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Summary

The increasing prevalence of stress-related disorders, such as major depressive disorder (MDD)

has become a significant global concern, with devastating effects on individuals’ personal lives

and societal well-being. The exposure to severe and chronic stressors is a major risk factor

for the development of such disorders, and recent traumatic events have further exacerbated

this mental health crisis. The susceptibility to MDD is determined by a complex interplay

of genetic, epigenetic, and environmental factors. One specific gene of significance in this

context is FKBP5 (Fkbp5 in rodents), encoding the co-chaperone FK506 binding protein 51

(FKBP51). The interplay between severe stress exposure and genetic risk variants of FKBP5

has been associated with an increased vulnerability to psychopathology.

A significant symptom observed in individuals with MDD is social dysfunction, char-

acterized by the avoidance of social interactions and the display of maladaptive behaviors,

such as aggression or irritability. However, traditional preclinical assessment methods for

stress-induced behavioral symptoms, such as social aversion, have faced criticism due to their

reductionistic nature, often failing to capture ethologically relevant behavioral constructs.

Advancements in high-throughput pose estimation tools have provided opportunities for com-

prehensive behavioral analysis through automatically annotated behavioral assessments. This

thesis explores various tools for automatically annotated behavioral assessment in preclini-

cal psychiatry research, employing both supervised classification and unsupervised clustering

strategies.

Applying the newly established ad validated deep phenotyping methods, the thesis fur-

ther investigates the brain region and cell type specific role of FKBP51 across different stress

models and uncovers the underlying neurobiological mechanisms and behavioral profiles using

automatically annotated behavioral assessment. The effectiveness of both supervised classifi-

cation and unsupervised clustering strategies is demonstrated in characterizing individual and

social behavioral profiles in mice subjected to various stress conditions. Moreover, the thesis

highlights the distinct sex-specific effects of different stress paradigms on the regulation of

the hypothalamic-pituitary-adrenal (HPA) axis, including the expression of Fkbp5 in several
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stress-related brain regions, in particular the Locus Coeruleus (LC).

Taken together, the current thesis emphasizes the importance of brain region and cell

type specific regulation of Fkbp5 and underscores the benefits of automatically annotated

behavioral assessment tools. This is put into perspective with future research prospects, ad-

vocating for the integration of diverse data modalities, such as in vivo measurements of stress

mediators and neuronal activity recordings. This integrated approach aims to enhance our

understanding of complex behaviors and the underlying molecular mechanisms. Ultimately,

this can contribute to a better comprehension of the behavioral phenotypes and associated

neurobiological alterations in stress-related disorders. These insights hold potential to facili-

tate the development of novel treatments for psychiatric disorders.
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Chapter 1

General introduction

1.1 The impact of stress-related disorders

The number of people suffering from stress-related disorders, such as major depressive disor-

der (MDD), and anxiety-related disorders, including post-traumatic stress disorder (PTSD),

has rapidly increased in the last decades [1]. In 2019, the Institute for Health Metrics and

Evaluation (IHME) published the Global Burden of Disease study, which indicated that de-

pression and anxiety-related disorders have shown an enormous increase in prevalence in the

last decades and have among the highest prevalence of all mental disorders [2]. This is why

disorders, such as MDD, have been described by the World Health Organization as the lead-

ing cause of worldwide disability with an estimated 280 million people suffering from MDD in

2019 [1, 2]. These disorders have a devastating effect on the patients’ personal life impacting

their social functioning, which can lead to social withdrawal from society and in severe cases

to suicide [3, 4]. Furthermore, there are also severe consequences for society related to a

high economic burden due to both direct costs of healthcare and indirect costs via the loss of

productivity and income [5]. A major risk factor for the development of such disorders is the

exposure to stressful events that are perceived as particularly severe and/or chronic [6–9]. Re-

cent traumatic events around the world, for instance, pandemics, wars, and natural disasters

have had a detrimental impact on the mental health of the population and predictions show

an even further increase in the number of people suffering from these stress-related disorders

[10–12]. The treatment of stress-related disorders remains difficult with regard to efficacy

and specificity. In MDD, the most common line of pharmacological treatment relies on drugs

influencing the monoaminergic system in the brain via selective serotonin reuptake inhibitors

(SSRIs), and serotonin and norepinephrine reuptake inhibitors (SNRIs). However, the efficacy

of these drugs has remained low, as the response rates are at best around 53.8% [13]. In ad-

dition, the severe and high number of side effects can even further hamper daily life activities
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and often result in patients quitting medications without improvements in their symptoms

[14–16]. One of the explanations for the ineffectiveness of treatment is the high comorbidity

of MDD with other psychiatric disorders, which makes the classification extremely difficult

[17, 18]. Unsurprisingly, MDD has a high heterogeneity between the experienced symptoms

of patients [19]. In 2013, the American Psychiatric Association published the fifth and latest

version of the Diagnostic and statistical manual of mental disorders (DSM-5) including fur-

ther specifications between different types of depression, in which a separate classification was

made for disruptive mood dysregulation disorder (DMDD) and premenstrual dysphoric dis-

order (PMDD) [20, 21]. However, heterogeneity of MDD symptoms remains a problem, and

important novel distinctions between MDD patients are continuously discovered [22]. The

lack of understanding of the neurobiological underpinnings of MDD is problematic and needs

to be addressed. An increased understanding of the neurobiological mechanism allows for a

more precise screening of potential novel anti-depressant drug treatments that could target

different neurobiological mechanisms, which ultimately could lead to more personalized drug

treatments that show a higher efficacy and have reduced side effects.

1.2 The terminology of stress

The terminology ”stress” is commonly used in our daily life to describe our experiences or emo-

tional state. However, there is a strong negative association with stress experience, which in

certain cases can be appropriate since stress can lead to severe negative consequences, includ-

ing increased vulnerability towards stress-related disorders. The exposure to stress does not

always lead to a negative outcome and via adaptive processes can have a positive physiological

and behavioral outcome, for instance, on performance, motivation, and mood[23–26]. The his-

tory of stress research dates back to 1872 when Claude Bernard described the first concept of

the stability of an internal environment within the body (milieu intérieur) [27]. This concept

was then further conceptualized by Walter Cannon, who introduced the term ”homeostasis”,

which is the reaction of the body to constantly adapt in order to maintain a physiological

equilibrium[28]. The fundamental basis for the definition of our current understanding of

stress was solidified by Hans Selye in 1936 [29], who defined stress as the nonspecific response

of the body to both positive, as well as negative demands. The body is constantly adapting

to maintain a physiological equilibrium (homeostasis) and the exposure to specific internal or
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external stimuli (stressors) threatens the homeostasis of the body. However, this definition of

stress was seen as too broad, as it included any stimulus that evokes a physiological reaction.

Therefore, McEwen and Stellar in 1993 [30] introduced the concept of allostasis, which refers

to the process by which stressors (whether physiological or psychological) are mediated in the

body via hormonal mediators (such as glucocorticoids and catecholamines) to create stabil-

ity through change, regulating adaptation, homeostasis maintenance, and survival to stress

[23, 31, 32]. Importantly, prolonged and severe exposure to stressors can lead to a build-up

of allostatic load, which changes the properties of the stress response system and increases

the vulnerability towards stress-related disorders [23, 32]. Even though the initial definition

of stress has been around for over 80 years, there is still an ongoing discussion about the

exact description of stress. The understanding of stress and its definition is changing over

time, which is influenced by the increased attention to mental disorders within society. A

recent review from Richter-Levin & Sandi [33] highlights the increased association of stress

exposure with the development of psychopathology, even though the more common reaction

towards stress exposure is adaptation and building resiliency towards stress. Therefore, a dis-

tinction is proposed between the terminology of stress and stressful experiences, which refers

to adaptation and resiliency towards stress, whereas the term ”trauma”, refers to exposures

that lead to negative consequences, such as psychopathology. It is important to recognize

that the definition of stress has a significant impact on society and ongoing discussion about

its definition is crucial to reflect the current societal understanding.

1.3 The stress response system

The presence of a potential or actual threat, as represented by stress, requires immediate

and future adaptation in the physiology and behavior of the individual. The stress response

system is an evolutionarily conserved model that activates different neuroendocrine pathways

in parallel, consisting of a complex symphony of many different mediators, including neuro-

transmitters, peptides, and steroid hormones. This complexity of the stress response system is

necessary to appropriately respond to the many different factors influencing the stress response

including, the severity, predictability, type (psychological or physical), and duration (acute

or chronic) of the stress exposure, but also the age (early, adult, or old age), and the sex of

the animal (female or male) [34, 35]. The major stress response axes consist of the fast-acting
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(within seconds) sympathetic-adreno-medullar (SAM) axis via catecholaminergic signaling,

and the slower-acting (minutes to hours, up to days) hypothalamic-pituitary-adrenal (HPA)

axis via steroid hormone signaling. Both systems have direct and indirect influences on the

periphery of the body by restoring homeostasis through different processes, such as energy

mobilization, but also influence the central nervous system via processes such as learning,

memory, emotional responses, and decision-making [24, 34, 36]. Even though these systems

are activated rapidly, they can have long-lasting effects in a timescale from seconds to many

years.

1.3.1 The SAM axis

In response to a stressful event or threat, the body needs to adapt rapidly in order to deal with

the issue at hand. This rapid stress response is initiated via the autonomic nervous system

(ANS), which regulates many different bodily processes, such as heart rate and pupil dilation,

but also the activity of the organs, such as the inhibition or stimulation of the digestive tract

[37, 38]. The ANS is subdivided into the sympathetic nervous system (SNS), which is linked

to the SAM axis, which initiates the ”fight or flight” system, and the parasympathetic nervous

system (PNS), which is linked to the ”rest and digest” system. These systems have opposite

actions in the majority of their functions, where one system stimulates and the other inhibits

a certain physiological response [39]. The ANS activates the SNS and inhibits the PNS

in response to stressful stimuli, which, among many other physiological processes, increases

energy expenditure and inhibits the digestive system.

The fast processing of a stressor via the SAM axis is orchestrated by multiple brain

regions in the brainstem and the hypothalamus, which include the Locus Coeruleus (LC), the

paraventricular nucleus of the hypothalamus (PVN), and the ventrolateral medulla (VLM).

These brain regions can directly innervate the intermediolateral cell column (IML), a group

of preganglionic neurons of the SNS [36, 39, 40], see Figure 1.1. These preganglionic neurons

of the IML lie within the lateral gray column of the spinal cord and are relatively short.

They use acetylcholine to activate nicotine receptors to communicate to the post-ganglionic

neurons, which in turn are much longer and travel to the peripheral effector sites, including

the different organs and tissues sites of the body [37, 41].

The majority of the post-ganglionic neurons release NE and act on various adrenergic
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Figure 1.1: The SAM axis stress response system. In response to different types of stressors, the SAM axis is
rapidly activated and shows a fast effect on the brain and body. This system is also called the ”fight or flight” response
mechanism due to its major role in preparing the body for immediate action against threats, by increasing the heart
rate and blood pressure, pupil dilation, and blood flow to skeletal muscles, while decreasing blood flow to the digestive
tract. The SAM axis is initiated via multiple brain regions in the brainstem and the hypothalamus, including, the
locus coeruleus (LC), paraventricular nucleus of the hypothalamus (PVN), and the ventrolateral medulla (VLM), which
directly innervate the intermediolateral cell column (IML). The IML communicates to the post-ganglionic neurons, which
travel to the peripheral effector sites, including the different organs and tissue sites of the body. The adrenal medulla
is one of the nodes that is innervated by the SNS and in turn releases epinephrine (E) and norepinephrine (NE) from
the adrenal medulla into the bloodstream. Via the bloodstream E and NE can reach peripheral organs and tissues in
seconds to activate the fight or flight system via further stimulation or inhibition of the specific bodily process. Adapted
from [42]

receptors (α 1-2 and β 1-2 receptors) that depending on the effector site can have specific

inhibitory or excitatory effects [41]. The adrenal medulla is one of the nodes that is inner-

vated by the SNS, and in turn releases E (around 80% of the output), but also NE from

chromaffin cells in the adrenal medulla into the bloodstream. Via the bloodstream E and

NE can reach peripheral organs and tissues in seconds to activate the fight or flight system

via further stimulation or inhibition of specific bodily processes, such as the increase of heart

rate and blood pressure, and blood flow to skeletal muscles, while decreased blood flow to the

digestive tract [36, 39, 43, 44]. In addition, some bodily processes are directly mediated via

noradrenergic projections from the LC, for instance for pupil dilation [45, 46].
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Both E and NE, are considered catecholamines, as well as monoamines, as they con-

tain a catechol group (a benzene ring with two hydroxyl side groups at 3- and 4-positions)

and a single side-chain amine[47]. The synthesis pathway of catecholamines (see Figure 1.2)

starts with the conversion of the amino acid L-tyrosine to L-3,4-dihydroxyphenylalanine (L-

DOPA) by the rate-limiting enzyme tyrosine hydroxylase (TH). Then, L-DOPA is decarboxy-

lated into dopamine by DOPA decarboxylase (DDC), which in turn is converted into nore-

pinephrine by dopamine β-hydroxylase. Norepinephrine is converted by phenylethanolamine-

N-methyltransferase into epinephrine [48].

Figure 1.2: The synthesis and metabolism of catecholamines. Adapted from [48]

The effects of the hormonal release of NE and E from the adrenal medulla are peripheral

since these catecholamines cannot pass the blood-brain barrier and have therefore no effect

in the brain [49]. However, a separate neurocircuitry fight or flight response mechanism is

in place via the broad signaling pathways of the monoaminergic neurocicuitry, including NE,

dopamine, and serotonin [34, 50–52]. There are many factors that determine the degree to
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which and to what extent the monoaminergic systems are activated, such as the type (e.g.

physical or psychological), the severity (acute or chronic), and the controllability (unpre-

dictable or predictable) of the stressor [34, 36, 50]. The different monoaminergic neuronal

circuits regulate specific immediate behavioral adaptations for instance, NE signaling has

been linked to increasing vigilance and attention bias, while dopamine signaling can increase

risk assessment processes, and serotonin signaling is involved in post-stress anxiety regulation

[52, 53].

1.3.2 The HPA axis

In response to a stressful event, the HPA axis is activated in parallel with the ”fight or flight

response”, but has a slower and prolonged stress response mechanism. The HPA axis is

primarily activated during stressful events, but other activities such as exercise, intercourse,

or changes in appetitive reward schedules have also been linked to an activation of the HPA

axis [54, 55]. The neuroanatomical circuitry of the HPA axis consists of the activation of

different neuronal populations in the PVN via direct and indirect neuronal input from a

number of brain regions related to stress evaluation, including cortical and limbic regions,

but interestingly is also innervated via the NE signaling pathway coming from the brain

stem structure, nucleus of the solitary tract [56]. The main PVN stress-related neuronal

networks are the hypophysiotropic neurons producing corticotropin-releasing factor (CRF)

and the arginine vasopressin (AVP) expressing neurons, which are located in the parvocellular

subdivision of the PVN and project into the circulation of the median eminence [40, 57].

The release of CRF and AVP then act via CRF-1 and VP-1b receptors, respectively, in the

endocrine cells of the anterior pituitary (corticotrophs). This activates the rapid cleavage of

the proopiomelanocortin (POMC) hormone into the adrenocorticotropic hormone (ACTH),

which is then released via secretory vesicles into the bloodstream [58, 59]. The exocytosis

of ACTH is primarily controlled via CRF acting at the CRF-1 receptor side, but can also

be stimulated via the AVP-VP-1b pathway [60]. Ultimately, the release of ACTH into the

bloodstream triggers the synthesis and diffusion of glucocorticoids (GCs), cortisol in humans,

and corticosterone (Cort) in rodents, by cells in the zona fasciculata layer of the adrenal cortex

via the melanocortin 2 receptor, see Figure 1.3. Increased levels of Cort in the bloodstream

typically can be found only 3-5 minutes after the onset of the HPA axis, whereas ACTH is
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more rapidly released into the circulation. This is due to the necessary time to synthesize

Cort via a series of enzyme-mediated reactions from cholesterol, and subsequently to diffuse

Cort into the circulation [60, 61]. Cort levels typically peak within 30 minutes after acute

stress exposure and are usually back to baseline after 60-90 minutes [62].

Figure 1.3: The HPA axis stress response system. In response to different types of stressors, the HPA axis is
activated and shows a slower but more sustained effect on the brain and body compared to the rapid actions of the SAM
axis. The HPA axis is initiated via the release of corticotropin-releasing factor (CRF) and arginine vasopressin (AVP)
from different neuronal populations of the paraventricular nucleus of the hypothalamus (PVN), which in turn triggers
the release of adrenocorticotropic hormone (ACTH) from the anterior pituitary into the bloodstream. Ultimately, the
release of ACTH into the bloodstream triggers the synthesis and diffusion of GCs from the adrenal cortex, exerting its
function in the periphery as well as in the brain. After the initial activation of the HPA axis, different feedback loops are
in place to appropriately regulate the cognitive response and the HPA axis activity, which is mediated via Cort-GR/MR
binding in several brain regions, such as in the hypothalamus, hippocampus, and frontal regions.

The basal activity of the HPA axis is influenced by both ultradian and circadian rhythms,

which lead to pulsatility of basal Cort secretion within the hourly and daily time windows

[63]. In rodents, this leads to an increase of baseline Cort several hours before lights-off, with

a daily peak at around the lights-off moment. [64]. The timing of stressors is crucial, as these

pulses in Cort secretion influence the response of the HPA axis to acute stress. A stressor

that occurs during the rising phase of an ultradian Cort pulse rather than the falling phase

has been implicated with a larger stress-induced Cort response [65]. The peripheral effects of
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the HPA axis are partially complementary to the fight or flight response system, but also have

specific additional effects. The peripheral effects of the HPA axis include the regulation of

metabolism, immune function, inflammation, cardiovascular function, and electrolyte balance.

The lipid-soluble nature of the Cort molecule enables it to easily pass through the blood-brain

barrier, regulating a variety of biological processes, not just in the body, but also in the brain,

which is not possible for the fight or flight hormones E and NE [49].

Cort exerts its effects in various cells and tissues throughout the body and brain by binding

to two different receptor types, the glucocorticoid receptor (GR) encoded by the NR3C1 gene,

and the mineralocorticoid receptor (MR) encoded by the NR3C2 gene. The binding affinity

of these receptors varies; the MR has a 10-fold higher affinity to Cort compared to the GR.

Therefore, at baseline conditions with low levels of circulating Cort, there is a high occupation

of the MR, while upon activation of the HPA axis and the increase of circulating Cort, not only

the MR but also the GR will be occupied by Cort [43]. The GR is present in almost all tissues

in the body, including the nervous-, immune-, cardiovascular-, respiratory-, reproductive-,

musculoskeletal, and integumentary systems, and is also widely expressed throughout the

brain, with the highest density in the anterior pituitary, PVN, and limbic-prefrontocortical

regions [66]. Meanwhile, peripheral MR is specifically found in epithelial cells of the kidney,

bladder, and intestines but also in other cell types and tissues of among others, the heart.

MR expression in the brain follows a specific expression pattern, with the highest density in

the limbic regions, such as the hippocampus and amygdala [66, 67]. These steroid receptors

are named after their functions in the periphery, where the MR is important for the mineral

balance and the GR for glucose metabolism [68]. More specifically, one of the functional roles

of the MR in the periphery is to regulate ion and fluid balance via sodium homeostasis in

epithelial cells. In order to distinguish this function from its Cort binding functions, there is

the local inactivation of Cort by 11β-hydroxysteroid dehydrogenase (11β-HSD) type 2 to 11-

deoxycorticosterone (cortisone in humans), which cannot bind steroid receptors. Therefore,

in those peripheral areas, there is MR binding to the lower circulating concentrations of the

other endogenous ligand of the MR, aldosterone, that is involved in sodium homeostasis[69].

Importantly, in the brain Cort’s binding properties are reactivated via the 11β-HSD type 1

enzyme, which means that the neuronal effects of the MR are driven by Cort-MR binding

[70].
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Cort has an important role in the brain to appropriately respond to stressful events but is

restricted to the neuronal circuits that express MR and/or GR. An important function of Cort

in the brain is to regulate the activity of the HPA axis via a negative feedback loop by binding

to the GR at the PVN and the anterior pituitary sides, which shuts off the release of CRF

and ACTH, respectively [71, 72]. In addition, Cort has specific stress-related brain region

effects, which influence the cognitive, emotional, and neuroendocrine processing via both GR

and MR binding, such as in the hippocampus, LC, nucleus of the solitary tract, and the

central amygdala, but also via GR binding alone, such as in the dorsal raphe nucleus, medial

amygdala, basolateral amygdala, and the medial prefrontal cortex [34], see (Figure 1.4).

Figure 1.4: The expression of Glucocorticoid receptor (GR) and Mineralocorticoid receptor (MR)
throughout the brain. The role of GCs in the brain is restricted to the neuronal circuits that express MR and/or GR.
These brain regions are strategic hubs that connect networks involved in diverse aspects of the brain’s stress response.
An important function of Cort in the brain is to regulate the activity of the HPA axis via a negative feedback loop by
binding to the GR at the paraventricular nucleus of the hypothalamus (PVN) and the anterior pituitary sides, which
shuts off the release of corticotropin-releasing factor (CRF) and adrenocorticotropic hormone (ACTH), respectively. In
addition, Cort has specific stress-related brain region effects which influence the cognitive, emotional, and neuroen-
docrine processing via both GR and MR binding, such as in the hippocampus (Hipp), locus coeruleus (LC), nucleus of
the solitary tract (NTS), and the central amygdala (CeA), but also via GR binding alone, such as in the dorsal raphe
nucleus (DR), medial amygdala (MA), basolateral amygdala (BLA), and the medial prefrontal cortex (medial PFC).
Adapted from [34]

The MR- and GR-mediated processes can be complementary, but also opposing however,

their molecular signaling pathways have a similar structure, as they are nuclear receptors that

are able to affect gene transcription via the Cort-MR/GR complex [73]. These receptors for

example, the GR can then transfer to the nucleus and bind to the glucocorticoid response

element (GRE) in the regulatory regions of target genes (genomic actions), but also can have

their effects at the cell membrane via rapid GRE-independent interactions (non-genomic

actions) [74, 75]. In the absence of Cort or other ligands, the GR receptor remains in the
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cytoplasm and is complexed to chaperone proteins via several heat shock proteins (HSP)

and their additional machinery. The conformation of the GR-chaperone complex structures

folds the GR into a higher or lower affinity for hormone binding states, which in turn tightly

regulate the GR translocation to the nucleus [73, 76]. The GR receptor, in reticulocyte lysate,

is bound by HSP70 and HSP40, which facilitate general protein folding processes. Then,

the co-chaperoning protein, HSP70/HSP90 organizing protein (HOP) binds independently

to HSP90 via the tetratricopeptide repeat (TPR) domain and functions as an adaptor of

HSP90 to the HSP70-GR complex, see Figure 1.5. The next conformational change includes

the competitive replacement of HOP by other co-chaperones that bind via the TPR domain

on HSP90, including the FK506 binding proteins, in which either the immunophilin FK506

binding protein 51 (FKBP51) or FK506 binding protein 52 (FKBP52) is introduced into

the conformation. This structure is stabilized by the ATP-dependent association of HSP90

with p23. In this conformation, HSP90 can influence the receptor ligand-binding domain,

in which it can promote and stabilize a conformational change that establishes high-affinity

Cort binding [76–79]. The immunophilins, FKBP51 and FKBP52 are conserved proteins that

bind immuno-suppressant drugs, such as FK506 and rapamycin. The FKBP51 and FKBP52

proteins contain two FK-domains and three TPR motifs [80] and are highly homologous

proteins with a 54.7% identity and 88.1% similarity in their amino acid sequences [81]. Despite

the strong similarity between the two FKBPs, they have opposing roles in the context of

GR signaling. The GR:FKBP51 conformation stabilizes the GR structure, but decreases the

binding to Cort and slows down the nuclear translocation of the GR complex. In contrast, the

GR:FKBP52 conformation promotes a high-affinity Cort-binding state via the PPI domain

binding. In addition, FKBP52 interacts with the motor protein dynein and promotes efficient

nuclear targeting of GR [82, 83]. The promotion of nuclear gene transcription at the GRE sides

via GR:FKBP52 initiates the transcription of several GR-responsive genes, which includes

the initiation of an ultra-short negative feedback loop via the upregulation of FKBP5, the

gene encoding the FKBP51 protein decreasing the Cort-GR binding sensitivity and nuclear

translocation [84, 85].
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Figure 1.5: Schematic illustration of the cellular activation of the glucocorticoid receptor (GR) nuclear
translocation After HPA axis activation, the increase in free circulating GCs can enter through the plasma membrane of
the cell. In the cytoplasm of the cell, the GR complex is built, starting with the binding of HSP70:HSP40 to the GR that
further unfolds the GR. This complex can then be bound via HOP which allows HSP90 to bind to the GR:HSP70:HSP40
complex. Subsequently, different heterocomplexes can be built via the binding of cochaperones, including FKBP51 and
FKBP52, which bind to HSP90 and thereby release HOP. The p23 is needed to stabilize the GR-complex with HSP90 and
the cochaperone. The FKBP51 conformation decreases the binding to Cort and slows down the nuclear translocation
of the GR complex, whereas the FKBP52 conformation promotes a high-affinity Cort-binding state and allows the
nuclear translocation of the GR complex. The translocation of the GR-complex to the nucleus allows the binding
towards glucocorticoid response elements (GREs), which in turn initiates the transcription of several GR-responsive
genes, which includes the initiation of an ultra-short negative feedback loop via the upregulation of FKBP5, the gene
encoding the FKBP51 protein, decreasing the Cort-GR binding sensitivity and nuclear translocation. Adapted from [79]

1.4 The psychiatric risk gene FKBP5

1.4.1 Clinical evidence for FKBP5 as a psychiatric risk factor

The response to acute stress is important for the body to maintain homeostasis, but when

stress becomes chronic, it can build up to an allostatic load, which is a risk factor for devel-

oping psychiatric disorders [86]. The vulnerability towards stress-related disorders, such as

MDD and PTSD is determined by the combined effect of genetics, epigenetics, and the envi-

ronment [43, 87]. Environmental factors in the form of severe and/or chronic stress exposure

(such as, childhood maltreatment) can lead to a disturbed HPA axis system. This is heav-

ily influenced by the dysfunction of the GR-complex, in which the negative feedback system

is impaired and the HPA axis becomes hyperactive, as has been observed in the increased
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baseline levels of cortisol in MDD patients [88, 89]. In particular, the heritability of MDD

has been estimated at 37% using a meta-analysis of twin studies [90], and 32% using genomic

similarity analysis of SNPs between unrelated patient and control individuals [91], indicating

a crucial genetic role. Human genetic studies have identified different genomic variations that

are involved in MDD, such as NR3C1, NR3C2, 5-HTT, SLC6A15, AVP, and FKBP5 [92–97].

In addition, the use of genome-wide association studies (GWAS) has allowed the identification

of a large number of novel risk loci related to MDD [98, 99].

The FKBP5 gene has been identified with several polymorphisms that alter the gene

methylation and expression and increase the vulnerability towards stress-related disorders

[97, 100–106]. In particular, the risk allele of the rs1360780 leads to a higher FKBP51 protein

expression, which alters the GR-signaling pathway and has been associated with an increased

recurrence of depressive episodes in MDD patients [97]. Moreover, altered FKBP5 expression

has been linked to abnormal HPA axis negative feedback signaling in MDD patients [107]. The

combination of environmental challenges, such as childhood maltreatment, and the genetic

predisposition of the FKBP5 gene has been found to lead to specific DNA demethylation in

the GRE parts of the FKBP5 gene, resulting in an increased stress-driven FKBP5 expression

and long-term dysregulation of the cortisol-GR signaling pathway, resulting in an increased

risk for the development of stress-related disorders [100, 101]. These studies showed that

the manipulation of FKBP5 can have severe consequences, which led to the question if the

manipulation of the FKBP5 gene can also favor a protective effect towards the vulnerability of

stress-related disorders. The genetic manipulation of FKBP5 is difficult to assess in humans

but has yielded important findings using genetic mouse models.

1.4.2 Animal studies on the effects of Fkbp5 manipulation after stress ex-

posure

FKBP51 in mice seems to have a similar molecular role as observed in humans, in which

it is involved as a co-chaperone protein of the HSP90 in binding the GR complex. Mouse

Fkbp5 mRNA is approximately 85% identical to the human FKBP5 gene, and even 87%

between the FKBP51 proteins [108]. The high similarity of the GR signaling pathway be-

tween mice and humans has enabled a more in-depth mechanistic analysis of FKBP51. The

expression pattern of Fkbp5 mRNA in mice is often, but not exclusively, expressed in regions
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of GR expression. A high expression of the Fkbp5 gene was observed in, among others, the

hypothalamus, amygdala, hippocampus, bed nucleus of stria terminalis, and LC [109], see

Figure 1.6. In addition, the exposure to different acute stressors showed specific increases of

Fkbp5 expression, with the PVN and central amygdala responding to restraint stress, and

the hippocampus to food deprivation [109].

Figure 1.6: The expression pattern of Fkbp5 throughout the mouse brain. Fkbp5 expression in the mouse
brain has specific expression hotspots in several stress-related brain regions. High expression of Fkbp5 is observed in
among others, the hypothalamus, amygdala, hippocampus, bed nucleus of stria terminalis, and Locus Coeruleus. Image
is generated using the Allen Brain atlas 3D image viewer [110].

The exposure to chronic stress also increased the expression of Fkbp5 throughout various

stress-related brain regions, including the nucleus accumbens, hippocampus, amygdala, and

prefrontal cortex [111, 112]. Mouse genetic knockout (KO) studies, in which transgenic ani-

mals are lacking FKBP51 expression have no negative consequences on their life expectancy,

glucose tolerance, blood composition, and cytokine profiles [113, 114]. In addition, FKBP51-

KO mice do not show behavioral alterations in exploratory drive, locomotor activity, anxiety-

related behavior, or cognition under baseline conditions [115, 116]. However, exposure to

different acute and chronic stress models revealed a resilient phenotype in FKBP51-KO an-

imals. More specifically, following acute stress exposure a reduction in Cort level response

was observed. In addition, more active stress-coping behavior [115, 117], but also enhanced

cognitive flexibility [113], and a healthier sleeping pattern [118] were observed in FKBP51-

KO animals after acute stress exposure. Following chronic stress exposure, FKBP51-KO mice

showed enhanced negative feedback of the HPA axis via lowered baseline Cort levels and more

active stress-coping behavior [119]. Moreover, selective silencing of FKBP51 in the amygdala
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was found to reduce anxiety-like behavior after acute stress [120], indicating that the influence

of FKBP51 on specific behavioral traits is region specific. Fkbp5 also plays an important role

in metabolic challenges, as FKBP51-KO animals show a beneficial outcome when challenged

with a high fat diet with an improved insulin tolerance and protection against weight gain

[114].

An interesting region to further explore the specific influences of Fkbp5 is the LC, since

this region shows high baseline expression [109], plays a crucial role in initiating the SAM

axis, and is connected with the HPA axis via, CRF neurons from several stress-related brain

regions that can further innervate the LC [121].

1.5 The Locus Coeruleus

1.5.1 Noradrenergic signaling in the brain: a broad pathway through the

neuraxis

The synthesis of NE is restricted to specific brain regions within different parts of the brain

stem. The largest, and well-defined brain region containing noradrenergic cells is the LC [122].

The LC was first discovered by Johann Reil in 1809, as he described a ”black substance”

in the pontine area of the brain, which can be seen without the need of any staining or

microscope [123]. The official naming of the LC happened only a few years later when a

similar observation by Joseph and Karl Wenzel led to the naming of the nuclei in Latin, ”Loci

Caerulei”, which means ”blue spots”, and is now referred to in its singular form as ”Locus

Coeruleus” [124, 125].

The reason for the black coloring is the presence of neuromelanin, which is a dark pig-

ment that is one of the products of the dopamine synthesis, and is therefore present in large

quantities in dopaminergic, as well as noradrenergic cells. In the brain this means that neu-

romelanin is present in the LC, but also in the substrantia nigra, which contains a large

number of dopaminergic cells. The exact function and role of neuromelanin has been contro-

versial. At first neuromelanin was thought to be a cellular waste product of the dopamine

synthesis pathway with no particular function, but nowadays it is linked to specific cellu-

lar functions and plays an important role in aging and neurodegenerative diseases, such as

Parkinson’s and Alzheimer’s disease [126, 127].
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The LC is a small brain region that is compromised bilaterally of around 3,000 cells

in rodents and between 40,000-50,000 cells in humans [128]. The LC is located close to

the fourth ventricle in the pontine brainstem [125, 129]. Regardless of its size, the LC is

innervated by a wide variety of brain regions with up to 111 afferent brain region connections

[130], but even more efferent trajectories, which are globally distributed throughout the entire

brain. Distinct afferent trajectories of the LC use different neuromodulators, for instance the

prefrontal and anterior cingulate cortices use glutamatergic inputs [131], whereas the posterior

lateral hypothalamus uses orexinergic inputs [132]. Importantly, the stress-induced input

via CRF-containing pathways is a particularly strong innervation network to the LC, which

includes the central nucleus of the amygdala, bed nucleus of stria terminalis, PVN, and several

brain stem structures including Barrington’s nucleus, and the nucleus paragigantocellaris [133,

134], see Figure 1.7A. In addition, the LC has strong interconnections with other important

monoaminergic systems, as it has connections to the serotonin system via the dorsal raphe

nucleus [135], and the dopamine system via the ventral tegmental area [136].

The LC has widespread efferent connections throughout the entire neuraxis, including

ipsilateral projections to the cortical regions, and bilateral projections to the subcortical and

spinal regions. These projection regions include, among others, the frontal cortex, all sensory

regions, the thalamic nuclei, and limbic structures, including the amygdala, hippocampus, and

septum, but not the basal ganglia [136], see Figure 1.7B. The LC projections have a major

effect on a wide variety of different cognitive functions. Early studies utilizing ”the loss of

function approach” via lesions showed that the LC is involved in the state of wakefulness and

arousal [137, 138]. Since then, the LC has been implicated in many other cognitive functions

among others, attention shifting and vigilance [139], sensory processing and gating [140, 141],

analgesia [142], and learning and memory in the context of fear and aversion [143, 144]. The

efferent projections of the LC consist of different subdivided regions within the LC, in which

for instance the hippocampus is innervated by the dorsal part, the thalamus by the posterior

part, the hypothalamus (including, among others, the PVN) by the anterior part, but the

amygdala and cortical regions via a scattered pattern through the entire LC [125, 145, 146].

These efferent NE projections have axons with extensive bifurcations and can travel long

distances through many different brain regions, which means that the same NE cell can

innervate different brain regions [129, 147]. A long-standing consensus about the LC is that
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Figure 1.7: The stress-related input and output pathways of the Locus Coeruleus (LC) throughout the
brain. A) The LC is innervated by a wide variety of brain regions with up to 111 afferent brain region connections.
In particular, the stress-induced input via CRF-containing pathways is a strong innervation network to the LC, which
includes the central nucleus of the amygdala (CeA), bed nucleus of stria terminalis (BNST), paraventricular nucleus of
the hypothalamus (PVN), and several brain stem structures including Barrington’s nucleus, and the nucleus paragiganto-
cellaris. B) The LC has widespread efferent connections throughout the entire neuraxis, including ipsilateral projections
to the cortical regions, and bilateral projections to the subcortical and spinal regions. These projection regions include,
among others, the frontal cortex, all sensory regions, the thalamic nuclei, and limbic structures, including the amygdala,
hippocampus, and septum, but not the basal ganglia. Due to its widespread connections, the LC has a major effect on a
wide variety of different cognitive functions, including wakefulness and arousal, attention shifting and vigilance, sensory
processing and gating, analgesia, and learning and memory in the context of fear and aversion. C) The axon collaterals
of LC neurons are distributed in a coordinated way, per specific cognitive domain. Figure is obtained from [125]

it innervates its projection areas in a uniform way [148]. However, since the last decade, the

technological advancement of optogenetic and chemogenetic tools has allowed for the specific

manipulation of certain LC projection networks. This has led to novel insights showing a

more tailored response of the LC depending on the cognitive domains that are required to be

innervated[130, 144, 149]. More specifically, the axon collaterals of LC neurons are distributed

in a coordinated way, per specific cognitive domain [125], an example of this distribution was

observed by Hircshberg et al. in 2017 [142] that found that the LC-NE projection projecting

to the prefrontal cortex that influences aversion and anxiety behavior is innervated separately

from the spinal cord projection that influences analgesia, see Figure 1.7C.

Another way the LC can differently influence the cognitive state is via different funda-

mental modes of activity, which can be either tonic or phasic, which in turn influences the

spike pattern discharge and the amount of NE at specific projection sites [150]. The tonic
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baseline activity is characterized by a sustained, slow, and regular discharge pattern during

awake animals (2–5 Hertz) while being even lower during non-rapid eye movement sleep, and

close to completely silent during rapid eye movement sleep [137, 138]. The tonic rates are

related to arousal levels within the different states of sleep and awake, in which tonic LC dis-

charge decreases with reduced arousal and disengagement from the environment. Increased

tonic discharge in turn increases the state of arousal and goal-directed behaviors [133]. More-

over, high levels of tonic LC discharge are associated with initiating the response towards

stressors, which elicits, among others, increased arousal, exploratory behavior, and vigilance

[147]. The phasic discharge of the LC is characterized by brief 10–20 Hertz bursts of several

action potentials, which are subsequently often followed by a sustained suppression of spon-

taneous activity (200–500 milliseconds). Phasic bursts are triggered by stimuli that are novel

or salient and are not just restricted to stressors, but can also be activated by decision- and

response-related signals from prefrontal cortical regions [151].

1.5.2 The role of the Locus Coeruleus in stress-related disorders

The heterogeneity and complexity of the LC are crucial for its role in the stress response

system. The LC plays a pivotal role in the processing of acute and chronic stress stimuli via

the innervation of the SNS [133, 152], as well as the activation of noradrenergic projections

via the entire neuraxis [134, 153–155]. In response to a stressful event, the LC-NE system is

activated by several brain regions that use CRF-containing pathways to act predominantly

on the CRF1 receptor within the LC [153]. This activates a state of high-tonic activity in

the LC, which in turn activates the LC-NE system and induces a specific behavioral response

towards the stressful event [133]. The response of the LC towards stress is broad, and, de-

pending on the type and severity of the stressor, can activate different mechanistic pathways

to elicit a distinct and specific behavioral response. More specifically, the central amygdala

pathway to the LC can induce a high tonic LC activation that increases brain-wide functional

connectivity, which was accompanied by decreased exploratory and increased anxiogenic be-

havior [134, 156]. The increased state of arousal and cognitive flexibility can be adaptive

in life threatening situations [148] but might become maladaptive during prolonged bouts

of stress exposure (chronic stress). The sensitivity of LC neurons to CRF is shifted by the

exposure to chronic stress, with an increased sensitivity to CRF release, but a decreased



1. General introduction 19

maximum activity response of the LC [157, 158]. The chronic stress-induced sensitization

of the LC-NE system can trigger a stress response towards stimuli that would otherwise not

have triggered this system. The sensitization of the LC due to stress can contribute to the

hypervigilance that characterizes PTSD [133]. Due to the important role of the LC in the

brain and the stress response system, it is unsurprising that alterations in the LC-NE system

have been linked to stress-related disorders, such as PTSD, but also anxiety-related disorders,

and MDD [159–161].

1.6 Rationale and thesis objectives

The lack of a mechanistic neurobiological understanding of stress-related disorders is prob-

lematic and remains a global problem, whereas their impact on society is only increasing.

Interestingly, exposure to chronic stress does not lead to the development of psychopathol-

ogy in all individuals, which is due to the combined effect of genetics, epigenetics, and the

environment. The psychiatric risk factor FKBP51 has been shown to be involved in adapting

the vulnerability towards stress-related disorders in clinical as well as preclinical research,

but the region-specific effects on the behavioral symptoms remain elusive. The major role of

the LC in both stress response systems, together with its wide projections throughout the

neuraxis, and the relatively high expression of FKBP51, make the LC a promising region to

further explore and elaborate the role of FKBP51 in the stress response system. However, the

preclinical tools to assess the behavioral symptoms of stress-related disorders such as social

aversion, have become controversial. They rely on a reductionistic approach in which ani-

mals are tested in an instrumental environment, that often does not reflect the ethologically

relevant behavioral constructs. This has limited the utility of behavioral experiments and

could lead to false interpretations of the data. Therefore, the current thesis aims to provide a

novel behavioral assessment tool for preclinical social behavior research using state-of-the-art

computational tools to explore the role of stress on behavior and the manipulation of FKBP51

in the LC.

In chapter 2 the history of the social behavioral assessment and how machine learning

tools can advance the field of social behavior are reviewed. In chapter 3 a novel tool to assess

social behavior, called ”DeepOF” is introduced and the different possibilities are investigated

for the social behavioral classification, using both supervised and unsupervised classification
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tools. This newly developed deep phenotyping tool is then further utilized in chapter 4 to

explore the social behavioral profile after exposure to chronic social defeat stress in male

mice, and in chapter 5 to explore a more in-depth analysis of the sex-dependent early life

stress effects on fear conditioning. Further focusing on the genetic risk factor, chapter 6

combines DeepOF behavioral analysis with molecular profiling to explore the role of FKBP51

in the LC on stress exposure and social behavior. Finally, in chapter 7 a perspective on the

stress-related research field is highlighted by specifically investigating the integration of novel

advanced molecular and computational tools.
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A B S T R A C T   

Social behavior is naturally occurring in vertebrate species, which holds a strong evolutionary component and is 
crucial for the normal development and survival of individuals throughout life. Behavioral neuroscience has seen 
different influential methods for social behavioral phenotyping. The ethological research approach has exten
sively investigated social behavior in natural habitats, while the comparative psychology approach was devel
oped utilizing standardized and univariate social behavioral tests. The development of advanced and precise 
tracking tools, together with post-tracking analysis packages, has recently enabled a novel behavioral pheno
typing method, that includes the strengths of both approaches. The implementation of such methods will be 
beneficial for fundamental social behavioral research but will also enable an increased understanding of the 
influences of many different factors that can influence social behavior, such as stress exposure. Furthermore, 
future research will increase the number of data modalities, such as sensory, physiological, and neuronal activity 
data, and will thereby significantly enhance our understanding of the biological basis of social behavior and 
guide intervention strategies for behavioral abnormalities in psychiatric disorders.   

1. Introduction 

Understanding behavior in humans and animals is essential, as it 
forms a central aspect of our existence and interaction with the envi
ronment (Heimlich and Ardoin, 2008; Bolhuis et al., 2021). At the same 
time, behavioral abnormalities are at the core of severe and highly 
prevalent psychiatric disorders. Specifically, the impairment of social 
functioning is an important symptom of many different psychiatric 
disorders, such as post-traumatic stress disorder (PTSD), depression, 
autism, and schizophrenia (Peleh et al., 2019a; American Psychiatric 
Association, 2013; Nietlisbach and Maercker, 2009; Dodell-Feder et al., 
2015; Katz et al., 2011). Therefore, the accurate measurement of 
different social behaviors is crucial for a better understanding of psy
chiatric patients and contributes to solving the complex mechanisms of 
those disorders. Preclinical rodent models are widely used to investigate 
the underlying mechanisms of complex social behaviors (Peleh et al., 
2019a; Beery and Kaufer, 2015), as well as to evaluate the effectiveness 
of novel drug interventions (Pöhlmann et al., 2018; Lopez et al., 2022). 
However, the assessment of social behavior as a holistic construct is 
challenging as it relies on many different types of social behaviors and is 

influenced by different factors, such as stress exposure (Beery and 
Kaufer, 2015). Therefore, a variety of behavioral tasks have been 
employed to understand different mechanisms of the social behavioral 
construct in rodents (Toth and Neumann, 2013; Fan et al., 2019; Zhou 
et al., 1979; Golden et al., 2011). 

1.1. The history of animal behavior 

Exposure to external stimuli triggers a distinct pattern of cellular 
responses in the brain, which ultimately drives the behavioral response. 
Fundamental concepts of behavior have historically been established 
using observational research, where animals are left undisturbed and 
observed in their natural habitat. One of the earliest and most influential 
animal behavioral research was performed by Charles Darwin in the 
1800s (Thierry, 2010), where he observed variations between animals 
and concluded that species descended from each other (Darwin, 1859). 
This type of behavioral research led to the development of the field of 
ethology, which concentrated on the evolutionary basis of animal 
behavior while using predominantly observational approaches. An 
overarching principle in ethology is that behavior is described in its 
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highest complexity by observation in natural or semi-natural environ
ments. This allows the researcher to study behavior in a descriptive way, 
using a hypothesis-generating approach to discover novel behavioral 
concepts. Important examples of outstanding work in ethology include 
the research of Tinbergen and colleagues, who observed that young 
birds can distinguish the shape of a hawk and a goose and change their 
behavior according to the perceived shape (Tinbergen, 1939). In addi
tion, the work of Lorenz and colleagues observed an interesting phe
nomenon in young domestic chicks, where young animals narrow their 
social preference towards an object during early exposure, which typi
cally is their parent (Bolhuis and Giraldeau, 2005; Sulloway, 1982). The 
field of ethology and observational research has led to phenomenal 
research findings, but there are also important limitations in the study 
design. Observational studies rely on the researcher’s ability to assess 
behavior, which can lead to misinterpretation and consequently differ
ences between researchers in the interpretation of the observed behav
iors. In addition, the lack of control over the environment limits the 
throughput and the research question that can be assessed, which can 
lead to unreproducible results due to high variability between the 
experimental conditions. 

In response to these limitations, the field of comparative psychology 
was introduced, in which researchers aimed to study and understand 
behavior using tightly controlled environmental settings. Here, the focus 
was on breaking the behavioral construct down into clearly identifiable 
and quantifiable syllables by reducing the complexity of the behavior 
and limiting the dimensions that behavior can be expressed in through 
precise laboratory settings. These laboratory tasks are characterized by a 
high controllability over the environment and a standardized set of 
behavioral read-outs and therefore require hypothesis-driven research 
questions. Several outstanding researchers showed the novelty and 
strength of this field, including Thorndike, Skinner, and many others. 
Thorndike demonstrated the construct of trial-and-error learning, as he 
observed that by increasing the number of trials, animals became more 
efficient to escape an apparatus and gain their reward (Thorndike, 
1898). Subsequently, Skinner developed one of the first and extremely 
popular behavioral laboratory tasks, the operant conditioning chamber 
(Skinner, 1948). The task can be used for negative and positive rein
forcement learning and is still used in research around the globe to this 
day forward, underlining its excellence. By this time, a trend to stan
dardize and simplify different behavioral disciplines using laboratory 
tasks was set in motion (Tolman, 1948; Aggleton, 1985; Barnes, 1979; 
Morris, 1981), and is currently still ongoing. The excellence of labora
tory tasks for behavioral science is undoubtedly great, especially for 
investigating the influence of external stimuli (e.g., the stress response 
system) and the role of interventions (e.g., pharmacological) on the 
behavioral output (Hånell and Marklund, 2014). In addition, the un
precedented options for using different genetic mouse models have 
enabled the exploration of specific target genes on behavior. Unfortu
nately, no behavioral tasks are without flaws, and there are specific 
concerns regarding laboratory tasks that need to be addressed. The 
laboratory set-up provides an intensive interaction of the researcher 
with the testing animals, which causes concerns, as inter-individual 
differences between researchers can influence the outcome of the 
behavioral performance of the animals (Sorge et al., 2014; Chesler et al., 
2002). As an example, a recent study described the influence between 
male and female experimenters on the largely different behavioral 
outcomes of drug-treatment efficacy (Georgiou et al., 2022). Another 
concern is the difficulty of streamlining animal housing and testing. 
Even though compared to observational research the differences in 
housing and testing are subtle, they have been found to lead to different 
behavioral outcomes (Richter et al., 2009), and therefore can give a false 
sense of reliability. In addition, although group housing of laboratory 
mice is crucial for their social welfare, it remains a highly unnatural 
environmental setting and has its limitations. The confined space with 
several same-sex mice hampers the animals in expressing certain 
species-typical behaviors, such as the search for food and water, the 

vigilance for certain threats, and the motivation for sexual reproduction. 
In addition, the lack of escaping introduces changes in territorial 
aggression, as, after an aggressive encounter, the dominant and subor
dinate animals cannot go their separate paths and will have to stay 
confronted with each other, which introduces problematic behavior, 
such as severe aggression (Weber et al., 2017). Finally, the use of inbred 
mice is a problematic development for investigating naturalistic be
haviors. While the genetic models have allowed for important insights 
into the genome, they have left us with an animal model that behaves 
rather differently than their conspecifics in the wild, which questions the 
validity of the animal model and unfortunately has reduced the repro
ducibility of the behavioral research (Richter, 2017; Wahlsten et al., 
2003; Voelkl et al., 2020; Crawley, 1996). 

The reductionistic approach in laboratory tasks is a strength for 
many different behavioral disciplines; however, it can be a pitfall for 
behavioral constructs that rely on many different behavioral outputs and 
require more naturalistic environments, which therefore are more 
complex to assess (Blumstein, 2010). In such cases, laboratory tasks can 
oversimplify behavior, which can lead to an inadequate or even wrong 
assessment, that is often lowering the reproducibility rate. A good 
example of such a complex behavioral construct is social behavior, 
therefore the next section describes the definition of social behavior, 
together with the current behavioral tasks that are used to measure 
social behavior. 

1.2. The social behavioral construct 

Social behavior is a naturally occurring construct in many different 
species, including rodents and humans, and holds a strong evolutionary 
component, as it is critical for the survival of the individual as well as for 
the species (Wei et al., 2021; Chen and Hong, 2018). These behaviors are 
innate but are strongly dependent on the environmental circumstances 
and will adapt the social behavioral output appropriately. For example, 
adolescent mice will indulge in social play interactions with their con
specifics, but if they are socially isolated during this time, their social 
behavioral repertoire and the underlying neurobiological mechanisms 
will be altered during adult age (Musardo et al., 2022). Social behavior is 
a complex construct and is used as an umbrella term for a plethora of 
different behaviors, which makes its precise definition challenging. In 
general, social behavior has been defined as all behaviors that influence 
or are influenced by other members of the same species. This termi
nology includes sexual and reproductive activities, all behaviors that 
bring individuals together, as well as aggressive and dominant behaviors 
(Chen and Hong, 2018; Whishaw et al., 2006; Mackintosh and Grant, 
1963). Although not the focus of this review, it is important to note that 
this definition excludes social interactions across different species, or 
objects, which are part of the social behavioral repertoire, even though 
they might be the minority of the social encounters. 

2. Social behavioral tasks 

Social behavioral events in rodents typically begin with the detection 
of a social encounter. The animal can decide to ignore or avoid the social 
encounter, or to consummate the social behavioral encounter, which 
relies on one or a combination of different social behaviors, such as 
parenting, fighting, sexual interaction, following, feeding, playing, and 
guarding (Wei et al., 2021). These constructs are influenced by other 
neuronal modalities, including motivation (Bariselli et al., 2018; Solié 
et al., 2022a), emotion (Sakaguchi et al., 2018; Pisansky et al., 2017; 
Keum and Shin, 2019; Jabarin et al., 2022), and decision-making 
(Scheggia et al., 2022), which means that the underlying social behav
ioral construct is complex to assess, as it relies on many different 
behavioral read-outs. Currently, the assessment of social behavior relies 
on using a variety of behavioral tasks measuring different social do
mains, see Box 1. The majority of the tasks have been developed with the 
goal of increasing the throughput and the environmental controllability, 
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but therefore rely on a reductionistic approach using single or few 
behavioral read-outs (univariate behavioral tests), a hallmark of the 
comparative psychology field. The next section describes the social 
behavioral domains of social dominance and social avoidance. Although 
many more variants of social behavior and corresponding tasks exist, 
these social behavioral domains in particular are of interest, as they are 
well-established behavioral tasks in the field of stress neuroscience and 
they showcase the development of the reductionistic approach in social 
behavioral tasks. 

3. Social dominance 

An important domain of social behavior is the social hierarchy, 
which is important for a balanced and structured group of multiple 
animals from the same species (Dwortz et al., 2022; Qu et al., 2017). 
Social status impacts the chances of survival and, among other aspects, 
the individual’s reproductive chances, health, and food availability 
(Tamashiro et al., 2005; Ellis, 1995; Sapolsky, 2005). The social status is 
conveyed via dominant, aggressive behaviors, and the subsequent sub
missive, defensive behaviors, which are adaptive behaviors to reduce 
aggression in established hierarchies. The dominant animal is commonly 
identified by consistent wins in social conflicts with the subordinate 
animals (Fan et al., 2019; Dwortz et al., 2022; Wang et al., 2014). 
Several behavioral tasks have been developed to investigate the hier
archical structure in rodents and the most popular tests include the tube 
test (Fan et al., 2019; Lindzey et al., 1966) and the warm spot test (Zhou 
et al., 1979), but also via long-term home cage observations (Shemesh 
et al., 2013; Forkosh et al., 2019). Other hierarchy tests rely on the 
competition for food or water, but those tests have decreased in popu
larity, as they are influenced by the motivation for food and water and 
can fluctuate based on saturation (Merlot et al., 2004; Cordero and 
Sandi, 2007; Ujita et al., 2018). The tube test has gained popularity, due 
to its simplicity and an available standardized protocol by Fan et al., 
(Fan et al., 2019). The tube test utilizes a narrow transparent tube, in 
which mice are placed on opposite ends. Upon release, the mice need to 
go through the tube towards the other side, but can only succeed by 
forcing the conspecific animal to go backward. The subordinate mouse is 
identified as the animal that has to go backward, whereas the dominant 
mouse is the animal that successfully pushes the conspecific away. The 
tube test relies on the assumption that after several training days, the 
animals prefer to go to the other side of the tube and use 
dominant-related mechanisms to establish, which of the animals back 
out. The animals are tested over several consecutive days, after which a 
stable and consistent hierarchy can be observed (Fan et al., 2019). 
However, since the animals are confined within the tube, their agility 
will influence their winning chances (Fan et al., 2019; Zhou et al., 2018), 

which can be different due to many factors, such as age, strain, stress 
levels, weight, etc. Moreover, the tube test can only test two mice at the 
same time, which limits the transferability towards a more naturalistic 
environment, where animals interact and are challenged within group 
dynamics. A recently developed hierarchical test in mice that overcame 
this problem is the warm spot test, which works reliably with up to four 
mice. In this task, the animals are placed on a cold floor with a warm 
spot in the corner, which is only big enough to warm one animal at a 
time (Zhou et al., 1979). The test relies on the behavioral construct that 
mice prefer the warm spot over the cold area and will determine the time 
spent at the warm spot based on their rank in the hierarchy. The hier
archy state of animals is observed during a 20-minute test, in which the 
amount of time spent in the warm spot should overlap with the hierar
chical position of the animals. Therefore, the dominant animal spends 
the most time in the warm spot, whereas with every lower ranking, each 
animal spends less time in the warm spot (Zhou et al., 1979). Most 
importantly, the tube test and warm spot test show a similar pattern of 
hierarchical structure (Zhou et al., 1979) and are highly correlating with 
other markers for dominance, including, among others, 
agonistic-related behaviors, urine markings, and ultrasonic vocaliza
tions (Zhou et al., 2018; Wang et al., 2011). These tests have contributed 
significantly to our understanding of hierarchy in mice, are well 
appreciated for their simplicity and robustness, and have been widely 
adopted for stress-related research (LeClair et al., 2021; Park et al., 
2018; Larrieu et al., 2017; Matthews et al., 2016). However, these tests 
rely on an instrumental laboratory environment that is particularly 
unnaturalistic. In the tube test animals are forced within a confined 
space towards confrontation, and in the warm spot test, the animals are 
forced into confrontation as there is only one place that is pleasantly 
warm enough. Therefore, these tests exclude the natural influences of 
motivation on hierarchy establishment. Several studies have shown in
dividual differences in the motivation to pursue social interaction with 
conspecifics (Bariselli et al., 2018; Torquet et al., 2018), which includes 
aggressive confrontation between animals. Thus, these tests reflect the 
reductionist approach, as they simplify the behavioral read-out. 

4. Social avoidance behavior 

Clinical research has widely recognized that social withdrawal and 
avoidance are key symptoms of depression (Ottenbreit et al., 2014; 
Fernández-Theoduloz et al., 2019) and anxiety disorders (Rinck et al., 
2010; Heuer et al., 2007), which is why understanding the underlying 
mechanisms related to social avoidance is crucial. The domain of social 
behavior containing social avoidance is an often-used paradigm for 
investigating the stress response system and in particular, has been 
well-established to assess stress resiliency versus susceptibility of 

Box 1 
The different social behavioral domains and their behavioral tasks. 

The assessment of social behavior relies on a variety of behavioral tasks that can measure different social domains, including dominance, 
avoidance, approach memory, transmission, decision-making, and conditioning. Dominance behavior is generally assessed using competition 
tasks, such as the tube test (Fan et al., 2019; Lindzey et al., 1966) and the warm spot test (Zhou et al., 1979), or via long-term home cage 
observation (Shemesh et al., 2013; Forkosh et al., 2019). The avoidance and approach behavior can be assessed using tasks that compare the 
interaction with a non-social stimulus and a social stimulus, using the three-chamber task (Rein et al., 2020) and the social avoidance task 
(Berton et al., 2006; Lukas et al., 2011), but also with freely-moving multi-animal social interaction tasks (Bordes et al., 2022). In addition, social 
memory can also be assessed in the three-chamber task and social avoidance task, but then compares a familiar-social stimulus with a novel 
social stimulus (Gheusi et al., 1994; Winslow, 2003; Engelmann et al., 2011). The transmission of social behavior is a particularly complex 
domain, which can be subdivided into many different subfields. One example is the social transmission of food preference, in which a naïve 
mouse follows a demonstrator mouse who has previous knowledge of a food reward (Wrenn, 2004). In the context of stress, a prominent domain 
is social fear transmission, in which animals receive shocks when interacting with a social conspecific (Toth et al., 2013), or observe other 
animals getting foot shocks (Jeon and Shin, 2011). The fields of decision-making and conditioning have recently been further adapted to the 
social behavioral research field and interestingly behavioral tasks have been adapted to specifically measure these domains in a social context, 
using the two-choice social decision-making task (Scheggia et al., 2022), and the social instrumental task (Solié et al., 2022b).  
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individual rodents (Krishnan et al., 2007; Murra et al., 2022; Donahue 
et al., 2014), but is also used in many other scientific fields to investigate 
the affectedness of social behavior, for instance in autism (Rein et al., 
2021; Rapanelli et al., 2021; Bidinosti et al., 2016; Qin et al., 2018). 
Therefore, several behavioral tasks have been developed to measure 
social avoidance behavior (Toth and Neumann, 2013), for example, 
well-established tasks include the three-chamber task (Rein et al., 2020) 
and the social avoidance task (Berton et al., 2006; Lukas et al., 2011). 
These tests have been described in detail in other studies (Rein et al., 
2020; Berton et al., 2006; Lukas et al., 2011; Zimprich et al., 2017). Both 
tests rely on the exploratory behavior of the test mouse towards a novel 
social stimulus. The social stimulus is an unknown social conspecific, 
who is constrained in a small grid box or beaker and the interaction time 
of the test subject is measured in relation to the interaction of an empty 
box directly before the social interaction test (social avoidance test) or at 
the same time in a separate chamber of the apparatus (three-chamber 
test). The gold standard for the calculation of social avoidance behavior 
relies on the interaction ratio (IR) (Krishnan et al., 2007; Donahue et al., 
2014). The IR is calculated by taking the total amount of time spent with 
the social stimulus (TS) and dividing it by the total amount of time spent 
with the empty cage (TE) resulting in the following formula: IR = TS / TE 
(this score can also be expressed in a percentage which would mean the 
end result is multiplied by “100”). The expectation is that unaffected 
social behavior in mice results in an IR higher than “1”, which means 
that animals spend more time investigating the social stimulus 
compared to the empty cage. In the same line of thought, animals that 
have an IR lower than “1” show an avoidance of the social stimulus and 
therefore have affected social behavior. These tasks allow for a quick 
and simple analysis of social avoidance behavior and enable high 
controllability over the environment. In the last decade, they have 
gained popularity and have been extensively used for observing social 
avoidance-related behaviors specifically in stress research, where they 
have shown their value (Murra et al., 2022; Reguilón et al., 2021; 
Durand-de Cuttoli et al., 2022; Morel et al., 2022; Li et al., 2022). 
However, these tests also rely on a reductionistic and instrumental 
environment, as the social stimulus is trapped in a confined space, which 
increases the risk for cross-over effects by other types of behaviors, such 
as motivation, emotion, and anxiety. Moreover, the robustness of these 
tasks has been questioned, due to a lack of standardized experimental 
set-ups and subsequently high variation in the behavior of individual 
animals (Pearson et al., 2010). A critical problem that has been over
looked until now is the fact that there is a proportion of nonstressed 
animals that are also showing social avoidance behavior towards the 
social stimulus (e.g., 12% (Krishnan et al., 2007), 26% (Golden et al., 
2011)). This means that there is a subset of stressed animals that are 
categorized as susceptible (IR < 1), even though they showed avoidance 
behavior already before the stress exposure. Therefore, the assumption 
that nonstressed animals prefer the novel social stimulus over non-social 
environments seems to be highly dependent on the individual. Even 
though these animals are an extremely interesting group to investigate 
their social behavioral profile, they cannot be categorized in the same 
group as animals that initially do show social preference but change 
upon stress exposure. This can be avoided by screening all animals 
before the stress exposure so that animals that are already avoiding the 
social stimulus can be investigated as a separate group or excluded. 

Measuring constructs of social behavior using a reductionistic 
approach has its advantages, as it allows for high controllability over the 
environment, straightforward comparability across cohorts and condi
tions, high throughput, and simple analysis of the behavioral read-outs. 
These reductionistic social behavioral tests have provided important 
insights, especially into the stress-related mechanisms of social 
behavior, but there are severe limitations that need to be addressed. 
These tests often suffer from problems related to the comparative psy
chology, reductionistic research approach, which means that some of 
these tasks have limited ecological validity, as they largely restrict free 
social interaction behavior (such as fighting, following, grooming, 

anogenital sniffing, etc.) and only measure one or a few simple behav
ioral read-outs (e.g. the preference of an animal to be in close proximity 
of a conspecific). Therefore, these tasks tend to oversimplify the social 
behavioral repertoire and do not accurately capture the full range of the 
social behavioral construct. In addition, these tasks have been developed 
specifically for rodents and have limited comparison to human behav
ioral tasks, which lowers the translatability to the clinic. Therefore, the 
development of more naturalistic types of behavioral tasks, including 
free social interaction between multiple animals, will be crucial for a 
more accurate and ethologically relevant assessment of social behavior. 
However, up until recently, no software tools were available to analyze 
and distinguish multi-animal interactions, but the many different be
haviors within a free social interaction task are too complicated, time- 
intensive, and repetitive to assess manually (Hånell and Marklund, 
2014; Goodwin et al., 2020; Sturman et al., 2020). The rapid advances in 
automatically annotated motion tracking opened the possibility to assess 
many different social behaviors in complex environments while main
taining high throughput. Therefore, the next section will discuss the 
current status of motion tracking and machine learning for behavioral 
classifications, and their implications for social behavioral neuroscience 
research. 

4.1. Automatically annotated motion tracking and machine learning tools 
advance the behavioral analysis 

When looking back at the history of the development of behavioral 
assessment, there were several influential methods using both obser
vational research approaches in natural environments as well as the 
reductionistic laboratory research approach. Both methods have their 
inherent advantages and disadvantages, but by combining the strengths 
of both methods, it is possible to overcome some of the current problems 
with (social) behavioral assessment (Fig. 1). This can be achieved by 
using a semi-naturalistic environment, in which animals can freely 
interact with each other, but are still limited in their environment and 
space, to maintain a certain level of control over the environment. 
Several researchers have contributed to the development of such tasks 
(Shemesh et al., 2013; de Chaumont et al., 2019), which contain auto
matic phenotyping systems using top-view camera detection systems, in 
which up to four mice can live and freely interact for many days without 
experimenter intervention. Shemesh et al., use different fur color dyes to 
distinguish the animals, which therefore allows video recordings only 
with white furred animals (e.g. CD1, BALB/c), as with darker fur (e.g. 
C57/Bl6) the tracking system cannot distinguish well enough (Shemesh 
et al., 2013). This is an important drawback as many studies are con
ducted with C57/Bl6 animals. This problem was solved by combining 
video recordings with RFID probe identification of the animals via 
detection antennas under the arena, which therefore does not require 
different colorings for the animals (de Chaumont et al., 2019; Peleh 
et al., 2019b). However, the RFID probes are expensive, cannot be 
reused, and have problems when animals are in close proximity 
together, making the technique difficult to implement in many different 
labs. In addition, for both methods, the animals need to be sedated to 
color dye or implant the RFID probe, which can be seen as a stressor and 
is therefore not an optimal solution for investigating, e.g. consequences 
of stress exposure. The tracking and analysis in these systems remain a 
difficult process and rely on homemade tailored software that is likely 
too complicated to integrate into many different labs. Also, the tracking 
of the animals consists of only the center-point of the animals and at best 
includes the tail base and nose. This limits the information and accuracy 
that can be obtained about the animal’s behavioral profile, especially 
looking at more complex social behaviors (such as chasing, mounting, 
and attacks), but also individualistic behaviors (such as grooming, 
huddling, digging, and sniffing). 

In 2018, Mathis et al., launched the open-source software system, 
DeepLabCut (DLC) (Mathis et al., 2018), which allowed easy access for 
researchers to track animals with high throughput for any given 
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behavioral video recording. DLC utilizes deep neural networks that 
enable quick and easy markerless pose estimation and only need little 
training data to achieve human-level accuracy for object recognition 
(Mathis et al., 2018). Up until then, the gold standard for tracking ani
mals relied on commercial software systems that could only track the 
center point of single animal video recordings. The analysis of social 
interaction data between multiple animals remained to be assessed 
manually, but as social behavior relies on many different behavioral 
interactions, this limited the complexity of the behaviors that could be 
assessed (Sturman et al., 2020; Bordes et al., 2022). DLC enables the 
tracking of any body part of interest across multiple animals, without the 
need for additional invasive marking methods (such as RFID tags or 
animal dye coloring), as the neural networks can also separate identi
cally looking animals (Lauer et al., 2022). Importantly, to gain accurate 
multi-animal tracking, the DLC models for tracking multiple animals 
load entire video fragments onto the graphics processing unit (GPU) 
during training, as opposed to single frames in the single-animal models, 
which requires substantially more advanced hardware. Since then, other 
open-source markerless pose estimation software systems have become 
available, such as DeepPoseKit (Graving et al., 2019), Social Estimates 
Animal Poses (SLEAP) (Pereira et al., 2019, 2022), and SIPEC (Marks 
et al., 2022). These different software systems acquire pose estimation in 
slightly different ways and therefore vary in their accuracy, training 
speed, and amount of required training data (Mathis and Mathis, 2020). 

Ultimately, however, they all are open-source tools that allow fast and 
easy tracking of any body part of interest in single or multiple animal 
recordings. Their offered features and performance are to date compa
rable, and choice often relies on community support and downstream 
analysis compatibility. Importantly, DLC has an extensive user base and 
has shown a strong dedication to supporting, maintaining, and extend
ing its software ecosystem with new downstream analysis tools (Mathis, 
2020; Schneider et al., 2023). These pose-estimation tools have enabled 
the social behavioral research field to be able to investigate more 

naturalistic types of behaviors, as the tracking of many freely moving 
animals can easily be performed. However, this provides a novel prob
lem, as pose-estimation tools increase the amount of data tremendously. 
The interpretation of the pose-estimation output, the “X and Y” co
ordinates over time, needs to be translated into meaningful behaviors. 
The most basic analyses include tracking the center point of the animals 
as described before, but in a markerless way, which contributes to 
automating the quantification of previously used univariate tests 
(Sturman et al., 2020). However, tracking multiple body parts enables 
researchers to explore a plethora of different behaviors based on a more 
complete capture of posture. Different analysis methods can be 
employed to analyze the pose-estimation data using supervised and 
unsupervised analysis toolboxes. 

The supervised analysis toolbox can be employed using machine 
learning models or simple rules to identify specific posture-based be
haviors of interest. An important package that uses a minimal amount of 
coding to create supervised behaviors from DLC and other pose- 
estimation packages, is SimBA (Simple Behavioral Analysis (Nilsson 
et al., 2020)). SimBA allows practitioners to label behaviors of interest in 
a graphical user interface to train machine learning models that can 
learn the rules governing these patterns from data, automating the 
quantification of arbitrarily complex traits. The provided models are 
based on extracted static and dynamic features describing animal mo
tion, instead of on the sequences themselves. This makes the models 
easier to train and does not require a dedicated GPU, but the trans
ferability toward other behavioral setups is rather limited. However, 
some behaviors do not need machine learning models as they can 
accurately be deduced via hardcoded rules (Bordes et al., 2022). These 
can include, but are not limited to, time-in-zone quantifications, certain 
interactions between individuals (for example, nose to nose and nose to 
tail), or interactions with objects. Moreover, certain packages, such as 
SIPEC (Marks et al., 2022) or MARS (Segalin et al., 2021), combine a 
tracking system with a pipeline for supervised behavioral annotation, 

Fig. 1. Next-generation of social behavioral tests. In the top part of the figure the important methods for investigating behavioral neuroscience are illustrated, with 
ethology on the left and comparative psychology on the right. Next-generation social behavioral tests (illustrated by the arrow in the middle) rely on a semi- 
naturalistic environment, which includes the strengths of both ethology, in which a naturalistic set-up without the interference of the experimenter is imple
mented, as well as comparative psychology, whereas certain controllability of the environment remains by limiting the space and influences from the outside world. 
Different factors, such as stress exposure, sex, motivation, recording length, developmental (aging), and housing conditions, will influence the outcome of the social 
behavioral assessment. 
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which can show advantages over combining different packages to the 
same end, since users do not need to worry about software compatibility 
as everything is contained within the same framework. The current 
machine learning models that are used in many of the different super
vised analysis toolboxes, tend to overfit the nuances present in the 
dataset they were trained on, which limits the transferability to a new 
data set. Transferability is an important way to standardize the anno
tated behavior of interest and allows a minimal amount of work for other 
labs to implement the tagging of previously annotated behaviors. An 
important future goal will therefore be to find models that can extend 
their detection with greater accuracy to completely novel data sets. 

Another method to examine behavior is through studying pose- 
estimation data without prior categorization. This can be performed 
using unsupervised learning, which is a branch of machine learning that 
aims to extract insights from the data without using information about 
the behaviors of interest a priori. This method segments animal trajec
tories across time to recover consistent behavioral patterns, which can 
coincide with the patterns that were analyzed in a supervised manner. In 
addition, this method allows for a hypothesis-generating approach, as it 
can identify behavioral patterns that indicate novel behaviors in the 
specific behavioral context. Since unsupervised approaches allow to 
explore the behavioral space without the need for time-intensive label
ing, they can be used as an initial screening for behaviors of interest. For 
example, unsupervised analysis can be used to identify specific behav
ioral patterns that are showing the biggest difference between a set of 
defined experimental conditions. As a next step, researchers can then 
train supervised classifiers to measure the behavior of interest more 
directly and with less noise, or to initialize classifiers that are further 

fine-tuned with human feedback, using an active learning approach 
(Yttri et al., 2023). Several packages and pipelines have come out that 
use clever ways to segment behavior in an unsupervised way. The 
software system B-SOID (Hsu and Yttri, 2021), for example, relies on 
annotating the motion data with sets of features that can help describe 
behavior across time without using sequential data directly. Another 
software system, MoSeq (Wiltschko et al., 2020), takes advantage of the 
time component of motion using autoregressive hidden Markov models, 
which can directly capture probabilistic relationships between the input 
variables. While originally devised for depth sensing camera setups, 
recent iterations adapt it to pose estimation settings too (Weinreb et al., 
2023). Other packages, such as VAME (Luxem et al., 2022) and DeepOF 
(Bordes et al., 2022) use neural networks that can process the motion 
sequences directly, which was shown to provide more meaningful 
clusters of specific behaviors with less noise of other behavioral patterns 
(Luxem et al., 2022). Furthermore, an advantage of neural network 
models is that, in parallel to sequence segmentation, they allow re
searchers to embed motion trajectories into interpretable latent spaces 
that can be analyzed, for example, differentially across experimental 
conditions. Moreover, the explainability of the retrieved patterns is key 
to understanding the underlying behaviors (Goodwin et al., 2022). 
Being able to interpret how and what the models are doing can help 
improve transferability across datasets on the one hand, but also cate
gorize unsupervised clusters on the other hand, and this can be done 
both via visual exploration (taking advantage of video data and going 
back to the snippets that are assigned to specific patterns) or using 
machine learning explainability tools, such as Shapley Additive Expla
nations (SHAP) (Goodwin et al., 2022). A comprehensive overview of 

Fig. 2. Automatic behavioral annotation via motion 
tracking. After the experimental design is defined and 
videos are collected, key points over time for one or more 
animals are extracted as time series, using pose-estimation 
tools, such as DLC, SLEAP, or SIPEC. Predefined behaviors 
can then be extracted using supervised learning tools such 
as SimBA or MARS, which typically require data labeling, 
followed by classifier training and performance evaluation 
of the extracted behaviors. Other tools, such as DeepOF, 
provide pre-trained models that bypass these steps. 
Another way of extracting broader information is unsu
pervised learning, which does not require labeling, and 
aims to obtain behavioral syllables (or clusters) after a 
dimensionality reduction step. Cluster interpretation is a 
key step, which can be achieved by visual video inspection 
or using model explainability tools such as SHAP. Tools in 
this realm include DeepOF, VAME, B-SOiD, and MoSeq. 
Moreover, unsupervised learning results can be used to 
initialize supervised models with active human feedback, 
such as seen on the A-SOiD framework. Finally, the 
expression and dynamics of all retrieved patterns can be 
compared across experimental conditions, for example, to 
gain insights on behavioral shifts.   
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this pipeline is presented in Fig. 2. 
In contrast to the aforementioned open-source software packages, it 

is worth mentioning that there are also commercial solutions that have 
been employed for animal behavioral analysis, such as Smartcube 
(Lorsch et al., 2021). The promise of delivering an out-of-the-box, easy 
and high-quality product for a price is valid, however, there are intrinsic 
disadvantages to using proprietary black-box solutions. Commercial 
software systems are, for understandable reasons, not subjected to the 
same rules as scientific software, which means that they are not 
peer-reviewed and the information about which and how the employed 
models are working is not openly available. A potential way for 
bypassing those problems is to visually validate the produced results, 
which may in turn require more manual labeling. In the end, the fast 
solution-based development that the open-source community has shown 
in recent years is hard to compete against. An example of this fast 
development is the several publicly funded open-source competitions 
that were released in recent years, with the aim of improving 
machine-learning algorithms for behavior (Sun et al., 2021). This has 
the potential to continuously improve the current state of the art and 
yield a constant stream of open-source tools of excellent quality for 
behavioral research. Moreover, all data produced by labs while using 
this type of software package are collected and recycled to further 
improve previous algorithms, creating a constructive feedback loop 
from which the whole community can benefit. 

Although the field of automatic animal tracking and behavioral 
annotation has progressed unprecedentedly in the last few years, there 
are still several issues to overcome (von Ziegler et al., 2021). The 
increased number of open-source packages to analyze behavioral data is 
a crucial development that creates novel and better models, but many 
packages offer similar and overlapping results that are relying on 
different software systems and are therefore often not compatible which 
each other. This problem limits users to find the best set of software 
systems that are needed to answer their research question, especially for 
researchers from non-computational labs. An important advancement 
by the DLC development team is the future implementation of 
pre-trained tracking models that do not require labeling of any data and 
can export a flexible set of annotated body parts, which means that if 
competing software packages require a different set of labeled body 
parts, this would easily be extracted using the DLC Model Zoo Super
Animal software system (Ye et al., 2022). The current fast trajectory of 
many newly developed software solutions for behavioral analysis is 
encouraging, but in order for a wide audience to implement these tools, 
it would be beneficial if the field will converge to a centralized solution 
that ensures a compatible ecosystem for tracking, annotation, and the 
embedding of multimodal behavioral data, to which researchers would 
be able to openly contribute. 

The development of more precise tracking tools together with the 
numerous post-tracking analysis packages have allowed the behavioral 
research field, and in particular social behavioral research, to rethink 
the possibilities for the assessment of behavior. The implementation of 
such tasks will be beneficial for many different neuroscientific behav
ioral fields including fundamental behavioral research, especially 
studies focused on the consequences of stress exposure. An increasing 
number of studies are using these tools to investigate how stress affects 
social behavior. A selection of those studies is highlighted in the next 
section to illustrate the possibilities and strengths of such tasks using 
novel deep-learning tracking tools. 

4.2. Investigating social behavior using advanced tracking tools for better 
stress phenotyping 

Recently, several studies have used advanced tracking tools to 
investigate the social behavioral profile and hierarchy establishment in a 
semi-naturalistic environment to push our understanding of behavioral 
phenotyping related to stress exposure (Shemesh and Chen, 2023). 
Forkosh et al., (Forkosh et al., 2019) used an automated behavioral 

monitoring system, called “Social Box” (SB), to investigate hierarchy 
rankings in mice utilizing a more naturalistic environment. This study 
uses homemade software to identify pose estimation and subsequently 
utilizes supervised behavioral analysis tools to calculate a set of social 
behaviors. The most important classifier for this study is the calculation 
of aggressive chases that is used, together with some other behaviors, to 
obtain David’s scores that reflect the hierarchy rankings between mice. 
The SB system can house up to four mice and can easily be utilized for 
longitudinal day and night recordings. Interestingly, in a follow-up 
study, the authors explore how social hierarchy rank can be used as a 
predictor of chronic stress exposure-outcome in a sex-dependent way, 
emphasizing the importance of investigating both sexes in the 
stress-related research field (Karamihalev et al., 2020). The data from 
the SB system exemplifies the enriched data output using longitudinal 
observations in a semi-naturalistic environment. This is extremely 
relevant as it allows for a more natural inference of motivation and 
decision-making processes crucial for hierarchy rankings. It would be 
interesting to see how the hierarchy rankings in the SB system compare 
to the classical approaches, especially in cohorts of animals that show 
altered motivation or decision-making. Another next step would be to 
integrate additional behavioral domains via implementing behavioral 
tasks during the longitudinal overnight recordings, which would be able 
to abolish the influences of initial arousal, sleep disturbances, and 
anxiety on the performance of the behavior. An example is the imple
mentation of home cage operant conditioning devices, such as FED3, 
which allow the investigation of food intake, motivation, and reward 
processing (Nguyen et al., 2016). In order to boost the implementation 
of such a system for many different labs, the SB system should imple
ment open-source pose-estimation and classifying software so that the 
identification of hierarchy in home-cage-like systems would easily be 
transferable. 

A study that implemented a fully open-source software pipeline for 
stress phenotyping is Bordes et al., (Bordes et al., 2022). The study uses 
an open field environment with home-cage-like settings (using bedding 
material inside the maze) to explore chronic social defeat stress 
(CSDS)-induced social behavioral profiles. CSDS is a well-established 
stress model for investigating symptoms of depression, which ulti
mately leads to the avoidance of novel social stimuli in a subset of sus
ceptible mice (Golden et al., 2011; Krishnan et al., 2007). However, the 
identification of social avoidance behavior is typically measured using 
the aforementioned social avoidance task or three-chamber task and 
thus relies on an oversimplified model of the social behavioral repertoire 
(Pearson et al., 2010; Bordes et al., 2022). In this study, an open-source 
python package DeepOpenField (DeepOF) was developed to analyze the 
stress effect using a set of supervised behavioral classifiers related to 
individualistic- and social behaviors, but also using an unsupervised 
clustering analysis of the individualistic and social behavioral interac
tion data. Both supervised and unsupervised pipelines showed a much 
stronger CSDS-induced difference in the free-social interaction task 
compared to the classical social avoidance task, indicating a more robust 
and clearer social behavioral profile using DeepOF. This study identified 
a subset of different social behavioral classifiers to be altered in stressed 
animals, which was subsequently used as an indicator for stress affect
edness by calculating a Z-score. Ultimately, the Z-score for stress 
affectedness was significantly correlated with markers for stress physi
ology (end-point body weight and relative adrenal weight), which was 
not observed using the classical social avoidance IR, indicating that the 
Z-score analysis of DeepOF-identified behaviors provides a more com
plete social behavioral profile related to stress exposure than just the 
social avoidance IR. In addition, the mean-normalization of the data to 
the control group enables correcting for a potential batch effect. The 
DeepOF profiling ultimately provides a sensitive tool to assess individual 
stress resiliency and susceptibility. Interestingly, Ayash et al., (Ayash 
et al., 2023) observed that the social preference behavior of defeated 
C57/Bl6 mice in the three-chamber task is different between using a 
social conspecific from the aggressor strain (CD1) or a novel strain (e.g., 
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129/Sv). In addition, they identified that defeated mice who do not 
avoid CD1 mice (classically labeled as resilient), show impaired learning 
in a fear conditioning model, and therefore the classification of resil
iency is potentially incorrect. This is an interesting perspective and 
should be incorporated into the free social interaction task, to explore 
the social preference behavior after CSDS across different species. 

Taken together, the increased information of data in video recogni
tion using advanced pose estimation tools in a semi-naturalistic envi
ronment has expanded the understanding of the complexity of behavior. 
Implementations of these tools will lead to an increased understanding 
of the stress response system, for example, by enabling more ecologically 
relevant stressors, which are critical for the correct classification of 
resilient and susceptible animals (Lyons et al., 2023). In addition, these 
tools can dissect important influences of stress on behavior, such as the 
type of stressor (physiological versus psychological), stress intensity 
(chronic versus acute), and the dynamics of behavioral changes 
following a stressful challenge (Miranda et al., 2023). 

4.3. Deep phenotyping benefits the integration of different factors 
influencing social behavior 

Applying advanced tracking tools in semi-naturalistic environments 
offers the possibility to integrate different factors that shape social 
behavior, including stress exposure (stressed versus nonstressed), sex 
(female versus male), motivation (rewarding versus not rewarding), 
recording length (short versus longitudinal recordings), different 
developmental stages and aging (early life, adolescence, adulthood, 
older aged), and housing conditions (single housed, group-housed, or 
overcrowded), see Fig. 1. For example, the difference between short 
recordings (minutes to hours) and longitudinal recordings (day and 
night) is an important methodological consideration. Using shorter tests 
allows for high-throughput and more easily quantifiable data, and in 
addition is easily combined with other data modalities, such as neuronal 
activity data. However, these shorter tests are a snapshot during a 
certain time and are difficult to fully reflect non-arousal (baseline) be
haviors. In contrast, longitudinal recordings are more suitable for 
investigating baseline behaviors and can be used for a truly free-choice 
behavioral task that is relying on no interaction with the experimenter. 
However, adding data modalities, such as neuronal activity is more 
difficult. Another important aspect is to distinguish between distinct 
developmental stages, which are known to differentially influence social 
behavior. First of all, there are specific vulnerable stages during life, in 
which animals are differentially influenced by environmental circum
stances. For example, early life stress exposure influences the social 
behavioral profile and hierarchy establishment of adult mice in a sex- 
dependent manner (Bondar et al., 2018; Benner et al., 2014), but also 
the adolescent stage has been implicated as a critical stage for social 
behavioral development (Musardo et al., 2022; Endo et al., 2018). 
Secondly, aging is a strong factor influencing the social behavioral 
repertoire. Older aged animals have been found to show decreased 
explorative behaviors and increased grooming (Tran et al., 2021), while 
also a decreased number of social contacts and social novelty-seeking 
has been observed (Shoji et al., 2016; Shoji and Miyakawa, 2019). 
Moreover, the aggressive behavior towards conspecifics changes during 
aging as well, which is why for chronic social defeat stress only up to 6 
months old aggressor mice can be used (Golden et al., 2011). A funda
mental question for aging research is how behavior changes over longer 
periods of time (weeks to months). However, repeated behavioral 
testing with several classical behavioral tests influences the arousal and 
anxiety state of the animals, which ultimately leads to different behav
ioral outcomes between the tests (Voikar et al., 2004; Lad et al., 2010; 
McIlwain et al., 2001). As a consequence, researchers often use different 
cohorts of animals and test each cohort at a given age, making 
within-subject comparisons impossible, thereby increasing the risk of 
batch effects. A solution to this problem is to observe groups of animals 
in a semi-natural environment, for which no interference with anxiety, 

or differences in the state of arousal can take place, as the animals are 
not in a specific test environment. Therefore, using advanced tracking 
tools in a semi-natural environmental set-up will not only facilitate 
fundamental research of social behavior, but also other research fields, 
such as stress and aging. The ability to test the same cohort of animals 
throughout the different stages of life will enable researchers to uncover 
unbiased behavioral trajectories over time. However, even though mo
tion tracking data provides great insights into behavior, it does not 
provide the entire picture of the behavior profile. Currently, exciting 
developments are implementing different data modalities that can be 
measured in-vivo to provide an even richer understanding of the un
derlying behavior. The next section will discuss a set of data modalities 
that are currently being implemented in social behavioral analysis. 

4.4. Integrating different behavioral and neuronal data modalities into 
social behavioral profiling 

In recent years there has been an increased focus on the relevance of 
motion-tracking data for understanding behavior. This has been due to 
large breakthroughs in pose-estimation tools and their analysis, but also 
because video data is relatively easy and cheap to acquire. Furthermore, 
motion analysis can be easily interpreted, since researchers can map 
back their annotations and results to visual cues, which is significantly 
more difficult with other relevant types of data. However, behavior 
cannot be captured completely by motion tracking, as behavior is much 
more than just the posture of the animals. Therefore, new dimensions 
need to be included so that an even richer profile of the underlying 
behavior can be assessed. One option is to increase the data modalities 
using different sensory information of the animals, such as auditory data 
(e.g. mouse vocalizations), olfactory data (e.g. animal smell), and visual 
data (e.g. facial expressions) (Jabarin et al., 2022). Another option is to 
add physiological data modalities, for example, pupil dilation (Privitera 
et al., 2020), blood pressure, or heart rate, which can be used as a proxy 
for perceived stress (Buuse et al., 2001; Lemaire and Mormede, 1995; 
Farah et al., 2004; Swiercz et al., 2018). Lastly, adding neuronal data 
modalities will be important for future behavioral phenotyping, for 
example, by using neuronal activity (Padilla-Coreano et al., 2022), or 
neurotransmitter release data (Wu et al., 2022), which need to be 
wireless systems in order to sustain longitudinal recordings without 
restricting the animals (Fig. 3). The incorporation of different data 
modalities will increase the amount of data to be analyzed, which pro
vides a new problem on how to tackle data integration. Open-source 
software is appearing to tackle these specific problems, such as CEBRA 
(Schneider et al., 2023). CEBRA aims to integrate data modalities to gain 
a more holistic unsupervised representation of behavior by enabling 
combined embeddings of motion tracking and neural activity data, 
which promises to facilitate the identification of the neural processes 
underlying motion. An interesting study by Padilla-Coreano et al., 
(Padilla-Coreano et al., 2022) utilized wireless electrophysiology de
vices to investigate and predict behavioral outcomes based on neuronal 
activity data. A different activity pattern was observed in the medial 
prefrontal cortex between social ranks and wins and losses in a reward 
competition task, which was visible 30 seconds prior to the start of the 
task. This study shows that the integration of neuronal activity data with 
behavior adds interesting insights to the understanding of behavior and 
the underlying mechanisms. 

5. Conclusion 

The history of the development of behavioral assessment has seen 
several influential methods that have their inherent advantages and 
disadvantages. Ethology applies observational research, which can 
study behavior in a descriptive way, but, among other problems, lacks 
the standardization of behavioral assessment and control over the 
environment. Comparative psychology methods reduced the complexity 
of the behavior by using a highly controllable environment but 
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oversimplified the underlying behavioral construct. The development of 
advanced and precise tracking tools, together with the numerous post- 
tracking analysis packages, has facilitated the (social) behavioral 
research field to assess behavior in a more naturalistic environmental 
set-up. This allows the investigation of behavior in a more descriptive 
way, without the interference of test-specific anxiety and arousal of the 
animals, but maintains a certain level of controllability over the envi
ronment. Further, the new behavioral analysis tools can be applied to 
classic behavioral tests to uncover and quantify novel behavioral traits. 
The implementation of body posture tracking and machine learning 
analysis will be beneficial to fundamental social behavioral research, but 
will also enable an increased understanding of the influences of many 
different factors that can influence social behavior, such as stress 
exposure, sex, motivation, recording length, different developmental 
stages, aging, and housing conditions. However, there are several 
challenges using such advanced tracking tools and an important step 
will be to develop an open-source centralized software system to allow a 
compatible ecosystem for tracking, annotation, and the embedding of 
multimodal behavioral data. Future research will increase the amount of 
data modalities, such as sensory, physiological, and neuronal activity 
data, and will thereby significantly enhance our understanding of the 
biological basis of social behavior and guide intervention strategies for 
behavioral abnormalities in psychiatric disorders. 
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Summary
DeepOF (Deep Open Field) is a Python package that provides a suite of tools for analyzing
behavior in freely-moving rodents. Specifically, it focuses on postprocessing time-series data
extracted from videos using DeepLabCut (Mathis et al., 2018). The software encompasses a
diverse set of capabilities, such as:

• Loading DeepLabCut data into custom objects and incorporating metadata related to
experimental design.

• Processing data, including smoothing, imputation, and feature extraction.
• Annotating behavioral motifs in a supervised manner, such as recognizing huddling and

climbing, and detecting fundamental social interactions between animals.
• Embedding motion tracking data in an unsupervised manner using neural network models,

which also facilitate end-to-end deep clustering.
• Conducting post-hoc analysis of results and visualization to compare patterns across

animals under different experimental conditions.

The package is designed to work with various types of DeepLabCut input (single and multi-
animal projects), includes comprehensive documentation, and offers interactive tutorials.
Although many of its primary functionalities (particularly the supervised annotation pipeline)
were developed with top-down mice videos in mind, tagged with a specific set of labels, most
essential functions operate without constraints. As demonstrated in the accompanying scientific
application paper (Bordes et al., 2022), DeepOF has the potential to enable systematic and
thorough behavioral assessments in a wide range of preclinical research settings.

Statement of need
The field of behavioral research has experienced significant advancements in recent years,
particularly in the quantification and analysis of animal behavior. Historically, behavioral
quantification relied heavily on tests that were designed with either one or a few readouts
in mind. However, the advent of deep learning for computer vision and the development of
packages such as DeepLabCut, which enable pose estimation without the need for physical
markers, have rapidly expanded the possibilities for non-invasive animal tracking (Mathis et al.,
2020).

By transforming raw video footage into time series data of tracked body parts, these approaches
have paved the way for the development of software packages capable of automatically
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annotating behavior following a plethora of different approaches, increasing the number of
patterns that can be studied per experiment with little burden on the experimenters.

For example, several tools offer options to detect predefined behaviors using supervised machine
learning. Along these lines, programs like SimBA (Nilsson et al., 2020), MARS (Segalin et al.,
2021), or TREBA (Sun et al., 2021), allow users to label a set of behaviors and train classifiers
to detect them in new videos. They employ different labelling schemes which require different
amounts of user input, and offer high flexibility in terms of the number of behaviors that
can be detected. On the other hand, packages such as B-SOiD (Hsu & Yttri, 2021), VAME
(Luxem et al., 2022), and Keypoint-MoSeq (Weinreb et al., 2023), aim for a more exploratory
approach that does not require user labelling, but instead relies on unsupervised learning to
segment time series into different behaviors. These packages are particularly useful when the
user is interested in detecting novel behaviors, or when the number of behaviors is too large to
be annotated manually. Moreover, some approaches have been developed to combine the best
of both worlds, such as the the A-SOiD active learning framework (Schweihoff et al., 2022),
and the semi-supervised DAART (Whiteway et al., 2021). While a thorough discussion on
the advantages and disadvantages of each package is beyond the scope of this paper, further
information can be found in this recent review (Bordes et al., 2023).

In contrast to other available options, DeepOF offers both supervised and unsupervised
annotation pipelines, that allow researchers to test hypotheses regarding experimental conditions
such as stress, gene mutations, and sex, in a flexible way (Figure 1).

Figure 1: Scheme representing DeepOF workflow. Upon creating a project, DLC data can be loaded
and preprocessed before annotating it with either a supervised pipeline (which uses a set of pre-trained
models and rule-based annotators) or an unsupervised pipeline, which relies on custom deep clustering
algorithms. Patterns retrieved with either pipeline can be passed to downstream post-hoc analysis tools
and visualization functions.

The included supervised pipeline uses a series of rule-based annotators and pre-trained machine
learning classifiers to detect when each animal is displaying a set of pre-defined behavioral
motifs. The unsupervised workflow uses state-of-the-art deep clustering models to extract
novel motifs without prior definition. DeepOF then provides an interpretability pipeline to
explore what these retrieved clusters are in terms of behavior, which uses both Shapley
Additive Explanations (SHAP) (Goodwin et al., 2022) and direct mappings from clusters to
video. Moreover, regardless of whether the user chose the supervised annotation pipeline,
the unsupervised one, or both, DeepOF provides an extensive set of post-hoc analysis and
visualization tools.

When it comes to comparing it to other individual packages that use supervised and unsupervised
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annotation, DeepOF stands out in several ways. First of all, it is the first package, to the best
of our knowledge, to offer both options. Second, the supervised pipeline in DeepOF follows an
opinionated philosophy, in the sense that it provides a set of pre-trained models that cannot
be customized, but do not require user labels. This trades flexibility for ease of use, aiming
at being a quick exploratory tool that can provide information on key individual and social
behaviors with just a few commands. Furthermore, when it comes to the unsupervised pipeline,
DeepOF provides three custom deep clustering algorithms capable of segmenting the behavioral
time series, as well as the aforementioned built-in interpretability pipeline. If a user runs both
pipelines, supervised annotations can be incorporated into this interpretability pipeline in quite
a unique way, to detect associations between supervised and unsupervised patterns.

All in all, DeepOF is a comprehensive, end-to-end tool designed to transform DeepLabCut
output into relatively quick, exploratory insights on behavioral shifts between experimental
conditions, and pinpoint which behaviors are driving them.

Related literature
The DeepOF package has been used to characterize differences in behavior associated with
Chronic Social Defeat Stress (CSDS) in mice, as presented in our preprint (currently in revision
at the time of writing (Bordes et al., 2022)). There are several other ongoing projects involving
the software, although none of them are published to this date.
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Severe stress exposure increases the risk of stress-related disorders such as
major depressive disorder (MDD). An essential characteristic of MDD is the
impairment of social functioning and lack of social motivation. Chronic social
defeat stress is an established animalmodel forMDD research,which induces a
cascade of physiological and behavioral changes. Current markerless pose
estimation tools allow for more complex and naturalistic behavioral tests.
Here, we introduce the open-source tool DeepOF to investigate the individual
and social behavioral profile in mice by providing supervised and unsu-
pervised pipelines using DeepLabCut-annotated pose estimation data.
Applying this tool to chronic social defeat in male mice, the DeepOF super-
vised and unsupervised pipelines detect a distinct stress-induced social
behavioral pattern, whichwas particularly observed at the beginning of a novel
social encounter and fades with time due to habituation. In addition, while the
classical social avoidance task does identify the stress-induced social beha-
vioral differences, both DeepOF behavioral pipelines provide a clearer and
more detailed profile. Moreover, DeepOF aims to facilitate reproducibility and
unificationof behavioral classificationbyproviding anopen-source tool,which
can advance the study of rodent individual and social behavior, thereby
enabling biological insights and, for example, subsequent drug development
for psychiatric disorders.

Stress is an essential aspect of our daily lives, which contributes to our
mood and motivation. However, exposure to severe stress can have
negative consequences and has become an increasing burden on
society. In particular, stress-related disorders, such as major depres-
sive disorder (MDD), have been steadily on the rise for the last decade1.
Our understanding of the behavioral and neurobiological mechanisms

related to MDD is limited, which is part of the reason for the only
moderate success of current drug treatments2. MDD is a complex and
heterogeneous disorder, and its classification is dependent on a
widespread set of symptoms. An important characteristic of MDD is
the impairment of social functioning and lack of social motivation,
which can lead to social withdrawal from society in extreme cases3. In
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addition, disturbances in social behavior are an important risk factor
for developing MDD, as poor social networks are linked to lowered
mental and physical health4,5. The impact of social interactions was
highlightedduring theCOVID-19 pandemic,where a substantial part of
society experienced little to no social interactions for a sustained
period. An increasing number of studies are now reporting the enor-
mous impact of the pandemic, emphasizing a dramatic increase in the
prevalence of stress-related disorders, in particular MDD6,7. Unfortu-
nately, there is still a lack of awareness of the importance of social
interactions and their role in stress-related disorders. Therefore, it is
crucial to increase the understanding of the biological and psycholo-
gicalmechanisms behindMDD, and the influence of social behavior on
the development of MDD.

Along these lines, animal models have an important role in MDD
research. Although unable to recreate the exact nature of the disorder
in humans, they provide a controlled environmentwhere symptoms of
MDD can be investigated8,9. The well-established chronic social defeat
stress (CSDS) paradigm is continuously used for studying symptomsof
MDD in animals10,11. In the CSDS model, mice are subjected daily to
severe physical and non-physical stressors from aggressive mice for
several weeks, which results in the chronic activation of the physiolo-
gical stress response system, leading to bodyweight differences,
enlarged adrenals, and elevated levels of corticosterone12. In addition,
animals subjected toCSDS show stress-related behaviors such as social
avoidance, anhedonia, reduced goal-directed motivation, and anxiety-
like behavior10,13–16. EspeciallyCSDS-induced social avoidance behavior,
which is the avoidance of a novel conspecific, is a recognized phe-
nomenon that is used to investigate the social neurobiological
mechanisms related to chronic stress exposure and stress-related
disorders11,17,18.

Currently, several social behavioral tasks can assess different
constructs of social behavior, particularly the social avoidance task18. It
is important that these behavioral tasks are conducted with control
over the environment to investigate the effects of external stimuli,
such as stress exposure. For decades there has been a trend to stan-
dardize and simplify these tests to allow for greater comparability and
higher throughput. Unfortunately, this has led to an oversimplification
of the social behavioral repertoire and increased the risk for cross-over
effects by other types of behavior, such as anxiety-related behavior.
Moreover, due to limitations in tracking software, the analysis of the
interaction betweenmultiple freelymoving animals remained difficult,
which further limited the complexity of the behavioral assessment.
Social behavior is a complex behavioral construct, which relies on
many different types of behavioral interactions, that often are too
complicated, time-intensive, and repetitive to assess manually19–21.
Ultimately, this can lead to poor reproducibility of the social beha-
vioral construct, as observed for social approach behavior22.

The current advancement in automatically annotated behavioral
assessment, however, allows for high-throughput analysis using pose
estimation, involving both supervised classification (intending to
extract pre-defined and characterized traits) and unsupervised clus-
tering (which aims to explore the data and extract patterns without
external information)23–28. Importantly, the open-source tool Dee-
pLabCut has provided a robust and easily accessible system for deep-
learning-based motion tracking and markerless pose estimation29,30.
The use of supervised classification, by defining the behavioral pat-
terns of interest a priori, is a powerful tool that simplifies the analysis
by using predefined relevant behavioral constructs without losing the
complexity of social behavior. Furthermore, recent studies have shown
the value of unsupervised clustering in addition to a supervised ana-
lysis, which can reveal novel and more complex structures of
behavior19,26,31–33. By acting in a more exploratory fashion, these prac-
tices can not only assist the discovery of novel traits but also direct
researchers toward the main behavioral axes of variation across
cohorts of interest. In addition, both the supervised and unsupervised

analysis approaches can providemore transparency for the behavioral
definition and can easily be shared via online repositories, which
contributes to a more streamlined definition of behavior across dif-
ferent labs21,34. These computational tools can elevate the current
understanding of the influences of stress exposure on behavior, by
increasing the resolution of the observed behavioral output35.

Therefore, the current study provides an application of our open-
source tool DeepOF36, which enables users to delve into the individual
and social behavioral profiles of mice using DeepLabCut-annotated
pose estimation data (Fig. 1). DeepOF provides two main workflows; a
supervised behavioral analysis pipeline, which applies a set of anno-
tators and pre-trained classifiers todetectdefined individual and social
traits, and an unsupervised analysis pipeline, capable of embedding
themotion-tracking data of one ormore animals in a latent behavioral
space, pointing toward differences across experimental conditions
without any label priming. Furthermore, DeepOF can retrieve unsu-
pervised clusters of behavior that can be compared across conditions
and therefore hint at previously unrecognized behavioral patterns that
trigger newhypotheses.Wedescribe adistinct social behavioral profile
following CSDS inmice that can be recapitulated with both supervised
and unsupervised workflows. Moreover, the current study observes a
clear state of arousal upon exposure to a novel social conspecific that
fades over time, which provides crucial insights for the quantification
of optimal behavioral differences across time and experimental
conditions.

Results
The supervised pipeline provided by DeepOF yields general-
izable annotations
As expected, all rule-based behaviors show high performance when
compared to manual labeling, which constitutes an argument in favor
of simple behavioral tagging (Supplementary Fig. 1).

When evaluating the performance of the huddle classifier,
balanced accuracy in the training set (0.78 ±0.005) was marginally
higher than in both validation settings (suggesting no overfitting), and
performance on the internal validation (0.75 ± 0.046) was not sig-
nificantly higher than performance on the external validation
(0.75 ± 0.04) suggesting excellent generalization to new datasets
(independent samples t-test: T(7.34) = −0.03, p =0. 51, Supplementary
Fig. 2A). In addition, pseudo-labeling conducted on the external
dataset showed a strong and significant correlation between total
behavior duration acrossmanual and predicted labels (Supplementary
Fig. 2B). Finally, the SHAP analysis of the deployed classifier revealed
low head movement, low spine stretch, low body area, and low loco-
motion speed as themost important features of themodel, which goes
in line with the accepted definition of the behavior (Supplemen-
tary Fig. 2C).

The physiological and behavioral hallmarks of stress are repro-
duced by CSDS
The CSDS paradigm was performed to maintain stress exposure for
several weeks (Fig. 2A), which induced dysregulation of the
hypothalamic-pituitary-adrenal axis (HPA-axis) and a stress-related
behavioral profile. Male mice that were subjected to CSDS showed
clear hallmarks of stress exposure, as observed by a significant
increase in body weight during the stress paradigm, which was espe-
cially apparent towards the end of the stress (Fig. 2B, C), an increase in
relative adrenal weight (Fig. 2D), reduced locomotion and time spent
in the inner zone of the OF (Fig. 2E, F), and a significantly reduced SA-
ratio in the SA task (Fig. 2G). Notably, no bodyweight difference was
observed at the beginning of the CSDS paradigm (Fig. 2B).

Further exploration of the OF data using PCA across four 2.5min
consecutive time bins showed that all time bins were significantly
different from each other, suggesting that they all should be included
in further behavioral analysis of the OF data (Supplementary Fig. 3A,
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Fig. 1 | DeepOFworkflow. A 11 labels were tagged on each annotatedmouse using
DeepLabCut. B DeepOF preprocessing pipeline. One or two mice (a C57Bl/6N
experimental subject and a CD1 social companion depending on the dataset) were
tagged using the provided DeepLabCut models. After tracking body parts with
DeepLabCut, DeepOF was used to smooth the retrieved trajectories, interpolate
outliers, and extract features (including coordinates, distances, angles, areas,
speeds and accelerations). C Set of predefined behaviors that the DeepOF super-
vised pipeline can retrieve. These include dyadic motifs (such as nose-to-nose
contacts) and individual motifs (such as climbing), which are reported individually
for all tracked mice. The stopped-and-huddled classifier28 is abbreviated as “hud-
dle” in DeepOF output (not to be confused with group huddling behavior67).
D Schematic representation of the supervised pipeline in DeepOF. A set of
extracted motion features (only three dimensions are shown for visualization
purposes) are fed to a set of rule-basedannotators andpre-trained classifiers, which
report the presence of each behavioral trait at each time by learning how the
corresponding trait is distributed in the feature space (red dots). The set of

classifiers then yields a table indicating the presence of each motif across time,
which can be used for further analysis. Note that annotators are not necessarily
mutually exclusive, as several predictors can be triggered at the same time. EGraph
representation of animal trajectories used byDeepOF in the unsupervised pipeline.
All 11 body parts per animal are connected using a pre-designed (but customizable)
adjacency matrix. Nodes are annotated with x, y coordinates and speed of each
body part at each given time, and edges with the corresponding distances. This
representation can also handle multi-animal settings, where the graphs of indivi-
dual animals are connected with nose-to-nose, nose-to-tail, and tail-to-tail edges.
F Schematic representation of the deep neural network architecture used for the
unsupervised clustering of behavior. Data is embedded with a sequence-aware
spatio-temporal graph encoder, and clustered at the same time by selecting the
argmax of the likelihood of the components of a mixture-of-Gaussians latent pos-
terior. Unidirectional black arrows indicate forward propagation, and gray arrows
indicate the reconstruction and KL divergence terms of the loss function, the latter
of which minimizes the distance to an also mixture-of-Gaussians prior.
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B). The OF PCA between conditions revealed a significant difference
and showed the importance of the OF parameters, in which total dis-
tance, look-around, and sniffing came out as the top contributing
behaviors (Supplementary Fig. 3C, D). A significant stress effect was
observed for the total distance, look-around, and inner–zone time
throughout the different time bins, whereas sniffing was altered, but
not in all time bins (Supplementary Fig. 3E–J). Importantly, even
though a stress-induced effect can be found in the OF task, a general
habituation effect to the OF in both NS and CSDS can be observed, as
total distance reduces over time, while look-around and sniffing
increase. The successful habituation to the novel environment is cru-
cial for the subsequent SI task to allow full attention to the novel social
conspecific (Supplementary Fig. 3E–G).

DeepOF social behavioral classifiers show a stronger PCA
separation for stress exposure than social avoidance
The social behavioral pattern during the SI task was investigated in
four non-overlapping time bins of 2.5min each to match the time
frame in the SA task. Principal component analysis (PCA) was per-
formed to show the difference between time bins in the social beha-
vioral profile regardless of the animal’s stress condition (Fig. 3A).
Interestingly, the PCA showed a significant effect between the time
bins, in which the first 2.5min time bin was significantly different from
the subsequent ones (5, 7.5, and 10min). In contrast, the subsequent
time bins did not show variation between one another (Fig. 3B). This

suggests that the different time bins in the SI task are an important
variable, and that the first 2.5min time bin should be specifically
investigated. Next, the SA and SI tasks were compared on their ability
to distinguishbetweenNS andCSDSanimals. PCAswereperformed for
the SA task (Fig. 3C) and the 2.5min timebin SI data (Fig. 3D, E), both of
which showed a significant difference between the conditions in the
principal component (PC) 1 eigenvalues (Fig. 3C–E). However, the SI
task showed a clearer separation of the conditions than the SA task,
suggesting that the SI task is a more powerful tool for identifying
stressed animals than the SA task. In addition, the PC1 top contributing
behaviors for the 2.5min time bin SI data were calculated using the
corresponding rotated loading scores (Fig. 3F). The top five con-
tributing behaviors were reported as essential behaviors for identify-
ing the stressed phenotype, which consisted of B-huddle, B-look-
around, B-nose-to-tail, B-speed, andB-nose-to-body from theC57Bl/6N
animal, whereas the other behaviors within the top 10 were either
contributing to the CD1 animal or had a low rotated loading score
(Fig. 3F). Here, “B-” indicates behaviors related to or initiated by the
C57bl/6N animals, whereas “W-” refers to the CD1.

DeepOF social behavioral classifiers are strongly altered
by CSDS
Next, the influence of the CSDS on the top five contributing behaviors
in the SI task was investigated. In accordance with the PCA time bin
analysis, a clear stress-induced effect was observed, with elevated

Fig. 2 | Classical hallmarks for chronic social defeat stress. A Experimental
timeline for the CSDS paradigm and behavioral testing, including the open field
(OF) and social interaction (SI) task onday 15–16 (animals weredividedbetween the
two days) and social avoidance (SA) task on day 17. B Significant increase of body
weight after CSDS exposure (two-way ANOVA: within-subject effect of time:
F(6,406) = 13.58, p = 4.59e-14, as well as time×condition interaction effect:
F(6,406) = 6.13, p = 3.65e-6, but no between-subject effect on condition:
F(1,406) = 0.20, p =0.653). Post-hoc analysis with Benjamini Hochberg revealed no
significant difference on day 1, 11, 15, and 18, but there was a significant difference
on day 4 (T(1,58) = 6.36, p =0.033, 8 (T(1,58) = 6.55, p =0.033, and 21 (T(1,58) = 11.57,
p =0.007). C The delta body weight during the CSDS paradigm (day 21–day 1) was

significantly increased in CSDS-exposed animals (Two-tailed independent samples
t-test: T(58) = −6.09, p = 9.8e-8). D Increase of relative adrenal weight after CSDS
exposure (Two-tailed independent samples t-test: T(57) = –5.44, p = 1.15e-6). E The
total locomotion in the OF was reduced after CSDS exposure (Two-tailed inde-
pendent samples t-test:T(51) = 6.15,p = 1.18e-7).FThe inner zone time in theOFwas
reduced after CSDS exposure (Two-tailed independent samples t-test: T(51) = 3.37,
p =0.0015). G The SA-ratio was reduced in the SA task after CSDS exposure (Two-
tailed wilcoxon test:W = 617, p =0.006). The timeline and bar graphs are presented
asmean ± standard errorof themeanand all individual samples as points.N = 30 for
NS and CSDS for (B–G). Source data are provided as a Source Data file.
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duration in the CSDS animals for B-look-around (Fig. 4A, B) and
B-huddle (Fig. 4C, D),while lowered for the B-speed (Fig. 4E, F), B-nose-
to-tail (Fig. 4G, H), and B-nose-to-body (Fig. 4I, J). The total duration
per time bin for the top contributing behaviors showed the strongest
CSDS-induced effect in the 2.5min time bin data (supplemental Fig. 4,
timeline graphs), compared to the 5, 7.5, and 10 min time bins. In
addition, supplemental Fig. 4 shows the 10min total duration and time
bin analyses for all other DeepOF behavioral classifiers, in which a
significant stress effect is observed for B-sniffing, B-wall-climbing, and
Side-by-side.

Z-score for DeepOF social interaction correlateswith Z-score for
stress physiology
The Z-score of stress physiology was calculated using the relative
adrenal weight and body weight on day 21 of the CSDS. The stress
physiology Z-score provides a strong CSDS profiling tool andwas used
for correlation analysis between the SA and SI tasks. Even though the
behavioral and physiological readouts were not obtained at the same

time, the former can be used as a proxy of the impact of the stress
exposure, and are expected to be stable during the last week of the
CSDS pipeline. No significant correlation was observed between the
Z-score of stress physiology and the SA ratio (Fig. 5A). Subsequently,
the Z-score of SI was calculated by using the 2.5min timebin of the top
five contributing behaviors in the SI task (Fig. 4). Stress physiology and
SI Z-score showed a significant positive correlation (Fig. 5B), which
indicates that the SI Z-scoreprovides a stronger tool forCSDSprofiling
compared to the SA ratio. Next, correlation analyses were performed
between the Z-score of SI and all other behavioral and physiological
measurements which indicated a strong correlation with several OF
parameters. Highly affected OF parameters, such as speed, distance,
inner zone entries, and look-aroundmight be directly related to social
anxiety and warrant further investigation. Interestingly, no correlation
with the SA ratio was observed (Fig. 5C).

Notably, the SA task is extensively used to distinguish resilient and
susceptible animals in the CSDS paradigm10,17, and depending on the
protocol and stress severity this can give a distinction between

Fig. 3 | Social interaction binning yields more separable PCA projections than
the social avoidance task. A In the SI data a PCA revealed that the first 2.5min time
bin is significantly different from the other time bins. (Kruskal-Wallis test:
H(3) = 19.90, p =0.0002. B The PC1 eigenvalues of the SI time bin PCA. Post-hoc
Wilcoxon: 2.5min vs. 5min (W = 957, p =0.01), 2.5min vs. 7.5min (W = 860,
p =0.0018), 2.5min vs. 10min (W = 811, p =0.0011). C The SA task PCA showed a
significant difference in the PC1 eigenvalues between conditions. The PCA data
consisted of the SA-ratio, total time spent with the non-social stimulus, and total
time spent with the social stimulus. Two-tailed independent samples t-test:
T(57) = –2.84, p =0.006. D The SI 2.5min time bin PCA showed a significant dif-
ference in the PC1 eigenvalues between conditions. The PCA data consisted of all
the SI DeepOF behavioral classifiers, as listed in Fig. 1C. Two-tailed independent

samples t-test: T(51) = 8.28, p = 5.39e-11. E The PC1 eigenvalues of the 2.5min time
bin SI task. F The top contributing behaviors of the SI 2.5min time bin in PC1 using
the corresponding rotated loading scores. The top five behaviors were reported as
the essential behaviors for identifying stress exposure (B-huddle (–0.41), B-look-
around (–0.40), B-nose-to-tail (0.39), B-speed (0.36), B-nose-to-body (0.33). “B-”
indicates C57Bl/6N behaviors and “W-” indicates CD1 behaviors. The PCA graphs
(Fig. 3A, C, D) are provided with a 95% confidence ellipse and all individual samples
as points. Further PC1 analyses (Fig. B, E) are represented with a violin plot and all
individual samples as points. In Fig. 3F the absolute score of the PC1 value is
represented by the point.N = 26 for NS and n = 27 forCSDS in (A,B,D–F) andn = 30
for NS and CSDS in (C). Source data are provided as a Source Data file.
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resilient and susceptible animals (Fig. 5D–F). Interestingly, while
clearly differentiating affected and non-affected individuals, the Dee-
pOF module does not find a distinction between SA-ratio-defined
susceptibility and resiliency on the 2.5min bin SI DeepOF behavioral
classifiers (Fig. 5G–M), indicating that the DeepOF behavioral classi-
fiers represent a unique and distinguished set of resilience-linked
phenotypes.

The DeepOF unsupervised pipeline can be flexibly applied
across different experimental settings
The unsupervised pipeline within DeepOF was applied to three data-
sets and four settings. These included both single and multi-animal
embeddings on the SI dataset, single-animal embeddings on the OF
dataset, and single-animal embeddings on the SA dataset. When
applying this workflow to a new dataset, the number of clusters is a
hyperparameter the user must tune. In this study, an optimal solution
was found by selecting the number of clusters that explains the largest
difference between experimental conditions (in terms of the area
under the ROC curve of a classifier to distinguish between them, see
methods for details). While DeepOF could be used to describe the
behavioral space of a single condition, this model selection procedure
aims at maximizing the power to detect behavioral differences
between experimental conditions. An optimum of 10 clusters was
measured for both single- and multi-animal SI settings (Fig. 6A and

Supplementary Fig. 5A), whereas the single-animal OF setting showed
an optimum of 11 clusters (Supplementary Fig. 6A), and the SA setting
of 17 clusters (Supplementary Fig. 7A). Timepoint UMAPprojections of
the latent space depicting all clusters can be found in Fig. 6B, and
Supplementary Figs. 5B, 6B, and 7B for all four settings, respectively.

DeepOF can quantify behavioral differences over time in an
unsupervised way
Once the number of clusters was fixed, the stress-induced phenotype
was investigated over time in both SI and OF settings. SA was excluded
of this analysis due to the shorter length of the videos (2.5min), in
which no decay of arousal should be observed in the animals. To this
end, a growing time window spanning an increasing number of
sequential seconds was analyzed. For each analysis, the discrimin-
ability between conditions was tested by evaluating the performance
of a linear classifier to distinguish between them in the global animal
embedding space, for which each experiment is represented by a
vector containing the time spent per cluster (see methods for details).
The bin size for which discriminability was maximized was then
selected as optimal and used for further analysis. In this case, we
observed an optimum of 126 and 124 s for the single-animal andmulti-
animal SI tasks respectively, indicating that differences between con-
ditions are maximized early in the 10-min-long experiments, which is
compatible with habituation. Furthermore, performance across

Fig. 4 | Top contributing behaviors in the social interaction task for 10min
total duration and time bins. A The total duration of B-look-around. Two-tailed
Welch: T(34.1) = –3.71, p =0.0007. B Time bin for B-look-around. Benjamini Hoch-
berg (BH) posthoc for the 2.5min time bin: (T(51) = 33.46, p = 1.78e-6) and the 5min
timebin (T(51) = 6.84,p =0.024), but not for the 7.5 and 10min timebins (p =0.067,
p =0.093, respectively), two-way ANOVA: condition effect: F(1,208) = 37.45,
p = 4.59e-9, time effect: F(1,208) = 4.02, p =0.046, and condition × time effect:
F(1,208) = 8.87, p =0.003). C The total duration of B-huddle. Two-tailed indepen-
dent samples t-test: T(51) = –6.40, p = 4.8e-8. D Time bin for B-huddle. Wilcoxon
posthoc for the 2.5min time bin (W(26,27) = 63.5,p = 1.3e-6), and the 5min time bin
(W(26,27) = 204, p =0.018), but not for the 7.5- and 10min time bins (p =0.52,
p =0.52, respectively), Kruskal-Wallis: 2.5min: p = 1.25e-6, 5min: p =0.018, 7.5min:
p =0.51, and 10min: p =0.51. E The total duration of B-speed. Two-tailed Welch:
T(35.04) = 2.84,p =0.0074.FTime bin for B-speed. BHposthoc for the 2.5min time
bin (T(51) = 22.41, p = 7.16e-5), but not for the 5-, 7.5-, and 10min time bins

(p =0.076, p =0.20, p =0.24, respectively), two-way ANOVA: condition effect:
F(1,208) = 22.60, p = 3.72e-6, time effect: F(1,208) = 7.51, p =0.007, and condi-
tion × time effect: F(1,208) = 6.34, p =0.013). G The total duration of B-nose-to-tail.
Two-tailed Welch: T(36.70) = 2.18, p =0.036. H Time bin for B-nose-to-tail. Wil-
coxon posthoc for the 2.5 min time bin (W(26,27) = 660, p = 1.5e-7), but not for the
5-, 7.5-, and 10min time bins (p =0.19, p =0.49, p =0.49, respectively), Kruskal-
Wallis: 2.5min: p = 1.43e-7, 5min: p =0.18, 7.5min: p =0.48, 10min: p =0.48. I The
total duration of B-nose-to-body. Welch: T(35.85) = 1.18, p =0.24. J Time bin for B-
nose-to-body. Wilcoxon posthoc for the 2.5min time bin (W(26,27) = 626.5,
p = 3.97e-6), but not for the 5, 7.5 and 10min time bins (p =0.85, p =0.85, p =0.85,
respectively), Kruskal-Wallis: 2.5min: p = 3.8e-6, 5min: p =0.85, 7.5min: p =0.85,
10min: p =0.85. The timeline and bar graphs are presented as mean± standard
error of the mean and all individual samples as points. N = 26 for NS and n = 27 for
CSDS in (A–J). Source data are provided as a Source Data file.
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consecutive, non-overlapping bins retaining the optimal size was also
reported (Fig. 6C and Supplementary Fig. 5C). Here, decaying perfor-
mance across bins in the SI setting is also compatible with a state of
arousal, where conditions become less distinguishable over time after
the behavior of the C57Bl/6Nmicebecomes less influenced bynovelty.
The largest difference between NS and CSDS animals can thus be
observed during this period. In line with this finding, the optimal
distance in the single animal OF data was reached at 595 s, suggesting
that no binning is necessary since behavior between conditions
remains consistently distinguishable across the videos (Supplemen-
tary Fig. 6C).

Interestingly, global animal embeddings showa clearer separation
between conditions in both single and multi-animal embeddings for
the SI setting (Fig. 6D and Supplementary Fig. 5D), whereas the dif-
ference is milder in the OF setting, as the projected distributions are
less separable (Supplementary Fig. 6D). In the SA setting, projections

show, as expected, a higher separation between conditions in trial two,
which includes the encaged conspecific (Supplementary Fig. 7C, D).

These global embeddings also capture how distributions merge
over time in the SI settings, as the behavioral profiles of NS and CSDS
mice become closer (Supplementary Figs. 8, 9).

Individual unsupervised clusters reveal differences in behavior
enrichment
Going beyond global differences in behavior, the aggregated embed-
dings depicted so far are the result of summarizing the expression of
the set of detected behavioral clusters. Once obtained, DeepOF
enables the user to test the differential expression between conditions.
To this end, the time spent on each cluster across all videos for each
condition is recorded for each time bin. Importantly, DeepOF has no
knowledge of the assigned animal conditions at the time of training
and assigning clusters.
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The expressionbetweenNSandCSDSanimalswas then compared
using 2-wayMann-WhitneyU tests for each cluster independently, and
p values were corrected for multiple testing using the BH method
across both clusters and time bins, when applicable. We observed
significant differences in eight out of ten and six out of ten clusters for
the first time binof the single andmulti-animal SI settings, respectively
(Fig. 6E and Supplementary Fig. 5E). Interestingly, and in line with
habituation to the environment, these differences also fade across
time. The single-animal setting still shows some (although less) sig-
nificant differences in all time bins, albeit with reduced effect sizes
(Supplementary Fig. 10). Interestingly, also in the single-animal
embeddings, cluster 8 remains highly significant during the entire
course of the experiments. The multi-animal setting yields in contrast
almost no significant results beyond the first time bin (Supplemen-
tary Fig. 11).

In the OF setting, 7 out of 11 clusters showed a significant differ-
ential expression in the first 595 s (Supplementary Fig. 6E). The SA test,
in turn, is an interesting setting to test DeepOF given that its main axis
of variation is the distance to the cage with the conspecific, which
constitutes information that is not available to DeepOF in its current
form (which only looks at the posture of the tracked animals). Inter-
estingly, and while the analysis shows no significant results in trial one
(without the conspecific, Supplementary Fig. 7E), 6 out of 17 clusters
show significant differential expression in trial two (with the con-
specific, Supplementary Fig. 7F), suggesting thatDeepOF can correctly
detect behavioral differences even without absolute location
information.

Finally, we also explored the spatial distribution of cluster
expression across all three settings. We obtained heatmaps depicting
the global exploration of the arena by the C57Bl/6N across all videos
(for both conditions). Along these lines, our results show how, while,
as shown, CSDS animals tend to occupy the center of the arena sig-
nificantly less (Fig. 2F) there is no spatial preference across animals
for individual clusters (Fig. 6F and Supplementary Figs. 5F, 6F show
the overall locomotion distribution, while a comprehensive overview
of individual clusters is presented in Supplementary Figs. 12, 13,
and 14).

Individual unsupervised clusters reveal differences in behavior
dynamics
Aside from comparing cluster enrichment, DeepOF can help gain
insight into how cluster transitions and sequences differ across con-
ditions. To accomplish this, an empirical transition matrix was
obtained for each condition by counting how many times an animal
goes from one given cluster to another (including itself). Since all
transitions were observed to have non-zero probability, the Markov
chains obtained from simulations canbeproven to reach a steady state
over time (where probabilities to go from one behavior to another
stabilize). The entropy of these steady state distributions was reported
for both conditions, with higher values corresponding to a less pre-
dictable exploration of the behavioral space. Interestingly, CSDS ani-
mals showed a significantly lower behavioral entropy in the social
interaction task than their NS counterparts, retrievable in both single
andmulti-animal embeddings (Fig. 6F andSupplementaryFig. 5F). This
goes in line with the NS animals exploring the behavioral space more
thoroughly, while CSDS animals are more conditioned by the con-
specific. In line with this hypothesis, no significant differences across
conditions were found in the single-animal OF experiments (Supple-
mentary Fig. 6F). Moreover, to validate these results, the obtained
behavioral entropy score was correlated with the physiology Z-score
presented earlier (Supplementary Fig. 15). As expected, significant
negative correlations were found for the SI setting both when
exploring the single andmulti-animal behavioral spaces. No significant
correlation was observed for the single-animal OF setting.

Shapley additive explanations reveal a consistent profile across
differentially expressed clusters
An important aspect of any machine learning pipeline using highly
complexmodels is its explainability. In this study, we aimed to explain
cluster assignments by fitting a multi-output supervised classifier (a
gradient boosting machine) that maps statistics of the initial time
series segments (including locomotion and individual body part areas,
speeds, distances, and angles) to the subsequent cluster assignments.
Performance and generalizability of the constructed classifiers across
the dataset were assessed in terms of the balanced accuracy on a 10-

Fig. 5 | Z-score correlation analysis and the exploration of susceptibility and
resiliency. A Pearson correlation analysis between the SA-ratio and the Z-score of
stress physiology (R = –0.23, p =0.089).B Pearson correlation analysis between the
SI task 2.5min time bin top five contributing behaviors and the Z-score of stress
physiology (R =0.43, p =0.0014). C Pearson correlation analyses between the
Z-score of SI and all other parameters. A strong correlation was observed with
several OF parameters, such as speed (R = –0.56, p = 1.76e-5), total distance
(R = –0.54, p = 4.27e-5), look-around (R =0.48, p =0.0004), and inner zone: entries
(R = –0.47, p =0.0004), but not with the SA-ratio (R = –0.13, p =0.37). D The SA-
ratio shows a significant main effect with the Kruskal-Wallis: H(2) = 21.22,
p <0.0001). Wilcoxon posthoc shows that SUS animals (SI-ratio <1) have a sig-
nificantly lower SI-ratio compared to NS animalsW(9,30) = 249, p = 4.1e-5 and RES
animals W(9,24) = 216, p = 1.56e-7. There is no difference between NS and RES ani-
malsW(30,24) = 270, p =0.12. E The PCA for SA shows a significantmain effect with
the one-way ANOVA: F(2,60) = 10.90, p = 9.19e-5. F The PC1 eigenvalues of the SA
show a significant difference between SUS and NS animals Post-hoc Benjamini
Hochberg (BH): T(9,30) =p =0.0005 and between SUS and RES animals
T(9,24) =p = 5.88e-5. There is no significant difference between NS and RES animals
T(30,24) =p =0.196. G The PCA for the 2.5min SI ratio shows a significant main
effect with the Kruskal-Wallis: H(2) = 24.83, p = 4.06e-6. H The PC1 eigenvalues of
the 2.5min bin SI show a significant difference between NS and RES animals Post-
hoc Wilcoxon: W(30,24) = 92, p = 1.82e-6), and between NS and SUS animals
W(30,9) = 41, p =0.0015. There is no difference between RES and SUS animals
(W(24,9) = 117, p =0.736). I B-look-around shows a significant main effect with the
one-way-ANOVA: F(2,60) = 19.23, p = 3.53e-7. Post hoc BH shows a significant dif-
ference between NS and RES (T(30,24) =p = 9.86e-7), and NS and SUS
(T(30,9) =p =0.0002), but no difference between RES and SUS T(24,9) =p =0.94.

JB-huddle shows a significantmain effect with the one-way-ANOVA: F(2,60) = 12.35,
p = 3.23e-5. Post hoc BH shows a significant difference between NS and RES
(T(30,24) =p =0.0003), and NS and SUS (T(30,9) =p =0.0004), but no difference
between RES and SUS (T(24,9) =p =0.39. K B-speed shows a significant main effect
with theone-way-ANOVA: F(2,60) = 18.63,p = 5.1e-7. Post hocBHshows a significant
difference between NS and RES (T(30,24) =p = 3.12e-6), and NS and SUS
(T(30,9) =p = 7.62e-5), but no difference between RES and SUS T(24,9) =p =0.67.
LB-nose-to-tail shows a significantmain effectwith the Kruskal-Wallis:H(2) = 26.70,
p = 1.59e-6. Post hoc Wilcoxon shows a significant difference between NS and RES
(W(30,24) = 628, p = 1.82e-6), and NS and SUS (W(30,9) = 236, p =0.0005), but no
difference between RES and SUS W(24,9) = 152.5, p =0.075. M B-nose-to-body
shows a significantmain effectwith the Kruskal-Wallis:H(2) = 19.61, p = 5.52e-5. Post
hoc Wilcoxon analysis shows a significant difference between NS and RES
(W(30,24) = 567,p =0.0003), andNS and SUS (W(30,9) = 230, p =0.0009), and RES
and SUS W(24,9) = 167, p =0.018. The correlation analyses (A, B) are represented
with a regression line and a 95% confidence interval window and all individual
samples as points. C has the correlation value (R) represented by the red line
(positive) or blue line (negative), black circles around the points are identified as
significant correlations, p <0.05. The bar graphs are presented as mean ± standard
error of the mean and all individual samples as points. The PCA graphs (E, G) are
provided with a 95% confidence ellipse and all individual samples as points. Further
PC1 analyses are represented with a violin plot and all individual samples as points
(F, H). The bar graphs are presented as mean± standard error of the mean and all
individual samples as points. N = 30 for NS and CSDS in (A), and n = 26 for NS and
n = 27 for CSDS in (B,C),n = 30 forNS,n = 24 for RES,n = 9 for SUS in (D–M). Source
data are provided as a Source Data file.
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fold stratified cross-validation loop, which was designed so that seg-
ments coming from the same video were never assigned to both train
and test folds. Data for SI (single and multi-animal) and OF settings
were standardized, and the minority class was oversampled using the

SMOTE algorithm to correct for class imbalance. Performance per
cluster is shown by means of the confusion matrices per task and the
balanced accuracy per cluster (Fig. 7A, B and Supplementary Figs. 16A,
B and 17A, B for all three settings, respectively). Importantly, classifier

Fig. 6 | Single-animal unsupervised analyses identify different behavioral pat-
terns between stressed and non-stressed mice during the SI task. A Cluster
selection pipeline results reporting the area under the ROC curve from a logistic
regression classifier discriminating between conditions. A 10-component solution
(from a range between 5 and 25) was selected as optimal in a fivefold (N = 5) cross-
validation loop (see methods for details). B Embeddings by time point obtained
using DeepOF’s unsupervised pipeline. Different colors correspond to different
clusters. Dimensionality was further reduced from the original 8-dimensional
embeddings using UMAP for visualization purposes. C Optimal binning of the
videos was obtained as the Wasserstein distance between the global animal
embeddings of both conditions across a growing window, between the first
10–600 s for each video at one-second intervals (gray curve). Higher values cor-
respond to larger behavioral differences across conditions. A maximum was
observed at 126 s, close to the stipulated 150 s selected based on the SA task lit-
erature. The dark green curve depicts the Wasserstein distance across all sub-
sequent non-overlapping bins with optimal length. The decay observed across time
is consistent with the hypothesized arousal period in the CSDS cohort.
D Representation of the global animal embeddings for the optimally discriminant
bin (126 s) per experimental video colored by condition (see methods for details).

E Cluster enrichment per experimental condition (N = 26 for NS and N = 27 for
CSDS) in the first optimal bin (first 126 s). Reported statistics correspond to a 2-way
Mann-Whitney U non-parametric test corrected for multiple testing using Benja-
mini-Hochbergs’s method across both clusters and bins (significant differences
observed in clusters 0: U = 1.6e+2, p = 7.7e-4, 1: U = 1.1e+2, p = 1.3e-5, 2: U = 6.3e+2,
p = 1.1e-6, 4: U = 6.4e+2, p = 3.3e-7, 5: U = 1.6e+2, p = 6.3e-4, 7: U = 5.3e+2, p = 1.3e-3,
8: U = 6.2e+2, p = 1.9e-6, 9: U = 1.9e+2, p = 4.4e-3). Bar graphs represent mean ±
standard deviation of the time proportion spent on each cluster. F Example heat-
mapdepicting spatial distribution across all experiments (in both conditions) for all
clusters. Specific heatmaps for all individual clusters are available in Supplementary
Fig. 12).G Behavioral entropy scores per condition. NS animals show a significantly
higher entropy than CSDS animals, which can be attributed to a less predictable
exploration of the behavioral space (U = 5.3e+2, p = 1.68e-3,N = 26 for NS andN = 27
for CSDS). Moreover, and in accordance with these results, behavioral entropy
shows a significant negative correlation with the presented stress physiology
Z-score (Supplementary Fig. 15A). Source data are provided as a Source Data file.
Box plots in (A,G) show themedian and the inter-quartile range.Whiskers show the
full range, excluding outliers as a function of the inter-quartile range.
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Fig. 7 | SHAP analysis of unsupervised cluster assignments in the single-animal
social interaction task. Gradient boosting machines were trained to map from a
predefined set of time series statistics (including body part speeds, distances,
distance speeds, areas, area speeds, and supervised annotations) to the previously
obtained cluster assignments. A Confusion matrix obtained from the trained gra-
dient boosting machine classifying between clusters. Aggregated performance
over the validation folds of a fivefold cross-validation is shown. B Validation per-
formance per cluster across a fivefold (N = 5) cross-validation loop. Balanced
accuracy was used to correct for cluster assignment imbalance. The dashed line
marks the expected performancedue to chance, considering all outputs. Bars show

mean ± 95% confidence interval. C Overall feature importance for the multi-output
classifier using SHAP. Features in the y-axis are sorted by overall absolute SHAP
values across clusters. Classes on the bars are sorted by overall absolute SHAP
values across features. D–F Bee swarm plots for the three most differentially
expressed clusters between NS and CSDS mice (1, 2, and 5), identified with the
unsupervised DeepOF pipeline on the SI experiments using single-animal embed-
dings. The depicted plots display the first eight most important features for each
classifier, in terms of the mean absolute value of the SHAP values. Source data are
provided as a Source Data file.
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performance is substantially greater than random in all cases for all
three settings,meaning that all clusters are highlydistinguishable from
one another by the set of summary statistics employed.

The result of this analysis is thus a set of feature explainers for
each retrieved cluster, which can be used to interpret, alongside visual
inspection of the corresponding video fragments (included as Sup-
plementary files), what the obtained behavioral motifs represent. Both
global (Fig. 7C, Supplementary Figs. 16C, 17C) and cluster-specific
feature importance values can be retrieved. In this context, we found
consistent descriptions of clusters that are differentially represented
across conditions for all three tasks.

In the single-animal SI task, for example, cluster 1 (Fig. 7D, enri-
ched in CSDS animals) is consistently explained by low locomotion
speed, low head movement, and low spine stretch, and is positively
associated with the huddle classifier. Visual inspection reveals a
behavior close to freezing. Cluster 2 (Fig. 7E, enriched in NS animals) is
in contrast explained by high locomotion speed, exploratory behavior,
low headmovement, and spine stretch. Close visual inspection depicts
active locomotion and engagement with the conspecific. Interestingly,
cluster 8 (Fig. 7F, enriched in NS animals across all time bins) is
explained by increased speed, head movement, and negatively asso-
ciated with sniffing. Visual inspection suggests engaging in motion
(shifting from a still position to active locomotion).

In the case of the multi-animal SI setting, the explainability pipe-
line reveals how themodels work differentlywhen taking both animals
into account. In this case, the two-animal system is embedded as a
whole, and features including both animals are considered when run-
ning SHAP. As mentioned in the methods section, a regularization
hyperparameter allows the system to focus more on interactions
between the animals or in joint individual behaviors. In this case, we
used amoderated value of the parameter that enables the contribution
of both, which becomes apparent when analyzing the explainability
profiles of the retrieved behaviors. Cluster 3, for example (Supple-
mentary Fig. 16D, highly enriched in CSDS), is explained not only by
low speed on the C57Bl/6N animal, but also by increased speed of the
CD1, among others. Upon visual inspection, one can observe exactly
that the CD1 is exploring the arena while the C57Bl/6N stands still, in a
posture usually associated with the stopped and huddled trait. Cluster
5 (Supplementary Fig. 16E, also enriched in CSDS) closely captures an
interaction between the two animals, where the CD1 is typically more
engaged in movement. The SHAP pipeline eloquently reveals negative
correlations with spine stretch and back, torso, body and head areas,
as well as speed in both mice. Conversely, cluster 8 (Supplementary
Fig. 16F, enriched in NS) is well explained by increased speed in both
animals, which can be confirmed by visual inspection.

Finally, this pipeline was also used to interpret clusters in the OF
setting. In this case, cluster 0 (Supplementary Fig. 17D, enriched in
CSDS animals) is explained by a decreased overall speed, positive
correlations with mid and back spine stretch, back area, and left leg
extensions, and negative association with right leg extensions. Visual
inspection indeed reveals a cluster highly enriched in digging. Cluster
8 (Supplementary Fig. 17E, also enriched in CSDS animals), is in turn
explained by decreased speed, mid, and back spine stretch, increased
head area and extended right legs. Visual inspection shows a cluster
enriched in slow walking, often including head movement and inter-
action with the walls. Finally, cluster 9 (Supplementary Fig. 17F, enri-
ched in NS animals) is positively correlated with speed and head
movement, and negatively correlated with spine stretch, among oth-
ers. Visual inspection depicts an exploratory behavior with active
movement.

All in all, the provided cluster explainability pipeline is a useful
tool to interpret all reported patterns. Moreover, visual inspection of
cluster snippets is also made possible with a single command within
DeepOF, which makes the interpretation process more effective.

Discussion
For decades there has been a trend to standardize and simplify social
behavioral tests, which has led to an oversimplification of the
description of the social behavioral repertoire. The current develop-
ments of open-source markerless pose estimation tools for tracking
multiple animals have provided the possibility for more complex and
socially relevant behavioral tests. The current study provides an open-
source tool, DeepOF, which can investigate both the individual and
social behavioral profiles in mice using DeepLabCut-annotated pose
estimation data. Applying this tool, the current study identified a dis-
tinct social behavioral profile following CSDS using a selection of five
traits annotated by DeepOF on the C57Bl/6N animal. In addition, a
similar social behavioral profile was identified using an unsupervised
workflow, which could detect behavioral differences in different
experimental settings, including social interaction and single-animal
open field tests, and a social avoidance task. Moreover, DeepOF
allowed to study behavioral dynamics in unprecedented detail and
identified the 5 min during the interaction with a novel conspecific as
crucial for the socialprofilingof CSDSexposure inboth supervised and
unsupervised workflows. Overall, this study demonstrates the high
utility and versatility of DeepOF for the analysis of complex individual
and social behavior in rodents.

DeepOF as part of a markerless pose estimation toolset
The initial release of DeepLabCut in 201829 provided a reliable and
accessible tool for researchers around the globe to process marker-
less pose estimation data, which has undoubtedly changed the field
of behavioral neuroscience. This has set in motion a rapid growth of
tools for analyzing pose estimation data that are increasing the range
of possibilities in the field, which were unimaginable using classical
tracking approaches or manual scoring. An important distinction
between these pose estimation analysis tools is whether they intend
to extract pre-defined and characterized traits (supervised) or to
explore the data and extract patterns without external information
(unsupervised). The DeepOF module is designed to provide both
analysis pipelines. The supervised behavioral classifiers offer a quick
and easy-to-use analysis to detect individual and social behavioral
traitswithoutmanual labeling. In addition, whendifferences between
the conditions are not reflected in these traits, or the researcher aims
to obtain behavioral embeddings, the DeepOF package can encode
the data in a time-aware way that can report differentially expressed
patterns in an unsupervised manner, taking single and multi-animal
inputs.

The supervised framework: spotting recognizable patterns
The supervised pipeline within the DeepOF package can be used on
single anddyadic behavioral data inmultiple-shaped arenas.DeepOF is
capable of reporting a pre-defined set of behavioral traits without any
extra labeling or training required. To accomplish this, it relies on both
simple rule-based annotations and machine learning binary classifiers
whosegeneralizability has been tested, trading offflexibility for easeof
use. This makes it user-friendly for researchers without computational
expertise to apply this supervisedpipeline,without having tomake any
modifications. To further detect unsupported patterns, using a more
involved and flexible tool (such as SimBA37 or MARS27) could be a
reasonable next step to take. These tools include a supervised
approach that requires the user to label and train classifiers, providing
the freedom to train powerful classifiers and recognize behavioral
traits, which is especially beneficial for labs without computational
expertise. However, in contrast to DeepOF, this approach also dele-
gates to the user the responsibility of testing the generalizability of the
results (howwell the trainedmodels can be applied to newlygenerated
data, even in similar settings), which requires careful practices from
the experimenters.
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The DeepOF module provides a more complete social beha-
vioral profile than the social avoidance task
The social behavioral profile in CSDS-subjected animals has been mea-
sured extensively using the SA task, which is based on the separation of
social behavioral traits between non-stressed and stressed animals11,17,38.
Previous research has shown that rodents have a social interaction
preference towards a novel conspecific compared to a familiar
conspecific39. However, the duration of this social behavioral arousal
state has not been well documented. In this context, and by replicating
the time the SA task typically lasts for10, the current study shows that the
CSDS-related social behavioral profile, obtained with the DeepOF
supervised classifiers, was increasingly observed during the first 2.5min
of the 10min SI task. Furthermore, the presented unsupervised work-
flow was used to determine an optimal binning of our experiments by
measuring how different both conditions were across time for a linear
classifier. This yielded an optimal separation at ~2.1min (126 and 124 s
when testing with single and multi-animal embeddings, respectively),
which then decayed over subsequent time bins in a manner consistent
with the arousal hypothesis. The fact that this result was not seen in the
absence of a conspecific strengthens this argument. Taking this into
account, we argue that the introduction of a novel conspecific induces a
state of arousal, which coincides with a distinct social behavioral profile
that disappears over time after 2–3 min due to habituation.

Along these lines, this study shows that the DeepOF social beha-
vioral classifiers provide a stronger separation of the social behavioral
profile between stressed and non-stressed animals compared to the
classical SA task, which also correlates better to physiological stress
parameters.

Furthermore, the identification of stress-susceptible and resilient
animals is often performed using the SA-ratio of the SA task10,17 and for
this DeepOF offers unique advantages. While the SA ratio clearly dis-
tinguishes stress-affected individuals, especially following more severe
CSDS paradigms, the DeepOF module will significantly advance the
possibilities and sensitivity of this distinction, by investigating the
degree of resilience based on multiple behavioral classifiers with high
sensitivity and in freely moving animals, which enables uncovering a so-
far undescribed set of resilience-linked phenotypes that are different
from the univariate SA task. Taken together, it can be concluded that
using the DeepOF social behavioral classifiers provides a more robust
and clearer social behavioral profile in animals subjected to CSDS
compared to the SA task. An important reason for the superiority of
DeepOF in social behavioral profiling depends on the experimental set-
up: theSA task relieson the confinementof ananimal (for exampleusing
a wired mesh cage), which means that no natural interaction between
freely moving animals is possible, whereas the SI task is based on a
naturally occurring interaction between freely moving animals18. More-
over, in the SA task, the confined animal can show symptoms of anxiety-
related behavior, which influences the physiological state and the social
interaction and approach behavior of the conspecific40–42. Differences in
anxiety-related behavior between experimental animals can still con-
tribute to alterations in social behavior and recent data suggest distinct
neurobiological circuits driving both phenotypes43, therefore sufficient
habituation and the ability to observe behavior in freelymoving animals
will lead to improved discrimination. Moreover, a further crucial
advantage of the DeepOF module is the many different behavioral
classifiers that can be investigated at the same time without increasing
the labor intensity. The combined analysis of multiple behavioral clas-
sifiers into a Z-score of social behavior provides a more complete social
behavioral profile than solely investigating social avoidance behavior.

DeepOF can detect and explain differences across experimental
conditions in a fully unsupervised way, embedding data from
one or more animals
The supervised pipeline within DeepOF follows a highly opinionated
philosophy, which focuses on ease of use and relies on predefined

models. As an alternative, DeepOF offers an unsupervised workflow
capable of representing animal behavior across experiments without
any label information. In its most basic expression, this involves
obtaining a representation for each experiment in a time-aware man-
ner: unlike other dimensionality reduction algorithms like PCA, UMAP,
and T-SNE26, DeepOF, when applied to the raw dataset, relies on a
combination of convolutional and recurrent neural networks capable
ofmodeling the sequential nature ofmotion. Each input to themodels
consists of a subsequence across a non-overlapping sliding window of
each experiment. Although this idea has been explored before33,
DeepOF introduces several novelties to the field, such as unified
embedding and clustering, the support for multi-animal embeddings,
and graph representations that integrate not only coordinates by also
body-part-specific speed and distance information, which makes it
ideal for settings where informative body parts (such as paws) are
occluded, as is the case for commonly used top-down videos.

In addition, these global embeddings can be decomposed into a
set of clusters representing behavioral motifs that the user can then
inspect both visually and with machine learning explainability meth-
ods. Moreover, by comparing cluster enrichment and dynamics across
conditions, it is possible to answer questions that are relevant to
understanding what the observed difference might be based on,
without any previous knowledge: Which behaviors are most or least
expressed in each condition? Is the set of behaviors expressed differ-
ently in experimental conditions? Are they expressed differentially
across space and time? This constitutes a complementary approach
that can be beneficial to further direct hypotheses when little knowl-
edge is available. In addition, by not only showing overall differences
between cohorts but also reporting which motion primitives might be
driving them, it is possible to test hypotheses by training novel
supervised classifiers based on thosemotion primitives. This can allow
researchers to distinguish new, meaningful patterns that have not
been reported before and that may be significantly associated with a
given condition.

Taken together, the current study exemplifies that the unsu-
pervised pipeline provided in DeepOF does not only recapitulate
results previously obtained with the supervised analysis, but also
shows how this tool can be used to detect habituation and overall
differences in behavioral exploration. We also show that detected
differences are significantly stronger when a conspecific is present,
although also detectable during single animal arena exploration alone.

Towards an open-source behavioral analysis ecosystem
One of themain advantages of DeepOF, SimBA37, VAME33, MARS27, and
many other packages cited in this manuscript, is that they are open
source. This means that their inner workings are transparent, and that
it is possible for the community to contribute to their development.
We strongly believe that the adoption of open-source frameworks can
not only increase transparency in the field but also incentivize a feeling
of community, in which researchers and developers can share ideas,
code, and solve bugs and problems together. Moreover, the open
source framework facilitates beneficial feedback loops, where the data
generated using these tools can be published, thus increasing the
opportunity to produce better software. A good example of this is
zero-shot pose estimation44, which enables motion tracking without
labeling, by cleverly leveraging information from several publicly
available datasets. In addition, new technologies are starting to enable
joint learning from multiple modalities, such as neural activation and
behavior45, which enables the exploration of how these modalities are
influencing each other.

In addition to the software, an equally important problem to
tackle is the need for open-source benchmarks. As platforms for
testing and validating pose estimation and detection algorithms
become available, it becomes easier to clearly show and compare the
performance of different software options for different tasks. An
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example of this is the Caltech Mouse Social Interactions (CalMS21)
dataset, a pioneer in the field that provides benchmarking for classic
detection of social interactions, annotation style transfer, and detec-
tion of rare traits46. While unsupervised learning benchmarking
remains highly unexplored to the best of our knowledge, it would be
crucial to compare the DeepOF pipeline with other available methods
in this context when the tools become available.

Finally, and in contrast to several other options that offer exten-
ded functionality but rely onproprietary algorithmsand/or specialized
hardware23, these tools have the potential to make otherwise expen-
sive software available to a larger audience.

In conclusion, the current study provides a novel approach for
individual and social behavioral profiling in rodents by extracting pre-
defined behavioral classifiers and unsupervised, time-aware embed-
dings using DeepOF. Furthermore, while the tool provides means of
customization, it is uniquely optimized for the most common beha-
vioral setup: top-down video recordings.Moreover, we show evidence
for the validation of the provided behavioral annotators and offer an
open-source package to increase transparency and contribute to the
further standardization of the behavioral constructs. We also show
that, while differences across conditions are detectable during single
animal exploration, they are enhanced in the SI task involving a com-
panion mouse. Furthermore, while the classical SA task does identify
the social behavioral profile induced by CSDS, the DeepOF behavioral
classifiersprovide amore robust and clearer profile. DeepOF is thereby
a highly versatile tool that can also be applied to other research
questions, e.g., to study sex differences in social behavior or analyze
home-cage behavior throughout the lifespan of animals using long-
itudinal recordings. In addition, the DeepOF module contributes to a
more specific classification of the affected individual and social
behaviors in stress-related disorders, which could contribute to the
study of drug development for psychiatric disorders.

Methods
Time series extraction from raw videos
Time series were extracted from videos using DeepLabCut version
2.2b7 (single animal mode). 11 body parts per animal were tagged,
including the nose, left and right ears, three points along the spine
(including the center of the animal), all four extremities, and the tail
base (Fig. 1A). The DeepLabCut model was trained to track up to two
animals at once (one CD1mouse and one C57Bl/6Nmouse) and canbe
found in the Supplementary material (see code and data availability
statement). Using the multi-animal DeepLabCut30, extending the
tracking to animals from the same strain is also possible. Next, Dee-
pLabCut annotated datasets were processed and analyzed using Dee-
pOF v0.4.636.

Time series data preprocessing
All videos and extracted time series undergo an automatic pre-
processing pipeline that is included within the DeepOF package, con-
sisting of smoothing and two sequential imputation levels, applied to
all body parts of all tracked animals independently. For smoothing
DeepOF applies a Savitzky-Golay filter47 to each independent tracked
variable by fitting an n/2-degree polynomial over an n-frame sliding
window, where n is the frame rate of the corresponding videos.

To identify and correct any artifacts in the time series, a moving
average model is then fitted to the time-based quality scores of each
tracked variable (as reported by DeepLabCut’s output likelihood). By
detecting divergences (of at least three standard deviations) from the
moving average model, DeepOF can detect sudden and consistent
drops in tracking quality, often correlated with body-part occlusions.
Body parts with low quality are thus removed from the data, and fur-
ther imputed using sci-kit learn’s iterative imputer with default
parameters48, which predicts missing values based on all available

features at a given time point using a Bayesian ridge regression
method. A second imputation method is then conducted, aiming to
remove spatial jumps in the tracked body parts. To do this, another
moving average model is fitted, this time to the body part coordinates
themselves, and any data point located at least three standard devia-
tions from the model is replaced by the predicted values.

Time series feature extraction
After preprocessing the time series independently, DeepOF extracts a
set of features aiming to describe how entire animals move and
interact. These include centered and aligned coordinates, distances
between body parts, angles, and areas of specific regions of each
available body (Fig. 1B), as well as their speeds, accelerations, and
higher-order derivatives. The value for each feature is reported per
time point.

Coordinates. Raw coordinates for each body part are centered (the
cartesian origin is set to the center of each animal) and vertically
aligned so that the y-axis matches with the line delimited by the center
of each animal and spine 1 (see Fig. 1A for reference). This is done so
that both translational and rotational variances are not considered in
further processing steps (in principle, and except for some annota-
tions such as wall climbing and sniffing—see below—DeepOF extracts
posture patterns that are invariant to where in the arena and in which
rotational orientation they are expressed).

Distances and angles. Distances and angles over time between all
body parts within and across all animals are computed by DeepOF by
default, and available for retrieval.

Areas. The full area of the animal over time is computed byDeepOF by
defining a polygon on all external body parts (nose, ears, legs, and tail
base). The head area is delimited by the nose, ears, and spine 1. The
Torso area is delimited by spine 1, both forward legs, and spine 2. The
back area is delimited by the center, both back legs, and the tail base.

Finally, speeds, accelerations, jerks, and larger-order derivatives
of each extracted feature are also computed using a sliding window
approach. Importantly, the detailed 11-body-part labeling scheme
suggested and provided by DeepOF plays a crucial role here. While
parts of the pipeline can still work with fewer labels, the comprehen-
sive set of features that DeepOF is able to extract with this set of labels
enhances not only supervised annotations, but also data representa-
tions and model interpretability.

Supervised behavioral tagging with DeepOF
The supervised pipeline within DeepOF aims to provide a set of
annotators that work out of the box (without user labeling) for several
behaviorally relevant traits. The workflow supports both dyadic
interactions and individual traits, which are reported for each mouse
individually (Fig. 1C). Furthermore, annotated traits fall into one of two
categories:
1. Traits annotated based on pre-defined rules. Several motifs of

interest are annotated using a set of rules that do not require a
trained model. For example, contact between animals can be
reported when the distance between the involved body parts is
less than a certain threshold.

2. Traits annotated following a supervised machine learning pipeline.
While rule-based annotation is enough for some traits, others are
too complex or might bemanifested in subtly different ways, and
machine learning models are often a better option. In this case, a
rigorous validation pipeline has been applied to measure the
performance of the classifier not only in a separate test data set,
but also across datasets comprehending different arenas and
laboratories.
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Rule-based annotated traits. Among the rule-based annotated dyadic
traits, nose-to-nose and nose-to-tail depend on single distance
thresholds between specific body parts of the animals involved. In the
case of nose-to-body, a single threshold is used between the nose of
one animal and any body part of the other (except nose and tail base).
Side-by-side and side-reverse-side are computed using two equal
thresholds, measuring the distance between both noses and two tails
in the former, and both nose-to-tail distances in the latter.

Of the individual traits, “look around” requires the animal to stand
still (speed to bebelow a defined threshold) and the head to bemoving
(nose and ear speeds to be above a defined threshold). Finally, sniffing
and wall climbing rely on the interaction of each animal with the arena
(which can be detected automatically in certain settings, or indicated
manually by the user using a GUI—graphical user interface—when
creating a DeepOF project). An animal is annotated as sniffing thewalls
when speed is below a defined threshold, the distance between the
nose and thewall is below a defined threshold, and the head ismoving.
Consequently, wall climbing is detected when the nose of an animal
goes more than a certain threshold beyond the delimited arena. All
mentioned thresholds can be specified (in millimeters) by the user. All
analyses presented in this article were conducted with default values,
which can be seen in Supplementary Table 1.Moreover, all annotations
require a reported tracking likelihood of at least 0.85 on all involved
body parts.

Annotation using pre-trained machine learning models. In the case
of stopped and huddled, we trained a gradient boosting machine
(scikit-learn, v1.2.0, default parameters) to detect the trait per frame,
using a set of 26 variables including distances between body parts,
speeds, and areas. Data were preprocessed by standardizing each
animal’s trajectories independently (controlling for body size), and the
training set as a whole. Furthermore, to deal with the imbalanced
nature of the dataset (as only 8.48 % of the frames were positively
labeled) we applied Synthetic Minority Over-sampling Technique
(SMOTE)49 to oversample theminority class (using imblearn v0.10.150).

Performance was then evaluated using a tenfold stratified cross-
validation (to keep approximately the same number of positive labels
in each validation fold) on a single dataset formodel development and
tested externally using a leave-one-dataset-out approach. Four inde-
pendent datasets were used, collected in four different settings and
across two different labs (see dataset details in Supplementary
Table 2). Three of them (SI, OF, and SA) were tagged with manual
labeling only, whereas the fourth (EX, obtained externally) combined
manual labels and automatic pseudo-labeling using SimBA (Supple-
mentary Fig. 2). The final classifier deployed with the latest version of
DeepOF was then trained on a set of more than half a million labeled
frames (567.367), coming from all four mentioned independent data-
sets, and global feature importancewas obtained using SHAP (Shapley
additive explanations).

After applying the annotators, a Kleinberg burst detection
algorithm37,51 is applied to all predictions. This step smoothens the
results bymerging detections that are close in time (called bursts) and
removing isolated predictions, which an infinite hiddenMarkovmodel
deems as noise. Moreover, rather than having a fixed detection win-
dow, the filter will be less likely to ignore isolated or less frequent
events if they are far enough from higher frequency bursts but will be
more prone to removing isolated events closer to a region where
annotations are more frequent. In addition, it is important to notice
that the annotatorswork independently, somore than one label can be
assigned to an animal at a given time point (Fig. 1D).

Overall, while the provided behavioral set may not cover all sce-
narios, this out-of-the-box pipeline can be used to detect differences in
behavior across experimental conditions without the need for further
programming. More complex behaviors, involving user definition and
labeling can thus be extracted using other available tools if required37.

Graph representations
To analyze complex spatio-temporal data involving features such as
coordinates, speed, and distances, the unsupervised pipeline within
DeepOF can structure the variables as an annotated graph (Fig. 1E).

In this representation, each node is annotated with three values,
corresponding to both coordinates of each body part, as well as their
speeds. Edges are in turn annotated with distances between both
connected body parts. The adjacencymatrix describing connectivity is
provided by DeepOF for top-down videos, but can also be defined by
the user. Moreover, this representation can be extended to a multi-
animal setting, where independent graph representations for each
animal are connected through nose-to-nose, nose-to-tail, and tail-to-
tail edges, allowing the models to incorporate relative distances
between animals. It is worth mentioning that the provided repre-
sentation works best when adjacent body parts are being tracked so
that propagation through space is not too coarse. One of the main
assumptions behind spatio-temporal graph embeddings is that con-
nected body parts are sufficiently correlated in space, which may not
be the case if too little tracking labels are included52.

Unsupervised deep embeddings with DeepOF
Unsupervised analysis of behavior was conducted using an integrated
workflow within DeepOF, which enables both the deep embedding of
animal trajectories and their clustering, to retrieve motion motifs that
are consistent across time.

To this end, node and edge features (for either single or multiple
animals) are processed using a sliding window across time, and stan-
dardized twice: once per animal, to remove size variability, and a
second time on the entire training set.

The resulting data is then embedded using a deep clustering
neural network architecture based on Variational Deep
Embeddings53,54, a deep clustering algorithm that can be adapted to
sequential data. During training of the models, DeepOFminimizes the
ELBO (evidence lower bound), represented in Eq. (1):

LELBOðxÞ ¼ Eqðz;cjxÞ½logpðxjzÞ� � DKLðqðz; cjxÞjjpðz; cÞÞ ð1Þ

The first term corresponds to the reconstruction loss, which
encourages the latent space (z) to represent the data (x) well over a set
of clusters (c). The second term is the Kullback-Leibler divergence
(DKL) between a mixture-of-Gaussians prior (p(z,c)) and the variational
posterior for each cluster (q(z,c|x)), which regularizes the embeddings
to followamixture-of-Gaussians distributionwhere each component is
associated with a particular behavior. A schematic overview of the
model can be found in Fig. 1F.

Importantly, this loss function enforces a clustering structure
directly in the latent space, removing the need for post-hoc clustering
of the embeddings required by other available tools33. This has several
advantages, the main one being that the clustering structure back-
propagates to the encoder during training, improving clustering
performance55.

The main contribution of the provided architecture lies however
in the encoder-decoder layers, which are designed to handle spatio-
temporal graphdata (inwhich connectivity is static, but node and edge
attributes change over time)56. To accomplish this, features corre-
sponding to each body part are first processed independently by a
temporal block, which consists of a one-dimensional convolutional
neural network (CNN) and two gated recurrent unit (GRU) layers).
Subsequently, the outputs of these layers are passed by a spatial block,
that shares information across adjacent body parts. This is accom-
plished using CensNet convolutions, a graph convolution architecture
capable of embedding node and edge attributes at the same time57.
This allows DeepOF to take advantage of several data modalities
related to motion with a single data structure as input.
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Once the models are trained, cluster assignments are obtained as
the argmax of the posterior distribution given the data, as described in
Eq. (2):

q c∣xð Þ=p c∣zð Þ � p zð Þp z∣cð Þ
PK

c0 = 1p c0ð Þp z∣c’ð Þ ð2Þ

where c’∈ (1, K) is an iterator over all clusters in the model.
In practice, this unsupervised pipeline can retrieve consistent

patterns of animal motion in a flexible, non-linear, and fully unsu-
pervised way. Moreover, as body part speeds and distances can be
naturally included, this workflow works even when critical body parts
(such as the paws) are occluded, which makes it ideal for top-down
videos.

In addition, DeepOF is capable of training multi-animal embed-
dings by usingmulti-animal graphs (see graph representations section
above). When more than one animal is detected, DeepOF allows the
user to control how much these embeddings should consider inter-
actions between the animals over the multi-animal system. This is
achieved with an L1 penalization over the node embeddings in the
aforementioned CensNet layers: larger values will prime themodels to
prioritize animal interactions, whereas smaller values will increase the
contribution of the individual behavior of each animal. All experiments
included in this study used a moderated parameter (0.25) which
allowed the model to consider both interactions and joint individual
behaviors.

Unsupervised model training and hyperparameters
All unsupervised models used default values (as specified in DeepOF
version 0.4.6). On each dataset, 10% of the available videos were used
as a validation set to evaluate performance during training. Data were
processed using sliding windows with a length matching the video
frame rate of each dataset and stride of 1, mapping to eight-
dimensional latent spaces. The training was conducted using the
Nadam optimizer58 (with a learning rate of 0.001 and gradient-based
clipping of 0.75) over 150 epochs with early stopping based on the
total validation loss and patience of 15 epochs. Upon training end,
weights of the models are restored to those obtained in the best per-
forming epoch using the same metric. The number of populated
clusters over time, confidence in selected clusters (as the argmax of
the produced soft counts), regularizers, and individual components of
the loss function (see unsupervised deep embeddings with DeepOF
section above) are tracked over time by DeepOF.

Global animal embeddings
Aside from embedding time points individually, global animal
embeddings (where each data point corresponds to the trajectory of
an entire animal rather than to a single time point) were obtained by
constructing a k-dimensional vector with the time proportion each
animal spent on each cluster, where k is the number of clusters in the
given model.

Cluster number selection
For each dataset that was analyzed with the unsupervised pipeline,
models ranging from 5 to 25 clusters were trained five times, resulting
in a total of 120 models per explored setting. All model hyperpara-
meters were set to DeepOF defaults (see section below and API doc-
umentation for additional details). Global animal embeddings were
thenused as input to a logistic regressionclassifier (scikit-learn, default
parameters) aiming to discriminate CSDS from non-stressed animals.
The model with the smallest number of clusters that reached a per-
formancewithin one standarddeviation of the globalmaximumacross
the whole range (in terms of the area under the ROC—receiver oper-
ating characteristic—curve) was selected for further processing.

Time binning and habituation quantification
A key aspect of DeepOF is that it allows for quantification of behavioral
differences between cohorts over time in an unsupervised way. In this
context, this is done by measuring the Wasserstein distance over time
between the multivariate distributions describing global animal
embeddings for CSDS and non-stressed animals.

By measuring this distance across a growing window, we can
quantify how important additional information is to discriminate
between conditions. This way, a peak in the distance curvewouldmark
the point in time inwhich behavioral differences aremaximized. In this
study, we used a range between 10 and 600 s for each experiment,
computing the Wasserstein distance between conditions every sec-
ond. The time point at which the maximum was reached was selected
as the optimal size for consecutive (non-overlapping) time bins. By
reporting the behavioral distance along these bins, DeepOF can report
behavioral habituation (which would involve behavioral differences
between conditions decreasing over time).

Unsupervised cluster interpretation using Shapley additive
explanations (SHAP)
When applying the unsupervised pipeline, and quantifying which fea-
tures DeepOF deems relevant for the unsupervised models to deter-
mine the assignment of a given time segment to a given cluster, all
obtained sequence-cluster mappings were analyzed using Shapley
additive explanations59,60.

To this end, a comprehensive set of 52 distinct features (111 for
two-animal embeddings) was built to describe each sliding window in
the training set, including mean values of distances, angles, speeds,
and supervised annotators.

Gradient boosting machines (using Catboost v1.1.161, which offers
models specifically optimized for non-binary classification) were then
trained to predict cluster labels from this set of statistics after nor-
malization across the dataset and oversampling theminority classwith
the SMOTE algorithm49. Performance is reported as the validation
balanced accuracy across a 10-fold stratified cross-validation loop, and
feature importance (global and for each cluster) is reported in terms of
the average absolute SHAP values, obtained using a permutation
explainer.

Animals for chronic social defeat stress experiments
Eight-week-old experimental male C57Bl/6N mice were bred in-house.
The CD1 male mice (bred in-house) were used in the social avoidance
and social interaction task as social conspecifics (CD1 animals were
4–6 weeks old) and as aggressors in the CSDS paradigm (CD1 animals
were at least 16 weeks old). The study was conducted with male ani-
mals as a proof of principle, and for comparability to widely available
data on chronic social defeat. All animals were housed in individually-
ventilated cages (IVC; 30 cm× 16 cm× 16 cm connected by a central
airflow system: Tecniplast, IVC Green Line—GM500) at least 2 weeks
before the start of the experiment to allow acclimatization to the
behavioral testing facility. All animals were kept under standard
housing conditions; 12 h/12 h light-dark cycle (lights on at 7 a.m.),
temperature 23 ± 1 °C, humidity 55%. Food (Altromin 1324, Altromin
GmbH,Germany) andwaterwere availablead libitum. All experimental
procedures were approved by the committee for the Care and Use of
Laboratory Animals of the government of Upper Bavaria, Germany. All
experiments were in accordance with the European Communities
Council Directive 2010/63/EU.

Chronic social defeat stress
At 2 months of age, male mice were randomly divided into the CSDS
condition (n = 30) or the non-stressed condition (NS) (n = 30) (Sup-
plementary Table 2, experiment code 1). TheCSDSparadigmconsisted
of exposing the experimental C57Bl/6N mouse to an aggressive CD1
mouse for21 consecutivedays, aspreviously described62. An additional
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cohort (NS: n = 30, CSDS: n = 33, subdivided into susceptible animals
n = 9, and resilient animals n = 24) was used to test the DeepOF social
interaction classifiers on the resiliency and susceptibility division of
the social avoidance ratio (Supplementary Table 2, experiment code
2). The prolonged 3-week CSDS paradigm was specifically chosen to
elicit a more profound passive defeat phenotype, as originally repor-
ted by Kudryavtseva et al. 13, and to allow multiple behavioral assess-
ments under stress conditions. In short, the CD1 aggressor mice were
trained and specifically selected on their aggression prior to the start
of the experiment. The experimental mice were introduced daily to a
novel CD1 resident’s territory, who attacked and forced the experi-
mental mouse into subordination. Defeat sessions lasted until the
stress-exposed mouse received two bouts of attacks from the CD1
aggressor or at 5min in the rare instances when two bouts were not
achieved within this duration. Animal health was monitored through-
out the experiment to ensure that any minor injuries healed prior to
the subsequent defeat session. Between daily defeats, stressed mice
were housed in the resident’s home cage but physically separated from
the resident by a see-through, perforated mesh barrier, allowing sen-
sory exposure to the CD1 aggressor mouse while preventing further
attacks. The defeat time of day was randomized between 11 a.m. and
6p.m. to avoid habituation and anticipatory behaviors in defeated
mice. NS mice were single-housed in the same room as the stressed
mice. All animals were handled daily and weighed every 3–4 days.
Behavioral testingwas performed after 14 days of the defeat paradigm,
wherebehaviorwas observed in themorning and the defeat continued
in the afternoon. The animals were sacrificed a day after the CSDS
ended under deep isoflurane anesthesia by decapitation, which was at
3 months of age. Then, the adrenals were obtained, and the relative
adrenal weight was calculated by dividing the adrenal weight by the
body weight before sacrifice.

Behavioral testing
Behavioral tests were performed between 8 a.m. and 11 a.m. in the
same roomas the housing facility.Onday 15 of the CSDSparadigm, the
animals were tested on the social avoidance (SA) task, while on day 16,
the animals were tested on the combined open field (OF) and social
interaction (SI) task. The SA task was analyzed using the automated
video-tracking software AnyMaze 6.33 (Stoelting, Dublin, Ireland),
whereas theOF and SI tasks were analyzed usingDeepLabCut 2.2b7 for
pose estimation29,30, after which DeepOF module version 0.4.6 was
used for preprocessing, supervised, and unsupervised analyses of
behavior.

Social avoidance
The SA task was performed in a square OF arena (50 × 50cm) to
observe the social behavioral profile after CSDS, as well-established in
previous studies13,62–64. The SA task consisted of two phases: the non-
social stimulus phase and the social stimulus phase. During the non-
social stimulus phase, which was the first 2.5min, the experimental
mouse was allowed to freely explore the OF arena with a small empty
wired mesh cage against the wall of the OF. Then, the empty wired
mesh cage was replaced with a wired mesh cage including a trapped
unfamiliar young CD1 mouse (4–6 weeks old). During the following
2.5min, the social-stimulus phase, the experimental mouse could
freely explore the arena again. The SA-ratio was calculated by calcu-
lating the amount of time spent with the social stimulus, which was
then divided by the time spent with the non-social stimulus. The
identification of CSDS susceptibility and resiliency was obtained using
a SA-ratio score of lower than “1” for susceptible animals, and an SI-
ratio score higher than “1” for resilient animals.

Open field and social interaction task
TheOF and SI tasks were performed in a roundOF arena (diameter of
38 cm). The bottom of the arena was covered in sawdust material to

minimize the cross-over effects of stress and anxiety by the novel
environment. First, the OF task was performed, during which the
experimental animal was allowed to freely explore the arena for
10min. Subsequently, for the SI task, an unfamiliar young CD1
(4–6 weeks old) was introduced inside the arena and both animals
were allowed to freely explore the arena for 10min. The DeepOF
module can identify five behavioral traits during the single animal OF
task, which include wall-climbing, stopped-and-huddled, look-
around, sniffing, and speed (locomotion), whereas in the SI task, all
behavioral traits can be identified (Fig. 1C). During the analysis, the
10min OF and SI tasks were analyzed in the total duration of
the behavioral classifiers, and in time bins of 2.5min to match the
time frame in the SA task.

Z-score stress physiology and social interaction calculation
The Z-scores combine the outcome of multiple tests via mean nor-
malization and provide an overall score for the related behavior of
interest. Z-scores were calculated as described previously65. The Z-
score indicates for every observation (X), the number of standard
deviations (σ) above or below the mean of the control group (μ). This
means that for each individual observation Eq. (3) is calculated:

Z =
X � μ

σ
ð3Þ

Then, the obtained values need to be corrected for the direc-
tionality, such that an increased score will reflect the increase of the
related behavior of interest. This means that per test, the scores were
either already correct or were adjusted in the correct directionality by
multiplyingwith “–1”. Finally, to calculate thefinal z-score, thedifferent
z-scores per test were combined and divided by the total number of
tests, as in Eq. (4).

Ztotal =

Pi
1 ztesti

Number of tests
ð4Þ

The Z-score analysis of stress physiology is based on the relative
adrenal weight and the body weight at day 21 of the CSDS, which are
both strongly influenced by CSDS exposure12. The directionality of
both tests did not require additional adjustment. Then, the Z-score of
SI was calculated based on five DeepOF behavioral classifiers from the
C57Bl/6N mouse, which were B-look-around, B-speed, B-huddle, B-
nose-to-tail, and B-nose-to-body. The directionality was adjusted for B-
speed, B-nose-to-tail, and B-nose-to-body.

Behavioral entropy calculation
Shannon’s entropy of the behavioral cluster space was obtained
directly using DeepOF, as a measure of how predictable the sequence
of behaviors expressed by a given animal is. To accomplish this, Dee-
pOF obtains transitionmatrices across clusters using the unsupervised
cluster assignments per animal. Stationary distributions for each
transitionmatrix are then obtained by simulation through thematrices
until convergence, and Shannon’s entropy is computed for each sta-
tionary distribution. Entropy scores obtained for NS and CSDS animals
were then compared. Overall entropy scores were also compared to
the stress physiology Z-score for validation purposes.

External dataset for validation of the DeepOF huddle classifier
An additional experiment was performed using different conditions
and behavioral set-up, to assess the transferability of the DeepOF
huddle classifier (Supplemental Table 2, experiment code 3) to data
produced by a different lab. 12 weeks old C57BL/6J mice (n = 24, pur-
chased from the Jackson Laboratory (catalog number 000664), Bar
Harbor, ME, USA) were paired in a home-cage environment
(19 × 19 cm) with 12 weeks old ovariectomized CFW female mice
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(purchased from Charles River Laboratories (catalog number 024),
Wilmington, MA, USA) and were allowed to freely explore each other
for 1.5min. The animals were housed under standard laboratory con-
ditions with a 12 h light–dark cycle (lights on from 07:00 to 19:00),
temperature 22 ± 1 °C, humidity 50%, in clear Plexiglas cages
(19 × 29 × 13 cm) with unrestricted access to food (Purina Laboratory
Rodent Diet 5001) and water. Procedures were approved by the
McLean Hospital Institutional Animal Care and Use Committee and
complied with the National Institutes of Health guidelines.

Statistics
Statistical analyses and graphs were made in RStudio (R 4.1.166) and
python (v 3.9.13). All data were used for further statistical analysis
unless stated otherwise. During the DeepLabCut tracking, seven
animalswere excludeddue to technical difficulties (fourNS and three
CSDS were excluded). Statistical assumptions were then checked, in
which the data were tested for normality using the Shapiro-Wilk test
and QQ-plots and for heteroscedasticity using Levene’s test. Data
that violated these assumptions were analyzed using non-parametric
tests. The time-course data was analyzed using the two-way ANOVA
(parametric) or Kruskal-Wallis test (non-parametric) with time (days)
as a within-subject factor and condition (NS vs. CSDS) as a between-
subject factor, further posthoc analysis was performed using the
Benjamini-Hochberg (BH) test (parametric) or the Wilcoxon test
(non-parametric). P-values were adjusted for multiple testing using
the Benjamini-Hochberg (BH) method. Three-group comparisons
were analyzed using the one-way ANOVA (parametric) or Kruskal-
Wallis test (non-parametric), and further posthoc analysis was
performed using the BH test (parametric) or the Wilcoxon test (non-
parametric). Two-group comparisons were analyzed using indepen-
dent samples t-tests (parametric), Welch’s tests (data are normalized
but heteroscedastic), or Wilcoxon tests (non-parametric). Correla-
tion analyses were performed using the Pearson correlation coeffi-
cient; outliers deviatingmore than 5 standard deviations froma fitted
linear model were excluded from the analysis. The timeline and bar
graphs are presented asmean ± standard error of themean. Data was
considered significant at p < 0.05 (*), with p < 0.01 (**), p < 0.001 (***),
p < 0.0001 (****).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The authors declare that data supporting the findings of this study are
available within the Article and Supplementary Information. Source
data are provided with this paper.

Code availability
All data and the accompanying code to perform the analyses and
creating the figures are available for download via the Max Planck
DataShare services. The most recent version of DeepOF is hosted in a
GitHub repository, and a Zenodo release of the version used in this
manuscript (v0.4.6) is found under https://doi.org/10.5281/zenodo.
8013401. Themost recent stable version of DeepOF is available in PyPI.
Full documentation and tutorials are available on read the docs.
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Automatically annotated motion tracking identifies a distinct 

social behavioral profile following chronic social defeat stress  

Supplemental material 

 

 

Supplemental figure 1. Validation of rule-based annotated behaviors. 10 out of 53 videos were manually 

labeled for all annotators (excluding stopped-and-huddled, see supplemental figure 2) using the Colabeler 

software (v2.0.4). Balanced accuracy between manual labels and predicted binary outcomes (presence or 

absence of a given trait at a given time) is reported. Bars represent the mean ± standard deviation across 

all 10 videos (N=10). Source data are provided as a Source Data file. 
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Supplemental figure 2. Validation of stopped-and-huddled classifier. A) Bar charts (mean ± standard 

deviation) showing balanced accuracy performance for the huddle classifier provided with the supervised 

pipeline within DeepOF. A total of 567367 video frames were either manually labeled (for the SI, OF, and 

SA datasets) or pseudo-labeled using SimBA (EX dataset) for the stopped-and-huddled trait using the 

labeling tool provided with SimBA v1.31.1. Labelling was conducted in four independent datasets (SI, OF, 

SA, and EX; see the animals' section in materials and methods for details), and two validation tasks were 

conducted, marked as “Validation” and “External” respectively. First, a 10-fold stratified cross-validation 

loop was executed within the SI dataset (which has the most labels, see supplemental table 2 for details), 

to test for overfitting and generalization within a single dataset. Balanced accuracy results were 

0.78±0.005 and 0.75±0.046 for the training and validation sets, respectively (N=10). Second, a leave-one-

dataset out cross-validation was conducted across all four datasets, to test whether the model can 

generalize to novel settings (different bedding, different arenas, different labs). A balanced accuracy of 

0.75±0.04 was reported (N=4). B) SimBA validation of the classifiers used for pseudo-labelling in the 

external dataset. Correlation between total behavior duration (in seconds) in manual and predicted labels 

shown for all 24 videos (N=24). Both sets show a Pearson correlation coefficient ρ=0.81, which significantly 

deviates from zero (p-value=1.5e-6). Error bands represent the 95% confidence interval. C) SHAP analysis 

of the deployed model (trained in the whole dataset, with all concatenated four sites). The top 8 features 

are displayed of a total of 26 features including distances between body parts, speeds, and areas. Results 

show low head movement, low spine stretch, low body area, and low locomotion speed as the most 

important features for the model, which goes in line with the accepted definition of the behavior. Source 

data are provided as a Source Data file.  
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Supplemental table 1. Default thresholds used by the annotation pipeline in DeepOF 

Annotated trait Rule Default threshold in DeepOF 
Nose-to-nose Nose to nose distance < 25 mm 

Nose-to-tail Nose to tail distance < 25 mm 

Nose-to-body Nose to any other body part < 25 mm 

Side-by-side Nose to nose distance < 45 mm 

Tail to tail distance < 45 mm 

Side-reverse-side Nose to tail distance < 45 mm 

Wall-climbing Nose reach beyond walls > 10 mm 

Sniffing Nose distance to object < 10 mm 

Nose speed > 50 mm/s 

Locomotion speed < 50 mm/s 

Look-around Locomotion speed < 50 mm/s 

Nose speed > 50 mm/s 

 

Supplemental table 2. Datasets used in the current study 

Dataset name Experiment 
code 

Number 
of 

videos 

Frame 
rate 

Video length Labeled frames 
 (stopped-and-huddled) 

Prevalence 
(stopped-and-huddled) 

Social interaction 
(SI) 

1 53 25 10 min  
15000 frames 

299.350 10.83% 
 

Open field (OF) 1 53 25 10 min  
15000 frames 

179.979 2.75% 
 

Social avoidance 
(SA) 

1 120 13 2.5 min  
1950 frames 

22.488 4.36% 
 

Social interaction 
for SA resiliency 
(figure S6) 

2 64 30 10 min 
18000 frames 

0 - 

Social interaction 
(external) 

3 20 30 1.5 min  
2730 frames 

65.550 14.95% 
 

Total - 310 - - 567.367 8.49% 
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Supplemental figure 3. DeepOF behavioral classifiers in the open field task. A) The OF PCA time bins 

show a significant main effect (one-way ANOVA: F(3,208)=129.12, p=2.97e-47). B) Benjamini-hochberg 

(BH) posthoc shows that the time bins are significantly different from each other (2.5vs5, p=3.93e-14; 

5vs7.5, p=0.0003, 7.5vs10, p=3.1e-12. C) The 10min OF PCA analysis shows a significant difference 

between conditions; independent samples t-test: T(51)=–7.23, p=2.37e-9. Data consisted of all the 

individual DeepOF behavioral classifiers, as listed in Figure 1C. D) The ranked behaviors on the PC1 using 

the corresponding rotated loading scores. E) The total distance was lower in CSDS animals; posthoc BH: 

2.5 min T(51)=16.89, p=0.0001, 5 min T(51)=28.28, p=3.13e-6, 7.5 min (T(51)=39.59, p=2.86e-7, and 10 

min (T(51)=33.77, p=8.1e-7). Two-way ANOVA on condition: F(1,208)=92.586, p=2.31e-18, time: 

F(1,208)=265.77, p=4.85e-39, condition×time: F(1,208)=0.10, p=0.75). F) Look-around was higher in CSDS 
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animals; posthoc BH: 2.5 min (T(51)=14.08, p=0.0004, 5 min (T(51)=14.84, p=0.0004), 7.5 min 

(T(51)=21.65, p=4.7e-5, and 10 min (T(51)=23.25, p=4.7e-5). Two-way ANOVA on condition: 

F(1,208)=74.04, p=1.9e-15, time: F(1,208)=356.65, p=5.4e-47, condition×time: F(1,208)=1.90, p=0.17). G) 

Sniffing was higher in CSDS animals for the 2.5- and 10 min time bins; posthoc Wilcoxon: W=199.5, 

p=0.023; W=210, p=0.023, respectively. The 5- and 7.5 min were not altered (W=258, p=0.13, and W=307, 

p=0.44, respectively). Kruskal-Wallis test 2.5 min: H(1)=7.27, p=0.024, 5 min: H(1)=2.74, p=0.13, 7.5 min: 

H(1)=0.6, p=0.43, and 10 min: H(1)=6.29, p=0.024. H) The inner zone time was lowered in CSDS animals 

for the 2.5, 5, and 10 min time bins; posthoc BH: T(51)=7.70, p=0.016, (T(51)=5.16, p=0.036, (T(51)=12.74, 

p=0.0032, respectively). The 7.5 min was not altered (p=0.24). Two-way ANOVA on condition: 

F(1,208)=24.04, p=1.9e-6, time: F(1,208)=2.07, p=0.15, condition×time: F(1,208)=0.53, p=0.47). I) 

Climbing did not reveal any difference using the Kruskal-Wallis test. J) Huddle did not reveal any difference 

using the Kruskal-Wallis test. The PCA graphs are provided with a 95% confidence ellipse and all individual 

samples as points. Further PC1 analyses are represented with a violin plot and all individual samples as 

points. The timeline graphs are presented as mean ± standard error of the mean. N=26 for NS and n=27 

for CSDS in panels A-J. Source data are provided as a Source Data file. 
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Supplemental Figure 4. DeepOF other behavioral classifiers in the social interaction task for 10 min 

duration. A) B-sniffing is lower in CSDS animals. Independent samples t-test: T(51)=2.99, p=0.004. B) 

Wilcoxon posthoc analysis revealed that B-sniffing was lower in CSDS animals for the 2.5 min (W=538, 

p=0.002), 5 min (W=576, p=0.0003), and 7.5 min (W=499, p=0.012), but not the 10 min (W=456, p=0.06). 

Kruskall-Wallis test: 2.5 min: p=0.002, 5 min: p=0.0003, 7.5 min: p=0.012, and 10 min: p=0.06. C) B-wall-

climbing is lower in stressed animals. Wilcoxon test: W=540, p=0.0004. D) Wilcoxon posthoc analysis 

revealed that B-wall-climbing was lower in stressed animals for the 2.5 min (W=441, p=0.03), the 5 min 

(W=435, p=0.03), and the 7.5 min (W=506, p=0.002), but not the 10 min (W=393, p=0.37). Kruskall-Wallis 

test: 2.5 min: p=0.03, 5 min: p=0.03, 7.5 min: p=0.002, and 10 min: p=0.37. E) Side-by-side is lower in CSDS 

animals. Wilcoxon test: W=522.5, p=0.0023. F) Wilcoxon posthoc analysis revealed that Side-by-side was 

lower in CSDS animals for the 2.5 min (W=581, p=5.48e-5), the 5 min (W=521.5, p=0.003), and the 10 min 

(W=491.5, p=0.02), but not the 7.5 min (W=405, p=0.32). Kruskall-Wallis test: 2.5 min: p=5.28e-5, 5 min: 

p=0.003, 7.5 min: p=0.32, and 10 min: p=0.02. G) Side-reverse-side is not altered between conditions. 

Wilcoxon test: W=365, p=0.81. H) Wilcoxon posthoc analysis revealed that Side-reverse-side was lower in 

CSDS animals for the 2.5 min time bin (W=628, p=3.36e-6), but not the 5-, 7.5-, and 10 min time bins 

(W=337.5, p=1; W=292.5, p=0.60; W=351, p=1, respectively). Kruskall-Wallis test: 2.5 min: p=3.21e-6, 5 

min: p=1, 7.5 min: p=0.60, and 10 min: p=1. I) Nose-to-nose is not altered between conditions. Wilcoxon 

test: W=326, p=0.67. J) No further significant differences were observed in the Nose-to-nose time bins. 

The timeline and bar graphs are presented as mean ± standard error of the mean and all individual 

samples as points. N=26 for NS and N=27 for CSDS in panels A-J. Source data are provided as a Source 

Data file.  
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Supplemental Figure 5. Multi-animal unsupervised analyses identify different two-mice behavioral 
patterns between arenas containing stressed and non-stressed mice during the SI task. A) Cluster 
selection pipeline results, reporting the area under the ROC curve from a logistic regression classifier 
discriminating between conditions. A 10-component solution (from a range between 5 and 25) was 
selected as optimal in a 5-fold (N=5) cross-validation loop (see methods for details). B) Embeddings by 
time point obtained using DeepOF's unsupervised pipeline. Different colors correspond to different 
clusters. Dimensionality was further reduced from the original 8-dimensional embeddings using UMAP for 
visualization purposes. C) Optimal binning of the videos was obtained as the Wasserstein distance 
between the global animal embeddings of both conditions across a growing window, between the first 10 
to 600 seconds for each video at one-second intervals (grey curve). Higher values correspond to larger 
behavioral differences across conditions. A maximum was observed at 124 seconds, close to the 126 
seconds obtained with the single-animal embeddings, and to the stipulated 150 seconds selected based 
on the SA task literature. The dark green curve depicts the Wasserstein distance across all subsequent 
non-overlapping bins with optimal length. The decay observed across time is consistent with the 
hypothesized arousal period in the CSDS cohort, which can be detected also embedding the two-mice 
system as a whole. D) Representation of the global animal embeddings for the optimally discriminant bin 
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(124 seconds) per experimental video colored by condition (see methods for details). E) Cluster 
enrichment per experimental condition (N=26 for NS and N=27 for CSDS) in the first optimal bin (first 124 
seconds). Reported statistics correspond to a 2-way Mann-Whitney U non-parametric test corrected for 
multiple testing using the Benjamini-Hochberg method across both clusters and bins (significant 
differences observed in clusters 0: U=1.7e+2, p=1.2e-3, 1: U=4.9e+2, p=8.5e-3, 3: U=1.4e+2, p=1.4e-
4, 5: U=8.4e+1, p=2.1e-6, 8: U=5.3e+2, p=1.2e-3, 9: U=6.7e+2, p=1.4e-8). Bar graphs represent mean 
± standard deviation of the time proportion spent on each cluster. F) Example heatmap depicting spatial 
distribution across all experiments (in both conditions) for all clusters. Specific heatmaps for all individual 
clusters are available in supplemental figure 13). G) Behavioral entropy scores per condition. NS animals 
show a significantly higher entropy than CSDS animals, which can be attributed to a less predictable 
exploration of the behavioral space (U=5.44e+2, p=6.15e-4, N=26 for NS and N=27 for CSDS). Moreover, 
and in accordance with these results, behavioral entropy shows a significant negative correlation with the 
presented stress physiology Z-score (supplemental figure 15B). Source data are provided as a Source Data 
file. Box plots in panels A and G show the median and the inter-quartile range. Whiskers show the full 
range, excluding outliers as a function of the inter-quartile range.  
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Supplemental Figure 6. Single-animal unsupervised analyses identify different behavioral patterns 

between stressed and non-stressed mice during the OF task. A) Cluster selection pipeline results, 

reporting the area under the ROC curve from a logistic regression classifier discriminating between 

conditions. An 11-component solution (from a range between 5 and 25) was selected as optimal in a 5-

fold (N=5) cross-validation loop (see methods for details). B) Embeddings by time point obtained using 

DeepOF's unsupervised pipeline. Different colors correspond to different clusters. Dimensionality was 

further reduced from the original 8-dimensional embeddings using UMAP for visualization purposes. C) 

Optimal binning of the videos was obtained as the Wasserstein distance between the global animal 

embeddings of both conditions across a growing window, between the first 10 to 600 seconds for each 

video at one-second intervals (grey curve). Higher values correspond to larger behavioral differences 

across conditions. A maximum was observed at 595 seconds (green dot), which is consistent with the 

hypothesized lack of an arousal period in the CSDS cohort in an open field setting with no conspecific. D) 

Representation of the global animal embeddings for the optimally discriminant bin (595 seconds) per 

experimental video colored by condition (see methods for details). E) Cluster enrichment per 
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experimental condition (N=26 for NS and N=27 for CSDS) in the first optimal bin (first 595 seconds). 

Reported statistics correspond to a 2-way Mann-Whitney U non-parametric test corrected for multiple 

testing using the Benjamini-Hochberg method across both clusters and bins (significant differences 

observed in clusters 0: U=2.2e+2, p=2.02e-2, 4: U=6.1e+2, p=5.7e-6, 5: U=5.7e+2, p=1.3e-4, 7: 

U=5.4e+1, p=9.9e-4, 8: U=1.8e+2, p=2.3e-3, 9: U=5.5e+2, p=3.7e-4, and 10: U=1.5e+2, p=2.6e-4. 

Bar graphs represent mean ± standard deviation of the time proportion spent on each cluster. F) Example 

heatmap depicting spatial distribution across all experiments (in both conditions) for all clusters. Specific 

heatmaps for all individual clusters are available in supplemental figure 14). G) Behavioral entropy scores 

per condition. No significant differences are detected between conditions (U=4.44e+2, p=9.98e-2, N=26 

for NS and N=27 for CSDS). Moreover, and in accordance with these results, no significant correlation with 

the presented stress physiology Z-score was found (supplemental figure 15C). Source data are provided 

as a Source Data file. Box plots in panels A and G show the median and the inter-quartile range. Whiskers 

show the full range, excluding outliers as a function of the inter-quartile range. 
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Supplemental Figure 7. Single-animal unsupervised analyses identify mild behavioral differences 

between stressed and non-stressed mice during the SA task. A) Cluster selection pipeline results. Models 

ranging from 5 to 25 clusters were trained in a 5-fold (N=5) cross-validation loop using data from both 

trials together. Area under the ROC curve from a logistic regression classifier discriminating between 

conditions on the global animal embeddings representing the differential population of each cluster 

across trials is reported is reported. A 17-component solution was selected as the smallest whose median 

performance deviated less than one standard deviation from the maximum reached median across all 

clusters. Boxes in the box plots show the median performance and the inter-quartile range of the data. 

Whiskers show the full range of the data, excluding outliers as a function of the inter-quartile range. B) 

Embeddings by time point obtained using DeepOF's unsupervised pipeline. Different colors correspond to 

different clusters. Dimensionality was further reduced from the original 8-dimensional embeddings using 

UMAP for visualization purposes. C-D) Representation of the global animal embeddings per experimental 

video colored by condition, for SA trials one (without conspecific in the cage) and two (with conspecific in 

the cage).  In panel C, as expected, the distributions are further apart. E-F) Cluster enrichment per 

experimental condition for both SA trials (N=30 for NS and N=30 for CSDS). As expected, trial one shows 

no significant differences, whereas trial two yields six significantly differentially expressed clusters. 

Reported statistics correspond to a 2-way Mann-Whitney U non-parametric test corrected for multiple 

testing using the Benjamini-Hochberg method across both clusters (significant differences for trial two 

observed in clusters 2: U=6.1e+2, p=1.4e-2, 4: U=2.6e+2, p=7.3e-6, 8: U=7.01e+2, p=2.1e-4, 10: 

U=2.8e+2, p=1.4e-2, 11: U=6.1e+2, p=1.7e-2, and 13: U=6.1e+2, p=1.8e-2. Bar graphs represent 

mean ± standard deviation of the time proportion spent on each cluster. Source data are provided as a 

Source Data file. 
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Supplemental figure 8. Global single-animal embeddings across non-overlapping time bins in the SI 

dataset. A-D) 10-dimensional global single-animal embeddings were obtained as the time proportion 

spent on each of the 10 clusters in the selected model for the single-animal SI task. Panels A to D show 

how the distributions matching NS and CSDS animals get closer and closer across non-overlapping 

consecutive time bins (as quantified using Wasserstein distance in the first four points shown in dark green 

in figure 6B). The last bin was excluded for visualization purposes. Source data are provided as a Source 

Data file. 
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Supplemental figure 9. Global multi-animal embeddings across non-overlapping time bins in the SI 

dataset. A-D) 10-dimensional global single-animal embeddings were obtained as the time proportion 

spent on each of the 10 clusters in the selected model for the multi-animal SI task. Panels A to D show 

how the distributions matching NS and CSDS animals get closer across non-overlapping consecutive time 

bins (as quantified using Wasserstein distance in the first four points shown in dark green in supplemental 

figure 9B). The last bin was excluded for visualization purposes. Source data are provided as a Source Data 

file. 
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Supplemental figure 10. Cluster enrichment per experimental condition in the second to fourth optimal 

bins for the single-animal embeddings on the SI task. Reported statistics correspond to a 2-way Mann-

Whitney U non-parametric test corrected for multiple testing using the Benjamini-Hochberg method 

across both clusters and bins. In all cases, N=26 for NS and N=27 for CSDS. A) Second bin (126 to 252 

seconds). Significant differences observed in clusters 3: U=1.9e+2, p=6.3e-10, 4: U=5.9e+2, p=1.4e-5, 

7: U=1.6e+2, p=6.9e-4, and 8: U=6.55e+2, p=6.3e-8 B) Third bin (252 to 378 seconds). Significant 

differences observed in clusters 2: U=1.8e+2, p=1.8e-3, 3: U=1.7e+2, p=1.2e-3, 5: U=4.9e+2, p=8.5e-

3, 6: U=1.9e+2, p=7.01e-3, 7: U=1.7e+2, p=9.6e-4, and 8: U=6.3e+2, p=6.6e-7. C) Fourth bin (378 to 

504 seconds). Significant differences observed in clusters 4: U=5.2e+2, p=2.5e-5, and 8: U=6.02e+2, 

p=6.5e-6. Bar graphs represent mean ± standard deviation of the time proportion spent on each cluster. 

Source data are provided as a Source Data file. 
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Supplemental figure 11. Cluster enrichment per experimental condition in the second to fourth optimal 

bins reported for the multi-animal embeddings on the SI task. Reported statistics correspond to a 2-way 

Mann-Whitney U non-parametric test corrected for multiple testing using the Benjamini-Hochberg 

method across both clusters and bins. In all cases, N=26 for NS and N=27 for CSDS. A) Second bin (124 to 

248 seconds). No significant differences observed. B) Third bin (248 to 372 seconds). Significant 

differences were observed in clusters 0: U=5.2e+2, p=3.3e-3, and 5: U=5.3e+2, p=1.6e-3. C) Fourth bin 

(372 to 496 seconds). No significant differences were observed. Bar graphs represent mean ± standard 

deviation of the time proportion spent on each cluster. Source data are provided as a Source Data file. 
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Supplemental figure 12. Spatial distribution of clusters obtained using single-animal embeddings in the 

SI task. Heatmaps include full trajectories of all experiments in both conditions, filtering time points 

belonging to each obtained cluster, and without filtering (labelled as "all"). White background indicates 

null population of the area. All clusters enriched in CSDS show lower occupation of the center of the arena 

than those enriched in NS animals. 
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Supplemental figure 13. Spatial distribution of clusters obtained using multi-animal embeddings in the 

SI task. Heatmaps include full trajectories of all experiments in both conditions, filtering time points 

belonging to each obtained cluster, and without filtering (labelled as "all"). White background indicates 

null population of the area. All clusters enriched in CSDS show lower occupation of the center of the arena 

than those enriched in NS animals. 
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Supplemental figure 14. Spatial distribution of clusters obtained in the OF task. Heatmaps include full 

trajectories of all experiments in both conditions, filtering time points belonging to each obtained cluster, 

and without filtering (labelled as "all"). White background indicates null population of the area. All clusters 

enriched in CSDS show lower occupation of the center of the arena than those enriched in NS animals. 
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Supplemental Figure 15. Correlation between behavioral entropy and stress physiology Z-score. A) 

Behavioral entropy of the cluster space obtained with single animal embeddings during the social 

interaction (SI) task shows a significant negative Pearson correlation with the stress physiology Z-score 

(R=-0.40, p=3.8e-3, N=53). Error bands represent the 95% confidence band around the mean of the linear 

model. B) Behavioral entropy of the cluster space obtained with multi-animal embeddings during the 

social interaction (SI) task shows a significant negative Pearson correlation with the stress physiology Z-

score (R=-0.41, p=2.5e-3, N=53). Error bands represent the 95% confidence band around the mean of the 

linear model C) Behavioral entropy of the cluster space obtained during the open field (OF) task shows no 

significant Pearson correlation with the stress physiology Z-score (R=-0.20, p=0.15, N=53). Error bands 

represent the 95% confidence band around the mean of the linear model. All three tests are two-sided. 

Source data are provided as a Source Data file. 
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Supplemental Figure 16. SHAP analysis of unsupervised cluster assignments in the multi-animal social 

interaction task. Gradient boosting machines were trained to map from a predefined set of time series 

statistics (including body part speeds, distances, distance speeds, areas, area speeds, and supervised 

annotations for each of the two animals and their interaction) to the previously obtained cluster 

assignments. A) Confusion matrix obtained from the trained gradient boosting machine classifying 
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between clusters. Aggregated performance over the validation folds of a 5-fold cross-validation is shown. 

B) Validation performance per cluster across a 5-fold (N=5) cross-validation loop. Balanced accuracy was 

used to correct for cluster assignment imbalance. The dashed line marks the expected performance due 

to chance, considering all outputs. Bars show mean  95% confidence interval. C) Overall feature 

importance for the multi-output classifier using SHAP. Features in the y-axis are sorted by overall absolute 

SHAP values across clusters. Classes on the bars are sorted by overall absolute SHAP values across 

features. D-F) Bee swarm plots for the three most differentially expressed clusters between NS and CSDS 

mice (3, 5, and 9), identified with the unsupervised DeepOF pipeline on the SI experiments using single-

animal embeddings. The depicted plots display the first 8 most important features for each classifier, in 

terms of the mean absolute value of the SHAP values. Source data are provided as a Source Data file. 
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Supplemental Figure 17. SHAP analysis of unsupervised cluster assignments in the open field task. 

Gradient boosting machines were trained to map from a predefined set of time series statistics (including 

body part speeds, distances, distance speeds, areas, area speeds, and supervised annotations) to the 

previously obtained cluster assignments. A) Confusion matrix obtained from the trained gradient boosting 

machine classifying between clusters. Aggregated performance over the validation folds of a 5-fold cross-

validation is shown. B) Validation performance per cluster across a 5-fold (N=5) cross-validation loop. 

Balanced accuracy was used to correct for cluster assignment imbalance. The dashed line marks the 
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expected performance due to chance, considering all outputs. Bars show mean  95% confidence interval. 

C) Overall feature importance for the multi-output classifier using SHAP. Features in the y-axis are sorted 

by overall absolute SHAP values across clusters. Classes on the bars are sorted by overall absolute SHAP 

values across features. D-F) Bee swarm plots for the three most differentially expressed clusters between 

NS and CSDS mice (4, 9, and 10), identified with the unsupervised DeepOF pipeline on the SI experiments 

using single-animal embeddings. The depicted plots display the first 8 most important features for each 

classifier, in terms of the mean absolute value of the SHAP values. Source data are provided as a Source 

Data file. 
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Abstract 

 

Exposure to early life stress (ELS) has a detrimental effect on both the physiological and behavioral 

outcomes and ultimately can lead to increased vulnerability toward stress-related disorders, such as PTSD. 

The prevalence of PTSD is strongly influenced by sex with around twice as many women suffering from 

PTSD compared to men, which is partially mediated via genetic risk variants. Understanding the role of 

sex on the interaction of PTSD risk genes, such as FKBP5, with behavioral consequences of trauma 

exposure is crucial to further unraveling the underlying neurobiological pathways of PTSD. The 

development of unsupervised behavioral analysis tools has allowed for in-depth behavioral analysis that 

can explore previously unknown behavioral patterns. This is crucial to increase the understanding of the 

behavioral outcome related to stress-induced fear memory formation. The current study investigates the 

sex-specific effects of ELS by using the limited nesting and bedding (LBN) stress paradigm on Fkbp5 

expression in the basolateral amygdala (BLA) and hippocampus (HIP) while exploring the fear memory 

formation using unsupervised clustering analysis. A sex-specific effect of LBN exposure was observed for 

a dysregulated hypothalamic-pituitary-adrenal (HPA) axis, in which baseline corticosterone (CORT) was 

increased in females directly after stress exposure at postnatal day 9, while adrenal weight and Fkbp5 

expression in the CA1 HIP region were increased in ELS males in adulthood. Moreover, specific aspects of 

fear-related behavior were altered by LBN in adulthood, including the passive fear response via freezing 

behavior in both the acquisition and the retrieval of fear.  In addition, an unsupervised deep phenotyping 

strategy was implemented to understand the different behaviors expressed during fear acquisition. The 

fear acquisition in LBN females showed a higher active fear response, which was not observed in LBN 

males. Therefore, the in-depth behavioral analysis using unsupervised clustering provides an additional 

layer to explore the fear-related behaviors without prior assumptions and therefore allows for hypothesis-

generating behavioral analysis, which ultimately can lead to a better understanding of the stress-induced 

behavioral phenotype. 

 

 

  



Introduction 

Early life stress (ELS) exposure, such as child abuse or neglect, has severe long-lasting negative behavioral 

and physiological consequences in adulthood, including, among others, an altered neuroendocrine 

function 1–3 and morphological changes in the brain 4,5. This ultimately leads to an increased risk and 

persistence of stress-related disorders, such as post-traumatic stress disorder (PTSD) 6–8. Human genetic 

studies have identified that stress-related disorders are partially mediated by different genomic variations 

9–15. In particular, the combination of childhood trauma and specific genetic risk variants of the FKBP5 

gene, which encodes for the glucocorticoid receptor (GR) co-chaperone FK506 binding protein 51 

(FKBP51), has been found to increase the risk for developing PTSD 16–19. FKBP51 stabilizes the GR-complex 

structure, thereby decreasing the binding to glucocorticoids and hampering the nuclear translocation of 

the GR complex. Altered FKBP51 expression has been implicated in dysregulation of the hypothalamic-

pituitary-adrenal (HPA) axis 20, which in turn increases the risk for psychopathology 21,22. An additional 

important factor influencing the susceptibility and severity of PTSD is sex. The prevalence of PTSD is 

around twice as high in women (11.0%) compared to men (5.4%) 23. However, the increased risk for PTSD 

development in women could not be entirely explained by differences in the event type or severity of the 

traumatic event, which might indicate a potential underlying biological mechanism 24,25. Therefore, 

investigating the underlying mechanisms related to ELS exposure in a sex-specific way is crucial to advance 

the understanding of the neurobiological mechanism of PTSD.  

An increasing number of clinical studies are pointing to corticolimbic structures as strongly affected in size 

and functioning by ELS exposure, in particular the basolateral amygdala (BLA) and hippocampus (HIP) 26–

30. Moreover, the BLA and HIP continue their development in function and morphology during the early 

postnatal period 31–33, rendering this developmental period especially vulnerable to environmental insults. 

In addition, both BLA and HIP display a high expression of the GR and mineralocorticoid receptor (MR) 34–

37, which makes them particularly vulnerable to ELS exposure. Moreover, animal models have identified a 

particularly high expression of the Fkbp5 gene in the BLA and HIP and observed a stress-dependent 

upregulation of Fkbp5 expression in those regions 38. 

Alterations of anxiety and fear behavior are a central hallmark of a PTSD-like phenotype in animal models. 

A study using a mouse model overexpressing the human FKBP5 gene in the forebrain showed that 

elevated FKBP5 expression in combination with ELS exposure increases anxiety-related behavior, which 

was more pronounced in females 39. There is an increasing body of evidence that ELS exposure affects 

rodents in a sex-specific manner 40–44. However, the effects of fear memory formation on ELS have not 



been explored in detail. Exposure to fear conditioning in rodents has been shown to strongly activate the 

BLA and HIP in a time-dependent manner 45. Therefore, the important role of the BLA and HIP in ELS 

exposure indicates that the formation of fear acquisition and memory could be an important target for 

ELS exposure. Previous research has shown that ELS reduces fear expression during contextual as well as 

auditory fear memory retrieval in males, which is linked to a reduction of synaptic plasticity markers in 

the dorsal HIP 46, but the sex-dependent effects and exact behavioral mechanism remain to be uncovered. 

In the current study, we investigate the sex-specific effects of ELS exposure by using the established 

limited bedding and nesting (LBN) paradigm on Fkbp5 expression and fear acquisition and retrieval. 

Utilizing an unsupervised deep phenotyping strategy, we can show that specific aspects of fear behavior 

and memory are altered by ELS in a sex-specific manner. These behavioral alterations align with Fkbp5 

expression changes in BLA and HIP.  

  



Materials and methods 

 

Animals 

Adult male and female C57/Bl6N mice (age between 2-3 months of age) were obtained from the in-house 

facility of the Max Planck Institute of Psychiatry and used for breeding (F0). Animals from the F1 generation 

were used as experimental animals and were weaned at P25 in groups of maximum four animals with 

their littermates. Animals were housed in individually-ventilated cages (IVC; 30cm×16cm×16cm 

connected by a central airflow system: Tecniplast, IVC Green Line—GM500). All animals were kept under 

standard housing conditions; 12h/12h light-dark cycle (lights on at 7 a.m.), temperature 23±1°C, humidity 

55%. Food (Altromin 1324, Altromin GmbH, Germany) and tap water were available ad libitum. All 

experimental procedures were approved by the committee for the Care and Use of Laboratory Animals of 

the government of Upper Bavaria, Germany. All experiments were in accordance with the European 

Communities Council Directive 2010/63/EU. 

ELS paradigm: limited bedding and nesting 

ELS was performed using the LBN paradigm to induce chronic stress towards the mother and pups during 

P02 to P09, as previously described by Rice et al. 47. At P02, all litters were transferred to new IVCs and 

randomly assigned to the stressed or nonstressed condition. If necessary, the litters were culled to a 

maximum of 10 animals per litter. The stressed litters were placed on a stainless-steel mesh (McNichols) 

and were provided with limited nesting material (1/2 square of Nestlets, Indulab). The nonstressed 

animals were placed in an IVC with a standard amount of bedding material and were provided with a 

sufficient amount of nesting material (2 squares of Nestlets). All litters were left undisturbed until P09, 

after which they returned to standard housing conditions. The pups were weaned in same-sex groups 

with a maximum of four animals per cage. 

Adult behavioral testing 

At 3 months of age, a cohort of both males and females were tested on a fear conditioning protocol, 

containing fear acquisition (day 1), and the subsequent recall of contextual fear memory (day 2) and 

auditory fear memory (day 3). The behavioral tests were performed between 8 a.m. and 11 a.m. in the 

same room as the housing facility. 

Fear conditioning 



The fear conditioning protocol was performed as previously described 48. Data were recorded and 

analyzed using the ANY-maze 7.2 software (Stoelting, Ireland), in which the percentage of the time 

freezing was calculated. Furthermore, the fear acquisition data were subsequently analyzed using 

DeepLabCut version 2.2b7 49 and DeepOF version 0.1.6 50 for the unsupervised analysis pipeline. 

Fear acquisition 

The fear acquisition consisted of placing the mice into a cube-shaped fear conditioning chamber (Bioseb, 

France) with a metal grid floor to provide electric shocks. At the start of the test, the chamber light was 

switched on, and after an initial habituation time of 3 min, the mice were exposed to five conditioned-

unconditioned stimulus pairings (auditory conditioning stimulus: 30 sec, 9kHz, 80dB tone & unconditioned 

stimulus 0.5 sec, 0.6mA foot shock) with an inter-trial interval (ITI) of 5 mins. 1 min after the last foot 

shock the animals were returned to their home cage. Before and after each trial, the conditioning chamber 

was thoroughly cleaned with 70% EtOH. The calculation of the mean freezing statistics was performed 

using the average of tones 2-5, leaving out the first tone, as no shock history was present at that moment. 

The mean ITI freezing was calculated using all four ITIs. 

Contextual fear memory 

Contextual fear memory was performed 24 hours after initial fear acquisition. The same setup was used 

as by fear acquisition, except that no conditioned-unconditioned stimulus protocol was executed. The test 

endured for a total of 5min in which only the chamber light was switched on, and again before and after 

each trial, the conditioning chamber was thoroughly cleaned with 70% EtOH. 

Auditory fear memory 

The consolidation of auditory fear memory was performed two days after the fear acquisition. The set-up 

was replaced by a novel and neutral context, which differed in material (plexiglass), shape (circular), and 

surface texture, as no grid was present at the bottom of the set-up. In addition, the cleaning solution was 

changed in odor, using 1% acetic acid. This allowed for measuring the fear response specifically towards 

the tones, without the interference of the context. The chamber light was switched on at the start of the 

test, after which mice were left undisturbed for an initial 1 min habituation phase. Then, the mice were 

exposed to the same tones as heard in the fear acquisition (30 sec, 9kHz, 80dB) for 15 times with a 1.5 

min ITI. 1 min after the last tone the animals were returned to their home cage. The mean tone and ITI 

freezing were calculated using all tones and ITIs. 



Unsupervised analysis of the fear conditioning data 

An additional unsupervised analysis was performed for the fear acquisition data in both males and 

females, in order to obtain a more in-depth analysis of the behavioral differences between conditions and 

sexes during the ITIs and tones 2-5. First, pose estimation was performed on the raw data videos using 

DeepLabCut version 2.2b7 (single animal mode). DeepLabCut pose estimation analysis was performed 

using 11 body parts, including the nose, left and right ears, three points along the spine (including the 

center of the animal), all four extremities, and the tail base. 

Subsequently, DeepLabCut annotated datasets were processed and analyzed using DeepOF v0.2, as 

described previously 50. In brief, DeepOF preprocesses the DeepLabCut annotated data by performing 

alignment and centering of the coordinates, calculating the distances between body parts, the angles, and 

areas of specific regions of each available body part, as well as their speeds, accelerations, and higher-

order derivatives. The unsupervised analysis of the fear acquisition data was performed on the entire 

video length and utilized the same model for the male and female data, in order to make cluster 

interpretation between sexes possible. The interpretation of the clusters was explored by visual 

inspection of representative video snippets for each specific cluster. Representatives were selected as 

instances with an assigned cluster assignment confidence greater or equal than 0.9. In addition, Shapley 

additive explanations (SHAP) were utilized to rank feature importance per cluster, in order to further 

understand the expressed behavior within clusters.  

Physiological measurements 

One week following the behavioral tests, adult animals were weighed and subsequently sacrificed by 

decapitation, after which trunk blood was collected in EDTA-coated microcentrifuge tubes (Kabe 

Labortechnik, Germany) and directly transferred to ice. Samples were centrifuged at 4°C for 15min at 

8.000 rpm, after which plasma was removed and kept transferred for storage at -80°C. A separate cohort 

of mice was used to obtain corticosterone (CORT) measurements directly after the stress at P09. On the 

morning of P09, litters were kept in their cage, while first the mother was sacrificed, and then 

subsequently the pups were sacrificed, keeping them in their nest as long as possible to minimize the 

influence of acute stress exposure. Trunk blood was collected and processed as described for adult blood 

samples. Plasma CORT levels were measured in duplicates using radioimmunoassay following the 

manufacturer’s protocol (MP Biomedicals, Eschwege, Germany). Adrenals were dissected and kept at 4°C 

in saline (0.9% NaCl) until further processing, which included the removal of all surrounding fat tissue and 



weighing. The relative adrenal weight was calculated by dividing the total body weight before sacrifice by 

the total adrenal weight, including the adrenals from both sides.  

In-situ hybridization of Fkbp5  

The Fkbp5 mRNA profile was determined using radio-active in-situ hybridization labeling as described 

previously 38. In brief, the animals were either sacrificed directly after the stress exposure at P09, or in 

adulthood at 2 months of age. After decapitation, the brains were removed and snap-frozen using 2-

methyl butane (kept on dry ice) and stored at -80°C until further use. Brains were sliced using a cryostat 

in 20 µm sagittal sections, which resulted in a series of the BLA and dorsal HIP slides that were thaw-

mounted on Super Frost Plus Slides and stored at -20°C. The in-situ hybridization sections were removed 

from -20°C, left to dry at room temperature, fixated with 4% paraformaldehyde, and subsequently 

dehydrated using a series of increasing concentrations of ethanol. Then, the hybridization buffer was 

equally spread out over the different slides containing the radioactive 35S-UTP-labeled Fkbp5 riboprobe 

and incubated overnight at 55°C. On the next day, the sections were rinsed, incubated with RNAse A, 

desalted, and dehydrated, after which the radioactive slides were exposed to Kodak Biomax MR films 

(Eastman Kodak Co., Rochester, NY) and developed after an exposure time of 12 days. Films were digitized 

and the regions of interest were identified using the mouse brain atlas (https://developingmouse.brain-

map.org/static/atlas). The expression was determined by optical densitometry with the ImageJ software 

(NIH, Bethesda, MD, USA). The expression was averaged per brain region per animal and subtracted by 

the background signal of a nearby structure that did not express the Fkbp5 gene. A distinction was made 

between important subregions of the dorsal HIP, in which separate measurements were obtained for the 

CA1, CA2-3, and the dentate gyrus (DG). 

  



Statistics 

Statistical analyses and graphs were made using RStudio (with R 4.1.1), except for the unsupervised 

DeepOF analysis, which was performed using Python (v 3.9.13). Different batches of animals were used 

for the adult fear conditioning behavior (female: LBN n=10, NS n=10 & male: LBN n=11, NS n=11) and the 

in-situ hybridization experiments (female P09: LBN n=4, NS n=6 & male P09: LBN n=5, NS n=3, female 

adult (2 months): LBN n=5, NS n=4 & male adult (2 months): LBN n=3, NS n=4). All animals were used for 

statistical analysis unless stated otherwise. During the contextual fear memory, 2 nonstressed male 

animals were excluded from the analysis due to technical difficulties. Data were tested for the 

corresponding statistical assumptions, which included the Shapiro-Wilk test for normality and Levene’s 

test for heteroscedasticity. If assumptions were violated the data were analyzed using non-parametric 

variants of the test. The group comparisons were analyzed using the independent samples t-test (T) as a 

parametric option, Welch’s test (We), if data was normalized but heteroscedastic, or the Wilcoxon test 

(Wx) as a non-parametric option. The time-binned data (fear conditioning) was analyzed using the two-

way repeated measures ANOVA with the phase (e.g. tones) as a within-subject factor and the condition 

(nonstressed vs. stressed) as a between-subject factor. Data that showed a significant main effect were 

further analyzed with the post-hoc Bonferroni test (parametric) or the Kruskal-Wallis test (non-

parametric). P-values were adjusted for multiple testing using the Bonferroni method. The timeline and 

bar graphs are presented as mean ± standard error of the mean (SEM). Data were considered significant 

at p<0.05 (*), and further significance was represented as p<0.01 (**), p<0.001 (***), and p<0.0001 

(****).  



Results 

 

The physiological hallmarks of LBN 

Chronic stress during early life was induced to assess the sex-dependent stress effects directly after early 

stress exposure and in adult age (figure 1A). A common phenomenon of LBN exposure is the reduction in 

body weight at P09 47, therefore chronic stress exposure was successfully induced in the current study for 

both sexes, as a significant decrease in body weight at P09 was found (figure 1B). Interestingly, the stress-

induced reduction in body weight was sustained in female adult age, but not in males (figure 1C). A marker 

for chronic stress exposure and dysregulation of the HPA axis is the relative weight of the adrenals, which 

in adult age was not altered in females, but was significantly elevated in stressed males (figure 1D). In 

addition, as a proxy for stress exposure, the CORT levels were obtained directly after the chronic stress 

exposure at P09, the female LBN animals showed a significant elevation of CORT levels, whereas in males 

no elevated cort levels were observed (figure 1E). At adult age, no difference in basal CORT levels was 

observed for stress exposure in both sexes (figure 1F).  



Figure 1. Physiological stress hallmarks of LBN. A) Experimental timeline for LBN paradigm and behavioral testing. B) Significant 

decrease in body weight was observed after LBN exposure at P09 for females (Wx=80, p<0.0001), and males (T(20)=3.13, 

p=0.005). C) During adult age (3 months) the body weight was significantly reduced in females (T(18)=4.16, p=0.0006), but not in 

males (T(20)=0.88, p=0.39). D) The relative adrenal weight was not altered in females (Wx=45, p=0.70), but was significantly 

increased in stressed males (T(20)=-3.3, p=0.003).  E) At P09, CORT levels were significantly elevated in stressed females (Wx=4, 

p=0.05), whereas this was not the case for males (Wx=31, p=0.74). F) At adult age, the CORT levels were not altered by stress for 

both females (T(18)=0.26, p=0.79) and males (T(20)=0.64, p=0.53). 

 

 

  



Fkbp5 mRNA levels in the BLA and dorsal hippocampus 

Fkbp5 mRNA expression was assessed directly after LBN exposure at P09 and in adult age in the BLA (figure 

2A) and dorsal HIP, separating the important subregions; CA1, CA2-3, and DG (figure 2B). Female and male 

data at P09 did not show a stress-induced difference of Fkbp5 expression in the BLA, CA1, CA2-3, and DG 

(figure 2C, D), however, an indication of elevated Fkbp5 expression in stressed animals could be observed 

in males, but this was not significant (figure 2D). Moreover, also at adult age, the female data did not 

indicate any Fkbp5 expression differences between stress conditions (figure 2E). However, the adult male 

observations showed a significant stress-induced increase of Fkbp5 expression in the CA1 region, but not 

in the BLA, CA2-3, and DG regions (figure 2F). Moreover, both nonstressed and stressed showed an age-

dependent expression pattern of Fkbp5 regardless of sex in the dorsal HIP. At P09 Fkbp5 expression is the 

highest in the CA2-3 and similar in the CA1 and DG, whereas at p56, the Fkbp5 expression was the highest 

in the DG, then the CA2-3, and then the CA1 (figure 2C-F).  



Figure 2. In-situ hybridization of Fkbp5 mRNA in the BLA and dorsal hippocampal subregions. A) In-situ hybridization scan of 

Fkbp5 mRNA expression at P09 and P56 in the BLA. B) In-situ hybridization scan of Fkbp5 mRNA expression at P09 and P56 in the 

subregions of the dorsal HIP. C) No differences were observed in females at P09 in the BLA (T(7)=0.03, p=0.98), CA1 (T(7)=-0.28, 

p=0.79), CA2-3 (Wx=11, p=0.71), and DG (T(7)=0.09, p=0.93). D) No differences were observed in males at P09 in the BLA 

(T(6)=1.03, p=0.34), CA1 (T(6)=-1.66, p=0.15), CA2-3 (T(6)=-1.98, p=0.096), and DG (T(6)=-1.49, p=0.19). E) No differences were 

observed in females at P56 in the BLA (T(7)=0.86, p=0.42), CA1 (T(7)=-1.14, p=0.29), CA2-3(T(7)=-1.27, p=0.25), and DG (T(7)=-

1.21, p=0.27). F) A significant difference for elevated Fkbp5 mRNA expression was observed in the stressed condition for the 

males at P56 in the CA1 (T(5)=-3.38, p=0.020), but not in the BLA (T(5)=-1.44, p=0.21), CA2-3 (T(5)=-2.30, p=0.070), and DG 

(We(3.67)=-2.69, p=0.056). 

  



Freezing behavior is affected by LBN exposure in a sex-specific manner 

During the acquisition of fear conditioning, the typical increase of freezing behavior over the different 

tone representations was observed in both females and males, regardless of the stress condition (figure 

3A-D).  However, an overall decrease during the fear acquisition in freezing behavior was observed during 

the tone representations in males, but not females (figure 3B, D). Moreover, the exploration of the ITIs 

during the fear acquisition phase showed that the freezing during the individual ITIs was not significantly 

altered in females based on the stress condition (figure 3E), but there was a significant reduction in the 

freezing response of stressed females in the overall mean ITIs (figure 3F), which was not observed in males 

(figure 3G-H). When looking at the recall of fear, the mean freezing during the contextual fear memory 

was significantly lowered in stressed females and males (figure 3I, supplemental figure 1A-B). The auditory 

fear retrieval did not show a different freezing response on mean tones in females (figure 3K, 

supplemental figure 1C), but did show a lowered freezing response in LBN males compared to NS (figure 

3K, supplemental figure 1D). In addition, no differences were observed in the fear retrieval for both 

females and males (figure 3L, supplemental figure 1E-F). 

The DeepOF unsupervised clustering analysis of the fear acquisition data yielded 9 distinct clusters (figure 

4A, B). No cluster population differences were observed by the stress background for both female and 

male ITI 1-4 data (supplemental figure 2 A, B). However, clusters were significantly altered by the stress 

background in females during tones 2 to 5 (figure 4A), which were not observed in males (figure 4B). In 

particular, “cluster 0” was significantly increased in LBN females, and “cluster 6” significantly decreased 

in LBN females compared to NS (figure 4A). A multi-class supervised learning model was trained to map 

from motion summary statistics to the obtained cluster labels, and performance was measured in terms 

of the balanced accuracy per cluster (figure 4C). The confusion matrix showed low probabilities for all 

cluster crossovers and the classifier performance was substantially greater than random for all clusters, 

indicating that all clusters were substantially distinguishable by the model (figure 4C). The cluster 

detection analysis yields a set of feature explainers per cluster that can be used to interpret the clusters 

using SHAP values in global (figure 4D) and cluster-specific ways (figure 4E, F). Importantly, the 

interpretation of the clusters was done using the feature importance of the SHAP analysis, together with 

the visual interpretation of the video fragments per cluster (see supplemental materials for video output 

per cluster). The global feature importance across all clusters revealed that the distance towards several 

spine labels (a stretch or a shortening of the back), the overall speed (an increased or reduced speed), 

huddle (an increased or decreased amount of the behavior in which the animal stops moving around and 



bends the back), and the surface area of the head (an increased surface area is related to the head being 

forward, whereas a decreased surface area is related to the head being downward) were particularly 

important for global cluster inclusion (figure 4D). More specifically, the feature importance analysis for 

“cluster 0” revealed that an increased speed, a decrease in huddle behavior, and an increased spine 

stretch were important features for cluster inclusion (figure 4E). The visual inspection of “cluster 0” 

indicated a behavior related to the exploration of the environment, in which the animal was moving 

around (see supplemental materials). In contrast, “cluster 6” feature importance analysis revealed that a 

decrease in spine stretch, an increase in huddle behavior, and a reduction of the surface head area were 

important features for cluster inclusion (figure 4F). The visual inspection of “cluster 6” indicated a 

behavior related to freezing, in which the animal was often immobile and close to the outside of the 

environment (see supplemental materials). 

Figure 3. Fear conditioning data on freezing behavior. A) Freezing behavior on individual tones during fear acquisition (FA) was 



not altered between nonstressed and stressed females, two-way ANOVA (p>0.45) B) The average freezing during the FA tones 2-

5 was not altered between nonstressed and stressed females (T(15)=1.58, p=0.14). C) Freezing behavior in the FA for individual 

tones 1-4 was not altered between nonstressed and stressed males (p>0.22), but for tone 5 it was significantly lowered in stressed 

males (F(1,18)=14.3, p=0.005), with a significant main effect for the two-way ANOVA on stress (F(1,90)=9.39, p=0.003), tones 

(F(4,90)=41.30, p<0.0001), and stress*tones (F(4,90)=2.6, p=0.041). D) The average freezing during FA tones 2-5 was significantly 

lowered in stressed males compared to nonstressed (T(18)=2.25, p=0.037). E) No significant main effect could be observed 

between nonstressed and stressed females for the individual ITIs in the FA. F) The average freezing during FA ITIs 1-4 was 

significantly lowered in stressed females compared to nonstressed (T(15)=2.37, p=0.03). G) No significant main effect could be 

observed between nonstressed and stressed males for the individual ITIs in the FA. H) The average freezing during FA ITIs 1-4 was 

not altered between nonstressed and stressed males (T(18)=0.84, p=0.41). I) The mean freezing in the contextual fear memory 

task was significantly lowered in stressed females compared to nonstressed (T(15)=2.61, p=0.020), and in males (T(16)=2.32, 

p=0.034). K) The mean freezing in the fear retrieval task showed no significant difference in females (T(14)=2.09, p=0.055). 

However, in males, a significant reduction in freezing was observed in stressed compared to nonstressed (T(18)=3.29, p=0.004). 

L No significant differences were observed in the mean freezing during the ITIs between stressed and nonstressed animals for 

females and males. 

  



Figure 4. Unsupervised analysis of fear acquisition data on tones 2-5. A) Cluster enrichment for the female fear acquisition data 

using tones 2-5. Bar graphs represent mean ± standard deviation of the time proportion spent on each cluster. Statistics are 

performed using an independent samples t-test corrected for multiple testing using Benjamini-Hochberg’s method across 

clusters. Significant differences were observed in clusters 0: T=-3.55, p=2.28e-3, and 6: T=4.24, p=4.97e-4, but none of the other 

clusters (p>0.05). B) Cluster enrichment for the male fear acquisition data using tones 2-5. No significant differences were 

observed using the independent samples t-test corrected for multiple testing using Benjamini-Hochberg’s method across clusters 

(p>0.05). Bar graphs represent mean ± standard deviation of the time proportion spent on each cluster. C) On the left, the 

confusion matrix is obtained from the trained gradient boosting machine classifying between clusters. Aggregated performance 

over the validation folds of 10-fold cross-validation is shown. On the right, is the validation performance per cluster across a 10-

fold cross-validation loop. Balanced accuracy was used to correct for cluster assignment imbalance. The dashed line marks are 

the expected performance due to chance, considering all outputs. D) The global SHAP feature importance between the different 

clusters. Features in the y-axis are sorted on the global absolute SHAP values across all clusters. The classes in the bar graphs are 

sorted by highest to lowest clusters importance within every feature. E-F) Bee swarm plots for the two differentially expressed 



clusters within the female fear acquisition data between NS and LBN mice, clusters 0 and 6. The plots show the 10 most important 

features for each classifier, in terms of the mean absolute value of the SHAP values. 

 

 

 

 

  



Discussion 

Exposure to ELS increases the vulnerability toward stress-related disorders, such as PTSD. The prevalence 

of PTSD is strongly influenced by sex. Animal models on ELS exposure have found an increasing body of 

evidence that LBN exposure affects rodents in a sex-specific manner 40–44. However, the sex-dependent 

effects of HPA-axis signaling and fear memory formation on ELS have yet to be uncovered. The 

development of open-source markerless pose estimation tools 51 and subsequently unsupervised 

behavioral analysis tools has allowed for in-depth behavioral analysis that can explore previously unknown 

behavioral patterns 50,52–54. This is crucial to increase the understanding of the behavioral outcome related 

to stress-induced fear memory formation. The current study explores HPA axis mechanisms in the body 

and brain and the behavioral output related to LBN-induced fear memory formation in a sex- and time-

dependent manner. 

LBN disrupts different facets of the HPA axis in a time- and sex-dependent manner 

The LBN model has been extensively utilized to investigate the effects of chronic ELS exposure on both 

physiological and behavioral outcomes. A common hallmark of LBN exposure is the reduction of body 

weight at P09 47, which was confirmed in the current study, highlighting that the LBN model has stress-

dependent effects in both sexes 55,56. In addition, the long-term effect of LBN on body weight between 

sexes is more variable and seems to be dependent on the age of testing and potential additional 

challenges throughout adulthood. The current study showed that at 3 months of age, females show a 

more persistent LBN-related body weight reduction phenotype compared to males. Other studies have 

shown a similar effect at 2 months of age 55, but Arp et al. did not find this sex-dependent difference in 4 

months old animals 57, indicating that both males and females eventually recover, but females show a 

longer recovery period. An opposite effect was observed in another study at 8 months of age, where males 

showed a stronger body weight reduction compared to females 56, this might be explained by the different 

adult stress events, (e.g. glucose- and insulin tolerance tests) and indicates different vulnerability toward 

such adult stressors after LBN exposure between sexes. 

ELS exposure has been linked to dysregulation of the HPA axis, which can lead to an increased vulnerability 

state of stress-related psychopathology 21,22. A well-established phenomenon in rats is the elevated levels 

of morning CORT baseline in females compared to males 58–60. The current study replicates this 

phenomenon in adult mice regardless of stress exposure, as also recently reported by Brix et al. 56. 

Interestingly, it was further observed that this sex-dependent difference is already apparent at the early 

age of P09, highlighting that the sex-specific differences are apparent already at the end of ELS exposure. 



An earlier study on LBN exposure in males showed a significant LBN-induced increase at P09 for baseline 

CORT in mice 47, but the current study found an increase in CORT only in LBN females. This might be 

explained due to the low baseline levels of CORT in males, which therefore might show a higher variance, 

as the absolute CORT values between conditions are smaller. Nonetheless, the high increase of baseline 

CORT in LBN-exposed females is a good proxy for stress exposure, and at P09 is indicated to be higher in 

females compared to males. Moreover, we observed an opposite effect for adrenal weight at adult age, 

which was significantly increased for LBN-exposed males, but not females. This is in line with earlier 

research, that showed a similar effect in males at 1 month of age 57, but at later stages in adulthood, 

namely 4 months and 8 months, the adrenals in males were back to the same size as the nonstressed 

condition 47,56. This indicates that the adrenal size is influenced in a time-dependent manner, in which 

males are taking longer to recover their adrenal size to baseline after LBN exposure.  

Another facet of the HPA-axis reactivity was investigated via gene expression changes of Fkbp5 in the 

brain. Previous research has identified a particularly high expression of the Fkbp5 gene in the BLA and HIP 

under baseline 38. This study replicates the high Fkbp5 gene expression pattern in the BLA and HIP at P56, 

in which the DG shows the highest expression from the HIP subregions during baseline, as similarly 

observed by Scharf et al. 38. Furthermore, we show that Fkbp5 gene expression under baseline can already 

be observed in the BLA and HIP at P09, during which the CA2-3 subregion shows a higher Fkbp5 expression 

than the DG, indicating an age-dependent expression pattern of Fkbp5 in the subregions of the dorsal HIP. 

Moreover, Fkbp5 gene expression has been shown to increase in a stressor-dependent manner in the BLA 

and HIP 38,61,62. However, the immediate and long-term Fkbp5 gene expression changes in response to LBN 

have remained elusive. We show that Fkbp5 gene expression was not changed by LBN exposure directly 

after the stress at P09 in both sexes but was upregulated specifically in the CA1 region of the dorsal HIP 

of adult LBN-exposed males, but not females. Marrero et al. 2019 39 showed that the overexpression of 

human FKBP5 in the forebrain induces specific downstream molecular changes in the dorsal HIP in adult 

ELS animals using the maternal separation paradigm. This coincides with the current finding that 

specifically the dorsal HIP shows upregulated Fkbp5 expression and points to an altered molecular 

pathway mechanism after LBN exposure. In conclusion, we highlight a differential impact of LBN exposure 

across sexes. The immediate effects of LBN exposure at P09 are more pronounced in females, while 

interestingly, the prolonged effects of a dysregulated HPA-axis in adult age are affected exclusively in 

males. 

 



Fear acquisition is differentially affected by LBN across sexes 

The formation of fear memory is a crucial aspect of understanding the underlying mechanism of PTSD. 

The specific alterations of anxiety and fear behavior can be investigated using animal models of fear 

conditioning. In line with previous research, we show that exposure to LBN reduces the fear response by 

lowering freezing behavior during both contextual- and auditory fear retrieval in males 46. In addition, we 

show that LBN exposure in females shows a similar reduction in freezing behavior during the contextual 

fear retrieval, but not in the auditory fear retrieval. Previous research has shown that LBN is linked to 

reduced synaptic plasticity markers within the dorsal HIP, which could explain the LBN-induced 

differences in fear retrieval by altering fear memory formation 46. However, the current study highlights 

an alternative explanation by specifically exploring the fear behavior during the acquisition of fear 

conditioning. Specifically, it was observed that the reduction in freezing behavior can already be found 

during the acquisition of the fear memory, in which LBN-exposed males show reduced freezing during the 

acquisition tones, and the females during the acquisition ITIs.  A similar effect has been observed in other 

studies for male data, in which it was shown that the freezing directly after the fear acquisition is already 

lowered in LBN-exposed animals 46,57,63. Therefore, the difference in freezing during the retrieval phase is 

not only explained by differences in fear memory formation but also by an altered response at fear 

acquisition.  

In addition, several studies have highlighted the relevance of distinguishing between different types of 

fear behaviors 64–66. The analysis of the behavioral data using an unsupervised analysis provides a 

promising way to explore novel behavioral patterns related to fear acquisition without prior behavioral 

categorization. This allows the exploration of the behavioral repertoire in a hypothesis-generating way, 

which can lead to the identification of novel behaviors within the specific methodological context 67. To 

further understand the sex-dependent fear behavioral differences during fear acquisition, the DeepOF 

open source python package was deployed to perform an unsupervised analysis pipeline, which maps the 

representations of different fear behavior-related syllables across the different stages (tones and ITIs), 

conditions (NS vs LBN) and sex (female vs male) without any prior label information. Different fear-related 

behaviors were observed that were particularly altered in female, but not male mice. Interestingly, it was 

observed that specific behavioral clusters (e.g., cluster 0) are elevated in LBN-exposed females, which 

indicated a behavior related to the exploration of the environment. Conversely, other behavioral clusters 

(e.g., cluster 6) are reduced in LBN-exposed females, which were related to freezing behavior. Intriguingly, 

the observed behavior in “cluster 0” coincides with a previously identified active fear behavioral response, 



called “darting”, in which rapid locomotive movements are detected in primarily female rats 66. The 

behavioral syllables from “cluster 0” can also be allocated to an active fear behavioral response, but under 

nonstressed conditions are expressed in both females as well as males. However, the increased amount 

of the expression of “cluster 0” after LBN exposure is exclusively observed in females, which does indicate 

a sex-dependent effect on the active fear response.  

Conclusion 

Taken together, the current study shows a sex-specific effect of LBN exposure on dysregulation of the 

HPA-axis, in which the adrenal weight, baseline CORT levels, and Fkbp5 expression in several stress-

related brain regions, including the BLA and subregions of the dorsal HIP, are altered in a time-

dependent manner. In addition, we show that specific aspects of fear-related behavior, including the 

passive fear behavioral response via freezing behavior, but also an active fear response, as identified 

using an unsupervised analysis, are altered by LBN exposure in a sex-specific manner. The additional 

fear-related behavior that is expressed in “cluster 0” is contributing to a better understanding of the sex-

dependent effects of fear memory acquisition and might influence the expression of the freezing 

behavior during contextual as well as auditory fear retrieval. The DeepOF unsupervised analysis provides 

an additional layer to explore the fear-related behaviors without prior assumptions and therefore allows 

for hypothesis-generating behavioral analysis, which ultimately can lead to a better understanding of 

the stress-induced behavioral phenotype. 
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Supplemental materials 

Supplemental figure 1. Timebin data for contextual and retrieval fear memory. A) The freezing behavior during 1min bins of the 

contextual fear memory in females. A significant main effect was observed using the two-way ANOVA on stress (F(1,85)=31.61, 

p<0.0001), and tones (F(4,85)=5.54, p=0.0005), but not on stress*tones (p=0.70). Post-hoc analysis using BH revealed a significant 

reduction of freezing in LBN females compared to NS for 2min (p=0.047), 3min (p=0.047), and 4min (p=0.004), but not 1min 

(p=0.069), and 5min (p=0.094). B) No significant main effect was observed using the Kruskal Wallis test (p>0.15). C) The freezing 

behavior during the auditory fear retrieval tones binned per 5 tones in females. A significant main effect was observed using the 

two-way ANOVA on stress (F(1,42)=11.59, p=0.001), but not for tones, or stress*tones (p>0.46). Post-hoc analysis using BH 

revealed no further significance between stress conditions (p=0.077). D) The freezing behavior during the auditory fear retrieval 

tones binned per 5 tones in males. A significant main effect was observed using the two-way ANOVA on stress (F(1,54)=27.96, 

p<0.0001), but not for tones, or stress*tones (p>0.24). Post-hoc analysis using BH revealed a significantly lowered freezing 

response in LBN males compared to NS at T1-5 (F(1,18)=6.695, p=0.019), T6-10 (F(1,18)=8.84, p=0.012, and T11-15 (F(1,18)=13.12, 

p=0.006). E) No significant main effect was observed using the two-way ANOVA for the fear retrieval ITIs in females (p>0.73). F) 

No significant differences were observed between LBN and NS males between the different ITIs in the fear retrieval task; the two-

way ANOVA did reveal a significant main effect for ITIs (F(2.54)=6.80, p=0.002), but not for stress (F(1,54)=0.20, p=0.66), or 

stress*ITIs (F(2,54)=0.28, p=0.76). Further post-hoc analysis using BH revealed no significant differences (p>0.57). 

 



Supplemental figure 2. Unsupervised clusters during the ITIs. A) Cluster enrichment for the female fear acquisition data using 

all four ITIs. No significant differences were observed using the independent samples t-test corrected for multiple testing using 

Benjamini-Hochberg’s method across clusters (p>0.05). B) Cluster enrichment for the male fear acquisition data using all four ITIs. 

No significant differences were observed using the independent samples t-test corrected for multiple testing using Benjamini-

Hochberg’s method across clusters (p>0.05). Bar graphs represent mean ± standard deviation of the time proportion spent on 

each cluster. 
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Abstract 

Social interactions play a crucial role in our daily lives, and their dysregulation is often observed in 

psychiatric disorders such as major depressive disorder (MDD). The vulnerability to MDD is influenced by 

a combination of genetic, epigenetic, and environmental factors. A particular gene of interest in MDD 

research is FKBP5, which encodes for the co-chaperone FK506 binding protein 51 (FKBP51). The 

interaction between severe stress exposure and genetic risk variants of FKBP5 has been associated with 

an increased risk for MDD vulnerability. The region-specific role of FKBP51 and its impact on social 

functioning remains to be fully elucidated. The current study observed a region-specific role of Fkbp5 

regulation within the locus coeruleus (LC) in response to different types of stressors. The results showed 

that only acute social stress led to a significant upregulation of Fkbp5 in the LC, highlighting the 

importance of the social nature of stressors in Fkbp5 regulation within the LC. Furthermore, the 

conditional knockout of Fkbp5 within the noradrenergic system (Fkbp5Nat) impacts the social behavioral 

profile towards a novel social conspecific in a sex-dependent manner, as identified only in male mice using 

a deep phenotyping strategy via a supervised behavioral analysis. This sex-dependent effect suggests that 

LC Fkbp5 plays a role in modulating male social behavior. Furthermore, the study reveals that Fkbp5Nat 

mice show long-lasting changes in the molecular pathway related to the noradrenergic synapse under 

baseline and altered noradrenergic signaling when exposed to a novel social stimulus, specifically in the 

basolateral amygdala region. Overall, this study contributes to our understanding of the complex interplay 

between genetic and environmental factors in psychiatric disorders, shedding light on the role of Fkbp5 

and the noradrenergic system in the regulation of social behavior and its implications for psychiatric risk 

exposure. 

 

 

  



Introduction 

Social interactions play a crucial role in our daily lives and have a crucial influence on the determination 

of many societal events, such as making friendships, finding love, and finding a successful career path. 

However, the expression of social behavior and the response to social challenges has a high inter-

individual variability, depending on a heterogeneous expression of emotional and cognitive-related 

behaviors 1. A core characteristic of many psychiatric disorders is the abnormality of social behavior for 

instance, observed in major depressive disorder (MDD) 2–5. An important symptom of MDD is the drastic 

alteration in social functioning, which can be expressed via the avoidance of social encounters 6,7, but also 

via maladaptive behaviors, such as aggressiveness or angriness 8,9. This can ultimately lead to social 

withdrawal from society, a risk factor for disease persistence and worsening of symptoms 10,11. Moreover, 

social dysfunction in MDD has been recently recognized as a semi-independent domain, which can even 

persist after the recovery from the core depressive symptoms 11,12. 

The vulnerability towards MDD is determined by the combined effect of genetics, epigenetics, and the 

environment 13,14. Human genetic studies have identified different genomic variations that are involved in 

the susceptibility towards MDD, among others via several polymorphisms in the FKBP5 gene 15–17. In 

addition, exposure to severe stress can have a detrimental effect on healthy living and ultimately is an 

important environmental risk factor for MDD vulnerability 18–20. The combination of severe stress 

exposure and genetic risk variants of the FKBP5 gene, encoding for the co-chaperone FK506 binding 

protein 51 (FKBP51), have been found to dysregulate the hypothalamic-pituitary-adrenal (HPA) axis and 

increase the risk for MDD vulnerability 21–25. FKBP51 is an important regulator of the HPA axis and stabilizes 

the GR-complex structure, thereby decreasing the binding to glucocorticoids and hampering the nuclear 

translocation of the GR complex 26. The region-specific role of FKBP51 and its impact on social functioning 

remains to be fully elucidated and comprehending their significance in MDD pathology is a crucial inquiry 

that must be addressed to enhance the mechanistic understanding of MDD. The genetic manipulation of 

FKBP5 is difficult to assess in humans but preclinical models using mice have shown to be a valuable tool 

to elucidate the behavioral and genetic influences of Fkbp5 on MDD. Preclinical mouse studies have shown 

a high expression pattern of Fkbp5 in, among others, the hypothalamus, amygdala, hippocampus, bed 

nucleus of stria terminalis, dorsal raphe nucleus (DRN), and locus coeruleus (LC) 27. The exposure to 

different stressors has shown a region-specific increase of Fkbp5, highlighting the importance of 

understanding the region-specific effects of Fkbp5 27–29. The LC is an important region to further explore 

the specific influences of Fkbp5, since (1) this region shows high baseline Fkbp5 expression 27, (2) plays a 



crucial role in both stress response systems by initiating the sympathetic–adrenal–medullary (SAM) axis, 

and (3) has connections with the HPA axis via CRF neurons from several stress-related brain regions that 

can further innervate the LC 30–32. 

The LC is strongly activated by stress exposure and has widespread noradrenergic projections throughout 

the brain, orchestrating large-scale network processes influencing many cognitive functions 33,34. In 

addition, the LC has pathway-specific influences. For example, the LC-induced norepinephrine (NE) release 

in the basolateral amygdala (BLA) increased anxiety-like behavior 35. Several studies have shown that the 

LC strongly responds to social stress exposure, via the general activation of the LC and adapting specific 

projection circuits 36–38, but the direct influence of the LC on social behavior remains to be uncovered. 

The social behavioral construct entails a broad range of different behaviors 39, which are often too 

complicated, time-intensive, and repetitive to assess manually 40–42. Therefore, for decades social 

behavioral phenotyping has heavily utilized instrumental tasks that often rely on oversimplified behavioral 

constructs 42. The advancement in automatically annotated behavioral assessment has allowed for high-

throughput analysis using pose estimation 43,44 and subsequently supervised classification 45. These tools 

fast-forward and simplify the behavioral analysis by using predefined behavioral constructs without losing 

the complexity of social behavior.  

In the current study, we aimed to unravel the region-specific role of Fkbp5 regulation on the underlying 

neurobiological mechanism and behavioral profile related to stress exposure. We employed the open-

source Python package, “DeepOF” to enable a deep phenotyping strategy on the social behavioral profile 

to further elevate the social behavioral understanding related to stress exposure. We show a selectivity 

of the LC towards social stressors by cellular activation and Fkbp5 expression patterns. Furthermore, the 

conditional knockout of the Fkbp5 gene within the noradrenergic system shows an altered social 

behavioral profile response towards novel social stimuli only in male mice. In addition, we show that these 

mice, along with the social behavioral changes, show long-lasting changes in the noradrenergic signaling 

and related molecular pathways. 

 

  



Materials and methods 

Animals and housing 

Wild-type adult male and female C57/Bl6N mice and the genetic mouse line Fkbp5Nat (age between 2-3 

months of age) were obtained from the in-house breeding facility of the Max Planck Institute of Psychiatry 

and used for breeding (F0). The offspring (F1) were used as experimental animals and were weaned at P25 

in groups of maximum four animals with same-sex littermates. All experiments were performed during 

adulthood at the age of 3-5 months. All animals were housed in individually-ventilated cages (IVC; 

30cm×16cm×16cm connected by a central airflow system: Tecniplast, IVC Green Line—GM500), while 

kept under standard housing conditions; 12h/12h light-dark cycle (lights on at 7 a.m.), temperature 

23±1°C, humidity 55%. Food (Altromin 1324, Altromin GmbH, Germany) and water were available ad 

libitum. The experimental procedures were approved by the committee for the Care and Use of 

Laboratory Animals of the government of Upper Bavaria, Germany. All experiments were in accordance 

with the European Communities Council Directive 2010/63/EU. 

Generation of the Fkbp5Nat mouse line 

The genetic mouse line Fkbp5Nat is a conditional knock-out of the Fkbp5 gene in the noradrenergic system, 

among others the LC. This was achieved via the generation (as performed by the knockout mouse project) 

of full knockout Fkbp5Frt/Frt mice, which can re-express functional Fkbp5 upon activation of the Flp 

recombinase. Fkbp5Frt/Frt mice were then bred with Deleter-Flpe mice to create mice with a floxed Fkbp5 

gene; Fkbp5lox/lox mice 46,47. Subsequently, the final conditional knock-out of Fkbp5 was achieved via the 

crossing of Fkbp5lox/lox mice with mice containing the Cre-cassette in a BAC-vector under the noradrenalin 

transporter gene (Slc6a2) 48, resulting in Fkbp5Nat mice. The Fkbp5lox/lox animals were used as wild-type 

(WT) control animals. 

Chronic social defeat stress 

A cohort of wild-type C57/Bl6N 2 months old male mice were either divided into the chronic social defeat 

stress (CSDS) protocol or were kept under normal housing conditions. The CSDS paradigm consisted of 

exposing the experimental C57Bl/6N mice to an aggressive CD1 mouse for 21 consecutive days, as 

previously described 49. The CD1 aggressor male mice were purchased from Janvier Labs (Germany) and 

were at least 16 weeks old. The CD1 aggressor mice were trained and selected on their aggression prior 

to the start of the experiment. Upon the start of the CSDS, the experimental mice were introduced daily 

to a new CD1 resident’s territory, who subsequently attacked and forced the experimental mouse into 



subordination. Defeat sessions lasted until the stress-exposed mouse received two bouts of attacks from 

the CD1 aggressor or at five minutes in the rare instances when two bouts were not achieved within this 

duration. Animal health was monitored throughout the experiment to ensure that minor injuries healed 

before the subsequent defeat session. Between daily defeats, stressed mice were housed in the resident’s 

home cage but physically separated from the resident by a see-through, perforated mesh barrier, allowing 

sensory exposure to the CD1 aggressor mouse while preventing further attacks. The defeat time of day 

was randomized between 11 a.m. and 6 p.m. to avoid habituation and anticipatory behaviors in defeated 

mice. NS mice were single-housed in the same room as the stressed mice. All animals were handled daily 

and weighed every 3-4 days. 

Acute stress exposure 

The acute stress exposure consisted of either acute social defeat stress, or restraint stress. The acute 

stress was performed 24 hours after the end of the CSDS paradigm. The acute social defeat stress 

consisted of a single defeat event with a novel CD1 aggressor mouse, as described for the CSDS paradigm. 

The restraint stress consisted of the restraining in a 50ml falcon tube, that contained holes in the top and 

the lid to allow air ventilation and tail movement. Animals were restrained for 15min during which they 

were kept in their home-cage environment. Animals were sacrificed 4 hours after acute stress exposure, 

after which brains were removed and snap-frozen using 2-methyl butane (kept on dry ice) and stored at -

80°C until further use. 

In-situ hybridization of Fkbp5  

The Fkbp5 mRNA profile was determined using radio-active in-situ hybridization labeling as described 

previously 27. In brief, brains were sliced using a cryostat in 20 µm sagittal sections, which resulted in a 

series of LC (bregma: -5.34 to -5.80) and DRN (bregma: -4.36 to -4.84) slides that were thaw-mounted on 

Super Frost Plus Slides and stored at -20°C. The in-situ hybridization sections were removed from -20°C, 

left to dry at room temperature, fixated with 4% paraformaldehyde, and subsequently dehydrated using 

a series of increasing concentrations of ethanol. Then, the hybridization buffer was equally spread out 

over the different slides containing the radioactive 35S-UTP-labeled Fkbp5 riboprobe and incubated 

overnight at 55°C. On the next day, the sections were rinsed, incubated with RNAse A, desalted, and 

dehydrated, after which the radioactive slides were exposed to Kodak Biomax MR films (Eastman Kodak 

Co., Rochester, NY) and developed after an exposure time of 12 days. Films were digitized and the regions 

of interest were identified using the mouse brain atlas (https://mouse.brain-map.org/). The expression 



was determined by optical densitometry with the ImageJ software (NIH, Bethesda, MD, USA). The 

expression was averaged per brain region per animal and subtracted by the background signal of a nearby 

structure that did not express the Fkbp5 gene. 

C-Fos immunostaining 

The C-Fos protein expression was determined using a DAB staining kit for immunohistochemistry (Abcam, 

USA; ab64261). Brains were sliced using a cryostat in 20 µm sagittal sections, which resulted in a series of 

LC slides that were thaw-mounted on Super Frost Plus Slides and stored at -20°C. Immunostaining was 

performed as described by the Abcam DAB staining protocol (ab64261). In short, the slides were fixated 

in 4% paraformaldehyde, then incubated with hydrogen peroxide (to block endogenous peroxidase), and 

then blocked in protein block to minimize unspecific binding. Then slides were incubated overnight at 4°C 

with the rabbit monoclonal C-Fos primary antibody (1:1000, ab222699), diluted in phosphate buffered 

saline (PBS) and 0.5% Bovine Serum Albumin. On the next day, the sections were incubated at room 

temperature for 10 min with the secondary antibody goat anti-polyvalent. Next, to amplify the signal, 

slides were incubated with streptavidin peroxidase. The DAB staining was performed by combining the 

DAB chromogen with the DAB substrate (1:50, respectively), which was then applied to the slides and 

exactly washed away after 3.5 min. Slides were dehydrated using a series of increasing concentrations of 

ethanol and cover slipped. Slides were then imaged using a slide scanner (Olympus, VS120-S6-W) on a 10x 

magnification using the bright field settings. Bilateral images were taken in a series of images of the LC, 

going from bregma -5.34 to -5.80. Ultimately, similar bregma images were taken for all animals and C-Fos 

puncta were counted for 2-3 images per animal per side. 

Validation of the Fkbp5Nat mouse line using RNAscope 

Validation of the knock-out of Fkbp5 in the LC was performed via an RNAscope in-situ hybridization study.  

Male mice were sacrificed under baseline conditions at 3-5 months of age. The brains were removed and 

snap-frozen using 2-methyl butane (kept on dry ice) and stored at -80°C until further use. Brains were 

sliced using a cryostat in 20 µm sagittal sections, which resulted in a series of LC slides that were thaw-

mounted on Super Frost Plus Slides and stored at -20°C. The RNAscope staining procedures were used 

according to the manufacturer’s protocol as previously described 47. The RNAscope fluorescent multiplex 

reagent kit (cat. no. 320850, Advanced Cell Diagnostics, Newark, CA, USA) was utilized for mRNA staining. 

The probes used for staining were Fkbp5 (Probe: Mm-Fkbp5-C1), and Tyrosine hydroxylase (TH) (Probe: 

Mm-TH-C2). Slides were then imaged using a ZEISS confocal microscope on a 40x magnification using the 



fluorescent channel. Bilateral images were taken in a series of images of the LC, going from bregma -5.34 

to -5.52. All images were acquired using the same settings for laser power, detector gain, and amplifier 

offset. Fkbp5 mRNA expression was analyzed using ImageJ with the experimenter blinded to the genotype 

of the animals and was counted manually. Ultimately, similar bregma images were taken for all animals 

and Fkbp5 puncta were counted within TH-positive cells for 2-3 images per animal per side. Fkbp5 negative 

TH cells were accounted for when the cell had less than five Fkbp5 puncta. Ultimately, a calculation per 

animal was made for the percentage of Fkbp5-positive TH cells compared to the total amount of TH cells.  

Fkbp5Nat adult testing 

At 3 months of age, a cohort of both males and females were tested in the social interaction task. In 

addition, separate cohorts of male Fkbp5Nat were used to do microdissection, proteomics, and 

microdialysis experiments. The behavioral tests were performed between 8 a.m. and 11 a.m. in the same 

room as the housing facility. 

Social interaction task using DeepOF analysis 

The social interaction task was performed in a round open field arena (diameter of 38cm) using sawdust 

material on the bottom, as previously described by 45. The experimental animal was placed in the open 

field arena and could freely explore for 10 min, after which an unfamiliar young CD1 (4–6 weeks old) social 

conspecific was placed in the same arena and both were allowed free exploration of the arena and each 

other for 10min. The data was recorded using the DFK37BUX250 imaging source (Germany) cameras with 

camera lenses from Stoelting, Ireland (Item nr. 60528). The IC capture software (version 2.5.1547.4007) 

from imaging source was used to obtain the videos and further analysis was performed with DeepLabCut 

version 2.2b7 (single animal mode for pose estimation 43,44, and subsequently, DeepOF module version 

0.1.6 45 for supervised behavioral analysis of six individualistic behaviors during the open field; wall-

climbing, digging, huddling, look-around, sniffing, and speed (locomotion), and all during the social 

interaction task, including an additional five social behaviors; nose-to-nose, Side-by-side, Side-reverse-

side, nose-to-tail, and Nose-to-body. Data were analyzed for the total 10 min of both tasks and in time 

bins of 2.5 min. 

Microdissection 

The total concentration of NE was measured from microdissected fresh frozen brain tissue in both WT 

and KO mice comparing no interaction (NI) and social interaction conditions. At the start of the 

experiment, mice were randomly divided into either the NI or SI condition. The NI animals were left 



undisturbed in their home-cage, whereas SI animals were exposed to an unfamiliar young CD1 (4–6 weeks 

old) mouse for 10min within their home-cage. After the 10min SI exposure, all animals were directly 

sacrificed and brains were removed and snap-frozen using 2-methyl butane (kept on dry ice) and stored 

at -80°C until further use. Then, the brains were sectioned using a VT1200/S Leica vibratome on 250µm 

thick slices by the different brain regions; 2 slices in the medial prefrontal cortex (mPFC) (bregma: 1.94 to 

1.54), 3 slices in the basolateral amygdala (BLA) (bregma: -1.34 to -1.94), 3 slices in the dorsal 

hippocampus (dHipp) (bregma: -1.70 to-2.18), and 3 slices in the ventral hippocampus (bregma: -3.08 to 

-3.52). The sliced tissue was directly punched within the vibratome using a sample corer (diameter 1 mm) 

and stored in 1.5 mL Safe-lock Eppendorf tubes on dry ice and subsequently stored at -80°C until further 

use. The measurement of NE was carried out by reverse-phase liquid chromatography with 

electrochemical detection as described in 50. The values obtained were expressed as nanograms per 

milligram wet tissue and were logarithmically transformed for calculation of linearity of regression, 

standard error of the regression coefficients, and significance of differences between regression 

coefficients. 

Proteomics 

The proteomics analysis was performed from microdissected fresh frozen brain tissue in both WT and KO 

mice under baseline conditions. The same extraction protocol was performed as described at the 

microdissection, but only the BLA was punched for proteomic analysis. BLA tissue punches were 

homogenized in ice-cold T-PER™ tissue protein extraction reagent (ThermoFisher Scientific, 78510) freshly 

supplemented with protease inhibitor cocktail tablets (Roche, 05892791001) and phosphatase inhibitor 

cocktail tablets (Roche, 04906837001). Protein extracts were centrifuged at 10,000 x g for 10 minutes to 

pellet cell/tissue debris. Subsequently, protein concentration was adjusted to 2µg/µl using the Pierce™ 

BCA protein assay kit (ThermoFisher Scientific, 23225). For mass spectrometry measurements, in-solution 

samples were sent to the Max Planck Institute of Biochemistry Core Facility, Mass Spectrometry Lab. 

Microdialysis 

The microdialysis experiment consisted of the measurement of NE and its metabolite 3-Methoxy-4-

hydroxyphenylglycol (MHPG) unilaterally in the BLA during baseline and social interaction in WT and KO 

animals. The microdialysis workflow was performed as described previously 51. In brief, male mice at 3 

months of age were anesthetized with isoflurane and fixated in a stereotactic apparatus. Then 

microdialysis guide cannula was inserted in the right BLA (bregma: AP -1.35mm, ML 3.3 mm, and DV 



4.4mm). After surgery, animals were treated with meloxicam for three days and were allowed to recover 

for a minimum of 7 days in the home-cage environment. 

The microdialysis system contained a syringe pump (Harvard Apparatus, USA) that was connected via FEP 

tubing (CMA, Cat. N. 8409501) to a dual-channel liquid swivel (Microbiotech Se) and could then be 

connected to the probe via FEB tubing. The perfusion liquid consisted of artificial CSF, which consisted of 

a solution of NaCl (0.86%), KCl (0.020%), MgClx6H2O (0.024%), and CaClx2H2O (0.018%) in HPLC water 

with a PH of 7.4. Then, the microdialysis probe (CMA 7 Probe 1 mm membrane, 6 kDa; Cat.N. 000082) was 

connected to the running microdialysis system using a constant flow rate of 1.5µl/min. Any air bubbles in 

the probe were removed, after which the probe was inserted by hand into the guide cannula of the animal 

at least 20 hours before the start of the experiment. Animals stayed in specific microdialysis cages 

containing a standard amount of sawdust material and nesting material (16 cm length x 16 cm width x 32 

cm height). The experiment started with the collection of baseline samples, after which an unfamiliar 

young CD1 (4–6 weeks old) mouse was introduced into the microdialysis cages, resulting in the 

comparison of baseline (NI) and social interaction (SI) samples. The measurement of NE and MHPG out of 

the microdialysates was performed using HPLC with electrical detection, as previously described by 51. 

Quantification was performed using external standard calibration (0.1–5 nM). 

Statistics 

Statistical analyses and graphs were made using Rstudio (with R 4.1.1). All animals were used for statistical 

analysis unless stated otherwise. Statistical outlier tests were performed using boxplot analysis, in which 

values above quartile (Q) 3 + 1.5 x interquartile range (IQR, calculated as Q3 - Q1) or below Q1 - 1.5 x IQR 

were considered outliers. This led to the exclusion of 9 animals in the microdialysis experiment, 4 WT and 

5 KO mice. Data were tested on the corresponding statistical assumptions, which included the Shapiro-

Wilk test for normality and Levene’s test for heteroscedasticity. If assumptions were violated the data 

were analyzed using non-parametric variants of the test. The two group comparisons were analyzed using 

the independent samples t-test (T) as a parametric option, Welch’s test (We), if data was normalized but 

heteroscedastic, or the Wilcoxon test (Wx) as a non-parametric option. The chronic and acute stress 

exposure data using a six-group comparison was analyzed using the one-way ANOVA (parametric) or 

Kruskal-Wallis test (non-parametric), and further posthoc analysis was performed using the BH test 

(parametric) or the Wilcoxon test (non-parametric). The metabolite measurement data in the 

microdissection and microdialysis experiments were analyzed using a two-way ANOVA with the genotype 

(WT or KO) as within-subject factor and the social interaction (baseline vs. social interaction) as a between-



subject factor. P-values were adjusted for multiple testing using the BH method. The bar graphs are 

presented as mean ± standard error of the mean (SEM). Data were considered significant at p<0.05 (*), 

and further significance was represented as p<0.01 (**), p<0.001 (***), and p<0.0001 (****).   



Results 

The Fkbp5 gene shows a social stress-specific upregulation in the LC 

The expression patterns of Fkbp5 were examined in the LC and DRN brain regions across various chronic 

and acute stress paradigms. Stress-naïve mice were sacrificed under baseline conditions (NS) or exposed 

to an acute stressor before sacrifice, which was either acute social defeat stress (ASDS), or restraint stress 

(Res). Another group of animals underwent 21 days of chronic social defeat stress (CSDS) followed by 

sacrifice 24 hours later under baseline conditions (CSDS) or following acute stress exposure, which was 

either acute social defeat stress (CSDS+ASDS), or restraint stress (CSDS+Res), as depicted in Figure 1A. 

In mice without a history of chronic stress, acute social defeat stress led to a significant increase in Fkbp5 

mRNA levels compared to stress-naïve and acutely restrained mice in both the LC (Figure 1B-C) and DRN 

(Supplemental Figure 1A-B) regions. A similar effect was observed in mice with a history of chronic stress 

in the DRN region, where mice exposed to CSDS plus acute social defeat stress exhibited elevated Fkbp5 

mRNA levels compared to those in CSDS baseline conditions and CSDS plus acutely restrained conditions 

(Supplemental Figure 1A-B). However, the LC region displayed a different response after chronic stress, 

as mice exposed to CSDS plus acute social defeat stress did not show elevated Fkbp5 mRNA levels 

compared to those in CSDS baseline conditions and CSDS plus acutely restrained conditions. Furthermore, 

the baseline acute social defeat stress mice demonstrated significantly higher Fkbp5 mRNA levels 

compared to animals with a chronic stress history plus acute social defeat stress mice (Figure 1B-C). 

The expression levels of the C-Fos protein in the LC exhibited a similar pattern to Fkbp5 expression under 

acute stress conditions. Exposure to acute social defeat stress significantly upregulated C-Fos expression 

compared to stress-naïve and acutely restrained mice (Figure 1D-E). In contrast to the Fkbp5 results, a 

history of CSDS exposure did not result in altered C-Fos expression pattern between mice exposed to CSDS 

plus acute social defeat stress and those in CSDS baseline conditions or CSDS plus acutely restrained 

conditions (Figure 1D-E). Additionally, the baseline acute social defeat stress mice did not exhibit altered 

C-Fos expression compared to animals with a chronic stress history plus acute social defeat stress (Figure 

1D-E). 

 

 



 

Figure 1. Fkbp5 and C-Fos expression in the Locus Coeruleus. A) Overview of the different stress conditions. B) Fkbp5 mRNA 

expression in the LC showed a significant main effect with the one-way ANOVA: F(5,42)=11.77, p=3.8e-7. Post-hoc BH revealed 

that Fkbp5 mRNA expression in the LC was significantly increased in NS-ASDS compared to NS-NS (p=7.08e-7) and NS-Res (p=5.43e-

6). The NS-ASDS also had significantly increased Fkbp5 levels compared to CSDS-ASDS (p=0.0044). The CSDS-ASDS mice did have 

altered Fkbp5 levels compared to CSDS-NS (p=0.051), or CSDS-Res (p=0.13). C) Example in-situ hybridization scans in the LC. D) 

C-Fos protein expression in the LC showed a significant main effect with the one-way ANOVA: F(5,42)=7.54, p=3.98e-5. Post-hoc 

BH revealed that C-Fos expression in the LC was significantly increased in NS-ASDS compared to NS-NS (p=3.83e-5) and NS-Res 

(p=0.016). The NS-ASDS was not significantly altered in C-Fos levels compared to CSDS-ASDS (p=0.72). The CSDS-ASDS mice did 

have altered C-Fos levels compared to CSDS-NS (p=0.081), or CSDS-Res (p=0.78). E) Example immunostaining in the LC. In panel 

B; n=8 for all groups. In panel D; n=10 for NS-NS and NS-ASDS, n=9 for NS-Res, n=8 for CSDS, n=5 for CSDS+ASDS, n=6 for CSDS+Res. 

  



The conditional knock-out of Fkbp5 alters the social behavioral profile in male mice 

Considering the high expression of Fkbp5 in the LC and its specific Fkbp5 responsiveness to social stressors, 

a genetic conditional Fkbp5 knockout line was generated using the Nat promoter. This conditional 

knockout line was employed to investigate the precise effects of Fkbp5 knockout on the noradrenergic 

system, including the LC (Figure 2A). Through RNAscope co-expression analysis of tyrosine hydroxylase 

(TH), a marker for identifying noradrenergic cells, and Fkbp5, a significant reduction in the percentage of 

Fkbp5-positive TH cells within the LC was observed in Fkbp5Nat (KO) mice compared to Fkbp5lox/lox (WT) 

mice (Figure 2B-C). 

Subsequently, the social behavioral profile was examined during the social interaction task in both male 

and female mice, utilizing four distinct time bins of 2.5 minutes each. Principal Component Analysis (PCA) 

was employed to explore the social behavior profile across different time bins, including both sexes and 

genotypes. The PCA results indicated a disparity between the first 2.5-minute bin and all subsequent time 

bins, suggesting that the initial 2.5 minutes were particularly noteworthy for social behavioral 

phenotyping (Supplemental Figure 2A-B). To assess the differences between sexes, a PCA was conducted 

using the first 2.5-minute social interaction bin, regardless of genotype. Notably, a significant distinction 

was observed between female and male mice, suggesting a contrasting social behavioral profile between 

the sexes. Consequently, subsequent analyses were performed separately for each sex (Supplemental 

Figure 2C-D). 

Separate PCAs were conducted for female and male social interaction data to compare genotypes. In the 

female PCA, no significant differences were found between genotypes (Figure 2D). However, in the male 

PCA, a significant difference was observed (Figure 2E). Further examination of the male PCA data was 

performed via the exploration of the top contributing behaviors in PC1, determined by the corresponding 

rotated loading scores (Figure 2F). The top five contributing behaviors displayed potentially relevant 

patterns for identifying genotype effects, while other behaviors within the top 10 either contributed to 

the CD1 animal ("W-" behaviors) or had low rotated loading scores. Further analysis of the top 

contributing behaviors in the male 2.5-minute social interaction data revealed a significant increase in KO 

mice compared to WT mice in the expression of B-nose-to-tail, B-nose-to-body, and B-following behaviors, 

whereas no genotype difference was observed in B-look-around and B-speed behaviors (Figure 2G-K). To 

investigate the specificity of acute effects of social exposure, male mice were examined for their social 

behavioral profile following chronic social defeat stress (CSDS) exposure. The PCA results did not indicate 



any alterations between genotypes, suggesting a specific effect of acute social exposure in male KO mice 

(Supplemental Figure 2E-F). 

 

Figure 2 FKBP51-Nat males show an altered social behavioral profile. A) Schematic overview of the generation of Fkbp5 knock-

out in the noradrenergic cells. B) Representative RNAscope confocal images of Fkbp5 mRNA expression in TH neurons within the 

LC. C) RNAscope Fkbp5 quantification in the TH neurons revealed a significant reduction of the percentage of Fkbp5 positive TH 

cells in KO animals (Two-tailed independent samples-t-test: T(4)=4.6, p=0.01). D) The female SI 2.5 min time bin PCA showed no 

difference in the PC1 eigenvalues between conditions. The PCA data consisted of all the SI DeepOF behavioral classifiers. Two-

tailed independent samples t-test: T(14)=-0.72, p=0.49. E) The male SI 2.5 min time bin PCA showed a significant difference in the 

PC1 eigenvalues between conditions. Welch test: We(14.96)=-2.32, p=0.035. F) The top contributing behaviors for males in the 

SI 2.5 min time bin PC1 using the corresponding rotated loading scores. The top five behaviors were listed as potentially relevant 

behaviors for identifying genotype effect (B-nose-to-tail (0.38), B-look-around (–0.37), B-nose-to-body (0.37), B-speed (0.35), B-

following (0.35). “B-” indicates C57Bl/6N behaviors and “W-” indicates CD1 behaviors. G) The 2.5 min duration of B-nose-to-tail. 



Wilcoxon test: Wx=27, p=0.016. H) The 2.5 min duration of B-look-around. Welch test: We(16,90)=1.71, p=0.11. I) The 2.5 min 

duration of B-nose-to-body. Wilxocon test: Wx=38, p=0.091. J) The 2.5 min duration of B-speed. Wilcoxon test: Wx=47, p=0.26. 

K) The 2.5 min duration of B-following. Wilcoxon test: Wx=25, p=0.011. In panel C; n=3 for WT and n=3 for KO. In panel D; n=9 

for WT and n=7 for KO. In panels E-K; n=11 for WT and n=12 for KO. 

 

 

Noradrenergic signaling is altered in Fkbp5Nat within the BLA 

The impact of conditional knockout of Fkbp5 within the noradrenergic system was investigated using 

Fkbp5Nat (KO) mice. This was examined by the total quantity of NE in various projection regions of the LC 

following baseline conditions (NI) and social interaction (SI) (Supplemental Figure 3A). The total amount 

of NE was not significantly altered by genotype or social interaction exposure in the mPFC, dHipp, and 

vHipp (Supplemental figure 3 B-D). On the contrary, the BLA region (Figure 3A) showed a significant 

increase in total NE concentration after social interaction exposure compared to baseline in WT, but not 

in KO mice (Figure 3B). To gain further insight into the BLA region-specific protein profile under baseline 

conditions, a proteomics analysis was conducted, comparing WT and KO mice. The Panther GO TERM 

pathway analysis, employing the top 100 up- and downregulated proteins, exhibited a significant and 

substantial fold enrichment for the dopaminergic and noradrenergic signaling pathway (GO:0007191) and 

the neurotransmitter metabolic process (GO:0042133). Considering the knockout of Fkbp5 within the 

noradrenergic system, further investigation focused on the pathway associated with the noradrenergic 

synapse. The proteomics analysis of the noradrenergic synapse unveiled several downregulated proteins 

in KO mice compared to WT mice, including tyrosine hydroxylase (TH), AC5, and DARPP32, alongside one 

upregulated protein called MAPK8. Notably, only the protein tyrosine hydroxylase exhibited a significant 

alteration (Figure 3D). 

Given the differences unveiled in the molecular pathway associated with noradrenergic signaling in the 

BLA between KO and WT mice, our subsequent question focused on scrutinizing norepinephrine (NE) 

release in the BLA. To accomplish this, we conducted a microdialysis experiment, wherein we examined 

NE release across genotypes (WT vs KO) and social interaction history (baseline (NI) vs social interaction 

(SI)). Following social interaction, the turnover rate of MHPG/NE in the BLA showed a significant reduction 

compared to the baseline levels in WT mice but not in KO mice (Figure 3E). A similar trend was observed 

for NE release, as indicated by the elevation in NE concentration after social interaction compared to 



baseline specifically in WT mice (Supplemental Figure 3E). No notable differences were detected in MHPG 

release based on genotype or exposure to social interaction (Supplemental Figure 3F). 

Figure 3 Noradrenergic signaling is altered in Fkbp5Nat within the BLA. A) Schematic overview of the LC projections, in which the 

BLA was punched. B) Microdissection measuring total NE levels in the BLA. Posthoc Kruskall-Wallis revealed that WT social 

interaction (WT_SI) significantly increased NE concentrations in the BLA compared to WT no interaction (WT_NI), F(1)=10.14, 

p=0.0029, which was not altered in the Fbkp5Nat background, comparing KO_NI with KO_SI, p=1. C) The proteomics GO TERM 

analysis between WT and KO under baseline by Panther identified interesting molecular pathways within biological process, in 

particular interest were “GO:0007191”, FDR=64.70, p=2.64e-5, and “GO:0042133”, FDR=41.47, p=2.93e-7. D) The pathways analysis 

related to the noradrenergic synapse is highlighted with multiple proteins altered. The proteins downregulated were tyrosine 

hydroxylase (TH); D=-0.70, p=0.049, Gs/olf; D=-0.41, p=0.13, AC5; D-0.45, p=0.14, DARPP32; D=-0.52, p=0.054 and the 

upregulated protein was: MAPK8 D=0.72, p=0.11. E) Microdialysis measuring turnover rate of MHPG/NE release in the BLA. 

Posthoc BH revealed that WT social interaction (WT_SI) has significantly lowered NE/MHPG turnover rate in the BLA compared 



to WT no interaction (WT_NI), F(1,22)=4.01, p=0.05, which was not altered in the Fbkp5Nat background, comparing KO_NI with 

KO_SI, p=0.088. Two-way ANOVA: social interaction; F(1,42)=7.07, p=0.011, genotype; F(1,42)=0.2.87, p=0.098, social 

interaction*genotype; (F(1,42)=0.085, p=0.77. In panel B; n=11 for WT_NI, n=11 for WT_SI, n=8 for KO_NI, and n=9 for KO_SI. In 

panels C-D; n=9 for WT and n=12 for KO. In panel E; n=12 for WT and n=11 for KO (within-subject analysis on between baseline 

and social interaction). 

 

 

Discussion 

The LC is a crucial node within the stress response system that integrates input from many different stress-

related neural circuits and has widespread noradrenergic projections through the entire neuraxis, 

orchestrating large-scale network processes but also pathway-specific networks 35. The combination of 

severe stress exposure and genetic risk variants of the FKBP5 gene have been found to increase the risk 

for MDD pathology 21–23, but the region-specific role of the FKBP5 gene and its impact on social functioning 

remains to be fully elucidated. The current study shows the selectivity of the LC towards social stressors 

by cellular activation and Fkbp5 expression patterns in mice. Furthermore, a conditional knockout of 

Fkbp5 within the noradrenergic system shows an altered social behavioral profile in male mice using a 

deep phenotyping strategy, which has long-lasting consequences on noradrenergic signaling and the 

related molecular pathways. 

Fkbp5 expression in the LC reacts to stress in a highly selective way 

Previous studies have provided evidence supporting the brain region-specific upregulation of Fkbp5 

mRNA, which is contingent upon the specific type of stressor employed 27–29. These findings emphasize 

the significance of considering the context and nature of the stressor in the regulation of Fkbp5 

expression. Specifically, acute restraint stress has been shown to upregulate Fkbp5 in the paraventricular 

nucleus of the hypothalamus (PVN) and central amygdala, while acute food deprivation leads to Fkbp5 

upregulation in the hippocampus 27. Additionally, chronic non-social stress exposure increases Fkbp5 

mRNA levels in the hippocampus and prefrontal cortex but not in the hypothalamus 28.  

The present study highlights the importance of stress-specific selectivity in the regulation of Fkbp5 mRNA, 

as evidenced by the highly selective upregulation of Fkbp5 in the LC following acute social stress but not 

chronic social stress or restraint stress. Consistent with previous research demonstrating brain-region-

specific upregulation of Fkbp5 27, we observed a distinct pattern of Fkbp5 upregulation in the DRN. Both 



acute social stress and acute social stress in mice with a history of chronic social stress led to an 

upregulation of Fkbp5 in the DRN. This study demonstrates that the regulation of Fkbp5 expression in 

response to social stress varies across different brain regions. Previous research has shown that acute 

stress exposure differentially alters LC excitability over time, with increased LC excitability observed one 

week after stress exposure compared to immediately after the stress exposure 36. The specific increase in 

Fkbp5 mRNA levels may be attributed to heightened cellular activity in the LC region during acute social 

stress. To exclude the possibility that the observed differential expression pattern of Fkbp5 is merely a 

reflection of cellular activity, we examined the expression patterns of C-Fos across the different stress 

groups. C-Fos expression serves as an indicator of cellular activity within the LC region, as previously 

investigated in various stress paradigms and brain regions 52–55. Interestingly, C-Fos protein expression 

levels in the LC displayed a similar following acute stress, independent of chronic stress history and 

thereby distinct from the differential Fkbp5 expression pattern. Acute social stress induced a robust C-Fos 

upregulation, which was not altered compared to acute social stress after a history of chronic social defeat 

stress. This finding aligns with Reyes et al., 2019 56, who demonstrated that a shorter 5-day CSDS protocol 

exhibited a much lower C-Fos count compared to acute social stress. Therefore, it can be concluded that 

the differential expression pattern of Fkbp5 in the LC based on stress history is not merely a reflection of 

regional activity. The specific and robust upregulation of Fkbp5, particularly following acute social stress 

exposure, is dampened after chronic social stress, suggesting the significance of the social nature of the 

stressor in the regulation of this risk gene in the LC.  

Fkbp5Nat alters the social behavioral profile and noradrenergic signaling in male mice 

The context of social stress exposure appears to be particularly relevant for Fkbp5 expression in the LC, 

prompting the generation of a conditional Fkbp5 knockout line under the Nat promoter (Fkbp5Nat, KO) to 

investigate the specific effects of Fkbp5 knockout on the noradrenergic system, including the LC. The social 

behavioral profile was investigated using advanced automated behavioral assessment tools based on 

predefined behavioral constructs, eliminating the need for labor-intensive manual labeling or the loss of 

complexity of the social behavioral construct. The results indicate that the overall social behavioral profile 

was specifically altered in male KO mice, while female KO mice did not show such alterations. Highly 

affected behaviors included increased following, nose-to-tail, and nose-to-body contact durations 

between the experimental mouse and the social conspecific, indicating an increase in pro-social behavior 

in male KO mice. Moreover, no changes in the social behavioral profile were observed in male mice based 

on genotype after chronic social stress exposure. Thus, the alterations in social behavior align with the 



pattern of Fkbp5 regulation in the LC, as only acute exposure to a social event led to changes in the social 

behavioral profile and Fkbp5 expression pattern. A recent study by Nold et al. 2022 57 investigated the 

impact of human FKBP5 single nucleotide polymorphism (SNP) variants on social avoidance behavior in 

mice using a three-chamber social arena task. They found a sex-specific effect, with only female FKBP5 

SNP resilience-associated (C/G) mice showing a preference for social interaction compared to FKBP5 SNP 

risk-associated (A/T) mice 57. This study highlights the role of sex-dependent social behavioral effects 

related to Fkbp5 manipulation. However, the use of the three-chamber social arena task limits the 

assessment of social behavioral read-outs and does not fully capture the same type of ethologically 

relevant social behaviors observed in the current study using DeepOF 42.   

To understand the mechanistic changes caused by Fkbp5 knockout in the noradrenergic system, the total 

concentration of NE was examined in various LC projection regions. Interestingly, only the BLA region 

exhibited a significant increase in NE concentration following exposure to social interaction compared to 

baseline, specifically in WT mice. In contrast, KO mice did not show this effect. Panther GO TERM pathway 

proteomics analysis confirmed the impact of Fkbp5Nat on noradrenergic synapse in the BLA, suggesting 

specific pathway changes within the synapse. To further investigate the alterations in the NE system in 

the BLA, a microdialysis experiment was conducted to assess NE release across genotypes under baseline 

and social interaction conditions. The turnover of MHPG/NE was decreased, and NE release was increased 

by social interaction exclusively in WT mice. These findings indicate a deficiency in the response of NE 

signaling in KO mice specifically in the BLA after exposure to a social stimulus. Therefore, it can be 

concluded that Fkbp5 knockout in the noradrenergic system alters noradrenaline signaling and molecular 

pathways associated with the noradrenergic synapse, particularly in the BLA. Previous research has 

established the crucial role of the noradrenergic pathway in the BLA, where it is heavily involved in 

emotional memory consolidation 58–60. Additionally, McCall et al. 2017 35 demonstrated that specific 

stimulation of LC-NE fibers in the BLA leads to NE release, alters BLA activity patterns, and increases 

anxiety-like behavior. These studies demonstrate the significance of the LC-BLA pathway in modulating 

behavior and the physiological properties of the BLA region via altered activity patterns. The current study 

sheds light on the role of Fkbp5 regulation within the noradrenergic system in modulating the signaling 

pathways of NE specifically within the BLA. The findings suggest that Fkbp5 plays a role in regulating the 

noradrenergic signaling within the BLA and further contribute to our understanding of the molecular 

mechanisms underlying social behavior. 

 



Conclusion 

In summary, the current study provides several key findings. First, it demonstrates that Fkbp5 expression 

in the LC is selectively regulated in response to different stressors, with acute social stress specifically 

leading to Fkbp5 upregulation. This highlights the importance of considering the social nature of stressors 

when studying Fkbp5 regulation in the LC. Second, the study shows that altered Fkbp5 regulation in the 

noradrenergic system has a sex-dependent impact on the social behavioral profile towards a novel social 

conspecific. This suggests that Fkbp5 plays a role in modulating social behavior, with the effects varying 

between male and female mice. Lastly, the study uncovers the role of Fkbp5 in modulating noradrenergic 

signaling within the BLA, particularly in response to a novel social stimulus. These findings contribute to 

our understanding of how genetic and environmental factors, such as FKBP5 and stress exposure, interact 

to influence psychiatric risk and social behavior-related symptoms. Overall, this research provides 

valuable insights into the complex mechanisms underlying social behavior and the potential implications 

for psychiatric disorders. 
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Supplemental materials 

 

 

Supplemental figure 1. Fkbp5 expression in the Dorsal raphe nucleus. A) Fkbp5 mRNA expression in the DRN showed a 

significant main effect with the one-way ANOVA: F(5,42)=12.85, p=1.33e-7. Post-hoc BH revealed that Fkbp5 mRNA expression in 

the DRN was significantly increased in NS-ASDS compared to NS-NS (p=8.35e-6) and NS-Res (p=8.35e-6). The CSDS-ASDS mice also 

did have significantly increased Fkbp5 levels compared to CSDS-NS (p=0.00017), or CSDS-Res (p=0.0016). The NS-ASDS mice did 

not have altered Fkbp5 levels compared to CSDS-ASDS (p=0.34). B) Example in-situ hybridization scans in the DRN. In panel A; 

n=8 for all groups. 

 

 



 

Supplemental figure 2. PCA analysis for the female and male social interaction task. A) The PCA time bin analysis comparing 4 

bins revealed that the first 2.5 min time bin is significantly different from the other time bins. (Kruskal-Wallis test: H(3)=56.00, 

p=4.21e-12. B) The PC1 eigenvalues of the SI time bin PCA. Post-hoc Wilcoxon: 2.5 min vs. 5 min (W=1191, p=8.72e-6), 2.5 min vs. 

7.5 min (W=1321, p=1.91e-9), 2.5 min vs. 10 min (W=1415, p=2.33e-13). C-D) The PCA on the 2.5 min SI data revealed a 

significant difference between sexes (Two-tailed Wilcoxon test: W=339, p=1.17e-6). E-F) The PCA on the 2.5 min SI data for 

males showed no differences between WT and KO after CSDS exposure (Two-tailed Wilcoxon test: W=82, p=0.57). In panels A-

B; n=39 across all four time bins. In panels C-D; n=16 for female and n=23 for male. In panels E-F; n=11 for WT and n=13 for KO. 

  



Supplemental figure 3. Noradrenergic signaling between different project regions. A) Schematic overview of analyzed project 

regions of the LC with microdissection B) Microdissection measuring total NE levels in the mPFC. No main effect differences 

were observed using the two-way ANOVA: social interaction: F(1,34)=0.1, p=0.75, genotype: F(1,34)=0.07, p=0.79, social 

interaction*genotype: F(1,34)=1.73, p=0.20. C) Microdissection measuring total NE levels in the dHipp. No main effect 

differences were observed using the two-way ANOVA: social interaction: F(1,31)=0.27, p=0.61, genotype: F(1,31)=0.86, p=0.36, 

social interaction*genotype: F(1,31)=0.38, p=0.54. D) Microdissection measuring total NE levels in the vHipp. No main effect 

differences were observed using the two-way ANOVA: social interaction: F(1,33)=0.0001, p=0.99, genotype: F(1,33)=0.81, 

p=0.37, social interaction*genotype: F(1,33)=0.50, p=0.49. E) Microdialysis measuring NE release in the BLA. Posthoc BH 

revealed that WT social interaction (WT_SI) has significantly increased NE concentrations in the BLA compared to WT no 

interaction (WT_NI), F(1,22)=4.99, p=0.036, which was not altered in the Fbkp5Nat background, comparing KO_NI with KO_SI, 

p=0.23. Two-way ANOVA: social interaction; F(1,42)=6.22, p=0.017, genotype; F(1,42)=0.46, p=0.50, social 

interaction*genotype; (F(1,42)=0.59, p=0.45. F) Microdialysis measuring MHPG release in the BLA. No main effects were 

observed using the two-way ANOVA: social interaction; F(1,42)=0.75, p=0.39, genotype; F(1,42)=2.03, p=0.16, social 

interaction*genotype; F(1,42)=0.085, p=0.77. In panel B; n=11 for WT_NI, n=11 for WT_SI, n=8 for KO_NI, and n=8 for KO_SI. In 

panel C; n=9 for WT_NI, n=11 for WT_SI, n=7 for KO_NI, and n=8 for KO_SI. In panel D; n=11 for WT_NI, n=9 for WT_SI, n=8 for 

KO_NI, and n=9 for KO_SI. In panels E-F; n=12 for WT and n=11 for KO. 
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6. The Fkbp5 knock-out in the noradrenergic locus coeruleus system alters

social behavior in male mice
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ABSTRACT 
Stress can have severe psychological and physiological consequences. Thus, inappropriate regulation of 
the stress response is linked to the etiology of mood and anxiety disorders. The generation and imple
mentation of preclinical animal models represent valuable tools to explore and characterize the mecha
nisms underlying the pathophysiology of stress-related psychiatric disorders and the development of 
novel pharmacological strategies. In this commentary, we discuss the strengths and limitations of state- 
of-the-art molecular and computational advances employed in stress neurobiology research, with a 
focus on the ever-increasing spatiotemporal resolution in cell biology and behavioral science. Finally, 
we share our perspective on future directions in the fields of preclinical and human stress research.   
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Introduction 

Stress is an important risk factor in the development of 
neuropsychiatric disorders including major depression, anx
iety, post-traumatic stress disorder (PTSD), and other mood 
disorders (Davis et al., 2017; Musazzi et al., 2018; Musazzi & 
Marrocco, 2016; Sanacora et al., 2022). Elucidating the under
lying cellular and molecular mechanisms responsible for the 
pathophysiology of psychiatric disorders requires the gener
ation and implementation of preclinical animal models. 
Although unable to fully recapitulate the multidimensionality 
and complexity of stress-related psychiatric disorders in 
humans, they represent valuable tools to shed light onto the 
mechanisms underlying mental health disorders and develop 
appropriate pharmacological strategies. 

Unraveling the complexity of the neurobiological circuits 
and molecular pathways underlying a healthy or abnormal 
stress response requires the combination and integration of 
cellular, molecular, and behavioral data. While traditional 
approaches lack in-depth spatial and temporal resolution, 
recent technological advancements have made it possible to 
improve these aspects considerably (Gururajan et al., 2018). 
For instance, single-cell transcriptomics allows to probe thou
sands of genes simultaneously and to dissect the contribu
tion of distinct cell types involved in the stress response. 
Likewise, the implementation of activity-dependent labeling 
methods combined with brain clearing techniques, enables 
to ascertain which cells are activated following specific stres
sors, and to reconstruct the brain circuits involved in a 

specific stress-response. Like all “omics” and high-throughput 
techniques, the implementation of these strategies generates 
large amounts of data. It is thus fundamental that they are 
complemented by appropriate computational and statistical 
tools. As a consequence, the advancement in molecular and 
cellular neuroscience techniques prompted a growth in the 
fields of computational science and the development of suit
able data analysis software (Wang et al., 2020). In turn, the 
remarkable computational innovation stimulated a paradigm 
shift in the context of behavioral phenotyping, bringing 
about methods to automatically detect and analyze behav
iors of interest (Shemesh et al., 2013). This now makes it pos
sible to assess at the behavioral level the specific effect of 
different types of stressors (e.g. physical, psychological), stress 
paradigms (acute, chronic), developmental ages (e.g. early 
life, adolescence, adulthood, old age), and sex (males and 
females) in a time-effective manner, while considerably 
reducing manual scoring-related bias. In this commentary, we 
explore strengths and limitations of state-of-the art method
ologies employed in the field of stress neurobiology, focusing 
on molecular (in vivo) techniques, as well as computational 
(in silico) tools for both single-cell transcriptomic data analysis 
and automatic behavioral tracking systems, with an emphasis 
on the ever-increasing spatiotemporal resolution (Figure 1). 
While far from devoid of problems, we believe that the cor
rect integration of molecular and computational techniques 
will greatly contribute to elucidating the role of stress in 
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neuropsychiatric disorders and in designing suitable treat
ment options. 

Molecular neurobiology 

Single cells: increasing spatial and temporal resolution 
of the brain 

Cells are the essential building blocks of life and are there
fore a crucial component to understand the biological mech
anisms responsible for health and disease. Understanding the 
molecular profile of individual cells, for instance on the RNA 
or protein level, will enhance our understanding of the mech
anisms by which stressors are perceived and processed into 
molecular, neuroendocrine, and behavioral responses under 
healthy and pathological conditions (Gururajan et al., 2018). 
In this section, we discuss the current state of the field of 
stress neurobiology from a molecular neurobiology perspec
tive and provide our view, as early career scientists, on future 
directions. 

First, we examine the ever-increasing resolution of the 
field at the micro level, in which there is an increased 
emphasis on information about genes, their cellular entity, 
and their surroundings. Currently, there is a wide variety of 
different techniques to investigate the molecular profile of 
cells. Traditional approaches include western blot, immuno
histochemistry, in situ hybridization, and quantitative real- 
time PCR, among others. Over the years, these techniques 
have provided great insights into many cellular processes 
associated with a response to stress across different organs 
and brain regions. However, these techniques are limited to 
a small number of genes or proteins that can be measured 

by a single experiment and require large amounts of input 
material. Over the last 20 years, the development of RNA 
sequencing technologies allowed for the quantification of 
thousands of genes in a single experiment by genome-wide 
analyses, shaping our understanding of the intricate mecha
nisms of the stress response in human and animal tissues. 
RNA sequencing has triggered a paradigm shift, in which a 
hypothesis-generating approach is utilized to investigate the 
role of novel molecular targets and their link to stress-related 
disorders. In addition, RNA sequencing techniques allow for 
high-throughput quantification of a variety of RNA species, 
including long-noncoding RNAs and microRNAs, which have 
now emerged as important regulators of the physiological 
response to a stressor (Issler et al., 2020; Lin et al., 2021; 
Lopez et al., 2018). However, these experiments require large 
amounts of RNA, from thousands of cells, and unfortunately, 
lack cell-type specificity. New developments in the field of 
molecular genomics now allow for single-cell and cell-type 
specificity using single-cell RNA sequencing (scRNA-seq) (Wen 
et al., 2022), which has emphasized and highlighted the con
tributions of different cell types in relation to a stressful 
event. For example, in 2021 we performed a cell type-spe
cific, molecular characterization of all three components of 
the hypothalamic-pituitary-adrenal (HPA) axis, under baseline 
and chronic stress conditions (Lopez et al., 2021). In contrast 
to standard “bulk” RNA-sequencing methods, scRNA-seq 
allowed us to perform an unbiased characterization of cell 
types from the paraventricular nucleus of the hypothalamus 
(PVN), pituitary, and adrenal glands. We use the term 
“unbiased” here because currently, most cell-types are classi
fied using a handful of established marker genes from the 

Figure 1. From macro to micro: increasing resolution in stress neurobiology. State-of-the-art molecular and computational advances employed in stress neurobiol
ogy research, with a focus on the ever-increasing spatiotemporal resolution in cell biology and behavioral science. The response to stress can be explored at differ
ent levels. For example, the type of stressor (physical [Phys] vs. psychological [Psych]), duration of the stressor (acute vs. chronic), developmental stage (early life, 
adolescence, adulthood, old age), or sex (male vs. female). Created with BioRender.com.  
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literature, rather than using a comprehensive strategy that 
allows for an objective classification of different cell types 
that is based on unique transcriptional signatures from hun
dreds/thousands of genes. It is possible that a more reliable 
molecular signal of stress response remains elusive because 
of lack of an unbiased classification of cell types and the 
absence of better markers for their identification. Since then, 
other studies have demonstrated the importance of under
standing how different cell types respond to an acute or 
chronic stressor (Dournes et al., 2020; H€ausl et al., 2021; 
Kwon et al., 2022; Short, 2021; von Ziegler et al., 2022). Most 
importantly, these studies have provided extensive datasets 
as valuable resources for researchers and clinicians interested 
in the organism’s nervous and endocrine responses to stress 
and the interplay between these tissues. Nevertheless, it is 
important to point out that scRNA-seq technologies are not 
without limitations. For example, the results from these 
experiments are often contingent on analysis parameters and 
other unaccounted variables, such as sample preparation, dis
sociation protocols, as well as proportions and sensitivities of 
cell types. Therefore, it is highly recommended to engage in 
independent validation of the primary findings to ensure that 
robust and consistent findings are reported. This may be cost 
prohibitive, but it is important as many investigators may use 
these datasets to generate new hypotheses and interpret 
previous findings. Another limitation of scRNA-seq is the 
depth of sequencing, which is much less than bulk RNA-seq. 
An alternative approach to explore cell-type specificity is to 
isolate a population of cells using a specific marker. This can 
be accomplished using flow cytometry or antibody-bound 
methods to enrich for a target population and sequence at 
greater depth, using bulk RNA-seq. However, it is important 
to point out that, this approach requires prior knowledge of 
target cell-type markers, and lacks the exploratory capabilities 
of single-cell experiments. 

Unfortunately, due to the dissociation of single cells from 
target tissues, standard scRNA-seq techniques lack spatial 
information (Tian et al., 2022). Over the years, many studies 
in the stress field have shown the importance of cellular 
organization and function using well-established techniques, 
such as immunohistochemistry (IHC) (Hamilton et al., 2018) 
and fluorescent in-situ hybridization (FISH) (Engelhardt et al., 
2021). However, these techniques only allow for a small num
ber of genes to be detected and quantified and thus require 
specific hypothesis-driven gene targeting approaches. 
Interestingly, current developments in FISH have allowed for 
a significant increase in the number of targets, with more 
than 2.000 genes that can be labeled in one slice using 
enhanced electric FISH (Borm et al., 2022). Furthermore, 
recent improvements in sequencing methods now allow for 
single-cell transcriptomic analyses with spatial information 
and resolution (Moffitt et al., 2022). Importantly, these new 
technologies do not aim at replacing non-spatial techniques, 
but can often be seen as complementary. Along these lines, 
spatial transcriptomics in particular can also help annotate 
already available single-cell expression data. For example, 
Maynard et al. (2021) analyzed gene expression across the six 
layers of the human dorsolateral prefrontal cortex. They not 
only identified genes that were differentially expressed in 

specific layers, but also used their data to improve the anno
tation of previously obtained, non-spatial datasets. 
Approaches like these could add information on existing data 
in other regions of the brain, the HPA axis, and the immune 
system, to name a few. Considering the advancements in 
FISH and scRNA-seq, in the future we can expect a significant 
increase in the molecular resolution at which we can assess 
how stress exposure influences changes in the expression of 
genes and their respective cell types. 

A major drawback of these techniques is that the main 
outcome of the experiment remains a snapshot of the stress 
response in a tissue of interest, at a specific moment in time. 
This is a critical limitation, as the effects of stress exposure 
can vary substantially across different time points. Most 
importantly, these techniques cannot distinguish between 
those cells which are engaged directly during and after 
exposure to stress to those that remain unengaged. 
Obtaining activity-dependent information will be critical 
when investigating the response to a stressor. In the next 
section, we highlight several techniques that have been 
developed to capture the activity-dependent state of cells 
after exposure to a stimulus, within and across brain regions. 

Activity sensors: understanding the individual role of 
brain cells and circuits in stress 

Lack of spatiotemporal resolution of neuronal activity is a 
major problem for the precise dissection of brain circuits 
(Gururajan et al., 2018). Exposure to a stressful event triggers 
cellular activation in multiple temporal waves across different 
cells within a set of brain regions, which ultimately drives a 
neuroendocrine and behavioral response. The activity state of 
cells is an important proxy to investigate the cellular 
response system (Kawashima et al., 2014). Stressors can acti
vate a spatially scattered subset of cells within homologous 
brain regions, which emphasizes the importance to distin
guish cells based on their activity patterns. In response to 
cellular activation, different cell populations will use electrical 
and chemical synapses to communicate with other cells. 
Chemical synapses release one or several different neuro
transmitters (NTs) and neuromodulators (NMs), many of 
which are related to the stress response system, such as nor
epinephrine and corticotropin-releasing factor (Deussing & 
Chen, 2018; H€okfelt et al., 2018). Several techniques have 
been developed to explore the activity of neuronal networks, 
such as microdialysis and mapping of brain networks using 
immediate early genes. These techniques have provided 
important insights into the different brain regions activated 
in response to specific stressful events, but have limited cell- 
type specificity and high spatiotemporal resolution. 

Promising and recently developed techniques are now 
aiming to provide new information to explore the activity of 
individual cells and neuronal circuits within a network. For 
example, genetically encoded GPCR activation-based (GRAB) 
sensors (Feng et al., 2019), reviewed by Wu et. al (Wu et al., 
2022) to investigate in-vivo fluctuations of neurotransmitters 
(NTs) and neuromodulators (NMs). GRAB sensors are highly 
selective to the NT or NM of interest, and upon binding will 
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change their conformation, so a fluorescent signal can be 
detected. The GRAB sensors can target specific cell popula
tions by using cre-dependent labeling, which opens up the 
possibility to investigate the contributions of different cell 
types within the system. In addition, they are able to detect 
NT and NM fluctuations within the millisecond time window. 
This makes the GRAB sensors a strong tool for investigating 
the cellular response to stress in the brain, as it has high 
molecular selectivity and temporal sensitivity. Another prom
ising technique is the implementation of activity-dependent 
labeling methods. Genetic labeling of neurons, with a specific 
response feature, is an emerging technology for the precise 
dissection of functionally heterogeneous brain circuits. 
Immediate early gene mapping has been widely used for 
decades to identify brain regions that are activated by exter
nal stimuli, however high spatiotemporal resolution has 
proved to be time consuming and extremely laborious 
(Franceschini et al., 2020). A recent study used multiple 
cohorts of mice, sacrificed at different time points, after 
exposure to a particular stressor and highlighted the import
ance of timing (the temporal component) in stress research, 
as they observed a specific time-dependent pattern of c-Fos 
protein expression across different brain regions 
(Bonapersona et al., 2022). However, the expression of c-Fos 
is ubiquitous across neuronal populations (Cruz-Mendoza 
et al., 2022), which limits the information that can be gath
ered regarding specialized functions of particular neuronal 
types. In addition, the statistical analysis for such brain-wide 
analyses using different time-dependent cohorts is complex 
and highly variable due to the individual differences between 
cohorts. The recent characterization of the promoter and 
enhancer elements responsible for neuronal activity-depend
ent transcription has opened new avenues for the dissection 
of active neurons, allowing for the characterization of neural 
ensembles and circuits in greater detail (Kawashima et al., 
2014). Using activity-driven labeling, it is now possible to 
label and track activated cell populations in a specific time 
window through the brain using viruses and genetic mouse 
lines, such as the enhanced synaptic activity responsive elem
ent E-SARE (Kawashima et al., 2013) or targeted recombin
ation in active populations (TRAP) and TRAP2 (Allen et al., 
2017). Most importantly, these innovative techniques can be 
combined with in-vivo tracking tools, such as electrophysi
ology, optogenetics, DREADDs, calcium imaging, as well as 
GRAB sensors to provide a deeper understanding of a healthy 
and abnormal stress response. Currently, only a handful of 
studies have investigated the stress response system using 
activity-dependent labeling and in-vivo tracking tools (Koutlas 
et al., 2022; Niu et al., 2022; Ramirez et al., 2015). For 
example, an interesting study using first-generation TRAP 
mice was conducted by Ramirez and colleagues, who showed 
that the reactivation of dentate gyrus cells, which were previ
ously labeled during a positive experience, can rescue stress- 
induced depression-like behaviors (Ramirez et al., 2015). 
However, more recent studies utilize a new generation of 
TRAP mice (TRAP2), which allow for a more specific signal, 
only in neurons of interest. More specifically, using TRAP2 
mice, Koutlas and colleagues showed that stress-activated 
neurons in the ventral tegmental area have different 

electrophysiological properties, as compared to non-activated 
neurons in the same region (Koutlas et al., 2022). 
Furthermore, combining calcium imaging tools with activity- 
dependent labeling would allow for exclusive investigation of 
cellular plasticity from stress-responsive cells and exploration 
of their activity properties at different time scales, from 
immediate (acute) to long-term (chronic) effects. An import
ant remark is that the “tagging” of different cell types simul
taneously is not possible, which limits the identification and 
contributions of cell type-specific effects. 

While current advances in the field of neurobiology using 
FISH, scRNA-seq, GRAB sensors, and activity-dependent label
ing methods have been aimed at increasing molecular reso
lution (the micro level), these techniques by themselves do 
not inform at the level of circuits and networks, as well as 
interactions across brain regions and communication with 
other peripheral systems (the macro level). These topics will 
be discussed in the next section. 

Brain and body: investigating whole systems to better 
understand the stress response 

A stressful event triggers a cascade of cellular responses in 
many different brain regions, and peripheral systems, which 
in turn influence each other (Dedic et al., 2018). It is crucial 
to consider the entire brain and body as a holistic entity, to 
further understand different systems and characterize novel 
pathways related to stress exposure and response. 
Biochemical and neuroendocrine data, such as circulating lev
els of glucocorticoids (GCs) have been used as an important 
parameter to measure the stress response in animal models 
and humans. Nowadays, advances in multiplex immunoassays 
can provide a more holistic view of biological markers (e.g. 
GCs, cytokines, catecholamines, vasopressin, among others), 
and even distinguish markers related to different types of 
stressors (e.g. acute versus chronic stress) (Ataallahi et al., 
2022, Tighe et al., 2015). In addition, several physiological 
measurements are now used to investigate how stress 
responses can promote energy reallocation to support sur
vival. For example, metabolic cages allow for quantification 
and exploration of several physiological parameters, such as 
weight, respiratory exchange rate, and energy expenditure, 
which have been found to be differentially altered between 
different stress paradigms (Kuti et al., 2022). Most of these 
measurements are readily available from numerous human 
psychiatric and preclinical studies. Being able to integrate 
this data, into the spectrum of single cell – whole brain stud
ies can increase translatability across species and studies. 

Moreover, a possible way to obtain a more comprehensive 
view of stressed-induced alterations in the brain is by using a 
series of slices through the entire brain and labeling the 
expression of immediate-early genes using IHC or FISH, which 
has provided interesting insights into a brain-wide analysis of 
different cellular targets related to stress exposure (Scharf 
et al., 2011; Silva et al., 2019). However, as previously stated, 
these approaches are extremely laborious, time-consuming, 
and are limited to a small number of genes that can be 
detected and quantified. Another approach is the use of 
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magnetic resonance imaging (MRI), in which whole brain 
activity can be obtained in a single experimental setup, 
which provides insight into the activation and communica
tion of particular regions across the brain (Mandino et al., 
2019). Unfortunately, using MRI animals can only be tested 
under deep anesthesia, which severely limits external manip
ulations, such as natural exposure to stressors during experi
mental recordings. An alternative method to investigate 
whole-brain activity using cerebrovascular fluctuations is 
functional ultrasound imaging (fUS), which enables in-vivo 
recordings without anesthesia (Deffieux et al., 2021). Next to 
investigating the blood flow changes across brain regions, it 
is crucial to be able to investigate activity patterns across the 
brain at higher resolution in order to trace and investigate 
the activated circuits at the single-cell level, which cannot be 
achieved using techniques, such as MRI and fUS. A technique 
that can explore cellular activity across the entire brain, while 
providing single-cell resolution is brain clearing. Brain clear
ing has been rapidly advancing with different methods, such 
as CLARITY (Chung et al., 2013) and iDISCO (Renier et al., 
2014). These techniques help us visualize protein expression 
throughout a cleared tissue, such as the entire brain, at an 
incredible cellular resolution. Nevertheless, we believe that to 
successfully capture the complexity of the stress response, 
the combination of these different techniques will be crucial. 
For instance, combining cell type specific methods, with 
activity-driven labeling tools, and brain clearing techniques 
will provide a more well-rounded view of the brain during or 
after exposure to stress. Ultimately, this will allow us to use a 
more unbiased method to investigate specific brain regions, 
cell types, and cell populations related to the stress response 
system. An excellent showcase for combing these tools are 
recent studies published by Niu et al, in 2022 (Niu et al., 
2022), and Davoudian et al., 2023 (Davoudian et al., 2023). In 
the first, the authors start their study using whole-brain 
imaging after restraint stress then narrowed their focus to a 
few identified stress-responsive regions, including a novel 
target in the claustrum. Subsequently, they labeled a stress- 
responsive neuronal ensemble in the claustrum, using activ
ity-dependent labeling tools and observed that the silencing 
of this neuronal network, using DREADDS, resulted in attenu
ation of anxiety-related behaviors, whereas the activation of 
the same network elicited those behaviors. Similarly, in 2023 
Davoudian and colleagues employed whole-brain serial two- 
photon microscopy and light sheet microscopy to map the 
expression of the immediate early gene, c-Fos, in male and 
female mice, following administration of ketamine and psilo
cybin. Their systematic mapping approach produced an 
unbiased list of brain regions impacted by both treatments. 

Furthermore, in the future important topics, such as the 
influences of sex on the stress response system, the molecu
lar mechanisms and circuits involved in treatment response, 
or the connection between the central and peripheral ner
vous systems can be investigated in greater detail using such 
an approach. For reference, Brivio et al, summarize most of 
the studies that have established sex differences in the 
neurobiological and behavioral effects of stress exposure 
(Brivio et al., 2020). These new tools will significantly improve 
our understanding of the molecular mechanisms and cellular 

circuits responsible for the development of stress-related psy
chiatric disorders. However, the generation and analysis of 
these increasingly more complex and larger datasets have 
created great statistical and computational challenges in our 
field, hence the need for the development and integration of 
computational tools in the field of stress neurobiology. 

Computational science 

Digging deeper: leveraging computational advances to 
increase resolution in individual data modalities 

Many of the questions that the stress neurobiology field is 
currently trying to address require a joint collection of many 
data modalities to reach sound conclusions. As technology 
advances, more data becomes available in different areas 
such as genomics, transcriptomics, proteomics, circuits, and 
behavior, to name a few. This renders an apparent need for 
developing standardized ways of taking advantage of this 
increased resolution, without losing sight of the big picture 
(their interaction). Furthermore, not only does this increase in 
resolution and data volume have value in itself, but it also 
carries the potential to incentivize the development of new 
tools that leverage computational developments, tailored to 
the tasks at hand. For example, the field of behavioral and 
computational science has witnessed an increasing number 
of statistical and machine learning tools designed to tackle 
different arising problems and automate laborious tasks, 
which has a huge impact in how research is being done to 
study the molecular mechanisms and behaviors associated 
with a stress response. In this section, we discuss the current 
state of the computational field, from a stress research per
spective, and illustrate our view on where we think research 
could move next. 

We will start by discussing the field at the micro level 
(that is, increased resolution in molecular data modalities) 
which allows us to inspect closer aspects of biology that 
were inaccessible before. As discussed earlier, increasing data 
volume and resolution in transcriptomics, has sparked a 
plethora of tools and methods that can make such analyses 
manageable. On the single-cell side, programs like SCANPY 
(Wolf et al., 2018) and SEURAT (Satija et al., 2015) have suc
ceeded in making state-of-the-art processing and analysis 
accessible to a broad spectrum of researchers. To date, these 
have accumulated thousands of citations, and the user basis 
continues to grow. In addition, new extensions that handle 
new data modalities continue to be released and maintained, 
such as spatial transcriptomics (Palla et al., 2022), which is 
helping make unprecedented progress in the study of both 
tissue organization and cellular communication. Moreover, 
tools that leverage the ever-growing public datasets to auto
mate even further workloads (for example, automatic cell 
annotation) are an example of the positive feedback loop 
these tools generate (Fischer et al., 2021). This level of stand
ardization portrays substantial benefits for several related 
fields, and stress research is not an exception, with high 
implications for basic understanding of cell composition and 
gene expression in relevant tissues to novel drug targets and 
the development of new treatments. As an example of the 
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latter, in 2022, using a combination of automatic behavioral 
tracking techniques and state-of-the-art scRNA-seq methods, 
we identified cell-type-specific molecular signatures, and a 
previously unknown mechanism of action, for the sustained 
antidepressant effects of ketamine in glutamatergic neurons 
of the ventral hippocampus of adult mice (Lopez et al., 
2022). We expect that, in the near future, these technologies 
will continue to shed light not only into cellular mechanisms 
underlying the action of drugs used in stress-related disor
ders, but also hint at new potential pharmacological targets 
that could be exploited in the future. Finally, while still unex
plored in the stress field, to the best of our knowledge, the 
technical advances in spatial transcriptomics could accelerate 
these findings by providing access to crucial information on 
cellular distribution and communication within a given tissue. 

So far, we have focused on areas in which breakthroughs 
in the experimental domain have triggered an increase in 
data volume, which in turn sparked the need for new com
putational approaches (either completely novel or borrowed 
from other computational and statistical fields). The case of 
behavioral analysis, however, follows the opposite trend: 
here, it was the thoughtful application of recent computa
tional techniques, such as convolutional neural networks 
(CNNs) and other computer vision advances, which led to a 
rapid increase in data collection, and ultimately to a drastic 
change in how research is being carried out and the types of 
questions people can ask. In the next section, we discuss 
how precision behavioral tracking is an emerging and exact
ing new field in neuroscience research. 

Precision tracking: automated systems to dissect the 
behavioral language of rodents in stress research 

In 2013, Shemesh et al. (2013) developed an automatic phe
notyping system based on video color recognition, known as 
the “Social Box” (SB). Here, the authors described how social 
behavior in mice develops in a semi-natural environment, 
using a set of techniques that aim to quantify behavioral 
traits in an automated way, thus freeing researchers from the 
burden of laborious manual quantification. The authors auto
matically tracked several groups of mice in their home envir
onment and investigated how individual behavior is strongly 
interdependent in their groups. In a follow-up study in 2019, 
Forkosh and colleagues developed a model, using the SB sys
tem, that captures and outlines stable personality traits in 
mice (Forkosh et al., 2019). Although undoubtedly insightful, 
this work and many that followed (Anpilov et al., 2020; 
Forkosh et al., 2019; Karamihalev et al., 2020; Shemesh et al., 
2016) were limited to tracking the central position of each 
animal. Furthermore, in this and other contemporary 
approaches, animal identification relied on dedicated (often 
expensive or invasive) hardware, such as radio frequency 
identification (RFID) or color hair dyes (Shemesh et al., 2013, 
de Chaumont et al., 2012). 

Many of these issues were addressed in recent years by 
the development of neural network models that work on 
image data directly, without the need for physical markers. 
For example, tools such as DeepLabCut (DLC) (Mathis et al., 

2018), Social Leap Estimates Animal Poses (SLEAP) (Pereira 
et al., 2022), and SIPEC (Marks et al., 2022), have made it pos
sible to gather enormous amounts of time series data on 
multiple body parts with human-level accuracy (Sturman 
et al., 2020). In addition, some of these models are now cap
able of retaining individual identification in social settings, 
without the need for dedicated hardware (Lauer et al., 2022). 
A concept we believe is worth mentioning here is transfer 
learning. That is, leveraging of previously trained models to 
classify gigantic datasets of unrelated images, which can lead 
to very good tracking with little (or no) labeling (known as 
few-shot learning) (Lauer et al., 2022, Ye et al., 2022). 
Furthermore, this has been shown to work well both in lab 
environments as in the wild, enabling its use for ethological 
studies. While marker-less animal tracking is in itself an 
accomplishment worth mentioning, many tools have become 
available that can take this one step further, and identify 
behavioral patterns in motion tracking data in both super
vised (Nilsson, 2022; Segalin et al., 2021) and unsupervised 
(Bordes & Miranda, 2022; Hsu & Yttri, 2021; Luxem et al., 
2022) ways, paving the way for automated behavioral screen
ings, that are both less laborious and more robust than more 
classical methods. Along these lines, we recently developed 
and introduced an open-source tool called DeepOF (Bordes & 
Miranda, 2022), which is capable of reporting interpretable 
patterns in open field motion tracking data in both super
vised and unsupervised ways. The study emphasizes the 
importance of such analyses for stress research, as we 
showed how DeepOF can be used to detect distinct stress- 
induced behavioral patterns following chronic social defeat 
stress. In particular, we see (in a fully unsupervised way) an 
increase in huddling and escaping behaviors in chronically 
stressed mice, and an enrichment in exploratory patterns in 
controls. Moreover, DeepOF can detect habituation to non- 
hostile environments, reporting how behavioral differences 
between stressed and non-stressed mice fade over time. In a 
recent publication, Shemesh and Chen review different novel 
systems fit to investigate the behavior of rodents and discuss 
what they deemed as a paradigm shift in translational psych
iatry through rodent neuroethology (Shemesh & Chen, 2023). 
The authors suggest that these new methods possess the 
best out of classical ethology and the reductive behaviorist 
approach, which may provide a breakthrough in discovering 
new efficient therapies for mental illnesses. 

All these developments can have large implications for 
stress research. First, by measuring the position over time of 
one or more markers in less restricted environments, scien
tists can increase throughput, since extracting information 
from freely moving animals makes it easier to replace expen
sive and time-consuming batteries of univariate tests, while 
significantly reducing the large numbers of animals needed 
to accomplish the task. In addition, stress research is a field 
in which the leap between human conditions and their ani
mal equivalents is often significant and questioned. Since 
these tools allow for more complex data-driven definitions of 
the outcomes we intend to measure, they have the potential 
to increase construct and face validity. For example, earlier 
this year we, as part of a larger group, proposed an algo
rithm to identify a ‘depression-like syndrome’ in mice based 
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on mappings from both DSM-V and ICD-11 (von M€ucke-Heim 
et al., 2022). While rodent behavior will still remain a distant 
proxy of their human counterpart, given that factors such as 
social, economic, and inferential features are hard (if not 
impossible) to model, we believe efforts like this, which yield 
clearer, standardized definitions of preclinical phenotypes, 
will be extremely important for the field moving forward. 

Translational tools: novel methods to improve 
translatability in stress research 

All in all, both omics and motion tracking examples illustrate 
well how, in our view, having more data can lead to 
increased resolution and, in turn, accelerated discovery. 
However, to date, they are mostly applicable to animal mod
els. Given that the focus of stress research is, at the end of 
the day, understanding and improving the life quality of peo
ple, translation and research in humans are of course crucial. 
In this regard, developments in understanding human behav
ior using virtual reality (VR) are worth mentioning. 

VR currently allows researchers to track movement with 
precision in carefully created environments, making it pos
sible to translate paradigms such as fear conditioning to 
human subjects in a noninvasive way (Binder et al., 2022, 
Binder & Spoormaker, 2020). Furthermore, imaging techni
ques like structural and functional magnetic resonance imag
ing (MRI), promise to accelerate translation by enabling data 
generation directly from human brains. While low test-retest 
reliability and potential construct validity issues coming from 
the heterogeneity of the labels that researchers use to study 
stress-related psychopathologies (Miranda et al., 2021), we 
believe that data-driven initiatives such as the research 
domain criteria (RDoC) (Insel et al., 2010, Morris et al., 2022), 
together with large scale multi-site data collection efforts 
(such as PRONIA) have enormous potential on bringing these 
promises closer to clinical reality (Haidl et al., 2023; Luutonen 
et al., 2013; Popovicet al., 2020). Furthermore, specific tools 
such as Neurominer (Koutsouleris, 2022), provide state of the 
art machine learning tools for brain imaging data with little- 
to-no code, which can be helpful in bringing this kind of 
expertise closer to doctors, in search for multivariate patterns 
that may aid diagnosis, prognosis prediction, and treatment 
optimization of stress-related disorders. Finally, while these 
developments have led on their own right to exciting 
research in the field of stress, they are limited to extending 
single data modalities. Understanding the stress response sys
tem goes far beyond understanding single cells, neural activ
ity or behavior alone, and we believe that the key in the 
near future will rely on data modality integration. 

Reaching broader: gaining integrated knowledge by 
combining multimodal data 

A living system is far more than the sum of its parts, with dif
ferent biological levels interacting and regulating one 
another constantly in complex ways. From genetics, transcrip
tomics, epigenomics, and proteomics, to neural signaling, 
behavior, and environmental factors, being able to merge 

information acquired at different biological levels in clever 
ways can be key to understanding any phenotype 
(Stahlschmidt et al., 2022). This can help exploit the available 
data more efficiently, and lead to more holistic research 
questions. Moreover, a healthy response to stress depends 
on the interplay of many regulatory factors acting at several 
interdependent levels, which result in the allocation of 
energy resources to resolve the stressor situation (Russell & 
Lightman, 2019). Efforts in both describing this response, and 
understanding how it’s altered in stress-related disorders in a 
multimodal way can help disentangling individual differences 
between, for example, susceptibility and resilience toward 
stress exposure or response and non-response to antidepres
sant treatments. 

At a basic level, multimodal integration requires research
ers to draw conclusions of experiments describing multiple 
(complementary) axes of the same problem, and drawing 
conclusions explaining all observed patterns. von Ziegler 
et al. (2022), for example, used a combination of proteomics, 
phospho-proteomics, bulk and single-nucleus RNAseq, and 
TRAP sequencing, to describe the temporal response in the 
mouse hippocampus to acute stress induced by forced swim
ming. By exploring all data types independently and taking 
prior knowledge into account, they provided a comprehen
sive analysis of the temporal dynamics involved. While 
undoubtedly useful, this approach may not scale to larger 
and more complex datasets, as researchers would have to 
learn their joint properties by hand. Furthermore, experi
ments may have different sensitivities, time scales, and intrin
sic artifactual limitations, which in turn highlights the need 
for technologies capable of storing, handling, and automatic
ally reporting joint features from multimodal data. Along 
these lines, several extremely relevant subfields for stress 
research, such as omics, are flourishing with options for 
researchers to benefit from. The recently published MUON 
package (Bredikhin et al., 2022), for example, aims at provid
ing accessible and scalable storage and manipulation of mul
tiple omics layers, where different modalities can be 
organized and analyzed with ease. The also recent tool 
MEFISTO (Velten et al., 2022), for instance, can then be used 
to map all modalities to a shared embedding space, using 
latent factor analysis. Interestingly, these tools are even cap
able of leveraging spatial and temporal dimensions, when 
available. 

Another key point where advances are promising is the 
integration of behavioral and neural data. This remains key 
for studies going from basic neuroscience to psychiatric 
research (including stress), as finding neural correlates of 
adaptive behavioral patterns can pave the way to gain mech
anistic insights into the mechanisms causing pathology or 
drug action. Along these lines, the recently presented soft
ware CEBRA (Schneider et al., 2022) promises to be of great 
help. Using a representation-learning approach, the package 
is able to report non-linear neural correlates of behavior, dir
ectly enabling questions regarding how one affects the other 
in complex ways that may be difficult to detect without com
puter assistance. 
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Concluding remarks 

Here, we have discussed the strengths and limitations of 
state-of-the-art molecular and computational advances 
employed in stress neurobiology research, with a focus on 
the ever-increasing spatiotemporal resolution. Overall, we 
expect these types of molecular techniques and computa
tional tools to encompass more combinations of modalities 
as the field matures, and increasing high-quality data 
becomes available. We want to highlight that with many 
technological advancements making the integration of these 
datasets possible, especially those involving complex, black- 
box models, explainability and interpretability of results is key 
to avoid reporting non-generalizable results that may ultim
ately be prejudicial to the field. While, in some cases, 
research can arguably directly inspect results visually (as it is 
the case for motion tracking), anything involving making pre
dictions that rely on biological data should be thoroughly 
tested, especially if the underlying dataset is small or too 
specific, to make sure that our models are not learning from 
noise, or undetected confounders. Fortunately, the research 
community is becoming more aware of this issue, and both 
tools and best practices guidelines (Goodwin et al., 2022; 
Luecken & Theis, 2019) are being published to sort it out. As 
it is already the case with artificial intelligence in healthcare 
as a whole, we expect this topic to be on the spotlight of 
stress research as available tools become more complex. 
Finally, while the real impact on stress research remains to 
be explored, we strongly believe that integrating multimodal 
and complementary datasets will shed light over patterns too 
complex for humans to interpret directly, but relevant to 
ultimately understand and treat such a complex phenom
enon. From single cells to social behavior, the dream of 
jointly mapping stress response as a whole is closer than 
ever. 
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Chapter 8

General discussion

8.1 Summary

The primary objective of this thesis was to examine the precise role of FKBP51 within specific

stress-related brain regions on the underlying neurobiological mechanisms and behavioral

profiles associated with stress-related disorders. However, the conventional preclinical tools

used to assess behavioral symptoms, such as social aversion, are not sufficient and do not

capture social behavioral domains in detail due to their reliance on reductionistic approaches.

These approaches involve testing animals in controlled environments that often fail to reflect

ethologically relevant behavioral constructs. Recent advancements in automatically annotated

behavioral assessment using high-throughput pose estimation tools [162, 163] have opened up

possibilities for more comprehensive behavioral analyses. This thesis investigated various

automatically annotated behavioral assessment tools for preclinical psychiatry research.

In chapter 2, the different social behavioral assessment methods throughout history were

reviewed, aiming to explore novel strategies for deep behavioral phenotyping using automated

annotated behavioral assessment tools, particularly in the field of psychiatry research. The

review demonstrates how these tools can combine strengths from the fields of ethology and

comparative psychology, leading to the development of a novel social behavioral task. This

task incorporates a semi-naturalistic setup that enables the expression of more natural be-

haviors while maintaining control over the environment by restricting space and external

influences.

In chapter 3 the open-source python package, called “DeepOF” is introduced to investi-

gate the behavioral profile of rodents using advanced computational tools. DeepOF utilizes

high-throughput pose estimation tools, leveraging DeepLabCut annotated data, and enables

post-hoc analysis through both supervised classification and unsupervised clustering. The

supervised classification is intended to extract pre-defined and characterized traits, whereas
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unsupervised clustering aims to explore the data and extract patterns without external in-

formation. The package allows for exploration of individual and social behavioral profiles

in rodents using the supervised classification, as explored in chapter 4 and chapter 6. In

addition, DeepOF can be further customized into the behavioral phenotyping of any required

behavioral analysis using an unsupervised analysis, as explored on the social behavioral profile

in chapter 4, or on fear-related behavior in chapter 5. DeepOF contributes to the standard-

ization and reproducibility of the different behavioral constructs by providing an automated

and validated open-source tool that is uniquely optimized for top-down video recordings.

In chapter 4 the established deep phenotyping strategies of DeepOF are employed us-

ing supervised classification and unsupervised clustering to investigate the individual and

social behavioral profiles following chronic social defeat stress. The application of DeepOF’s

pipelines revealed a distinct stress-induced social behavioral pattern, particularly evident dur-

ing initial encounters and diminishing over time due to habituation. In addition, while the

classical social avoidance task did identify the stress-induced social behavioral differences,

both DeepOF behavioral pipelines provided a clearer and more detailed profile. Ultimately,

DeepOF enhances the classification of affected individual and social behaviors in stress-related

disorders, potentially aiding in drug development for psychiatric disorders.

In chapter 5 the sex-specific effects of early life stress exposure were investigated on HPA-

axis dysregulation. The chapter examines alterations of Fkbp5 expression in several stress-

related brain regions inclduing the BLA and subregions of the dorsal hippocampus, but also

examines the adrenal weight, and baseline CORT levels in a sex- and time-dependent manner.

Fear-related behaviors were assessed using classical freezing behavioral analysis as well as in-

depth behavioral analysis using DeepOF’s unsupervised clustering analysis. The passive fear

behavioral response, as identified via freezing behavior, and also the active fear response, as

identified using an unsupervised analysis, were altered by ELS exposure in a sex-specific man-

ner. The DeepOF unsupervised analysis is highly customizable for different behavioral set-

ups and analysis protocols and provides an additional layer to explore fear-related behaviors

without prior assumptions. DeepOF unsupervised analysis allows for a hypothesis-generating

behavioral analysis, which ultimately can lead to a better understanding of the stress-induced

behavioral phenotype. The findings demonstrated that early life stress exposure alters both

passive and active fear responses in a sex-specific manner.
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In chapter 6 the role of Fkbp5 expression in the LC was investigated concerning different

stress exposures and its impact on the social behavioral profile using DeepOF’s supervised

classification strategies. Only acute social stress led to a significant upregulation of Fkbp5

mRNA, highlighting the importance of the social nature of stressors in Fkbp5 regulation

within the LC. To comprehend Fkbp5 regulation within the LC, a conditional Fkbp5 knockout

line within the noradrenergic system (Fkbp5Nat) was generated. Notably, male Fkbp5Nat

mice exhibited altered social behavioral profile towards a novel social conspecific, with no

significant effects observed in female mice. Furthermore, Fkbp5Nat mice exhibited long-

lasting changes in the molecular associated with to the noradrenergic synapse under baseline

conditions and demonstrated modified noradrenergic signaling when exposed to a novel social

stimulus, specifically in the BLA.

In chapter 7, the discussion section begins by emphasizing the significance of two essen-

tial pillars that will shape the future of stress-related research. These pillars involve the

advancements made in molecular neurobiology and computational neuroscience, which have

contributed to a better understanding of the intricate neurobiological pathways and complex

behaviors underlying stress. Importantly, both fields have seen a rapid development of novel

techniques, but they are also strongly interdependent on each other. For instance, the success

of novel molecular neurobiological techniques like single-cell sequencing relies heavily on the

analytical tools developed by computational neuroscience.

To summarize, this thesis introduces innovative deep phenotyping strategies that utilize

automated motion tracking data to investigate rodent behavior in relation to the effects of

genetic factors (FKBP5) and environmental influences (stress exposure). The thesis under-

lines the brain-region specific effects of stress exposure and Fkbp5 regulation on the social

and fear-related behavioral phenotypes.

8.2 Next generation deep phenotyping requires more than

motion tracking data

In recent years, there has been a growing focus on deep phenotyping of behavior using mo-

tion tracking data, facilitated by advancements in open-source computational tools for pose

estimation [162–167], and their downstream analysis tools, including supervised classification
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[167–170], and unsupervised clustering [170–175]. Understanding the behavioral adaptation to

genetic- and environmental factors is crucial. To achieve a more comprehensive understanding

of these factors on behavior, it is essential to investigate the underlying neurobiological mech-

anisms that contribute to these behavioral changes and to combine the advances in behavioral

analysis with deep phenotyping of additional physiological and functional domains.

On the level of inter-cellular signalling, exposure to a stressful event triggers the release of

a specific set of stress mediator molecules, including monoamines, neuropeptides, and steroid

hormones, which transmit the stress signal to specific brain regions and contribute to func-

tional changes in the brain [34]. In-vivo measurements of these stress mediators provide

additional insights into the effects of stress exposure alongside the behavioral phenotype. An

established method to investigate the release of stress mediators in-vivo within the brain is mi-

crodialysis. This technique relies on the principle of diffusion, where molecules pass through a

semipermeable membrane into an artificial cerebrospinal fluid and enables the measurement

of quantifiable concentrations of the molecule of interest within determined time intervals.

Microdialysis allows for recordings that can span hourly or even overnight durations, which is

particularly important when investigating fluctuations of stress mediators influenced by the

circadian rhythm, as recently highlighted again by Upton et al. 2023 [176]. This method

enables the investigation of the underlying neurobiological pathway and can provide valuable

insights into the impact of genetic factors, such as Fkbp5, on psychiatric risk exposure. This

was illustrated by Anderzhanova et al., 2020 [177] that showed the significant role of Fkbp5

regulation in the changes induced by ketamine in the release of mature Brain-Derived Neu-

rotrophic Factor within the medial prefrontal cortex. Furthermore, in chapter 6, we present

findings that highlight the influence of Fkbp5 regulation in the noradrenergic system on the

release of NE within the BLA, particularly following social stimulation. However, the time

resolution of microdialysis is limited, as stable measurements require a minimum sampling

time of around 10-20 minutes. As a result, in chapter 6, it was only possible to compare

baseline measurements with measurements taken after social stimulation. Enhancing the

time resolution would enable a direct comparison of stress mediator release, such as NE, with

advanced behavioral analysis profiles, as performed by DeepOF or other behavioral analysis

packages. The emergence of genetically encoded GPCR activation-based (GRAB) sensors

represents a significant advancement, as they exhibit an exceptional level of time resolution,
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capable of detecting changes in stress mediators within the millisecond time frame [178].This

high temporal resolution makes GRAB sensors a powerful tool for investigating the cellular

response to stress in the brain, as discussed in more detail in chapter 7. In the context of

chapter 6, the utilization of GRAB sensors would enable a direct comparison of fluctuations in

NE signaling within the BLA with the supervised behavioral classifiers identified by DeepOF,

as well as potentially with unsupervised behavioral clusters. By incorporating GRAB sensors,

the integration of additional data modalities becomes possible, thereby expanding the scope

of deep phenotyping in mice using motion tracking data. It is worth noting that various

other in-vivo data modalities can also be integrated with motion tracking data, as discussed

in chapter 2.

Another intriguing advancement in adding data modalities to behavior is the in-vivo record-

ing of neuronal activity, which in recent years has enabled the simultaneous monitoring of

hundreds to thousands of neurons using state-of-the-art technologies, such as neuropixels [179–

182]. The analysis pipeline for such experiments has become increasingly complex, especially

when combined with behavioral data. Incorporating multiple data modalities inevitably leads

to a larger volume of data to be analyzed, presenting a challenge in terms of data integration.

However, a recent groundbreaking study introduced an open-source analysis pipeline called

”CEBRA,” which leverages the patterns of neuronal activity from hundreds of neurons to

decode underlying behavior [183]. CEBRA enables the integration of these data modalities,

allowing for a more comprehensive supervised and unsupervised representation of behavior

through combined embeddings of motion tracking and neural activity data [183].

In conclusion, the methodological advancements in neuronal tracking tools such as GRAB

sensors and neuropixels offer valuable opportunities to incorporate additional data modalities

in behavioral phenotyping. While the increased information poses challenges in data inte-

gration, recent open-source analysis tools, such as CEBRA demonstrate the potential and

facilitate a deeper understanding of the underlying mechanisms associated with the behavior

of interest.
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8.3 Decoding the ambiguous nature of FKBP51 on psychiatric

risk through brain region and cell type specific effects

The regulation of Fkbp5 and its impact on stress vulnerability is a complex and nuanced

phenomenon that is mediated in a brain and cell type specific manner. Initially, it was

discovered that certain polymorphisms in the FKBP5 gene led to higher expression patterns,

increasing susceptibility to stress-related disorders [97]. However, the heightened response

to antidepressant treatment in risk-allele carriers suggests that the regulation of FKBP5

and its impact on stress vulnerability involve intricate mechanisms that warranted further

investigation.

The expression pattern of Fkbp5 in response to different stress paradigms is highly spe-

cific. Exposure to different acute stressors elicits brain region specific increases in Fkbp5

expression, where for instance restraint stress affects the PVN and central amygdala, while

food deprivation affects the hippocampus [109]. The exposure to chronic stress increased the

expression of Fkbp5 throughout various stress-related brain regions, including the nucleus ac-

cumbens, hippocampus, amygdala, and prefrontal cortex [111, 112], but not the PVN [184].

The present thesis delves deeper into the regulation of Fkbp5 under different stress paradigms.

It is revealed that chronic early life stress exposure specifically increases Fkbp5 expression

in the CA1 region of the dorsal hippocampus in male mice (see chapter 5). Furthermore, in

chapter 6 it is demonstrated that Fkbp5 expression in the LC is only increased after acute

social defeat stress, not restraint stress or a history of chronic social defeat stress. The dorsal

raphe nucleus follows a different pattern of Fkbp5 regulation, in which Fkbp5 is upregulated

after acute social defeat stress and chronic social defeat stress. These findings contribute to

the further disentanglement of Fkbp5’s role in different stress paradigms and highlight the

significance of brain region specific regulation of the Fkbp5 gene.

The importance of Fkbp5 regulation between different brain regions on downstream func-

tional and behavioral outcomes was further illustrated by Engelhardt et al., 2021 [185]. They

showed a disrupted HPA-axis function and anxiogenic behavioral phenotypes in animals lack-

ing Fkbp5 in the BNST, while mice with Fkbp5 overexpression in the BNST exhibited a

protected phenotype. These findings reveal a complex and ambiguous role of Fkbp5 regu-

lation, where divergent patterns of regulation within the BNST play a critical role in de-
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termining the response to stress exposure. This is in contrast with earlier findings on full

Fkbp5 knockout mice, which displayed a more resilient phenotype after stress exposure by

active stress-coping behavior [115, 117], therefore conforming the region specific role of Fkbp5

regulation. Further emphasizing the brain region and cell type specific effects of Fkbp5, van

Doeselaar et al. (2023) [186] demonstrated opposing effects on behavior, brain structure, and

gene expression profiles depending on the cell type specific knockout of Fkbp5 in GABAergic

or glutamatergic forebrain neurons in a sex-dependent manner. The current thesis expands

on the knowledge of the brain region and cell type specific effects of Fkbp5 regulation. In

chapter 6, the conditional knock-out of Fkbp5 within the noradrenergic system induced a

prosocial behavioral phenotype only in male mice. Additionally, these mice exhibited altered

molecular pathways related to the noradrenergic synapse under baseline conditions and show

altered noradrenergic signaling when exposed to a novel social stimulus. In conclusion, the

regulation of Fkbp5 and its effect on stress vulnerability is strongly dependent on the context

of stress exposure.The collective data from this thesis together with previously published ob-

servations underline that the role of Fkbp5 on stress exposure is ambigous and depends on

brain region and cell type specific regulation of Fkbp5. These findings have significant impli-

cations for enhancing our understanding of the role of the psychiatric risk factor FKBP51 in

relation to the vulnerability of stress-related disorders. Moreover, these findings contribute

to unraveling the complex neurobiological mechanisms underlying FKBP51 signaling. Ulti-

mately, by better understanding the intricate neurobiological pathways related to FKBP51

sigaling, future research may be able to identify more precise targets for intervention, leading

to more effective treatments for individuals affected by these disorders.

The outcome of stress exposure is not solely determined by Fkbp5-related gene expression

changes in different brain regions and cell types, but are also influenced by various other

factors. Notably, the effects of Fkbp5 knockout in GABAergic and glutamatergic forebrain

neurons [186], as well as noradrenergic cells (see chapter 6), are strongly modulated by sex.

Hence, the inclusion of factors such as sex is imperative for a comprehensive understanding

of the intricate role of Fkbp5 in the stress response system.
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8.4 The influence of sex on stress vulnerability: a plea for

more ethologically relevant stressors

The outcome of stress exposure is determined by a combination of genetic-, epigenetic-, and

environmental factors. This thesis highlights the critical role of the combined effects of these

factors on stress exposure and discusses the particular important role of advanced tracking

tools in integrating these diverse factor on the outcome of the behavioral profile, see chapter 2.

For instance, it has long been recognized that female rodents exhibit a higher physiological

stress response compared to males, as evidenced by elevated CORT levels following exposure

to various stressors [187]. More recent findings have further revealed sex differences in CRF

signaling within LC neurons, with females showing greater sensitivity and higher CRF levels

compared to males, making the LC an intriguing target for investigating stress-induced sex

differences. [188, 189]. The influence of sex on stress vulnerability has gained considerable

attention in recent years, with an increased amount of evidence supporting sex-dependent

regulation of stress-related behavioral symptoms across different stress paradigms [186, 190,

191].

To compare stress-induced behavioral effects between sexes, it is crucial to employ com-

parable stress paradigms that account for inherent sex differences. The innate differences

between sexes need to be recognized in order to maintain the observation of ethologically

relevant behaviors. This is particularly relevant when examining social behavioral patterns,

which are heavily influenced by sex-related differences, for instance as observed in hierarchy,

parental care, and sexual behaviors [192].An interesting example pertains to adapting the

traditionally male-focused chronic social defeat stress paradigm for females [193–195]. This

paradigm typically involves the exposure of male mice to an aggressive male mouse, usually

from a different strain, that subsequently attacks and forces the experimental mouse into

subordination [196]. While this stress paradigm is effective in male mice due to their expres-

sion of strong aggressive behaviors in the context of hierarchy towards other males, it is not

optimal for females, as the same extent of aggression is not observed among females [197].

Consequently, the majority of social defeat studies utilize a male aggressor mouse targeting

another male. Recent contributions have adapted the social stress protocol by tricking the

male aggressor mouse by employing male urine on the experimental female mouse, leading
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to robust attacks towards the female mice [193, 194]. An important symptom of the chronic

social defeat stress model in males is the increase in social avoidance behavior in stressed mice

[196, 198]. However, female stressed mice did not exhibit a difference in this particular social

avoidance behavior. Additionally, a recent study conducted by Pantoja et al., 2023 [195],

utilized an accelerated version of the social defeat stress model for female mice. The study

employed a novel approach where the aggressor mice were initially exposed to a male mouse

for 30 seconds, followed by swapping the male mouse with a female experimental mouse, which

was then subjected to attacks. The findings from this study align with the observations made

in the study by van Doeselaar et al., 2021 [194], in which female mice did not exhibit an

increase in social avoidance behavior. Additionally, Pantoja et al., 2023 [195] specifically

compared the distribution of social avoidance susceptibility versus resiliency between males

and females. The results revealed a higher percentage of resilient mice among females (85%)

compared to males (55%). However, it is noteworthy that the number of attacks experienced

by females was lower than that of males throughout all sessions of the defeat model. In the

study conducted by van Doeselaar et al. (2021) [194], although the specific number of attacks

was not measured, it was observed that female mice experienced attacks in only 60% of the

cases. However, a direct comparison with male mice was not conducted in the study. These

studies suggest that there are differences in the frequency and severity of attacks between

males and females subjected to attacks from male mice aggressors, which could potentially

contribute to variations in social avoidance behavior between the two sexes. Furthermore, the

social defeat stress paradigm in females is far from the ethological relevant behaviors that are

normally exhibited towards female mice, which could further explain the differences in social

avoidance behavior between sexes. Female mice may exhibit different responses to stressors

that better align with their ethological context.

Another option for chronic social stress exposure across sexes is the social instability stress

paradigm, where group composition is changed multiple times over a prolonged period [199].

However, the inherent differences in aggressive behaviors within hierarchical contexts between

males and females remain a challenge in this paradigm, as males will exhibit more aggressive

behavior among each other than females [200]. Lopez et al., 2021 [201] emphasize sex-specific

differences in stress sensitivity depending on the type of stressor, for instance as exhibited by

a heightened sensitivity of females to social isolation. Therefore, instead of adapting stress
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paradigms validated in male mice for use in females, a more promising approach may involve

developing specific stress models that capture ethologically relevant aspects in females.

The integration of social stress exposure within a semi-naturalistic environment could offer

a valuable method for inducing ethologically relevant stressors that are comparable between

sexes. This approach would enable the investigation of group behaviors in a free interaction

environment while maintaining control over the environment and space, as illustrated by

[202, 203]. Different type of stressors can be added into such an environment, for instance via

limiting food resources, changing the ambient temperature, or socially isolating the animals.

Another avenue worth exploring is social stress transmission, where a single animal is exposed

to a stressor within or outside the environment, and subsequent behavioral responses of other

animals towards the previously stressed individual are examined.

The growing recognition of the importance of including both males and females in stress

research is a promising and valuable advancement, especially considering the influence of

sex on the prevalence of stress-related disorders [204]. While current efforts to adapt tradi-

tionally male-biased stress paradigms to include females are commendable, it is important to

acknowledge that these adaptations may not fully capture the ethologically relevant behaviors

for females in certain stress paradigms. Therefore, it is crucial to continue developing specific

stress paradigms tailored to females in order to enhance our understanding of stress exposure

across sexes. By doing so, we can gain more comprehensive insights into the impact of stress

on both males and females and improve the translatability of findings to clinical applications.

8.5 Closing remarks

In conclusion, this thesis explored the brain region and cell type specific role of FKBP51

in stress-related disorders, by investigating the underlying neurobiological mechanisms and

behavioral profile. The behavioral phenotyping is performed using advanced computational

tools using automated motion tracking data to explore the behavioral profile using supervised

behavioral classification and unsupervised clustering tools with the DeepOF package. The

findings highlight the importance of deep phenotyping strategies for understanding genetic

and environmental factors that influence behavior. Furthermore the need for integrating

additional data modalities is emphasized, such as in-vivo measurements of stress mediators

and neuronal activity, in order to gain a more comprehensive understanding of the behavioral
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phenotype. This research contributes to our understanding of stress-related disorders and

the intricate interplay between genetic factors, environmental influences, and the underlying

neurobiological mechanisms. It provides valuable insights into the development of future

research strategies for deep phenotyping and decoding the ambiguous nature of FKBP51 on

psychiatric risk through brain- and cell-type specific effects.
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