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Zusammenfassung

Sicherheit und Leistung sind die wichtigsten Anforderungen bei der Konzeption und Re-
alisierung komplexer Systeme. Nehmen wir ein selbstfahrendes Auto, das nicht mit bes-
timmten Sicherheitsfunktionen ausgestattet ist: Es kann tödliche Unfälle, schwere Verlet-
zungen oder gravierende Schäden an Mensch und Umwelt verursachen. Daher ist eine
strenge Sicherheitsanalyse erforderlich, um die korrekte Ausführung von Funktionalitäten
in vielen sicherheitskritischen Anwendungen sicherzustellen. Modellbasierte Ansätze zur
Erfüllung solchen Anforderungen wurden in der Literatur ausführlich untersucht. Allerd-
ings ist ein genaues Modell des Systems in vielen praktischen Szenarien nicht immer
verfügbar. Daher fokusiert sich diese Dissertation auf datengesteuerte Methoden und Tech-
niken des maschinellen Lernens, um diese Herausforderung zu lösen.

Zunächst gehen wir davon aus, dass nur ein unvollständiges parametrisiertes Modell
des Systems verfügbar ist. Das Hauptziel ist die Untersuchung der formalen Verifikation
linearer zeitinvarianter Systeme in Bezug auf ein Fragment zeitlogischer Spezifikationen,
für den Fall, in dem nur eine partielle Kenntnis des Modells verfügbar ist. Das bedeutet, ein
parametrisiertes Modell des Systems ist bekannt, doch die genauen Werte der Parameter
sind unbekannt. Wir liefern ein probabilistisches Maß für die Erfüllung der Spezifikation
durch Trajektorien des Systems unter dem Einfluss von bestimmten Unsicherheiten. Wir
gehen davon aus, dass diese Spezifikationen in Form von Formeln der zeitlichen Logik
ausgedrückt werden, und bieten einen Ansatz, der sich auf die Erfassung von Input-Output-
Daten des Systems stützt und die Bayes’sche Inferenz auf die erfassten Daten anwendet,
um mehr Vertrauen in die Erfüllung der Spezifikation zu legen.

Zweitens gehen wir davon aus, dass wir keine Kenntnis über das Modell des Systems
haben und nur Zugang zu den Input-Output-Daten. Wir untersuchen Verifikations- und
Syntheseprobleme für Sicherheitsspezifikationen über unbekannte zeitdiskrete stochastische
Systeme. Wenn ein Modell des Systems verfügbar ist, wurde die Idee der Grenzzertifikate
erfolgreich angewendet, um die Erfüllung von Sicherheitsspezifikationen zu gewährleisten.
Hier formulieren wir die Berechnung von Barrierezertifikaten als ein robustes konvexes Pro-
gramm (RCP). Die Lösung des erfassten RCP ist im Allgemeinen komplex, da das Modell
des Systems unbekannt ist, welches in einer der Nebenbedingungen des RCP erscheint. Wir
schlagen einen datengetriebenen Ansatz vor, der die unendlich Anzahl von Nebenbedin-
gungen im RCP durch eine endliche Anzahl von Nebenbedingungen ersetzt, indem endlich
viele Zufallsproben aus den Trajektorien des Systems genommen werden. Auf diese Weise
ersetzen wir das ursprüngliche RCP durch ein konvexes Szenarioprogramm (SCP) und
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zeigen, wie man ihre Optimierung in Beziehung setzt. Wir garantieren, dass die Lösung
des SCP eine Lösung des RCP mit a priori garantiertem Vertrauen ist, wenn die Anzahl
der Stichproben größer als ein bestimmter Wert ist. Dies liefert eine untere Grenze für
die Sicherheitswahrscheinlichkeit des ursprünglichen unbekannten Systems zusammen mit
einem Regler im Falle der Synthese.

Abschließend schlagen wir drei Lösungen vor, um die hohe Notwendigkeit an Daten in
unserem Ansatz zu bewältigen. Der erste Ansatz - der Wait-and-Judge-Ansatz - kontrol-
liert eine Bedingung über den optimalen Wert des konvexen Szenarioprogramms (SCP)
unter Verwendung einer festen Anzahl von Stichproben, einer unteren Grenzwahrschein-
lichkeit und der gewünschten Sicherheit für die Erfüllung der Spezifikationen. Der zweite
Ansatz, der auf Wiederholung basierende Szenarien-Ansatz löst mit Hilfe iterativem Vorge-
hen das SCP mit Stichproben. Außerdem überprüft dieser die Durchführbarkeit und das
gewünschte Fehlermaß. Eine Sicherheitsbedingung wird verifiziert, was die Berechnung
einer unteren Grenze für die Erfüllung der Sicherheitskriterien ermöglicht. Der dritte
Ansatz ist, der ”Warten, Beurteilen und Wiederholen”- Ansatz. Auch diese Struktur löst
das SCP iterativ und basierend auf computer berechneten Bedingungen bis eine Mach-
barkeitsbedingung erfüllt ist. Wenn die Sicherheitsbedingung erfüllt ist, gilt das System
als sicher mit einer unteren Wahrscheinlichkeitsgrenze, die mit Hilfe des Optimierer der
erfolgreichen Iteration berechnet wird.



Abstract

Safety and performance are the most important requirements for designing and manufac-
turing complex life-critical systems. Consider a self-driving car which is not equipped with
certain safety functionalities. It can cause fatal accidents, severe injuries, or serious dam-
ages to the environment. Hence, rigorous analysis required to ensure the correctness of
functionalities in many safety-critical applications. Model-based approaches for satisfying
such requirements have been studied extensively in the literature. Unfortunately, a precise
model of the system is not always available in many practical scenarios. Hence, in this
thesis we focus on data-driven methods and machine learning techniques to tackle this
challenge.

First, we assume that only an incomplete parameterized model of the system is avail-
able. The main goal is to study formal verification of linear time-invariant systems with
respect to a fragment of temporal logic specifications when only a partial knowledge of
the model is available, i.e., a parameterized model of the system is known but the exact
values of the parameters are unknown. We provide a probabilistic measure for the satis-
faction of the specification by trajectories of the system under the influence of uncertainty.
We assume that these specifications are expressed as signal temporal logic formulae and
provide an approach that relies on gathering input-output data from the system. We em-
ploy Bayesian inference on the collected data to associate a notion of confidence with the
satisfaction of the specification.

Second, we assume that we do not have any knowledge about the model of the system
and just have access to input-output data from the system. We study verification and
synthesis problems for safety specifications over unknown discrete-time stochastic systems.
When a model of the system is available, notion of barrier certificates have been success-
fully applied for ensuring the satisfaction of safety specifications. Here, we formulate the
computation of barrier certificates as a robust convex program (RCP). Solving the ac-
quired RCP is difficult in general because the model of the system that appears in one of
the constraints of the RCP is unknown. We propose a data-driven approach that replaces
the uncountable number of constraints in the RCP with a finite number of constraints by
taking finitely many random samples from the trajectories of the system. We thus replace
the original RCP with a scenario convex program (SCP) and show how to relate their op-
timizers. We guarantee that the solution of the SCP is a solution of the RCP with a priori
guaranteed confidence when the number of samples is larger than a specific value. This
provides a lower bound on the safety probability of the original unknown system together
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with a controller in the case of synthesis.
Lastly, to address the high demand for data in our data-driven barrier-based approach,

we propose three remedies. First, the wait-and-judge approach that checks a condition
over the optimal value of the SCP using a fixed number of samples, ensuring a lower
bound probability and the desired confidence for satisfying safety specifications. Second,
the repetition-based scenario framework that iteratively solves the SCP with samples,
checking feasibility and achieving the desired violation error. A safety condition is verified,
enabling the computation of a lower bound for safety satisfaction. Third, the wait, judge,
and repeat framework that solves the SCP iteratively until a feasibility condition, based
on computed support constraints, is met. If the safety condition is satisfied, the system
is considered safe with a lower bound probability determined using the optimizer of the
successful iteration.
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Chapter 1

Introduction

1.1 Motivation

Ensuring safety and temporal requirements on cyber-physical systems is becoming more
important in many applications including self-driving cars, power grids, traffic networks,
and integrated medical devices. In recent years, autonomous driving has emerged as a
prominent application within the realm of cyber-physical systems, capturing substantial
attention. For example, in 2023, Mercedes-Benz made history by becoming the world’s pi-
oneering automaker to attain certification for highly automated driving at Level 3, specif-
ically for use on US roads in Nevada. It had also obtained this certification for driving on
Germany’s autobahns before. This milestone marks a significant advancement for automo-
tive technology as DRIVE PILOT sets new benchmarks, standing out as the premier and
sole production-ready Level 3 system authorized for deployment on public freeways in the
USA. BMW also presented concept of BMW Vision iNEXT, which is a groundbreaking
vehicle that showcases advanced autonomous driving capabilities. As a key part of BMW’s
electric and autonomous vehicle strategy, the iNEXT combines cutting-edge technologies
to offer a seamless and intelligent driving experience. Equipped with level 3 autonomous
driving capabilities, the BMW iNEXT allows for hands-off driving in specific conditions
(Fig. 1.1). Alphabet’s Waymo has recently launched an impressive Level 4 self-driving
taxi service in Arizona. This momentous step comes after conducting rigorous testing of
driverless cars for over a year and covering an astounding distance of more than 10 million
miles, all without the need for a safety driver in the seat. In autonomous driving an array
of sensors, including cameras, radar, and LiDAR, along with advanced software algorithms
to perceive and interpret the surrounding environment accurately. This enables the vehicle
to make real-time decisions, maintain lane control, and adjust its speed based on traffic
conditions.

Another application of cyber-physical systems is the integration of electric vehicles
(EVs) and their charging infrastructure with smart grids, forming a complex and intercon-
nected framework that enables efficient and optimized charging, demand response, vehicle-
to-grid integration, and real-time monitoring and control of the charging infrastructure
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Figure 1.1: BMW Vision iNEXT is a groundbreaking vehicle that exemplifies advanced
autonomous driving capabilities. Source: bmw.co.uk.

(Fig. 1.2). The integration of electric vehicle (EV) charging with smart grids involves the
seamless coordination of physical components such as EVs, charging stations, and power
grids, complemented by intelligent software and communication systems. By harnessing
the capabilities of cyber-physical systems (CPS), smart grids enable efficient and optimized
charging through dynamic management of electricity supply and demand, taking into ac-
count factors like grid load, renewable energy generation, and user preferences. This inte-
gration unlocks advanced functionalities including demand response, vehicle-to-grid (V2G)
integration, and real-time monitoring and control of the charging infrastructure. By har-
monizing EVs and charging infrastructure with smart grids, this CPS-driven approach
revolutionizes sustainable transportation and energy systems, promoting effective energy
management, reducing peak loads, integrating renewable energy sources, and enhancing
grid stability and reliability.

Safety-critical cyber-physical systems operate in domains with high-stakes implications,
such as transportation, healthcare, energy, aerospace, and industrial control. Failure in
these systems can lead to significant consequences.

In 2019, a tragic accident occurred involving a fatal collision between a Tesla Model 3 car
and a semi-tractor trailer (Fig. 1.3). Sadly, the driver of the car, a 50-year-old individual,
lost their life in the incident. The collision took place when the truck attempted to cross
the southbound lanes of U.S. 441, intending to make a left turn into the northbound lanes.
Although the truck decelerated as it approached the stop sign at the intersection, it failed
to come to a complete halt before proceeding to cross the southbound lanes. The car was
traveling southbound at a recorded speed of 69 mph and did not engage the brakes or
take any evasive measures to avoid the truck crossing its path. Consequently, the Tesla
collided with the left side of the trailer just behind its midpoint, resulting in the roof of
the car being sheared off. Subsequently, the car continued its trajectory under the trailer
before coming to a stop in the median, approximately 1.680 feet from the point of impact.
Analysis of the Tesla’s system performance data revealed that the driver had activated
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Figure 1.2: EVs and their charging infrastructure integrated with smart grids exemplify
cyber-physical systems. Source: nrel.org.

Autopilot at the time of the collision.

Complex requirements for cyber-physical systems, including safety, can be expressed
as linear temporal logic formulae as well [58]. Model-based approaches for satisfying such
requirements have been studied extensively in the literature [103, 8]. The challenge is that
a precise model of dynamical systems is either not available in many application scenarios
or too complex to be of any use. Therefore, there is a need to develop approaches which
are capable of verifying or synthesizing controllers against safety specifications only based
on the collected data from the system.

1.2 Literature Review

Here, we aim to contextualize our research within the current activities in the field of
verification and synthesis for cyber-physical systems.

Nowadays, data-driven methods and machine learning techniques are being used exten-
sively in many engineering applications. However, they suffer from several limitations in
terms of accuracy and confidence. Due to the complexity of safety-critical cyber-physical
systems (CPS), e.g., self-driving cars and traffic networks, there is a huge demand towards
formal guarantees for the correctness of existing data-driven methods [6, 28]. On the other
hand, formal methods can provide such guarantees when a model of the system is avail-
able. However, the main challenge which most model-based techniques face is the lack of a
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Figure 1.3: The scene of Tesla Model 3 car accident in daylight. Source: roadsafetyusa.org.

precise model of the system. This motivates the need for combining data-driven methods
with formal techniques that will lead to more efficient formal method algorithms [1].

Formal methods have been vastly used in the realm of computer science to provide
correctness guarantees on the expected behavior of a program. Most of these formal tech-
niques have been developed for finite-state models [10, 11]. In order to fully utilize the
advantages of formal techniques in real physical applications, one needs to first construct a
sufficiently precise model of the system. In general, it is hard to model a system accurately.
Besides, the dynamics of a system may vary in the course of time. In such cases, statistical
model checking can be beneficial if all states of the system can be measured [91, 24, 92].
However, statistical model checking generally needs a large number of experiments and is
not able to handle synthesis problems directly [92].

In the first part of this thesis, we aim at putting together Bayesian inference and formal
verification technique and subsequently provide a probabilistic confidence on satisfying a
desired specification by trajectories of a stochastic system. We study formal verification of
linear time-invariant (LTI) systems with respect to a fragment of temporal logic specifica-
tions when only a partial knowledge of the model is available, i.e., a parameterized model
of the system is known but the exact values of the parameters are unknown. We provide a
probabilistic measure for the satisfaction of the temporal logic specification by trajectories
of the system under the influence of uncertainty. We assume these specifications are ex-
pressed by signal temporal logic (STL) formulae [68] and provide an approach that relies
on collecting input-output data from the system. The following four paragraphs discuss a
review of some related work:

A comparison between statistical model checking and probabilistic numerical model
checking methods is provided in [112]. A multi-level statistical model checking approach
is proposed in [100] for hybrid systems. A novel method is introduced in [78] for learning



1.2 Literature Review 5

control Lyapunov-like functions in order to synthesize controllers for nonlinear dynami-
cal systems for stability, safety, and reachability specifications. A data-driven approach
was developed in [82] for control of piecewise affine systems with additive disturbances
against STL specifications. In [7], concepts from formal modeling and machine learning
are exploited to develop methodologies that can identify temporal logic formulae that dis-
criminate different stochastic processes based on observations. In [22], authors propose an
approach to approximate the posterior distributions of unknown parameters for nonlinear
deterministic systems.

Properties expressed as STL formuale are introduced and used in the literature includ-
ing the works in [76] and [30]. A new definition for probabilistic STL formulae is intro-
duced in [81] that assigns probabilities to the atomic propositions and then combines them
through Boolean operators. A robust treatment of uncertainties under STL constraints is
performed in [32] in the framework of model predictive control. An under-approximation
of constraints described as probabilistic STL formulae is proposed in [31] and applied to
design control strategies for the Barcelona wastewater system [33].

In recent years, researchers also have investigated data-driven techniques for formal pol-
icy synthesis of dynamical systems due to their applicability to high dimensional spaces.
A data-driven approach is proposed in [93] for synthesis of safe digital controllers for
sampled-data stochastic nonlinear systems. The learning approach proposed in [21] finds
Lyapunov functions for dynamical systems ensuring their stability. The work in [44] ap-
plies model-free reinforcement learning for policy synthesis of finite-state models. This
method is extended in [63, 62] for continuous-space dynamical systems and finite-horizon
specifications under continuity assumptions on the dynamics of the system. The authors
in [46] propose a reinforcement learning for the synthesis of continuous-state dynamical
systems but the convergence is only demonstrated empirically. The recent approach in [56]
applies reinforcement learning for satisfying linear temporal logic (LTL) specifications with
convergence guarantees and without requiring any continuity assumption on the system
dynamics. Translating LTL specifications to average objectives for reinforcement learning
is studied in [55].

A data-driven and model-based formal verification approach for partially unknown LTI
systems is recently developed in [41], [43]. In these works, authors propose a new method
based on Bayesian inference and reachability analysis to provide a confidence based on
which a physical system affected by noisy measurements verifies a given bounded-time
LTL specification. In [42], a method based on Bayesian inference and model checking is
developed for Markov decision processes. The recent results in [85] extend those of [41]
and [43] to verification of stochastic LTI systems under specifications expressed as STL
formulae. Utilizing data to construct abstractions and checking properties of dynamical
systems has been studied recently in [54, 67]. A Bayesian approach to construct models
and perform robust verification and synthesis of stochastic systems is proposed recently in
[90].

Safety is considered a crucial aspect among the specifications of cyber-physical systems.
Model-based approaches for satisfying safety requirements have been studied extensively
in the literature [35? , 103, 8]. In the setting of formal approaches for stochastic systems, a
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number of abstraction-based methods have been developed for the verification and synthesis
of dynamical systems in order to either verify the desired specifications or synthesize con-
trollers enforcing these systems to satisfy such specifications [60, 66, 101, 114]. In order to
improve scalability of abstraction-based methods, some other techniques such as sequential
gridding [97, 95], discretization-free abstraction [115], and compositional abstraction-based
techniques [98] have been introduced in the literature in order to efficiently deal with the
verification and synthesis problems.

An approach for formal verification and synthesis with respect to safety specifications
in dynamical systems is to use a notion of barrier certificates [74]. Barrier certificates have
been the focus of the recent literature as an abstraction-free technique that is scalable
with the dimension of the system, i.e., they do not require construction of an abstraction
of the system and can provide directly the controller together with the guarantee on the
satisfaction of the safety specification [116], [110], [14]. A barrier-based methodology is
introduced in [74] in order to verify safety in deterministic hybrid systems. In [75], a
framework is proposed for safety verification of stochastic systems using barrier certificates
which is extended to stochastic hybrid systems. The authors in [106] present barrier
certificates that ensure collision-free behaviors in multi-robot systems by minimizing the
difference between the actual and the nominal controllers subject to safety constraints. In
[94], a compositional analysis is proposed for verifying the safety of an interconnection of
subsystems using barrier certificates. The results in [51] use barrier certificates for the
synthesis of controllers against complex requirements expressed as co-safe linear temporal
logic formulas.

The common requirement of the approaches mentioned above is the fact that they need
a mathematical model of the system. However, a precise model of dynamical systems is
either not available in many application scenarios or too complex to be of any use. There-
fore, there is a need to develop approaches which are capable of verifying or synthesizing
controllers against safety specifications only based on collected data from the system.

In the second part of the thesis, we develop a data-driven approach in order to tackle
the safety problem for stochastic systems. Data-driven methods have gained significant
attentions recently for formally verifying some desired specifications. A data-enabled pre-
dictive control is introduced in [25] that utilizes noisy data of the system and produces
optimal control inputs ensuring the satisfaction of desired chance constraints with high
probability. A data-driven model predictive control scheme is proposed in [9] which only
requires initially measured input-output trajectories together with an upper bound on the
dimension of the unknown system. In [104], a methodology is developed in order to make
a single-input single-output system stable only based on data. The stability problem of
black-box linear switching systems with desired confidences is investigated in [57] based
on collected data. This approach is extended in [107] by providing a methodology for
computing the invariant sets of discrete-time black-box systems. A novel Bayes-adaptive
planning algorithm for data-efficient verification of uncertain Markov decision processes is
introduced in [108]. A framework is proposed in [82] to provide a formal guarantee on
data-driven model identification and controller synthesis. In [86], a methodology is devel-
oped for providing a probabilistic confidence over the verification of signal temporal logic
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properties for partially unknown stochastic systems based on collected data. The authors
in [73] propose a framework to learn a decision tree as a model for a black box continuous
system.

The work in [26] develops a method to synthesize robust feedback controllers with safety
and stability guarantees. In [80], a data-driven approach is proposed in order to synthe-
size controllers for deterministic hybrid systems using barrier certificates while providing
a correctness guarantee on the obtained barrier certificate. A data-driven, model-based
approach is developed in [2] to provide stability guarantees using Satisfiability Modulo
Theories (SMT). The authors in [70] develop a data-driven technique to synthesize con-
trollers for unknown deterministic systems. The framework developed in [23] computes
barrier certificates for complete- and incomplete-information systems affected by Gaussian
process and measurement noises under unbounded inputs.

An optimization-based approach is proposed in [79] to learn a control barrier certificate
through safe trajectories under suitable Lipschitz smoothness assumption on the dynamical
system. A sub-linear algorithm is developed in [45] for the barrier-based data-driven model
validation of dynamical systems which computes the barrier function using a large dataset
of trajectories. In [49], a two-step procedure is proposed to synthesize a controller for
an unknown nonlinear system, where the first step is to learn a Gaussian process as a
replacement of the unknown dynamics, and the second step is to construct the control
barrier function for the learned dynamics.

A data-driven optimization called scenario convex program (SCP) is introduced in [17]
to solve robust convex optimizations. This approach replaces the infinite number of con-
straints in the robust optimization with a finite number of constrained by sampling the
uncertain variables from their distributions. The approach relates the feasibility of the
SCP to that of the robust optimization while providing bounds on the probability of vio-
lating the constraints. The results in [53] studies the same approach and relates worst-case
violation of the constraints to the probability of their violation. While [17, 53] focus on
feasibility, the authors in [29] establish a quantitative relation between the optimal value
of the robust optimization and its associated SCP. In Chapter 3, we deploy the results in
[29] in order to connect the solution of an SCP to an RCP that is equivalent to a safety
problem for stochastic systems.

Since the developed approach requires a large number of samples to provide the de-
sired concrete guarantee on the safety of the stochastic systems, we develop approaches in
Chapter 4 to tackle this problem. The authors propose an approach in [19] that utilizes
the number of constraints whose elimination affects an optimization problem instead of
considering all constraints in order to connect the solutions of a scenario convex program
and a chance constraint program (CCP). A repetitive scenario design is developed in [16]
in to potentially reduce the number of required samples in order to connect the optimizers
of an SCP and an CCP. We leverage the ideas in these papers together with the results in
[29] to develop three techniques in order to improve the results in Chapter 3 in terms of
required number of samples.
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1.3 Contributions

We have developed two approaches in this thesis to address the issue of lack of access to
a precise model for a system with a partially unknown parameterized model, as well as a
system with a completely unknown model.

• First, we investigate the formal verification of linear time-invariant (LTI) systems in
relation to a fragment of temporal logic specifications when only partial knowledge
of the model is available. In other words, we have a parameterized model of the
system, but the exact parameter values are unknown. Our overall goal is to inte-
grate Bayesian inference and formal verification techniques to offer a probabilistic
measure of confidence in satisfying a desired specification through stochastic system
trajectories. We establish a probabilistic measure for assessing the satisfaction of
the temporal logic specification by system trajectories, considering the presence of
uncertainty. We assume these specifications are expressed by signal temporal logic
(STL) formulae [68] and provide an approach that relies on collecting input-output
data from the system. We employ Bayesian inference to associate a notion of confi-
dence to the satisfaction of the specification. Our main objective is to combine both
data-driven and model-based techniques for stochastic LTI systems in order to verify
the system against STL specifications. Our approach considers probability thresh-
olds as the lower bounds for the satisfaction of STL specifications by the stochastic
trajectories of the system. We under-approximate the feasible parameter sets of
the probabilistic constraints by transforming them into algebraic inequalities. Then,
confidence values are computed using the obtained feasible sets and distributions of
parameters which are updated based on collected data from the systems. We also
propose relaxation of the algebraic inequalities in order to reduce the conservativeness
of under-approximations.

• Second, we propose formal verification and synthesis procedures for unknown stochas-
tic systems with respect to safety specifications based on collected data. We first cast
a barrier-based safety problem as a robust convex program (RCP). Solving the ob-
tained RCP is hard in general because the unknown model of the system appears
in the constraints. To tackle this issue, we resort to a scenario-driven approach by
collecting samples from the system. Using the results in [29], we connect the optimal
solution of the acquired scenario convex program (SCP) with that of the original
RCP. We provide a lower bound on the safety probability of the unknown stochastic
system using a certain number of data which is related to the desired confidence.
We extend this result to provide a new confidence bound for a class of non-convex
barrier-based safety problems.

• Continuing with this thesis, we introduce three theoretical approaches that are de-
signed to address and reduce the sample complexity inherent in our second proposed
approach. This complexity arises due to the concrete formal guarantee we provide
regarding the safety of the system.
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First, inspired by the findings in [19], we propose a wait-and-judge approach.
This approach offers a data-driven scheme for safety verification of stochastic systems
with unknown models. It provides an out-of-sample performance guarantee while also
addressing the issue of sample complexity. To begin, we employ the concept of barrier
certificates, which allows us to formulate the safety problem as a robust convex
program (RCP). However, solving this optimization program becomes intractable
due to the presence of the unknown model in one of the constraints. Instead, we
propose a scenario convex program (SCP) that corresponds to the original RCP. We
achieve this by utilizing an arbitrary number of samples obtained from the system’s
trajectories. Next, we establish a condition on the optimal value of the obtained
SCP. This condition indicates that the original unknown stochastic system is safe
with a lower bound on the probability and a guaranteed confidence. This condition
is closely related to the number of support constraints. Support constraints are those
whose elimination significantly affects the optimal value. By establishing a posteriori
relations between the desired confidence, the probability of constraint violation, and
the number of samples, we drastically reduce the required amount of data compared
to other approaches that require these relations to be known a priori. Refer to the
results in [83] for more details.

Second, inspired by the results in [16], we propose here a so-called repetitive
scenario approach that provides a data-driven framework to formally verify safety of
stochastic systems with unknown models, while providing out-of-sample performance
guarantees over the verification results. Similar to the results in [83] and [84], we
leverage a notion of barrier certificates in order to cast the safety problem as an
RCP. Since solving this optimization program is not tractable, and also the unknown
model appears in one of the constraints, instead we propose an SCP corresponding
to the original RCP by using N samples collected from trajectories of the system.
To tackle the underlying sample complexity in the results in [83] and [84], here we
construct a repetitive scenario program (RSP) with a specific number of iterations
based on the original SCP. At each iteration, we feed the optimal solution of the
SCP with N samples to a feasibility checker, called the feasibility oracle, with N0

new test samples. The feasibility condition is defined in a way that the empirical
error of the violations should be less than a desired threshold. There is a theoretical
upper bound on the required number of iterations in order to satisfy the feasibility
condition. Finally, a safety condition, which is derived based on Lipschitz constants
of the constraints of RCP, is checked on top of the feasibility condition. If both
conditions are satisfied, then the optimal solution of the RSP is formally related to
the original safety verification problem. As a result, for a fixed a-priori confidence,
the unknown stochastic system is safe with a quantified probability lower bound
computed using feasible solutions of the successful iteration.

Third, we present a novel approach that enhances the benefits of two existing
approaches in [88] and [89] by computing both the number of support constraints and
confidence bounds a posteriori. Moreover, we introduce a new method that signifi-
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cantly reduces the number of required samples for the same level of confidence. First,
similar to [83], we cast the safety problem as an RCP. We select a specific number
of samples and construct an SCP. This SCP is solved iteratively until a feasibility
condition on its optimizer is satisfied. This feasibility condition is constructed based
on the exact number of support constraints at each iteration. The lower number of
samples leads to a higher number of iterations and vice versa. It is also shown that
there is an upper bound on the number of required iterations. In the end, a safety
condition is checked over the optimal value of the successful iteration. If this con-
dition is satisfied, then one can conclude that the system is safe with a probability
lower bounded by a value computed using the optimizer of the successful iteration.
A confidence can be computed a posteriori based on the exact number of support
constraints at the successful iteration, resulting in a less conservative confidence.

1.4 Thesis Organization

This dissertation provides theoretical foundations based on machine learning and data-
driven techniques to enable the reliable verification and synthesis of cyber-physical systems
(CPS). In Chapter 2, we introduce a probabilistic measure to assess the satisfaction
of a specification expressed in signal temporal logic by system trajectories affected by
uncertainty. Our approach involves collecting input-output data from the system and
utilizing Bayesian inference on the gathered data to assign a measure of confidence to
the satisfaction of the specification. In Chapter 3, we study verification and synthesis
problems for safety specifications over unknown discrete-time stochastic systems. We cast
the safety problem of stochastic systems as a convex optimization problem for a finite
number of collected samples from the state set. Then, we connect the solution of this
optimization problem to the safety of the original stochastic system, providing a formal
guarantee of safety. In Chapter 4, we develop three theoretical techniques in order to
reduce the sample complexity arises in the proposed method in Chapter 3. Chapter 5
concludes the results of the thesis and outlines potential future directions on related topics.



Chapter 2

A Data-Driven Method for Stochastic
Systems under STL Constraints

2.1 Introduction

In this chapter, we investigate the verification and synthesis problems for stochastic systems
under signal temporal logic (STL) properties which are characterized as parameterized
models.

2.1.1 Motivation

Cyber-physical systems usually have complex dynamics and are required to fulfill complex
tasks. In recent years, formal methods from Computer Science have been used by control
theorists for both describing the required tasks and ensuring that they are fulfilled by the
systems. The crucial drawback of formal methods is that a complete model of the system
often needs to be available. The goal of this chapter is to study satisfaction of a fragment
of temporal logic properties, over linear time invariant systems (LTI), when only a partial
knowledge of the model is available, i.e., a parameterized model of the system is known
but the exact values of the parameters are unknown. We provide a probabilistic measure
for the satisfaction of the temporal logic property by trajectories of the system under the
influence of uncertainty. We assume these properties are expressed as signal temporal
logic formulae and provide an approach that relies on gathering input-output data from
the system, employing Bayesian inference on the collected data to associate a notion of
confidence with the satisfaction of the property.

2.1.2 Contributions

The main novelty of our approach is to combine both data-driven and model-based tech-
niques in order to have a two-layer probabilistic reasoning over the behavior of the system.
The inner layer is with respect to the uncertainties in dynamics and observed data while
the outer layer is with respect to the distribution over the parameter space. The latter is
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updated using Bayesian inference on the collected data. We study both verification and
synthesis problems with the goal of either verifying the satisfaction of property indepen-
dently of the choice of input trajectory or finding one that gives the largest confidence in
satisfying the property.

I need to mention that the results presented in this chapter appear in the publications
[86, 87]. The first result has been presented at the 21st IFAC world congress. The latter
has been published in Automatica journal. The author of the thesis has established the
results and written the drafts. Sadegh Soudjani and Majid Zamani supervised the work.

2.2 Preliminaries and Problem Formulation

In this section, we provide the system definition and the problem statement.

2.2.1 Parametric LTI Systems

Consider the set of parameterized stochastic linear time-invariant (LTI) models Ω :=
{M(θ) | θ ∈ Θ} such that

M(θ) :=

{
x(t+ 1) = A(θ)x(t) +B(θ)u(t) +Gw(t),

ŷ(t) = C(θ)x(t) +D(θ)u(t),
(2.1)

where x(t) ∈ Rn is the state, ŷ(t) ∈ Rm is the output, u(t) ∈ U ⊂ Rr is the input, and
θ ∈ Θ ⊂ Rp is the parameter of the model M(θ). Here, U is the set of valid inputs and
is assumed to be bounded. The process noise w : R≥0 → Rn is selected to be a zero-mean
Gaussian distribution with a covariance matrix Σw.

Assumption 1. We assume that our target model S is picked from the class of stochastic
dynamical systems and its behavior can be characterized by the model M(θtrue) for some
true parameter θtrue ∈ Θ. This true parameter is unknown in general. Furthermore, we
assume having access to the output of system S, that is,

y(t) = ŷ(t) + e(t), (2.2)

in which e : R≥0 → Rm represents the measurement noise with a zero-mean Gaussian
distribution and a covariance matrix Σe. Both process and measurement noises are assumed
to be uncorrelated to the input.

Consider a specification ψ defined over trajectories of the system S. We assume ψ
belongs to the class of STL specifications which will be defined formally in Subsection 2.4.1.
We denote the satisfaction relation by S |= ψ which is true when the trajectories of the
system S satisfy ψ.

We plan to provide a confidence value for the satisfaction of ψ by trajectories of S. Our
approach relies on collecting data from the system and using Bayesian inference to provide
the confidence value.
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Figure 2.1: Data collection from the system S.

2.2.2 Data Collection

The process of data collection is depicted in Fig. 2.1. Let us denote the set of data collected
from the system by D = {ũexp(t), ỹexp(t)}

Nexp

t=0 , in which ũexp(t) and ỹexp(t) are input-output
pairs within the time horizon {0, . . . ,Nexp}. In general, it is assumed that we can excite
the system with any desirable input signal but within the acceptable range of inputs.

Assumption 2. Process noise {w(t), t = 0, 1, 2, . . .} and measurement noise {e(t), t =
0, 1, 2, . . .} are independent and identically distributed over time, and are independent from
each other. In addition, the initial state x(0) is known, and the input u(t) is deterministic.

The assumption on the initial state x(0) can be generalized by allowing it to have a
Gaussian distribution independent of w(·) and e(·). Our approach is still applicable to this
more general case.

2.2.3 Stochastic Bayesian Confidence

When the model M(θ) is deterministic, the satisfaction relation M(θ) |= ψ is a binary
relation over the parameter space Θ. This is due to having a unique state trajectory for
a given input trajectory. If Ω is the set of parameterized deterministic models, we can
define the satisfaction function for the deterministic system as gψ : Θ → {0, 1} in which
gψ(θ) ≡ (M(θ) |= ψ). This function can only take values that are zero or one. If the system
is affected by the process noise, satisfaction relation becomes a random variable over {0,1}.
We are interested in computing the probability with which the satisfaction relation holds.
In this case, we define a threshold on the satisfaction probability of ψ as

P(M(θ) |= ψ) ≥ 1− δ, (2.3)

where δ ∈ (0, 1). Now we can assign a satisfaction function f δψ to the above chance
constraint which is again a binary function on the parameter space Θ.

Definition 1. Consider Ω = {M(θ) | θ ∈ Θ} with M(θ) defined as in (2.1), and the
specification ψ. The satisfaction function f δψ : Θ→ {0, 1} is defined as

f δψ(θ) =

{
1 if P (M(θ) |= ψ) ≥ 1− δ,
0 otherwise,

(2.4)
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Figure 2.2: An overview of our proposed approach.

for any δ ∈ (0, 1).

The set of parameters for which f δψ(θ) = 1 is called the feasible set of parameters which
can be represented as

Θψ := {θ ∈ Θ| f δψ(θ) = 1}. (2.5)

Let us denote by P(.) and p(.) the probability of an event and the probability den-
sity function of a random variable, respectively. We define a probabilistic confidence on
satisfaction of the specification using Bayesian inference as follows.

Definition 2. Given a specification ψ and a set of data D, the confidence on satisfaction
of ψ by trajectories of the system is

P(S |= ψ | D) :=
∫
Θ

f δψ(θ) p(θ | D) dθ, (2.6)

where p(· | D) is the posteriori distribution on the parameter space conditioned on the
input-output data set, and f δψ(θ) is the satisfaction function defined in (2.4).

Assume that we have a prior knowledge of parameterized models for S in the form
of some distribution over Θ. This prior knowledge can be used to improve the posterior
distribution function over Θ after collecting data from the system.

2.2.4 Problem Statement

Note that the satisfaction function in (2.4), the feasible set in (2.5), and the confidence
in (2.6) all depend on the input trajectory of the system. If we require the inequality in
(2.4) to hold for all possible input trajectories, these quantities become independent of the
input trajectory. This is indeed a verification problem stated next.

Problem 1 (Verification). Given a parameterized LTI system in (2.1) together with the
noisy output in (2.2), data set D, and specification ψ, we aim at computing the confidence
(2.6) when f δψ(θ) = 1 or equivalently when

P (M(θ) |= ψ) ≥ 1− δ ∀u(t) ∈ U ,∀t ≥ 0. (2.7)
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A schematic of our proposed approach, which allows us to incorporate any prior infor-
mation regarding appropriate parameters θ in order to achieve a more precise confidence,
is depicted in Fig. 2.2.

2.3 Bayesian Inference

Bayesian inference is used extensively in machine learning to update probability distribu-
tions after collecting observations [12]. Here, we use Bayesian inference in order to provide
confidences of satisfaction for the given specifications for parametric LTI systems. Given
a prior density function over the set of parameters, denoted by p(θ) and an input-output
data set D, a posterior distribution p(θ | D) can be inferred for θ by

p(θ | D) = p(D | θ) p(θ)∫
Θ
p(D | θ) p(θ)dθ

, (2.8)

where p(D | θ) is the likelihood distribution function.

For the dataset D = {ũexp(t), ỹexp(t)}
Nexp

t=0 , the likelihood distribution is the joint distri-
bution of all measured outputs in the form of

p(ỹexp(0), ỹexp(1), . . . , ỹexp(Nexp) | θ). (2.9)

Proposition 1. Consider the LTI model (2.1)-(2.2). The joint distribution p(D | θ) is
multi-variate Gaussian with mean

ȳ(θ) = [ȳ(0); · · · ; ȳ(Nexp)], (2.10)

and covariance matrix Σỹ(θ), where

ȳ(t) := C(θ)A(θ)tx(0) +D(θ)u(t)

+
t−1∑
i=0

C(θ)A(θ)iB(θ)u(t− i− 1),

Σỹ(θ) :=M(θ) ΣW M(θ)T + ΣE,

where ΣW := diag(Σw, . . . ,Σw) and ΣE := diag(Σe, . . . ,Σe) are block diagonal with re-
spectively Nexp and (Nexp + 1) blocks. Matrix M(θ) ∈ R(mNexp+m)×(nNexp) is represented
as:

M(θ)=



0 0 0 · · · 0
C(θ)G 0 0 · · · 0

C(θ)A(θ)G C(θ)G 0 · · · 0

C(θ)A(θ)2G C(θ)A(θ)G C(θ)G · · · 0
...

...
...

...
...

C(θ)A(θ)Nexp−1G C(θ)A(θ)Nexp−2G · · · · · · C(θ)G


.



16 2. A Data-Driven Method for Stochastic Systems under STL Constraints

Based on the above Proposition, the joint Gaussian distribution for measured outputs
can be characterized as

p(ỹexp(0), ỹexp(1), . . . , ỹexp(Nexp) | θ) =
1

|Σỹ(θ)|
1
2 (2π)

mNexp

2

exp

{
−1

2
(ỹ − ȳ(θ))T Σỹ(θ)

−1(ỹ − ȳ(θ))

}
,

(2.11)

where, ỹ = [ỹexp(0); ỹexp(1); · · · ; ỹexp(Nexp)] is the vector of noisy measured outputs and
ȳ(θ) is defined in (2.10). The |Σỹ(θ)| is determinant of the covariance matrix. The density
function (2.11) can be used to update the posterior distribution using (2.8).

2.4 STL and Under-Approximation

2.4.1 Signal Temporal Logic (STL)

One of the main advantages of STL specifications is their capability in quantifying temporal
specifications for trajectories of physical systems. We denote an infinite state trajectory of
the system in (2.1) by ξ = x(0), x(1), x(2), . . . where x(t) is the state of the system at time
t ∈ N0 := {0, 1, 2, . . .}. Below, we define syntax and semantics of STL specifications using
the standard notation employed in [68, 6].

Syntax: Signal temporal logic (STL) formulae are defined recursively using the follow-
ing syntax:

ψ ::= T | µ | ¬ψ1 | ψ1 ∧ ψ2 | ψ1 U[a,b] ψ2, (2.12)

where the separator sign | indicates that any specification ψ in this logic can take one of the
given five forms, separated by | in (2.12), and is constructed by combining specifications
ψ1, ψ2 from this logic. T is the true predicate, and µ : Rn → {T,F} is a predicate such that
its truth value is determined by the sign of a function of the state x, i.e., µ(x) = T if and
only if α(x) ≥ 0 with α : Rn → R being an affine function of the state and is associated
with µ. Notations ¬ and ∧ denote negation and conjunction of formulas. Notation U[a,b]

denotes the until operator where a, b ∈ R≥0 and a ≤ b.

Semantics: The satisfaction of an STL formula ψ by a trajectory ξ at time t is denoted
by (ξ, t) |= ψ which is defined recursively as follows:

(ξ, t) |= µ⇔ µ(ξ, t) = T

(ξ, t) |= ¬µ⇔ ¬((ξ, t) |= µ)

(ξ, t) |= ψ ∧ ϕ⇔ (ξ, t) |= ψ ∧ (ξ, t) |= ϕ

(ξ, t) |= ψ U[a,b] ϕ⇔ ∃t′ ∈ [t+ a, t+ b] s.t. (ξ, t′) |= ϕ

∧ ∀t′′ ∈ [t, t′], (ξ, t′′) |= ψ.

A trajectory ξ satisfies a specification ψ, denoted by ξ |= ψ, if (ξ, 0) |= ψ. We also write
S |= ψ to indicate that ξ |= ψ with ξ being the trajectory of the system S started from the
initial condition x(0).
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Furthermore, other standard operators can be expressed using the above defined ones.
For disjunction, we can write ψ ∨ ϕ := ¬(¬ψ ∧ ¬ϕ) and the eventually operator can
be defined as ♢[a,b]ψ := T U[a,b] ψ. Finally, the always operator is defined as □[a,b]ψ :=
¬♢[a,b]¬ψ. The horizon of an STL formula, denoted by len(ψ), is the maximum over all
upper bounds of intervals on the temporal operators. Intuitively, len(ψ), is the horizon in
which satisfaction of (ξ, t) |= ψ should be studied. Let us now denote a finite trajectory by
ξ(t : N) := x(t), x(t+ 1), ..., x(t+N). For checking (ξ, t) |= ψ, it is sufficient to consider a
finite trajectory ξ(t : N) with N = len(ψ).

2.4.2 Under-approximation of STL Constraints

The stochastic satisfaction function defined in (2.4) requires the exact feasible set of the
chance constraint in (2.3). This feasible set does not have a closed form in general. Previous
works tried to find under-approximations of the feasible set. We leverage the proposed pro-
cedure in [31] to get an under-approximation of the feasible set. This procedure transforms
the chance constraints on the STL specification into similar constraints on the predicates of
the specification using the structure of the STL formula. We discuss this procedure in this
subsection and show how this under-approximation can be improved in Subsection 2.4.3.

The next lemma, borrowed from [31], shows how one can transform the chance con-
straints on the satisfaction of STL formulae into similar constraints on the predicates of for-
mulae. Since STL formulae are defined on trajectories of the system, we write ξ(t : N) |= ψ
instead of M(θ) |= ψ to indicate satisfaction of ψ by trajectories starting at time t.

Lemma 1. For any STL formula ψ and a value δ ∈ (0, 1), probability constraints of the
forms P(ξ(t : N) |= ψ) ≥ 1− δ and P(ξ(t : N) |= ψ) ≤ 1− δ can be transformed into
similar constraints on the predicates of ψ based on the structure of ψ.

In the following, we discuss how this transformation is performed.
Case I Negation ψ = ¬ψ1

P(ξ(t : N) |= ψ) ≥ δ ⇔ (2.13)

P(ξ(t : N) |= ψ1) ≤ 1− δ.

Case II Conjunction ψ = ψ1 ∧ ψ2

P(ξ(t : N) ̸|= ψi) ≤
1− δ
2

, i = 1, 2. (2.14)

Case III Until ψ = ψ1 U[a,b] ψ2

P(ξ(t : N) |= ψ) ≥ δ ⇐ (2.15)

P(Λj) ≥
δ

(b− a+ 1)
, j = 1, . . . , N,
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in which the event Λj is defined as

Λj :=
t+a−1∧
k=t

(ξ(k : N) |= ψ1)

j−1∧
k=a+t

(ξ(k : N) |= (ψ1 ∧ ¬ψ2))∧(ξ(j : N) |= ψ2). (2.16)

These transformations are based on multiple application of Boole’s inequality [28]. Re-
quired transformations for the complements of Cases II and III can be derived similarly.

Lemma 1 enables us to write down probabilistic inequalities on the satisfaction of
atomic predicates and use them as under-approximations of the original probabilistic STL
constraints. These probabilistic inequalities can be equivalently written as algebraic in-
equalities given that we know the statistical properties of the state trajectories.

In the case of LTI systems under Assumption 2, x(t) is also Gaussian with known mean
and covariance. Let us consider predicate µ(x) = {α(x) ≥ 0} with α(x) := θ̃0 + θ̃Tx, for
some θ̃ ∈ Rn and θ̃0 ∈ R. One can write E[α(x)] = θ̃0+θ̃

T E[x] and Var[α(x)] = θ̃TCov(x)θ̃.
Therefore,

P(α(x) ≥ 0) ≥ 1− δ ⇔ P(α(x) < 0) ≤ δ

⇔ E[α(x)] + Var[α(x)]erf−1(δ) ≥ 0, (2.17)

where erf−1(·) is the error inverse function defined with erf(x) = 1√
π

∫ x
−x exp(−t

2)dt where

exp(·) denotes the natural exponential function. In the following proposition, we show that
the algebraic inequalities of the form (2.17) are linear with respect to the input.

Proposition 2. Chance constraint P(α(x(t))≥ 0) ≥ 1− δ, where α(x) = θ̃0 + θ̃Tx and
x(t) being the state of the stochastic system (2.1) at time t, can be written as the following
constraint that is affine with respect to the input:

t−1∑
i=0

θ̃TA(θ)iB(θ) u(t− i− 1)

+ θ̃0 + θ̃TA(θ)tx(0) + θ̃TΓ(θ, δ)θ̃ ≥ 0, (2.18)

where

Γ(θ, δ) := erf−1(δ)
t−1∑
i=0

A(θ)iG Σw G
T (A(θ)T )i. (2.19)

Note that in general Γ(θ, δ) and the left-hand side of (2.18) are nonlinear functions of
θ. They become polynomial functions of θ if A(θ) and B(θ) depend on θ linearly.
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2.4.3 A Less Conservative Approximation

The proposed procedure in Lemma 1 for transforming the chance constraints into similar
inequalities on atomic predicates can be very conservative. This is due to the fact that
constraints of type P(A1∪A2) ≤ δ are conservatively replaced by inequalities P(Ai) ≤ δ/2,
i = 1, 2. This replacement puts a uniform upper bound on the probability of events Ai and
does not create any room for the intersection of these events. In this subsection, we increase
the flexibility in the under-approximation and enlarge the feasible set of the probabilistic
STL constraint through intermediate weights.

This new under-approximation procedure results in new constraints with a higher num-
ber of variables. It is based on the structure of the STL formula similar to the discussion
in the previous subsection and has the following three cases:
Case I: Disjunction

P(ξ(t : N) |= (ψ1 ∨ · · · ∨ ψι ∨ · · · ∨ ψN)) ≥ δ

⇐= P(ξ(t : N) |= ψι) ≥ αι δ, ι ∈ {1, . . . , N},
0 ≤ αι ≤ 1, α1 + · · ·+ αN = 1. (2.20)

Case II: Conjunction

P(ξ(t : N) |= (ψ1 ∧ · · · ∧ ψι ∧ · · · ∧ ψN)) ≥ δ

⇐= P(ξ(t : N) ̸|= ψι) ≤ βι(1− δ), ι ∈ {1, . . . , N},
0 ≤ βι ≤ 1, β1 + · · ·+ βN = 1. (2.21)

Case III: Until

P(ξ(t : N) |= ψ1 U[a,b] ψ2) ≥ δ

⇐= P(Λj) ≥ γι
δ

(b− a+ 1)
, ι ∈ N,

0 ≤ γι ≤ 1, γ1 + · · ·+ γN = 1, (2.22)

in which, Λj is defined as in (2.16).
In relations (2.20)-(2.22), αι, βι, and γι are intermediate weights that regulate the effect

of each probabilistic predicate and contributes to a bigger feasible set. If any knowledge
about the likelihood of the satisfaction of sub-formulas in the main formula is available,
it can be exploited to select proper values for these parameters to get a less conservative
result.

2.5 Verification of Probabilistic STL Constraints with

unbounded support

2.5.1 Feasible Set Computation

After transforming the probabilistic STL constraints into the algebraic inequalities, as de-
scribed in Section 2.4, these inequalities are in the form of (2.18) which are linear with
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respect to the input trajectory and must hold for the whole input range. We use robust lin-
ear programming to solve those inequalities. Here, the primary robust linear programming
problem is converted to another dual linear programming without a universal quantifier
over the input based on Farkas’ lemma [34]. Assume the set of valid inputs U is a bounded
polytope characterized by the linear inequalities Du ≤ d for some matrix D and vector
d with appropriate dimensions. Define the set of valid input trajectories within horizon
{0, . . . , (t−1)} with U := {Du ≤ d}, where u = [u(0);u(1); . . . ;u(t−1)], d = [d; d; . . . ; d],
and D = diag(D, . . . , D).

In the next theorem, we show that the feasible set of the probabilistic predicates at
each time step can be characterized by a set of constraints at that time step. The proof of
this theorem leverages the dual linear programming in its symmetric form, which requires
all variables to be non-negative. Therefore, we extract a lower bound ul for the input
trajectories and shift the input variables to make them non-negative. This lower bound ul
is readily computable knowing the bounded polytope containing all the input values.

Theorem 1. Assume that the set of valid input trajectories U is a bounded polytope of the
form Du ≤ d such that u ≥ ul. The inequality (2.18) holds for all u ∈ U if the following
set of inequalities is feasible over z,{

(d−Dul)
Tz ≤ b(θ, δ) + f(θ)ul,

−DTz ≤ f(θ)T , z ≥ 0,
(2.23)

where

b(θ, δ) = θ̃0 + θ̃TA(θ)tx(0) + θ̃TΓ(θ, δ)θ̃, (2.24)

f(θ) = θ̃T [B(θ), A(θ)B(θ), A(θ)2B(θ), . . . , A(θ)t−1B(θ)],

with Γ(θ, δ) defined in (2.19).

Solving constraints (2.23) simultaneously for all predicates of the STL specification gives
the feasible set of parameters θ for the stochastic system S in (2.1). However, the main
challenge of using inequalities of the form (2.23) as under-approximation of the feasible set
is that these inequalities are still nonlinear with respect to θ. In the following subsection
we propose two numerical techniques to address this challenge.

2.5.2 Confidence Computation Techniques

Monte Carlo Method. Considering that the constraints (2.23) are in general nonlinear
with respect to θ, computation of integral in (2.6) can be done efficiently usingMonte Carlo
integration. The idea is to choose N random points θi uniformly from the bounded region
of the parameters and use those values that satisfy all the constraints in (2.23) associated
with the predicates of the STL specification in order to compute the integral in (2.6). The
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confidence value Q N computed using Monte Carlo integration is a random variable defined
as

Q N :=
V

N

N∑
i=1

K(θi) with K(θi) := f δψ(θi) p(θi | D),

where V is the volume of the parameter space. Here, QN is an unbiased estimator of
the integral. Due to the law of large numbers, QN converges to the true integral when
N goes to infinity. An unbiased estimation of the variance of QN can be computed as

Var[QN] =
V 2σ2

N

N
with

σ2
N :=

1

N− 1

N∑
i=1

(K(θi)− K̄)2 and K̄ :=
1

N

N∑
i=1

K(θi).

Note that the Var[QN] decreases to zero asymptotically with rate 1/N when N goes to
infinity and as long as the sequence {σ2

1, σ
2
2, σ

2
3, . . .} is bounded. This result does not

depend on the number of dimensions of the integral in (2.6), which is the advantage of
Monte Carlo integration.

According to Chebyshev’s inequality, one has

P(E[QN] ∈ [QN − ε,QN + ε]) ≥ 1− Var[QN]

ε2
, (2.25)

for any given ε > 0. By choosing an appropriate number of samples N and computing QN,
the exact value of the integral lies within the interval [QN − ε,QN + ε] with confidence
1− V 2σ2

N/Nε
2.

Computing the under-approximation of the confidence in (2.6) using the Monte Carlo
integration requires sampling from the domain Θ and rejecting those that render (2.23)
infeasible. It is also possible to find a sampling domain Θ′ tighter than Θ by finding the
extreme values of θ for which the inequalities (2.23) are feasible. This will improve the
efficiency of the Monte Carlo integration by requiring a smaller number of samples for a
given accuracy.

Piecewise Affine Approximation of the Nonlinear Constraints. Another ap-
proach for computing the confidence value in (2.6) is approximating the nonlinear terms
b(θ, δ) and f(θ) in (2.24) using piecewise affine (PWA) functions. Then, linear programming
can be used in order to approximate the feasible set. PWA approximations have been used
recently in formal approaches in order to deal with the nonlinearity in dynamical systems
[13, 82].

Assuming that A(θ) and B(θ) are twice differentiable with respect to θ, b(θ, δ) and
f(θ) in (2.24) are also twice differentiable. We can partition their domain into polytopic
regions, select a nominal value (θ0, δ0) in each region, and rewrite b(θ, δ) in each region as

b(θ, δ) ∈ (θ − θ0)TM + (δ − δ0)N + ϵB, (2.26)

where

M :=
∂b(θ, δ)

∂θ

∣∣∣
(θ0,δ0)

and N :=
∂b(θ, δ)

∂δ

∣∣∣
(θ0,δ0)

,
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and ϵ is a bound where

ϵ ≥ 1

2
[(θ − θ0)T , (δ − δ0)] H [(θ − θ0); (δ − δ0)],

where H is the Hessian matrix of b(θ, δ). Here, B denotes the unit interval [−1, 1]. A
similar approximation holds for f(θ). The region of parameters is divided into sufficiently
large numbers of regions and then inequalities and equations regarding the satisfaction of
STL specifications in (2.23) will be checked in these regions. In the next lemma, we show
that the real feasible set can be constructed in the limit when the number of piecewise
regions increases.

Lemma 2. The actual feasible set (2.23) for the STL specification in (2.6) can be recovered
in the limit by increasing the numbers of regions in PWA approximation of the nonlinear
terms in (2.23).

2.6 Verification of Probabilistic STL Constraints with

bounded support

In this section, we show that if the given matrices A and B in (2.1) are independent of
the parameters θ and are known, the probabilistic inequalities can be under-approximated
by inequalities that are linear in terms of inputs. These inequalities can be solved using
linear programming efficiently to compute the feasible region of parameters. The essential
idea in this approach is to replace the Gaussian distributions with truncated ones while
quantifying the induced error. Having a bounded support for the noise enables us to
use Chernoff-Hoeffding inequality [31, 52] for the under-approximation. The Chernoff-
Hoeffding inequality provides a bound on the tail probability of sum of bounded random
variables that depends only on the support of these random variables regardless of the
shape of their distributions. First, we formally define the support of a random variable.

Definition 3. For a given random variable ω with values in Rn and probability distribution
P, consider the set of subsets of Rn as

A := {C ⊂ Rn | C is closed and P(ω ∈ C) = 1}.

The smallest element of A with respect to the inclusion property is called the support of ω
and is denoted by Sω.

The next proposition provides an upper bound on the error of the probability of sat-
isfying the specification when the noise distributions are replaced by truncated Gaussian
distributions.

Proposition 3. Suppose we consider two distributions for the process noise w(·): one
which is Gaussian distribution tw and the other one which is truncated normal t̄w with
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support Sw. We denote the probability measures induced on the trajectories ξ of the system
M(θ) by P and Pt, respectively. Then we have

P(ξ |= ψ)− Pt(ξ |= ψ) ≤ Nα

1− α
, (2.27)

for any specification ψ with horizon N . Here, α is the truncated probability α := 1 −∫
Sw
tw(v)dv.

Using inequality (2.27), we under-approximate the chance constraint P(ξ |= ψ) ≥ 1− δ
with

Pt(ξ |= ψ) ≥ 1− δ̄, δ̄ := δ +
Nα

1− α
. (2.28)

Assumption 3. For the rest of this section, we focus on under-approximating (2.28) when
the truncated support of w(t) is Sw and is contained in a hyper-rectangle [a, b] (which is the
Cartesian product of intervals with vectors a, b indicating the end points of the intervals).
We also assume matrices A and B in (2.1) are non-parametric.

Next lemma, borrowed from [31], shows the relation between supports of α(x(t)) and
w(t) given the predicate µ(x) = {α(x) ≥ 0} with α(x) := θ̃0 + θ̃Tx.

Lemma 3. The support of α(x(t)) is Sα(x(t)) := [θ̃0 + ãt + θ̃T C̃t, θ̃0 + b̃t + θ̃T C̃t] where ãt
and b̃t are weighted sum of a and b obtained using interval arithmetics and C̃t := Atx(0)+∑t−1

i=0 A
iBu(t− i− 1).

We use Chernoff-Hoeffding inequality to replace (2.28) with a condition on the expected
value of the predicate. The following proposition, used also in [31], describes this approx-
imation. Note that Chernoff-Hoeffding inequality requires a particular constant from the
dependency graph of the random variables [52]. In such a graph, the nodes represent ran-
dom variables and two nodes are connected if and only if their related random variables
are dependent.

Proposition 4. The probabilistic inequality Pt(α(x(t)) > 0) ≥ 1 − δ̄ can be under-
approximated by the inequality

Et(α(x(t))) ≥

√√√√−ν log(δ̄) N∑
t=1

(b̃t − ãt)
2
, (2.29)

where ν = X (w)/2, and X (w) is the chromatic number of the dependency graph of the
noises w(0), . . . , w(N − 1).

Note that the chromatic number of a graph Ĝ is the minimum number of colors needed
to color vertices of Ĝ with no two adjacent vertices sharing the same color. This number
is equal to 1 for a graph with no edges (e.g., when disturbances w(i) are independent).
The interested authors are referred to [72] and [15] for more information about chromatic
number of a graph.
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Proposition 5. Let Assumption 3 hold. We use Lemma 3 and under-approximate con-
straint (2.28) with

t−1∑
i=0

θ̃TAiB u(t− i− 1)

+ θ̃0 + θ̃TAtx(0) ≥ Γ(δ, ã, b̃), (2.30)

where

Γ(δ, ã, b̃) :=

√√√√−ν log(δ̄) N∑
t=1

(b̃t − ãt)
2
. (2.31)

Note that since δ̄ ∈ (0, 1) and, hence, log(δ) < 0, the right hand side of the inequality
(2.30) becomes a real value and one has a linear inequality in terms of input. Finally, the
next theorem shows that the feasible set of the chance-constraints on the predicates can
be approximated by a set of linear constraints.

Theorem 2. Assume that the set of input trajectories U is a bounded polytope of the
form Du ≤ d, ∀u ∈ U . The inequality (2.30) holds for all u ∈ U if the set of linear
inequalities (2.23) is feasible over z, where

b(θ, δ) = θ̃0 + θ̃TAtx(0)− Γ(δ, ã, b̃), (2.32)

f(θ) = θ̃T [B,AB,A2B, . . . , At−1B],

with Γ(δ, ã, b̃) defined in (2.31).

Remark 1. In presenting our approach in this section, we assumed that parameters θ̃0
and θ̃ of the predicate α(x(t)) are known. We emphasize that our approach is still valid
if θ̃0 and θ̃ depend on the unknown parameters θ of the model. This case can happen
when the predicate is defined on the output ŷ(t) instead of the state x(t) of the system. The
experimental results in the next section demonstrate this case as well.

2.7 Synthesis Under STL Constraints

The synthesis problem under STL constraints is defined as follows:

Problem 2 (Synthesis). Given a parameterized LTI system in (2.1) together with the noisy
output in (2.2), data set D, and property ψ, synthesize an open-loop input trajectory u(·)
that maximizes the confidence in (2.6):

u(·) = argmax

∫
Θ

f δψ(θ) p(θ | D). (2.33)
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The goal of this section is to synthesize input trajectories such that the confidence of
satisfying the property of interest in (2.6) is maximized (see (2.33)). The posterior distri-
bution p(θ | D) comes from the experiment by applying Bayesian inference on the collected
data. Moreover, the feasible set Θψ is the set of all parameters θ in the parameter space Θ
such that desired STL property is satisfied, and is dependent on the input trajectory. The
integration in (2.33) is computed over this feasible set.

In general, the synthesis problem defined in Problem 2 is nonlinear and nonconvex.
One can leverage numerical methods to solve this problem. In Algorithm 1, a two-phase
procedure is proposed in order to solve the optimization problem combined with collected
data from the system. In the first phase, a fixed posterior distribution function is computed
using collected data and prior knowledge over the parameter space Θ by the Bayesian
inference technique, which is fully described in Section 2.3. In the second phase, this fixed
distribution function is used to compute the confidence value over the feasible set, which
is restricted by the satisfaction of the STL constraints. Here, Θψ is dependent to the input
trajectory, and f δψ(θ) can be computed using (2.4). We leverage genetic algorithm (GA) to
find the optimal input trajectory over the desired region of the input values. The highest
value of the confidence in the second phase is considered as the maximum confidence, and
its related input sequence is chosen as the desired input trajectory.

Algorithm 1 Synthesizing input sequence in order to maximize the confidence

1: Bayesian Data Analysis (Phase I)
2: input: M(θ),Θ, D, p(θ)
3: output: p(θ | D)
4: Posterior distribution computation:

Compute p(θ | D) using (2.8)
5: Controller Synthesis (Phase II)
6: input: bounded input region U , p(θ | D), and desired STL property
7: output: maximum confidence, and optimized input sequence u∗.
8: Computation of satisfaction function:

Compute f δψ(θ) using (2.4)
9: Optimization:

max
u

∫
Θ
f δψ(θ)p(θ | D) using genetic algorithm

10: Selection:
11: Maximum confidence ←optimal solution of 9
12: u∗ ← related input trajectory
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2.8 Experimental Results

In this section, we demonstrate the effectiveness of our proposed approaches through three
case studies, including two verification problems and one synthesis problem.

2.8.1 Verification Case Study: Unbounded Support Noise

Consider a parameterized class of models M(θ) with the state-space representation

x(t+ 1) =

[
a 0

1− a2 a

]
x(t) +

[ √
1− a2

−a
√
1− a2

]
u(t) +

[
1 0
0 1

]
w(t),

ŷ(t, θ) = θTx(t).

Each model in M(θ) has a single input and a single output. The coefficient a is 0.4 and the
parameter set is selected as θ ∈ Θ = [−10, 10] × [−10, 10]. The system S ∈ M(θ) has the
true parameter θtrue = [−0.5, 1]T . System S is a member of models demonstrated by the
Laguerre-basis functions [41]. This is a special case of the orthonormal basis functions and
can be translated to the aforementioned parameterized state space format. The system is
affected by a process noise which is a Gaussian process with covariance matrix 0.5I2, where
I2 is a 2× 2 identity matrix. There is also an additive measurement noise with zero-mean
and variance 0.5. The input range is considered to be [−0.2, 0.2].

We want to verify with high probability if the output of the system S remains in
l1 = [−0.5, 0.5] until it reaches l2 = [−0.1, 0.1] at some time in the interval [2, 4]. We
denote the atomic propositions µ1 = {y ≥ −0.5}, µ2 = {−y ≥ −0.5}, µ3 = {y ≥ −0.1},
µ4 = {−y ≥ −0.1}. Our desired property can be written as

P(S |= (µ1 ∧ µ2) U[2,4] (µ3 ∧ µ4)) ≥ 1− δ.

We select δ = 0.01. The system starts at the initial condition x(0) = 0.

We used the procedure in Section 2.4 to decompose this STL specification to algebraic
constraints on the atomic propositions. Equation (2.21) is used to improve the conserva-
tiveness of the approximation. The feasible set is approximated either using the Monte
Carlo method or the piecewise affine approximation described in Section 2.5. The initial
set of parameters can be restricted by finding the extreme values of θ over all constraints as
described in Subsection 2.5.2 which is considered [−3.5, 3.5] for this case study. We select
random points which are uniformly distributed in this restricted region in order to compute
the confidence value using the Monte Carlo method with the precision 0.000001 in (2.25).
Computed feasible set using the Monte Carlo technique is demonstrated in Fig. 2.3 with
red-face squares. The feasible set which is recovered with the piecewise affine technique is
illustrated in Fig. 2.3 with blue-edge diamonds. We used linear programming in order to
find the feasible set of parameters (θ, z) for the linearized form of (2.23) for all time steps.
Then, this feasible set is projected into θ space using MPT3 toolbox [47]. We choose the
total number of regions in the piecewise affine approximation to be 25.
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Figure 2.3: Contours of p(θ | D) for θtrue = [−0.5, 1]T after 50 measurements over the
feasible set computed by the Monte Carlo and PWA techniques which are represented by
red and blue points, respectively.

As we do not have any prior knowledge about the parameters, we choose a uniform
distribution p(θ) on the possible models. Based on the uniform prior, the confidence is
computed using (2.6) as 0.0279 and 0.0258 with Monte Carlo and PWA approximations,
respectively. Afterward, we designed an experiment on the system with the true parameter
and an input sequence with a uniform distribution over [−2, 2] and measured output for
50 consecutive time instances. Using updated p(θ | D) coming from the measurement
data, confidence improved significantly into 0.9099 and 0.8962 for Monte Carlo and PWA,
respectively. Contours of the posterior distribution are illustrated in Fig. 2.3.

We repeated the same experiment 100 times for several other true parameters θtrue.
For all of these instances, updated posteriori probability in (2.11), after 50 measurements,
is used in order to compute the confidence value according to (2.6). Results of computing
the confidence with Monte Carlo and PWA approximation are shown in Table 1. As it can
be seen, for parameters that lie deep inside the feasible set, the confidence value is high
with a low variance for both techniques. Meanwhile, for the points near the edges, the
variance is higher and confidence value is lower. For points far enough from the feasible
set, confidence tends to be very close to zero.
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Table 2.1: Means and variances of computed confidence for 5 different true parameters.

Monte Carlo PWA

θtrue Mean Variance Mean Variance

[−0.5, 1]T 0.9587 0.0023 0.9514 0.0042
[3,−1]T 0.4902 0.0061 0.5032 0.0062
[1, 0.5]T 0.7932 0.0025 0.7584 0.0053
[−2, 1.5]T 0.9018 0.0009 0.9156 0.0005
[2,−1]T 0.0278 0.0005 0.0480 0.0006

Figure 2.4: Schematic of the air-conditioned building [111].

2.8.2 Verification Case Study: Bounded Support Noise

In this section, we consider the multi-zone model of a building developed in [111]. The
model gives the dynamic response of indoor temperatures and humidity for a building de-
picted in Fig. 2.4. The state vector isXroom = [∆ta,s,∆Wa,s,∆triw,s,∆ta,n,∆Wa,n,∆triw,n,∆trew,n,
∆ta,r,∆Wa,r,∆triw,r]

T , where its elements are variations in air-supply temperature, air-
supply humidity, internal wall temperature (air-supply zone), work zone temperature, work
zone humidity, internal wall temperature (work zone), external wall temperature (work
zone), air-return temperature, air-return humidity, and internal wall temperature (air-
return zone), respectively. The input vector is [∆ta,i,∆Wa,i,∆Ga,i,∆ta,out,∆Isol] which its
elements correspond to air-supply temperature set-point, air-supply humidity set-point, air
flow set-point, return temperature set-point, and solar radiant intensity, respectively.

All states are affected by a Gaussian process noise with variance of 0.001. We assume
the input can change every 100 seconds. Then we discretize the dynamic by τ = 100s.
The comfort criterion is defined as a weighted combination of work zone temperature and
humidity variations: θ1∆ta,n + θ2∆Wa,n with weights θ1 and θ2. This comfort criterion is
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the output of the system. The measurements of this output is available but affected by a
Gaussian noise with variance 0.01. We consider the following STL specification:

P

(
5∧
t=1

|θ1∆ta,n(t) + θ2∆Wa,n(t)| ≤ β

)
≥ 0.99, (2.34)

with β = 1 in our numerical implementation. We assume that θ1 and θ2 are not known

Figure 2.5: Updated posterior function after 10 measurements over the feasible polyhedron
region computed using MPT3 toolbox.

but have the true values 1 and 0.5, respectively (θtrue = [1, 0.5]T ). The initial parameter
space is considered to be (θ1, θ2) ∈ [−2.5, 2.5]2. Our goal is to verify whether the above
property is satisfied for all inputs ∆ta,i,∆Wa,i ∈ [−1, 1]. Other inputs are considered to be
zero in this case study.

We utilize the approach of Section 2.6 and limit the supports of process noise to the
bounded interval [−0.1, 0.1]. This amounts to having α = 0.0155 in Proposition 3 and
replacing the above chance constraint with

Pt

(
5∧
t=1

|θ1∆ta,n(t) + θ2∆Wa,n(t)| ≤ β

)
≥ 0.9787.

The computed feasible region for this STL specification which is a polyhedron and com-
puted by MPT3 toolbox [47] is demonstrated in Fig. 2.5 (green region). Since it is assumed
that we do not have any prior knowledge about the parameters, a uniform distribution is
chosen over the parameter space. The posterior distribution is illustrated in Fig. 2.5 after



30 2. A Data-Driven Method for Stochastic Systems under STL Constraints

collecting 10 measurements and updating the distribution. This approach computes the
feasible region and the confidence value in only 55 seconds. We have repeated this exper-
iment 100 times and computed the confidence values using (2.6). The mean and variance
of the confidence values are respectively 0.8607 and 0.0012.

If we directly apply the approach of Section 2.5 to the constraint (2.34) and the un-
bounded support noise, we have to use the methods in Subsection 2.5.2 in order to ap-
proximately compute the confidence value, which is computationally more expensive. We
computed the confidence value using Monte Carlo integration with 6.25 × 106 samples
from the parameter space, which gives the interval [0.8505, 0.8705] for the confidence with
probability 0.99 over the sampled parameters. This interval is close to the confidence value
obtained using truncation but the computation time is 19 minutes on an iMac (3.5 GHz
Intel Core i7 processor) which is much larger than 55 seconds taken based on truncation.

2.8.3 Synthesis Case Study

In this section, we apply our approach to control a helicopter in the hover mode, which is
a difficult task since the helicopter model is unstable. Stochasticities such as wind, harsh
weather, and structural uncertainties exacerbate this situation as well.

We consider an eight-dimensional helicopter model taken from [71]. States vector is
[u,w, q, θp, v, p, ϕ, r] that contains helicopter velocities u, v, w, Euler angles θp, ϕ, and the
angular velocities p, q, r. This model has a three-dimensional input vector [u1, u2, u3], where
u1, u2, and u3 are desired values for pitch angle, roll angle, and yaw rate, respectively. They
are used to produce commands for the longitudinal cyclic, lateral cyclic, and tail rotor
collective. Pitch angle rate q is an important parameter in hover mode which its variations
depends highly on itself and roll angle rate p. We show this dependency in the system
states model with two unknown parameters ϑ1 and ϑ2. We stabilized the continuous-time
system with a primary state feedback controller and discretize that with a sampling time
τ = 0.01s. Resulted matrices are demonstrated in the appendix. All states of the system
are affected by an additive process noise with the variance δ2p = 0.1. We consider the
pitch angle rate as the measured output of the system, affected by an additive noise with
variance δ2m = 0.1. Parameter set is chosen as θ = (ϑ1, ϑ2) ∈ [−10, 10]2. We choose the
true parameter as θtrue = [−1.85 0.5]T .

We aim to synthesize a controller for the helicopter that maximizes the confidence of
remaining in a specific position by an admissible range of inputs, as this is desired in
the hover mode maneuvering. Here, we want to keep the location (i.e. (x, y, z)) of the
helicopter in the range of [−1, 1] × [−1, 1] × [−0.5, 0.5] for 5 time steps, which can be
represented as

P
(
□[i=1:5](xi∈ [−1, 1] ∧ yi∈ [−1, 1] ∧ zi∈ [−0.5, .05]

)
≥ 0.95.

Here, we consider the admissible range of inputs to be [−0.25, 0.25]3.
We use the first phase of Algorithm 1 in order to update a uniform distribution over

the parameter set for 400 measurements of the system. Then, this updated distribution is
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used to find the optimal input trajectories and maximum confidence value, as described in
the second phase of Algorithm 1. The feasible set regarding the obtained optimal input
sequence is illustrated in Fig. 2.6 with blue squares as representative points. Contours of
the updated posterior distribution after gathering 400 measurements from the system are
demonstrated in this figure as well. Synthesized input trajectories are shown in Fig. 2.7.
Three-dimensional location of the helicopter is depicted in Fig. 2.8 for five seconds and
for 12 different executions. Helicopter’s projected position in x − y plane, and altitude
are depicted in Fig. 2.9 and Fig. 2.10, respectively. The final locations of the helicopter
after five seconds are indicated by red-face squares. As it can be seen, the location of the
helicopter remains inside the desired region during the whole time horizon.
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Figure 2.6: Contours of the updated posterior distribution function for θtrue = [−1.85 0.5]T

after 400 measurements over the obtained feasible set representatives.

2.9 Discussion

In this chapter, we considered parametric linear time-invariant (LTI) systems. We devel-
oped a scheme for providing a confidence value for the satisfaction of STL specifications
for such systems by incorporating both model-based and Bayesian inference techniques.
Using our approach, one can transform the probabilistic STL specification over the states
of the system into a set of algebraic inequalities. Solving these inequalities for the whole
range of inputs results in the feasible set of parameters. By leveraging the collected data
from the system, the probability density of the unknown parameters is updated and the
confidence value is computed over the feasible domain of the parameters.
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Figure 2.7: Synthesized input trajectories according to Algorithm 1.
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Figure 2.8: 3-dimensional location of the helicopter.
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Figure 2.9: x-y plane location of the helicopter.
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Figure 2.10: Helicopter altitude changes.
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Chapter 3

Data-Driven Verification and
Synthesis of Stochastic Systems
Through Barrier Certificates

3.1 Introduction

In this chapter, we study verification and synthesis problems for safety specifications over
unknown discrete-time stochastic systems using finite number of samples.

3.1.1 Motivation

The importance of ensuring safety and meeting temporal requirements in various appli-
cations, such as self-driving cars, power grids, traffic networks, and integrated medical
devices, has increased significantly. To address the complex requirements of these practi-
cal systems, researchers have extensively studied model-based approaches, which involve
expressing the requirements as linear temporal logic formulae [35, 6, 103, 8]. Additionally,
in the domain of formal approaches for stochastic systems, several abstraction-based meth-
ods have been developed to verify and synthesize dynamical systems, ensuring compliance
with desired specifications [60, 66, 101, 114]. These techniques are also capable of han-
dling infinite-horizon specifications [39]. To enhance the scalability of abstraction-based
methods, various other techniques have been introduced, including sequential gridding
[97, 95], higher-order approximations [96], discretization-free abstraction [115], and com-
positional abstraction-based techniques [98]. Furthermore, model-order reductions and
coupled stochastic simulation relations have been devised to assess properties of stochastic
systems [39, 38, 40, 105].

Barrier certificates have been the focus of the recent literature as an abstraction-free
technique that is scalable with the dimension of the system, i.e., they do not require
construction of an abstraction of the system and can provide directly the controller together
with the guarantee on the satisfaction of the safety specification [116], [110], and [14]. A
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barrier-based methodology is introduced in [74] in order to verify safety in deterministic
hybrid systems. In [75], a framework is proposed for safety verification of stochastic systems
using barrier certificates which is extended to stochastic hybrid systems. The authors in
[106] present barrier certificates that ensure collision-free behaviors in multi-robot systems
by minimizing the difference between the actual and the nominal controllers subject to
safety constraints. In [94], a compositional analysis is proposed for verifying the safety of an
interconnection of subsystems using barrier certificates. The results in [50, 51] use barrier
certificates for the verification and synthesis of controllers against complex requirements
expressed as co-safe linear temporal logic formulas.

The common requirement of the approaches mentioned above is the fact that they need
a mathematical model of the system. However, a precise model of dynamical systems is
either not available in many application scenarios or too complex to be of any use. There-
fore, there is a need to develop approaches which are capable of verifying or synthesizing
controllers against safety specifications only based on collected data from the system.

3.1.2 Contributions

Here, we propose formal verification and synthesis procedures for unknown stochastic sys-
tems with respect to safety specifications based on collected data. We first cast a barrier-
based safety problem as a robust convex program (RCP). Solving the obtained RCP is
hard in general because the unknown model of the system appears in the constraints. To
tackle this issue, we resort to a scenario-driven approach by collecting samples from the
system. Using the results in [29], we connect the optimal solution of the acquired scenario
convex program (SCP) with that of the original RCP. We provide a lower bound on the
safety probability of the unknown stochastic system using a certain number of data which
is related to the desired confidence. We extend this result to provide a new confidence
bound for a class of non-convex barrier-based safety problems. We conclude the chapter
by three case studies to illustrate the applicability of our approach.

I need to mention that the results presented in this chapter appear in the publications
[83, 84]. The first result has been presented at the 7th IFAC conference on analysis and
design of hybrid systems. The second result has been published in the Automatica journal.
The author of the thesis has established the results and written the drafts. Abolfazl Lavaei
contributed to initial discussions. Sadegh Soudjani and Majid Zamani supervised the work.

3.2 Preliminaries and Problem Statement

3.2.1 Notations and Preliminaries

The set of positive integers, non-negative integers, real numbers, non-negative real num-
bers, and positive real numbers are denoted by N := {1, 2, 3, . . .}, N0 := {0, 1, 2, . . .}, R, R+

0 ,
and R+, respectively. We denote the indicator function of a set A ⊆ X by 1A : X → {0, 1},
where 1A (x) is 1 if x ∈ A , and 0 otherwise. Notation 1m is used to indicate a column
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vector of ones in Rm×1. We denote by ∥x∥ the Euclidean norm of any x ∈ Rn. We also
denote the induced norm of any matrix A ∈ Rm×n by ∥A∥ = supx ̸=0 ∥Ax∥/∥x∥. Given
N vectors xi ∈ Rni , ni ∈ N, and i ∈ {1, . . . , N}, we use [x1; . . . ;xN ] and [x1, . . . , xN ] to
denote the corresponding column and row vectors, respectively, with dimension

∑
i ni. The

absolute value of a real number x is denoted by |x|. For a function f : X → Y , we denote
its inverse by f−1 : Y → X, whenever exists. A regularized incomplete beta function for

parameters (z; a, b) is defined as I(z; a, b) =
∫ z
0 u

a−1(1−u)b−1du∫ 1
0 u

a−1(1−u)b−1du
. If a system, denoted by S,

satisfies a property Ψ during a time horizon H, it is denoted by S |=H Ψ. We also use |=
in this chapter to show the feasibility of a solution for an optimization problem.

The sample space of random variables is denoted by Ω. The Borel σ-algebras on a set
X is denoted by B(X). The measurable space on X is denoted by (X,B(X)). We have
two probability spaces in this chapter. The first one is represented by (X,B(X),P) which
is the probability space defined over the state set X with P as a probability measure. The
second one, (Vw,B(Vw),Pw), defines the probability space over Vw for the random variable
w affecting the stochastic system with Pw as its probability measure. With a slight abuse
of the notation, we use the same P and Pw when the product measures are needed in
the formulations. Considering a random variable z, Var(z) := E(z2)− (E(z))2 denotes its
variance with E being the expectation operator.

3.2.2 System Definition

In this chapter, we first deal with (potentially) unknown discrete-time continuous-space
stochastic dynamical systems as formalized next.

Definition 4. A discrete-time stochastic system (dt-SS) is a tuple S = (X, Vw, w, f), where
the Borel set X ⊂ Rn is the state set of the system, the Borel set Vw is the uncertainty
space, w := {w(t) : Ω→ Vw, t ∈ N0} is a sequence of independent and identically distributed
(i.i.d.) random variables on the Borel space Vw with some distribution Pw, and the map
f : X × Vw → X is a measurable function that characterizes the state evolution of the
system. The state trajectory of the system is constructed according to

S : x(t+ 1) = f(x(t), w(t)), t ∈ N0. (3.1)

We denote a finite trajectory of the system by ξ(t) := x(0)x(1) . . . x(t), t ∈ N0.

In this chapter, we assume that the map f and the distribution of the uncertainty Pw
are unknown. Instead, we assume we can collect N independent and identically distributed
state pairs (xi, x

+
i ) by initializing the system at xi and observing its next state as x+i =

f(xi, wi) for some random sample wi. The collected dataset is denoted by

D :=
{
(xi, x

+
i )
}
⊂ X2, i ∈ {1, · · · , N}. (3.2)
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XuXin

X

Figure 3.1: A set X containing initial and unsafe sets Xin and Xu. The (blue) dashed line
illustrates a safe trajectory of the system, whereas the yellow one demonstrates an unsafe
trajectory.

3.2.3 Problem Statement

Next definition introduces the safety specification for the unknown stochastic system in
Definition 4.

Definition 5. Given a set of initial states Xin ⊂ X, a set of unsafe states Xu ⊂ X, and
a finite time horizon H ∈ N0, the system S is called safe if all trajectories of S that start
from Xin never reach Xu within horizon H. We denote this safety property by Ψ and its
satisfaction by S is written as S |=H Ψ.

A state set X containing the initial and unsafe sets is illustrated in Fig. 3.1.
Since the system is stochastic and we do not know the distribution of w and the map f ,

we are interested in establishing a lower bound on the probability that the safety property
Ψ is satisfied by the trajectories of S while using only a dataset of the form (3.2). Now,
we state the main problem we are interested to solve here.

Problem 3. Consider an unknown dt-SS S as in Definition 4. Provide a lower bound
(1− ρ) ∈ [0, 1] on the probability of satisfying Ψ, i.e.,

Pw
(
S |=H Ψ

)
≥ 1− ρ,

together with a confidence (1− β) ∈ [0, 1] using only a dataset D of the form (3.2). More-
over, establish a connection between the required size of dataset D and the desired confidence
1− β.

Therefore, we are interested in finding a potentially tight lower bound. The confidence
1 − β in the statement of the problem is with respect to the probability distribution of
the dataset D and is seen from the frequentist interpretation of probability: any algorithm
that solves this problem collects dataset D using a probability distribution; while running
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RCP SCPN SCP
N, N̂

Probabilistic Confidence

Eq. (3.8) Eq. (3.10) Eq. (3.11)

Theorem 5

Safety Problem

Theorem 3

Figure 3.2: This figure shows an overview of the proposed scenario approach for verification
of the safety specification.

the algorithm multiple times with different datasets D, the algorithm gives wrong results
(incorrect lower bound on the safety probability) in at most β portion of the algorithm
runs.

Fig. 3.2 shows an overview of our approach. The block on the left represents a stochastic
safety problem. The RCP block reformulates the safety problem as a robust optimization
problem. Blocks SCPN and SCPN,N̂ solve the optimization problem introduced by the RCP
block using finite number of samples. Finally, Theorem 5 connects SCP’s solutions to the
original safety problem.

3.2.4 Safety Verification via Barrier Certificates

Next we define the notion of barrier certificate (BC) for stochastic systems with known
models.

Definition 6. Given a dt-SS S = (X, Vw, w, f), a nonnegative function B : X → R+
0 is

called a barrier certificate (BC) for S if there exist constants λ > 1 and c ∈ R+
0 such that

B(x) ≤ 1, ∀x ∈ Xin, (3.3)

B(x) ≥ λ, ∀x ∈ Xu, (3.4)

E
[
B(f(x,w)) | x

]
≤ B(x) + c, ∀x ∈ X, (3.5)

where Xin ⊂ X and Xu ⊂ X are initial and unsafe sets corresponding to a given safety
specification Ψ, respectively.

Next theorem, borrowed from [51], provides a lower bound on the probability of satis-
faction of the safety specification for a dt-SS.

Theorem 3. Consider a dt-SS S and a safety specification Ψ. Assume there exists a non-
negative barrier certificate B(x) which satisfies conditions (3.3)-(3.5) with constants λ and
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c. Then

Pw
(
S |=H Ψ

)
≥ 1− 1 + c H

λ
, (3.6)

with H ∈ N0 being the finite time horizon associated with Ψ.

In this chapter, we consider polynomial-type barrier certificates denoted by B(b, x),
where b is the vector containing the coefficients of the polynomial. Such a polynomial with
degree k ∈ N0 has the form

B(b, x) =
k∑

ι1=0

. . .
k∑

ιn=0

bι1,...,ιn(x
ι1
1 . . . x

ιn
n ), (3.7)

with bι1,...,ιn = 0 for ι1 + . . . + ιn > k. Hence, finding a polynomial barrier certificate
reduces to determining the coefficients of the polynomial, namely bι1,...,ιn . In the next sec-
tion, we provide our data-driven approach for the construction of polynomial-type barrier
certificates.

3.3 Data-driven Safety Verification

We first cast the barrier-based safety problem in Theorem 3 as a robust convex program-
ming (RCP). We then provide a scenario-based approach in order to solve the obtained
RCP using data collected from the system.

Satisfying the conditions of Theorem 3 is equivalent to having a non-positive value for
the optimal solution of the following RCP (i.e., K ≤ 0):

RCP :


min
d
K

s.t. maxz
(
gz(x, d)

)
≤0, z∈{1, . . . , 5}, ∀x∈X,

d = [K;λ; c; bι1,...,ιn ],
K ∈ R, λ > 1, c ≥ 0,

(3.8)

in which,

g1(x, d) = −B(b, x)−K,
g2(x, d) = (B(b, x)− 1−K)1Xin

(x),

g3(x, d) = (−B(b, x) + λ−K)1Xu(x),

g4(x, d) =
1 + c H

ρ
− λ−K,

g5(x, d) = E
[
B(b, f(x,w)) | x

]
− B(b, x)− c−K, (3.9)

where (1− ρ) is a given lower bound for the safety probability.
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Remark 2. The RCP (3.8) is in fact a robust convex optimization. It is a convex optimiza-
tion since the constraints are convex with respect to decision variables in d and objective
function. It is a robust optimization since the constraints have to hold for all x ∈ X.

Remark 3. The RCP (3.8) always has a feasible solution. For instance, by choosing
coefficients of B(b, x) equal to zero, λ = 2, c = 0, and K ≥ 1

ρ
− 2, we get a feasible solution

for the RCP. Moreover, the barrier certificate obtained from this RCP satisfies conditions
(3.3)-(3.5) as long as K ≤ 0.

Finding an optimal solution for the RCP in (3.8) is difficult in general because the map
f is unknown, the probability measure Pw is also unknown (thus the expectation in g5
cannot be computed analytically), and there are infinitely many constraints in the robust
optimization since x ∈ X, where X is a continuous set. To tackle this, we first assign a
probability distribution to the state set, take N i.i.d. samples {x1, x2, . . . , xN} from this
distribution, and replace the robust quantifier ∀x ∈ X with ∀xi ∈ X, i ∈ {1, 2, . . . , N}.
This results in the following scenario convex program denoted by SCPN :

SCPN :


min
d
K

s.t. maxz gz(xi, d)≤0, ∀i ∈ {1, . . . , N},
z∈{1, . . . , 5},

d = [K;λ; c; bι1,...,ιn ],
K ∈ R, λ > 1, c ≥ 0.

(3.10)

To tackle the issue of unknown Pw, we replace the expectation in g5 with its empirical
approximation by sampling N̂ i.i.d. values wj, j ∈ {1, . . . , N̂}, from Pw for each xi, which
gives the following scenario convex program denoted by SCPN,N̂ :

SCPN,N̂ :


min
d
K

s.t. maxz ḡz(xi, d)≤0, ∀i ∈ {1, . . . , N},
z∈{1, . . . , 5},

d = [K;λ; c; bι1,...,ιn ],
K ∈ R, λ > 1, c ≥ 0,

(3.11)

where ḡz := gz for all z ∈ {1, 2, 3, 4} and

ḡ5(xi, d) :=
1

N̂

N̂∑
j=1

B(b, f(xi, wj))− B(b, xi)− c+ δ −K. (3.12)

In SCPN,N̂ , f(xi, wj) is the next state of the system from the current state xi with the
noise realization wj. Therefore, the solution of the SCPN,N̂ can be obtained using only
the dataset D without the knowledge of f and Pw. The optimal value for the objective
function of SCPN,N̂ is denoted by K∗(D). We also denote by B̂(b, x | D) the barrier function
constructed based on the solution of SCPN,N̂ in (3.11).
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Note that ḡ5(xi, d) in (3.12) has an additional parameter δ > 0 compared to g5. This
parameter is added to make the last inequality more conservative in order to capture the
error coming from replacing the expectation with the empirical mean. We use Chebyshev’s
inequality [48] to quantify such an error with the associated confidence. Let us define the
variance of the empirical approximation as

σ2 := Var
( 1

N̂

N̂∑
j=1

B(b, f(x,wj))
)
, (3.13)

where the variance is taken with respect to wj. We assume that there is a bound M̂ such
that

Var
(
B(b, f(x,w)

)
≤ M̂, ∀x ∈ X. (3.14)

This assumption gives us a bound for σ2 in (3.13) as σ2 ≤ M̂

N̂
due to wj being independent.

The idea of replacing the expectation by the empirical mean in an optimization problem
and relating the associated solutions based on Chebyshev’s inequality is also used in [99].
Next theorem shows that the barrier certificate computed using the optimal solution of the
SCPN,N̂ is a feasible barrier certificate for SCPN in (3.10) with a certain confidence.

Theorem 4. Let B̂(b, x | D) be a feasible solution of the SCPN,N̂ for some δ > 0, and
assume the inequality (3.14) holds with a given M̂ .Then for any βs ∈ (0, 1], we get

Pw

(
B̂(b, x | D) |= SCPN

)
≥ 1− βs, (3.15)

provided that the number of samples in the empirical mean satisfies N̂ ≥ M̂
δ2βs

.

Proof. By the statement of the theorem, we have B̂(b, x | D) |= SCPN,N̂ . The difference
between the empirical mean in (3.12) and the expected value in (3.10) can be quantified
by invoking the Chebyshev’s inequality as:

Pw

(
|E
[
B(b, f(x,w)) |x

]
− 1

N̂

N̂∑
j=1

B(b, f(x,wj))|≤δ
)
≥1−σ

2

δ2
, (3.16)

where δ ∈ R+, and σ2 is defined in (3.13) [48]. Since all the first four feasibility conditions
are the same as in (3.10) and (3.11), B̂(b, x | D) is a feasible solution for those conditions
of SCPN with probability one. The only remaining concern is the last feasibility condition.
According to (3.16), one can deduce that B̂(b, x | D) is a feasible solution for SCPN with a

confidence of at least 1− σ2

δ2
. Furthermore, we have σ2 ≤ M̂

N̂
by having Var(B(b, f(x,w))) ≤

M̂ , and hence

Pw
(
B̂(b, x | D) |= SCPN

)
≥1− M̂

δ2N̂
.

By the above inequality, we get βs ≥ M̂

δ2N̂
and consequently N̂ ≥ M̂

δ2βs
. This completes the

proof.
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Remark 4. When the system has additive noise, i.e.,

x(t+ 1) = fa(x(t)) + w(t),

the condition (3.14) can be established by having a bound on fa(·) and bounds on moments
of the noise w. For instance, in the case of one-dimensional systems (i.e., n = 1), we have
B(b, x) =

∑k
ι=0 bιx

ι and the variance of B(·) can be expanded as follows:

Var(B(b, f(x,w))) = Var
( k∑
ι=0

bιf(x,w)
ι
)

=Var
( k∑
ι=0

bι(fa(x) + w)ι
)
=Var

( k∑
ι

ι∑
j=0

bι

(
ι

j

)
fa(x)

ι−jwj
)

=Var
( k∑
j=1

gj(x)w
j
)
with gj(x) :=

k∑
ι=j

bι

(
ι

j

)
fa(x)

ι−j

=
k∑
j=1

k∑
z=1

gj(x)gz(x)(E[w
j+z]− E[wj]E[wz]).

This means the variance can be bounded using upper bounds of fa(·) and moments of w.

As it can be seen from Theorem 4, higher number of samples N̂ is needed in order to
have a smaller empirical approximation error δ, and to provide a better confidence bound.
In fact, N̂ and δ are required to solve the SCPN,N̂ in (3.11). Later in the next section, we
show how the value of βs affects the total confidence concerning the safety of the stochastic
system.

Remark 5. Note that our results presented in this chapter are valid for any choice of the
probability distribution P with its support being the state set X that satisfies a regularity
assumption formulated in the next section (cf. Assumption 5). This assumption holds
for a wide range of distributions including uniform, truncated normal, and exponential
distributions. From the algorithmic perspective, this distribution affects the collected data
points xi and the optimal solution of the SCPN. The confidence formulated here is also with
respect to this distribution. We choose P to be a uniform distribution in the case study
section.

3.4 Safety Guarantee over Unknown Stochastic Sys-

tems

In the previous section, we established the connection between the two optimizations SCPN

and SCPN,N̂ , and showed that the solution of SCPN,N̂ is a feasible solution for SCPN with a
certain confidence if the number of samples N̂ is chosen appropriately (cf. Theorem 4). In
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this section, we focus on the relation between the original RCP and the SCPN utilizing the
fundamental result of [29] and provide an end-to-end safety guarantee over the unknown
stochastic system with a priori guaranteed confidence. To do so, we need to raise the
following regularity assumptions on the functions and the chosen probability measure P.

Assumption 4. Functions g1, g2, g3, and g5 are all Lipschitz continuous with respect
to x with Lipschitz constants Lx1, Lx2, Lx3, and Lx5, respectively. Therefore, the Lipschitz
constant Lx := Lx1+Lx2+Lx3+Lx5 is a Lipschitz constant for maxz gz(x, d), z ∈ {1, . . . , 5}\
{4}. In addition, if g1, g2, g3, and g5 are analytic over a compact domain X, the Lipschitz
constant of maxz gz(x, d) is Lx := max

{
Lx1 ,Lx2 ,Lx3 ,Lx5

}
.

Lemma 4. The maximum of Lipschitz continuous functions fi : X → R, i = 1, 2, . . . ,m,
is a Lipschitz continuous function. The Lipschitz constant of the maximum is the sum of
the Lipschitz constants of fi.

Proof. Suppose that two Lipschitz continuous functions f1 and f2 have Lipschitz constants
L1 and L2, respectively. One can rewrite g = max(f1, f2) as:

g = max(f1, f2) =
f1 + f2 + |f1 − f2|

2
.

Then, we can use triangle inequality to show that

|g(x)− g(y)| ≤ 1

2
[|f1(x)− f1(y)|+ |f2(x)− f2(y)|+∣∣|f1(x)− f2(x)| − |f1(y)− f2(y)|∣∣]

≤ 1

2
[L1∥x− y∥+ L2∥x− y∥+ |f1(x)− f1(y)|+

|f2(x)− f2(y)|] ≤
1

2
[L1∥x− y∥+ L2∥x− y∥+

L1∥x− y∥+ L2∥x− y∥] = (L1 + L2)∥x− y∥.

Therefore, max(f1, f2) is also a Lipschitz continuous function with Lipschitz constant L1+
L2. This argument can be extended inductively to the maximum of every number of
functions.

Lemma 5. For any two analytic functions f1 : X → R and f2 : X → R with a compact
domain X, L := max(L1, L2) is a Lipschitz constant of max(f1, f2).

Proof. Note that

g(x) = max(f1(x), f2(x)) =

{
f1(x) if f1(x)− f2(x) ≥ 0

f2(x) if f1(x)− f2(x) ≤ 0.

The function f1−f2 is also analytic, thus has a finite number of zeros in a compact domain.
Let us denote the finite set of zeros as Z. We first show this for one-dimensional compact
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domains X ⊂ R. Take two points x, y ∈ X such that x < y, and define Z ∩ [x, y] =
{z1, z2, . . . , zm} such that zi < zi+1 for any i = 1, 2, . . . ,m− 1. Then we have

|g(y)− g(x)| = |fiy(y)− fim(zm) + fim(zm)− fim−1(zm−1) + . . .

+ fi2(z2)− fi1(z1) + fi1(z1)− fix(x)|,

for some appropriate choices of ix, iy, i1, . . . , im all from the set {1, 2}. Since g(zj) =
f1(zj)−f2(zj) = 0, we can set the index of f to symbol that belongs to the set {1, 2} when
the function is evaluated at any zj. Then, we have

|g(y)− g(x)|
= |fiy(y)− fiy(zm) + fim(zm)− fim(zm−1) + . . .+

fi2(z2)− fi2(z1) + fix(z1)− fix(x)| ≤
|fiy(y)− fiy(zm)|+ |fim(zm)− fim(zm−1)|+ . . .+

|fi2(z2)− fi2(z1)|+ |fix(z1)− fix(x)|
≤ Liy(y − zm) + Lim(zm − zm−1) + . . .+

Li2(z2 − z1) + Lix(z1 − x) ≤
L(y − zm) + L(zm − zm−1) + . . .+ L(z2 − z1) + L(z1 − x)
= L(y − x),

where L = max(L1, L2) = max(Liy , Lix , Li1 , . . . , Lim). This concludes the proof for one-
dimensional case.

We now prove the statement for multi-dimensional case. Take two points x, y ∈ X ⊂ Rn

with x = (x1, . . . , xn) and y = (y1, . . . , yn). The functions f1, f2 have Lipschitz constants
L1, L2, which means

|fi(y1, . . . , yn)− fi(x1, . . . , xn)| ≤ Li∥(y1 − x1, . . . , yn − xn)∥, i ∈ {1, 2}. (3.17)

Define the line segment that connects these two points as D := {λy+(1−λ)x |λ ∈ [0, 1]}.
Let us now restrict the domain of the function g to D and define:

h : [0, 1]→ R, h(λ) := g(λy + (1− λ)x) =
max(f1(λy + (1− λ)x), f2(λy + (1− λ)x)).

We can now apply the first part of the proof to get:

|h(1)− h(0)| ≤ L′|1− 0|, (3.18)

where L′ is the maximum of the Lipschitz constants of f1(λy+(1−λ)x) and f2(λy+(1−λ)x)
with respect to λ. To get these Lipschitz constants, we use (3.17):

|fi(λ1y + (1− λ1)x)− fi(λ2y + (1− λ2)x)| ≤
Li∥(λ1 − λ2)(y − x)∥ = Li|λ1 − λ2| ∥y − x∥
= (Li∥y − x∥) |λ1 − λ2|
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Therefore, the Lipschitz constants of f1(λy+ (1− λ)x) for a given x, y with respect to λ is
Li∥y − x∥. Leveraging (3.18), we have

|g(y)− g(x)| ≤ L′ = max(L1∥y − x∥, L2∥y − x∥) = ∥y − x∥max(L1, L2).

This completes the proof.

Assumption 5. There is a strictly increasing function G : R+
0 → [0, 1], where G(0) = 0

such that

P[b(x, r)] ≥ G(r) ∀x ∈ X, (3.19)

where b(x, r) ⊂ X is an open ball centered at point x with radius r.

Note that any probability distribution, for which the above lower bound function G(r)
can be computed, can be used in our approach for sampling.

Remark 6. The probability distribution from which xi is sampled must satisfy Assump-
tion 5. This assumption requires having a strictly increasing function G : R+

0 → [0, 1] that
satisfies

P[b(x, r)] ≥ G(r), ∀x ∈ X.

Then, the probability distribution P should assign positive probability to any ball with posi-
tive radius. This means no ball b(x, r) ⊂ X could be excluded from sampling in the approach
with some non-trivial probability.

Next, we introduce the main result which connects the safety of an unknown stochastic
system directly to data collected from the system.

Theorem 5. Consider an unknown dt-SS, as in (3.1), and safety specification Ψ. Let As-
sumptions 4 and 5 hold with Lipschitz constant Lx and function G(r), respectively. Assume
N̂ is selected for the SCPN,N̂ as in Theorem 4 in order to provide confidence 1−βs. Denote
by K∗(D) the optimal value of the optimization problem in (3.11) using N samples and
parameter ρ ∈ (0, 1]. For any β ∈ [0, 1], the following statement holds with a confidence of
at least (1− 3β − βs):

Pw
(
S |=H Ψ

)
≥ 1− ρ,

if

K∗(D) + Lx G
−1(ϵ) ≤ 0, (3.20)

where function G defined in (3.19), and ϵ = I−1(1− β;Q+ 3, N −Q− 2).
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Proof. Denote the optimal values of the RCP and the SCPN by K∗ and K∗
m(D), respectively.

According to [29, Theorem 3.6], one has

P
(
K∗

m(D) ≤ K∗ ≤ K∗
m(D) + LspH(ϵ)

)
≥ 1− β,

for a chosen ϵ and any N ≥ N(ϵ, β) as in [29, Theorem 2.2]. Equivalently, the above
inequality holds for a given N and ϵ ≤ I−1(1 − β; d, N − d + 1). In this expression, d is
the number of decision variables, and H(·) is a uniform level-set bound as defied in [29,
Definition 3.1]. Constant Lsp is a Slater constant as defined in [29, equation (5)]. Since the
original RCP in (3.8) is a min-max optimization problem, the constant Lsp can be selected
as one according to [29, Remark 3.5]. By choosing d := Q+3, one obtains the parameters
of the incomplete beta function in the theorem statement. Based on [29, Proposition 3.8],
H(ϵ) = LxG

−1(ϵ), where Lx is the Lipschitz constant of RCP as in Assumption 4, and G(·)
as in (3.19). Now, one can readily deduce that

P
(
K∗ ≤ K∗

m(D) + LxG
−1(ϵ)

)
≥ 1− 3β. (3.21)

Confidence β is multiplied by 3 since the Lipschitz continuity is needed in (3.8) in three
different regions and, hence, we leverage the results in [69] to deal with this issue by
multiplying β by three. On the other hand, due to the particular selection of N̂ and βs
according to Theorem 4, we know that (3.15) holds. Therefore,

P (K∗
m(D) ≤ K∗(D)) ≥ 1− βs. (3.22)

Define the events A := {D |K∗ ≤ K∗
m(D) + LxG

−1(ϵ)}, B := {D |K∗
m(D) ≤ K∗(D)}, and

C := {D |K∗(D) + LxG
−1(ϵ) ≤ 0}, where P(A) ≥ 1 − 3β and P(B) ≥ 1 − βs. The

inequalities in A and B satisfy

K∗ ≤ K∗
m(D) + LxG

−1(ϵ) ≤ K∗(D) + LxG
−1(ϵ). (3.23)

Note that any element D that belongs to C will make the right-hand side of (3.23) non-
positive. In addition, if this element also belongs to A ∩ B, the two inequalities in (3.23)
will also hold, and we get K∗ ≤ 0.

P(K∗ ≤ 0) ≥ P(A ∩ B) ≥ 1− P(Ac)− P(Bc) ≥ 1− 3β − βs.

This completes the proof since non-positiveness of K∗ ensures a safety lower bound (1− ρ)
with confidence of at least 1− 3β − βs.

Corollary 1. If samples are collected uniformly from a hyper rectangular state set with
edges of length ηx(i) in each dimension i, then one can compute G(ϵ) as aϵn∏n

i=1 ηx(i)
, where

a =
1

2n
π

n
2

Γ(n
2
+1)

with the Gamma function defined as Γ(k) = 1 × 2 × 3 . . . × (k − 1) and

Γ(k + 1
2
) = 1

2
× 3

2
× . . . (k − 3

2
)(k − 1

2
)π

1
2 for all positive integers.
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Proof. The probability distribution from which xi is sampled must satisfy Assumption 5.
This assumption requires having a strictly increasing function G : R+

0 → [0, 1] that satisfies

P[b(x, r)] ≥ G(r), ∀x ∈ X.

Since we assume that samples are collected uniformly, P[b(x, r)] for every small ball cen-
tered at every x ∈ X with radius r = ϵ can be computed by dividing the volume of this
ball by the whole state set volume. Given that one needs to find the maximum ball that
is valid for ∀x ∈ X, and some points x lie on the border of the hyper-rectangular state
set, the maximum ball is a semi-hypersphere in general, whose volume can be computed

as
1

2n
π

n
2

Γ(n
2
+1)

ϵn with the Gamma function defined as Γ(k) = 1 × 2 × 3 . . . × (k − 1) and

Γ(k + 1
2
) = 1

2
× 3

2
× . . . (k − 3

2
)(k − 1

2
)π

1
2 for all positive integers. Dividing this value by

the whole state set volume, which is
∏n

i=1 ηx(i) for ηx(i) as the length of the edges in each
direction, gives us G(ϵ).

Corollary 2. If the state set is an n-dimensional hypersphere with radius r̃ and the data
is sampled uniformly, then one has

G(ϵ) =
1

2

[
I(1− c21

r̃2
;
n+ 1

2
,
1

2
) +

ϵn

r̃n
I(1− c22

ϵ2
;
n+ 1

2
,
1

2

]
,

where c1 =
2r̃2−ϵ2

2r̃
, and c2 =

ϵ2

2r̃
.

Proof. The proof is similar to the proof of Corollary 1. Here, the centered ball with the
maximum volume is the intersection of the whole state set sphere and the small ball r = ϵ
centered at any point on the border of the state set sphere. The volume of this intersection,
which is the volume of two separate caps, can be computed as:

V cap
n (r̃, c1) + Vcap

n (ϵ, c2),

where

V cap
n (r̃, c1) =

1

2

π
n
2

Γ(n
2
+ 1)

r̃nI(1− c21
r̃2
;
n + 1

2
,
1

2
),

and

V cap
n (ϵ, c2) =

1

2

π
n
2

Γ(n
2
+ 1)

ϵnI(1− c22
ϵ2
;
n + 1

2
,
1

2
),

for c1 = 2r̃2−ϵ2
2r̃

, and c2 = ϵ2

2r̃
. By dividing the intersection volume by the volume of the

whole hypersphere state set, which is

Vn(r̃) =
π

n
2

Γ(n
2
+ 1)

r̃n,

one can compute G(ϵ) as in Corollary 2.
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Remark 7. For uniform sampling, the function G(r) is proportional to rn. Therefore, the
sample complexity of the proposed approach is in the order of (vLx

ϵ
)n, where v is the volume

of state set and n is the dimension of the state set.

Remark 8. The barrier function constructed based on the finite number of samples ac-
cording to the above theorem together with the obtained parameters c and λ satisfies the
conditions (3.3)-(3.5) in Definition 6 with a confidence of at least 1− 3β − βs.

Remark 9. Note that the constraint g4 in (3.8) enforces the constraint P(S |=H Ψ) ≥ 1−ρ
for a given ρ. When ρ is not fixed, one can eliminate this constraint from the optimization
and guarantee directly the following inequality

Pw(S |=H Ψ) ≥ 1− 1 + c∗H
λ∗

,

where c∗ and λ∗ are the optimal values of the SCPN,N̂. This increases the likelihood of getting
a feasible optimization and gives the best possible lower bound on the safety probability.

For the sake of clarity, we present the steps required for applying Theorem 5 in Algo-
rithm 2.

Algorithm 2 Safety verification of an unknown dt-SS S = (X, Vw, w, f) using collected
data.
Input: Confidence parameters β ∈ [0, 1] and βs ∈ [0, 1), parameters ρ ∈ (0, 1], δ ∈ R+,
M̂ ∈ R+, Lx ∈ R+, and the degree of barrier certificate Q
1: Compute the number of samples N̂ ≥ M̂/(δ2βs) to be used for the empirical average
(Theorem 4)
2: Choose the number of samples N
3: Compute ϵ = I−1(1− β;Q+ 3, N −Q− 2)
4: Select a probability measure P for the state set X
5: Collect NN̂ state pairs from the system

D = {(xi, x+ij) ∈ X2, x+ij = f(xi, wij)}i,j

6: Solve SCPN,N̂ in (3.11) with D and obtain the optimal solution K∗(D)
Output: If K∗(D) + LxG

−1(ϵ) ≤ 0, then Pw(S |=H Ψ) ≥ 1 − ρ with a confidence of at
least 1− 3β − βs.

Both Theorem 5 and Algorithm 2 require knowing an upper bound for Lipschitz con-
stant Lx. The following lemma shows how to get this constant for quadratic barrier cer-
tificates and systems with additive noises. A similar reasoning can be used for other
polynomial-type barrier certificates by casting them as quadratic functions of monomials.
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Lemma 6. Consider a nonlinear system with additive noise

x(t+ 1) = fa(x(t)) + w(t), t ∈ N0, (3.24)

and a bounded state set X such that ||x|| ≤ L for all x ∈ X. Without loss of generality,
we assume that the mean of noise is zero. Let ||fa(x)|| ≤ L1||x|| + L2 and ||Jx|| ≤ L̂ for
some L1, L2, L̂ ≥ 0,∀x ∈ X, where Jx is the Jacobian matrix of fa(x). Given a quadratic
barrier function xTPx with a symmetric positive definite matrix P, the Lipschitz constant
Lx can be upper-bounded by

2∥P∥(L1LL̂+ L2L̂+ L).

Proof. We first compute the Lipschitz constant of g5 in (3.5) as

Lx5 = max

{∥∥∥∥∂g5(x)∂x

∥∥∥∥ , x ∈ X, ∥x∥ ≤ L} ,
where

g5(x)=E
[
(fT (x(t)) + wT (t))P(f(x(t)) + w(t))

]
− xT (t)Px(t)− c

=fT (x(t))Pf(x(t))−xT (t)Px(t)+E
[
wT (t)Pw(t)

]
−c.

By considering Jx = [ ∂f
∂x1
, . . . , ∂f

∂xn
], one has

Lx5 = max
x
∥2(f(x(t))TP Jx − xT (t)P)∥

≤ max
x

2∥f(x(t))T∥∥P∥∥Jx∥+ 2∥xT (t)∥∥P∥

≤ 2(L1L+ L2)∥P∥L̂+ 2L∥P∥
= 2∥P∥(L1LL̂+ L2L̂+ L).

Similarly, one can readily deduce that Lx1 = Lx2 = Lx3 = 2L∥P∥, and Lx4 = 0. Then
Lx = max(Lx1 ,Lx2 ,Lx3 ,Lx4 ,Lx5) = 2∥P∥(L1LL̂+L2L̂+L), which completes the proof.

Remark 10. Note that according to the above lemma, computing the upper bound for
Lipschitz constant Lx depends on ∥P∥. On the other hand, computing the entries of P
depends on Lipschitz constant Lx. In order to tackle this circulatory issue, we consider
an upper bound for ∥P∥ and enforce it as an additional constraint while solving the SCP
in (3.11). If there is no solution with the selected upper bound, we iteratively increase
the upper bound until we find a solution or a predefined maximum number of iterations is
reached.

Remark 11. If the underlying dynamics is affine in the form of x(t+1) = Ax(t)+B+w(t)
with A ∈ Rn×n and B ∈ Rn×1, we can set L1 = L̂ as an upper bound on ||A|| and L2 as an
upper bound on ∥B∥.
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Remark 12. The Lipschitz constant in Assumption 4 can also be estimated directly from
the data using Extreme Value Theory with the estimation approach described in [109]. For
instance, to estimate the Lipschitz constant of g5 in (3.9), we collect data{

(xi1, xi2) | i1, i2 = 1, . . . , Ñ
}

and compute

L̂ = max
∥g5(xi1)− g5(xi2)∥
∥xi1 − xi2∥

, i1, i2 ∈ {1, . . . , Ñ}. (3.25)

The Lipschitz constant of g5 is computed by fitting a Reverse Weibull distribution to the
samples of the random variable L̂, and then computing the location parameter of that dis-
tribution.

3.5 Data-Driven Controller Synthesis

In this section, we study the problem of synthesizing a controller for an unknown stochastic
control system using data to satisfy safety specifications. Our approach is to use control
barrier certificates, fix a parameterized set of controllers, and design the parameters using
an SCP. The stochastic control system is defined next.

Definition 7. A discrete-time stochastic control system (dt-SCS) is a tuple S = (X,U, Vw, w, f),
where X, Vw, w are as in Definition 4, U ⊂ Rm is the input set, and f : X × U × Vw → X
is the state transition map. The evolution of the state is according to equation

S : x(t+ 1) = f(x(t), u(t), w(t)), t ∈ N0. (3.26)

We assume that the map f and distribution of w is unknown but we can gather data
(xi, ui, x

+
i ) by initializing the system at xi, applying the input ui, and observing the next

state of the system x+i = xi(t+ 1). The collected dataset is

D :=
{
(xi, ui, f(xi, ui, wj))

}
i,j
⊂ X × U ×X. (3.27)

Now, we state the main problem we are interested to solve here.

Problem 4. Consider an unknown dt-SCS S as in Definition 7, with a safety specification
Ψ specified by the initial set Xin, unsafe set Xu, and time horizon H. Using a dataset D
of the form (3.27), find a controller k : X → U together with a constant ρ ∈ [0, 1) and
confidence (1 − β) ∈ [0, 1] such that S under this controller satisfies Ψ with a probability
of at least (1− ρ), i.e.,

Pk
w

(
S |=H Ψ

)
≥ 1− ρ, ∀x(0) ∈ Xin,

with a confidence 1 − β. Moreover, establish a connection between the required size of D
and the confidence 1− β.
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Similar to the verification problem discussed in the previous sections, we use the no-
tion of control barrier certificates with a parameterized set of controllers [51] to get a
characterization of the controller together with the lower bound on the safety probability.

Definition 8. Given a dt-SCS S = (X,U, Vw, w, f) with U ⊂ Rm, initial set Xin ⊂ X, and
unsafe set Xu ⊂ X, a function B : X → R+

0 is called a control barrier certificate (CBC) for
S if there exist constants λ > 1, c ≥ 0, and functions Pℓ(x) : X → R+

0 , ℓ ∈ {1, 2, . . . ,m},
such that constraints in (3.3) and (3.4) hold, and

E
[
B(f(x, u, w)) | x, u

]
+

m∑
ℓ=1

(uℓ −Pℓ(x)) ≤ B(x) + c

∀x ∈ X, ∀u = [u1; . . . ;um] ∈ U. (3.28)

Theorem 6. A CBC B(x) as in Definition 8 guarantees that

Pk
w

(
S |=H Ψ

)
≥ 1− ρ, ∀x(0) ∈ Xin,

under the controller k(x) = [P1(x);P2(x); . . . ;Pm(x)], where ρ = (1 + cH)/λ with H
being the time horizon of the safety specification.

Let us consider polynomial-type CBC and controllers. The number of CBC coefficients
is denoted by Q. Polynomial Pℓ has the following form for some k′ ∈ N0:

Pℓ(p
ℓ, x) =

k′∑
ι1=0

. . .
k′∑

ιn=0

pℓι1,...,ιn(x
ι1
1 . . . x

ιn
n ), (3.29)

with pℓι1,...,ιn = 0 for ι1 + . . .+ ιn > k′.
The overall number of all coefficients of m polynomials Pℓ(p

ℓ, x) is denoted by P . We
also assume that the input set U is a polytope of the form

U = {u ∈ Rm | Au ≤ b} , (3.30)

for some A ∈ Rq×m and b ∈ Rq×1.
Under these assumptions, the inequalities in Definition 8 and Theorem 6 can be written

as an RCP:

RCP :



min
d
K

s.t. maxz gz(x, u, d) ≤ 0,
z ∈ {1, 2, . . . , 5 + q},∀x ∈ X, ∀u ∈ U,
d = [K;λ; c; bι1,...,ιn ; pℓι1,...,ιn ],
K ∈ R, λ > 1, c ≥ 0,

(3.31)
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where gz(x, d), z ∈ {1, . . . , 4}, are the same as (3.9), and

g5(x, u, d) = E
[
B(b, f(x, u, w)) | x, u

]
+

m∑
ℓ=1

(uℓ −Pℓ(p
ℓ, x))

− B(b, x)− c−K,
[g6(x, d); . . . ; g5+q(x, d)]= A [P1(p

1, x); . . . ;Pm(p
m, x)]−

b − K1q×1. (3.32)

Note that the last inequality in (3.32) encodes the fact that the control input should be
inside the set U specified by the polytope (3.30).

The constraints in the RCP is always feasible. A solution can be constructed as fol-
lows. Set the coefficients of B(b, x) and Pℓ(p

ℓ, x) equal to zero, c = 0, λ = 2, and
uℓ = Pℓ(p

ℓ, x) ∀ℓ ∈ {1, . . . ,m}. Also select K large enough such that K ≥ 1
ρ
− 2 together

with K 1m×1 ≥ −b.
The RCP in (3.31) is in general hard to solve since the map f and the probability mea-

sure Pw are unknown. Hence, similar to the verification approach discussed in Section 3.3,
we assign a probability distribution to both state and input sets, and collect N i.i.d pairs
(xi, ui) from this assigned distribution, and replace the robust quantifiers ∀x ∈ X and
∀u ∈ U with ∀xi ∈ X and ∀ui ∈ U, i ∈ {1, . . . , N}, respectively. This results in a scenario
convex program called SCPN , which is not presented here for the sake of brevity.

To address the issue of unknown f and Pw, the expectation in g5 is replaced with its
empirical approximation by sampling N̂ i.i.d. values wj, j ∈ {1, . . . , N̂}, from Pw for each
pair of (xi, ui), which results in the following scenario convex program denoted by SCPN,N̂ :

SCPN,N̂ :



min
d
K

s.t. maxz ḡz(xi, ui, d) ≤ 0,
z ∈ {1, 2, . . . , 5 + q},
∀xi ∈ X, ∀ui ∈ U,∀i ∈ {1, . . . , N},
d = [K;λ; c; bι1,...,ιn ; pℓι1,...,ιn ],
K ∈ R, λ > 1, c ≥ 0,

(3.33)

where ḡz := gz for all z ∈ {1, 2, . . . , 5 + q} \ {5}, and

ḡ5(xi, ui, d) =
1

N̂

N̂∑
j=1

B(b, f(xi, ui, wj)) +

m∑
ℓ=1

(uiℓ −Pℓ(p
ℓ, xi))− B(b, xi)− c+ δ −K. (3.34)

Using empirical approximation introduces an error which is demonstrated by δ in the above
optimization problem. We denote by B̂u(b, x | D) the constructed control barrier certificate
with coefficients computed by solving the SCPN,N̂ .
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Remark 13. Similar to Theorem 4, under the assumption

Var
(
B(b, f(x, u, w))

)
≤ M̂,

for some M̂ > 0, a desired confidence βs ∈ (0, 1], and an error δ, one has

Pk
w

(
B̂u(b, x | D) |= SCPN

)
≥ 1− βs, (3.35)

provided that N̂ ≥ M̂
δ2βs

.

To provide the main results here, we need the following assumptions.

Assumption 6. Function g5 is Lipschitz continuous with respect to (x, u) with Lipschitz
constant L5. Functions g1, g2, g3, g6, . . . , g5+q are also Lipschitz continuous with respect to
x with Lipschitz constants L1,L2,L3,L6, . . . ,L5+q, respectively. Then, the Lipshitz constat
of maximum of these function is L1 + L2 + L3 + L5 + L6 + . . . + L5+q. Furthermore, if
all functions g are analytic over a compact domain X × U , the Lipschitz constant of their
maximum is max(L1,L2,L3,L5,L6, . . . ,L5+q), which we denote it by Lx,u.

Assumption 7. There is a strictly increasing function G(r) : R+ → [0, 1] such that

P[b(x, u, r)] ≥ G(r) ∀(x, u) ∈ X × U, (3.36)

where b(x, u, r) is an open ball in the product space X ×U centered at the point (x, u) with
radius r.

Now, we have all the ingredients to propose the main results here.

Theorem 7. Consider an unknown dt-SCS as in Definition 7 and a safety specification
Ψ. Let Assumptions 6–7 hold with constant Lx,u and function G(r). Suppose that K∗(D)
is the optimal value of SCPN,N̂ in (3.33) with number of samples N , a given ρ ∈ (0, 1], and
for N̂ selected based on Remark (13) with confidence of 1− βs. Suppose

K∗(D) + Lx,uG
−1(ϵ) ≤ 0, (3.37)

where function G is defined in (3.36) and ϵ = I−1(1− β;Q+ P + 3, N −Q−P − 2) with
confidence parameter β ∈ [0, 1], and Q and P being respectively the number of coefficients
of the polynomial control barrier certificate and the overall number of coefficients of poly-
nomials Pℓ(p

ℓ, x) for m inputs. Then, the following statement is valid with a confidence
of at least 1− 3β − βs: the system S together with the constructed control input

k(x) := [P1(p
1, x); . . . ;Pm(p

m, x)],

for which coefficients pℓ, ℓ ∈ {1, . . . ,m}, are obtained from the solution of SCPN,N̂, is safe
within the time horizon H with a probability of at least 1− ρ, i.e.,

Pk
w

(
S |=H Ψ

)
≥ 1− ρ. (3.38)
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Proof. The proof is similar to the proof of Theorem 5 by replacing Pw with Pk
w for the RCP

(3.31) and its associated SCPs. The function G(ϵ) is defined as in (3.36). The number of
coefficients is Q + P + 3 where P is the overall number of coefficients of m polynomials
defining the controller, which results in the new arguments of the regularized incomplete
beta function I in the theorem statement.

Corollary 3. If samples are collected uniformly from a hyper rectangular sets X and U ,
respectively, with edges of length ηx(i) and ηu(j) in each dimension i and j, then one can

compute G(ϵ) as aϵn+m∏n
i=1 ηx(i)

∏m
j=1 ηu(j)

, where a = 1
2n+m

π
n+m

2

Γ(n+m
2

+1)
with Gamma function defined

in Corollary 1.

Proof. The proof is similar to the proof of Corollary 1 based on the new definition of G(r)
in Assumption 7.

Remark 14. When ρ is not fixed, one can eliminate constraint g4 from (3.31) and directly
provide the following inequality

Pk
w(S |=H Ψ) ≥ 1− 1 + c∗H

λ∗
,

in which c∗ and λ∗ are the optimal solutions of SCPN,N̂ in (3.33). This increases the
likelihood of getting a feasible solution and gives the best possible lower bound on the safety
probability for S. A schematic overview of our synthesis approach is presented in Fig. 3.3.

Algorithm 3 Data-driven synthesis for safety specification on an unknown dt-SCS S =
(X,U, Vw, w, f).

Input: Confidence parameters β ∈ [0, 1], βs ∈ (0, 1], parameters ρ ∈ (0, 1], δ ∈ R+,
M̂ ∈ R+, Lx,u ∈ R+, degree of the barrier certificate Q, and degree of the polynomial
functions for the controller P
1: Compute the number of samples N̂ ≥ M̂/(δ2βs) for the empirical average (Remark 13)
2: Choose the number of samples N
3: Compute ϵ = I−1(1− β;Q+ P + 3, N −Q− P − 2)
4: Select a probability measure P for the state-input set (X,U)
5: Collect NN̂ tuples from the system D := {(xi, ui, x′ij) ∈ X × U × X, x′ij =
f(xi, ui, wij)}i,j
6: Solve SCPN,N̂ in (3.33) with D and obtain the optimal solution K∗(D)
Output: If K∗(D) + Lx,uG

−1(ϵ) ≤ 0, then Pk
w(S |=H Ψ) ≥ 1 − ρ with a confidence of at

least 1− 3β − βs and with the controller k(x) := [P1(p
1, x); . . . ;Pm(p

m, x)].

Next lemma provides an upper bound for Lipschitz constant Lx,u, which is required in
Theorem 7, in the case that the system is affected by an additive noise.

Lemma 7. Consider a nonlinear dt-SCS as in Definition 7 which is affected by an additive
noise as the following:

x(t+ 1) = fa(x(t), u(t)) + w(t), (3.39)
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Black Box

Theorem 7

(xi, ui, wj) f(xi, ui, wj)

Data-driven Controller

Figure 3.3: A schematic overview of the data-driven synthesis presented in Section 3.5.

and a bounded state set X and input set U such that ∥x∥ ≤ Lx for all x ∈ X, and
∥u∥ ≤ Lu for all u ∈ U . Without loss of generality, we assume that the mean of the
noise is zero. Let ∥fa(x, u)∥ ≤ L1∥x∥ + L2∥u∥ + L3, ||Jx|| ≤ L̂x, and ||Ju|| ≤ L̂u, for
some Lx,Lu, L1, L2, L3, L̂x, L̂u ≥ 0, where Jx and Ju are Jacobian matrices of fa(x, u) with
respect to x and u, respectively. Given a quadratic barrier function xTPx, and a set of
quadratic functions xTPℓx, ℓ ∈ {1, . . . ,m}, representing each of Pℓ(p

ℓ, x) with symmetric
matrices P and Pℓ, the Lipschitz constant Lx,u can be upper-bounded by

√
L 2
x + L 2

u , where

Lx = 2LxL1L̂x∥P∥+ 2LuL2L̂x∥P∥+ 2L3L̂x∥P∥

+ Lx∥P∥+ Lx
m∑
ℓ=1

∥Pℓ∥, (3.40)

Lu = 2LxL1L̂u ∥P∥+ 2LuL2L̂u ∥P∥+ 2L3L̂u ∥P∥+
√
m.

Proof. We first compute the Lipschitz constant regarding g5(x, u, d) in (3.32), where

g5(x, u, d) = E
[
(fT (x(t), u(t)) + wT (t))P(f(x(t), u(t))+

w(t))
]
+

m∑
ℓ=1

(uℓ −Pℓ(p
ℓ, x))− xT (t)Px(t)− c.

Considering E[w(t)] = 0, we compute the upper bounds for Lipschitz constant with respect
to x and u separately denoted by L5x and L5u , respectively. We define Jx = [ ∂f

∂x1
, . . . , ∂f

∂xn
]
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and Ju = [ ∂f
∂u1
, . . . , ∂f

∂um
] as Jacobian matrices with respect to x and u, respectively.

L5x =max
x,u
∥∂g5(x, u, d)

∂x
∥ = max

x,u
∥2(f(x(t), u(t))TP Jx

− xT (t)P− xT (t)
m∑
ℓ=1

Pℓ∥

≤2LxL1L̂x∥P∥+ 2LuL2L̂x∥P∥+ 2L3L̂x∥P∥+

Lx∥P∥+ Lx
m∑
ℓ=1

∥Pℓ∥,

and accordingly,

L5u = max
x,u
∥∂g5(x, u, d)

∂u
∥

= ∥2(f(x(t), u(t))TPJu + 1m∥
≤ 2LxL1L̂u ∥P∥+ 2LuL2L̂u ∥P∥+ 2L3L̂u ∥P∥+

√
m.

Now it can be deduced that

L5 ≤
√
L2
5x + L2

5u .

Similar to the proof of Lemma 6, it is straightforward to compute the upper bounds of
Lipschitz constants for other constraints in (3.32) and show that the computed upper
bound is greater than all of them. We ignore this part for the sake of brevity. Then,
Lx,u ≤ max

(
Li, i ∈ {1, 2, . . . , 5+q}\{4}

)
=
√

L2
5x + L2

5u which is equivalent to
√

L 2
x + L 2

u

with Lx and Lu as in (3.40).

Note that one can use similar results as in Remark 12 to estimate the Lipschitz constant
via data.

3.6 Data-driven Barrier Certificates for Non-convex

Setting

In this section, we extend the proposed result in Section 3.4 to a case of having non-convex
constraints. We modify the constraint (3.5) in Definition 6 as follows:

E
[
B(f(x,w)) | x

]
≤ κ B(x) + c, ∀x ∈ X, (3.41)

where κ ∈ (0, 1).
According to the fundamental results in [59], choosing κ in the interval (0, 1) provides

a better lower bound for the probability of safety satisfaction in (3.6), namely:

Pw
(
S |=H Ψ

)
≥ 1− ρ,
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with

ρ =

{
1− (1− 1

λ
)(1− c

λ
) if λ ≥ c

κ
1
λ
(1− κ)H + c

κλ

(
1− (1− κ)H

)
if λ < c

κ
,

(3.42)

where parameters c, λ, and H are the same as in Definition (6). Another advantage of
choosing κ in the interval (0, 1) is that this new formulation can be utilized in the context
of compositionality and interconnected systems [113, 102].

Replacing the last condition of RCP in (3.9) with the modified constraint in (3.41)
leads to the following optimization problem which is not convex anymore:

RP :


min
d
K

s.t. maxz
(
gz(x, d)

)
≤0,∀z∈{1, 2, 3, 4},∀x∈X,

d = [K;λ; c; bι1,...,ιn ;κ],
K ∈ R, λ > 1, c ≥ 0, κ ∈ (0, 1),

(3.43)

in which gz(x, d), z ∈ {1, 2, 3}, are the same as in (3.9), and

g4(x, d) = E
[
B(f(x,w)) | x

]
≤ κ B(x) + c, ∀x ∈ X. (3.44)

The non-convexity comes from the multiplication of κ and coefficients of barrier func-
tion B(b, xi) in (3.41). With the same reasoning in Section (3.3), solving the above RP is
not straightforward generally. Therefore, we construct an SP by taking samples and then
connect the solution of the obtained scenario programming to the safety of the stochastic
system in (3.1). By collecting i.i.d. samples xi, i ∈ {1, . . . , N}, from an assigned prob-
ability distribution over the state set, and approximating the expectation term in (3.41)
results in a non-convex programming as the following:

SPN,N̂ :


min
d
K

s.t. maxz ḡz(xi, d)≤0, ∀i ∈ {1, . . . , N},
∀z∈{1, 2, 3, 4},

d = [K;λ; c; bι1,...,ιn ;κ],
K ∈ R, λ > 1, c ≥ 0, κ ∈ (0, 1),

(3.45)

where ḡz := gz for all z ∈ {1, 2, 3} and

ḡ4(xi, d) =
1

N̂

N̂∑
j=1

B(b, f(xi, wj))− κ B(b, xi)− c+ δ −K. (3.46)

Note that in this new scenario programming, we eliminated the constraint that forces a
fixed probability lower bound 1 − ρ on the safety of the stochastic system, namely, g4 in
(3.9). Instead, we are interested in providing the tightest possible lower bound of the safety
probability according to Remark 9. The main issue underlying here is that by considering
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κ ∈ (0, 1), the obtained scenario program is not convex anymore, and accordingly, one
cannot naively utilize the results proposed in Theorems 5. Hence, one cannot solve the SP
in (3.45) by simply applying bisection over κ, while still utilizing the proposed results in
the previous sections.

Now we state the main problem we aim to address in this section.

Problem 5. Consider an unknown dt-SS S as in Definition 4. Compute the largest lower
bound (1− ρ) ∈ [0, 1] on the probability of satisfying Ψ, i.e.,

Pw
(
S |=H Ψ

)
≥ 1− ρ,

according to (3.42) together with a confidence (1 − β) ∈ [0, 1] using a dataset D of the
form (3.2). Moreover, establish a connection between the required size of dataset D, the
cardinality of the set from which the parameter κ is selected, and the desired confidence
1− β.

In the next theorem, we present our solution to Problem 5 by proposing a new confidence
bound which is always valid even for the non-convex scenario program in (3.45).

Theorem 8. Consider an unknown dt-SS as in (3.1) together with the safety specifi-
cation Ψ. Let M be the cardinality of a finite set from which κ takes value in (0,1).
Suppose that Assumptions 4-5 hold for the RP in (3.43) with function G(·) and Lx :=
max

(
Lx1 ,Lx2 ,Lx3 ,Lx4

)
, where Lxi , i ∈ {1, . . . , 4}, is an upper bound on the Lipschitz con-

stant of the ith constraint in (3.43). Assume N̂ is selected for the SPN,N̂ similar to Theo-
rem 4 in order to provide confidence 1−βs. Suppose K∗(D) is the optimal value of the opti-
mization problem in (3.45) using N̂ and N . Furthermore, ϵ = I−1(1−Mβ;Q+3, N−Q−2)
for β ∈ [0, 1], where Q is the number of coefficients of the barrier certificate. Then the
following statement holds with a confidence of at least 1−3β−βs: if K∗(D)+LxG

−1(ϵ) ≤ 0,
then

Pw(S |=H Ψ) ≥ 1− ρ∗, (3.47)

where ρ∗ is computed as in (3.42) using optimal solutions of SPN,N̂, namely, c∗, λ∗, and κ∗.
More importantly, with a confidence of at least 1− 3β − βs, B(b∗, x) is a barrier certificate
for S, satisfying (3.3), (3.4), and (3.41), where b∗ is the optimal solution of SPN,N̂.

Proof. Denote the optimal values of the RP and its equivalent scenario programming before
the empirical approximation of the expectation term in g4, namely, SPN , by K∗ and K∗

m(D),
respectively. Similar to (3.21), one has

P
(
K∗ ≤ K∗

m(D) + LxG
−1(ϵ)

)
≥ 1− 3β,

for any N ≥ Ñ
(
ϵ1, . . . , ϵM, β

)
, where

Ñ
(
ϵ1, . . . , ϵM, β

)
:=

min
{
N ∈ N |

M∑
z=1

d−1∑
i=0

(
N

i

)
ϵ iz (1− ϵz)N−i ≤ β

}
.
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Alternatively, one can set ϵ := ϵ1 = ϵ2 = . . . = ϵM in the above expression to get the
inequality ϵ ≤ I−1(1−Mβ; d, N − d + 1), where M is the cardinality of the set from which
κ is selected, and d is the number of decision variables. By choosing d := Q+ 3, one gets
the parameters of the incomplete beta function in the theorem statement. On the other
hand, due to the particular selection of N̂ and βs similar to Theorem 4, it can be deduced
that

Pw

(
B̂(b, x | D) |= SPN

)
≥ 1− βs,

where B̂(b, x | D) is the barrier function whose coefficients are the optimal solution of SPN .
Therefore, we have

P (K∗
m(D) ≤ K∗(D)) ≥ 1− βs. (3.48)

By defining events A := {D |K∗≤ K∗
m(D) + LxG

−1(ϵ)}, B := {D |K∗
m(D) ≤ K∗(D)}, and

C := {D |K∗(D) + LxG
−1(ϵ) ≤ 0}, where P(A) ≥ 1− 3β and P(B) ≥ 1− βs, it is easy to

conclude using the same reasoning as in the second part of proof of Theorem (5) that

P(K ≤ 0) ≥ 1− 3β − βs,

which ensures safety of the stochastic system with a lower bound 1 − ρ and a confidence
of at least 1− 3β − βs.

3.7 Numerical Examples

The simulations of this section are performed on an iMac 3.5 GHz Quad-Core Intel Core i7.
The optimizations are solved by CVX Toolbox [37] with Mosek [5] as the solver.

3.7.1 Temperature Verification for Three Rooms

Consider a temperature regulation problem for three rooms characterized by the following
discrete-time stochastic system:

T1(t+ 1) =
(
1− τs(α + αe)

)
T1(t) + τsαT2(t)+

τsαeTe + w1(t)

T2(t+ 1) =
(
1− τs(2α + αe)

)
T2(t) + τsα(T1(t) + T3(t))+

τsαeTe + w2(t)

T3(t+ 1) =
(
1− τs(α + αe)

)
T3(t) + τsαT2(t)+

τsαeTe + w3(t), (3.49)

where T1(t), T2(t), and T3(t) are temperatures of three rooms, respectively. Terms w1(t),
w2(t), and w3(t) are additive zero-mean Gaussian noises with standard deviations of 0.01,
which model the environmental uncertainties. Parameter Te = 10◦C is the ambient tem-
perature. Constants αe = 8 × 10−3 and α = 6.2 × 10−3 are heat exchange coefficients
between rooms and the ambient, and individual rooms, respectively. The model for each
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room is adapted from [36] discretized by τs = 5 minutes. Let us consider the regions of in-
terest for each room as Xin = [17◦C, 18◦C], Xu = [29◦C, 30◦C], and X = [17◦C, 30◦C]. We
assume the model of the system and the distribution of the noise are unknown. The main
goal is to verify whether the temperature of each room remains in the comfort zone [17, 29]
for the time horizon H = 3 which is equivalent to 15 minutes, with a priori confidence of
99%.

Let us consider a barrier certificate with degree k = 2 in the polynomial form as
[T1;T2;T3]TP[T1;T2;T3] = b0T

2
1 + b1T

2
2 + b2T

2
3 + b3T1T2+ b4T1T3+ b5T2T3+ b6T1+ b7T2+

b8T3 + b9, where

P =


b0

b3
2

b4
2

b6
2

b3
2

b1
b5
2

b7
2

b4
2

b5
2

b2
b8
2

b6
2

b7
2

b8
2

b9

 . (3.50)

According to Algorithm 2, we first choose the desired confidence parameters β and βs
as 0.005

3
and 0.005, respectively. The value of empirical approximation error is selected

as δ = 0.05. We choose ρ = 0.2. The Lipschitz constant is computed as 1.5 according to
Remark 12. By enforcing M̂ = 0.005, the required number of samples for the approximation
of the expected value in (3.11) is N̂ = 400. Now, we solve the scenario problem SCPN,N̂

with the number of samples N = 6× 106 and the computed N̂ = 400, which gives us the
optimal objective value K∗(D) = −0.46. The computation time is about 5 minutes. For
N = 6×106 and β = 0.005

3
, ϵ is computed as 4.36×10−6. Function G−1(ϵ) is also computed

as 16.09ϵ
1
3 according to Corollary 1.

Since K∗(D) + LxG
−1(ϵ) = −0.066 ≤ 0, according to Theorem 5, one can conclude:

Pw(S |=3 Ψ) ≥ 1− ρ = 0.80,

with a confidence of at least 1− 3β − βs = 0.99. The barrier certificate constructed from
solving SCPN,N̂ is as follows:

B̂(b, T1, T2, T3 |D) = 0.112T 2
1 + 0.112T 2

2 + 0.112T 2
3

− 0.004T1T2 − 0.005T1T3 − 0.002T2T3

− 3.761T1 − 3.815T2 − 3.803T3 + 99.93. (3.51)

The computed optimal values for c and λ are 0.627 and 14.872, respectively. The scatter
plot of the obtained barrier certificate is illustrated in Fig. 3.4. As can be seen in this
figure, the barrier certificate has less values in the initial set while it has larger values in
the unsafe region.

We remark that the conservatism of our approach is originating from two sources.
(a) The first one is that we are using barrier certificates for computing the lower bound.
A barrier certificate with a fixed template (polynomial of a certain degree) gives a lower
bound that could have a gap with the best lower bound on the safety probability. (b) Our
sampling approach requires making the optimization more conservative to account for going
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from robust programs over continuous (uncountable) domains to a scenario program with
finite number of samples. If one assumes that the model is known in this case study, the
synthesized barrier certificate has the parameters c = 0.9767 and λ = 31.51. This gives
the lower bound 0.875 on the safety probability. Therefore, our approach provides a more
conservative lower bound 0.80 since it assumes no knowledge of the model.

Figure 3.4: Scatter plotting of the barrier certificate indicating portions of the state set
where the inequalities in (3.11) are enforced for 6× 106 sampled data.

3.7.2 Lane Keeping System

Lane keeping assist system is a future development of the modern lane departure warning
system embedded in the current vehicles. This system usually assists the driver through
electronic assistance with the steering force. The characteristics of this support depends
on the distance of the vehicle from the edge of the lane among other factors such as
uncertainties[27]. One of the key challenges in such assisting systems is verifying the
obtained performance which can be defined as a safety problem.

In this subsection, it is supposed that the model of the vehicle and the distribution
of noise are unknown, and one only has access to a finite number of samples. This un-
known system is characterized by a simplified kinematic single-track model of BMW320i
which is adapted from [4] by discretization of the model and adding noise to imitate the
uncertainties.
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The nonlinear stochastic difference equation is as follows:

x(t+ 1) = x(t) + τsv cos(ψ(t) + b) + w1(t)

S : y(t+ 1) = y(t) + τsv sin(ψ(t) + b) + w2(t)

ψ(t+ 1) = ψ(t) +
τsv

lr
sin(b) + w3(t), (3.52)

where b = lr
lr+lf

tan−1(δf ) with δf = 5 degrees as the steering angle. Parameters lr = 1.384

and lf = 1.384 are the distances between the center of gravity of the vehicle to the rear
and front axles, respectively. Variables x, y, and ψ denote horizontal movement, vertical
movement, and the heading angle, respectively. This system is considered to be affected
by zero-mean additive noises w1, w2, and w3 which are related to uncertainties of position
x, position y, and the heading angle ψ with standard deviation of 0.01, 0.01, and 0.001
respectively. Other parameters are the sampling time (τs = 0.1s), and the velocity (v =
5m/s).

The state set is considered as X = [1, 10]×[−7, 7]×[−0.05, 0.05]. The regions of interest
are Xin = [1, 2]× [−0.5, 0.5]× [−0.005, 0.005], Xu1 = [1, 10]× [−7,−6]× [−0.05, 0.05], and
Xu2 = [1, 10]× [6, 7]× [−0.05, 0.05]. Now, the goal is to verify if the vehicle does not enter
the unsafe regions of the lane for the time horizon of H = 3 or equivalently 0.3 s with a
desired confidence of 90%.

We consider a barrier certificate of degree k = 2 in the polynomial form as

[x; y;ψ]TP[x; y;ψ] = b0x
2 + b1y

2 + b2ψ
2 + b3xy + b4xψ + b5yψ + b6x+ b7y + b8ψ + b9,

where the matrix P is as in (3.50).
We follow Algorithm 2 to find the barrier certificate and providing a probabilistic guar-

antee on the safety of stochastic system. First, the desired confidence parameters β and
βs are chosen as .095

3
and 0.005, respectively. We also select the empirical approximation

error δ = 0.02. The desired lower bound of safety probability is selected as 1 − ρ = 0.80.
The Lipschitz constant is computed as Lx = 10 according to Remark 12. By enforcing
M̂ = 0.006, the required number of samples for the approximation of the expected value in
(3.11) is N̂ = 3000. Now, we solve the scenario problem SCPN,N̂ with an arbitrary sample
number N = 6 × 106 and N̂ which gives us the optimal value K∗(D) = −0.4518. The
computation time is about 5 minutes. For those values of samples N and β, ϵ is computed
as 3.41× 10−6. Using Corollary 1, G−1(ϵ) is computed as 2.92ϵ

1
3 .

Since K∗(D) + 2.92 Lxϵ
1
3 = −0.01 ≤ 0, according to Theorem 5, one can deduce that

Pw(S |=3 Ψ) ≥ 1− ρ = 0.80,

with a confidence of at least 1− 3β − βs = 90%. The barrier certificate constructed from
solving SCPN,N̂ is represented as:

B̂(b, x, y, ψ | D) =0.39y2 + 0.15ψ2 + 0.009xψ

− 0.007yψ − 0.015ψ + 0.452. (3.53)
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Figure 3.5: Surface plot of the barrier certificate B(x, y, ψ) with respect to x and y for
fixed ψ = 0.

The optimal values of c and λ are 0.57 and 14.04, respectively. The exact value of the
coefficients are reported in Table 3.1.

The surface plot of the barrier certificate B(x, y, ψ) = B̂(b, x, y, ψ | D) with respect to
x and y for a fixed value of ψ = 0 is depicted in Fig. 3.5. The blue transparent planes
separate unsafe region on y, while the lower and upper red transparent planes demonstrate
the thresholds in constraints (3.3) and (3.4), respectively. Satisfaction of the first and
second condition of barrier certificate in Definition 6 can be observed in Fig. 3.5. The
satisfaction of the third condition is illustrate in Fig. 3.6.

3.7.3 Synthesizing a Temperature Controller

Consider a temperature regulation problem for a room using a heater characterized by

S : T(t+ 1) =T(t) + τs
(
αe(Te − T(t))+

αh(Th − T)u(t)
)
+ w(t), (3.54)

where w(t) is a zero-mean Gaussian noise with standard deviation of 0.05. Parameters
are Te = 15, Th = 45, αe = 8 × 10−3, αh = 3.6 × 10−3, and τs = 5. Regions of interest
are defined as Xin = [22◦C, 23◦C], Xu1 = [27◦C, 28◦C], Xu2 = [16.5◦C, 17.5◦C], and X =
[16.5◦C, 28◦C]. The input region is [0, 1]. We assume that the model of the system and the
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Figure 3.6: Satisfaction of the third condition in Definition 6 (for ψ = 0) B(x, y, ψ) based
on collected data.

distribution of the noise are unknown. The main goal is to design a controller that forces
the temperature to remain in the comfort zone [17.5, 27] for the time horizon H = 60,
which is equivalent to 300 minutes, with a priori confidence of 95%.

Let us fix a control barrier certificate with degree k = 4 in the polynomial form as
T TPT = b0T

4 + b1T
3 + b2T

2 + b3T + b4 with b0, b1, b2, b3, b4 ∈ R. The structure of the
controller is considered to be a polynomial of degree k′ = 4 as u(p1, T ) = T TPuT =
p0T

4 + p1T
3 + p2T

2 + p3T + p4. Matrices P and Pu can be represented as:

P =

b0 b1
2

b2
3

b1
2

b2
3

b3
2

b2
3

b3
2

b4

 ,Pu =
p0 p1

2
p2
3

p1
2

p2
3

p3
2

p2
3

p3
2

p4

 . (3.55)

According to Algorithm 3, we first choose the desired confidences β and βs as 0.005
3

and
0.045 respectively. We also select the approximation error δ = 2. The Lipschitz constant
Lx,u is computed as 12 according to Remark 12. By considering M̂ = 1.5 × 105, the

required number of samples for the approximation of the expected value in (3.11) is N̂ =
833330. Now, we solve the scenario problem SCPN,N̂ with the selected number of samples
N = 1.5× 106 and N̂ which gives us the optimal value K∗(D) = −0.41. The computation
time is about 2 minutes. For N = 1.5 × 106 and β = 0.005

3
, value of ϵ is computed as

1.7424× 10−5. Using Corollary 3, G−1(ϵ) is computed as 4.91ϵ
1
2 .

Since K∗(D) + Lx,uG
−1(ϵ) = −0.164 ≤ 0, one has

Pp
w(S |=60 Ψ) ≥ 1− ρ = 0.80,
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with a confidence of at least 1−3β−βs = 95%. The computed values for λ and c are 4817
and 16.04, respectively. The control barrier certificate constructed from solving SCPN,N̂ is:

B̂(b, T | D) = 11.89 T 4 − 1.07× 103 T 3 + 3.61× 104 T 2

− 5.42× 105 + 3.05× 106.

The obtained controller is:

P1(p
1, T | D) = 1.45× 10−5T 3 + 0.012T 2 + 0.355.

The temperature trajectories for 15 different realizations of noise from three different initial
temperature in the range [22◦, 23◦] is illustrated in Fig. 3.7. As can be seen, the temperature
in the collected trajectories do not enter the unsafe set, which is in gray color. We also ran
the system to get 104 trajectories, all of them remain safe. This confirms the theoretical
lower bound computed by our approach.

Figure 3.7: The temperature trajectories of 15 different realizations of noise for three
different initial temperature in the range [22◦, 23◦].

In Table 3.1, coefficients of polynomial barrier certificates in three case studies are
presented. The values in first two columns from top to the bottom are {b0, . . . , b9} in
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respective case studies. The values in the the third column from top to the bottom are
{b0, . . . , b4} in the last case study.

Table 3.1: Obtained coefficients of BCs in the case studies

Temperature Verification Lane Keeping Synthesizing a
for three Rooms System Controller

1.118824712343290× 10−1 2.200050812923097× 10−4 1.189325015407815× 10
1.121295401333170× 10−1 3.901846347425760× 10−1 −1.070392322770013× 103

1.122576531449860× 10−1 1.480240596483330× 10−1 3.612276124685787× 104

−3.751401155407000× 10−3 −2.825312554914731× 10−4 −5.417521260597183× 105

−4.728480781000000× 10−3 9.905388481691000× 10−3 3.046603167514221× 106

−2.284303936564000× 10−3 −6.672383448890000× 10−3 -
−3.761231117922648× 100 −6.918249590565419× 10−4 -
−3.815332731044874× 100 4.678025224577894× 10−4 -
−3.803570830339135× 100 −1.539512818952500× 10−2 -
9.993049903406006× 10 4.518033593474370× 10−1 -

3.8 Discussion

We proposed a formal verification and synthesis procedure for discrete-time continuous-
space stochastic systems with unknown dynamics against safety specifications. Our ap-
proach is based on the notion of barrier certificate and uses sampled trajectories of the
unknown system. We first casted the computation of the barrier certificate as a robust
convex program (RCP) and approximated its solution with a scenario convex program
(SCP) by replacing the unknown dynamics with the sampled trajectories. We then estab-
lished that the optimal solution of the SCP gives a feasible solution for the RCP with a
given confidence, and formulated a lower bound on the required number of samples. Our
approach provided a lower bound on the safety probability of the stochastic unknown sys-
tem when the number of sampled data is larger than a specific lower bound that depends
on the desired confidence. We extended the results to a class of non-convex barrier-based
safety problems and showed the applicability of our proposed approach using three case
studies.



68
3. Data-Driven Verification and Synthesis of Stochastic Systems Through

Barrier Certificates



Chapter 4

Sample Complexity Reduction

4.1 Introduction

In this chapter, we introduce three approaches in order to reduce the number of sam-
ples required to provide the concrete guarantee over the safety of stochastic systems. In
Section 4.1, the motivation and contributions are discussed. The problem statement and
preliminaries are introduced in Section 4.2. Three proposed approaches are discussed in
detail in Sections 4.3, 4.4, and 4.5, respectively.

4.1.1 Motivation

The data-driven approach that we introduced in Chapter 3 requires a large number of
data in order to provide a guarantee over safety of stochastic systems. The number of
required data grows exponentially with increasing the dimension of the system. This curse
of dimensionality limits the application of our proposed approach to real cyber-physical
systems.

4.1.2 Contributions

In this chapter, we develop three approaches to reduce number of the required samples while
we provide similar guarantee on safety of stochastic systems introduced in Chapter 3.

• Wait and Judge Approach. We provide a data-driven approach equipped with a
formal guarantee for verifying the safety of stochastic systems with unknown dynam-
ics. First, using a notion of barrier certificates, the safety verification for a stochastic
system is cast as a robust convex program (RCP). Solving this optimization program
is hard because the model of the stochastic system, which is unknown, appears in
one of the constraints. Therefore, we construct a scenario convex program (SCP) by
collecting a number of samples from trajectories of the system. Then, under some
condition over the optimal value of the resulted SCP, we are able to relate its op-
timal decision variables to the safety of the original stochastic system and provide
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a formal out-of-sample performance guarantee. Particularly, we propose a so-called
wait-and-judge approach which a posteriori checks some condition over the optimal
value of the SCP for a fixed number of sampled data. If the condition is satisfied,
then the safety specification is satisfied with some probability lower bound and a
desired confidence.

• Repetitive Scenario Approach. We develop a data-driven approach for the safety
verification of stochastic systems with unknown dynamics. First, we use a notion of
barrier certificates in order to cast the safety verification as a robust convex pro-
gram (RCP). Solving this optimization program is difficult because the model of the
stochastic system, which is unknown, appears in one of the constraints. Therefore,
we construct a scenario convex program (SCP) by collecting a number of samples
from trajectories of the system. Then, we develop a repetition-based scenario frame-
work to provide an out-of-sample performance guarantee for the constructed SCP. In
particular, we iteratively solve an SCP for a given number of samples, and then check
its feasibility using a certain number of new samples after substituting the optimal
decision variables from solving the SCP. We continue the iterations until a desired
violation error is achieved. Eventually, a safety condition is checked on top of the
feasibility problem. If the safety condition is fulfilled, then we can provide a lower
bound on the probability of safety satisfaction for the original stochastic system by
leveraging the optimal solution of the successful iteration.

• Wait, Judge, and Repeat Approach. In this chapter, we develop a data-driven
approach for the safety verification of stochastic systems with unknown dynamics.
First, we use a notion of barrier certificates in order to cast the safety verification
as a robust convex program (RCP). Solving this optimization program is difficult
because the model of the stochastic system, which is unknown, appears in one of the
constraints. To tackle this issue, we select a finite number of samples and construct
a scenario convex program (SCP). We solve the acquired SCP iteratively until a
feasibility condition on its optimizer is satisfied. The feasibility condition is based on
the number of computed support constraints at each iteration. Support constraints
are those whose elimination affects the optimal value of the optimization problem.
When the feasibility condition is satisfied, a safety condition is then checked over the
optimal value of the successful iteration. If this condition is satisfied, then one can
conclude that the system is safe with a probability lower bound computed using the
optimizer of the successful iteration.

I need to mention that the results presented in this chapter appear in the publications
[88, 89]. The first result has been presented at the 4th annual conference on learning
for dynamics and control conference. The second result has been published in the
IEEE control systems letters. This work has also been presented at the 61th IEEE
conference on decision and control. The author of the thesis has established the
results and written the drafts. Majid Zamani supervised the work.
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4.2 Problem Statement and Preliminaries

4.2.1 Notation

The sample space of random variables is denoted by Ω. The Borel σ-algebra on a set
X is denoted by B(X). The measurable space on X is denoted by (X,B(X)). We
have two probability spaces in this work. The first one is represented by (X,B(X),P)
which is the probability space defined over the state set X with P as a probability mea-
sure. The second one, (Vw,B(Vw),Pw), defines the probability space over Vw for the
random variable w affecting the system as the process noise with Pw as its probability
measure. With a slight abuse of formulation, we use the same notation for P and Pw
when the product measures are needed. We define a so-called beta-Bionomial distribution
as fbb(q, α, β; i) =

(
q
i

)
B(i+ α, q − i+ β)/B(α, β) for i = {0, 1, . . . , q}, where B(α, β)−1 =

α
(
α+β−1
β−1

)
,∀α, β ∈ N. Fbeta(α, β;w) denotes the regularized incomplete beta function, and

for α, β ∈ N, w ∈ [0, 1], it can be expressed as
∑α+β−1

i=α

(
α+β−1

i

)
wi(1−w)α+β−1−i. All other

notations are the same as the ones in Chapter 3.

4.2.2 System Definition

We deal with discrete-time stochastic systems as in the next definition.

Definition 9. Consider a discrete-time stochastic system (dt-SS), denoted by

S = (X, Vw, w, f),

described by:
S : x(t+ 1) = f(x(t), w(t)), t ∈ N0, (4.1)

where X and Vw are Borel σ-algebras on the set Rn and the uncertainty space, respectively.

4.2.3 Problem Statement

First, we formally define what it means for a system to satisfy a safety specification.

Definition 10. Consider a dt-SS S as in (4.1) and a safety specification denoted by the
tuple Ψ = (Xin, Xu, H) , where Xin, Xu ⊆ X and H ∈ N0. System S satisfies Ψ, denoted
by S |=H Ψ, if all trajectories of S started from initial set Xin ⊆ X never reach unsafe set
Xu ⊆ X within the time horizon H.

We are interested in solving a safety problem as presented next.

Problem 6. Consider a dt-SS S as in Definition 9, where f and Pw are unknown, and
a safety specification Ψ as in Definition 10. With a confidence of at least (1− β) ∈ [0, 1],
provide a lower bound (1 − ∆) ∈ [0, 1] on the probability with which S satisfies Ψ, i.e.,
Pw
(
S |=H Ψ

)
≥ 1−∆, using data collected from trajectories of S.
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4.2.4 Safety Verification of Stochastic Systems

Here, we again explain a notion of barrier certificates and its application in the safety
verification of stochastic systems. Let us first formally define a barrier certificate.

Definition 11. Consider a dt-SS S as in Definition 9 and a safety specification Ψ as in
Definition 10. A non-negative function B : X → R+

0 is called a barrier certificate (BC) for
S if there exist constants λ > 1, and c ∈ R such that

B(x) ≤ 1, ∀x ∈ Xin, (4.2)

B(x) ≥ λ, ∀x ∈ Xu, (4.3)

E
[
B(f(x,w)) | x

]
≤ B(x) + c, ∀x ∈ X, (4.4)

where Xin ⊂ X and Xu ⊂ X are initial and unsafe sets, respectively.

Next theorem, borrowed from [51], provides a lower bound on the probability of safety
satisfaction for a dt-SS.

Theorem 9. Consider a dt-SS S and safety specification Ψ as in Definitions 9 and 10,
respectively. Suppose there exists a barrier certificate B satisfying conditions (4.2)-(4.4).
Then, one has

Pw
(
S |=H Ψ

)
≥ 1− 1 + max{0, c} H

λ
, (4.5)

where H ∈ N0 is the finite time horizon associated with Ψ.

According to the results in Chapter 3, a barrier-based safety verification as in Theorem 9
together with Definition 11 can be reformulated as a robust convex program (RCP):

RCP:


min
d

K

s.t. max
(
gz(x, d)

)
≤0,∀z∈{1, . . . , 4},∀x∈X,

λ > 1, d = [K;λ; c; b],

(4.6)

where

g1(x, d) = −B(b, x)−K,
g2(x, d) = B(b, x)1Xin

(x)− 1−K,
g3(x, d) = −B(b, x)1Xu(x) + λ−K,

g4(x, d) = E
[
B(b, f(x,w)) | x

]
− B(b, x)− c−K. (4.7)

In the following three sections, Sections 4.3, 4.4, and 4.5, we show how the solution of
an SCPN,N̂ for an N and N̂ is related to the safety of a stochastic system with an unknown
model. We introduce three methods in an attempt to alleviate the sample complexity that
arises in the baseline approach in Chapter 3.
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qi(t)

qo(t)
Tank 1 Tank 2

Figure 4.1: Two-Tank system

4.2.5 Two-Tank System

We apply our proposed methods in this chapter to a two-tank system to show their effec-
tiveness and also to compare the results.

Consider a two-tank system in Fig. 4.1 characterized by the following discrete-time
stochastic system:

h1(t+ 1) = (1− τs
α1

A1

) h1(t) + τs
qi(t)

A1

+ w1(t)

h2(t+ 1) = τs
α1

A2

h1(t) + (1− τs
α2

A2

) h2(t) + τs
qo(t)

A2

+ w2(t), (4.8)

where h1(t) and h2(t) are heights of two tanks, respectively. Terms w1(t) and w2(t) are
additive zero-mean Gaussian noises with standard deviations of 0.01, which model the
environmental uncertainties. Parameters αi and Ai, i ∈ {1, 2}, are valve coefficients and
the area of tank i. Variables qi(t) and q0(t) are inflow rate entering the first tank and outflow
rate exiting the second one at time t, respectively. The model for this two-tank system
is adapted from [77] discretized by τs = 0.1 seconds. We consider [h1(t + 1); h2(t + 1)] =
Aτ [h1(t); h2(t)] + bτ + [w1(t);w2(t)], where Aτ = [1− τs, 0; τs, 1− τs] and bτ = [4.5τs;−3τs]
in the situation in which input and output valves are fully open, and two constant-rate
feeding and retaining pumps ensure constant flows of qi(t) and qo(t) with values of 4.5m3/s
and 3m3/s, respectively. Let us consider Xin = [1.75m, 2.25m]2, Xu = [9m, 10m]2, and
X = [1m, 10m]2 as the initial, unsafe and the overall state sets, respectively. We assume
the model of the system and the distribution of the noise are unknown.
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4.3 Wait and Judge Approach

4.3.1 Overview

To tackle Problem 6, we first construct a scenario convex program (SCP) from (4.6) with
the help of data collected from the system. Eventually, we provide a result in Subsection
4.3.2 which addresses Problem 6. Fig. 4.2 shows of our approach for solving Problem 6 by
connecting the related optimizations and results in this chapter.

RCP SCPN SCP
N, N̂

Wait-and-judge Approach

Eq. (4.6) Eq. (4.8) Eq. (4.9)

Theorem 10

Problem 6

Figure 4.2: An overview of the proposed wait-and-judge approach in this work

In general, finding an optimal solution for the RCP in (4.6) is hard because the map f
and the probability measure Pw are both unknown. Furthermore, there are infinitely many
constraints in the RCP since x ∈ X, where X is a continuous set. To tackle this issue, we
collect N i.i.d samples DN := {xi, f(xi, w)} ⊂ X2, for i ∈ {1, . . . , N}, using an assigned
probability distribution over the state set. Substituting these samples in the RCP in (4.6)
results in the following scenario convex program denoted by SCPN :

SCPN :


min
d

K

s.t. max
(
gz(xi, d)

)
≤0, z∈{1, . . . , 4},∀i∈{1, . . . , N},

d = [K;λ; c; b],
K ∈ R, λ > 1, c ≥ 0,

(4.9)

where gz(x, d), z ∈ {1, . . . , 4}, are as in (4.7). To address the issue of not knowing Pw
and the expectation term in g4 (4.7), we replace the expectation term with its empiri-
cal mean approximation by sampling N̂ i.i.d. values wj from Pw for each xi: DN̂ :=

{xi, wj, f(xi, wj)} ⊂ X × Vw × X, ∀j ∈ {1, . . . , N̂}, which results in the following SCP
denoted by SCPN,N̂ :

SCPN,N̂ :


min
d

K

s.t. max
(
gz(xi, d), ḡ4(xi, d)

)
≤0, z∈{1, 2, 3},

∀xi ∈ X, ∀i ∈ {1, · · · , N},
d = [K;λ; c; b],
K ∈ R, λ > 1, c ≥ 0,

(4.10)
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where

ḡ4(xi, d) =
1

N̂

N̂∑
j=1

B(b, f(xi, wj))− B(b, xi)− c−K + δ. (4.11)

We denote by K∗
N,N̂

and B̂(b, x|DN ,DN̂), respectively, the optimal value of SCPN,N̂ and
the barrier function constructed based on solution of SCPN,N̂ . Note that the expectation
term in g4 (4.9) is approximated by the empirical mean in (4.11). This approximation
introduces an error which is denoted by δ in (4.11).

Remark 15. In this section, N is selected arbitrarily. According to Chapter 3, N̂ can be

computed as N̂ ≥ M̂
δ2βs

for a desired confidence value βs ∈ (0, 1). This is the confidence that

a solution of SCPN,N̂ is a feasible solution for SCPN, i.e., Pw
(
B̂(b, x|DN ,DN̂) |= SCPN

)
≥

1−βs. In this inequality, M̂ is a positive constant defined as Var
(
B(b, f(x,w)

)
≤ M̂, ∀x ∈

X, and δ is the approximation error in (4.11).

4.3.2 Safety Verification of Stochastic Systems via Wait-and-
judge Approach

Here, we aim to establish a probabilistic bridge between the solution of the SCP in (4.10)
and the safety of a dt-SS as in Definition (9). To do so, we need to assume that all
constraints in (4.7) are Lipschitz continuous with respect to x. Next theorem connects the
safety of a stochastic system to the optimal solution of the SCP resulted from substituting
N number of samples by the number of so-called support constraints. Given N number
of constraints, support constraints are those whose elimination affects the optimal value
considerably.

Theorem 10. Consider a stochastic system S as in (9), where f and Pw are unknown,
a safety specification Ψ, and a finite time horizon H. Assume that all constraints in (4.7)
are Lipschitz continuous with respect to x with a Lipschitz constant Lx. Select an arbitrary
number of samples N and confidence β ∈ (0, 1). Choose N̂ as in Remark 15 to achieve
a given confidence 1 − βs, βs ∈ (0, 1). Let us denote by K∗

N,N̂
and d∗

N,N̂
= [λ∗; c∗; b∗], the

optimal value and the optimal solution of SCPN, N̂ in (4.10), respectively. If

K∗
N,N̂

+ Lx G
−1(1− TN∗) ≤ 0, (4.12)

where TN∗ is the unique solution of

β

N + 1

N∑
m=N∗

(
m

N∗

)
T m−N∗

N∗ −
(
N

N∗

)
T N−N∗

N∗ = 0, (4.13)

with N∗ as the number of support constraints, then the following statement holds true with
a confidence of at least 1− β − βs:

Pw(S |=H Ψ) ≥ 1− 1 + c∗H

λ∗
, (4.14)
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Proof. From the robust convex program in (4.6), one can construct a chance constraint
program (CCP) as follows:

CCPϵ :


min
d

K

s.t. P
(
max

(
gz(x, d)

)
≤0
)
≥ 1− ϵ, z∈{1, . . . , 4},

d = [K;λ; c; b],
K ∈ R, λ > 1, c ≥ 0,

(4.15)

for some ϵ > 0, where gz(x, d), z ∈ {1, . . . , 4}, are defined in (4.7). According to [19,
Theorem2], for any β ∈ (0, 1) and an arbitrary number of samples N , one has:

P
(
d∗N |= CCPϵ(k)

)
≥ 1− β, (4.16)

where d∗N is the optimal solution of the SCPN in (4.9) and ϵ(k) := 1 − t(k), with t(k) as
the unique solution of

β

N + 1

N∑
m=k

(
m

k

)
t m−k −

(
N

k

)
t N−k = 0, (4.17)

for k = {0, . . . , |d|}, where |d| is the number of decision variables d. Let us construct a
relaxed version of RCP in (4.6) in amount of h(ϵ) as the following:

RCPh(ϵ(k)) :


min
d

K

s.t. max
(
gz(x, d)

)
≤h(ϵ(k)), z∈{1, . . . , 4}, ∀x∈X,

d = [K;λ; c; b],
K ∈ R, λ > 1, c ≥ 0,

(4.18)

where h(ϵ) is a uniform level-set bound as defied in [29, Definition 3.1]. According to [29,
Lemma 3.2], one can deduce from (4.16) that P

(
d∗N |= RCPh(ϵ(k))

)
≥ 1− β which leads to:

P(K∗
RCPh(ϵ(k))

≤ K∗
N) ≥ 1− β, (4.19)

where K∗
N is the optimal value of SCPN in (4.9). Using Lemma 3.4 in [29], we have:

K∗
N ≤ K∗

RCP ≤ K∗
RCPh(ϵ(k))

+ Lsph(ϵ(k)), (4.20)

where Lsp is the slater constant which is defined in [29, Assumption 3.3]. Combination of
(4.19) and (4.20) results in:

P
(
K∗
N ≤ K∗

RCP ≤ K∗
N + Lsph(ϵ(k))

)
≥ 1− β. (4.21)

Since the optimization problem in (4.6) is a min-max problem, Lsp can be chosen as 1
according to Remark 3.5 in [29]. Uniform level-set bound h(ϵ(k)) can be computed as
Lx

n
√
ϵ(k) as stated in [29, Remark 3.8], where Lx is the Lipschitz constant of constraints
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in (4.7). From now on, we use ϵ instead of ϵ(k) for k = N∗, where N∗ is the number of
support constraints. Therefore, (4.21) can be written as:

P
(
K∗
N ≤ K∗

RCP ≤ K∗
N + Lx ϵ

1
n

)
≥ 1− β. (4.22)

By writing 1−TN∗ instead of ϵ = 1−t(k) for k = N∗, the above inequality can be re-written
as:

P
(
K∗
N ≤ K∗

RCP ≤ K∗
N + Lx (1− TN∗)

1
n

)
≥ 1− β. (4.23)

By denoting the optimal solution of the SCPN,N̂ in (4.10) by d∗
N,N̂

, one obtains P
(
d∗

N,N̂
|=

SCPN

)
≥ 1− βs according to [83, Theorem 3.3] which implies:

P
(
K∗
N ≤ K∗

N,N̂

)
≥ 1− βs. (4.24)

By defining two events A := {K∗
N ≤ K∗

RCP ≤ K∗
N +Lx (1−TN∗)

1
n} and B := {K∗

N ≤ K∗
N,N̂
}

with P(A) ≥ 1 − β and P(B) ≥ 1 − βs, it is easy to see that (A ∩ B) ⊆ (K∗
RCP ≤

K∗
N,N̂

+ Lx(1− TN∗)
1
n ). By assumption, we have K∗

N,N̂
+ Lx(1− TN∗)

1
n ≤ 0 and, hence, one

can deduce:

P(K∗
RCP ≤ K∗

N,N̂ + Lx(1− TN∗)
1
n ≤ 0) ≥ P(A ∩B) ≥ 1− P(Ac)− P(Bc) ≥ 1− β − βs.

(4.25)

This concludes the proof because the non-positiveness of K∗
RCP guarantees that the feasible

solution of RCP in (4.6) satisfies with a confidence of at least 1−β−βs the barrier conditions
in Theorem 9.

Remark 16. There is an upper-bound on the number of support constraints, i.e, N∗ ≤
|d|+1, where |d| is the number of decision variables in SCPN,N̂ (4.10). Note that the value
of 1 − TN∗ is increasing with respect to N∗. As a result, one can use this upper-bound
instead of the actual number of support constraints N∗ in Theorem 10.

The steps required for applying Theorem 10 are presented in Algorithm 4. The inputs
are the desired confidence, and the Lipschitz constant of constraints in (4.7). The output
is a lower bound on the safety of the stochastic system in (4.1) based on the solution of
the SCP in (4.10) with an a priori guaranteed confidence. The coefficients of the barrier
certificate satisfying conditions (4.2)-(4.4) are obtained in step 5 of Algorithm 4.

4.3.3 Two-Tank System Safety Verification: A Wait and Judge
Solution

The main goal is to verify that the heights of tanks stay away from the unsafe region
within the time horizon H = 5 with an a priori confidence 99%. Let us consider a barrier
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Algorithm 4 Data-driven safety verification of a stochastic system via wait-and-judge
approach

Require: Parameters β ∈ (0, 1), βs ∈ (0, 1), Lx ∈ R+, and the degree of the barrier
certificate

1: Compute the number of noise realization N̂ according to Remark 15
2: Choose an arbitrary number of samples N
3: Select a probability measure P over the state set X
4: Collect NN̂ pairs

(
xi, f(xi, wij)

)
i,j
∈ X2 from the system

5: Solve the SCPN,N̂ in (4.10) with the data-set in Step 4 and obtain K∗
N,N̂

6: Compute the actual number of support constraints N∗ or the upper bound on it (see
Remark 16)

7: Compute the parameter TN∗ according to (4.13)

Ensure: If K∗
N,N̂

+ Lx (1− TN∗)
1
n ≤ 0, then Pw(S |=H Ψ) ≥ 1− 1+c∗H

λ∗
with a confidence of

at least 1− β − βs.

certificate with degree k = 2 in the polynomial form as [h1; h2; 1]
TP[h1; h2; 1] = b0h

2
1 +

b1h
2
2 + b2h1h2 + b3h1 + b4h2 + b5, where

P =

b0 b3
2

b2
2

b3
2

b1
b4
2

b2
2

b4
2

b5

 . (4.26)

By having ∥x∥ ≤
√
2×10 and enforcing ∥P∥ ≤ 0.2, the Lipschitz constant can be computed

as Lx = 11.03 using [83, Lemma 1]. The value of empirical approximation error in (4.11)
is selected as δ = 0.05. By enforcing M̂ = 0.001, the required number of samples for
the approximation of the expected value in (4.10) is computed as N̂ = 400 according to
Remark 15 in order to provide a confidence of 1− βs, where βs = 0.001.

To show the effectiveness of our approach in allowing us to have a much lower num-
ber of samples, we first solve the safety verification problem for the two-tank system via
the approach proposed in the literature and then we apply our proposed wait-and-judge
approach here. We show that our approach provides the same formal guarantee with a
significantly lower number of samples.

4.3.4 Safety Verification using the baseline approach

We choose ϵ = 0.04 and ∆ = 0.1 in [83, Algorithm 1]. We also select the confidence
parameter β as 0.009. The minimum number of samples needed for solving SCPN,N̂ in
(4.10) is computed as N = 1337297 using [83, equation (17)]. N̂ is computed as 400 for a
confidence value of βs = 0.001. Now, we solve the scenario problem SCPN,N̂ with acquired
values of N and N̂ which gives us the optimal value K∗

N,N̂
= −0.1025. Since K∗

N,N̂
+ ϵ =
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−0.0625 ≤ 0, according to [83, Theorem 4], one can conclude: Pw(S |=5 Ψ) ≥ 1−∆ = 0.90
with a confidence of at least 1− β − βs = 99%.

4.3.5 Safety Verification via the Proposed Wait-and-Judge Ap-
proach

We select the desired confidence parameter β = 0.009. There is no need to fix ϵ a priori in
our proposed approach here. We initially select an arbitrary number of samples N = 500.
Number of support constraints is computed as N∗ = 7. Parameter 1 − TN∗ is computed
using (4.13) as 0.0087. The optimal value K∗

N,N̂
is computed for N = 500 and N̂ = 400 as

−0.1871. Then, the condition in (4.12) is not satisfied, i.e., K∗
N,N̂
+Lx(1−TN∗)

1
2 = 0.8417 ≰

0. Therefore, we cannot say anything about the safety of the two-tank system based on
Theorem 10. By computing TN∗ for several numbers of samples according to (4.13), the
appropriate number of samples to satisfy (4.12) is computed as N = 70000. Since the value
of 1−TN∗ is increasing with respect to the number of support constraintsN∗, and there is an
upper-bound on it, we use this upper-bound in our experiment. One hasN∗ ≤ |d|+1, where
|d| is the number of decision variables in (4.10). Here, we select the upper-bound on N∗ as
10, given that the number of decision variables is 9. The optimal value K∗

N,N̂
is computed for

N = 70000 and N̂ = 400 as −0.1065. In this case, 1− TN∗ is computed as 0.6653× 10−4.
Now the condition in (4.12) is satisfied, i.e., K∗

N,N̂
+Lx(1−TN∗)

1
2 = −0.0165 ≤ 0, hence one

can obtain Pw(S |=5 Ψ) ≥ 0.90 with a confidence of at least 1−β−βs = 99%. The barrier
certificate constructed from solving SCPN,N̂ is as follows:

B̂
(
b, p1, p2 |DN ,DN̂

)
=0.0648p2

1 + 0.1784p2
2 + 0.0145p1p2 − 0.1687p1 − 0.0321p2 + 0.0486.

The computed optimal values for c and λ are 0.1804 and 19.1280, respectively. It should
be noted that the same desired confidence is achieved here as in the approach proposed in
[83] using a significantly lower number of samples, i.e., 70000 compared to 1337297, which
is the main benefit of our approach. In terms of computation time, our approach is much
more faster than the one in [83]. Computing the optimal value and checking the condition
over the optimal value for the approach in [83] takes about 2 hours on a MacBook 2.8
GHz Quad-Core Intel Core i7, while it only takes less than 30 seconds using our proposed
approach.

4.4 Repetitive Scenario Approach

4.4.1 Overview

The overview of our proposed repetitive scenario approach for solving Problem 6 is depicted
in Fig. 4.3, which connects the related optimizations and results throughout the section.
First, a stochastic safety problem is reformulated as a scenario convex program (SCP)
by collecting N samples from the state set, and N̂ samples from the realization of the
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noise. The constructed scenario program is solved, and the obtained optimal solution is
sent to a feasibility checker called a feasibility oracle. In this oracle, the feasibility of the
SCP is assessed for N0 new test samples by checking the constraints after substituting the
optimal decision variables from the previous step. The violation of constraints is measured
through an empirical mean over the violated constraints. These two steps, namely solving
the SCP for collected samples and feasibility oracle, are executed for a specific number
of iterations, until the violation error is less than a desired threshold. Finally, a safety
condition is checked on top of the feasibility oracle. If the safety condition is satisfied,
with an a-priori fixed confidence, one can conclude that the original stochastic system
with unknown dynamic is safe with a probability lower bound computed using the optimal
solution coming from the successful iteration.

S

Ψ

SCP
N, N̂

Feasibility Oracle Safety Verifier

N0

YES

NO YES

Eq.(4.32) satisfied? Eq.(4.34) satisfied?

RSP

NO

Pw(S |=H Ψ) ≥ 1−∆

Inconclusive

Figure 4.3: An overview of our repetition-based scenario approach. The block on the left
solves a scenario program SCPN using NN̂ samples collected from the system at each
iteration. The resulted optimizer of this scenario program is fed into a feasibility oracle,
which assesses the feasibility of the computed optimizer for N0 new test samples. Finally,
the block on the right checks a condition whose satisfaction ensures Ψ is satisfied with a
probability lower-bound computed using the optimal solution of the successful iteration.

In general, finding an optimal solution for the RCP in (4.6) is difficult (or even impossi-
ble) because the map f and the probability measure Pw are both unknown. Furthermore,
there are infinitely many constraints in the RCP since x ∈ X, where X is a continuous set.
To address the issue of unknown Pw and the expectation term in g4 in (4.7), we replace
the expectation term with its empirical mean approximation by collecting N̂ i.i.d. samples
wj, j ∈ {1, . . . , N̂}, from Pw and construct a new RCP denoted by RCPN̂ as follows:

RCPN̂:


min
d

K

s.t. max
(
gz(x, d), ḡ4(x,wj, d)

)
≤0, z∈{1, . . . , 3},

j ∈ {1, . . . , N̂},∀x∈X,λ > 1, d = [K;λ; c; b],

(4.27)
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where

ḡ4(x,wj, d)=
1

N̂

N̂∑
j=1

B(b, f(x,wj))−B(b, x)−c−K+e. (4.28)

Notice that the expectation term in g4 in (4.7) is approximated by the empirical mean
in (4.28). This approximation introduces an error which is introduced by e in (4.28). Next
theorem, borrowed from [84, Theorem 3.4], shows that the optimal solution of the RCPN̂

is a feasible solution for the RCP in (4.6) with a certain confidence.

Theorem 11. Let d∗s be a feasible solution of the RCPN̂ for some e > 0, and assume
Var
(
B(b, f(x,w)

)
≤ M̂, ∀x ∈ X with a given positive M̂ . Then, for any βs ∈ (0, 1),

one has P(d∗s |= RCP) ≥ 1 − βs, if the number of samples in the empirical mean satisfies

N̂ ≥ M̂
e2βs

.

Now, one can assign a probability distribution over the state set and collect N i.i.d.
samples to solve RCPN̂ in (4.27). The data-set is denoted by:

DN,N̂ :=
{
(xi, wj, f(xi, wj)) ⊂ X × Vw ×X |
i ∈ {1, . . . , N}, j ∈ {1, . . . , N̂}

}
. (4.29)

By substituting these samples in RCPN̂ in (4.27) results in the following SCP denoted by
SCPN,N̂ :

SCPN,N̂ :


min
d

K

s.t. max (gz(xi, d), ḡ4(xi, wj, d))≤0,
λ > 1, z∈{1, 2, 3}, i ∈ {1, . . . , N},
j ∈ {1, . . . , N̂}, d = [K;λ; c; b].

(4.30)

4.4.2 Repetitive Scenario Program

Inspired by the the idea of repetitive scenario design in [16], we aim at constructing an
RSP for the stochastic safety problem. The main idea is to solve an SCPN,N̂ in (4.30) for
several iterations. At each iteration, the obtained optimal values denoted by d∗

N,N̂
are used

to construct a feasibility problem denoted by SCPN0,N̂ using N0 new test samples.
The violation criteria for the constraints using the kth sampled data, where k ∈

{1, . . . , N0}, in the constructed feasibility problem at each iteration can be quantified as:

vN,N̂(k)=


1 min

(
− gz(xk, d∗N,N̂),−ḡ4(xk, wj, d∗N,N̂)

)
≤ 0,

z∈{1, 2, 3}, j ∈ {1, . . . , N̂},
0 otherwise.

(4.31)

Now, we define the concept of successful iteration.
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Definition 12. The overall violation error for N0 test samples can be computed by applying
an empirical mean over all violated constraints at each iteration and can be upper bounded
by a given desired value: ∑N0

k=1 vN,N̂(k)

N0

≤ ϵ′. (4.32)

We call the first iteration at which the above condition is satisfied the successful iteration.

Now, we introduce Algorithm 5 to systematically construct an RSP. The optimal solu-
tion of the RSP resulted from Algorithm 5 is denoted by d∗.

Algorithm 5 Repetitive Scenario Program (RSP Algorithm)

Require: Number of samples (N , N̂ , and N0) and the desired violation error ϵ′

1: Collect N̂ samples wj, j ∈ [1, . . . , N̂ ] from Pw
2: Collect N samples xi, i ∈ [1, . . . , N ] from the state set
3: Solve the SCPN, N̂ in (4.30) using the collected data in Step 1 and Step 2, and obtain

the optimizer d∗
N,N̂

4: Feasibility Oracle: Construct the feasibility problem SCPN0, N̂
using N0 new samples by

feeding the optimal values from Step 3 to the scenario program in (4.30)

5: Compute
∑N0

k=1 vN,N̂ (k)

N0
for vN,N̂(k) as in (4.31)

6: If (4.32) is satisfied, then d∗ = d∗
N,N̂
, otherwise go to Step 2.

Remark 17. According to [16, Theorem 3], Algorithm 5 terminates within (1−H1,ϵ′.(N))−1

iterations with probability one, where H1,ϵ′(N) = 1−
∑⌊ϵ′N0⌋

i=0 fbb(N0, |d|, N + 1− |d|; i), fbb
is the beta-Binomial distribution, and |d| is the number of decision variables in (4.30).
Furthermore, for the large values of N0, the expected number of iterations in order to
satisfy (4.32), and accordingly termination of the algorithm, is approximated by

1

1− βϵ′(N)
, (4.33)

where βϵ′(N) = 1 −
∑N

i=|d|
(
N
i

)
ϵ′i(1 − ϵ′)N−i. For the sake of simple presentation, we use

this approximation in the rest of the section.

In the next subsection, we relate the optimal solution of an RSP to that of RCP in
(4.6) and finally to the safety of stochastic systems.

4.4.3 Safety Verification of Stochastic Systems- A Repetitive
Scenario Approach

Here, we provide a probabilistic connection between the optimal value of a repetitive
scenario optimization program RSP as in Algorithm 5 and the safety of stochastic systems
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with unknown dynamics in Definition 4.1. The next theorem provides the relation between
the solution of a repetitive scenario program and the original safety problem.

Theorem 12. Consider a stochastic system S as in (9), where f and Pw are unknown, and
a safety specification Ψ as in Definition 10. Assume all constraints in (4.7) are Lipschitz
continuous1 with respect to x and with a Lipschitz constant Lx. Let ϵ, ϵ′ ∈ [0, 1], ϵ′ ≤ ϵ.
Choose N̂ as in Theorem 11 based on a given confidence 1 − βs, βs ∈ (0, 1). Suppose
that for a given N and N0, there is a successful iteration (cf. Definition 12) for RSP in
Algorithm 1, for which the optimal solution is d∗ = [K∗;λ∗; c∗; b∗]. If

K∗ + Lx G
−1(ϵ) ≤ 0, (4.34)

then

Pw(S |=H Ψ) ≥ 1− 1 + c∗H

λ∗
, (4.35)

with a confidence of at least 1− β̄ϵ,ϵ′(N,N0)− βs, where

β̄ϵ,ϵ′(N,N0)=1−
∑N+N0

i=⌊|d|+ϵ′N0−1⌋+1

(
N+N0

i

)
ϵi(1−ϵ)N+N0−i,

and |d| is the number of decision variables in (4.30).

Proof. From the robust convex program RCPN̂ in (4.27), one can construct a chance con-
straint program as:

CCPϵ:


min
d

K

s.t. P
(
max

(
gz(x, d), ḡ4(x,wj, d)

)
≤0
)
≥ 1− ϵ,

j ∈ {1, . . . , N̂}, z∈{1, . . . , 3},
λ > 1, d = [K;λ; c; b],

(4.36)

for some ϵ > 0, where gz(x, d), z ∈ {1, . . . , 3}, and ḡ4 are defined in (4.7) and (4.41),
respectively. Using Theorem 3 in [16] and for a given N and N0, one obtains

P
(
d∗ |= CCPϵ

)
≥ 1− β̄ϵ,ϵ′(N,N0), (4.37)

for some ϵ′ ≤ ϵ, where d∗ = [K∗;λ∗; c∗; b∗] is the optimal solution of the RSP in Algorithm 1.
Now, we construct a relaxed version of RCPN̂ in (4.27) as follows:

RCPh(ϵ) :


min
d

K

s.t. max
(
gz(x, d), ḡ4(x,wj, d)

)
≤ h(ϵ),

j ∈ {1, . . . , N̂}, z∈{1, . . . , 3},∀x∈X,
λ > 1, d = [K;λ; c; b],

(4.38)

1We only need to consider Lipschitz continuity of g2 and g3 inside Xin and Xu, respectively.
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where h(ϵ) is a uniform level-set bound as defined in [29, Definition 3.1]. According to [16],
N0 can be selected such that β̄ϵ,ϵ′(N,N0) ≤ βϵ(N). As a result, one can use Lemma 3.2
in [29] and conclude from (4.37) that P

(
d∗ |= RCPh(ϵ)

)
≥ 1 − β̄ϵ,ϵ′(N,N0), which readily

results in P(K∗
RCPh(ϵ)

≤ K∗) ≥ 1− β̄ϵ,ϵ′(N,N0). The last inequality is true mainly because
K∗

RCPh(ϵ)
is the optimal value of RCPh(ϵ) in (4.38), whereas K∗ is just the optimization

value for a feasible solution (i.e. d∗). Using Lemma 3.4 in [29], we obtain K∗ ≤ K∗
RCPN̂

≤
K∗

RCPh(ϵ)
+ Lsph(ϵ), where K∗

RCPN̂
is the optimal value of RCPN̂ in (4.27), and Lsp is the

Slater constant defined in [29, Assumption 3.3]. Therefore, one can deduce P
(
K∗ ≤

K∗
RCPN̂

≤ K∗ + Lsph(ϵ)
)
≥ 1− β̄ϵ,ϵ′(N,N0). Since the optimization problem in (4.27) is a

min-max problem, Lsp can be chosen as 1 according to Remark 3.5 in [29]. Uniform level-
set bound h(ϵ) can be computed as Lx

n
√
ϵ as stated in [29, Remark 3.8], where Lx is the

Lipschitz constant of constraints. Therefore, we have P
(
K∗ ≤ K∗

RCPN̂
≤ K∗ + Lx ϵ

1
n

)
≥

1 − β̄ϵ,ϵ′(N,N0). Let us denote the optimal solution of the RCP in (4.27) by d∗RCPN̂
. We

get P
(
d∗RCPN̂

|= RCP
)
≥ 1− βs for a specific N̂ according to Theorem 11. This inequality

implies P
(
K∗

RCP ≤ K∗
RCPN̂

)
≥ 1 − βs, where K

∗
RCP is the optimal value of the RCP in

(4.6). By defining events A := {K∗ ≤ K∗
RCPN̂

≤ K∗+Lx ϵ
1
n} and B := {K∗

RCP ≤ K∗
RCPN̂

},
where P(A) ≥ 1− β̄ϵ,ϵ′(N,N0) and P(B) ≥ 1−βs, it is easy to see that (A∩B) ⊆ (K∗

RCP ≤
K∗+Lx ϵ

1
n ). By the assumption of the theorem, we haveK∗+Lx ϵ

1
n ≤ 0. Hence, one obtains

P(K∗+Lx ϵ
1
n ≤ 0) ≥ P(A∩B) ≥ 1−P(Ac)−P(Bc) ≥ 1− β̄ϵ,ϵ′(N,N0)−βs. This concludes

the proof since K∗
RCP ≤ 0 implies that the feasible solution of RCP in (4.6) satisfies the

barrier conditions in Theorem 9 with a confidence of at least 1− β̄ϵ,ϵ′(N,N0)− βs.

Remark 18. According to [16, Remark 2], for a given number of samples N , the desired
level of confidence β, number of decision variables |d|, and δ = ϵ − ϵ′, a lower bound for
N0 can be computed as

N0 ≥
ϵ
δ
ln β−1 + |d| − 1−N( δ

2
+ ϵ′)

δ
, (4.39)

to ensure β̄ϵ,ϵ′(N,N0) ≤ β.

Based on the results in Theorem 12, we provide Algorithm 6 to systematically verify
the safety of a stochastic system with an unknown dynamic. The coefficients of the barrier
certificate satisfying conditions (4.2)-(4.4) are obtained in Step 4 of Algorithm 6.

Remark 19. Remark that there is a trade off (pareto curve) between the expected number
of iterations in (4.33) and the number of samples N (cf. Figure 4.4 in the case study).
Hence, the user can decide how to pick N based on the number of expected iterations within
which Algorithm 5 terminates.
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Algorithm 6 Data-driven safety verification

Require: Parameters β ∈ (0, 1), βs ∈ (0, 1), ϵ, ϵ′ ∈ [0, 1], ϵ′ ≤ ϵ, Lx ∈ R+, and the degree
of the barrier certificate

1: Choose the number of samples N according to Remark 19
2: Compute the number of test samples N0 according to (4.39)
3: Compute N̂ according to Theorem 11
4: Call Algorithm 5 to get d∗ = [K∗;λ∗; c∗; b∗]

5: Safety Verifier: If K∗ + Lxϵ
1
n ≤ 0, then Pw(S |=H Ψ) ≥ 1− 1+c∗H

λ∗
with a confidence of

at least 1− β̄ϵ,ϵ′(N,N0)− βs.

4.4.4 Two-Tank System Safety Verification: A Repetitive Sce-
nario Solution

The main goal is to verify that the heights of both tanks stay away from the unsafe
region within the time horizon H = 5 with an a-priori confidence 99%. Let us consider
a barrier certificate with degree k = 2 in the polynomial form as [h1; h2; 1]

TP[h1; h2; 1] =
b0h

2
1 + b1h

2
2 + b2h1h2 + b3h1 + b4h2 + b5, where P is a matrix containing the coefficients of

the barrier certificate. By enforcing ∥P∥ ≤ 0.2 and since ∥x∥ ≤
√
2 × 10, the Lipschitz

constant is Lx = 11.03 [83, Lemma 1].

We use Algorithm 6 to apply our proposed approach to this example. We select ϵ =
0.65× 10−4, ϵ′ = 0.7ϵ = 0.45× 10−4, βs = 0.001, and β = 0.009. Then, one needs to select
the number of samples N . This can be done by considering the trade-off between N and
the number of the required iterations according to Remark 19 (cf. Fig. 4.4). For example,
for 106, 105, and 5×104 number of samples, the expected required iterations are 1, 59, and
8283, respectively. Here, we select N = 70000 for which the expected number of iterations
is 636. The number of test samples is computed as N0 = 1017100 using (4.39). The value
of N̂ is computed as 400 according to Theorem 11 by considering the approximation error
in (4.41) as e = 0.05 and enforcing M̂ = 0.001. The value of M̂ was checked a posteriori
using enough number of data. This provides a confidence of 1− βs, where βs = 0.001. In
Step 4, we run Algorithm 5. The algorithm terminates in only 5 iterations, which is much
less than the expected one (i.e. 636). This shows that our proposed approach is even more
scalable in practice, and the theoretical upper bound is too conservative to cover the worst-
case scenarios. The obtained optimal value of the successful iteration is K∗ = −0.1119.
According to Step 5 in Algorithm 6, since K∗ + Lxϵ

1
n = −0.0230 ≤ 0, one can conclude

that the water levels remain in the safe zone with a probability lower bounded of 0.90, and
this statement is true with a confidence of at least 0.9985. Remark that the number of
samples, which is 70000 here, is much less than 1337297, based on the results in [83] and
[84], while our approach provides an even better confidence (i.e. 0.9985 in comparison to
0.99). The numerical experiments were conducted using CVX [37] under MATLAB. The
total computation time here was 22 seconds, which is much less than 2 hours needed to
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run an SCP, as in [83] and [84], for 1337297 number of samples. Furthermore, Step 4 in
Algorithm 6, the most expensive part of the algorithm, is natively parallelizable. Hence,
our approach can be applied to large-scale systems.

Figure 4.4: Pareto diagram of expected number of iterations versus N .

4.4.5 Discussion

We developed a data-driven verification approach based on the idea of repetitive scenario
design. First, we constructed a repetitive scenario program based on an RCP characterizing
the main safety problem as an optimization one. At each iteration of the proposed repetitive
scheme, we first solve an SCP, then feed the optimizer to a feasibility oracle to check the
feasibility of the SCP for a certain number of new samples before checking a rigorous safety
condition on top of the feasibility one. Once both conditions (feasibility and safety) are
satisfied, a lower bound can be computed for the probability of the safety of the stochastic
system with unknown model by leveraging the optimal solutions of the successful iteration.
Finally, the effectiveness of our approach in comparison with the existing results in [83, 84]
was illustrated via a two-tank system.
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4.5 Wait, Judge, and Repeat Approach

4.5.1 Overview

The overview of our approach for solving Problem 6 is depicted in Fig. 4.5. First, the
stochastic safety problem is reformulated as a scenario convex program (SCP) by collecting
N samples from the state set, and N̂ samples from the realization of the noise. The
constructed scenario program is solved, and the optimizer is assessed for N0 new test
samples. This assessment is done by checking the constraints after substituting the optimal
solution of the SCP. An empirical mean over the violated constraints is computed as a
violation measure. Solving the SCP for the collected samples and the feasibility assessment
are executed for a specific number of iterations until the violation error is less than a
desired threshold, which itself is less than an a posteriori computed violation probability.
This a posteriori violation probability is calculated based on the exact number of support
constraints. The process of solving SCP and checking its optimizer’s feasibility continues
until the feasibility condition is satisfied. Finally, a safety condition is checked on top
of the feasibility assessment. If the safety condition is satisfied, the safety oracle tells
us that the original stochastic system with unknown dynamic is safe with a probability
lower bound computed using the optimizer achieved from the successful iteration. This
probability lower bound is valid with a confidence, which is computed a posteriori as well
using the number of support constraints.

S

Ψ

SCP
N, N̂

Safety Oracle

N0

YES

NO
YES

Succesful Iteration? Safety?

NO

Pw(S |=H Ψ) ≥ 1−∆

Inconclusive

Figure 4.5: An overview of our wait, judge and repeat data-driven approach: The block on
the left solves a scenario program SCPN,N̂ using NN̂ samples collected from the system at
each iteration. The resulted optimizer of this scenario program is verified using N0 new test
samples in the middle block. The block on the right checks a condition whose satisfaction
provides a probabilistic safety for the original stochastic system.

Finding an optimal solution for the RCP in (4.6) is too difficult because the map f and
the probability measure Pw are both unknown. Furthermore, there are infinitely many
constraints in the RCP since x ∈ X, where X is a continuous set. To address the issue
of unknown Pw and the expectation term in g4 in (4.7), we replace the expectation term
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with its empirical mean approximation by collecting N̂ i.i.d. samples wj, j ∈ {1, . . . , N̂},
from Pw and construct a new RCP denoted by RCPN̂ as follows:

RCPN̂:


min
d

K

s.t. max
(
gz(x, d), ḡ4(x,wj, d)

)
≤0, z∈{1, . . . , 3},

j ∈ {1, . . . , N̂},∀x∈X,λ > 1, d = [K;λ; c; b],

(4.40)

where

ḡ4(x,wj, d)=
1

N̂

N̂∑
j=1

B(b, f(x,wj))−B(b, x)−c−K+e. (4.41)

Notice that the expectation term in (4.7) is approximated by the empirical mean in
(4.41). This approximation introduces an error, which is introduced by e in (4.41).

Now, one can assign a probability distribution over the state set and collect N i.i.d.
samples to solve RCPN̂ in (4.40). The data-set is denoted by:

DN,N̂ :=
{
(xi, wj, f(xi, wj)) ⊂ X × Vw ×X |
i ∈ {1, . . . , N}, j ∈ {1, . . . , N̂}

}
. (4.42)

Substituting these samples in RCPN̂ in (4.40) results in the following SCP denoted by
SCPN,N̂ :

SCPN,N̂ :


min
d

K

s.t. max (gz(xi, d), ḡ4(xi, wj, d))≤0,
λ > 1, z∈{1, 2, 3}, i ∈ {1, . . . , N},
j ∈ {1, . . . , N̂}, d = [K;λ; c; b].

(4.43)

In the next section, we develop an approach to connect the solution of the SCP in
(4.43) to the safety of stochastic system defined in Definition 9. In the next subsection,
we show how a safety problem is cast as a repetitive scenario program (RSP) based on the
SCP formulation in this subsection.

4.5.2 Wait, Judge, and Repeat Approach for Safety Verification
of Stochastic Systems

The results in [89] develop an approach, which repeatedly solves an SCP and checks a
condition over the optimal value of the SCP. If this condition is satisfied, the solution of
the SCP is directly connected to the safety of the system. The main idea of this section
is to judge the results before the repetition at each iteration, i.e., the user can compute a
probability of violation a posteriori which potentially results in a lower number of samples.
The confidence is computed a posteriori which is less conservative with respect to the
approaches in [83], [88], and [89] (cf. Fig. 4.6).
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We need to solve SCPN,N̂ in (4.43) for several iterations. The obtained optimal values
at each iteration, denoted by d∗

N,N̂
, are used to construct a feasibility problem denoted

by SCPN0,N̂ using N0 new test samples. At each iteration, a probability of violation is
computed based on the exact number of support constraints at that iteration, which we
denote it by ϵwjr. Now, we can define the successful iteration in the context of our proposed
approach.

Definition 13. An iteration is called a successful iteration, when the following condition
is satisfied: ∑N0

k=1 vN,N̂(k)

N0

≤ ϵwjr ∈ [0, 1− tÑ ], (4.44)

where tÑ is the unique solution of

β

N + 1

N∑
m=Ñ

(
m

Ñ

)
t m−Ñ
Ñ

−
(
N

Ñ

)
t N−Ñ
Ñ

= 0, (4.45)

with Ñ being the number of support constraints, and vN,N̂(k) being 1 if the kth constraint,
k ∈ {1, . . . , N0}, in SCPN0,N̂ is not satisfied. Otherwise, it is 0. The optimizer of the
successful iteration is denoted by d∗.

Next theorem, borrowed from [84, Theorem 3.4], shows that the optimal solution of the
RCPN̂ is a feasible solution for the RCP in (4.6) with a certain confidence.

Theorem 13. Let d∗s be a feasible solution of the RCPN̂ for some e > 0, and assume
Var
(
B(b, f(x,w)

)
≤ M̂, ∀x ∈ X with a given positive M̂ . Then, for any βs ∈ (0, 1),

one has P(d∗s |= RCP) ≥ 1 − βs, if the number of samples in the empirical mean satisfies

N̂ ≥ M̂
e2βs

.

Now, we construct a probabilistic bridge between the optimal value of the successful
iteration according to Definition 13 and the safety of stochastic systems with unknown
dynamics in Definition 4.1.

The next theorem connects the solution of a successful iteration and the original safety
problem, and computes the violation probability and the confidence for this probability a
posteriori.

Theorem 14. Consider a stochastic system S as in (9), where f and Pw are unknown,
and a safety specification Ψ as in Definition 10. Assume all functions in (4.7) are Lipschitz
continuous with respect to x and with a Lipschitz constant Lx. Choose N̂ as in Theorem
13 based on a given confidence 1 − βs, βs ∈ (0, 1). Suppose that for a given N and N0,
there is a successful iteration (cf. Definition 13), for which the optimal solution is d∗ =
[K∗;λ∗; c∗; b∗]. If

K∗ + Lx G
−1(1− tÑ) ≤ 0, (4.46)
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then the lower bound on the safety of the stochastic system is 1− 1+c∗H
λ∗

with a confidence

of at least 1− β̄(N,N0, Ñ)− βs, where tÑ is computed according to (4.45), and

β̄(N,N0, Ñ) =Fbeta(N + (1− ϵwjr)N0 − Ñ + 1,

Ñ + ϵwjrN0; 1− ϵwjr),

where Ñ is the number of support constraints for the successful iteration, and ϵwjr is a
design parameter ϵwjr ∈ [0, 1− tÑ ].

Proof. A chance constraint program (CCP) can be constructed from the robust convex
program RCPN̂ in (4.40) as:

CCPϵ:


min
d

K

s.t. P
(
max

(
gz(x, d), ḡ4(x,wj, d)

)
≤0
)
≥ 1− ϵ,

j ∈ {1, . . . , N̂}, z∈{1, . . . , 3},
λ > 1, d = [K;λ; c; b],

(4.47)

for some violation probability ϵ > 0, where gz(x, d), z ∈ {1, . . . , 3}, and ḡ4 are defined in
(4.7) and (4.28), respectively. According to [19], a probability violation is computed for an
arbitrary number of samples N containing k support constraints as ϵ(k) = 1− t(k), where
t(k) is the unique solution of

β

N + 1

N∑
m=k

(
m

k

)
t(k) m−k −

(
N

k

)
t(k) N−k = 0.

for k = {0, . . . , |d|}, where |d| is the number of decision variables. For k = Ñ , ϵ(Ñ) is
represented by 1 − tÑ for the sake of simplicity. We formally define the probability of
violation V (d∗) as

P
(
max

(
gz(x, d), ḡ4(x,wj, d)

)
>0
)
.

Note that V (d∗) is a random variable, for which the cumulative distribution function (CDF)
is defined as:

Fv(w) = Fbeta(Ñ ,N − Ñ − 1;w), w ∈ [0, 1], (4.48)

for Ñ being the number of support constraints according to [16, Eq. (4)], where If we
replace the CDF in the proof of Lemma 1 in [16] with (4.48), a new upper bound is
computed for

P
(∑N0

k=1 vN,N̂(k)

N0

≤ ϵwjr ∧ V (d∗) > 1− tÑ
)
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as β̄(N,N0, Ñ)(1 − H1,ϵwjr
(N,N0, Ñ)), where β̄(N,N0, Ñ) is defined in the statement of

the theorem, and

H1,ϵwjr
(N,N0, Ñ) = 1−

⌊ϵwjrN0⌋∑
i=0

fbb(N0, Ñ , N − Ñ + 1; i).

Substituting this new upper bound in the proof of Theorem 3 in [16] results in

P
(
d∗ |= CCP1−tÑ

)
≥ 1− β̄(N,N0, Ñ),

where d∗ = [K∗;λ∗; c∗; b∗] is the optimal solution of the successful iteration. The rest of
the proof is similar to that of Theorem 3 in [89] by substituting 1− tÑ for ϵ.

Remark 20. Similar to the reasoning in [18, Section 5] for a given number of samples N ,
a desired level of confidence β, number of support constraints Ñ , and δ = 1− tÑ − ϵwjr, a
lower bound for N0 can be computed as

N0 ≥
ϵ
δ
ln β−1 + Ñ − 1−N( δ

2
+ ϵwjr)

δ
, (4.49)

to ensure β̄(N,N0, Ñ) ≤ β.

The next corollary provides an upper bound on the number of iterations required for
the satisfaction of (4.44).

Corollary 4. For large values of N0, the expected number of iterations in order to satisfy
(4.44) is approximated by

1

1− βϵwjr
(N,N0, Ñ)

, (4.50)

where βϵwjr
(N,N0, Ñ) = 1−

∑N
i=Ñ

(
N
i

)
ϵwjr

i(1− ϵwjr)N−i.

Proof. By substituting Ñ and ϵwjr for the number of decision variables d and ϵ′ ∈ [0, ϵ], re-
spectively, the upper bound on the expected number of iterations is computed as 1

1−H1,ϵwjr
(N,N0,Ñ)

according to the proof of Theorem 3 in [16]. Then similar to the proof of Corollary 1 in
[16], one can readily see that for large values of N0, 1 − H1,ϵwjr

(N,N0, Ñ) converges to

Fbeta(Ñ ,N − Ñ + 1; ϵwjr) = 1− βϵwjr
(N,N0, Ñ).

Based on the results in Theorem 14, we provide Algorithm 7 to systematically verify
the safety of a stochastic system with an unknown dynamics.

A pareto curve can be plotted for the expected number of iterations versus the number
of samples N using (4.50). This enables the user to pick N based on the number of expected
iterations within which (4.44) is satisfied.
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Algorithm 7 Wait, Judge, and Repeat (WJR) Algorithm

Require: Number of samples N
1: Compute N̂ based on Theorem 13 for a desired confidence parameter βs
2: Collect N̂ samples wj, j ∈ [1, . . . , N̂ ], from Pw
3: Collect N samples xi, i ∈ [1, . . . , N ], from the state set
4: Compute number of support constraints Ñ
5: Compute the probability violation 1− tÑ according to Definition 13
6: Solve the SCPN, N̂ in (4.43) using the collected data in Step 1 and Step 2, and obtain

the optimizer d∗
N,N̂

7: Compute the number of test samples N0 according to (4.39)
8: Construct the feasibility problem SCPN0, N̂

using N0 new samples by feeding the optimal
values from Step 6 to the scenario program in (4.43)

9: Check
∑N0

k=1 vN,N̂ (k)

N0
≤ ϵwjr

10: If the above inequality is satisfied, then d∗ = d∗
N,N̂
, otherwise go to Step 2.

11: Safety Oracle: IfK∗+Lx(1−tÑ)
1
n ≤ 0, then Pw(S |=H Ψ) ≥ 1− 1+c∗H

λ∗
with a confidence

of at least 1− β̄(N,N0, Ñ)− βs.

4.5.3 Two-Tank System Safety Verification: A Wait, Judge, and
Repeat Solution

The main goal is to verify that the heights of both tanks stay away from the unsafe
region within the time horizon H = 5 with an a-priori confidence 99%. Let us consider
a barrier certificate with degree k = 2 in the polynomial form as [h1; h2; 1]

TP[h1; h2; 1] =
b0h

2
1 + b1h

2
2 + b2h1h2 + b3h1 + b4h2 + b5, where P is a 3× 3 matrix. By enforcing ∥P∥ ≤ 0.2

and since ∥x∥ ≤
√
2 × 10, the rquired Lipschitz constant can be computed as Lx = 10.03

[83, Lemma 1].

We use Algorithm 7 to apply our proposed approach to this example. We select N =
70000. For chosen 100 number of samples, the number of support constraints is computed
as Ñ = 2, so the violation probability is computed a posteriori as 0.1129 × 10−3. The
value of N̂ is computed as 400 according to Theorem 13 by considering the approximation
error in (4.28) as e = 0.05 and enforcing M̂ = 0.001. This provides a confidence of
1− βs, where βs = 0.001. The number of test samples is computed as N0 = 294780 using
(4.39). It is much less than 1017100 reported in [89]. This is because the lower bound in
(4.39) uses the exact value of support constraints rather than the total number of decision
variables. It results in faster runs of the algorithm at each iteration. The number of required
iterations based on Corollary 4 is computed as 3, which is much lower than 636 in [89]. The
obtained optimal value of the successful iteration, which occurs only after one iteration, is
K∗ = −0.1093. According to Step 11 in Algorithm 7, since K∗ + Lxϵ

1
n = −0.004 ≤ 0, one

can conclude that the water levels remain in the safe zone with a probability lower bound
of 0.90 and a confidence of at least 0.9999, which is better than 0.9985 in [89] and than
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Figure 4.6: Computed confidence versus number of samples N .

0.99 in [84] and [88]. For the sake of fair comparison between the calculated confidences in
the mentioned results, the computed confidence against number of samples is illustrated
in Fig 4.6 for fixed ϵ = 0.1129 × 10−3. As it can be seen, computed confidence using
our approach outperforms significantly those in [84, 88, 89]. The numerical experiments
were performed using CVX [37] under MATLAB. The total computation time here was
5 seconds, which is less than 2 hours needed to run the SCP in [83] and [84] for 1337297
number of samples, and less than 22 seconds reported in [88].

4.5.4 Discussion

We developed a data-driven verification approach based on a so-called wait, judge, and re-
peat framework. We iteratively solved an SCP resulted from substituting a finite number
of samples in an RCP, which is equivalent to a safety problem. A feasibility condition is
checked at each iteration over the optimizer of the SCP in that iteration. If this condition
is satisfied, a concrete safety condition is checked over the optimal value of the success-
ful iteration. If the safety condition is satisfied too, a lower bound is computed for the
safety probability of the stochastic system with unknown model using the optimizer of the
successful iteration. Both confidence and violation probability were computed a posteriori
in this framework. Finally, the effectiveness of our approach was shown via a two-tank
system.
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Chapter 5

Conclusions and Future Works

5.1 Conclusions

In this thesis, we discuss the development of data-driven and machine learning techniques
to either verify temporal specifications, including safety, on the behavior of unknown or
partially unknown stochastic dynamical systems or synthesize controllers to enforce these
specifications on the system’s behavior.

In Chapter 2, we proposed a two-layer probabilistic framework to provide a measure
of satisfaction for signal temporal logic properties when we only have access to a partially
known parameterized model of a stochastic system. First, we leveraged an machine learn-
ing algorithm called Bayesian inference, to update our prior knowledge of the unknown
parameters using collected data. Then, we computed the satisfaction measure by integrat-
ing the updated distribution over the feasible set of parameters for which the desired STL
specification is guaranteed to be satisfied.

In Chapter 3, we investigated the satisfaction of the safety property for a fully unknown
stochastic system. First, we reformulated a safety problem for stochastic systems as an
RCP. Solving this RCP was not straightforward since the state resides in an infinite set,
furthermore there is an expectation term in one of the constraints. We collected data
from the system and constructed an SCP using this finite number of samples. Then, we
developed a theorem to establish a connection between the solution of the obtained SCP
and the safety of the original stochastic system.

Finally, in Chapter 4, we developed three approaches to mitigate the sample complex-
ity of the proposed technique introduced in Chapter 3. First, we developed a so-called
wait and judge approach, where we evaluate a safety condition on the optimizer of the
SCP for an arbitrary low number of samples. This condition is based on the number of
support constraints. Support constraints are the ones that affect the optimal value of an
optimization problem. Second, we solved an SCP repeatedly until a feasibility condition
on its optimizer was satisfied. It is guaranteed that always there is a successful iteration.
A safety condition is then checked on the optimizer of the successful iteration. If this
condition is satisfied, a lower bound on the safety of the stochastic system is computed by
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leveraging the optimizer of the successful iteration. Third, we combined the above meth-
ods and developed a so-called wait, judge, and repeat approach that significantly reduces
number of required samples.

5.2 Future Directions

Next, we will explore potential directions that are related to data-driven and machine
learning techniques for conducting verification and synthesis tasks. We strongly believe
that these directions have the potential to drive forward research in safety-critical system
design.

• Alleviating the sample complexity. The method developed in Chapter 3 is data-
hungry as it incorporates the maximum Lipschitz constant of the constraints in the
equivalent RCP (Robust Convex Programming) of the safety problem, aiming to
cover worst-case scenarios. We proposed three techniques in Chapter 4 in order to
reduce the sample complexity. We believe that further reduction in sample complex-
ity is still possible, both theoretically and in terms of implementation. One potential
direction is adaptive sampling, where samples are taken only when necessary to sat-
isfy the constraints in different partitions of the state set. Another potential direction
would be developing approaches to reduce the number of samples required to con-
nect the solution of an SCP to its CCP equivalent of an RCP. This can significantly
lower the number of samples needed in our proposed approach. Furthermore, the
development of optimization algorithms that efficiently solve optimization problems
subject to a large number of constraints holds great promise. One potential approach
could involve converting an optimization problem with a large number of constraints
into several optimization problems, each subject to a reduced number of constraints.
One can investigate how to reach the global minimum using these individual so-
lutions. From an implementation point of view, two of our proposed methods in
Chapter 4, namely the repetitive approach in Section 4.4 and the wait, judge, and
repeat approach in Section 4.5, are highly parallelizable. Therefore, parallelization
algorithms and the utilization of multi-core CPUs and GPUs have the potential to
greatly enhance their efficiency.

• Developing data-driven closure certificates. Significant improvements have
been made to the application of barrier certificates, now encompassing temporal
specifications expressed as ω-automata. This enhanced approach, referred to as the
state-triplet approach, leverages barrier certificates to create a clear distinction be-
tween successive transitions involving three states within the ω-automaton, thus pre-
venting the occurrence of accepting runs. Moreover, the state-triplet approach has
found practical utility in the realms of verification and synthesis across a broader
range of dynamical systems. To enable the search for these transition invariants,
the concept of closure certificates is introduced as a functional analog. Closure
certificates can be searched using SOS programming and SMT solvers, similar to
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transition invariants, and provide a means to verify and synthesize systems against
ω-regular properties. The application of these techniques necessitates knowledge of
the system’s model, which is often unavailable in numerous real-world applications.
Therefore, computing these closure certificates using only data is a valuable direction
that has the potential to extend our proposed data-driven techniques to a wide range
of properties, including even more complicated specifications.

• Data-Driven Verification of Stochastic Nonlinear Systems with Signal Tem-
poral Logic Constraints Given a prior density function over the set of parameters,
denoted by p(θ) and an input-output data set D, a posterior distribution p(θ | D)
can be inferred for θ by

p(θ | D) = p(D | θ) p(θ)∫
Θ
p(D | θ) p(θ)dθ

,

where p(D | θ) is

p(D | θ) = 1

|Σỹ(θ)|
1
2 (2π)

mNexp

2

exp

{
−1

2
(ỹ − ȳ(θ))T Σỹ(θ)

−1(ỹ − ȳ(θ))

}
.

However, computing ȳ(θ) and Σỹ(θ) as defined in Proposition 1, is challenging when
the original system is a nonlinear system. Therefore, it is worth investigating how
one can tackle this challenge.

• Data-Driven Verification of Stochastic Systems with Signal Temporal Logic
Constraint under Unknown Noise Distribution In Chapter 2, we assumed that
measurement noise and process noise have zero-mean Gaussian distributions. Elim-
inating this assumption can affect some parts of our proposed approach, including
computing p(θ | D). Therefore, it is valuable to explore how one can solve the veri-
fication and synthesis problem when the distribution of noise is unknown. Another
interesting research direction is to study the robustness of the computations with re-
spect to uncertainties in the distribution of random variables that affect the system’s
evolution.

• Software development to implement data-driven approaches There have
been substantial activities related to software development and benchmarking the
tools on stochastic systems. Examples of these tools include FAUST [95], StocHy
[20], Amytiss [61], SySCoRe [105], and Genie [65]. Such tools on stochastic systems
are participating in the ARCH friendly competition [3] to apply the tools on stan-
dard benchmarks. There is also a demand to develop efficient software tools that
implement data-driven approaches and apply them on a standard set of benchmarks
to demonstrate and compare their efficiency.

• Extending data-driven approaches for simultaneous safety and security of
unknown CPSs. There have been model-based approaches in the literature that
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consider designing secure cyber-physical systems using the notion of a barrier certifi-
cate when the system model is known. For example, the results in [64] demonstrate
a model-based approach developed by the authors to design confidentially secure
cyber-physical systems. One potential direction is to design a data-driven framework
that tackles both safety and security problems in CPSs simultaneously by utilizing
data collected from the system.
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[36] Antoine Girard, Gregor Gössler, and Sebti Mouelhi. Safety controller synthesis for in-
crementally stable switched systems using multiscale symbolic models. IEEE Trans-
actions on Automatic Control, vol. 61, no. 6, pp. 1537–1549, 2016.

https://www.vda.de/en/topics/safety-and-standards/lkas/lane-keeping-assist-systems.html
https://www.vda.de/en/topics/safety-and-standards/lkas/lane-keeping-assist-systems.html
https://www.vda.de/en/topics/safety-and-standards/lkas/lane-keeping-assist-systems.html


102 BIBLIOGRAPHY

[37] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex
programming, version 2.1. http://cvxr.com/cvx, March 2014.

[38] Sofie Haesaert, Petter Nilsson, and Sadegh Soudjani. Formal multi-objective synthe-
sis of continuous-state MDPs. In 2021 American Control Conference (ACC), pages
3428–3433. IEEE, 2021.

[39] Sofie Haesaert and Sadegh Soudjani. Robust dynamic programming for tempo-
ral logic control of stochastic systems. IEEE Transactions on Automatic Control,
66(6):2496–2511, 2020.

[40] Sofie Haesaert, Sadegh Soudjani, and Alessandro Abate. Temporal logic control
of general Markov decision processes by approximate policy refinement. IFAC-
PapersOnLine, 51(16):73–78, 2018.

[41] Sofie Haesaert, Paul MJ Van den Hof, and Alessandro Abate. Data-driven property
verification of grey-box systems by Bayesian experiment design. In 2015 American
Control Conference (ACC), pages 1800–1805. IEEE, 2015.

[42] Sofie Haesaert, Paul MJ Van den Hof, and Alessandro Abate. Automated experi-
ment design for data-efficient verification of parametric Markov decision processes.
In International Conference on Quantitative Evaluation of Systems, pages 259–274.
Springer, 2017.

[43] Sofie Haesaert, Paul MJ Van den Hof, and Alessandro Abate. Data-driven and model-
based verification via Bayesian identification and reachability analysis. Automatica,
79:115–126, 2017.

[44] Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi,
and Dominik Wojtczak. Omega-regular objectives in model-free reinforcement learn-
ing. In International conference on tools and algorithms for the construction and
analysis of systems, pages 395–412. Springer, 2019.

[45] Shuo Han, Ufuk Topcu, and George J Pappas. A sublinear algorithm for barrier-
certificate-based data-driven model validation of dynamical systems. In 54th IEEE
conference on decision and control (CDC), pages 2049–2054, 2015.

[46] Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. Logically-
constrained neural fitted Q-iteration. In Proceedings of the 18th International Con-
ference on Autonomous Agents and MultiAgent Systems, pages 2012–2014. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, 2019.

[47] Martin Herceg, Michal Kvasnica, Colin N Jones, and Manfred Morari. Multi-
Parametric Toolbox 3.0. In 2013 European Control Conference (ECC), pages 502–
510. IEEE, 2013.

http://cvxr.com/cvx


BIBLIOGRAPHY 103

[48] MA Hernández. Chebyshev’s approximation algorithms and applications. Computers
& Mathematics with Applications, 41(3-4):433–445, 2001.

[49] Pushpak Jagtap, George J Pappas, and Majid Zamani. Control barrier functions for
unknown nonlinear systems using Gaussian processes. In 2020 59th IEEE Conference
on Decision and Control (CDC), pages 3699–3704. IEEE, 2020.

[50] Pushpak Jagtap, Sadegh Soudjani, and Majid Zamani. Temporal logic verification
of stochastic systems using barrier certificates. In International Symposium on Au-
tomated Technology for Verification and Analysis, pages 177–193. Springer, 2018.

[51] Pushpak Jagtap, Sadegh Soudjani, and Majid Zamani. Formal synthesis of stochastic
systems via control barrier certificates. IEEE Transactions on Automatic Control,
pages 1–1, 2020.

[52] Svante Janson. Large deviations for sums of partly dependent random variables.
Random Structures & Algorithms, 24(3):234–248, 2004.

[53] Takafumi Kanamori and Akiko Takeda. Worst-case violation of sampled convex
programs for optimization with uncertainty. Journal of Optimization Theory and
Applications, 152(1):171–197, 2012.

[54] Milad Kazemi, Rupak Majumdar, Mahmoud Salamati, Sadegh Soudjani, and
Ben Wooding. Data-driven abstraction-based control synthesis. arXiv preprint
arXiv:2206.08069, 2022.

[55] Milad Kazemi, Mateo Perez, Fabio Somenzi, Sadegh Soudjani, Ashutosh Trivedi, and
Alvaro Velasquez. Translating omega-regular specifications to average objectives for
model-free reinforcement learning. In Proc. of the 21st International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2022),, 2022.

[56] Milad Kazemi and Sadegh Soudjani. Formal policy synthesis for continuous-state
systems via reinforcement learning. In Integrated Formal Methods: 16th International
Conference, IFM 2020, Lugano, Switzerland, November 16–20, 2020, Proceedings 16,
pages 3–21. Springer, 2020.

[57] Joris Kenanian, Ayca Balkan, Raphael M Jungers, and Paulo Tabuada. Data driven
stability analysis of black-box switched linear systems. Automatica, 109:108533, 2019.

[58] Yonit Kesten, Amir Pnueli, and Lion Raviv. Algorithmic verification of linear tem-
poral logic specifications. In International Colloquium on Automata, Languages, and
Programming, pages 1–16. Springer, 1998.

[59] Harold J Kushner. Stochastic stability and control. Technical report, Brown Univ
Providence RI, 1967.



104 BIBLIOGRAPHY

[60] Morteza Lahijanian, Sean B Andersson, and Calin Belta. Formal verification and
synthesis for discrete-time stochastic systems. IEEE Transactions on Automatic
Control, 60(8):2031–2045, 2015.

[61] Abolfazl Lavaei, Mahmoud Khaled, Sadegh Soudjani, and Majid Zamani. AMYTISS:
Parallelized automated controller synthesis for large-scale stochastic systems. In
Computer Aided Verification: 32nd International Conference, CAV 2020, Los Ange-
les, CA, USA, July 21–24, 2020, Proceedings, Part II 32, pages 461–474. Springer,
2020.

[62] Abolfazl Lavaei, Mateo Perez, Milad Kazemi, Fabio Somenzi, Sadegh Soudjani,
Ashutosh Trivedi, and Majid Zamani. Compositional reinforcement learning for
discrete-time stochastic control systems. arXiv preprint arXiv:2208.03485, 2022.

[63] Abolfazl Lavaei, Fabio Somenzi, Sadegh Soudjani, Ashutosh Trivedi, and Majid Za-
mani. Formal controller synthesis for continuous-space MDPs via model-free rein-
forcement learning. in ACM/IEEE 11th International Conference on Cyber-Physical
Systems (ICCPS), 2020.

[64] Siyuan Liu and Majid Zamani. Verification of approximate opacity via barrier cer-
tificates. IEEE Control Systems Letters, 5(4):1369–1374, 2021.

[65] Rupak Majumdar, Kaushik Mallik, Mateusz Rychlicki, Anne-Kathrin Schmuck, and
Sadegh Soudjani. A flexible toolchain for symbolic rabin games under fair and
stochastic uncertainties. In International Conference on Computer Aided Verifica-
tion, pages 3–15. Springer, 2023.

[66] Rupak Majumdar, Kaushik Mallik, and Sadegh Soudjani. Symbolic controller syn-
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N := {1, 2, 3, . . .} positive integers
N0 := {0, 1, 2, . . .} non-negative integers
R real numbers
R+

0 non-negative real numbers
R+ positive real numbers
1A : X → {0, 1} the indicator function of a set A ⊆ X
1m a column vector of ones in Rm×1

∥x∥ Euclidean norm of any x ∈ Rn

∥A∥ = supx̸=0 ∥Ax∥/∥x∥ induced norm of any matrix A ∈ Rm×n

|x| absolute value of a real number x
f−1 : Y → X inverse of a function f : X → Y
S |=H Ψ satisfaction of a property Ψ within horizon H

by a system S
Ω sample space of random variables
B(X) Borel σ-algebras on a set X
(X,B(X)) measurable space on X
P probability measure
Var(z) := E(z2)− (E(z))2 variance of random variable z
E expectation operator
S and S stochastic system
exp(·) natural exponential function
erf−1(·) error inverse function
[a, b] closed interval for any a, b ∈ R, a ≤ b
τs sample time of discretization
∂f
∂x

partial derivative of of the function f
with respect to x

fn(x) the nth derivative of the function f
M(θ) parameterized model of a system S
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dt-SS discrete-time Stochastic System
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BC Barrier Certificate
SS Stochastic System
CPS Cyber-Physical System
ML Machine Learning
STL Signal Temporal Logic
LTL Linear Temporal Logic
LTI Linear Time Invariant
MCM Monte Carlo Method
PWA Piece-wise Affine
WJR Wait, Judge, and Repeat
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