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ZUSAMMENFASSUNG

Lebende Zellen sind auf den aktiven Umbau von Zytoskelettstrukturen angewiesen. Dieser Um-
bau wird durch die Wechselwirkung von Filamenten mit einer Vielzahl von verschiedenen assozi-
ierten Proteinen vermittelt, am wichtigsten sind hierbei Motorproteine. Motorproteine funktionie-
ren, indem sie chemische Energie nutzen, um Kraft und Bewegung zu erzeugen. Filament-Motor-
Mischungen sind daher ein exemplarisches Beispiel für Nichtgleichgewichts Physik. Die Umwand-
lung von chemischer Energie ermöglicht es Filament-Motor-Mischungen sich räumliche und zeit-
lich zu Organisieren. Die Frage wie die Wechselwirkungen zwischen Motorproteinen und Filamen-
ten, welche auf der Längenskala von Nanometern stattfinden, zu räumlicher Organisation auf der
Längenskala von bis zu hunderten von Mikrometern führen kann, steht im Mittelpunkt dieser Ar-
beit. Um diese Frage zu untersuchen, habe ich zwei representative Wechselwirkungen zwischen
Motorproteinen und Zytoskelettfilamenten untersucht: Erstens Längenregulierung von Filamenten
durch Motorproteine in Kapitel 2 und zweitens die motorinduzierte Kräfte zwischen Filamenten im
Kapitel 3.

Im Kapitel Collective filament length regulation in filament-motor mixtures untersuchen wir ein
minimales biophysikalisches Modell zur Regulierung der Filamentlänge durch Motorenproteine in
einer Mischung von Kinesin-8-Motoren und Mikrotubuli. Dabei berücksichtigen wir explizit die dif-
fuse Umverteilung von zytosolischem Tubulin und Kinesin-8. Wir leiten eine hydrodynamische Be-
schreibung des Modells auf der Grundlage von Zeit- und Längenskalenseperationsargumenten her.
Diese theoretische Beschreibung wird von umfangreichen Computersimulationen begleitet, wel-
che unsere theoretische Beschreibung untermauern. Bemerkenswerterweise stellen wir fest, dass
das Filament-Motor-Gemisch trotz der Tatsache, dass die Filamente nur indirekt über einen ge-
meinsamen Ressourcenpool miteinander interagieren, in der Lage ist, sich in Strukturen zu orga-
nisieren die meherere Filamentlängen überspannen und eine Ordnung der Filament Ausrichtung
aufweißen, die jener von Filamentastern ähnelt. In dem nachfolgenden Abschnitt formalisieren wir
unseren theoretischen Ansatz und führen eine Momenten- und Gradientenentwicklung durch, um
unsere hydrodynamische Theorie herzuleiten. Unter Verwendung von agenten basierten Simulatio-
nen untersuchen wir die Langzeitdynamik des Systems auf einer phänomenologischen Ebene und
finden spontane Symmetriebrechungen in der räumlichen Orientierung der Filamente, als auch
Wellenlösungen, Koaleszenz und Coarsening der entstehenden Filamentstrukturen.

Im Kapitel Collective filament motion in active filament bundles untersuchen wir die emergente
kollektive Dynamik in Filamentbündeln, die durch Motorproteine vernetzt sind, welche mechani-
sche Kräfte auf die Filamente ausüben. Ausgehend von einem mikroskopischen Modell und basie-
rend auf einem Argument der Trennung von Zeitskalen leiten wir eine effektive Filament-Filament-
Wechselwirkung ab. Basierend auf dieser effektiven Filament-Filament-Wechselwirkung untersu-
chen wir das kollektive Zusammenspiel zwischen den von den Motoren erzeugten Kräften und der
Dynamik des Filamentbündels. Im ersten Abschnitt untersuchen wir ein Bündel von Filamenten,
welche durch eine Vielzahl von verschiedenen Motoren vernetzt sind, und fragen, welche Mecha-
nismen die Tendenz des Filamentbündel, sich zusammenzuziehen oder auszudehnen, kontrollie-
ren. Auf der Grundlage eines generischen Modells für motorische Vernetzer leiten wir einen For-
malismus zur Quantifizierung der aktiven Spannung in einem Bündel vernetzter Filamente ab. Mit
Hilfe dieses generischen Modells untersuchen wir ein System, das aus Filamenten, passiven Ver-
netzern und Motorproteinen besteht, welche sich am Ende von Filamenten ansammeln können.
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VI ZUSAMMENFASSUNG

In diesem System identifizieren wir drei externe Kontrollparameter, die die Tendenz der Filament-
bündel, sich zusammenzuziehen oder auszudehnen, regulieren: Erstens, die Gesamtzahl der Mo-
toren im System. Zweitens, die Gesamtzahl der passiven Vernetzer und drittens die Filamentlänge.
Wir validieren unsere theoretischen Vorhersagen und untersuchen die entstehende Langzeitdyna-
mik des Filamentbündels mit Hilfe von agentenbasierten Simulationen. Unsere Vorhersagen sind
im Einklang mit neusten in vitro Experimenten. In den folgenden Abschnitten haben wir die Frage
behandelt, wie motorische Vernetzer die Filamentgleitgeschwindigkeit in einem Bündel vernetzter
Filamenten kontrollieren. Auf der Skala eines einzelnen Filamentpaares scheint die motorisch er-
zeugte Filamentbewegung von der relativen Orientierung der Filamente abzuhängen. In vivo und
in vitro Beobachtungen an der mitotischen Spindel zeigen jedoch, dass die Geschwindigkeit von Fi-
lamenten unabhängig von der lokalen Anzahl der Interaktionspartner mit gleicher oder entgegen-
gesetzter Orientierungen ist. Motiviert durch diesen scheinbaren Widerspruch setzten wir uns das
Ziel zu verstehen, welche Prozesse die Filamentgeschwindigkeit in aktiven nematischen Netzwer-
ken regulieren: Wir haben einen Mechanismus für die kollektive Filamentbewegung identifiziert:
Aufgrund der starken Vernetzung im Filamentbündel kann lokal erzeugte Kraft über eine charak-
teristische Längenskala durch das Netzwerk propagiert werden. Diese Längenskala wird durch den
Antagonismus zwischen dem Widerstand gegenüber der umgebenden Flüssigkeit und den aktiven
motorischen Kräften, die auf das Filament einwirken, bestimmt. Anschließend haben wir mit Hilfe
von Computersimulationen untersucht, wie der identifizierte Mechanismus von der Konnektivität
des Filamentnetzwerks abhängt.

Zusammengefasst haben wir untersucht, wie die Wechselwirkungen zwischen Motorproteinen
und Filamenten, die auf der Nanometerskala stattfinden, die emergente kollektive Dynamik von
Filament-Motor-Gemischen auf der Mikrometerskala beeinflusst. Wir haben gezeigt, dass die ak-
tive Depolymerisation von Filamenten in Kombination mit Massenerhaltung nicht nur die Größe
der emergenten Filamentstrukturen kontrolliert, sondern auch einen Weg zur Selbstorganisation
von Filamentstrukturen bietet. In Bündeln von Filamenten, die durch Motorproteine vernetzt sind,
welche mechanische Kräfte auf die Filamente ausüben können, haben wir gezeigt, wie die aktive
Spannung und die Filamentgeschwindigkeit von den kinetischen und mechanischen Eigenschaf-
ten der motorischen Vernetzer abhängt. Unsere Arbeit zeigt, warum einige motorische Vernetzer zu
einer Kontraktion des Filamentnetzwerks führen, während andere ein sich ausdehnendes Filament-
Motor-Gemisch erzeugen.

In der lebenden Zelle sind motorvermittelte Filamentlängenregulation und motorvermittelte me-
chanische Wechselwirkungen zwischen Filamenten keine isolierten Prozesse - sie finden gleichzei-
tig statt. Es wird eine spannende Forschungsfrage sein, die kollektive Dynamik von Filamentmotor-
mischungen zu verstehen, in welchen sowohl motorvermittelte mechanische Filament-Filament-
Wechselwirkung als auch Längenregulation stattfinden.



SUMMARY

Living cells rely on the active remodeling of cytoskeletal structures. This remodeling is mediated by
the interaction of filaments with a variety of different associated proteins, most importantly motor
proteins. Motor proteins operate by using chemical energy to generate force and movement. Thus,
filament-motor-mixtures are a paradigmatic example of out-of-equilibrium physics. The transduc-
tion of chemical energy enables filament-motor-mixtures to obtain spatial and temporal organiza-
tion. How interactions between motor proteins and cytoskeletal filaments, which happen on the
nanometer scale, can give rise to spatial organization on the scale of up to hundreds of micrometers
is the main focus of this thesis. To approach this question, I studied two typical interactions between
motor proteins and cytoskeletal filaments: First, motor-mediated length regulation of filaments in
chapter 2, and second, motor-mediated force generation in chapter 3.

In the chapter Collective filament length regulation in filament-motor mixtures, we study a min-
imal biophysical model for motor-mediated filament length regulation in an ensemble of kinesin-8
motors and microtubules. Importantly, we account explicitly for the diffusive redistribution of cy-
tosolic tubulin and kinesin-8 motors. We derive a hydrodynamic description of the model on the
basis of time and length scale separation arguments. Our theoretic description is accompanied by
large-scale computer simulations. Strikingly, we find that, even though filaments interact only indi-
rectly via a shared pool of resources, the filament-motor-mixture is capable of self-organizing into
structures that span multiple filament lengths and show aster-like orientational order. In the subse-
quent section, we formalize our theoretical approach and perform a moment and gradient expan-
sion to derive our hydrodynamic theory. Using agent-based simulations, we study the long-term
dynamics of the system on a phenomenological level and find spontaneous symmetry breaking in
the orientational order, traveling wave solutions, coalescence and coarsening of the emerging fila-
ment structures.

In the chapter Collective filament motion in active filament bundles, we investigate emergent col-
lective dynamics in filament bundles cross-linked by motor proteins that exert mechanical forces
on the filaments. Starting from a microscopic model and based on a time-scale separation argu-
ment, we derive a coarse-grained filament-filament interaction. Based on this filament-filament
interaction, we study the collective interplay between motor-generated forces and filament bun-
dle dynamics. In the first section, we study a bundle of filaments that are cross-linked by a set of
motors and ask which mechanisms control the filament bundles’ propensity to contract or expand.
Based on a generic model for motor cross-linkers, we derive a formalism to quantify the active ten-
sion in a bundle of cross-linked filaments. Using this generic model, we study a system composed
of filaments, passive bundling agents, and cross-linking motors that can dwell at the filament tip.
In this system, we identify three external control parameters that regulate the filament bundles’
propensity to contract or expand: First, the total number of motors in the system. Second, the total
number of bundling agents, and third, the filament length. We validate our theoretical predictions
and study the emergent long-term dynamics of the filament bundle using agent-based simulations.
Our predictions are in accordance with recent in vitro experiments. In the following sections, we
addressed the question of how motor cross-linkers control the filament sliding speed in a bundle
of cross-linked filaments. On the microscopic scale, motor-generated filament motion seems to be
inherently linked to the relative orientation of cross-linked filaments. However, in vivo and in vitro
observations in the mitotic spindle demonstrated that the speed of filament sliding is independent
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VIII SUMMARY

of the local number of interaction partners with equal and opposite orientations. Motivated by this
apparent contradiction, we sought to understand which processes regulate collective filament slid-
ing in active nematic networks. We identified a mechanism for collective filament sliding: Owing
to the cross-linking in the filament network, the locally generated force can be propagated through
the network over a characteristic length scale. This length scale is set by the antagonism between
dissipation to the surrounding fluid and active motor-driven forces imposed on the filament. We
then proceeded to study how the identified mechanism depends on the connectivity of the filament
network with the help of large-scale computer simulations.

Taken together, we have studied how interactions of motor proteins and filaments, which take
place on the nanometer scale, affect the emergent collective dynamics of filament-motor-mixtures
on the scale of micrometers. We have shown that the active, motor-mediated depolymerization
of filaments, in combination with mass conservation, does not only control the size of emergent
filament structures but provides a self-organization pathway on its own. In bundles of filaments
cross-linked by motor proteins capable of exerting mechanical force, we have shown how the ac-
tive tension and the sliding speed of filaments depend on the kinetic and mechanical properties of
the cross-linking motor proteins. Thereby, our work clarifies why some motor cross-linkers cause
filament network contraction while others promote extensile tension in filament-motor mixtures.

In the living cell, motor-mediated filament length regulation and motor-mediated mechanical in-
teractions between filaments are no isolated processes – they take place simultaneously. It will be
an interesting avenue for future research to understand the collective dynamics of filament-motor-
mixtures where both motor-mediated mechanical filament-filament interactions and length regu-
lation are present.
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PREFACE

Living cells demonstrate an astonishing diversity of capabilities and functions. This includes cell
division, cell motility, exerting force and resisting deformation, and transporting intracellular cargo
[5–7]. An essential component enabling the cell to exhibit those stunning properties is the cytoskele-
ton. Biopolymer filaments such as actin and microtubules, molecular motors, and associated pro-
teins are the main building blocks of this structure [7–9]. For cytoskeletal filament assemblies to
perform their tasks, they must have a high degree of spatial and temporal organization that spans
multiple time and length scales [10–14]. Those time and length scales range from the transport of
individual proteins on single filaments that exist only for seconds to the formation of cytoskeletal
filament structures that exist for up to hours, contain thousands of filaments, and exhibit specific
spatial organization. This leads to the question: How can the orchestrated interplay of many small,
short-living components emerge in large-scale spatial and temporal organization without a conduc-
tor? Essential for the self-organization of cytoskeletal filament structures is the ability of molecular
motors to transduce chemical energy [8, 15]. The ability to convert chemical energy into mechanical
work makes filament-motor mixtures an exemplary system for nonequilibrium physics and enables
them to obtain spatial and temporal organization. Unlike equilibrium systems, for non-equilibrium
systems, no general concepts bridge the properties of a single component to the collective proper-
ties of the system [16]. In the absence of a general theoretical framework, a complementary ap-
proach is to study individual exemplary systems with different microscopic dynamics in the hope
that insights gained from those systems might reveal general principles.

Arguably the most prominent example of cytoskeletal self-organization is the mitotic spindle,
a complex structure necessary to accurately segregate chromosomes during cell division [17–19].
In the 1950s, the spindle was discovered to consist of fibers [20] later identified as microtubules.
To segregate chromosomes, it was proposed that those fibers exert force on the chromosomes by
(de)polymerization kinetics [21]. This interpretation was challenged by the discovery of short in-
terconnections between microtubules, which were referred to as cross-bridges [22]. This discovery
has led to the idea of a sliding filament mechanism for chromosome segregation [23]. The relative
importance of polymerization kinetics and filament sliding has long been under debate, with the
prevailing view being that both processes are essential for proper spindle functionality [19]. But
how do those processes emerge from the interplay of individual proteins, the elementary building
blocks of the cell? A constantly expanding set of experimental methods has led to the identifica-
tion of approximately 200 proteins thought to be essential for proper spindle functionality [24]. Yet
a mechanistic understanding of how these proteins self-organize to generate force and shape the
spindle is still missing [17].

The overwhelming number of proteins and the complexity of the cytoskeletal organelle assembly
have led to the development of reconstituted systems composed of purified components. Those
systems allow the study of individual proteins under well-controlled conditions and more accurate
measurement techniques. The range of reconstituted systems spans from single filament experi-
ments to collections of thousands of filaments mixed with several purified proteins, leading to a
new research area on its own. Single filament experiments are used to assess mechanical properties
of individual microtubules and actin fibers [25–30] as well as their interplay with specific associated
proteins [31–36]. Thereby it is possible to gain insight into how filament polymerization kinetics and
filament cross-bridging are regulated. In contrast, large-scale reconstituted systems investigate the
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emergent collective dynamics of filament-motor mixtures [37–40]. The hope is that insights gained
from those “minimal” systems allow us to draw conclusions about fundamental mechanisms driv-
ing self-organization of cytoskeletal filament structures in vivo.

To gain insight into the physical principles that determine the dynamics of single filaments, the-
orists have developed kinetic models accounting for filament-protein interactions [41–47]. These
models are accompanied by hydrodynamic theories, which are built on symmetry arguments those
theories are used to describe the collective dynamics of filament-motor mixtures. While these the-
ories have been proven to be a powerful tool to understand the large-scale dynamics on a phe-
nomenological level [48–52] they come at a price and contain phenomenological parameters that
are difficult to relate to microscopic interactions of the constituents.

A key challenge for theorists in the field is to bridge the gap between insights from single filament ex-
periments to the collective dynamics of filament-motor mixtures. Successfully doing so would allow
for a more accurate design of reconstituted cytoskeletal materials and, hopefully, for more precise
manipulation of in vivo filament structures. The difficulty in deriving such theories is that they have
to span multiple time and length scales. The small scale constitutes the (reaction-)dynamics of pro-
teins with individual filaments, which happens on the time scale of milliseconds and on the typical
length scale of protein size (nanometers). The large scale is set by the lifetime of cytoskeletal fila-
ment assemblies and the spatial organization of reconstituted filament systems (up to millimeter
scale). A theory accounting for the dynamics on all those scales is elusive or, if not, most certainly
not particularly insightful due to its complexity. More promising are approaches that rely on time
and/ or length scale separation. The overarching goal of this thesis is to start from well-established
single filament experiments and apply those approximation techniques to derive consequences at the
collective level. Specifically, we will discuss systems composed of microtubules and motor proteins
that play a role in the two hallmark processes of spindle assembly – filament (de)polymerization
and filament sliding.



CHAPTER ABSTRACTS

Each chapter starts with a short introduction to the biological context of the studied model, fol-
lowed by a minimal example that highlights the mathematical modeling approaches used in the
subsequent sections. A more comprehensive review of the biological background is given in chap-
ter 1. The individual sections of the chapters are self-contained, i.e., each section can be read on its
own, and no knowledge of prior chapters or sections is needed.

1. INTRODUCTION

The introduction of this thesis gives a short introduction to the biology of cytoskeletal filament mo-
tor mixtures from a physicist’s perspective. Where do cytoskeletal filament assemblies play a role
in the cell? What are the major constituents they are built of, and which properties do they have?
Those are the guiding questions of the introductory chapter. The focus here is on the biological
aspects and not on the mathematical modeling approaches. An introduction from a modeling per-
spective is given at the beginning of each chapter. The introduction given here is by no means
complete. Where possible, I refer to review articles I found helpful, though this might be a matter of
personal taste.

2. COLLECTIVE LENGTH REGULATION IN FILAMENT MOTOR MIXTURES

LENGTH REGULATION DRIVES SELF-ORGANIZATION IN FILAMENT-MOTOR MIXTURES:

Length regulation of filaments plays a crucial role in many cellular contexts. For example, it has
been observed that the pole-to-pole length and the mass of the spindle apparatus depend crucially
on the length of the individual microtubules [53–55]. At different cell stages, biology exploits this
dependence by regulating microtubule length and, thereby, the spindle length via the interaction
with different microtubule-associated proteins (MAPs) [53, 56, 57].

Previous studies focus on the question of how individual MAPs regulate the length of individual
filaments by affecting their rates of polymerization kinetics [42–44, 58–63]. Alternatively, a glob-
ally accessible pole of constituents was assumed [64–68]. However, there is increasing experimen-
tal evidence that the local availability of MAPs and (or) tubulin plays an essential role in the self-
organization and maintenance of large-scale microtubule structure [53, 57, 69–73].

In the first project on length regulation in filament motor mixtures, we ask the question of how
the interplay of a specific microtubule-binding protein, kinesin-8, and microtubules in combina-
tion with spatial redistribution of resources (kinesin-8 and tubulin) through cytosolic diffusion can
lead to self-organization in large scale filament-motor mixtures. We find that the interplay of motor-
catalyzed depolymerization in combination with local resource availability is sufficient to self-organize
the filament motor mixtures into structures with aster-like orientational order, that span multiple
filament lengths.

Project contributions: Fridjof Baruns and I contributed equally to this work. Fridjof Brauns, Er-
win Frey, and I conceptualized the study. Fridjof Brauns and I performed the analytic analysis. I
performed numerical analysis, data analysis, and data visualization. Erwin Frey supervised the re-
search.

XV
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FILAMENT BUNDLE FORMATION AND POLARITY SORTING THROUGH LENGTH REGULATION:

Focusing on the core concepts established in the project Length regulation drives self-organization
in filament-motor mixtures, we study a minimal one-dimensional model of the system. We system-
atically derive a hydrodynamic description by coarse-graining the microscopic dynamics. Thereby,
we were able to get to the bottom of how length regulation drives polarity sorting in the emerging fil-
ament structures. We then turn to agent-based simulations to study the long-term dynamics of the
model on a phenomenological level. We find spontaneous symmetry breaking in the orientational
order, moving filament structures, coarsening of filament structures, and coalescence of filament
structures, all in the absence of mechanical interactions between filaments.

Project contributions: Fridjof Brauns, Erwin Frey, and I conceptualized the study. I performed the
analytic analysis in discussion with Fridjof Brauns. I performed numerical analysis, data analysis,
and data visualization. Erwin Frey supervised the research.

3. COLLECTIVE FILAMENT MOTION IN ACTIVE NEMATIC NETWORKS

BRIDGING SCALES IN FILAMENTOUS ACTIVE MATTER

Assemblies of cytoskeletal filaments and associated proteins form diverse, dynamic structures that
play essential roles in many intracellular processes. An important ability to perform their task is to
generate force. Often, this force is generated by an extending or contracting network of cross-linked
filaments. Examples are the mitotic spindle, which extends to segregate chromosomes during cell
division, or the actin cortex, which contracts to drive changes in cell shape during tissue morpho-
genesis.

In in vitro filament-motor mixtures, the extensile or contractile nature of filament networks yields
a broad range of behavior, including local and global network contraction with the subsequent for-
mation of asters or foams as well as Euler-type buckling instabilities and turbulent-like behavior
[38, 40, 74–79].

Previous studies have focused on the question of how the different behaviors of contractile and
extensile filament networks yield self-organization on the macroscopic scale of the filament net-
work. These studies use phenomenological hydrodynamic theories built on symmetry arguments.
In those theories, the contractile or extensile nature of the filament network is reflected in an apolar
active stress [50, 80–86]. However, how this stress emerges from the microscopic interplay between
motor proteins and microtubules is less well understood.

In this Section, we use a complementary approach and study a minimal but generic theoretical
model for bundles of filaments cross-linked by motor proteins or passive cross-linkers. Starting
from a general microscopic model for motor cross-linkers, we derive a framework to evaluate the
contribution of a motor cross-linker to the bundles propensity to expand or contract. Thereby, we
bridge the gap between the microscopic dynamics of individual motor cross-linkers interacting with
filaments and the mesoscopic scale of a filament bundle.

We use our theoretical framework to study filament-motor mixtures composed of motors that can
cross-link and walk on neighboring filaments and crowding agents that bundle filaments together.
In addition, we allow motor cross-linkers to dwell at the filament end they are walking towards. This
set of constituents resembles a minimal model for a broad range of experimental systems [38, 40,
75–79, 87–93]. We identify three mechanisms that control the propensity of the filament bundle to
contract or extent. First, contractile tension is caused by filament-filament interactions between
filaments with equal orientation, mediated by end-dwelling motors. Second, internal friction is
needed for motors to generate an extensile stress, and the extensile stress can be increased by in-
creasing the friction between filaments. This yields the counterintuitive prediction that holding
individual filaments in the network together increases the materials’ propensity to expand. Using
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our theoretical framework, we summarize those requirements in a set of mesoscopic control pa-
rameters. By specifying a microscopic model, we relate the set of mesoscopic control parameters
to three externally controllable parameters: First, the number of motors per filament. Second, the
number of passive cross-linkers in the filament, and last, the filament length. Our theory predicts
that the filament bundle is extensile at high concentrations of passive cross-linkers and for long fil-
aments. In contrast, high concentrations of motors and short filaments promote contractile stress
in the filament bundle. All those predictions are in line with recent in vitro experiments [75, 77–79,
91–93].

To verify our theoretic predictions and to study the long-term dynamics, including steady-state
filament structures, we use agent-based simulations. The emergent long-term dynamics are rem-
iniscent of in vitro observations of filament-motor mixtures composed of similar constituents [38,
40, 77, 87, 94].

Project contributions: I conceptualized the study and performed the analytic analysis, numerical
analysis, data analysis, and data visualization. Erwin Frey supervised the research. I thank Henrik
Weyer and Martin Lenz for stimulating discussions.

A MECHANISTIC VIEW OF COLLECTIVE FILAMENT MOTION IN ACTIVE NEMATIC NETWORKS:

The cytoskeleton plays an essential role in many cellular processes ranging from force generation
to chromosome segregation. The interplay between filaments and molecular motors is essential to
establish those tasks. A variety of proteins and molecular motors are capable of cross-linking neigh-
boring filaments. Thereby, they arrange filaments into large networks. A specific type of molecular
motor, kinesin-5, has been shown to be able to cross-link two microtubules and simultaneously
move toward the plus end of both microtubules it cross-links. Thereby, kinesin-5 is capable of slid-
ing neighboring filaments. This filament motion depends on the relative orientation of the cross-
linked filaments. If the cross-linked filaments are oriented in opposite directions (anti-parallel) the
filaments are slid apart at approximately twice the motor velocity [95]. In contrast, filaments ori-
ented in the same direction (parallel) do not move relative to each other. On the level of individ-
ual filaments, this type of filament-filament interaction suggests that the filament velocity depends
on the local network environment, more specifically, the local number of parallel and anti-parallel
interaction partners expressed in the local network polarity. However, this intuition is in conflict
with experimental findings for metaphase spindles in Xenopus egg extract [96–98]. There, it was
observed that microtubules move at velocities, which are independent of the local network polarity.

To get to the bottom of these observations, we study a minimal conceptual model for motor-
induced filament sliding. Thereby, we were able to derive a continuum theory that relates the fila-
ment velocity to the network polarity. We show that the filament velocity depends in a non-local way
on the network polarity. Due to the entire network being interconnected, locally generated force is
propagated through the network over a characteristic length. We show that this characteristic length
is set by the strength of motor forces imposed on a filament and dissipation to the surrounding fluid.
In the limit of low dissipation or large motor forces, we recover the experimental findings that the
filament velocity is independent of the local network environment.

Project contributions: Isabella R. Graf and I contributed equally to this work. Isabella R. Graf,
Erwin Frey, and I conceptualized the study. Isabella R. Graf and I performed the analytic analysis.
I performed numerical analysis, data analysis, and data visualization. Erwin Frey supervised the
research. The publication is also part of Isabella Graf’s thesis.
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CONNECTIVITY TUNES FILAMENT VELOCITY IN FILAMENT-MOTOR MIXTURES

Building on the insights gained in the project A mechanistic view of collective filament motion in
active nematic networks, we ask the question of how the degree of network connectivity affects the
network’s ability to propagate force and, thereby affect the filament sliding velocities. To this end,
we use an in-vitro reconstituted system composed of stabilized microtubules, molecular motors,
and passive cross-linkers. We find that an increase in the passive cross-linker concentration leads
to a non-monotonous change in the mean filament velocity. Surprisingly, we find that an increase
in passive cross-linkers can lead to an increase in filament velocities. This is counterintuitive since
passive cross-linkers impose friction on adjacent filaments. We build an agent-based model that
reproduces our key experimental observations. Based on this model, we relate the mean filament
velocity to the network architecture and, ultimately, to the connectivity in the filament network. Us-
ing large-scale numerical simulations, we identify previously reported physical properties of sparse
and highly cross-linked networks at low and high cross-linker concentrations, respectively. Specif-
ically, we show that the mean filament velocities become insensitive to the local network environ-
ment (polarity) as the passive cross-linker concentration is increased, a feature which was predicted
for highly cross-linked filament networks [2, 99]. Based on a minimal model, we derive a semi-
analytical theory that can encompass both sparse and highly cross-linked regimes and predict the
mean filament velocity as a function of the active motor and passive cross-linker concentration.
Last, we compare our analytic results to measurements from the agent-based simulation.

Project contributions: Alfredo Sciortino, Erwin Frey and I conceptualized the study. Alfredo Sciortino
designed and performed the experiments. I performed the formal analysis and the numerical sim-
ulations in discussion with Ivan Maryshev. I visualized the data. Alfredo Sciortino, Erwin Frey, and I
wrote the manuscript. Andreas Bausch and Erwin Frey supervised the research. The experimental
results are part of Alfredo Sciortino’s thesis.



1
INTRODUCTION

1.1. SELF-ORGANIZATION OF FILAMENT MOTOR MIXTURES in vivo AND in
vitro

The incredible variety of tasks performed by cytoskeletal filament assemblies makes it necessary
that their size and shape vary enormously, even within a single organism and cell type. Here we will
introduce some prominent examples of large-scale self-organization of biological and reconstituted
filament motor mixtures. Those filament assemblies self-organize into a diverse range of structures
ranging over multiple length scales and persist over multiple time scales.

The actin cortex plays a key role for the cell mechanics [100]. It has a typical thickness of 50−
400nm and is localized at the cell membrane [101–103]. Probably its most important function is to
generate force [100, 104] making it an essential element that determines cell mechanics [102, 105].
It consists of actin filaments, the molecular motor myosin II, which can cross-link, pull and organize
actin filaments [35, 106] and a variety of associated proteins that regulate the assembly, disassembly,
and nucleation dynamics [35].

The spindle apparatus: is responsible for chromosome segregation during cell division [19]. The
importance and robustness of this task become apparent when we consider the number of cells in
the human body, which is estimated to be on the order of ∼ 1013 cells which are generated by cell
division [107]. Errors in the process of chromosome segregation and cell division can lead to aneu-
ploidy and can become a first step towards cancer [17]. Up to date, a comprehensive understanding
of how the ∼ 200 proteins involved in spindle assembly cooperate to achieve this stunning task is
missing [17, 24]. This is because a variety of challenges complicates the study of the spindle: First,
it is a highly dynamic structure, and microtubules in the spindle turn over every ∼ 30s [19]. Second,
the number of microtubules (up to ∼ 105) and the number of associated proteins involved in spin-
dle assembly ∼ 200 make it an incredibly complex structure. Last despite being built of the same
constituents the spindle apparatus can vary significantly in length, mass, and shape even within a
single organism [54, 69, 70, 73].

Microtubule asters are radial arrays of microtubules that span out from the centrosome. During
different phases of the cell cycle, they differ significantly in size. While mitotic asters are compa-
rably small, interphase asters span the entire cell. Aster microtubules perform multiple tasks, this
includes the transport of organelles [108, 109], they are involved in the positioning of the cleavage
furrow, the mitotic spindle, and the nucleus [110–113]. Large asters in interphase are built out of a
branching array of dynamic microtubules which have a length of ∼ 16µm and live time of ∼ 1min
[114–116], though the microtubule aster can span hundreds of micrometers. In addition to show-
ing complex self-organization dynamics on their own, pairs of asters interact to define the cleavage
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plane. At the midplane, where a pair of asters meets, they form an overlap of anti-parallel micro-
tubules, which in turn recruits upstream regulatory factors [112]. Thereby the aster pair defines the
cleavage plane. The complex physics of aster growth, interaction, and positioning is still an ongoing
field of research [117].

Active filament gels The complexity and the overwhelming number of proteins involved in cy-
toskeletal filament assemblies have motivated biophysicists to develop minimal in vitro systems
composed of a well-controlled set of proteins which are made from cytoskeletal components. Those
systems allow for a more systematic “bottom-up” approach to studying active filament systems. In
the context of the dynamics of collective filaments, two systems have emerged as paradigmatic ex-
perimental systems of active matter. First A. Baush and colleagues mixed actin filaments which
are propelled by immobilized myosin motors in the planar geometry of a standard motility assay
[37]. In this experimental setup, they were able to demonstrate the collective self-organization of
stabilized actin filaments into clusters, interconnected bands, and swirls. This system is appealing
as the stability of the collective dynamics can be experimentally accessed by varying the filament
density. A second exemplary active matter system composed of stabilized microtubules of fixed
length and engineered kinesin motors was first introduced by the Dogic lab [38]. Compared to the
actomyosin assay, the observed patterns were much more complex. Since then, this system has
been used to study active materials, e.g., in vesicles [118] and ridged confinements [78, 119, 120]
or systems where activity has been controlled via optical response [77, 121]. Moreover, there is an
increasing list of experiments that mix different motors and cross-linkers types [40, 79, 88, 91] and
studies investigating active filament-motor mixtures of non-stabilized microtubules which change
their length [75, 88]. The incredible variety of possible dynamics which emerges from the simple
interaction of motors and stabilized microtubules in collective dynamics is still not understood and
is a rapidly evolving research area.

Xenopus egg extract: Xenopus egg extract [122, 123] is a cell free system used in many experi-
ments. It contains all essential building blocks present in the cell while lacking a cell membrane
that complicates high-resolution imaging and physical and chemical perturbations. Xenopus egg
extract has been shown to be remarkably functional. As an example, it was shown to be able to
undergo multiple cell cycles [124], can self-organize into the bipolar spindle even in the absence
of centrosomes [125], and is even able to spontaneously self-organize into cell-like compartments
after being homogenized [126]. As such it can be seen as a model system bridging the gap between
reconstituted systems and in vivo systems.

1.2. CYTOSKELETAL FILAMENTS

In this section, we will give a brief summary of cytoskeletal filaments and their (bio)physical prop-
erties. I ignore intermediate filaments as they play no role in this thesis. For more comprehensive
reviews, please refer to [127] for microtubules and [35] for actin filaments.

1.2.1. MICROTUBULES

Microtubules are built out of the protein tubulin, more precisely α and β−tubulin, which form
α/β−heterodimers. These heterodimers assemble into linear structures called protofilaments with
α−tubulin at the head (plus-end) and β−tubulin at the tail (minus-end); see Fig. 1.1. This orga-
nization gives the protofilament a polarity. This means they have a direction throughout their lat-
tice. The vast majority of microtubules are built out of thirteen protofilaments [133–135] which
form a hollow tube making them relatively rigid objects; see Fig. 1.1. The persistence length (∼
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Figure 1.1: Sketch of a microtubule. (a) The majority of microtubules are built out of thirteen
protofilaments, which are themselves assembled from α/β tubulin heterodimers. Newly added
tubulin is in the GTP-state and undergoes random hydrolyzes (GTP-tubulin → GDP-tubulin) once
incorporated into the microtubule lattice. (b) Top view of a microtubule tip. Note the textbook
picture of growing protofilaments being uncurled is challenged by recent experiments [127–132].

0.1mm − 5mm) of microtubules is approximately a thousand times their typical length [25, 30].
From a modeling perspective, this often allows to treat microtubules as rigid rods.

The microtubule exchanges its building blocks with the surrounding cytosol at both ends through
(de)polymerization kinetics. However, the dynamics at the plus end is considerably faster. Both
in vitro and in vivo the microtubule undergoes stochastic changes between phases of growth and
shrinkage at the plus end, a process termed dynamic instability [136]. This process is taking place
for isolated microtubules assembled from purified tubulin. However, it appears to be tightly reg-
ulated by a whole machinery of associated proteins in vivo [36, 137]. Despite being studied for
several decades, the mechanistic origin of dynamic instability is still under debate [128]. Increasing
evidence is building up that two key features are involved: First, as the microtubule is polymerized
a cap of GTP-tubulin is formed [138, 139]. Incorporation into the microtubule lattice triggers hy-
drolyses into GDP-tubulin [140]. GDP-tubulin is thought to have different mechanical properties,
which weaken the stability of the microtubule lattice [128, 141]. The stochastic switch from growth
to shrinkage is thought to be related to the loss of this GTP-cap. The second feature which seems to
play an essential role is the “raggedness” of the microtubule tip, which increases over the course of
time in the growing phase [127–129, 131, 142]. While the process of dynamic instability as such is
not well understood, it is even less clear how it is regulated by associated proteins.

To circumvent complications arising from the fast (de)polymerization dynamics of microtubules
often stabilized microtubules are used in reconstituted systems. One common way to stabilize mi-
crotubules is to assemble them from the (very) slowly hydrolyzable GTP-tubulin analog GMPCPP.
A major advantage of GMPCPP stabilized microtubules is that they are thought to be a model sys-
tem for the GTP-cap of non-stabilized microtubules. For example, proteins that affect the catastro-
phe rate (switch from growth to shrinkage) of unstabilized microtubules have often been shown to
be able to depolymerize GMCPP-stabilized microtubules [58, 59, 143]. Moreover, stabilized micro-
tubules are extensively used to study self-organization principles in mixtures of proteins capable of
exerting force on filaments and microtubules [38, 40, 92, 99, 119, 144].

1.2.2. ACTIN

Actin filaments have many similarities with microtubules. They are polar and change their length
at both ends through (de)polymerization of their elementary building blocks; F-actin. However,
instead of assembling into straight protofilaments, F-actin arranges into a double helix shape. Those
double helices are significantly thinner than microtubules. Due to their structural difference, actin
filaments are more flexible having a typical persistence length of ∼ 17µm [25]. As for microtubules,
there is a variety of actin-binding proteins which contribute to the (de)polymerization dynamics of
actin filaments and cross-link them. When assembled into a network actin filaments can exert both
strong contracting and pushing forces. While the former emerges from an interplay with bipolar
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filaments of myosin II [35, 104] the latter has been related to the (de)polymerization dynamics of
actin filaments [35, 104].

As we have seen, actin filaments and microtubules share several similarities from a coarse-grained
perspective. In this work, we will therefore sometimes use the word filament interchangeably for
both filament types when the underlying (minimal) model can be applied to both actin and micro-
tubules.

1.3. MICROTUBULE BINDING PROTEINS

While actin and microtubules show complex (de)polymerization dynamics when assembled from
purified components their dynamics appear to be highly regulated throughout the cell cycle [32,
33, 36, 137]. This regulation arises from the interplay with a large number of associated proteins
that regulate filament dynamics. To the best of my knowledge, there is no comprehensive review of
the interplay of all the various associated proteins with the corresponding filaments. This is due to
their large number and diverse functionality. Here we will review only some key players involved
in the self-organization of cytoskeletal filament assemblies. In particular, we will focus on proteins
involved in filament length regulation and filament transport - processes relevant to this work. That
being said there are many more processes regulated by associated proteins e.g., filament nucleation,
end-clustering, or severing. More comprehensive reviews can be found in [32, 33, 36, 137].

Molecular motors and microtubule-associated proteins (MAPs) are two types of proteins that in-
teract with and regulate microtubules. Molecular motors have in common that they use ATP hydrol-
yses to generate force and movement along the microtubule (or actin filament), which is commonly
referred to as motor activity. MAPs, in contrast, are a family of proteins that interact with micro-
tubules to regulate their stability, (de)polymerization dynamics, and functionality but do not have
motor activity themselves. Though they can break detailed balance due to specific binding kinetics
at the filament ends [45, 145]. Sometimes they pair up with molecular motors to perform their tasks.

1.3.1. MOLECULAR MOTORS

One class of proteins involved in many, if not all, self-organization processes of cytoskeletal fila-
ments are so-called molecular motors. There is evidence that molecular motors, together with actin
and tubulin, were at the origin of eukaryotic life 2.2 Billion years ago [146, 147]. All motor proteins
have in common that they operate by using the energy released from ATP-hydrolysis [147], and few
use GTP-hydrolysis [148]. By locally converting chemical energy, they can generate force and move-
ment, which drives filament-motor mixtures out of equilibrium. There are three types of molecular
motors. Kinesin and dynein, which interact with microtubules, and myosin which interacts with
actin filaments. Their major role is to transport cargo, crosslink, and slide filaments, and to reg-
ulate filament tip dynamics. Figure 1.2 (a) shows the typical structural organization of a dimeric
kinesin motor such as conventional kinesin-1. It consists of two heads (motor domain), which are
structurally similar to those of dynein. The motor domain is connected to a cargo binding domain
through the coild-colied stalk. The two motor heads bind to distinct sides of the microtubule (see
Fig. 1.2 (b)). Through ATP hydrolysis, kinesins regulate the head affinity to the microtubule binding
site, and the subsequent motor binding site detaches. Upon attachment of the loose head the mo-
tor moves directionally on the microtubule in a step-like fashion [149, 150]; see Fig. 1.2 (b). While
differing in details, this step-like motion is common to both dynein and kinesin motors. Kinesin mo-
tors usually move towards the microtubule plus end. However, some kinesin superfamily members
move in the opposite direction and some perform diffusive motion. Dynein moves to the minus end.
Between different subfamilies of kinesins, the motor heads show the strongest similarities while the
tails are more divergent [34]. As a result, the kinetic parameters of different kinesin subfamilies
differ significantly. Among all kinesin motors velocity and processivity differ significantly. For ex-
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Figure 1.2: Sketch of kinesin motor. (a) Typical structural organization of a dimeric kinesin motor.
It consist of a motor domain with two motor heads, which are connected to a cargo binding site
through the coiled-coiled stalk. (b) Step-like directional movement of a kinesin motor on a micro-
tubule protofilament. The two motor heads bind to distinct sites in the microtubule protofilament
(α-tubulin light green and β-tubulin dark green). The illustration is schematic; the actual step can
be split into several “substeps”. See e.g. [34] for a detailed review.

ample kinesin-1 is fast (0.9µms−1) but has low processivity (run length before detaching lrun ∼ 1µm)
[151] and kinesin-8 is slow (0.05µms−1) in comparison and processive (lrun ∼ 10µm) [152]. Others,
such as members of the Kinesin-5 subfamily, can form tetramers with motor domains on both ends
[34]. This enables them to crosslink and walk on two microtubules, ultimately resulting in filament
sliding [95] (see Chapter 3 for further details). Throughout this thesis, we focus mainly on systems
containing molecular motors from the kinesin family.

1.3.2. MICROTUBULE ASSOCIATED PROTEINS

Microtubule associated proteins can be loosely grouped by their activity class. Essential activities
of MAPs are regulation of microtubule dynamics, regulation of microtubule number, linking micro-
tubules to other cellular structures, and microtubule cross-linking. In the following, we will give a
brief overview of those types of microtubule MAP interactions.

A large class of MAPs is involved in the regulation of microtubule dynamics. On a macroscopic
level, microtubule dynamics can be described by four parameters: growth velocity, shrinkage ve-
locity, and transition rates between growth and shrinkage (catastrophe and rescue rates). In vivo all
of those rates are controlled by MAPs. Listing all of them goes beyond the scope of this introduc-
tion. A somewhat comprehensive review on the topic can be found in [153]. Some important MAPs
controlling microtubule length are XMAP215 (growth), tau (shrinkage), MCAK (catastrophe), and
CLASPs (rescue) [153]. What complicates the matter is that most of those proteins take dual roles
when it comes to regulating the microtubule dynamics. As an example, XMAP215 does not only
impact microtubule growth but was also shown to increase shrinkage [154]. Not only that it also
cooperates with other MAPs, which changes the impact on microtubule dynamics again; in com-
bination with the end tracking protein EB1, XMAP215 further increases growth velocity, but at the
same time, the catastrophe frequency [155]. How the zoo of different MAPs cooperates to regulate
microtubule dynamics remains a riddle up to date. Recently some progress has been made by sys-
tematically controlling the rates of microtubule dynamics at both ends (minus and plus end of the
microtubule) by combining different MAPs [67].

An important class of length-regulating MAPs are so-called plus-end tracking proteins (plus end
proteins). Members of this class of proteins are characterized by their ability to locate and track
the microtubule plus end [32, 153]. Most plus-end proteins undergo an energy-consuming reaction
when bound to the microtubule plus-end. Thus they drive the system out of thermal equilibrium
even if their motion along the microtubule (e.g., the diffusive motion of XMAP215) does not require
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ATPase activity [145].

MAPs control the number of microtubules through different types of activities. The most impor-
tant one is microtubule nucleation. There are two major microtubule nucleation pathways. First,
via microtubule organizing centers (MOCs) such as the centrosome [17, 156, 157]. Second micro-
tubule branching, i.e., nucleation of microtubules from existing microtubules [17, 158–161]. Both
pathways require interaction with MAPs. Important MAPs which are involved in the nucleation pro-
cess are γ−tubulin, TPX2, and augmin [158, 160–163]. In addition, there are MAPs that play roles
in polymerization kinetics and microtubule nucleation [164]. Microtubule severing is an additional
pathway to control the number of microtubules which is also regulated by MAPs [165].

The third class of MAPs includes proteins that anchor microtubules to other cellular structures to
promote cell organization [32, 36]. Many of those proteins are also plus-end tracking proteins [32].
One of their important tasks is, e.g., the anchoring of microtubules to the kinetochores.

Lastly, cross-linkers, such as proteins of the MAP65/Ase1/PCR1 family, bundle microtubules to-
gether to form a network [166]. Somewhat surprisingly, most microtubule stabilizers also show mi-
crotubule bundling activity [36].

Taken together, the zoo of different MAPs is overwhelming by its sheer number of proteins and
functions. In addition, they do not appear isolated, e.g., most processes stated here are present in
the mitotic spindle; see Fig. 1.3.

From a physicist’s perspective, it makes sense to think about if the microtubule MAP interaction
breaks detailed balance and, if yes, at which step. Besides of directed motion of molecular motors,
there are other possibilities for how MAPs can break detailed balance to drive the microtubule en-
semble out of equilibrium. One example is, e.g., the diffusion and capture mechanism proposed
to localize proteins such as XMAP215 at the microtubule plus end [45, 145] and microtubule nucle-
ation has been shown to depend on the nucleotide exchange of RAN-GTP [167, 168].

1.4. FILAMENT-PROTEIN INTERACTIONS

To highlight the diversity of filament-protein interactions, we would like to take the mitotic spin-
dle as an exemplary example. The activity of microtubule-protein interactions is essential for the
self-organization of the mitotic spindle. Using a full genome RNA interference (RNAi) allowed us
to identify ∼ 200 proteins essential for proper spindle assembly [24]. Their interaction with micro-
tubules can be grouped into different classes; see Fig. 1.3. This includes proteins that control the
number of spindle microtubules via nucleation [158, 169–171] and severing [172, 173]. Proteins
which regulated the stability of microtubules [67, 143, 155, 174] and control their growth [57, 174]
and shrinkage velocity.
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Figure 1.3: Protein-mediated regulation of spindle microtubules that lead to the self-organization of
the mitotic spindle. The mitotic spindle is composed of ∼ 105 filaments and 200 different associated
protein types which have been found to be essential for proper spindle assembly and functionality
[17, 19]. The interactions of those proteins with microtubules can be broadly grouped into four
different classes. (1) Proteins that regulate the number of spindle microtubules through nucleation
or severing. Examples are TPX2 (nucleation) [158, 161, 171] or active katanin (severing) [165]. Up
and down regulation of those proteins plays an essential role in spindle scaling [53–56, 73]. (2) There
exists a large number of proteins that regulate microtubule dynamics by influencing their growth
and shrinkage velocity as well as catastrophe and rescue rate. Prominent examples are XMAP215
(up to 5-fold increase of growth velocity [60, 155]), members of the Kinesin-8 and Kinesin-13 family
(regulation of catastrophe rate and shrinkage velocity [58, 59, 143, 175, 176]) and e.g. CLASP is
involved in the regulation of rescues. See, e.g., [32, 33, 36, 137] for reviews on the topic. (3) Proteins
cross-link microtubules along their lattice to form a network (e.g., PCR1) or are involved in focusing
microtubule minus ends (e.g., NUMA). How all those proteins act together at the nanometer scale
to self-organize into the mitotic spindle, which is a thousand times larger, is a question that is far
from being answered. Filament-protein interactions studied in this work are highlighted in gray.

Molecular motors which arrange their spatial organization [14, 19, 34, 177] and cross-linking pro-
teins which tethered microtubules to each other to form a network [178]. Listing all these proteins
and their functionality goes way beyond the scope of this work; please refer to [17, 34, 36, 179] for
a state-of-the-art review. While RNAi of individual MAPs or molecular motors allows us to iden-
tify their importance for spindle assembly by linking them to a whole phenotype of abnormal and
dysfunctional spindles [24] it remains unclear why the knock-out of individual proteins leads to
specific functional perturbations of the spindle. Moreover, there is increasing evidence that some
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proteins do not have a single role in microtubule regulation but are involved in multiple processes.
XMAP215, for example, is essential to regulate microtubule growth [60] but has also been shown
to be involved in microtubule nucleation [164]. It is, therefore, often not even clear which loss in
microtubule regulation causes the disruption in spindle self-organization.

In addition, sometimes, double inhibitions restore the spindle functionality. For example, the
inhibition of kinesin-5, which is involved in microtubule transport, does lead to the formation of
monopolar spindles [180–182] and the inhibition of dynein leads to unfocused spindles [183, 184].
However, double inhibition of kinesin-5 and dynein rescues spindle bipolarity [183, 184].

From a physicist’s perspective, with the current knowledge, it remains illusive to understand how
a large number of proteins act together with microtubules at the nanometer scale to assemble the
mitotic spindle, which is three orders of magnitude larger and contains on the order of ∼ 105 mi-
crotubules. An alternative approach is to focus on individual processes, such as regulation of mi-
crotubule dynamics or microtubule transport, and ask how they are reflected at a collective level.
Thereby, we hope to understand key mechanisms that can drive self-organization in filament-motor
mixtures. In this thesis, we are going to consider two mechanisms: First filament length regulation
and second filament cross-linking and sliding; see Fig. 1.3. In the following, we will review key as-
pects of filament-protein interactions on a single filament level relevant to the work presented in
this thesis.

1.4.1. FILAMENT LENGTH REGULATION

Microtubule dynamics change significantly throughout the cell cycle. For example, the kinetic pa-
rameters of interphase microtubules differ significantly from metaphase microtubules [174]. The
change in microtubule dynamics often goes hand in hand with the up or down regulation of MAPs
or molecular motors. In this section, we will review some key principles used by those proteins to
regulate microtubule dynamics.

Irrespective if those proteins regulate microtubule growth, shrinkage, or catastrophe, they have
in common that they have to reach the microtubule plus end (or minus end). To achieve this goal,
those proteins use different strategies. This includes preferred attachment to the microtubule tip
[32], directed motion along the microtubule [32, 58, 175], “hitchhiking” of molecular motors [32] or
diffusion along the microtubule lattice [32, 59, 60]; see Fig. 1.4. Once the plus end is reached, they
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Figure 1.4: (a)-(c) Different interactions between MAPs/ molecular motors and filaments. All of
them have in common that they attach to the filament from the cytosol and detach from the micro-
tubule. But there are proteins that bind preferably to the filament tip (c). (a) Most molecular motors
move directional towards the filament plus or minus end. (b) Others perform one-dimensional dif-
fusion along the filament.

catalyze a corresponding reaction to control microtubule dynamics.
In this work, we focus on proteins that move directional towards the plus end. A representative

member of this class of proteins is the molecular motor kinesin-8. In vivo it has been reported that
kinesin-8 plays an essential role, e.g., spindle length regulation, proper positioning, and orientation
of the spindle and chromosome segregation [185–189]; for a review see [152]. A significant contri-
bution of kinesin-8 to these tasks is its ability to regulate microtubule length [152].

The capability of kinesin-8 to regulate microtubule length has been studied in vitro using single-
molecule microscopy assays [58, 175]. In these studies, it has been shown that kinesin-8 moves
unidirectional towards the filament plus end and barely detaches before reaching the plus end (run
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length before detaching ∼ 12µm). Upon reaching the microtubule plus end it catalyzed filament
shrinkage of both GMPCPP and taxol stabilized microtubules [58]. Interestingly it has been found
that the depolarization rate is length dependent, with longer filaments depolymerizing faster than
short ones [58, 175]. This is facilitated by the directed motion and persistence of Kinesin-8 motors
[42, 62, 175]. As Kinesin-8 driven length regulation will be an essential part of this thesis an intro-
duction from a modeling perspective will be given in Chapter 3.

1.4.2. FILAMENT TRANSPORT

In the cell, microtubules move in order to form a specific spatial and orientational organization.
This motion is generated by motor proteins that expend chemical energy to generate force [190,
191]. The directional movement of the motor proteins then helps to self-organize the microtubule
network into a specific structure. There are different mechanisms of motor-based microtubule
transport present in the cell. On a coarse level, we can classify them into microtubule transport
along other structures, such as the cell cortex and sliding of microtubules along other microtubules
[14]. Here we are interested in the relative sliding of microtubules, i.e., microtubule transport along
other microtubules.

Both dynein and some members of the kinesin family are involved relative sliding of microtubules;
see Fig. 1.5. In the following, we will discuss some of their key differences. Dynein has one motor

Figure 1.5: (a)-(c) Filaments (green) cross-linked by a motor protein. Filament direction is indi-
cated in (a). Different types of motor proteins induce relative filament sliding. The direction of
motion of the motors is indicated by arrows in the color of the motor and the resulting filament mo-
tion by green arrows. (a) Dynein motors (blue) move towards the microtubule minus-end, where
they accumulate. Due to end dwelling dynein slides adjacent filaments irrespective of their rel-
ative orientation. (b) Kinesin-5 forms tetramers which have two motor domains. Thereby it can
bind to and move on two neighboring filaments. Kinesin-5 shows no strong microtubule end ac-
cumulation. This yields distinct behavior for filaments oriented in the same (parallel) and opposite
directions (anit-parallel). Anti-parallel filaments slide apart at 2vm, and parallel filaments do not
move relative to each other. (c) Kinesin-1 and Kinesin-14 have only one motor domain and utilize
a non-motor microtubule-binding domain to cross-link adjacent filaments and drive microtubule
sliding. Here we depict Kinesin-14, which moves in the direction of microtubule minus ends.

domain that moves directional towards the minus end of microtubules where it accumulates [179,
192]. Together with dynactin, dynein forms the complex DDB, which is persistent (low detachment
rate) [193]. In vitro it was observed that accumulations of dynein (more precisely DDB) at the minus
end of a filament are able to generate a pulling force towards the minus end of an adjacent filament;
see Fig. 1.5 (a) [193]. The minus end accumulation of dynein has been shown to drive robust fila-
ment sliding independent of the initial orientation of the filaments [193] and promotes minus end
clustering; see Fig. 1.5 (a). In an ensemble of many filaments and dynein motors, this leads to the
formation of microtubule asters, [193] and was shown to yield bulk contraction in millimeter-scale
microtubule networks [194, 195]. In the spindle, dynein is essential for the proper formation of
spindle poles [19].

In contrast to dynein, (most) kinesins move towards the plus end of microtubules. There are dif-
ferent kinesin motors involved in microtubule transport. One particularly important member is
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Kinesin-5, which has two motor domains. This gives Kinesin-5 the ability to simultaneously bind
to two microtubules and move on them [95]. The speed, vm, at which the motor domains move
towards the microtubule plus end was shown to depend on the load applied to the motor [191, 196].
In contrast to dynein, kinesin-5 shows no strong microtubule end accumulation. This yields distinct
behavior for parallel and anti-parallel microtubules. If the microtubules cross-linked by a molecular
motor are oriented in opposite directions (anti-parallel), the motor motion results in the sliding of
the filaments in opposite directions; see Fig. 1.5 (b). In contrast, if the microtubules are oriented in
the same direction, the filaments do not move relative to each other [95].

Other members from the kinesin superfamily, which are also involved in microtubule transport,
are Kinesin-1 and Kinesin-14. In contrast to kinesin 5, both kinesin-1 and 14 have only one mo-
tor domain. They utilize a non-motor microtubule-binding domain to drive microtubule sliding;
see Fig. 1.5 (c). In contrast to kinesin-5 and kinesin-1, kinesin-14 is a minus-end directed motor,
therefore driving filament sliding in the direction of their plus ends [197].

Motor-mediated filament sliding will be an essential part of this thesis. An introduction from a
modeling perspective will be therefore given in Chapter 3.
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COLLECTIVE FILAMENT LENGTH

REGULATION IN FILAMENT-MOTOR

MIXTURES

2.1. BIOLOGICAL BACKGROUND

Microtubules are not static. In the living cell, they exhibit an ongoing cycle of growth, shorten-
ing, and regrowth - termed dynamic instability [136]. In different cell stages, the typical length of
microtubules differs significantly, even within a single cell type and organism. As an example, mi-
crotubules found in Xenoupus interphase asters have an estimated mean length of 16µm−20µm
[116, 198] while microtubules in the metaphase spindle of Xenoupus have a mean length of ∼ 7µm
[184]. Moreover, it has been shown that the spindle length scales with microtubule length [53]. To
achieve this diverse behavior, microtubule dynamics is tightly regulated by a whole machinery of
microtubule associated proteins (MAPs) [36]. The change in microtubule dynamics throughout the
cell cycle and cell stages is tied to the up or down regulation of those proteins [56, 57, 69, 70, 73].

However, the measured kinetic parameters for growth, shrinkage, and the switching rates between
the periods of growth and shrinkage do not only differ between cell stages and different phases of the
cell cycle but also within the same organism, phase, and stage. As an example the measured growth
rate of microtubules in interphase Xenopus egg extract ranges from 7µmmin−1 to 30µmmin−1 [116,
198–200]. How to explain this variety in measured rates is an open question puzzling the scientific
community.

Recent experiments show increasing evidence that the local density of microtubules feedback’s
on their kinetic parameters. This could explain the previously scattered measurement data of e.g.
growth rates as those measurements were not spatially resolved. New measurements show that the
growth velocity [201], depolymerization velocity [200], and catastrophe frequency [202] of micro-
tubules are functions of the local density of microtubules. One possible explanation of this observa-
tion would be that steric interactions between filaments impact their length regulation dynamics.
Alternatively, a high local density of microtubules could deplete the local pool of available MAPs.
By depleting the cytosolic pool of available MAPs the kinetic rates could be determined by local
resource competition between filaments.

In this chapter, we will focus on the question of how the local availability of MAPs and/ or tubu-
lin in combination with their spatial redistribution via cytosolic diffusion affects collective filament
length regulation. How MAPs interact with microtubules that undergo dynamic instability is poorly
understood [36, 137], making an explicit modeling approach illusive. We, therefore, focus on a min-
imal model of GMPCPP stabilized microtubules and molecular motors, which are capable of de-
polymerizing them. Specifically, we focus on resource-limited length regulation of stabilized micro-
tubules by the kinesin-8 homolog Kip3 from Saccharomyces cerevisiae. The advantage of this system

11
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is that it is well characterized and most kinetic rates are known from single filament experiments
[58, 175]. In the following, I will present a minimal model to address the Kinesin-8 catalyzed mi-
crotubule depolymerization, first in the absence of resource limitation and later including resource
limitation. Ideas presented here will be reused through the rest of this chapter.

2.1.1. MODELING APPROACH

To understand the length-dependent filament depolymerization of kinsin-8 motors we neglect pos-
sible correlations between neighboring protofilaments. This approximation allows us to model the
microtubule by a single protofilament, i.e., an effectively one-dimensional structure of length `;
see Fig. 2.1. Cytosolic motors can bind along the protofilament at rate kon (measured per volume
concentration, per length, per time) and detach from the filament at the rate koff. Kinesin-8 mo-
tors move directional along the arc length s ∈ (0,`) of the protofilament with constant velocity vm

towards the plus-end, where they catalyze depolymerization at rate δ; see Fig. 2.1 (b). The length
change of the filament is governed by

Çt l (t ) =−vs(t ) (2.1)

where vs denotes the shrinkage velocity of the filament. If we neglect spontaneous depolymeriza-
tion, which has been shown to be slow for GMPCPP stabilized microtubules [60, 203], the shrinkage
velocity is given by

vs(t ) = aδm+(t ) . (2.2)

Here m+(t ) denotes the density of kinesin-8 motors at the plus end and a the length of a tubulin unit
(∼ 8nm). If we assume the motor dynamics to be fast as compared to the length change dynamics
we can assume the motor dynamics on the filament to be in quasi steady state. Denoting the total
number of motors bound to the filament by, M , and the cytosolic motor concentration by, cm, we
can derive the shrinkage velocity from a simple flux balance argument. The on-flux, jon, of motors
onto the filament is given by attachment events of motors jon = koncMl . The off-flux, joff, is given
by detachment of motors koffM and depolymerization events vs/a, therefore joff = koffM + vs/a. In
steady state the on-flux of motors has to be balanced by the off-flux, thereby we find the depolymer-
ization velocity of filaments:

vs = a(koncMl −koffM) (2.3)

To obtain the filament bound motor number M we have to solve for the steady state motor density
m(s) on the filament. The governing equation is given by a combination of directed transport of
motors to the plus end and Langmuir kinetics, where the motors attach from the cytosol at the rate
koncm and detach at the rate koff

0 =−vmÇsm(s)−koffm(s)+koncM , (2.4)

a

(b)(a)

Figure 2.1: (a) Illustration of a microtubule interacting with molecular motors. Motors can be either
cytosolic (purple) or filament bound (orange). (b) Schematic representation of the illustration in
(a). The filament consists of discrete units of length a, has a total length `, and has a direction
(from minus to plus). Cytosolic motors attach to the filament at rate koncm. Filament bound motors
detach at rate koff and move unidirectionally towards the filament plus end at a constant speed vm.
Motors at the filament plus end depolymerize the filament by one unit of length a.
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Note here we neglected any stochastic and collective (e.g. steric exclusion) effects of the motor
dynamics. Together with the boundary condition m(0) = 0 we find the steady state solution for the
motor density profile

m(s) = koncM

vm
lrun

(
1−e−s/lrun

)
. (2.5)

Here we introduced the typical run length of a motor before detaching from the microtubule lrun =
vm/koff. Eq. 2.5 results in the so called antenna profile m(s) ≈ koncM

vm
s for long run length lrun À `.

Upon integration, we obtain the total number of bound motors M . Substitution into Eq. 2.3 yields
the shrinkage velocity which is given by

vs = akoncMlrun

(
1−e−`/lrun

)
= akoncM

{
` `¿ `run

lrun `À lrun .
(2.6)

The two limiting cases can intuitively be understood by the following argument: If the filament
length is significantly smaller than the typical run length of kinesin-8 motors (`¿ lrun) almost all
motors that attach to the filament reach the plus end. The contribution of detachment events to
the off-flux joff is then negligible koffM ≈ 0 and the shrinkage velocity equals the on-flux in quasi
steady state; cf. Eq. 2.3. In contrast, if the filament is significantly longer than the typical run length
(l À lrun) only motors that attach within the distance lrun from the filament plus end reach the
tip and contribute to a shrinkage event. Motors that attach further apart detach before reaching
the plus end. This prediction was experimentally tested by reducing the kinesin-8 run length. The
theoretical result for the shrinkage velocity is in good agreement with the experiments by Varga et al.
in a regime where the antenna profile is valid [175]. However, it should be noted that the minimal
model presented here is not sufficient to account for the full dynamics observed by Varga et al.
This is because the experiments were performed under conditions where motor crowding effects on
the microtubule play an essential role in the depolymerization dynamics. A comprehensive theory
taking motor crowding into account can be found in [44, 62] and is in good agreement with the full
range of experimental observations.

In the remainder of this chapter, we will consider a model that considers a limited number of
resources per microtubule. This is we consider a microtubule in a fixed volume V0, that contains
a total concentration, ρT, of tubulin dimers and, ρM, of motors. The microtubule, therefore, has
access to a limited number of tubulin dimers, ρTV0, and a limited number of motors ρMV0. This
imposes the additional constraint of mass conservation both on motors and tubulin dimers, which
read

ρTV0 = cTV0 +`/a

ρMV0 = cMV0 +M .

As we will see in the following this will have a major impact on the length regulation dynamics. In
particular, if many filaments share a common pool of resources they can deplete.

In contrast to the experiment by Varga et al. motor crowding is not expected to play a significant
role if limited resources and high microtubule densities are considered. This can be understood
by a simple rule of thumb calculation: Varga et al. explicitly engineered their experimental setup
to minimize sequestering effects of Kinesin-8 by the microtubules. This was done by using only a
low density of microtubules with a volume V0 > 5×105

µm3 per microtubule (2−5 microtubules per
80µm×80µm×400µm). At 1nM Kinesin-8 this corresponds to ∼ 105 motors per filament. A micro-
tubule of length l = 7µm has approximately∼ 104 tubulin heterodimers available as binding sites for
Kinesin-8 motors. Comparing those numbers, 105 motors per microtubule, and 104 binding sites,
make crowding effects on the microtubule possible (depending on the attachment and detachment
rate).
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In contrast in vivo the volume per microtubule can be estimated to be significantly lower. Its
precise value depends on species and cell type. However, even if we take a large cell of diameter
∼ 200µm (e.g. early stage X.lavis cells) and ∼ 105 microtubules present in the cell (as estimated for
Xenopus spindles) we find a volume V0 ∼ 10µm3 per microtubule. At 1nM Kinesin-8 this leads to∼ 6
Kinesin-8 motors per microtubule. Compared to the ∼ 104 binding sites of a microtubule (of length
l = 7µm) crowding effects appear to be quite unlikely, even at high motor concentrations. There-
fore, as long as the volume per microtubule is small enough and/or motor concentrations are low
enough we can rely on the minimal model presented here which neglects interactions between mo-
tors. However, its validity should always be tested numerically taking steric interactions of motors
into account.
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2.2. LENGTH REGULATION DRIVES SELF-ORGANIZATION IN

FILAMENT-MOTOR MIXTURES

2.2.1. SIGNIFICANCE

Cytoskeletal structures play essential roles in many cellular processes, including intracellular trans-
port, cell division, and cell motility. The formation and regulation of these structures involve many
types of proteins that associate with the cytoskeletal filaments to regulate their nucleation and poly-
merization, crosslink them, and exert mechanical forces on them. Past studies on the collective or-
ganization of many filaments have focused on the mechanical interactions between filaments and
force-generating (cross-linking) motors. In contrast, studies on length regulation have exclusively
focused on single filaments and have not addressed any collective effects.

Here, we study collective length regulation in a conceptual model for a filament-motor mixture.
Importantly, we explicitly account for the diffusive redistribution of cytosolic tubulin units and de-
polymerizing motors. We derive a hydrodynamic description of the collective dynamics of tubulin,
motors, and filaments. Employing a linear stability analysis, we discover a long wavelength spatial
instability that is driven by diffusive redistribution of tubulin mass. These analytical investigations
are complemented by agent-based simulations that account for the spatial extent of the filaments.
These simulations show that the long wavelength instability leads to the formation of filament clus-
ters with aster-like orientational order.

The instability mechanism we discover is operational in a large parameter regime, including phys-
iological parameters. Indeed, our minimal model provides a possible mechanism underlying the
striking microtubule self-organization in homogenized cell extracts observed in recent experiments
[126]
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Length Regulation Drives Self-Organization in Filament-Motor
Mixtures

Abstract

Cytoskeletal networks form complex intracellular structures. Here we investigate a minimal model for
filament-motor mixtures in which motors act as depolymerases and thereby regulate filament length.
Combining agent-based simulations and hydrodynamic equations, we show that resource-limited
length regulation drives the formation of filament clusters despite the absence of mechanical inter-
actions between filaments. Even though the orientation of the individual remains fixed, collective
filament orientation emerges in the clusters, aligned orthogonal to their interfaces.

The microtubule cytoskeleton plays an important role in numerous cellular functions such as in-
tracellular transport and cell division [9, 204]. These complex processes are based on the active re-
modelling of the cytoskeletal structure [191], which is mediated by the interaction of microtubules
with a variety of microtubule associated proteins (MAPs) [17, 34, 190]. In addition to generating
forces between microtubules [177], MAPs play an important role in regulating the length of individ-
ual microtubules by affecting the rates of their polymerisation kinetics from tubulin subunits [31,
59, 60, 175]. How forces affect the large-scale self-organization of microtubules has been studied
in detail both theoretically and experimentally [48, 74, 99, 177, 194, 205, 206]. In contrast, the role
of length regulation has only been investigated in the context of individual filaments [42–44, 58–
63], or of a globally accessible pool of constituents (tubulin and MAPs) [64, 65, 67, 116]. However,
recently the focus of interest is shifting to their role in many filament systems, as there is increas-
ing experimental evidence that this regulatory function, in combination with the local availability
of MAPs and tubulin, plays an essential role in the self-organization, scaling and maintenance of
microtubule structures [53, 57, 69–73]. It remains an important open question how the interplay
and spatial redistribution of these resources through cytosolic diffusion and transport along micro-
tubules affects the self-organization of the microtubule cytoskeleton [200–202, 207].

Here, we approach this question by studying the collective motor-filament dynamics with lim-
ited resources of tubulin units and molecular motors. These cytosolic resources are spatially redis-
tributed by diffusion while filament-bound motors additionally move uni-directionally towards the
filament plus-end where they act as depolymerases (Fig. 2.2). We show that the interplay of motor-
catalyzed depolymerization and local resource availability leads to self-organization of the filament
assembly into aster-like patterns. Those patterns show co-localisation of microtubule plus ends and
polarity sorting at the interfaces of emerging filament clusters.

Model. — We propose an agent-based model that builds on current in vitro experiments and the-
oretical studies addressing the resource-limited length regulation of a single stabilized microtubule
by the kinesin-8 homologue Kip3 from Saccharomyces cerevisiae [63]. Specifically, we study filament
dynamics containing a finite number of tubulin units (NT), molecular motors (NM), and filaments
(NF); see Fig. 2.2(b). Each individual filament i ∈ 1, . . . , NF is represented by a directed rigid rod
with fixed minus-end position bi and fixed orientation θi ∈ [0,2π), which are drawn randomly from
uniform distributions. We have checked that diffusive motion of filaments does not affect the mech-
anism described here (see Supplementary Material Sec. IV and Movies 3-5) [208]. The lengths li (t )
of the individual filaments are dynamic variables that change by polymerization kinetics at the plus
end. When filaments shrink to zero length, they are assumed to regrow form the same minus-end
position and with the same orientation; filament shrinkage to zero length, though, rarely occurs.
In the cytosol, both motors and tubulin units diffuse freely with diffusion constants DM and DT,
respectively. Cytosolic motors can bind with rate kon to any point that is within the binding radius
rM along a filament; for details see Supplemental Material Sec. SII [208]. Filament-bound motors
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(c) Spatially extended system

Diffusion

Lx

Ly

a

(b)

(a) Single filament

Figure 2.2: Agent-based model. (a) Illustration of a filament interacting with a finite amount of
tubulin (green) and motor proteins. Motors can be either cytosolic (purple) or filament-bound (or-
ange). (b) Model representation of a single protofilament. (c) Illustration of a filament-motor mix-
ture in a box geometry with periodic boundary conditions.

move towards the filament plus-end at speed vm, where they catalyse filament depolymerization
at rate δ [see Fig. 2.2(b)]. Upon depolymerization, the filament length is reduced by one tubulin
unit (of length a) and both the plus-end-bound motor and the associated tubulin unit are released
into the cytosol As we consider stabilized microtubules no rapid depolymerization events upon mi-
crotubule catastrophes are considered here. Cytosolic tubulin within a distance rT of a filament
plus-end, binds to it at the rate γ, increasing filament length by a [Fig. 2.2(d)]. We implicitly as-
sume fast tubulin nucleotide exchange by allowing for immediate reattachment of tubulin. Finite
nucleotide exchange does not qualitatively change the results (see Supplementary Material Sec. V)
[208].

Single-filament dynamics. — Consider a cytosolic volume V0, containing a single filament and a
finite number of tubulin units ρTV0 and motor proteins ρMV0. For now, we assume for simplicity
that the cytosolic concentrations cM and cT are spatially uniform; this assumption is relaxed when
we discuss a spatially extended system with many filaments. The length change of the filament
is determined by the antagonism between polymerization and depolymerization kinetics Çt l (t ) =
vg − vs with the growth and shrinkage velocity given by vg = a cTγ and vs = a m+(t )δ, respectively,
where m+(t ) denotes the density of motors bound to the plus end [44, 62].

For biologically relevant parameter ranges, the motor dynamics are fast compared to filament
growth and shrinkage [63, 175]. This separation of time scales implies that for a given filament
length, the motor density can be assumed to be in a quasi-steady state, where the total attachment
flux of motors onto the filament, jon = kon c̃M l , and the off-flux due to depolymerization events
at the plus end, joff = ṽs/a, are in balance; quasi-steady states are indicated by a tilde. Thus, the
depolymerization velocity ṽs = a kon l c̃M is determined by the cytosolic density c̃M, which in turn
is related to the filament-bound motor number M̃ via mass conservation ρMV0 = c̃MV0 + M̃ . In
steady state, the filament-bound motor density exhibits an antenna profile m̃(s) = konc̃M

vm
s 1, which

is inferred from the transport equation Çt m(s, t ) = −vmÇsm(s, t ) + koncM(t ) [209, 210], implying
M̃ = konc̃M

2vm
l 2. Combining the expression for the number of bound motors M̃ with mass conser-

vation allows to express the shrinkage velocity in terms of the filament length and the total motor
concentration ρM

ṽs(l ,ρM) = a kon l c̃M = a kon l
ρM

1+ l 2/l 2
c

, (2.7)

1Note the occupation density of motors at the filament plus-end is not equivalent to m̃(l ). The filament-bound motor
density exhibits a boundary layer such that vmm̃(l ) = am+δ [209],[210]
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where we have defined the characteristic length scale lc :=
√

2vmV0/kon. For filament lengths l < lc,
the shrinkage velocity increases with the filament length, as would be expected with unlimited mo-
tor resources and has been observed experimentally [58, 175]. At l = lc the number of cytosolic
motors cMV0 equals the number of filament-bound motors M̃ = konc̃M

2vm
l 2. Increasing the filament

length beyond lc leads to a depletion of the cytosolic motor pool and thereby a decreased on-flux
kon c̃M l . According to the flux balance condition, this reduces the off-flux ṽs/a and thus the shrink-
age velocity, so that ṽs ∼ 1/l for l À lc [see Fig. 2.3(a)].

The growth velocity vg can be written in terms of filament length l and total tubulin density ρT

using tubulin mass conservation (ρTV0 = cTV0 + l/a) as vg(l ,ρT) = γ (ρT a − l/V0). At steady state
the filament growth and shrinkage velocity are balanced, vg(l ,ρT) = ṽs(l ,ρM), which determines the
steady state length l∗(ρT,ρM) [Fig. 2.3(a)] 2.

Self-organization in a spatially extended system. — How does the length regulation of individual
filaments play out in a spatially extended system where resources are shared by cytosolic diffusion
between many filaments? In the limiting case where the cytosolic concentration is slowly varying on
the scale of the (typical) filament length, the filaments can be treated as point-like objects carrying a
tubulin mass proportional to their length l (x, t ). The single filament dynamics can then immediately
be generalized to a local length regulation dynamics

Çt l (x, t ) = aγcT(x, t )− ṽs(x, t ) , (2.8)

with the local shrinkage speed given in terms of the local quasi-steady state approximation for the
cytosolic motor density, ṽs(x, t ) = a kon l (x, t ) c̃M[l (x, t ),ρM(x, t )] (cf. Eq. 2.7). The dynamics of the
cytosolic tubulin concentration is governed by a reaction-diffusion equation

Çt cT(x, t ) = DT∇2cT(x, t )− γcT(x, t )− ṽs(x, t )/a

V0
, (2.9)

where the local polymerization kinetics induces sinks and sources of cytosolic tubulin; here V0 =
V /NF denotes the cytosolic volume associated with a single filament. The total motor density is
redistributed by cytosolic diffusion

ÇtρM(x, t ) = DM∇2c̃M[l (x, t ),ρM(x, t )] , (2.10)

where we again used the local quasi-steady state approximation for the cytosolic motor density
c̃M(x, t ). Taken together, Eqs. (2.8)–(2.10) form a closed set governing the system’s dynamics in the
long-wavelength limit.

2Depending on the functional form of the shrinkage velocity ṽs(l ) the dynamics is either monostable with a single steady
state length or bistable; see Supplemental Material Sec. SIV for details [208].
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Figure 2.3: (a) Shrinkage velocity ṽs and growth velocity vg as a function of the filament length l with
the steady state length l∗ determined by the intersection point(s) of vg and ṽs. (b)-(d) Graphical
analysis of the lateral instability.
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The stability of a spatially uniform state (l∗,c∗T , ρ̄M) against spatial perturbations can be studied
using a linear stability analysis (see Supplemental Material Sec. SIV for details [208]). Figure 2.4
shows a typical dispersion relationσ(q) for the eigenvalue with the largest real part and the ensuing
stability diagram as a function of ρ̄M and ρ̄T. For ρ̄T > ρ̄crit

T (ρ̄M) there is a band of unstable Fourier
modes q ∈ (0, qmax) extending to long wavelengths (q → 0). It is instructive to first consider the
particular limit of well-mixed cytosolic tubulin. Then, the marginal mode qmax reduces to q2

max =
−ρMÇl ṽs|l∗/(DMc̃M). This implies that there is an instability against spatial perturbations (lateral
instability) only if Çl ṽs|l∗ < 0. Moreover, the band of unstable modes narrows with increasing DM,
showing that cytosolic motor diffusion attenuates the lateral instability. Relaxing the assumption of
well-mixed cytosolic tubulin, i.e., explicitly accounting for tubulin diffusion, yields the critical ratio
of diffusion constants Dcrit

T /DM ≈ γ/(akonV0ρ̄M) in the limit l∗ À lc. For physiological parameters,
we find that the there is a lateral instability if the average number of motors per filament satisfies
ρ̄crit

M V0 > 0.57DM/DT. This condition is well met for biologically relevant motor concentrations as
DM/DT ∼ 1/6 (see Supplemental Material Sec. SI [208]).

The feedback mechanism underlying the lateral instability can be explained in terms of a mass-
redistribution instability [211–213]. To simplify the argument, we set DM = 0 for the moment so
that the total motor density remains invariant under the dynamics and therefore spatially uniform
ρM = ρ̄M, cf. Eq. (2.10). Consider now a small perturbation δl (x) added to the homogeneous state l∗,
while keeping the cytosolic tubulin concentration cT(x) = c∗T initially constant [Fig. 2.3(b,c)]. Since
then vg = aγcT initially remains uniform, the effect of δl (x) on the net growth velocity v = vg − ṽs

depends on the slope of the shrinkage velocity at l∗. For Çl ṽs|l∗ < 0, filaments grow (shrink) when
they are long (short). This leads to an decrease (increase) of the cytosolic tubulin concentration
[arrows in Fig. 2.3(b,c)] creating gradients in the cytosolic tubulin concentration that drive diffusive
transport of tubulin mass towards regions of increased filament length. Since this tubulin mass
redistribution leads to an increase of vg in regions where δl > 0, it promotes further filament growth
there, i.e., the initial spatial perturbation δl (x) is amplified [Fig. 2.3(b)]. In contrast, if the regulatory
kinetics is such that the shrinkage velocity increases with filament length (Çl ṽs|l∗ > 0), the effect
is opposite. Cytosolic tubulin diffusion then redistributes the tubulin mass to regions with shorter
filaments, counteracting the original disruption. Taken together, one finds the condition Çl ṽs|l∗ < 0
for a spatial instability that is driven by free tubulin diffusion, in accordance with the result of the
linear stability analysis.

The above reasoning also explains why cytosolic diffusion of motor proteins mitigates the lateral
instability. Regions with short filaments contain fewer binding sites for motors and thus the cy-
tosolic motor concentration is high there. The opposite holds for regions with long filaments. This
creates gradients, and thereby diffusive fluxes, of motors towards regions of long filaments. The
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Figure 2.4: (a) Leading eigenvalue in the dispersion relation σ(q) for ρ̄M = 50nM, ρ̄T = 2.75µM ,
DM = 0.5µm2s−1 and DT = 6µm2s−1; other parameters are specified in the Supplemental Material
Sec. SI [208]. The dispersion relation in the limit of well-mixed cytosolic tubulin is shown in light
blue. (b) Stability diagram and wavelength of the fastest growing mode qc in the (ρ̄M, ρ̄T)-parameter
space. The boundary of the laterally stable parameter regime, ρ̄crit

T (ρ̄M), is shown in red.
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resulting diffusive influx of motors increases the rate of filament depolymerization there and thus
counteracts the instability driven by tubulin diffusion.

Figure 2.5: Snapshots of the total tubulin density ρT(x, t ) and the tip density. Parameters are as in
Fig. 2.4(a); Lx = Ly = 150µm.

Agent-based simulations. — To study the spatio-temporal dynamics above the critical tubulin
concentration ρ̄crit

T (ρ̄M) we perform agent-based simulations. While Eqs. (2.8)–(2.10) capture well
the initial dynamics at the long-wavelength instability, they fail to give the correct dynamics once
gradients begin to emerge at the small length scales (see Supplemental Material Sec. SIV [208]).
What this continuum theory lacks are effects due the spatial extent of the filaments which includes
motor binding along the length of filaments as well as motion of each filament plus-end due to
polymerization kinetics.

Figure 2.5 shows a time sequence obtained from the simulations (see also Movie 1). First, regions
with short (depletion zones) and long (clusters) filaments are formed, which corresponds to the
initial dynamics described by the mass redistribution instability (Fig. 2.5, t = 30min). Moreover,
filament plus-ends start to accumulate at the interface between these zones. As the dynamics pro-
gresses, the depletion zones grow in size and the interfaces sharpen (Fig. 2.5, t = 60min). At this
time point, the filament-length distributions match on a qualitative level with experimental mea-
surements [63] (see Supplemental Material Sec. SIII [208]). Subsequently, the high density regions
segregate into individual large scale filament clusters, which are characterized by sharp boundaries
and strong co-localization of filament plus-ends at their periphery (Fig. 2.5, t = 180min). This co-
localization is caused by the movement of the filaments’ plus-end due to polymerization dynamics
that is directed to zones where the net growth rate changes sign, namely cluster interfaces. In the
long run, the large filament clusters grow at the expense of the smaller ones, until eventually only a
single cluster remains, which then develops into an aster-like structure (Fig. 2.5, t = 700min).

Inside the clusters, the filaments exhibit net polar order that is aligned along tubulin-density gra-
dients, i.e., orthogonal to the cluster boundaries. This is because the plus ends localized there be-
long predominantly to filaments whose minus end lies within the cluster’s interior, implying an
orientation orthogonal to the boundary on average (see Fig. 2.6 and Movie 2).

To quantify this effect, we monitor the density gradient ∇ρT, the local net polarity p, and the angle
θ enclosed between these vectors. Figure 2.6(d) shows the time evolution of the histogram P (θ) of
the angle θ weighted by the product of the magnitudes of ∇ρT and p to highlight the alignment of
filaments near the cluster boundaries. The initially uniform distribution P (θ) evolves quickly into a
peaked distribution centered around zero—indicating the onset of polar order—and subsequently
sharpens slowly; see also snapshots in insets of Fig. 2.6(a). The onset of this polar order occurs
simultaneously with the mass-redistribution instability, as can be seen from the comparison of the
spatial averages 〈p · ∇ρT〉 and 〈|∇ρT|2〉, which are coarse-grained measures of filament orientation
and density gradients, respectively; Fig. 2.6(e).

The polar order leads to advective flow of filament-bound motors out of clusters, which is bal-
anced against diffusive influx caused by gradients in cytosolic motor concentration [see Fig. 2.6(c)].
Fast binding of motors inside clusters together with advective motor transport leads to the depletion
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of motors in the cluster interior and the formation of sharp gradients in cytosolic motor concentra-
tion. Those gradients help to maintain the filament plus-end localization at the interfaces: Plus
ends that protrude beyond the interface are subjected to an increased on-flux of motors, causing
the filaments to shrink back. Conversely, plus-ends within the cluster are subjected to a reduced
motor on-flux, causing them to grow towards the interface. Finally, the sharp cytosolic gradient
leads to a shrinkage velocity ṽs that is independent of filament length because motor attachment
occurs only in a narrow band at the interface. This is a collective effect and in contrast to the length
regulation of a single filament, which is strongly length-dependent [cf. Eq. (2.7)]. The size regulation
of clusters and a quantitative analysis of the final, aster-like, stationary state will be presented in a
forthcoming publication [214].

Discussion. — Commonly, the spatial self-organization of cytoskeletal filaments is attributed to
motor proteins that reorient and move filaments by mechanical forces, such as dynein or kinesin-5
[2, 99, 177, 193]. Here, we have shown that microtubule length regulation (through kinesin-8) in
combination with resource limitation can lead to aster-like spatial patterns. The underlying insta-
bility is driven by diffusive redistribution of cytosolic tubulin mass. While we studied a minimal
model for stabilized microtubules in an in vitro setting here, we expect that this instability mech-
anism could also operate in living cells or cell extracts. It has been estimated that up to 60% of
the available tubulin heterodimers are used up during the formation of the mitotic spindle [215,
216]. Moreover, length-dependent polymerization kinetics has been observed for non-stabilized
microtubules [143]. Those observations — resource limitation and a length-dependent feedback
mechanism — are the general requirements for the mass-redistribution instability discussed here.
In general we, we expect that the mechanism described here can play a role when tubulin as well
as MAPs are limited. The pattern-forming instability we have discovered is also a potential can-
didate to explain the emergent self-organization observed in cell extracts [126]. Notably, this self-
organization is heralded by spatial patterns that emerge in the tubulin density, which have compa-
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Figure 2.6: (a) Snapshots of filament arrangement in Fig. 2.5. Filaments are color coded accord-
ing to their orientation (color wheel); insets show the weighted distribution P (θ). (b) Zoom into a
structure interface. (c) Filament-bound (orange) and cytosolic (purple) motor concentration aver-
aged along the vertical direction for the area enclosed by the black windows in (b). (d) Kymograph of
P (θ) with the (logarithmic) color scale showing the normalized (by area) frequency of the measured
angles; the dashed, red lines correspond to the insets in (a). (e) Time trace of 〈p ·∇ρT〉 and 〈|∇ρT|2〉
(ordinate in a.u.).
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rable morphology and wavelength (∼ 100µm) as those we observe in our simulations (cf. Fig. 2.5).
We also expect that our theory for resource-limited filament length regulation can be used to inves-
tigate heterogeneous growth dynamics in systems where spatial heterogeneities in filament length
and/or density are imposed, e.g. by experimental design [201] or by upstream gradients [168, 217].
From a broader perspective, the conceptual model investigated here is in itself an interesting active
matter system exhibiting self-organized patterns, polarity sorting, and coarsening. Such collective
filament organization is usually attributed to the mechanical interaction of filaments [75, 194, 218–
220]. Investigating how mechanical interaction and length regulation work together will be an im-
portant starting point for further research.
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2.3. FILAMENT BUNDLE FORMATION AND POLARITY SORTING TROUGH

LENGTH REGULATION

2.3.1. SIGNIFICANCE

This section is an extension of the work presented in Sec. 2.2. We will repeat some of the previous
arguments but not all to reduce redundancy.

Here we study a minimal one-dimensional version of the model discussed in Sec. 2.2. In particu-
lar, we aim to go beyond the point-like filament approximation used in Sec. 2.2 and take the spatial
extent of filaments into account. Based on a systematically coarse-grained hydrodynamic field the-
ory, we seek to understand length-regulated polarity sorting of filaments. Moreover, we include
filament diffusion, which has been neglected previously. Upon including filament diffusion, the
emerging long-term dynamics shows additional interesting emergent phenomena like coalescence
of filament bundles, symmetry breaking of bundle polarity, and traveling wave solutions of filament
bundles. All are driven by length regulation, in the absence of mechanical interactions of filaments.
I did not explore those phenomena to the last detail. Here, I discuss the long-term dynamics on
a rather phenomenological level. From my perspective, the exciting aspect is that polarity sorting,
coarsening, and coalescence of microtubule structures are all observed experimentally. However,
all of those effects are usually attributed to mechanical interactions between filaments. While this
is possibly true in most biological cases, the scientific community widely overlooks the pathway to
aster formation, coarsening, and coalescence discussed here.

2.3.2. RESULTS

BIOPHYSICAL MODEL

We propose an agent-based model that builds on our previous studies addressing the resource-
limited length regulation of microtubules by the kinesin-8 homolog Kip3 from Saccharomyces cere-
visiae in a two-dimensional confined volume [1]. In order to study the essential (bio-)physical pro-
cesses in the system, we further restrict our analysis to a quasi-one-dimensional slab geometry
of extend L with periodic boundary conditions, containing a finite number of tubulin units (NT),
molecular motors (NM) and filaments (NMt). Each individual filament i = 1, . . . , NMt is either left (−)
or right (+) oriented (see Fig. 2.7(d)). The length li (t ) of the individual filaments are dynamic vari-
ables and change by polymerization kinetics at the plus-end. We account for fluctuations in the sys-
tem by an effective length dependent filament diffusion coefficient DMt(l ). When filaments shrink
to zero length, they are assumed to regrow from the same nucleator with the same orientation; fila-
ment shrinkage to zero length, though, rarely occurs. In the cytosol, both motors and tubulin units
diffuse freely with diffusion constants DM and DT, respectively. Cytosolic motors can bind with
rate kon to any point that is within the binding radius rM along a filament. Filament-bound motors
move towards the filament plus-end at speed vm, where they catalyze filament depolymerization
at rate δ [see Fig. 2.7(b)]. Upon depolymerization, the filament length is reduced by one tubulin
unit (of length a), and both the plus-end-bound motor and the associated tubulin unit are released
into the cytosol. As we consider stabilized microtubules, no rapid depolymerization events upon
microtubule catastrophes are considered here. Cytosolic tubulin within a distance rT of a filament
plus-end binds to it at the rate γ, increasing filament length by a [Fig. 2.7(b)]. For an assessment of
the model parameters, see Supplementary Sec. 2.5.

RESULTS

SINGLE FILAMENT DYNAMICS

Let us first consider the minimal setting of a single filament in a small cytosolic volume V0 with a
finite number of tubulin units ρTV0 and motors ρMV0. For now, we assume for simplicity that the
cytosolic concentrations cM and cT are spatially uniform. This assumption will be relaxed later when
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Figure 2.7: (a) Cartoon of a filament interacting with a finite amount of resources. Tubulin is shown
in green, filament-bound motors in orange, and free motors in purple. (b) Model representation of
the illustration shown above. Motors attach from the cytosol at rate kon. filament-bound motors
move towards the filament plus-end at speed vm and detach at rate koff. Motors bound to the fila-
ment plus-end catalyze depolymerization at rateδ (c) Two-dimensional representation of a filament
arrangement in a finite volume V . (d) Schematic representation of the minimal one-dimensional
model system. Filaments can be either left (blue) or right (red) oriented.

we study spatially extended systems and explicitly account for cytosolic gradients on the scale of the
filament length.

The length change of a single filament is determined by the antagonism between polymerization
and depolymerization kinetics (Fig. 2.7(b))

Çt l = vg − vs . (2.11)

The polymerisation (growth) velocity vg is given by the available cytosolic tubulin concentration cT

and the polymarization rate γ,
vg = aγcT . (2.12)

The depolymerization (shrinkage) of the filament is driven by motors bound to the filament tip,
where they act as depolymerases and catalyze shrinkage at a rate δ,

vs = aδm+(t ) . (2.13)

Here m+ is the density of motors at the filament tip. For biologically relevant parameters, the
motor dynamics is fast compared to the filament dynamics. This separation of timescales allows us
to treat the motor dynamics in a quasi-steady state. In the following, we will denote quasi-steady
state quantities by a tilde. In steady state, the total attachment flux onto the filament jon = konc̃Ml
has to be balanced by the off flux from the filament by detachment and depolymerization joff =
koffM̃ + ṽs/a. Thus the depolymerization velocity is determined by the cytosolic motor density c̃M

and the filament-bound motor number M̃

ṽs = a(konc̃Ml −koffM̃) . (2.14)

The filament-bound motor number M̃ and the cytosolic motor number c̃M are related through
mass-conservation

ρMV0 = c̃MV0 + M̃ (2.15)

The dynamics of the motors on the filament is a combination of transport with constant velocity vm

towards the plus-end and Langmuir kinetics, where the motors attach from the cytosol at the rate
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kon and detach at the rate koff [209, 210]

Çt m(s, t ) =−vmÇsm(s, t )+koncM(t )−koffm(s, t ) . (2.16)

where s denotes the arc-length along the contour of the filament. Since we are interested in the low
density regime, we have neglected effects due to steric exclusions; for the relevance of the latter for
length regulation, please refer to [44, 62]. In quasi-steady state, this transport equation is solved by
m(s) = kon

koff
c̃M(1−e−s/lrun ) with the typical run length lrun = vm/koff of the motor. This implies a total

number of filament-bound motors

M̃ = konc̃M

koff

[
l − lrun(1−e−l/lrun )

]
. (2.17)

Equations 2.14, 2.15 and 2.17 allow us to express the shrinkage velocity in terms of the total motor
density ρM and the filament length

ṽs(l ,ρM) = akonρM
lrun(1−e−l /lrun )

1+2 lrun

l 2
c

[
l − lrun(1−e−l/lrun )

] , (2.18)

where we have defined the characteristic length scale

lc =
√

2vmV0

kon
. (2.19)

An intuitive interpretation of the characteristic length lc can be obtained in the limit of persistent
motors; lrun →∞. In this limit, lc corresponds to the filament length where the number of filament-
bound motors M̃ equals the number of cytosolic motors c̃MV0. For small filament length, l ¿ lc,
the shrinkage velocity increases linear, ṽs ∼ l , as would be expected with unlimited motor resources
and has been observed experimentally [58, 175]. In contrast, for large filament length, l À lc, the
shrinkage velocity behaves as ṽs ∼ 1/l . Together, this gives the characteristic hump shape of ṽs(l );
see Fig. 2.8 (a). Finally, using tubulin mass-conservation

ρTV0 = cTV0 + l/a , (2.20)

we can express the growth velocity (Eq.2.12) in terms of the total tubulin concentration ρT and the
filament length l

vg(l ,ρT) = aγ
(
ρT − l

aV0

)
. (2.21)

Combining the expressions for the growth and shrinkage speed, we obtain a closed equation for the
filament length Çt l (t ) = vg(l ,ρT)− ṽs(l ,ρM). For given kinetic constants, the control parameters of
the filament dynamics are the total densities of tubulin (ρT) and of motors (ρM). At steady state,
the growth and shrinkage velocities balance vg(l∗,ρT) = ṽs(l∗,ρM), and one obtains the steady-state
filament length l∗(ρM,ρT); see Fig. 2.8 (a),(b). In the parameter plane of total densities, we find a
regime of bistability where two stable steady-state filament lengths exist; see Fig. 2.8 (c). This regime
is determined by the parameter range where the shrinkage velocity ṽs and the growth velocity vg

have three intersection points. This means, the region of bistability is delimited by lines along which
the curve ṽs(l∗,ρM) is tangential to vg(l∗,ρT); Çl ṽs(l∗,ρM) = −γ/(aV0) (see Fig. 2.8 (b),(c)). Such
bistability was recently observed experimentally [63].

For a wide (biologically relevant) parameter range, the motor run length lrun does not change the
results on a qualitative level. We, therefore, restrict our analysis to persistent (lrun →∞) motors in
the following. In this limit, the shrinkage velocity ṽs reduces to the simpler form

ṽs(l ,ρM) = akonρMl c̃M = akonρM
l

1+ (l/lc)2 (2.22)

and the motor density exhibits a simple antenna profile along the microtubule m̃(s) = (konc̃M/vm)s.



2.3. FILAMENT BUNDLE FORMATION AND POLARITY SORTING TROUGH LENGTH REGULATION

2

27

(ii)

(iii)

(iv)

(i)

Figure 2.8: (a),(b) Graphical construction of the steady state solution (c∗T , l∗). Here we used koff = 0.
steady states are given by the intersection point of the nullcline aγcT∗ = vs(ρM, l∗) (blue) and the
mass conservation constraint ρTV0 = l/a + cTV0 (orange). The characteristic length lc is shown in
red. For koff = 0, it marks the apex of the nullcline. For low motor concentrations ρM Çl ṽs(l∗,ρM) >
−γ/(aV0) and there exists only one stable fixed point of the reaction dynamics. As the total motor
concentration is increased, we find a bistable parameter regime. the region of bistability is delimited
by lines along which the curve ṽs(l∗,ρM) is tangential to vg(l∗,ρT); Çl ṽs(l∗,ρM) =−γ/(aV0). (c) Sta-
bility diagram of the length regulation kinetics. Parameters are as given in Sec. 2.5, here we choose
koff = 0 .

COLLECTIVE FILAMENT DYNAMICS IN A SPATIALLY EXTENDED SYSTEM

On the continuum level, the system dynamics is characterized by the cytosolic tubulin concentra-
tion cT(x, t ), the cytosolic motor concentration c̃M(x, t ), and the filament plus-end density ρ±(x, l , t )
of left (−) and right (+) pointing filaments of length l at the spatial position x at time t . To simplify
notation, we omit the time dependence in the following. The length regulation dynamics of fila-
ments yield an advective flux at speed v±(x, l ) = vg(x)− ṽs(x, l ) of filament tips both in the spatial
and in length domain. Together with length-dependent filament diffusion, the time evolution of
filament plus-ends is captured by

Çtρ±(x, l ) = DMt(l )Ç2
xρ±(x, l ) (2.23)

∓Çx [v±(x, l )ρ±(x, l )]−Çl [v±(x, l )ρ±(x, l )] .

If the local net velocity v±(x) is positive, filament tips associated with right (left) oriented fila-
ments are advected to the right (left) and vice versa for negative net velocity. The last term accounts
for length changes. Independent of the orientation, a positive/negative net velocity yields filament
growth/shrinkage (‘advection in the length domain’). Possible nucleation events could be treated as
a boundary condition at l = 0. Here, however, we will focus on the dynamics in the absence of nu-
cleation and “filament death”. To describe the dynamics of the filament-motor mixture, we need to
derive expressions for the growth vg(x) and shrinkage ṽs(x, l ) velocities for a spatially extended sys-
tem. The growth velocity can easily be generalized from the single filament dynamics by including
the spatial dependence of the cytosolic tubulin concentration; vg(x) = aγcT(x). To obtain an expres-
sion for the shrinkage velocity, we assume a quasi-steady state for the dynamics of filament-bound
motors and use the flux balance condition (cf. Eq. 2.14). However, in a spatially extended system,
the attachment of motors appears along the whole contour of the filament. The shrinkage velocity
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then becomes

ṽ±
s (x, l ) = a kon

{∫ x
x−l dx ′ c̃M(x ′) (+ oriented filaments)∫ x+l
x dx ′ c̃M(x ′) (− oriented filaments)

, (2.24)

where we assumed persistent motors (koff = 0). For well-mixed cytosolic motors, Eq. 2.24 reduces
to Eq. 2.14. As in the case of a single filament, we will express the cytosolic motor concentration in
terms of the total motor density

ρM(x) = c̃M(x)+ µ̃+(x)+ µ̃−(x) . (2.25)

Here µ̃±(x) denote the filament-bound motor density associated with all filaments of orientation ±
at position x. The filament-bound motor density of a single filament with the plus-end at position
x ± (l − s) and length l is given by

m̃±(x; l , s) = kon

vm

{∫ x
x−s dx ′ c̃M(x ′) (+ oriented)∫ x+s
x dx ′ c̃M(x ′) (− oriented)

. (2.26)

Note again, the result reduces to the result for a single filament in the limit of well-mixed cytosolic
motors. The average filament-bound motor density at position x is then given by

µ̃±(x) =
∫ ∞

0
dl

∫ l

0
dsρ±(x ± (l − s), l )m±(x; l , s) . (2.27)

Equations (2.25) and (2.27) (in principle) can be solved for the cytosolic quasi steady-state motor
concentration c̃M. To obtain a complete description of the dynamics on a continuum level, we need
equations governing the cytosolic redistribution of tubulin and motors. Polymerization kinetics
induces sources (filament shrinkage), and sinks (filament growth), and cytosolic tubulin is redis-
tributed via diffusion. In the quasi steady state, the total motor density ρM is solely redistributed via
diffusion. Taken together, this yields

Çt cT(x) = DTÇ
2
x cT(x)−

∫ ∞

0

dl

a

[
v+(x, l )ρ+(x, l )+ v−(x, l )ρ−(x, l )

]
, (2.28a)

ÇtρM(x) = DMÇ
2
x c̃M(x) . (2.28b)

MOMENT EXPANSION AND GRADIENT APPROXIMATION

Eqs. (2.23) and (2.28) constitute a set of integro-differential equations in the x, l domain with an
algebraic integral-constraint (Eq. (2.25)). This makes an explicit treatment, even on a numerical
level, challenging. The purpose of the continuum description above is that it serves as the basis for
a perturbative approach.

We first aim to treat the algebraic integral constraint (Eq. (2.25)). To obtain a feasible expression,
we perform a gradient expansion in the cytosolic motor density c̃M and the plus-end density ρ±.
The shrinkage velocity then becomes

ṽ±
s (x, l ) = kon

∞∑
k=0

(∓1)k

k !
Ç(k)

x c̃M(x)l k . (2.29)

This expression is only guaranteed to be positive if (i) the sum is truncated at 0th order or if (ii)
the entire sum is taken into account. Otherwise, the shrinkage velocity will become negative if the
cytosolic motor concentration has gradients on the length scale of the local filament length. This
means, one either has to truncate the sum at the lowest order or deal with the problem at its entire
complexity, or hope that gradients in the cytosolic motor concentrations are not too sharp. To make
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progress, we rely on a 0th order gradient expansion. This approximation is valid as long as gradients
in the cytosolic motor density are weak and occur on length scales much longer than the typical
filament length. Consistently, the filament-bound motor density can be written as

µ±(x) ≈
∫ ∞

0
dl

kon

2vm
c̃M(x)l 2ρ±(x, l )+O (|Çx c̃M|)+O (|Çxρ±|) . (2.30)

Next, we perform a moment expansion in the filament length l , which leads to a hierarchy of order
parameters,

`
(q)
± (x) =

∫ ∞

0
dl l qρ±(x, l ) . (2.31)

The zeroth moment `(0)
± (x) represents the filament tip density and `(1)

± (x)/`(0)(x) = 〈l〉± the mean
filament length at position x. Substituting Eq. 2.30 into Eq. 2.25 and using Eq. 2.31 yields

c̃M(x) ≈ ρM(x)

1+V0`(2)(x)/l 2
c

, (2.32)

where we defined `(2)(x) = `(2)
+ (x)+`(2)− (x). The remaining task is to obtain a set of dynamic equa-

tions for the moments `(q). To do so, we substitute Eq. 2.31 into Eq. 2.23 and use Eq. 2.29, which
yields an infinite set of coupled equations for the moments `(q)

±

Çt`
(q)
± = Ç2

x

∫ ∞

0
dl l q DMt(l )ρ±(x, l ) (2.33)

∓aÇx

[
γcT`

(q)
± −konc̃M`

(q+1)
±

]
+qa

[
cT`

(q−1)
± −konc̃M`

(q)
±

]
.

This is the dynamics of the moments characterized by a diffusion advection reaction equation.

MEAN-FIELD APPROXIMATION

Eq. 2.33 couples the q− th moment to higher moments both through the diffusion term and the ad-
vection term. To close the infinite hierarchy of equations, we perform a mean-field approximation
of the form ∫ ∞

0
dl f (l )ρ±(x, l ) ≈ f (〈l〉±)`(0)

± = f (`(1)
± /`(0)

± )`(0)
± , (2.34)

for an arbitrary function f (l ). This is equivalent to the assumption that the local filament length has
zero variance. Thereby we obtain a closed set of equations for the first two moments `(0) and `(1)

Çt`
(0)
± = Ç2

x

[
DMt(`

(1)
± /`(0)

± )`(0)
±

]
∓ Çx

(
v±`(0)

±
)

, (2.35a)

Çt`
(1)
± = Ç2

x

[
DMt(`

(1)
± /`(0)

± )`(1)
±

]
∓ Çx

(
v±`(1)

±
)+ v±`(0)

± , (2.35b)

with the net polymerization velocity

v± = a
(
γcT −konc̃M`

(1)
± /`(0)

±
)
= a

(
γcT −konc̃M〈l〉±

)
.

Equation 2.35a is a diffusion-advection equation for the filament tip-density of left and right-pointing
filaments respectively. The first term accounts for the diffusion of filament tips. The second term
reflects filament tip advection. Depending on the local net velocity, v±, filament tips are advected
to the left or right. Equation 2.35b is a diffusion-advection-reaction equation that accounts for the
local change in filament-bound tubulin density. As is the case for filament tips, the local filament-
bound tubulin density changes through filament diffusion and advection. Moreover, it is changed
by incorporation and release of tubulin, which is accounted for by the reaction term v±`(0)

± .
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In Sec. 2.2, we used the point-like filament approximation to account for the change in filament-
bound tubulin mass at position x. Comparison of Eq. 2.35b to the point like filament approximation
used in Sec. 2.2 reveals that there is one additional contribution which we did not account for pre-
viously, namely the local change in filament mass caused by advection. This is expected since the
advection term describes the local change in filament-bound tubulin mass through polymerization,
which can be only present if filaments have a non-zero extent.

Using the mean field approximation (Eq. 2.34) the cytosolic motor concentration c̃M (Eq. 2.32) can
be written as a function of `(0)

± and `(1)
± ,

c̃M(x) ≈ ρM(x)

1+ V0

l 2
c

(
`(1)2
+
`(0)
+

+ `(1)2
−
`(0)−

) . (2.36)

In the spatially homogeneous system with an equal number of left and right pointing filaments,
Eq. 2.36 reduces to the result for a single filament (cf. Eq. 2.22). Together with the dynamic equations
for cytosolic tubulin and motors, expressed in terms of the moments `(0)

± and `(1)
± , we found a closed

set of equations describing the spatio-temporal evolution of the filament motor mixture

Çt cT(x) = DTÇ
2
x cT(x)− 1

a

[
v+`(0)

+ + v−`(0)
−

]
, (2.37a)

ÇtρM(x) = DMÇ
2
x c̃M . (2.37b)

Note, Eq. 2.37a together with Eq. 2.35b conserves the tubulin mass.
For given kinetic constants, the total motor density ρ̄M, tubulin density ρ̄T and density of left/

right pointing filaments ¯̀(0)
± are control parameters of the system dynamics. The spatially homoge-

neous solution to Eq. 2.35 and Eq. 2.37 is given by ( ¯̀(0)
± ,`(1)∗

± ,c∗T , ρ̄M) where quantities denoted with
an asterisk (∗) represent spatially homogeneous solutions determined by the local reaction kinetics.

Before we continue the analysis of the spatio-temporal dynamics, we would like to recapitulate
the major approximations made to arrive at a field theoretic description of the system (Eq. 2.35
and Eq. 2.37). First, we made a quasi steady state approximation for the filament-bound motor
density. This approximation is expected to work well for biologically relevant parameters and can be
checked by numeric simulations taking the motor movement into account; see Sec. 2.5. Second, we
made a gradient expansion in the cytosolic motor density and filament tip density, i.e., we neglected
gradients on the length scale of the filament. This approximation is expected to work well for the
initial dynamics starting the spatially homogeneous steady state (no gradients). However, it might
fail once gradients have built up. Last we made a mean-field approximation assuming zero variance
in the local filament length. If the reaction kinetics, which sets the spatially homogeneous state,
yields a sharply peaked filament length distribution, the mean-field approximation is also expected
to work well for the initial dynamics. To verify predictions made based on our field theory, we will
rely on agent-based simulations of the full dynamics in the following.

LINEAR STABILITY ANALYSIS

In the following, we will limit the discussion to equal numbers of left and right-oriented filaments
in the system ¯̀(0)

+ = ¯̀(0)− . Moreover, we have to make a choice for the length dependent filament
diffusion coefficient DMt(l ), which we choose as

DMt(l ) = DT

1+ l/ld
, (2.38)

such that filaments of zero length diffuse with the diffusion constant of cytosolic tubulin. The pa-
rameter ld characterizes how fast the filament diffusivity declines with increasing filament length.
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Having a complete field theoretic description of our model, we can study the stability of the spa-
tially homogenous state against spatial perturbations using linear stability analysis. In particular,
we can check if the additional advection term in Eq. 2.35b, not present in the point-like filament
approximation, affects the linear stability of the system. Comparison to the point-like filament ap-
proximation used in Sec. 2.2 reveals that the stability of the spatially homogeneous state is not af-
fected by the advection term. This can be understood on an intuitive level: The net velocity v± is
only non-zero if the mass-redistribution instability is present. Otherwise, v± = 0, and there is no
advective redistribution of filament tips.

In contrast, non-zero filament diffusion can affect the stability of the spatially homogeneous state.
If the filament diffusion is fast (ld is large), the instability can be suppressed. This can be understood
in the context of the mass-redistribution instability discussed in Sec. 2.2: The mass-redistribution
instability is based on the local imbalance of filament growth and shrinkage; see. Fig. 2.3. Let us first
recapitulate the argument for mass-redistribution instability in the absence of filament diffusion.
We keep the cytosolic tubulin concentration fixed but add a small perturbation to the local filament-
bound tubulin mass δ`(1)(x). If the shrinkage velocity declines as a function of the filament-bound
tubulin mass, the perturbation yields spatial regions where the net velocity v± is positive (negative)
if the filament-bound tubulin mass is increased (decreased) by δ`(1)(x). Therefore, in regions where
filaments are short, this mechanism will yield an increase of cytosolic tubulin due to the net shrink-
age of filaments and depletion of cytosolic tubulin in regions where filaments are long. Essential
to maintain filament growth (positive feedback) in regions where filament length is increased is the
diffusive redistribution of cytosolic tubulin from spatial regions where filaments are short to spatial
regions where filaments are long; see Fig. 2.3 (b). Now consider, for simplicity, filaments that diffuse
with a length independent diffusion constant DMt. If the short and long filaments mix too fast via
diffusion the positive feedback mechanism is suppressed and, therefore, the instability; see [213]
for a detailed discussion.

Figure 2.9 (a),(b) shows typical stability diagrams in the (ρ̄M, ρ̄T) parameter plane for ld = 1×10−2
µm ∼

a and ld = 1×10−1
µm ∼ a in comparison to agent-based simulations (symbols). The onset of the

instability appears to be slightly earlier in the agent based-simulation. The qualitative behavior is
captured well by our field theory. Above the threshold for lateral instability, we find the formation of
filament bundles with local polar order p(x) = `(1)

+ −`(1)− . But the long-term dynamics of the filament
bundles depend on ld as we will discuss in Sec. 2.3.2. Next, we are interested in the dynamics be-
yond linear stability. We first want to understand the polarity sorting mechanism driven by filament
length regulation.

LENGTH REGULATED POLARITY SORTING

In order to investigate the behavior beyond linear stability, we use a twofold approach. First, we
perform agent-based simulations of our model, and second, we perform finite element simulations
of Eqs. (2.35) and (2.37). Figure 2.10 (a) shows the time evolution of the total tubulin concentration
obtained from agent-based simulations of a small system of size Lx = 250µm for filaments which do
not diffuse (DMt = 0). We initialize the system in the leterally unstable parameter regime. Starting
from a spatially homogeneous state, the first regions of reduced and increased filament length are
formed. This corresponds to the initial dynamics described by the mass-redistribution instability.
As the dynamics progresses, the high density regions segregate into large-scale filament bundles.
Eventually, the filament motor mixture evolves into a single stable filament bundle, as shown in the
latest snapshot (t = 27.7h). The final structure has a well-defined orientational order with filament
plus-ends centered at the bundle interface; see Fig. 2.10(a).

How can we understand the polarity sorting mechanism driven by length regulation? To answer
this question, let us consider the case of zero filament diffusion, DMt = 0, first. Above the insta-
bility threshold, the mass-redistribution instability will drive the system into regions with net fil-
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Figure 2.9: (a),(b) Stability diagram obtained from a linear stability analysis of Eq. 2.33 and Eq. 2.37
in comparison to the agent-based simulations (symbols) for different values of ld. The triangles in-
dicate spatially inhomogeneous and the circles spatially homogeneous patterns. The gray shaded
area highlights the parameter regime where the local reaction dynamics is bistable (cf. Fig. 2.8).
(c) Schematic illustration of the polarity sorting mechanism in a system without filament diffusion.
Starting from an initially homogeneous state (t0), the mass-redistribution instability drives the fil-
ament network into regions with positive/ negative net velocity v± = vg − akonc̃M〈l〉±. As a result,
filaments with opposite orientations will grow/ shrink in opposite directions (t1). Since the direction
of motion of the filament tips reverses at the position where the net velocity v± changes sign, this
dynamics yields co-localization of filament tips at interfaces between net filament growth and net
filament shrinkage. Thereby, polar filament bundles are formed (t2). The emerging polar structure,
in turn, influences motor dynamics. This, in turn, influences the motor dynamics in the system. Fil-
ament depleted regions are associated with high and filament enriched regions with a low cytosolic
motor concentration. The resulting concentration gradient generates a diffusive flux of motors into
filament bundles. Inside the filament bundle, cytosolic motors bind quickly due to a high density
of binding partners (filaments). Due to the network polarity, filament-bound motors are advected
back towards the bundle interface, where they are released into the cytosol.
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Figure 2.10: (a) Time evolution of the filament-bound tubulin density obtained from agent-based
simulations in a small system with lateral extent Lx = 250µm, total tubulin density ρ̄T = 1200µm−1

and total motor density ρ̄M = 20µm−1 and DMt = 0. Time is indicated at the right axes and tubulin
density at the left axes. Snapshots are shown every 0.2h. Starting from a spatially homogeneous
state, the mass-redistribution instability leads to a spatial modulation of the filament-bound tubu-
lin density. Depletion zones form in the filament arrangement form regions with reduced tubulin
density as the dynamics progress. The newly available cytosolic tubulin is then incorporated into
the filament arrangement in regions of long filaments, further increasing the filament-bound tubu-
lin mass there. Eventually, the filament arrangement evolves into a single stable filament bundle,
as shown in the latest snapshot (t = 27.7h). (b)-(c) Quantification of the emerging filament bundle
seen in the last snapshot. The y-axis is in arbitrary units. (b) The filament-bound tubulin density
is separated into density profiles of left (blue) and right (red) pointing filaments. As can be seen,
the density profiles segregate. (c) The segregation of density profiles implies net polarity (defined
as the difference of left and right-oriented bound tubulin density) within the filament bundle. (d)
Density profiles of filament tips. Left (right) oriented filament tips accumulate at the left (right)
bundle interface. (e)-(f) Bound tubulin density `(1)

± /a, tip density `(0)
± and unnormalized polarity

p = `(1)
+ −`(1)− obtained by finite element simulations of the PDEs Eqs. (2.35a–b) and Eq. (2.37a–b).

Snapshots were taken at t = 4.2h. The system was initialized as in (a) with small spatial perturba-
tions in the `(1)

± fields. Polarity sorting and tip co-localization with interfaces to depletion zones
are already nicely visible in the initial phase of pattern formation. Filament tip advection alone is,
therefore, sufficient to account for those observations.
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ament growth, v± > 0, and net filament shrinkage v± < 0; see Fig. 2.9 (c), t0. As a consequence,
filament plus-ends will be advected with the net growth velocity, v±, in the direction of their orien-
tation. If filament plus-ends are in a spatial region with positive net velocity, right oriented filament
plus-ends will move to the right and left oriented filament plus-ends will move to the left and vice
versa in regions with net shrinkage; see Fig. 2.9 (c), t1. This dynamics yields localization of filament
plus-ends at the interface between regions of net growth and shrinkage; see Fig. 2.9 (c), t2. If this
intuitive explanation is correct, our zeroth order gradient expansion Eqs. (2.35) and (2.37), which
includes tip advection should capture the onset of this dynamics. Fig. 2.9 (e)–(g) shows fields of
filament-bound tubulin density `(1)

± , the tip density `(0)
± and the non-normalised polarity defined as

p(x) = `(1)
+ (x)−`(1)− (x) at the onset of pattern formation. As can be seen, the tip movement alone is

sufficient to account for the initial phase of polarity sorting as well as the co-localization of filament
tips. However, in order to describe the dynamics of the emerging filament bundles, a perturbative
approach, such as the one we have chosen, is not promising, even if higher orders in the gradients
are taken into account. This is because the cytosolic motor density will have sharp gradients at the
bundle interface (even with non-zero filament diffusion). However, if gradients in the cytosolic mo-
tor concentration are taken into account, Eq. 2.29 will become negative at some point, which will
lead to nonphysical behavior (negative velocity magnitude). We will therefore stick to our agent-
based simulation in the following to investigate the long-term dynamics of our model.

SYMMETRY BREAKING OF ASTER POLARITY, ASTER COALESCENCE, AND ASTER COARSENING

Having a qualitative understanding of how bundle polarity is established, we can ask the question of
how finite filament diffusion changes the dynamics. To investigate this behavior, we use our agent-
based simulation. We simulate the system for different values of ld = [0.01µm,. . . ,0.11µm]. For the
linear stability of the spatially homogeneous state, we find good agreement between our field theory
and the agent-based simulation for all chosen values of ld. However, as we increase ld, we observe a
significant change in the long-term dynamics of the system. At low ld (filament diffusion decays fast
with filament length), we find coarsening of the emerging filament bundles until only one bundle

Figure 2.11: (a)-(d) Kymograph of the total tubulin density, ρT(x), for ρ̄T = 1800µm−1 and ρ̄M =
40µm−1. Other parameters are as specified in the supplemental material. Time runs from top to
bottom (t ∈ [0,166h]), space from left to right (x ∈ [0,2000µm]). (a) For low diffusion of filaments, we
observe coarsening of the emerging filament bundle. (b)-(d) As the filament diffusion is increased,
we observe the movement and coalescence of the emerging filament bundles. White dashed lines
in (d) indicate the time points of the snapshots shown in Fig. 2.12.



2.3. FILAMENT BUNDLE FORMATION AND POLARITY SORTING TROUGH LENGTH REGULATION

2

35

remains; cf. 2.10 (a) and Fig. 2.11 (a). However, as we increase ld (filament diffusion decays slower
with filament length), we observe filament bundle movement; see Fig. 2.11 (b)-(d). Most of the time,
we observe that neighboring filament bundles move toward each other. However, sometimes, they
move apart (not shown). Eventually, the filament bundles merge through coalescence, and only one
structure remains; see Fig. 2.11 (d).

To get insight into which physical properties drive filament bundle movement and coalescence,
we measure the polarity field p(x), the cytosolic motor density cM(x), and the filament-bound mo-
tor density µ(x) from our agent-based simulations. Remarkably, we find that the symmetry of the
polar order of the emerging filament bundles is broken; see Fig. 2.12. Filaments inside the bundles
point preferably in one direction. We observe that filament bundles move as opposed to their ori-
entational order; see Fig. 2.12 (a). In the majority of cases, this causes neighboring filament bundles
to move towards each other; see Fig. 2.12 (a). However, sometimes the emerging filament bundles
move in the same direction; see Fig. 2.13 (c).

How can we understand the movement of filament bundles? If the orientational order of a fil-
ament bundle is broken, this impacts the motor dynamics. Motors that attach to filaments at the
apolar side (see Fig. 2.13) of the filament bundle will be subject to advective transport towards the
polar side of the filament bundle.

This increases the number of filament-bound motors there; see Fig. 2.12 (b), which are released
into the cytosol and increase the cytosolic motor concentration at the polar bundle side. More-
over, the cytosolic motor concentration of filaments at the apolar bundle side becomes depleted;
see Fig. 2.13. The increase (decrease) of cytosolic motor concentration at the polar (apolar) side
of the bundle yields a dysbalance between growth and shrinkage there, with favor towards shrink-
age (growth). The shrinkage of filaments at the polar bundle side causes an increasing density of
short filaments there. This, in turn, causes a diffusive redistribution of (short) filaments towards the
bundle interior, where filament growth is favored (low cytosolic motor concentration); see Fig. 2.13
(a). In contrast, short filaments which diffuse into the region where the cytosolic motor concentra-
tion is enriched shrink further; Fig. 2.13 (a). The feedback loop between bundle polarity, advective
transport of motors, and gradients in the cytosolic motor density is particularly nicely visible in the
rare occasions where bundles move in the same direction; see Fig. 2.13 (b),(c). Taken together, this
causes bundle movement opposed to the direction of bundle polarity. From a coarse-grained per-
spective, one could view the filament bundle as a “mega” filament performing a treadmilling-like
motion, where the building blocks (individual filaments) become released at one side and incorpo-
rated into the bundle at the other side.

SUMMARY

Here we have studied a minimal conceptual model for motor-mediated polymerization kinetics of
filaments (microtubules) based on our previous work [1]. By reducing the model to an effective one-
dimensional system, we were able to systematically derive a formalism to describe length regulation
in an ensemble of polymerizing filaments in the presence of a motor protein that regulates filament
length. The essential steps for deriving a field theoretic description are (i) the quasi steady state
approximation for the motor protein dynamics, which allows determining the depolymerization
velocity by using a flux-balance argument; cf. Eq. 2.3. (ii) We performed a gradient expansion in
the density fields. This is necessary as filaments are spatially extended objects recruiting resources
from a spatial domain rather than a point. (iii) Lastly, we performed a moment expansion in terms
of the filament length. As the moments in filament length couple to all higher moments, this makes
a closure scheme necessary; cf. Eq. 2.33. Here we performed a simple mean field approximation.
Comparison to agent-based simulations shows that the derived filed theory captures all essential
features of the initial dynamics, including stability of the homogeneous state and demixing of the
population of left and right oriented filaments, i.e., polarity sorting. The emerging filament bundles
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Figure 2.12: (a) Filament-bound tubulin density (green) and polarity (blue, red) obtained from the
agent-based simulation for ρ̄T = 1800µm−1 and ρ̄M = 40µm−1 and ld = 0.11µm; cf. Fig. 2.11 (d)
dashed lines. Other parameters are as specified in the supplemental material. Only a section of
the system x ∈ [250µm,1200µm] is shown. Regions where the number of left oriented filaments
dominates are shown in blue, and regions where right oriented filaments dominate in red. We find
that the orientational order (polarity) of filament bundles is broken. Filaments in the bundle point,
preferably in one direction. The filament bundles move in opposite direction to its polar order. (b)
filament-bound (orange) and cytosolic (purple) motor density. As a result of the polar order of the
filament-bound, and the directed motion of motors on the filaments, motors accumulate at the
polar side of the bundle, where they get released in the cytosol via depolymerization of filaments.
As a result, the cytosolic concentration of motors becomes increased at the polar side of the bundles
and decreased at the apolar side. In particular, if two filament bundles with opposed orientational
order encapsulate a spatial region, the cytosolic motor concentration in the region between them
will be emptied of motors; see (b) t = 66h
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Figure 2.13: (a) Schematic illustration of the mechanism by which filament bundles move. Once the
symmetry in the polar order of the filament bundle is broken, cytosolic motors which attach at the
apolar bundle side (see (b)) are advected along the filaments towards the polar bundle side, where
they depolymerize filaments and are released into the cytosol. This causes an increase (decrease) of
cytosolic motor concentration at the polar (apolar) bundle side. This causes a diffusive flux of mo-
tors towards the apolar bundle side. Short filaments at the polar bundle side are subject to diffusion.
If they diffuse in the bundle interior, they can re-grow. In contrast, if they diffuse into the filament
depleted region, they become entirely depolymerized. Taken together, this causes filament bundle
movement opposed to the polar order of the bundle. (b) filament-bound tubulin density (green),
cytosolic (purple), and filament-bound (orange) motor density in the vicinity of a filament bundle.
Dashed gray lines are a guide for the eye to visualize gradients in the cytosolic motor concentration.
Note we write the diffusive flux of filaments as DMt(l )Çxρ±(x, l ) since, at this stage of the dynam-
ics, our mean-field assumption fails and one should not describe the system dynamics by the first
two moments only. This is because the local length distribution is not sharply peaked anymore. (c)
Snapshot of the density profiles for a rare occasion where neighboring filament bundles move in the
same direction. Snapshot was taken at t = 125h. Parameters are ρ̄T = 1800µm−1, ρ̄M = 25µm−1 and
ld = 0.07µm. Other parameters are as specified in the supplemental material.
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are characterized by sharp gradients in the space domain and a large variance in the local filament
length. This makes both our gradient expansion and the mean-field approximation questionable in
the long run.

We, therefore, turned to agent-based simulations to study the long-term dynamics of the system.
We found that the long-term dynamics of the system shows the emergent formation of filament
bundles. Those filament bundles show spontaneous symmetry breaking of their orientational order,
travelling wave solutions, and coalescence of filament bundles, all driven by length regulation. From
my perspective, the exciting aspect is the feedback between emerging orientational order, which
controls the collective motor flux in the system, and motor regulation, which in turn impacts the
collective dynamics of filaments (movement of filament bundles).

In the context of mechanical filament interactions, the feedback between the orientational order
of filaments and spatial motor organization is often considered [Cite] and lately derived from a mi-
croscopic model [Cite]. In contrast to these systems in the model studied here, filaments do not
interact directly but only via a shared pool of resources. It will be interesting to study systems where
both regulatory and mechanical interactions between filaments are present. By doing so, it might be
possible to overcome the long timescales at which the dynamics presented here takes place. As an
example, contraction into bundles and subsequent polarity sorting could be achieved or accelerated
by mechanical motor-filament interactions while the subsequent movement of filament structures
could be achieved via regulatory dynamics.

Another significant limitation of the model studied here is that we considered only stabilized mi-
crotubules. This was done due to the lack of knowledge of how motor proteins or MAPs impact
dynamic instability, in particular if different MAPs and/ or motors act together to regulate micro-
tubule dynamics. However, as long as there is feedback between the density of filament-bound
tubulin and the rates controlling microtubule dynamics, combined with resource limitation, we ex-
pect that the mechanisms discussed here may play a role. On a speculative level, one could assume
that this also accelerates the collective dynamics as the time-limiting processes in our model are
the polymerization and depolymerization of individual filaments. Polymerization of microtubules,
however, can be accelerated 10−20 times in the presence of other MAPs, and filament catastrophes
provide a pathway to rapid tubulin release. I will briefly discuss some thoughts on the possibility of
mass-redistribution instability in an ensemble of dynamic (non stabilized) microtubules in the next
section.
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2.4. SUMMARY & OUTLOOK

In this chapter, we have studied a minimal model for kinesin-8 driven length regulation in an en-
semble of filaments. Importantly we account explicitly for the spatial redistribution of resources
(kinesin-8, tubulin, and filaments). Commonly, the self-organization of cytoskeletal filaments is at-
tributed to motor proteins that exert mechanical force on the filaments. Here, in contrast, we have
shown that length regulation alone is sufficient to self-organize filament motor mixtures into struc-
tures that span multiple filament lengths, and this is despite the fact that the filaments interact only
indirectly via a shared pool of resources. The instability underlying this self-organization is driven
by the diffusive redistribution of tubulin mass and a shrinkage velocity of filaments that depends
on filament length. This length-dependent shrinkage rate is caused by the directed motion and
persistence of Kinesin-8 motors.

We studied the long term dynamics of the emergent structures with the help of agent-based com-
puter simulations. Thereby we showed that the emergent filament structures are capable of moving
if filament diffusion is included in the model. This motion is driven by an interplay between the
advective transport of motor proteins along the filaments and the diffusive redistribution of short
filaments. In the long run, this motion can cause coalescence and traveling waves of the filament
structures.

We expect that the initial instability discussed here is present in recent in vitro experiments that
study Kinesin-8 mediated length regulation under the limitation of resources [63]. However, unfor-
tunately in those experiments, the tubulin density was not spatially and temporally resolved. The
general requirements for the mass redistribution instability to occur are kinetic rates of filament
length regulation that depend on the local filament density and resource limitation. Both require-
ments have been observed in Xenopus egg extract [69, 70, 200–202]. However, filaments there are not
stabilized as in our model but undergo stochastic switching between filament growth and shrink-
age phases, a process termed dynamic instability [136, 221]. So the question arises as to whether
extent the principles discussed in this chapter can be extended to describe the regulatory dynamics
in ensembles of non-stabilized microtubules.

As an outlook and potential future project, I would like to share my thoughts on this question: Our
knowledge about how different MAPs interact with microtubules that undergo dynamic instability
is quite limited. Therefore, from my perspective, it would be really challenging to model explicit
MAP-microtubule interactions, as we did in this chapter. However, what is feasible is to postulate
a growth velocity, vg(ρ), shrinkage velocity, vs(ρ), catastrophe rate (stochastic switch from growth
to shrinkage), kcat(ρ), and rescue rate (stochastic switch from shrinkage to growth), kres(ρ), that
explicitly depend on the local density of filament-bound tubulin ρ. Since the individual filament is
now a stochastic particle whose dynamic is not well characterized by a mean field equation, it does
not make sense to apply our framework on a single filament level. However, what one could do is to
coarse-grain over a small volume (small compared to the system size) V0 that contains N filaments.
On a mean-field level, we can then approximate the tubulin density in the volume by

ρ = N

V0

〈l〉
a

, (2.39)

Here 〈l〉 is the mean length of filaments in the volume, and a is a factor converting filament length
in a number of tubulin units. The probability of a filament in the volume to be in the growing or
shrinking phase is given by pg(ρ) and ps(ρ) respectively. The probability of being in the growing
or shrinking phase is a function of the catastrophe and rescue rate and, therefore, a function of
the filament bound tubulin density. Moreover, we write the growth velocity of filaments, vg(ρ), as
a base velocity, vg,0 = aγcT, in the absence of MAPs; here cT denotes the cytosolic tubulin density
and a MAP catalyzed contribution, vg,cat(ρ). Taken together, we find the time evolution of the mean
filament-bound tubulin mass, ρ, to be governed by
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Çtρ = N

a

[
pg(ρ)cT(aγ+ vg,cat(ρ))−ps(ρ)vs(ρ)

]
. (2.40)

In steady state, Çtρ = 0, we can solve for the steady state cytosolic tubulin density c∗T and obtain

aγc∗T (ρ∗) = ps(ρ∗)vs(ρ∗)

pg(ρ∗)[1+ vg,cat(ρ∗)/(aγ)]
≡ f (ρ∗) . (2.41)

Together with tubulin mass conservation,

ρT = ρ+ cT (2.42)

we have a closed set of equations for the filament-bound tubulin density. Here ρT denotes the total
tubulin density. Importantly, this set of equations has the same structure as the ones we derived in
Sec. Single filament dynamics. Therefore we expect the possibility of a mass redistribution insta-
bility if Ç∗ρ f (ρ∗) < 0. It would be an interesting research project to study if the stochastic dynamics
of the individual constituents (the filaments) allow a mean-field treatment as outlined here or if
stochasticity plays a significant role.

From a broader perspective, it would be interesting to include mechanical interactions between
filaments. Even if only steric interactions between filaments are considered, this should have a ma-
jor impact on the emerging network architecture. This is because the mass redistribution instability
discussed in this chapter locally increases the filament density beyond the Onsager ordering thresh-
old. We would therefore expect that the filament network first undergoes phase separation into re-
gions of long and short filaments caused by the mass redistribution instability, and subsequently,
if the density is high enough, steric interactions should cause the formation of nematically aligned
filament bundles.
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2.5. SUPPLEMENTAL MATERIAL

PARAMETER ESTIMATION

Since experimental data are available for many of the parameters in our model [60, 175, 222, 223],
we can assign experimentally motivated numerical values to them. In the following we will show
how to convert the experimentally measured rates into appropriate rates for our simulation. The
experimental and the resulting model parameters are summarized in Tab. 2.1.

A typical microtubule consists of thirteen protofilaments. We simplify our analysis by consider-
ing only a single protofilament per microtubule, i.e., we neglect correlations between neighbouring
protofilaments of a single microtubule. This is achieved by converting rates and resources to rates
and resources per protofilament. Given a height L̃z of our simulation environment, the total num-
ber of resources per protofilament is given by NM = ρ̄MLx Ly L̃z /13 and NT = ρ̄TLx Ly L̃z /13 for motor
proteins and tubulin units respectively. We define Lz := L̃z /13 as the effective z-extent per protofil-
ament, which corresponds to the effective height of our simulation box. For a given choice of the
spatial extents of the simulation box the values for NT and NM will be determined from the experi-
mentally given values for the densities ρ̄T and ρ̄M.

The motor attachment rate kon can be determined from the experimentally measured rate con-
stant for motor attachment, which is given in units per concentration, per time, and per length.
Varga et al. [175] report a value of kexp

on = 0.4nM−1s−1
µm−1 = 0.66µm3s−1

µm−1, which was mea-
sured over a range of motor concentrations; note that we do not cancel one unit of µm to emphasize
that kon is a rate per volume concentration and per length of the microtubule. The motor on-flux
onto a filament of length l at a given motor concentration cM is than given by kexp

on cMl . The mo-
tor concentration in experiments is measured in nM which is converted into a number densities
as 1nM ≈ 0.6particles/µm3. Since Varga et al. used a TIRF setup, where motors can bind to and
walk on approximately 5 protofilaments [224], the attachment rate per protofilament is given by
kon = kexp

on /5 ≈ 0.13µm3s−1
µm−1. For our agent-based simulations of the filament-motor mixture,

we need to further convert this rate to a per-capita rate for a single motor protein. To this end,
we first convert the experimental rate constant per volume concentration into a rate per area con-
centration by k2D

on = kexp
on /Lz . This is converted to a per-capita rate by specifying a reaction radius rM

within which the motors can attach to the filament. Thus, the experimental value for the attachment
rate constant per protofilament kexp

on can be converted to a per-capita rate used in the simulations
by ksim

on = kexp
on /(Lzπr 2

M).

Given the experimental value for the attachment rate, this scaling relation gives us some freedom
in choosing the effective height Lz of the simulation box and the reaction radius rM. The height
of the simulation box has to be chosen such that all concentrations (tubulin, motor and filament
concentration) can be assumed to be well mixed in z−direction, i.e., Lz ¿λc, where λc is the wave-
length of the initial instability (see Sec. 2.5). Moreover Lz has to be chosen large enough such that
the number of filaments and particles is high enough to prevent stochastic effects due to number
fluctuations. As long as these constrains are fulfilled we are free to choose Lz in a way convenient
for our simulations. In particular, this means we choose Lz small to keep the particle numbers suf-
ficiently low for the numerical simulations to be feasible. The reaction radius rM must be smaller
than the average distance covered by a motor in the time interval ∆t by diffusion, where ∆t is the
time increment of the simulation (see Sec. 2.5). Otherwise particles could cover an unphysically
large distance in the time interval ∆t by successive attachment/ detachment events.

The spontaneous polymerization rate γ of microtubules can be obtained similarly to the attach-
ment rate. The polymerization velocity of microtubules has been measured to be vexp = 0.19µmmin−1

µM−1

[60], which corresponds to a polymerization rate constantγexp = vexp/a = 0.38µM−1s−1 = 6.3×10−4
µm3s−1.

Analogous to the case of the attachment rate constant, the polymerization rate constant depends
on the volume concentration of tubulin units. We convert this into a per-capita polymerization rate
by γsim = γexp/(Lzπr 2

T), where rT denotes the reaction radius of a tubulin unit.
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For the simulation results shown in the main text, we choose rT = rM = 0.04µm and Lz = 0.6µm. At
average concentrations ρ̄T = 2.75µM and ρ̄M = 50nM this results in a total number of NT ≈ 2.2×107

tubulin units and NM ≈ 4×105 motor proteins; as well as per-capita binding rates γsim ≈ 0.22s−1

and ksim
on ≈ 40s−1

µm−1 (see Table 2.1).
The diffusion constant of cytosolic tubulin was measured as DT = 6µm2 s−1 [223]. To the best

of our knowledge, the cytosolic diffusion constant DM of Kip3 is not known. Since the molecular
mass of Kinesin-8 is about 2–3 times larger than that of tubulin [7], we expect the diffusion con-
stant of Kip3 to be of the order DM ∼ 1µm2 s−1. As we discuss in Sec. 2.5 below, the precise value of
the motor diffusion is not relevant for the qualitative results of our model. Linear stability analysis
predicts that slower motor diffusivities entail a shorter wavelength of the fastest growing mode (see
Fig. 2.19). To keep the computational cost of our agent-based simulations reasonable, we choose
DM = 0.5µm2 s−1, which allows us to simulate a smaller system and thus keep the number of parti-
cles in the simulation volume manageable.

AGENT-BASED SIMULATION

Single-filament simulation: To simulate the motor-mediated length regulation of a single fila-
ment, we follow a two-pronged approach: First, we employ the Gillespie algorithm [225] to simulate
the full stochastic dynamics of motor proteins using a lattice gas model (TASEP), which has been
shown to be a good model system for studying the motion of motor proteins on microtubules. [209,
226–228]. Since this exact simulation approach suffers from performance problems when study-
ing many filaments coupled via a diffusive reservoir, we also implement an approximate simulation
scheme in which filament-bound motors move deterministically and steric interactions between
motor proteins are neglected. To guarantee its validity, the approximate simulation scheme is com-
pared with the results of the exact Gillespie method in the relevant parameter range.

We develop our approximate simulation schema based on theoretic results of the TASEP-LK model
[209, 210]: In the limiting case of low densities, the dynamics of the mean motor proteins on the fil-
ament is described by the mean-field equation

Çt m(s, t ) =−vmÇsm(s, t )+konm(s, t ) . (2.43)

While this result follows strictly from full stochastic dynamics, it can also be obtained from deter-
ministic dynamics where during the time interval∆t the position si of the motor proteins is updated
as

sn+1
i → sn

i + vm∆t , (2.44)

i.e. all motor proteins move ballistically with the same speed vm . Moreover, for sufficiently high
depolymerization rates and low densities, TASEP-LK predicts that the depolymerization rate ṽs is
given by [63]

ṽs = vm m(l )[1−m(l )] = a m+δ . (2.45)

Neglecting effects from particle exclusion, this reduces to ṽs = vm m(l ) = a m+δ , i.e., instead of
explicitly modeling each depolymerization event, one can simply move the motor forward and if
si > l depolymerize the filament. Both approximations have the key advantage that they can be
performed in parallel in the case of a spatially extended system with many motor proteins. To ensure
that several motors do not depolymerize the filament within one iteration step, the time step must
be chosen sufficiently small. Throughout all of our simulations we choose ∆t = 0.01s. With a motor
speed of vm = 0.06µms−1, this means that ‘double’ depolymerization events will only occur if the
distance between two consecutive motors is less then 6×10−3

µm, which is less then the length a of
a tubulin unit. Figure 2.14 shows a comparison between the filament length at steady state obtained
by a full stochastic simulation and our approximate simulation scheme.
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Experiment Theory Simulation Ref.

Motor parameters

Motor velocity vm 0.053µms−1 0.06µms−1 0.06µms−1 [175]
Cytosolic motor diffusion DM — 0.5µm2s−1 0.5µm2s−1 —
Attachment rate kon 0.13µm3s−1

µm−1 0.12µm3s−1
µm−1 40s−1

µm−1 [175]
Detachment rate koff 5×10−3 s−1 0s−1 0s−1 [175]
Depolymerization rate δ 2.3s−1 — (2.3s−1) — (2.3s−1) [175]

Tubulin and filament parameters

Size of a tubulin dimer a 8.4nm 8.4nm 8.4nm [222]
Polymerization rate γ 6.3×10−4

µm3s−1 1×10−3
µm3 s−1 0.33s−1 [60]

Cytosolic tubulin diffusion DT 6µm2s−1 6µm2s−1 6µm2s−1 [223]
Volume per filament V0 — 0.5 µm3 0.5 µm3 —

Table 2.1: Experimentally measured parameters for the kinesin-8 homolog Kip3 from Saccha-
romyces cerevisiae and parameters chosen in our theoretical discussion. The experimental param-
eters are meant to provide the correct order of magnitude. The qualitative results of our analy-
sis are not sensitive to the choice of specific parameters (as long as the parameters are in a com-
parable range). To convert experimental rates into rates required for our simulation we used
rM = rT = 0.04µm and Lz = 0.6µm. If not explicitly stated otherwise we used parameters as spec-
ified in the column Theory.
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Figure 2.14: Comparison between an exact (Gillespe algorithm) stochastic simulation and our ap-
proximate simulation scheme for a single filament. For the relevant parameter range, we find good
agreement between the approximate and exact simulation schemes. Filaments were initialized fully
polymerized (all tubulin incorporated in the microtubule) for all simulations. Parameters are cho-
sen as specified in Tab. 2.1. (a) Steady-state cytosolic tubulin concentration as a function of the
steady-state filament length for ρM = 30nM. The symbols indicate simulation results, the solid
black line represents the analytical result; see Eq. (1) in the main text. The dashed line indicates
the range of unstable fixed points in the bi-stable parameter range (see Sec. 2.5 and Fig. 2.18 (b) for
an explanation). (b)-(c) Filament length l∗ in steady state as a function of ρM and ρT. The results of
the exact and approximate simulation schemes agree very well over the entire parameter range.

SPATIALLY EXTENDED SYSTEM

Filament dynamics: A filament in the spatially extended system is characterized by its minus end
position bi , orientation θi , and length li . The positions and orientations of the minus ends are ini-
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tially drawn from a uniform distribution and remain unchanged throughout the simulation. Free
tubulin units are inizialized at random positions within the simulation box. The stochastic dynam-
ics of the free tubulin units is implemented as follows: First, we check whether filament plus ends
are within the distance rT of the tubulin unit. For each plus end (0. . .k) within range, a reaction
time τk is drawn from an exponential distribution; τk ∼ γsim exp(γsimt ). We choose the smallest
reaction time τk that fulfills τk < ∆t , where ∆t denotes the time increment of the simulation, and
perform the respective growth event. If there is no filament plus end in range or if all reaction times
are τk > ∆t , we let the tubulin unit perform a free diffusive motion implemented by a Brownian
dynamics algorithm [229]. This is the position xn

i = (xn
i , yn

i ) of the tubulin unit is updated as

xn+1
i → xn

i + Ar n
i , (2.46)

yn+1
i → xn

i + Ar n
i . (2.47)

Here r n are independent and identically distributed random variables with zero mean and A is an
amplitude chosen such that the fluctuation dissipation theorem is satisfied [230]. Importantly, how-
ever, it is not necessary for the random numbers to be Gaussian-distributed [229]. Here, we choose
uniform random numbers in the interval (−0.5,0.5) as this has several implementation-specific ad-
vantages. Since the variance of uniformly distributed random variables is given by 〈(r n)2〉 = 1/12
this results in A =p

24DT∆t . The pseudocode for the stochastic dynamics of cytosolic tubulin units
is given in Algorithm 2.

Motor dynamics: The motors can be either filament-bound or free (cytosolic). We perform simu-
lations of the stochastic dynamics of cytosolic motors analogous to that of cytocolic tubulin. First,
we determine all potential binding partners, i.e., all filaments (0. . .k) that intersect with a radius rM

around the motor position xi = (xi , yi ) (see Fig. 2.15). Next, the chord length ∆l is calculated; for
an illustration see Fig. 2.15(b). The per-capita attachment rate for a single motor protein attach-
ing to the filament is then given by ksim

on ∆l . Similar as for the free tubulin dynamics, the reaction
times τk ∼ ksim

on ∆l exp(−ksim
on ∆l t ) are drawn from an exponential distribution and the reaction with

the smallest reaction time satisfying τk < ∆t is executed. If a reaction occurs, the motor starts at
a random position within the chord length ∆l . If no reaction occurs, the motor protein performs
free diffusion, which is implemented in the same way as for free tubulin units. The dynamics of
filament-bound motors is implemented as discussed above for single filaments.

(b) Motor attachment

Cytosolic motor

(a) Filament growth

Cytosolic tubulin

(c) Motor advection

Figure 2.15: (a) Schematic representation for filament growth. If a cytosolic tubulin unit is within a
distance rT of a filament plus end it detaches at rate γ. (b) Analogously, cytosolic motors attach to
filaments at the rate kon∆l when they are at a distance rM from the filament. Attachment occurs at a
random position on the chord of length∆l . (c) Filament-bound motors move with constant velocity
vm towards the filament plus end.

COMPARISON TO EXPERIMENTAL DATA

We choose the setup of our agent-based model comparable to the experimental system in Rank
et al. [63]. The experiments in [63] were performed in a setup where GMP-CPP stabilized micro-
tubules were pre-grown at a concentration of ρ̄T = 2µM in a confined system of 100 µl. By varying
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the amount of time the microtubules were pre-grown the authors controlled the length distribu-
tion of microtubules at the time point of incubation with Kip3. After the initial microtubule growth
period the solution was divided into compartments of 25 µl and each compartment was supple-
mented with a dilution of Kip3 ranging from 0-400 nM. After 60 min of incubation with Kip3 the
Kip3-MT interaction was terminated and microfluidic flow channels were constructed to image the
microtubules (see Supplemental Material of [63] for details of the experimental setup).

In experiments it is hard to control the precise level of protein concentrations. For example, the
concentration of “active” Kip3 could not be determined in [63] since the inactivation of Kip3 dur-
ing the purification, snap-freezing and thawing process could not be quantified. In addition the
authors expect Kip3 to form clusters, which would cause an additional amount of Kip3 that does
not participate in the length regulation dynamics in particular for high motor concentrations. In
addition to the uncertainties in the protein concentrations, there are measurement inaccuracies
because, for example, short microtubules could not be distinguished from tubulin clusters in expe-
riaments. When comparing experiments and agent based simulations we tried to account for this
lack of resolution by only taking filament length li > 0.5µm into account. In particular as the protein
concentrations that are actively involved in the length regulation process are not known in experi-
ments a quantitative comparison between the experimental data and our agent based simulation is
not possible. It is however possible to compare the results on a qualitative level.

In our agent-based simulations we observe a slow initial dynamics consistent with the theoretical
result of the linear stability analysis that predicts an initial growth rate of a perturbation which is on
the order ∼O (10−4s−1). Once the initial perturbation has grown nonlinear effects start playing a role
and the dynamics speeds up significantly. Our agent based simulations show that the system has
not yet reached its steady state after one hour of incubation with Kip3, it is rather in the initial phase

Figure 2.16: Measured filament length distributions after one hour of incubation at various concen-
trations of Kip3 indicated in the graph. The upper panel shows experimental data taken from [63]
and the lower panel shows results obtained from our agent-based simulations. Note that the dis-
tributions only show lengths above 05µm because smaller lengths could not be distinguished from
tubulin clusters in the experiments. The simulation parameters can be found in Tab. 2.1.
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of pattern formation (cf. Fig. 4 in the main text). The measured length distribution after 60 min of
incubation with Kip3 therefor strongly depend on the initial condition (initial length distribution).
In [63] the authors found that for narrow initial length distribution the filament length distributions
did not change significantly from the initial length distribution after 60 min of incubation with Kip3
(cf. Fig. S20 in [63]). Those observations are consistent with our theory and observations from the
agent based simulation as the initial dynamics is slow (in particular for low motor concentrations)
as stated above. For broader initial length distributions the authors observed different behaviour at
different concentrations of Kip3 (see upper panel in Fig. 2.16). At low motor concentrations no sig-
nificant change in the length distribution was observed. At intermediate concentrations the mea-
sured length distribution was bi-modal and at high motor concentrations the microtubule length
distribution was broad (∼ uniform). Those observations are consistent with measurements from
our agent-based simulation (see lower panel in Fig. 2.16). Note the volume per microtubule V0 was
estimated to be 1.66 µm3 in [63]. Here however we used V0 = 0.5µm3 resulting in less resources per
filament and therefor shorter microtubules (this was done for the shake of computational feasibil-
ity). We used slightly higher tubulin concentrations (ρT ∼ 2.5µM) in the agent based simulation
to obtain similar length distributions. Moreover we find a comparable evolution of the measured
microtubule length distribution; see Fig. 2.17.

Our agent-based simulations shows that the microtubule length distribution for narrow initial
distributions and low motor concentrations also becomes broad but at significantly later times (t À
60min). Moreover our simulations suggest that the bi-modal distribution observed in experiments
for intermediate motor concentrations is just a transient phenomenon. At later times we observe
(in the agent-based simulation) that the length distributions for both intermediate and low motor
concentrations becomes more reminiscent of what is observed for high motor concentrations (as
long as the concentrations are chosen in a range where patterns form see Fig. 2.18(d)).

We are recognizing that the experimental data available are not sufficient to fully validate our
model. A first experimental approach to validate our model would be to repeat the experiments
described in [63] and to measure the length distributions over a longer period of time to verify the
predictions by our agent based simulations, namely that the length distributions at all motor con-
centrations were pattern formation is observed become similar. To make further progress in un-
derstanding spatiotemporal dynamics, experiments that spatially and temporally resolve tubulin
density would be desirable. In particular it would be interesting to systematically sweep the total
motor and tubulin concentration in such an experimental system. In this way, the stability diagram
Fig. 3(b) could be reproduced experimentally to obtain a quantitative comparison between the pre-
dictions of our theory and experiments. For such an experiment, an analysis analogous to that in

Figure 2.17: Measured filament length distribution at fixed Kip3 concentrations at different time
points. The upper panel shows experimental data taken from [63] and the lower panel shows results
obtained from our agent-based simulations. Simulation parameters are as specified in Tab. 2.1.
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section 2.5 could be made to obtain the wave length and the growth rate of the initial instability. In
this way, it would be possible to verify that the qualitative dependencies of these variables on the
total motor and tubulin concentration are correctly predicted by our theory.

POINT-LIKE FILAMENT APPROXIMATION

In this section, we provide a detailed analysis of the dynamics in the point-like filament approx-
imation. For the reader’s convenience, we repeat the equations that govern the dynamics in this
approximation

Çt l (x, t ) = aγcT(x, t )− ṽs(x, t ) , (2.48a)

Çt cT(x, t ) = DTÇ
2
xcT(x, t )− [

γcT(x, t )− ṽs(x, t )/a
]

V −1
0 , (2.48b)

ÇtρM(x, t ) = DMÇ
2
xc̃M(x, t ) , (2.48c)

with

c̃M(l ,ρM) = ρM

1+ (l/lc)2 , (2.48d)

ṽs(l ,ρM) = akonl c̃M(l ,ρM) , (2.48e)

where l 2
c = 2vmV0/kon. These dynamics conserve the total numbers of tubulin units and motors

NT = ρ̄TLx Ly =
∫ Lx

0
dx

∫ Ly

0
dy

[
cT(x, t )+ l (x, t )

aV0

]
, (2.49)

NT = ρ̄MLx Ly =
∫ Lx

0
dx

∫ Ly

0
dy ρM(x, t ). (2.50)

The corresponding average densities ρ̄T and ρ̄M will be the main control parameters of interest in
the following. We will also discuss the role of the diffusion constants DT and DM.

We will first consider the homogeneous steady states, which are fixed points of the single-filament
dynamics. In particular, our analysis will show that these fixed points can be read off from a graph-
ical construction in the l–cT phase plane and that there is a regime of bistability. Next, we will
perform a linear stability analysis of the homogeneous steady states against spatial perturbations
and discuss various limiting regimes and the role of the diffusion constants DT and DM. Finally, we
will present numerical simulations of the equations that govern the dynamics in the point-like fil-
ament approximation. These simulations capture the patterns that initially emerge from the insta-
bility predicted from linear analysis. However, sharp gradients, on scales shorter than the filament
lengths, rapidly emerge such that the underlying assumption of point-like filaments is violated.

HOMOGENEOUS STEADY STATES

The homogeneous steady states are given by the fixed points of the polymerization kinetics deter-
mined by the local balance of polymerization and depolymerization and conservation of the total
density of tubulin

aγc∗T = ṽs(l∗, ρ̄M) , (2.51a)

c∗T + l∗

aV0
= ρ̄T . (2.51b)

In the l–cT plane, the solutions to these equations are given by the intersections between the null-
cline cT = ṽs(l , ρ̄M)/(aγ) and the reactive phase space cT = ρ̄T−l/(aV0); see Fig. 2.18(a,b). This graph-
ical construction allows us to gain insight into the behaviour of the homogeneous steady states as a
function of parameters. As long as the slope of the nullcline is larger than −1/(aV0) for all l , there is
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only a single fixed point [Fig. 2.18(a)]. If there is a section where the nullcline slope is more negative
than −1/(aV0), i.e., Çl ṽs < −γ/V0, the reactive phase space can intersect the nullcline three times
[Fig. 2.18(b), case (iii)], giving three homogeneous steady states. The bistable region is delimited by
saddle-node (also called fold or limit point) bifurcations where the reactive phase space is tangential
to the nullcline, i.e. where the nullcline slope is Çl ṽs =−γ/V0.

To determine the stability against these steady states against spatially homogeneous perturba-
tions, we linearize Eq. (2.48a) under the mass conservation constraint cT+l/(aV0) = ρ̄T which yields
Çtδl = σpolyδl , with σpoly = γ/V0 +Çl . Thus, the steady state that lies on the nullcline section with
Çl ṽs <−γ/V0 is unstable against spatially homogeneous perturbations (empty disk) while the other
two are stable (filled disks).

The locations of these limit point bifurcations can be estimated by simple approximations, which
highlight the role of the various parameters for the location of the bistable regime in the ρ̄M–ρ̄T

diagram. Near the apex of the nullcline at l = lc [marked by a red, dashed line in Fig. 2.18(a,b)], its
curvature is large such the slope Çl ṽs reaches −γ/V0 near the apex. Substituting l∗ = lc into the total
density of tubulin and using aγc∗T = ṽs(l∗) yields

ρ̄
apex
T = lc

aV0
+ ṽs(lc)

aγ
=

√
2vmV0

kon

(
1

aV0
+ kon

2γ
ρ̄M

)
. (2.52)

This shows that there is a linear relation between the motor density ρ̄M and tubulin density at the
apex, ρ̄apex

T [red line Fig. 2.18(c)]. Note that this provides a good approximation of the upper edge of
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Figure 2.18: Homogeneous steady states and linear stability analysis for the point-like filament ap-
proximation, Eqs. (2.48a)–(2.48e). (a), (b) l–cT phase plane analysis showing the graphical construc-
tion of the homogeneous steady states in the monostable case (a) and the bistable case (b). Homo-
geneous steady states are fixed points (black disks) of the length-regulation dynamics, found as in-
tersection points of the nullcline c∗T (l ) = ṽs(l )/(aγ) (blue line) and the mass-conservation constraint
for tubulin (orange line), cT = ρ̄T − l/(aV0). The red dashed line marks the apex of the nullcline at
lc. (c) Stability diagram in the ρ̄M–ρ̄T plane. Black points labelled (i)–(iv) correspond to the scenar-
ios shown in (a) and (b). The bistable regime (shaded in gray) is delimited by limit point bifurca-
tions (black lines). The red line, given by Eq. (2.52), separates the regions of positive and negative
nullcline slope. Negative nullcline slope is a necessary condition for lateral instability. In addition
lateral instability requires sufficiently large motor density ρ̄M > ρ̄crit

T , which is set by the diffusivity
ratio DT/DM [see panel (d)]. Below this threshold, instability is suppressed by motor diffusion as
explained in the main text. (d) Contour lines of the critical diffusivity ratio DT/DM above which the
system is laterally unstable [cf. Eq. (2.65)]. For large ρ̄T, this ratio becomes independent of ρ̄T and
sets a threshold for the minimal motor density ρ̄crit

T ∝ DM/DT as indicated by the dashed green lines
[cf. panel (b)].
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the bistable regime.
To estimate lower edge of the bistable regime, we approximate consider the limit l∗ À lc. To

lowest order, this yields l∗ ≈ aV0ρ̄T and Çl ṽs ≈ akonlc/l 2. These approximations, substituted in to
the criterion Çl ṽs =−γ/V0 yield

ρ̄
SN−
T ≈ 2

√
2vmρ̄M

aγ
, (2.53)

which is plotted as a teal line in Fig. 2.18(c).
Together, the estimates Eq. (2.52) and Eq. (2.53) reveal how the boundaries of the bistable regime

depend on the system parameters. Increasing the polymerization rate γ moves the bistable regime
to lower tubulin densities and reduces its size while increasing the motor velocity vm move the
bistable regime to higher tubulin densities. The attachment rate kon and volume per filament V0

only affect the upper boundary of the bistable regime, moving it to higher tubulin densities when
increased.

LINEAR STABILITY ANALYSIS

Let us now analyse the stability of the homogeneous steady states against spatial perturbations.
For a more compact notation, we combine the field variables into the vector u = (l ,cT,ρM). The
homogeneous steady states are then u∗ = (l∗,c∗T , ρ̄M). Writing the spatial perturbations in terms of
Fourier modes

u(x, t ) = u∗+δuq e i q·x+σt , (2.54)

where q denotes the wave vector, and linearizing Eqs. (2.48) for small δuq yields an eigenvalue prob-
lem for the growth rates σ(q)

J (q)δuq =σ(q)δuq (2.55)

with the Jacobian (or stability matrix)

J (q) =
 −Çl ṽs aγ −ÇρM ṽs

Çl ṽs/(aV0) −γ/V0 −DTq2 ÇρM ṽs/(aV0)
−DMq2Çl c̃M 0 −DMq2ÇρM c̃M


u∗

. (2.56)

In the following, we omit the subscript u∗, with the understanding that all expressions are evaluated
in the homogeneous steady state.

For spatially uniform perturbations, q = 0, the last row of the Jacobian vanishes and the eigenval-
ues of J (0) are given by

σ1 =σ2 = 0, σ3 =−Çl ṽs − γ

V0
. (2.57)

The two zero eigenvalues correspond to perturbations that would change the average total densities
ρ̄T and ρ̄M, respectively. In a closed system with conservation of mass, however, these disturbances
are not possible. Thus, the remaining eigenvalue σ3 determines the stability to homogeneous per-
turbations that respect conservation of mass. One finds an instability for Çl ṽs <− γ

V0
, which confirms

the geometric criterion (in the in the l–cT phase space) discussed above.
In general, the stability of a spatially uniform steady state against spatial perturbations with a

wave number q is determined by the dispersion relation σ(q); a typical dispersion relation in the
laterally unstable parameter regime is shown in Fig. 3(a) in the main text.

While the eigenvalues of the full 3×3 Jacobian Eq. (2.56) can in principle be found analytically,
the resulting expressions are not insightful. We therefore determine the eigenvalues numerically.
Notably, we find that the instability is always of long-wavelength type, i.e., the band of unstable
modes extends to q → 0. Next, we will further analyze this long-wavelength limit. Further below,
we will also consider the limit of well-mixed tubulin. In both these limits the resulting effective
Jacobians are 2×2 matrices which allows us to find closed expressions for the instability criteria.
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Long-wavelength limit: Since we numerically find that instability onset is always at long wave-
lengths, i.e. in the limit q → 0, we can determine the instability criterion by considering the limit
of small wavenumbers q . In this long-wavelength limit, we can make the local quasi-steady state
approximation l (x, t ) ≈ l∗(x, t ), cT(x, t ) ≈ c∗T (x, t ), where the local equilibrium (l∗,c∗T ) depends on
the local total densities ρT, ρM. The dynamics for the tubulin density is obtained by adding the
equations for l and cT, Eqs. (2.48)(a,b). Using the local quasi-steady state approximation then yields

ÇtρT = DT∇2c∗T (ρT,ρM) , (2.58a)

ÇtρM = DM∇2c̃M[l∗(ρT,ρM),ρM] . (2.58b)

The respective long-wavelength (LW) Jacobian is given by

JLW(q) =−q2
(

DTÇρT c∗T DTÇρM c∗T
DMÇρT c̃M DMÇρM c̃M

)
, (2.59)

and its eigenvalues read (as for any 2×2 matrix)

σ1,2(q) = 1

2

[
tr JLW(q)±

√(
tr JLW(q)

)2 −4det JLW(q)
]

. (2.60)

Therefore, there is an instability (positive eigenvalueσi ) either when the trace (σ1+σ2) is positive or
when the determinant (σ1 ·σ2) is negative. Moreover, when the determinant is positive, det JLW > 0,
the eigenvalues’ real parts cross zero as a pair of complex conjugates when tr JLW crosses zero. This
indicates an oscillatory instability (Hopf bifurcation) where the oscillation frequency is determined
by the imaginary part of the eigenvalues. (Further away from the onset of instability, imaginary part
vanishes for the fastest growing mode, so the instability loses it’s oscillatory character; see Fig. 3(a)
in the main text.) JLW(q) has a positive trace if

DTÇρT c∗T +DMÇρM c̃M < 0 . (2.61)

We will discuss this instability criterion below. Since, det JLW > 0, the instability will be oscillatory
near onset, as noted above.

A positive eigenvalue could also result from a negative determinant. However, numerically, we
find that the determinant seems to be always positive, although we could not show this analytically.
There is also a physical reasoning why the determinant should always be positive. First, observe that
the diffusion constants can be factored out. The remaining term, which then determines the sign
of the determinant is independent of the diffusion constants. Therefore, if this term were negative,
it would imply an instability independent of the diffusion constants. This is at odds with physical
intuition for a diffusion driven lateral instability, in particular, because sufficiently fast motor diffu-
sion will always act to suppress lateral instability.

Let us now analyze the stability criterion Eq. (2.61). First consider the case DM = 0. Then the
instability condition simply reads ÇρT c∗T < 0, which can be understood as follows. When DM = 0,
the total motor density remains constant under the dynamics and therefore spatially uniform (by
choice of initial condition). The only dynamic variable in the long-wavelength limit is then the
tubulin density, governed by

ÇtρT = DT∇2c∗T (ρT, ρ̄M) =∇[
DTÇρT c∗T (ρT, ρ̄M)∇ρT

]
, (2.62)

where we used the chain rule for the second equality. This is a diffusion equation with effective
diffusion constant DTÇρT c∗T . Thus, if ÇρT c∗T is negative, there is an instability corresponding to effec-
tive “anti-diffusion.” This is the basic mechanism underlying mass-redistribution instability in the
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long-wavelength limit [213]. This shows that the basic mechanism of the instability is the same as
in protein-based pattern forming systems like the ones discussed in [211].

In the main text, we discuss the stability condition based on the nullcline slope Çl ṽs. To relate the
derivative ÇρT c∗T to the nullcline slope Çl ṽs, we apply the derivative ÇρT to the fixed point equations
Eq. (2.51) which yields

ÇρT c∗T = Çl ṽs
γ

V0
+Çl ṽs

. (2.63)

Thus, along sections of the nullcline where Çl ṽs > −γ/V0 (implying stability against homogeneous
perturbations), the lateral instability condition ÇρT c∗T < 0 is analogous to the slope condition Çl ṽs < 0
discussed in the main text. In the ρ̄M–ρ̄T plane, the line ρ̄apex

T (ρ̄M), marks the nullcline apex where
Çl ṽs = 0 [red line in Fig. 2.18(c)]. Above this line, the nullcline slope is negative, and therefore, the
homogeneous steady state is laterally unstable. In other words, a sufficiently high tubulin density
compared to the motor density is required for the instability to occur.

In the bistable regime, we have to distinguish between the two stable steady states. Notably, the
nullcline slope is always negative for the large-l fixed point (see Fig. 2.18(c). Therefore, this fixed
point always laterally unstable. In contrast the low-l fixed point is unstable only in a very narrow
regime due to the high nullcline curvature near its apex. In the stability diagram in Fig. 3(b) in the
main text, we show the stability of the large-l fixed point.

The above conditions for lateral instability are necessary and sufficient in the case DM = 0. Let us
now turn to the case DM > 0. As we heuristically argued in the main text, motor diffusion generally
counteracts lateral instability. Indeed, the stability threshold tr JLW = 0 obtained from the above
linear stability analysis gives

DTÇρT c∗T =−DMÇρM c̃M . (2.64)

Substituting Eq. (2.63) for ÇρT c∗T and using ÇρM c̃M = c̃M/ρ̄M [cf. Eq. (2.48d)], we can write this condi-
tion as

DT

DM
= c̃M

ρ̄M

γ
V0

+Çl ṽs|l∗
−Çl ṽs|l∗

, (2.65)

determining the threshold value for the ratio of the diffusion constants DT/DM. For diffusivity ratios
below this threshold, i.e. for too fast motor diffusion, the instability is suppressed [see red lines in
Fig. 2.19]. In Fig. 2.18(d), contour lines show the instability threshold in the ρ̄M–ρ̄T plane for several
diffusivity ratios.

Notably, for sufficiently large ρ̄T, the threshold becomes independent of ρ̄T. The critical motor
density ρ̄crit

M in this regime is indicated by the he dashed green lines in Fig. 2.18(c,d). To obtain an
estimate for this critical motor density DT/DM, we approximate Eq. (2.65) in the limit l∗ À lc and
solve for ρ̄M:

ρ̄crit
M ≈ γ

akonV0

DM

DT
. (2.66)

This shows that the critical motor density is proportional to the diffusivity ratio DM/DT. A higher
motor diffusivity requires a higher motor density for the instability to occur. At first glance, this may
seem somewhat counterintuitive. The reason for this effect is that increasing the motor density
increases the magnitude of the nullcline slope since ṽs ∝ ρM. This, in turn, increases the growth
rate of the tubulin-mass-redistribution instability [cf. Eq. (2.62)], which allows it to overcome the
stabilizing effect of motor diffusion. Physically, a steeper nullcline slope means that gradients in the
filament length lead to steeper gradients in cytosolic tubulin concentration.

Substituting the values for a,γ, and kon from Table 2.1 into Eq. (2.65) yields the condition for
the number of motors per filament, V0ρ̄M & 0.57DM/DT, as given in the main text. In the ρ̄M–
ρ̄T diagram, Eq. (2.66) sets an approximate lower bound for the unstable region [see dashed green
lines in Fig. 2.18(c,d)]. Below this threshold, the instability is suppressed by motor diffusion. In the
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limit DT À DM, the critical value ρ̄crit
M goes to zero. For physiological parameters and the estimated

diffusivity ratio DT/DM ≈ 6, the threshold is at about V0ρ̄
crit
M ≈ 0.1 motors per filament.

Well-mixed cytosolic tubulin: Above, we have analyzed the long-wavelength limit, where the poly-
merization kinetics can be assumed to be in a local quasi-steady state. We now turn to the dynamics
at short wavelengths, where cytosolic diffusion of tubulin is faster than the polymerization kinet-
ics. Relaxation to the local steady state length happens at the rate σpoly = γ/V0 + Çl ṽs, which we
derived in the stability analysis for homogeneous perturbations above. The rate of diffusive trans-
port for modes with wavenumber q is given by DTq2. Thus, for wavenumbers q À √|σpoly|/DT,
the cytosolic tubulin density can be assumed well-mixed. (A detailed discussion of this “reaction-
limited regime” and the complementary “diffusion-limited regime” at large wavelengths is given in
Ref. [213] in the context of mass-conserving two-component reaction–diffusion equations.)

For spatial non-uniform perturbations (q 6= 0), a well-mixed (WM) cytosolic tubulin implies δcT =
0. Thus, the reduced Jacobian is obtained by removing the central row and column from the full
Jacobian J , Eq. (2.56), and reads

JWM(q) =
( −Çl ṽs −ÇρM ṽs

−DMq2Çl c̃M −DMq2ÇρM c̃M

)
. (2.67)

As above the eigenvalues of this 2×2 matrix can be obtained from its determinant and trace

det JWM(q) = DMq2konc̃2
M/ρM > 0 , (2.68)

tr JWM(q) =−Çl ṽs −DMq2c̃M/ρM , (2.69)

where we used ṽs ∝ c̃M ∝ ρM [cf. Eq. (2.48d,e)] such that ÇρM c̃M = c̃M/ρM and ÇρM ṽs = ṽs/ρM. Figure
3(a) in the main text shows that the dispersion relation derived JWM(q) agrees well with the disper-
sion relation of the full Jacobian, Eq. (2.56), for sufficiently large q . Since the det JWM(q) is always
positive, JWM(q) has an unstable eigenvalue if and only if tr JWM(q) > 0. Thus, if −Çl ṽs > 0, there is a
band of unstable modes q ∈ (0, qmax) with

q2
max =−Çl ṽs

DM

ρ̄M

c̃M
. (2.70)
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Figure 2.19: (a) Wavelength and (b) growth rate of the fastest growing mode in as a function of the
diffusion constants DM and DT. The white dashed line indicates the physiological diffusion con-
stant of tubulin. Remaining parameters are as in Fig. 4 in the main text. The boundary of the
regime of instability is indicated by a red line, corresponding to the critical diffusivity ratio given
by Eq. (2.65).
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This shows that cytosolic motor diffusion suppresses a lateral instability on short length scales. In
particular, the band of unstable modes vanishes in the limit DM →∞. Therefore, an approximation
in which both the cytosolic tubulin and the motors are assumed to be well-mixed will not reproduce
the instability.

Equation (2.70), derived under the assumption of well-mixed cytosolic tubulin, only the approx-
imates the band of unstable modes of the full Jacobian Eq. (2.56). This approximation is valid if
q2

maxDT À|σpoly|. Substituting the expressions and rearranging the terms yields the condition

DT

DM
À c̃M

ρ̄M

γ
V0

+Çl ṽs|l∗
−Çl ṽs|l∗

. (2.71)

Comparing to Eq. (2.65) shows that the approximation is valid deep in the unstable regime, far from
the instability threshold.

THE ROLE OF FINITE FILAMENT DIFFUSION:

In a general filaments diffuse with a diffusion constant that depends on filament length DMT(l ), with
longer filaments diffusing slower than shorter ones.

Within the framework of the point-like filament approximation, filament diffusion can be incor-
porated into the model by introducing an additional equation of motion for the filament minus
end density ρMT(x, t ). As filaments are neither produced nor destroyed this equation of motion is a
simple diffusion equation with length dependent diffusion constant DMT(l ).

ÇtρMT(x, t ) =∇[DMT(l )∇ρMT(x, l )] . (2.72)

Linearizing this equation around the spatially homogeneous steady state (l∗,c∗T , ρ̄M, ρ̄MT) results in

ÇtδρMT(x, t ) = DMT(l∗)∇2δρMT(x, l ) . (2.73)

Notably, in the linearized dynamics, the length-dependent diffusion coefficient enters only via the
steady state length l∗. Since this length is large, the corresponding diffusion coefficient will be much
smaller than the monomer diffusion constant and can therefore be neglected in the linear stability
analysis.

What would be the effect of such length-dependent filament diffusion beyond the linear regime?
Consider a “phase-separated” state with low and high density regions. In the low density regions,
filaments are short and therefore would diffuse rapidly, whereas filaments in the high density region
are long and therefore diffuse slowly. Thus filament diffusion would lead to a net influx of short fil-
aments into the high density regions while the long filaments remain (nearly) fixed in space. This
influx of tubulin mass into high density regions would further amplify the phase separation pro-
cess. In fact, density dependent diffusion alone is able to drive phase separation, if the diffusion
coefficient decreases rapidly enough with increasing density. This is the mechanism underlying
motility-induced phase separation of run-and-tumble particles [231]. To check if this intuitive un-
derstanding holds true we perform agent based simulations in a one-dimensional system contain-
ing filaments which diffuse with a length dependent diffusion coefficient. Explicitly we choose the
functions DMT(l ) = 0 (Movie 3), DMT(l ) = DT/(1+ l/a) (Movie 4) and DMT(l ) = DT/

p
1+ l/a (Movie

5). The other parameters were chosen as in the main text. We find that the mass redistribution in-
stability occurs for all chosen filament diffusion coefficient functions. Investigating the precise role
of filament diffusion on the self-organized patterns and their dynamics (e.g. coarsening) is beyond
the scope of this work.
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THE ROLE OF FINITE TUBULIN NUCLEOTIDE EXCHANGE

In the cell, cytosolic tubulin cycles between a GTP-bound (active) and a GDP-bound (inactive) state.
In general cytosolic tubulin that is incorporated into the microtobule is in the active state and upon
depolymerization is released in the inactive state. Inactive cytosolic tubulin is then converted into
GTP-tubulin by nucleotide exchange. In the model studied in the main text we assume a fast nu-
cleotide exchange rate meaning that GDP-tubulin is rapidly converted into GTP-tubulin such that
we can neglect the transient inactive state. In the following, we relax this assumption by extending
the model to also account for inactive cytosolic tubulin and show under which conditions it can be
neglected. The dynamic equations of this extended model read

ṽs(l ,ρM) = a kon l
ρM

1+ l 2/l 2
c

, (2.74)

Çt l (x, t ) = aγcTT(x, t )− ṽs(x, t ), (2.75)

Çt cTD(x, t ) = DT∇2cTD(x, t )−ωcTD(x, t )+ ṽs(x, t )/a

V0
, (2.76)

Çt cTT(x, t ) = DT∇2cTT(x, t )− γcTT(x, t )

V0
+ωcTT(x, t ), (2.77)

ÇtρM(x, t ) = DM∇2c̃M[l (x, t ),ρM(x, t )] , (2.78)

where (cTT) and (cTD) denote the concentrations of GTP-bound and GDP-bound tubulin in the cy-
tosol and ω is the nucleotide exchange rate. In the limit ω → ∞, this model reduces to the one
discussed in the main text. We can estimate the typical time a GTP-bound tubulin spends in the
cytosol before binding as V0/γ. If this timescale is longer the typical time ω−1 before a GDP-bound
tubulin is converted to the GTP-bound form, we can neglect the transient inactive state. For the
parameters used throughout this work (see Tab. 2.1), this estimate suggests that finite nucleotide
exchange is relevant for ω<O (10−3s−1).

In order to investigate the extent to which the finite nucleotide exchange rate impacts the dynam-
ics of the model even beyond this limit we perform a linear stability analysis of the extended model.
Figure 2.20 shows the stability diagram in the (ρM,ρT) parameter space for different nucleotide ex-
change rates ranging over 4 orders of magnitude (ω = 10−4 . . .10−1 s−1). For nucleotide exchange
rates ω> 10−1 s−1 the phase boundary coincides with the model used in the main text. A significant
effect is found for ω≤ 10−3 s−1 (as estimated by the above dimension estimate), where the stability
boundary is shifted towards larger total tubulin concentration ρ̄T. This shift is caused by a signifi-
cant amount of cytosolic tubulin being in its inactive form. This reduces the overall concentration
of actively available tubulin, which must be compensated by an increase ρ̄T.

To ensure that the long term dynamics remains qualitatively unchanged under finite nucleotide
exchange we perform agent based simulations of the extended model. Figure 2.21 shows a time
sequence obtained from the simulations. The characteristic features of the dynamics, namely phase
separation into low and high tubulin density regions and filament plus-end accumulation at the
interface between these zones remain unchanged under the modification of the model.

The nucleotide exchange rate for tubulin was reported to depend on the total tubulin concentra-
tion and ranges between ω = 0.02s−1 at high tubulin concentration (ρT ≥ 70µM) and ω = 0.15s−1

at low tubulin concentrations (ρT ≈ 10µM) [232, 233]. This means for tubulin concentrations dis-
cussed in the main text we can assume nucleotide exchange rates of order O (1×10−1 s−1). In this
parameter range the phase diagram is well approximated by the equations used in the main text [cf.
Fig. 2.18(d) and Fig. 2.20(b)].

FINITE-ELEMENT SIMULATIONS

To complement linear stability analysis, we performed numerical simulations of the point-like fila-
ment dynamics, governed by Eqs. (2.48). Specifically, a finite element method implemented in the
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Figure 2.20: (a) Leading eigenvalue σ(q) for different nucleotide exchange rates ω. Parameters are
ρ̄M = 50nM, ρ̄T = 4µM (marked by a red dot in (b)), DM = 0.5µm2s−1 and DT = 6µm2s−1; other
parameters are specified in the Supplemental Material Sec. SI. Note the growth rate for low tubulin
exchange rates increases since the growth rate increases as the stability threshold is approached
(cf. Fig. 2.23). (b) Stability diagram in the (ρ̄M, ρ̄T)-parameter space. The legend is as in (a). The
parameter choice for the dispersion relations in (a) is marked by the red dot.

Figure 2.21: Snapshots of the total tubulin density ρT(x, t ) and the tip density including finite tubu-
lin nucleotide exchangeω= 0.01. Parameters are (ρ̄T, ρ̄M) = (2.75µM,30nM); Lx = Ly = 100µm other
parameters are as specified in Tab. 2.1.
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software COMSOL Mulitphysics was used (see point-like-filament-PDEs.mph). To ensure numer-
ical stability, we add a small diffusion term (diffusion constant 1×10−2

µm2 s−1) to the dynamics
of l (x, t ). This is necessary because sharp interfaces emerge rapidly around the long-filament clus-
ters that from the initial instability (Fig. 2.22). Because of these sharp gradients, the assumption of
point-like filaments underlying these simulations is no longer valid. Still, it is instructive to discuss
the dynamics in this regime as it shares some of the features with the agent-based simulations with
spatially extended filaments.

The interfaces of clusters that emerge from the initial instability propagate such that the regions
of long filaments become smaller. This propagation is driven by the diffusive influx of motors from
the regions where filaments are short, and therefore, most motors are in the cytosol. The motors
diffusive into the long-filament regions, where they rapidly attach near the interface. This drives
depolymerization of filaments near the interface, causing the long-filament regions to shrink. The
released tubulin units then diffuse in the cytosol and drive further growth of filaments in the long-
filament regions.

In fact, the propagation of interfaces is already indicated by the dispersion relation. As we dis-
cussed below Eq. (2.60), a positive determinant of JWM implies that the eigenvalues are a pair of
complex conjugates near the onset of instability. In the dispersion relation, this means that σ(q)
has a non-zero imaginary part near the zero crossing of its real part at q = qmax [see Fig. 3(a) in the
main text]. In a previous study on mass-conserving reaction diffusion systems, we found that the
properties of interfaces can be inferred from the right edge of the dispersion relation [213]. Specially,
non-zero imaginary part at qmax indicates that the mode that defines the interface is propagating.

In the point-like filament approximation, interfaces will continue to propagate until the long-
filament clusters have completely disappeared. Subsequently, new clusters will emerge from lateral
instability. And these clusters will again collapse due to interface propagation, driven by diffusive
flux of motors into the clusters. In contrast, in agent-based simulations with spatially extended
filaments, advective transport of motors along filaments counteracts diffusive influx of motors into
the clusters. This is because the net orientation of the filaments is aligned with the density gradients
and leads out of the clusters. As a result of this advective motor transport, interface motion arrests

min

max

bo
un

d 
m

ot
or

 d
en

sit
y

min

max

bo
un

d 
tu

bu
lin

 d
en

sit
y

Figure 2.22: Snapshots from finite-element simulations of Eqs. (2.48a)–(2.48e) at times 1.8× 104,
2.5×104, and 3.1×104 from left to right. Top row: Filament length l (bound tubulin density). The
color bar ranges [min, max], are [4,7], [0,15], [0,32] from left to right. Bottom row: Filament-bound
motor density M̃ . The color scheme is logarithmic, with ranges [101.1,101.2], [100,103], and [100,103]
from left to right. Note that the concentration of bound motors is highest around the perimeter of
regions with long filaments (high bound tubulin density). Domain size Lx = Ly = 500µm. Remain-
ing parameters as in Figs. 4 and 5 in the main text.
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eventually, thus producing the final, aster-like steady state structure (see Movie 1 and Fig. 4 in the
main text).

FASTEST-GROWING MODE IN AGENT-BASED SIMULATION

Within the framework of the point-like filament approximation we found a long-wavelength insta-
bility driven by polymerization kinetics of filaments that is controlled by a the local densities of
depolarizing motors and cytosolic tubulin. To obtain a quantitative comparison between the agent-
based simulation, which includes spatially extended filaments and the point like filament approxi-
mation we determine the growth rate as well as the wavelength of the initial dynamics starting from
a homogeneous steady state. As the linear stability of the model does not depend on dimensional-
ity we restrict the analysis to a quasi one dimensional setting, where filaments can be either left or
right oriented. This would correspond to a nematically ordered filaments in two dimensions. This
is done for the sake of computational cost as agent based simulations in the two dimensional set-
ting are time-intensive. By performing a Fast Fourier transformation of the density field we obtain
the fastest growing mode. Thereby we find the maximal growth rate σ(qc ) and the corresponding
wavelength λc . The laterally stable parameter regime is characterized by a maximal growth rate of
zero σ(qc ) = 0.

We find that the boundary of the laterally stable parameter regime is well approximated by the
point like filament approximation (see Fig. 2.23). It also correctly predicts the qualitative depen-
dence of the growth rate on total motor and tubulin concentration (see Fig. 2.23).
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Figure 2.23: Growth rate σ(qc ) and wavelength λc = 2π/qc of the fastest growing mode obtained
form (a,c) agent-based simulations and (b,d) linear stability analysis of the point-like filament ap-
proximation Eq. 2.48. White areas indicate regions where the homogeneous states are stable against
spatial perturbations. Note that, counterintuitively, the growth rate of the fastest growing mode in-
creases towards the instability threshold. This is because the stability threshold is set by a saddle-
node bifurcation where the laterally unstable steady-state branch disappears. We find a good agree-
ment for the boundary of the laterally stable parameter regime. Moreover the qualitative depen-
dence on the total motor and tubulin concentration is correctly predicted by linear stability analysis
[cf. Fig. 2.18(b,d)]. Parameters: L = 500µm,kon = 0.22µm3s−1µm−1 all other parameters are as
specified in Tab. 2.1.
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Algorithm 1 Approximative simulation scheme

1: while t < tmax do
2: for motor position = {s1, s2, . . .} do
3: si → si + vm∆t
4: if si > l then
5: # cytosolic motors += 1
6: # cytocolic tubulin += 1
7: filament length −= a

8: r =random_real ∈ (0,1)
9: if r < konl∆t (#cytosolic motors) then

10: sk =random_real ∈ (0, l )
11: motor_positions.append(sk )
12: # cytosolic motors −= 1

13: r = random_real ∈ (0,1)
14: if r < γ∆t (#cytosolic tubulin) then
15: l += a
16: # cytosolic tubulin −= 1

Algorithm 2 Filament growth dynamics

1: for position (xi , yi ) in free tubulin positions = {(x0, y0), . . .} do
2: reaction time τk =∆t
3: filament plus ends in range = EuclidianDistance[(xi , yi ), plus_end_position] < rT

4: for filament plus end in filament plus ends in range do
5: τnew

k → γexp(γt )
6: if τnew

k < τk then
7: τk = τnew

k
8: remember filament plus end

9: if remembered filament plus end != empty then
10: grow filament
11: remove tubulin position from free tubulin positions
12: else
13: xi +=

p
24DT∆t · (random_real ∈ (−0.5,0.5))

14: yi +=
p

24DT∆t · (random_real ∈ (−0.5,0.5))
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Algorithm 3 Free motor dynamics

1: for position (xi , yi ) in free motor positions = {(x0, y0), . . .} do
2: reaction time τk =∆t
3: filaments in range = all filaments that intersect with a circle of radius
4: rM around (xi , yi ) (see Fig. 2.15)
5: for filament in filaments in range do
6: calculate ∆l
7: τnew

k → kon∆l exp(kon∆l t )
8: if τnew

k < τk then
9: τk = τnew

k
10: remember filament
11: if remembered filament ! = empty then
12: attach motor to remembered filament at random position within ∆l
13: set motor state to filament-bound
14: else
15: xi +=

p
24DM∆t · (random_real ∈ (−0.5,0.5))

16: yi +=
p

24DM∆t · (random_real ∈ (−0.5,0.5))
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COLLECTIVE FILAMENT MOTION IN ACTIVE

FILAMENT BUNDLES

3.1. BIOLOGICAL BACKGROUND

In the living cell, cytoskeletal filaments are constantly reorganized and moved. This motion is
caused by molecular motors that cross-bridge neighboring filaments [177]. Thereby they can ex-
ert force on the filaments. The most important motors involved in the motion of microtubules are
dynein and members of the kinesin family [19, 34, 179]. The functionality of the cell relies crucially
on this mechanical reorganization of filaments. An example is the mitotic spindle where the knock-
out of dynein results in unfocused spindles that lack spindle poles [183, 184] and the knockout of
kinesin-5 to monopolar spindles with chromosomes at the periphery [180–182].

To understand the complex interplay between motor proteins that cross-link and slide neighbor-
ing filaments, it has proven informative to study isolated interactions between individual filaments
(or filament bundles) and cross-linking motor proteins in reconstituted systems. This work will
focus mainly on kinesin-5 (or kinesin-5 like) motor proteins. Kinesin-5 has the ability to simulta-
neously bind to two different microtubules and walk on them [95]. The motion of the motor do-
mains is directed towards the filament plus end; see Fig. 3.1 (b). The directed motion and ability
to cross-link adjacent filaments lead to distinct behavior for microtubules with their plus end ori-
ented in the same (parallel filaments) or opposite (anti-parallel filaments) direction. If the filaments
are parallel oriented, the two motor heads move in the same direction (see Fig. 3.1 (c)). Thereby
their relative distance remains the same, and the two motor domains can walk towards their des-
tination, the plus end, without inducing strain in the motor. In contrast, if the motor heads are
attached to anti-parallel filaments the motor domains move apart. Instead, this results in filament
motion as opposed to the direction of motor motion (see Fig. 3.1 (b)). Together this results in fila-
ment sliding that depends on the relative orientation of adjacent filaments; see Fig. 3.1 (b), (c). In
vivo kinesin-5 mediated filament sliding yields a constant microtubule flux of spindle microtubules
from the center of the spindle towards the poles [97, 98, 234]. In vitro the mechanistic hypotheses
for kinesin-driven filament sliding was studied using assays of stabilized microtubules with fluo-
rescently labeled minus ends to track their relative filament orientation; see Fig. 3.1 (a) top. It was
observed that anti-parallel filaments move in the direction of their minus ends at a relative speed
of ∼ 35nms−1 which is approximately twice the velocity of Kinesin-5 (vm ≈ 20nms−1). In contrast,
parallel filaments remained static; see Fig. 3.1 (a) bottom [95].

Therefore, on the basis of single filament experiments, the filament velocity seems to be inher-
ently linked to the relative orientation of interacting filaments. However, this conclusion is chal-
lenged by observations in the mitotic spindle. Measurements have shown that the fraction of par-
allel to anti-parallel filament pairs varies significantly inside the spindle, with primary parallel fila-
ments at the spindle poles and a large number of anti-parallel filaments in the spindle center [98,

61
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Figure 3.1: (a) In vitro assay of stabilized microtubules (green) with purified Eg5 (kinesin-5). Minus
ends of microtubules are fluorescently labeled in red. Top panel: Anti-parallel microtubules move in
the direction of their minus end. The arrow white arrow marks the plus end of the long microtubule,
which has the minus end at the left. The two minus ends move apart at a speed of 35nm/s which
is approximately twice the velocity of Eg5 (∼ 20nm/s). Bottom panel: Parallel microtubules remain
static. One is marked with a white line. The scale bar is 1µm (b) Illustration of a Kinesin tetramer
(yellow) that cross-links two anti-parallel microtubules (green) and moves simultaneously on them
(yellow arrow). The motor domains move in opposite direction. As a result, the filaments slide in
the opposite direction to the motor motion. (c) Illustration of a kinesin tetramer that cross-links
two parallel microtubules. The motor domains of the kinesin tetramer move in the same direction
and the cross-linked microtubules remain static. Panel (a) adapted from [95] and reproduced with
permission from Springer Nature; License Number: 5614280563769.

184]; see Fig. 3.2 (b),(c). At the same time, those experiments have shown that microtubules slide at
constant speed towards the spindle poles independent of their position in the spindle [96–98]; see
Fig. 3.2 (b). How do the collective dynamics of many filaments cross-linked by motor proteins play
out to behave differently than the individual components on their own?

In this chapter, we will focus on the question of how the dynamics of an ensemble of filaments
emerge from the collective interplay between cross-linking of filaments and the directed motion of
the motor proteins on the filaments. To this end, we will focus on stabilized filaments of fixed length
`, i.e., we disregard length regulation dynamics.

3.1.1. MODELING APPROACH

To assess the complex dynamics of motor-driven filament networks, we first aim to build a concep-
tual model on the basis of single filament experiments (two cross-linked filaments). First, we neglect
possible correlations between different protofilaments of the microtubule and model filaments by
an effectively one-dimensional structure of fixed length `; see Fig. 3.3 (a). Motivated by the large
persistence length of microtubules that exceeds the filament length by orders of magnitude [25] we
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Figure 3.2: (a) Top: Fluorescent spindle labelled with Atto565 pig tubulin. Dynein was inhibited us-
ing p150-CC1, resulting in unfocused spindle poles. Schematic illustration of microtubules in the
spindle. Microtubules can be cross-linked by molecular motors (red) or passive-cross-linkers (blue).
The relative fraction of right (purple) and left (green) oriented filaments is not spatially uniform in
the spindle. The scale bar is 10µm. (b) The magnitude of the sliding speed of filaments as a func-
tion of their position. The speed is independent of the overlap of left ρ−(x) and right ρ+(x) oriented
filaments. (c) Local polarity is defined as the relative fraction of left and right-oriented filaments in
the spindle obtained by two different experimental techniques. Panel (a) top, (b), and (c) adapted
with permission from [98], which is an open access article distributed under the terms of the Cre-
ative Commons CC BY license, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

model the filaments by rigid rods. The two cross-linked filaments are aligned along the x−axi s and
can be oriented in direction ni =±1. The direction ni of a filament is defined in the direction of the
filament plus end; see Fig. 3.3 (a). We will assume a well-mixed cytosolic pool of components in the
following, i.e., we do not account explicitly for the diffusive redistribution of motor proteins. Cy-
tosolic motors can bind to a filament at rate koncm and cross-link two adjacent filaments. We model
a cross-linking motor by two motor domains connected by a Hookean spring with stiffness κ; see
Fig. 3.3 (a). A filament bound motor head moves along the arc-length s ∈ [−`/2,`/2] in direction ni

of the filament; see Fig. 3.3 (b). For now, we consider motor proteins that detach immediately upon
reaching the filament plus end. We will relax this restriction in Sec. 3.2. The speed of the motor
head on filament i , Vm,i ( f ), depends linear on the force f (t ) applied to the motor at time t [196];
see Fig. 3.3 (b),(c):

Vm,i( f ) = ni vm

(
1+ ni f (t )

fs

)
(3.1)

Here, vm denotes the unloaded speed of motors and fs the stall force of motors. This means if a force
acts on the motor head against the motor’s direction of motion (ni ), it slows down. For symmetry
reasons, we assume that a motor can exceed its unloaded velocity vm when it is pulled; see Fig. 3.3
(c). However, this can easily be adapted to the cases where a motor can not exceed its unloaded
speed. Filament-bound motors detach from the filament at rate Koff. In general, this detachment
rate can be force dependent [235]

Koff( f ) = koffe
| f (t )|

fu . (3.2)

We next aim to derive a coarse-grained description of filament-filament interactions mediated by
many cross-linking motor proteins.

DERIVATION OF A COARSE-GRAINED FILAMENT-FILAMENT INTERACTION

In this section, we aim to derive an effective interaction between filament 1 and filament 2 as a
result of many cross-linking interactions of the motor proteins. As a result of the motor-mediated
interactions, filament 1 will move at speed v1(t ) and filament 2 at speed v2(t ). Now consider a

https://creativecommons.org/licenses/
https://creativecommons.org/licenses/
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Figure 3.3: (a) Schematic representation of a filament with orientation n =+1 (purple) and a cross-
linking motor (red). Filaments have fixed length `. Motors are modeled as two motor domains that
are connected by a Hookean spring with stiffness κ. Unbound motor heads can attach to the fila-
ment at rate kon. Filament-bound motor heads detach at a rate Koff = koffe

| f |/ fu which is, in general,
force dependent. (b) Two filaments oriented in direction n1 = 1 (purple) and n2 = −1 (green), that
are cross-linked by a motor protein. The filament bound motor heads move in the direction of the
filament plus end at speed Vm,i = ni vm(1+ni fi j (t )/ fs) if ni fi j (t ) < 0 and Vm,i = ni vm else. This
means motors are slowed down by an applied force that acts against their direction of motion but
do not exceed their unloaded speed vm. As a result of the motor motion, the spring gets strained.
Therefore the motor exerts a force on f12(t ) on filament 1. The force on filament 2, f21(t ), has equal
magnitude and opposite direction. As a result of many motor interactions, the filaments will slide
at speed v1(t ) and v2(t ). (c) The analog situation for two parallel filaments. The leading filament
head (here on filament 1) will be slowed down the motor head lagging behind moves at speed the
unloaded speed vm.

specific molecular motor that cross-links the two anti-parallel filaments; see Fig. 3.3 (b). At the time
t = 0 the motor cross-links the two filaments in a relaxed state. As a result of the relative motor head
motion and the relative filament velocity, the motor will get strained. The distance ∆x(t ) between
the motor heads is given by

∆x(t ) =
∫ t

0
dt ′vm(n1 −n2)− vm

fs

(
f12(t ′)− f21(t ′)

)+∆v12(t ′) (3.3)

here f12(t ) denotes the force the cross-linker exerts on filament 1 as a result of the interaction to
filament 2. The first terms account for the velocity difference of the motor heads, and the last term
for the velocity difference ∆v12(t ) = v1(t )− v2(t ) of the filaments. The force applied by the motor
heads, at time t , on the filaments is given by

f12(t ) =−κ∆x(t ) =− f21(t ) . (3.4)

Substituting Eqs. 3.3 in 3.4 yields a self-consitency equation for the the force f12(t )

Çt f12(t )+2vmκ
f12(t )

fs
= 2vmκ

[
n2 −n1

2
+ ∆v21(t )

2vm

]
. (3.5)

With the initial condition f12(0) = 0. The solution to this equation is given by f ∗
12(t , v21(t )). In an

ensemble of many motors, that cross-linking filament 1 and filament 2 each of them will have a
different age τ since when it cross-links the filaments. As a result, each of the cross-linking motors
will exert a different force f12(τ) on the filaments. We are interested in the average force a motor
exerts on the filaments. The motors that cross-link filament 1 and filament 2 at time t must have
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been attached in the past and not detached yet. We denote the survival probability of a bond by
S(τ). The average force a motor exerts between the filaments is then given by

F12(t ) = 1

N

∫ ∞

0
dτS(τ) f ∗

12[τ, v21(t −τ)] (3.6)

The normalization constant N is given by

N =
∫ ∞

0
dτS(τ) = 〈τ〉 .

The total force exerted between filament 1 and filament 2, which are cross-linked by M12(t ) motors
at time t , is then given M12(t )F12(t ) assuming overdamped dynamics this force has to be balanced
by fluid drag:

γv1(t ) = M12(t )F12(t ) =−γv2(t ) . (3.7)

In principle Eq. 3.5, Eq. 3.6, and Eq. 3.7 forms a closed set of equations for the filament sliding
velocities v1(t ) and v2(t ).

Here, we make an adiabatic approximation and assume that the relative filament sliding velocity
∆v21(t ) ≈∆ṽ21 varies slowly on the timescale of individual detachment events. Using the adiabatic
approximation, we find the solution f ∗

12[t ,∆ṽ21] to be given by

f ∗
12[t̃ , ṽ21] = fs

(
1−e−At̃

)(
n2 −n1

2
+ ∆ṽ21

2vm

)
(3.8)

where we re-scaled time in units of the unloaded bond breakage rate t̃ = 2kofft . Note the factor
of two appears since both heads can detach from a filament. The dimensionless constant A =
vmκ/( fskoff), quantifies the ratio of the average force a motor would exert in the absence of stalling,
vmκ/koff, to the stall force fs of motors.

Substitution into Eq. 3.6 yields

F12(∆ṽ21) = fs

(
n2 −n1

2
+ ∆ṽ21

2vm

)[
1− 1

〈τ̃〉
∫ ∞

0
dτ̃S(τ̃,∆v21)e−Aτ̃

]
(3.9)

We derived a force-velocity relation for motor-mediated interactions between the filaments in
dependence on the relative filament velocity ∆ṽ21. Note, to first order, this force-velocity relation
is always linear in ∆ṽ21. However, in general, the survival probability S(t̃u) might depend on ∆ṽ21,
and we get nonlinear corrections to the linear force-velocity relation. This is the case for force-
dependent detachment. In principle, it is possible to derive the waiting time distribution for force-
dependent detachment in the Supplemental Material Sec. 3.2.3 we give some examples. Here, we
will consider force-independent detachment. The survival probability is then given by

S(τ̃) = e−τ̃ . (3.10)

In that case, the force-velocity relation, F12(∆v12) simplifies to

F12(∆v21) = fs
A

1+ A

(
n2 −n1

2
+ ∆ṽ21

2vm

)
(3.11)

= Fm

(
n2 −n1

2
+ ∆ṽ21

2vm

)
(3.12)

Figure 3.4 shows the motor force amplitude, Fm = fs A/(1+ A), as a function of A = vmκ/( fskoff)
and the force-velocity relation F12(∆v21) as as function of ∆v21. The motor exerts a maximal force
between the filaments if they do not move relative to each other, and the force declines to 0 if the
two anti-parallel filaments slide apart at a relative velocity 2vm. The amplitude, Fm, of the exerted
force becomes zero for vmκ/koff ¿ fs. This can be understood in the limit koff →∞. In this limit,
motors will detach immediately and can not exert force on the filament. On the opposite limit,
koff → 0 motors will walk on the filament until they stall, i.e., they always exert the stall force on the
filaments.
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Figure 3.4: (a) Force amplitude Fm in units of the stall force as a function of A = vmκ/( fskoff) and
(b) coarse-grained force-velocity relation Fij(∆vi j ) for a motor that detaches at a constant rate koff.
(a) Persistent motors (koff → 0) can exert a maximal force that is equivalent to their stall force. In
the limit of fast detachment (koff →∞), the motors detach before they are strained resulting in zero
force amplitude. (b) Average force Fi j (∆v j i ) a motor exerts on two anti-parallel (red) and parallel
(blue) filaments i and j in dependence of the relative velocity ∆v j i of the filaments.

A coarse-grained filament-filament interaction: We can summarize the force-velocity relation of
a motor-mediated filament-filament interaction between filaments with orientation ni and n j in
the equation

Fi j = Fm

2

(
n j −ni +

v j − vi

vm

)
. (3.13)

Substituting Eq. 3.13 into Eq. 3.7 allows to solve for the filament sliding velocities

vi (t ) = n j −ni

2

vm

1+γvm/(FmMi j (t ))
=−v j (t ) . (3.14)

For typical parameters, we obtain drag coefficients in the range of γ = 0.1−0.8pNsµm−1, resulting
in fluid drag on the order of 10−2 −10−1pN. Compared to the motor force amplitudes on the order
of 1pN the term γvm/(FmMi j (t )) becomes negligible. The speed of the filaments then depends only
on their relative orientation. For two parallel filaments ni = n j the filament velocities are zero. Two
anti-parallel filaments, ni =−n j , slide approximately at the speed of motors vi ≈−ni vm as observed
in in vitro experiments; cf. Fig. 3.1.

While the derived force-velocity relation is consistent with the observed in vitro dynamics at a
single filament level, can it also account for the puzzling observation that filaments in the spindle
apparatus slide at a speed that is independent of the local number of parallel and anti-parallel in-
teractions; cf. Fig. 3.2? Can we learn something about the necessary requirements for large filament
bundles to contract or expand?

In the remainder of this chapter, we will approach those questions by deriving consequences for
ensembles of filaments that are cross-linked by motor proteins that obey a force-velocity relation as
described by Eq. 3.13.
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3.2. BRIDGING SCALES IN FILAMENTOUS ACTIVE MATTER

3.2.1. SIGNIFICANCE

Assemblies of cytoskeletal filaments and associated proteins form diverse, dynamic structures that
play essential roles in many intracellular processes. An important factor in the emergent self-organization
of these networks is their ability to exert force and re-arrange. At the collective level, those forces are
reflected in active extensile or contractile stresses that drive the network dynamics. On the macro-
scopic level, the consequences of those stresses are understood in terms of active field theories built
on symmetry arguments. However, how microscopic interplay between the various components re-
sults in extensile or contractile filament networks is not well understood.

Here, we address this question using a minimal but generic theoretic model for bundles of rigid fil-
aments cross-linked by motor proteins or passive cross-linkers. Starting from a general microscopic
model, we derive a formalism to evaluate the contribution of a motor cross-linker to the propensity
of a filament bundle to contract or expand. Based on the derived formalism, we can make general,
statements about the ability of a motor cross-linker to promote extensile or contractile stress. First,
a a motor whose microscopic dynamics result in a homogeneous density profile along the contour
of a filament can neither contribute to extensile or contractile stress in the system. Second, in the
absence of bundling agents or other cross-linkers, a single type of motor can only exert contractile
stress. In mixtures of different motor cross-linker types, the inhomogeneity of the motor profiles
and the total population of different cross-linker types control the filament bundle tension.

We proceed to use our theoretical framework to investigate the physics of filament-motor-mixtures
composed of motors that can cross-link and walk on neighboring filaments and crowding agents
that bundle filaments together. In addition, we allow for motors to dwell at the filament end they
are walking to. This set of constituents resembles a minimal model for a broad range of experimen-
tally studied in vitro filament motor mixtures, which are usually composed of filaments, crowding
agents, and motors that might or might not dwell at the filament end [38, 40, 75–79, 87, 88, 90–
93]. We identify two mechanisms that control the propensity of the filament bundle to contract or
extend. First, contractile tension is predominantly caused by motor proteins that dwell at the fila-
ment tip and cross-link parallel filaments. Therefore, the contraction of the filament bundle relies
on the ability of the motors to dwell at the filament end. Second, internal friction, e.g., from passive
cross-linkers, is required for the filament bundle to generate extensile stress. The extensile stress
can be increased by increasing the internal friction. This yields the counterintuitive prediction that
holding individual filaments in the bundle together increases the materials’ propensity to expand.
Using our theoretic framework, we can summarize those requirements in a set of coarse-grained
parameters that control the propensity of the filament bundle to contract or extent. By specifying a
minimal microscopic model, we relate those parameters to the kinetic and mechanical properties
of the network constituents, thereby bridging the gap between the microscopic and macroscopic
dynamics of the filament bundle. This allowed us to identify three external control parameters of
the filament bundle dynamics. First, the number of motors per filament. Second, the number of
passive cross-linkers per filament, and third the filament length. We predict that the filament bun-
dle is extensile at high concentrations of passive cross-linker and for long filaments. In contrast,
high concentrations of motors and short filaments promote the propensity of the filament bundle
to contract. All those predictions are in line with recent in vitro experiments [75, 78, 79, 91–93]. Last,
we verify our predictions using agent-based computer simulations.

3.2.2. RESULTS

An essential ability of cytoskeletal filament structures is to exert force. Often, this force is generated
by an extending or contracting network of cross-linked filaments. Prominent examples are the mi-
totic spindle, which relies on the ability to extend to segregate chromosomes during cell division
[17, 19] and the actin cortex, which, in collaboration with myosin II, promotes contractile tension
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that drives changes in cell shape, e.g., during tissue morphogenesis [100, 102, 105, 236]. Moreover,
reconstituted systems of filaments and cross-linkers show a broad range of behavior. This includes
characteristics of contractile dynamics like global and local network contraction or aster formation
[193, 194, 205, 237], as well as characteristics of extensile dynamics like filament bundle extension,
bundle buckling, network buckling, and turbulent-like dynamics [38, 75, 78, 87, 91].

Although the constituents of those materials are known, we lack an understanding of which mi-
croscopic properties of the constituents determine the contractile or extensile nature of filament
motor mixtures. There is increasing experimental evidence that the propensity of a filament net-
work to contract or extent can be tuned by changing the length of the filaments [75, 88, 93], the
concentration of motors [79, 92], the concentration of passive cross-linkers or depletants in the sys-
tem [79, 88, 91, 238] or by mixing different motor proteins and cross-linkers [75, 88]. However, how
those changes in the microscopic constituents of the filament network control the propensity of a
filament bundle to expand or contract on the collective level is not well understood.

On a phenomenological level, the collective dynamics of filament-motor mixtures have been
studied by hydrodynamic theories that are built on symmetry arguments [48, 49, 51, 52, 86, 239].
In those theories, activity is included in models of passive nematics by active currents with coeffi-
cients characterizing the strength of activity. However, those coefficients are hard to measure and
relate to the microscopic interactions of the constituents.

How to bridge the gap between properties of the microscopic constituents and the collective dy-
namics is an open question that has recently come into the focus of interest [76, 237, 240–242].
This question has been addressed using coarse-grained models derived from minimal microscopic
interactions [240, 241, 243–248] or large scale computer simulations [39, 75, 93, 249–252].

Here we focus on this question using a minimal but generic theoretical model. We identify three
essential parameters that control the propensity of the filament bundle to contract or expand: First,
the ratio of motors bound to the filament end to motors bound to the filament bulk. Second, the
strength of internal friction (passive cross-linkers) to motors bound to the filament bulk. Third, the
anisotropy of filament-bound motors along the arc-length of the filament. Using our theoretical
framework, we summarize those requirements in a set of coarse-grained control parameters. By
specifying a minimal microscopic model, we relate all coarse-grained control parameters to the
kinetic and mechanical properties of the network constituents. Thereby we were able to identify
three experimentally accessible parameters that control the propensity of the filament bundle to
contract or expand. First, the concentration of active motors. Second, the concentration of passive
cross-linkers, and third the filament length. We predict that the filament bundle is extensile at high
concentrations of passive cross-linker and for long filaments. In contrast, high concentrations of
motors and short filaments promote the propensity of the filament bundle to contract. All those
predictions are in line with recent in-vitro experiments [75, 78, 79, 91–93]. Lastly, we verify the
predictions of our minimal model with the help of computer simulations.

MINIMAL BIOPHYSICAL MODEL

We consider a homogenous filament bundle composed of filaments of fixed length `, which are
aligned along the x−axis. The filaments i = 1. . . NMt have center of mass position xi and can take
orientation ni =±1, which they maintain throughout the dynamics. The orientation ni of a filament
is defined in the direction of the filament plus end; see Fig. 3.5 (c). Filaments in the bundle can be
cross-linked by motor cross-linkers or passive cross-linkers of different types; see Fig. 3.5 (c). We
denote the different types of motor cross-linkers in the filament bundle by X . We consider motor
cross-linkers and passive cross-linkers that exert a force linear to their extent ∆x (see Fig. 3.5 (a)),
i.e., motor cross-linkers that can be modeled by a Hookean spring with respective spring stiffness κ;

f [∆x(t )] = κ∆x(t ) . (3.15)
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Figure 3.5: Depending on their relative position, a pair of interacting filaments can be (a) extensile or
(b) contractile. In a homogeneous filament bundle, either configuration is equally likely. To generate
net extensile or contractile stress, this symmetry has to be broken. (c) Filament bundle comprised
of filaments of length `. The filaments are aligned along the x-axis and have center of mass position
xi and orientation ni = ±1. The interaction partners of filament i are depicted in color and the
remaining filament bundle in gray. The filament bundle is cross-linked by a set of motor cross-
linkers or passive cross-linkers. (d) We consider a general class of motor cross-linker. The two motor
domains a and b are connected by a Hookean spring with spring stiffness κ. (e) The motor heads
move at an unloaded speed va and vb respectively. Positive motor velocities denote a motion in
the direction of the filament plus end. The velocity Va and Vb of the motor heads depends on the
applied force f (t ) at time t and if the force is applied in or opposed to the motor heads’ direction.
The force dependency of the velocity is characterized by the functionφ[ f (t )]. The detachment rates
Ka and Kb of the motor cross-linker can be force dependent. The force dependence is characterized
by the function ψ[ f (t )].

Motor cross-linkers are characterized by their ability to cross-link two neighboring filaments and
walk directionally on them, either in the direction of the filament, ni (plus-end-directed), or op-
posed to it, −ni (minus-end-directed). However, the motor cross-linkers may be asymmetric or
symmetric. A biologically important example of a symmetric motor cross-linker is tetrameric Kinesin-
5, which can cross-link and walk on two neighboring filaments [95]. An example of an asymmetric
motor cross-linker is Kinesin-4, which can cross-link neighboring filaments but has one immobile
microtubule-binding domain and one mobile motor domain. Another important class of asym-
metric motor cross-linkers are motors that dwell at the filament end they are walking to. This is
because they have, by definition, one immobile motor domain at the filament end and one mo-
bile motor domain cross-linked to the bulk (arc-length) of a neighboring filament. A representative
member of this class of motor cross-linkers is dynein [193]. We denote the two motor domains of the
cross-linker X by (a) and (b). The walking speed Va and Vb of the cross-linker along the arc-length
s ∈ [−`/2,`/2] of the filament depends on the force f (t ) applied to the motor head at time t , and if
the force is applied in or opposed to the direction of motion of the motor head [196]. We character-
ize this response to a force by the dimensionless functions φa[n f ] and φb[n f ]. The walking speed
of the motor domain (a) cross-linked to filament i and motor domain (b) cross-linked to filament j
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are then given by

Va[ni f (t )] = va(1+φa[ni f (t )])

Vb[n j f (t )] = vb(1+φb[n j f (t )]) .

with the unloaded motor speeds va and vb, such that φa[0] = φb[0] = 0; see Fig. 3.5 (e). The sign
convention is such that positive velocities denote a motor head motion in direction of the filament
(plus-end-directed), and negative velocities are opposed to it (minus-end-directed). The motor
head (a) and (b) can detach from the filament they are bound to at rate Ka and Kb. In general, those
detachment rates have been shown to depend on the force applied to the motor head and, even-
tually, if the force is applied in the direction of motion of the motor cross-linker or opposed to it
[235]. We characterize the response of the detachment dynamics of the motor cross-linker to an ap-
plied force by the dimensionless functionsψa[n f (t )] andψb[n f (t )] and define the force-dependent
detachment rates

Ka[ni f (t )] = koff,aψa[n f (t )]

Kb[n j f (t )] = koff,bψa[n f (t )] .

where koff,a and koff,b denote the unloaded detachment rates of the motor heads (a) and (b), such
that ψa[0] =ψb[0] = 1; see Fig. 3.5 (f).

MEAN-FIELD MOTOR INTERACTIONS

Here we restrict the discussion to a linear sub-class of a more general theory presented in the Sup-
plemental material Sec. 3.2.3. This linear sub-class is represented by motor cross-linkers which de-
tach at a force-independent rate, ψa[n f (t )] =ψa[n f (t )] = 1 and which slow down linear to a force
applied against their direction of motion

φa[n f (t )] = sgn(va)
n f (t )

fs,a

φb[n f (t )] = sgn(vb)
n f (t )

fs,b
.

Here fs denotes a characteristic force at which the motor slows down to zero, commonly referred to
as stall force. Note this implies that the motor heads can speed up above their unloaded velocities
va and vb. Relaxing this assumption changes some prefactors of the equations but not their func-
tional form. The more general theory presented in the Supplemental material does not rely on these
restrictions. However, the results presented here have the advantage of being analytically traceable
and, thereby, easier to interpret.

Consider two filaments i and j which are cross-linked by the motor X , with motor head (a) at-
tached to filament i and motor head (b) attached to filament j . The two filaments i and j move at
time t at velocities vi (t ) and v j (t ). As a result of the relative filament motion ∆vi j (t ) = vi (t )− v j (t )
and the relative motion of motor heads the motor cross-linker will be stretched, and therefore the
motor heads exert a force on each other. This force is given by

fab(t ) =−κ∆x(t ) =−κ
∫ t

0
dt ′[ni Va[ni fab(t ′)]−n j Vb[n j fba(t ′)]+∆vi j (t ′)] . (3.16)

with fab(t ) =− fba(t ). Here, we make the assumption that the motor cross-linker attached to the fila-
ments at time t = 0 in a relaxed state, which, on average, will be true since binding is an equilibrium
process. We make a time-scale separation argument, where we assume that the bond breakage of
the cross-linker is fast compared to the time scale at which the filaments i and j change their speed



3.2. BRIDGING SCALES IN FILAMENTOUS ACTIVE MATTER

3

71

and denote the relative quasi-steady-state velocity by ∆ṽi j . In the following, we will drop the tilde.
In the supplement (see Supplemental Material Sec. 3.2.3), we show that the average force this class
of cross-linkers mediates, as a result of many cross-linking interactions, is given by the force-velocity
relation

Fij,a(∆v j i ) = ΓX
(
n j vb −ni va +∆v j i

)
. (3.17)

The notation Fij,a denotes that head a is bound to filament i . This force-velocity relation can be seen
as a mean-filed representation of the motor cross-linker X , which is valid in an ensemble of many
motor cross-linkers of this type cross-linking the filaments i and j . The force-velocity relation is
reciprocal under the exchange of filaments and motor heads; Fij,a(∆v j i ) =−Fji,b(∆vi j ). The constant
ΓX has units of force per velocity and represents an effective friction coefficient of the motor cross-
linker, which is given by (see Supplemental Material Sec. 3.2.3)

ΓX = fs,a fs,b

fs,b|va|+ fs,a|vb|
A

1+ A
. (3.18)

Here A is a dimensionless constant that quantifies the relative force a motor would exert in the
absence of stalling to the stall force of the motor heads:

A = κ

koff,a +koff,b

( |va|
fs,a

+ |vb|
fs,b

)
(3.19)

It is easiest interpreted for a symmetric motor a = b, then it reads A = κva/(koff,a fs,a). Forκva/koff,a ¿
fs the motor cross-linker detaches before it can exert a significant force and thereby does not im-
pose friction between the filaments. In contrast, for κva/koff,a À fs the friction coefficient of the
symmetric motor cross-linker saturates at ΓX = fs/vm, i.e., is determined by the stall-force of the
motor.

The force-velocity relation Eq. 3.17 depends on the relative orientation of the filaments. Since the
filament bundle respects parity symmetry, we consider filament i with orientation ni =+1 without
loss of generality in the following and denote parallel interactions by ++ and anti-parallel interac-
tions by +−. The force-velocity relation for parallel and anti-parallel interactions then reads

F++
ij,a (∆v j i ) = ΓX

(
∆vx +∆v j i

)
(3.20a)

F+−
ij,a (∆v j i ) = ΓX

(−vx +∆v j i
)

. (3.20b)

Here we introduced the sum vx = (va + vb) and difference ∆vx = vb − va of unloaded motor head
velocities. We note that the average force a motor cross-linker of type X mediates between two
filaments i and j does vanish if the relative motion of filaments and motor heads is such that it does
not induce strain in the cross-linking motor.

FILAMENT SLIDING VELOCITY

We are first interested in the velocity vi at which filament i moves in the filament bundle. Assuming
overdamped dynamics, the velocity of filament i is determined by the total force acting on it as a
result of motor cross-linker interactions and fluid drag. The total force mediated by a motor cross-
linker of type X acting on the filament i is given by

FX,i =
∑
j 6=i

X ++
i j ,aF++

ij,a +X ++
i j ,bF++

ij,b +X +−
i j ,aF+−

ij,a +X +−
i j ,bF+−

ij,b . (3.21)

Here X ++
i j ,a , X +−

i j ,a , X ++
i j ,b , X +−

i j ,b denote the population of a heads and b heads mediating a parallel (++)
or anti-parallel (+−) interacton of the motor cross-linker X to filament j . In general, those pop-
ulations depend on the density of filaments in the vicinity of filament i and, thereby, on space.
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However, since we consider a homogenous filament bundle, it is reasonable to assume that the to-
tal number of motor cross-linker heads on filament i is equal for all filaments i = 1, . . . , NMt, i.e.,∑

j 6=i X ++
i j ,a = X ++

a for all filaments (and analog for other populations). The total force mediated by
the motor cross-linker X acting on a filament with orientation ni =+1 is, therefore, the same for all
filaments with equal orientation in the filament bundle. Hence, all filaments with equal orientation
will have the same sliding velocity, and we can drop the subscript i . Filaments with opposite orien-
tations have sliding velocities with an equal magnitude but opposite signs, which is already implied
by parity symmetry. By definition we use v±

0 ≡ ∓v0. Thereby, we obtain the total force applied by
motor cross-linkers of type X to a filament with orientation n =+1, which is given by

FX = F++
X |0 +F+−

X |2v0 .

Here, the notation |x indicates where to evaluate the force-velocity relation. Before specifying those
terms, this relation holds true for a general non-linear cross-linker, as shown in the Supplemental
Material Sec. 3.2.3. For a linear cross-linker the terms F++

X |0 and F+−
X |2v0 are given by

F+−
X ≡ Γx vx(X +−

a +X +−
b )

(
−1+ 2v0

vx

)
F++

X ≡ Γx∆vx(X ++
a −X ++

b ) .

The total force acting on a filament with orientation n =+1 in a set of different cross-linkers is then
given by

F =∑
X

(
F++

X |0 +F+−
X |2v0

)
Those forces have to be balanced, either between each other or by drag imposed by the surrounding
fluid. Force balance then implies

γv0 +
∑
X

F+−
X |2v0 =−∑

X
F++

X |0 . (3.22)

Here, γ denotes the drag to the surrounding fluid. Note the only approximation made up to this
point was a time-scale separation argument between the detachment dynamics of the cross-linkers
and the dynamics of the filaments. Equation 3.22 is a good approximation even in the sparse limit
of two filaments. The only requirement is that the filaments are cross-linked by sufficiently many
cross-linkers to construct a mean-field representation of the motor. To interpret Eq. 3.22 let us con-
sider a filament bundle cross-linked by a single symmetric motor cross-linker with a = b. For a sym-
metric motor cross-linker, we obtain F++

X |0 = 0 and F+−
X |0 =−2Γx(−va +v0). Substitution in Eq. 3.22

yields v0 = va/(1+γ/(2ΓX )). Thus, if the effective friction ΓX of the motor cross-linker dominates
of external friction γ the motor will slide the filaments approximately at its unloaded speed, as ob-
served in experiments for different types of motor cross-linkers [76, 95, 193]. This means if external
friction is small, forces due to anti-parallel interactions balance each other, and motors do not get
strained. This means that filaments have to be slowed down compared to the unloaded motor veloc-
ity to generate strain in the cross-linking motor. This hints at the fact that we need a finite amount
of friction in the system to slow filaments down to generate tension in the motors and, thereby, the
tension in the filament bundle. This is consistent with theoretical works studying specific examples
of filament bundles cross-linked by symmetric motors [253, 254]. We now aim to explore this idea
and understand the possible origin of the extensile or contractile tension in bundles of cross-linked
filaments.

FILAMENT BUNDLE TENSION

The propensity of a filament bundle to contract or extend is revealed by its internal tension T .
A negative bundle tension (T < 0) corresponds to a filament bundle under compression, i.e., the
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bundle is extensile. In contrast, a positive bundle tension (T > 0) corresponds to a filament bundle
under tension, i.e., the bundle is contractile. In the following, we refer to the two possibilities as
extensile (T̃ < 0) and contractile (T̃ > 0) tension. The tension in the filament bundle is revealed by
the integrated force to one side of the bundle cross-section. Since the forces over the length of an in-
dividual filament balance in a homogenous filament bundle (cf. Eq. 3.22) the tension is given by the
integrated force over all filaments that penetrate the cross-section; see Fig. 3.6 (d). In a homogenous

(d)(a)
Motor not strained

Motor strained

(b) (c)

forces cancel

Figure 3.6: (a) If the filaments move at the speed of motors v0 = vm opposed to the motor motion,
the motor is not strained. (b) Schematic representation of the anisotropy factors. An asymmetric
motor profile yields an anisotropy factor µ > 0 if more motors are placed towards the plus end. A
negative anisotropy factor indicates more motors at the minus end. (c) To obtain the bundle ten-
sion, we integrate over all forces to the left of a bundle cross-section. If more motors are centered
towards the filament plus end (µ> 0), the accumulated force to the right Fi is larger than the force
to the left F j . Interactions between filaments that pass through the plane cancel since Fi j ,a =−F j i ,b .
(d) Filaments in the bundle that pass through a bundle cross-section plane are shown in color.
Filament-filament interactions that contribute to the bundle tension are also shown in color.

bundle of filaments with fixed length ` and density ρ0 there will be ρ0` filaments that penetrate the
bundle cross-section at different arc-length positions. To obtain the bundle tension, we introduce
the force densities f +−

X (s) and f ++
X (s) that stem from parallel and anti-parallel interactions of the

motor cross-linker X at arc length position s. In mean-field, they are given by

f +−
X (s) = ρ+−

x,a(s)F+−
a |2v0 +ρ+−

x,b(s)F+−
b |2v0

f ++
X (s) = ρ++

x,a(s)F++
a |0 +ρ++

x,b(s)F++
b |0 .

Here ρ+−
x,a (s),ρ+−

x,b (s),ρ++
x,a (s),ρ++

x,b (s) denote the arc-length density of the (a) and (b) heads mediat-
ing parallel and anti-pararallel interactions of the motor cross-linker X respectively. They obey∫ `/2
−`/2 dsρβx,α(s) = X β

α with α= {a,b} and β= {++,+−}. The filament bundle tension T is then given
by

TX =−ρ0

2

∫ `/2

−`/2
dξ

[∫ ξ

−`/2
ds f +−

X (s)+ f ++
X (s)+

∫ `/2

ξ
ds f −+

X (s)+ f −−
X (s)

]
. (3.23)

making use of parity symmetry and substituting the explicit form of the force-velocity equation
(Eq. 3.20), we find

T +−
X /(ρ0`) = Γxvx

(
−1+ 2v0

vx

)[
µ+−

a X +−
a +µ+−

b X +−
b )

]
(3.24a)

T ++
X /(ρ0`) = Γx∆vx

[
µ++

a X ++
a −µ++

b X ++
b

]
, (3.24b)

where we introduced the anisotropy factors

µ
β
α ≡ 1

2
− 1

`X β
α

∫ `/2

−`/2
dξ

∫ ξ

−`/2
dsρβα(s). (3.25)
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The anisotropy factors are in the range µβα ∈ [−1/2,1/2]. Where µβα = 1/2 represents a delta-peaked

distribution at the plus end and µβα =−1/2 a delta peaked distribution at the minus end, µβα = 0 rep-
resents a symmetric density profile; see Fig. 3.6 (b). Moreover, it should be noted that the anisotropy
factor reverses the sign if we reverse the direction of motion of the cross-linker head as a result of
the emergent density profile. Therefore, for a single type of motor cross-linker in the filament bun-
dle, the sign and magnitude of the bundle tension are conserved under the inversion of motor head
velocities.

The total filament bundle tension in a set of different motor cross-linkers is then given by

T =∑
X

TX . (3.26)

Note that the contribution of the individual motor cross-linker X to the total filament-bundle
tension Eq. 3.24 is a function of the filament sliding velocity v0 and thereby coupled to all other
cross-linkers in the system via the force-balance condition Eq. 3.22. It should be appreciated that
Eq. 3.24 expresses the contribution of a whole class of cross-linking motor proteins to the filament
bundle tension. Thereby, we obtained a simple framework that can give insight into the physics
that controls the propensity of a filament bundle to contract or expand. This allows us to make
general statements about the features of a motor cross-linker to promote extensile or contractile
stress, as well as to study specific examples “out of the box” upon specifying a microscopic model of
the cross-linkers, by defining the kinetic constants (va, vb,koff,a,koff,b) and the mechanical property
of the motor cross-linker κ. Before we study specific examples and combine different motor cross-
linkers we would like to explore general features of the contribution TX of a specific cross-liner to
the bundle tension.

INTERPRETATION OF THE BUNDLE TENSION

Interestingly, we find that a motor cross-linker X , which has symmetric density profiles (µβα = 0), can
neither promote extensile nor contractile tension. This is consistent with filed theories derived from
the dilute limit on the basis of simplified interaction rules. In those theories, asymmetric filament-
filament scattering interactions have to be imposed to obtain extensile stress [241, 247]. A second
important observation is that symmetric motors (a = b) contribute only via anti-parallel interac-
tions (+−) to the bundle tension. Moreover, in the absence of different motor cross-linkers, they
can only promote extensile tension. Active nematic filament-motor mixtures with motors that do
not dwell at the filament-end fall into this class of systems [38, 76, 87]. Somewhat surprisingly, we
find that the magnitude of the extensile tension in those systems is increased as the sliding speed
of individual filaments is decreased. This means the material’s propensity to expand increases as
the components of the material are slowed down. While being a surprising effect, it is consistent
with recent in vitro experiments that demonstrate that an active nematic filament bundle can ex-
hibit strong extensile stresses in the absence of relative filament sliding [90]. On a physical basis,
this can be explained as follows: If the filaments slide at the unloaded speed of the motor, they
slide across the motor without inducing strain in the motor, which in turn prevents the build-up of
tension in the material. Moreover, Eq. 3.24a clearly shows that the broken symmetry in extensile
and contractile stress, which was previously observed in computer simulations of symmetric motor
cross-linkers [250], arises as a result of anisotropic motor density profiles, which in turn are caused
by the directed motion of motor proteins. The need for anisotropic density profiles to promote ex-
tensile tension can be understood when we consider a pair of filaments with orientation ni =−1 and
n j = +1 that penetrates the cross-section of interest; see Fig. 3.6 (c). Interactions between the fila-
ments i and j do not contribute to the bundle tension as they have equal magnitude but opposite
signs. The only interactions that contribute to the bundle tension are filament-filament interactions
between a filament that penetrates the bundle cross-section and filaments that do not penetrate the
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bundle cross-section; see Fig. 3.6 (d). If the motor densities are asymmetric, the symmetry between
contractile and extensile forces is broken; see Fig. 3.6 (c).

Turning our attention to asymmetric motors, we observe that asymmetric motors can promote
a contribution to the filament bundle tension that stems from parallel interactions of filaments.
This contribution can be extensile or contractile depending on the anisotropy factors and motor
head populations. Importantly, this tension is independent of the filament sliding velocity v0, i.e.,
asymmetric motors can promote tension on their own, and there is no need for internal friction.
This implies that if an active filament motor mixture is cross-linked by asymmetric motors, there
can be an extensile or contractile tension associated with polar filament-filament interactions. This
is in line with a recent field theory derived on the behavior of end-dwelling motors, which shows the
existence of active polar stress [255] and not only apolar stress, as usually imposed by active nematic
field theories [50, 80–85].

Relaxing the assumption of a homogenous filament bundle, we can make statements about a fil-
ament bundle that has homogenous density but spatially varying ratios of parallel and anti-parallel
interaction partners. We previously showed that in such a filament bundle, the sliding speed v0 of
filaments is independent of the local ratio of parallel and anti-parallel interaction partners [2]. How-

ever, the populations of parallel and anti-parallel motor cross-linkers on a filament X β
α will depend

on the local number of parallel and anti-parallel filaments. Thus, extensile tension is expected to be
highest in apolar regions and contractile tension in polar filament bundle regions, independent of
the specific type of motor cross-linker.

We next use our general framework Eq. 3.24 and Eq. 3.22 to evaluate the contribution of some
biologically relevant motor proteins to the bundle tension.

EXAMPLES

Symmetric bulk motors We first consider a symmetric bulk motor named M , which is a motor
with equal head domains that does not dwell at the filament-end it is walking towards. We consider
a plus-end oriented motor, which has the unloaded motor head velocities va = vb = vm > 0 and the
motor head populations X +−

a = X +−
b = M/2. The contribution of this type of motor crosslinker is

then given by

FM = 2MΓmvm

(
−1+ v0

vm

)
(3.27a)

T +−
M /(ρ0`) = 2ΓmvmMµm

(
−1+ v0

vm

)
. (3.27b)

Since we consider a plus-end-oriented motor, the emergent anisotropy factor will be µm > 0. More-
over, in the absence of other motor cross-linkers, v0 ≤ vm, hence the motor can only contribute
an extensile or neutral contribution. A prominent example of this class of motor-cross-linkers is
Kinesin-5 [95].

Asymmetric bulk motors Another relevant biological example are motor cross-linkers that have
one motor domain and one immobile microtubule-binding domain. An example is, e.g., kinesin-14
[256]. We consider a minus end-directed motor with va < 0 and vb = 0. An analysis of the mean-
field density profile as presented in the Supplemental Material Sec 3.2.3 implies a symmetric density
profile of the immobile head domain and therefore µ++

b = µ+−
b = 0. Moreover, in a homogenous
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filament bundle, we may assume X +−
a = X +−

b = A/2 and X ++
a = X ++

b = A/2. Thereby we obtain

Fa = Γava A

(
−1+ 2v0

va

)
T +−

a /(ρ0`) = Γavaµ
+−
a

A

2

(
−1+ 2v0

va

)
T ++

a /(ρ0`) =−Γavaµ
++
a

A

2
.

In the absence of other motor cross-linkers, the maximal sliding velocity mediated by a minus end-
directed motor cross-linker with only one motor domain is−v0/2. If the filaments slide at this speed,
the tension steming from anti-parallel interactions is zero. Else anti-parallel interactions mediate
an extensile tension T +−

a < 0. Parallel interactions of an asymmetric bulk motor are always extensile
(va < 0 and µ++

a < 0), T ++
a < 0, This is an example of a motor which is capable of exerting extensile

tension even in the absence of internal friction. If the anisotropy factor of parallel and anti-parallel
interactions is equal, the resulting tension looks similar to the result for a symmetric bulk motor.
However, with the difference that the maximal filament sliding speed is |v0| ≤ va/2. If there are more
parallel interaction partners available, they are more efficient in promoting an extensile tension.
This is consistent with a previous numerical analysis [257].

Tip dwelling motors An important class of asymmetric motors are motors that dwell at the fila-
ment tip. Examples are, e.g., Kinesin-4 [40], which dwells at the plus-tip, or dynein, which dwells at
the minus-tip [193]. We consider a plus-end-oriented tip-motor with unloaded motor head veloci-
ties va = vm > 0 and vb = 0. The motor domain dwelling at the filament plus-end has delta-peaked
density distribution at the filament plus-end, hence µ+−

b =µ++
b = 1/2.

Ft = Γtvm(X +−
a +X +−

b )

(
−1+ 2v0

vm

)
−Γtvm(X ++

a −X ++
b ) (3.28a)

T +−
t /(ρ0`) = Γtvm

(
−1+ 2v0

vm

)[
1/2X +−

b +µ+−
a X +−

a )
]

(3.28b)

T ++
t /(ρ0`) = Γtvm

[
1/2X ++

b −µ++
a X ++

a

]
, (3.28c)

If we further assume that the tip-motor is symmetric in the bulk we may assume X ++
a = X ++

b and
X +−

b = X +−
b .

Passive cross-linkers Passive cross-linkers are motor cross-linkers without motor activity va =
vb = 0. On a mean-field level, they have the anisotropy factors 0 consistent with passive dynam-
ics. Thus, they promote neither contractile nor extensile tension. However, an effective friction
force between filaments

FC = 2Γcv0C . (3.29)

Where we denoted used X +− = X ++ =C . Note if va = vb = 0 the effective friction coefficient has to
be evaluated as presented in the Supplemental Material Sec. 3.2.3.

UNDERSTANDING ACTIVE FILAMENT BUNDLES IN MIXTURES OF DIFFERENT MOTOR CROSS-LINKERS

Having evaluated the contribution of specific examples of cross-linking motor proteins, we turn
our attention to mixtures of different cross-linking motor proteins. In particular, we are interested
in a specific set of agents that have recently received increased experimental attention. These are
filament-motor mixtures composed of microtubules, and motors that are capable of cross-linking
and walking on the cross-linked microtubules and a crowding agent. Often as a crowding agent,
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polyethylene glycol (PEG) or the passive cross-linker PRC1 is used. In addition in some of the exper-
iments, motors are used that dwell at the filament tip. Those in vitro systems show rich physical be-
havior. In the absence of tip-dwelling, the filament motor mixtures display turbulent-like dynamics,
that are characterized by a repeating sequence of buckling, breaking, and fusing filament bundles
associated with an extensile stress [38, 76, 87]. It has been shown that the Euler-like buckling insta-
bility of the filament bundles can be controlled by the crowding agent or passive cross-linker [78,
91, 238]. If motor cross-linkers are used that dwell at the filament tip these systems show transitions
from contractile to extensile dynamics, that is controlled by the total number of motors and crowd-
ing agents [40, 79] and the average length of the filaments [75, 88]. In the presence of tip dwelling,
those filament motor mixtures sometimes show puzzling dynamics to first show features associated
with extensile stress and then contract in the long run [40].

We, therefore, conclude that those systems provide an interesting test case of our theoretical
framework and see if we can gain insight into the macroscopic dynamics from the mesoscopic scale
of an individual filament bundle. We use a minimal set of constituents that resembles the general
features of the agents used in the experiments. First, a symmetric plus-end directed bulk motor. We
denote the population of symmetric bulk motor heads on the filaments by M (cf. Eg. 3.27) and the
anisotropy factor by µm (there is only one). The unloaded motor velocity is given by vm. This motor
is capable of dwelling at the filament tip (plus-end). The detachment dynamics at the filament tip
can differ from the bulk detachment dynamics (cf. Eq. 3.28), hence, Γm 6= Γt . Since the tip-motors
are symmetric in the bulk we use X ++

a = X ++
b ≡ M++

t and X +−
b = X +−

b ≡ M+−
t . Last we model the

crowding agent by a passive cross-linker (cf. Eq. 3.29). While a depletant like PEG is not precisely
a passive cross-linker, it has been shown to cause effective friction between neighboring filaments
[258]. We re-scale velocities in units of the unloaded motor velocity v ≡ v0/vm and define the force
amplitudes Fm ≡ 2Γmvm, Ft ≡ Γtvm, Fc ≡ 2Γcvm and Fs = γvm and re-scale the bundle tension by
T̃ = T /(ρ0`). Combining the different terms yields the force balance equation Eq. 3.22 and the
total bundle tension (Eq. 3.26)

0 = Fsv +FmM (−1+ v)+2FtM+−
t (−1+2v)+FcC v (3.30a)

T̃ = FmM (−1+ v)µm +FtM+−
t (−1+2v) (µ+−

t +1/2)+FtM++
t (1/2−µ++

t ) (3.30b)

When active forces dominate over dissipation to the surrounding fluid (Fs ¿ (FmM +2FtM+−
t ) we

find the solution of the force balance condition to be given by

v = 1+2m̄

1+4m̄ + c̄
. (3.31)

where we introduced the ratio of anti-parallel tip-to-bulk motor forces m̄ = FtM+−
t /(FmM) and

the ratio of internal friction forces to bulk motor forces c̄ = FcC /(FmM). We note that the fila-
ment sliding velocity is determined by a competition between active forces and internal friction
caused by the passive cross-linker. Moreover, tip motors can contribute to a frictional element.
This is because they are outpaced by the cross-linked filaments whose motion is driven by the sym-
metric bulk motors, which promote a relative sliding velocity of 2vm instead of vm for tip motors.
The motion of the motor is plus-end directed, thus we expect 0 < µm < 1/2, 0 < µ+−

t < 1/2 and
0 < µ++

t < 1/2. Hence, as expected the bulk motors contribute an extensile tesnion. Anti-parallel
tip-motor interactions can contribute to extensile or contractile tension, depending on the filament
sliding velocity. For v < 1/2 the tension is extensile, else contractile. This is because if v > 1/2,
the relative filament sliding out paces tip motors and they will resist the relative motion of fila-
ments and contribute a contractile tension. Last, parallel tip motors always contribute to con-
tractile tension. However, they do not contribute to the total force acting on a filament, i.e., they
cancel only when integrated over the entire arc length of the filament. Moreover, we note that
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the contribution of parallel tip-motor interactions is independent of the sliding speed v . This of-
fers an interesting pathway to control the relative strength of extensile and contractile tension in
the filament bundle. If the relative motion of filaments is slowed down by increasing the number
of bundling agents, the extensile tension in the filament bundle can be increased, in particular if
anti-parallel tip motors also contribute extensile tension. In contrast, by increasing the number
of tip motors in the system, we can increase the propensity of the filament bundle to contract.

0.0 0.3
0

1

2

0.0

0.1

extensile contractile

Figure 3.7: Filament bundle tension in the (c̄,m̄)
parameter plane for a filament bundle cross-
linked by plus-end directed motor cross-linker
that dwell at the filament tip and passive cross-
linkers. The filament bundle tension changes
sign at a critical concentration of bundling agents
c̄crit(m̄). If the ratio of tip-to-bulk motor forces m̄
is large the filament bundle is contractile.

To get an intuition about the underlying physics
that determines the propensity of the filament
bundle to contract or expand, we investigate
the case of equal populations of parallel and
anti-parallel tip motors M+−

t = M++
t = Mt/2

and equal anisotropy factors µm = µ+−
t = µ++

t =
µ. We then find the critical ratio of internal
friction to active bulk motor forces ccrit(m̄) at
which the bundle tension switches from con-
tractile to extensile. Which is given by

c̄crit(m̄) =
(

1

2µ
−1

)
m̄ . (3.32)

Figure 3.7 shows the bundle tension in the
(c̄,m̄) parameter plane. For c̄ < c̄crit(m̄) the sign
on the bundle tension is positive, and the fila-
ment bundle is contractile, and for c̄ > c̄crit(m̄)
the filament bundle has an extensile tension. As
long as the motor cross-linker has an asymmet-
ric profile (µ > 0), which is expected to be true
as a result of the plus-end directed motion of
the motor, the system can be tuned from con-
tractile to extensile by increasing the internal

friction in the filament bundle. In contrast, by increasing the population of tip-dwelling motors,
the propensity of the filament bundle to contract can be increased. In summary, we found three
mechanisms that determine the propensity of the filament bundle to contract or extent: First, in
the absence of tip-dwelling of motors, the filament bundle is either neutral (T̃ = 0) or extensile
(T̃ < 0). A finite amount of friction is needed for the filament bundle to be extensile. In particular,
internal friction, which is caused, for example, by passive cross-linkers, allows one to tune the sign
of the bundle tension and its magnitude. The second requirement for extensile filament bundles is
an anisotropic profile of motors along the filaments, with more motor mass towards the filament
plus end (µ > 0). The filament bundle is neutral for symmetric motor profiles, µ = 0. Third, end-
dwelling motors promote the propensity of the filament bundle to contract. Those characteristics
are reflected in the set of coarse-grained parameters (FmM ,FtM+−

t ,FtM++
t ,µm,µ+−

t ,µ++
t ).

But how do those characteristics emerge from the microscopic interplay of the bundle constituents?
Tip-motors and bulk motors are ultimately the same type of motor thus, their total number Mtot =
M+−

t +M++
t +M must be conserved. But which mechanisms control their ratio? Moreover, a motor

must move through the bulk to reach the filament tip. However, the movement through the bulk is
what sets the anisotropy factor of the motor. In the next section, we aim to identify how parame-
ters that control the microscopic dynamics, like the binding and unbinding rate of proteins and the
velocity of the motors, set the coarse-grained control parameters.
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RELATING COARSE-GRAINED PARAMETERS TO THE MICROSCOPIC DYNAMICS

We first aim to identify which physical mechanisms control the tip-to-bulk motor ratio. Mass con-
servation requires

Mtot = M +M pp
tip +M ap

tip . (3.33)

However, this equation is under-determined, and we can choose any combination of populations
that satisfies this condition. This seems at odds with physical intuition since motors must move
through the bulk to reach the filament tip. Therefore, there has to be a connection relating to their
relative populations. To obtain those relations, we investigate the microscopic dynamics of the
mean-field motor expressed by the force-velocity relation Eq. 3.20. As a result of the average force

the motor exerts between the filaments, it will adopt an average velocity 〈V β
α 〉 that depends on the

force of the respective interaction the motor mediates. In the case of our linear motor cross-linker,
bulk motors will adapt the mean velocities

〈V +−
m 〉 = vm

[
1− Fm

fs
(1− v)

]
(3.34a)

〈V ++
m 〉 = vm . (3.34b)

In the limit of vmκk−1
off À fs , i.e., when motors operate at their stall force (Fm = fs), the velocity of mo-

torheads attached to anti-parallel filaments will adapt the filament velocity v0 = vmv . In contrast,
parallel bulk motors do not exert force between the filaments they cross-link. Hence, they move at
their unloaded speed. The directed motion of motor heads along the arc-length, s ∈ [−`/2,`/2], of
a filament at speed V x

m in combination with attachment of motors at rate kon and detachment from
the filament at rate koff can be described by a reaction-convection equation

Çtρx(s, t ) =−〈V β
α 〉Çsρ

β
α(s, t )+kon −koffρ

β
α(s, t ) , (3.35)

With α= {m,t} and β= {++,+−} Note kon has units per time per unit length of the filament. More-
over we use the boundary condition ρx(−`/2) = 0. In steady state this equation is solved by

ρ
β
α(s) = Mβ

N
β
α `

(
1−e−(s/`+1/2)λβm

)
, (3.36)

here we defined
λ
β
α = `/lrun = `koff/〈V β

α 〉. (3.37)

as the ratio of filament length to the motor run length lrun = V β
α /koff. The dimensionless normal-

ization, N
β
α , is chosen such that

∫ `/2
−`/2 dsρβα(s) = Mβ

α , i.e., the total population of anti-parallel bulk
and tip motors. Here, we assume them to be equal M+− = M++ = M/2. In steady state, the flux of

bulk motor heads onto the filament tip 〈V β
α 〉ρβα(`/2) has to be balanced by the off flux due to tip

detachment koff,tipMβ
t , with β= {++,+−}:

0 =−koff,tipMβ
t +〈V β

m〉M/2

N `

(
1−e−λ

β
m

)
. (3.38)

Thereby, we can express the population of parallel and anti-parallel tip motors as a function of the
bulk motor population. However, they are all connected via the filament sliding velocity v . Taken
together, we obtain a set of four coupled equations which has to be solved self consistently

Mtot = M++
t +M+−

t +M

Mβ
t = M

2

ω

N
β

mλ
β
m

(
1−e−λ

β
m

)
v = 1+2m̄

1+4m̄ + c̄
.
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Figure 3.8: (a) Schematic representation of the dynamics of a motor head along the arc-length s
of the filament. The average speed of motors Vm and the detachment rate koff of motors determine
their density profile and, thereby, the anisotropy factor. Note the velocity Vm depends on the relative
orientation of the cross-linked filaments and whether the other motor head is attached to a filament
tip or the filament bulk. (b) The number of tip motors is determined by a flux balance between the
flux of motors onto the filament tip due to advection and the off-flux due to tip detachment at rate
koff,tip. Increasing the tip-detachment rate provides the simplest mechanism to reduce the number
of tip-motors.

with m̄ = FtM+−
t /(FmM) and c̄ = FcC /(FmM) and the bulk-to-tip detachment rate ratioω= koff/koff,tip.

Taken together, we have a closed set of equations for the different motor populations (M , M+−
t , M++

t ),

the filament sliding speed v and the motor head velocities V β
m. Figure 3.9 shows the resulting pop-

ulations for a fixed set of kinetic parameters and the filament sliding velocity v0 as a function of
passive cross-linkers C per total number of motors Mtot. As the number of passive cross-links (in-
ternal friction) is increased, the number of anti-parallel tip motors is decreased. This is because
the speed of anti-parallel bulk motors decreases as a function of the filament sliding velocity (cf.
Eq. 3.34). This, in turn, reduces the flux of bulk motors onto the filament tip and, thereby, the num-
ber of anti-parallel tip motors M+−

t . The increase in parallel tip-motors M++
t and anti-parallel bulk

motors M is due to mass conservation.

It is now straightforward to derive the anisotropy factors by substituting the solution for the den-
sity (Eq. 3.36) in the definition of the motor anisotropy (Eq. 3.25)

µ
β
α = 1

2
− eλ

β
α(1+λβα(λβα/2−1))−1

λ
β
α+eλ

β
α(λβα−1)λβα

(3.39)

For λβα → 0, i.e., for persistent motors, we obtain µ
β
α = 1/6, which corresponds to a linear profile,

and for lrun ¿ `, the anisotropy factors become µβα = 0 since passive attachment/ detachment dy-
namics dominates over the active, directed motion of motors (the motor density saturates quickly).

Figure 3.9 (b) shows the resulting anisotropy factors and the average velocities V β
α of anti-parallel

bulk, anti-parallel tip, and parallel tip motors for a fixed set of kinetic parameters as a function of
C /Mtot. As internal friction is increased, anti-parallel motor cross-links have to operate against a
higher load. As a result, they slow down. This in turn reduces their run length lrun = 〈V +−

m 〉/koff and
therefore “flattens” the motor profile.

Taken together, we derived all mesoscopic control parameters as a function of the total number
of motors and passive cross-linkers per filament and the filament length. Therefore, besides the
kinetic parameters the remaining set of control parameters is (Mtot,C ,`)
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Figure 3.9: (a) Average motor head velocities of the different populations as a function of the motor-
to-passive cross-linker ratio; C /Mtot. As the number of passive cross-links (internal friction) is in-
creased, the number anti-parallel motor populations slows down to adapt to the decreasing sliding
speed of filaments (cf. Eq. 3.34). Parallel cross-linked motors move at a speed independent of the
filament sliding speed and, therefore, independent of C /Mtot. (b) As a result of the changing motor
velocity, the anisotropy factors change. (c) Relative motor head populations. The decreased speed
of anti-parallel cross-linked motors in the bulk decreases the influs into anti-parallel tip configura-
tions. As a result, the number of anti-parallel tip motors M+−

t decreases. (d) Mean motor velocities
as a function of the filament length `, the motor velocities remain approximately constant. (e) The
motor anisotropies as a function of the filament length. Since the motor velocities are constant,
longer filaments promote a “flatter” profile. Therefore, the motor anisotropies decrease. (e) The
population of tip and bulk motors as a function of the filament length `. The tip motor populations
are proportional to (1− exp(−λ))/λ. Thereby, the tip-motor populations decrease as a function of
the filament length. As a result of mass conservation, the bulk motor concentration increases. Pa-
rameters: koff = koff,tip = 0.8s−1 and Mtot = 10 other parameters are given in Table 3.2. Moreover, I
accidentally used κc = 100pN/µm.

EMERGENT FILAMENT BUNDLE TENSION

For a given type of motor cross-linker, the set of kinetic parameters is fixed. However, what can
be tuned externally is the total number of passive cross-linkers per filament C , the total number
of motors per filament Mtot, and the filament length `. We, therefore, study the bundle tension as
a function of those parameters while keeping all other parameters fixed. Moreover, we investigate
the impact of tip detachment since it provides the simplest mechanism to change the tip-to-bulk
motor ratio. Figure 3.10 shows the filament bundle tension as a function of (C , Mtot,`,ω). In the
(ω,C ) parameter plane, the result is reminiscent of the (m̄, c̄) parameter plane of the coarse-grained
description; Fig. 3.10 (a) and Fig. 3.7. However, the anisotropy factors and the relative ratio of the dif-
ferent populations differ, resulting in a different phase boundary. In the (Mtot,C ) parameter plane,
we find that the filament bundle is contractile for large total motor numbers, Mtot, and low inter-
nal friction and extensile for large internal friction and low motor numbers; see Fig. 3.10 (b). This
switch in the sign of the bundle tension is controlled via the filament sliding velocity v . If the ra-
tio of passive cross-linkers to active motors, C /Mtot, is increased, v0/vm is reduced. This, in turn,
increases the extensile contribution to the bundle tension and reduces the contractile contribution
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Figure 3.10: (a)-(c) Filament bundle tension obtained from the microscopic model for a fixed set
of kinetic parameters. (a) Bundle tension as a function of passive cross-linkers C and the tip-
detachment rate ω; Mtot = 13. The tip-detachment rate provides a way to control the number of
tip-bound motors without affecting other control parameters a lot. The result is reminiscent of
Fig. 3.6 as expected. (b) Filament bundle tension as a function of the total number of doubly linked
motors and cross-linkers per filament. (c) Filament bundle tension as a function of the filament
length ` and the number of doubly-linked passive cross-linkers per filament; Mtot = 10. Parameters:
See Tab. 3.2.

of anti-parallel tip motors. For v < 1/2, the contribution of anti-parallel tip motors even changes
sign and becomes extensile. Last, in the (`,C ) parameter plane, we find that the filament bundle
is contractile for short filaments and low internal friction and extensile for long filaments and high
internal friction; see Fig. 3.10 (c). This change is controlled in a more subtle way. For a fixed set of

kinetic parameters and fixed c = C /Mtot the motor velocities 〈V β
m〉 are approximately constant; see

Fig. 3.9. Together with a constant off rate, this yields a constant run length lrun. Therefore, λ= `/lrun

will increase as the filament length is increased. The parallel and anti-parallel tip motor populations

are proportional to ρβm ∼ (1−exp(−λ))/λ, with β = {++,+−}. As a result of mass conservation, this
increases the number of bulk motors m; see Fig. 3.9. Thereby, increasing the filament length, `,
increases the extensile contribution to the bundle tension and decreases the contractile contribu-
tions. This effect is counteracted but not compensated by a decrease in motor anisotropies due to
the increase of λ; see Fig. 3.9 (e).

Taken together, we found that the propensity of a filament bundle to contract or expand can be
controlled by three external control parameters: (i) The concentration of passive cross-linkers, (ii)
the concentration of active motors, and (iii) the length of filaments. All those possibilities have been
observed experimentally. In [91, 92, 238], it has been shown that a nematically aligned filament
network can be tuned toward an Euler-type buckling instability by increasing the passive cross-
linkers in the system. This is characteristic of a material under compression (negative tension).
Similar behavior has been observed for depletion agents instead of passive cross-linkers [78, 91].
While depletion agents are not the same as passive cross-linkers it has been shown that they cause
friction between neighboring filaments [258]. Therefore, they also provide a possibility to reduce
v . In [79], it has been shown that a filament network can be tuned from extensile filament bundles
resembling turbulent-like dynamics on the macroscopic scale to a contractile network that self-
organized into asters by increasing the number of motors in the system and vice versa by increasing
the concentration of a depletion agent. In [75, 88], it was shown that a network of dynamic filaments
can be tuned from a contractile aster-forming dynamics to an extensile filament motor mixture by
increasing the concentration of tubulin and, thereby, the mean filament length.

In the next section, we aim to explore the different impacts of tip and bulk motor populations on
the macroscopic dynamics of the filament bundle with the help of agent-based computer simula-
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tions.

COMPARISON TO AGENT-BASED SIMULATIONS

This section is a work in progress. Here, I will show some preliminary simulation results. Unfor-
tunately, I simulated motors and passive cross-linkers with force-dependent detachment dynamics,
making a direct comparison to the analytic result not possible at the moment. However, all predic-
tions of our analytic derivation are recapitulated on a phenomenological level by the agent-based
simulation. So far, I have used the number of passive cross-linkers and the tip detachment rate as
control parameters. I used cytosim [249] to simulate the filament bundle. Unfortunately, the most
reason version on Git https: // gitlab. com/ f-nedelec/ cytosim does not support the option
to change the tip and bulk detachment rate separately. I, therefore, used an older version where the
authors of Cytosim extended their code for a study to allow for plus-end specific detachment rates.
The older version is also on Git https: // github. com/ nedelec/ cytosim-2017 .

We derived a condition for the tension in a nematic filament bundle with periodic boundary con-
ditions. But how does an extensile or contractile tension impact the macroscopic dynamics of the
filament bundle? If the bundle tension is positive, T̃ > 0, we expect that the filament bundle is
contractile in the axial direction. Then, if the magnitude of the bundle tension is sufficiently large,
we expect that this can cause the bundle to rupture. The remaining structures should subsequently
shorten. Our theory does not predict the subsequent dynamics and an emerging steady state struc-
ture. However, we can make an educated guess based on our theory. As a thought experiment, let us
consider filaments that do not interact sterically and can move only along the x-axis, as our minimal
model considers. In such a system, contraction driven by tip motors should yield bundle rupture
and subsequent polarity sorting such that the tips of filaments point into the emerging structures.
If steric interactions are taken into account, we expect similar dynamics. However, filaments should
splay to account for steric exclusion.

In contrast, for T̃ < 0, the filament bundle is extensile along the axial direction. If the magnitude
of the extensile tension exceeds the filament bundle’s flexural rigidity, we expect the bundle to be-
come unstable toward buckling. However, it should be noted that our theory makes no predictions
about the physical properties that set the flexural rigidity of the filament bundle. On an intuitive
level, one might expect that the flexural rigidity increases with increasing passive cross-linker con-
centration since more passive cross-links between the filaments should increase the ability of the
filament bundle to resist deformation. It would therefore be striking to see if the filament bundle
can be tuned towards buckling by adding more passive cross-linkers to the system. Next, we set up
an agent-based model to investigate those possibilities.

AGENT-BASED MODEL

We use the open-source software cytosim [249] to implement an agent-based model to test our the-
ory. The model consists of three classes of constituents: (i) stabilized microtubules of fixed length
`, (ii) molecular motors that can cross-link two microtubules and simultaneously move towards the
plus end of both microtubules it cross-links, and (iii) passive cross-linkers mediating an attractive
force between neighboring filaments; see Fig. 3.11. In detail, we use an agent-based model con-
taining a finite number of filaments (NMt), active motors (Nm), and passive cross-linkers (Nc) in a
thin box geometry with periodic boundary conditions in x− and y−direction and reflective bound-
ary conditions in z−direction. Each individual filament i = 1, . . . , NMt is represented by a directed
semi-flexible rod of fixed length `, center of mass position xi , and orientation ni . The orientation
ni is defined in the direction of the filament plus-end. The rigidity of filaments is chosen large
such that the end-to-end distance of filaments is always close to ` (cytosim has no implementa-
tion of rigid filaments). Close-by filaments repel each other via soft-core interaction if they are

https://gitlab.com/f-nedelec/cytosim
https://github.com/nedelec/cytosim-2017
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Figure 3.11: (a) Sketch of the agent-based simulation setup. We initialize the filament bundle in a
thin slap geometry with periodic boundary conditions in x and y−direction and reflective boundary
conditions in z−direction. We choose Lx = Ly = 12`, and the z−direction is chosen such that 3−4
filaments can be stacked on top of each other. The system contains NMt microtubules, Nm motors,
and Nc passive cross-linkers. Initially, microtubules can be oriented in ±ex direction and are placed
in a thin rectangle in the center of the simulation volume. (c) Model constituents and their basic
interactions. Filaments have a fixed length ` and orientation n in the direction of their plus end.
Active motors (red) are modeled as two head domains connected by a Hookean spring. Passive
cross-linkers (blue) are modeled analog as two microtubule binding domains (heads) connected by
a Hookean spring. Active motors (passive cross-linkers) with no head attached are assumed to be
well mixed in the cytosol and can bind to any filament at rate km

on (kc
on). If one head is attached to

a filament, the second head can attach to a filament within the range rm (rc). Motor (passive cross-
linker) heads detach at a force-dependent rate km

offe
| f |/ f m

u (kc
offe

| f |/ f c
u ). (b) Motor heads attached to a

microtubule move directional towards the plus end at a force-dependent speed vm
(
1+ f ·n/ fstall

)
.

Passive cross-linker heads do not move on the microtubule they are bound to.

closer than a distance dMt; for details on the implementation see [249]. Active motors consist of
two head domains connected by a Hookean spring with stiffness κm and passive cross-linkers are
modeled as two microtubule-binding domains (heads) connected by a Hookean spring with stiff-
ness κc . Both active motors and passive cross-linker with no head attached to a filament are as-
sumed to be well-mixed in the simulation volume. They can attach to any filament in the system
with rate km

on and kc
on, respectively. Active motors (passive cross-linkers) with one head attached to

a filament can bind their second head to another filament within distance rm (rc). If the spring con-
necting the motor (passive cross-linker) heads becomes stretched, a corresponding force ( f ) acts on
the motor (passive cross-linker) heads. The heads are assumed to detach at a load-dependent rate
km

offe
| f |/ f m

u (kc
offe

| f |/ f c
u ) [235]; see Fig. 3.11. Filament-bound motor heads move towards the plus-end

at a load-dependent speed v = vm(1+ f ·n/ fstall) [196] and passive cross-linkers remain static; see
Fig. 3.11. Motor heads that reach the filament plus-end remain bound until they detach at rate force
dependent rate koff,tipe | f |/ fu .

We initialize the system at a low volume fraction of filamentsφ≈ NMtπd 2
MT`/(4Lx Ly Lz) = 2×10−2

but position the filaments in a thin nematic band where they can be oriented in direction ±ex ; see
Fig. 3.11.

In the following, we will use the total number of passive cross-linkers, Nc and the total number of
motors, Nm. We aim to tune the population of tip motors by varying the bulk-to-tip detachment rate
ratioω via koff,tip. Note that Nc/NMt and Nm/NMt are not equivalent to the number of doubly bound
motors M and doubly bound cross-linkers C since not all motors and passive cross-linkers will be
in a doubly bound state, some might be singly bound or unbound. We keep all other parameters
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fixed unless specified otherwise. The simulation parameters as summarized in Tab. 3.1.

STABILITY OF THE NEMATIC BAND IN THE ABSENCE OF MOTORS

We first characterize the stability of the nematic filament band in the absence of active motors. Since
we initialize the filament network at a volume fraction φ below the Onsager ordering threshold for
rigid rods [259], we expect that the nematic band is unstable at low passive cross-linker concentra-
tions and dissolves due to the diffusion of filaments. Figure 3.12 shows snapshots of the filament
band at different doubly linked passive cross-linker numbers. The filament band dissolves as ex-
pected at passive cross-linker numbers Nc < 3; see Fig. 3.12. As the number of passive cross-linkers

Figure 3.12: Snapshots obtained from the agent-based simulation for Nm/NMt = 0 the number of
passive cross-linkers per filament is indicated at the top. All other parameters are as specified in
Tab. 3.1. Filaments are shown in color. The color wheel indicates the orientation of the filaments.
The simulation box is shown in gray. We initialize the filaments in a thin rectangle centered in the
simulation volume. At low passive cross-linker numbers, the filament bundle dissolves (Nc/NMt =
0−3). For Nc & 3 the filament bundle remains stable against thermal noise.

is increased, the filaments in the band percolate, and the filament band remains stable against ther-
mal noise. In the following, we choose passive cross-linker numbers Nc ≥ 5, but add motors to the
filament bundle.

Before we investigate the competition between contractile and extensile tension, we study the
cases of dominant tip and dominant bulk motor interactions.

FROM AXIAL CONTRACTION TO ASTERS AND MICELLES

We first investigate the possibility of axial contraction of the filament bundle. Our theory predicts
that axial contraction is only present for a finite number of tip motors. Guided by our analysis
for the minimal model (cf. Fig. 3.10) we expect that the filament bundle will be contractile over
a large range of passive cross-linker numbers if the bulk-to-tip detachment rate ratioω= koff/koff,tip

is large. Moreover, we expect the magnitude of the contractile tension to be larger for a low number
of passive cross-linkers in the system. Here we choose ω = 1, Nc/NMt = 9 and Nm/NMt = 16. Con-
sidering the attachment/ detachment rates of passive cross-linkers and motors, this should yield
c fc < 1; cf. tab. 3.1. However, since the detachment rates are force dependent, there is no one-to-
one correspondence between the agent-based model and the minimal model. Figure 3.13 shows a
time sequence obtained from the simulation.

First, the filament bundle contracts in the axial direction (see Fig. 3.13 t = 5s), followed by bundle
rupture (see Fig. 3.13 t = 15s). The remaining filament structures shorten further and contract to
a single aster, where filament plus ends point towards the aster center (see Fig. 3.13 t = 30s). This
aster splits and opens up in the subsequent dynamics to self-organize into micell-like assemblies
(see Fig. 3.13 t = 150s). Those structures show a striking similarity to filament assemblies observed
in Xenoupus egg extract with taxol-stabilized microtubules, which were referred to as “pineapple”
filament assemblies [94]. In addition, similar filament structures have recently been observed in a
hydrodynamic field theory derived from minimalistic scattering interactions that are modeled on
the behavior of end-dwelling motors.



3

86 3. COLLECTIVE FILAMENT MOTION IN ACTIVE FILAMENT BUNDLES

Figure 3.13: Snapshots obtained from the agent-based simulation for ω= koff/koff,tip = 1, Nc/NMt =
9 and Nc/NMt = 16 all other parameters are as specified in Tab. 3.1. Filaments are shown in color.
The color wheel indicates the orientation of the filaments. The simulation box is shown in gray. We
initialize the filaments in a thin rectangle centered in the simulation volume. The filament bundle
undergoes axial contraction and ruptures; see t = 7s and t = 15s. In the subsequent dynamics, the
filaments form an aster-like structure where filament plus ends point inwards; see t = 30s cf. the
color wheel. Thereafter the filament aster “opens up” to form micelles. Such filament structures
have been observed in Xenoupus egg extract with stabilized microtubules [94].

Having confirmed that the filament bundle undergoes axial contraction if tip motors are domi-
nant, we turn toward the case where bulk motors dominate.

FROM AXIAL EXTENSION TO BUCKLING AND ACTIVE TURBULENCE

We now investigate the possibility of axial extension of the filament bundle. To this end, we choose
a small bulk-to-tip detachment rate ratio ω = koff/koff,tip ≈ 0.05. Comparison to our theory implies
that the filament bundle is always extensile; cf. Fig. 3.10 (a). Figure 3.14 (a) shows the time sequence
obtained from the agent-based simulations for Nc/NMT = 5 and Nm/NMT = 16. The nematically
aligned filament bundle remains stable. In the subsequent dynamics, the filaments in the bundle

Figure 3.14: Time evolution of the filament bundle at a low ratio of bulk-to-tip detachment rates
ω= 0.05. The number of passive cross-linkers per filament is specified in the first panel. The num-
ber of motors per filament is Nm/NMt = 16. Filaments are color-coded according to their orien-
tation; see the first panel in (a). (a) If the number of passive cross-linker per filament is low, the
nematic band remains stable, and filaments in the band sort into polar domains (t=400s). (b) If
the number of passive cross-linkers per filament is increased, the filament band becomes unstable
toward buckling. The buckling of the filament band yields bundle breakage; see t = 18s. The sub-
sequent time evolution is characterized by a dynamic sequence of buckling, bundle breakage, and
fusion of adjacent filament bundles.

sort into polar domains of left and right-oriented filaments, respectively; see Fig. 3.14 (a), t=400 s.
Polarity sorting of filaments into polar lanes was previously observed in computer simulations of
filaments and motors in the absence of a passive cross-linker [250, 260]. To test our assumption that
the filament bundle can become unstable toward buckling, we increase the magnitude of the bun-
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dle tension by increasing the number of passive cross-linkers in the system. Figure 3.14 (b) shows
the time sequence of the filament bundle for Nc/NMT = 90. Strikingly, we find that by increasing
the number of passive cross-linkers in the system, the nematic filament band becomes unstable to-
wards buckling; see Fig. 3.14 (b) t = 4s. For sufficiently strong buckling the filament band breaks;
see Fig. 3.14 (b) t = 18s. A dynamic sequence of buckling, breaking, and fusion of the bundles char-
acterizes the subsequent time evolution of the filament network. Phenomenologically this behavior
is consistent with observations from in vitro experiments under similar experimental conditions
[38, 87, 261]. Moreover, a phenomenologically similar buckling instability has been observed ex-
perimentally and shown to be controllable by varying the concentration of passive cross-linkers or
depletants [78, 92, 238].

FROM AXIAL EXTENSION TO POLAR DOMAINS AND BACK TO CONTRACTION

So far, we have confirmed the prediction of our theory that the filament bundle is contractile if
the bulk-to-tip detachment rate ratio and, thereby, the bulk-to-tip motor ratio is low; see Fig. 3.13
and cf. Fig. 3.10 (a). Moreover, we have confirmed that the contractility of the filament bundle is
caused by tip motors since a decrease in the tip-to-bulk detachment rate ratio, and thereby a re-
duction of the tip-to-bulk motor population did counteract the bundle contractility. Increasing the
number of passive cross-linkers in the system made it possible to increase the extensile tension in
the bundle to the extent that it buckled. We next aimed to quantify if it is possible to turn the fila-
ment bundle from contractile to extensile by increasing the number of passive cross-linkers. To this
end, we use an intermediate bulk-to-tip detachment rate ratio ω ≈ 0.175 and sweep over different
numbers of passive cross-linkers. Figure 3.15 shows a time sequence of the bundle dynamics ob-
tained from agent-based simulations at different passive cross-linker concentrations. At low passive
cross-linker concentrations, the filament bundle contracts and shows similar dynamics as observed
for dominating tip interactions; see Fig. 3.15 (a). However, the filament bundle does not rupture
straight away, but filaments contract to dense polar clusters at the bundle boundary; see Fig. 3.15
(a) t = 100s. Moreover, we observe that the time it takes for the filament bundle to contract to a
micell-like state is significantly increased (cf. Fig. 3.13), indicating that the magnitude of the con-
tractile tension is decreased compared to the case of ω= 1. The steady state structure is character-
ized by lined-up filament bundles; see Fig. 3.15 (a), t = 400s. Similar “lined-up” filament structures
were also observed in Xenoupus egg extract with taxol-stabilized microtubules [94]. An increase in
passive cross-linker concentration slows the contractile dynamics further down; see Fig. 3.15 (b).

If the passive cross-linker concentration is increased above some critical concentration, we ob-
serve buckling of the filament bundle; see Fig. 3.15 (c) t = 40s and (d) t = 20s. If the passive cross-
linker concentration is sufficiently high, bundle buckling yields bundle breakage (see Fig. 3.15 (d)
t = 40s), as observed for dominant bulk motors (cf. Fig. 3.14). At the breakage point, we observe
the contraction of filaments into dense polar clusters; see Fig. 3.15 (d) t = 160s. In the subsequent
dynamics, the filaments line up into polar arrays Fig. 3.15 (d) t = 400s. We can understand these
dynamics based on our minimal model: The parameters are chosen such that the homogenous
filament bundle is extensile. This means in a homogenous filament bundle where parallel and anti-
parallel filament interactions are equally likely, anti-parallel extensile filament interactions medi-
ated by bulk motors dominate over contractile interactions mediated by tip motors. However, bun-
dle breakage is associated with the transient formation of a polar-aligned filament domain at the
breaking point; see Fig. 3.15 (d) t = 40s. Since bulk motors contribute only via anti-parallel inter-
action, the contractile tension of tip motors can dominate if polar domains emerge in the network.
This means the homogenous filament bundle self-organizes, driven by the extensile tension, into a
contractile network architecture.

Let us summarize the results obtained so far: Based on our minimal model, we made the fol-
lowing predictions: (i) If the ratio of tip-to-bulk motors is dominated by tip motors, the filament
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Figure 3.15: Time evolution of the filament bundle at intermediate ratio of bulk-to-tip detachment
rates ω= 0.175. The number of passive cross-linkers per filament is specified in the first panel. The
number of motors per filament is Nm/NMt = 16. Filaments are color-coded according to their ori-
entation; see the first panel in (a). (a) At low numbers of passive cross-linkers, the filament bundle
shows axial contraction. In the long run, the filaments self-organize into a “lined-up” configuration;
see t = 400s. (b) An increase in passive cross-linker concentration slows down the dynamics indi-
cating that the magnitude of the contractile tension is decreased. (c) If the number of passive cross-
linkers is sufficiently high, the filament bundle becomes unstable toward buckling. Transiently we
observe polar configurations where contractile interactions dominate; see t = 120s. (d) At high pas-
sive cross-linker concentrations, bundle buckling yields bundle breakage. At the breakage point,
filaments form polar clusters; see t = 40s. Since the extensile contributions to the tension stem
from anti-parallel interaction, the contractile tension of parallel filament interactions can dominate
in polar domains

bundle will be contractile. We confirmed this prediction by simulating a filament bundle with a
high bulk-to-tip detachment rate ratio, ω. (ii) If the ratio of tip-to-bulk motors is dominated by
bulk motors, the filament bundle is neutral or extensile, depending on the motor anisotropy. More-
over, the magnitude of the extensile tension can be increased by increasing the passive cross-linker
concentration. We showed that the filament bundle is stable at a low tip-to-bulk motor ratio and
becomes unstable toward buckling as the passive cross-linker concentration is increased. This is
in line with our prediction. (iii) We predicted that the filament bundle could be tuned from be-
ing contractile to extensile by increasing the passive cross-linker concentration. We confirmed this
prediction at an intermediate tip-to-bulk detachment rate ratio. Taken together, we were able to
test and confirm the major predictions of our minimal model. The numerically obtained phase
diagram is shown in Fig. 3.16. To compare the numerically obtained phase diagram to our theo-
retical results, we proceeded as follows: First, we measured the number of doubly bound passive
cross-linkers and motor cross-linkers in the agent-based simulation since our theory is based on
cross-linking proteins and does not take singly bound or unbound cross-linker into account. We
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found that Mtot ∼ 0.82Nm/NMt and C ∼ 0.82Nm/NMt. The force-dependent detachment dynam-
ics used in the agent-based simulations gives rise to a non-linear force-velocity relation. Using the
general framework presented in the Supplemental Material 3.2.3 we calculate this force velocity re-
lation numerically, both for motors and passive cross-linkers; see Supplemental Material Sec. 3.2.3.
We then perform a linear fit to the non-linear force-velocity relation. For motors, we find that the
force amplitude is well approximated by Fm ≈ fs0.52A/(1+0.52A), i.e., force-dependent detachment
reduces the force amplitude (cf. Eq. 3.18). Force-dependent detachment has a significant impact on
passive cross-linkers. This is because they can not adapt to the filament sliding velocity. To account
for this, we perform a linear fit to the non-linear force-velocity relation and obtain a force amplitude
of Fc ∼ 2pN/(µm) compared to Fc ∼ 12pN/(µm) in the absence of force-dependent detachment. To
determine the anisotropy factors for anti-parallel bulk and tip motors and parallel tip motors, as
well as the tip-to-bulk motor ratio, we perform the mean-field approximation

〈K β
α 〉 ≈ koff,mexp

(
1

fu
Fβ
α (v)

)
. (3.40)

With those mean-field detachment rates, we proceed as described in Sec. 3.2.2. Figure 3.16 shows
the analytically obtained filament bundle tension in comparison to filament bundle behavior ob-
served in agent-based simulations. We find strikingly good agreement between theory and agent-
based simulation. It should be appreciated at this point that the analytic prediction is based on
kinetic rates and mechanical properties of the cross-linking proteins. Those are quantities that are
estimated from experiments. At a low bulk-to-tip detachment rate ratio and high ratio of passive
cross-linkers to active motors, we observe buckling followed by turbulent-like dynamics of the fila-
ment network (red stars in Fig. 3.16). As the bulk-to-tip detachment rate is increased, the filament
bundle still buckles. However, once polar domains have formed, the filament bundle stars to con-
tract (green triangles in Fig. 3.16). At a low number of passive cross-linkers to active motors, the
nematic band is stable if the bulk-to-tip detachment rate, ω, is low (yellow circles in Fig. 3.16) and
becomes contractile ifω is increased (blue squares in Fig. 3.16). What remains to be done is to inves-
tigate the impact of filament length and total number of motors numerically. However, agent-based
simulations in [93] indicate that longer filaments suppress contractile tension and show emerged
turbulent-like dynamics turbulent-like dynamics in contrast to short filaments, which tend to form
asters consistent with consistent with our theory (cf. 3.10 (c)) and in vitro experiments [75].

SUMMARY AND CONCLUSION

The ability of cytoskeletal filament assemblies to generate contractile or extensile tension is at the
heart of many cellular processes. This includes prominent examples like the mitotic spindle, which
relies on the ability to generate extensile tension to segregate chromosomes during cell division [17,
19, 262, 263], contraction of microtubule minus ends to form asters and spindle poles [96, 264, 265]
or contraction of the actin-cortex which is essential to control cell shape [100, 104, 236].

In reconstituted systems of microtubules and motor proteins, extensile tension of filament bun-
dles is the source that fuels turbulent-like dynamics observed at the macroscopic scale [38, 40, 87].
Moreover, reconstituted systems of end-dwelling motors and microtubules have been shown to pro-
mote the formation of asters [74, 193] and large-scale network contraction [193–195, 237]. These
systems have become paradigmatic model systems for filamentous active matter [266].

To understand the collective dynamics of those systems on the macroscopic scale, active field
theories have been developed on the basis of symmetry arguments [49, 51, 52, 86, 239]. Commonly,
in those theories, active contractile or extensile stresses are introduced by an apolar active current
that generates flux along or against the nematic curvature [241, 246]. Those theories have been
successfully used to describe the macroscopic dynamics of active filament gels, in particular, the
formation of steady-state structures and defect dynamics [50, 81–83]. However, how the introduced
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Figure 3.16: Phase diagram of the filament bundle in the (ω,C /Mtot) parameter plane obtained from
the agent-based simulation. The number of motors per filament is Nm/NMt = 16. Other param-
eters are specified in Tab. 3.1. From the simulation, we measured the number of doubly bound
motors Mtot ≈ 0.82Nm/NMt and doubly bound cross-linkers C ≈ 0.5Nc/NMt. The remaining analyt-
ical phase diagram is a fit-free prediction of our theoretical framework based on the kinetic rates
of the cross-linking proteins and their force-response functions φ[n f ] and ψ[n f ]. We observe four
different behaviors: (i) The filament bundle remains stable (yellow circles). (ii) The filament bun-
dle contracts in the axial direction. Subsequently, the filament network self-organizes into micelles
or “lined-up” filament configurations depending on the tip-to-bulk detachment rate ratio and the
number of passive cross-linkers in the system (blue squares). (iii) The filament bundle buckles and
breaks, followed by the self-organization into contractile polar domains (green triangles). (iv) The
filament bundle buckles and breaks. The subsequent time evolution is characterized by a dynamic
sequence of buckling, bundle breakage, and fusion of adjacent filament bundles (red stars). Gray
symbols are parameter points where the dynamics were unclear, the tendency is indicated by the
symbol, eventually, the simulation time was not long enough (tmax = 400s).

currents arise from microscopic interactions of the network constituents and which properties of
the network constituents set the strength of this current is not well understood.

To close the gap between the microscopic and macroscopic dynamics large-scale computer sim-
ulations have been used [39, 75, 93, 218, 249–252, 260, 267]. However, this approach comes to its
limits when collections of different types of motors and passive cross-linkers are considered due to
the rapidly increasing number of model parameters and computational complexity.

In this work, we have used a complementary approach and developed a minimal but generic
theoretical framework to study active tension generation in disordered bundles of filaments cross-
linked by an arbitrary ensemble of cross-linking motors and passive cross-linkers. The basis of this
theoretical framework is a force-velocity relation quantifying an average filament-filament interac-
tion mediated by a cross-linking protein. By specifying a microscopic model, this relation can be
derived from the kinetic interactions of the cross-linker with filaments and its mechanical proper-
ties. In the Supplemental Material Sec. 3.2.3, we present a general formalism. The minimal design
of our model allowed us to derive a general expression for the contribution of a motor cross-linker
to the filament bundle tension. Based on our general theoretical framework, we can make two re-
strictive predictions about the capability of a motor to promote an extensile or contractile tension
in the filament bundle. First, a motor that has a homogenous density profile along the contour of
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a filament can neither promote extensile nor contractile tension; see Eq. 3.71. Second, a symmet-
ric motor cross-linker can only promote contractile tension in the presence of external or internal
friction. Otherwise, filaments slide across the motor at its unloaded speed, and the motor does
not get strained, which prevents the build-up of tension in the motors and, thereby tension in the
filament bundle. This restriction is relaxed in mixtures of motors if they have different unloaded
speeds. Then, the anisotropy factor (a measure for the inhomogeneity of the motor density) and
the total population of different cross-linker head types define a mesoscopic set of control parame-
ters determining the sign of the bundle tension and, thereby, the bundle’s propensity to contract or
expand.

We demonstrate this for a symmetric motor cross-linker that dwells at the filament end mixed
with passive cross-linkers that cause internal friction in the filament bundle. In this case, the ratio
of bulk-to-tip motors, the ratio of passive cross-linkers to bulk motors, and the motor anisotropy
factors control the propensity of the filament bundle to contract or expand. Strikingly, we find that
the extensile tension in a filament bundle is increased by increasing the internal friction in the fila-
ment bundle, i.e., holding individual filaments together increases the materials’ property to expand.
This prediction is consistent with recent photo-bleaching experiments in filaments bundled by the
crowding agent polyethylene glycol (PEG), which demonstrate strong extensile stresses in the ab-
sence of relative filament sliding [90]. The contractile nature of the filament bundle is controlled
by the ratio of tip-dwelling motors to bulk motors. For large populations of tip-motor proteins, we
predict the filament bundle to be contractile.

By specifying a microscopic model on the basis of kinetic reactions and mechanical properties
of the individual network constituents, we relate the set of coarse-grained control parameters to
the kinetic rates defining the interactions between motors (passive cross-linkers) and filaments and
the mechanical properties of the cross-linking proteins. Within this set of network constituents, we
identify three experimentally accessible parameters that control the propensity of the filament bun-
dle to contract or expand. First, the total number of passive cross-linkers which promote extensile
tension. Second, the total number of motors per filament, with an increasing number of motors
promoting the network’s propensity to contract. Lastly, the filament length, with longer filaments
promoting the network’s propensity to expand. All those predictions are in line with recent in vitro
experiments [75, 78, 79, 91–93].

We confirmed our theoretic predictions by agent-based simulations of a nematic filament bun-
dle in a three-dimensional slap geometry. Consistent with our theoretic predictions, the nematic
filament bundle contracts when tip-motors dominate. Caused by contraction, the nematic filament
bundle ruptures and self-organizes into micell-like structures or “lined-up” filament configurations
depending on the population of tip-motors and passive cross-linkers. Those structures are rem-
iniscent of filament assemblies found in Xenoupus egg extract with taxol-stabilized microtubules
[94]. Moreover, such structures were recently predicted by an active field theory derived from sim-
plifying interactions modeled on the behavior of end-dwelling motors [255]. In contrast, if bulk
motors dominate over tip motors, the nematic filament bundle remains stable at low passive cross-
linker concentrations. As the internal friction in the filament bundle was increased by increasing
the number of passive cross-linkers in the system, we observed an Euler-type bucking instability
consistent with the behavior of a material under compression, i.e., an extensile tension in the fil-
ament bundle consistent with our theory. At sufficiently high passive cross-linker concentrations,
the buckling of the filament bundle yields bundle breakage consistent with an increase in extensile
tension. The long-term dynamics is then characterized by a repeating sequence of bundle-buckling,
breakage, and fusion reminiscent of turbulent-like network dynamics as observed in in vitro exper-
iments of filament motor mixtures in the absence of end-dwelling motors [38, 87, 91]. The path-
way from buckling of nematic filament-bundles to dry active turbulence was recently discussed in
terms of an active field theory [241, 247]. Last, we confirmed our prediction that the filament bundle



3

92 3. COLLECTIVE FILAMENT MOTION IN ACTIVE FILAMENT BUNDLES

can be tuned from a contractile state to an extensile state by increasing the internal friction in the
bundle. Strikingly, at intermediate passive cross-linker concentrations, where contractile tension
mediated by polar tip-motors interactions and apolar extensile tension mediated by bulk motors
compete, we observe that the nematic filament band becomes fist unstable towards buckling and
even breaks, implying dominant extensile tension. However, buckling and band breakage are as-
sociated with the transient formation of polar domains. Consistent with our theory, the filament
band started to contract, where polar filament clusters had formed due to the dominant contrac-
tile tension caused by parallel tip-motor interactions. Strikingly, a similar pathway from buckling of
nematic bands to contraction and bilayer formation was recently observed in in vitro experiments
of filament networks, cross-linked by a tip-dwelling motor. Somewhat surprisingly the theoretically
predicted phase boundary between bundle contraction and bundle extension agrees quite well with
the agent-based simulations, indicating that elastic contributions to the emergent bundle dynamics
play a subordinate role, as they are not taken into account by our theoretical framework. We specu-
late that this might be caused by the relatively high number of active motors used in the agent-based
simulations, such that the active stress is always dominant and only its sign matters. An alternative
explanation is given by recent work, that used spars learning algorithms to learn the continuum
equations governing the spatio temporal dynamics of active nematic filament gels based on exper-
imental data [268, 269]. Starting from up to 246 terms allowed by symmetry a minimal set of equa-
tions were learned that describe the time evolution of the system. Interestingly no contributions
which can be derived from a free energy, including those due to elasticity were identified [269]. In-
stead a force balance condition of the form ∇·(σν+σa) = 0 was identified as the dominant equation
driving the system dynamics, where σa and σν are active and viscous stresses respectively. Such an
equation is reminiscent of the force balance Eq. 3.22 derived here. Further work will be needed to
understand how to to properly draw the link between the filament bundle tension derived here and
active stresses that fuel the macroscopic dynamics.

Taken together, we were able to provide a framework that systematically bridges the scale be-
tween the microscopic dynamics of the filament bundle constituents, controlled by kinetic and me-
chanical constants, and the scale of the filament bundle itself. A nematic filament bundle, in turn,
resembles the minimal building block of large-scale filament motor mixtures. Those systems are de-
scribed in terms of active nematic field theories, which contain an unspecified apolar active stress,
which describes the contractile or extensile tension exerted by the active particles [50, 80–86]. In an
arbitrary mixture of filaments, active and passive cross-linkers our theoretical framework provides
insight how the various components act together to determine the sign and the magnitude of this
stress. Thereby, our theoretical framework shines light on the question of how the microscopic dy-
namics of cross-linking motors and passive cross-linkers impact the large-scale physics of filament
motor mixtures.
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3.2.3. APPENDIX: BRIDGING SCALES IN FILAMENTOUS ACTIVE MATTER

MEAN FIELD CROSS-LINKER FORCE

Figure 3.17: (a) We consider a cross-linker modeled as two head domains a and b. The head do-
mains might be different. (b) The cross-linker head a can move on the filament it is attached to
at speed Va and head b at speed Vb . Va and Vb are functions of the force applied on the motor
head a and b, respectively. Therefore, they depend implicitly on time via fab(t ). (c) Head domain
a detaches from the filament at rate Ka(t ) and head domain b at rate Ka(t )). The detachment rates
depend implicitly on time via fab(t ).

In this section, we will derive the force-velocity relation of a general motor cross-linker that exerts
a force that is linear in the extent ∆x(t ) of the motor at time t . A non-linear force generator, i.e., a
motor that generates a force that depends in a non-linear way on its extend∆x(t ), can be taken into
account as long as the function f [∆x(t )] quantifying the force as a function of the motor extent∆x(t )
can be inverted. This means a motor cross-linker that generates a force which is a discontinuous
function of the cross-linker extent, might be a challenging task to consider. Here we use

f [∆x(t )] = κ∆x(t ) , (3.41)

i.e., we consider motor cross-linkers modeled by a Hookean spring. We denote our general linear
motor cross-linker as X . The motor has two head domains (a) and (b) connected by the Hookean
spring. Motor head (a) has the unloaded velocity va, and head (b) has the unloaded velocity vb, at
which they move along the arc-length s ∈ [−`/2,`/2] of the filament they are cross-linked to. Head
(a) and head (b) can detach from the filament they are bound to. We do not specify the explicit
detachment dynamics at this point. In general, the velocity of the cross-linker may depend on the
arc-length position s. If we take this into account, the derivation of the filament bundle tension will
include the first moments in the unloaded motor head velocity, which read

〈va(s)〉 =
∫ `/2

−`/2
dsva(s)ρa(s) (3.42)

where ρa(s) denotes the normalized motor head density along the arc-length s of the filament. I will
explain why we do not take arc-length dependent velocities into account in terms of two biologically
relevant examples, where the unloaded motor head velocity depends on the arc-length position.
We already encountered an example in the main text of a motor that has an arc-length dependent
velocity, namely when we considered a symmetric motor cross-linker that dwells at the filament
end. Such a motor has the unloaded velocity va(s) = vb(s) = vmθ(s − (`/2− ε))θ(s +`/2), i.e., the
velocity is vm in the bulk and 0 at the tip region ε. This means the velocity distribution of the motor
head is bimodal with peaks at 0 and vm . Trying to characterize a bimodal distribution in terms
of its first moment will not recapitulate the underlying physics but yield completely wrong results.
Another example would be high particle occupations on the filament, where protein crowding on
the filament plays a role. Motor crowding can lead to arc-length dependent unloaded motor head
velocity va(s) and vb(s) if steric exclusion of motors is taken into account. Importantly, the collective
motor dynamics in such systems give rise to density profiles ρa(s), which are characterized by a
domain wall (a “discontinuous” motor head density). This, in turn, yields a bimodal distribution of
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unloaded motor head velocities. Thus, again an example where a characterization in terms of the
first moment fails.

From my perspective, a more promising approach is to split the arc-length of the filament into
regions where the unloaded motor head velocity is approximately constant, and tread motors which
are cross-linked to the different arc-length positions as different “types” of cross-linkers that obey
different dynamics on the filament and therefore will have a different force-velocity relation. It is
important to constraint those cross-linker populations to the arc-length domain they live on. In
the main text, we did so for tip- and bulk-motors, by constraining tip motors via a delta-peaked
arc-length density ρb ∼ δ(s −`/2).

However, since the different populations are ultimately the same type of cross-linker, they will be
coupled through particle conservation. This can be formulated in terms of flux-balance conditions
and a mass conservation condition. We did present this formalism in the main text for tip and bulk-
motors and present it in Sec 3.2.3 in a more general context. Therefore, we will consider va and vb

as independent of the arc-length position s in the following.
Consider two filaments i and j with orientation ni and n j . At time t , the two filaments move at

velocity vi (t ) and v j (t ). The motor cross-links the two filaments with motor head (a) attached to
filament i and motor head (b) attached to filament j . The loaded velocity of motor head (a) and (b)
at time t depends on the force applied to the motor heads. We quantify the dependence of the motor
head velocities in a dimensionless function φ[n f (t )] that characterizes the response of the motor
velocity to an applied force with the constraint φ(0) = 0. Moreover, the response of the motor head
will depend on whether the force is applied in the direction of the unloaded motor head velocity or
opposed to it. Therefore it is a function of n f . Taken together, we write the motor head velocity as

Va[ni fab(t )] = va(1+φa[ni fab(t )]) (3.43)

Vb[n j fba(t )] = vb(1+φb[n j fba(t )]) . (3.44)

here fab(t ) denotes the force head (b) applies on head (a). Thus fab(t ) =− fba(t ). The sign conven-
tion is such that positive motor head velocities characterize a movement of the motor head in the
direction of the plus end of the filament. Negative motor head velocities denote movement towards
the minus end. At time t = 0, the two motor heads are attached, in a relaxed state, to two filaments
i and j . This is not a restriction since attachment is an equilibrium process, which, on average, will
yield zero cross-linker extension at the time of binding. The two filaments move at velocities vi (t )
and v j (t ). As a result of the relative filament motion ∆vi j (t ) = vi (t )− v j (t ) and the relative motor
head motion, the motor cross-linker will become stretched

∆x(t ) =
∫ t

0
dt ′(ni Va(t ′)−n j Vb(t ′)+∆vi j (t ′)) (3.45)

The force applied by head (b) on (a) is then given by

fab(t ) =−κ∆x(t )

=−κ
∫ t

0
dt ′[ni Va(t ′)−n j Vb(t ′)+∆vi j (t ′)] .

This defines the self-consistency equation for fab. At the time tu, one of the motor heads (a) or (b)
will detach from the filament. We will now make an adiabatic approximation and assume that the
relative filament sliding velocity is approximately constant during the time scale a motor cross-links
the two filaments and denote the quasi-steady-state as ṽi j . This is a valid assumption in an ensem-
ble of many motors cross-linking the filaments i and j , and it is most certainly true in a bundle of
cross-linked filaments. The self-consistency equation then reads

fab(t )+κ
∫ t

0
dt ′

(
ni vaφa[ni fab(t ′)])−n j vbφb[−n j fab(t ′)]

)= κt (n j vb −ni va +∆ṽ j i ) . (3.46)
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Upon specifying the functions φa and φb this function can be solved. The solution of this equation
f ∗

ab will be a function of t and ∆ṽ j i ; f ∗
ab = f ∗

ab[t ,∆ṽ j i ].
A motor cross-linker of age τ, exerts the force f ∗

ab[τ,∆ṽ j i ] on the filaments. We define a bond-
breakage event as a detachment of head (a) or head (b) from the respective filament and S(τ) as
the survival probability of a bond of age τ. In an ensemble of many motor cross-linkers, which
cross-link the filament i and j , there will be cross-linkers of different ages τ cross-linking the two
filaments. The average force those motor cross-linkers exert on the filaments is then given by

Fij,a(∆ṽ j i ) = 1

N

∫ ∞

0
dτS(τ) f ∗

ab(τ,∆ṽ j i ) (3.47)

with the normalization constant

N =
∫ ∞

0
dτS(τ) = 〈τ〉

In the second line, we used integration by parts. Here, we introduced the notation Fij,a to denote
that head a is attached to filament i . Equation 3.47 defines the average force a specific type of motor
cross-linker exerts on filament i in an ensemble of many cross-linking interactions to filament j .

The remaining task is to derive an expression for the survival probability of a bond of age τ. The
survival probability of a bond depends on the rate Ka and Kb at which head (a) and (b) detach from
the filaments, respectively. In general, the rates depend on the applied force and the direction of the
force. We define the detachment rates of head a and b as

Ka[ni fab(t )] = koff,aψa[ni fab(t )]

Kb[n j fba(t )] = koff,bψb[n j fba(t )]

Here koff,a and koff,b denote the unloaded detachment rate of cross-linker head (a) and (b) respec-
tively, and ψa

[
ni f ∗

ab(t )
]

and ψb
[
n j f ∗

ba(t )
]

is a function quantifying the response of the detachment
rate to the applied force, with the constraint ψa[0] = 1 and ψb[0] = 1. We define the rate of bond
breakage of the motor cross-linker

K
[

f ∗
ab(t )

]= koff,aψa
[
ni f ∗

ab(t )
]+koff,bψb

[−n j f ∗
ab(t )

]
. (3.48)

Note, the solution to the self consistency equation (Eq. 3.46), f ∗
ab(t ), is a function of ∆ṽ j i . Therefore

ψ
[

f ∗
ab(t )

]
depends implicitly on ∆ṽ j i if ψa[ni f ∗

ab(t )] 6= 1 or ψb[−n j f ∗
ab(t )] 6= 1.

Consider the time interval [t , t +dt ] and let S(t ) be the probability that no detachment event oc-
curred up to time t (the survival probability), the probability that the motor cross-linker bond sur-
vives up to time (t +dt ) is then

S(t +dt ) = Prob{“no bond breakage until t”∧“no bond breakage in [t, t + dt)”}

= S(t )
(
1−K

[
f ∗

ab(t )
]

dt
)

Expanding for small dt we obtain an ODE, using the initial condition S(0) = 1 we find the solution

S(τ) = exp

(
−

∫ τ

0
dtK

[
f ∗

ab(t )
])

.

The general expression for the force-velocity relation then reads

Fij,a(∆v j i ) = 1

〈τ〉
∫ ∞

0
dτe−

∫ τ
0 dtK

[
f ∗

ab(t )
]

f ∗
ab[τ,∆ṽ j i ] . (3.49)
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It is important to note that the general force-velocity relation Eq. 3.49 is reciprocal under the oper-
ation i → j ,a → b

Fij,a(∆ṽ j i ) =−Fji,b(∆ṽi j ) . (3.50)

Taken together, upon specifying the functions φa[n f (t )],φb[n f (t )],ψa
[
n f

]
,ψb

[
n f

]
and the ki-

netic constants (va, vb,koff,a,koff,b) and the link-stiffness κ the self consistency equation Eq. 3.46,
and the force-velocity relation Eq. 3.49 form a closed set of equations that define Fij,a(∆v j i ) for an
general motor or passive cross-linker. Section 3.2.3 contains a set of exemplary motor cross-linkers
to illustrate how to derive the force-velocity relation for a specific motor or passive cross-linker
based on the self-consistency Eq. 3.46 and the general force-velocity relation Eq. 3.49.

MEAN FIELD MOTOR HEAD DENSITIES

The general force-velocity relation Eq. 3.49 is a mean-field representation of a general cross-linker.
This means it represents the mean force a specific type of cross-linker mediates between two fila-
ments it cross-links as a result of many averaged cross-linking interactions. It is, therefore, valid in
an ensemble of many motor cross-linkers linking filaments i and j . To bridge the scale between an
individual motor or passive cross-linker interaction to the scale of the filament, we have to evaluate
the emergent density profiles ρa(s) and ρb(s) of the mean-field motor cross-linker heads (a) and (b).
Those density profiles will depend on the average velocity 〈Va[ni f ∗

ab(t )]〉, 〈Vb[ni f ∗
ba(t )]〉 as well as

the average detachment rates 〈Ka[ni f ∗
ab(t )]〉 and 〈Kb[ni f ∗

ba(t )]〉.
The mean velocities of the cross-linker heads a and b on filament i with orientation ni are given

by

〈
Va[ni f ∗

ab(t )]
〉= va

(
1+〈

φa[ni f ∗
ab(t )]

〉)〈
Vb[ni f ∗

ba(t )]
〉= vb

(
1+〈

φb[ni f ∗
ba(t )]

〉)
.

If the functions φa(n f ) and φb(n f ) are linear in n f then
〈
φa[ni f ∗

ab(t )]
〉 = φa(ni Fi j ,a). However,

this is not true ifφa(n f ) is a non-linear function of (n f ) then 〈Va[ni f ∗
ab(t )]〉 will contain higher order

moments of ni f ∗
ab(t ).

We proceed analog for the detachment rates, which are given by〈
Ka[ni f ∗

ab(t )]
〉= koff,a

〈
ψa[ni f ∗

ab(t )]
〉〈

Kb[ni f ∗
ba(t )]

〉= koff,b
〈
ψb[ni f ∗

ba(t )]
〉

.

To keep the notation compact, we write
〈

Va[ni f ∗
ab(t )]

〉 = 〈Va〉 in the following (and analog for the
other ensemble-time averages). Note the mean velocity and the mean detachment rate will depend
on the relative orientation of the cross-linked filaments via the self-consistency equation Eq. 3.46.
This is because the average force the cross-linker exerts between the filaments depends on the rel-
ative orientation, and the speed of the cross-linker depends on the force (same argumentation for
the detachment rates). We introduce the notation ++ (+−) to denote that filament i with orienta-
tion ni = +1 is cross-linked, by the mean-field cross-linker, to filament j with orientation n j = ±1.
We obtain four mean velocities and four mean detachment rates of cross-linker heads on filament
i with orientation ni = +1, which are given by 〈V +−

a 〉,〈V ++
a 〉,〈V +−

b 〉,〈V +−
b 〉 and analog for the mean

detachment rates.
To keep the notation compact, we introduce the subscript α = {a,b} superscript β = {++,+−} to

indicate the cross-linker head type and the type of interaction (parallel or anti-parallel with respect
to filament i with orientation ni =+1).

Having identified the mean velocity and detachment rate of the mean-field cross-linker, we can

derive the cross-linker head density profilesρβα(s) = {ρ++
a (s),ρ+−

a (s),ρ++
b (s),ρ+−

b } along the arc-length
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s ∈ [−`/2,`/2] of filament i with orientation ni =+1. The directed motion of the mean-field cross-
linker head along the arc length of the filament, in combination with detachment, can be expressed
in terms of a reaction advection equation

Çtρ
β
α(s) =−

〈
V β
α

〉
Çsρ

β
α(s)+kon,α−

〈
K β
α

〉
ρ
β
α(s) (3.51)

with appropriate boundary conditions, which we will specify later. Note since we assumed that the
unloaded velocities and detachment rates are arc-length independent, we can put 〈Va〉 outside the
derivative. We will construct the solution for arc-length-dependent velocities or rates in the next
step. Since we already made an adiabatic approximation separating the timescale of cross-linker
dynamics and filament dynamics, we evaluate Equations 3.51 in a quasi-steady state. The quasi-
steady state solution is given by

ρ
β
α(s) = kon〈

K β
α

〉 + Aβ
α e−s/lβrun,α (3.52)

with Aβ
α a constant, which is determined by an appropriate boundary condition and the mean run

length, lβrun,α = 〈V β
α 〉/〈K β

α 〉. Note the attachment rate kon,α has units per time per unit length of the
filament and does not depend on the applied force. Therefore it does not depend on the type of
interaction β= {++,+−} but only on the type of cross-linker head α= {a,b}.

The remaining task is to specify appropriate boundary conditions. A cross-linker head with mean

velocity 〈V β
α 〉 > 0 will have zero density at the minus end of the filament, and a cross-linker head

with unloaded velocity 〈V β
α 〉 < 0 will have zero density at the plus end of the filament

ρ
β
α(s)(−`/2) = 0 if 〈V β

α 〉 > 0

ρ
β
α(s)(`/2) = 0 if 〈V β

α 〉 < 0 .

The solution to Eq. 3.52 is then given by

ρ
β
α(s) = X β

α

N `

(
1−e−(s/`+1/2)λ

)
if 〈V β

α 〉 > 0 (3.53)

ρ
β
α(s) = X β

α

N `

(
1−e−(s/`−1/2)λ

)
if 〈V β

α 〉 < 0 (3.54)

The dimensionless normalization N is chosen such that

X β
α =

∫ `/2

−`/2
dsρβα(s) (3.55)

and X β
α denotes the total population of parallel (β = ++) and anti-parallel (β = +−) a motor heads

(α= a) and b motor heads (α= b) on filament i .
The cross-linker head generally does not just fall off the filament-end it is walking to (minus or

plus end, depending on the direction of motion), i.e., we have a second boundary condition at
ρq(±`/2) which is determined by the detachment dynamics of the motor cross-linker at the fila-
ment tip it is walking towards. However, since Eq. 3.51 is just a first-order differential equation, the
boundary value problem is overdetermined. We can account for this problem by constructing a so-
lution at the filament end the cross-linker head is walking towards. The solution still has to obey

Eq. 3.51 however, with
〈

V β
α

〉
= 0 since motors dwelling at a filament end are by definition immo-

bile. Since the tip region ε (units of length) is small, we approximate the influx of motors into the
tip by kon,αε ≈ 0. However, we have an additional influx of cross-linker heads due to the advective

transport of bulk motor heads into the tip region, which is given by 〈V β
α 〉ρβα(s)(±`/2). In general,
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the detachment dynamics of tip motors differ from the detachment dynamics of bulk motors (the
detachment dynamics along the arc-length). This yields a flux balance condition for the tip motor
population which reads

〈V β
α 〉ρβα(`/2) = X β

α,tip

〈
K β

α,tip

〉
if 〈V β

α 〉 > 0

〈V β
α 〉ρβα(−`/2) = X β

α,tip

〈
K β

α,tip

〉
if 〈V β

α 〉 < 0 .

where X β

α,tip denotes the population of cross-linker heads of type α mediating an interaction of

type β at the filament tip and
〈

K β

α,tip

〉
the respective mean detachment rate at the filament tip.

Since the different motors head populations are ultimately the same type of cross-linker, they are
constrained by mass conservation

Xtot = X +−
a +X ++

a +X +−
b +X ++

b +X +−
a,tip +X ++

a,tip +X +−
b,tip +X ++

b,tip . (3.56)

It is important to keep in mind that all of those cross-linker head populations X β
α and X β

α,tip
obey different force-velocity relations. Therefore, when we construct the filament bundle tension,
they will be treated as different types of cross-linker interactions, which are ultimately connected
through particle number conservation 3.56. Moreover, note the same strategy as used for tip mo-
tors can also be applied if the motor velocities or binding rates differ in different bulk regions of the
filament. Then the different solutions of Eq. 3.51 have to be connected at the interface between the
regions using flux balance. The obtained density profile can then be discontinuous (as is the case
for tip and bulk motors).

A GENERAL FORMALISM TO CONSTRUCT THE BUNDLE TENSION FOR AN ARBITRARY SET OF MOTOR

CROSS-LINKERS

In this section, we will present a general framework to construct the filament bundle tension for an
arbitrary mixture of different motor proteins and passive cross-linkers.

Without loss of generality, we consider the force applied to filament i with orientation ni =+1. We
consider a motor or passive cross-linker denoted as X . In the following, we will refer to the motor
or passive cross-linker as motor. In general, the motor might be asymmetric, with two microtubule-
binding domains a and b (see Fig. 3.17 (a)) that have different dynamics along the arc-length s ∈
[−`/2,`/2] of the cross-linked filament. As a result, they might evolve different density profiles along
the arc-length of the cross-linked filaments, which might as well depend on the relative orientation
of the filament. Since we consider a filament with orientation ni =+1 we denote anti-parallel inter-
actions by (+−) and parallel interactions by (++). Taken together we obtain four different density
profiles ρ++

x,a(s), ρ+−
x,a(s), ρ++

x,b(s) and ρ+−
x,b(s) on filament i . The total population of cross-linker heads

of those types of interactions are then given by

X +−
a =

∫ `/2

−`/2
dsρ+−

x,a(s)

X ++
a =

∫ `/2

−`/2
dsρ++

x,a(s)

X +−
b =

∫ `/2

−`/2
dsρ+−

x,b(s)

X ++
b =

∫ `/2

−`/2
dsρ++

x,b(s) .

An example we discussed in the main text are end-dwelling motors which have one walking mo-
tor domain a and one immobile motor domain b at the filament tip. As a result of the different
dynamics, tip motors have emergent density profiles ρt ,a(s) and ρt ,b(s) = Mtipδ(s −`/2).



3.2. BRIDGING SCALES IN FILAMENTOUS ACTIVE MATTER

3

99

The asymmetric motor cross-link obeys the general force-velocity relation (Eq. 3.49) Fi j ,a(∆v)
with the constraint

Fi j ,a(∆v j i ) =−F j i ,b(∆vi j ) . (3.57)

Note here we do not restrict the discussion to a linear force-velocity relation as in the main text but
consider the general form.

In a homogenous filament bundle, the relative sliding velocity of two anti-parallel filaments will
always be given by ∆v+− = v−

0 − v+
0 = 2v0 and for parallel filaments ∆v++ = 0. By convention, we

choose v±
0 =∓v0. Though v0 might be positive or negative depending on the type of cross-linkers in

the filament bundle. The force density at arc-length position s of filament i with orientation ni =+1
that stems from cross-linking interactions of the motor X is then given by

f +−
X (s) = ρ+−

x,a(s)F+−
a |2v0 +ρ+−

x,b(s)F+−
b |2v0 (3.58)

f ++
X (s) = ρ++

x,a(s)F++
a |0 +ρ++

x,b(s)F++
b |0 . (3.59)

here F+−
a |2v0 denotes that we evaluate the force-velocity relation at ∆v = 2v0. Note if 2v0 = va + vb

then F+−|2v0 = 0; cf. Eq. 3.46 and Eq.3.47.

Total force acting on filament i caused by the motor X : The total force acting on filament i caused
by cross-linking interactions of the motor X is then given by

FX = F+−
X +F++

X =
∫ `/2

−`/2
ds f +−

X (s)+ f ++
X (s) (3.60)

with

F+−
X (v0) ≡ F+−

a |2v0 X +−
a +F+−

b |2v0 X +−
b (3.61)

F++
X ≡ F++

a |0X ++
a +F++

b |0X ++
b . (3.62)

This means the total force depends only on the total number of cross-linking head populations on
filament i and not on the explicit profile of the cross-linking head.

Tension profile on filament i caused by the motor X : The tension T +(ξ) on filament i with orien-
tation ni = +1 at arc-length position ξ that stems from cross-linking interactions of the motor X is
given by

T +
X (ξ) = T +−

X (ξ)+T ++
X (ξ) =−

∫ ξ

−`/2
ds f +−

X (s)+ f ++
X (s) (3.63)

with

T +−
X (ξ) ≡−x+−

a (ξ)F+−
a |2v0 −x+−

b (ξ)F+−
b |2v0 (3.64)

T ++
X (ξ) ≡−x++

a (ξ)F++
a |0 −x++

b (ξ)F++
b |0 (3.65)

where we defined the number of the different cross-linker head populations up to arc-length po-
sition ξ on filament i

x+−
a (ξ) ≡

∫ ξ

−`/2
dsρ+−

x,a(s)

x++
a (ξ) ≡

∫ ξ

−`/2
dsρ++

x,a(s)

x+−
b (ξ) ≡

∫ ξ

−`/2
dsρ+−

x,b(s)

x++
b (ξ) ≡

∫ ξ

−`/2
dsρ++

x,b(s) .
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Bundle tension caused by the motor X : The contribution of the motor X to the tension in a ho-
mogeneous filament bundle of density ρ0 with filaments of fixed length ` is given by (cf. Fig. 3.6)

TX = ρ0

2

∫ `/2

−`/2
dξ

(
T +

X (ξ)−
∫ `/2

ξ
ds f −+

X (s)+ f −−
X (s)

)
= ρ0

2

∫ `/2

−`/2
dξ

(
T +

X (ξ)+
∫ `/2

ξ
ds f +−

X (s)+ f ++
X (s)

)
= ρ0

2

∫ `/2

−`/2
dξ

(
T +

X (ξ)+FX −
∫ ξ

−`/2
ds f +−

X (s)+ f ++
X (s)

)
= ρ0

2

∫ `/2

−`/2
dξ

(
FX +2T +

X (ξ)
)

= ρ0`

2
FX +ρ0

∫ `/2

−`/2
dξT +

X (ξ) .

Here we used f −+
X (s) =− f +−

X (s) and f −−
X (s) =− f ++

X (s). Next, we introduce the anisotropy factors for
the different motor populations

µ+−
a ≡ 1/2− 1

`X +−
a

∫ `/2

−`/2
dξx+−

a (ξ)

µ++
a ≡ 1/2− 1

`X ++
a

∫ `/2

−`/2
dξx++

a (ξ)

µ+−
b ≡ 1/2− 1

`X +−
b

∫ `/2

−`/2
dξx+−

b (ξ)

µ++
b ≡ 1/2− 1

`X ++
b

∫ `/2

−`/2
dξx++

b (ξ) .

using those definitions we evaluate the integral over T +(ξ). Taken together, we obtain

TX /(ρ0`) =µ+−
a X +−

a F+−
a |2v0 +µ+−

b X +−
b F+−

b |2v0

+µ++
a X ++

a F++
a |0 +µ++

b X ++
b F++

b |0 . (3.66)

It is important to note that we did not specify the functional form of the force-velocity relation at
any point. Thus Eq. 3.66 can be applied to an arbitrary non-linear force-velocity relation. Moreover,
note the fact that we have to evaluate the non-linear force-velocity only at ∆v = 0 and ∆v = 2v0 is of
significant advantage if we consider the general form of the force-velocity relation (Eq. 3.49). Even if
we can not solve the integrals analytically, we only have to approximate them numerically at ∆v = 0
and ∆v = 2v0.

Total force applied to filament i in mixtures of different cross-linking proteins: In a mixture of
different cross-linking proteins X = {X1, X2, X3, . . . }, the total force on filament i is then given by

F =∑
X

FX . (3.67)

In the limit where forces of cross-linking proteins dominate over dissipation to the solvent, those
forces have to balance

F =∑
X

FX = 0 . (3.68)
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If they do not dominate over dissipation to the solvent, the force balance condition reads

F =∑
X

FX =−γv0 . (3.69)

where γ denotes the drag coefficient. Note the minus sign is there because by convention we used
v+

0 = −v0 and we consider a right-oriented filament. This sets a condition for the filament sliding
velocity v0 in dependency on the different total populations of cross-linking heads on the filament,

γv0 +
∑
X

F+−
X (v0) =−∑

X
F++

X . (3.70)

Filament bundle tension in mixtures of different cross-linking proteins: The accumulated bun-
dle tension caused by different cross-linking proteins is given by

T =∑
X

TX . (3.71)

It is important to note that Eq. 3.71 provides a general expression for the bundle tension in a
homogenous filament bundle with an arbitrary set of cross-linkers that might obey non-linear force-
velocity relations. Having a general expression for the filament bundle tension, the remaining task
is to derive how the different populations of cross-linker heads on a filament depend on each other.
This is because most motor proteins have a speed VX that depends on the applied load. This force
will depend on the filament sliding velocity v0 and, thereby, on all populations of cross-linker heads
on the filament via Eq. 3.70. However, since the force applied on parallel and anti-parallel cross-links
differs, this affects the number of parallel and anti-parallel cross-links on a filament, in particular,
if force-dependent detachment is considered. The resulting set of equations has to be solved self-
consistently.

EXAMPLES

Force independent detachment and linear stalling As an example of our general theory, we dis-
cuss a class of minimal models for motor proteins that detach at a force-independent rate and slow
down linear to a force applied against their unloaded direction of motion. The kinetic constants in
the absence of force are given by (va, vb,koff,a,koff,b) and the functions characterizing the response
to the applied force are given by

φa[n f ] = sgn(va)
n f

fs,a

φb[n f ] = sgn(vb)
n f

fs,b

ψa[n f ] = 1

ψb[n f ] = 1

Note we assume here that a motor head can seed up above its unloaded velocity va (vb) if the applied
force pulls the motor in its direction of motion. This is done to keep the notation compact. Changing
this assumption yields slightly different prefactors for parallel and anti-parallel interactions but no
change in the functional form.

We re-scale time in units of the bond breakage rate t̃ = (koff,a +koff,b)t . Therefore,

K̃ [ f ∗
ab] = 1.

Substitution in the self-consistency equation Eq. 3.46 yields

Çt̃ fab(t̃ )+ κ

koff,a +koff,b

( |va|
fs,a

+ |vb|
fs,b

)
f ∗

ab(t̃ ) = κ

koff,a +koff,b

(
njvb −niva +∆v j i

)
(3.72)
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with the initial condition f ∗
ab(0) = 0 this is solved by

f ∗
ab(t ) = fs,a fs,b

fs,b|va|+ fs,a|vb|
(
1−e−At̃

)(
n j vb −ni va +∆v j i

)
. (3.73)

with the dimensionless constant A given by

A = κ

koff,a +koff,b

( |va|
fs,a

+ |vb|
fs,b

)
. (3.74)

Substitution in the general form of the force-velocity equation (Eq. 3.49) yields

Fij,a(∆vji) = Γm(n j vb −ni va +∆vji)

with

Γm = fs,a fs,b

fs,b|va|+ fs,a|vb|
A

1+ A
. (3.75)

Note Γm has units of force per velocity, i.e., it is an effective friction constant of the motor cross-
linker, which is determined by a competition between bond-breakage events and stalling of the
motor heads. For κ|va,b|/(koff,a + koff,b) ¿ fs,{a,b} it is dominated by spring relaxation, i.e., bond
breakage, and the effective friction coefficient of the cross-linker is low. In contrast, the effective
friction coefficient of the motor cross-linker saturates at ( fs,a fs,b)/( fs,b|va| + fs,a|vb|) for persistent
motors (low detachment rates).

To evaluate the contribution of this class of cross-linkers to the bundle tension, we need to evalu-
ate the force-velocity relation for F++

a |0,F+−
a |2v0 ,F++

b |0,F+−
b |2v0 , which results in

F+−
a |2v0 = Γx(−vx +2v0)

F+−
b |2v0 = Γx(−vx +2v0)

F++
a |0 = Γx∆vx

F++
b |0 =−Γx∆vx

here we introduced the relative unloaded motor head velocity ∆vx = vb − va and the sum unloaded
motor head velocity vx = vb + va.

The contribution to the total force acting on a filament in the bundle that comes from interactions
with this class of cross-linkers is given by (see Eq. 3.60)

FX = Γxvx(X +−
a +X +−

b )

(
−1+ 2v0

vm

)
+Γx∆vx(X ++

a −X ++
b ) (3.76)

The contribution to the filament bundle tension of this class of motor cross-linkers, that steam
from parallel (++) and anti-parallel (+-) interactions, is then given by (see Eq. 3.66)

T +−
X /(ρ0`) = Γxvx

(
−1+ 2v0

vx

)[
µ+−

a X +−
a +µ+−

b X +−
b )

]
(3.77)

T ++
X /(ρ0`) = Γx∆vx

[
µ++

a X ++
a −µ++

b X ++
b

]
(3.78)

The motor cross-linker types discussed in the main text are members of this class of cross-linkers.
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Symmetric bulk motor (Kinesin-5): We consider a symmetric bulk motor (a = b) with unloaded
speed va = vb. A representative member of this class of cross-linkers is Kinsesin-5 [95]. Since the
motor cross-linker is symmetric we find∆vx = 0 and vx = 2vm Moreover, we use X +−

a = X +−
b = X +−/2

and X ++
a = X ++

b = X ++/2 and µ+−
a =µ+−

b =µ+−. Thus,

FX = 2ΓxvaX +−
(
−1+ v0

va

)
T +−

X /(ρ0`) = 2ΓxvaX +−
(
−1+ v0

va

)
µ+−

T ++
X /(ρ0`) = 0.

Note the unloaded speed of the motor can be positive (plus-end directed) or negative (minus-end
directed). In the absence of other motor cross-linkers, plus-end directed motors will cause a fila-
ment sliding velocity v0 > 0, and minus-end directed motors a filament sliding velocity v0 < 0. Plus
end directed motors will have an anisotropy factor µ+− ≤ 1/2, and minus end-directed motors will
have an anisotropy factor µ+− ≥ 1/2. Therefore, in the absence of other motor cross-linkers, the sign
and magnitude of T +−

X is equal under the transformation va →−va as expected.

Asymmetric bulk motor (Kinesin-4, Dynein): We consider an asymmetric bulk motor with vb = 0
and va. Hence∆vx =−va and vx = va. Members of this class of motor cross-linkers are Dynein va < 0
and kinesin-4 va > 0 [193]. The analysis presented in Sec 3.2.3 implies a homogenous density profile
of the immobile head domain. Thus, µ+−

b =µ++
b = 0. Therefore

FX = Γxva(X +−
a +X +−

b )

(
−1+ 2v0

va

)
−Γxva(X ++

a −X ++
b ) (3.79)

T +−
X /(ρ0`) = ΓxvaX +−

a

(
−1+ 2v0

va

)
µ+−

a (3.80)

T ++
X /(ρ0`) =−ΓxvaX ++

a µ++
a . (3.81)

This implies that an asymmetric bulk motor contributes an extensile tension, which is equal to
or stronger than a symmetric bulk motor with equal kinetic parameters since the motor velocity on
parallel filaments will be faster and therefore µ++

a ≤ µ+−
a . This is consistent with previous theoretic

models for an explicit asymmetric motor [257]. Again sign and magnitude of the bundle tension are
conserved under the transformation va →−va in the absence of other cross-linkers.

Tip dwelling motor (Kinesin-4,Dynein): Tip-dwelling motors are, by definition, asymmetric mo-
tors since they have one immobile motor domain dwelling at the filament tip vb = 0 and one mobile
motor domain with va. Hence∆vx =−va and vx = va/2. Members of this class of motor cross-linkers
are dynein va < 0 and kinesin-4 va > 0. dynein is a “super persistent” motor, in particular at the fila-
ment tip [193]. Tip motors have a delta-peaked density distribution of immobile motor domains at
the respective filament end. Therefore we find the anisotropy factors

µ+−
b =µ++

b = 1/2 for va > 0

µ+−
b =µ++

b =−1/2 for va < 0

For va > 0 we obtain

FX = Γxva(X +−
a +X +−

b )

(
−1+ 2v0

va

)
−Γxva(X ++

a −X ++
b ) (3.82)

T +−
X /(ρ0`) = Γxva

(
−1+ 2v0

vm

)[
(1/2−µ+−

a )X +−
a +1/2X +−

b

]
(3.83)

T ++
X /(ρ0`) =−Γxva

[
(1/2−µ++

a )X ++
a −1/2X ++

b

]
. (3.84)
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If we further use X ++
a = X ++

b and X +−
a = X +−

b we recover the results used in the main text.
For va < 0 we obtain

FX = Γxva(X +−
a +X +−

b )

(
−1+ 2v0

va

)
−Γxva(X ++

a −X ++
b ) (3.85)

T +−
X /(ρ0`) = Γxva

(
−1+ 2v0

va

)[
µ+−

a X +−
a −1/2X +−

b )
]

(3.86)

T ++
X /(ρ0`) =−Γxva

[
µ++

a X ++
a +1/2X ++

b

]
. (3.87)

Note again, those expressions respect parity symmetry under the transformation va →−va, since
va →−va ⇒µ→−µ (in the absence of other motor cross-linkers).

Constructing the bundle tension The filament bundle tension caused by this class of cross-linking
proteins can now be constructed by first solving

γv0 +
∑
X

FX = 0 . (3.88)

then relating tip and bulk motor contributions via mass conservation and flux balance as presented
in Sec. 3.2.3 and substituting the self-consistent solution for v0 into

T =∑
X

TX|v0 . (3.89)

Note the constants Γm differ for all different cross-linkers.

Linear stalling with exponential detachment. We now want to consider some examples of cross-
linking proteins with force-dependent detachment. We re-scale time in units of the unloaded motor
head detachment rates t̃ = (koff,a+koff,b)t . In particular, we are interested in slip-bonds, i.e., detach-
ment dynamics, where an applied force accelerates the detachment dynamics. As a classical result,
the dissociation dynamics can be estimated as

K [n f (t )] = koffe
|n f |

fu . (3.90)

with an characteristic unbinding force fu. For the sake of simplicity, we assume equal force-response
functions of a and b head unbinding dynamics, such that

ψa
[
n f

]= e
|n f |

fu =ψb
[
n f

]
.

The self-consistency equation Eq. 3.46 is not affected by force-dependent detachment. We therefore
still obtain the solution (in the case of linear stalling)

f ∗
ab(t ) = fs,a fs,b

fs,b|va|+ fs,a|vb|
(
1−e−At̃

)(
n j vb −ni va +∆v j i

)
. (3.91)

with the dimensionless constant

A = κ

koff,a +koff,b

( |va|
fs,a

+ |vb|
fs,b

)
. (3.92)

Substitution in the general form of the force-velocity relation yields

Fij,a(∆v j i ) = fs,a fs,b

fs,b|va|+ fs,a|vb|
(
n j vb −ni va +∆v j i

)
[

1− 1

〈τ̃〉
∫ ∞

0
dτ̃S(τ̃,∆v j i )e−Aτ̃

]
.
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This means to first order any motor cross-linker that stalls linear will obey a linear force-velocity
relation. For force-independent detachment, the survival probability is given by exp(−τ̃). For force-
dependent detachment, we have to find the survival probability using the general formula.

The re-scaled bond-breakage rate reads

K̃ [| f ∗
ab(t̃ )|] = exp

[
B |n j vb −niva +∆v j i |

(
1−e−At̃

)]
(3.93)

with

B = 1

A

κ

koff,a +koff,b

1

fu
(3.94)

which has units of one over velocity. Substitution in the general form for the survival probability
yields

S(τ̃) = exp

{
−

∫ τ̃

0
dt exp

[
B |n j vb −niva +∆v j i |

(
1−e−At̃

)]}
(3.95)

We evaluate the integral with the help of Mathematica and find

S(τ̃,∆v j i ) = exp

{
−

[
1

A
eB |n j vb−niva+∆v j i |

]
(
Ei(−B |n j vb −niva +∆v j i |)

)−Ei
(−Be−Aτ̃|n j vb −niva +∆v j i |

)}
with the exponential integral Ei(z) =−∫ ∞

z dt e−t /t .
Taken together, we obtain the force-velocity relation for a motor cross-linker with exponential

force-dependent detachment, as used in many agent-based simulation software. The remaining
integral over τ̃ has to be approximated numerically. An example for a symmetric bulk motor with
parameters used in the agent-based simulation (see Tab. 3.1) is given in Fig. Fig. 3.18 (a),(b).

Care has to be taken if one considers a passive cross-linker, which has, by definition, zero motor
activity, i.e., va = vb = 0 and φa[n f ] = φb[n f ] = 0 . Then the self-consistency equation Eq. 3.46 is
solved by

f ∗
ab(t̃ ) = κ

koff,a +koff,b
t̃∆vji . (3.96)

which yields the force-velocity relation

Fij,a(∆v j i ) = 1

2

κ

koff,a +koff,b
∆v j i

∫ ∞

0
dτ̃τ̃2w̃(τ̃,∆v j i )

= κvm

koff,a +koff,b

∆v j i

2vm

〈τ̃2〉
〈τ̃〉

We decided to measure the velocity of filaments in units of the relative unloaded motor head velocity
2vm of some motor in the system. For force-independent detachment (w̃ = exp(−τ̃)), we obtain the
result used in the main text. Using symmetric force-dependent detachment as we did for motor
cross-linkers, we obtain the waiting time distribution

w̃(τ̃) = exp

[
1

D

2vm

|∆v21|
(
1−eD

|∆v21 |
2vm

τ̃
)
+D

|∆v21|
2vm

τ̃

]
(3.97)

with the dimension less constant

D = κvm

2koff

1

fu
. (3.98)

The resulting non-linear force-velocity relation alongside a linear fit to it is shown in Fig. 3.18 (c).
Since we assumed a homogeneous density profile of the passive cross-linker, the direct contri-

bution to the bundle tension is zero (anisotropy factor of 1/2), and it enters only via the filament
sliding velocity v0.
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Figure 3.18: (a) Non-linear force-velocity relation |Fij|(|∆vji|/(2vm)) for motor cross-linkers with ex-
ponential force-response detachment functions ψ[n f ] = exp(| f (t )|/ fu). The dimensionless param-
eter was chosen to be A = 37.5. For fu → ∞, the result for force-independent detachment is re-
covered (ψ[n f ] → 1). If the unbinding force is less than the stall force, the motor cross-linker can
not operate at the stall force since it detaches before reaching it. Hence, we get increasing devia-
tions from the linear force-velocity relation as the unbinding force is decreased. (b) Force ampli-
tude Fm/ fs as a function of the dimensionless constant A. Obtained from a linear fit of the form
Fm/ fs∆v j i /(2vm) to the non-linear force-velocity relation for fs = fu (as in the agent-based simula-
tion). We find Fm/ fs ≈ 0.52A/(1+0.52A), i.e., compared to force-independent detachment motor-
cross-linkers with force dependent-detachment have a lower force amplitude. (c) Force velocity
relation for a passive cross-linker as used in the agent-based simulation (blue curve) and linear fit
to the non-linear force-velocity relation (Tab. 3.1). To compare the agent-based simulations to our
theoretical prediction (Fig. 3.16), we used the linear fit to the non-linear force-velocity relations.
We tend to overestimate the strength of passive cross-linkers since they enter the filament bundle
tension only via the filament sliding velocity v0/vm and anti-parallel filament-filament interactions,
which tend to have a relative sliding velocity ∆v j i > vm. A

(a) (b)

Figure 3.19: (a) Motor cross-linker interaction between filament i with center of mass-position zi

and filament j with center of mass position z j = zi + si +u. The potential interaction partners of a
motor cross-linker at arc-length position si are distributed in the intervall u ∈ [−`/2,`/2]; see (b)

FORCE DENSITY AND FILAMENT BUNDLE TENSION IN AN INHOMOGENOUS FILAMENT-BUNDLE

In this section, we discussed the physics of a homogenous filament bundle cross-linked by different
motor cross-linkers. A natural next step is to analyze the physics of an inhomogenous filament
bundle. What is the impact of local variations in the bundle polarity or the bundle density? To
answer this question, we have to formulate our theoretical framework for spatially varying fields.
Here, we will provide the governing equations but do not discuss the physical consequences.

We denote the spatial coordinate by z and the center of mass densities of filaments with orien-
tation ni = +1 and ni = −1 by ρ+(z) and ρ−(z) respectively. As before, we denote the arc-length
density profiles of doubly linked motor cross-linkers by ρ++

a ,ρ+−
a ,ρ++

b ,ρ++
b . However, since the fila-

ment bundle is inhomogenous ρ++
a = ρ++

a (z, s), with

X β
α (z) =

∫ `/2

−`/2
dsρβα(z, s) (3.99)
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where α = {a,b} and β = {++,+−}. The filament sliding velocities v± become functions of space as
well v± = v±(z). A motor cross-link on a filament with the center of mass position z at arc-length s
of the filament can mediate an interaction with other filaments in the range [z + s −`/2, z + s +`/2].
Consider the situation in which the motor with head a attached to filament i with the center of
mass position z mediates an interaction to a filament with orientation n j =−1, which has a center
of mass position z + s +u with u ∈ [−`/2,`/2]. We assume that this interaction takes place with
probability ρ−(z + s +u)ρ+−

X ,a(z, s) and analog for other interactions. The force densities due to the
different interaction types at arc-length position s of the filament are then given by

f +−
a (z, s) = X +−

a (z)

N +−
a (z)

∫ `/2

−`/2
duρ−(z + s +u)ρ+−

x,a (z, s)
[−vx + v−(z + s +u)− v+(z)

]
Γx (3.100a)

f ++
a (z, s) = X ++

a (z)

N ++
a (z)

∫ `/2

−`/2
duρ+(z + s +u)ρ++

x,a (z, s)
[
∆vx + v+(z + s +u)− v+(z)

]
Γx (3.100b)

f +−
b (z, s) = X +−

b (z)

N +−
b (z)

∫ `/2

−`/2
duρ−(z + s +u)ρ+−

x,b (z, s)
[
vx + v−(z + s +u)− v+(z)

]
Γx (3.100c)

f ++
b (z, s) = X ++

b (z)

N ++
b (z)

∫ `/2

−`/2
duρ+(z + s +u)ρ++

x,b (z, s)
[−∆vx + v+(z + s +u)− v+(z)

]
Γx (3.100d)

with the normalization

N
β
α (z) =

∫ `/2

−`/2
ds

∫ `/2

−`/2
duρβ[1](z + s +u)ρβx,α(z, s) (3.101)

whereβ[1] =+ ifβ=++ andβ[1] =− ifβ=+−. The normalization is chosen such that the total force
on a filament at position z that stems from interactions parallel and anti-parallel motor interactions

of the cross-linker head α is proportional to the total population on the filament X β
α .

The total force on a filament with orientation n =+1 at position z is then given by

Fβ

X ,α(z) =
∫ `/2

−`/2
ds f βα (z, s) (3.102)

and the bundle tension by

T
β

X ,α =
∫ `/2

−`/2
dξρβ[1](z +ξ)

∫ ξ

−`/2
ds f βα (z, s) . (3.103)

The analysis presented in the main text corresponds to a zeroth-order gradient expansion of the
equations presented above.
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PARAMETERS

Parameter name Value

System parameters:

x−Extent Lx 24µm
y−Extent Ly 24µm
z−Extent Lz 0.2µm
Viscosity — 0.02pNµm−2

Filament parameters:

Filament length ` 2µm
Rigidity — 30pNµm2

Steric radius dMt 0.05µm
Steric force constant — 50pNµm−1

Motor parameters:

Motor velocity vm 0.25µms−1

Attachment rate kon 5s−1

Detachment rate koff 0.2s−1

End-detachment rate koff,tip 0.2−4s−1

Unbinding force fu 5pN
Stall force fstall 5pN
Link stiffness — 150pNµm−1

Rest length — 0.1µm

Passive cross-linker parameters:

Attachment rate kon 5s−1

Detachment rate koff 1s−1

Unbinding force fu 1.5pN
Link stiffness — 50pNµm−1

Rest length — 0.1µm

Simulation parameters:
Time step dt 5×10−3 s−1

Filament segmentation — 0.1µm

Table 3.1: Parameters specifying the microscopic dynamics of the constituents in the agent-based
simulation. At a pacing fraction ofφ≈ NMtπd 2

MT`/(4Lx Ly Lz) = 2×10−2 we have 576 filaments in the
system. We keep most parameters fixed and use the total number of motors, passive cross-linkers,
and the tip detachment rate as control parameters. When indicated, we changed the motor velocity
or the bulk detachment rate of motors to change the motor anisotropy.
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Parameter name Value

Filament parameters:

Filament length ` 2µm

Motor parameters:

Motor velocity vm 0.25µms−1

Detachment rate koff 0.2s−1

End-detachment rate koff,tip 0.8s−1

Stall force fstall 5pN
Link stiffness κm 100pNµm−1

Passive cross-linker parameters:

Detachment rate koff 5s−1

Link stiffness κc 60pNµm−1

Table 3.2: Kinetic and mechanical parameters specifying the minimal microscopic model. If not
stated otherwise, we used those parameters in the following.
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3.3. A MECHANISTIC VIEW OF COLLECTIVE FILAMENT MOTION IN ACTIVE

NEMATIC NETWORKS

3.3.1. SIGNIFICANCE

Assemblies of cytoskeletal filaments and associated proteins form a diverse range of dynamic struc-
tures that play essential roles in many intracellular structures and processes. A decisive factor in
the ability of these networks to self-organize is the dynamic rearrangement of filaments driven by
motor proteins. However, there is still a large gap in our knowledge of how the various components
act together to establish and modulate these dynamic structures.

Here, we address this general question using a minimal but generic theoretical model. We iden-
tify a robust physical mechanism for the relationship between filament velocity and ambient/local
network polarity. This mechanism explains previous results of experiments on Xenopus egg extracts
[96, 97] as well as experiments with defined systems containing purified components [99]. More-
over, we suggest how our predictions can be tested by in-vitro experiments.

Our understanding of the mechanistic origin of filament dynamics in mixtures with motors is
largely based on experimental studies of the interactions of purified components. A basic fact that
has emerged from such studies is that two isolated antiparallel microtubules are pushed past one
another by the action of sliding motors (kinesin-5 family), while parallel filaments remain static
[95]. When this finding is applied to an ensemble of filaments cross-linked by motors, one would
intuitively expect that the filament dynamics should strongly depend on the local number of anti-
parallel filaments. While this intuition is supported by existing theories for dilute filament networks
[240, 250], it is clearly contradicted by experimental observations on the mitotic spindle [97, 98] (see
Fig. 3.2) as well as in vitro structures consisting of filaments cross-linked by motors [99]. Strikingly, in
these systems, the local filament velocity is largely independent of the local number of anti-parallel
filaments, i.e., network polarity. How can one resolve this riddle? What is the underlying mechanism
that explains the difference in filament dynamics between the two network types?

To answer these questions, we develop a theoretical framework for filament motion in networks
cross-linked by motor proteins. By deriving a continuum description from mesoscopic interactions,
we identify a mechanism for collective filament motion: Owing to the cross-linking in the network,
motion is propagated through it over a characteristic length. This characteristic length is set by
the antagonism between drag and motor-driven forces and is a control parameter of the filament
dynamics.

Intriguingly, for biologically realistic parameters, we can explain the qualitative behaviour ob-
served in the spindle [96, 97] and in recent in vitro experiments [99]. In addition, our theory pre-
dicts how the ratio between the spectra of polarities and velocities depends on the characteristic
length. We suggest an in vitro experiment which uses this prediction to test our theory. The feasi-
bility of this experiment is assessed with the help of computer simulations and an accompanying
theoretical analysis.

Taken together, our work offers a new perspective on the emergence of collective active motion in
nematic filament networks, and constitutes a significant step towards the establishment of a concise
theoretical framework for the dynamics in filament networks.
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A mechanistic view of collective filament motion in active
nematic networks

Abstract

Protein filament networks are structures crucial for force generation and cell shape. A central open
question is how collective filament dynamics emerges from interactions between individual network
constituents. To address this question we study a minimal but generic model for a nematic network
where filament sliding is driven by the action of motor proteins. Our theoretical analysis shows how
the interplay between viscous drag on filaments and motor-induced forces governs force propagation
through such interconnected filament networks. We find that the ratio between these antagonistic
forces establishes the range of filament interaction, which determines how the local filament veloc-
ity depends on the polarity of the surrounding network. This force propagation mechanism implies
that the polarity-independent sliding observed in Xenopus egg extracts, and in vitro experiments with
purified components, is a consequence of a large force propagation length. We suggest how our pre-
dictions can be tested by tangible in vitro experiments whose feasibility is assessed with the help of
simulations and an accompanying theoretical analysis.

Living cells have the remarkable ability to actively change their shape, and to generate forces and
motion. A key component enabling cells to exhibit these stunning mechanical properties is the cy-
toskeleton. This structure is built out of various proteins and forms diverse functional networks
consisting of polymer filaments such as actin and microtubules, motor proteins, and associated
proteins [6, 9]. The motor proteins expend chemical energy to generate forces that act on the cy-
tosceletal filaments [34, 190, 191]. In particular, motors that have two binding domains, e.g. kinesin-
5, can walk along two filaments at once, causing filaments of opposite polarity to slide past one
another [95].

To understand the non-equilibrium physics underlying the dynamics of motor–filament systems,
it has proven fruitful to study reconstituted systems of purified components in vitro [38, 74, 75, 205].
Despite their reduced complexity, these systems still self-organize into intricate patterns and struc-
tures reminiscent of those found in living cells. But how is their collective behavior at the macro-
scopic level linked to the interactions between individual filaments and motors? What are the un-
derlying mechanisms? To provide an answer, we focus here on a generic class of systems in which
filaments exhibit nematic order and motors drive relative sliding of filaments. A prominent rep-
resentative of this class is the poleward flux of microtubules in Xenopus mitotic spindles [97, 234,
270]. This process has been attributed to antiparallel, motor-driven interactions between filaments,
especially if the motor protein dynein is inhibited [19, 96, 234]. A quite puzzling observation made
in these systems was the correlation — or rather, the lack of correlation — between filament speed
and network polarity, i.e. the ratio of parallel to antiparallel filaments. Although filament motion
is induced by sliding antiparallel filaments past each other, polarity was observed to have barely
any influence on the filament speed [96, 184, 271]. This surprising behavior was recently replicated
in a system of purified components composed of the kinesin-14 XCTK2 and microtubules, and in-
terpreted in terms of a hydrodynamic theory for heavily crosslinked filament networks [99]. These
observations are at variance with previous predictions for dilute filament networks, where filament
motion depends linearly on the local polarity [206, 250, 272]. How can these conflicting results be
reconciled? What are the biophysical mechanisms determining the relation between filament speed
and network polarity?

To gain insight into these important questions we study a minimal but generic model consist-
ing of nematically ordered cytoskeletal filaments (like microtubules) and molecular motors (like
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kinesin-5) that are capable of crosslinking and sliding antiparallel filaments apart. Our mathemat-
ical analysis of this theoretical model shows that the interplay between motor-induced forces and
viscous drag acting on the filaments determines the relation between filament velocity and the po-
larity of filaments. Depending on the relative strengths of these forces, we find that the velocity–
polarity relation varies continuously between a local and a global law. Our theory reveals the mech-
anism that underlies this relation between filament velocity and network polarity: For high motor-
induced forces and small fluid drag, local forces on the filaments propagate through the strongly
interconnected network without dissipation and thereby influence the overall network dynamics.
In contrast, for small motor–induced forces or high fluid drag, local forces are quickly damped and
only influence the local dynamics. This mechanism provides a deeper understanding of the link be-
tween collective filament dynamics and molecular interactions. Moreover, it reconciles previously
conflicting results for the velocity-polarity relation in the limit of dilute [206, 250, 272] and heavily
crosslinked systems [96, 99, 273]. Strikingly, our theoretical analysis shows that the insensitivity of
filament velocities to changes in the network polarity, which was reported for the spindle [96, 271]
and in vitro systems [99], occurs in a biologically relevant parameter range. In addition our theory
predicts how the ratio between the spectrum of measured polarities and filament speeds depends
on the ratio of drag to motor-induced forces in the system. We suggest an in-vitro experiment to
validate those predictions. The feasibility of this experiment is assessed with the help of computer
simulations and an accompanying theory.

BIOPHYSICAL AGENT-BASED MODEL OF MOTOR-INDUCED FILAMENT MOVEMENT

We are interested in understanding how the interplay between viscous drag and molecular forces
between cytoskeletal filaments, mediated by molecular motors, drives the internal dynamics of fil-
ament networks. Specifically, we focus on reconstituted in vitro systems consisting of microtubules
and motors capable of crosslinking neighboring filaments and sliding them apart, c.f. Fig. 3.20 A, B.
Such motor proteins can walk on both filaments simultaneously, so that the forces generated be-
tween filaments depend on their relative orientation (Fig. 3.20 A). In vitro such microtubule-motor
mixtures were observed to self-organize into a nematic network, where neighboring filaments may
be disposed approximately parallel or antiparallel [99].

Motivated by the nematic order of these filament networks, we set up a biophysical agent-based
model, which is effectively one-dimensional. We consider a system of size S where the filaments
(microtubules) are assumed to be rigid polar rods of fixed length L, oriented with their plus end
either to the left (+) or right (−); see Fig. 3.20 C. Hence, the dynamics of each polar filament i is
determined (solely) by its velocity v (±)

i . Relative motion between filaments is caused by molecular
motors that walk on these crosslinked filaments and thereby exert forces. In-vitro assays involving
pairs of isolated microtubules cross-linked by kinesin-5 motors reveal that: (a) Kinesin-5 has the
ability to walk simultaneously on both microtubules with approximately the zero-load velocity Vm,
(b) antiparallel microtubules are pushed apart with a relative velocity of ∼ 2Vm, and (c) parallel mi-
crotubules remain static [95]. Integrating this information with experiments showing a linear force-
velocity relation for kinesin motors [274–277], we assume that the forces between two crosslinked
parallel (++−− ) and antiparallel (+−−+ ) filaments per motor are given by

F (++−− )
i j = Fm

 v (±)
j − v (±)

i

2 Vm

 , F (+−)
i j =−F (−+)

j i = Fm

1+
v (−)

j − v (+)
i

2 Vm

 . (3.104)

Here Fi j denotes the force that filament j exerts on filament i , with Fm signifying the motor stall
force; due to force balance Fi j = −F j i . These forces vanish if the relative motion of the filaments
does not induce strain in the crosslinking motors. While for parallel filaments this is the case if the
filaments move at the same speed, a motor walking on antiparallel filaments is not strained if these



3

114 3. COLLECTIVE FILAMENT MOTION IN ACTIVE FILAMENT BUNDLES

B C

N = 4

+ -

+ -

+ -

+ -

+ -

+-
-+

-
+

+-
+-

+
-+

-

+ - +
-

- -

Reconstituted system Model system

L

xx-L x+L

+ -

-

- +x

x

x

Microscopic interactionsA

+

-+

- + -

+-
Vm

i

j

i

j

Figure 3.20: Biophysical model for motor-driven filament motion. (A) Microscopic, motor-
mediated interactions between microtubules. Neighboring microtubules are connected by motors
(red) which walk towards the microtubule’s (green) plus end with velocity Vm. A motor exerts zero
force if filament motion is such that the motor is not stretched. (A -left) A motor connecting two
parallel microtubules counteracts relative motion between the filaments. (A -right) In contrast, two
antiparallel microtubules connected by a motor are slid apart. The force falls to zero once their rel-
ative velocity equals twice the motor velocity (−2 Vm). (B) Sketch of a microtubule-motor mixture
in a nematically aligned state. The springs denote motors crosslinking neighboring filaments. The
highlighted region includes all interactions of the center microtubule. (C) The one-dimensional
model system. Possible interaction partners of the microtubule in the center (dark blue) are in the
highlighted region. To account for the reduced number of interaction partners in the experimental
filament network, we draw on average N out of all possible partners to interact (interaction part-
ners are highlighted in color, parallel interaction partners in light blue and antiparallel interaction
partners in light red).
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slide apart with relative velocity 2Vm, i.e. v (+)
i − v (−)

j = 2Vm. On the other hand, the maximal force
between two filaments corresponds to the stall force, Fm, which is defined as the force between two
antiparallel filaments fixed at their relative position (v (−)

i = v (+)
j ). In that case the motor heads move

apart until the motor stalls and exerts its maximal force on the filaments. An analogous situation
occurs if a motor is attached to two parallel filaments which move with a relative speed v (±)

j −v (±)
i =

2 Vm. So the corresponding force is also Fm.

The velocity v (±)
i of a specific microtubule i in the network is determined by the force balance

equation

γv (±)
i =∑

j
ni j F (±±)

i j +∑
k

ni k F (±∓)
i k , (3.105)

where γ denotes the fluid drag coefficient and ni j the number of motors crosslinking microtubule
i and j . The sums run over all parallel and antiparallel interaction partners of microtubule i , re-
spectively. In general, the number of interaction partners as well as the strength of their interaction
can depend on a variety of factors. For example, the interactions are influenced by the density of
motors in the cytosolic volume as well as along the filament, or the local structure of the filament
network. Inclusion of all these factors would lead to a microscopic description with many unknown
parameters. Focusing on the mechanistic basis of filament motion here, we make the following two
assumptions (c.f. Fig. 3.20 C): First, we consider a homogeneous motor density in the cytosolic vol-
ume and along the microtubules. Thus, we describe motors effectively by a constant density, with
on average Nm motors per filament. Second, we assume that all filaments have on average N in-
teraction partners that are drawn randomly. This on average accounts for the limited number of
neighbors in the three-dimensional network structure.

A LOCAL MEAN-FIELD APPROXIMATION PREDICTS STRONG VELOCITY-POLARITY SENSITIVITY

To gain initial insight into the dynamics of microtubules, we simplify the system even further us-
ing a local, continuum mean-field approximation that neglects any lateral displacement between
crosslinked filaments. In the continuum description, each microtubule i is identified by its mid-
point position xi . As a crude simplification, we assume that all crosslinked, equally oriented fila-
ments passing through position x move at (roughly) the same velocity v (±)(x). This entails that the
forces between all parallel filaments, F (++−− )(x), vanish. Denoting the fraction of filaments at posi-
tion x oriented in (±) direction by ϕ(±)(x), Eq. 3.105 then simplifies to γv (+)(x) = Nmϕ

(−)(x)F (+−)(x)
and γv−(x) = Nmϕ

(+)(x)F (−+)(x) with Nm denoting the number of motors per filament as above.
Inserting the force velocity equation, Eq. 3.104, and solving for the velocity yields v (+)(x) ∝ 1−P (x)
and v (−)(x) ∝ 1+P (x), where we defined P (x) = ϕ(+)(x)−ϕ(−)(x) as the local network polarity at
position x. Hence, the central result of this local mean-field analysis, which will ultimately turn out
to be oversimplified, is a linear dependence of the local velocities on the local polarity. This result
corresponds to the intuition that forces between filaments — and their relative motions — strongly
depends on their relative orientation. In particular, while antiparallel interactions between two fil-
aments introduce motion of both filaments, parallel filaments remain static. As a consequence,
filaments with a higher number of antiparallel interactions are expected to exhibit an enhanced
speed. However, as we will see next, this intuition is in conflict with numerical simulations (in the
biologically relevant parameter regime) as well as with experimental findings for heavily crosslinked
filament gels [99].
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THE AGENT-BASED MODEL CAN DESCRIBE THE WEAK VELOCITY-POLARITY SENSITIVITY

Figure 3.21: Local microtubule speed
vs. local polarity obtained by numer-
ically solving the full set of coupled
linear equations (Eq. 3.105) for a one-
dimensional microtubule network. The
microtubule network is generated as de-
scribed in section 3.3.2. Gray dots rep-
resent individual measurements, black
dots show the average speed binned for
local polarities (bin size ∆P = 0.1). In
contrast to the oversimplified discussion
(dashed - dotted lines), the velocity does
not depend linearly on the local polar-
ity. Instead, the average speed is mostly
independent of the local polarity. Note
that the vertical stripes are artefacts aris-
ing from the discrete nature of the agent-
based simulation: Due to the finite num-
ber of filaments in an interval [x, x +∆x]
the polarity can only take on discrete val-
ues.

To test whether our model is capable of describing
the observations in heavily crosslinked filament net-
works, we solved the full set of coupled linear equations
(Eq. 3.105) for a one-dimensional network numerically.

In order to compare our results to experimental data,
we assessed the model parameters as follows: First,
we determined the mean number of interaction part-
ners per filament. The typical maximal distance be-
tween two microtubules connected by a sliding mo-
tor is estimated to be of the order of the tail length
of kinesin-5, ∼0.1µm, [34] plus two times the micro-
tubule radius, ∼0.024µm, [5]. Together with the typi-
cal microtubule length, estimated to be ∼6−7µm, these
values yield an interaction volume of approximately
1/3µm3. Fürthauer and collaborators argue that the
number density of filaments in their experimental setup
is approximately 17/µm3 [99]. So, all in all, we esti-
mate that there are N ≈5.5 interaction partners per fil-
ament. In an analogous manner, we assessed the num-
ber of microtubules in our one-dimensional represen-
tation of the experimental chamber of length 400µm to
be ∼400. Those filaments are placed randomly as de-
scribed below (3.3.2) and experience a drag coefficient
of γ = 0.5 pN s/µm [278–280]. As motor parameters we
use Vm=20nm/s [95], Fm∼1 pN [34] and Nm=25 as
the average number of motors per filament [99]. Us-
ing these parameters we performed numerical simula-
tions, and found good agreement with experimental re-
sults (compare Fig. 3.21 and Fig. 2 in Ref. [99]). In par-
ticular, the average filament speed (filled black circles in
Fig. 3.21) is found to be independent of the local polar-
ity. This clearly contradicts the local mean-field theory
as discussed above (see section “3.3.2”). To assess why
this simplified local view is misleading, we next give a
comprehensive mathematical analysis of the full agent-
based model.

NON-LOCAL CONTINUUM THEORY

It is evident that in the simplified local mean-field analysis discussed above we neglected the finite
extension of filaments. Actually, two filaments which pass through the same location do not nec-
essarily have the same midpoint position. While they share some overlap, they will interact with
different neighbors at different positions. If all filaments have the same length L, a filament with
midpoint at position x can interact with filaments whose midpoints lie in the interval [x −L, x +L]
(cf. Fig 3.20 C). In this way, the velocities of filaments located at different spatial positions are cou-
pled, leading to non-local correlation effects that could explain the weak dependence of filament
speed on local polarity.

Motivated by this heuristic argument, we set out to formulate a continuum theory that quantifies
the non-local coupling between the filament velocities (v±(x)) and densities (ρ(±)(x)). To this end,
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we rewrote the local balance equation, Eq. 3.105, assuming a continuum limit.

γ v (±)(x) = 1

L

∫ x+L

x−L
dy

{
f (++−− )

parallel(x, y)+ f (+−−+ )
antiparallel(x, y)

}
, (3.106)

where the local forces are given by

f (++−− )
parallel(x, y) = N̂m(x, y) ·N ϕ(±)(y) ·F (++−− )(x, y) , (3.107a)

f (+−−+ )
antiparallel(x, y) = N̂m(x, y) ·N ϕ(∓)(y) ·F (+−−+ )(x, y) . (3.107b)

Here, the force a motor exerts on the filaments it crosslinks is simply given by the continuum ver-
sion of Eq. 3.104, e.g. F (++−− )(x, y) = Fm [v (±)(y)− v (±)(x)]/(2 Vm). The second factor in Eq. 3.107 ac-
counts for the expected number of interaction partners at position y , given by the number fraction
of filaments with the respective polarity ϕ(±)(y) multiplied by the average number N of interac-
tion partners: N ϕ(±)(y). For this functional form to apply, we implicitly assumed that the filament
network is not sparse, i.e., that there is always a sufficient number of interaction partners, namely
more than N , available. The number fraction can be written in terms of the filament densities as
ϕ(±) = ρ(±)/(ρ(+) +ρ(−)). The first factor in Eq. 3.107, N̂m(x, y), specifies the average number of mo-
tor proteins mediating the interaction between a pair of filaments located at positions x and y . This
number is determined by the size of the overlapping region, Lov = L − |x − y |, and the number of
motors per filament, Nm. Since all the available motors on a filament have to be shared among all
of its N interaction partners, only Nm/N are available for the interaction with any specific filament.
Hence, assuming a uniform motor distribution along each microtubule, the effective number of
motors crosslinking a filament pair is on average given by N̂m(x, y) = Nm/N ·Lov/L.

Based on this non-local continuum representation of our agent-based model, we seek a quan-
titative understanding of how the opposing forces in the filament network give rise to collective
(uniform) motion. Ultimately, our goal is to provide an explicit expression relating the polarity and
velocity fields.

ANALYTIC SOLUTION FOR MOTOR-INDUCED FILAMENT MOVEMENT

In this section, we present an analytic solution to our non-local continuum description (Eq. 3.106).
We restrict our analysis to the limit where the system size is large compared to the filament length
L and to all other intrinsic length scales of the system we might encounter in the course of the
mathematical analysis. Making use of complex calculus, in this limit it is possible to find an explicit
expression for the velocity field v (±)(x) in terms of the polarity field P (x). This expression, thus,
constitutes a velocity-polarity relation which quantifies how the polarity field affects the velocities.

In an experimentally reasonable parameter regime one finds an approximate expression which
reads (for a detailed analysis see SI):

v (±)(x) =±Vm (1−α)
(
1∓Π(x)

)
, (3.108a)

Π(x) = 1

2 lc

∫ ∞

−∞
dy e−|x−y |/lc P (y) . (3.108b)

where 1/α := 1+12 (lc /L)2; for biologically plausible parameter values one has α¿ 1. Importantly,
Eq. 3.108a shows that the motion of filaments is neither solely dependent on the local polarity nor
fully independent of the polarity field. Instead, the local filament velocities, v (±)(x), now depend in
a non-local way on the polarity, P (y), as specified by the convolution integral (weighted average),
Π(x), with an exponential kernel (weight) ∼ e−|x−y |/lc . To emphasize this non-local dependence of
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the velocities on the polarity, we refer to Π(x) as the ambient polarity in the following. The charac-
teristic interaction range lc , over which the polarity field is averaged, is given by

lc = L

√
Fm Nm

24γVm
. (3.109)

It is set by the ratio of the total average force exerted by motors on a microtubule, Fm Nm, to the drag
imposed on the microtubule by the surrounding fluid, γVm. Furthermore, it can be interpreted
as the length scale over which motion generated by antiparallel filament sliding is propagated by
parallel filament interactions through the network. As a result, the interaction range lc reflects the
antagonism between the combined effect of motion-generating forces (antiparallel interactions)
and motion-propagating forces (parallel interactions), and the attenuation of force propagation in
the filament network mediated by viscous drag. This antagonism is captured by the spatial average
of the polarity field which effectively corresponds to a low-pass filter. Due to averaging over local
polarities, high-frequency fluctuations in the spatial polarity profile are filtered out and, hence, do
not contribute to the velocity. Explicitly, by Fourier transforming Eq. 3.108b we find a Lorentzian
Fourier weight

Πk = Pk
1

1+ (klc )2 , (3.110)

where k denotes the wave number. Hence, the characteristic frequency of the low-pass filter is pro-
portional to the reciprocal of the characteristic length, 1/lc , implying that the larger lc the stronger
the filter and the less relevant local fluctuations in the polarity. To put it another way, the speed of a
filament at position x depends only on the local “view” of the polarity field within a range defined
by lc (Fig. 3.22).

To gain an impression of how the interplay between the different forces in the network leads to
the non-local effects, it is helpful to consider the limiting cases of large and small lc , respectively.
For large lc , motor forces dominate viscous drag (FmNm À γVm). Then, either due to weak dis-
sipation or strong motor-mediated filament coupling, parallel crosslinked filaments translate the
motion, generated by interactions between antiparallel filaments, over long distances (∼ lc ). As a
result, motion generated at one position in the network propagates through the entire network. In
the asymptotic limit lc →∞, the velocity-polarity relation (Eq. 3.108a) reduces to v (±) =±Vm

1, con-
firming recently published findings for a heavily crosslinked network [99]. In contrast, for small
lc (FmNm ¿ γVm) force generated at a certain position in the network has only a local effect. Forces
generated by antiparallel interactions cannot propagate through the network either due to strong
dissipation or a lack of parallel filament interactions. In this limit, the velocity-polarity relation re-
duces to the result obtained with the local mean-field theory discussed in 3.3.2. This relation agrees
with the velocity-polarity relation found for dilute filament networks where only local bundles of
filaments are considered [250, 272] 2.

INTERPRETATION OF THE VELOCITY-POLARITY RELATION

With regard to previous results, our considerations offer a solution to the seemingly contradictory
behavior of dilute and heavily crosslinked networks. More specifically, our results identify a com-
mon mechanism for collective filament dynamics: Due to the finite extension of the microtubules,
one microtubule can be crosslinked with several others whose center positions are spread over a

1for zero overall polarity
2Care has to be taken when comparing our result to the dilute limit: We restricted our discussion to the case of sufficient

number of interaction partners, whereas usually for dilute systems disconnected patches of filaments are considered.
For a more comprehensive discussion on how our results are related to results for dilute systems we refer the reader to
the SI.
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Figure 3.22: Typical polarity field, P (x), and two choices of interaction kernel, exp(−|x−y |/lc ), char-
acterizing global and local polarity dependence, respectively. Filaments positioned in a range of lc

around x contribute to the motion of microtubules at x. Depending on the ratio of average motor
force exerted on a microtubule to attenuation (drag of microtubules in the fluid), the characteristic
propagation length lc takes different values. (A) For large lc and polarity fields that vary randomly on
length scales smaller than lc , this averaging yields a roughly constant ambient polarity profile,Π(x),
and hence a roughly constant velocity profile. On a microscopic level, this corresponds to a heavily
crosslinked filament network (inset). (B) In the limit of small lc only the local environment, i.e., the
direct interaction partners, has an influence on the microtubule motion. The ambient polarity field
(velocity field) varies as the polarity field varies.
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region up to twice the microtubule length (Fig. 3.20C). As a result, although microtubules at dif-
ferent positions might in fact not be directly linked by a motor, an interaction between them can
be mediated by successive crosslinks through a chain of microtubules. In this way, the velocity of
microtubules at one position influences the velocity at a different position and information on the
local polarities propagates through the system. How far this information propagates (lc ) depends
on how “effectively" movement at one position is translated into movement at a different position.
The greater the efficiency, the smaller the ratio between the passive drag on microtubules in the
fluid (and thus the attenuation) and the average maximal active force exerted on one microtubule
by all motors linking it to other microtubules.

Taken together, our results shed light on the question of what determines the local speed of mi-
crotubules in a nematic network: Generally, it is neither the local polarity, P (x), that determines
the velocity of microtubules at a certain position nor the overall polarity in the system, Pglob. In-
stead the ambient polarity, Π(x), is informative. The ambient polarity corresponds to an average of
the polarity with a weight that decays exponentially with the distance from the position of interest
(see Eq. 3.108b). The characteristic decay length, lc , is proportional to the filament length L, and in-
creases with the ratio of the motor-force on a microtubule, Fm Nm , to the fluid drag, γVm . In general,
for a finite decay length and a spatially varying polarity profile, the ambient polarity also varies in
space. As can be inferred from Eq. 3.108b, for larger values of lc , a larger region of space contributes
to the ambient polarity (see also Fig. 3.22). Accordingly, the ambient polarity then corresponds to an
average of the local polarity over more positions. As a result, for a fixed spatial polarity profile, the
range of values of the ambient polarity decreases with increasing characteristic propagation length
lc . Due to the linear relationship between the velocities and the ambient polarity, Eq. 3.108a, the
same holds true for the range of velocities.

In the following, we illustrate these predictions with the help of two examples. First, we consider a
spatially linear polarity profile. Besides being an instructive case, this polarity profile is of biological
relevance. It resembles the measured, approximately linear polarity profiles in the mitotic spindle
(see 3.3.2). As a complement, the setup of the second example is designed to mimic typical in vitro
experiments. In order to make testable predictions we analyze the suggested (idealized) experiment
in detail and focus on quantities which we believe to be accessible in experiments.

A SIMPLE EXAMPLE: THE LINEAR POLARITY PROFILE

Our theory predicts that the range of velocities decreases with increasing characteristic propagation
length, lc . To demonstrate this correlation, we consider a linear polarity profile P (x) = a (x−S/2) in a
finite interval x ∈ [0,S] (for details see SI). As motivated above, we describe the local polarity profile
in terms of its Fourier coefficients P̂k . The wave numbers are now discrete, k ∈ N, as the system
is finite. The Fourier coefficients of the ambient polarity, Π̂k , are given by the Fourier coefficient
of the local polarity, P̂k , times a k-dependent weighting factor: Π̂k = P̂k /

[
1+ (2πklc /S)2

]
(see SI).

Correspondingly, the ratio between the range of the local polarity 2Pmax = aS and the range of the
ambient polarity 2Πmax can be approximated as (see SI)

Πmax

Pmax
≈ 1

1+ (πlc /S)2 . (3.111)

This finding confirms the intuitive expectation that with increasing characteristic length lc the am-
bient polarity range 2Πmax (or analogously the velocity range 2ΠmaxVm(1−α)), should decrease rel-
ative to the local polarity range, 2Pmax, and the spatial profile gets “squeezed" (Fig. 3.23). From
the approximate expression, Eq. 3.111, we infer that for characteristic lengths of the same order as
the system size, lc /S ∼ O (1), the range of the ambient polarity 2Πmax is only a tenth of the range
of the local polarity 2Pmax. Due to the linear relationship between the velocity and ambient polar-
ity, Eq. 3.108a, this small range of ambient polarities implies that also the velocity range for equally
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Figure 3.23: “Squeezing" of the ambient polarity in a finite system with reflecting boundary con-
ditions. (A) Sketch of the linear spatial polarity profile, P (x) = a (x −S/2), x ∈ [0,S], together with
the ambient polarity profile, Π(x, lc ), for two different values of the characteristic length lc /S (nor-
malized by the system size S). The solid and dashed lines indicate the solutions relevant for (+) and
(−) filaments, respectively. For larger lc , the range of the ambient polarity, 2Πmax, becomes more
restricted. (B) Ratio between the range of the ambient polarity 2Πmax and the range of the local
polarity 2Pmax = aS plotted against lc /S. The curve is well approximated by a Lorentzian decay
1/(1+ (πlc /S)2) (estimate). For the exact expression, please refer to the SI. For larger lc /S, the range
of the ambient polarity relative to that of the local polarity falls off rapidly.

oriented microtubules is small. As a result, for lc ≥ S, all equally oriented microtubules move as
a collective with approximately uniform velocity. In particular, there is also movement in regions
where locally the polarity is P (x) =±1, corresponding to stretches populated only by parallel micro-
tubules.

For in vitro experiments with filament gels or reconstituted systems, it might not be feasible to
get information on the entire spatial polarity and velocity fields. Instead, in typical experiments
the local polarity and velocity are recorded only at single points in the filament gel [99, 184, 217].
Data obtained in this way is similar to that shown in Fig. 3.21 where one data point corresponds to
a polarity-velocity pair measured at one location in the gel. In the next section, we thus perform
an in silico experiment where we make single velocity and polarity measurements only and do not
measure the entire spatial fields. Nevertheless, the key idea motivating the setup of the in silico
experiment is the expectation that the spectrum of measured velocities is squeezed compared to
the spectrum of local polarities: Due to the filtering of short-wavelength modes, extreme values
of the local polarity are averaged out and the velocity profile is smoother than the local polarity
profile. In the following, we thus focus on deriving a relation between the measured distribution of
local polarities and velocities.

IN SILICO STUDY: RANDOM POLARITY FIELD

The goal of this section is to suggest an experimental setup that should permit the antagonism be-
tween the different forces in the system due to drag and motor-mediated interactions to be explored.
To this end, we performed an in silico experiment intended to closely emulate the situation in ex-
periments with in vitro filament gels. Photo-bleaching experiments have proven to be a feasible
option to simultaneously determine sliding velocities and local gel polarity in filament gels [99, 184,
217]. In these experiments, the fluorescently labelled microtubules in the gel are photo-bleached
along a line by laser light. Due to the motion of the filaments in the gel, the bleached line splits
into two lines that move to the right (left) and correspond to left-oriented (right-oriented) micro-
tubules, respectively. From the motion of the two lines, the local velocity and the local polarity can
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be inferred simultaneously: The local velocity of the left-oriented (right-oriented) microtubules is
directly obtained from the velocity of the respective line. Furthermore, the local polarity is deter-
mined from the ratio of the bleach intensities of the two lines. The data so obtained only contains
local information about the velocity and polarity but no spatially resolved information. In order to
make experimentally testable predictions, our goal is, therefore, to derive a relationship between
the distribution of measured local polarities and the distribution of measured velocities for which
spatial resolution is not necessary.

Setup of the in silico experiment: To illustrate how a given polarity distribution affects the ve-
locity distribution, we consider a specific example, namely a polarity “environment” resulting from
random filament assemblies; for details please refer to the SI. We assume that the filament network
is nematically ordered and filaments are randomly oriented to the left or to the right, and there-
fore neglect the possibility that in the experimental system the spontaneous self-organization into
the nematic state might involve some polarity sorting. More specifically, filaments are randomly
placed in a chamber of size S À L with periodic boundary conditions. Since for random filament
assemblies there is no reason why the average number of left- and right-pointing filaments should
differ, we choose the number density for both left- and right-pointing microtubules to be identical:
µ(+) =µ(−) =µ. Importantly, due to the finite extension of the microtubules, the polarity at different
positions is not independent. Instead, one finds a positive covariance for the polarities at distances
less than one microtubule length L apart (see SI). As a result, the polarity profile is not completely
random but correlated on lengths smaller than the microtubule length L (for a typical profile please
refer to the SI).

Signature of the ambient polarity in the velocity distribution: Based on our theoretical under-
standing, we expect that, depending on the characteristic length lc , the distribution of velocities is
squeezed compared to the polarity distribution. This is because, depending on the ratio of the an-
tagonistic forces, filament motion arises from averaging the polarity over longer (large lc ) or shorter
(small lc ) distances. As we expect the degree of averaging to be reflected in the distribution of veloc-
ities, the standard deviation of the microtubule velocities should be an interesting quantity to look
at in experiments.

In order to predict the variance of the velocities (ambient polarities) analytically, we describe the
local polarity field resulting from the random placement and orientation of filaments in the “exper-
imental” chamber by a set of correlated random variables (see SI). Using their correlation structure,
we average the local polarity according to the expression for the ambient polarity (Eq. 3.108b) and
find (see SI)

Var[v/Vm]

Var[P ]
= (1−α)2

[
1− 3lc

2L

(
1−e−L/lc

)
+ 1

2
e−L/lc

]
. (3.112)

Here, Var[P ] = Var[P (x)] = 〈P (x)2〉−〈P (x)〉2 denotes the variance of the local polarity, and Var[v/Vm] =
Var[v(x)/Vm] the variance of the (normalized) velocity v/Vm measured in units of the motor veloc-
ity. The above equation implies that the variance of the normalized velocity can be considerably
smaller than the variance of the spatial polarity profile; see Fig. 3.24B. The ratio between the two
only depends on the characteristic length lc /L and quickly decays with respect to it. For larger lc /L,
the ambient polarity corresponds to an average over a larger region in space. Therefore, its variance
decreases. Due to the linear relationship between the velocity and the ambient polarity, the variance
of the velocity decreases to an equal extent.

In order to compare our results to in vitro experiments we assessed the values for both the one-
dimensional number density of filaments 2µ and the characteristic length lc . From recent experi-
mental data [99], we estimated 2µ = 6 and lc /L ≈ 10; see also Section 3.3.2. Given these estimates,
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our theory yields a standard deviation of the polarity distribution σ[P ] = p
Var[P ] ≈ 0.46, corre-

sponding to a broad range of observable polarities similar to what is seen in experiments. Using our
theoretical results we predict the ratio between the standard deviations of the local polarity and the
normalized velocity to be approximately σ[P ]/σ[v/Vm] = p

Var[P ]/Var[v/Vm] ≈ 6.3. Thus, we ex-
pect the mismatch between the widths of the two distributions to be clearly visible in experiments.

Polarity and velocity distribution in the in silico experiment: Figure 3.24A shows a comparison
of the distribution of the local polarity and velocity, as measured in the in silico experiment (density
plot and histograms) and as predicted analytically (black lines). The density plot shows the mea-
sured probability distribution for all combinations of local polarity and velocity. The histograms
for both quantities were obtained as projections of the density plot onto the respective axis. While
the local polarity takes values in a broad range between ±1 (histogram at top of Fig. 3.24A), the dis-
tribution of the velocity is squeezed to values of approximately (1± 0.2)Vm (histogram at right of
Fig. 3.24A).

The disparity between the two distributions nicely illustrates the filtering of high-frequency modes
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Figure 3.24: Results for the in silico experiment. (A) Density plot displaying the probability distri-
bution for all combinations of local polarity, P (x), and speed, |v(x)/Vm |, as measured in the in silico
experiment described in section 3.3.2. The histograms at the top and on the right are projections
of the density plot on the respective axis. In both cases, the solid line is the corresponding ana-
lytic prediction that was obtained by approximating the distributions by a normal distribution with
the respective predicted mean and variance. In comparison to the local polarity (top), the veloc-
ity distribution (right) is less broad, i.e., it exhibits a smaller but non-zero standard deviation. The
parameters are chosen to match the stochastic agent-based simulation described in section 3.3.2,
namely µ = 3 and lc /L = 10. (B) Ratio between the standard deviations of the normalized veloc-
ity, σ[v/Vm], and of the local polarity, σ[P ], plotted against normalized characteristic length, lc /L.
The results of the in silico experiments (symbols) for µ= {3,10,17,24} (red stars, blue circles, yellow
squares, green crosses) collapse onto one master curve. The solid line corresponds to the analytic
prediction of the master curve. For larger characteristic length, the standard deviation of the veloc-
ity decreases relative to the standard deviation of the local polarity. Note that for small µ= 3, there
is a slight deviation from the master curve. In this case, the variance of the local polarity is so high
that the corresponding, approximate normal distribution has not decayed to zero at P = ±1 (see
histogram at top of A).
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discussed in the section 3.3.2. This filtering is due to long-range interactions induced by the aver-
aging of the polarity field over a length lc . Since the filtering strongly depends on the characteristic
length lc , the ratio between the standard deviations of the local polarity and velocity distributions,
σ[P ]/σ[v/Vm], decreases as lc increases (Fig. 3.24B). It would be interesting to test this prediction
experimentally by changing, for instance, the concentration of the molecular motors, or the drag in
the fluid.

Figure 3.24B shows how the standard deviation of the velocity distribution, normalized to the
standard deviation of the local polarity distribution, depends on the characteristic length lc . For
small lc ∼ L, the effective interaction range of microtubules lc is small and the microtubule dynam-
ics is predominantly determined by the local polarity at their respective position. Conversely, in the
limit of large lc , the dynamics of all microtubules is determined by the same average global polar-
ity. Consequently, all microtubules then exhibit the same velocity and the standard deviation of the
velocity σ[v/Vm] decays to zero. Notably, the normalized curves for different values of the micro-
tubule density, µ, collapse onto one master curve when plotted against lc /L (see SI). Thus, in our
thought experiment, where we make a certain assumption with regard to the spatial polarity profile,
knowledge of the microtubule density is not necessary.

Experimental relevance In an experimental filament gel other factors also influence filament dy-
namics. For instance, as molecular motors randomly attach and detach from microtubules, even
microtubules at the same position can interact with a different set of microtubules and thus experi-
ence different environments. As a result, different microtubules at the same position might actually
have a (slightly) different velocity. Correspondingly, for two experimental realizations with an iden-
tical polarity profile, the respective average filament speeds at one position x might indeed differ.
This effect is not captured by our continuum description, which assumes deterministic velocity
profiles v (±)(x). Thus, we expect a broader distribution of velocities for in vitro measurements com-
pared to our theoretical prediction. To gauge the strength of this effect, we compared our theoretical
predictions with the results from stochastic agent-based simulations of the system (for details see
SI). We find that the specific value of the width of the velocity distribution depends on details of the
velocity measurement in the experiments. Nevertheless, irrespective of these details, the velocity
distribution is significantly smaller than the width of the polarity distribution.

The in silico experiment considered here clearly simulates an idealized system insofar as we have
assumed that there is no overall spatial structure. The analysis can be readily extended to a broader
class of systems, in which knowledge of the covariance structure of the polarity field (Cov[P ](x, y))
is sufficient to predict the covariance structure of the velocity field (Cov[v/Vm](x, y)) (see SI). Since
this signature of our results is strongly dependent on the characteristic length, lc , we expect such
measurements to provide insight into network parameters. Actually, even low-resolution informa-
tion on the spatial variation of the polarity field could be helpful to test our predictions. As we have
seen above, the Fourier coefficients are suppressed by 1/(1+ (2πlc k/S)2), k ∈Z, in a finite system of
size S (or, equivalently, by 1/(1+ (lc k)2), k ∈ R, in the infinite system). So, for large lc , the velocity
modes with wave vector k ≥ 1/lc should not be visible in experiments.

DISCUSSION AND CONCLUSION

In this work, we have considered a mesoscopic model for microtubule dynamics in a nematic,
motor-crosslinked network. So far, research has focused on either the dilute or heavily crosslinked
limit. Strikingly, the observed behavior in these two cases is qualitatively different: While in the di-
lute case the microtubule velocities strongly depend on the local network polarity [250, 272], in the
heavily crosslinked case the velocity has been found to be independent of the polarity [96, 99, 271]).
These distinct phenomenologies are puzzling, as the underlying microscopic motor-mediated mi-
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crotubule interactions are presumably the same in both cases. Starting from these filament interac-
tions, we have shown how the interplay between movement resulting from motor-crosslinking and
the countervailing effects of fluid drag determines the sensitivity of the local filament dynamics to
the network polarity. Thereby we provide a better understanding of the essential physical principles
that lead to such diverse dynamics.

To this end, we derived a non-local mean-field theory of our system from the microscopic inter-
actions. This theory enabled us to obtain an explicit analytic expression relating the local micro-
tubule velocity to the spatial polarity profile. Our key result is that the local velocity depends on
the local ambient polarity, which is given by the averaged polarity a microtubule senses in its en-
vironment. More specifically, the local velocity is given by the convolution of the polarity and an
exponentially decaying interaction kernel with characteristic propagation length, lc . Hence, it is not
the local polarity at the position of a microtubule that determines its motion but rather the entire
polarity profile in an environment of length lc . This finding implies that a one-to-one mapping
between the local velocities of microtubules and the local polarity as shown in Fig. 3.21 is not the
whole story. Instead, in order to predict the velocity at a specific location, knowledge of the spatially
varying polarity profile in the entire vicinity is needed. In general, such detailed spatial information
appears to be inaccessible with current experimental techniques. Fortunately, in order to infer the
distribution of velocities from the distribution of local polarities, such detailed information is not
essential. For example, in a gel where microtubules are randomly placed in an experimental cham-
ber and stochastically oriented, our theory predicts how the variances of the local polarity and of
the velocity are related.

The relationship between the velocity and polarity distributions strongly depends on the charac-
teristic propagation length lc , which is an important emerging length scale in the system. It can be
interpreted as a non-local interaction range of filaments, and is determined by the ratio between
the average motor-driven force on a microtubule and the microtubule’s drag in the fluid. Thus, this
intrinsic length reflects how effectively motion generated at one position is propagated through the
interconnected network of filaments. It strongly depends on the network properties.

We have identified a common mechanism explaining the microscopic origin of both uniform fil-
ament motion in percolated nematic networks and the strong polarity dependence of microtubule
motion in dilute systems: Due to their finite extension, microtubules directly interact with several
parallel and antiparallel neighbors within a spatial ranges equal to twice their filament length. Mo-
tors between parallel microtubules induce a resistance against relative motion and thus promote
uniform motion of crosslinked microtubules. Thereby, motion generated by antiparallel interac-
tions translates through the percolated network of microtubules even into regions with only paral-
lel and no antiparallel interactions where a priori no motion is expected. The degree of efficiency
of this propagation of motion is quantified by the characteristic propagation length lc . Hence, it is
influenced by the average number of motors per interaction and the drag of filaments in the fluid,
among other factors. Filaments at distances larger than lc apart can be considered to be part of dis-
connected patches. That is, for small lc only motor-crosslinks between nearest neighbor filaments
are relevant for filament motion, as in the dilute limit. For this case, we recover the linear relation-
ship between local polarity and filament velocity [206, 250, 272]. On the other hand, in the limit
of large lc , which corresponds to systems where the patch size exceeds the system size, we find a
dependence of the velocity on the global polarity only. Here, the velocity for equally oriented mi-
crotubules is the same everywhere in space. In particular, our results explain the weak sensitivity of
the filament velocities to the local polarity observed in recent experiments [99] and in the spindle
apparatus [96, 234, 271].

In particular we predict a strong dependency of the velocity distribution on the characteristic
propagation length. In order to test this prediction, we suggest a practicable in vitro experiment
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whose feasibility we assessed with the help of an in silico experiment intended to mimic the sug-
gested in vitro experiment. Intriguingly, it is not necessary to determine the entire spatial polarity
and velocity profile to check the validity of our theory. Instead, it suffices to determine the polar-
ity and velocity distributions by measuring the local velocity and polarity at random positions in
the filament gel. When plotting the ratio of the standard deviations of the polarity and velocity dis-
tribution against the characteristic length lc , we expect the data to collapse onto a master curve,
irrespective of the explicit number of filaments in the experimental chamber (Fig. 3.24). Further-
more, the ratio of the standard deviations of the polarity and velocity distributions for a specific
experimental setup could be used to identify the characteristic propagation length lc and, allow one
to draw conclusions regarding network features (Eq. 3.109).

Microtubule motion in mitotic spindles formed in Xenopus egg extract is a prominent example
for polarity-independent sliding. The polarity profile in these spindles is approximately linear, rang-
ing from zero polarity in the center to highly polar regions at the spindle poles [184]. Nonetheless,
microtubules drift with roughly constant velocity towards the spindle poles, especially if dynein is
inhibited. Our theory can account for this behavior. In particular, the individual velocities deviate
only slightly from the mean velocity if motor-crosslinking is strong, i.e. if the characteristic length
exceeds the system size (see Sec. 3.3.2). Interestingly, for biologically plausible parameters the in-
teraction range is of the same order as the length of the spindles formed in Xenopus egg extracts,
lc ∝ 30− 80 µm. Correspondingly, as seen in Fig. 3.23(A), the velocity of the poleward moving
microtubules is expected to be slightly smaller close to the pole than in the center of the spindle.
This variation is due to the dependence of the velocity on the ambient polarity (the local polarity
environment). Taken together, our results suggest that, depending on the value of the characteristic
length compared to the spindle size, the spatial polarity profile and, in particular, the fact that the
poles are highly polar, could be significant for the velocity profile as well. To examine this behavior
experimentally, it would be instructive to investigate the velocity distribution of microtubules in a
dynein-depleted, unfocused spindle as a function of the distance from the spindle boundary.

From a broader perspective, it would be interesting to extend our work on nematic networks to
a more general description of filament gels. To this end, it could be promising to start from re-
cent work on heavily crosslinked filament gels, where a sophisticated hydrodynamic framework
has been established from microscopic properties [99]. This theoretical framework assumes an in-
finitely large characteristic length lc , so that motion generated at one position propagates through
the whole network without loss. Our results suggest that incorporating an exponential interaction
kernel into this framework can provide a more comprehensive description of filament motion in
crosslinked gels. Such a description would also offer the chance to understand the transition from
heavily crosslinked to weakly coupled gels.
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3.4. CONNECTIVITY TUNES FILAMENT VELOCITY IN FILAMENT-MOTOR

MIXTURES

3.4.1. SIGNIFICANCE

Cytoskeletal filament assemblies form a diverse range of dynamic structures that play essential roles
in many cellular processes, including cell division, cell motility, and intracellular transport. The
variety of tasks performed by cytoskeletal filament assemblies makes it necessary that their size
and shape vary enormously. How the interaction between filaments and their associated motor
proteins occurs at the microscopic level to control the size and shape of these structures is not well
understood. Previous studies have increased the awareness that an important factor that controls
the large-scale physics of cytoskeletal filament assemblies is their cross-lining state. For example, it
has been shown that the self-organization of the spindle is tied to the fact that its microtubules are
highly connected.

Here, we address the question of how the degree of filament connectivity controls filament veloc-
ities in the system. To this end, we study a in vitro system composed of cross-lining motors, passive
cross-linkers, and stabilized microtubules. On the basis of experimental observations and agent-
based computer simulations, we derive a semi-analytical theory that shows how the local filament
speed depends on the cross-linking state of the network.
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Connectivity tunes filament velocity in filament-motor
mixtures

The cytoskeleton provides living cells with the remarkable ability to generate force and motion.
Filaments such as actin and microtubules, molecular motors, and associated proteins represent the
main building blocks of this structure [8, 9]. The capability of molecular motors to locally convert
chemical energy into mechanical work enables the active remodeling of cytoskeletal filaments into
structures such as microtubule asters or the spindle apparatus, which are essential for cell function-
ality [9, 281, 282].

To understand the complex interplay between filaments and molecular motors it has been proven
fruitful to study reconstituted systems composed of purified components in controlled conditions
[40, 74, 121, 205, 283]. Despite their reduced complexity, mixtures of microtubules, kinesin motors,
and passive cross-linkers or depletion agents have been found to self-organize into patterns and
structures reminiscent of those observed in-vivo [38, 40, 74, 75, 205]. This includes the formation
of nematically ordered dynamic bundles exhibiting turbulent-like behavior [85, 119, 247, 284–286],
polarity sorting of microtubules [38, 76] with the subsequent creation of asters or other polar struc-
tures [48, 75], and the emergence of active networks [218, 287–289]. On a phenomenological level,
this behavior can be understood by hydrodynamic theories that are built on symmetry arguments
[48, 49, 51, 52, 86, 239]. However, those theories come at a price and contain phenomenological pa-
rameters, which are hard to measure and relate to the microscopic interactions of the constituents.

How to bridge the gap between molecular scale interactions and large scale dynamics is an open
question that has recently come into the focus of interest [76, 237, 240, 242]. This question has been
addressed using coarse-grained models derived from minimal microscopic interactions [240, 241,
243–248] or large scale computer simulations [39, 75, 93, 249–252]. These studies have increased the
awareness that an important property determining the large scale physics of filament-motor mix-
tures is their cross-linking state [242]. For example, it has been shown that the self-organization of
the spindle is inherently tied to the fact that its microtubules are highly connected [98]. Moreover it
has been shown that the number of passive cross-linkers in the filament network can control spatial
instabilities of the large scale dynamics [91, 92]. Previous theoretical work examining how the num-
ber of cross-linkers influences the macroscopic behavior of filament networks has concentrated on
dense highly cross-linked systems [2, 92, 99, 242, 290] or sparsely linked systems [206, 240, 243, 250].
However, not much is known about the intermediate cross-linking regime, which is likely describes
a broad range of active biological systems. As an example, microtubule asters studied in cell extracts
[291] are likely highly cross-linked in the bulk while sparsely towards their periphery [242].

Here we address the question how the degree of filament connectivity affects the overall speed
of filaments in the network. To this end, we use an in-vitro reconstituted system composed of sta-
bilized microtubules, molecular motors and passive cross-linkers. We find that an increase in the
passive cross-linker concentration leads a non-monotonous change in the mean filament velocity.
Surprisingly we find that an increase of passive cross-linkers can lead to an increase of filament
velocities (Sec. 3.4.2). This is counterintuitive since passive cross-linkers impose friction on adja-
cent filaments. In Sec. 3.4.2 we proceed to develop a minimal agent-based model that reproduces
our key experimental observations. Based on this model we relate the mean filament velocity to
the network architecture and ultimately to the connectivity in the filament network (Sec. 3.4.2 and
Sec. 3.4.2). Using large scale numerical simulations we identify previously reported physical proper-
ties of sparse and highly cross-linked networks at low and high cross-linker concentrations, respec-
tively (Sec. 3.4.2). Specifically we show that the mean filament velocities become insensitive to the
local network environment as the passive cross-linker concentration is increased; a feature which
was predicted for highly cross-linked filament networks [2, 99]. Based on a minimal model we de-
rive a semi-analytical theory that can encompass both sparse and highly cross-linked regimes and
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predict the mean filament velocity as a function of the active motor and passive cross-linker con-
centration (Sec. 3.4.2). Last we compare our analytic results to measurements from the agent-based
simulation (Sec. 3.4.2).

EXPERIMENTAL SYSTEM

To investigate the dynamics of active filament networks as the connectivity is increased, we use
a three-dimensional system composed of active microtubule bundles on which molecular motors
act exerting active forces. Briefly, as previously reported, we incubate short (≈ 2 µm) fluorescently-
labeled stabilized microtubules with engineered motors and crosslinkers. Motors are composed of
two biotynilated kinesins (specifically, the fragment K401 of kinesin-1[38]) bound together via strep-
tavidin (Methods); see Fig. 3.25 (a). We refer to them as KSA for Kinesin-StreptAvidin. Each kinesin
of the motor cluster can bind a microtubule, allowing the motor cluster to cross-link neighbouring
microtubules and simultaneously walk towards the plus end of the microtubules it cross-links; see
Fig. 3.25 (a),(b). If the microtubules are oriented in an anti-paralllel way, each half of the motor

Figure 3.25: (a) Kinesin motor complexes are linked together by streptavidin forming a motor clus-
ter that can simultaneously bind to two microtubules. The kinesin motors move directionally to-
wards the microtubule plus end at speed vm. If the microtubules cross-linked by a motor cluster are
oriented in opposite direction (anti-parallel), the motor motion results in filament sliding opposed
to the direction of motor movement. (b) If the microtubules are oriented in the same direction
(parallel), the filaments do not move relative to each other. (c) A large field of view of the system
under fluorescence microscopy in absence of motor clusters ([KSA] = 0 nM) at different concentra-
tions of ANLN. We find that the peptide ANLN bundels microtubules in a concentration dependent
way (left to right: [ANLN] = 1.4 µM, 2.2 µM, 4.4 µM). (d) Upon addition of motor clusters ([KSA] =
60 nM) and ATP the system assembles in active bundles whose architecture depends on the ANLN
concentration (left to right: [ANLN] = 1.4 µM, 2.2 µM, 4.4 µM). Scale bar in (c) and (d) 100 µm

cluster attempts to walk in a different direction. In doing this, motors exert opposite forces on each
of the two microtubules, resulting in extension of the filaments pair; see Fig. 3.25 (a). In contrast if
the motor cluster is attached to parallel filaments the kinesins move in the same direction and the
filaments remain static; Fig. 3.25 (b).

As a crosslinker, we choose to use a short peptide (ANLN) derived from the protein anillin [292].
While anillin is not a specific microtubule crosslinker, by adding it at various concentrations (from
0 to 5 µM) to a fixed concentration of microtubules (0.4 mg/ml) and motors (60 nM) we found
that this fragment is able to bundle microtubules unspecifically. As the concentration of ANLN
is increased, microtubule bundles become thicker and longer (Fig. 3.25 (c)). Differently from the
commonly used cross-linkers (such as PRC-1 [261]) or depletion agents (such as PEG [87]) using
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Figure 3.26: In plane optical flow speed of the active system extracted from microscopy images us-
ing an optical flow algorithm. As the ANLN concentration is increased we observe three character-
istic phases of collective dynamics. First, no large-scale flow is observed (v ≈ 0µm/s). Second, the
macroscopic flow increases monotonously as a function of the ANLN concentration and reaches
a maximum at vmax ≈ 6µm/s. Last, the macroscopic flow decreases as the ANLN concentration is
increased further. Red circles correspond to snapshots in Fig. 3.25(d).

ANLN we can more finely tune the degree of filament-filament interaction (hence, their bundling)
and avoid any adsorption to the surface that would be instead present if using a depletion agent. We
then add molecular motors and ATP as a fuel to the mixture. In the presence of both ANLN, motors
and ATP, filaments assemble into active bundles, i.e., bundles composed of filaments sliding against
each other. We then perform an ANLN concentration series of the active system (Fig. 3.25 (d)) and
observe, as the amount of ANLN is varied, distinct behaviors which we characterize by analyzing
the architecture of the bundles and their speed v extracted from microscopy images of a given focal
plane using an optical flow algorithm (Methods); see Fig. 3.26.

First, below a given threshold in the ANLN concentration ([AN LN ] < 1 µM), microtubules do
not assemble into bundles and the system, while active at the microscopic scale, does not exhibit
large-scale flow (v ≈ 0 µm/s); above such threshold, active bundles form and filament flow on a
spatial scale much larger than individual filaments, albeit slow, can be observed; as ANLN is further
increased (1.5µM < [AN LN ] < 3µM), the speed of the filaments’ flow finally increases and reaches
a maximum value (v ≈ 6 µm/s); eventually, however, as the network further bundles due to the
increase in ANLN ([AN LN ] > 3µM) the speed declines again.

Thus, we show that by varying the ANLN concentration we can tune the overall activity, in terms of
speed of the filaments flow, of the system. In addition, we find that there is an ANLN concentration
leading to an optimum in such speed. We also note that the maximum attained speed is comparable
to the maximum speed of filament-motors systems in similar conditions[38, 87, 88], indicating that
the ANLN can be compared with previous results. As ANLN can clearly not induce activity itself
we speculated that the macroscopic change in activity is tied to a change in the cross-linking state
of the filament network. To understand how changes in connectivity can lead to a non-monotonic
change in the global flow, we turned to theoretical and numerical studies.

MODEL SYSTEM

We build a minimal agent-based model based on the above described reconstituted in vitro system.
The model consist of three classes of constituents: (i) stabilized microtubules of fixed length ` (ii)
molecular motors that can cross-link two microtubules and simultaneously move towards the plus
end of both microtubules it cross-links, and (iii) passive cross-linkers mediating an attractive force
between neighbouring filaments; see Fig. 3.27. In detail, we use an agent-based model containing
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a finite number of filaments (NMT), active motors (Nm) and passive cross-linkers (Nc) in a thin box
geometry with periodic boundary conditions in x− and y−direction; see Fig. 3.27 (a). Each indi-
vidual filament i = 1, . . . , NMT is represented by a directed semi-flexible rod of fixed length `, center
of mass position xi , and orientation ni . The orientation ni is defined in direction of the filament
plus-end. Close-by filaments repel each other via soft-core interaction if they are closer then a dis-
tance dMt; for details on the implementation see [249]. The system is simulated at a volume fraction
φ = πd 2

Mt/(4Vsystem) ≈ 0.03. Active motors consist of two head domains connected by a Hookean
spring. Due to our lack of knowledge how ANLN interacts with microtubules we decided to model
passive cross-linkers similarly to active motors. They are modeled as two microtubule binding do-
mains (heads) connected by a Hookean spring. Both active motors and passive cross-linker with
no head attached to a filament are assumed to be well-mixed in the cytosol and can attach to any
filament in the system with rate km

on and kc
on, respectively. Active motors (passive cross-linkers) with

one head attached to a filament can bind their second head to another filament within distance
rm (rc). If the spring connecting the motor (passive cross-linker) heads becomes stretched a corre-
sponding force ( f ) acts on the motor (passive cross-linker) heads. The heads are assumed to detach
at a load dependent rate km

offe
| f |/ f m

u (kc
offe

| f |/ f c
u ) [235]; see Fig. 3.27 (b). Filament-bound motor heads

move towards the plus-end at a load-dependent speed v = vm(1+ f ·n/ fstall) [196] and passive cross-
linkers remain static; see Fig. 3.27 (c).

(a)

(c) (b)

active 
motor

passive
crosslinker

Figure 3.27: (a) Illustration of the agent-based model of the filament-motor mixture. Filaments are
depicted in green, motors in red and passive cross-linkers in blue. All constituents are placed in a
thin slab geometry of size (Lx ,Ly ,Lz ) with periodic boundary conditions in x− and y-direction and
reflective boundary conditions in z-direction. The system contains NMT microtubules, Nm motors
and Nc passive cross-linkers (b) Model constituents and their basic interactions. Filaments (green)
have a fixed length ` and orinetation n in direction of their plus end. Active motors (red) are mod-
eled as two head domains connected by a Hookean spring. Passive cross-linkers (blue) are modeled
analog as two microtubule binding domains (heads) connected by a Hookean spring. Active mo-
tors (passive cross-linkers) with no head attached are assumed to be well mixed in the cytosol and
can bind to any filament at rate km

on (kc
on). If one head is attached to a filament the second head

can attach to a filament within range rm (rc). Motor (passive cross-linker) heads detach at a force
dependent rate km

offe
| f |/ f m

u (kc
offe

| f |/ f c
u ) (c) Motor heads attached to a microtubule move directional

towards the plus end at a force dependent speed vm
(
1+ f ·n/ fstall

)
. Passive cross-linker heads do

not move on the microtobule they are bound to.
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RESULTS

FILAMENT ACTIVITY AND NETWORK ARCHITECTURE:

To test whether the minimal model is capable of reproducing the observations of our in-vitro ex-
periments we simulated the agent-based model using the open-source software Cytosim [249]. To
assess the filament flux in the simulation we measured the average filament activity α, defined as
the average of filament velocities vi along their director ni

α≡− 1

NMT

NMT∑
i=1

ni ·vi /vm. (3.113)

Note, since motors slide filaments in direction of their minus ends (opposed to ni , see Fig. 3.25 (a))
ni ·vi < 0. The minus sign in Eq. 3.113 therefor ensures that α is positive. Figure 3.28 (a) shows a
typical profile of the average filament activity as a function of the number of passive cross-linkers
(Nc) per filaments (NMT), c ≡ Nc/NMT, at a fixed number of active motors (Nm) number per filament;
m ≡ Nm/NMT. Consistent with experiments, we find a monotonic increase in filament activity below
a number of passive cross-linker c∗; a detailed definition of c∗ will be given later. At c ≈ c∗, the
activity starts to plateau followed by a monotonic decrease if the passive cross-linker concentration
is increased further; see Fig. 3.28 (a).

(a) (b)

0 75 1500.0
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0.8

Figure 3.28: (a) Mean filament activityα±SEM as a function of the passive cross-linker number c for
m = 6 obtained from numerical simulations of a system of size Lx = Ly = 10`. To obtain the mean
filament activity we average the simulation results in the time interval t ∈ [15min,30min] and over
10 independent samples. Green circles are results for a larger system of size Lx = Ly = 40`; see (b) for
snapshots of the system. The red curve represents our semi-analytic result derived in Sec. 3.4.2. (b)
Representative snapshots of the filament density at passive cross-linker numbers c = 4,12,24,200
and m = 6 for a system of size Lx = Ly = 40`.

The change in filament activity is accompanied by a macroscopic change in the network archi-
tecture. At low cross-linker concentrations (c ¿ c∗) the network architecture is characterized by
many kinks (junctions) and short disconnected filament bundles; see Fig. 3.28 (b) c = 4,12. At the
mesoscopic scale this network architecture results from a dynamic interplay of filament bundle ex-
pansion, buckling and immediate breaking. The breaking of filament bundles results in sharp kinks
in the network; see Fig. 3.29 (a). Fragments of the broken filament bundles drift apart resulting in
many small disconnected filament bundles at the macroscopic scale; see Fig. 3.29 (a) and Fig. 3.28
(b). Eventually bundle fragments fuse with other neighbouring filament bundles and the dynamic
sequence of buckling, breaking and bundle fusion repeats. Phenomenologically this dynamic be-
haviour is consistent with observations from our in vitro experiments (see Fig. 3.29) and was also
reported for similar experimental setups [38, 87, 261]. As the number of passive cross-linkers per
filament c is increased above c∗ the network architecture changes to long nematic filament bands
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Figure 3.29: At the mesoscopic scale the dynamics is driven by filament bundle buckling, breaking
and zippering. (a) Top panel: Example of simulation ssnapshots showing filament bundle breaking
(indicated by the yellow arrow). The bundle fragments drift apart (right snapshot) at low passive
cross-linker concentration. Simulations where performed at (c,m) = (4,6). Bottom panel: Micro-
tubule bundle breaking observed in the in vitro experiment ([AN LN ] = 2.5 µM , 0.4 mg/ml MTs,
60 nM KSA). (b) Top panel: Example of bundle buckling, breaking and immediate zippering of the
bundle fragments. Simulations where performed at (c,m) = (30,6). Bottom panel: Bundle buckling
and zippering observed in the in vitro experiment ([AN LN ] = 5 µM , 0.4 mg/ml MTs, 60 nM KSA).
All simulations where performed in a system of size Lx = Ly = 40`

whose dynamics is driven by extended periods of buckling, followed by filament band breaking, and
immediate zippering of the band fragments; see Fig. 3.29 (b). On a macroscopic scale this results in
a network architecture which is characterized by less junctions and long continuous filament bands
with higher curvature (see Fig. 3.28 (b); c = 24). For c À c∗, almost all filaments are condensed in
a single system spanning filament band which exhibits only very few junctions (see Fig. 3.28 (b);
c = 200).

QUANTIFICATION OF THE NETWORK ARCHITECTURE:

Motivated by the observation that the network architecture changed alongside with the average
filament activity, we asked whether the changing collective dynamics could be related to the cross-
linking state of the network. Specifically we wondered whether the macroscopic change in filament
activity is caused by a transition from a sparsely to a highly cross-linked filament network. To gain
a deeper understanding of how the degree of network connectivity affects the collective filament
dynamics we quantified the network architecture by monitoring the number and size of filament
clusters in our agent-based simulations. As a filament cluster we define a group of Ncluster ≥ 2 fil-
aments connected by active motors, passive cross-linkers, or both. Figure 3.30 shows the normal-
ized frequency distribution P (ncluster) of filaments being part of a filament cluster of size ncluster =
Ncluster/NMT. Consistent with our phenomenological observation, that the network architecture is
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Figure 3.30: Normalized frequency distribution P (ncluster) of filaments being part of a filament clus-
ter of size ncluster = Ncluster/NMT obtained from agent-based simulations. Here Ncluster ≥ 2 is the
number of filaments connected by active motors, passive cross-linkers or both. We find that the
filament network forms a giant component (cluster) as the passive cross-linker concentration is
increased. At large passive cross-linker concentrations most filaments are condensed in a single
filament cluster. The red curve shows the average cluster size a filament is part of.

characterized by small disconnected filament bundles at low passive cross-linker concentrations
we find that the frequency distribution Pcluster is peaked at ncluster ≈ 0 at small passive cross-linker
concentrations; see Fig. 3.30. Finally, at c > c∗, almost all filaments are part of a single large system
spanning cluster; see Fig. 3.30 and Fig. 3.28 (b).

We now ask which physical properties of the filament network change as the network changes
from sparsely linked system composed of many small filament clusters to a single, highly cross-
linked, filament cluster. In particular we are interested in quantities that could affect the overall
sliding velocity of filaments in the system.

NETWORK POLARITY, FILAMENT ALIGNMENT, AND FILAMENT SLIDING VELOCITY IN THE AGENT-BASED

SIMULATION

Anti-parallel filaments slide past each other while parallel filaments do not move relative to each
other; cf. Fig. 3.25 (a),(b). A natural hypothesis for a quantity that changes the sliding speed of
a filament in the network is therefore the average number of parallel and anti-parallel interaction
partners of a filament. To asses this hypothesis in our agent-based simulation we measure the local
network polarity p(x) defined as the average orientation of filaments at a given position x . To ob-
tained the polarity field p(x) from the agent-based simulation we bin the system and evaluate the
average orientation of filaments which pass trough each bin. Figure 3.31 shows snapshots of |p(x)|
obtained from the agent-based simulation at different passive cross-linker numbers. Interestingly
we find that the filament network is predominantly polar at low passive cross-linker concentrations.
As the number of passive cross-links is increased the local polar order declines; see Fig. 3.31. To

0.0

1.0c = 4 c = 24 c = 200

Figure 3.31: Snapshots of the absolute value of the local polarity |p(x)|. To obtained the polarity
field p(x) from the agent-based simulation we bin the system and evaluate the average orienation of
filaments which pass trough each bin. For low local passive cross-linker number the system evolves
into polar filament bundels. As the cross-linker number is increased the emerging filament bands
become apolar. Snapshots show a field of view of size (20`,20`) of a system of size Lx = Ly = 40` .
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quantify the change in the local polarity environment of filaments we measure the average align-
ment, ni ·p(xi ), in the network defined as

ni ·p(xi ) ≡ 1

NMt

NMt∑
i=1

ni ·p(xi ) . (3.114)

A value of ni ·p(xi ) = 1 corresponds to a fully polar network environment and ni ·p(xi ) = 0 to an
apolar network environment. We find that the average alignment ni ·p(xi ) decreases as a function
of passive cross-linkers; see Fig. 3.32 (a). For c < c∗, filaments are predominantly polar aligned to
their neighbours, making parallel filament-filament interactions more likely. As the passive cross-
linker concentration is increased the local network environment of a filament becomes successively
apolar favoring anti-parallel filament interactions; see Fig. 3.32 (a).
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Figure 3.32: (a) Average local alignment ni ·p(xi ) of filaments as a function of passive cross-linkers
per filament c at Nm = 6. As the number of passive cross-linkers is increased the local network
environment of a filament becomes less polar. (b) Sensitivity of the activity −ni · vi /vm to the local
alignment ni ·p(xi ) of a filament. At low passive cross-linker numbers filaments move fast in anti-
aligned (ni · p(xi ) < 0) and slow in aligned (ni · p(xi ) > 0) network environments. As the passive
cross-linker concentration is increased, the activity of filaments becomes insensitive to the network
environment. Simulation results were averaged in the time interval t ∈ [15min,30min] and over 10
independent samples.

The decrease in polar order being monotonic whereas the activity is not, raises the question of
whether the local alignment of filaments is indeed sufficient to explain the change in filament activ-
ity. To address this question we measured the activity of filaments, αi =−ni ·vi /vm, as a function of
their local alignment to the filament network in our simulations, ni ·p(xi ) ∈ [−1,1] (see Fig. 3.32 (b)).
A filament alignment ni ·p(xi ) > 0 (ni ·p(xi ) <−1) corresponds to a network environment of parallel
(anti-parallel) filaments. At low passive cross-linker numbers, c ¿ c∗, the filament activity depends
linearly on the network environment; see Fig. 3.32 (b). As expected from our intuitive understanding
that anti-parallel filament interactions induce filament motion filaments in a anti-parallel network
environment (ni ·p(xi ) < 0) move faster as compared to filaments in a parallel network environment
(ni ·p(xi ) > 0); see Fig. 3.32 (b) c = 4,12. However as we increase the passive cross-linker concen-
tration the filament activity becomes less sensitive to the local network environment. Ultimately at
c = c∗ it becomes independent of the network environment (see Fig. 3.32 (b) c = 24); a feature which
is was predicted for highly cross-linked filament networks [2, 99]. We therefore define the passive
cross-linker number, c∗, at which the sliding velocity of filaments becomes insensitive to the local
network environment as the transition to a highly cross-linked network.

Taken together our simulations show that as we increase the passive cross-linker number, the
filament network changes its architecture from many small, disconnected filament clusters to a
large interconnected filament cluster; see Fig. 3.28 and Fig. 3.30. Alongside the change in network
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architecture, we observe a change in the average alignment, ni ·p(xi ), of filaments; see Fig. 3.32.
Moreover, we observe that the sensitivity of filament sliding speeds to the local filament alignment
changes with increasing passive cross-linker number from a linear dependence, as predicted for
sparsely linked systems [240], to independent as predicted for highly cross-linked systems [2, 99];
see Fig. 3.32 (b). This suggests that our system transitions from a sparsely to a highly cross-linked
filament network.

To get to the bottom of how the combination of the observed effects play together to affect the
average filament activity α in the system we aim to build a minimal biophysical model that relates
the local polarity field p(x) to the local filament sliding velocity v (x).

A MINIMAL BIOPHYSICAL MODEL

In our agent based simulations we observed that filaments condense in quasi one-dimensional fil-
ament bands (cf. Fig. 3.28 (b)). Moreover the end-to-end distance of filaments in the simulation
was > 0.99`. Motivated by those observations we limit the minimal biophysical model to a one-
dimensional geometry and use a theoretical framework for rigid rods which we have successfully
used in a previous work to describe collective filament motion in active nematic filament bands [2].
This is, for now, we ignore the fact that filament bands in the agent based simulations have non zero
curvature. In section 3.4.2 we will relax this limitation in order to compare our analytic results to the
data obtained from the agent-based simulation; cf. Fig. 3.27 (a).

In the minimal one-dimensional description filaments are aligned along the x-axis with center of
mass position xi and can take only two orientations ni = ±1; see Fig. 3.33. Hence the dynamics of

Figure 3.33: Skatch of the minimal biophysical model. Filaments can be either left (ni =−1, green)
or right (ni = +1, purple) oriented. Filaments which are connected by a motor (red) or a passive
cross-linker (blue) form a cluster. In the illustration the colored filaments form a cluster of extent
L. The total number of all filaments with orientation ni = ±1 that pass trough position x ′, n±

Mt(x ′),
is given by summing over all filaments with center of mass in the interval [x ′ −`/2, x ′ +`/2]; see
Eq. 3.118.

a filament in the minimal model is determined solely by its velocity vi . Instead of accounting for
the explicit dynamics of motors and passive cross-linkers, we model motor (passive cross-linker)
mediated interactions between filament i and j by an effective force-velocity relation F m

i j (∆vi j )
(F c

i j (∆vi j )) that depends on the relative velocity, ∆vi j = v j −vi , of filament i and j . Since Fi j =−F j i

the force velocity relation can be only an odd function of ∆vi j . Here we restrict the discussion to a
linear force-velocity relation. As previously described [2], we use

F m
i j (∆vi j ) = Fm

2

(
n j −ni +

v j − vi

vm

)
(3.115)

F c
i j (∆vi j ) = Fc

2

v j − vi

vm
(3.116)
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for motor and passive cross-linker mediated filament-filament interactions. Fm and Fc correspond
to the average force amplitude exerted on the filaments by motors and cross-linkers respectively.
The force velocity relations are designed to vanish if the relative motion of filaments does not induce
strain in the cross-linking motor (or passive cross-linker). Passive cross-linkers are not strained if
the filaments do not move relative to each other independent of the orientation of filament i and j ;
cf. Fig 3.27 (c). In contrast the force exerted by motors depends on the relative orientation of the fil-
aments. For parallel filaments, ni = n j , motors act analog to cross-linkers and resist relative motion
of the filaments. For anti-parallel filaments, ni =−n j , motors are not strained if the filaments move
apart at a relative velocity of 2vm.

Assuming overdamped dynamics the velocity vi of filament i in the network is then determined
by the force balance relation

γvi =
∑
j 6=i

(
Mi j F m

i j +Ci j F c
i j

)
, (3.117)

where γ denotes the fluid drag, and Mi j and Ci j denote the number of motors and passive cross-
linkers connecting filament i and j , respectively. The total number of motor (cross-linker) links of
filament i is given by

∑
j Mi j ≡ Mi (

∑
j Ci j ≡Ci ). In general Mi and Ci are functions of the filament

density which depend on the attachment/detachment kinetics of motors and cross-linkers.
To understand how the network polarity impacts the filament velocity vi we formulate Eq. 3.117

in the continuum limit. We denote the center of mass density of filaments at position x and orien-
tation ni =±1 by ρ±(x). The number of filaments with orientation ni =±1, n±

Mt(x), that pass trough
position x can be expressed in terms of the center of mass filament density ρ±(x) (see Fig. 3.33)

n±
Mt(x) =

∫ `/2

−`/2
dξρ±(x +ξ) . (3.118)

On a mean field level the motor mediated links of filament i at arc-length position s to other fil-
aments with orientation n j = ±1 is given by ρm(s)[n±

Mt(xi + s)/nMt(xi + s)]. Here ρm(s) denotes
the density of motors at arc-length position s that mediate an interaction to other filaments. The
expression for passive cross-linkers reads the same with ρc(s) instead of ρm(s). For simplicity we
assume a homogeneous density of motors and cross-linkers, i.e., ρm(s) = Mi /` and ρc(s) = Ci /`.
Using Eq. 3.115 we find the motor and cross-linker mediated force density acting on filament i that
steam from parallel (pp) and anti-parallel (ap) interactions with other filaments

f ap
i (s) = γ

nMt(xi + s)

∫ `/2

−`/2

dξ

`
ρ∓(xi + s +ξ){∓2vm Am (3.119)

+ (Am + Ac )[v∓(xi +ξ+ s)− v±
i ]}

f pp
i (s) = γ

nMt(xi + s)

∫ `/2

−`/2

dξ

`
ρ±(xi + s +ξ) (3.120)

(Am + Ac )[v±(xi +ξ+ s)− v±
i ] ,

where we introduced Am = Fm Mi /(2vmγ) and Ac = FcCi /(2vmγ) as dimensionless parameters quan-
tifying the strength of active motor forces (FmMi ) and passive cross-linker forces (FcCi ) acting on
filament i to dissipation to the surrounding fluid (γvm). Taken together we find the continuum
representation of Eq. 3.117 to be given by

γv±
i =

∫ `/2

−`/2
ds

(
f ap

i (s)+ f pp
i (s)

)
. (3.121)

After applying the mean field assumption v±(xi ) = 〈v±
i 〉, Eq. 3.121 together with Eq. 3.119 and

3.120 forms a set of coupled integral equations relating the filament velocities v±(x) to the number
density ρ±(x) of filaments at position x.
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ANALYTIC SOLUTION OF THE MINIMAL BIOPHYSICAL MODEL

In general the set of coupled integral equations (Eq. 3.121) is challenging to solve. In our agent-
based simulation we observed that the total filament density ρ(x) = ρ+(x)+ρ−(x) inside the filament
bands (clusters) is approximately homogeneous (cf. 3.28 (b)). Therefor we assume a constant total
filament density ρ0 = ρ+(x)+ρ−(x) = const . in the following, but allow for variations in the polarity
defined as p(x) = (1/ρ0)[ρ+(x)−ρ−(x)]. For constant filament density ρ0, it is reasonable to assume
Mi = M (Ci = C ), i.e., that all filaments have (on average) the same number of motor and passive
cross-linker mediated interactions. Under those constraints it is possible to solve the set of integral
equations (Eq. 3.121) using complex calculus. For details please refer to our previous work [2]. The
result for the filament velocities v±(x) at position x reads

v±(x) =∓v0[1∓Π(x)] , (3.122)

Π(x) = 1

2lc

∫ ∞

−∞
dξp(x +ξ)e−|ξ|/lc . (3.123)

Here we have defined the characteristic length

lc/`=
√

1

12
(Am + Ac ) , (3.124)

and the velocity of filaments in a homogeneous filament bundle:

v0 = vm

1+1/Am + Ac /Am
. (3.125)

To obtain Eq. 3.123 we assumed the system size to be large compared to the filament length ` and
lc. To account for filament clusters of finite size, as observed in the simulation, we mirror the polar-
ity field p(x) at the cluster boundaries. As before we define a filament cluster as a set of filaments
connected by motors and passive cross-linkers.

As discussed in our previous work [2] Eq. 3.123 defines a weighted average of the polarity field
along the contour of the filament cluster with a characteristic length lc over which the polarity field
is averaged. The characteristic length lc defines a length scale over which locally generated momen-
tum can be transferred in the filament cluster. This means in particular, if lc is large, filament motion
becomes independent of the local network environment; cf. Fig. 3.32 (b). The characteristic length
is set by the competition of total motor and cross-linker forces acting on a filament, FmM +FcC ,
and dissipation to the surrounding fluid 2vmγ. For parameters used in the simulation, γvm is small
compared to the forces of motors and passive cross-linkers, i.e., lc is large. If we consider a filament
cluster of extend L (see Fig. 3.33) which spans the spatial region [x −L/2, x +L/2] and FmM À vmγ

the ambient polarity Eq. 3.123 turns into an average of the polarity field along the extend of the
filament cluster

Π(x) ≈ Pcluster =
1

L

∫ L/2

−L/2
dξp(x +ξ) , (3.126)

and the velocity amplitude v0 is set by the motor velocity and a competition between active forces
FmM and internal friction due to passive cross-linkers FcC . Taken together, we find the velocity of
filaments with orientation ±1 inside the cluster to be given by

v±(x) ≈∓ vm

1+FcC /(Fm M)
(1∓Pcluster) . (3.127)

Thereby we obtain an expression for the average filament activity in the system which reads
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α=− 1

NMt

∑
i

ni v±(xi )

vm
= 1

1+FcC /(Fm M)

(
1−ni Pcluster

)
. (3.128)

The term ni Pcluster ∈ [0,1] characterizes if filaments are on average part of polar or apolar filament
clusters. Where the fully polar case corresponds to ni Pcluster = 1.

Together with the network architecture Eq. 3.128 provides a possible explanation for the change in
the sensitivity of the filament activity to the local network environment as the passive cross-linker
concentration is increased; see Fig. 3.32 (b). At c ¿ c∗, we observe a system composed of many
small, disconnected, filament clusters. For such a network architecture, it is reasonable to coarse
grain over the filament cluster and approximate Pcluster ≈ p(x). Equation 3.128 then suggests a linear
activity polarity relation, as observed for measurements from the agent-based simulation; cf. Fig.
3.32 (b) and predicted for sparsely cross-linked filament networks [240]. In contrast, if the network
architecture changes to filament clusters composed of many filaments which span a large spatial
region the local network polarity p(x) becomes a bad approximation for the cluster polarity.

Moreover, Eq. 3.128 implies the presence of two, potentially competing, contributions to the av-
erage filament activity in the system. First, as the passive cross-linker number is increased the clus-
ter polarity decreases (cf. Fig. 3.31), this increases the average filament activity since (ni Pcluster)
decreases. Second, the competition between internal friction caused by passive cross-linkers and
active motor forces in the filament clusters sets the pre-factor 1/(1+FcC /(Fm M)), which decreases
the filament activity with increasing passive cross-linker number. In particular, if Pcluster ≈ 0 for
cross-linker numbers c > c∗ our theory suggest that the average filament activity is solely set by the
ratio of passive cross-linker to active motor interactions of a filament.

COMPARISON TO THE AGENT-BASED SIMULATION

We now aim to relate findings of the minimal biophysical model to the agent-based simulations on a
quantitative level. Ultimately, we are interested whether Eq.3.128 is indeed sufficient to account for
the measured average filament-activity as a function of the passive cross-linker number. To this end
we have to relax our assumption of straight filament clusters and have to define the cluster polarity
in filament bands with non-zero curvature.

EVALUATION OF THE CLUSTER POLARITY IN THE AGENT-BASED SIMULATION

In order to compare Eq. 3.128 to direct measurements from the agent-based simulation (see Fig. 3.28
(a)) we have to evaluate the alignment of a filament i to its associated cluster, ni ·Pcluster, from the
simulation data since we have no analytic prediction how the network architecture evolves dynam-
ically from a initially homogeneous state.

For a curved filament cluster we define the alignment of a filament as the line integral of the polar-
ity field p(r (σ)) along the contour r (σ) of the cluster. We denote e(σ) as the normalized tangential
vector to the cluster at arc-length position σ of the cluster contour. We choose the direction of the
cluster contour e(σ) to be aligned to the filament we consider; ni ·e(σi ) = 1. To obtain this average
from the agent-based simulation we follow the cluster contour from the position of filament r (ti ) in
steps of the filament length `; see Fig. 3.34 (a). At each step k =±1,±2. . . we calculate the local clus-
ter polarity defined as the average orientation of filaments in a square of length ` and cross section
(0.15`,Lz) centered at the cluster contour and calculate the projection on the local tangential vector
e(σ+k`); see Fig. 3.34 (a). We stop if (i ) the cluster ends (i i ) we encounter a junction defined as two
subsequent tangential vectors e(σ) which prescribe a relative orientation θ > θc or (i i i ) at a maxi-
mal kmax (see Fig. 3.34 (a)) kmax` can be seen as an approximative value for lc (cf. Eq. 3.123). The
choice of the angle θc at which a junction is defined is to a certain degree arbitrary. The assumption
here is that motors that connect two filaments which prescribe a relative orientation θ > θc will will
realign them rather then slide them apart. Here we use θc = 45°.
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Figure 3.34: (a) Numeric evaluation of the alignment of filament i (red arrow) to the surrounding
filament cluster. Starting from the filament position r (σi ) we follow the cluster contour r (σ) in steps
of `. At each step k, we calculate the mean orientation of filaments inside a square of length ` and
cross section (0.15`,Lz ) (gray squares) and project it on the local tangential vector e(σ+k`) of the
cluster (black arrows); e(σ+k`) · p(r (σ+k`)). We stop if (i ) the cluster ends, (i i ) we encounter a
junction, or (i i i ) at kmax. We define the alignment of filament i to the cluster as the mean of the ob-
tained values; cf. Eq. 3.129. (b) The average number of steps λ/` before a junction or the cluster end
is encountered as a function of passive cross-linkers; λ quantifies the length over which the polarity
field is averaged. Inset: comparison between the average local alignment of filaments ni ·p(xi ) and
the non-local alignment to the cluster ni ·Pcluster. As λ increases the polarity field is averaged over
an extending spatial region. As a result of this non-local averaging high frequency fluctuations in
the local polarity are suppressed and the filaments sense on average an apolar (ni Pcluster = 0) en-
vironment. Simulation results were averaged in the time interval t ∈ [15min,30min] and over 10
independent samples.

The average alignment of filaments to their cluster is then given by

ni ·Pcluster ≡
1

NMT

∑
i

e(σi +k`) ·p(r (σi +k`)) . (3.129)

We evaluate the average alignment of filaments to their cluster, ni ·Pcluster, for different values of
kmax as a function of the number of passive cross-linkers. The mean length, λ, over which the po-
larity field is averaged can be approximated by the number of steps taken before either a junction
or cluster end is reached. This length indicates how far locally generated momentum can be trans-
ferred in the filament network. We choose kmax`À λ such that the choice of kmax does not impact
the result. Fig. 3.34 (b) shows the estimated length scale of momentum transfer λ, limited by either
the cluster extension or junctions. We find three distinct regimes, which are related to the network
architecture. Firstly, λ increases rapidly. This results from a rapid increase in the average filament
cluster size; cf. Fig. 3.30. Secondly, λ continues to increase however at a slower rate. This goes along
with the reduction of junctions in the network; cf. Fig. 3.28 (b). Lastly, the range of momentum
transfer saturates at λ ≈ L indicating system-wide momentum transfer. The inset in Fig 3.34 (b)
shows ni ·Pcluster for kmax = 14` in comparison to the local filament alignment (ni ·p(xi )). As the
length λ over which the polarity field is averaged increases fluctuations in the local polarity field are
averaged out. Thereby the filament activity becomes insensitive to the local network polarity; cf.
Fig. 3.32 (b).
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THE HIGHLY CROSS-LINKED REGIME

At large passive cross-linker numbers c > c∗, filaments sense on average an apolar environment,
ni ·Pcluster ≈ 0, as a result of the non-local averaging of the polarity field; cf. Fig. 3.34 (b) inset.
Equation 3.128 then implies that the average filament activity is then solely determined by

α= 1

1+FcC /(FmM)
= 1

1+K c/m
. (3.130)

Here K is a fit constant that depends on the average force exerted by motors and passive cross-
linkers and their attachment/detachment kinetics. Equation 3.130 then implies that the average
filament activity is not sensitive to the absolute number of passive cross-linkers and motors but de-
pends only on their ratio. If the number of motors is kept fixed the filament activity monotonically
decreases as a function of passive cross-linkers due to internal friction. This is in line with our obser-
vation for c > c∗; cf. Fig. 3.28 (a). To compare our analytic prediction (Eq. 3.130) to the agent-based
simulation we measure the average filament activity at different motor and cross-linker numbers.
Consistent with the theoretic prediction we find that all data collapses on a single curve for c & c∗

both in our simulations (see Fig. 3.35 (a)) and in-vitro experiments (Fig. 3.35 (b)).
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Figure 3.35: (a) Mean filament activityα obtained from agent-based simulations for different active
motor concentrations. In a highly cross-linked filament network the filament activity is predicted
be α= 1/(1+K c/m) (black line), i.e., it depends only on the ratio of active motors to passive cross-
linkers. We find good agreement in the regime where the filament activity declines. (b) Correspond-
ing in-vitro measurements at [MT] = 0.8mg/mL and different motor concentrations. The dashed
line is a fit of the analytically predicted functional form A1/(1+A2[ANLN]/[KSA]). As for the numer-
ical data we find good agreement to the analytic predictions. Simulation results were averaged in
the time interval t ∈ [15min,30min].

We fit Eq. 3.130 to the data obtained from the agent-based simulation for c À c∗. Thereby we
obtain the fit constant (K ≈ 0.02). This allows to write the pre-factor in Eq. 3.128 as a function of
c/m only. Together with the numerical obtained value for the cluster polarity, Eq. 3.129, this allows
to estimate the filament activity as a function of active motors and passive cross-linkers.

ESTIMATING THE FILAMENT ACTIVITY

Substituting the numerically obtained estimate of the cluster polarity (Eq. 3.129 and Fig. 3.34 (b)
inset) into Eq. 3.128 allows to estimate the filament activity in terms of the passive cross-linker and
motor number. The result is in good agreement with direct measurements from the agent-based
simulation; see Fig. 3.28 (a) red curve. The fact that we recover a reasonable prediction of the sim-
ulation data (cf. Fig. 3.28 (a), red line) using (Eq. 3.128) together with the numerically extracted
values of ni ·Pcluster at each cross-linker concentration further shows that our framework is able to
encompass the full connectivity range of the filament-motor mixture.
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In summary, this result shows that the filament activity is controlled by two competing mecha-
nisms as the passive cross-linker concentration is increased. The network architecture, in partic-
ular the connectivity of filaments, controls the length λ over which locally generated momentum
can propagate in the filament network. This has major impact if the filament network shows local
filament alignment (ni ·p(xi ) > 0). Somewhat surprisingly the system studied here shows always
local polar order; cf. Fig. 3.32 and Fig. 3.31. As the connectivity of the filament network is increased
the length of momentum propagation λ (see Fig. 3.34 (b)) increases. Therefore, filament sliding
velocities become less sensitive to local deviations in the number of parallel and anti-parallel in-
teraction partners. On a coarse-grained level this is expressed in filaments sensing on average an
apolar network environment (see Fig. 3.34 (b) inset), which in turn leads to higher filament activ-
ity (cf. Eq. 3.128). However, as the number of passive cross-linkers is increased, not only does the
connectivity increase but so does the internal friction in the network, which decreases the filament
activity in the system.

CONCLUSION

Here we have investigated an active in-vitro system of stabilized microtubules connected by molec-
ular motors and passive cross-linkers under dilute conditions. We found that the filament activity
increases with an increasing number of passive cross-linkers c, reaches a maximum at c ≈ c∗, and
declines upon a further increase. Using large scale computer simulations we were able to recapit-
ulate this finding in silico. Based on the agent-based simulation we derived a semi-analytic theory
that explains our observations.

The initially disordered filaments condense into filament clusters yielding dense bundles within
the dilute system. Those filament bundles evolve through a repeating sequence of buckling, break-
ing, and fusion. Depending on the passive cross-linker concentration this dynamics leads to differ-
ent microscopic order of the filament network. At low passive cross-linker concentrations filaments
are predominantly polar aligned. Microscopically, motors can only slide anti-aligned filament pairs.
However, as the passive cross-linker concentration is increased we find that the activity of filaments
changes its dependence on the local polar order from linear, to independent (cf. Fig. 3.32).

This effect arises because the ability of the filament network to transmit locally generated force
to different parts of the system depends on the network connectivity. At low passive cross-linker
concentration, the filament network is sparsely linked and locally generated force can not propagate
in the network. It follows that the filament velocities depend on the local number of anti-parallel
filament interactions. In contrast at high passive cross-linker concentrations filaments immersed in
regions of polar order, and therefore incapable of sliding relative to each other, can be transported
by the netowork.

Hence, the overall filament activity of the system arises as an interplay between the microscopic
generation of force from anti-polar interactions and the ability of the network to propagate such
force. In our semi-analytic theory, the ability of the network to transfer force is characterized by
the length λ. In the sparse cross-linking state λ is limited by the extent of disconnected filament
clusters. As the network connectivity is increased λ increases and locally generated force can be
transferred over large spatial regions, causing filament motion even in polar regions. In this latter
parameter regime, filament sliding velocities do not depend on the local network environment but
are only determined by a competition of active forces and internal friction due to passive cross-
linkers. Filament sliding velocities are maximized by a balance of internal friction and length of
force transmission λ.

For a long time, polarity has received little attention in the context of active filament gels. This is
due to the success of active nematic theories which include an apolar active current that generates
a particle flux along or against the nematic curvature [241, 246]. Those theories have been success-
fully used to describe the macroscopic dynamics of active filament gels, in particular, the formation
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of steady-state structures and defect dynamics [50, 81–83]. However, at the microscopic level, ne-
matic symmetry is hard to unify with activity that emerges from polar interactions. The success of
our semi-analytic theory to describe the filament activity in terms of the cluster polarity rather the
the local polarity might provide insight on this discrepancy. If the network is highly cross-linked
the filament clusters span large spatial regions and polarity affects the filament activity only if large
polar domains emerge in the filament network.

Recent experimental results in dense two-dimensional active gels show sliding velocities of mi-
crotubule pairs at approximately 30% of the sliding velocity of isolated bundles [76]. This appears to
be in apparent contradiction to observations in 3D-aligned microtubule gels. However, computer
simulations of a two-dimensional system composed of polar filaments and molecular motors sug-
gest the existence of large polar domains in such systems [260]. Together with our theory, this might
provide an explanation for the measured filament velocities; cf. Fig. 3.28(a).

On a broader perspective, the system studied here shows similarities to the liquid–solid transition
found in cross-linked actin networks as their connectivity is varied [293, 294]. Similar to our result
force propagation in those networks has been shown to be controlled by network connectivity [287].
However, in contrast to the system studied here actin, networks are predominately contractile. A
possible origin for this difference is the flexibility of actin compared to microtubules, since filament
buckling has been proposed as a microscopic mechanism underlying contractility in actin networks
[295–297]. However recent experiments and simulations have shown that actomyosin networks are
contractile even if the filament rigidity is increased [298]. For networks composed of rigid filaments
the contractile vs. extansile nature of the network is likely to be controlled by asymmetries in the
filament bound motor and/or cross-linker density [79, 93, 206, 218, 254]. In the context of our theo-
retic framework inhomogenous motor and passive cross-linker density profiles can be incorporated
into Eq. 3.120 and 3.119. This might allow to understand the bending instability (cf. Fig. 3.29(b)).
Investigating this will be an interesting avenue for further research.



3.5. SUMMARY & OUTLOOK

3

145

3.5. SUMMARY & OUTLOOK

In this chapter, we have studied the collective dynamics of filament bundles driven by force-generating
motor cross-links. Starting from a microscopic model for cross-linking motor proteins, we derive
a coarse-grained, effective motor-mediated filament-filament interaction based on a time-scale
separation argument. Based on this effective interaction, we studied the emergent dynamics of
mesoscale filament bundles.

First, we addressed the question of how different types of motor cross-linkers control the propen-
sity of a filament bundle to expand or contrast. In vivo nature exploits the ability of cytoskeletal
filament networks to contract or expand to perform different tasks. Important examples are the mi-
totic spindle, which expands during anaphase to segregate chromosomes, or the actin cortex, which
contracts to drive changes in cell shape. In vitro active filament networks show a broad range of dy-
namics, including large-scale network contraction, aster formation, and formation of active foams
associated with contractile stresses, as well as filament bundle banding and turbulent-like dynam-
ics associated with extensile stresses depending on the type or mixture of motor cross-linkers in the
system. Previous studies have focused on emergent large-scale dynamics by using phenomenolog-
ical hydrodynamic theories, which are based on symmetry arguments. In those theories, activity is
introduced via an apolar active stress. However, how the introduced stress arises from the micro-
scopic dynamics is an open question. In Section 3.2, we develop a minimal but generic framework
to evaluate the contribution of a cross-linker to the filament bundles’ propensity to generate con-
tractile or extensile tension. Thereby, we were able to identify generic requirements for a filament
bundle cross-linked by motors to generate extensile or contractile stress: First, a motor that has a
homogenous density profile along the arc-length of a filament can neither generate contractile nor
extensile stress. Second, symmetric motor cross-linkers can only generate extensile stress in the
presence of external or internal friction. This friction can be caused by crowding agents or passive
cross-linkers. Third, motors that dwell at the filament tip promote contractile tension through inter-
actions of filaments with equal orientation. Using our general framework, we studied a minimal set
of constituents given by a crowding agent and a symmetric motor that slides anti-parallel filaments.
The motor is allowed to dwell at the filament end it is walking towards. This set of constituents re-
sembles the main features of our general theory. We show that the contractile nature of the filament
bundle is controlled by the ratio of tip-to-bulk motors, and the bundles’ propensity to the extent is
controlled by the number of bundling agents in the system. We relate those parameters to three ex-
perimentally accessible parameters: First, the total number of passive cross-linkers in the system,
with more passive cross-linkers promoting expansile stress. Second, the total number of motors
with an increasing number of motors promoting contractile stress. Lastly, the filament length, with
longer filaments, increases the network’s propensity to expand. To verify our theoretical predictions
and to study the long-term dynamics of the system, we use agent-based computer simulations. All
our predictions and the observed steady-state filament assemblies are in line with recent in vitro
experiments [75, 78, 79, 91–93].

On the level of individual filaments, motor-induced filament sliding is tied to the relative orienta-
tion of the cross-linked filaments. While parallel filaments that are cross-linked do not move relative
to each other, anti-parallel cross-linked filaments slide apart at approximately twice the unloaded
speed of motors [95]. However, this observation on the level of an individual filament pair is in
conflict with experimental observations in the spindle apparatus [96–98]. There, filaments seam to
slide apart at a speed that is independent of the local number of parallel and anti-parallel interaction
partners. Motivated by this puzzling observation, we sought to understand which mechanisms con-
trol the filament sliding speed in bundles of homogenous density but inhomogeneous polarity. In
Section 3.3, we used our formalism to derive a continuum model for motor-induced filament sliding
that relates the filament sliding velocity to the local network polarity. We show that the dependence
between network polarity and filament sliding velocity is non-local. The locally generated force is
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propagated through the network at a characteristic length that is set by the competition between
active forces in the system and dissipation to the surrounding fluid. In the limit of low dissipation
and large fluid drag, we recover the experimental findings that the filament velocity is independent
of the local network polarity.

In Section 3.4, we asked how the ability of the filament network to propagate force depends on
the network connectivity. To this end, we studied an in vitro reconstituted system composed of
microtubules, passive cross-linkers, and active motors. By varying the concentration of passive
cross-linkers in the system, we controlled the network connectivity. Interestingly, we find that an
increasing number of passive cross-linkers in the system increases the average filament sliding ve-
locity in the system, contradicting the intuition that passive cross-linkers promote friction between
filaments. Using an agent-based model, we related the mean filament velocity to the network archi-
tecture and, in particular, to the network connectivity. We showed that by increasing the network
connectivity, the filament sliding velocities become insensitive to the local number of parallel and
anti-parallel interaction partners, as predicted by our previous work in the limit of highly cross-
linked filament bundles. We derive a semianalytical theory that can encompass both the sparse and
highly cross-linked parameter regimes.

Taken together, in this chapter, we studied the emergent dynamics in filament bundles cross-
linked by force-generating motors. All our theoretical studies have in common that we considered
stabilized filaments of fixed length. In vivo filaments are dynamic, and even in in vitro reconsti-
tuted systems of stabilized microtubules, filaments will have a distribution of length p(`). A logical
next step is to ask how a distribution of filament lengths will affect the physics of filament bundles.
In Section 3.2, we found that the filament length can be a control parameter for the filament bun-
dles’ propensity to expand or contract. But how about a filament bundle composed of filaments
of different lengths? Filaments of different lengths will definitely have different anisotropy factors
and different tip-motor populations. Evaluating if it is possible to account for filaments of different
lengths in a simple mean-field picture by treating all filaments as if they had the average length will
be an interesting future research project. Let us turn our attention to dynamic filaments and con-
sider a cross-linking motor that moves towards the plus end. Hence, on a static filament, the motor
would have an anisotropy factor µ> 0 (see Sec. 3.2). However, if the filament grows faster than the
motor’s walking speed, it is possible to shift the mass of filament-bound motors toward the minus
end and obtain a motor anisotropy factorµ< 0, which would turn the bundle tension from extensile
to contractile. An indication that this is indeed possible is given by recent research on treadmilling
actin filaments [254]. Evaluating if this is indeed possible will be an interesting avenue for further
research.

An alternative direction for further research questions would be to consider stochastic effects
caused by the demographic noise of motor cross-linker populations. To illustrate this idea, let us
again consider the case of a filament bundle cross-linked by a plus-end oriented motor and a pas-
sive cross-linker. However, the number of motors per filament is low. Then, there is a high proba-
bility that a filament is only cross-linked by passive cross-linkers to neighboring filaments. If those
neighbors have an opposite orientation to the filament itself, they drag them along as opposed to
the direction of motion a motor cross-linker would induce. This, in turn, would yield an active dif-
fusion of filaments that depends on the local polar order. Results of recent in vitro experiments hint
at the existence of such an active diffusion contribution of cross-linking motors [76]. Studying how
such an active, polarity-dependent diffusion impacts the dynamics on a collective level would also
be an interesting future research question.
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3.6. SUPPLEMENTAL MATERIAL

SUPPLEMENTAL MATERIAL: A MECHANISTIC VIEW OF COLLECTIVE FILAMENT MOTION IN ACTIVE

NEMATIC NETWORKS

Agent-based simulation: To simulate the filament gel, we implement an agent-based simulation
consisting of Ml left- and Mr right-oriented filaments. As described in detail in section In silico
study: Random polarity field, we randomly place the filaments in a one-dimensional box with pe-
riodic boundary conditions. Next, a vector I ∈ RMr +Ml consisting of the numbers of overlapping
filaments for each filament i is generated. From this vector, a probability vector p ∈ RMl+Mr is de-
rived so that the average number of interaction partners per filament is given by N = Ii pi . Out of
the Ii possible interaction partners of filament i , we accept an interaction with probability pi and
reject it with probability 1−pi . Once the interactions are determined, we construct a set of Ml +Mr

coupled linear equations on the basis of the force balance equation

γ vi =
∑

j
F parallel

i j +∑
k

F antiparallel
i k , (3.131)

and weigh each interaction by the overlap between the filaments. Here j runs over the parallel
interaction partners and k over the antiparallel interaction partners of filament i . The velocities of
each filament i are then obtained using matrix inversion.

Continuum simulation: For the continuum simulation, we generate a polarity profile analogous
to that in the agent-based simulation. Then we use our theoretical results (Eqs. 3.108a, 3.108b) but
perform the integration numerically to obtain the velocity field.

A continuum model for motor-driven filament motion Here we derive a solution for our contin-
uum model of filament motion. As a starting point, we use the coupled set of integral equations,
Eqs. 3.106, in the main text which read

γ v (+)(x) = N

L

∫ x+L

x−L
dy

N̂m(x, y)

2
{(1+P (y))F (++)(x, y)+ (1−P (y))F (+−)(x, y)} (3.132)

γ v (−)(x) = N

L

∫ x+L

x−L
dy

N̂m(x, y)

2
{(1−P (y))F (−−)(x, y)+ (1+P (y))F (−+)(x, y)} , (3.133)

where we used ϕ(±) = 1/2(1±P (y)).
In general, it is quite challenging to provide an analytic solution to a set of coupled integral equa-

tions. Here, however, one can make use of the fact that the difference of the velocities, v (+) − v (−),
takes a quite simple form. Namely,

2 γ(v (+)(x)− v (−)(x)) = N

L

∫ x+L

x−L
dy N̂m(x, y){(1+P (y)) (F (++)(x, y)−F (−+)(x, y)) (3.134)

+(1−P (y)) (F (+−)(x, y)−F (−−)(x, y))} .

The difference of the contributing forces reads

F (++)(x, y)−F (−+)(x, y) = F (+−)(x, y)−F (−−)(x, y) = Fm

(
1+ v (−)(x)− v (+)(x)

2Vm

)
, (3.135)

and is a function of x only.
Substituting Eq. 3.135 into Eq. 3.134 and performing the integration yields

v (+)(x)− v (−)(x) = 2 Vm
1

1+ 2 Vm γ
FmNm

≡ 2 Vm(1−α) = const . (3.136)
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As a result, v (−) is expressed in terms of v (+), and we can use this relation to decouple Eq. 3.132
and Eq. 3.133.
The resulting integral equation reads

ε v (+)(x)−Vmα=
∫ x+L

x−L

dy

L2 (L−|x − y |){v (+)(y)− v (+)(x)−Vmα P (y)
}

, (3.137)

where we introduced ε= 2γVm

FmNm
.

To proceed further, we rewrite v(y) and P (y) in terms of their full Taylor expansions around x and
shift v (+) by α/εVm, i.e., v (+) → v (+) −α/εVm.

Performing the integration yields an ODE coupling the velocity to the polarity field. It reads:(
ε−

∞∑
k=1

2L2k

(2+2k)!

(
Ç

Çx

)(2k)
)

v (+)(x) =−Vmα
∞∑

k=0

2L2k

(2+2k)!

(
Ç

Çx

)(2k)

P (x) (3.138)

AN ANALYTIC SOLUTION FOR FILAMENT MOTION IN A NEMATIC NETWORK

To find a feasible expression relating the velocity and polarity field, we apply the Fourier transfor-
mation to Eq. 3.138. Our system - recast in v (+)(k) and P (k) - becomes

v (+)(k) =−2Vmα

(
1−cos(Lk)

ε(Lk)2 −2+ (Lk)2 +2 cos(Lk)

)
︸ ︷︷ ︸

≡K̂ (k)

P (k) = F{K } ·F{P } . (3.139)

where F denotes the Fourier transformation operator3. From the convolution theorem, we di-
rectly find that v (+)(x) is given by the convolution of K (x) and P (x). So, in order to tackle our original
equations, we are left with finding the Fourier back transformation of K̂ (k), i.e., we need to solve

K (x) = 1

2π

∫ ∞

−∞
dk

(
1−cos(Lk)

ε(Lk)2 −2+ (Lk)2 +2 cos(Lk)

)
exp(i kx) . (3.140)

To proceed further, we assume that the integral can be performed using the residue theorem, i.e.,

K (x) = 1

2π

∫ ∞

−∞
dk

(
1−cos(Lk)

ε(Lk)2 −2+ (Lk)2 +2 cos(Lk)

)
exp(i kx)︸ ︷︷ ︸

f (k)

= i
∑

j
Resk j

{
f (k)

}
, (3.141)

with the sum running over all poles in the upper half-plane (lower half plane) if x > 0 (x < 0). In
the following, we will restrict the discussion to the case x > 0 since the calculations for x < 0 are
analogous. Note that we exclude the case x = 0 explicitly and assume a smooth solution at x = 0.
For simplicity, we will use dimensionless variables in the following and recast k → kL and x → x/L.
To find the potential residues, we search for all solutions of the equation

0
!= k2(1+ε)−2+2cos(k) = k2(1+ε)−4 sin2(k/2) . (3.142)

in the complex plane. In the following, we will use k = a+i b with a,b ∈R. Using this notation, the
problem of finding possible residues of f (k) has shifted to finding solutions to the equations

a
p

1+ε=±2cosh(b/2) sin(a/2) (3.143)

b
p

1+ε=±2sinh(b/2) cos(a/2) . (3.144)

We split the discussion into (i ) real, (i i ) imaginary and (i i i ) complex solutions of Eq.3.142. a∗,b∗

will denote solutions of the above equation system.

3It is also possible to derive Eq. 3.139 by directly inserting the Fourier transforms of v (+) and P into Eq. 3.137.
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(i) real solutions (b∗ = 0) The only real solution of Eq. 3.142 is given by a∗ = 0.

(ii) imaginary solutions (a∗ = 0) Eq. 3.143 is always fulfilled for a∗
0 = 0. Moreover, Eq. 3.144 always

has two solutions for ε> 0 which can be estimated as b∗
0 =±

√
24

p
1+ε−24 for small ε.

(iii) complex solutions (a∗ 6= 0,b∗ 6= 0) The complex solutions are not trivial to find. First, note
that the discussion can be split into positive and negative signs of the right-hand side of Eq. 3.143
and 3.144.
For a negative sign on the right-hand side, if a,b > 0, cos(a/2) and sin(a/2) have to be negative for
the equation system to be solvable, i.e., we know a ∈ (2nπ, (2n +1)π) with n = 1,3,5... .
Investigating Eq. 3.144 alone, the minimal b∗(a) is found for a = 2πn and can be estimated as

b∗
mi n(2nπ) =

√
24

p
1+ε−24, i.e.,b∗

mi n is close to 0 for small ε. Moreover, one finds that b∗(a) is
monotonically increasing in the interval a ∈ (2nπ, (2n +1)π) and b∗(a → (2n +1)π) →∞.
Equation 3.143 implies that cosh(b/2) has to be sufficiently large if a ∈ (2nπ, (2n + 1)π) with n =
1,3,5... . Especially for large n this means that a∗ has to be close to (2n +1)π with n = 1,3,5... , i.e.,
sin(a∗/2) ≈−1 ⇒ b∗ ≈ 2arcosh

(2 n+1
2 π

p
1+ε). Taken together, this yields

(a∗,b∗) ≈
(
(2 n +1)π,2arcosh

(
2 n +1

2
π
p

1+ε
))

with n = 1,3,5... (3.145)

A similar argumentation for a positive sign on the right-hand side of Eq. 3.143 and Eq. 3.144 and
a,b > 0 yields the same result for n = 2,4,5.... The cases a > 0,b < 0, a < 0,b > 0 and a < 0,b < 0 are
analogous.
Taken together, we find the solutions

(a∗
n ,b∗

n) ≈
(
(2 n +1)π,±2 arcosh

(
2 n +1

2
π
p

1+ε
))

(a∗
n ,b∗

n) ≈
(
−(2 n +1)π,± 2 arcosh

(
2 n +1

2
π
p

1+ε
))

with n = 1,2,3...

Figure 3.36 shows a comparison between the numerically found roots and our approximation for
ε= 0.1.

Since there is an infinite number of poles with arbitrarily large real part, one can not proceed
as usual and use the residue theorem without any additional considerations. So, to make further
progress, we continue as follows: First, we show∫ ∞

−∞
dk f (k) ≈

∫ R

−R
dk f (k) (3.146)

for sufficiently large R.
Second, we compute the integration along the path C = {−R → R → C1 → C2 →−R} according to
the residue theorem: ∮

C
f (k)dk = 2π i

∑
j

Resk j { f (k)} . (3.147)

Third, we show that the path in the complex plane gives a vanishing contribution. Then the real
Integral

∫ R
−R dk f (k) can be estimated by∫ R

−R
dk f (k) = 2π i

M∑
n=−M

Reskn { f (k)} (3.148)
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Figure 3.36: (A) Comparison of the estimate of the solutions of the equation system Eq.3.143,3.144
with the solutions obtained numerically (the results are compared exemplary for ε= 0.1). (B) Com-
parison of two estimates for the imaginary pole with the corresponding numerical solutions. The
gray dashed line indicates the ε−value for which lc ≈ L.

where kn = k−M ...kM denotes the poles in the interior of the integration path sorted by increasing
real part. The notation is chosen so that k0 denotes the purely imaginary pole.

The first step is straightforward since

Re

{∫ ∞

R
dk

(
1−cos(k)

(1+ε)k2 −2+2 cos(k)

)
exp(i kx)

}
<

∫ ∞

R
dk

2

k2 = 2

R
, (3.149)

i.e., ∫ ∞

−∞
dk

(
1−cos(k)

(1+ε)k2 −2+2 cos(k)

)
exp(i kx)

=
∫ R

−R
dk

(
1−cos(k)

(1+ε)k2 −2+2 cos(k)

)
exp(i kx)+O

(
1

R

)
.

Next, we aim on showing that there is a path R →C1 →C2 →−R so that the integration along that
path gives zero contribution in the limit of large R.
Usually, if one deals with functions of the form g (k) exp(i xk) one can make use of Jordan’s lemma
which states that the integration along the semicircular contour in the upper half plan (lower half
plan) for x > 0 (x < 0) aims to zero for the radius R ≡ |k| →∞. However, if f (k) is rewritten in the
form of g (k) exp(i xk) with g (k) = (1− cos(k))/((1+ ε)k2 −2(1− cos(k))), we face the problem that
g (k) does not converge uniformly to zero since g (k) has an infinite number of poles in the upper
(and lower) half plane. So, to proceed further we aim on proving that there exists a path so that the
contribution of the contour in the complex plane goes to zero for large radius.
First, note that

Re{Res{ f (k)}|k=a+i b} =−Re{Res{ f (k)}|k=−a+i b} (3.150)

Im{Res{ f (k)}|k=a+i b} = Im{Res{ f (k)}|k=−a+i b} , (3.151)

i.e., if the integration path is chosen in a way to symmetrically include the poles in the upper
left and upper right quarter we know Im{2πi

∑
j Resk j { f (k)}} = 0. Hence, if the contour integral

(Eq. 3.147) is calculated explicitly along such a path, the result has to be real. In the following, we
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will make use of this fact. To prove that the integration along the contour in the complex plane goes
to zero (for large R), we choose an explicit path along a rectangle as shown in Fig.3.36. More con-
cretely, the vertices are defined by R = 2nπ, C1 = 2nπ+ i 2nπ and C2 =−2nπ+ i 2nπ for n ∈N. Since
the overall contour integral is real, we only care about terms which can give a real contribution, i.e.,
we investigate the real (imaginary) parts of the integrand for the integration paths parallel to the real
(imaginary) axis:

lim
n→∞

∫ 2nπ

0
db Im{ f (k)|k=2nπ+i b}

lim
n→∞

∫ 0

2nπ
db Im{ f (k)|k=−2nπ+i b}

lim
n→∞

∫ −2n π

2nπ
da Re{ f (k)|k=a+2nπ i } .

To prove that those terms give zero contribution for n → ∞ (and thereby R → ∞), we aim on
finding an integrable majorant of the above expressions, and then swap the integration and the
limit. It is possible to show that

Im{ f (k)|±2nπ+i b} < exp(−b x)

Re{ f (k)|a+2nπ i } < exp(−2nπ x) .

Thus, we found an integrable majorant for both paths. Furthermore, since Im{ f (k)|2nπ+i b} =
−Im{ f (k)|−2nπ+i b}, the discussion can be restricted to one of the paths R → C1 or C2 →−R. More-
over, as we found an integrable majorant for the parts of the contour in the complex plane, we can
swap the integral and the limit. Since limn→∞ |Im{ f (k)|2nπ+i b}|→ 0, the paths R →C1 and C2 →−R
give zero contribution to the contour integral. The same holds true for the integration along the
path C1 →C2. Thus, the integration along the contour in the complex plane gives zero contribution
for n →∞ and we can calculate the desired integral by

∫ ∞

−∞
dk f (k) = 2π i

∞∑
j

Resk j { f (k)} = 2π Im

{(
Resk0 { f (k)}+2

M∑
j=1

Resk j { f (k)}

)}
.

In the last step, we made use of Eq.3.150. In the following, we will denote the contribution of the
k0 residue to the integral as f0(x) and the contribution of the sum over all other poles as f∞(x) Using
the estimated expression for the poles of f (k) and making use of the fact that b∗

n is large, we find an
estimate for the imaginary part of the residue which reads

Im{Reskn { f (k)}} ≈ exp(−bn x)cos(an x)

for n = 1...M . Here, we assumed that bn x is sufficient large, i.e., we expect deviations for x → 0.
For k0 we find the residue (for small ε)

f0(x) = Resk0 { f (k)} ≈

≈
2πsinh2

(√
24

p
1+ε−24

)
sinh

(√
24

p
1+ε−24

)
− (1+ε)

√
24

p
1+ε−24

exp

(
−

√
24

p
1+ε−24 x

)
.

So, to find a closed form of the integral, we are left with finding an expression for the sum



3

152 3. COLLECTIVE FILAMENT MOTION IN ACTIVE FILAMENT BUNDLES

f∞(x) = 2π
∞∑

n=1
Reskn { f (k)}

= 2π
∞∑

n=1
exp

(
−2 arcosh

(
2n +1

2
π
p

1+ε
)

x

)
cos((2n +1)π x)

≈ 2π

(
1

π2(1+ε)

)x ∞∑
n=1

cos((2n +1)π x)

(2n +1)2x (3.152)

=π
(

1

4π2(1+ε)

)x [
exp(−3iπ x) φ(exp(−2iπx,2x,3/2))+exp(3iπ x) φ(exp(2iπx,2x,3/2))

]
.

For the approximation we used arcosh(x) ≈ ln(2x) for large x. Here, φ(z, s,α) =∑∞
n=0

zn

n+α denotes
the Lerch zeta function. Fig. 3.37 (A) shows a comparison between our analytic result and the sum
over the first 5000 numerically obtained residues. For a better comparison, we also perform the sum
over the approximated residue (Eq.3.152) for the first 5000 terms. Moreover, we compute the ratio
of f∞/ f0 to get insight into how much f∞ contributes to the overall integral.
Taken together, this yields the desired expression for the integral and, thereby, an expression for the
interaction kernel in real space which reads

∫ ∞

−∞
dk f (k) =

2πsinh2
(√

24
p

1+ε−24
)

sinh
(√

24
p

1+ε−24
)
− (1+ε)

√
24

p
1+ε−24

exp

(
−

√
24

p
1+ε−24 x

)

+π
(

1

4π2(1+ε)

)x [
exp(−3iπ x) φ

(
exp(−2iπx),2x,

3

2

)
+exp(3iπ x) φ

(
exp(2iπx),2x,

3

2

)]
. (3.153)

This expression, however, is not particularly intuitive. Therefore, we seek for a simpler and more
meaningful expression.
Fig. 3.37 (B) indicates that f∞ is not particularly relevant for the overall integral, i.e., it is promising
to use only the 0th residue to approximate the integral. Moreover, ε is known to be small for biolog-
ically meaningful parameters. In hindsight, one can argue that a value of ε> 1/12 is not particularly
meaningful since for ε < 1/12 our result suggests an interaction range lc < L, implying that the mi-
crotubules interact only over a distance smaller than one microtubule length. Therefore, it makes
sense to consider the limit of small ε. Using only the 0th residue and considering the lowest order
of ε yields

f (x) ≈π
p

3p
ε

exp(−p12εx) . (3.154)

Fig. 3.36 (B) shows the estimate of the imaginary pole in comparison to the more accurate es-
timate and the numeric result. Fig. 3.38 shows a comparison between the numerical solution of
the integral, our analytic expression (Eq. 3.153) and the 0th residue approximation for small ε (Eq.
3.154).

Finally, making use of the convolution theorem, Eq. 3.154 and Eq. 3.139 yield the desired expres-
sion for the filament velocity. Going back to natural variables, i.e., x → x L and v (+) → v (+) + α

ε Vm

gives the expression used in the main text:

v (+)(x) =Vm(1−α)

(
1− 1

2 lc

∫ ∞

−∞
dy P (y)exp

(
−|x − y |

lc

))
where we introduced lc = L/

p
12ε. The occurrence of the absolute value is due to the fact that an

integration over the lower half plane gives an analogous result as compared to the one for the upper
half-plane.
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Figure 3.37: (A) Analytic result for the sum over the residues in the complex plane in comparison to
the sum over the first 5000 numerically obtained residues. To provide a more accurate comparison,
we also compute Eq.3.152 for the first 5000 terms. (B) To compare the contribution of the k0 residue
and the sum over the other residues to the overall integral, we plot the ratio f∞(x)/ f0(x). The dashed
line indicates the ε value where lc ≈ L
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Figure 3.38: Comparison between numerical integration, analytic approximation and the 0th
residue approximation used in the main text. Note that the deviation between the approximations
for larger ε is manly caused by the wrong estimate of the k0 residue.

Extension of the analysis to systems with several different types of crosslinking motors In the
main text, we focus our analysis on the case where there is only one type of motor in the system,
namely a crosslinking motor whose two heads are both active and walk to the plus end of the re-
spective microtubule. However, there are also other types of crosslinking motors, for instance mo-
tors with only one active head and one passive one that does not move on the microtubule (see
Fig. 3.39 for an illustration). Our analysis can be straightforwardly extended to such other types of
crosslinking motors as long as the dominant part of their force generation still happens in the bulk
of microtubules and not at the end:4 More concretely, let us look at a system with five different types
of motors (see also Fig. 3.39 for an illustration):

• one passive crosslinker with two passive heads: P

• two active crosslinkers with two active heads both moving to the ± end of the microtubule,
respectively: A±

• two types of crosslinkers (“mixed") with one passive head and one active head that moves to
the ± end of the microtubule, respectively: M±.

4The latter case is true for motors such as dynein which exhibit a much higher residence time at the microtubule minus
ends as compared to the bulk (e.g. [96]).
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Furthermore, we again assume a linear force-velocity relation for all motors.
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Figure 3.39: Microscopic, motor-mediated interactions between microtubules for different types
of motors. Passive crosslinkers have two passive heads that do not move along the microtubule.
“Mixed" motors have one active and one passive head.

The passive crosslinker does not exert any active forces between a pair of microtubules but resists
relative motion of the two microtubules, irrespective of their relative orientation:

F (++−− )
P (x, y) = FP

(
v (±)(y)− v (±)(x)

vP

)
F (+−−+ )

P (x, y) = FP

(
v (∓)(y)− v (±)(x)

vP

)
,

where F (++−− )
P (x, y) is the force a (±) microtubule at position y exerts on a parallel (±) microtubule

at position x. Similarly, F (+−−+ )
P (x, y) denotes the force a (±) microtubule at position y exerts on an

antiparallel (∓) microtubule at position x. FP denotes the motor force arising for a relative velocity
vP .

The active crosslinker with both heads moving to the (+) end is the one we already described in
the main text. It exerts an active force on antiparallel microtubules and resists relative motion of the
two crosslinked microtubules, irrespective of the relative orientation:

F (++−− )
A+

(x, y) = FA+

(
v (±)(y)− v (±)(x)

2v A+

)
F (+−−+ )

A+
(x, y) = FA+

(
±1+ v (∓)(y)− v (±)(x)

2v A+

)
.

Similarly, the active crosslinker with heads moving towards the (−) end exerts the following forces:

F (++−− )
A−

(x, y) = FA−

(
v (±)(y)− v (±)(x)

2v A−

)
F (+−−+ )

A−
(x, y) = FA−

(
∓1+ v (∓)(y)− v (±)(x)

2v A−

)
.

FA± denotes the force the motor exerts between two antiparallel microtubules that do not move
relative to each other. v A± corresponds to the motor speed of each head along the microtubule.

Finally, the mixed crosslinkers shows “mixed" behavior. For parallel microtubules they behave on
average like any other crosslinker (see Fig. 3.39 for an illustration): Consider a situation where two
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static (+) microtubules are crosslinked. Then, the mixed crosslinker can be bound either with the
active head on microtubule 1 and with the passive one on microtubule 2 or the other way round.
In the first case, the M± motor moves microtubule 1 in the ± direction and microtubule 2 in the
∓ direction. In the second case, it is just the opposite: microtubule 1 is pushed in the ∓ direction
whereas microtubule 2 is pushed in the ± direction. Since both configurations occur with equal
probability, the active contributions does cancel for parallel microtubules. For antiparallel micro-
tubules, on the other hand, the direction of movement of the (±) microtubule is always the same,
irrespective of which heads is bound to which microtubule. The M± motor moves the (+) micro-
tubule in ± direction and the (−) microtubule in the ∓ direction. For antiparallel microtubules, the
active contributions thus do not cancel but are equivalent to the A± motor with two active heads.
The passive contribution, steming from relative motion of the microtubules, is always the same: It
acts against the direction of motion, irrespective of which head is bound where and how the relative
orientation is.

Taken together, the mixed crosslinker with one active and one passive head behaves similarly to
any other crosslinker in the case of parallel microtubules and similarly to an active crosslinker in
the case of antiparallel microtubules:

F (++−− )
M+

(x, y) = FM+

(
v (±)(y)− v (±)(x)

vM+

)
F (+−−+ )

M+
(x, y) = FM+

(
±1+ v (∓)(y)− v (±)(x)

vM+

)
,

for the mixed motor M+ with active head moving to the + end, and

F (++−− )
M−

(x, y) = FM−

(
v (±)(y)− v (±)(x)

vM−

)
F (+−−+ )

M−
(x, y) = FM−

(
∓1+ v (∓)(y)− v (±)(x)

vM−

)
,

for the mixed motor M− with active head moving to the − end. FM± denotes the force a M± motor
exerts on two static, antiparallel microtubules and vM± is the motor speed of the active head.

Summing all the contributions from all motor types, the total force exerted on a (+) microtubule
at position x by parallel (+) microtubules is given by

F (++)(x) =
∫ x+L

x−L

dz

L

Lov(x, z)

L
ϕ(+)(z)C

(
v (+)(z)− v (+)(x)

)
,

where Lov(x, z) = max(L − |x − z|,0) denotes the overlap between two microtubules at positions x
and z as defined in the main text. Furthermore, NP , NA± and NM± denote the number of passive
P , active A± and mixed crosslinkers M± per microtubule, respectively. Furthermore, we defined the
sum of the absolute force to velocity ratios

C = NP FP

vP
+ NA+FA+

2v A+
+ NA−FA−

2v A−
+ NM+FM+

vM+
+ NM−FM−

vM−
.

Similarly, the total force on a (+) microtubule at position x by antiparallel (−) microtubules is given
by

F (+−)(x) =
∫ x+L

x−L

dz

L

Lov(x, z)

L
ϕ(−)(z)

(
C

(
v (−)(z)− v (+)(x)

)+D
)

,

where we defined D as the sum of the motor forces

D = NA+FA+ +NM+FM+ −NA−FA− −NM−FM− .
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The forces on the (−) microtubules are determined analogously:

F (−−)(x) =
∫ x+L

x−L

dz

L

Lov(x, z)

L
ϕ(−)(z)C

(
v (−)(z)− v (−)(x)

)
F (−+)(x) =

∫ x+L

x−L

dz

L

Lov(x, z)

L
ϕ(+)(z)

(
C

(
v (+)(z)− v (−)(x)

)−D
)

.

Now, we proceed analogously to the case with only one motor:

γv (+)(x) =
∫ x+L

x−L

dz

L

Lov(x, z)

L

(
ϕ(+)(z)C

(
v (+)(z)− v (+)(x)

)+ϕ(−)(z)C
(
v (−)(z)− v (+)(x)

)+ϕ(−)(z)D
)

(3.155)

γv (−)(x) =
∫ x+L

x−L

dz

L

Lov(x, z)

L

(
ϕ(−)(z)C

(
v (−)(z)− v (−)(x)

)+ϕ(+)(z)C
(
v (+)(z)− v (−)(x)

)−ϕ(+)(z)D
)

.

(3.156)

Subtracting those two equations from one another and performing the integral
∫ x+L

x−L
dz
L

Lov(x,z)
L = 1,

we find

γ
(
v (+)(x)− v (−))= ∫ x+L

x−L

dz

L

Lov(x, z)

L

(
D +C

(
v (−)(x)− v (+)(x)

))= D +C
(
v (−)(x)− v (+)(x)

)
.

As a result,

v (−)(x) = v (+)(x)− D

γ+C
, (3.157)

which is the generalization of Eq. 3.136.
As for the original case, this result can be plugged into Eq. 3.155, effectively decoupling the two

equations. It follows that

ε̃v (+)(x)− D

2C

γ

γ+C
=

∫ x+L

x−L

dz

L

Lov(x, z)

L

(
v (+)(z)− v (+)(x)

)− D

2C

γ

γ+C

∫ x+L

x−L

dz

L

Lov(x, z)

L
P (z),

where we defined ε̃= γ/C and used that we can write the densities in terms of the polarity ϕ(±)(z) =
(1±P (z))/2. Comparing this expression with the analogous result, Eq. 3.137, we realize that

ε= γ
Fm Nm

2Vm

→ ε̃= γ

C

Vmα=Vm
γ

γ+ Fm Nm
2Vm

→ D

2C

γ

γ+C

Performing the same steps as above, we can thus conclude

v (+)(x) = D

2(γ+C )

(
1− 1

2lc

∫ ∞

−∞
dy P (y)e−|x−y |/lc

)
(3.158)

v (−)(x) =− D

2(γ+C )

(
1+ 1

2lc

∫ ∞

−∞
dy P (y)e−|x−y |/lc

)
, (3.159)

with the characteristic length

lc = L

√
C

12γ
(3.160)
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with the motor forces Fi , number of motors per filament Ni and relevant motor velocities vi . The
factors fi are 1 for A± and 1/2 for M±, corresponding to the fraction of active heads, and 0 for P due
to the convention chosen. The prefactor is

D

2(γ+C )
= NA+FA+ +NM+FM+ −NA−FA− −NM−FM−

2
(
γ+∑

i=P,A±,M±
Ni Fi
2vi fi

) . (3.161)

Thus, the characteristic length is determined by the ratio between the friction in the fluid and the
“friction" between all crosslinked microtubules. This friction is determined by the sum of the pas-
sive contribution of all motors, irrespective of their direction of motion or whether they are active or
not. This passive contribution is independent of the motor properties as each motor resists relative
motion of filaments compared to the favored relative velocity. In contrast, for the maximal speed of
the microtubules D/2/(γ+C ) the direction of the motors is relevant, as expected: D does not corre-
spond to an absolute sum of the different motor types but motors with opposite direction of motion
enter with opposite sign, effectively competing against each other.

On a broader perspective, we conclude that systems with different types of motors behave quali-
tatively similarly as the original system. Their characteristic length only depends on the total passive
forces exerted by all motor types and the sign and magnitude of the velocities are determined by the
competition between the active motor contributions.

This result provides an insightful intuitive explanation for the characteristic length lc . The only
non-collective length scale in the system is L, the length of microtubules. Hence, by a basic scaling
argument, lc needs to be a linear function of L, multiplied by a dimensionless quantity. The only
meaningful combination of the system parameters yielding a dimensionless quantity is the ratio of
the different forces in the system: drag in the fluid and forces between microtubules. But, which
are the relevant forces between microtubules? Is it the averaged active force on the microtubules or
rather the total “friction" between microtubules induced by the motor resistance to relative motion?
To obtain an intuitive answer to this question, consider a system with two types of motors whose
heads move in the opposite direction. Then, for an equal proportion of both types, the average
active force on all microtubules is zero, irrespective of the absolute number of motors. The force
propagation through the network, however, should depend on the number of links in the network or,
equivalently, the absolute number of motors. The same is true for the friction between microtubules
that linearly increases with the absolute number of motors. Taken together, this suggests that lc

should depend on the total friction between microtubules rather than on the averaged active forces.
Thus, lc should be proportional to L and a function of the ratio between the drag in the fluid γVm

and the total filament friction Fm Nm . Note that it remains unclear from this intuitive argument why
the functional dependence is given by a square root.

FOURIER REPRESENTATION OF THE AMBIENT POLARITY

The ambient polarity is given by the convolution of the local polarity with an exponentially decaying
interaction kernel, Eq. 3.108b. As the Fourier transformation of a convolution of two functions is
given by the product of the two Fourier transformations, it is instructive to consider the Fourier
representation of the polarities. We distinguish two cases. First, we consider an infinite system
where the fields are defined on the entire real axis, and, second, a periodic system with period R.

Infinite case For a polarity, P (x), defined on the real axis, x ∈R, we define the Fourier transforma-
tion as

P̂ (k) = 1

2π

∫ ∞

−∞
dy P (y)e i k y , k ∈R,
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with the corresponding back transformation P (x) = ∫ ∞
−∞ dk P̂ (k)e−i kx . Similarly, the Fourier trans-

formation of the ambient polarity is

Π̂(k) = 1

2π

∫ ∞

−∞
dy Π(y)e i k y

= 1

2π

∫ ∞

−∞
dzP (z)

1

2lc

∫ ∞

−∞
dy e−|y−z|/lc e i k y

= P̂ (k)
1

1+ (klc )2 ≡ P̂ (k)K̂ (k), (3.162)

where we exchanged the integrals and performed the Fourier transformation of the exponentially
decaying interaction kernel, K̂ (k) = 1/(1+(klc )2). This result implies that the spatial modes are sup-
pressed according to a Lorentzian. So, faster fluctuations are damped more, and the ambient po-
larity does not exhibit spatial variations corresponding to large wave vectors k À 1/lc (small wave-
length). Intuitively, the lack of fast fluctuations in the ambient polarity is due to the averaging of
local polarities in a range of size lc . As we will see in the following, we get a very similar result in the
periodic case.

Finite interval with periodic continuation If the system is periodic with period R, the polarity,
P (x), x ∈ [0,R], is described by a Fourier series, P (x) =∑∞

n=−∞ P̂ne−i n 2π
R x , with Fourier coefficients

P̂n = 1

R

∫ R

0
dy P (y)e i n 2π

R y , n ∈Z. (3.163)

The Fourier coefficients for the ambient polarity, Π̂n , n ∈Z, are given by

Π̂n = 1

R

∫ R

0
dy Π(y)e i n 2π

R y

= 1

R

∞∑
m=−∞

∫ R

0
dw P (w +mR)e i n 2π

R w 1

2lc

∫ −(m−1)R−w

−mR−w
dv e−|v |/lc e i n 2π

R v e i n2πm

= 1

R

∫ R

0
dw P (w)e i n 2π

R w 1

2lc

∫ ∞

−∞
dv e−|v |/lc e i n 2π

R v

= P̂n
1

1+ (2πlc n/R)2 ≡ P̂nK̂

(
2πn

R

)
. (3.164)

In these steps, we exchanged the integrals and used that the infinite integral can be expressed in
terms of an infinite sum of integrals over a period R each. Furthermore, we used the substitutions
w = z−mR and v = y−mR−w and the periodicity: P (w+mR) = P (w) and e i n2πm = 1 for m ∈Z. We
could have guessed this result from the result of the infinite case, Eq. 3.162, as in the periodic case
only wave vectors k which are a multiple of 2π/R are possible: k = n2π/R for some n ∈Z. So, again,
fast fluctuations are strongly suppressed in the ambient polarity.

Relevance Importantly, these results are not restricted to a specific class of polarity profiles but
generally capture the relationship between the local and ambient polarity in an infinite (large) sys-
tem. Hence, the ambient polarity (the velocity) is expected to vary at most on length scales larger
than the characteristic length lc . Related to this, extreme values of the local polarity are averaged out
and do not show up in the distribution of velocities. This observation is illustrated by two examples
in the main text, namely the pedagogical case with linear polarity profile and the in silico study with
random polarity profile.
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Linear polarity profile As a first example to illustrate the relationship between the ranges of local
and ambient polarity, we consider a linear polarity profile P (x) = a ∗ (x − S/2) on a finite interval
x ∈ [0,S] (where |a| ≤ 2/S to ensure that the polarity does not exceed ±1). This situation is in contrast
to the main analysis in the manuscript which focuses on an infinite system. Consequently, we have
to specify some boundary conditions.

Motivation of boundary conditions In order to fix the boundary conditions, we start from the
premise that even at the boundary, the system is dense and the number of interaction partners of a
microtubule is limited by the number of neighbors and not by the overall number of microtubules.
In other words, the number of interaction partners per microtubules is the same, irrespective of
whether the microtubule is located in the bulk of the system or at the boundary. This implies that
microtubules at the left (right) boundary have twice as many crosslinks towards their right (left) as
compared to microtubules in the bulk of the system (and none to the left (right) due to the bound-
ary). To approximately account for this effect, we mirror the polarity profile at its boundaries x = 0
and x = S, so we have P (−x) = P (x) and P (S − x) = P (S + x). By repeated application of this mirror-
ing, the polarity profile is continued to the entire real axis. The resulting continued spatial polarity
profile is 2S periodic. Thus, we approximate our finite system by a periodically continued spatial
polarity field with the same (infinite) interaction kernel exp(−|x − y |/lc ) as for the infinite system.

Fourier coefficients The local polarity is represented by a Fourier series with Fourier coefficients
given in Eq.3.163 for R = 2S. More concretely, due to the symmetry P (x) = P (−x) the Fourier coeffi-
cients are given by

P̂n = 1

2S

∫ S

−S
dy P (y)e i n π

S y

= 1

2S

∫ S

0
dy a

(
y − S

2

)
(e i n π

S y +e−i n π
S y ) =

{
−a 2S

n2π2 n odd

0 n even.

Eq. 3.164 then implies that the Fourier coefficients of the ambient polarity are given by

Π̂n =
{
−a 2S

n2π2(1+(πlc n/S)2) n odd

0 n even.

Ratio between the ambient and local polarity range
From the Fourier coefficients, we can straightforwardly determine the ratio between the ranges of

local and ambient polarity. Due to the monotonicity of the local polarity and the from-the-center
decreasing interaction kernel, the maximum (minimum) of the ambient polarity is at the same lo-
cation as the maximum (minimum) of the local polarity. In order to compute the ratio between the
two ranges of values, it is thus sufficient to determine the ambient polarity at x = S where it attains
its maximum (due to the symmetry, the minimal value at x = 0 corresponds to the inverse of the
maximal value):

Πmax =Π(x = S)

=
(
1− 2lc

S
tanh

(
S

2lc

))
aS

2
=

(
1− 2lc

S
tanh

(
S

2lc

))
Pmax,

where we used that Pmax = P (x = S) = aS/2. A more instructive expression can be obtained by
using a large wavelength approximation, describing the local and ambient polarities by their lowest
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modes n = ±1, P (x) ≈ 2P̂1 cos(πS x) and Π(x) ≈ 2Π̂1 cos(πS x). Thereby, the ratio of the ranges of the
local and ambient polarity is approximately

Πmax

Pmax
≈ Π̂1

P̂1
= 1

1+ (πlc /S)2 .

As can be seen in Figure 3.23, this expression is a fairly good approximation, in particular for large
enough lc /S as expected. It predicts that the range of the ambient polarity is strongly “squeezed"
for large characteristic length.

EXTENSION OF THE in silico STUDY TO A BROADER CLASS OF SYSTEMS

The analysis in section 3.3.2 in the main text is based on the assumption that the polarity field does
not have any spatial structure. That is, the system is translationally invariant, and - on average - all
positions are equivalent. However, generally, this premise will not be fulfilled. In this appendix, we
thus want to extend our previous analysis to a broader class of systems.

As we have seen before in the main text the variance of the ambient polarity, Var[Π], depends on
the autocorrelation of the local polarity 〈P (x)P (y)〉. Thus, in order to make any statements about the
distribution of the ambient polarity, we need to make some assumptions on the correlation of the
local polarities at different locations. The most obvious property of the system that leads to correla-
tions of the local polarities at different locations is the finite extension of microtubules. As discussed
before, due to the finite microtubule length L > 0, an excess of microtubules at one position leads to
an excess of microtubules at distances maximally L apart. In the following, we will assume that this
contribution to the correlation dominates, and that there are only weak correlation effects, for in-
stance due to filament dynamics or feedback. We believe that in this case it is reasonable to assume
that the covariance of the local polarity at different positions (the autocorrelation) decays linearly
with distance up to |x − y | = L:

Cov[P ](x, y) ≡ 〈P (x)P (y)〉−〈P (x)〉〈P (y)〉 ≈ Var[P ]

(
1− |x − y |

L

)
Θ

(
L−|x − y |) . (3.165)

Here we furthermore assumed that the magnitude of the fluctuations in the polarity is similar ev-
erywhere: Var[P ] is approximately spatially invariant.

We will restrict our discussion to this class of system as quantitative statements for the general
case are difficult to obtain.

Prediction Let us consider systems where Eq. 3.165 holds. Suppose we measure the spatial profile
of the average of the local polarities and of the velocities, 〈P (x)〉 and 〈v (±)(x)〉, where the average
denotes an ensemble average at fixed position x. Moreover, we determine the average variance of
the local polarity Var[P ] = 〈Var[P (x)]〉x , where Var[P (x)] = 〈P (x)2〉 − 〈P (x)〉2 is the variance of the
local polarity at fixed position x and 〈〉x denotes an average over all locations x. Then, our theory
predicts that the covariance of the velocity at different positions is

Cov[v (+)](x, y) ≡ 〈v (+)(x)v (+)(y)〉−〈v (+)(x)〉〈v (+)(y)〉 =
=V 2

m(1−α)2 (〈(1−Π(x))(1−Π(y))〉−〈1−Π(x)〉〈1−Π(y)〉)=
=V 2

m(1−α)2 (〈Π(x)Π(y)〉−〈Π(x)〉〈Π(y)〉)=
=V 2

m(1−α)2 1

4l 2
c

∫ ∞

−∞
dz1

∫ ∞

−∞
dz2e−

|x−z1 |
lc e−

|y−z2 |
lc (〈P (z1)P (z2)〉−〈P (z1)〉〈P (z2)〉) .



3.6. SUPPLEMENTAL MATERIAL

3

161

Using assumption 3.165, this expression becomes

Cov[v (+)](x, y) =

=V 2
m(1−α)2Var[P ]

1

4l 2
c

∫ ∞

−∞
dz1

∫ ∞

−∞
dz2e−

|x−z1 |
lc e−

|y−z2 |
lc

(
1− |z1 − z2|

L

)
Θ (L−|z1 − z2|) ,

which holds for the velocities v (−) as well. For general distance x − y , the analytic expression is not
very insightful and the expression is best understood graphically.

|x-y|/L
-40 400

0

1

Figure 3.40: Comparison of the autocorrelation coefficient of the local polarity, Cov[P ](x, y)/Var[P ],
and of the velocity, Cov[v (±)](x, y)/Var[v (±)], for different values of the characteristic length lc . The
velocity correlations decay much slower as compared to the correlations in the local polarity. The
correlation length of the velocity scales with lc , that is, for larger lc , the correlations length is larger
as well.

Fig. 3.40 shows a comparison between the normalized covariance of the local polarities (the auto-
correlation coefficient), Cov[P ](x, y)/VarP , and of the velocity, Cov[v (±)](x, y)/Var[v (±)], for different
lc . Whereas the correlation of the local polarity quickly decays to zero (after a distance |x − y | = L),
the correlation of the velocities is much more long-ranged and its correlation length increases with
lc .

The covariance of the velocity for x = y , Cov[v (+)](x, x), which corresponds to the variance of the
velocity Var[v (±)], is given as

Var[v (+)] =V 2
m(1−α)2Var[P ]

(
1− 3lc

2L

(
1−e−

L
lc

)
+ 1

2
e−

L
lc

)
,

in terms of the variance of the local polarity, Var[P ]. Similarly, the variance of the ambient polarity,
Var[Π], is given by

Var[Π] = Var[P ]

(
1− 3lc

2L

(
1−e−

L
lc

)
+ 1

2
e−

L
lc

)
.

So, for the broader class of systems considered here we recover exactly the same result as for the
in silico study.

COMPARISON OF OUR RESULTS FOR SMALL CHARACTERISTIC LENGTH TO THE DILUTE LIMIT

One of the central results of our work is that there is an intrinsic length scale of the system that
determines the velocity-polarity relation. This characteristic length lc captures how far information
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on the local forces propagates through the network. Naively, one can argue that for dilute systems lc

is small and, correspondingly, that forces only act locally. This conclusion fits well with the intuitive
conception of a dilute limit where filaments are arranged in disconnected patches. Nonetheless,
one has to be careful to directly compare our result to the dilute limit. With regard to this limit,
there are two main assumptions in our continuum theory.

1. Single patch: All microtubules are directly or indirectly (via other microtubules) connected to
each other and there are no disconnected patches of microtubules. This assumption corre-
sponds to hypothesizing that the filament network works above the percolation threshold and
that the average number of interaction partners N is not too small.

2. Sufficient interaction partners: The number of neighbors a microtubule interacts with is lim-
ited by the average number of interaction partners N and not by the number of neighbors.
This assumption is based on the idea that there is always a sufficient number of neighbors
(possible interaction partners) present for each microtubule. Instead of linearly depend-
ing on the microtubule densities, the force thus exhibits a dependency on the fraction ϕ(±)

(Eq. 3.106).

Both assumptions do not necessarily apply to the dilute limit. We believe that the second as-
sumption regarding a sufficient number of interaction partners can be readily relaxed also within a
continuum description. For this purpose, one could, for instance, try to incorporate a phenomeno-
logical term Nρ(±)/(N +ρ++ρ−) for the number of interactions with (±) microtubules. Such a term
would converge to Nϕ(±) for large total density ρ ≡ ρ++ρ− À N , as used in our description. Con-
versely, for small ρ it captures a linear dependency of the number of (±) interactions on the respec-
tive density. Taken together, investigating how such an effective term changes the behavior should
be instructive for a more quantitative understanding of the dilute limit.

The first assumption is conceptually more difficult to overcome within a continuum description.
But indeed, for parameters estimated as in section “3.3.2”, regions with zero density (and thus dis-
connected patches) occur regularly in our stochastic, agent-based simulation. These empty spaces
arise due to the stochastic loss of connections between microtubules and a following drifting apart
of different patches. Vice versa, such empty spaces stochastically vanish again if two patches meet.
The interplay of these opposing, stochastic processes leads to patch boundaries that are not static
but change randomly. We suppose that one could effectively incorporate this behavior into our con-
tinuum theory. To this end, one might first consider systems of finite sizes and then try to average
their behavior with regard to exponentially distributed system sizes. Intuitively, we would expect
that this procedure leads to an enhanced effective attenuation and thus to a lower effective value
of the characteristic length lc but does not change our results qualitatively: Due to the stochastic
loss of connections between patches (particularly for systems close to the percolation threshold),
there is not only loss of information due to drag but also abruptly at the boundaries of the patches.
If these boundaries are fluctuating, the abrupt loss at the boundaries is on average smoothed and
should be qualitatively comparable to a continuous loss of information by drag.

Overall, we think that - despite these assumptions of our theory - our results help bridging the gap
between previous findings for dilute and heavily crosslinked filament networks.
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CONCLUSION & OUTLOOK

In this thesis, we have studied the collective dynamics of filament-motor-mixtures. Starting from
kinetic interactions of motor proteins with individual filaments, we coarse-grained the dynamics to
evaluate consequences at the collective level. The guiding question in all presented projects was
how interactions that happen on the scale of the protein size (nanometers) can give rise to filament
structures spanning multiple filament lengths (10−100 micrometers). Specifically, we have studied
systems composed of filaments and motors that regulate filament length and systems composed of
filaments and motor cross-linkers that can generate mechanical force on the cross-linked filaments.
A detailed summary is given at the end of each chapter. Let us recapitulate the main findings once
again.

First, we investigated the motor-mediated length regulation in ensembles of filaments. We found
that resource limitation in combination with length-dependent polymerization kinetics is sufficient
to self-organize filaments in structures with aster-like orientational order that span multiple fila-
ment lengths. Those large-scale structures show emergent dynamics, including traveling wave so-
lutions, aster coarsening, and coalescence, as well as symmetry breaking in the polar order. All those
phenomena are observed even in the absence of mechanical interactions of the filaments. Their dy-
namics is only coupled via a shared pool of resources. This self-organization pathway is driven by
a long-wavelength spatial instability that is caused by the diffusive redistribution of tubulin mass.
This mass redistribution instability segregates the system into domains where filaments grow fast
and slow respectively.

Second, we investigated motor-mediated mechanical interactions between filaments. Here, we
asked two fundamental questions: First, which mechanisms control the propensity of a bundle of
cross-linked filaments to promote contractile or extensile stress? Second, which mechanisms con-
trol the speed of filaments in a bundle of filaments that are driven by molecular motors? To answer
these questions, we derive a coarse-grained filament-filament interaction based on time-scale sepa-
ration arguments. Based on this filament-filament interaction, we derived a continuum description
for the motor-induced filament motion in the bundle.

To evaluate the contractile or extensile nature of a motor cross-linked filament bundle, we studied
a general model for motor cross-linkers and derived the collective contribution to the filament bun-
dle tension. Thereby, we were able to identify generic requirements of motor cross-linkers to induce
contractile or expansile stress in the filament bundle. First, motors that have an emergent density
profile on the filament which is homogenous can neither promote extensile nor contractile tension.
Second, symmetric motors like kinesin-5 can only induce extensile tension in the presence of exter-
nal or internal friction in the filament bundle. In the absence of friction, filaments slide across the
motor at its unloaded speed, which prevents the build-up of tension in the motor and, thereby the
emergent tension in the material. Those characteristics can be quantified in terms of the motors’
anisotropy factor - a measure of the inhomogeneity of the on-filament motor density.

We proceeded to apply the derived formalism to a spatially inhomogeneous filament bundle and
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identified a mechanism for the collective filament motion in the bundle: Owing to the cross-linking
in the bundle, locally generated forces propagate a characteristic length which is set by the competi-
tion between cross-linker forces on the filament and drag imposed on the filament by the surround-
ing fluid. Strikingly, we find that the filament velocity is independent of the local number of parallel
and anti-parallel interaction partners, consistent with recent in vitro experiments [98]. Using large-
scale computer simulations, we demonstrated that the presented ideas can be used to evaluate the
filament sliding speed in networks.

In the living cell, motor-mediated filament length regulation and motor-mediated mechanical
interactions between filaments are no isolated processes – they happen simultaneously. Having
shown that both processes on their own can give rise to large-scale self-organization and complex
collective dynamics the question arises: Do both processes take place simultaneously but decou-
pled? Or do they influence each other? Let me speculate on those questions. A decisive factor
controlling a filament bundle’s propensity to contract or expand is the motor anisotropy factor. For
non-growing filaments plus-end directed (minus-end directed) motors will have an emergent den-
sity profile that yields a positive (negative) anisotropy factor. Which in both cases leads to neutral
or extensile tension in the system. But what if growing filaments outpace the motors? This can yield
an effective advective flux of motor heads opposed to its direction of motion. Thereby plus-end
directed motors could have an emergent anisotropy factor smaller than zero, which in turn would
cause a contractile tension in the system. Evaluating if this is indeed possible will be an interesting
avenue for further research.
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