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Summary 
The Programme for International Student Assessment (PISA) is an important assessment tool. As a 

worldwide monitoring study of basic educational competencies of fifteen-year-old students, it allows 

to conclude education systems, long-term educational investments and identify educational 

development and referred changes in time. In PISA, a state-of-the-art sampling design acknowledged 

by the scientific community is applied (Rutkowski et al., 2013). As this complex sampling design must 

be accounted for in the study's analyses, statistical techniques, and procedures were developed. To 

evaluate improving alternatives in the complexity of these methods, it is essential to constantly 

conduct theoretical considerations and associated simulation studies (Boulesteix et al., 2020). In this 

dissertation, two PISA-sampling-related topics were examined in detail. New derived suggestions for 

substantial improvements to the PISA sampling design were built based on these findings. Both 

studies presented in this dissertation look at sampling-related concepts (both model groups of 

sampling units), i.e., weighting in hierarchical linear models and stratification in the PISA sampling 

process. Those concepts must be correctly represented in analyses to avoid biased standard error 

estimators. 

In the first study, we determine under theoretical consideration and simulation which stratification 

scheme is best for PISA in Germany. Thus, we examine seven different stratification designs – 

selected according to scenarios used in past large-scale assessment studies in Germany – and 

theoretical, new devised approaches for future implementations. As a result of this examination, we 

recommend a stratification of grouped German federal states and designs using school types as 

explicit and federal states as implicit stratifiers.  

In the second study, we identify the best utilisation of sampling weights in hierarchical linear 

modelling based on theoretical considerations and simulative results. We examine nine different 

weighting designs. The selected sampling scenarios are based on framing approaches to explain 

required weighting in hierarchical modelling, settings promoted in the literature and theoretical, new 

devised considerations for future implementations. We consider different estimation, optimization, 

acceleration methods, and approaches to using sampling weights. The results reveal three weighting 

approaches performing best in retrieving the true population parameters. One implies using only 

level two weights (here: final school weights). Due to its simple implementation, it is the most 

favorable one. 



 

 
 

  



 

 
 

Zusammenfassung 
Das Programme for International Student Assessment (PISA) ist als weltweite Beobachtungs-Studie 

der Grundkompetenzen 15-jähriger Schüler:innen ein sehr wichtiges Bewertungsinstrument, um 

Schlüsse über Bildungssysteme und langfristige Bildungsinvestitionen zu ziehen sowie um Bildungs-

entwicklungen im Zeitverlauf zu ermitteln. Bei PISA wird ein wissenschaftlich fundiertes und 

anerkanntes Stichprobendesign angewandt (Rutkowski et al., 2013). Da dieses komplexe 

Stichprobendesign auch in den Auswertungsmethoden der Studie berücksichtigt werden muss, 

wurden vielfach zitierte Analysetechniken und -verfahren entwickelt. Um diese komplexen 

Methoden regelmäßig zu überprüfen und gegebenenfalls zu verbessern, ist es wichtig, wiederholt 

theoretische Weiterentwicklungen und entsprechende Überprüfung durch Simulationsstudien 

durchzuführen (Boulesteix et al., 2020). In dieser Dissertation werden zwei PISA-Stichproben-

verfahren näher untersucht. Auf der Grundlage dieser Erkenntnisse werden neue Vorschläge für 

wesentliche Verbesserungen des PISA-Stichprobendesigns abgeleitet. Beide Studien befassen sich 

mit stichprobenbezogenen Konzepten. Im Speziellen sind dies Gewichtungen in hierarchischen 

linearen Modellen und Stratifizierungsverfahren der PISA-Stichprobe. Es ist von großer Bedeutung, 

dass sie in den Analysen korrekt dargestellt werden, um verzerrte Standardfehlerschätzer zu 

vermeiden. 

In der ersten Studie untersuchen wir Theorie geleitet und mit einem simulativen Ansatz, welches 

Stratifikationsschema für PISA in Deutschland am besten ist. Dazu untersuchen wir sieben 

verschiedene Stratifikationsdesigns – ausgewählt auf der Grundlage von Szenarien, welche in 

vergangenen large-scale assessment Studien in Deutschland verwendet wurden – sowie theoretische 

und neu entwickelte Überlegungen für zukünftige Implementierungen. Als Ergebnis dieser Studie 

empfehlen wir eine Stratifizierung von gruppierten Bundesländern sowie Szenarien, die lediglich 

Schulformen als explizite und zusätzlich Bundesländer als implizite Stratifizierung verwenden.  

In der zweiten Studie ermitteln wir auf Grundlage theoretischer Überlegungen und simulativer 

Ergebnisse die beste Anwendung von Stichprobengewichte in hierarchischen linearen Modellen. Wir 

betrachten neun verschiedene Ansätze zur Verwendung dieser Gewichte. Die ausgewählten 

Stichprobenszenarien basieren auf Rahmenansätzen zur Erklärung der erforderlichen Gewichtung in 

der hierarchischen Modellierung, auf in der Literatur zitierten Verfahren und auf theoretischen, neu 

entwickelten Überlegungen für zukünftige Implementierungen. Wir betrachten verschiedene 

Schätzmethoden, inklusive dreier Simulationsszenarien und zweier Softwarepakete zur 

hierarchischen Modellierung. Die Simulationsergebnisse zeigen, dass drei Gewichtungsansätze am 

besten geeignet sind, um die wahren Populationsparameter zu schätzen. Einer von ihnen beinhaltet 

nur die Verwendung von Gewichten der Ebene zwei (hier: Gewichte der Schulebene) und ist 

aufgrund seiner einfachen Umsetzung die Variante, die zu präferieren ist. 
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Chapter 1: Overview 

Introduction 
Since its first assessment in the year 2000, PISA has established itself as a well-respected educational 

monitoring study in more than 80 participating countries worldwide. PISA measures students' basic 

competencies at the end of their secondary education. Empirical data are available in the key areas 

of reading, mathematics, and science, allowing conclusions about the performance of the 

participating states' education systems. In addition, the long-term established cross-sectional PISA 

studies at three-year intervals make it possible to identify and describe developments and transitions 

over time (Reiss et al., 2019).  

Drawing a sample for PISA is demanding (OECD, 2017). The PISA international sampling design uses 

features attributed to "complex" samples. In the first selection stage, schools are sampled according 

to the Probability Proportional to Size (PPS; Meinck, 2020; Skinner, 2014) method, which implies 

larger schools have a higher probability of being sampled than smaller ones. Furthermore, 

stratification is applied. Explicit stratification means dividing all eligible schools (those with fifteen-

year-old-students) into subgroups, with all schools belonging to a subgroup treated as a single 

sampling frame. Implicit stratification means sorting those separate frames by specific characteristics 

(Meinck, 2020). It differs from simple random sampling (SRS) as systematic sampling is applied to 

those ordered frames. The precision of the resulting estimates is similar to the results from 

proportional allocation and therefore this procedure is called implicit stratification in contrast to 

explicit stratification (Aßmann et al., 2011). The selected characteristics for stratification should be 

chosen to increase the estimator's efficiency compared to simple random sampling (Jaeger, 1984). In 

addition, international project management requirements and relevant privacy areas must be 

considered. Finally, the number of strata is also methodologically limited by sample size and the 

Balanced Repeated Replication (BRR) method (Valliant et al., 2018a).The research project Evaluating 

German PISA stratification designs: a simulation study aims to provide evidence for possible 
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improvements of the PISA stratification scheme of the German PISA sample. It may serve as a 

template for similar studies in other countries and economies participating in LSAs.  

As students within one school often are more similar to each other than students attending different 

schools, considering a hierarchical (or "multilevel") model in analysing students across several 

schools is advisable. This is because such models better reflect the true multilevel structure of the 

education system, with pupils nested within classes, schools, and school systems. Furthermore, the 

cluster effects on sampling errors are considered in such models, which otherwise have to be 

reflected using special complex estimation procedures (e.g., BRR in PISA; OECD, 2017). Although 

there is sufficient evidence that sampling weights must be used in multilevel modelling (MLM) to 

obtain unbiased estimates (Cai, 2013) - and also on how these weights should be used in single-level 

analyses - there is little discussion in the literature about which and how to use sampling weights in 

MLM. The main goal of the research project, Sampling weights in multilevel modelling: an 

investigation using PISA sampling structures, is to provide a clear recommendation for using weights 

and estimation procedures for multilevel analyses in LSAs. 

PISA Sampling Design 
Sampling procedures that allow for undistorted and precise population estimates must be applied to 

enable conclusions from the sample-based PISA assessment on the population of fifteen-year-old-

students and ensure international comparability. In PISA, a state-of-the-art sampling design 

acknowledged by the scientific community is utilized (Rutkowski et al., 2013). PISA implements, by 

default, a complex sample design with a two-stage sampling procedure. As a rule, schools are drawn 

in the first stage, and students in the participating schools are systematically randomly selected in 

the second stage. A set of tightly scrutinized sampling standards assures this design in all 

participating countries (OECD, 2020). 

PISA's internationally specified target population consists of all students in an age cohort. This is all 

fifteen-year-old students who attend the seventh or a higher grade. The exact definition of the age 

cohort is determined in coordination with the international PISA consortium and may vary slightly 
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between countries and economies due to different survey periods. For example, in Germany, all 

students born between January 1, 2002 and December 31, 2002 (inclusive) and attending at least 

grade 7 or higher were eligible to participate in PISA 2018. To implement the first sampling stage, a 

so-called school sampling frame is created – a comprehensive list of all schools where fifteen-year-

old students are expected to be taught during the data collection period.  

Within this list, school-level stratification is implemented. One can draw independent probability 

samples from each stratum by dividing the population into H non-overlapping subpopulations, called 

strata (Groves, 2011). Accordingly, a stratified random sample comprises of several subsamples, each 

representing internally more homogeneous subpopulations concerning the stratification 

characteristics. To make conclusions about the full population, the individual sample values must be 

weighted according to the ratios of the strata to the population. In stratified sampling, what matters 

is the variation within the strata. The strata should be determined such that the variables of interest 

within a stratum are as invariant as possible. In contrast, the different strata should differ as much as 

possible from each other to improve sampling efficiency (Jaeger, 1984; Lohr, 1999) and sampling 

precision (Cochran, 1977). In other words, it increases the sampling precision and results in smaller 

sampling errors of these variables (Cochran, 1977; Meinck & Vandenplas, 2021). Stratification 

information must be available for all eligible schools in the sampling frame. Using this information, 

the sampling frame can be sorted by the stratification variables before sampling. Requirements at 

the international level and national political sensitivity (such as the request for a fair regional 

distribution of the sample) may also play a role in the stratification. The variance between strata 

does not contribute to the variance of the estimator. Only the sample size proportional to its stratum 

size ensures that the sample will highlight the differences between strata. Estimating the sampling 

variance for stratified samples with SRS within the strata is straightforward and can be handled, e.g., 

via a variance decomposition. For complex samples such as those applied in PISA, estimation of 

sampling variance becomes more complicated as clustering effects and varying selection probabilities 

have to be accounted for within each stratum. Stratification can be implemented in two different 
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ways: explicit and implicit (OECD, 2020). Explicit stratification means a mutual grouping of the 

schools by specific school characteristics and sampling schools for each explicit stratum separately 

(Singh & Mangat, 1996). In the literature, this explicit stratification refers to the upper definition of 

stratified sampling (Lohr, 1999; Singh & Mangat, 1996; Thompson, 2012). Implicit stratification can 

be added within explicit strata, implying the sorting of the schools by further characteristics. The goal 

of this sorting is to approximately preserve the population proportions in the sample. 

Furthermore, the PPS sampling procedure is applied (Meinck, 2020; Skinner et al., 1989) by having 

larger schools sampled with higher probability than smaller ones, and vice versa (Lohr, 1999). This 

procedure was first advocated by Mahalanobis (1952) and subsequently discussed by many 

researchers, e.g., Hansen and Hurwitz (1943) or Sukhatme et al. (1984). If the school size is used as 

the Measure of Size (MOS), i.e., the estimated number of fifteen-year-old students in a school, in 

PPS, larger schools have a higher probability of being sampled than smaller ones, and vice versa, as 

students within larger schools have smaller selection probabilities than students within smaller 

schools (Lohr, 1999). Selecting schools with varying probabilities will result in unbiased estimators if 

they are appropriately weighted according to their selection probabilities (Singh & Mangat, 1996). 

The size variable must be available in the sampling frame. In PISA, the preferred MOS is the expected 

number of fifteen-year-old students in each school. Other size measures, such as the total school size 

or the number of students in the modal grade, could be used as alternatives (OECD, 2020). The 

selection probability for a school 𝑖 can then be written as  

𝜋𝑖 = 𝑛
𝑀𝑂𝑆𝑖

∑ 𝑀𝑂𝑆𝑗
𝑁
𝑗=1

, 
(1) 

with 𝑛𝑀𝑂𝑆𝑖 < ∑ 𝑀𝑂𝑆𝑗
𝑁
𝑗=1 , 𝑖 being the selected schools, 𝑁 being all schools in the population, and 𝑛 

being the sample size. For the variance of any estimator, the variation of the values in the sum is 

decisive (Lohr, 1999). This also shows the advantage of PPS sampling: if the variance of the calculated 

statistic in a school is higher than its division by the MOS of the respective school, the estimator has a 
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smaller sampling variance. This is met if MOS is proportional to the used statistic (Kauermann & 

Küchenhoff, 2011).  

Sampling weights are provided as inverse selection probability to avoid bias due to disproportional 

selection probabilities ( OECD, 2017). Those weights are computed as the inverse of the selection 

probabilities of each selection stage, adjusted for nonresponse. To account for the complex sampling 

design, standard errors must be estimated by respective statistical methods (Lohr, 1999). For 

computing unbiased estimates of the sampling variance, BRR (Wolter, 2007) with Fay's adjustment is 

used in PISA (Judkins, 1990). The advantage of BRR, but also similar replication methods like the 

Jackknife Repeated Replication (JRR), is that it can account for the effects on variances of 

nonresponse adjustments (as long as weighting steps are computed separately for each replication; 

Valliant et al., 2018b). However, this method is preferred over other methods, such as JRR, as it 

provides more stable estimates when analysing sparse population subgroups (Judkins, 1990; OECD, 

2017; Rao & Shao, 1999). Specifically, if the estimate is a ratio of two subgroups, some replicate ratio 

estimates can be extremely large or undefined because of near-zero or undefined denominators, 

respectively (Rao & Shao, 1999; Rao & Wu, 1985). 

Hierarchical Models  
For LSA studies, it can be essential to consider student characteristics in the context of groups to 

which students belong. The clustered nature of these samples means that students within the same 

classes and schools are less likely to be independent of each other, as their knowledge, skills, and 

other attributes may be influenced by factors such as their classmates, teachers, school principals, 

and the overall school environment (Karakolidis et al., 2022; Raudenbush & Bryk, 2002). In this case, 

one characteristic affects individuals in two dimensions (or two levels of a hierarchy), i.e., at the 

individual and group levels. In addition, interactions between the two (or even more) levels are also 

possible and need to be considered (Meinck & Vandenplas, 2012).  

To analyse LSA data, simple linear regressions are often used. However, these have the weakness of 

assuming that students' responses are independent of their group or school (Burstein, 1980). The 
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second difficulty is that often the assumption is made that the correlations within groups are the 

same as between those groups (i.e., most schools in LSAs). Those misalignments can lead to 

aggregation bias, fallacy (Cronbach, 1976), and underestimated precision (Aitkin et al., 1981; Meinck 

& Vandenplas, 2012; Woltman et al., 2012). To account for the hierarchical structure of LSA data, 

hierarchical linear models (HLM)1 have been developed (Aitkin & Longford, 1986; De Leeuw & Kreft, 

1986; Snijders & Bosker, 2012). Those models have the property to measure effects, relationships, 

and variability at different levels (Meinck & Vandenplas, 2012). Menezes et al. (2016) contend that - 

compared to simple linear modelling - hierarchical analysis allows for a more nuanced dissection of 

education assessment data while accounting for the many possible impact levels relevant to 

meaningful education policy. Because clustering students in classes and/or schools is a given fact in 

schools, it should be considered in both relevant analyses and policy decision-making processes 

(Karakolidis et al., 2022).  

To enable statistical inference using hierarchical models (i.e., inferring from a sample on an infinite 

population), Pfeffermann et al. (1998) and Asparouhov (2006) argued that it is essential to include 

complex sampling designs, like those applied in PISA, in the hierarchical models. The so-called pseudo 

maximum likelihood (PML) estimation technique was developed by Skinner (1989), following the idea 

of Binder (1983), and includes sampling weights into the HLM analysis procedure. It defines a hybrid 

approach combining design-based and model-based inference estimation techniques. 

The PML estimation technique applies the principles of the Horwitz-Thompson (HT) theorem by using 

the inverse of the selection probabilities as weights (Horvitz & Thompson, 1952)  

�̂�𝐻𝑇 =
1

𝑁
∑ 𝑤𝑗

𝑛

𝑗=1

𝑦𝑗 =
1

𝑁
∑

1

𝜋𝑗

𝑛

𝑗=1

𝑦𝑗 , 

 

(2) 

 

                                                            
1 Alternative naming of HLM are multilevel model, variance component model and random coefficient model. 
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with 𝜋𝑗  as the selection probability, 𝑤𝑗 =
1

𝜋𝑗
 as the inverse of the selection probability, 𝑦𝑗  as the 

single characteristics in the sample, 𝑁 as the population size and 𝑛 as the sample size. Transferring 

this principle to a hierarchical (two level) structure follows the selection probabilities for the schools 

and students within schools as 𝜋𝑗  and 𝜋𝑖𝑗, respectively. The weights for the 𝑚 schools are 𝑤𝑗 =

1

𝜋𝑗
 and for the 𝑛 students 𝑤𝑖𝑗 =

1

𝜋𝑖𝑗
. To achieve a sum instead of the product for easier mathematical 

handling, the census log-likelihood follows  

𝑙 (𝑌|𝜃) =  ∑ 𝑤𝑖 log 𝑏𝑖  𝑒𝑥𝑝 

𝑚

𝑖=1

[∑ log 𝑤𝑖𝑗𝑓 ( 𝑌𝑖𝑗|𝜃) 

𝑛𝑖

𝑗=1

]  𝜙 (𝑏𝑖)𝜕𝑏𝑖 

 

(3) 

 

 

 

with weights 𝑤𝑖 =
1

𝜋𝑖
 as inclusion probability for school 𝑖 and 𝑤𝑖𝑗 =

1

𝜋𝑖𝑗
 as inclusion probability for 

student 𝑗 given school 𝑖. The HT theory with replaces each sum over the level two population units 𝑖 

by a sample sum weighted by 𝑤𝑖 =
1

𝜋𝑖
 and each sum over the level one units 𝑗 by a sample sum 

weighted by 𝑤𝑖𝑗 =
1

𝜋𝑖𝑗
 (Grilli & Pratesi, 2005). Setting the first derivation of this pseudo log-likelihood 

function to zero achieves the pseudo maximum likelihood estimator 

∑ 𝑤𝑖  

𝑏𝑖 [𝑒𝑥𝑝 ∑ 𝑤𝑖𝑗 log 𝑓 (𝑌𝑖𝑗|𝜃)
𝑛𝑖
𝑗=1 ] ∙  [∑

𝜕 𝑙𝑜𝑔𝑓(𝑌𝑖𝑗|𝜃) 
𝜕𝜃

𝑛𝑖
𝑗=1 ] 𝜙 (𝑏𝑖)𝜕𝑏𝑖  

𝑏𝑖  [exp ∑ 𝑤𝑖𝑗 log 𝑓 (𝑌𝑖𝑗|𝜃)
𝑛𝑖

𝑗=1 
]  𝜙 (𝑏𝑖)𝜕𝑏𝑖

 

𝑚

𝑖=1

 

 

(4) 

 

The pseudo maximum likelihood estimator 𝜃𝑃𝑀𝐿 is therefore design consistent for the finite 

population maximum likelihood estimator 𝜃, which, in turn, is model-consistent for the 

superpopulation estimator of 𝜃. Therefore 𝜃𝑃𝑀𝐿 is a consistent estimator of 𝜃 with respect to the 

mixed design-model (hybrid) distribution (Pfeffermann et al., 1998). 

Several different approaches to using and scaling sampling weights in hierarchical models are 

promoted, yet no study has compared them to provide evidence of which method performs best and 

therefore should be preferred. The research project in this thesis, Sampling weights in multilevel 
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modelling: an investigation using PISA sampling structures, provides a clear recommendation for 

using weights and estimation procedures for multilevel analyses in LSAs. Besides the estimate, its 

variance (i.e., the squared standard error) is of further interest. The covariance matrix of an 

estimator is obtained after the model has been estimated. Again, the sampling design needs to be 

taken into account. If the covariance structure is assumed to be too simple, which is the case for 

independent random samples, then the model-based estimated standard errors for the fixed effects 

are invalid and often too small. One way to deal with this is to use sandwich standard errors, a 

function of the modelled standard errors and observed residuals.  

Simulation Approach 
For the research projects Evaluating German PISA stratification designs: a simulation study and 

Sampling weights in multilevel modelling: an investigation using PISA sampling structures, it is 

necessary to reproduce the sampling frame and the associated target population as accurately as 

possible with all their characteristics. Samples are then repeatedly drawn from these populations 

using a Monte Carlo simulation (Boulesteix et al., 2020; Morris et al., 2019; Thomopoulos, 2013), and 

accordingly, research questions of these projects are answered and discussed under theoretical 

consideration with findings from these simulations studies. Regarding the literature, two widely used 

simulating population methods will be described in the following.  

In the first approach, weights of an existing sample can be disposed such that this simulation 

approximates the actual population. The basis of this approach has been developed by Little (1993) 

and Rubin (1993), discussed by Beckman et al. (1996) and developed in recent applications like in 

Templ et al. (2017). We use the student sample of the German PISA 2018 data as a basis for the 

simulation (Reiss et al., 2021). By aggregating student data (using school identifiers) to the level of 

schools, we achieve a school dataset. As the true anonymous list of schools from PISA 2018 with 

information on the number of PISA eligible students is available to the authors, we add information 

on the school’s MOS, federal state, and school type to the data. We did not only use information 

from the list of schools because other characteristics, such as student achievement and migration 
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background, are available in the sample. To simulate the German school frame using a sample of 

schools, each school has been copied according to its (rounded) school weight. A school from the 

sample then represents several schools according to their weight in the population. For example, a 

sampled school with a school weight of 10.21 was copied 10 times on the simulated school frame as 

it represents about 10 other schools in the population. This approach gives us an approximated copy 

of the complete school frame and is applied in the project Evaluating German PISA stratification 

designs: a simulation study. 

The second simulation approach is generated using the properties of the desired characteristics and 

their correlation among an existing distribution assumption (Mang et al., 2021). Thus, it is based on 

two data sources. The first source is the sampling frame of a specific assessment. Further, relevant 

population features were estimated based on the sample of the same assessment as the 

abovementioned sampling. Those characteristics are then added to each school of this frame. In 

order to investigate the differential effects of varying parameters, three different simulation 

scenarios for generating the student achievement data (i.e., the PISA competence for a given 

domain) and socio-economic background were implemented. For the first scenario, the population 

parameters are chosen in a way to correspond to the true German PISA target population in 2015. To 

achieve this, real outcomes of the PISA 2015 cycle were used. That is, the performance in science 

(first PV) and the PISA Economic, Social and Cultural Index (ESCS) for the socio-economic index split 

for each different school type served as scenario templates (Simulation Scenario 1). Secondly, a 

scenario with nearly no variance between the schools of a given school type is simulated (Simulation 

Scenario 2). The ICC of 0.05 is very small in this scenario, and MLM may not be that advantageous to 

single-level analysis under such circumstances. We still decided to implement such scenario for two 

reasons. One was to get a good contrast for the scenarios with higher ICC. Second, some authors 

(e.g. Snijders & Bosker, 2012) recommend MLM whenever there is a hierarchical structure in the 

underlying population. Also Lai and Kwok (2015) recommend hierarchical modelling in such scenarios 

because there is in fact, still a design effect (Kish, 1995) to account for. The third scenario is based on 
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a high variance between the schools of a given school type (Simulation Scenario 3). All simulation 

scenarios comprise a two-level structure with schools at level one and students at level two. For each 

of the three scenarios, the different compositions of the performance of the schools (i.e., the school 

achievement) and their socio-economic index were simulated. Following this, the performance and 

socio-economic status of each student was simulated around those school values, with a given 

variance and covariance according to the appropriate simulation scenario. This simulating population 

method is discussed in the project Sampling weights in multilevel modelling: an investigation using 

PISA sampling structures.   
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Chapter 2: Summary and Conclusions 
Since the beginning of LSA studies dates back to the 1960s (Husén & Postlethwaite, 1996), when 

"measured outcomes and their determinants within and between systems of education" were first 

discussed (Karakolidis et al., 2022), many methodologies for sampling and evaluating LSA studies 

have been developed and established. Several of these methods were developed when it was 

impossible to check their evidence and determine their quality by simulation (Boulesteix et al., 2020) 

and thus evaluate them if necessary. In addition, there are constant theoretical new methodological 

developments and adjustments that have to be taken into account on a continuous progression. On 

that basis clear implications or improvements for further studies and analyses can be made (Morris 

et al., 2019).  

Regarding a possible optimization of the stratification design in PISA, the study shows that a change 

in stratification can be suggested for some of the presented approaches. However, it turned out that 

the authors’ new derived approach having school types as explicit and federal states as implicitly 

given stratification (with special handling of the federal state of Saarland) is highly favorable as it 

considers all relevant aspects of a possible change. Those are particularly the available information in 

official statistical offices. To be able to construct the sampling frame, the improvement of this 

approach is decreasing the standard error of any statistics given by evidence through the simulation 

study and the conservative and cautious change by preserving the structure of Germany with its 

federal states and school types. Thus, it follows a reasonable communication of this change to 

relevant policymakers and stakeholders (for example, the press or teacher unions).  

The study for weighting in hierarchical models for LSA data has shown that the authors’ new derived 

approach using only the school weights provides the most unbiased estimates for hierarchical 

models. In this scenario, the final school weights are specified at the school level, while no weight is 

used at the student level. Final school weights reflect the school selection probabilities, adjusted for 

school nonresponse, and are typically provided with the public datasets of LSA. This recommended 
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weighting approach will help many researchers apply MLM with weights, thus driving further 

insightful research in the field of LSA. 

Finally, it should be emphasized that the effects of optimizing stratification in the sampling of PISA 

will also be visible in the magnitude of the standard error when analysing large-scale assessment 

data in hierarchical modelling using sampling weights. However, this outcome does not change the 

suggestion of using only school level weights for the analyses. Overall, it can be pointed out that the 

presented studies gain insights into efficiently improving methods regarding PISA sampling structures 

and their application in weighting.  
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Chapter 3: Evaluating German PISA stratification designs: a simulation 

study 
Chapter 3 determines which stratification scheme is best for PISA in Germany. For this, we examine 

the complex sampling design on theoretical considerations and discuss and examine these proposals 

in a simulation-based setting to substantially improve the sampling of the PISA study. Furthermore, 

findings about the estimation accuracy of different standard errors and constraints imposed by the 

international sampling design, the available information about schools, and specific national 

characteristics of the German educational system were evaluated. We verify seven different 

stratification designs. The selection is based on scenarios used in past LSAs in Germany and 

theoretical, new devised considerations for future implementations. The chosen scenarios were 

compared with two reference scenarios, (1) an unstratified design and (2) a synthetic optimal 

stratification design. The software program R 4.1.0 (R Core Team, 2020) were used for simulating the 

sample replicates. The analyses to quantify the differences between those stratification methods 

were also performed with R and the package survey (Lumley, 2004). 
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Abstract 

Stratification is an important design feature of many studies using complex sampling designs and it is 

often used in large-scale assessment (LSA) studies, such as the Programme for International Student 

Assessment (PISA), for two main reasons. First, stratification variables that achieve a high between 

and low within strata variance can improve the efficiency of a survey design. Second, stratification 

allows one to, explicitly or implicitly, control for sample sizes across subpopulations. It ensures that 

some parts of a population are in the sample in predetermined proportions.  

In this study, we determine through simulation which stratification scheme is best for PISA in 

Germany. For this, we consider the constraints imposed by the international sampling design, the 

available information about schools, and specific national characteristics of the German educational 

system. We examine seven different stratification designs selected based on scenarios used in past 

LSAs in Germany and theoretical considerations for future implementations. The chosen scenarios 

were compared with two reference scenarios: (1) an unstratified design and (2) a synthetic optimal 

stratification design. 

The simulation study reveals that the stratification design currently applied in PISA produces 

satisfactory results regarding sampling precision. The present stratification design is based on 

Germany's federal states and school types. However, this approach leads to small strata, which has 

been problematic for estimating sampling variance in previous cycles. Therefore, alternative 

stratification scenarios were considered and, in addition to overcoming the small-strata problem, 

also led to smaller standard errors for estimates of student mean performance in mathematics, 

science, and reading.  

As a result of this study, we recommend considering three different stratification designs for 

Germany in future cycles of PISA. These recommendations aim to: (1) improve the sampling 

efficiency while keeping the sample size constant, (2) follow a sound methodological approach, and 

(3) make conservative and cautious changes while maintaining a reflection of the structure of the 

German federal school system with different school types. These suggestions include a reinvented 

stratification of grouped German federal states and designs with school types as explicit stratifiers 

and federal states as implicit stratifiers. 
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Introduction 

Drawing a sample for the Programme for International Student Assessment (PISA) to represent the 

target population of fifteen-year-old students is demanding (OECD, 2017). The PISA international 

sampling design uses features attributed to "complex" samples. The overall design can be described 

as a stratified two-stage random sample. In the first selection stage, schools are sampled with a 

probability proportional to their size (PPS; Meinck, 2020; Skinner, 2014), which implies that larger 

schools have a higher probability of being sampled relative to smaller schools. In a second stage, 

about 30 to 40 fifteen-year-old students are systematically randomly sampled across participating 

schools with equal probabilities after sorting them by gender and grade. Such a selection procedure 

is also called cluster sampling. 

School-level stratification can be implemented in two different ways. Explicit stratification involves 

dividing all eligible schools (those with fifteen-year-old students) into subgroups, with all schools 

belonging to a subgroup treated as a single sampling frame. Implicit stratification means sorting 

those separate frames by specific characteristics (Meinck, 2020).It differs from simple random 

sampling (SRS) as systematic sampling is applied to those ordered frames. The precision of the 

resulting estimates is similar to the results from proportional allocation and therefore this procedure 

is called implicit stratification in contrast to explicit stratification (Aßmann et al., 2011). Stratification 

improves the efficiency of the sampling design if the variables used for stratification are correlated 

with the variables of interest (e.g., mean student proficiency). In other words, it increases the 

sampling precision and results in smaller sampling errors of estimates of these variables (Cochran, 

1977; Meinck & Vandenplas, 2021) if the variance between the strata becomes large and the 

variance within the strata is small. It further ensures that some parts of the population are included 

in the sample in predetermined proportions. With implicit stratification, the proportions in the 

population are approximately preserved in the sample. Explicit stratification, however, allows for a 

disproportional sample allocation. 
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Sampling weights and nonresponse adjustments are provided to avoid bias due to disproportional 

selection probabilities that combine the inverse selection probabilities at each sampling stage with 

nonresponse adjustments (OECD, 2017). Using them with the Horvitz-Thompson (HV) estimator 

allows for unbiased and consistent estimators for any desired statistic. For computing unbiased 

estimates of the sampling variance accounting for the complex design, Balanced Repeated 

Replication (BRR) with Fay's adjustment is used (Judkins, 1990). To implement this method, pairs of 

primary sampling units (usually schools) are created based on their location in the sorted sampling 

frame within each explicit and implicit stratum, whenever possible (OECD, 2017). That is, schools in 

one pair, also called a "variance zone", are those sampled schools next to each other in the sampling 

frame, thereby sharing specific characteristics as they belong to the same stratum. Replicate weights 

are then calculated using a specific re-weighting scheme to accommodate the BRR computation 

algorithm (OECD, 2017; Rust & Rao, 1996). 

Determining an efficient stratification scheme in international large-scale assessments in education 

(LSA) is not trivial. The selected characteristics for stratification should be chosen to increase the 

estimator's efficiency compared to simple random sampling (Jaeger, 1984). In addition, international 

project management requirements and relevant privacy areas must be considered. Finally, the 

number of strata is also methodologically limited by the sample size and the BRR method (Valliant et 

al., 2018a). This study aims to provide evidence aimed at supporting the improvement of the 

stratification design used for the German sample in PISA. It may serve as a template for similar 

studies in other countries and economies participating in LSA. 

In previous PISA cycles, the German sample has been stratified using federal states as an explicit 

stratification variable with 16 categories and school type as an implicit stratification variable (Mang 

et al., 2019). When preparing school nonresponse adjustments for this sampling scheme in previous 

rounds of PISA, it was found that some strata could become very small or even empty. During the 

school nonresponse adjustment, initial adjustment cells are based on explicit and implicit 

stratification variables. School-level nonresponse or school closures could induce very small 
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adjustment cells. For example, in 10 out of 16 federal states (62.5%), fewer than 10 schools were 

selected in PISA 2018. Because small cells can lead to unstable weight adjustments and, in turn, 

inflate the sampling variances, it is a common practice to collapse small adjustment cells. These 

collapsed strata no longer accurately reflect the implemented sampling design, likely inflate the 

within strata variance, and show smaller efficiency gains compared to simple random samples when 

computing standard errors (SEs). Furthermore, federal states may not be effective predictors of 

achievement since many states share similar average achievement levels and variances within those 

strata might be too large to result in smaller sampling variances. Thus, other variables like the 

proportion of students with migration backgrounds within schools or students' average 

socioeconomic background may be more closely related to achievement and, therefore, could be 

preferred stratification variables (Buchmann & Park, 2009). 

This study examines how different stratification designs of the German PISA sample can lead to an 

increase in precision in estimating the main outcome variables: student performance in mathematics, 

science, and reading. We aim to identify and recommend a stratification design that aligns with both 

international and national requirements, is feasible in terms of its practical implementation, and is 

highly efficient. Since the results of the PISA study enjoy great publicity in Germany and are closely 

examined by politicians and the press, it is important to both use an unbiased and efficient 

estimation as well as be able to communicate design changes to a non-technical audience effectively. 

We focus on three schemes that will be benchmarked against a design without stratification and an 

artificial "perfect" stratification. Comparisons of the current design and the proposed alternatives will 

be made to quantify the differences between them and thus, support recommendations for a change 

in stratification with evidence. 

This paper is organized as follows. The first section elaborates on the PISA sampling design with PPS 

sampling, the stratification process, and its application in the German sample. Next, we introduce the 

simulation study. This section describes the process of simulating the PISA population and the 

process of stratification, sampling, and creating estimation weights for the analyses. We then 
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describe the performed analyses to compare and quantify the different stratification designs. 

Afterwards, we present and discuss the simulation study results, determining the differences and 

benefits that can result from different stratification designs and providing our recommendations for 

future data collections. Finally, we discuss the generalizability of our findings and possibilities for 

future research. 

Design-based multistage sampling in PISA 
PISA collects data from a multistage sample of fifteen-year-old students in all participating countries 

and economies. For this purpose, probabilistic random samples are selected, which can be used to 

generalize on the population, for example, to all schools having fifteen-year-old students in Germany 

(Brown, 2010; Kish, 1965; Levy & Lemeshow, 2013; Thompson, 2012). To make correct inferences 

about the population of fifteen-year-old students in school and to ensure international 

comparability, sampling procedures in PISA must be applied that allow for undistorted and precise 

population estimates. Special attention is paid to the point estimate of the characteristic of interest 

and its precision (Meinck, 2020). In PISA, a state-of-the-art sampling design acknowledged by the 

scientific community is applied (Rutkowski et al., 2013). PISA implements, by default, a complex 

sample design with a two-stage sampling procedure. As a rule, schools are drawn in a first stage, and 

students in participating schools are systematically randomly selected in a second stage. 

PISA's internationally specified target population consists of all students in an age cohort. This is, 

generally, all fifteen-year-old students who attend grade 7 or higher. The exact definition of the age 

cohort is determined in coordination with the international PISA consortium and may vary slightly 

between countries and economies due to different survey periods. For example, in Germany, all 

students born between January 1, 2002 and December 31, 2002 (inclusive) and attending at least 

grade 7 or higher were eligible to participate in PISA 2018. A so-called school sampling frame is 

created to implement the first sampling stage. This is a comprehensive list of all schools where 

fifteen-year-old students are expected to be taught during the data collection period. The purpose of 

this frame is to provide a comprehensive list of all eligible primary sampling units (here: schools) 
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containing all units of the target population (here: 15-year-old students; Meinck, 2020). 

In Germany, the information for this list is collected from the statistical agencies of the federal states. 

It includes, among other variables, the school type, the funding body, the number of students from 

the target population (7th to 10th grade, born in the year of definition), the number of 7th to 10th 

grade classes as well as information about planned school mergers or school closures. It should be 

emphasized that the information made available is mostly data protection insensitive according to 

GDPR1, which is an important consideration when deciding how to design the sample.  

In the PISA sampling frame, a school is defined as an organizational unit with one or more buildings 

belonging to that school. However, if a school has different tracks within that organizational unit, 

each track is listed separately. Within comprehensive schools or schools with several educational 

programs, the school track defines the intended school qualification of students in the associated 

branch. The German federal states partially define different tracks which can be divided into three 

different branches: lower secondary with no access to upper secondary (basic general education), 

lower secondary with access to upper secondary (extensive general education), and higher secondary 

(academic education). This definition forms the basis of school types for the stratification. 

PPS Sampling 
In PISA, the PPS sampling procedure is applied for the school selection (Meinck, 2020; Skinner, 2014). 

This procedure was first advocated by Mahalanobis (1952) and subsequently discussed by many 

researchers, e.g., Hansen and Hurwitz (1943) or Sukhatme et al. (1984). If the school size is used as 

the measure of size (MOS) in PPS, larger schools have a higher probability of being sampled than 

smaller ones, and vice versa, as students within larger schools have smaller selection probabilities 

than students within smaller schools (Lohr, 1999). Selecting schools with varying probabilities will 

result in unbiased estimators if they are appropriately weighted according to their selection 

probabilities (Singh & Mangat, 1996). The size variable must be available in the sampling frame. In 

1 Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of 
natural persons with regard to the processing of personal data and on the free movement of such data, and 
repealing Directive 95/46/EC (General Data Protection Regulation) [2016] OJ L 119/1 
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PISA, the preferred MOS is the expected number of fifteen-year-old students in each school. Other 

size measures, such as the total school size or the number of students in the modal grade, could be 

used as alternatives (OECD, 2020). The selection probability for a school 𝑖 can then be written as 

𝜋𝑖 = 𝑛
𝑀𝑂𝑆𝑖

∑ 𝑀𝑂𝑆𝑗
𝑁
𝑗=1

, 
(1) 

with 𝑛𝑀𝑂𝑆𝑖 < ∑ 𝑀𝑂𝑆𝑗
𝑁
𝑗=1 , 𝑖 being the selected schools, 𝑁 being all schools in the population, and 𝑛 

being the sample size. For the variance of any estimator, the variation of the values in the sum is 

decisive (Lohr, 1999). This also shows the advantage of PPS sampling: if the variance of the calculated 

statistic in a school is higher than its division by the 𝑀𝑂𝑆 of the respective school, the estimator has 

a smaller sampling variance. This is met if 𝑀𝑂𝑆 is proportional to the used statistic (Kauermann & 

Küchenhoff, 2011). 

Sampling weights are provided to avoid bias due to disproportional selection probabilities (OECD, 

2017). Those weights are computed as the inverse of the selection probabilities of each selection 

stage. Not all sampled schools and students eventually participate in the assessment. In Germany, 

the PISA assessment is mandatory for public schools, so they cannot reject participation. However, 

private schools do sometimes refuse to participate. At the student level, students may not 

participate in the test if they are sick on the assessment day or if they changed schools between the 

time of listing and assessment. In the event of such nonresponse, other "similar" students who 

participate (those belonging to the same gender and grade) carry the weight of their nonresponding 

peers. This avoids under-representation of those students. In short, nonresponse adjustment cells 

are built within each explicit stratum, grade, gender, and school combination (OECD, 2020). This 

nonresponse factor is thus, also considered in the sampling weights. The PPS method adjusts for 

nonresponse results by creating unequal weights in smaller sampling errors when estimating 

population features and increases the estimator's efficiency. Combined with systematic random 

sampling within schools, it is also called a self-weighting design (Solon et al., 2015). Moreover, PPS 
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sampling is a simple way to ensure similar final sampling weights when selecting an approximately 

equal number of students in each sampled school (Meinck, 2020). 

Stratification 
The word "stratify" comes from Latin word meaning “to make layers.” One can draw independent 

probability samples from each stratum by dividing the population into H non-overlapping 

subpopulations, called strata (Groves, 2011). Accordingly, a stratified random sample comprises of 

several subsamples, each representing internally more homogeneous subpopulations concerning the 

stratification characteristics. To make conclusions about the full population, the individual sample 

values must be weighted according to the ratios of the strata to the population. In stratified 

sampling, what matters is the variation within the strata. The strata should be determined such that 

the variables of interest within a stratum are as invariant as possible. In contrast, the different strata 

should differ as much as possible from each other to improve sampling efficiency (Jaeger, 1984; Lohr, 

1999) and sampling precision (Cochran, 1977). Stratification information must be available for all 

eligible schools in the sampling frame. Using this information, the sampling frame can be sorted by 

the stratification variables before sampling. Requirements at the international level and national 

political sensitivity (such as the request for a fair regional distribution of the sample) may also play a 

role in the stratification. The variance between strata does not contribute to the variance of the 

estimator. Only the sample size proportional to its stratum size ensures that the sample will highlight 

the differences between strata. Estimating the sampling variance for stratified samples with SRS 

within the strata is straightforward and can be handled, e.g., via a variance decomposition. For 

complex samples such as those applied in PISA, estimation of sampling variance becomes more 

complicated as clustering effects and varying selection probabilities have to be accounted for within 

each stratum. 

Stratification can be applied at any stage of the multistage sampling design. In PISA, two types of 

stratification are used: explicit and implicit (OECD, 2020). Explicit stratification means the grouping of 

schools by specific school characteristics and sampling schools for each explicit stratum separately 
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(Singh & Mangat, 1996). In the literature, explicit stratification is what is referred to in stratified 

sampling (Lohr, 1999; Singh & Mangat, 1996; Thompson, 2012). Implicit stratification can be added 

within explicit strata and involves the sorting of the schools by further characteristics. Combined with 

the PPS sampling approach methods, implicit stratification can be described as a systematic random 

PPS sampling design within each explicit stratum. The goal of this sorting is to approximately 

preserve the population proportions in the sample. 

PISA establishes quality standards all participating countries and economies must adhere to. One of 

these standards specifies that schools must be sampled using agreed upon, established, and 

professionally recognized principles of probability sampling. One of these principles involves the 

identification of appropriate stratification variables to reduce sampling variance and facilitate the 

computation of nonresponse adjustments (OECD, 2020). Stratification schemes differ considerably 

across the participating educational systems. For instance, the OECD ( 2020, Table 4.1) lists the 

stratification schemes for all participating countries and economies in their technical report. 

Urbanization, ISCED levels, school funding, countries’ and economies’ languages, school types, school 

sizes, or school tracks have been chosen in the past as stratification categories. In addition, the 

percentage of school variance explained by explicit stratification variables by country and domain 

(OECD, 2020, Annex C1) differs widely between the participating countries and economies. The 

potential effects of an optimal stratification design can be illustrated using the example of the 

Netherlands in Tables C4 and C5 of the Annex of the OECD Technical Report for PISA 2018 (OECD, 

2020). For example, the intraclass correlation (ICC) for the domain reading is 0.53. This means the 

variances between and within the schools are equally distributed between and within the schools. 

After considering stratification (explicit stratification in the Netherlands: school types, Table 4.1. of 

the Technical Report, OECD, 2020), it is only 0.10, i.e., the variance within schools barely plays a 

noteworthy role anymore. A similar effect of stratification on variance decomposition can also be 

observed for France. 

29



To understand the current stratification design used for PISA in Germany, a look into the past may be 

helpful. In the first three cycles (2000, 2003, and 2006), PISA was used to facilitate comparisons 

between the German federal states, which comprise of independent educational school systems with 

independent governance. Explicit stratification and oversampling by federal states were necessary to 

accommodate this national requirement. Each federal state was treated as a separate population of 

interest. While not needed in later cycles, this stratification design was kept to simplify the 

communication of the results to the broader audience unfamiliar with the technicalities of complex 

samples. In addition, education policy representatives from the federal and state governments called 

for such a design, as it appropriately reflects and relates to the diversity of different education 

systems at the federal state level. In addition to explicit stratification by state, implicit stratification 

by school type has been implemented in each cycle. This ensures that sampled students were 

distributed as evenly as possible across Germany so that each combination of federal state and 

school type was represented with at least some minimum number of schools in the sample. 

Germany applies different stratification designs in other LSAs, at least more recently. For example, in 

the Progress in International Reading Literacy Study (PIRLS) and the Trends in International 

Mathematics and Science Study (TIMSS), the German stratification design is based on an indicator of 

the socioeconomic background of students and school types (for more details, see Mullis et al., 2016, 

Chapter 5). The socioeconomic indicator has been determined by the number of students with an 

immigration background in each school eligible for the respective study. 

Estimation procedures for multistage, stratified PPS sampling 
To determine the correct estimation procedure for any survey statistic when complex sampling is 

applied, the characteristics of the sample design and the form of the required statistic must be 

considered (Wolter, 2007). The form of a statistic can be distinguished into linear and non-linear 

estimators. Those can be, for example, means from a straightforward sampling design or ratio 

estimators under complex sampling design. In detail, Wolter (2007) or Valliant et al. (2018a) provide 
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a theoretical background for those distinctions. The characteristics of the sampling design influence 

the precision measure of any statistic, in particular. 

Horvitz-Thompson Estimator 
The HV estimator can be used for any linear and non-linear statistic with the constraint that no 

element (i.e., the students in this context) can be sampled with replacement. The estimation formula 

can be written as 

�̂̅�𝐻𝑇 =
1

𝑁
∑ ∑

𝑦𝑖𝑗

𝜋𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

, 
(2) 

with  𝜋𝑖𝑗  = the selection probability that the 𝑗-th student is selected within the 𝑖 -th school, 𝑁 being 

the number of students in the population, 𝑚 and 𝑛 being the number of schools and students in the 

sample, respectively. 𝑦𝑖𝑗  indicates the statistic from the students. The Horvitz-Thompson estimator 

weights the selected students within the schools chosen by their inverse selection probabilities 𝜋𝑖𝑗. 

Thereby, the mechanism of the PPS sampling procedure is applied for the selection of the schools. 

This step is defined in this context as schools being the Primary Sampling Units (PSU). This estimator 

provides unbiased and consistent estimates for almost all linear and nonlinear statistics (Horvitz & 

Thompson, 1952), also known as the Horvitz-Thompson-theorem (Singh & Mangat, 1996). 

Variance estimation  
To account for the uncertainty in the estimation resulting from the complex sampling design, 

standard errors must be estimated by their respective statistical methods (Lohr, 1999). For 

computing unbiased and consistent estimates of sampling variance, the BRR method with Fay's 

adjustment is used in PISA (Judkins, 1990). The advantage of BRR, but also of similar replication 

methods like the Jackknife Repeated Replication (JRR), is that it can account for the effects on 

variances of nonresponse adjustments (as long as weighting steps are computed separately for each 

replication; Valliant et al., 2018b). However, this method is preferred over other methods, such as 

JRR, as it provides more stable estimates when analysing  sparse population subgroups (Judkins, 

1990; OECD, 2017; Rao & Shao, 1999). Specifically, if the estimate is a ratio of two subgroups, some 

31



replicate ratio estimates can be extremely large or undefined because of near-zero or undefined 

denominators, respectively. (Rao & Shao, 1999; Rao & Wu, 1985). For proficiency estimates in PISA, 

standard errors are a combination of sampling and imputation errors. Still, this paper focuses only on 

the sampling error as the sampling error is generally much larger than the imputation error. 

Therefore, the imputation error can be neglected in the context of this paper (OECD, 2020). 

To implement the method of BRR, pairs of primary sampling units (usually schools) are created 

according to the order of appearance in the sampling frame, which is first sorted by explicit strata, 

then by implicit strata and size (i.e., in Germany, first by the federal states, then by school types and 

size ). Hence, schools in a pair often share similar characteristics, as they belong to the same stratum. 

Pairs are sequentially numbered and named as variance zones (or just simple zones); other common 

names are variance strata or pseudo-strata. One school within these pairs is randomly numbered as 

one, the other as two. 

Then, 80 replicate weights are calculated using a specific re-weighting scheme to accommodate the 

BRR computation algorithm (OECD, 2017; Rust & Rao, 1996). That is, the estimation weight of each 

student within one school in the pair is multiplied by 1.5, while the estimation weight of each student 

in the other school in the pair is multiplied by 0.5. In cases where there are three units in a triplet, 

either one of the schools (designated at random) receives a factor of 1.7071 for a given replicate, 

with the other two schools receiving factors of 0.6464, or else the one school receives a factor of 

0.2929 and the other two schools receive factors of 1.3536. Determining which schools receive 

inflated and deflated weights is carried out systematically, based on the entries in a Hadamard matrix 

of order 80 (OECD, 2017). This Hadamard matrix only contains the values -1 and 1, and multiplication 

with its transposed counterpart returns an identity matrix of order 80 multiplied by a factor 80 

(Wolter, 2007). Technically, this is like selecting sub-samples from the whole sample, achieved by 

systematically manipulating the estimation weights. The PISA 2000 Technical Report (OECD, 2002, 

Appendix 12) explains how these particular factors came to be used. More than 80 replicates would 
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not improve the precision and would only add computational time. In addition, each replication 

weight is adjusted for nonresponse at both school and student levels. 

Given the variance estimator for a specific analysed  statistic named 𝑋∗ from the full sample follows 

𝑉𝐵𝑅�̂�(𝑋∗) = 0.05 ∑{(𝑋𝑡
∗ − 𝑋∗)2}

80

𝑡=1

(3) 

with t=1,…, 80 being the number of replicates. 𝑋𝑡
∗ results in the tth estimation of this statistic with the

tth replication weights combination. The advantage of the BRR method is that it produces unbiased 

and consistent estimators under complex designs (OECD, 2017). 

Research Questions 

Utilizing a simulation study, we aim to answer the following research questions in this paper: 

1) Are there relevant differences in the SEs and the bias of mean achievement estimates of

specific PISA domains when applying different stratification schemes for school sampling? 

2) What is the best stratification design for PISA Germany, considering suggestions from

research question 1 and constraints determined by the international sampling design, the 

available information about schools, and specific national characteristics of the educational 

system? 

Simulation Study 

With the help of a simulation study, the most efficient stratification procedure that also complies 

with the abovementioned requirements should be identified. In detail, we compare schemes used in 

the past with schemes that show promise for providing more precise results, benchmarking them 

against both a scheme without stratification and a scheme reflecting a "perfect" stratification. 
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 The simulated school population is based on the German PISA 2018 school population. From this 

"population", 2,000 sample replications are selected according to the stratification characteristics 

defined in the next section, using the approach of a Monte Carlo simulation. For each dataset, 

simulated weights and replication weights are calculated when drawing the sample for each 

stratification variant. 

The software program R Studio Version 1.4.1717 (RStudio Team, 2020) and its corresponding 

program R 4.1.0 (R Core Team, 2020) were used for simulating the sample replicates. The analyses to 

quantify the differences between those stratification methods were also performed with R Studio, its 

corresponding program R and the package survey (Lumley, 2004). 

Simulation PISA Population 

The simulation of a population can be implemented using two different methods. First, it can be 

generated using the properties of the desired characteristics and their correlation with each other 

with an existing distribution assumption (Mang et al., 2021). Second, weights of an existing sample 

can be used such that this simulation approximates the actual population. The second method has 

been applied in this simulation study. The basis of this approach has been developed by Little (1993) 

and Rubin (1993), discussed by Beckman et al. (1996) and developed in recent applications such as 

Templ et al. (2017). 

In this study, we use the student sample of the German PISA 2018 data as a basis for the simulation 

(Reiss et al., 2021). By aggregating student data (using school identifiers) to the level of schools, we 

achieve a school dataset. As the true anonymous list of schools from PISA 2018 with information on 

the number of PISA eligible students is available to the authors, we add information on the school’s 

MOS, federal state, and school type to the data. We did not only use information from the list of 

schools because other characteristics, such as student achievement and migration background, are 

available in the sample. 
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To simulate the German school frame using a sample of schools, each school has been copied 

according to its (rounded) school weight. A school from the sample then represents several schools 

according to their weight in the population. For example, a sampled school with a school weight of 

10.21 was copied 10 times on the simulated school frame as it represents about 10 other schools in 

the population. This approach gives us an approximated copy of the complete school frame. As 

school weights are adjusted for nonparticipation of schools, this is automatically accounted for in the 

simulation. Further corrections address changes in the number of fifteen-year-old students between 

listing and data collection timepoints. 

Since students are drawn randomly within schools after sorting by grade and gender, student design 

weights constitute the inverse of the selection probabilities of students within schools. They are 

again adjusted for nonresponse of students within schools. Duplicating the students within the 

schools in the sample by those within school student weights achieves the final simulated 

population, which can now be used to determine some "true population values", such as mean 

achievement and its associated standard deviation. 

To compare the characteristics of this simulated population with the true school list for Germany in 

PISA 2018, the total number of students in the frame, the MOS, the federal states, and the school 

types are used. The true school population comprises 13,855 schools, while the simulated school 

population cover 13,046 schools. The MOS's mean and standard deviation are slightly higher in the 

simulated school population (M=58.64, SD=44.58) than in the real population (M=52.98, SD=43.86). 

Deviations can be attributed to rounding errors and further sample trimming factors. Rounding 

errors can be attributed to the rounded school and student weights (to an integer with no decimals) 

used to create the simulated school and student population. The trimming factors include 

adjustments when the number of estimated fifteen-year-olds differs significantly from the actual 

number of those students in a school (there is a period over a year between the listing and testing in 

a school). 
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Furthermore, six of the schools drawn did not have any fifteen-year-old students, so that no testing 

could occur. Two other schools were excluded during the assessment (Mang et al., 2019). Table A1 

gives a comprehensive overview of those characteristics. 

Analysis Procedures - Stratification, Samples and Weights 

Seven different stratification designs have been defined and applied for the simulation study. Table 1 

below details the variables used in the different stratification designs under study, whereas Table 3 

lists the designs and their explicit, first implicit, and second implicit stratification variables. 

Additionally, Table 2 details the seven different school types mentioned in Table 1, comprising of 

lower and upper secondary schools and lower and upper secondary comprehensive schools. 

Table 1: Overview of stratification categories and their abbreviations for the simulation study 

Abbreviation Stratification Categories 

FS 16 federal states of Germany 

Special handling of: 
SAR Very small federal state 

Saarland  

FS - grouped CFS 3 city federal states 

NFS 5 "new" federal states 

OFS 8 "old" federal states 

MIGRATION 3 Levels of the proportion of students with migration 
background  

ST 7 School types  
Special handling of: 

SEN Special educational needs 

VOC Vocational 

LOC 3 Levels of competence 
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Table 2 – School types used for implicit stratification in the simulation 

School type (English translation)) School type (Original name in 
German) 

Lower secondary, some with access to upper 
secondary; basic general education (exclusively 
students of the same track) 

Hauptschule 

Lower secondary, access to upper secondary; 
extensive general education (exclusively students of 
the same track) 

Realschule 

Lower secondary, access to upper secondary; basic 
and extensive general education 

Schule mit mehreren 
Bildungsgängen 

Lower secondary and upper secondary; academic 
education (exclusively students of the same track) 

Gymnasium 

Lower and upper secondary comprehensive Integrierte Gesamtschule 

SEN schools Förderschulen 

VOC schools Berufsschulen 

Table 3: Stratification variants for the simulation study 

Stratification 
design 

Explicit 
stratification 

Number 
of explicit 
strata 

Implicit stratification Number of implicit 
strata 

Within 
explicit 
strata 

Overall 

1 - 1 - 1 1 

2 FS (16 states) 18 ST (5 strata) 80 112 

VOC FS (16 categories) 16 

SEN FS (16 categories) 16 

3 FS – grouped 
(CFS, NFS, OFS) 

5 ST (5 strata) 15 21 

VOC FS – grouped (CFS, NFS, OFS) 3 

SEN FS – grouped (CFS, NFS, OFS) 3 

4 MIGRATION (3 
levels) 

5 ST (5 strata) 15 21 

VOC MIGRATION (3 levels) 3 

SEN MIGRATION (3 levels) 3 

5 ST 7 7 

6 ST (7 levels) 8 FS (15 categories) 105 112 

SAARLAND ST (7 strata) 7 

7 LOC (3 levels) 5 ST (5 strata) 15 21 

VOC LOC (3 levels) 3 

SEN LOC (3 levels) 3 

The different stratification approaches will be described below in detail. According to Baumert et al. 

(2006), individual characteristics such as gender, migration, grades, socioeconomic status, and 

school-based characteristics such as school type and grade level are essential predictors of student 

achievement and hence relevant stratification variables for student assessment surveys. While the 

PISA within-sampling design is standardized across countries and economies (stratification within 

schools is done by gender and grades), national variation of school sampling designs is possible. We 
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hence determined the stratification designs under study accordingly while also considering data 

availability, as described below. 

To get a comprehensive picture of stratification, we use an unstratified sample design (i.e., a simple 

random sample) as a reference point. This is declared as stratification design 1. 

Stratification design 2 reflects the stratification used in the last cycles of PISA and is, therefore, an 

essential benchmark for this study. In this design, the explicit stratification is implemented using a 

two-step process: first, vocational (VOC) and special educational needs (SEN) schools are separated, 

then, all remaining schools are then separated by federal state. Within the federal-states-strata, 

schools are sorted by the five school types without VOC and SEN schools. Conversely, all VOC and 

SEN schools are sorted by federal state. This results in 18 explicit and 112 implicit strata, many of 

which are very small. This design is the one currently applied in PISA. 

Stratification design 3 groups federal states into three categories: city, old, and new federal states. 

City federal states are the three German cities Berlin, Hamburg, and Bremen, which are politically 

administered as a state; the distinction between old and new federal states reflects the division of 

states based on the separation of Germany before the reunification in 1989. Although Germany has 

been a federal republic since then, major differences exist between the old and new federal states, 

e.g., in salaries or education structure and curricula (Holtmann, 2020). A potentially better approach 

would be to merge the federal states based on their mean competencies. However, groups of federal 

states that are homogenous across all domains do not exist. Another argument against such a 

division is that it may be difficult to communicate and explain the choice to educational stakeholders. 

Stratification design 3 addresses the problem of too many small strata in design 2 detailed in the 

section Sampling Precision: Sampling Variance of this paper. In addition, the use of federal states is 

maintained in a grouped form so that the changes compared to variant 2 are minimal. They can be 

well defended to lay audiences that may challenge the change of the PISA stratification scheme. 
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It is well known from numerous PISA analyses that socioeconomic and migration background are 

significant predictors of student proficiency (OECD, 2019; Sirin, 2005; Stanat & Christensen, 2006). 

However, recording socioeconomic background is difficult, especially in Germany, as this is subject to 

strict data protection regulations. However, one piece of information available for German schools is 

the percentage of students with an immigrant background. Therefore, we decided to define 

stratification design 4 based on these properties. This variant uses categories of schools with 

different proportions of students with a migration background. Schools having no students with 

migration background are allocated to the first category of this index. Categories two and three are 

defined in Table 4 as schools with more than 0% and less than 30% of students with migration 

background and schools with more than 30%, respectively. 

Stratification designs 5 and 6 address school types as explicit stratification variables. For variant 6, an 

additional explicit stratum for the federal state of Saarland is created. This is to avoid sampling no 

schools from this (very small) federal state, which could happen by chance because the number of 

students in this state is smaller than the sampling interval2. Note that including no schools from 

Saarland in the sample is politically sensitive, and hence, should be avoided. As for the special 

handling of VOC and SEN schools, the explicit stratification is formed using two steps for this variant: 

first, the schools from the federal state Saarland (SAR) are separated, and all remaining schools are 

then separated by school type. Within the school types, schools are sorted implicitly by federal 

states. Conversely, all schools in SAR are sorted implicitly by their school types. 

Table 4: Level of competence for the three domains reading, science, and math; derived competence levels for 
stratification/Thresholds for the migration index for stratification 

Variable Thresholds 

MIGRATION MIGRATION=0 0<MIGRATION<30 MIGRATION>=30 

LOC LOC<=400 400<LOC<500 LOC>=500 

2 The sampling interval is the sum of the number of fifteen-year-olds in all schools divided by the number of 
schools to be sampled in each stratum. 
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Stratification design 7 from Table 3 represents the near-optimal stratification variant, where an 

aggregated index of student competence is used to categorize schools into three performance levels. 

The LOC is not available for German schools with official statistics and therefore is used just as 

another benchmark design in this study. It is defined in this study based on the 10 plausible values 

(PVs) of the three main domains of math, reading, and science obtained in PISA 2018 (OECD, 2020); 

these were combined at the individual student level and then aggregated to the school level. Each 

school was allocated to one of the three categories in Table 4. PVs, representing the competency of 

one student, are 10 drawn values from the answering distribution of this pupil to the PISA testing 

questions. The answering distribution is based on the principles of Item Response Theory (IRT; Rasch, 

1960) and adapted to PISA actual standards by Davier and Sinharay (2013). With IRT models, student 

responses to the questions from the PISA test are modelled as a probability function of person and 

item characteristics. For example, detailed explanations of this estimation procedure can be found in 

OECD (2020) and Mang et al. (2019). 

Note that VOC schools and SEN schools are treated as separate strata in stratification variants 3, 4, 

and 7 because students in these school types perform systematically lower than students in other 

school types. Separation further allows for achieving higher precision for these groups of students by 

oversampling schools in these strata. Additionally, the implicit sorting by school type is retained for 

variants 3, 4, and 7 as it is highly related to achievement and, therefore, essential for low sampling 

variance. This sorting also accommodates a higher precision for comparisons between school types. 

For each stratification design, the frame is sorted by explicit and then implicit stratification and then 

by MOS in a serpentine manner, mimicking the PISA sorting method. In the next step, 2,000 samples 

of 223 schools with 30 students per school were drawn by systematic PPS sampling for each 

stratification scenario using a Monte Carlo approach. The sample size of 223 schools and 30 students 

per school was chosen, as this number reflects the number of schools and students participating in 

PISA 2018 in Germany. Please note the standard PISA sampling international target is 150 schools 

and 42 students per school (OECD, 2020). The PPS sampling procedure implies that schools are 

40



selected using a random start and a sampling interval within the explicit strata. Schools are selected 

for the sample if the cumulative sampling interval matches the cumulative number of fifteen-year-

olds in the schools. 

Within the schools, an equal probability sample of PISA students was selected using systematic 

sampling, where the lists of students were first sorted by grade and then by gender. In schools with 

less than 30 eligible students, all of them were selected. Using the binomial distribution or so-called 

Bernoulli processes (Clopper & Pearson, 1934), it is determined that 2,000 replicates are adequate to 

achieve a coverage probability of greater than 99% for the 95% confidence interval of the estimates. 

This approach allowed a nearly exact representation of the sampling distribution, thereby enabling a 

precise estimation of the sampling precision (i.e., the SEs of specific population features) for each 

scenario. 

The school and student base weights were automatically generated after drawing the school and the 

student sample for each stratification variant. Therefore, the estimation weight we use in our 

simulation is the product of the school and the student base weight, given by 

𝑤𝑖𝑗 =
1

𝜋𝑖𝑗
, 

(4) 

with 𝜋𝑖𝑗= selection probability for student j given school 𝑖  has been selected. The calculation of 

replicate weights to correctly estimate the SEs in this study is based on the BRR method with Fay's 

adjustment (Judkins, 1990), as done in PISA (OECD, 2009, 2020). Preserving the order of schools in 

the sample determined by the sorting before the selection process, two adjacent schools belonging 

to an explicit stratum are paired into so-called variance zones. If there is an odd number of schools in 

a stratum, the last group is set with three schools. Once 80 variance zones are reached, the next pair 

of schools is again allocated to zone one, the second-to-next pair to zone two, and so on. One school 

within the pairs is randomly numbered as one, the other as two. In the case of three schools being 

placed in a zone, one school is randomly numbered as one and the other two schools as two. With 
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the help of these variance zones, 80 replicate weights are then calculated with the help of a 

Hadamard matrix explained in the section Estimation procedures for multistage, stratified PPS 

sampling: Variance estimation in this paper. 

Nonresponse for both levels must also be considered to determine the final school and student 

weights. As the assessment is mandatory in Germany, nonresponse for schools was very low over 

most cycles. Hence, we assumed 100% participation at the school level for the simulation. 

Furthermore, student nonresponse is not the focus of this article and is therefore also neglected 

(100% student participation is assumed). Some minor adjustments to student base weights 

regarding, e.g., school nonparticipation or corrections from the estimation of the number of fifteen-

year-olds were applied to reflect the true population values as precisely as possible in the samples. 

One constraint of this simulation study is that measurement variance might be underestimated as 

one student in the base sample with a given competency represents multiple students with exactly 

this competency value (represented by PV’s) in the simulated population. That is, a student with, say, 

a competency score of 500 and a total student weight of 200 represents 200 other students with the 

same competency of 500 and, thus, no variation among those students. To account for this 

simulation feature, random noise is added to each of the 10 PVs of the individual domains. This is 

added to the original PVs via random selection from a normal distribution with a mean of 0 and a 1/4 

fraction of the standard deviation of the respective PVs grouped by school type. This proportion was 

chosen based on evidence, as it adds "noise" to the distribution of skills without changing the 

distribution characteristics. 

Given the stratification designs used with the 2,000 samples and associated weights and replicate 

weights, mean calculations for the three PISA domains reading, science, and math and their 

associated SEs were calculated in the following step, and these 2,000 estimates per variant and 

domain were compared with their distributional properties in the following sections. 
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Results and Discussion 

Variance in Proficiency Explained by Stratification 

As explained earlier in this paper, efficient stratification variables are closely related to the outcome 

variables. Therefore, using a regression modelling approach, we examined in a first step what part of 

the variance of the achievement scores was explained by the stratification variants, implicit and 

explicit stratification, in the different scenarios (Table 5 and Table 6).3 Table 5 shows the variances of 

average school proficiency explained by the stratification scheme in each design, whereas Table 6 

displays the respective variances in student proficiency. Average school proficiency was determined 

by the average student proficiency for each subject, using the first plausible value for each student. 

Note that only the first PV for mathematics, science, and reading was used as it approximates the 

distribution of student achievement correctly (Davier et al., 2009). 

Table 5: Explained variances in average school proficiency (math, science, and reading) by explicit and implicit stratification 
for each stratification variant. Method: linear regression 

Stratification design Explicit Stratification Implicit 
Stratification 

Mathematics Science Reading 

1 - - - - - 

2 FS, VOC, SEN ST, FS 0.86 0.84 0.84 

3 FS – grouped, VOC, SEN ST, FS 0.83 0.81 0.81 

4 MIGRATION, VOC, SEN ST, MIGRATION 0.82 0.80 0.80 

5 ST - 0.82 0.79 0.79 

6 ST, SAR FS, ST 0.86 0.84 0.83 

7 LOC, VOC, SEN ST, LOC 0.91 0.89 0.89 

3 The OECD (2020) also displays information on explained variances (Annex C6). Note that they are  based on 
multilevel models, drawing on information from both students and schools simultaneously, and can therefore 
not be compared with the information presented in Tables 5 and 6.  
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Table 6: Explained variances in student proficiency (math, science, and reading) by explicit and implicit stratification for each 
stratification variant. Method: linear regression 

Stratification 
design 

Explicit 
Stratification 

Implicit 
Stratification 

Mathematics Science Reading 

1 - - - - - 

2 FS, VOC, SEN ST, FS 0.38 0.38 0.39 

3 FS – grouped, VOC, SEN ST, FS 0.36 0.36 0.38 

4 MIGRATION, VOC, SEN ST, MIGRATION 0.35 0.36 0.37 

5 ST - 0.33 0.34 0.36 

6 ST, SAR FS, ST 0.37 0.37 0.38 

7 LOC, VOC, SEN ST, LOC 0.66 0.69 0.72 

Comparing Tables 5 and 6, the first thing to emphasize is that differences across schools explain 

about half of the variance in student proficiency (variances from Table 5 are about double compared 

to those from Table 6), meaning that the school context can explain a large proportion of the 

explained variance. Stratification design 1 represents the variant without stratification. Hence, no 

variance can be explained by this scheme. Variants 2 to 6 explain about one-third of the variance in 

students' proficiency scores in the three competencies math, science, and reading (Table 6). 

Stratification variant 6 slightly outperforms variants 3, 4, and 5, explaining the same variance as 

variant 2. As expected, the near-perfect stratification variant 7 illustrates the highest share in 

proficiency score variance since it is based on the proficiency scores themselves. In addition to these 

findings, we calculated these explained variances using the "actual" data from the PISA 2018 sample 

and presented them in Tables A3 and A4 in the appendix. It can also be seen that, for the sample, the 

variance explanations at the school level are almost twice as high as at the student level. Also, the 

proportions of explained variance at the school level compared to the simulated population values 

are almost identical, with a bias of approximately three to four percentage points found at the 

student level. This may be due to the fixed stratification in PISA 2018 with stratification design 2, or it 

may be due to the added "noise" to the PVs (please refer to section Analysis Procedures - 

Stratification, Samples and Weights for the explanation). In summary, this analysis can serve as a 
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basis and interpretation aid for the simulation study results. It provides the first evidence that 

stratification variants 3, 4, 5, and 6 can likely be a reasonable alternative to the currently 

implemented variant (2). 

Results of the Simulation Study 
We present further results in the format of boxplots and tables. Boxplots describe the distribution of 

the estimated values each based on many repetitions (2,000 in our study). The median, the 25th, and 

75th percentiles, minimum and maximum, are presented (Chambers, 1983). Differences between the 

boxplots are interpreted based on several definitions (e.g., Williamson et al., 1989). First, the boxes 

representing the interquartile ranges are compared. If boxes do not overlap, a difference can be 

stated. Second, medians are considered. If the median line of a box lies outside of another box 

entirely, then a difference between the two groups is likely. Third, the whiskers must be considered. 

They mark the maximum and the minimum values of each set. Their distance represents the range 

between those two extremes. Larger ranges indicate a wider distribution, that is, more scattered 

data. 

In Tables 7, 8, and 9, informal statistics are listed for math, science, and reading for all seven 

stratification designs. Augmenting the upcoming graphical results in Figure 1 and Figure 2, the tables 

provide the following information. Column 1 (Mean math bias) presents the deviation from the 

estimated mean of the respective competences to the true mean values of the population. Column 2 

shows each parameter's empirical 95% coverage rates (CR). The empirical 95% coverage rate 

indicates how often each estimated parameter's 95% confidence interval covers the true population 

value. An acceptable coverage rate starts at 95%. Column 3 presents the SEs computed using the BRR 

method, averaged over the 2,000 sample replicates. Column 4 displays the "true" SE for each variant, 

calculated as the standard deviation (SD) of the average student achievement over the 2,000 sample 

replicates, i.e., the SD of the sampling distribution. Finally, we present in column 5 Root Mean 

Squared Error (RMSE). A low RMSE value means that the estimator's bias and variance are small. 
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Table 7: Mean bias, SEs, and fit statistics for the domain math by stratification design. 

Stratification 
design 

(1) Mean 
Math Bias 

(2) CR Mean 
Math 

(3) Mean 
Math SE (BRR) 

(4) Mean 
Math SE (SD 
of sampling 
distribution) 

(5) RMSE 

1 0.02 0.98 4.28 4.12 4.12 

2 0.03 1.00 3.00 2.48 2.48 

3 0.04 1.00 2.71 2.41 2.41 

4 0.50 1.00 2.34 1.45 1.53 

5 0.12 1.00 2.22 2.39 2.39 

6 0.04 1.00 2.16 2.51 2.51 

7 0.37 1.00 1.58 1.30 1.35 

Note: SE=sampling error, CR=coverage rate, BRR= balanced repeated replication, RMSE=root mean squared error 

Table 8: Mean bias, SEs, and fit statistics for the domain science by stratification design. 

Stratificatio
n design 

(1) Mean 
Science Bias 

(2) CR Mean 
Science 

(3) Mean 
Science SE 
(BRR) 

(4) Mean 
Math SE (SD 
of sampling 
distribution) 

(5) RMSE 

1 0.23 0.97 4.46 4.09 4.10 

2 0.29 1.00 3.06 1.92 1.95 

3 0.28 1.00 2.78 1.82 1.84 

4 0.59 1.00 2.45 1.35 1.48 

5 0.35 1.00 2.31 1.83 1.86 

6 0.25 1.00 2.21 1.92 1.94 

7 0.41 1.00 1.66 1.24 1.30 

Note: SE=sampling error, CR=coverage rate, BRR= balanced repeated replication, RMSE=root mean squared error 
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Table 9: Mean bias, SEs, and fit statistics for the domain reading by stratification design. 

Stratificatio
n design 

(1) Mean 
Reading Bias 

(2) CR Mean 
Reading 

(3) Mean 
Reading SE 
(BRR) 

(4) Mean 
Reading SE 
(SD of 
sampling 
distribution) 

(5) RMSE 

1 0.72 0.97 4.80 4.73 4.78 

2 0.64 1.00 3.45 2.92 2.99 

3 0.70 1.00 3.12 2.83 2.91 

4 0.08 1.00 2.62 1.54 1.54 

5 0.58 1.00 2.74 2.77 2.83 

6 0.71 1.00 2.79 2.98 3.06 

7 0.30 1.00 2.11 1.42 1.45 

Note: SE=sampling error, CR=coverage rate, BRR= balanced repeated replication, RMSE=root mean squared error 

Although stratification only impacts the estimation precision, columns 1 and 2 of Tables 7, 8, and 9 

show that all methods estimate the mean domain value with little bias, as expected. 

Figure 1: Distribution of estimates for proficency means by stratification variant; please refer to table 3 for the description of 
the stratification variants. 
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Figure 1 augments and confirms the information presented in the tables, with boxplot panels A to C 

presenting the distribution of estimated means for the three proficiency domains based on the 

simulation (2,000 samples). The red horizontal line represents the true population value. Looking 

closely at Figure 1, we see that the true values are optimally covered for the analysed domain 

reading (graph C). At the same time, a consistent but negligibly slight bias appears for the estimation 

of means for mathematics and science. 

Figure 2: Distribution of estimated sampling error with BRR by stratification variant; please refer to table 3 for the 
description of the stratification variants. 

This research focuses on sampling precision, which is presented in columns 3 and 4 of Tables 7 to 9, 

augmented by a graphical display (Figure 2) of the distributions of SE estimates of the domain means, 

here based on BRR.4 The red points in the figure indicate the "true" SE measured by the standard 

deviation of the sampling distribution. The findings are equivalent for all domains. As expected, 

4 Please consider that deviations from SEs displayed in Table 12.7 in the PISA 2018 Technical Report (OECD, 
2020) and reported SEs (BRR) in Table 7,8,9 are due to the simulation design.  
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stratification design 1 (i.e., unstratified sample) results in the highest SEs and stratification design 7 

(i.e., stratification by average proficiency) results in the smallest SEs. The remarkable difference 

shows the potential of optimal stratification: comparing designs 1 and 7, SEs decrease by a factor of 

three, equivalent to an increase in sample size by roughly a factor of 10, given no changes in the 

sampling design. In other words, if one wishes to decrease sampling precision by the same factor 

without changing the stratification design, one must select a sample that is ten times bigger. 

The stratification design that PISA currently applies (stratification design 2) decreases SE, too, on 

average, across the three domains by a factor of around 1.5 compared to no stratification. This is 

equivalent to doubling the sample size. However, stratification designs 3 to 6 all outperform design 2. 

SEs are almost halved compared to design 1 (no stratification), equivalent to an increase in sample 

size by a factor of three. Designs 5 and 6 show the best results regarding sampling precision. 

However, the gains are minimal compared to designs 3 and 4. However, looking strictly at the true SE 

(column 4 in Tables 7 to 9), only design 4 results in substantially smaller SEs than design 2. 

Another side effect of stratification is that the precision of the SE estimates is higher – this can be 

seen in Figure 2. The distances between the boxplot whiskers are smaller in all variants applying 

stratification. 

By looking at RMSE, we account for both sampling precision and proficiency estimation accuracy 

(columns 5 in Tables 7 to 9). Again, unsurprisingly, the highest and lowest RMSE is observed in 

variants 1 and 7, respectively. RMSE values are similar for variants 2, 3, 5, and 6, while variant 4 

shows the best performance again. 

Biasedness of Sampling Error Estimates when using BRR 
A rather unexpected finding of this simulation study was the discrepancy in the SEs when comparing 

the "true" values (computed as the SD of the sampling distribution over 2,000 samples) versus the 

averaged SEs estimated using BRR. This is not the focus of this paper but warrants further 

investigation, which is why we briefly describe the issue in this section. The BRR SE estimates are – 

with a few exceptions - consistently larger than the true values. That means the standard errors seem 
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to be systematically overestimated. After careful consideration, there was a presumption that 

estimating standard errors using BRR does not comprehensively account for implicit stratification. 

The authors re-performed all analyses with a random permutation for the applied implicit 

stratification variables to address this hypothesis. Unlike the implicit stratification in stratification 

designs 2-7, there is now a random implicit sorting assuming no implicit sorting was applied. In doing 

so, the standard deviations of the estimates (i.e., the "true" SE) become visibly larger and approach 

the true SEs (see Table A2 with 100 replicates in the appendix). Without implicit sorting, different 

(i.e., less precise) mean estimators result for each sample so that the overall sampling distribution 

has a larger standard deviation. Note that we present only analysis for the domain math in the 

Appendix; for the other domains, the outcomes are comparable. 

Related to this, note that the coverage rates presented in columns 2 of Tables 7 to 9 above were 

estimated based on the BRR SEs. It can be seen that almost all stratification designs achieve 100% CR 

meaning that all true population values were covered in the 95% confidence interval of each 

estimated parameter. Given the results above, it can be assumed that the CR is overestimated. 

Furthermore, some approaches note and discuss an overestimation of the standard deviation from 

the sampling distribution via replication approaches such as BRR or similar methods, e.g., the JRR 

method (Qian, 2020; Rizzo & Judkins, 2004; Rizzo & Rust, 2011). Other variants for estimating the 

standard error based on Taylor series expansion (Lavrakas, 2008; Valliant et al., 2018b), such as the 

so-called delta method (Cochran, 1977), seem to result in more robust and efficient estimates 

(Krewski & Rao, 1981; Qian, 2020; Wolter, 2007). A problem of this variant is that it requires the joint 

inclusion probability for each variance zone, i.e., the probability that the two selected schools in the 

respective variance zone are jointly selected. This probability can become zero for certain pairs of 

units within the chosen variance estimation process (Wolter, 2007). However, there are ways to 

estimate it (Hajek, 1964; Särndal et al., 2003). To consider all confounding parameters of this 

discrepancy in the simulation, parts of the simulation were also calculated with JRR. An almost 

identical result structure confirms the suspicion of the conservative estimation of the standard 
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deviation of the estimated values by repeated replication methods. In addition, it should be 

mentioned that the "ideal" conditions of the simulation study probably also underestimate the SD of 

the sampling distribution since specific "errors" such as schools' or students' nonresponse may not 

be considered. 

Summary and Conclusions 

This simulation study reflects the relevance of stratification and, in particular, its high potential for 

efficient sample designs in the case of PISA Germany. 

First, the study reconfirmed that stratification does not affect parameter estimation, here looking at 

the mean achievement of the PISA domains mathematics, science, and reading. More importantly, 

we found large differences in the SEs of achievement scores when applying different stratification 

schemes for school sampling. This study aimed to investigate alternative stratification designs since 

the one currently applied results in strata that are too small, causing technical problems when 

preparing the sample data for inference statistics (i.e., estimation of population features). One 

problem is that the small strata cause suboptimal data handling for estimating sampling variance 

with BRR. Explicit strata had to be collapsed in previous cycles to accommodate the pairing algorithm 

in BRR, a procedure that compromises technical standards. Further, nonresponse adjustment 

procedures were affected (an issue not covered in this article). 

We studied four alternative stratification designs, referred to as designs 3, 4, 5, and 6, that all 

overcome the problem of small strata, and compared them with the current scheme (design 2), a 

variant without stratification (design 1), and an optimal stratification design (7). 

Considering the true SEs and the RSME exclusively, design 4 performs best. However, switching to 

this stratification design would lead to a substantial change in the PISA sampling design. This scheme 

stratifies based on the proportions of students with a migration background and completely neglects 

the German school structure tied to federal states. This would change the logistics for conducting the 

PISA study in Germany, as it would, for example, be impossible to allocate a fixed number of schools 
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to each federal state and inform states at an early stage about sample sizes to be expected. It is also 

possible that no schools at all are drawn from very small states (especially the Saarland). Given these 

effects, stratification design 4 may not be the best solution for a change. Note this is not a problem 

from a methodological point of view: no comparisons between federal states are intended for PISA, 

and the sample remains unbiased. 

Designs 3, 5, and 6 can also be recommended as alternatives. They show sufficiently good estimate 

precision and BRR SEs are smaller than variant 2. 

Stratification design 3 groups the federal states into three categories (city states, old and new 

German states). Since this grouping preserves the federal-state structure of Germany, it may provide 

one good stratification design alternative for upcoming cycles of the PISA study, representing a 

conservative and cautious change. However, it does not entirely overcome the logistical issues 

pointed out above for design 4. By an implicit stratification by federal states (designs 5 and 6), the 

issue of unpredictable sample sizes can be solved, as this procedure results in a close-to-perfect 

proportional allocation of the sample to all strata so that the sample sizes per federal state become 

predictable. Variant 6 also solves the issue of the likelihood of selecting no school in Saarland. Both 

designs 5 and 6 use the types of schools for explicit stratification, ensuring high sampling precision as 

school type is very closely related to the average proficiency of students. Overall, we believe that 

stratification design 6 meets all requirements of a stratification design in Germany and can therefore 

be thoroughly recommended for future PISA cycles. 

The reduced SEs with a change in stratification will lead to more precise samples, smaller confidence 

intervals, and higher statistical power when comparing Germany with other participating countries, 

economies, or specific groups of students within Germany (e.g., gender differences). Increased 

statistical power may allow the comparison of smaller subgroups, which was not possible before. 

However, this may involve communication challenges, i.e., explaining specific findings to a lay 

audience. For example, a difference of 5 points between two comparison groups would not have 
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been detected as a statistically significant difference in previous cycles, but now would. While a 

statistician is aware that an insignificant result does not mean there is no difference between groups 

but merely means we cannot know whether or not there is a difference, this is a misinterpretation 

that is very common even among scholars less familiar with statistical theory. In connection with 

trend calculations between two PISA cycles and their cross-sectional nature, it can be stated that the 

linking error, considering the uncertainty between two assessments, might increase due to the 

proposed change in the sampling design (OECD, 2020). The complete SE consisting of sampling, 

imputation, and linking error will then increase, and results might not become as statistically 

significant as they would without changing the sampling design. 

Suppose an increase in sampling precision is not needed or not desired. In that case, another 

possibility is a change in the stratification design and a reduction in sample size while keeping 

precision constant with previous cycles. This could reduce the burden on German schools that must 

cope with various regional, national, and international studies and assessments. This could also mean 

that resources are directed toward better data quality rather than “more data.” For example, a 

smaller sample size means national centres can direct funds to increase participation rates. In any 

case, a change in the stratification design for PISA in Germany must be carefully communicated with 

relevant stakeholders (for example, the press or teacher unions) and policymakers. 

Future research and initiatives may focus on further possibilities to increase sampling efficiency 

without increasing costs (Biemer & Lyberg, 2003; Groves, 2011). One direction could be to consider 

including better socioeconomic background indicators of the student intakes of schools in the 

sampling frame and the stratification scheme since this is a powerful predictor of student 

achievement in the PISA domains of mathematics, science, and reading. Another, perhaps even more 

straightforward, approach would be to use achievement indicators for schools, i.e., categorizing 

schools by the average achievement of their students. Such indicators could be based on regional 

mandatory census assessments. As shown with stratification variant 7, this would be the most 

efficient design. This approach is already used for several countries in many contemporary large-
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scale assessments (e.g., Mullis et al., 2016). While this data also exists in Germany, it is inaccessible 

for the teams preparing the German school sampling frames for national and international large-

scale assessments because of its confidential nature. Providing this data to these teams while 

adhering to strict data protection measures would be desirable. 

Limitations and Outlook 
It should be noted that this simulation study has been conducted under ideal conditions. As 

mentioned earlier in the report, no bias due to nonparticipation was considered at both the school 

and student levels. Further, even if unlikely, new strategies may also increase other sources of error, 

or new biases may arise. We refer to the theory of the total survey error (Assael & Keon, 1982; 

Weisberg, 2005), which introduces non-sampling error sources, such as errors due to frame 

construction, the sample selection process, data collection, data processing, and estimation 

methods. 

Another limitation of the study is that the proportion of foreign students in schools, which is used as 

a stratification design in Stratification 4, does not consider whether a student with an immigrant 

background has a German passport because, unlike their parents, they were born in Germany. Since 

public statistics are usually not allowed to publish these subtleties due to data protection, this aspect 

must be taken care of in the stratification for interpretations. Another limitation here may be that 

this information may not be consistently available in public statistics the frame is based on, and 

hence, the effect might be overestimated. Furthermore, it would be desirable to calculate additional 

statistics, such as correlation or regression coefficients, to quantify the precision gain further. Finally, 

the discrepancy between the true SEs and their estimation via BRR should be examined in more 

depth. In particular, the relationship between BRR and the origin of Taylor Series Linearization 

(Lavrakas, 2008; Valliant et al., 2018b) with its application of the delta method (Cochran, 1977) shall 

be addressed in future studies. 

Last but not least, our results are hardly transferable to other studies as explicitly only the 

stratification of Germany in PISA has been addressed. However, it may serve as a guide for other 
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countries establishing or revising their stratification. It should be considered that proportions in the 

school or student population might change and need to be considered in future adjustments. So can 

migrational movement lead to changed population characteristics that must be controlled to apply 

the given suggestions. 

In summary, it can be emphasized that the principle of stratification with its systematic sampling 

should be retained in the complex sampling design in PISA, but with recommended adjustments in 

the execution of explicit and implicit execution of stratification. 

List of abbreviations 

BRR Balanced Repeated Replication 

CI Confidence Interval 

HT Horvitz Thompson 

IDB International Database (Analyzer) 

ICC Intraclass Correlation 

IEA International Association for the Evaluation of Educational Achievement 

IRT Item Response Theory 

JRR Jackknife Repeated Replication 

LSA Large-Scale Assessment 

MOS Measure of Size 

MSE Mean Squared Error 

PIRLS Progress in International Reading Literacy Study 

PISA Programme for International Student Assessment 

PPS Probability Proportional to Size 

PSU Primary Sampling Units 

SE Standard Error 
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SD Standard Deviation 

SRS Simple Random Sample 

TIMSS Trends in International Mathematics and Science Study 
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Appendix 
Table A1: Comparison of the simulated school population and the true school population of PISA 2018 (Frame). Due to data 
protection reasons, strata were pseudonymized**. 

Simulated school population PISA 2018 school population (Frame) 

N 13046 13855 

Mean MOS 58.64 52.98 

SD MOS 44.58 43.86 

N FS 1 1995 2002 

N FS 2 2187  1913  

N FS 3 229  299  

N FS 4 263   295   

N FS 5 60  80  

N FS 6 183  163  

N FS 7 829  920  

N FS 8 237 291 

N FS 9 1218 1279 

N FS 10 1889  2068  

N FS 11 401   417  

N FS 12 93  103  

N FS 13 515  516  

N FS 14 247  306  

N FS 15 303  428  

N FS 16 335 374 

N SEN 1208  1334 

N VOC 854 1067 

N ST 1 2857 2559 

N ST 2 1915 2077 

N ST 3 1514 1742 
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N ST 4 3102 3129 

N ST 5 1596 1947 

N ST 6 -* 

N ST 7 2062 2401 

*No school type 6 has been sampled in PISA 2018.

**The MOS, the explicit stratification of PISA 2018 (FS: federal states, special educational needs, and vocational schools), the 

suggested grouped explicit stratification (FS new), and the school types are displayed. The absolute number, means, and 

standard deviations have been analysed. 

Table A2: Mean bias, SEs, and fit statistics for the domain math by stratification design with a random permutation per 
sample for the applied implicit stratification variables with 100 replications 

Stratification 
variant 

(1) Mean Math 
Bias 

(2) CR Mean Math (3) Mean Math SE 
(BRR) 

(4) Mean Math SE 
(SD of sampling 
distribution) 

(5) RMSE 

1 0.14 0.97 4.27 4.45 4.43 

2 0.10 0.96 4.20 4.22 4.20 

3 0.28 0.99 4.19 4.16 4.15 

4 0.01 0.95 3.98 4.28 4.26 

5** - - - - - 

6 0.40 0.97 2.38 2.99 3.00 

7 0.20 0.97 2.15 2.70 2.69 

Note: SE=sampling error, CR=coverage rate, BRR= balanced repeated replication, RMSE=root mean squared error 
**no implicit stratification for Stratification 5 variant 
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Table A3: Explained variances in average school proficiency (math, science, and reading) by explicit and implicit stratification 
for each stratification variant for real PISA 2018 sample data. Method: linear regression 

Stratification design Explicit Stratification Implicit 
Stratification 

Mathematics Science Reading 

1 - - - - - 

2 FS, VOC, SEN ST, FS 0.87 0.86 0.86 

3 FS – grouped, VOC, SEN ST, FS 0.82 0.83 0.83 

4 MIGRATION, VOC, SEN ST, MIGRATION 0.81 0.81 0.81 

5 ST - 0.80 0.80 0.81 

6 ST, SAR FS, ST 0.86 0.86 0.85 

7 LOC, VOC, SEN ST, LOC 0.90 0.90 0.90 

Table A4: Explained variances in student proficiency (math, science, and reading) by explicit and implicit stratification for 
each stratification variant for real PISA 2018 sample data. Method: linear regression 

Stratification design Explicit Stratification Implicit 
Stratification 

Mathematics Science Reading 

1 - - - - - 

2 FS, VOC, SEN ST, FS 0.42 0.41 0.43 

3 FS – grouped, VOC, SEN ST, FS 0.39 0.39 0.41 

4 MIGRATION, VOC, SEN ST, MIGRATION 0.39 0.39 0.41 

5 ST - 0.38 0.38 0.40 

6 ST, SAR FS, ST 0.41 0.41 0.43 

7 LOC, VOC, SEN ST, LOC 0.69 0.73 0.75 
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Chapter 4: Sampling weights in multilevel modelling: an investigation 

using PISA sampling structures 
Chapter 4 evaluates the best application of sampling weights in hierarchical models. Based on 

theoretical foundations and practical developments, we optimize the application of hierarchical 

model weighting in LSAs through simulative evaluation. We examine nine different weighting 

designs. The selected scenarios are based on framing approaches to explain required weighting in 

hierarchical modelling, settings promoted in the literature and theoretical, new devised 

considerations for future implementations. We consider different estimation, optimization, 

acceleration methods, and approaches to using sampling weights. Three population scenarios have 

been simulated using the statistical program R (R Core Team, 2018). The analyses have been 

performed with two software packages for hierarchical modelling of LSA data: Mplus (Muthén & 

Muthén, 2017) and SAS (SAS Institute Inc., 2018).  
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Abstract 

Background: Standard methods for analysing data from large-scale assessments (LSA) 
cannot merely be adopted if hierarchical (or multilevel) regression modelling should 
be applied. Currently various approaches exist; they all follow generally a design-based 
model of estimation using the pseudo maximum likelihood method and adjusted 
weights for the corresponding hierarchies. Specifically, several different approaches 
to using and scaling sampling weights in hierarchical models are promoted, yet no 
study has compared them to provide evidence of which method performs best and 
therefore should be preferred. Furthermore, different software programs implement 
different estimation algorithms, leading to different results.

Objective and method: In this study, we determine based on a simulation, the esti-
mation procedure showing the smallest distortion to the actual population features. 
We consider different estimation, optimization and acceleration methods, and different 
approaches on using sampling weights. Three scenarios have been simulated using the 
statistical program R. The analyses have been performed with two software packages 
for hierarchical modelling of LSA data, namely Mplus and SAS.

Results and conclusions: The simulation results revealed three weighting 
approaches performing best in retrieving the true population parameters. One of them 
implies using only level two weights (here: final school weights) and is because of its 
simple implementation the most favourable one. This finding should provide a clear 
recommendation to researchers for using weights in multilevel modelling (MLM) when 
analysing LSA data, or data with a similar structure. Further, we found only little differ-
ences in the performance and default settings of the software programs used, with the 
software package Mplus providing slightly more precise estimates. Different algorithm 
starting settings or different accelerating methods for optimization could cause these 
distinctions. However, it should be emphasized that with the recommended weighting 
approach, both software packages perform equally well. Finally, two scaling techniques 
for student weights have been investigated. They provide both nearly identical results. 
We use data from the Programme for International Student Assessment (PISA) 2015 to 
illustrate the practical importance and relevance of weighting in analysing large-scale 
assessment data with hierarchical models.

Keywords: Sampling weights, Hierarchical models (HLM), Multilevel models (MLM), 
Programme for International Student Assessment (PISA), Large-scale assessment (LSA), 
Scaling of sampling weights
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Introduction and theoretical framework
As is widely known in the field of large-scale assessments (LSAs), conducting a census 
survey is not productive from an organisational, time and most of all financial perspec-
tive (Rutkowski et al., 2010). Therefore, for many LSAs a two-stage stratified cluster sam-
pling procedure is applied. More specifically, schools are sampled in a first step, in most 
cases using probability proportional to size (PPS) mechanism with stratification, i.e., 
larger schools are sampled with higher probability (Brewer & Hanif, 1983). In a second 
step, students are selected randomly within these sampled schools (OECD, 2017).

The aim of LSAs is to draw conclusions for a whole population by means of the chosen 
sample. For analysing those student samples, special weights for all sampling units (e.g., 
schools, classes, and students) are provided in order to avoid bias due to these sampling 
techniques (Meinck, 2020; OECD, 2017). Those weights reflect the selection probabil-
ities of the schools and students, adjusted for non-response, and thereby the propor-
tion of the population represented by each sampled school and student. The “Methods” 
section of this paper elaborates exemplarily the sampling procedure of the Programme 
for International Student Assessment (PISA), illustrated by an exemplary country 
(Germany).

As students within one school often are more similar to each other than students 
attending different schools, considering a hierarchical (or “multilevel”) model in analys-
ing students is advisable. This is because such models better reflect the true multilevel 
structure of the education system with pupils nested within classes, schools and school 
systems. Furthermore, the cluster effects on sampling errors are taken into account in 
such models, which otherwise have to be reflected by using special complex estimation 
procedures [e.g., balanced repeated replication in PISA; OECD (2017)].

Even though the typical hierarchical structure in education includes three or even 
more levels (e.g., students within classes within schools within countries etc.), this arti-
cle focuses on two levels, with students at level one and schools at level two. This is for 
several reasons. First, the general sampling scheme of several LSA such as PISA or the 
International Computer and Information Literacy Study (ICILS; Gebhardt et al., 2014) 
do not include class sampling at all. Second, if class sampling is incorporated, the actual 
(true) or sampled number of classes within schools is always small: often just one or two 
classes are sampled, especially in small schools. Therefore, it is impossible to disentangle 
class and school effects. Finally, research applying three-level models is sparse, probably 
because (i) not many datasets fulfil the necessary preconditions, (ii) models often do not 
converge, and (iii) because interpretation becomes more complex when adding levels 
and can be very challenging. Instead, most cross-national research with multilevel mod-
els uses also two-level models: identical models are run separately for each educational 
system participating in a specific assessment and are then compared. Hence, this contri-
bution is fully valid for cross-country analysis.

Although there is sufficient evidence that sampling weights must be used in multilevel 
modelling (MLM) to obtain unbiased estimates (e.g. Cai, 2013), and also on how these 
weights should be used in single-level analyses, there is little discussion in the literature 
about which and how to use sampling weights in MLM. Asparouhov (2006) claims that 
data sets from studies with complex sampling designs are made available with weights 
prepared for, e.g., computing means, but that these weights are not appropriate for 
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multilevel models and can produce erroneous results if used in hierarchical analyses. 
Stapleton (2002) addresses the use of different weighting techniques. Rutkowski et  al. 
(2010) argue that issues of weight scaling and parameter estimation are important con-
siderations. They suggest a procedure for manually calculating appropriate weights at 
the levels of interest for analysis, using the design weights and nonresponse adjustments 
at each sampling stage for composing these level-specific weights. Carle (2009) recom-
mends to rely on scaled weighted estimates rather than unscaled weighted ones.

Currently, four different approaches on how to use sampling weights in hierarchical 
models are recommended by different authors. Partly, different approaches are even 
recommended and used for the same type of data, leaving scholars in dubiety, which 
approach to use. They mainly relate to specific LSA, namely PISA, the Trends in Inter-
national Mathematics and Science Study (TIMSS) and the Progress in International 
Reading Literacy Study (PIRLS; Martin & Mullis, 2013), the International Civic and Citi-
zenship Education Study (ICCS) (Schulz et al., 2018) and ICILS (Gebhardt et al., 2014). 
The simulation study scenarios are based on these approaches, hence, a detailed descrip-
tion can be found in section “Analysis procedures”. In the following, we explain the tech-
nical background on how these weights can be scaled and incorporated for parameter 
estimation.

Pfeffermann et  al. (1998) and Asparouhov (2006) advise to use a pseudo maximum 
likelihood approach for calculating estimates within and between the different levels 
using probability weighted generalized least squares (PWGLS) maximisation technique 
in order to obtain unbiased estimates. Alternatively, Rabe-Hesketh and Skrondal (2006) 
provide the expectation–maximisation techniques for maximizing the pseudo likeli-
hood. No previous research includes a straightforward suggestion on how to scale level 
one weights in order to account for hierarchical structures. Three different approaches 
have been discussed in the literature (Graubard & Korn, 1996; Pfeffermann et al., 1998; 
Rabe-Hesketh & Skrondal, 2006) whereas only two approaches are applicable for survey 
data.

Several simulation studies (Asparouhov, 2004; Bertolet, 2008; Korn & Graubard, 2003; 
Rabe-Hesketh & Skrondal, 2006) conclude that there is no estimation procedure or 
adjustment of the weighting to be clearly preferred. Rather, the sampling design itself 
is decisive for the choice of the estimation procedure. Furthermore, different software 
programs implement different inference estimation methods, leading to different results 
(Chantala & Suchidnran, 2006; Chantala et al., 2011; West & Galecki, 2012).

Nevertheless, none of the papers so far has provided a comprehensive overview of all 
possible and previously used weighting approaches, a research gap that will be filled with 
this study. The main goal of this paper is to paint a comprehensive picture of different 
weighting approaches. It will reveal which weighting approach leads to the best estima-
tion, i.e., retrieving the true population parameters with least bias and highest precision. 
Furthermore, we will address the question as to which extent and, why different software 
packages deliver different results. The aim of the study is to provide a clear recommen-
dation for using weights and estimation procedures for multilevel analyses in LSAs.

This paper is organized as follows. First, we will describe the properties of our exam-
ple LSA study (PISA) with a focus on its sampling design and weights. Then, different 
hierarchical models will be introduced in order to obtain a variation of models for the 

68



Page 4 of 39Mang et al. Large-scale Assess Educ             (2021) 9:6 

simulation study. Contextualising the estimation process, the pseudo maximum likeli-
hood estimation method is explained and specifics are discussed. Linking now back to 
LSAs, different methods for scaling the weights in the hierarchical context are described. 
Next, the simulation study will be introduced. We explain features of the simulated PISA 
population, detail sampling-related features, weights and non-response adjustment as 
well as the analysis procedures. We then present and discuss the results of the simulation 
study and determine the preferred weighting scheme. This scheme is thereafter applied 
to the PISA 2015 data (Reiss et al., 2018) with selected hierarchical models. Finally, the 
results are summarized and possibilities for future research will be discussed.

Methods
PISA sampling design and weights

In all countries participating in PISA, 15-year-old students constitute the target popula-
tion. In order to collect representative data from this target population in an efficient 
way, a two-stage sampling design is applied; selecting schools first and students within 
those schools in a second stage. In preparation of the school sampling, all schools pro-
viding education to 15-year-old students are listed using national registers. To make 
sampling more efficient [i.e., obtain small standard errors (SE)], the whole list of schools 
is divided into sub-groups, a process called stratification. PISA uses implicit and explicit 
stratification. Implicit stratification refers to sorting sampling units before sample selec-
tion, which is an efficient method to achieve an approximately proportional sample 
allocation to all strata. Explicit stratification refers to dividing the sampling frame into 
different groups (in this case, of schools); from each explicit stratum, an independent 
sample is selected. This stratification method allows disproportional sample allocation 
(OECD, 2017). For example in Germany, the 16 federal states (explicit stratification) and 
the different school types (implicit stratification) were used as stratification variables. 
Within each explicit stratum, schools are now selected using the PPS mechanism, mean-
ing larger schools have a greater probability to be sampled. This selection method leads 
to significantly varying weights at this first sampling stage. Within every sampled school, 
15-year-old students are now randomly sampled as a second selection stage. The within-
school sample size, i.e., the number of students to be selected, is settled when defining 
the target population. In Germany, this target cluster size is, on average over all PISA 
cycles, approximately 25 students. Mostly, selection probabilities within schools are very 
similar for all students. To avoid the expected bias due to varying selection probabilities, 
sampling weights are provided. Those weights are computed as the inverse of the selec-
tion probabilities of each selection stage, adjusted for non-response:

with wij as the final student weight for student j in school i, wi as the base school weight 
for school i, f1i as  the school non-response adjustment, w′

ij  as  the base student weight 
for student j in school i, f2ij as the student non-response adjustment.

As the school participation is mandatory and therefore the participation rate was over 
95% in all previous PISA cycles, adjusting of school non-response has always been mini-
mal in Germany and will be neglected in this paper and the following simulation study. 

wij = wi ∗ f1i ∗ w
′

ij ∗ f2ij
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In PISA, there are three more adjustment factors. Two further correction factors com-
pensate for changes in school size between sampling and data collection. Another cor-
rection factor is applied in countries where only 15-year-old students in the class with 
the highest expected number of 15-year-olds are assessed (OECD, 2017). In the event of 
non-response at student level, other students who are as similar as possible to the ones 
who do not participate are given a higher weighting. This avoids under-representation of 
those students. In detail, non-response adjustment cells are built within each stratum, 
school, grade and gender (OECD, 2017). This non-response structure is also used in the 
simulation.

Hierarchical models

In order to be able to represent the variety of hierarchical models, three standard hier-
archical models are presented here. Demonstrative and use-oriented examples of all 
models can be found in Meinck and Vandenplas (2012). For all models, the following 
notation applies as presented in Table 1.

Model 1—Null model (random intercept)

Model 2—One explanatory variable at level one with fixed slope (random intercept)

Model 3—One explanatory variable at level one and level two with fixed slopes (ran-
dom intercept)

with τi ∼ N (0, σ 2
τ ) and εij ∼ N (0, σ 2

ε ).
Model 1 is technically defined having a school random effect and a residual but no 

explanatory variable at either level. β0 is declared as the mean of the achievement. τi 
and εij specifies the variance ratio between and within the different levels. Having, for 
example, an intraclass correlation (ICC) of 0.1 and the students’ achievement is given 
by ∼ N (500, 100 ) the variance is distributed by being 1,000 within the levels and 9,000 
between the levels, or in other words only 10% of the variance in achievement is due to 
school effects. Therefore, this model should be preferred if a researcher is interested in 

yij = β0 + τi + εij

yij = β0 + β1 ∗ xij + τi + εij

yij = β0 + β1 ∗ xij + β2 ∗ xi + τi + εij

Table 1 Variable definitions for hierarchical models used in this paper

yij Student achievement, i.e., PISA competence (Math, Reading or Science)

xij Student socio-economic status, i.e., the PISA Economic, Social and 
Cultural Index (ESCS)

xi The school’s socio-economic Index

β0 Grand (i.e., overall) mean, intercept of the model

β1 Fixed effect on student level

β2 Fixed effect on school level

εij Residual

τi School random effect
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how much of the variance of the dependent variable is determined within and between 
the levels. As in Model 1, the intercept τi in Model 2 is random. The explanatory variable 
demonstrates a fixed effect to the dependent variable. Researchers should focus on this 
model if the relation from the independent to the dependent variable at level one after 
accounting for variation from level two is of interest. Model 3 extends Model 2 by the 
term β2 ∗ xi stating the fixed effect of the explanatory variable also at level two.

Pseudo maximum likelihood estimation

In order to enable statistical inference using hierarchical models (i.e., inferring from 
a sample on an infinite population), two different approaches have been developed, 
namely design-based and model-based techniques. Design-based methods have their 
focus on the sample design model with known parameters, assuming, that this model 
is a true reflection of its population. On the other hand, model-based methods are 
defining a superpopulation model with unknown parameters having variability from 
the model error term including that the sample design model is not the superpopula-
tion model (Binder & Roberts, 2010; Snijders & Bosker, 2012).

Asparouhov (2006) and Pfeffermann et al. (1998) defined a hybrid approach com-
bining design-based and model-based inference estimation techniques. The basis 
is the model-based approach with unknown parameters from the superpopulation 
model. The focus in this model is not on true parameter estimates, but on estima-
tors, which are design consistent for the infinite population. In conclusion, even if 
the model assumptions might be wrong, the design consistent estimators are robust. 
Relating to this hybrid model, the authors note that it is important to include complex 
sampling designs, like those applied in PISA, in the model. This is done by introduc-
ing sampling weights in hierarchical models (Asparouhov, 2006; Graubard & Korn, 
1996; Pfeffermann, 1993, 1996). This so called pseudo maximum likelihood (PML) 
estimation technique was developed by Skinner (1989), following the idea of Binder 
(1983). Starting with the idea of a model-based approach for reaching statistical infer-
ence the census likelihood is defined as

with f (Yj|θ) as the density of Yj in the population, θ as the unknown population param-
eter and N  the number of students in the population.

To achieve a sum instead of the product for easier mathematical handling, the cen-
sus log-likelihood follows with

The maximum likelihood (ML) estimate is then obtained by

L(Y |θ) =

N∏

j=1

f (Yj|θ),

l(Y |θ) =

N∑

j=1

log f (Yj|θ).

∂l(Y |θ)

∂θ
= 0.
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Following the hybrid approach stating that the design consistent estimator of the 
model-based technique is a robust estimator for the infinite population parameters, 
the principle of the Horvitz–Thompson (HT) estimator is applied (Horvitz & Thomp-
son, 1952; Petkova, 2016). The HT estimator uses the inverse of the selection prob-
abilities as weights

with πj as the selection probability, wj =
1
πj

 as the inverse of the selection probability, yj 

as the single characteristics in the sample, N  as the population size and n as the sample 
size.

Transferring this principle to a hierarchical (two level) structure follows the selec-
tion probabilities for the schools and students within schools as πj and πij , respec-
tively. The weights for the m schools are wj =

1
πj

 and for the n students wij =
1
πij

.

Pfeffermann et al. (1998) argued that because of the clustered data structure, obser-
vations are not assumed to be independent anymore and the log-likelihood will 
become a sum across level one and level two elements instead of a simple sum of the 
element’s contributions (Grilli & Pratesi, 2005; Petkova, 2016). Using the idea of the 
HT estimator with introducing weights into the log-likelihood replaces each sum over 
the level two population units i by a sample sum weighted by wi =

1
πi

 and each sum 
over the level one units j by a sample sum weighted by wij =

1
πij

 (Grilli &  Pratesi, 

2005).
The pseudo maximum likelihood estimator θ̂PML is therefore design consistent for 

the finite population maximum likelihood estimator θ̂  , which, in turn, is model-con-
sistent for the superpopulation estimator of θ . Therefore θ̂PML is a consistent estima-
tor of θ with respect to the mixed design-model (hybrid) distribution (Pfeffermann 
et al., 1998).

As no straightforward method of maximising this weighted likelihood function 
is possible due to the existence of several integrals, numerical approximation tech-
niques can be applied. These optimization techniques will be described in the follow-
ing passages.

Optimization methods

Historically, the origins of estimating parameters from the weighted likelihood function 
were located at the so called iterative generalized least squares (IGLS; Goldstein, 1986). 
This method is based on the normal distribution assumption, implemented and used by 
Pfeffermann et al. (Pfeffermann & Sverchkov, 2010).

Rabe-Hesketh and Skrondal (2006) choose to solve the weighted likelihood function 
in the PML equation by using an expectation–maximisation (EM) algorithm (Demp-
ster et  al., 1977). The basic idea behind the algorithm is divided into two steps. First, 
an approximation to the function of interest, i.e., the ML function, with initial, logical 
parameter values is constructed. This step is called expectation. Second, the parameter 
value, which maximizes this approximation function, is adjusted. This step is named 

ŶHT =
1

N

n∑

j=1

wjyj =
1

N

n∑

j=1

1

πj
yj ,
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maximisation. This value is then inserted in the expectation step. The whole procedure 
is iterated until the parameter values stabilize with a given threshold. Unfortunately, this 
method suffers from slow convergence rates.

Acceleration methods

Alternative methods to accelerate the EM algorithm are Fisher-Scoring or Quasi-New-
ton acceleration method. The idea of these methods is not to actually calculate the maxi-
mization step of the EM algorithm, but to approximate this calculation. To do that, it 
takes the so-called score functions, i.e., first and second order derivates of the approxi-
mated ML function, into account (Jamshidian & Jennrich, 1997; Lange, 1995; Longford, 
1987). Jamshidian and Jennrich (1997) stated, that these methods accelerated the EM 
algorithm in some cases by factor 50 and above.

Integration method

In all EM techniques the expectation step is approximated by adaptive quadrature (Bock 
& Aitkin, 1981). It is a numerical integration method for approximating formulas with 
integrals. The key is approximating the whole integral by small areas defined by so-called 
nodes. The principle can be written as

with quadrature nodes xi ∈ [a, b] , f (x) as any function of interest and quadrature 
weights hi which should not be confounded with any weights mentioned in this arti-
cle. Having a large number of nodes follows a good approximation. Adaptive quadrature 
places the locations where the integrand is concentrated assuming that the “posteriori” 
density of a Bayesian perspective is approximately normal distributed (Rabe-Hesketh 
et al., 2002, 2005).

The SAS® software program with its procedure PROC GLIMMIX and its setting 
adaptive quadrature (SAS Institute Inc., 2018) is based on the EM algorithm estima-
tion Quasi-Newton in its default setting, while the Mplus software program (Muthén 
& Muthén, 2017) declares to use Fisher-Scoring in its default setting as accelerated EM 
method, or also Quasi-Newton. The default settings were specified that way to provide 
also less technical users with a wide range of sophisticated methods.

Sandwich type variance estimation

Besides the estimate itself, its variance (i.e., the squared standard error), is of further 
interest. The covariance matrix of an estimator is obtained after the model has been 
estimated. Again, the sampling design needs to be taken into account. If the covariance 
structure is assumed to be too simple, which is the case for independent random sam-
ples, then the model based estimated standard errors for the fixed effects are invalid 
(usually too small). One way to deal with this is to use sandwich standard errors, which 
are a function of the modelled standard errors and observed residuals. If the sandwich 

b∫

a

f (x) =

n∑

i=1

hif (xi),
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standard errors are close to the model-based ones, then one can be confident that the 
model is well specified. If the model is not correctly specified, then the two types of 
standard errors will differ, and the sandwich standard errors are preferred. From a tech-
nically point of view this variance has been developed by Binder (1983), which is further 
discussed by Skinner (1989) and is based on Taylor expansion. A general variance esti-
mator is determined by

Here, K  is the negative second derivative of the logarithmic pseudo likelihood eval-
uated at θ̂ . In other words, K  can be estimated by its empirical mean. The term J  
designates the estimated variance–covariance matrix of the weighted score functions. 
It allows taking the sampling weights as well as particular characteristics of the sam-
pling design into account. The crucial point here is the assumption that the residuals 
of the model are having mean zero (see also “Hierarchical models” section). Further-
more, the variance is declared as the average squared deviation around the mean. 
Thus, the estimated residual variance can be written as a sum over schools over stu-
dents of those squared errors.

This sandwich estimator is implemented by default in most software programs for 
MLM, including Mplus with its default setting (Muthén & Muthén, 2017) and SAS with 
its procedure PROC GLIMMIX and its setting for adaptive quadrature  (SAS Institute 
Inc., 2018). Furthermore, there are approaches that specialize in bootstrapping methods. 
Those methods are used by default in single level LSA analyses (Rust & Rao, 1996).

Scaling methods for level one weights

For most publicly available LSA data sets like PISA, weights for the school level wi and 
weights for the student level wij (“final student weights” combining school and student 
weights) are provided in order to correctly use weights at each population of inter-
est. Those weights should only be used when analysing data of one population, i.e., 
either students or schools. Considering more than one level at a time, these weights 
have to be used or adapted differently in order to account for the hierarchical struc-
ture. In other words, including the final student weight wij would be inappropriate for 
conducting multilevel analysis (Pfeffermann et  al., 1998; Rabe-Hesketh &  Skrondal, 
2006). Pfeffermann et  al. (1998) and Rabe-Hesketh and Skrondal (2006) argued fur-
ther that including unscaled weights in the analysis might lead to bias in the variance 
estimates. Scaling of level two weights is not considered since it has no effect on the 
estimates (Bertolet, 2008; Grilli & Pratesi, 2005).

The scaling of level one weights is another approach to take into account the inclu-
sion of weights in hierarchical analyses. Four widely addressed scaling methods are 
used in the research community, but there is still no clear recommendation which 
method should be preferred. Furthermore, only the following two methods are (Pfef-
fermann et al., 1998; Rabe-Hesketh & Skrondal, 2006) cited in the literature.

The conditional student weight wij can be written as

cov

(
θ̂

)
= K−1JK−1.
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where � is a synonym for the scaling factor and wij defines the weight of student j 
and school i.

In scaling method 1 the scaled weights add up to the cluster size, i.e., the number of 
sampled students in a school with 

∑ni
j=1 w

∗
ij = ni , so the scale factor can be written as

The conditional student weight is then given by

where ni equals the number of sample units in cluster i . In the simulation study, this 
method is declared as Scaled Weights: Cluster.

In scaling method 2 the sum of the conditional student weights add up to the effec-
tive sample size within the cluster, i.e., the number of assessed students in a school 
with 

∑ni
j=1 w

∗
ij = n∗i  , so this scale factor can be written as

and its corresponding conditional student weight as

n∗i  is thereby defined as

In the simulation study, this method is declared as Scaled Weights: ECluster.
Two further approaches in scaling level one weights are only mentioned in the 

technical appendixes, but are as often used in analyses as the other approaches. One 
approach scales the final student weight in order to sum up to the full sample size, 
given by n . The scale factor can be written as

and the final scaled student weight as

This approach is declared as House Weights in the simulation study.

wij = w∗
ij�,

� =
ni∑ni
j=1 w

2
ij

.

w∗
ij = wij

ni∑ni
j=1 wij

,

� =

∑ni
j=1 wij

∑ni
j=1 w

2
ij

,

w∗
ij = wij

n∗i∑ni
j=1 wij

.

n∗i =

(∑ni
j=1 wij

)2

(∑ni
j=1 w

2
ij

) .

� =
n

∑n
j=1 w

2
ij

,

w∗
ij = wij

n∑n
j=1 wij

.
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The last scaling technique of level one weights described here adds another com-
ponent to the school weights within the approach Scaled Weights: Cluster. Here, the 
within-school weights add up to the school sample size. Additionally, the school 
weights are transformed as to reflect the sum of the final student weight within 
one school given ni as the number of students within one school. This technique is 
declared as Clustersum in the following simulation study. The transformed school 
weight can therefore be written as

The most prominent sources presenting this approach are discussed in the below 
section, “Analysis procedures”, under Simulation Study. This section also describes 
the analysis plan.

Research questions
The following research questions will be examined:

1) Which weighting scheme performs best in providing population estimates in selected 
hierarchical models, i.e., with least bias?

2) Does scaling of level one weights enhance preciseness and unbiasedness of estima-
tion, and if so, which cited technique should be preferred?

3) Which estimation procedure serves for the least biased estimates in selected hierar-
chical models?

All three research questions are discussed in an independent way, but also con-
sidered in combination, because all considered methods are simultaneously at work 
when conducting analysis with real sample data. The aim of the study is to make a 
firm proposal for the common estimation of hierarchical models using provided sam-
pling weights.

Simulation study
With the help of a simulation study, the performance of different weighting scenarios 
within hierarchical models can be investigated by comparing estimated parameters 
with the true values of a population (Metropolis & Ulam, 1949).

The simulated population mimics the German PISA population. From this “popu-
lation”, 1000 sample replications are selected according to the population character-
istics defined in the next section, using the approach of a Monte Carlo simulation. 
One thousand replications were considered to be sufficient for achieving stable point 
estimators (Meinck & Vandenplas, 2012). For each dataset, simulated weights are cal-
culated when drawing the sample.

The software program R Studio Version 1.1.456 (RStudio Team, 2018) and its cor-
responding program R 3.5.1 (R Core Team, 2018) was used for simulating the sample 
replicates. The analyses was performed with two software programs for hierarchi-
cal modelling of large-scale assessment data Mplus (Muthén &  Muthén, 2017) and 

w∗
i =

ni∑

j=1

wij .
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SAS with its procedure PROC GLIMMIX (SAS Institute Inc., 2018). Both software 
packages are widely used in the researcher community, especially among educational 
researchers, and of special interest for the authors. Three representative hierarchical 
models were analysed.

Simulation PISA population

The simulation of the population of 15-year-old students is based on two data sources. 
The first source was the sampling frame for PISA 2015 in Germany. In this frame, all 
schools accommodating 15-year-old students in the school year 2012/2013 are listed, 
together with their allocation to federal state and school type, and the expected num-
ber of 15-year-old students. Information originates from federal and governmental 
offices. Further, relevant population features were estimated based on the German 
PISA 2015 sample and added to each school on the above-mentioned sampling frame.

In order to investigate the differential effects of varying parameters, three differ-
ent simulation scenarios for generating the student achievement data (i.e., the PISA 
competence for a given domain) and socio-economic background were implemented.

For the first scenario, the population parameters are chosen in a way to correspond to 
the true German PISA target population in 2015. To achieve this, real outcomes of the 
PISA 2015 cycle were used. That is, the performance in science (first PV) and the PISA 
Economic, Social and Cultural Index (ESCS) for the socio-economic index split for each 
different school type served as scenario templates (Simulation Scenario 1).

Secondly, a scenario with nearly no variance between the schools of a given school 
type is simulated (Simulation Scenario 2). The ICC of 0.05 is very small in this scenario, 
and MLM may not be that advantageous to single-level analysis under such circum-
stances. We still decided to implement such scenario for two reasons. One was to get 
a good contrast for the scenarios with higher ICC. Second, some authors (e.g. Snijders 
&  Bosker, 2012) recommend MLM whenever there is a hierarchical structure in the 
underlying population. Also Lai and Kwok (2015) recommend hierarchical modelling in 
such scenarios because there is in fact still a design effect (Kish, 1965) to account for.

The third scenario is based on a high variance between the schools of a given school 
type (Simulation Scenario 3). All simulation scenarios comprise a two-level structure 
with schools at level one and students at level two.

For each of the three scenarios, the different compositions of the performance of the 
schools (i.e., the school achievement) and their socio-economic index were simulated. 
Following this, the performance and socio-economic status of each student was simu-
lated around those school values, with a given variance and covariance according to the 
appropriate simulation scenario. Overall, 16,330 schools and 841,095 students are simu-
lated for each single simulation scenario.

Table  2  shows the different simulation scenarios and their corresponding character-
istics. As population parameters for one scenario can vary between the three chosen 
hierarchical models, those values are indicated with “/” for each model within the appro-
priate scenario. For variable definitions please refer to Tables 1. 
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Samples, weights and non‑response

The federal states and the school types served as explicit and implicit stratification 
variables in Germany (OECD, 2017). There are 16 federal states. The different school 
types comprise lower secondary, upper secondary and vocational schools with basic 
or advanced general educational tracks. Explicit stratification implies that schools 
are sampled independently for each stratum. Mirroring the sampling procedure from 
2015, we divided the sampling frame by federal states, and then sorted schools within 
states by type and their expected numbers of 15-year-old students. In the next step, 
1000 samples of 234 schools with a maximum of 25 students per school were drawn 
by PPS sampling for each simulation scenario. Two hundred and thirty-four schools 
are chosen to satisfy minimum sample size requirements for explicit strata in PISA 
2015. In schools with less than 25 eligible students, all of them were selected.

Sampling weights applied in PISA reflect the PPS sampling technique that leads 
to approximately self-weighted samples (Särndal et al., 2003). Larger schools have a 
higher probability to be selected whereas students in these schools have smaller prob-
abilities to be part of the sample. PPS sampling applied in PISA leads to similar final 
student weights, but to school base weights that follow a Poisson distribution (Särn-
dal et al., 2003). The school base weights as well as the student base weights can be 
generated directly when drawing the school and the student sample. The full student 
base weight as a product over the school and the student base weight is then given by

with πij is the selection propability for student j in school i.
In order to achieve the final school and student weights, non-response for both lev-

els must be considered. As the assessment is mandatory in Germany, non-response 
for schools was very low over most cycles, hence we assumed 100% participation at 
school level for the simulation. The three further adjustment factors mentioned ear-
lier are equal to one in the vast majority of cases over all cycles, therefore they are 
neglected as well in the simulation study. At the student level, non-response is simu-
lated similar to PISA procedures. Combined non-response is adjusted by grade and 
gender characteristics (OECD, 2017). A logistic regression model generates student 

wij =
1

πij
,

Table 2 Population specifications

Population Parameters Scenario 1—PISA Scenario 2—low Scenario 3—high

yij ∼ N(505, 101) ∼ N(500, 97) ∼ N(468, 148)

xij ∼ N(0, 1) ∼ N(0, 0.89) ∼ N(0.16, 1.20)

xi ∼ N(0, 0.59) ∼ N(0, 0.36) ∼ N(−0.10, 0.89)

β0 476/ 479/ 494 500/500/500 421/429/449

β1 –/29/28 –/27/26 –/35/35

β2 –/–/40 –/–/7 –/–/65

εij 5005/4022/4027 8994/8421/8419 5012/4420/4420

τi 5053/4240/ 2417 530/299/266 16,100/12,541/8191

ICC 0.52 0.05 0.79
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participating probability weights, which are dependent on the student’s gender and 
grade. As the distribution of girls and boys participating in PISA is nearly 50/50, this 
proportion is kept for the simulation study. The modal grade in PISA 2015 and there-
fore used for this simulation was given by nearly 50% in grade 9 and 50% in grade 10. 
Only a very limited number of PISA students attend grades 7, 8 or 11, so this portion 
is neglected. The regression model for simulating student non-response is thus given 
by

with β0 = 0.1 , β1 = β2 = 0.05 , Yij ∈ [0, 1], genderij ∈ [0, 1] and gradeij ∈ [0, 1].
A uniform random sample determines if a student is set to participating or non-

responding. This participating probability is then distributed across participating 
students.

Analysis procedures

Table 3 shows the different weighting scenarios combined with different software pro-
grams and estimation methods applied in the simulation study. All simulation scenarios 
and weighting approaches are applied to each hierarchical model explained in “Meth-
ods” section (Table 3).

Overall, 126 different scenarios have been analysed, each with 1000 replications 
using the Monte Carlo approach. It was deemed that 1000 repetitions were sufficient to 
achieve stable and highly precise estimates of model parameters and their SEs (Meinck 
&  Vandenplas, 2012). A nearly exact representation of the target population becomes 
possible, so that estimates can be reliably compared with the true population values.

Nine different weighting approaches were selected to provide a comprehensive and 
nearly complete picture of all possible variants. The following table shows all approaches 
and their application to the different levels of the hierarchies (Table 4).

The weighting scenario No Weights at both levels stands for no weighting at either 
school or student level. The approach Unscaled Weights at both levels uses both 
weights, i.e., the school weight and the final student weight at each level. The scenario 
Only Student Weights and Only School Weights each weight at the respective level only. 
The school weight represents the inverse of the school selection probability, adjusted 
for school nonresponse. The student weight equals to the final student weight in this 
scenario.

Scenario House Weights reflects the approach of scaling the final student weights to 
sum up to the sample size. Former PISA analyses and recommendations (OECD, 2009) 
as well as former MLM analysis based on TIMSS and PIRLS refer to this procedure 
(Martin & Mullis, 2013).

Using school weights at level two and scaled student weights at level one with different 
scaling techniques is implemented in the approaches Cluster and Ecluster, each based on 
the appropriate scaling explained in the section Scaling Methods for Level One Weights. 
Multilevel analyses in the PISA 2009 report volume VI (OECD, 2011) use this approach. 
Since the PISA 2012 cycle, the OECD is following another approach, here named Clus-
tersum. In this approach, the within-school weights are also scaled to sum up to the clus-
ter sample size (as in the approach Cluster), but school weights are handled to reflect the 

log
(
P
(
Yij = 1

))
= β0 + β1 ∗ genderij + β2 ∗ gradeij ,
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Table 3 Simulation scenarios including varying ICCs, three investigated hierarchical models and 
different weighting approaches combined with different estimation algorithms implemented in the 
two examined software packages

ICC Model Software package Weighting scenario

0.52/0.05/0.79 Model 1 MPLUS No weights

Unscaled weights

Only student weights

Only school weights

Scaled weights: cluster

Scaled weights: ECluster

Withincluster weights

House weights

Clustersum

SAS No weights

Unscaled weights

Only student weights

Only school weights

Scaled weights: cluster

Scaled weights: ECluster

Withincluster weights

House weights

Clustersum

Model 2 MPLUS No weights

Unscaled weights

Only student weights

Only school weights

Scaled weights: cluster

Scaled weights: ECluster

Withincluster We
ights

House weights

Clustersum

SAS No weights

Unscaled weights

Only student weights

Only school weights

Scaled weights: cluster

Scaled weights: ECluster

Withincluster weights
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sum of the final student weights within one school. The authors claim this approach is 
more student-centred (OECD, 2014, 2016, 2019).

The approach Withincluster Weights applies school weights at level two, and at level 
one the inverse of the selection probability of a student within a school, adjusted for 
non-response. The school weights are only included at school level and not as an addi-
tional factor in the full student weights. This scenario focuses on the respective adjust-
ments that are assigned to the hierarchical levels and refers to Rutkowski et al. (2010). 
The International Civic and Citizenship Education Study (ICCS) (Schulz et al., 2018) and 
the International Computer and Information Literacy Study (ICILS) (Gebhardt et  al., 
2014) implemented this approach.

All analyses were performed using Mplus Version 8.1 (Muthén & Muthén, 2017) and 
SAS Version 9.4 (SAS Institute Inc., 2018) with its procedure PROC GLIMMIX.

Table 3 (continued)

ICC Model Software package Weighting scenario

House weights

Clustersum

Model 3 MPLUS No weights

Unscaled Weights

Only student weights

Only school weights

Scaled weights: cluster

Scaled weights: ECluster

Withincluster weights

House weights

Clustersum

SAS No weights

Unscaled weights

Only student weights

Only school weights

Scaled weights: cluster

Scaled weights: ECluster

Withincluster weights

House weights

Clustersum

Model 1 is declared as yij = β0 + τi + εij, Model 2 as yij = β0 + β1 ∗ xij + τi + εij and Model 3 as 
yij = β0 + β1 ∗ xij + β2 ∗ xi + τi + εij

81



Page 17 of 39Mang et al. Large-scale Assess Educ             (2021) 9:6  

Results and discussion
In the following, figures of boxplots to the estimation parameters from the respective 
chosen model are displayed. Boxplots describe the distribution of an estimated value 
based on many repetitions (1000 in our study). The median, the 25% and 75% quartiles, 
minimum and maximum are presented (Chambers, 1983). Differences between the box-
plots are interpreted based on several definitions (e.g. Williamson et al., 1989). Firstly, 
the boxes representing the interquartile ranges are compared. If boxes do not overlap, 
a difference can be stated. Secondly, medians are considered. If the median line of a box 
lies outside of another box entirely, then a difference between the two groups is likely. 
Thirdly, the whiskers must be considered. They mark the maximum and the minimum 
values of each set. Their distance represents the range between those two extremes. 
Larger ranges indicate wider distribution, that is, more scattered data. Since differences 
in the boxplots between the various weighting approaches can usually already be deter-
mined based on the median deviations and the interquartile distances, the whiskers 
are barely discussed below. In addition to the graphical results, empirical 95% coverage 
rates (CR) for each parameter are given in Tables 5, 6 and 7 for each simulation scenario, 
respectively. The empirical 95% coverage rate indicates how often the 95% confidence 
interval of each estimated parameter covers the true population value. A good coverage 
rate starts at 95%.  

Figure 1 shows the three selected hierarchical models based on the simulation of the 
PISA data (Simulation Scenario 1). Figure 2 refers to the Simulation Scenario 2 with low 
variances between the schools and Fig. 3 refers to Simulation Scenario 3 with high vari-
ances between those schools. The figures present the estimated fixed parameters as well 
as the estimated variances within and between the schools for each model in the appro-
priate simulation scenario. The true population values for each estimate are marked as 
red line in each graph. The closer the boxplot median line to the red line, the better does 
the respective estimation method retrieve the true population parameter. If the box does 
not cover the true population value, the estimation is highly biased. The larger the box, 
the less precise is the estimation method. When comparing results between the software 

Table 4 Weighting approaches for the simulation study and their application and formulas for the 
different levels of the hierarchies

Weighting parameters are wi = final school weights, wij = final student weights, ni = number of sampled students in a 
school,  n∗ i = number of assessed students in a school, n = number of assessed students from all schools and wj = final 
within school weights

Weighting approaches School level Student level

No weights – –

Unscaled weights wi wij

Only student weights wij

Only school weights wi

Scaled weights: Cluster wi wij
ni∑ni
j=1 wij

Scaled weights: ECluster wi wij
n∗ i∑ni
j=1 wij

Withincluster weights wi
∗ wj

∗

House weights wij
n∑n

j=1 wij

Clustersum
∑ni

j=1 wij wij
ni∑ni
j=1 wij
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Table 5 Coverage Rates of PISA simulated data

Software Weighting approach CR β̂0 CR β̂1 CR β̂2 CR σ̂ 2
ε CR σ̂ 2

τ

A: Coverage rates—PISA simulated data—Model 1

 SAS No weights 0.00 0.94 0.98

Unscaled weights 1.00 0.51 0.99

Only school weights 1.00 0.94 0.95

Only student weights 0.00 0.32 0.96

Withincluster weights 1.00 0.62 1.00

Scaled weights: cluster 1.00 0.95 0.95

Scaled Weights: ECluster 1.00 0.95 0.95

Clustersum 0.00 0.95 0.99

House weights 0.00 0.94 0.99

 Mplus No weights 0.00 0.92 1.00

Unscaled weights 1.00 0.97 0.97

Only school weights 1.00 0.97 0.97

Only student weights 0.00 0.92 1.00

Withincluster weights 1.00 0.97 0.97

Scaled weights: cluster 1.00 0.96 0.96

Scaled weights: ECluster 1.00 0.96 0.96

Clustersum 0.00 0.97 1.00

House weights 0.00 0.97 1.00

B: Coverage rates—PISA simulated data—Model 2

 SAS No weights 0.00 0.83 0.94 0.00

Unscaled weights 0.99 0.90 0.53 0.00

Only school weights 0.98 0.91 0.95 0.84

Only student weights 0.00 0.85 0.37 0.00

Withincluster weights 0.98 0.94 0.68 0.59

Scaled weights: cluster 0.99 0.90 0.96 0.81

Scaled weights: ECluster 0.99 0.90 0.96 0.81

Clustersum 0.00 0.92 0.96 0.39

House weights 0.00 0.85 0.94 0.00

 Mplus No weights 0.00 0.91 0.95 0.61

Unscaled weights 0.98 0.92 0.94 0.96

Only school weights 0.98 0.92 0.95 0.96

Only student weights 0.00 0.91 0.95 0.61

Withincluster weights 0.98 0.92 0.94 0.96

Scaled weights: cluster 0.99 0.91 0.95 0.97

Scaled weights: ECluster 0.99 0.91 0.95 0.97

Clustersum 0.00 0.92 0.96 0.39

House weights 0.00 0.92 0.95 0.65

C: Coverage rates—PISA simulated data—Model 3

 SAS No weights 0.01 0.93 0.96 0.94 0.44

Unscaled weights 0.96 0.94 0.93 0.53 0.45

Only school weights 0.95 0.94 0.93 0.94 0.87

Only student weights 0.09 0.94 0.93 0.36 0.23

Withincluster weights 0.94 0.94 0.92 0.68 0.82

Scaled weights: Cluster 0.96 0.93 0.93 0.95 0.86

Scaled weights: ECluster 0.96 0.93 0.93 0.95 0.86

Clustersum 0.01 0.92 0.96 0.96 0.38

House weights 0.03 0.92 0.95 0.95 0.47
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packages SAS and Mplus, we consistently refer to the software settings specified earlier 
(SAS: procedure PROC GLIMMIX and its setting adaptive quadrature; Mplus: default 
settings for two-level modelling).

Outcomes for simulation scenario 1 (data mirroring the German PISA population)

Model 1

It can be seen in Fig.  1, Graph A, Graph D and Graph H, that in all three models 
the weighting approaches No Weights, Only Student Weights, Clustersum and House 
Weights overestimate drastically the intercept β̂0 as the respective boxes do not cover 
the true population value. Furthermore, medians do not even come close to the true 
value. This can also be confirmed by looking at the coverage rates of 0% in Table 5 
A β̂0 . This result reflects the German PISA sample structure, where small schools 
have low selection probabilities and at the same time systematically lower average 
achievement than large schools (with high selection probabilities), as many of them 
accommodate students with special educational needs or vocational students. When 
neglecting school weights, these parts of the target population are underrepresented, 
which explains the overestimated average achievement. This result provides solid 
evidence to generally recommend the use of school weights in hierarchical models.

Looking at the next model parameter, we can see that Fig. 1, Graph B, the weight-
ing approaches Unscaled Weights, Only Student Weights and Withincluster Weights 
underestimate the Variance Within σ̂ 2

ε  the schools, if using the software program 
SAS for estimation. This occurs also with all three hierarchical models (Fig.  1, 
Graph F and Graph K). The weighting approaches No Weights (for both software 
programs), Only Student Weights (for both software programs), Unscaled Weights 
(for the software program SAS), Clustersum (for both software programs) and House 
Weights (for both software programs) underestimate the Variance Between σ̂ 2

τ  of the 

The CR represents the compliance rate of the estimators within its 95% confidence interval of three hierarchical 
models. Model 1 is declared as yij = β0 + τi + εij, Model 2 as yij = β0 + β1 ∗ xij + τi + εij and Model 3 as 
yij = β0 + β1 ∗ xij + β2 ∗ xi + τi + εij . PISA simulated data serves as scenario template. Simulation variation is displayed 
with the different weighting approaches combined with different estimation algorithms implemented in the two examined 
software packages

Table 5 (continued)

Software Weighting approach CR β̂0 CR β̂1 CR β̂2 CR σ̂ 2
ε CR σ̂ 2

τ

 Mplus No weights 0.01 0.93 0.96 0.94 0.52

Unscaled weights 0.95 0.94 0.93 0.95 0.91

Only school weights 0.95 0.94 0.92 0.95 0.91

Only student weights 0.01 0.93 0.96 0.94 0.51

Withincluster weights 0.95 0.94 0.93 0.95 0.91

Scaled weights: cluster 0.96 0.93 0.93 0.96 0.9

Scaled weights: ECluster 0.96 0.93 0.93 0.96 0.9

Clustersum 0.01 0.92 0.96 0.96 0.38

House Weights 0.03 0.92 0.95 0.95 0.51
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Table 6 Coverage rates of low variances simulated data

Software Weighting approach CR β̂0 CR β̂1 CR β̂2 CR σ̂ 2
ε CR σ̂ 2

τ

A: Coverage rates—low variances simulated data—Model 1

 SAS No weights 0.94 0.94 0.87

Unscaled weights 0.93 0.62 0.74

Only school weights 0.94 0.94 0.87

Only student weights 0.91 0.43 0.70

Withincluster weights 0.94 0.77 0.94

Scaled weights: cluster 0.94 0.94 0.87

Scaled weights: ECluster 0.94 0.94 0.87

Clustersum 0.94 0.95 0.87

House weights 0.94 0.95 0.90

 Mplus No weights 0.94 0.94 0.92

Unscaled weights 0.95 0.94 0.90

Only school weights 0.94 0.94 0.90

Only student weights 0.94 0.94 0.91

Withincluster weights 0.94 0.94 0.91

Scaled weights: cluster 0.95 0.94 0.90

Scaled weights: ECluster 0.95 0.94 0.90

Clustersum 0.94 0.94 0.92

House weights 0.94 0.94 0.91

B: Coverage rates—low variances simulated data—Model 2

 SAS No weights 0.89 0.90 0.94 0.91

Unscaled weights 0.91 0.92 0.62 0.06

Only school weights 0.91 0.91 0.96 0.91

Only student weights 0.87 0.91 0.41 0.72

Withincluster weights 0.91 0.93 0.78 0.52

Scaled weights: cluster 0.91 0.92 0.96 0.91

Scaled weights: ECluster 0.91 0.92 0.96 0.91

Clustersum 0.89 0.91 0.95 0.92

House weights 0.90 0.91 0.95 0.93

 Mplus No weights 0.89 0.90 0.95 0.92

Unscaled weights 0.91 0.92 0.95 0.92

Only school weights 0.91 0.92 0.95 0.92

Only student weights 0.89 0.90 0.95 0.93

Withincluster weights 0.91 0.92 0.95 0.92

Scaled weights: cluster 0.91 0.92 0.95 0.92

Scaled weights: ECluster 0.91 0.92 0.95 0.92

Clustersum 0.89 0.91 0.95 0.92

House weights 0.89 0.90 0.95 0.93

C: Coverage rates—low variances simulated data—Model 3

 SAS No weights 0.87 0.93 0.95 0.95 0.91

Unscaled weights 0.91 0.93 0.93 0.62 0.03

Only school weights 0.90 0.94 0.95 0.96 0.90

Only student weights 0.86 0.93 0.94 0.40 0.52

Withincluster weights 0.90 0.93 0.95 0.74 0.43

Scaled weights: cluster 0.90 0.94 0.95 0.96 0.91

Scaled weights: ECluster 0.90 0.94 0.95 0.96 0.90

Clustersum 0.87 0.93 0.94 0.95 0.91

House weights 0.88 0.93 0.95 0.95 0.92
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schools (Fig. 1, Graph G and Graph L). Interestingly, for Model 1 (Fig. 1, Graph C), 
the Variance Between σ̂ 2

τ  seems to be overestimated throughout nearly all weighting 
scenarios when using the software package Mplus as none of the boxplots cover the 
true value. These facts are also reflected in the coverage rates in Table 5 A σ̂ 2

τ  . Both 
software programs use the sandwich type estimator for calculating standard errors 
in the hierarchical models, which is based on the sampling weights, particular char-
acteristics of the sampling design as well as the maximum likelihood function of the 
appropriate model. As both software packages SAS and Mplus are not as transparent 
as freely available software packages like R (R Core Team, 2018), we can only guess 
what distinguishes the two software programs. For example, different accelerating 
methods for optimization could cause the differences.

Models 2 and 3

By adding the socio-economic background regressor at the student level in Model 2 
(Fig. 1, Graph E), it becomes evident that the weighting approaches Unscaled Weights, 
Only Student Weights and Withincluster Weights also slightly underestimate this esti-
mator β̂1 by the SAS software program with its procedure GLIMMIX although inter-
quartile spaces include the true value and overlap with one another. However, this 
effect is offset by the addition of the average SES β̂2 at school level in Model 3 (Fig. 1, 
Graph I and Graph J). From Model 1 to Model 2 (Fig. 1, Graph B and Graph F), the 
Variance Within the schools σ̂ 2

ε  decreases. This is caused by the increase in explained 
variance by adding the SES indicator. The same applies for the Variance Between the 
schools σ̂ 2

τ  as it decreases from Model 2 to Model 3 (Fig. 1, Graph G and Graph L).
Since proposals for weighting approaches working independently of the selected 

software programs would be desirable, only three weighting approaches provide suf-
ficiently unbiased estimates in this simulation scenario: Only School Weights, Scaled 
Weights: Cluster and Scaled Weights: Ecluster. All three of these approaches per-
form nearly the same, as can be seen by having a closer look at their coverage rates 

The CR represents the compliance rate of the estimators within its 95% confidence interval of three hierarchical 
models. Model 1 is declared as yij = β0 + τi + εij , Model 2 as yij = β0 + β1 ∗ xij + τi + εij and Model 3 as 
yij = β0 + β1 ∗ xij + β2 ∗ xi + τi + εij . Low variances between schools simulated data serves as scenario template. 
Simulation variation is displayed with the different weighting approaches combined with different estimation algorithms 
implemented in the two examined software packages

Table 6 (continued)

Software Weighting approach CR β̂0 CR β̂1 CR β̂2 CR σ̂ 2
ε CR σ̂ 2

τ

 Mplus No weights 0.87 0.93 0.95 0.95 0.93

Unscaled weights 0.90 0.94 0.95 0.95 0.92

Only school weights 0.90 0.94 0.95 0.95 0.91

Only student weights 0.87 0.93 0.95 0.95 0.93

Withincluster weights 0.90 0.94 0.95 0.95 0.92

Scaled weights: Cluster 0.90 0.94 0.95 0.95 0.92

Scaled weights: ECluster 0.90 0.94 0.95 0.95 0.92

Clustersum 0.87 0.93 0.94 0.95 0.93

House weights 0.87 0.93 0.95 0.95 0.93
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Table 7 Coverage rates of high variances simulated data

Software Weighting approach CR β̂0 CR β̂1 CR β̂2 CR σ̂ 2
ε CR σ̂ 2

τ

A: Coverage rates—high variances simulated data—Model 1

 SAS No weights 0.00 0.93 0.97

Unscaled weights 0.98 0.52 0.99

Only school weights 0.99 0.94 0.99

Only student weights 0.00 0.32 0.97

Withincluster weights 0.99 0.66 0.99

Scaled weights: cluster 0.99 0.94 0.99

Scaled weights: ECluster 0.99 0.94 0.99

Clustersum 0.00 0.94 0.96

House weights 0.00 0.93 0.96

 Mplus No weights 0.00 0.94 0.90

Unscaled weights 0.99 0.94 0.97

Only school weights 0.99 0.94 0.97

Only student weights 0.00 0.94 0.90

Withincluster weights 0.99 0.94 0.97

Scaled weights: cluster 0.99 0.95 0.98

Scaled Weights: ECluster 0.99 0.95 0.98

Clustersum 0.00 0.95 0.78

House weights 0.00 0.94 0.82

B: Coverage rates—high variances simulated data—Model 2

 SAS No weights 0.00 0.84 0.94 0.02

Unscaled weights 0.99 0.89 0.54 0.06

Only school weights 0.99 0.86 0.94 0.07

Only student weights 0.00 0.82 0.35 0.02

Withincluster weights 0.99 0.88 0.71 0.06

Scaled weights: cluster 0.99 0.86 0.95 0.07

Scaled weights: ECluster 0.99 0.86 0.95 0.07

Clustersum 0.00 0.89 0.94 0.96

House weights 0.00 0.84 0.95 0.02

 Mplus No weights 0.00 0.88 0.94 0.97

Unscaled weights 0.98 0.89 0.93 0.94

Only school weights 0.98 0.90 0.94 0.94

Only student weights 0.00 0.88 0.94 0.97

Withincluster weights 0.98 0.89 0.93 0.94

Scaled weights: cluster 0.99 0.88 0.94 0.95

Scaled weights: ECluster 0.99 0.89 0.94 0.94

Clustersum 0.00 0.89 0.94 0.96

House weights 0.00 0.87 0.95 0.96

C: Coverage rates—high variances simulated data—Model 3

 SAS No weights 0.12 0.90 0.96 0.94 0.96

Unscaled weights 0.96 0.89 0.93 0.56 0.99

Only school weights 0.96 0.91 0.94 0.93 0.99

Only student weights 0.13 0.90 0.96 0.37 0.95

Withincluster weights 0.96 0.90 0.94 0.71 0.99

Scaled weights: cluster 0.98 0.92 0.94 0.94 0.98

Scaled weights: ECluster 0.97 0.92 0.94 0.94 0.98

Clustersum 0.10 0.89 0.95 0.94 0.94

House weights 0.13 0.88 0.95 0.94 0.93
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in Table 5 A, B and C. As the use of Only School Weights is more practical than using 
them plus scaling of the student weights (approaches Cluster and Ecluster), this 
approach would be the preferred one for both software programs SAS and Mplus, 
considering Simulation Scenario 1.

Outcomes for simulation scenario 2 (data reflecting low variances between schools)

Model 1

Having low variances between schools as simulated in Scenario 2, the estimated 
intercept distribution for β̂0 displayed in Fig.  2, Graph A, Graph D and Graph H, 
provides for all weighting approaches and both software program packages adequate 
estimators. Even the median seems to mask the true value, and interquartile spacing 
boxes do all overlap. As can also be seen in Table 6 A, B and C ( β̂0) the coverage rates 
for all approaches are about or above 90%, which should preferably be higher, but are 
deemed acceptable in this study.

As in Simulation Scenario 1, the software program SAS again underestimates 
the Variance Within σ̂ 2

ε  applying the approaches Unscaled Weights, Only Student 
Weights and Withincluster Weights (Fig. 2, Graph B, Graph F and Graph K). This is 
verified in the low coverage rates between 0.3 and 0.8 from Table 6 A, B and C (σ̂ 2

ε ). 
A different picture as in Simulation Scenario 1 can be seen for the estimation of the 
Variance Between σ̂ 2

τ  in Simulation Scenario 2 (Fig. 2, Graph C, Graph G and Graph 
L). The Variance Between σ̂ 2

τ  is incorrectly estimated by the approaches Unscaled 
Weights, Only Student Weights (only in Model 3, see Fig.  2, Graph L) and Within-
cluster Weights, in this case overestimated. It should be noted, however, that the 

The CR represents the compliance rate of the estimators within its 95% confidence interval of three hierarchical 
models. Model 1 is declared as yij = β0 + τi + εij, Model 2 as yij = β0 + β1 ∗ xij + τi + εij and Model 3 as 
yij = β0 + β1 ∗ xij + β2 ∗ xi + τi + εij . High variances between schools simulated data serves as scenario template. 
Simulation variation is displayed with the different weighting approaches combined with different estimation algorithms 
implemented in the two examined software packages

Table 7 (continued)

Software Weighting approach CR β̂0 CR β̂1 CR β̂2 CR σ̂ 2
ε CR σ̂ 2

τ

 Mplus No weights 0.11 0.90 0.96 0.94 0.96

Unscaled weights 0.96 0.91 0.94 0.93 0.92

Only school weights 0.96 0.90 0.94 0.93 0.92

Only student weights 0.11 0.91 0.96 0.94 0.96

Withincluster weights 0.96 0.91 0.94 0.93 0.92

Scaled weights: cluster 0.97 0.91 0.94 0.94 0.92

Scaled Weights: ECluster 0.97 0.91 0.94 0.94 0.92

Clustersum 0.10 0.89 0.94 0.94 0.94

House weights 0.14 0.89 0.95 0.94 0.94
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boxplots and whiskers do slightly overlap, which makes the statement to be inter-
preted with caution.

Models 2 and 3

Similar to Scenario 1, the estimation of the regressor β̂1 becomes more stable once 
this effect is added also at the school level; a finding confirmed by good coverage 
rates for both the regressor at student β̂1 and school level β̂2 in Table 6 C.

In Scenario 2, we also find that no distinctive difference between the two scaling 
techniques (Cluster and Ecluster) can be obtained, but the approach Only School 
Weights performs again equally well. Hence, as in Simulation Scenario 1, we would 

Fig. 1 Simulation outcomes for data mirroring the German PISA population. Model 1 is declared as 
yij = β0 + τi + εij, Model 2 as yij = β0 + β1 ∗ xij + τi + εij and Model 3 as yij = β0 + β1 ∗ xij + β2 ∗ xi + τi + εij

. The median, the 25% and 75% quartiles, minimum and maximum for each model estimator are presented in 
boxplots. No outliers are displayed. The true population values for each estimate are marked as red line. Simulation 
variation is displayed with the different weighting approaches combined with different estimation algorithms 
implemented in the two examined software packages

89



Page 25 of 39Mang et al. Large-scale Assess Educ             (2021) 9:6  

Fig. 1 continued

recommend the weighting approach Only School Weights for both software program 
packages Mplus and SAS, respecting the specifications of Simulation Scenario 2.

Outcomes for simulation scenario 3 (data reflecting high variances between schools)

Models 1, 2 and 3

In the third considered scenario reflected in Fig.  3 (Simulation Scenario 3), we find 
nominal deviations from the two above described scenarios in the estimation of the 
Variance Between schools σ̂ 2

τ  . For Model 1 (Fig.  3, Graph C) and Model 3 (Fig.  3, 
Graph L) all weighting approaches provide correct estimates of this variance. Only in 
Model 2 (Fig. 2, Graph G) the Variance Between σ̂ 2

τ  is underestimated by the software 
program SAS for all approaches, a finding being confirmed in very low coverage rates 
in Table 7 B. By adding the SES regressor at school level β̂2 into the model, this differ-
ence disappears and estimators of the Variance Between σ̂ 2

τ  and the socio-economic 
background β̂1 and β̂2 become stable and unbiased. Also for Simulation Scenario 3 the 
weighting approach Only School Weights can be given as a clear recommendation for 
the use weighting in hierarchical models.
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Software differences

Regarding the estimation accuracy of the software programs used, it can be said that 
Mplus provides slightly more precise estimates (e.g., Fig. 1, Graph I, or Table 5 B β̂1 ). 
Although the confidence intervals are sometimes quite small, they are partly more 

Fig. 1 continued
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biased (refer e.g., to Fig. 1, Graph L, or Table 5 B σ̂ 2
τ  ). Like previously explained, this 

might be due to the different default settings like optimization algorithms in acceler-
ating the EM algorithm. According to the SAS documentation and the analysis out-
put, Quasi-Newton acceleration methods for optimization are used, whereas Mplus 
stated in their documentation to mainly use Quasi-Newton, but sometimes also other 
acceleration algorithms like Fisher-Scoring. The conditions under which to use one 
or the other method are not detailed. Instead, in the Mplus output, it is only declared 
that accelerating methods have been applied. Further, some algorithm starting default 
setting could also cause these differences. Beyond that, both software package declare 
to use pseudo ML estimation with the integration methods of adaptive quadrature. 
However, it must be clearly emphasized that with the recommended weighting 
approach using only schools weights, both software packages work equally well. If all 

Fig. 2 Simulation outcomes for data reflecting low variances between schools. Model 1 
is declared as yij = β0 + τi + εij, Model 2 as yij = β0 + β1 ∗ xij + τi + εij and Model 3 as 
yij = β0 + β1 ∗ xij + β2 ∗ xi + τi + εij . The median, the 25% and 75% quartiles, minimum and maximum 
for each model estimator are presented in boxplots. No outliers are displayed. The true population values 
for each estimate are marked as red line. Simulation variation is displayed with the different weighting 
approaches combined with different estimation algorithms implemented in the two examined software 
packages
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considerations for this and earlier scenarios are summarized, the authors recommend 
the weighting approach Only School Weights for all considered hierarchical models 
and scenarios for both software programs.

Application
In this section, we will apply our simulation results onto real data, covering a topic 
high on the research agenda in Germany and many other countries. With this, we 
would like to demonstrate the practical value of our study. We will first briefly look at 
previous publications in the field of multilevel analysis in connection with the PISA 
study, scientific literacy, and socio-economic background to show the significance of 
the topic. In a next step, we will apply multilevel regression models to the data from 
the PISA 2015 assessment (Reiss et al., 2018).

Germany is among the countries in the world where there remains a close relation-
ship between socio-economic background and the performance of students, a fact 
which has been the cause of heavy public debate within the country. Using data from 
the PISA 2006 assessment, the OECD presented a hierarchical regression analysis 

Fig. 2 continued

93



Page 29 of 39Mang et al. Large-scale Assess Educ             (2021) 9:6  

regarding the relationship between students’ science competencies and the students’ 
grade, the students’ socio-economic background, the schools’ socio-economic back-
ground, the students’ migration background and the students’ gender (OECD, 2007). For 
Germany, a higher science competence can be assumed for a higher grade and a higher 

Fig. 2 continued
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socio-economic background, for both the student and school level, whereas the school 
level (i.e., the average socio-economic background of students) has a higher impact on 
the results than students’ personal socio-economic background. However, considering 
the findings presented earlier in this paper, we believe that the results must be inter-
preted with caution, as the weighting approach used for multilevel models in PISA 2006 
(House Weights) did not show the best results in our simulation study. For the PISA 2015 
cycle, the OECD (2016) reports a multilevel regression model with many factors related 
to the education systems, schools and students, again in connection to science liter-
acy. They point out the positive (while negatively connoted) associations with science 
scores for both the OECD and all participating countries and economies. The OECD 
has changed its approach to weighting in multilevel models for this cycle, coinciding 

Fig. 3 Simulation outcomes for data reflecting high variances between schools. Model 1 
is declared as yij = β0 + τi + εij, Model 2 as yij = β0 + β1 ∗ xij + τi + εij and Model 3 as 
yij = β0 + β1 ∗ xij + β2 ∗ xi + τi + εij. The median, the 25% and 75% quartiles, minimum and maximum 
for each model estimator are presented in boxplots. No outliers are displayed. The true population values 
for each estimate are marked as red line. Simulation variation is displayed with the different weighting 
approaches combined with different estimation algorithms implemented in the two examined software 
packages
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with the Scaled Weights: Cluster approach presented in this paper. Since this approach 
showed reliable results in our study, we believe these results can be trusted.

Apart from OECD publications, numerous papers have been published on the rela-
tionship of scientific literacy and socio-economic background. Papers relating to 
Asian countries stand out in particular. For example, Lam and Lau (2014) investigate 
how to improve science education in Hong Kong. Similarly, Sun et al. (2012) explore 
factors that affect students’ science achievement in Hong Kong. Other publications 
are based on correlations between parents’ attitudes towards science and the scien-
tific competence of their children (Perera, 2014). Since the articles do not provide 
precise information on the exact use of the weights, these results should also be inter-
preted with caution.

Multilevel models uncovering factors at school and student level that determine 
students’ performance, can offer significant and important evidence for policy mak-
ers. Obviously, they should be implemented in methodologically sound ways, which is 
why we present a practical application of the different weighting approaches studied 
in what follows.

Fig. 3 continued
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Fig. 3 continued
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Table 8 Application PISA 2015 Data—Model 1 yij = β0 + τi + εij

Classifying the results of the simulation study to application data, the different weighting approaches combined with 
different estimation algorithms implemented in the two examined software packages are displayed

β̂0 SE β̂0 σ̂ 2
ε SE σ̂ 2

ε σ̂ 2
τ SE σ̂ 2

τ

SAS

 No weights 508.28 4.49 5426.01 118.52 4013.66 272.93

 Unscaled weights 481.80 5.41 5079.08 132.86 3940.63 284.36

 Only school weights 483.83 5.37 5323.60 129.28 4042.81 331.98

 Only student weights 506.42 4.54 5174.72 115.51 3936.82 236.50

 Withincluster weights 484.43 5.34 5294.40 117.54 3987.60 307.94

 Scaled weights: cluster 483.83 5.37 5323.60 129.28 4042.81 331.98

 Scaled weights: ECluster 483.83 5.37 5323.60 129.28 4042.81 331.98

 Clustersum 503.40 4.68 5451.93 121.11 4027.00 282.90

 House weights 507.86 4.50 5421.13 121.32 4017.66 272.42

Mplus

 No weights 507.92 4.50 5412.54 117.97 4811.59 372.69

 Unscaled weights 483.67 5.34 5297.45 127.78 4865.75 454.33

 Only school weights 483.57 5.37 5294.79 127.64 4860.81 456.38

 Only student weights 507.81 4.50 5410.61 118.42 4818.42 373.28

 Withincluster weights 483.57 5.37 5294.79 127.64 4860.81 456.38

 Scaled weights: cluster 483.67 5.34 5297.45 127.78 4865.75 454.33

 Scaled Weights: ECluster 483.69 5.34 5297.98 127.86 4863.82 454.18

 Clustersum 504.26 4.61 5408.24 119.54 4760.76 373.38

 House weights 507.92 4.50 5412.54 117.97 4811.59 372.69

Table 9 Application PISA 2015 Data – Model 2 yij = β0 + β1 ∗ xij + τi + εij

Classifying the results of the simulation study to application data, the different weighting approaches combined with 
different estimation algorithms implemented in the two examined software packages are displayed

β̂0 SE β̂0 β̂1 SE β̂1 σ̂ 2
ε SE σ̂ 2

ε σ̂ 2
τ SE σ̂ 2

τ

SAS

 No weights 509.57 4.06 15.87 1.21 5233.28 112.71 2670.31 181.69

 Unscaled weights 484.76 5.14 11.31 1.54 4990.11 131.10 2239.82 143.37

 Only school weights 487.12 5.02 13.62 1.37 5246.73 125.43 4149.08 414.42

 Only student weights 507.36 4.20 13.12 1.20 5049.22 111.51 2229.14 125.10

 Withincluster weights 487.64 4.96 13.96 1.19 5159.23 113.60 4219.66 404.56

 Scaled weights: cluster 487.12 5.02 13.62 1.37 5246.73 125.43 4149.08 414.42

 Scaled weights: ECluster 487.12 5.02 13.62 1.37 5246.73 125.43 4149.08 414.42

 Clustersum 505.08 4.26 15.28 1.25 5300.05 116.11 3880.08 333.45

 House weights 508.83 4.10 15.26 1.24 5293.84 117.33 3886.28 325.77

Mplus

 No weights 509.19 4.10 15.10 1.20 5313.87 116.12 3876.26 324.59

 Unscaled weights 487.20 4.99 13.60 1.37 5247.64 125.27 4141.49 411.45

 Only school weights 487.11 5.01 13.61 1.37 5246.64 125.17 4151.67 414.03

 Only student weights 509.15 4.10 15.12 1.21 5316.13 116.62 3877.56 325.67

 Withincluster weights 487.11 5.01 13.61 1.37 5246.64 125.17 4151.67 414.03

 Scaled weights: cluster 487.20 4.99 13.60 1.37 5247.64 125.27 4141.49 411.45

 Scaled weights: ECluster 487.22 4.99 13.61 1.37 5248.73 125.38 4137.74 410.98

 Clustersum 506.06 4.18 15.41 1.24 5304.56 116.65 3816.42 323.59

 House weights 509.19 4.10 15.10 1.20 5313.87 116.12 3876.26 324.59
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For the analyses with PISA 2015 data, the same three hierarchical models as applied in 
the simulation study were used. The first plausible value (PV) for the domain of Science 
approximates the distribution of student achievement correctly (Davier et  al., 2009). 
The socio-economic background is represented by the z-standardized variable ESCS for 
both the school and student level. As in the simulation study, the variance within and 
between schools will be estimated. The same weighting approaches as in the simulation 
study are also investigated here. The different results can be correctly classified using the 
results of the simulation study. Therefore, the weighting approach Only School Weights 
is assumed in the following as a reference point for the recommended implementation 
of the weights and thus as the correct interpretation approach for the explanation of the 
estimated parameters of the hierarchical models. Both estimation methods represented 
in the different software packages are used to get a more comprehensive picture of the 
application.

Tables 8, 9, 10 show the different results for Models 1, 2 and 3, each displayed for both 
software packages, respectively.

The weighting scenarios No Weights, Only Student Weights, Clustersum and House 
Weights achieve higher values for the intercept β̂0 than the approach Only School 
Weights. This applies to both software packages used and all defined models. These val-
ues are estimated too highly and can lead to a misinterpretation of the intercept as a 
value too high for the mean of the schools’ achievement. Concerning the link between 
scientific achievement and socio-economic background, it can be stated that with regard 
to the reference method Only School Weights, all weighting approaches and software 

Table 10 Application PISA 2015 Data – Model 3 yij = β0 + β1 ∗ xij + β2 ∗ xi + τi + εij

Classifying the results of the simulation study to application data, the different weighting approaches combined with 
different estimation algorithms implemented in the two examined software packages are displayed

β̂0 SE β̂0 β̂1 SE β̂1 β̂2 SE β̂2 σ̂ 2
ε SE σ̂ 2

ε σ̂ 2
τ SE σ̂ 2

τ

SAS

 No weights 516.04 2.40 12.89 1.18 49.50 2.32 5316.47 116.13 1176.65 143.61

 Unscaled weights 506.36 4.35 11.33 1.54 43.26 6.35 4972.29 130.45 1093.40 138.68

 Only school weights 509.08 3.57 11.34 1.30 47.43 4.14 5256.11 126.86 1399.36 262.86

 Only student weights 514.61 2.56 13.06 1.20 48.47 3.10 5049.66 111.53 1051.45 97.37

 Withincluster weights 509.43 3.50 12.99 1.18 46.62 4.12 5170.39 114.15 1492.50 254.13

 Scaled weights: cluster 509.08 3.57 11.34 1.30 47.43 4.14 5256.11 126.86 1399.36 262.86

 Scaled weights: ECluster 509.08 3.57 11.34 1.30 47.43 4.14 5256.11 126.86 1399.36 262.86

 Clustersum 515.11 2.52 13.02 1.21 48.04 2.78 5300.28 116.20 1218.51 166.33

 House weights 515.81 2.42 13.07 1.20 48.79 2.53 5285.94 116.88 1222.41 156.36

Mplus

 No weights 515.96 2.40 12.91 1.18 49.48 2.32 5320.55 116.31 1201.40 148.93

 Unscaled weights 509.17 3.50 11.32 1.30 47.48 4.13 5271.26 127.35 1401.29 261.30

 Only school weights 509.06 3.57 11.34 1.30 47.39 4.15 5270.65 127.31 1413.88 267.75

 Only student weights 515.91 2.39 12.93 1.18 49.55 2.33 5322.62 116.78 1198.43 148.23

 Withincluster weights 509.06 3.57 11.34 1.30 47.39 4.15 5270.65 127.31 1413.88 267.75

 Scaled weights: cluster 509.17 3.50 11.32 1.30 47.48 4.13 5271.26 127.35 1401.29 261.30

 Scaled weights: ECluster 509.19 3.50 11.32 1.30 47.49 4.12 5272.64 127.49 1396.79 259.89

 Clustersum 515.41 2.46 13.13 1.20 47.86 2.79 5315.53 117.16 1210.36 160.83

 House weights 515.96 2.40 12.91 1.18 49.48 2.32 5320.55 116.31 1201.40 148.93
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packages estimated this context correctly for both the student and the school level. Hav-
ing a higher socio-economic background, a higher achievement for the students is esti-
mated. This correlation is even more pronounced for the socio-economic background at 
school level.

Regarding the Variance Between the schools σ̂ 2
τ  , it can be noted that compared to 

the reference approach Only School Weights this variance is underestimated for Mod-
els 2 and 3 (Tables  9 and 10), for both software packages and for the weighting sce-
narios No Weights, Unscaled Weights (only SAS), Only Student Weights, Clustersum 
and House Weights. This underestimation may result in less variability being assumed 
between schools than is actually present in the population. Also, with regard to the Vari-
ance Within σ̂ 2

ε  , caution is advised in connection with the weighting variants Unscaled 
Weights, Only Student Weights and Withincluster Weights. Compared to the approach 
Only School Weights, these variances are also underestimated with the software SAS.

In summary, with the help of the simulation study, the application of PISA data dem-
onstrated that the influence of school-specific aspects on student performance is of great 
importance and therefore a consideration of the hierarchies in PISA analyses, using the 
best-performing estimation approach, is highly recommended.

Summary and conclusions
In order to determine the best weighting scheme in hierarchical models with LSA data, 
a simulation study based on the PISA data structure was performed examining differ-
ent weighting approaches and scaling techniques frequently used in the research com-
munity. Further, two different software packages, Mplus (with default two-level analysis 
settings) and SAS (with its procedure PROC GLIMMIX), were compared against each 
other with a focus on deployed estimation procedures and algorithms. In summary, this 
study provides a comprehensive picture of many possible and previously used weighting 
approaches. This research program implies which weighting approach leads to the most 
precise and least biased estimation of parameters in multilevel models with LSA data, 
and thus gives clear guidance which approach should be used for such analysis.

We were able to show that the weighting scenarios Only School Weights, Scaled 
Weights: Cluster and Scaled Weights: ECluster provide the least biased and sufficiently 
precise parameter estimates throughout all three considered models, and in all three 
simulation scenarios. As the use of Only School Weights is easier to implement than 
the other well-performing methods, we recommend this approach, independently of 
whether SAS or Mplus is being used.

It can be noted that the software program SAS with its used procedure PROC GLIM-
MIX, provides larger quartile spacing’s or more wrongly estimated variances than the 
software package Mplus with its used default settings for two-level analysis. As both 
software packages SAS and Mplus are not as transparent as freely available software 
packages like R (R Core Team, 2018), we can only assume where the distinction between 
the software programs are, although the authors have put a lot of time and effort into 
finding internal settings of these programs. Although both software packages provide 
quite good consulting services, they lack insight into the actual internal procedures of 
the syntaxes used.
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Furthermore, no explicit difference was found comparing the considered scaling tech-
niques of level one weights. The scaling technique resulting in student weights summing 
up to the cluster size as well as the technique where student weights sum up to the effec-
tive sample size within clusters, perform nearly the same for all simulation scenarios 
and analysed models. Therefore, both methods seem to be legitimate. Nevertheless, the 
authors would like to reiterate the importance of applying school weights at level two, 
as they have significant effects on most parameter estimates, and seem to be needed 
to sufficiently reflect the LSA sample design in multilevel models, as it is characterized 
by significantly varying school selection probabilities. Level one weights may not be as 
important, because the student weights have by design a low variety within schools.

Applying the investigated weighting scenarios to real PISA data, we could show the 
potential threads on validity of results and interpretation when using different weighting 
methods than the recommended ones.

Limiting the explanatory power of this study is the number of relatively simple mod-
els considered. Further research is needed to evaluate the findings for more advanced 
hierarchical models; for example, with random slopes, or those including multiple 
predictor variables, all introducing further error terms. In particular, immigration 
background, student gender and the type of school attended, for example, are also 
potential predictors of the relationship between competence and social background. 
Finally, other frequently used software programs like HLM (Raudenbush, 2007) could 
also be examined.

Implications for practice
This simulation study has shown that using only the school weights provide the most 
unbiased estimates for hierarchical models. In this approach, the final school weights are 
specified as level two weights, while no weight is used at level one. Final school weights 
reflect the school selection probabilities, adjusted for school nonresponse, and are typi-
cally provided with the public datasets of LSA. For PISA data, the respective variable 
is named nonresponse adjusted school base weight W_NRASCHBWT in former PISA 
cycles, e.g. OECD (2017). Hence, the identified preferable HLM weighting method is at 
the same time one that can be implemented in a straightforward manner. This weighting 
approach may be useful as well for other LSA with a similar data structure, i.e., indi-
viduals nested within clusters. Such data are for example student and teacher data of 
ICILS, and teacher data of ICCS. Within some limits the findings are even applicable 
to data with slightly different structure, e.g., with class sampling such as TIMSS, PIRLS 
and ICCS student data. For the latter datasets, the school weight variable is called “Final 
school weight”—users are referred to the technical documentation of the studies for the 
respective variable names. We are confident that the findings can even be generalized to 
other data with similar hierarchical structure outside the education sector, that is, data 
coming from two-stage samples with varying selection probabilities at stage one, but 
uniform selection probabilities at stage two. Regarding the investigated software pack-
ages Mplus and SAS, no significant differences between the programs become visible 
with the preferred weighting approach of using only final school weights.
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We are confident that the recommended weighting approach will help many 
researchers in the application of MLM with weights, thus driving further insightful 
research in the field of LSA.
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