. 

The algorithms that have been developed for omics can be used in the following applica-

tions: data preprocessing, statistical analysis, enrichment analysis, and so on (Chen et al., 

2020). Besides, machine learning or deep-learning has more applications in the analysis 

of omic data, for example, the applications of machine learning to human genomics 

(Alharbi WS et al., 2022), phenotype prediction from transcriptomics data (Smith AM et 

al., 2020), and deciphering proteome profiling by deep-learning (Wang et al., 2020).  

In this part, the major concepts of omics and related realms are introduced, then the com-

putational and statistical methods for omics are discussed. Finally, the strategies used for 

the analysis of genome sequencing, gene expression, and mass spectrometry are intro-

duced which I performed for my doctoral research. 
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2.1  Genomics 

One century ago, the term “genome” was created to refer to the complete set of genes and 

chromosomes in an organism. However, “Genomics” is an inter-discipline in biology to 

study the mapping, sequencing, evolution, and editing of genomes. Genomics can be clas-

sified as “structural genomics” and “functional genomics” for different research aspects. 

Structural genomics focuses on the three-dimensional construction of proteins encoded 

by a certain genome  (Hieter P et al., 1997). While functional genomics focuses on gene 

function and regulation, such as the dynamic expression of gene products in space, time, 

and disease (Przybyla L et al., 2022).  

The accomplishment of the Human Genome Project (HGP) has brought fruitful contribu-

tions to the study of genomics. One major goal of the HGP was to create genetic and 

physical high-resolution maps for each human chromosome (Collins FS et al., 2003). The 

relative position of genes and DNA markers along the chromosome can be illustrated by 

genetic and physical maps. Recombination frequencies are used to figure out how far 

apart two points are on a genetic map, while the number of nucleotide pairs between loci 

is used to make a physical map. Genetic maps are an indispensable resource for the crea-

tion of physical maps. Both genetic and physical maps are important to elucidate the or-

ganization of a genome.  

However, the decipherment of genomic DNA sequences is just the beginning of the ex-

ploration of the biological mechanisms behind the arrangement of nucleotides along chro-

mosomes in a living organism. The generated vast amounts of sequence data trigger the 

development of bioinformatics for the elucidation of the expression and functions of all 

the genes in a genome. Nowadays, different computational methods have been applied to 

genomic analysis, including organization, analysis, understanding, visualization, and 

storage of genomic data (Diniz WJS et al., 2017). To achieve this goal, some public da-

tabases have been built to store the rapidly increasing genome data, such as European 

Molecular Biology Laboratory (EMBL), DNA Database of Japan (DDBJ), GenBank at 

the National Center for Biotechnology Information (NCBI); and also some functional 

databases, such as Reactome and Kyoto Encyclopedia of Genes and Genomes (KEGG) 

(Kanehisa M et al., 2017; Diniz WJS et al., 2017). By integrating these genomic data, the 

comparison among sequences can be done through alignment to elucidate the evolution-

ary relationship between genes, individuals, organisms, and others (Junqueira et al., 2014). 
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2.2  Transcriptomics 

The total set of ribonucleic acid (RNA) molecules present at a particular developmental 

stage or physiological condition in a cell, tissue, or organism, is known as the transcrip-

tome (Wolf JBW, 2013; Milward EA et al., 2016). All kinds of transcripts, including 

mRNAs, noncoding RNAs, and small RNAs, are covered by transcriptomics. Tran-

scriptomics focuses on the study of structures, related genes, locations, functions, tran-

scription, expression levels, trafficking, and degradation (Milward EA et al., 2016). With 

the study of transcriptomics, gene expression in an organism can be measured in certain 

conditions or tissues, which gives insights into the regulation of genes and more details 

of an organism’s biology. Besides, the functions of previously unannotated genes can also 

be inferred through transcriptomic analysis  (Lowe R et al., 2017). And nowadays tran-

scriptomics also plays a key role in contemporary cancer medicine (Supplitt S et al., 2021). 

The study of transcriptomics advances with the development of high-throughput technol-

ogies. RNA sequencing (RNA-seq) has been a ubiquitous technique for transcriptomic 

analysis, including the discovery of novel transcripts, analysis of differential gene expres-

sion (DGE), detection of allele-specific expression, and characterization of alternative 

splicing variants. Compared to other next-generation approaches, RNA-seq has higher 

resolution and coverage in characterizing the dynamic nature of the transcriptome (Ku-

kurba KR et al., 2015). Besides, RNA-seq data are generated from functional genomic 

elements directly, most of them are protein-coding genes. A typical RNA-Seq experiment 

involves the isolation of RNA, then conversion to complementary DNA (cDNA), the 

preparation of the sequencing library, and its sequencing on an NGS platform. Nowadays, 

a parallel sequencing by-synthesis method is used by most high-throughput sequencing 

platforms to sequence tens of millions of sequence clusters (Lowe R et al., 2017).  

With the accumulation of RNA-seq data, bioinformatic approaches are necessary to be 

developed to elucidate the biological meaning of such complex data. The general proce-

dure for RNA-seq data analysis includes sequenced reads stored in FASTQ-format files 

generated from an NGS platform, alignment of these reads to reference genome, and gene 

expression quantification (Geraci F et al., 2020). However, several challenges to infor-

matic analysis in RNA-seq need to be further addressed, such as the storage, retrieving, 

and processing of huge data, the errors in base-calling, and image analysis (Wang Z et 

al., 2009).  
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2.3  Proteomics 

Proteins are polymers of amino acids with functional groups of amino (-NH3+) and car-

boxylate (-CO2-) and a specific side chain for distinct amino acids (Nelson et al., 2005). 

The structure of proteins can be defined on four distinct levels: the primary structure of a 

protein is specified by the sequence of its amino acids, which then directs the secondary 

structure by the proper folding of the polypeptide chain including the alpha helix, in which 

corkscrew shape is folded in a region of the polypeptides; however, the other common 

type of secondary structure, beta-strands are formed in a linear structure of polypeptides 

by bonding together. The three-dimensional structure of proteins is formed by the chem-

ical interactions of turns and coils, resulting in the final protein (Chandrasekhar et al., 

2014). Proteins play key roles in almost all biological processes, such as catalysis 

(Agarwal et al., 2006), molecular signaling (Yates et al., 2009), immune function, and 

gene regulation (Chen et al., 2020). Many illnesses are caused by aberrant protein func-

tion regulation, which is an important objective of biomedical research in the develop-

ment of possible novel medications for disease therapy (LaBear, 2002). Moreover, the 

combination of the information of genome and proteome has been applied to develop new 

strategies for the designing of drugs for associated diseases (Chandrasekhar et al., 2014).  

The term “proteome” is to describe the total number of proteins in a cell, as well as their 

localizations, physical interactions, and post-translational modifications (PTMs) at any 

given moment (Dupree et al., 2020; Aslam et al., 2017). The identification, quantification, 

and localization of protein components in cells are the primary research aspects of prote-

omics, which extends from protein expression profiling and signaling circuit analysis to 

the creation of protein biomarkers (Mallick et al., 2010; Yates et al., 2009). 

Specifically, the scope of proteomics covers the following aspects: protein expression 

profiling, structural and functional proteomics, and so on (Graves et al., 2002). The struc-

ture and function are two major aspects of proteins which are also the key studies of 

proteomic research. For proteins, functions are determined by their structures. The pur-

pose of structural proteomics is to find all of the proteins inside a protein complex or a 

particular cellular organelle, locate them, and describe their protein-protein interactions.  

However, the advance of proteomics cannot be improved without the development of 

associated techniques (Aslam et al., 2017), such as conventional techniques like chroma-

tography-based techniques, enzyme-linked immunosorbent assays (ELISA), and western 
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blotting. Some advanced techniques, including mass spectrometry (MS), and protein mi-

croarray.  

 

Figure 2.2 An overview of proteomics techniques (Aslam et al., 2017). 

 

Nowadays, MS is becoming more essential in proteomics research since it complements 

other methods and can identify proteins in extremely small amounts, such as 1-10ng 

(Keshishian H et al., 2007).  

There are two typical strategies for MS-based proteomics: bottom-up and top-down (Kar 

et al., 2017). For the bottom-up approach, peptides are generated from the digestion of 

proteins, which are then analysed in a mass spectrometer (Gillet et al., 2016). However, 

for top-down proteomics, intact protein ions or large protein fragments generated by elec-

trospray ionization (ESI) are subjected to gas-phase fragmentation for mass spectrometry 

analysis (Toby et al., 2016; Donnelly et al., 2019; Chen et al., 2008). 
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Figure 2.3 The comparison of bottom-up and top-down approaches in mass spectrometry. In the 

bottom-up technique, intact proteins are digested into peptides, which are then detected and frag-

mented using a mass spectrometer. While in the top-down approach, the intact protein is ionized di-

rectly which improves the coverage of protein sequence and the detection of PTMs (Catherman A. D. 

et al., 2014). 

 

2.4  Next generation sequencing  

Next generation sequencing (NGS) plays a key role in both genomics and transcriptomics. 

Compared to traditional Sanger sequencing (Sanger F et al., 1977), NGS is much cheaper, 

and faster, along with higher throughput in sequencing DNA. Millions of fragments of 

DNA in a single sample can be sequenced together due to the massively parallel sequenc-

ing technology of NGS, which leads to an entire genome can be sequenced in less than 

one day. With such high-throughput capability, NGS can identify disease-related genes 

and regulatory elements by sequencing the human genome. Besides, the complexity of 

genome can also be figured out through the performance of NGS (Grada A et al., 2013).  

With the development of NGS, more studies including Chromatin immunoprecipitation 

followed by sequencing (ChIP–seq), genome-wide association (GWA) studies, and RNA 

sequencing (RNA-seq) become much easier than before (Hawkins RD et al., 2010). ChIP-

seq is a method for profiling DNA-binding proteins, histone modifications, or 
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nucleosomes throughout the entire genome. Due to the remarkable advances of NGS, 

ChIP-seq achieves fewer artifacts and higher resolution with a larger dynamic range than 

previous methods. Transcriptional regulation can be elucidated through the genome-wide 

mapping of epigenetic marks and protein-DNA interactions. The gene regulatory network 

for different biological processes can be elucidated by precise mapping of binding sites 

for transcription factors (TFs), key transcriptional machinery, and other DNA-binding 

proteins (Farnham PJ et al., 2009; Park PJ et al., 2009). To reveal the above mechanisms, 

ChIP is the main technique for the detection of protein-DNA binding in vivo (Solomon 

MJ et al., 1988). Compared to the array method, the interested DNA fragments are di-

rectly sequenced rather than hybridization. The procedure of a ChIP-seq experiment is 

shown in Figure 2.4. 

 

 

Figure 2.4 The procedures to perform a ChIP-seq experiment and computational analysis. (A) 

Preparation and sequencing of samples. (B) Data analysis for a typical ChIP-seq assay. (Nakato R et 

al., 2009).  

 

However, there are still some challenges in both experimental and computational ChIP-

seq analysis. For the experimental aspect, the artifacts can not be eliminated, especially 

at the end of each read. Besides, the enrichment of GC content in fragment selection, and 

the difficulties in loading the exact amount of sample for the generation of high-quality 

data. In addition, the current cost and availability of ChIP-seq still have potential space 
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to ameliorate. For the ChIP-seq data analysis, the amounts of different types of data such 

as image data, sequence tags, and alignment data increase dramatically, for which there 

are still problems in the storage and extraction of such high-throughput data. In addition, 

most non-unique tags in genome alignment are not handled properly. Besides, more reli-

able, and advanced software needs to be developed  (Park PJ et al., 2009).  

For transcriptomic analysis, RNA-seq has become a ubiquitous technique in gene expres-

sion studies. The quantification of gene expression includes the discovery of new tran-

scripts, and the characterization of alternative splicing variants or novel cell types. Fur-

thermore, the application of RNA-seq in clinical diagnosis has become true. Compared 

to traditional hybridization-based methods, RNA-seq can break the limitation of anno-

tated genomic sequences to detect novel transcripts. Besides, RNA-seq is capable of lo-

cating precise transcription boundaries and revealing sequence variations such as SNPs 

(Cloonan N et al., 2008). In addition, RNA-seq has very few background signals com-

pared to  DNA microarrays, and unlimited upper levels for quantification. Thus, RNA-

seq is a high-throughput and quantitative approach to studying gene expression levels by 

scanning the transcriptome. A typical RNA-seq experiment is shown in Figure 2.5. 
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Figure 2.5 The procedure to perform a typical RNA-seq experiment.  Firstly, a cDNA library is 

prepared by fragmentation of either RNA or DNA for long RNAs. Then each cDNA fragment is 

added with sequencing adaptors (blue) and a short sequence is generated. Three types of sequence 

reads, which are junction reads, exonic reads, and poly(A) end reads, are aligned to the reference ge-

nome or transcriptome. The bottom plot shows an expression profile for genes with the usage of the 

above three types of reads (Wang Z et al., 2009).  

 

However, like other NGS techniques, RNA-seq also faces challenges on both sides of 

experiments and data analysis. For the experimental aspect, the complexity of the 

cDNA library building in profiling transcripts, biases generated from RNA fragmenta-

tion, and lack of strand information for cDNA analysis. Meanwhile, the challenges also 

come from informatics for RNA-seq analysis.  First, like other NGS approaches, the 

continuously increasing amounts of data require efficient storage, retrieving, and pro-

cessing. Second, the errors come from base-calling, image analysis, and low-quality 

reads. Third, efficient and simple computational algorithms need to be developed to 

identify novel splicing events between two distant sequences or genes. Last, the issue 

comes from the increased cost of greater sequence coverage (Wang Z et al., 2009; 

Geraci F et al., 2020).  

2.5  Mass spectrometry 

Nowadays, MS is one of the most important techniques for proteomics because of its 

ability to handle the complexities of proteomic research. Compared to other traditional 

techniques, MS can achieve in-depth proteomic information. Besides, the development 

of soft ionization techniques, such as matrix-assisted laser desorption/ionization 

(MALDI), electrospray ionization (ESI), and liquid chromatography (LC), is crucial to 

the successful performance of mass spectrometric analysis (Han et al., 2008; Aebersold 

et al., 2003). 

The primary structural information of proteins, the amino acid sequences, can be obtained 

through MS analysis, which can then be used for the identification of proteins by search-

ing databases. Besides, the type and location of protein modifications can also be deter-

mined by MS analysis (Graves et al., 2002). The information on proteins acquired by MS 

can be achieved through three stages: 1) sample preparation, 2) sample ionization, and 3) 

mass analysis. The technique of liquid chromatography, such as HPLC, can meet the 
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requirements for the purification and separation of peptides. Before the samples are ana-

lysed by the mass spectrometer, the molecules must be charged and dry, which can be 

accomplished by ESI and MALDI mentioned above. Generally, the integrated liquid-

chromatography ESI-MS systems (LC-MS) are applied to more complex samples in con-

trast to MALDI-MS. Then, MS will measure the gas-phase ions produced by MALDI-

MS or ESI-MS, which are nebulized into tiny, highly charged droplets in an electrospray 

ion source. After evaporation, the gas-phased multiply protonated peptides are subjected 

to the mass analyzer of the mass spectrometer, which measures their mass-to-charge ratio 

(m/z). Based on the mass spectra generated by the computer connected to the mass spec-

trometer, information about peptides and proteins can be acquired by matching against 

protein sequence databases (Aebersold et al., 2003). 

For the applications of MS experiments, mass analysers are indispensable to mass spec-

trometers for their ability to store and separate ions based on m/z. There are different 

types of mass analysers, such as time-of-flight (TOF) and quadrupoles (Q), ion trap (IT), 

Orbitrap, and ion cyclotron resonance (ICR), with different unique properties, such as 

mass range, resolution, sensitivity, dynamic range, and analysis speed. These analyzers 

may be used alone or in combination to maximize the benefits of each (Aebersold et al., 

2003; Yates et al., 2009). 
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Figure 2.6 The workflow of MS-based proteomics experiment. Five stages for the MS-based pro-

teomics experiments are illustrated. In stage 1, the protein samples are isolated from cells or tissues 

by biochemical fractionation or affinity selections. Then the proteins are digested by protease such as 

trypsin to peptides in SDS-PAGE in stage 2. In stage 3, the peptides are separated by LC and eluted 

into an electrospray ion source which then enter the mass spectrometer. Then the mass spectra for 

given peptides are taken at a specific time point in stage 4. In the last stage, the fragmentation of these 

peptides and a series of tandem mass spectrometric experiments are performed (Aebersold et al., 2003).  

 

For the applications of MS experiments, several strategies are being widely used: data-

dependent acquisition (DDA), data-independent acquisition (DIA), multiple reaction 

monitoring (MRM), and parallel reaction monitoring (PRM).  

In the following part, the instruments and tools for mass spectrometry and the strategies 

of DDA and DIA will be introduced in detail. 
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2.5.1 The instruments and tools for mass spectrometry 

A mass spectrometer consists of an ion source that converts biological molecules into 

gas-phase ions, a mass analyser that measures the mass-to-charge ratio (m/z) of the ion-

ized analytes, and a detector that records the number of ions at each m/z value (Aebersold 

et al., 2003; Han et al., 2008).  

Matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) 

are two soft ionization techniques that transfer analytes into the gas phase without exten-

sive degradation, which enables proteins and peptides to be analysed by MS. The MALDI 

method involves transferring a laser-heated matrix to an acidified analyte, which causes 

the analyte's [M+H]+ ions to enter the gas phase (Yates et al., 2009). To achieve an ac-

ceptable signal-to-noise ratio for detection, the ionization of MALDI requires hundreds 

of laser shots to prepare enough energy (Liao et al., 1995). Because the produced ions are 

generally singly charged, MALDI is suited for top-down analysis of high-molecular-

weight proteins. However, there are some drawbacks to the MALDI technique: the low 

shot-to-shot reproducibility and reliance on the sample preparation methods which leads 

to the improvements of this approach, such as the matrix-free MALDI techniques SALDI 

(Chen et al., 1998), DIOS (Shen et al., 2001), and atmospheric pressure MALDI (AP-

MALDI) (Laiko et al., 2000).  

Another important ionization technique is ESI. Compared to MALDI, ESI is driven by 

high voltage (2–6 kV) to produce ions from solution. The formation and desolvation of 

analyte-solvent droplets follow the formation and desolvation of an electrically charged 

spray in the physicochemical process of ESI (Yates et al., 2009). Unlike MALDI, the ions 

from ESI are multiple-charged species and sensitive to analyte concentration and flow 

rate. So some improvements have been proposed for ESI, such as micro and nano-ESI 

(Griffin et al., 1991; Emmett et al., 1994). The two ionization methods are usually chosen 

for different mass analyzers (Aebersold et al., 2003; Yates et al., 2009). 

In a mass spectrometer, a mass analyser is indispensable for its ability to take and separate 

ions based on the mass-to-charge ratio (m/z). The mass analyzers can be divided into two 

categories: the trapping mass spectrometers, such as IT, Orbitrap, and FT-ICR; and the 

scanning and ion-beam mass spectrometers, such as TOF and Q. MALDI is usually cho-

sen for TOF analyzers to measure the mass of intact peptides through pulsed analysis, 

whereas ESI has mostly been used in conjunction with ion-beam and trapping equipment. 

Several types of instrument configurations are widely used in proteomic research: ion 
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traps, such as LIT or LTQ (Hager et al., 2003); triple quadrupoles (TQ), LTQ-Orbitrap 

(Hu et al., 2005; Makarov et al., 2006), LTQ-FTICR (Syka et al., 2004; Breuker et al., 

2008), Q-TOF (Morris et al., 1996; Shevchenko et al., 1997) and IT-TOF (Collings et al., 

2001; Campbell et al., 1998). In this part, Orbitrap and Q-TOF will be introduced in detail. 

The Orbitrap machine is widely used for proteomics for its high resolution (up to 

150,000), high-mass accuracy (2–5 ppm), and good dynamic range greater than 103 (Hu 

et al., 2005). Within an orbitrap instrument, a static electric field is created, in which ions 

orbit and oscillate in the axial direction around a central electrode (Figure 2.7). A fast 

Fourier transform (FFT) algorithm (Senko et al., 1996) is then used to convert the over-

lapping frequencies into mass-to-charge spectra. Because of its high mass accuracy, Or-

bitraps can perform alternate data acquisition and data analysis approaches to achieve 

greater coverage and accuracy. 

 

 

Figure 2.7 Cross section view of the Orbitrap mass analyzer. The injection point and pathways of 

ions in the mass analyzer are indicated in red arrows and lines respectively. The two perpendicular 

directions of the mass analyzer are shown in the z and r-axis (Hu et al.,2005). 

 

Another advanced tandem mass spectrometer is a quadrupole time of flight instrument 

(Q-TOF), which provides high peak capacity, resolving power (e.g., RP ~ 10000), mass 

measurement accuracy (e.g., MMA ~ 10 ppm), spectral acquisition rates, and dynamic 

ranges (>3 orders of magnitude). As mentioned above, Q-TOF machine is usually cou-

pled with ESI to perform better analysis than other modes. 
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Figure 2.8 Schematic of the TripleTOF instrument. (a)  Overall diagram of the TripleTOF. (b) 

An image of the TripleTOF machine (Andrews et al., 2011). 

 

The TripleTOF instrument is one of the hybrid Q-TOFs (Andrews et al., 2011). With its 

features of high mass accuracy, resolution, speed, and sensitivity, TripleTOF is suitable 

for DDA analysis. Moreover, comprehensive and specific peptide quantification by DIA, 

such as SWATH (sequential window acquisition of all theoretical spectra) and MS (mass 

spectrometry), can also be operated on TripleTOF (Gillet et al., 2012). Next, the two 

strategies of DDA and DIA will be introduced. 

 

2.5.2 DDA & DIA 

With LC-MS/MS, DDA has been extensively utilized for the identification and quantifi-

cation of protein groups in a range of biological samples (Bateman et al., 2014; Mann et 

al., 2001) for its breadth of detection, flexibility, and simplified settings and measure-

ments (Hu et al., 2016). Single precursor ions are selected by mass spectrometer based on 

their abundance, which are isolated in MS1 scan and then fragmented in sequential MS2 

scans in DDA mode. For each of the MS2 scans, a database search algorithm is applied 

to the analysis. Through the performance of DDA, thousands of proteins can be identified. 

However, the DDA approach has significant limitations: the irreproducibility and impre-

cision are produced by simply measuring the most abundant peptides, which means that 

low-abundance peptides might be overlooked. Moreover, accurate quantification is hin-

dered by only one or two times of measurements for each peptide (Venable et al., 2004). 



25 

 

 

Figure 2.9 The illustrations for strategies of DDA and DIA. DDA records MS/MS spectra from 

individually isolated peptide precursors.  DIA uses wide isolation windows to acquire fragment spec-

tra from multiple precursors. These mixed spectra are then deconvoluted by dedicated software 

packages (Egertson et al., 2015). 

 

DIA is a method for detecting all peptides within vast, pre-specified mass ranges by iso-

lating, fragmenting, and analyzing all precursor ions using a high-resolution mass spec-

trometer (Hu et al., 2016). The benefits of PRM (high sensitivity and reproducibility) and 

DDA have been blended in DIA (broad protein coverage). Besides, DIA has higher sen-

sitivity, reproducibility, and selectivity compared to DDA mode (Figure 2.10). 
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Figure 2.10 Performance profiles of DDA and DIA. Five metrics including sensitivity, reproduci-

bility, selectivity, multiplexing, and ease of assay development are shown in radar graphs. For each 

metric, 4 indicates the best performance while 0 indicates the worst performance (Li et al., 2021). 

 

Precursor ions are sampled and separated into consecutive small mass-to-charge (m/z) 

windows (5-25 Da) in Q1, which are then fragmented in Q2 (Figure 2.8a). The product 

ions within a certain m/z window are monitored by a high-resolution accurate-mass 

(HRAM) mass analyser in an unbiased and systematic manner (Shi et al., 2016; Huang et 

al., 2015). Then, highly complex MS2 spectra are generated from the co-fragmentation 

of peptides that belong to the same precursor. Because the connection between the pre-

cursor and its fragments is lacking, a spectra library based on DDA investigations is re-

quired to understand such complicated MS2 spectra (Gillet et al., 2012; Ludwig et al., 

2018). The quantification analysis by DIA is generally comparable to those targeted 

methods because of its high reproducibility and mass accuracy. Compared to DDA, the 

mass spectra generated in DIA have an additional dimension, the retention time (RT), 

which makes the information of fragment ions can be extracted over time to promote the 

quantitative analysis of peptides and proteins. In general, DIA mass spectra quantitative 

findings are the total of the area under the curve of each fragment ion, which is preferable 

to DDA in terms of resolving quantitative information. 

However, compared to some targeted methods, such as MRM and PRM, DIA has lower 

selectivity and sensitivity for its highly complex MS spectra. Moreover, the sensitivity, 

selectivity, and proteome coverage of a DIA assay can be affected by several factors, for 

example, the instrumentation, mass-to-charge (m/z) windows width, and spectral library. 

So the optimal settings for different parameters are necessary for the precise identification 

and quantification results. 
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2.6  Bioinformatics for NGS and MS 

The development of omics is not only promoted by the improvement of instrumentation 

and experimental technologies but also by bioinformatics. A huge amount of data has 

been generated from different levels of omic research (Kumar et al., 2009; Magi A et al., 

2010; Cristoni S et al., 2014). The main goal of bioinformatics on omics is to organize 

and interpret the biological meaning of data generated from experiments such as NGS 

and MS. For the NGS, we focus on the data analysis for ChIP-seq and RNA-seq. 

Qualitative and quantitative proteomics data are still two major aspects of proteomic bi-

oinformatics. Traditionally, only the most abundant proteins in gel electrophoresis can be 

analysed. However, with the development of mass spectrometry, the data at the proteome 

level can be analysed by computational methods. Bioinformatics for proteomics is rapidly 

evolving, and fields as diverse as mathematics, statistics, and computer science have been 

used to handle the challenges posed by such complex data. (Chen et al., 2020).  

 

2.6.1 Traditional statistical methods for NGS and MS 

For the data generated from the NGS technique, multiple computational methods have 

been developed for ChIP-seq and RNA-seq analysis. For the ChIP-seq analysis, the main 

goal is to map the interactions between proteins and DNA by the isolation of genomic 

fragments which interact with antibodies or DNA-binding proteins such as TFs (Park PJ 

et al., 2009). The reads generated from isolated genomic fragments mapped to the refer-

ence genome are used to identify enriched regions for functional factors (Nakato R et al., 

2021). After the mapping of reads to the reference sequence, the discrimination of ge-

nomic regions enriched with reads from ‘background’  noise is necessary. To filter out 

noise coming from the background, a negative control can be used to generate a noise 

pattern used to compare with real data. In this way, the enriched genomic regions in the 

positive sample can be detected for further consideration, while the tags from the control 

experiment can be used as a background model. However, in experiments which are lack 

control samples, stochastic methods can be applied to estimate the background read levels. 

The hypothesis for such cases is that each genomic region to be extracted and sequenced 

has the same probability in a total random experiment. If we define the total number of 

tags as t, and the size of the genome as g, then t/g stands for the probability of one tag 

mapped in a given position. Thus, the probability of the expected number of tags within 
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a genomic region can be calculated, for example, by Poisson or negative binomial distri-

butions. Then, through the sliding windows across the whole genome, the significance of 

the tag enrichment can be calculated. Several ‘peak-calling’ programs have been devel-

oped, such as MACS (Cokus SJ et al., 2008), QuEST (Valouev A et al., 2008), FindPeaks 

(Fejes AP et al., 2008), HOMER (Heinz S et al., 2010), ChIPseek (Chen T-W et al., 2014),  

in which several tools are prepared for ChIP-seq analysis. Moreover, the built-in back-

ground model can be used to estimate the significance of tag enrichment (Horner DS et 

al., 2010).  

For the RNA-seq analysis, one-end or paired-end sequencing is applied to generate se-

quence reads from total or poly-A enriched RNAs. Generally, protein-coding mRNAs are 

detected based on the poly-A enrich fraction. However, the non-polyadenylated ncRNAs 

can be missed in this way. Then the total RNA can be randomly amplified to have a broad 

overview of the transcriptome. The read lengths range from 30bp to over 400bp, which 

are generated from different NGS platforms, such as ABI SOLiD, Illumina, and Roche 

454 FLX (Horner DS et al., 2010). Different read lengths are selected for various appli-

cations, the short reads with high throughput are chosen for transcript quantification by 

tag profiling. While longer reads are more suitable for the determination of exon coordi-

nates and relative quantification for expressed isoforms of full length. For the detection 

of novel splicing sites and variants, there are several mapping tools such as TopHat (Trap-

nell C et al., 2009), QPALMA (Bona FD et al., 2008) to split align reads against the 

reference genome. However, there are also some other tools developed such as RefSeq 

(Pruitt KD et al., 2007), ASPicDB (Castrignanò T et al., 2008) for the correct detection 

of exon boundary. Then the quality of mapped RNA-seq data needs to be assessed in 

depth, which can be done with Picard (http://broadinstitute.github.io/picard/), SAMTools 

(Li et al., 2009), Qualimap2 (Okonechnikov et al. 2016), RNASeQC (DeLuca et al. 2012). 

For the quantification of gene expression levels, the concept of Reads Per Kilobase of 

exon model per Million mapped measures (RPKM) was introduced, which is calculated 

by the following Equation (1): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =   109 × 𝐶𝐶
𝑁𝑁∙𝐿𝐿

                                                (1) 
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Where C is the number of reads mapped to the exons of genes, N is the total number of 

mappable reads for the experiment and L is the whole length of the exons (Mortazavi A 

et al., 2008). 

While the analysis of differential gene expression, several programs have been developed: 

DESeq2 (Love et al., 2014), EdgeR (Robinson et al., 2010), CuffDiff2 (Trapnell et al., 

2013), which are based on the counts of reads to infer genes or transcripts to calculate the 

significance of differentially expressed genes. Then the differential expressed genes can 

be performed for enrichment analysis by tools such as EnrichR (Kuleshov et al., 2016) or 

DAVID (Huang et al., 2018).  

The first important goal of MS-based proteomics is the identification of peptides and pro-

teins, in which case the determination of the sequence of peptides is crucial. Here, data 

preprocessing, statistical analysis, and enrichment analysis will be discussed for MS-

based proteomics. Two approaches, including searching against the fragmentation spectra 

databases (Geer et al., 2004; Craig et al., 2004) and de novo peptide sequencing (Frank 

et al., 2005; Shevchenko et al., 1997), will be introduced.  

 

 

Figure 2.11 General workflow of bioinformatic analysis in mass spectrometry-based proteomics. 

(a) MA-plot for the differential abundance analysis of proteins. The X-axis indicates the log2 trans-

formed fold change and Y-axis indicates the mean protein abundance from replicates. (b) Normaliza-

tion of protein abundance data. (c) Heatmap for protein abundance with clustering. (d) Enrichment 

analysis for protein sets. The X-axis indicates the ranked positions in the protein list, Y-axis in the 
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above plot indicates the ranked list metric, which in the bottom plot indicates the running enrichment 

score. (e) Clustering on sample datasets based on machine learning. (f) Illustration of an interaction 

network inferred from proteomics data. (g) Dimensionality reduction of proteomics expression profile 

(Chen et al., 2020).  

In the database searching approach, the fragmentation spectra with the highest peptide 

spectrum match (PSM) score are chosen as candidates for the query peptide. So the scor-

ing function of PSMs is crucial to the database searching approach. Several tools have 

been developed to calculate the PSM score in database searching, for example, SE-

QUEST's scoring system is based on a normalized cross-correlation between the m/z pre-

dicted from sequences and the fragment ions found in mass spectrometers (Eng et al., 

2008). Another popular software MASCOT (Perkins et al., 1999) applies probability-

based scoring to determine the peptide sequence. Generally, a second round of searching 

against a decoy database is applied by some software, such as MASCOT (Perkins et al., 

1999) and MaxQuant (Tyanova et al., 2016), to reduce FDRs after database searching 

(Elias et al., 2007).  

In contrast to the database searching, Graphical Probabilistic Model (GPM) and Hidden 

Markov Model (HMM) are preferable choices for the de novo peptide sequencing, such 

as PepNovo (Frank et al., 2005) and NovoHMM (Fischer et al., 2005). Furthermore, to 

improve speed, several programs have merged de novo peptide sequencing with a data-

base search strategy, such as InsPecT (Tanner et al., 2005) and DirecTag (Tabb et al., 

2008).  

After the identification of peptides, protein inference will be performed to reconstruct the 

peptide sequences into original proteins. Several models have been used during this step: 

probabilistic models (Nesvizhskii et al., 2003), Hierarchical Statistical Model (Shen et 

al., 2008), Bayesian inference Model (Li et al., 2009), and so on. However, for the quan-

titative analysis of proteins, two methods have been widely used: labeled methods and 

label-free methods. Various bioinformatic methods have been developed for both MS1 

and MS2-based labelings, such as MaxQuant (Tyanova et al., 2016), PVIEW (Khan et 

al., 2009), iTracker (Shadforth et al., 2005), and IsobariQ (Arntzen et al., 2011). 

Normalization is frequently required to handle MS-based proteomics data to eliminate 

any non-biological related variances and make downstream analysis more trustworthy. 

Several types of normalization methods have been developed based on different statistical 

hypotheses, such as logarithm transformation on the intensity values, linear regression-

based normalization which are applied in RlrMA and LinRegMA (Valikangas et al., 
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2016), local regression normalization (Berger et al., 2004), variance stabilization normal-

ization (VSN) (Huber et al., 2002), quantile, median, and EigenMS (Bern et al., 2006). 

Furthermore, heatmaps and hierarchical clustering are also popular methods for visualiz-

ing and preprocessing proteomic input data. Another issue that lies in MS data is the 

missing values caused by stochasticity in sampling during experiments (Wei et al., 2018). 

Various methods have been proposed to address this issue, such as singular value decom-

position (SVD) imputation (Bergamo et al., 2008), and empirical distribution sampling 

(Berg et al., 2019). 

After the preprocessing of the raw data, more statistical techniques are needed for further 

analysis. One important work for proteomics analysis is differential expression profiling. 

T-test and ANOVA (analysis of variance) are two frequently used statistical procedures 

for determining significant changes by calculating p-values based on certain statistical 

hypotheses in this kind of research. However, a relatively large variance can be introduced 

because of the limited multiplexity in proteomics data. To address this issue, moderated 

t-statistics from the empirical Bayes procedure for Linear Models for Microarray Data 

(LIMMA) were proposed by Kammers et al. (Kammers et al., 2015). Then the FDR 

threshold is indispensable for the multiple performances of statistical tests. The Benja-

mini-Hochberg procedure (Iterson et al., 2010) and FDR estimation from permutation 

(Xie et al., 2005) are widely used for FDR-controlling. 

Enrichment analysis is usually performed to find the overrepresented proteins in the pre-

defined gene set of interest. By performing the enrichment analysis, the systemic hypoth-

eses can be tested on proteomics data instead of the transcriptome. Some publicly avail-

able online databases, such as DAVID (Dennis et al., 2003) and STRING (Szklarczyk et 

al., 2017), include the ability to do enrichment analysis on gene sets based on prior infor-

mation. PhosphoSitePlus and Signor both give enrichment analysis on modification po-

sition/type based on data gleaned via literature mining. Moreover, the enrichment analysis 

usually needs consistent identifiers which are converted from different databases, in 

which the conversion tasks can be carried out by some web services, such as PICR (Cote 

et al., 2007) and CRONOS (Waegele et al., 2009). The Gene Ontology (GO) annotation 

(Gene Ontology Consortium, 2004) is another notable use of enrichment analysis, which 

employs Fisher's exact test and the hypergeometric test to clarify the biological process 

in which chosen genes or proteins are engaged. In addition to the above applications, 

enrichment analysis is also usually performed on regulatory pathway networks and dis-

eases, which is available on several databases, such as PANTHER (Mi et al., 2009), 



32 

 

KEGG (Kanehisa et al., 2017), and Reactome (Croft et al., 2011) for different pathways 

analysis. Besides, similar to gene set enrichment analysis (GSEA), protein set enrichment 

analysis (PSEA) is a popular enrichment approach that calculates the enrichment score 

based on the significant changes of proteins in abundance, which is available on the soft-

ware PSEA-Quant (Lavallee-Adam et al., 2014). 

 

2.6.2 Machine learning methods for proteomics 

Nowadays, more and more machine learning methods have been put into the application 

to address biological questions from basic nucleotide and protein sequence analysis to 

systems biology. Machine learning, compared to classical statistics, builds predictive 

models based on useful features from large datasets, allowing intricate statistical princi-

ples to be learned and applied to new datasets for prediction. Based on the applications 

for different tasks, machine learning can be divided into two categories: one is supervised 

learning and the other is unsupervised learning. The input and output datasets are both 

labeled in supervised learning, but they are not in unsupervised learning. Moreover, based 

on the data types whether they are continuous or discrete, the tasks can also be divided 

into classification or regression. Several classical machine learning algorithms have been 

developed and applied in proteomics, such as Support Vector Machines (SVM), Bayesian 

classifiers, Random Forest, and Deep Neural Networks. These algorithms have been 

widely used in proteomic research. For example, the k-nearest neighbor (k-NN) algorithm 

has been used to predict the protein subcellular location based on its sequence (Huang et 

al., 2004). The combination of SVM and Bayesian classifier was used to predict the sur-

face residues of proteins that participate in protein-protein interactions. (Yan et al., 2004). 

In addition, machine learning techniques can be used to reduce the dimensionality of 

high-dimensional proteomics data, which is another key application, such as Linear Dis-

criminant Analysis (LDA), principal component analysis (PCA), and t-Distributed Sto-

chastic Neighbor Embedding (t-SNE) are popular methods which are chosen for such 

propose (Chen et al., 2020).  

In recent years, deep neural networks or deep-learning algorithms have been used to en-

hance feature selection, peptide identification, and protein inference for proteomics re-

search. (Meyer et al., 2021). Deep neural networks have two major types: recurrent neural 

network (RNN) (Rumelhart et al., 1986) and convolutional neural network (CNN)  
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(Fukushima, 1980) based on fundamental tasks such as image and natural language pro-

cessing. Different deep neural networks have different frameworks, which are character-

ized by different settings including the number of neurons, layers, and connections be-

tween layers (Wen B et al.,2020). 

For the CNN, convolutional and pooling layers are fundamental to such architecture, 

which are usually followed by fully connected layers to process the final output generated 

from convolutional layers. In CNN, the backpropagation algorithm is used to train the 

convolution kernel. An important function of CNN for processing information is to ex-

tract high-level features by sliding filters on images or sequences in convolution opera-

tions. Then the patterns captured by convolutional layers are identified by pooling layers. 

The outputs from each neuron in CNN are controlled by the activation function. The 

widely used functions for activation layers include tanh, sigmoid, softmax, ReLU, and 

leaky ReLU. Through pooling layers, the pixel or sequence information is vectorized and 

concatenated, which then flows into dense layers. At the end of CNN, a loss layer is gen-

erally connected to adjust the performance of the model. CNN has been applied in medi-

cal image and sequence data analysis (Tang B et al., 2019; Wen B et al.,2020). The frame-

work for a typical CNN is shown in Figure 2.12. 

 

 

Figure 2.12 The framework for a typical CNN (Tang B et al., 2019). 

 

For the RNN, different architectures and strategies were proposed, which include gated 

recurrent units (GRU) (Chung et al., 2014) and long short-term memory (LSTM) 

(Hochreiter and Schmidhuber, 1997). Like CNN, the process of information in RNN is 

also trained with the backpropagation algorithm. In RNN, most of the previous infor-

mation can be utilized for the current status process, which is illustrated in Figure 2.13 

and Equation (2) 
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𝐻𝐻𝑛𝑛 =   𝜎𝜎1 (𝑊𝑊1,𝑛𝑛
𝑇𝑇 𝐻𝐻𝑛𝑛−1 + 𝑊𝑊2,𝑛𝑛

𝑇𝑇 𝑋𝑋𝑛𝑛 + 𝑏𝑏1,𝑛𝑛)                                 (2) 

where Hn stands for the hidden layer neuron, W1,n and W2,n are weight matrix, b1,n represent 

a bias matrix, and 𝜎𝜎(∙) stands for an activation function.  

While the total loss Ltotal from each hidden layer is shown as Equation (3) 

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ∑𝑛𝑛=1
𝑁𝑁 𝐿𝐿𝑛𝑛 = ∑𝑛𝑛=1

𝑁𝑁 𝐿𝐿(𝑌𝑌� ,𝑌𝑌)                                    (3) 

By performing the backpropagation process, the parameters for each neuron are updated 

after each iteration. For the sequence inputs, RNN processes one element each time by 

using cyclic and recurrent units.  

 

Figure 2.13 Schematic illustrations for RNN. Items X, Y, and W have the same meaning as Equation 

(2); while Li stands for the loss function for a given step (Tang B et al., 2019). 

 

However, the traditional RNN can not solve the long-time dependence problems very 

well, thus GRU and LSTM were proposed to address this issue. While GRU is a simpli-

fied and efficient version of LSTM. The architecture and information flow of LSTM is 

shown in Figure 2.14. In Figure 2.14, the information flow from past to new features for 

the input gate is shown as the yellow track. The green track denotes both an input gate 

and hidden layer neurons. While the blue track denotes the output gate which is influenced 

by the yellow track. 
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Figure 2.14 Schematic illustrations for LSTM. Items X, Y, and W have the same meaning as above  

(Tang B et al., 2019). 

 

For the applications of deep-learning approaches to proteomics, the predictions based on 

the peptide sequences have been studied intensively, such as the retention time prediction 

(Ma et al., 2018; Yang et al., 2020) and fragment ion intensities (Zhou et al., 2017; Ges-

sulat et al., 2019). The identifications of peptides and proteins are greatly improved by 

deep learning, such as the acquirement of features for LC-MS (Kantz et al., 2019). More-

over, de novo sequencing is also facilitated by the application of deep learning, such as 

the DeepNovo used for de novo sequencing by combining CNN and RNN (Tran et al., 

2017). In my doctoral research, all the above deep-learning techniques were used for MS-

based proteomics.  
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3. Summary 

Genomics, transcriptomics, and proteomics are fundamental blocks that shaped modern 

biology. High throughput and large-scale techniques, such as next-generation sequencing 

(NGS) and mass spectrometry (MS), have been widely used in the life sciences. Due to 

the complexity of these data, the analysis needs to be done by sophisticated bioinformatic 

methods. During my doctorate research, I developed new computational methods and 

applied new strategies to advance the research in genomics, transcriptomics, and prote-

omics. 

NGS has brought tremendous and numerous changes to genomic research by providing 

higher sensitivity, sequencing depth, and throughput compared with traditional sequenc-

ing methods, such as Sanger sequencing, qPCR, and microarrays. Benefiting from the 

advantages of NGS technology, RNA-seq has been widely used for the qualitative and 

quantitative analysis of genome wide changes in gene expression. Chromatin immuno-

precipitation sequencing (ChIP-seq) as another popular application of NGS provides an 

efficient way to analyze the interaction between proteins and DNA. During my doctoral 

studies, I used these techniques to uncover the mechanisms behind the hybrid incompat-

ibility between Drosophila melanogaster and D.simulans.  

The loss of HMR in D.melanogaster leads to mitotic defects, increased transcription of 

transposable elements, and deregulated heterochromatic genes. Through the genome-

wide analysis of HMR’s localization by ChIP-seq, I found that genomic insulator sites 

bound by HMR can be grouped into two clusters. One set is composed of gypsy insulators, 

whereas the other is bordered by HP1a-bound areas of active genes. In Hmr mutant flies, 

the transcription of genes belonging to the latter group is severely disrupted in larval tis-

sue and ovaries. These findings showed a novel connection between HMR and insulator 

proteins, indicating a possible role for genome organization in species development. 

Beyond the study of particular genes, and RNA transcripts, I also dedicated my work 

towards improving proteomic research by accurately predicting fragmentation patterns of 

peptides in tandem mass spectrometry (MS) with deep-learning.  

MS is an important and powerful technology for proteomic research. In recent years, with 

the development of both theoretical and industrial technology and methods, the research 

scope of proteome has improved at an unprecedented speed. SWATH-MS is a mass spec-

trometric technique that combines the advantages of targeted data analysis and combines 
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it with the speed of time-of-flight (ToF) mass spectrometers to improve peptide quantita-

tion and identification in a data-independent acquisition (DIA) mode. SWATH-MS can 

analyze proteomes on a much larger scale than traditional methods such as data-depend-

ent acquisition (DDA), parallel reaction monitoring (PRM), or selected reaction monitor-

ing (SRM) due to its increased reproducibility and accuracy. Moreover, SWATH-MS 

shows a significant increase in the detection rates of peptides and proteins along with 

higher accurate quantifications.  

However, mass spectra data generated by SWATH-MS showed a higher complexity com-

pared to the traditional DDA mass spectrometry method. Therefore, more accurate data 

analysis strategies were required to address this complexity. At the beginning of my doc-

torate, SWATH-MS relied entirely on fragment libraries generated by DDA experiments, 

which greatly limited the number of detectible and identifiable peptides. Hence, the ex-

tension of the search space is crucial to improve both identification and quantitation on a 

proteome-wide scale, especially for SWATH-MS analysis.  

With the development of new computational approaches to complex problems, more and 

more biological questions were addressed successfully. In this work, we applied such 

advanced methods to build a prediction framework that is composed of several tools: 

dpMS for mass spectra prediction, dpRT for retention time prediction, and dpMC for 

missed tryptic cleavages prediction, along with other new strategies to improve the effec-

tive search space for SWATH-MS in high quality. With the in-silico library, we can iden-

tify proteins and peptides that exceed the experimental library limitation. We demon-

strated the reproducibility and efficiency of dpSWATH across different organisms from 

D. melanogaster and H. sapiens on a Q-TOF instrument. With different experimental 

conditions, dpSWATH can build highly reliable theoretical libraries for SWATH-MS 

analysis. Consequently, the new searching space has improved both sensitivity and spec-

ificity for SWATH-MS analysis at a higher level. 

Within this thesis I summarize three publications I (co)authored: one of which is 

on the analysis of next generation sequencing, and the other two are on the work of pre-

dictions for mass spectrometry, which are listed above. 
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4. Zusammenfassung 

Genomik, Transkriptomik und Proteomik sind grundlegende Bausteine, die die moderne 

Biologie geprägt haben. Hochdurchsatz- und groß angelegte Techniken wie die Hoch-

Durchsatz Sequenzierung (NGS) und die Massenspektrometrie (MS) werden in den 

Biowissenschaften in großem Umfang eingesetzt. Aufgrund der Komplexität dieser 

Daten muss die Analyse mit ausgefeilten bioinformatischen Methoden durchgeführt 

werden. Während meiner Doktorarbeit habe ich neue Methoden entwickelt und neue 

Strategien angewandt, um die Forschung in den Bereichen Genomik, Transkriptomik und 

Proteomik voranzutreiben. 

NGS hat die Genomforschung in vielerlei Hinsicht verändert, da es im Vergleich zu 

herkömmlichen Sequenzierungsmethoden wie Sanger-Sequenzierung, qPCR und 

Microarrays eine höhere Empfindlichkeit, Sequenzierungstiefe und einen höheren 

Durchsatz bietet. RNA-seq profitiert von den Vorteilen der NGS-Technologie und wurde 

in großem Umfang für die qualitative und quantitative Analyse genomweiter 

Veränderungen der Genexpression eingesetzt. Die Chromatin-Immunpräzipitations-

Sequenzierung (ChIP-seq), eine weitere Anwendung von NGS, bietet eine effiziente 

Möglichkeit zur Analyse der Interaktion zwischen Proteinen und DNA. Während meines 

Promotionsstudiums habe ich diese Techniken eingesetzt, um die Mechanismen hinter 

der Hybridinkompatibilität zwischen Drosophila melanogaster und Drosophila simulans 

aufzudecken. 

Der Verlust von HMR in D. melanogaster führt zu mitotischen Defekten, erhöhter 

Transkription von transposablen Elementen und deregulierten heterochromatischen 

Genen. Durch die genomweite Analyse der HMR-Lokalisierung mittels ChIP-seq habe 

ich herausgefunden, dass genomische Isolatorstellen, die von HMR gebunden werden, in 

zwei Gruppen unterteilt werden können. Die eine Gruppe besteht aus Gypsy-Insulatoren, 

während die andere von HP1a-gebundenen Bereichen aktiver Gene begrenzt wird. Bei 

Hmr-mutierten Fliegen ist die Transkription von Genen, die zur letzteren Gruppe 

gehören, im Larvengewebe und in den Eierstöcken stark gestört. Diese Ergebnisse zeigen 

eine neuartige Verbindung zwischen HMR und Isolatorproteinen, was auf eine mögliche 

Rolle der Genomorganisation bei der Entwicklung von Arten hinweist. 

Neben der Untersuchung bestimmter Gene und RNA-Transkripte widmete ich meine 

Arbeit auch der Verbesserung der Proteomforschung durch die genaue Vorhersage von 
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Fragmentierungsmustern von Peptiden in der Tandem-Massenspektrometrie (MS) mit 

Hilfe von Deep-learning. 

Die MS ist eine wichtige und leistungsfähige Technologie in der Proteomforschung. In 

den letzten Jahren hat sich der Umfang der Proteomforschung durch die Entwicklung 

sowohl theoretischer als auch experimenteller Technologien und Methoden dramatisch 

verbessert. SWATH-MS ist eine massenspektrometrische Methode, die die Vorteile der 

gezielten Untersuchung von individuellen Analyten mit der Geschwindigkeit von 

Flugzeit-Massenspektrometern kombiniert, um die Quantifizierung und Identifizierung 

von Peptiden in einer datenunabhängigen Messung (DIA) zu verbessern. SWATH-MS 

kann Proteome in einem viel größeren Umfang analysieren als herkömmliche Methoden 

wie die datenabhängige Messung (DDA), die parallele Messung von 

Fragmentübergängen (PRM) oder die Messung ausgewählter Fragmente (SRM), da es 

eine höhere Reproduzierbarkeit und Genauigkeit bietet. Darüber hinaus zeigt SWATH-

MS eine signifikante Steigerung der Detektionsraten von Peptiden und Proteinen 

zusammen mit einer höheren Quantifizierungsgenauigkeit. 

Die mit SWATH-MS erzeugten Massenspektren sind jedoch komplexer als bei der 

herkömmlichen DDA-Massenspektrometrie. Daher sind genauere 

Datenanalysestrategien erforderlich, um diese Komplexität zu bewältigen. Zu Beginn 

meiner Promotion stützte sich SWATH-MS ausschließlich auf Fragmentbibliotheken, die 

aus DDA-Experimenten stammten, was die Zahl der nachweisbaren und identifizierbaren 

Peptide stark einschränkte. Durch die von mir entwickelte Methode konnte ich den 

Suchraum deutlich erweitern, um sowohl die Identifizierung als auch die Quantifizierung 

auf proteomweiter Ebene zu verbessern.  

Mit der Entwicklung neuer computergestützter Ansätze für komplexe Probleme konnten 

immer mehr biologische Fragen erfolgreich beantwortet werden. Die von mir entwickelte 

bioinformatische Methode besteht aus mehreren Komponenten: dpMS für die Vorhersage 

von Fragmentspektren, dpRT für die Vorhersage von Retentionszeiten und dpMC für die 

Vorhersage tryptischer Spaltungen, um den effektiven Suchraums für SWATH-MS zu 

erweitern. Mit der so (in-silico) generierten  Bibliothek von Fragmentspektren konnte ich  

deutlich mehr Proteine und Peptide identifizieren. Ich konnte die Reproduzierbarkeit und 

Effizienz von dpSWATH durch Messung von Proteomen aus verschiedenen Organismen 

auf einem Q-TOF-Instrument nachgeweisen. Unter verschiedenen Versuchsbedingungen 

kann dpSWATH sehr zuverlässige theoretische Bibliotheken für die SWATH-MS-
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Analyse erstellen und damit die Sensitivität als auch die Spezifität der SWATH-MS-

Analyse verbessern. 

In dieser Arbeit fasse ich drei Publikationen zusammen, die ich (mit-)verfasst habe: eine 

davon befasst sich mit der Analyse von Next Generation Sequencing, die beiden anderen 

mit der Arbeit an Vorhersagen für die Massenspektrometrie, die oben aufgeführt sind. 
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5. The Drosophila speciation factor HMR localizes to genomic 

insulator sites (Paper I) 

The lethal interaction of the proteins encoded by the Hmr and Lhr genes can cause hybrid 

incompatibility between Drosophila melanogaster and D.simulans. HMR plays a key role 

in the mitotic process. In this study, we analyzed the function of HMR by genome-wide 

localization and chromatin immunoprecipitation. The result implicates genome organiza-

tion playing a potential role in the formation of species by analyzing the connection be-

tween HMR and insulator proteins. 

 

Thomas Andreas Gerland, Bo Sun, Pawel Smialowski, Andrea Lukacs, Andreas Walter 

Thomae, and Axel Imhof. 2017. “The Drosophila Speciation Factor HMR Localizes to 

Genomic Insulator Sites.” PLOS ONE 12 (2): e0171798. doi:10.1371/jour-

nal.pone.0171798. 
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6. Investigation and highly accurate prediction of missed 

tryptic cleavages by deep-learning (Paper II) 

Trypsin has been widely used in MS analysis for its exclusive cleavages at the C-terminus 

of lysine and arginine of peptide bonds. During the past few years, people had put a lot 

of effort into the highly accurate predictions of missed tryptic cleavages for the improve-

ment of identifications and quantifications of proteins. In this work, we achieved high 

accuracy for the predictions of missed tryptic cleavages by deep-learning. With such a 

highly accurate prediction tool, we believe people can leverage its power to improve the 

performance of MS analysis. 

 

Bo Sun, Pawel Smialowski, Tobias Straub, and Axel Imhof. 2021. “Investigation and 

Highly Accurate Prediction of Missed Tryptic Cleavages by Deep Learning.” Journal of 

Proteome Research. doi:10.1021/acs.jproteome.1c00346. 
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7. Improving SWATH-MS analysis by Deep-learning (Paper 

III) 

Sequential windowed acquisition of all theoretical fragment ion spectra mass spectrome-

try (SWATH-MS) is a popular approach for MS analysis, which is a DIA method that can 

be applied at an unprecedented speed. However, such analysis needs high quality and 

extensive searching space to cover all the theoretical peptide candidates. Generally, the 

search libraries are created by data-dependent acquisition (DDA) experiments. In order 

to improve the search space of SWATH-MS analysis, we developed the tool for building 

a high-quality theoretical library for SWATH-MS analysis.  

 

Bo Sun, Pawel Smialowski, Wasim Aftab, Andreas Schmidt, Ignasi Forne, Tobias 

Straub, and Axel Imhof. 2022. “Improving SWATH-MS analysis by Deep Learning.” 

Proteomics, 2022, doi: 10.1002/pmic.202200179. 
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Discussion 

Genomics, transcriptomics, and proteomics have been experiencing a fast-developing pe-

riod for the benefit given by the improvement of NGS and MS. However, with the in-

crease of data generated from different NGS and MS platforms, the complexity of such 

data is also posing challenges for analysis. ChIP-seq has become an indispensable tech-

nique for the analysis of the interactions between DNA and proteins. In the study of the 

mechanisms of HMR in D.melanogaster, the localization of HMR to genomic insulator 

sites was elucidated by ChIP-seq, which revealed the relationship between HMR and in-

sulator proteins. Meanwhile, RNA-seq has been a ubiquitous method to analyze gene ex-

pression on the transcriptomic level. Through the analysis of the expression of HMR-

bound genes by RNA-seq, we find the associated genomic insulator sites can be divided 

into two clusters, in which one set is bordered by HP1a-bound areas of active genes, 

whereas the other is composed of gypsy insulators.  

The complex fragment ion spectra generated during a data-independent acquisition (DIA) 

method of proteomics experiments result in much larger and richer information to be an-

alyzed compared to the more classical data-dependent acquisition methods (DDA). One 

of the challenges is posed by the construction of high-quality fragment libraries, which is 

crucial for both the identification and quantification of proteins. The spectral library is 

one important part of the analysis of spectra generated by DIA. Traditionally, the spectral 

library is prepared by DDA experiments. However, the coverage and recovery rate of 

such an experimental library cannot fully meet the requirements of DIA analysis for its 

limited detected precursors. In recent years, some algorithms have been developed for 

this purpose, however, the training of such models is based on Orbitrap mass spectrome-

ters, which have more consistent and higher-quality mass spectra compared to the Q-TOF 

machine. On the other hand, the Q-TOF platform can provide people with a high-speed 

acquisition of tandem mass spectra. In this work, we developed a framework by deep 

learning, dpSWATH, to extend the search space for high-quality SWATH-MS analysis 

on the Q-TOF platform. The mass spectra generated from the Q-TOF platform have lower 

quality and reproducibility, which needs to filter noises and prepare more consistent mass 

spectra for training models on such a platform. For this reason, we designed an algorithm, 

dpMScore, to perform the clustering of mass spectra from a Q-TOF instrument.  

The two major components of in silico library are the predicted intensities and retention 

time of given precursors, for which we developed dpMS and dpRT. We then prepared the 
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theoretically digested peptide candidates for the theoretical library for SWATH-MS anal-

ysis. Compared to the experimental library, much more peptide candidates for given pro-

tein groups can be integrated into the theoretical library for the Q-TOF platform. All the 

predictions by dpSWATH can lead to more identifications and accurate quantifications 

of protein groups and peptides compared to the experimental library. However, with the 

increase of precursors in the theoretical library, the false positives also increase. So the 

control of FDR for the precursor candidates for the theoretical library is crucial for the 

building of high-quality searching space for SWATH-MS analysis. To decrease the FDR 

issue for a such big searching library, we prepared the theoretical digested peptides by 

dpMC, which predicts the missed tryptic cleavages. By the application of dpMC, we can 

not only decrease the size of the theoretical library but also prepare the theoretical library 

with more detectable precursor candidates. Based on the above strategies, we construct a 

high-quality search space for SWATH-MS analysis. 

Moreover, the in silico library was also built based on the transcriptome data, which 

achieved more protein groups with acceptable FDR compared to the experimental library. 

However, the whole proteome-wide analysis still needs to be explored. The FDR in-

creased dramatically when the number of uncertain peptide entries in the search library. 

So more accurate predictions of detectable peptide candidates need to be performed for 

the building of a theoretical library. Furthermore, we will continue to fuel the model with 

more high-quality Q-TOF mass spectra data from more experiments or by improving the 

algorithm of filtering noises, to improve the whole performance of dpSWATH model. 

Thus, we believe the development of dpSWATH can improve SWATH-MS analysis on 

a deeper scale with sample-specific detected candidates on proteome-wide analysis. 

Recently, some other advanced SWATH-MS methods have been developed, such as the 

Scanning SWATH (Messner CB et al., 2021), and Zeno SWATH MS (Wang Z et al., 

2022). By application of such techniques, more proteins are identified with less volume 

of samples at ultra-fast speed compared to traditional DIA methods. However, the bioin-

formatic methods for such analysis still need to be developed and optimized, either with 

traditional statistical or machine learning approaches, for example, to build project-spe-

cific in silico libraries or optimized library-free approach for ultra-fast SWATH-MS anal-

ysis. 
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