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Zusammenfassung

Sterne haben die Menschen schon seit jeher fasziniert und Beobachtungen zeigten bereits
vor Jahrzehnten, dass leichte Sterne filamentartigen Strukturen entspringen. Dennoch ist
der Entstehungsprozess dieser Filamente sowie deren Entwicklung und Fragmentierung in
einzelne Kerne bislang nicht hinreichend verstanden. Wie ich in der vorliegenden Arbeit,
die neue Erkenntnisse zur Dynamik, Fragmentierung und zum Kollaps von Filamenten
ermöglicht, zeige, spielt das Aufstellen, Verstehen und Vergleichen von Zeitskalen hierbei
eine wesentliche Rolle.

Von zentraler Bedeutung hierbei ist die Zeitskala, auf der Filamente kollabieren, denn
diese bestimmt ihre Lebensdauer und somit den zeitlichen Rahmen in dem physikalische
Prozesse innerhalb des Filaments ablaufen können. Da es keine hydrostatische Lösung
entlang der Hauptachse eines Filaments gibt, sind diese nicht stabil. Aus theoretischer
Sicht müssen somit alle Filamente einem longitudinalen Kollaps unterliegen, wobei sich
durch das Profil der Beschleunigung eine Verdichtung an jedem Ende des Filaments bildet.
Dies ist der sogenannte

”
Edge Effect“. Die vorliegende Arbeit zeigt, dass der Filament-

Kollaps in einem zweistufigen Prozess abläuft. Die erste Phase ist dominiert durch Ei-
gengravitation, die zu einem beschleunigten Kollaps führt. In der zweiten Phase erfährt
die Verdichtung am Ende des Filaments einen Staudruck durch das Material im Inneren
des Filaments, was zu einer gleichförmigen Bewegung führt. Ausgehend von diesen Er-
kenntnissen lässt sich der Kollaps analytisch beschreiben und eine Kollapszeit berechnen,
welche mit empirischen Betrachtungen übereinstimmt.

Unsere Studien zeigen, dass die Zeitskala, auf denen Filamente kollabieren, und somit
auch der Edge Effect stark vom Dichtegradienten in der Endregion abhängt. Auch wenn
er den Kollaps nicht aufhalten kann, so kann er diesen verlangsamen. Wird der Kollaps
hinreichend verlangsamt, können Störungen schneller anwachsen, was zur Fragmentation
entlang des Filaments führt. Das erklärt, weshalb der Edge Effect seltener beobachtet
wird, als bisher theoretisch erwartet. Auf Basis unserer Ergebnisse ist zu erwarten, dass
die meisten Filamente Dichtegradienten am Ende besitzen, die größer sind als der kritische
Gradient, bei dem der Edge Effect und das Anwachsen der Störungen gleich schnell sind.

Eine Verlangsamung des Filament Kollaps ermöglicht den Ablauf von Prozessen, wel-
che auf ähnlichen Zeitskalen stattfinden, wie zum Beispiel das Verschmelzen von Filamen-
ten. Ich zeige in dieser Arbeit, dass es ohne die Verlangsamung des Kollapses bestimmte
Rahmenbedingungen braucht, unter denen eine Verschmelzung überhaupt möglich ist.
Die notwendigen Grenzwerte verschieben sich durch die Verlangsamung und machen eine
Verschmelzung deutlich wahrscheinlicher. Durch die Verschmelzung unterliegen Filamen-
te einer langanhaltenden Oszillation, die auch in der Geschwindigkeitsdispersion und der
Säulendichte beobachtbar ist. In beispielhaften Filamenten der Orion-Region haben wir
Hinweise auf ähnliche Strukturen gefunden.

Schlussendlich gebe ich noch einen Ausblick, wie maschinelles Lernen Simulationen
von Filamenten beschleunigen kann. Wir haben ein Netzwerk entwickelt, das die Ab-
schwächungskoeffizienten von interstellarer ultravioletter Strahlung bei bekannter Dichte-
verteilung bestimmt, was rechnerisch deutlich effizienter ist als herkömmliche Methoden.
Große Strukturen werden gut reproduziert, jedoch ist die Reproduktion von kleinen und
dichten Strukturen noch nicht hinreichend akkurat.





Abstract

Stars have always fascinated people and already decades ago observations showed that
low-mass stars originate from filamentary structures. Nevertheless, the formation process
of these filaments, as well as their evolution and fragmentation into individual cores, is
not yet sufficiently understood. As I will show in this thesis, which provides new insights
into the dynamics, fragmentation and collapse of filaments, determining, understanding
and comparing timescales plays a crucial role, in this regard.

The timescale on which filaments collapse is of key importance because it determines
their lifetime and therefore the timeframe in which physical processes can take place
within the filament. Since there is no hydrostatic solution, filaments are not stable
along their main axis. From a theoretical point of view, all filaments must therefore
collapse in longitudinal direction with a compression forming at each end of the filament
due to the profile of the acceleration. This is the so-called ‘edge effect’. The present
thesis demonstrates that the filament collapse is a two-phase process. The first phase is
dominated by the self-gravity of the filament, leading to an accelerated collapse. In the
second phase, the condensations at the end of the filament experience the ram pressure
of the material inside the filament, leading to a uniform movement. With these findings,
the collapse can be described analytically and a collapse timescale can be determined
which agrees well with empirical results.

Our studies show that the timescale on which filaments collapse, and therefore also the
edge effect, strongly depends on the density gradient in the end region. Although a density
gradient cannot stop the edge effect, it can slow it down. If the slow-down is sufficiently
large, perturbations can grow faster than the edge, leading to fragmentation along the
filament. This explains why the edge effect is observed less than theoretically expected.
Our results suggest that most of the filaments are required to have density gradients
shallower than the critical gradient, for which the edge effect and the perturbations grow
on the same timescale.

The slow down of the filament collapse allows processes to occur that happen on
similar timescales as, for example, filament mergers. In this work, I show that without
slowing down the collapse, special initial conditions have to be met in order to make
filament mergers possible. The necessary thresholds are shifted due to the slow-down,
making a filament merger much more probable. The merger induces long-lived oscillations
which can be observed in velocity dispersion and column density. We found evidence of
similar signatures in exemplary filaments in the Orion region.

Finally, I will give an outlook on how machine learning can speed up simulations of
filaments. We developed a network that predicts attenuation coefficients of interstellar
ultraviolet radiation given a certain density distribution and which is computationally
much more efficient than traditional methods. The overall structure is well reproduced,
whereas the determination of small and dense features needs further improvement.
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Chapter 1

Introduction

1.1 The interstellar medium

The space between the stars is everything but empty. It is filled with what is called the
interstellar medium (ISM), a mixture of gas and dust. The ISM is a complex medium,
spanning several orders of magnitude in density and temperature and hosting all the
relevant processes inside a galaxy, from stellar birth over planet formation to supernovae
explosion and the creation of black holes. Thus, a deeper understanding of its internal
structure is necessary to comprehend the bigger picture of galaxies and star formation.

In the following, I will go into more detail on the composition of the ISM, how to
observe it and how it is a self-sustaining process.

1.1.1 Phases of the ISM

The interstellar medium consists of 74% hydrogen, 15% helium and 1% other elements
(Williams, 2021). It is a multi-phase medium spanning about six orders of magnitude in
temperature and five orders of magnitude in density. Thus, each phase is governed by
different physical processes, which I will describe in the next paragraphs in more detail
following Williams (2021). An overview of the components is given in Figure 1.1. It
shows in-plane observations of the different ISM components of the Milky Way. In the
top row, stellar light is given as a reference.

Atomic gas
The most massive component in the ISM consists of atomic hydrogen, also known as HI
clouds. The kinetic energy in these clouds is too low to excite hydrogen by collisions.
However, the hyperfine splitting of the ground state can be observed, the 21 cm line. Since
it is a forbidden transition its spontaneous emission is long-lived (∼ 11Myr) and rare.
Nevertheless, it still occurs often enough to be detected, because of the large amount of
hydrogen atoms.

The 21 cm line lies in the radio regime (300 µm < λ < 10m) where also the ionised and
molecular gas emit. Due to its long wavelength, its angular resolution is limited, however,
combining several dishes into an interferometric array can increase the resolution. An
example of such an array is the Atacama Large Millimeter Array, short ALMA, in Chile.
It consists of 50 dishes with each a diameter of 2m.
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Figure 1.1: In-plane observations of the different ISM components in the Milky Way as
indicated in the pictures. (Picture credits: Starlight/Dust - ESA/Gaia/DPAC, CC BY-
SA 3.0 IGO; Atomic gas - HI4PI Collaboration; Ionised gas - Max Planck Institute for
Radio Astronomy, Haslam et al. (1982); Molecular gas - ESA and the Planck Collabora-
tion)

https://creativecommons.org/licenses/by-sa/3.0/igo/
https://creativecommons.org/licenses/by-sa/3.0/igo/
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The atomic gas can be subdivided into two different phases. The warm neutral medium
with a number density of n ∼ 106m−3, a temperature of T ∼ 8000K and the cold neutral
medium with n ∼ 108m−3, T ∼ 100K. There is an abrupt change in the cooling function
when some hydrogen atoms can be excited via the Lyman alpha transition, below this
temperature HI clouds are mostly cooled by line emission of oxygen and carbon. This
leads to a cooling instability and two stable constellations which can coexist having the
same pressure, but different temperatures and densities (Field, 1965; Field et al., 1969).
Absorption features of background stars give insights into the composition of the atomic
component.

Ionised gas
Hot stars emit a lot of ultraviolet (UV) radiation which is sufficient to ionise their sur-
roundings. Since recombination in these diffuse areas is slow this component builds a
low-density plasma with densities of ∼ 10−3 cm−3 and temperatures around ∼ 106K
(McKee & Ostriker, 1977). Although dust sublimates at 1600K it can survive in these
hot environments, since the dust decouples from the gas and can cool to much lower tem-
peratures via continuum emission, as a result of the low densities. The gas is heated by
the fast-moving photoelectrons and cools via escaping radiation. Because of the high tem-
peratures a lot of different processes occur producing radiation at various wavelengths.
Line cooling is mainly accomplished via forbidden transitions, but also the continuum
emission from bremsstrahlung of deflected electrons and synchrotron radiation from rel-
ativistic protons in the magnetic field are important.

Molecular gas
In very dense (n ∼ 100 cm−3) regions of the ISM, which are shielded from energetic
radiation, molecules can form. The most abundant molecule is molecular hydrogen.
However, it is not detectable due to the cold temperatures ∼ 10K which are not sufficient
to excite electrons from the ground state. Much higher temperatures are needed (around
500K) to excite rotational modes since the symmetry of the hydrogen molecule leads
to a vanishing dipole moment. Thus, different tracers are used to detect the molecular
component of the ISM, such as dust or asymmetric molecules like carbon monoxide (CO),
which can be detected in the mm regime. Although the dust shields the molecular
clouds from optical and UV irradiation, cosmic rays, highly energetic particles, can still
penetrate in these dense regions. They ionise H2 and the freed electron can excite more
molecules. Goldsmith & Langer (1978) showed that a temperature of 10K is reached for
an equilibrium between cosmic ray heating and line cooling, mostly by the rotational lines
of CO. As the line width of the transition was observed to be much wider than predicted
at that temperature, the molecular regions are expected to be turbulent, with a velocity
dispersion scaling relation of σ ∝ R0.5 known as one of the Larson’s relations (Larson,
1981; Solomon et al., 1987; Heyer et al., 2009), with R the radius of the cloud and σ the
velocity dispersion.

Dust
One per cent of the total mass of the ISM is found to be in dust grains (Bohlin et al., 1978).
These are created during the expansion of stellar winds, which cool and then condense to
solid particles. The size distribution between 0.005−1.0 µm is given by a power law with
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an exponent of −3.5 (Mathis et al., 1977; Draine & Lee, 1984). In comparison to the
gaseous components of the ISM, dust interacts with light over a broad wavelength range.
Since they absorb in the ultraviolet and optical regime, they appear as black patches in
the sky when observed by eye. Due to the wavelength-dependent absorption, the light
of background stars appears redder if absorbed through a dusty cloud which is called
extinction. Since the dust particles are much cooler than these background sources, they
emit at a much longer wavelength than they absorb, in the infrared.

The infrared regime is subdivided into three groups, the near-infrared ∼ 0.8− 2.4 µm
dominated by starlight, the mid-infrared ∼ 2.4− 25 µm where observations of warm dust
and molecular transitions are possible, and the far infrared ∼ 25−300µm the emitting
regime of cold dust. The wavelength range corresponds to the spectrum of a black
body of 10 − 4000K. Since far infrared radiation cannot easily transmit through the
Earth’s atmosphere space telescopes like Spitzer and Herschel are used for observations
in this wavelength regime. However, both missions have ended and there is currently no
operating alternative.

Although most of the dust mass is provided by larger grains, the small ones provide the
larger surface area. The surface area is important for the chemical processes happening in
molecular clouds since they are much more likely to happen on the surface of dust grains,
especially the formation of molecular hydrogen (Gould & Salpeter, 1963; Hollenbach &
Salpeter, 1971). On those surfaces, the relative velocities of the reactants are nearly zero
and the energy excess of a chemical reaction can be transferred to the grain.

1.1.2 Life cycle of the ISM

The ISM undergoes a self-regulating cycle, sketched in Figure 1.2, connecting the different
phases of the ISM. The diffuse and hot component of the interstellar medium condenses
into thicker regions, where the UV irradiation from outside is blocked. In these cold
environments, molecules can form. Decades ago, observations already showed that these
molecular clouds are pervaded by filaments, being dense, cold, cylindrical substructures
(Schneider & Elmegreen, 1979). These have been shown to be stellar nurseries (Arzou-
manian et al., 2011; Könyves et al., 2015), since most of the low-mass prestellar cores are
found within them. This is what makes them so interesting, since they are the pre-phase
of star formation. A deeper understanding of their evolution and fragmentation is neces-
sary to understand, how stars are formed. While the cores in filaments collapse to form
stars, discs are created around the prestellar object due to the conservation of angular
momentum. In these discs, planetary systems such as our own solar system form. During
the lifetime of a star, especially in its later stages, a lot of matter is ejected back into
the interstellar medium. The most disruptive event in this regard are supernovae. When
luminous stars collapse at the end of their lifetime their collapse as supernova releases
around ∼ 1051 erg/10M⊙ (for a type II supernova, Rubin et al., 2016) which disrupts
the surrounding medium. These processes enrich the ISM with heavy elements formed
during stellar evolution, bringing it back in to a more diffuse state and the cycle starts
all over again.
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Figure 1.2: Life cycle of the gas in the interstellar medium. Starting with a diffuse cloud,
these collapse into dense regions where molecules can be created. Inside the clouds
filaments form which collapse to stars with protoplanetary discs, where also planets can
be created. Especially at the end of a star’s lifetime a lot of its matter is ejected back into
the diffuse ISM. (Picture credit: Diffuse ISM - ESO/T. Preibisch; Molecular ISM - ESO;
Filaments - ESO/APEX (MPIfR/ESO/OSO)/A. Hacar et al./Digitized Sky Survey; Stars
& Planets - ALMA (ESO/NAOJ/NRAO); SN & Ejecta - ESO; CC BY 4.0)

https://creativecommons.org/licenses/by/4.0/
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1.2 Filaments

It is known that the molecular phase of the interstellar medium (ISM) is pervaded by fila-
mentary substructure. Filaments are the cylindrical and cold density enhancements where
pre-stellar cores are forming (Arzoumanian et al., 2011; Könyves et al., 2015). Therefore,
filaments are important for understanding the physics of star formation. They have been
observed across various different regions and they span several orders of magnitude from
the sub-parsec regime to hundreds of parsec in length (Hacar et al., 2023).

In the following, I will go into detail about the theory of filaments in hydrostatic
equilibrium as well as their fragmentation, in particular the edge effect and perturbation-
induced fragmentation, followed by an overview of some observational findings in com-
parison.

1.2.1 Hydrostatic filaments

Considering filaments are perfect gaseous cylinders. In hydrostatic equilibrium the gra-
dient of the potential Φ has to counterbalance the pressure gradient ∇P :

−∇Φ =
1

ρ
∇P, (1.1)

ρ being the density. For the following, we will solve only for the radial component r of
the filament. For an isothermal solution, the equation of state is given by the law for
ideal gases:

P =
kT

µm0

ρ, (1.2)

with k the Boltzman constant, T the temperature and µ the particle mass times m0,
the atomic mass constant. By applying some algebra and the substitution r ∝ ξ and
ρ = ρc exp(−ψ), where ρc is the central density of the filament, we get the cylindrical
form of the Lane-Emden-Equation:

d2ψ

dξ2
+

1

ξ

dψ

dξ
= e−ψ. (1.3)

Ostriker (1964) and Stodólkiewicz (1963) derived the radial profile which solves Equation
1.3. Thus, for this radial density distribution filaments are in hydrostatic equilibrium

ρ(r) = ρc

[
1 +

( r
H

)2]−2

, (1.4)

where H is the scale height given by

H2 =
2c2s
πGρc

, (1.5)

with cs being the speed of sound, which is 0.19 km s−1 for a molecular weight of 2.36
and a temperature of 10K (Fischera & Martin, 2012) and G the gravitational constant.
An example is given in Figure 1.3. Integrating the displayed profile for [0,∞] gives the
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R H
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b

c

Pb = Pext

Figure 1.3: Radial profile of a filament in hydrostatic equilibrium, (Equation 1.4). At
pressure equilibrium between the pressure inside and outside of the filament, the filament
is cut off. The boundary density ρb determines the radius R.

maximal mass per length called line-mass (µ ≡M/L the mass of the filament divided by
its length) for which a filament can be in hydrostatic equilibrium, the critical line-mass:

µcrit =
2c2s
G

≈ 16.4M⊙ pc−1. (1.6)

Above this value, all filaments would start to collapse radially (Fischera & Martin, 2012).
Therefore, the criticality f of the filament is defined as the ratio of the line-mass divided
by the critical line-mass:

f =
µ

µcrit

. (1.7)

In reality, filaments certainly do not extend infinitely but are constrained by the outside
pressure confining the filament to a certain radius. With

ρb = ρc(1− f)2 (1.8)

being the boundary density at pressure equilibrium between the external pressure and the
pressure of the boundary of the filament (Pext = Pb, Figure 1.3). The outside material
then has a higher temperature and thus a lower density, which induces a cut-off at radius
R:

R = H

(
f

1− f

)1/2

. (1.9)
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1.2.2 Edge effect

As discussed in the previous section a filament can be radially in hydrostatic equilibrium.
In contrast, there is no solution for the main axis of a filament. Thus, every filament
should theoretically be collapsing longitudinally due to its self-gravitation, the process
is depicted in Figure 1.4. The acceleration a along the filament due to self-gravity was
already investigated by Burkert & Hartmann (2004):

a = −2πGρ̄

2z −
√(

l

2
+ z

)2

+R2 +

√(
l

2
− z

)2

+R2

 (1.10)

with ρ̄ the mean density and z the position along the filament and l its length. In Figure
1.4, a sketch of the acceleration is given in the graph on the upper left-hand side. The
acceleration is calculated for a filament with a constant density inside and a sharp cut-off
to the surrounding medium, I will discuss in Chapter 4 (Hoemann et al., 2023b) how this
approximation influences the filament fragmentation and collapse. However, because of
the strong increase of acceleration at the end of the filament, matter is piled up in these
regions while everything falls into the centre. Thus, cores are forming in the end regions
during the overall collapse. This is the so-called ‘edge effect’ (Bastien, 1983).

In the first paper (Chapter 2, Hoemann et al., 2021) we determined the time scale
on which end cores are built, the edge effect formation timescale tedge, considering the
acceleration given above:

tedge =

√
1.69× 10−20 g cm−3

fρc
Myr (1.11)

In addition, the overall collapse timescale determines the lifetime of a filament. There
have already been several investigations (Toalá et al., 2011; Pon et al., 2012) and the
latest by Clarke & Whitworth (2015) to quantify the filaments’ lifetime. They found,
that due to ram pressure, the end cores reach a terminal velocity after about 1Myr. Due
to the fit to simulated data, they found the collapse timescale tcol. In the second paper
(Chapter 3, Hoemann et al., 2023a) we found the derivation this timescale

tcol =
0.42 + 0.28A√

Gρ̄
(1.12)

and an analytic description of how the merger evolves.
Although the edge effect has been theoretically expected to occur rapidly, it was only

observed in limited cases (Zernickel et al., 2013; Kainulainen et al., 2016; Bhadari et al.,
2020; Yuan et al., 2020; Cheng et al., 2021). One exemplary observation of S 242 by
Dewangan et al. (2019) is shown in Figure 1.4 on the lower left-hand side. Nevertheless,
this results in a big puzzle: what is the cause for observing the edge effect only rarely,
although it is theoretically expected to appear frequently?

There have already been some works for different collapse modes. Seifried & Walch
(2015), for example, found that an initial density peak in the centre leads to a centrally
dominated filament collapse. This was also investigated by Keto & Burkert (2014) for
filaments with length to radius ratio of 3:1, although the necessary perturbations have not
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Figure 1.4: Fragmentation mechanisms in filaments. Left: Fragmentation through the
edge effect. A filament of constant density along its main axes has a sharp increase in
acceleration at the end of the filament, due to self-gravitation. Thus, cores are formed at
the end during the overall collapse. An observed example is S242 (Picture credit: Dewan-
gan et al., 2019, CC BY 4.0). Right: Fragmentation through the growth of perturbations.
Initial perturbations in line-mass can grow over time. An example of this core formation
along the filament is given in Taurus (Picture credit: Tafalla & Hacar, 2015, CC BY 4.0).
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been observed, the expected oscillating cores have been (Redman et al., 2006; Aguti et al.,
2007). A different possibility was suggested by Heigl et al. (2022), where the filament is
built and constantly fed by a converging flow. Since the filament is contracting inside
the constant inflow region the ends are recreated behind the filament ends, this matter
reduces the acceleration at the end of the filament which slows down the creation of end
cores. In Chapter 4 I show that whether the edge effect is suppressed or not depends on
the density gradient at the end of the filament.

1.2.3 Perturbations in filaments

A second mode of fragmentation is given through the growth of perturbations inside
the filament for which a corresponding sketch is given in Figure 1.4 on the right-hand
side. Considering a perturbation strength of ϵ and a wavelength λ leads to the following
perturbation in the criticality (equivalent to line-mass perturbations):

f(z) = f0

[
1 + ϵ cos

(
2πz

λ

)]
. (1.13)

Hershel observations in the Pipe, Taurus and IC 5146 molecular cloud revealed perturba-
tions in the line-mass of about ϵ = 0.09 (Roy et al., 2015). The perturbations grow over
time, resulting in cores forming along the filament. An example observation of Taurus
(Tafalla & Hacar, 2015) is shown in Figure 1.4 on the lower right.

Nagasawa (1987) already performed a comprehensive perturbation analysis. Fischera
& Martin (2012) then found a polynomial approximation of the characteristic scales for
the growth of perturbations: First, they approximated the critical wavelength λcrit which
is at least needed for perturbations grow. Second, the dominant wavelength λdom was
determined for which perturbations grow most efficiently and third its corresponding
growth timescale τdom. λcrit/FWHM , λdom/FWHM and τdom

√
4πGρc, represented by

y, are approximated by a fourth-order polynomial of the criticality, with coefficients ai:

y(f) =
4∑
i=0

aif
i. (1.14)

The associated full width at half maximum FWHM is given in terms of the scale height
H by:

FWHM/H =
5∑
i=0

aif
i/2. (1.15)

The coefficients ai are given in Table 1.1 and a visualisation of the wavelength and the
dominant growing timescale is displayed in Figure 1.5 depending on the criticality f .

Using the dominant fragmentation mode λdom we can determine how much mass a
single core induced by initial perturbations could accrete. This results in an upper mass
for cores formed via perturbations in filaments:

M = λdomfµcrit. (1.16)

Figure 1.6 shows the expected masses depending on the criticality f for different radii R.
This shows that high-mass stars cannot be formed via perturbations, since not enough
mass can be transferred to a single core in this scenario.
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Table 1.1: Fit parameter for the coefficients ai of the polynomial approximation done in
Fischera & Martin (2012) for the main perturbation characteristics, Equation 1.14 and
1.15.

a0 a1 a2 a3 a4 a5
τdom

√
4πGρc 4.08 0.00 -2.990 1.460 0.400 0.00

λcrit/FWHM 3.39 0.00 -2.414 1.588 0.016 0.00
λdom/FWHM 6.25 0.00 -6.890 9.180 -3.440 0.00
FWHM/H 0.00 1.732 0.000 -0.041 0.818 -0.976

1.2.4 Observations

Filaments are observed everywhere in the interstellar medium and on various different
scales: form large structures of more than 100 pc in length like Nessie (Goodman et al.,
2014; Mattern et al., 2018), infrared dark clouds (Perault et al., 1996; Alves et al., 1998;
Egan et al., 1998; Hennebelle et al., 2001; Peretto & Fuller, 2009; Miettinen & Harju,
2010), to (sub-)parsec scales (Molinari et al., 2010; Arzoumanian et al., 2011; Hacar
et al., 2013; Schmiedeke et al., 2021). As Figure 1.7 from Hacar et al. (2023) indicates
the observed filaments in the Milky Way span eight orders of magnitude in mass and four
in length with a scaling relation of

L ∝M0.5. (1.17)

Depending on the resolution and density threshold of the observations, filaments of dif-
ferent scales are detected, revealing that filaments are hierarchical structures (Hacar
et al., 2013; Fehér et al., 2016). The black dashed line indicates the critical line-mass
for T = 10K, above which filaments cannot be in hydrostatic equilibrium (see Section
1.2.1). As can be seen, longer filaments are predominantly supercritical (f > 1) whereas
subparsec and parsec-sized filaments are mainly sub-critical (f < 1) and accordingly in
the radially stable regime. There are two theories about how these structures are created,
the top-down fragmentation where larger filamentary structures fragment (Hacar et al.,
2013) or the bottom-up process where due to gravitational collapse small filaments form
bigger structures (Smith et al., 2014). Also, a simultaneous formation could be possible
(Hacar et al., 2023).

Although there are isolated filaments as the ones shown in Figure 1.4, many filaments
appear to be part of larger filamentary networks (André, 2017), for example, in the Aquila
molecular cloud shown in Figure 1.8 (Könyves et al., 2015) observed with the Herschel
telescope. The left Figure shows the detected filaments, indicated by the blue lines,
whereas the plot on the right-hand side shows the distribution of prestellar cores in blue
and protostellar cores in green. The positions of the cores fit the positions of the filaments
which demonstrates what has already been discovered a long time ago (Schneider &
Elmegreen, 1979): prestellar cores are formed within filaments (Arzoumanian et al., 2011;
Könyves et al., 2015). Therefore, they play a crucial role in the process of star formation,
especially their fragmentation and collapse.

In addition to filamentary networks, hubs are systems, where the central clump is
fed by several converging filaments (Myers, 2009; Schneider et al., 2010; Treviño-Morales
et al., 2019). Their line-masses usually exceed the critical line-mass drastically (Schneider
et al., 2010; Hill et al., 2011) and they are supposed to be the origin of high-mass stars and
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Figure 1.7: The mass length relationship for filaments in the Milky Way. The black
dashed line indicates the critical line-mass for 10K.
(Picture credit: Hacar et al., 2023, CC BY 4.0)

Figure 1.8: Filamentary network in the Aquila starforming region. The left-hand side
shows the distributions of the filaments given by the blue contours. On the right-hand
side, the distribution of cores in the same region is displayed (prestellar cores in blue and
protostellar cores in green). It can clearly be seen that most of the cores are found within
these filamentary structures. (Picture credit: Könyves et al., 2015, CC BY 4.0)
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stellar clusters (Motte et al., 2018), since they are often associated with such structures.
It is still an open question how these more complex filamentary structures are created.
In Chapter 2 and 5 I discuss the scenario of filament mergers being the origin of these
intricate systems.

The radial profiles of observed filaments are well described by Plummer-like curves
(Arzoumanian et al., 2011):

N(x) = Ap
n0Rflat(

1 +
(

x
Rflat

)2) p−1
2

. (1.18)

Ap is a proportionality constant, x the projected distance to the filament centre, Rflat

the flat inner region, n0 the number column density along the spine and p the exponent
fitted to the observed profile. For p = 4 Equation 1.18 is an approximation of the
column density you would observe when looking at a filament in hydrostatic equilibrium
following Equation 1.4. Nevertheless, observations mainly show values between p =
1.5 − 2.5 (Arzoumanian et al., 2011; Palmeirim et al., 2013). The flattening of the
filamentary profile in comparison to the expected one can have many different reasons such
as magnetisation (Fiege & Pudritz, 2000; Tomisaka, 2014), external pressure (Fischera
& Martin, 2012), nonisothermality (Recchi et al., 2013; Smith et al., 2014), a polytropic
equation of state (Gehman et al., 1996) or rotation (Recchi et al., 2014).

Altogether, observations (e. g., Schneider & Elmegreen, 1979) showed already decades
ago that filaments are the places where star formation happens. Thus far they revealed
a lot more about their hierarchical structure, their profile and their fragmentation. Ana-
lytical models and simulations now need to show how these phenomena can be explained
and how they can be placed in the bigger picture.
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1.3 Hydrodynamic simulations

In observations of the interstellar medium we only see a snapshot of a specific phenomenon
since the dynamical scale of filaments in the ISM is on the order of million years. Fur-
thermore, due to our fixed perspective, only projections are observable. Therefore, to
gain a deeper understanding, simulations are necessary to validate (semi-)analytic and
empirical models as well as to build the bridge between theory and observation.

Since it is impossible to account for every single gas molecule in simulations, the gas
has to be treated statistically. The gas can be considered as a continuum if the mean free
path l is much smaller than the fluid element ϵ which needs to be much smaller than the
macroscopic length scale L. The mean free path l is given by:

l =
1

nσ
(1.19)

with n the number density and σ the cross section of a gas particle. For a HI region
typical values are n ≈ 10 cm−3, σ ≈ 10−15 cm−2 which results in a mean free path of
l ≈ 1014 cm. Since these gas clouds are of the order of several parsecs L ≈ 1019 cm (Shu,
1991) l ≪ L is fulfilled and thus, the assumption of a continuum is valid.

In the following section, I will go into detail about the Euler equations, which govern
these continuous media and their implementation in the RAMSES code (Teyssier, 2002),
which was used in the course of this thesis.

1.3.1 Euler equations

The derivation of the Euler equations, which describe the evolution of continuous media,
follow loosely Shu (1991) and Bodenheimer et al. (2006).

As discussed before we can treat the gas in molecular clouds as a fluid and use statistics
to describe its behaviour. Consider f(x,p, t) being the distribution function of particles
in phase space, depending on the position x and its momentum p at time t. Then the
number of particles within a phase space element dx, dp is determined by:

dN = f(x,p, t)dxdp. (1.20)

The total differential of f is then given as:

df =
∂f

∂xi
dxi +

∂f

∂pi
dpi +

∂f

∂t
dt. (1.21)

Considering that the change in position and momentum is

dxi =
pi
m
dt, (1.22)

dpi = Fidt, (1.23)

where Fi donates the acting force and inserting this in Equation 1.21 leads to:

df =
∂f

∂xi

pi
m
dt+

∂f

∂pi
Fidt+

∂f

∂t
dt. (1.24)
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Collisions change the velocity and position of individual particles, scattering them in and
out of their phase space element and, thus, modifying df/dt. This leads to the Boltzmann
Equation: (

∂f

∂t

)
coll

=
∂f

∂xi

pi
m

−m
∂f

∂pi
∇iΦ +

∂f

∂t
, (1.25)

where Fi is given by the gradient of the gravitational potential ∇iΦ.
Considering that no particles are created or destroyed during a collision, the velocity

integral over χ
(
∂f
∂t

)
coll

is zero for conserved quantities χ, because we integrate over the
complete velocity space: ∫

χ

(
∂f

∂t

)
coll

d3v = 0. (1.26)

Following the derivation in Shu (1991), we introduce the average of a quantity Q as:

⟨Q⟩ = n−1

∫
Qfd3v, (1.27)

so the Boltzmann equation can be rewritten to:

∂

∂t
(n⟨χ⟩) + ∂

∂xi
(n⟨viχ⟩) +

∂Φ

∂xi
n⟨ ∂χ
∂vi

⟩ = 0, (1.28)

whereas for the last term partial integration was used and the divergence theorem for∫
V
∂(χf))
∂vi

d3v =
∫
S
χfd2v, assuming that f goes faster to zero than the growth of χ for

v → ∞ on the sphere. We will now evaluate the first three velocity moments:

U ≡

 ρ
ρu
ρe

 =

∫  m
mv

m|v|2/2

 f(x,v, t)d3v. (1.29)

Mass conservation χ = m
Inserting χ = m into Equation 1.28 leads to the so-called continuity equation:

∂ρ

∂t
+

∂

∂xi
uiρ = 0. (1.30)

Momentum conservation χ = mvi
The momentum conservation equation is given by using χ = mvi in Equation 1.28

∂

∂t
(ρui) +

∂

∂xk
(ρ⟨vivk⟩) + ρ

∂Φ

∂xi
= 0 (1.31)

with vi the particle motion which is composed by the fluid motion ui and the random
velocity wi

⟨vivk⟩ = uiuk + ⟨wiwk⟩. (1.32)
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Dividing ⟨wiwk⟩ in a diagonally part and an a non diagonal part leads to

ρ⟨wiwk⟩ = Pδik − πik (1.33)

with δik the Kronecker-Delta and defining the gas pressure P and the viscous stress tensor
πik:

P := ρ⟨1
3
|w|2⟩, (1.34)

πik := ρ⟨1
3
|w|2δik − wiwk⟩. (1.35)

Inserting Equation 1.32-1.35 into Equation 1.31 leads to

∂

∂t
(ρui) +

∂

∂xk
(ρuiuk + Pδik − πik) = −ρ ∂Φ

∂xi
. (1.36)

Energy conservation χ = m|v|2/2
χ = m|v|2/2 is used in Equation 1.28 to constrain energy conservation

∂

∂t
ρe+

∂

∂xk

[ρ
2
⟨(uk + wk)(ui + wi)

2⟩
]
+ ρ

∂Φ

∂xk
uk = 0. (1.37)

Every average value including a single w is zeros since it is a random movement distributed
in all directions. Unfolding the second term leads to:

⟨(uk + wk)(ui + wi)
2⟩ = |u|2uk + 2ui⟨wiwk⟩+ uk⟨|w|2⟩+ ⟨wk|w|2⟩. (1.38)

Defining Fk as the conduction heat flux

Fk = ρ⟨wk
1

2
|w|2⟩ (1.39)

leads to

∂

∂t
ρe+

∂

∂xk
[ρeuk + ukP − uiπik + Fk] = −ρuk

∂Φ

∂xk
. (1.40)

Closure condition
Altogether the conservation laws lead to five independent equations: mass conservation
(Equation 1.30), energy conservation (Equation 1.40) and three components of momen-
tum conservation (Equation 1.36). However, there are thirteen free variables describing
the system. Thus, additional constraints have to be made. Allowing only elastic scatter-
ing the particle distribution function follows the Maxwellian one:

f0 = n
( m

2πkT

)3/2
exp

(
−m|w|2

2kT

)
. (1.41)

Together with π0
ik = F 0

i = 0 this constitutes the first-order approximation and the Euler
equations follow:

∂ρ

∂t
+∇ · (ρu) = 0, (1.42)
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∂

∂t
(ρu) +∇(ρu⊗ u+ PI3) = −ρ∇Φ, (1.43)

∂

∂t
ρe+∇ [ρeu+ uP ] = −ρu∇Φ, (1.44)

with I3 the identity matrix. The Euler equations belong to the class of hyperbolic partial
differential equations, which means that with given initial values and boundary conditions
they can be solved at any time describing the evolution of the given system. Neglecting
the external forces, as the gravitational potential, they can be rewritten to:

∂

∂t
U+∇F = 0, (1.45)

with U given by Equation 1.29 and

F ≡

 ρu
ρu⊗ u+ PI3
ρeu+ uP

 . (1.46)

1.3.2 Grid codes

Grid codes subdivide the simulation volume into voxels, each carrying the defining pa-
rameters density, velocity, and pressure. At each cell interface, the Euler equations are
solved with the boundary conditions provided by the surrounding cells. An example of
such a code is RAMSES, a Fortran code developed by Teyssier (2002), which was used
in this thesis. In the following, I will discuss how grid codes work in more detail, by
describing the Gudonov solver, the Riemann problem and the adaptive mesh refinement.

Gudonov solver
The Gudonov scheme solves Equation 1.45 with initial conditions and boundary condi-
tions. For simplicity, we will here discuss the method for a 1D setup following Toro (1999)
which is scaled to a 3D version for the simulations done in this thesis.

Consider discretising certain initial conditions, such as density, velocity, and energy
given by U to a one-dimensional grid along xi, by averaging over each cell:

Un
i =

1

∆x

∫ xi+1/2

xi−1/2

Ũ (x, tn) dx, (1.47)

where n is the corresponding evolved timestep. A schematic drawing is given in Figure
1.9 for cell xi and its two neighbouring cells. The dark blue line indicates the cell average
of Ui. Using linear approximations in each cell instead of the constant average leads to a
better interpolation of the underlying quantities, reducing numerical diffusion. This is the
second-order extension which was used in this work, the Monotonic Upstream-Centered
Scheme for conservation laws (MUSCL) introduced by van Leer (1979):

Ui(x) = Un
i +

(x− xi)

∆x
∆i, (1.48)

where ∆i is a chosen slope, indicated by the light blue lines in Figure 1.9 and an example
slope is given by

∆i =
1

2
(1 + ω)(Ui −Ui−1) +

1

2
(1− ω)(Ui+1 −Ui), (1.49)
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Figure 1.9: Schematic drawing of a 1D grid for cell i and its neighbouring cells, each having
quantities U. The cell boundaries are indicated by the black dashed line. The dark blue
line shows the cell average, whereas the light blue line indicates linear approximations.
With the Gudonov solver, Ui can be determined for the next time step.

with ω ∈ [−1, 1]. To suppress high values of ∆i slope limiters are used (in this thesis
the monotonized central-difference slope limiter was used van Leer, 1979). This gradient
then changes the values of U at the cell boundary indicated by the indices L-left and R-
right. Now the discontinuities between the cells have to be solved. For piecewise constant
configuration a Riemann solver is used (more details in the paragraph below). Thus, we
have to determine average values for the piecewise linear interpolation:

Ū
L
i = UL

i +
1

2

∆t

∆x

[
F(UL

i )− F(UR
i )
]
, (1.50)

Ū
R
i = UR

i +
1

2

∆t

∆x

[
F(UL

i )− F(UR
i )
]
. (1.51)

Now with this configuration a Riemann solver can be used to determine the values for
the next time step:

Un+1
i = Un

i +
∆t

∆x

[
Fhllc
i−1/2 − Fhllc

i+1/2

]
. (1.52)

Fhllc
i±1/2 is the solution to the Riemann problem at the cell boundary, discussed in the

following.

Riemann problem
A Riemann problem is the discontinuity induced by discretising an initial value problem
governed by conservation equations, as for example the problem above (this paragraph
follows Toro, 1999). There are different solvers available for exact solutions or approxima-
tions. The chosen solver in this thesis was the HLLC approximate Riemann solver (Toro
et al., 1994). This solver distinguishes between three different waves, the fastest, the
slowest and the middle wave indicated by SR, SL, S∗, expanding from the cell boundary.
The limits are determined by subtracting, or adding the maximal sound speed cs:

SL = min{ux,L, ux,R} −max{cs,L, cs,R}, (1.53)
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Figure 1.10: The different wave speeds SL, S∗, and SR as a function of time (y-axis)
starting off at the cell boundary x = 0. Depending on the location of the cell boundary
x/t = 0 in comparison to the travelling waves, U is calculated differently.

SR = max{ux,L, ux,R}+max{cs.L, cs,R}. (1.54)

Whereas the middle wave is given according to Batten et al. (1997) by:

S∗ =
PR − PL + ρLux,L(SL − ux,L)− ρRux,R(SR − ux,R)

ρL(SL − ux,L)− ρR(SR − ux,R)
. (1.55)

A schematic illustration is given in Figure 1.10. It shows the spatial extension on the
x-axis and the time on the y-axis, x = 0 is the boundary with the discontinuity. Here,
R and L refer to the right and left sides of the boundary. Depending on the location of
the cell boundary (x/t = 0) in reference to the waves different values for U are chosen
as indicated in the graphic. The flux at the boundary is then selected depending on the
direction of the travelling waves:

Fhllc
i+1/2 =


FL for 0 ≤ SL

F∗L = FL + SL(U∗L −UL) for SL ≤ 0 ≤ S∗

F∗R = FR + SR(U∗R −UR) for S∗ ≤ 0 ≤ SR

FR for 0 ≥ SR

(1.56)

Adaptive mesh refinement
In Astrophysical simulations, the phenomenon one wants to investigate is often on a
much smaller scale than the simulation volume. Therefore, using a uniform grid with the
necessary spatial resolution is often computationally too expensive or even not feasible.
To circumvent this, adaptive mesh refinement (AMR) can be used (Berger & Oliger, 1984;
Berger & Colella, 1989). The idea is to only refine the grid in the area of interest and
simulate the other parts with a lower resolution. There are different methods available
for the refinement, for example, refining certain cells or whole blocks. For the cell-by-cell



1.3 Hydrodynamic simulations 21

approach, one starts off with a grid of the lowest resolution subdividing all cells that fulfil
the refinement criterion. This criterion can be diverse, in this thesis we used a density
cut. Thus, all cells above a certain density get refined, such that the filament and its cores
are better resolved than the surrounding medium. Refinement means halving the box in
each direction, which refers to subdividing the cell into eight cells in 3D. This process can
be repeated recursively, leading to several refinement levels. Hence, each level leads to an
increase in resolution by two. In RAMSES a ‘tree-based AMR’ is used referring to the
employed data structure. It works similarly, giving some additional constraints on the
refinement of neighbouring cells to induce a smooth transition between levels (for more
details see Teyssier, 2002). During the simulation, the refinement criterion is tracked to
adjust the grid during every timestep due to the change in density distribution. This
makes it possible to simulate several orders of magnitude in one simulation.
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Figure 1.11: Patch of the ORION nebula. The filamentary structure inside is much
more complex than the usual cylindrical one. Tuning fork-like split-ups can be observed.
(Picture credit: ESO/H. Drass/ALMA (ESO/NAOJ/NRAO)/A. Hacar, CC BY 4.0)

1.4 Structure of the thesis

Observations of the interstellar medium show much more complex structures than the
theoretically assumed cylindrical-shaped filaments. A good example is given in Figure
1.11 where you see the Orion star-forming region. Several filaments, e. g. the one at the left
border of the image, show a characteristic tuning fork-shaped split-up. One explanation
of such a structure is the merging of two isolated cylindrical filaments. In Chapter 2 I
will discuss under which conditions filaments can merge since the merger has to be faster
than the overall collapse of the filament. In the follow-up Paper (Chapter 5) we find
that these tuning fork-like structures can indeed be created by the merger of filaments
and some indications of merges are found in the observations of LDN 1641-North in the
star-forming region Orion.

The lifetime of a filament is not only a constraining parameter in our studies about
the merging of filaments but also for their evolution and fragmentation. Since there is
no hydrostatic solution for the main axis of a filament, all filaments are in the process of
collapsing. In Chapter 3 I show how isolated filaments collapse and present a model to
describe this process, which explains the collapse time of filaments found empirically by
Clarke & Whitworth (2015).

As already described in Section 1.2.2 the collapse of a filament induces the edge effect.
It is a long-debated topic in the community since the edge effect is expected by theory
but rarely observed. Fragmentation happens more often inside the filament than at the
edges. In Chapter 4 I show that a certain density gradient at the end can slow down the
edge effect significantly such that perturbations can grow faster.

Finally, I will give an outlook on an example of using machine learning to speed up
hydrodynamic simulations. For simulating the heating and cooling correctly, a chemical
network is needed. This depends significantly on the attenuation of UV irradiation from
outside. One of the computationally expensive steps is the calculation of these attenuation
factors. In the summer project (Chapter 6) I did at the Flat Iron Institute (New York
City, USA), we set up a neural network to determine the attenuation factors for a given
density distribution. The algorithm captures the overall structures well and the next step
would be to improve the description of small scales and the high-density structures.

https://creativecommons.org/licenses/by/4.0/
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Paper I – Merging filaments I: A
race against collapse
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The interstellar medium is characterised by an intricate filamentary network which
exhibits complex structures. These show a variety of different shapes (e. g. junc-
tions, rings, etc.) deviating strongly from the usually assumed cylindrical shape. A
possible formation mechanism are filament mergers which we analyse in this study.
Indeed, the proximity of filaments in networks suggests mergers to be rather likely.
As the merger has to be faster than the end dominated collapse of the filament
along its major axis we expect three possible results: (a) The filaments collapse
before a merger can happen, (b) the merged filamentary complex shows already
signs of cores at the edges or (c) the filaments merge into a structure which is not
end-dominated. We develop an analytic formula for the merging and core-formation
timescale at the edge and validate our model via hydrodynamical simulations with
the adaptive-mesh-refinement-code RAMSES. This allows us to predict the outcome
of a filament merger, given different initial conditions which are the initial distance
and the respective line-masses of each filament as well as their relative velocities.

Keywords: stars:formation – ISM:kinematics and dynamics – ISM:structure
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2.1 Introduction

The cold interstellar medium (ISM) is characterised by elongated cylindrical density
enhancements, known as filaments. Filaments are observed over many different scales,
from > 100 pc length like in Nessie (Goodman et al., 2014; Mattern et al., 2018), over
other infrared dark clouds (IRDC) (Perault et al., 1996; Alves et al., 1998; Egan et al.,
1998; Hennebelle et al., 2001; Peretto & Fuller, 2009; Miettinen & Harju, 2010), down to
the current detection limits of order of (sub-)pc scales (Molinari et al., 2010; Arzoumanian
et al., 2011; Hacar et al., 2013; Schmiedeke et al., 2021). However, a clear understanding
of their formation, evolution and collapse still remains an open question, although it has
been known that they are a key step in the star formation process.

Initial studies already revealed a close connection between filamentary structure and
star formation (Schneider & Elmegreen, 1979). Moreover, due to the Herschel dust ob-
servations (André et al., 2010, 2014; Arzoumanian et al., 2019) combined with ground
based molecular line observations (Hacar & Tafalla, 2011; Kainulainen et al., 2016; Yuan
et al., 2020) a much broader picture could be manifested in the last years. For example,
most prestellar cores are found in supercritical filaments (Könyves et al., 2015; André
et al., 2010) despite the fact that cores could also form by fragmentation of subcritical
structures (Nagasawa, 1987; Fischera & Martin, 2012; Heigl et al., 2016; Gritschneder
et al., 2017; Chira et al., 2018).

In low density environments, like in Taurus (Hacar et al., 2013), as well as inside dense
regions, e. g.in Orion (Hacar et al., 2018), small fialmentary substructure was observed
insdie the large filaments. Thus, Tafalla & Hacar (2015) proposed a formation mechanism
called ‘fray and fragment’. The large filamentary structure is created due to an encounter
of two gas fronts. Inside the filament velocity coherent structures form, which they called
‘fibers’ these were also shown to be forming in turbulent, self-gravitating simulations
(Moeckel & Burkert, 2015; Clarke et al., 2017). However, Smith et al. (2014) also see
fibers perpendicular to a filament, thus they proposed that these are not a product of
filament fragmentation but rather accreted from the surrounding gas. Either way, this
results in a dense filamentary network in which stars are supposed to form. The close
proximity suggests that interactions between the fibers/filaments could occur and impact
the further evolution of the region.

In addition, observations show much more complex structures than the normally con-
sidered cylindrical shaped filaments. For example, in the substructure of the Orion inte-
gral filament, Hacar et al. (2018) found networks of small scale filaments where a common
pattern appears to be the tuning-fork shape. These filaments reveal a split up of the sin-
gle string into two components. Furthermore, even more complex configurations can be
found, as e. g. ring-like objects (closed filaments). The origin of these geometrical shapes
could be related to the dynamics of the interstellar gas which is then of major importance
for the physics of fragmentation and thus the early phase of stellar formation.

A scenario of tuning fork formation from an elliptical sheet in the context of the
Orion A cloud has been proposed by Hartmann & Burkert (2007). However, we explore a
different formation mechanism: The merging of two cylindrical shaped filaments originally
in hydrostatic equilibrium. It is an important mechanism to increase the density of
a filament significantly and eventually trigger star formation. The fact, that in some
observations multiple velocity components were detected inside a single filament (Hacar
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et al., 2013; Yuan et al., 2020) could be a remnant of our scenario, as the filaments
involved can retrain information about the merger in their intrinsic velocity field. Both
Nakamura et al. (2014) (Serpens South) and Frau et al. (2015) (Pipe Nebula) have indeed
detected signatures of colliding filaments and Fukui et al. (2021) stated that cloud-cloud
collisions should lead to subsequent filament mergers. Nevertheless, theoretical work on
the conditions of such a merger is currently very limited.

However, the collapse timescale along the main axis of a filament limits the possibility
of filament merging. Filaments collapse by the so called ‘edge effect’ (Bastien, 1983).
Because the acceleration at the edges of the filaments is strongest (Burkert & Hartmann,
2004), matter is piled up and forms cores at the ends (see observations by e. g. Dewangan
et al., 2019; Bhadari et al., 2020; Yuan et al., 2020; Cheng et al., 2021). These then move
into the centre while accreting the material on the way inwards and finally, fusing into one
core and destroying the filament. Considering the case of filament mergers, this results in
two competing timescales: the collapsing timescale of a filament (Toalá et al., 2011; Pon
et al., 2012; Clarke & Whitworth, 2015) versus the filament-filament merging timescale.
A comparison of these two timescales enables us to determine under which conditions a
filament can merge before the collapse destroys it. Since not all observed tuning-forks
show signs of an end dominated collapse it is also interesting to investigate on which
timescale cores could form at the ends, to get a more accurate idea of initial conditions
required to form such structures. Thus, we explore analytic models for merging and edge
effect formation timescales to explore the parameter space for merging filaments, initially
in hydrostatic equilibrium.

This paper is organised as follows: After an overview over the basic principles which
were applied in our analysis (Section 2.2), the simulation framework is introduced (Section
2.3). The main part of the work focuses on the calculation of the merging (Section
2.4) and edge effect formation timescales (Section 2.5), each validated by simulations,
respectively. This leads to the initial conditions under which mergers can take place,
discussed in Section 2.6. Finally, the results are discussed in Section 2.7 and conclusions
are drawn in Section 2.8.

2.2 Basic Principles

We consider filaments to be isothermal gas cylinders in hydrostatic equilibrium, a model
which has been investigated by Stodólkiewicz (1963) and Ostriker (1964). Both found
that the radial profile follows:

ρ(r) = ρc ·
[
1 +

( r
H

)2]−2

(2.1)

H is the scale height, given by:

H2 =
2c2s
πGρc

(2.2)

with ρc being the central density of the filament, cs the sound speed which is 0.19 km s−1

for T = 10K and a mean molecular weight of 2.36 as in Fischera & Martin (2012). We
constrain the radius by the external pressure of the ISM, as the observed filaments do
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not extend to infinity (Fiege & Pudritz, 2000). This external pressure Pext then sets the
boundary density ρ(R) = ρb of the filament such that it is in pressure equilibrium with
the surrounding Pext = Pb which gives the filament a finite radius.

A characterising quantity of the filament is the so called line-mass, the mass per
length:

µ =
M

L
(2.3)

The solution with the largest stable line-mass is then given by integrating the Ostriker-
profile until infinity. For even larger line-masses the filament will collapse due to gravity
as no hydrostatic solutions exist. This is called the critical line-mass µcrit. Considering
the values mentioned above leads to:

µcrit =

(
M

L

)
crit

=
2c2s
G

≈ 16.4M⊙ pc−1 (2.4)

To define the criticality of a filament, the parameter f was introduced (Fischera & Martin,
2012) as the ratio of the filament line-mass to the critical line-mass:

f =
µ

µcrit

(2.5)

which allows to connect the central and boundary density:

ρb = ρc · (1− f)2 (2.6)

Analogous the radius of the filament is given by:

R = H

(
f

1− f

)1/2

(2.7)

Considering now that filaments in the ISM have a finite length, they will collapse
along their major axis under self-gravity, when there are no other external influences
(Keto & Burkert, 2014). The acceleration along such a filament of uniform density ρ and
length l was investigated by Burkert & Hartmann (2004) and is given by:

a = −2πGρ

2z −
√(

l

2
+ z

)2

+R2 +

√(
l

2
− z

)2

+R2

 (2.8)

where z is the coordinate along the filaments main axis, with z = 0 at the symmetry
point. The acceleration shows a strong increase at the filament’s edges. This leads to
end-dominated collapse and to core formation at the ends of the filament, the so called
‘edge effect’ which, finally, destroys the filament. The lifetime of a filament is then given
by the time it takes to collapse into a single core. As already mentioned, there exist
several investigations of this collapse timescale (Toalá et al., 2011; Pon et al., 2012), the
latest by Clarke & Whitworth (2015), which is given by:

tcol =
0.49 + 0.26A√

Gρ
(2.9)

Here, A = l/(2R) is the aspect ratio and ρ its average density µ/(πR2).
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2.3 Simulation Setup

We also compare our analytic approach to simulations which were executed using the
adaptive-mesh-refinement code RAMSES, developed by Teyssier (2002). It solves the
Euler Equations in their conservative form by using a second-order Gudonov solver. We
applied the MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws, van
Leer, 1979), the HLLC-Solver (Harten-Lax-van Leer-Contact, Toro et al., 1994) and the
MC slope limiter (monotonized central-difference, van Leer, 1979). The grid applied in
our simulations varied from level 7, (128)3 cells (4.7×10−3 pc - 11.7×10−3 pc depending on
the box size), to level 9, (512)3 cells (1.2× 10−3 pc - 2.9× 10−3 pc), such that the external
medium is only resolved with low resolution while the filament itself is resolved with the
highest one. As an example, a simulation as performed for Section 2.4 has a resolution
of 44 cells along the filaments diameter at its highest contraction and above 100 for its
initial configuration. In order to resolve the hydrodynamical processes the filaments were
resolved with a minimum of ∼ 20 cells.

Two different types of simulations were carried out to verify the merging and edge
effect formation timescales. The initial physical conditions used in each case are described
in the corresponding section. Nevertheless, all simulations were carried out in the same
environment, which means with the same boundary density of ρb = 1.92 × 10−20 g cm−3

which equals 4.9× 103 particles per cm3, a rather high value to recreate a surrounding as
in Orion. Given f this also sets the central density via Equation 2.6. This resembles the
situation where all filaments are embedded in the same surrounding medium, constrained
by the same outside pressure. However, tests showed that variations in the external
pressure does not have a major influence on the result of the simulation. The external
density was set to ρext = 3.92× 10−23 g cm−3, in pressure equilibrium to the filament, in
order to minimise accretion effects and to ensure that the relative velocities of filaments
are subsonic with respect to the external medium.

2.4 Merging timescale

In this section the merging process of two filaments is described in detail. This includes
the calculation of the merging timescale and the determination of the trajectory.

In order to derive the merging timescale, two infinite filaments with according line-
masses of µ1 and µ2 are considered to be in a parallel configuration of initial distance d0,
as depicted in Figure 2.1 in the first snapshot.

The relative gravitational acceleration on both filaments respectively is given by

aG = − (µ1 + µ2)
2G

d
(2.10)

which results in the following relative velocity, with v0 being the initial relative velocity
of the filaments:

v = −

√
4G (µ1 + µ2) log

(
d0
d

)
+ v20 (2.11)
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Figure 2.1: Density slices of a ‘standard’ simulation done in this work f1 = f2 = 0.3 of
merging filaments. In the first row the initial condition (t = 0.00Myr) and in the second
row the time of final configuration (t = 1.23Myr) is displayed. The left hand side shows
the the filament elongated in z direction and initially separated in y direction (z/y). On
the right hand side the slice is given in x/y-direction to see the whole dimensionality of
the simulation.

Integration from the initial separation d0 to d results in the time needed for the filaments
to reach the distance d (derivation in Appendix 2.8):

t =

√
π

G(µ1 + µ2)
· d0
2

· exp
(

v20
4G(µ1 + µ2)

)
(2.12)

·

[
erf

(√
log

(
d0
d

)
+

v20
4G(µ1 + µ2)

)
− erf

(
v0√

4G(µ1 + µ2)

)]

with erf(x) being the Gauss error function. In the limit of d approaching zero, which
means that the filaments overlap completely, the merging time can be approximated:

tmerge = lim
d→0

t

=

√
π

G(µ1 + µ2)
· d0
2

· exp
(

v20
4G(µ1 + µ2)

)
·

[
1− erf

(
v0√

4G(µ1 + µ2)

)]
(2.13)
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If the filaments are initially at rest, v0 = 0, the merging time reduces to:

tmerge =

√
π

G(µ1 + µ2)
· d0
2

(2.14)

For v0 = 0 the trajectory, distance of the filaments depending on time, is then given by
solving Equation 2.12 for d:

d(t) = d0 · exp

−erfinv

(
2

√
G(µ1 + µ2)

π

t

d0

)2
 (2.15)

with erfinv(x) being the inverse error function.

In order to validate these results, we execute simulations of filament mergers with
different line-masses and initial velocities. The simulation box has a scale of (0.6 pc)3.
The initial condition is given in Figure 2.1 in the first row: the left hand side shows a
density slice in z-y direction and the right hand side a density slice in x-y direction, in order
to display the full dimensionality. We present two points in time, the initial condition
t = 0.0Myr and the merged filaments, in this example t = 1.23Myr. The filaments have
their major axis along the z-axis which has periodic boundary conditions in order to create
an infinitely long filament. They are initially separated by d0 = 0.3 pc in y-direction. The
boundary in y and x direction were chosen to be open. During the simulation the two
filaments fall into each others potential and merge. To exclude that accretion has major
effects on the simulation we varied the external density (ρext = 3.92× 10−24 g cm−3) but
no influences on the merger were observed.

A comparison of theoretical and simulated distance evolution of the two filaments for
different merging constellations is given in Figure 2.2. The theoretical distance prediction
is depicted in blue for different line-masses. In contrast, the black dots represent the
distances obtained from simulations by determining the distance of the centre of mass
of the two filaments. The gray dashed line indicates the time the filaments start to
overlap. The simulations (black dots) show a very good agreement to the theoretically
predicted values (blue line). The orange square represents the merging time determined
from simulations, which should be compared to the zero point of the trajectories. The
merging point of the simulation was considered to be the time where the merged filament
recovers the radius of the initial filaments, in this case the two initial filaments totally
overlap and share the same centre of mass (d = 0). For the merger with different line
masses and thus different radius, we used the mean of the filaments radius instead. In
all cases we get a good agreement between the model and the simulated values.

In order to confirm that the model correctly reproduces the merging time’s velocity
and line-mass dependence, we also performed a parameter study. The results are shown
in Figure 2.3. The different coloured lines are the solutions to Equation 2.13 for different
initial velocities. The symbols show the corresponding merging time of the simulation,
which is in good agreement with the predictions. Both, the dependence on the summed
line-mass, as well as on the initial relative velocity of the two filaments, v0, are reproduced
very well in our simulations.
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Figure 2.2: Validation of the trajectory of merging filaments with four different constel-
lations of line-masses (f1, f2 are given in the bottom left corner). The blue curve shows
the trajectory given by Equation 2.15, the black dots indicate the centre of mass distance
of the filaments. The grey dashed line represents the moment when the filaments start
to overlap. The orange square gives the simulation’s merging time. Given the simplicity
of the analytical approach we consider this a good agreement between the values from
simulation (dots) and the model.
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Figure 2.3: Validation of the merging timescale depending on the sum fsum = f1 + f2 (f
being the critciality defined in Equation 2.5). The different coloured lines show Equation
2.13 for different converging initial velocities but fixed d0 = 0.3 pc. The values from the
simulation are displayed as symbols in the corresponding colour.
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Figure 2.4: Schematic drawing of a face-on filament. With two end regions of size κR
(light blue areas) which accumulate the mass. The centre of mass of the end regions is
marked with white crosses. Here the acceleration acm is indicated by the orange arrow.

2.5 Edge effect formation timescale

If we consider now a more realistic setup with finite filaments a second effect comes into
play: the gravitational collapse of the filaments along their major axis. This leads to
the important question of which process is faster, the merger or the edge effect. The
collapse time was already investigated by Clarke & Whitworth (2015) which we discussed
in Section 2.2. However, as not all observed tuning-forks show signs of the edge effect
we want to investigate on what timescale cores are formed at the edges which we will
call the edge effect formation timescale tedge. This can give us constraints on the initial
conditions of the merged filaments.

We consider the filament to have two end regions, similar to Yuan et al. (2020). A
simple scheme is given in Figure 2.4 where these end regions are marked with light blue
color. They are considered to be the zone where the end clump will evolve. The total
acceleration of this region is approximated to be the acceleration of the end regions centre
of mass (aCM), indicated by the white cross with attached orange arrow depicting the
acceleration. For the right edge, where the centre of mass is located at z = l

2
− κR

2
, it is

given by Equation 2.8, for l ≫ R:

aCM ≈ −πGρR
(√

κ2 + 4− κ
)

(2.16)

The constant value of their extension κR is afterwards fitted to the simulations. In case
of a spherical end region one would expect its size to be 2R, thus κ = 2. The acceleration
can be considered as constant in time as long as l ≫ R holds, because the most time
dependent parameter (length l) cancels out. We assume the end region to accumulate all
the mass which it encounters during the collapse:

M(t) =M0 +
1

2
aCMt

2 · µ0 (2.17)
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This leads to the time dependent line-mass of the end region:

µ(t) =
κR + 1

2
aCMt

2

κR
· µ0 (2.18)

The timescale of interest is the time needed for the end region to get supercritical:

f(t) =
µ(t)

µcrit

!
= 1 (2.19)

with µcrit the critical line-mass. From here we are able to calculate the timescale needed
for the filament to accumulate supercritical end regions:

tedge,1.0 =

√(
1

f
− 1

)
2κR

|aCM|
(2.20)

=

√√√√(f − 1)2

f
· 2

πGρb

(√
1 + (2/κ)2 − 1

) (2.21)

In the context of filament mergers, another interesting timescale is the time necessary for
the edges to be above a criticality of f = 0.5. If there is a symmetrical merger the end
regions of both filaments will overlap and thus if both end regions have a criticality of
0.5 they immediately become supercritical. The timescale in this case is given by:

tedge,0.5 =

√√√√( 1

f
− 2

)
· 1− f

πGρb

(√
1 + (2/κ)2 − 1

) (2.22)

This simple approach does not consider ram pressure contributions from the gas inside
the filament. Clarke & Whitworth (2015) showed that this effect was important when
determining the overall collapse timescale of the filament. Following their semi-analytical
model we found ram pressure to be only significant in the late stages of filament collapse
and has only minor influences on the edge formation timescale. However for low mass
filaments (f ∼ 0.1), having long edge formation timescales, this could get essential. Thus,
we excluded all filaments with f < 0.2 from our analysis.

In addition, we also validated our results with simulations. We set up a filament in a
box with a size of 1.5 pc and open boundary conditions. Thus, the filaments had a finite
length of approximately 1.3 pc. We used an exponential cutoff for the filaments edge
following [1 + exp (−100 · (0.4− z2))]−1. However, tests of different edges with sharp
and soft cutoffs showed no influence on the simulated collapse time. The initial and
final conditions are presented in Figure 2.5. The upper panel shows the density slices in
z/y-direction at t = 0 and t = tedge,1.0 and the bottom panel depicts the corresponding
line-mass dependency along the z-axis. In the beginning, the filament has a uniform
criticality of f = 0.3 and we determine tedge,1.0 when the line-mass in the cores at the
edge exceeds the limit of f = 1.0 for the first time, as shown in the dashed black line in
Figure 2.5. From the figure, the large density and line-mass enhancements at the edges
are obvious. The large volume of the box was chosen such that the condition l ≫ R holds.
Therefore, the acceleration discussed in Section 2.2 can be considered constant. We set
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Figure 2.5: Top: Density slices of a ‘standard’ simulation with f = 0.3 to determine
the edge formation timescale are presented in z-y direction. Bottom: The criticality
(Eq. 2.5) of the filament along the z-axis is displayed. Left panel: The initial condition
(t = 0.00Myr) of the simulation. Right panel: A snapshot after 1.23Myr where the cores
reach a criticality above 1 and thus start to collapse.

a fixed boundary density of ρb = 1.92 × 10−20 g cm−3 and adjusted the central density
(Equation 2.6) as before. The external density was again set to ρext = 3.92×10−23 g cm−3.

Figure 2.6 shows the theoretical models (lines) of the edge effect formation timescale
depending on f in comparison to the values determined by our simulations (symbols).
Model 0.5 (blue dashed line and squares) gives the timescale needed for a filament to
form cores at the edges with core criticality f = 0.5. Model 1.0 (green solid line and
dots) shows the timescale to grow cores with f = 1.0. The size of the end region κR was
fitted to the simulation data and the parameters are provided in the legend of the plot.
As expected the deviation from κ = 2 is small which considers a spherical end region. By
inserting all constants (κ,G,π) and using Equation 2.6 we have found a simple empirical
relation that fits these cases very well:

tedge,1.0 =

√
1.69× 10−20 g cm−3

fρc
Myr (2.23)

Thus, the edge effect formation time only depends on the central density and the criticality
of the filament. As Equation 2.23 agrees well with the simulations we will use it for the
early collapse in order to constrain our initial conditions for a merger.

To compare the formation of the edges to the general core formation inside a filament
due to perturbations the two timescales are depicted in Figure 2.7. Following the analysis
done in Heigl et al. (2020) the time dependent criticality of an infinitely long filament
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Figure 2.6: The edge effect formation timescale of the model as function of the initial
f (lines, Eq. 2.5) in comparison to the simulation (symbols) is given. Green represents
the model with maximum fmax = 1.0 and blue fmax = 0.5. The size of the corresponding
end region κ is fitted to the simulation data, the fit values are given in the legend. Both
models show excellent agreement to the simulation.

with perturbations of strength ϵ and growth timescale of the dominant mode τdom is given
by:

fmax(t) = f

[
1 + ϵ · exp

(
t

τdom

)]
!
= 1 (2.24)

Again, we consider a core to be formed for f reaching a value of 1 which leads to a core
formation timescale due to perturbations of:

tpert = τdom log

[(
1

f
− 1

)
1

ϵ

]
(2.25)

The perturbation strength ϵ was set to 0.09 according to observations by Roy et al. (2015)
and τdom was calculated using the fourth-order polynomial function presented in Fischera
& Martin (2012) (Appendix E) based on Nagasawa (1987). Figure 2.7 show the resulting
collapse timescale due to perturbations depending on the initial criticality as orange
dashed line (ϵ = 0.09, light orange shaded region shows 0.01 < ϵ < 0.17 as reference) and
in comparison the timescale of the edge effect (Equation 2.20) as solid green line. Both
timescales depend on the boundary density which was set to ρb = 1.92 × 10−20 g cm−3,
the same as in our simulations. Although the absolute timescale varies when changing
ρb the trend stays the same: Below values of f < 0.7 the formation of the edge effect is
faster than the core formation timescale, above perturbations could grow faster.
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Figure 2.7: The core formation timescale (orange dashed line) for a perturbation strength
of 0.09 (light orange shaded region 0.01 < ϵ < 0.17) depending on the initial line mass (Eq.
2.5) in comparison to the edge formation (green solid line). Both timescales depend on
the boundary density ρb = 1.92×10−20 g cm−3. But the plot is self-similar for different ρb.
For f < 0.7 the edge effect is faster than perturbations grow inside the filament, for more
massive filaments perturbations could form slightly before the edges start to collapse.

2.6 Parallel merger

2.6.1 Initial conditions

With the analytic formulation of the merging and edge effect timescales it is now possible
to calculate the conditions for the merging of two filaments without a dominant ‘edge
effect’. In order to do so, we calculate the time difference between the merger (Equation
2.13) and the edge effect (Equation 2.23) as function of the sum fsum = f1+ f2 the initial
distance and the initial velocity:

∆t = tedge,1.0 − tmerger (2.26)

The result is given in Figure 2.8. In the top panel ∆t (colour scale) is given as function
of distance and fsum. Here, only f1 = f2 was considered. Otherwise, only the edge
effect timescale of the heavier filament plays a role. In the lower panel it is given for
f1 = f2 = 0.3 depending on distance and the initial velocity. The negative (red) values
belong to the regime where the filament forms cores faster than it can merge. Below the
white line, which indicates the point where the timescales are equal, a merger is possible
before the filaments from cores (blue regime). The dashed blue line gives the timescale
needed for the filaments to form overdensities with values of f = 0.5. Thus, the merged
filament is immediately supercritical if these regions overlap. The merger of two filaments
is limited by the grey dashed dotted line which is given by tcol = tmerger (Equation 2.9,
with a representative aspect ratio of A = 8) whereas the grey shaded region gives the
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Figure 2.8: Time difference ∆t (Equation 2.26) between merging and edge effect timescale
for different initial conditions. The top panel shows the summed line-mass (Eq. 2.5)
and distance of the two filaments (with v0 = 0). The lower panel shows the distance
and velocity for fsum = 0.6. The white line indicates the conditions where the merging
time equals the core-formation time at the edges. The dashed blue line indicates the
initial distance for which filaments have enough time to form over densities of f = 0.5
before merging. Thus, if the over-densities overlap supercritical regions are immediately
created in the merged filament. The black line indicates two times the radius of the
initial filament. Below this line filaments already overlap in the beginning. The region
between the white and the black line (and more distinct the blue dashed line) give initial
conditions where the filament merger is possible without forming supercritical regions. A
converging initial velocity makes a mergers without supercritical densities more probable.
The dashed dotted grey line gives the tcol = tmerger, Equation 2.9 (Clarke & Whitworth,
2015), with an aspect ratio of A = 8 (the grey shaded area gives the condition for
4 < A < 12), above this we would expect a filament to collapse faster than it can merge.
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times for 4 < A < 12. Above this line the filament collapses faster than it can merge.
Thus, no merger is possible in that regime. The black line indicates the size of two
times the radius of the initial filament. Below these values the filaments are already
overlapping initially. Therefore we are only interested in the area above. In summary, for
a symmetric merger of initially resting filaments, filaments initially have to lie between
the black and the dashed blue lines (for overlapping end regions) or solid white lines (for
not overlapping end regions) in order to merge before collapse of the end cores which
appears rather unlikely. In the lower panel ∆t is depicted as function of velocity and
distance for filaments of f1 = f2 = 0.3. In this case a much wider range of distances is
allowed for filament mergers, as the window widens up with increasing velocity. This is
also the case for other summed line-masses, as depicted in Appendix 2.8 for fsum = 0.4
and fsum = 0.8. In general, the influence of the initial velocity is much stronger for lighter
than for more massive filaments. Nevertheless, having a convergent initial velocity makes
a merger much more probable.

This shows that only symmetric filaments with certain initial conditions merge before
the edge effect takes over: The distances between the filaments have to be small (< 0.4 pc)
and their converging relative velocities have to be high (> 0.3 km s−1). Conditions found
among small scale filaments, as for example the sub-pc spacing is found in Taurus (Hacar
et al., 2013) and relative velocities greater than 0.3 km s−1 in Orion (Hacar et al., 2018).

2.6.2 Simulation of parallel merges

By choosing the right initial conditions a merger without supercritical cores can be simu-
lated. An example is given in Figure 2.9 where a lateral shift of the two filaments ensures
that the edge regions do not overlap. The initial conditions are shown in the left panel
as density slice (top) and criticality (bottom). The filaments have a critciality of f = 0.2
each, a relative velocity of v0 = 0.4 km s−1 and an initial distance of d0 = 0.2 pc. Cor-
responding to Figure 2.10 (left hand side) the filaments should merge without forming
supercritical regions which is what happens (see Figure 2.9 bottom right). Because of
the shift, two density peaks seem to evolve at the points where the edge overlaps with
the other filament which could be a mechanism to form cores away from the edge of
the new filament. Additionally, due to the shift, angular momentum is injected into the
system which could generate accretion discs. We will explore these processes in details
in a subsequent paper.

2.7 Discussion

In this study we focused on the merging behavior of parallel aligned filaments. This is of
course a special case which seems rather unlikely at first glance. Although the merging
time was calculated for the parallel case, it should also give a good first approximation
for inclined filaments.

We simulated isothermal filaments without feedback, turbulence and winds. This
isolated scenario could be linked to a young and quiet surrounding. Nevertheless, in-
vestigations by Hacar et al. (2018) already showed that the large scale feedback has no
significant influence on the statistical properties of the fibers/filaments in Orion when
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Figure 2.9: Same arrangement as in Figure 2.5. Two filaments with a critciallity (Eq.
2.5) of f = 0.2, d0 = 0.2 pc and v0 = 0.2 km s−1 are simulated with a translation along
the z-axis. As expected they merge without creating supercritical regions.

comparing regions with low and high feedback. Thus, we do not expect large deviations
for our model due to feedback.

We saw that the probability for filaments to merge is much higher for filaments with
relative initial velocities. Hacar et al. (2013) already detected relative velocities up to
2.4 km s−1in filaments of L1495/B213. However, if the initial velocity of the filaments
is not oriented along their connecting line but with an inclination α, too high velocities
could lead to the escape of the filament out of the gravitational potential. The velocity
necessary to escape the gravitational attraction is given by the escape velocity. For a
configuration similar to the ones we simulated the escape velocity is of the order of ∼
1 km s−1. Filaments with higher velocities will only merge if their trajectories cross which
is only the case for small angles. This results in a rather low probability for filaments
to merge with relative velocities higher than the escape velocity. Further investigations
have to show what else constrains relative velocities of merging filaments. Furthermore,
high relative velocities could also destroy the filaments in the process of the merger.

We limited the effects of accretion by simulating a low density environment. Accretion
could affect both the merging and collapse timescale as it increases the filament line-mass,
exerts a ram pressure and induces turbulence in the filaments (Clarke & Whitworth, 2015;
Heigl et al., 2018, 2020).

The filaments were set-up as idealized cylinders with a constant line-mass. However,
density gradients inside the filaments can influence the local merging timescale, according
to Equation 2.13 the merging time is shorter for larger f . This effect can lead to even
more complex structures. Imagine a density minimum in the center of the filaments
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(along the z-axis): the ends of the filaments would merge first and ring like structures
could from. Moreover, also the timescale and behavior of the edge effect would change
since density enhancements are already present in the filament.

2.8 Conclusions

We provide an analytic model to describe both, the merger of filaments and the first
phase of filament collapse due to the ‘edge effect’. Simulations show that the used ap-
proximations are reasonable and fit the predictions well. To conclude, the main points
are as follows:

As the timescale of merging and collapsing filaments are of the same order of magni-
tude, the initial conditions determine how the resulting structure would look like. Three
different outcomes are possible: The resulting filament has no supercritical cores at the
edges, the edge effect dominates the resulting structure or the filaments collapse entirely
before they can merge. The outcome mostly depends on the initial velocity, the initial
line-mass and the initial distance of the filaments. For high velocities (> 0.3 km s−1) and
small distances (< 0.4 pc) the probability for a symmetric filament merger is highest.
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Appendix

2.A Solving the velocity integral

To calculate the merging time the ODE dd
dt

= v (velocity is given by Equation 2.11) has
to be solved, with initial condition t0 = 0

t = −
∫ d

d0

dd′√
4G(µ1 + µ2) log

(
d0
d′

)
+ v20

(2.27)

Substitution u = d0
d′
, du

dd′
= − d0

d′2
= −u2

d0

t =

∫ d0/d

1

du
d0
u2
(
4G(µ1 + µ2) log(u) + v2o

)− 1
2 (2.28)

Substitution x =
√

4G(µ1 + µ2) log(u) + v20

dx

du
=

2G(µ1 + µ2)

u
√

4G(µ1 + µ2) log(u) + v20
(2.29)



40 2. Paper I – Merging filaments I

u = exp

(
x2 − v20

4G(µ1 + µ2)

)
(2.30)

Inserting this, with v1 =
√

4G(µ1 + µ2) log(
d0
d
) + v20:

t =
d0

2G(µ1 + µ2)

∫ v1

v0

dx exp

(
− x2 − v20
4G(µ1 + µ2)

)
(2.31)

Substitution h = x√
4G(µ1+µ2)

, dh
dx

= 1√
4G(µ1+µ2)

t =
d0√

G(µ1 + µ2)
exp

(
v20

4G(µ1 + µ2)

)
·
∫ v1/

√
4G(µ1+µ2)

v0/
√

4G(µ1+µ2)

dh exp
(
−h2

)
(2.32)

=

√
π

4G(µ1 + µ2)
d0 exp

(
v20

4G(µ1 + µ2)

)[
erf


√

4G(µ1 + µ2) log
(
d0
d

)
+ v20√

4G(µ1 + µ2)


− erf

(
v0√

4G(µ1 + µ2)

)]
(2.33)

Finally, the time it takes to get from d0 to a certain d is given by (which is the resulting
Equation 2.12):

t =

√
π

G(µ1 + µ2)
· d0
2

· exp
(

v20
4G(µ1 + µ2)

)
·

[
erf

(√
log

(
d0
d

)
+

v20
4G(µ1 + µ2)

)

− erf

(
v0√

4G(µ1 + µ2)

)]
(2.34)
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2.B Initial conditions for filament mergers depend-

ing on velocity
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Figure 2.10: ∆t as defined in Equation 2.26 depending on diastance and velocity for
different cirtialities fsum = 0.4 and fsum = 0.8 (a more detailed description is given in
Figure 2.8). This shows that in both cases an initial velocity makes a merger more
probable. Though, the influence on the lower line mass filament is stronger.





Chapter 3

Paper II – Filament collapse: A two
phase process

Elena Hoemann, Stefan Heigl and Andreas Burkert, 2023, Monthly Notices of the
Royal Astronomical Society, 521, 5152–5159

Using numerical simulations, we investigate the gravitational evolution of filamen-
tary molecular cloud structures and their condensation into dense protostellar cores.
One possible process is the so called ‘edge effect’, the pile-up of matter at the end
of the filament due to self-gravity. This effect is predicted by theory but only rarely
observed. To get a better understanding of the underlying processes we used a sim-
ple analytic approach to describe the collapse and the corresponding collapse time.
We identify a model of two distinct phases: The first phase is free fall dominated,
due to the self-gravity of the filament. In the second phase, after the turning point,
the collapse is balanced by the ram pressure, produced by the inside material of
the filament, which leads to a constant collapse velocity. This approach reproduces
the established collapse time of uniform density filaments and agrees well with our
hydrodynamic simulations. In addition, we investigate the influence of different
radial density profiles on the collapse. We find that the deviations compared to the
uniform filament are less than 10%. Therefore, the analytic collapse model of the
uniform density filament is an excellent general approach.

Keywords: stars:formation – ISM:kinematics and dynamics – ISM:structure
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3.1 Introduction

Observations show that the interstellar medium (ISM) is dominated by filamentary struc-
ture. Filaments are the cylindrical and cold density enhancements of the molecular
ISM. They have been found in very different environments from large scales (more than
100 pc) like infrared dark clouds (Goodman et al., 2014; Mattern et al., 2018) down to
small, (sub-) parsec scales (Molinari et al., 2010; André et al., 2010; Hacar et al., 2013;
Schmiedeke et al., 2021) at the current detection limit. It is well established that fila-
ments in the ISM are the places where star-formation happens (Schneider & Elmegreen,
1979), since most of the prestellar cores are found within these dense, cold environment
(Arzoumanian et al., 2011; Könyves et al., 2015). However, there remain many open
questions about their creation, evolution and fragmentation.

A particular example is the so called ‘edge effect’(Bastien, 1983): The acceleration
along a finite filament due to its self-gravity has a strong increase at its edges because of
its elongated structure (Burkert & Hartmann, 2004; Hartmann & Burkert, 2007; Li et al.,
2016). Thus, the collapse leads to a pile-up of matter in the end regions. This effect has
been studied theoretically (Rouleau & Bastien, 1990; Arcoragi et al., 1991; Bastien et al.,
1991; Hanawa et al., 1994) and has been detected in several observational studies (e.g.
Zernickel et al., 2013; Kainulainen et al., 2016; Dewangan et al., 2019; Bhadari et al.,
2020; Yuan et al., 2020; Cheng et al., 2021). Since there is no hydrostatic solution for
the end of a long filament which could prevent the edge effect, it is expected to occur
quite often. In contrast, Seifried & Walch (2015) showed that filaments with an initial
inner density enhancement collapse centrally. A similar setup was investigated by Keto
& Burkert (2014) for short filaments with axis ratio of 3:1. They find that the resulting
core shows complex pattern of sonic oscillations. Although, such density distributions
are not observed in low line-mass filaments (Roy et al., 2015), the oscillations in cores
have been detected (Redman et al., 2006; Aguti et al., 2007). In addition, there has been
a recent study by Heigl et al. (2021) where the edge effect is suppressed in a filament
forming in a colliding flow, however, not every filament shows signs of accretion. Thus,
the edge effect is expected to happen much more often than it is detected.

Understanding the edge effect is crucial for setting a limit for filament lifetimes because
the collapse timescale is given by the time on which the two end regions collapse into a
single point. Collapse times have been calculated by Toalá et al. (2011); Pon et al. (2012)
and Clarke & Whitworth (2015). However, they all rely on the acceleration of uniform
density filaments as calculated by Burkert & Hartmann (2004), a density profile which is
neither observed nor theoretically expected.

The aim of this study is to get a more accurate impression of the longitudinal collapse
of a filament and its corresponding collapse timescale. Therefore, we present an analytical
model to calculate the evolution of the collapse and to explain the collapse timescale found
in Clarke & Whitworth (2015). We used a simple approach consisting of two phases: an
accelerated one, dominated by gravitational free fall, which turns into a collapse with
constant velocity at the point where ram pressure sets in. Additionally, the influences of
the filament’s radial profile are analyzed, which has only minor contributions. Thus, the
two phase model of collapse and force equilibrium for a uniform density filament can be
used in general to determine collapse timescales of observed filaments.

The paper is organized as follows: After introducing the basic principles of filaments
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in hydrostatic equilibrium (Section 3.2), the theoretical background of the edge effect
is introduced (Section 3.3). The simulation is discussed in Section 3.4. In Section 3.5
the two phase collapse model of a uniform density filament is derived and in Section 3.6
we show a comparison of different profiles and their influence on the collapse time. The
results are discussed in Section 3.7 and conclusions are drawn in Section 3.8.

3.2 Filaments in hydrostatic equilibrium

Following Stodólkiewicz (1963) and Ostriker (1964) a filament in hydrostatic equilibrium
has the following radial density distribution:

ρ(r) = ρc

[
1 +

( r
H

)2]−2

(3.1)

with ρc being the central density. H is the scale height, given by

H2 =
2c2s
πGρc

, (3.2)

G being the gravitational constant and cs the sound speed (0.19 km s−1 for a temperature
of 10K and a mean molecular weight of 2.36, compare Fischera & Martin, 2012). Fila-
ments in the ISM do not extend until infinity since they are constrained by an external
pressure Pext. This cuts off the filament at pressure equilibrium between the boundary
pressure Pb and the external pressure Pb = Pext at density ρb. Its line-mass is given by

µ =
M

l
(3.3)

the mass M divided by the filaments length l. Integrating the hydrostatic profile until
infinity gives the maximal line-mass for which a hydrostatic solution of the density profile
exists and above which filaments collapse radially (Fischera & Martin, 2012). The critical
value for T = 10K is

µcrit =
2c2s
G

≈ 16.4M⊙ pc−1. (3.4)

The criticality is then given by the fraction of the actual line-mass to critical line-mass:

f =
µ

µcrit

. (3.5)

Thus, a filament is considered supercritical when it exceeds f = 1 where no hydrodynamic
solution can be found and the filament would start to collapse radially. Together with
the central density the cirticality determines the boundary density

ρb = ρc(1− f)2 (3.6)

and the corresponding filament radius R

R = H

(
f

1− f

)1/2

. (3.7)
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Figure 3.1: Acceleration along a filament with A = 8, R = 0.10 pc, f = 0.7 at its radial
centre r = 0. The black line shows the analytical solution of a uniform density filament
given by Equation 3.8 (Burkert & Hartmann, 2004). The coloured lines show the numer-
ical determined accelerations for various density profiles: The constant density filament
is given in dashed-green, the hydrostatic filament in dotted-blue, and the hydrostatic
filament with soft edges hydrostatic SE (Equation 3.10) in dashed-dotted orange. At
the end of the filament the acceleration is profile dependent and thus, deviates from the
theoretical prediction. However, inside the filament and especially at the approximated
center of mass of the end region (marked by the grey dotted line) the theoretical approx-
imation fits well for all profiles.

3.3 Edge effect

Although there exists a hydrostatic solution for the radial profile of a filament (as dis-
cussed in Section 3.2), for the z-direction there are only solutions for elongated cores
(Lizano & Shu, 1989; Tomisaka, 1991; Cai & Taam, 2010). This means there is no hy-
drostatic solution for the main axis of a filament with a considerable large aspect ratio
A = l/(2R). Thus, there is no possible profile for which the filament’s end is stable.
Therefore, it is expected that every isolated filament with finite length should collapse
along its axis. The acceleration along the z-axis of a cylindrical filament with uniform
density distribution (at r=0) was already investigated by Burkert & Hartmann (2004)

a = −2πGρ̄

2z −
√(

l

2
+ z

)2

+R2 +

√(
l

2
− z

)2

+R2

 , (3.8)

with ρ̄ being the uniform density and z being the position along the filament. An
example of the acceleration is given by the black solid line in Figure 3.1. The steep
increase in acceleration leads to a pile-up of matter in clumps forming at the ends of
the filament. These move inward and finally merge in the center. This end dominated
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collapse is what is called the ‘edge effect’ (Bastien, 1983). Of course the two end points
can collapse gravitationally when they reach their local Jeans mass. In this case however,
the protostellar cores will continue to move inwards until stellar feedback will become
active. We do not model the effects of stellar feedback as it is beyond the scope of this
paper and concentrate on the primary effect of gravitational collapse. Here we focus on
the motion along the z-axis neglecting the compression by self-gravity in the x-y plane.
We however explore different density structures in the x-y plane and demonstrate that
the evolution in the z-direction is to first approximation independent of this detail. The
acceleration at the exact end of the filament for L≫ R can be approximated by:

a = ±2πGρ̄R. (3.9)

This shows that the acceleration at the end of a filament is independent of its length.
In Figure 3.1 the acceleration for different profiles, measured in the simulations, is

also depicted in comparison to the theoretical expectation. The acceleration of a constant
density filament is shown in green, which matches the theoretical expected values. The
hydrostatic filament, given by the blue dotted line, experiences a similar acceleration
inside the filament. However, the maximum acceleration at the exact end of the filament
is larger, as indicated by the grey horizontal line, marked with the blue triangle. The
filament has a sharp cut at the end to match the cut-off of the uniform density filament.
However, more soft edges (orange), defined as

ρend(r, z) = ρ(r)sech

(
2
|z| − l/2

H

)2

(3.10)

for |z| > l/2, had only minor influences, besides lowering the acceleration at the exact
end. The grey dotted line is situated one radius away from the end inside the filament,
which was used in Hoemann et al. (2021) as centre of mass of the end region. At this
position the variations are negligible for all three cases.

As already mentioned, there is no hydrostatic solution for a cylinder with a finite
length and considerably large aspect ratio, thus it is theoretically expected that every
cylindrical filament should experience the edge effect. Although there are some observa-
tions of the edge effect (Zernickel et al., 2013; Kainulainen et al., 2016; Dewangan et al.,
2019; Bhadari et al., 2020; Yuan et al., 2020; Cheng et al., 2021), in most cases no over-
densities are detected at the end of filaments. This leads to a big puzzle: What suppresses
the edge effect? A possible scenario is presented in Heigl et al. (2021) where the filament
is formed by a constant radial accretion and the end regions are continuously fed with
new material. Therefore, no real edge effect occurs. Nonetheless, an accretion flow is
only detected seldom. It also has been shown that density fluctuations in the centre can
lead to a central collapse mode (Seifried & Walch, 2015). However, the fluctuations need
to be rather large, about a factor of three, which is normally not detected (Roy et al.,
2015). Whether the edge effect is likely to be observed depends on its timescale. As in
the case of filaments with small axis ratios, the collapse happens so fast that one hardly
observes this phase. The complex, long-wavelength sonic oscillations of protostellar cores
could then be the only detectable signature of this collapse phase (Keto & Burkert, 2014).
This and the question whether one can prevent the edge effect requires a more detailed
understanding of filament collapse which is the aim of this study.
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We already demonstrated in an earlier work (Hoemann et al., 2021) that the timescale
of the edge effect is dominated by the filament’s criticality and its central density. This is
the time needed to form self-gravitating cores, defined as a local over-density with f > 1,
at the edge of a filament:

tedge =

√
1.69× 10−20g cm−3

fρc
Myr. (3.11)

In order to describe the overall collapse time, i.e. the time when the two end regions
merge, several different approaches have been made: Toalá et al. (2011); Pon et al.
(2012); Clarke & Whitworth (2015). The most recent one by Clarke & Whitworth (2015)
found a description of the collapse time for long filaments fitting SPH simulations:

tcol =
0.49 + 0.26A√

Gρ̄
(3.12)

where A represents the aspect ratio A ≡ l/(2R) ≳ 2. They also found that the core
reaches a terminal velocity after about 1Myr of acceleration due to ram pressure. The
detected terminal velocities showed nearly no dependence on the aspect ratio.

However, a detailed analytic derivation of the collapse time (Equation 3.12) has not
yet been achieved.

3.4 Simulating the filament collapse

In order to validate our analytic study, we performed hydrodynamic simulations with
the adaptive-mesh-refinement code RAMSES (Teyssier, 2002). The Euler equations are
solved in their conservative form by using a second-order Gudonov solver. We utilized
the MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws, van Leer,
1979), the HLLC-Solver (Harten-Lax-van Leer-Contact, Toro et al., 1994) and the MC
slope limiter (monotonized central-difference, van Leer, 1979).

We simulated filaments with different density profiles, characterized by their aspect
ratio A (length divided by twice the radius), their radius R and their criticality f . We used
a grid refinement between level 7 (1283 cells) and level 9 (5123 cells) with open boundary
conditions. Since the boxes were chosen to be 0.5 pc bigger than the inserted filament, we
had a resolution outside the filament (low refinement) of 3.90×10−2 pc - 1.02×10−2 pc and
inside (high refinement) from 9.8× 10−3 pc to 2.5× 10−3 pc. The outside density was set
to ρext = 3.92× 10−23 g cm−3(equivalent to 10 particles per cm3) in pressure equilibrium
to the boundary of the filament, to have no influence of accretion effects. Because we
are only interested in the longitudinal collapse and want to suppress radial contributions,
radial velocities were set to zero (see Section 3.5 for further discussion).

An example simulation is shown in Figure 3.2 (upper panel) with a radius of R =
0.05 pc, a criticality of f = 0.5 and an aspect ratio of A = 12. The time evolution of
the length can be traced by two values: distance between two peaks in the line-mass
distribution (location of the end clump, ‘Peak’, dashed line) or the actual end of the
filament where the line-mass drops below a third of the initial value (‘Edge’, dotted
line), as indicated in the subplot of the filament at t = 0.48Myr. The mean is given
by the red dots, whereas the coloured area depicts the range between ‘Edge’ and ‘Peak’.
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Surprisingly, the position of the core (dashed line in the upper panel of Figure 3.2) follows
a rather linear trend which is caught up by the outer end (small dotted line) over time.
This indicates that there are two distinct phases in the collapse of a filament. The first
part can be interpreted as a free fall as explored in Hoemann et al. (2021) which defines
the epoch of formation of edge cores, namely that the edge cores become supercritical.
At some point the acceleration is counterbalanced by the ram pressure experienced by
the edge and a uniform movement sets in, which was already observed by Clarke &
Whitworth (2015) in their Figure 4a. This is also the trend seen in our simulation, see
Figure 3.2 lower panel. There, green dots represent the gravitational force and the orange
squares show the force due to ram pressure. The gravitational force is calculated by the
gravitational acceleration output from the simulation and the mass of the end clump,
whereas the ram pressure force was estimated by ∆v2ρS for a each cell with S being the
face area of the cell in this case, ∆v the velocity difference between neighbouring cells
and ρ the density in the given cell. The arrows show the deviation within 15 cells ahead
of the core, the square represents the highest value and the end of the arrow the average.
Although the determination of the ram pressure is uncertain, which is depicted by the
large arrow, the graph supports the idea of a two phase collapse.

With the equilibrium of forces a simple model can be established describing the col-
lapse of a filament in two phases, given in the following section.

3.5 Collapse of a uniform density filament

Consider the simple case of a uniform density filament, where the acceleration along the
main axis is well described by Equation 3.8. A simple approach can be used to calculate
the collapse of a filament.

During the filament collapse the end core accumulates the swept up mass and, thus
the mass increase of the core can be determined by

dM

dt
= ρSv (3.13)

with M the mass of the core, ρ the density, S the face area of the core and v its velocity
(here we assume that the swept up gas is at rest). The core’s equation of motion is
governed by the gravitational self-acceleration at the filament’s end which we denote as
a:

d(Mv)

dt
=Ma (3.14)

using the product rule we get to

v
dM

dt
+M

dv

dt
=Ma. (3.15)

Using the mass increase defined above:

M
dv

dt
+ ρSv2 =Ma. (3.16)
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Figure 3.2: Length and force evolution of a hydrostatic filament with A = 12, R = 0.05 pc,
f = 0.5.
Upper panel: The dotted red line depicts the evolution of the edge (where the line-mass
decreases by a factor of three). The dashed red line follows the density peak. The mean
is given by the red dots. The two positions are depicted by the small snapshot of the
simulation in the left lower corner at t = 0.48Myr. In the following plots the outer lines
(dotted, dashed) are only represented by the shaded region.
Lower panel: The gravitational force, that the core experiences, is shown by the green
dots, and the ram pressure acting against the collapse, is depicted as orange squares.
First, the collapse is dominated by the gravitational force, which is counterbalanced by
the ram pressure later on. The determination of the ram pressure is difficult in that case.
Thus, the marker depicts the highest ram pressure value and the end of the arrow the
mean value in the direct surrounding of the filament.
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Already Clarke & Whitworth (2015) saw that a terminal velocity is reached after a certain
time and also our simulations show a linear collapse in the later stages. Thus, the
collapse is divided into two parts: the accelerated part, where only the gravitational self-
acceleration of the filament plays a role and the phase where the force equilibrium sets
in and the core experiences a constant velocity. We assume the transition between the
two phases to occur on a short time scale so that it can be described as a sharp phase
transformation at turning time tturn where dv/dt ≈ 0, which leads to:

ρSv2 ≈Ma (3.17)

This results in a proportionality between the ram pressure force on the left hand side and
the gravitational force on the right hand side

Fram ∝ FG (3.18)

after the turning time. This seems reasonable, since Figure 3.2 shows the correlation
between gravity and ram pressure after the turning time.

Since the gravitational acceleration a at the edge (Equation 3.8) is independent of its
length, a constant acceleration can be used. Thus, at the turning time tturn the core has
reached a velocity of v = atturn. Considering that the gas inside the filament is nearly at
rest, while being swept up, this is exactly the velocity difference which produces the ram
pressure after tturn. Assuming that the density ratio between the swept up material and
the core is always similar at force equilibrium leads to

(atturn)
2Sρ̄ ∝ aSzρ̄ (3.19)

⇒ tturn ∝
√
z

a
(3.20)

with z the size of the end region, which should be close to 2R assuming a symmetrical
end region, and S the face area of a slice of the filament. Using this and κ as constant of
proportionality, which is fitted to the simulation afterwards, results in:

tturn = κ

√
2R

a
. (3.21)

The acceleration is given by Equation 3.8. Assuming that the end region is nearly sym-
metric the acceleration should be determined at a

(
− l0

2
+ z

2

)
(l0 being the initial length

of the filament), analogous to the determination of tedge in Hoemann et al. (2021):

a

(
− l0
2
+
z

2

)
= α2πGρ̄R (3.22)

with α being a constant which also will be fitted to the simulation afterwards.
Now, the time evolution of the length of the filament can be given by

l(t) =

{
l0 − at2 for t < tturn

l0 + at2turn − 2atturnt for t ≥ tturn
(3.23)
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and the collapse time is defined as l(t) = 0:

tcol =
l0

2atturn
+

1

2
tturn (3.24)

=

(
l0

2Rκ
+ κ

)
/
√
α4πGρ̄. (3.25)

Using the aspect ratio A, given by A = l0/(2R), leads to

tcol =

(
1

κ
A+ κ

)
/
√
α4πGρ̄. (3.26)

This is then the collapse time of a uniform density filament assuming the two phase
model.

In order to validate our approach and to fit κ and α we performed hydrodynamic
simulations as described in Section 3.4. The influence of the different density profiles will
be discussed in the next section, however, the collapse time agreed within 10% between the
simulations with uniform density and hydrostatic filaments. Since the hydrostatic profile
is more realistic we used it in the following analysis. Furthermore, we suppressed radial
motions to prevent the filament to collapse radially because here we want to study the
longitudinal collapse independently, influences are discussed in the next paragraph. The
simulated filaments are defined by the aspect ratio A, the radius R and the criticality
f . The parameter space was covered as follows f ∈ {0.3, 0.5, 0.7}, A ∈ {8, 12, 15},
R ∈ {0.05 pc, 0.10 pc, 0.15 pc}. We limited the simulations to those which were collapsed
after a runtime of 4Myr which is on the order of estimated filament lifetimes of a few Myr
(André et al., 2014). Besides, we did simulations with f ∈ {0.1, 0.9} but they sometimes
show a different behavior than the other filaments, as for low line-mass filaments the edge
cores accelerate to the centre faster then the real edge and thus a second pair of edge
cores evolves and for large line-mass filaments material is swept up in the center which
leads to an additional central core (also seen in Seifried & Walch, 2015). We thus had in
total 17 simulations for evaluation, displayed in Figure 3.3. The filament was considered
as collapsed when the two density peaks merged and the aspect ratio of the filaments fell
below 1. Each panel shows one of the parameters varied in the simulations on the x-axis
and the collapse time on the y-axis. The second and third parameter are then plotted
in different colours and styles, as indicated by the legends. The marker represent the
simulated values. The lines show the fitted model. For clarity, not all simulations are
plotted in one image. The model fits the simulated values very well for all configurations,
with κ = 1.22 and α = 0.69. The collapse time is then given by:

tcol =
0.42 + 0.28A√

Gρ̄
(3.27)

=
0.74R + 0.25l0√

Gµ
. (3.28)

Besides small changes in the fitting factors this simple approach is also in agreement and
explains Equation 3.12 by Clarke & Whitworth (2015).

Since we wanted to study the collapse along the main axis of the filament, the radial
velocity was artificially set to zero to prevent the radial collapse. This was especially



3.5 Collapse of a uniform density filament 53

8 10 12 14
Aspect ratio

0

1

2

3

4
t co

l [
M

yr
]

Simulation
R=0.05
R=0.10
f=0.3
f=0.5
f=0.7

0.04 0.06 0.08 0.10 0.12 0.14 0.16
Radius [pc]

0

1

2

3

4

t co
l [

M
yr

]

Simulation
A=8
A=12
f=0.3
f=0.5
f=0.7

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Criticality

0

1

2

3

4

t co
l [

M
yr

]

Simulation
R=0.05
R=0.10
A=8
A=12
A=15

Figure 3.3: Results of the parameter study to determine κ and α for Equation 3.24. Sev-
eral simulations were carried out varying f,R and A. The markers (dots and squares)
show the collapse time of the simulation. The lines show the model for different param-
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α = 0.69.
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Table 3.1: Comparison of collapse times determined in simulations with radial velocities
tcol,vr ̸=0 and without tcol,vr=0. The time difference between the two simulations is given
by ∆t, whereas a time step in the simulation takes 0.07Myr.

f R [pc] A tcol,vr=0 [Myr] tcol,vr ̸=0 [Myr] ∆t [Myr]
0.3 0.05 12 2.26 2.26 0.00
0.5 0.05 12 1.78 1.71 0.07
0.7 0.05 12 1.51 1.44 0.07
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Figure 3.4: Comparison of the two phase model (solid lines, A = 12 and R = 0.05 pc) to
the simulation values (light coloured as in Figure 3.2). The filled area shows the region
between the edge off the filament and its peak in the simulation, the mean is given by
the dots. Different criticalities are displayed in different colours. The model reproduces
the simulated collapses very well.

necessary for filaments having other profiles than the hydrostatic one. As these are not
in hydrostatic equilibrium they would collapse or expand radially to adjust to the equi-
librium profile. However, to show that the radial collapse itself has only minor influences
on the collapse, we performed hydrodynamic simulations including also radial velocities
perpendicular to the long axis. The results are depicted in Table 3.1. As the cores start
to collapse we included sink particles and define the time they need to reach the centre
as the collapse timescale. As seen in Table 3.1, the deviations between the simulations
with and without radial velocity is at maximum one output and can be neglected. Thus,
the suppression of radial velocities has no influence on the longitudinal collapse time of
a filament.

Not only does the model reproduce the collapse times accurately but it also describes
the collapse itself as shown in Figure 3.4 where the length evolution of filaments with
different criticalities are depicted. The shaded areas and the dots represent the simulation
and the solid lines represent the corresponding model, as described in Figure 3.2. In this
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Figure 3.5: Length evolution for filaments with different radial density profiles with
A = 8, R = 0.15 pc and f = 0.5. The hydrostatic profile is given in blue, Equation
3.1, and steeper/flatter profiles according to Equation 3.29 are given in shades of red
with corresponding exponent p. In comparison the constant density profile is depicted
in green. The shaded areas again show the difference between the core and the actual
end of the filament. A comparison of the radial densities of the corresponding profiles is
given in the subplot on the left hand side.

example the aspect ratio was chosen to be A = 12 and the radius to be R = 0.05 pc. In
all cases the simulation is very well reproduced by the model. The small underprediction
is explained in the following section.

All in all, the two phase model describes the collapse and the corresponding collapse
time well and reproduces the empirical formula from Clarke & Whitworth (2015).

3.6 Influence of different profiles

For the above analysis we assumed uniform density filaments since there is an analytical
expression for the acceleration along a filament. Assuming a hydrostatic equilibrium,
from a theoretical point of view we would expect to detect filaments with a hydrostatic
profile which results in a r−4 density profile in the outskirts. Although centrally peaked
density profiles are observed in filaments their profile is flatter than the hydrostatic one,
about r−2 (Lada et al., 1999; Arzoumanian et al., 2011; Palmeirim et al., 2013; Cox
et al., 2016). Thus, in the following we investigate the influence of different profiles on
the collapse of a filament.

Figure 3.1 already shows that different radial profiles lead to different accelerations at
the end of the filament. In order to check whether this has any kind of influence on the
collapse time, we performed simulations with diverse density profiles. An example is given
in Figure 3.5. All filaments have the same initial condition in terms of A = 8, R = 0.15 pc
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and f = 0.5. The hydrostatic profile, given in blue, follows the density distribution for a
filament in hydrostatic equilibrium (see Equation 3.1). The label ‘Constant’ means that
the filament has a uniform density, represented by the green dashed line. The others
follow a flatter or steeper profile than the hydrostatic one, a Plummer-like profile:

ρ(r) = ρc

[
1 +

( r

H ′

)2]−p/2
, (3.29)

with H ′ being:

H ′2 =
2c2s
πGρ̄

(3.30)

and ρ̄ the average density of the filament. The power-law index p was varied in the range
between four and eight. The central density is adjusted such, that the overall filament
has a criticality of f = 0.5. All filaments have a very similar time evolution (see Figure
3.5). However, a trend can be seen: Filaments with a flatter density distribution seem to
collapse faster than filaments with a steeper density distribution. This is counterintuitive
because the acceleration at the edge is larger for filaments with a more peaked profile (see
Figure 3.1). We also see this trend in simulations with different parameters (in terms
of f, A and R). However, the effect seems to be always smaller than 10%. Thus, the
approximation of the acceleration of a uniform density filament seems to be accurate
enough.

In order to understand why the hydrostatic filament collapses slower compared to the
filament with the constant density distribution, we look at their velocity evolution in the
simulation given in Figure 3.6. Three different examples are shown and their parameters
are indicated in the upper left corner. The blue solid line indicates the velocity evolution
of the hydrostatic filament, whereas the green dashed line depicts the uniform density
case. Especially for lower line-mass filaments with f=0.3 and f=0.5 the velocity evolves
differently for the two cases. Assuming the two phase model, a linear increase of velocity
followed by a terminal velocity is expected as shown by the light green dashed line. It
is a reasonable approximation of the simulated velocity for a constant density profile.
However, for the hydrostatic case, there are strong deviations before reaching the final
terminal velocity predicted by the model. An intermediate terminal velocity is reached.
This can be explained by the strong density increase in the centre for a peaked profile,
as can be seen in the box on the lower right side. Since the density inside is much
higher, this induces a stronger ram pressure, and thus an earlier phase transition to an
intermediate terminal velocity. We assume an approximation by a stacked profile would
be more fitting, consisting of two constant density filaments, a more dense inner region
and a diffuse outer region as indicated by the grey dotted line in the profile plot. The inner
density is determined by the central density ρc, whereas the outer density is the boundary
density ρb, the density cut is chosen such that the filament has the same criticality and
radius as the other profiles. First the inner dense region collapses which reaches a terminal
velocity rather fast but after a certain time the more diffuse outer region collapses onto
the core and adds the momentum to get to the final terminal velocity. This effect delays
the collapse for a short amount of time, and thus a systematic trend is seen that uniform
density filaments collapse faster than hydrostatic ones. Because the deviations in the
simulations were always below 10%, the effect is negligible.
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Figure 3.6: Velocity evolution for filaments with three different sets of parameters in-
dicated in the left upper corner. Each graph compares the velocity evolution for the
hydrostatic (blue solid line) and constant (green dashed line) velocity profile with the
model (light green dashed line) and for a model with a stacked density distribution (grey
dotted line). The profiles are depicted in the lower right corner.
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Figure 3.7: The radial dependency of the turning time for different criticalities. The
dashed line represents a constant density distribution whereas the solid line shows the
turning time of a hydrostatic profile. The used parameters are A = 8 and R = 0.1 pc.

This effect is depicted for different criticalities in Figure 3.7. Since the turning time
only depends on the density, it is constant for a uniform density filament (depicted by
the dashed line), whereas the hydrostatic filaments show a radially dependent turning
time. Although the constant profile gives a good median, it is only an approximation.

Summing up, since the deviations for different filament profiles are small in simula-
tions, it is sufficient to use the uniform density model in general as a good approximation
of the collapse timescale.

3.7 Discussion

During this analysis several approximations have been made to describe the complex
collapse of a filament. We will discuss in the following how these affect the presented
results and give an example application of our model.

During the overall collapse the edge effect is not the only way of creating cores inside
the filament. Perturbations can grow inside also leading to collapsing regions. For a
hydrostatic filament the timescale on which perturbations form cores inside the filament
is given by the perturbation timescale

tpert = τdom log

[(
1

f
− 1

)
1

ϵ

]
, (3.31)

which was already given by Equation 25 in Hoemann et al. (2021). τdom is the dominant
fragmentation mode, which was calculated following Appendix E in Fischera & Martin
(2012), compare Nagasawa (1987); Heigl et al. (2020). In the following we adopt a
perturbation strength of ϵ = 0.09, based on the observations of Roy et al. (2015). Figure
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Figure 3.8: Comparison of different timescales in dependence of the criticality f . The
edge effect formation timescale visualized in dashed green for R = 0.1 pc (Equation 3.11,
and the loosely dashed line for R = 0.05 pc), perturbation timescale in orange (Equation
3.31, in the shaded area the perturbation strength is varied) and the collapse timescale
in dotted blue (Equation 3.24). Varying initial filament lengths are given by different
shades of blue. The dotted lines show the collapse time for R = 0.1 pc and the sparsely
dotted lines for R=0.05 pc.

3.8 shows the perturbation timescale (orange solid line, the light orange region depicts
0.01 < ϵ < 0.17) in comparison to the edge effect formation timescale (Equation 3.11;
dashed solid line for R = 0.1 pc and loosely dashed for R = 0.05 pc) and the collapse
timescale for R = 0.1 pc in dotted lines and R = 0.05 pc in the loosely dotted lines for
different lengths l0. For low line-mass filaments with small aspect ratios A a dominant
edge effect can be expected, whereas for filaments with larger line-masses, perturbations
grow faster. The edge effect, leading to dense cores on both ends of the filament, should
however be visible in all cases.

In this study we considered that the initial density distribution does not change along
the filament. However, if we vary the density, different collapse modes can be expected.
For example Seifried & Walch (2015) found that a density enhancement of factor three
leads to a ‘centralized collapse’ mode.

Since the presented model provides the length evolution of a filament, the age of a
filament can be determined if the original length can be estimated. Taking into account
the total mass of the filament and that the density in the inner part of the filament stays
mostly constant, the length can be extrapolated. Using the current length, the age can
then be determined by rearranging Equation 3.23:

t =


√

l0−l(t)
α2πGρ̄R

for t < tturn(
l0−l(t)
κ2R

+ κ
)
/
√
α4πGρ̄ for t ≥ tturn

, (3.32)
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considering that the edges are the only cores inside the filament, because the model does
not account for other perturbations.

Summing up, the presented model has limitations due to its approximations but it
gives a good estimate of the collapse time and the length evolution, especially for low
line-mass and short filaments.

3.8 Conclusion

We show that the longitudinal collapse of a uniform density filament is a two step process.
In the first phase, the filament accelerates until the turning time where the ram pressure
counterbalances the gravitational acceleration and a terminal velocity is reached. This
leads to a simple analytic model describing the length evolution and the resulting collapse
time which explains the established empirical equation by Clarke & Whitworth (2015).
For filaments with a peaked density distributions, the radial dependence of the turning
time leads to the fact that the final terminal velocity is reached later. However, we
find that all tested profiles are nevertheless well described by the collapse of a uniform
density filament because the deviations are small. Since the collapse timescale is long in
comparison to the edge effect formation and the perturbation timescale, it is unlikely that
filaments collapses before forming cores. Thus, the edge effect is expected to dominate
in low line-mass filaments whereas for large line-mass filaments perturbations can grow
on a similar timescale.
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Chapter 4

Paper III – Filament fragmentation:
Density gradients suppress end
dominated collapse

Elena Hoemann, Stefan Heigl and Andreas Burkert, 2023, arXiv e-prints,
arXiv:2307.11162, accepted for publication in Monthly Notices of the Royal Astronomical
Society

The onset of star formation is set by the collapse of filaments in the interstellar
medium. From a theoretical point of view, an isolated cylindrical filament forms
cores via the edge effect. Due to the self-gravity of a filament, the strong increase
in acceleration at both ends leads to a pile-up of matter which collapses into cores.
However, this effect is rarely observed. Most theoretical models consider a sharp
density cut-off at the edge of the filament, whereas a smoother transition is more
realistic and would also decrease the acceleration at the ends of the filament. We
show that the edge effect can be significantly slowed down by a density gradient,
although not completely avoided. However, this allows perturbations inside the
filament to grow faster than the edge. We determine the critical density gradient
for which the timescales are equal and find it to be of the order of several times the
filament radius. Hence, the density gradient at the ends of a filament is an essential
parameter for fragmentation and the low rate of observed cases of the edge effect
could be naturally explained by shallow gradients.

Keywords: stars:formation – ISM:kinematics and dynamics – ISM:structure
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4.1 Introduction

Observations show that the molecular interstellar medium is pervaded by filaments (Schnei-
der & Elmegreen, 1979; André et al., 2010; Arzoumanian et al., 2013; André et al., 2014).
They are key in understanding the formation of stars since prestellar cores are mainly
found within these cold, dense, filamentary structures (Arzoumanian et al., 2011; Könyves
et al., 2015). They span several orders of magnitude (Hacar et al., 2023) from hundreds
of parsecs in length down to the sub-parsec regime (Molinari et al., 2010; André et al.,
2010; Hacar et al., 2013; Goodman et al., 2014; Mattern et al., 2018; Schmiedeke et al.,
2021). Besides their obvious connection to star formation, there still remain many open
questions on the formation, evolution and collapse of filaments.

Particularly the formation of cores and their consequent collapse is interesting since
this is the stage of early star formation. For isolated filaments, fragmentation is sup-
posed to happen via two competing processes: the edge effect (Bastien, 1983; Burkert &
Hartmann, 2004; Pon et al., 2012) and the growth of perturbations (Stodólkiewicz, 1963;
Nagasawa, 1987; Fischera & Martin, 2012). The edge effect consists of creating cores at
the ends of the filament during the overall filament collapse. Since there is no density
distribution for which the filament is in hydrostatic equilibrium along its main axis, it
will collapse longitudinally due to self-gravity. This gravitational acceleration has a sharp
increase in the end regions of the filament, and thus matter is swept up at the ends which
forms a core and collapses after accumulating enough mass (Burkert & Hartmann, 2004;
Hartmann & Burkert, 2007; Li et al., 2016). Contrary to this theoretical expectation,
such pronounced ends are rarely observed (Zernickel et al., 2013; Kainulainen et al., 2016;
Dewangan et al., 2019; Bhadari et al., 2020; Yuan et al., 2020; Cheng et al., 2021), which
leads to the question of why we do not observe end-dominated filaments more often.

For magnetised, disc-like clouds the formation of an outer ring is the pendant to
the edge effect. Li (2001) already found that the creation of a ring is correlated to the
profile of the disc and the sound speed. However, for filaments Seifried & Walch (2015)
showed that an initial density peak in the centre of the filament leads to a centrally-
dominated collapse instead of an end-dominated one. In case of short filaments with
aspect ratios of 3:1 the longitudinal collapse was also investigated by Keto & Burkert
(2014). They showed that for low line-masses the filament collapses longitudinally into a
central core that begins to go through a complex pattern of oscillations. Although such
a longitudinal collapse has not yet been confirmed by observations (Roy et al., 2015) the
predicted oscillations of the resulting cores are (Redman et al., 2006; Aguti et al., 2007).
In addition, Heigl et al. (2022) showed that a filament created by a constant inflow region
can suppress the edge effect. The constant inflow region rebuilds the filament during the
overall filament collapse leading to a density gradient in the end region. This gradient
leads to a decrease in the acceleration at the end of the filament which slows down the
creation of the edge effect. Although not all filaments are expected to have such high
and constant accretion, a smooth transition from the filament end into the surrounding
medium is expected. This raises the question of whether a gradient at the end of the
filament can stop the edge effect and if so, under which condition.

In general, cores are much more often detected inside filaments. These can form
due to the growth of density perturbations. Although the expected spacing of the cores
due to perturbation theory (Nagasawa, 1987; Larson, 1985; Inutsuka & Miyama, 1992;
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Gehman et al., 1996; Hosseinirad et al., 2017) is mostly not observed, several filaments
with regularly spaced cores were detected (Tafalla & Hacar, 2015; Zhang, Guo-Yin et al.,
2020).

In this paper, we show that the edge effect itself cannot be stopped by any density
profile at the end region of the filament. However, the collapse can be slowed down by
a density gradient, such that perturbations can grow faster inside the filament. This is
a natural explanation why filaments rarely show an edge effect. We present an analytic
model for the conditions under which the edge should be dominant and under which
conditions perturbations can grow faster and confirm it by numerical simulations.

The paper is organized as follows: First, the basic principle of hydrostatic filaments,
the edge effect and perturbations are discussed in Section 4.2. Then we argue why the
edge effect can never be avoided completely in Section 4.3. The derivation of the critical
density gradient for which perturbations within the filament grow faster than at the
edge is presented in Section 4.4, followed by the validation by simulations in Section 4.5.
Finally, the results are discussed and conclusions are drawn in Sections 4.6 & 4.7.

4.2 Basic principles

4.2.1 Hydrostatic filaments

Considering filaments as isothermal cylinders, a hydrostatic solution for the radial profile
was already found by Stodólkiewicz (1963) and Ostriker (1964):

ρ(r) = ρc

[
1 +

( r
H

)2]−2

(4.1)

with H the scale height:

H2 =
2c2s
πGρc

(4.2)

and cs being the sound speed (0.19 km s−1for a mean molecular weight of 2.36 and a
temperature of 10K), G the gravitational constant and ρc the central density of the
filament. The filament is radially constrained by the pressure equilibrium between the
boundary pressure and the external pressure Pext = Pb. Its line-mass is given by its
overall mass divided by its length:

µ =
M

l
. (4.3)

Integrating the density distribution radially until infinity results in the maximum line-
mass for which a hydrostatic solution exists, given by

µcrit =
2c2s
G

≈ 16.4M⊙ pc−1, (4.4)

above which all filaments would start to collapse radially. The value is calculated for
10K. The criticality f is then the ratio of the actual line-mass divided by the critical
line-mass

f =
µ

µcrit

. (4.5)
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The radial boundary density of the filament can be calculated by

ρb = ρc(1− f)2 (4.6)

and the radius of this boundary is given by

R = H

(
f

1− f

)1/2

. (4.7)

4.2.2 Edge effect

Since there is no hydrostatic solution for the density distribution along the main axis of
a filament, the filament is expected to collapse longitudinally. The acceleration along a
filament due to its self-gravity was already investigated by Burkert & Hartmann (2004):

a = −2πGρ̄

2z −
√(

l

2
+ z

)2

+R2 +

√(
l

2
− z

)2

+R2

 . (4.8)

with ρ̄ the mean density and z the position along the filament. The steep increase of a at
the end leads to a large velocity inwards along the main axis and as a result to a pileup
of matter in these regions. The resulting clumps will begin to collapse onto themselves
when they reach the critical line mass. At the same time, the end clumps still move
inwards towards the centre of the filament, destroying the filament (Bastien, 1983; Toalá
et al., 2011; Pon et al., 2012; Clarke & Whitworth, 2015). This is the so-called edge effect
(Burkert & Hartmann, 2004). In an earlier paper (Hoemann et al., 2021) we investigated
on which timescale the ends of a filament are formed:

tedge =

√(
1

f
− 1

)
2κR

|acm|

=

√
1.69× 10−20 g cm−3

fρc
Myr (4.9)

with κ = 1.66 and acm being the acceleration of the centre of mass of the filaments end
region acm = a(l/2 − κR/2). In the beginning, the two cores move in free fall and then
are slowed down by ram pressure (Hoemann et al., 2022). With this two-phase approach,
the longitudinal collapse timescale of a filament can be determined (Clarke & Whitworth,
2015; Hoemann et al., 2022)

tcol =
0.42 + 0.28A√

Gρ̄
(4.10)

=
0.42 + 0.28A√

ρ̄/1.50× 10−20 g cm−3
Myr, (4.11)

with A = L/2R being the aspect ratio and ρ̄ the mean density of the filament. This
is now the overall collapse time, the timescale on which the two end cores move to the
centre.
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Although the edge effect is predicted by theory, it is only rarely observed (Zernickel
et al., 2013; Kainulainen et al., 2016; Dewangan et al., 2019; Bhadari et al., 2020; Yuan
et al., 2020; Cheng et al., 2021). This raises the question of why we do not observe the
edge effect in most cases. However, most of the former theoretical studies were done with
a sharp density cut-off at the ends of the filament which influences the acceleration in
the end region. A smoother density gradient could influence and weaken the edge effect
significantly allowing perturbations to grow faster. This is what we will investigate in the
next sections.

4.2.3 Perturbations

In competition to the edge effect, line-mass perturbations within the filament can also
grow. Here we characterize a perturbation of the line-mass by

f(z) = f0

[
1 + ϵ cos

(
2πz

λdom

)]
, (4.12)

with f0 the unperturbed line-mass and z the coordinate along the filament. z = 0
corresponds to the centre of the perturbation. ϵ is the perturbation strength which is
observed to be typically 0.09 (Roy et al., 2015) and λdom is the dominant fragmentation
length (see Fischera & Martin, 2012, Appendix E)

λdom =
(
6.25− 6.89f 2 + 9.18f 3 − 3.44f 4

)
FWHMcyl (4.13)

using the full width at half maximum of the cylindrical filament FWHMcyl. Follow-
ing a perturbation analysis (Nagasawa, 1987) the timescale can now be determined on
which such a perturbation would grow into a collapsing core (compare Heigl et al., 2020;
Hoemann et al., 2021)

tpert = τdom log

[(
1

f
− 1

)
1

ϵ

]
. (4.14)

Here τdom denotes the dominant growth timescale, which can be determined with Fischera
& Martin (2012), Appendix E

τdom =
(
4.08− 2.99f 2 + 1.46f 3 + 0.40f 4

)
/
√
4πGρc. (4.15)

Since most of the cores are found within filaments (Arzoumanian et al., 2011; Könyves
et al., 2015), this is expected to be one of the most important channels for core formation,
theoretically.

4.3 The inevitable edge effect

In former theoretical studies (e.g. Clarke & Whitworth, 2015; Hoemann et al., 2021),
filaments are often considered to have a sharp edge, thus, a hard cut-off at the ends
of the filament which makes analytic predictions possible (Burkert & Hartmann, 2004).
However, a more realistic setup would be a smooth transition to the surrounding gas. Such
a density gradient would lead to a decrease in acceleration at the ends of the filament.
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Figure 4.1: The top row shows the density distribution along the z-axes for three different
profiles: A hard cut-off, where the density goes directly to zero after the filament ends,
in dotted blue; A step for which the density is cut in half after the end and drops to zero
at the edge of the end region, shown in dashed green; A linear end is depicted in orange,
where the density transitions more smoothly into the surrounding. In the second row,
the corresponding numerically determined acceleration is given and in the last row its
gradient. For the gradient, the lighter colours depict the analytic solution which fits the
numeric solution well.



4.3 The inevitable edge effect 67

The change in acceleration due to the end profile of the filament is depicted in Figure
4.1. The top row shows three simple density distributions. The hard cut-off is depicted
as a blue dotted line. Here the density drops immediately to the external density at
the end of the filament, which is often used for analytic approaches. The green dashed
line shows a step edge, where the density halves at the filaments end and only drops
to the external density at the edge of the end region. A linear end is given by the solid
orange line. In this case, after the end of the filament the density decreases linearly to the
external density. We consider the external density to be negligible and set it to zero, to
make analytic predictions comparable. The second row depicts the acceleration for each
of the profiles and the last row shows the gradient of the acceleration respectively. The
acceleration of the hard cut-off can also be determined by Equation 4.8. The calculation
was done numerically, but the lines and markers in lighter colours in the last row show the
analytical expectation, described in more detail in the following, which fits the numerical
solutions.

Differentiating Equation 4.8 leads to the gradient for the hard cut-off, shown in light
blue in the lower plot in Figure 4.1 (derivation Appendix 4.7):

∇acut = 2πGρ

[
l/2 + z√

(l/2 + z)2 +R2
+

l/2− z√
(l/2− z)2 +R2

− 2

]
. (4.16)

For the step function, which is depicted in light green, considering of outside material
leads to:

∇astep =− 2πGρ

[
− 1

2

l/2 + z√
R2 + (l/2 + z)2

− 1

2

l/2− z√
R2 + (l/2− z)2

+ 2

− 1

2

l/2 + dl + z√
R2 + (l/2 + dl + z)2

− 1

2

l/2 + dl − z√
R2 + (l/2 + dl − z)2

]
(4.17)

dl donates the length of the additional end region, given in Figure 4.1. The derivation can
be found in Appendix 4.7. For the linear density distribution at the end, we calculated
the gradient of the acceleration only for the filament end since this is the region of interest
(derivation in Appendix 4.7):

∇alin = 2πGρ

[√
R2 + dl2

dl
− R

dl
+

l√
R2 + l2

− 2

]
. (4.18)

We checked the limits for consistency. Case 1: dl → 0 reproduces the gradient for the
hard cut-off:

lim
dl→0

∇alin = 2πGρ

[
l√

R2 + l2
− 2

]
(4.19)

and case 2: dl → ∞ has to be zero since it would be an infinite long filament, thus also
l → ∞

lim
dl,l→∞

∇alin = 0. (4.20)
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Altogether, the important parameter for the collapse of a filament is the amount of
acceleration in the end region, which can be weakened by a smooth density transition.
However, every density gradient will at least cause a small peak in the gradient of the
acceleration, as can be seen in Equation 4.18. Thus, during the filament collapse the for-
mation of an edge effect will always be triggered. The amount of acceleration determines
how fast the edge grows:

tedge ∝
1√
a
. (4.21)

Therefore, the edge effect can be slowed down by a density gradient at the end, reducing
the acceleration in this region. However, the collapse timescale of a filament scales with
the same dependence on a:

tcol ∝
1√
a

(4.22)

which means that if the filament encounters an edge effect with a cut-off, it also encounters
an edge effect with any end profile before collapsing, because collapse and edge effect are
slowed down by the same amount. Thus, a gradient cannot stop the edge effect, it can
just slow it down.

However, there is also a third effect, the growth of perturbations, which plays an
important role which we consider in the next section.

4.4 Critical density gradient

As was shown in the previous section, the edge effect cannot be stopped, but it can be
slowed down. The question is, under with circumstances is the slowdown sufficient to
make perturbations grow faster than the edge effect. In contrast to the overall collapse
timescale, the timescale on which perturbations grow is independent of the acceleration
at the ends. Thus, even if the acceleration at the ends is low, perturbations grow never-
theless. Hence, if perturbations grow faster than the end cores, we do not expect to see
a dominant edge effect.

To get a criterion for which perturbations would grow faster than the edge effect, we
consider a simple geometry: a linear transition from the filament to the outside medium
as depicted by the orange line in Figure 4.1 in the first row. We want to determine the
density gradient ρ/dl at which perturbations grow as fast as the edge effect tedge = tpert
as indicated in Figure 4.2. The dashed line shows the perturbation timescale (Equation
4.12) and the solid line is the edge effect formation, given by Equation 4.9 using the
centre of mass acceleration at the end of a filament for a linear density gradient:

acm = −2πGρ

[√
κ2

4
+ 1

κR2

4dl
− R2

2dl
tanh−1

(
−κ/2√
κ2/4 + 1

)

−
(
1

2
+
κR

4dl

)√
R2 +

(
dl +

κR

2

)2

+
1

2
dl

+
R2

2dl
tanh−1

(
− dl + κR/2√

(dl + κR/2)2 +R2

)
− l
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Figure 4.2: Comparison of the perturbation timescale (Equation 4.14), depicted by the
dashed, light green line, with the edge effect formation timescale (Equation 4.9 and 4.8),
shown by the darker solid, green line.

+κR +

√
R2 +

(
l − κR

2

)2
]
. (4.23)

The derivation of this equation is provided in Appendix 4.7 and is valid for filaments with
l − κR/2 ≫ R, thus filaments with large aspect ratios. The crossing point of the lines
indicates the gradient where both effects grow on the same timescale. The determination
of this crossing point is not straightforward. Therefore, we use Taylor approximations to
determine the critical density gradient.

In the first step, we do a Taylor expansion of the acceleration at the end of the filament
(Equation 4.23) around dl = 0 with Mathematica:

a ≈ Gπρ [aR + bdl] , (4.24)

with free (a, b) parameters which are fitted to the numeric values at the end of the section.
Inserting this into the edge effect formation timescale leads to:

tedge ≈

√(
1

f
− 1

)
2κR

Gπρ(aR + bdl)
. (4.25)

We did another Taylor expansion around dl = 0 for the last multiplier:

1√
(aR + bdl)

≈
√

1

aR
− 1

2

[(
1

aR

)3/2

b

]
dl. (4.26)

Inserting this into the edge effect formation timescale leads to:

tedge ≈

√(
1

f
− 1

)
2κR

Gπρ

[√
1

aR
− 1

2

b

(aR)3/2
dl

]
. (4.27)
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Now the critical density gradient can be determined solving

tedge
!
= tpert (4.28)

for dl/R:

dl

R
≈ −2a3/2

b

[
tpert

√
fGπρ

(1− f)2k
− 1√

a

]
(4.29)

≈ α

√
Gπρf

(1− f)
τdom log

(
1− f

fϵ

)
− β. (4.30)

The approximation of the critical gradient is presented in Figure 4.3, upper panel,
for different aspect ratios indicated by the shaded grey lines for a perturbation strength
of ϵ = 0.09 which is the observed value (Roy et al., 2015). The filament’s aspect ratio
A belonging to the various line is given in the subscript. Our model only holds for long
filaments, thus, the solution converges for large values of A. Parameters α = 4.22 and
β = 8.17 were fitted to the numeric values for a large aspect ratio (A = 2000) given as the
black dots. The numerical values are well reproduced by the approximation. Filaments
below the critical gradient would be expected to show a pronounced edge effect, whereas
filaments above the line would grow perturbations on a similar timescale or faster. This
shows that for filaments with a criticality greater than 0.7, we would expect perturbations
to always grow faster. In the lower panel, we present the critical gradient for different
perturbation strengths ϵ. The grey line indicates the observed value of ϵ = 0.09 (Roy et al.,
2015), which is also used to demonstrate the convergence of the solution. The blue lines
present less dominant perturbations whereas the red curves depict the critical gradient
for stronger perturbations. As expected for lower perturbations smoother gradients are
needed to suppress the edge effect. In addition, the stronger perturbations shift the
line-mass f above which all filaments would be dominated by perturbations to lighter
filaments and to heavier filaments for the less perturbed filaments.

For validation, we compare the crossing point of tedge and tpert (see Figure 4.2) to the
approximation of the edge effect formation timescale given by Equation 4.27 in Figure
4.4. As in Figure 4.2, the dashed line denotes tpert, the solid line tedge for a filament
with linear density gradient and the dotted line its approximation tedge,approx, given by
Equation 4.25. The criticality is varied in the top row, the radius in the middle and
the length in the last one, respectively indicated by different colours. As we used the
approximation to determine the critical gradient the approximation has to be valid for
the intersections, which fits well for the presented cases.

Altogether, the density gradient at the end of the filament leads to a decrease in
acceleration, thus, there also has to be a critical acceleration which is needed in a cer-
tain setup to have dominant end cores. This can be calculated without any additional
approximations using the same ansatz as before and solving for the acceleration:

tedge
!
= tpert (4.31)

acrit =

(
1

f
− 1

)
2κR

τdom
log−2

((
1

f
− 1

)
1

ϵ

)
. (4.32)
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Figure 4.3: Top panel: The approximation of the critical gradient (Equation 4.30) is
depicted for different criticalities in grey. The different shades depict solutions for different
filament aspect ratios, indicated by the given number. The parameters (α, β) are fitted
to the numerical solutions for a long filament (R = 0.1 pc, l = 200 pc), given by the black
dots. Below the curve, a dominant edge effect is expected, whereas above the curve,
perturbations grow faster, and thus no strong edge effect is expected.
Lower panel: The critical gradient is given for different perturbation strengths ϵ. The
grey line shows the observed strength of ϵ = 0.09 (Roy et al., 2015), in comparison in
blue lower strength and in red stronger ones.
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Figure 4.4: The same as Figure 4.2, but adding a comparison to the approximated edge
effect time (Equation 4.27) with the dotted lines. In the first row, the dependency
on criticality is depicted, in the second row on radius and in the last on the filament
length. At the crossing points between tedge and tpert the approximation of the edge effect
formation timescale is reasonable.
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Figure 4.5: The grey line depicts the critical centre of mass acceleration (Equation 4.32)
depending on criticality. The different markers give numeric results of the centre of mass
acceleration of different filament end profiles given in the subplot. Above the grey line the
edge effect is expected to be dominant, whereas below, perturbations would grow faster.
In comparison, the violet crosses show the acceleration measured in the simulation by
Heigl et al. (2022), where the edge effect was suppressed in agreement with our model.
The used parameters were: ϵ = 0.09, R = 0.02 pc, l = 0.94 pc, dl/R = 9.

An example is given in Figure 4.5 as a grey line for ϵ = 0.09, R = 0.02 pc, l = 0.94 pc,
dl/R = 9. The markers indicate the numerically determined acceleration of the centre
of mass of the filament’s end region for different profiles, indicated in the subplot. The
violet crosses show the values of a simulation by Heigl et al. (2022) where the filament
is created by a converging flow. While the filament starts to collapse material comes in
at the filament’s ends due to the constant inflow region. This creates a linear density
gradient in the end region. Thus, it fits very well with our numeric solution for a linear
end. Above the critical acceleration (grey line) an edge effect is expected whereas below
perturbations should grow faster. Since the acceleration varies strongly in the end region,
the determination from the simulation is error-prone, thus we show an error bar of the
standard deviation 10 voxels ahead of the peak and behind. The linear and exponential
profiles, which have a similar gradient, lie below the line for this specific example, whereas
the hard cut-offs are expected to have dominant ends, especially for low line-masses. Since
Heigl et al. (2022) did also not detect dominant end cores, it fits our results.

4.5 Validation by simulations

For validation, we performed isothermal hydrodynamic simulations with the adaptive
mesh refinement code RAMSES (Teyssier, 2002). With a second-order Gudonov solver
the Euler equations are solved in their conservative form using a MUSCL (Monotonic
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Table 4.1: Results of the simulation ”sim” in comparison to the expected result by the
model ”exp”. ”e” means simulations with dominant edge effect or ”p” configurations
where perturbations grow on the same timescale or faster. The edge effect and perturba-
tion timescale, as determined in the simulation, are given in comparison to their expected
values in brackets. An output timestep in the simulation takes ∆t = 0.1Myr. The length
was always given by five times the dominant wavelength (Equation 4.13).

f R [pc] dl/R tedge [Myr] tpert [Myr] exp sim
0.5 0.1 10 1.76 (2.02) 1.57 (1.55) p p
0.5 0.1 6 1.47 (1.71) 1.57 (1.55) p p
0.5 0.1 2 1.18 (1.31) 1.57 (1.55) e e
0.5 0.05 6 0.78 (0.84) 0.78 (0.78) p p
0.3 0.05 10 1.27 (1.94) 1.67 (1.74) p e
0.3 0.1 10 2.55 (3.99) 3.14 (3.49) p e

Upstream-Centered Scheme for Conservation Laws, van Leer, 1979), the HLLC-Solver
(Harten-Lax-van Leer- Contact, Toro et al., 1994) and the MC slope limiter (monotonized
central-differenc, van Leer, 1979).

We set up filaments with perturbations in the line-mass as displayed in Figure 4.6.
In the upper panel, a density slice through the filament is given and in the lower panels
the according criticality and acceleration along the z-axes. The bending of the gradient
in the end region is due to the cut off at boundary density, which will be discussed at the
end of this section. Perturbations were inserted via Equation 4.12 going over into a flat
region at the end, to not disturb the edge effect. At the filament end the linear transition
into the surrounding density is depicted, in this case with a gradient of dl/R = 6. We cut
the outermost peaks to not have an overlap between perturbations and the edge effect.
Then, we varied the linear density gradient at both ends to validate the transition between
perturbations and edge effect as given by Equation 4.30. We consider perturbations to
be dominant if all cores collapse within a time span of 10% of each other, or the inner
cores collapse first since then no pronounced edges can be detected. In contrast, the edge
effect is considered to be dominating if the end cores collapse before the inner cores.

As a first test, we performed simulations for f = 0.5 and different gradients, given in
Figure 4.7. Here we plot the criticality of the cores at the end fend against the criticality of
the cores formed from perturbations fpert. Every marker is one output of the simulation
in time-steps of ∆t = 0.1Myr with R = 0.1 pc, l = 0.3 pc and f = 0.5. For dl/R = 10
and dl/R = 6, both cores collapse within one time-step, thus, perturbations and edge
effect collapse on the same timescale and no clear edge effect can be detected. Only for
dl/R = 2 the edge effect collapses clearly faster than the perturbations which agrees with
the fact that in this case a dominant edge core would be expected. This validates the
critical gradient given in Figure 4.3 which predicts the transition between end core and
perturbation domination for these parameters to be at dl/R = 5. Further validations for
different parameters can be found in Table 4.1.

As a second test, we did simulations with smaller line-masses, given in Table 4.1. For
low line-masses the predicted timescales for the edge effect deviate from the simulated
ones. For large line-mass filaments this has only a minor impact on the prevalent frag-
mentation mode, however, for lighter filaments, the deviations are so strong that the edge
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Figure 4.6: An exemplary simulation environment to validate the critical gradient, in this
case with R = 0.1 pc, f = 0.5 and dl/R = 6. The upper part shows a section of a density
slice, the second plot the criticality along the z-axes and the last one the gravitational
acceleration along the z-axes. Inside the filament perturbations with ϵ = 0.09 are set
up followed by a flat profile in the end region and a linear density gradient, which in
this example is dl/R = 6. Since there is a density cut to the ambient medium in the
simulations at the filament boundary density ρb, the gradient is curved in the line-mass
projection.
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Figure 4.7: For simulations with f = 0.5, R = 0.1 pc the evolution of the criticality for the
end cores against the criticality of the perturbations are shown for 3 different gradients.
All simulations start at fpert = fedge = 0.5 and move to larger maximal f-values with time.
Each marker represents one simulation time-step (∆t = 0.1Myr). Above the solid black
line, perturbations grow faster in f than the edge. A clear edge effect can only be seen
for dl/R = 2, for the others perturbations grow on similar timescales or faster, which fits
the prediction.

effect is still dominant for density gradients above the critical one. This is due to the
fact that we consider the density gradient to extend to zero in the analytic approach.
However, we expect observed filaments to be constrained by an outside pressure. This
is also the case in the simulations meaning that the gradient is cut off at a boundary
density ρb which is in pressure equilibrium with the surrounding material (see Figure 4.9
dashed-dotted line). This leads to a loss in mass in the end region which increases the
acceleration at the end and results in shorter collapse timescales than predicted. Since
the acceleration can be considered constant during the edge formation, a deviation in ac-
celeration has a stronger impact on longer timescales. Figure 4.8 shows an approximation
of how a cut-off at the boundary density would influence the critical density gradient,
given by the orange squares (the new acceleration used to determine tedge is derived in
Appendix 4.7 and given by Equation 4.63). This is only an approximation since a cut-off
at the boundary density not only constrains the filament along its main axis but also
reduces the radius gradually in the end region, as can be seen in Figure 4.6. This was
not accounted for in the comparison of Figure 4.8. Thus, for low line-mass filaments,
even shallower density gradients than predicted are necessary to suppress the edge effect.
However, the linear gradient is a good first approximation, especially for filaments with
f ≥ 0.4.
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Figure 4.8: Critical gradient for a cut off at ρb given by the squares in light orange and
the former solution without any cut off in comparison as black dots. For line-masses
f ≥ 0.4 the deviations are small. However, for lighter filaments, the estimation is not
sufficient an much smoother gradients are necessary.

4.6 Discussion

For the calculation of the critical gradient, several approximations have been made. How-
ever, Figure 4.4 already showed a comparison between the numerical collapse times and
the approximated collapse times. For the tested cases, which show a reasonable span over
the parameter space of filaments the crossing point of the two timescales is approximated
well. In addition, the determined curve of the critical gradient fits well with the nu-
merically calculated curve (Figure 4.3). Although we observe a systematic deviation for
filaments with lower aspect ratio A, which is expected due to the used approximation, the
values do converge toward larger aspect ratios. However, the deviation is limited and can
be interpreted as a transition region between the two effects. Thus, the approximations
seem applicable to our case.

Whether the size of the end region dl is realistic is difficult to say. Although there are
some observations of the line-mass distribution along filaments as Roy et al. (2015); Kain-
ulainen et al. (2016); Cox et al. (2016); Yuan et al. (2020); Schmiedeke et al. (2021), the
end region is often not displayed or not enough resolved to make a reasonable statement
about the gradient. The best example is the observation of Barnard 5 by Schmiedeke
et al. (2021). Here a clear linear trend is seen at the end of the filament. The declining
region is of the order of ∼ 0.05 pc, whereas the FWHM is ∼ 0.03 pc, thus, in this case, the
end region is indeed bigger than the filament radius, which is needed for perturbations to
be as fast as the edge effect in the parameter space we investigated. However, the filament
is highly supercritical and thus, outside the range where our model is applicable. Further
observations of filament end regions are necessary to make a reasonable comparison and
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to test our prediction.

4.7 Conclusion

We showed that a density gradient at the end of a filament cannot stop the edge effect,
since every kind of density gradient will cause a gradient in acceleration. The gradient
will, however, only cause a weakening of the acceleration which leads to a longer edge
effect formation timescale. But since the collapse timescale of a filament scales with the
same respect to a the edge effect will take longer but will nevertheless occur before the
collapse.

However, perturbations are independent of the acceleration at the end of the filament,
and thus if the edge effect is slowed down significantly, perturbations can grow on similar
timescales or even faster. Assuming the density gradient at the end of the filament to
be linear, we presented the critical density gradient which is needed for perturbations
to be dominant in the filament. For filaments beyond f = 0.7, perturbations always
grow faster for the observed perturbation strength of 9% or larger. For lower line-mass
filaments, an end region of several times the radius in length is needed to slow down the
edge effect significantly, such that perturbations grow faster. However, deviations from
the model are expected for f < 0.4 due to the approximations in the derivation of the
critical gradient, where even shallower gradients would be needed. Altogether, density
gradients at the end of the filament could be the reason, why the edge effect is only rarely
observed. Observations are however needed to show whether such density gradients in
end regions exist.
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Appendix

4.A Derivation of the accelerations for different pro-

files and their gradients

Consider a uniform density distribution in the radial direction of the filament. The
acceleration is determined by integrating over the density distribution:

a = G

∫ R

0

dr

∫ 2π

0

dθ

∫
Fil.

dz′ρ(z′)
r

√
r2 + z′2

2 cos(α) (4.33)

= 2πG

∫ R

0

dr

∫
Fil.

dz′ρ(z′)
rz′

(r2 + z′2)3/2
(4.34)
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Figure 4.9: Schematic drawing of the density distribution for the three different configu-
rations (linear, step and hard cut) of the end regions. In addition, the linear case with
cut-off at the boundary density is indicated by the light orange dashed-dotted line.

Substitution u = r2 du
dr

= 2r

a = πG

∫ R2

0

du

∫
Fil.

dz′ρ(z′)
z′

(u+ z′2)3/2
(4.35)

= −2πG

∫
Fil.

dz′ρ(z′)

[
z′√

R2 + z′2
− z′√

z′2

]
. (4.36)

Since this function is not continuous at z = 0 the limits have to be adjusted.

4.A.1 Hard cut

For a hard cut-off, the density distribution is simple, see Figure 4.9 blue dotted line.
Integrating Equation 4.36 leads to the acceleration from Burkert & Hartmann (2004):

a =− 2πGρ

[∫ l/2−z

−l/2−z
dz′

z′

(R2 + z′2)1/2

−
∫ 0

−l/2−z
dz′(−1)−

∫ l/2−z

0

dz′(+1)

]
(4.37)

=− 2πGρ
[√

R2 + (l/2− z)2 −
√
R2 + (l/2 + z)2 + 2z

]
. (4.38)

. Simple differentiation leads to the acceleration gradient:

∇a =− 2πGρ
d

dz

[√
R2 + (l/2− z)2 −

√
R2 + (l/2 + z)2 + 2z

]
(4.39)
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=− 2πGρ

[
− l/2 + z√

R2 + (l/2 + z)2
− l/2− z√

R2 + (l/2− z)2
+ 2

]
. (4.40)

4.A.2 Step

For the step function integration over the density distribution given in Figure 4.9 by the
green dashed line leads to the acceleration along such a filament

a =− 2πG

[∫ −l/2−z

−l/2−dl−z
dz′

ρ

2

(
z′

(R2 + z′2)1/2
− 1

)
(4.41)

+

∫ 0

−l/2−z
dz′ρ

(
z′

(R2 + z′2)1/2
− 1

)

+

∫ l/2−z

0

dz′ρ

(
z′

(R2 + z′2)1/2
+ 1

)

+

∫ l/2+dl/2−z

l/2

dz′
ρ

2

(
z′

(R2 + z′2)1/2
+ 1

)]
(4.42)

= −2πGρ

[
− 1

2

√
R2 + (l/2 + z)2 +

1

2

√
R2 + (l/2− z)2

+ 2z − 1

2

√
R2 + (l/2 + dl + z)2 +

1

2

√
R2 + (l/2 + dl − z)2

]
. (4.43)

From this the acceleration gradient follows as

∇a =− 2πGρ

[
− 1

2

l/2 + z√
R2 + (l/2 + z)2

− 1

2

l/2− z√
R2 + (l/2− z)2

+ 2− 1

2

l/2 + dl + z√
R2 + (l/2 + dl + z)2

− 1

2

l/2 + dl − z√
R2 + (l/2 + dl − z)2

]
. (4.44)

4.A.3 Linear

Calculating the acceleration gradient for a filament with a linear end region is a bit more
complex than in the previous cases. Thus, we only calculated it for the exact end of the
filament at z = l/2 building the difference quotient at location −l/2 and −l/2 + dz as
indicated by the grey dashed lines in Figure 4.9. The contribution of the linear part is
given by integrating with a liner density distribution ρ(z′) = mz′ + b:

I(z′) =

∫
dz′(mz′ + b)

(
z′√

R2 + z′2
+ 1

)
(4.45)

=

[
m

2

(
z′
√
R2 + z′2 −R2 tanh−1

(
z′√

R2 + z′2

))

+
m

2
z′2 + b

√
R2 + z′2 + bz′

]
(4.46)
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=

[(m
2
z′ + b

)(√
R2 + z′2 + z′

)
− R2m

2
tanh−1

(
z′√

R2 + z′2

)]
. (4.47)

As before the contribution of the inner part is given by the acceleration of the constant-
density filament:

a(z) = ρ

√R2 +

(
l

2
− z

)2

−

√
R2 +

(
l

2
+ z

)2

+ 2z

 . (4.48)

To determine the gradient of the acceleration we use these density distributions at the
filaments end and dz infinitesimal shifted from the end:

ρ1(z) = ρ

(
1

dl
z + 1

)
, (4.49)

ρ2(z) = ρ

(
1

dl
z + 1 +

dz

dl

)
. (4.50)

Since we are only calculating the gradient for the end of the filament, the contributions
from the other end can be neglected in this case, which leads to the following difference
quotient:

∆a =
2πG

dz

[
I|0−dl + a(−l/2)− I|−dz−dl−dz − a

(
− l

2
+ dz

)]
(4.51)

=
2πGρ

dz

[
R− 1

2

(√
R2 + dl2 − dl

)
+
R2

2dl
tanh−1

(
−dl√
R2 + dl2

)

+
√
R2 + l2 −R− l −

(
−dz
2dl

+ 1 +
dz

dl

)(√
R2 + dz2 − dz

)
+
R2

2dl
tanh−1

(
−dz√
R2 + dz2

)
+

(
1

2
+
dz

2dl

)(√
R2 + (dl + dz)2

− dl − dz

)
−R2

2dl
tanh−1

(
−dl − dz√

R2 + (dl + dz)2

)
−
√
R2 + (l − dz)2

+
√
R2 + dz2 + l − 2dz

]
(4.52)

=
2πGρ

dz

[
− 1

2

√
R2 + dl2 +

dl

2
+
R2

2dl
tanh−1

(
−dl√
R2 + dl2

)

+
√
R2 + l2 − dz

2dl

√
R2 + dz2 +

dz2

2dl
−
√
R2 + dz2 + dz

+
R2

2dl
tanh−1

(
−dz√
R2 + dz2

)
+
dz

2dl

√
R2 + (dl + dz)2 − dz

2

− dz2

2dl
+

1

2

√
R2 + (dl + dz)2 − dl

2
− dz

2

− R2

2dl
tanh−1

(
−dl − dz√

R2 + (dl + dz)2

)
−
√
R2 + (l − dz)2
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+
√
R2 + dz2 − 2dz

]
. (4.53)

The gradient is then given for dz → 0:

∇a = lim
dz→0

∆a (4.54)

=2πGρ

[√
R2 + dl2

dl
− R

dl
+

l√
R2 + l2

− 2

]
. (4.55)

For determining the edge effect formation timescale for a linear end region (e.g. Figure
4.4, and the critical density gradient), the centre of mass acceleration is needed. The
centre of mass of the end region is again considered as −l/2 + κR/2, so the density
distribution is given by:

ρcm(z) = ρ

(
1

dl
+ 1 +

kR

2dl

)
(4.56)

with this, the center of mass acceleration follows

acm =− 2πG

[
I|−κR/2−κR/2−dl + a

(
− l

2
+
κR

2

)]
(4.57)

=− 2πGρ0

[(
κR

4dl
+ 1

)(√
R2 + (κR/2)2 − κR

2

)
− R2

2dl
tanh−1

(
−κR/2√

R2 + (κR/2)2

)
+
√
R2 + (l − κR/2)2

−
√
R2 + (κR/2)2 + 2

(
− l

2
+
κR

2

)
−
(
κR

4dl
+

1

2

)
(√

R2 + (κR/2 + dl)2 − κR

2
− dl

)
+
R2

2dl
tanh−1

(
−κR/2− dl√

R2 + (κR/2 + dl)2

)]
(4.58)

=− 2πGρ0

[
κR

4dl

√
R2 + (κR/2)2

− R2

2dl
tanh−1

(
−κR/2√

R2 + (κR/2)2

)
+
√
R2 + (l − κR/2)2 − l

+ κR−
(
1

2
+
κR

4dl

)√
R2 + (κR/2 + dl)2

+
dl

2
+
R2

2dl
tanh−1

(
−κR/2− dl√

R2 + (κR/2 + dl)2

)]
. (4.59)

Approximation for l − κR/2 ≫ R leads to

acm =− 2πGρ

[
κR

4dl

√
R2 + (κR/2)2 − R2

2dl
tanh−1

(
−κR/2√

R2 + (κR/2)2

)
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+
κR

2
−

(
1

2
− κR

4dl

)√
R2 + (κR/2 + dl)2 +

dl

2

+
R2

2dl
tanh−1

(
−κR/2− dl√

R2 + (κR/2 + dl)2

)]
. (4.60)

In order to compare the analytic model to simulations and observations, it has to be
considered that filaments are surrounded by an outside pressure which cuts off the density
profile at the pressure equilibrium at boundary density ρb. Thus, the linear profile only
extends to dl′ while still having a gradient of m = ρ/dl (see light orange dashed-dotted
line in Figure 4.9). The centre of mass acceleration is then determined by:

acm =− 2πG

[
I|−κR/2−κR/2−dl′ + a

(
− l

2
+
κR

2

)]
(4.61)

=2πGρ

[(
κR

4dl
+ 1

)√R2 +

(
κR

2

)2

− κR

2


− R2

2dl
tanh−1

(
κR/2√

R2 + (κR/2)2

)
−
(
κR

4dl
− dl′

2dl
+ 1

)
√R2 +

(
κR

2
+ dl′

)2

− κR

2
− dl′


+
R2

2dl
tanh−1

(
−κR/2− dl′√

R2 + (κR/2 + dl′)2

)

+

√
R2 +

(
l − κR

2

)2

−

√
R2 +

(
κR

2

)2

− l + κR

]
(4.62)

=2πGρ

[
κR

4dl

√
R2 +

(
κR

2

)2

− R2

2dl
tanh−1

(
κR/2√

R2 + (κR/2)2

)

−
(
κR

4dl
− dl′

2dl
+ 1

)√
R2 +

(
κR

2
+ dl′

)2

− dl′2

2dl
+ dl′

+
R2

2dl
tanh−1

(
−κR/2− dl′√

R2 + (κR/2 + dl′)2

)

+

√
R2 +

(
l − κR

2

)2

− l + κR

]
. (4.63)

For dl′ = dl this turns into Equation 4.59 since then ρb = 0.
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Paper IV – Merging filaments II:
The origin of the tuning fork

Elena Hoemann, Andrea Socci, Stefan Heigl, Andreas Burkert and Alvaro
Hacar, 2023, submitted to Monthly Notices of the Royal Astronomical Society

The observational analysis presented in Section 5.5 was performed by Andrea Socci.

We suggest that filaments in star-forming regions undergo frequent mergers. As
stellar nurseries, filaments play a vital role in understanding star formation and
mergers could pave the way for understanding the formation of more complex fil-
amentary systems like networks and hubs. We compare hydrodynamic RAMSES
simulations of merging filaments to an ALMA observation of the tuning fork-like
split-up in the LDN 1641-North star-forming region in the Orion tail. We find simi-
lar features in line-mass, column density and velocity dispersion. This supports the
hypothesis of filament mergers shaping the structure of the interstellar medium.
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5.1 Introduction

Observations showed that the molecular interstellar medium is permeated by filamentary
substructures. From isolated cylindrical structures (Palmeirim et al., 2013; Kainulainen
et al., 2016; Yuan et al., 2020) to large filamentary networks (Peretto et al., 2013; Könyves
et al., 2015) and hub systems (Myers, 2009; Schneider et al., 2010; Treviño-Morales et al.,
2019), they are the dominant feature in star-forming regions. Filaments are hierarchical
structures and span nine orders of magnitude in mass and five in length (Hacar et al.,
2023) and it has been known for a long time that they are the places where stars are
formed (Schneider & Elmegreen, 1979) since most of the prestellar cores are found within
these cold, dense environments (Arzoumanian et al., 2011; Könyves et al., 2015).

In theoretical studies, filaments are often considered cylinders (Burkert & Hartmann,
2004; Clarke & Whitworth, 2015; Heigl et al., 2021; Hoemann et al., 2023a). However,
observations also show much more complex structures (Peretto et al., 2013; Busquet
et al., 2013; Hacar et al., 2013), since filaments are frequently observed in networks or
hub constellations (Könyves et al., 2015; Kumar et al., 2020). Also on smaller scales
in the substructure of the Orion Integral Shaped Filament (ISF, Bally et al., 1987) the
ALMA observations by Hacar et al. (2018) revealed more complex structures: several
small-scale filaments show a tuning fork-like shape where two separate branches join to
one strand. It is not clear how such structures are created and how they evolve. We
suggest that these tuning forks are the result of filament mergers. Similar to Nakamura
et al. (2014) who proposed that Serpens South was created due to a collision of three
filaments.

In our first paper about merging filaments (Hoemann et al., 2021) we already discussed
that filaments can only merge under special initial conditions before they collapse or create
end cores. However, in our most recent paper (Hoemann et al., 2023b) we found, that
a density gradient at the end of the filament can slow down the end-dominated collapse.
This opens more possibilities for filaments to merge.

In this paper, we show that hydrodynamic simulations of filament mergers can recreate
the observed tuning fork structures and trigger star formation in the merged region.
We present characteristic features which identify a tuning fork as a merger and which
distinguish it from other creation mechanisms. If the two filaments are separated along
the line of sight a projection effect mimicking a tuning fork could be an alternative
explanation, or that the tuning fork originated from one structure which broke apart. In
addition, we present an example observation of a tuning fork observed with ALMA in
LDN 1641-North which is part of the Orion A tail. Hosting about a dozen of young stars
and protostars, also in the vicinity of the tuning fork, it is a good target to investigate the
early phases of star formation. In comparison to the simulations, we find indications that
the observed tuning fork structure in LDN 1641-North is a merged filament. However,
this needs to be validated by further studies.

5.2 Basic Principles

Stodólkiewicz (1963) and Ostriker (1964) found that filaments in hydrostatic equilibrium
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follow this radial density profile:

ρ(r) = ρc

[
1 +

( r
H

)2]−2

, (5.1)

where ρc is the central density and H the scale height of the filament

H2 =
2c2s
πGρc

, (5.2)

with G being the gravitational constant and cs the sound speed which is 0.19 km s−1 in
a medium of 10K and a molecular weight of 2.36. This radial profile is confined by the
pressure of the surrounding interstellar medium Pext = Pb at boundary density ρb. The
line-mass is then defined as the mass confined in the filament divided by its length:

µ =
M

l
. (5.3)

There exists an upper line-mass limit for which a filament can be in hydrostatic equi-
librium. Integrating Equation 5.1 radially till infinity, gives the critical line-mass above
which no hydrostatic solution can be found

µcrit =
2c2s
G

≈ 16.4M⊙ pc−1. (5.4)

The criticality (Fischera & Martin, 2012) is then defined as the ratio between the line-
mass of a filament and its critical line-mass

f =
µ

µcrit

. (5.5)

The criticality then determines the density at the boundary

ρb = ρc(1− f)2 (5.6)

and the corresponding radius of the filament

R = H

(
f

1− f

)1/2

. (5.7)

5.3 Simulations

We did simulations with the adaptive-mesh-refinement code RAMSES (Teyssier, 2002) to
validate our analytic predictions and to perform comparisons to observations (respectively
in Section 5.4 and Section 5.5). In RAMSES a second-order Gudonov solver is used to
solve the Euler Equations in their conservative form, applying the MUSCL (Monotonic
Upstream-Centered Scheme for Conservation Laws, van Leer, 1979), the HLLC-Solver
(Harten-Lax-van Leer- Contact, Toro et al., 1994) and the MC slope limiter (monotonized
central-differenc, van Leer, 1979).

Two different kinds of simulations were performed. On the one hand, we executed
simulations of infinite long filaments to validate the model of the merging process, de-
scribed in Subsection 5.4.1. On the other hand, we show simulations of mergers with
finite filaments to recreate tuning forks, shown in Subsection 5.4.2.
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Figure 5.1: Three density cuts of the simulation of the merger of infinite filaments for
different timesteps indicated by the time given in the upper left corner. The simulations
were performed with the follwoing parameters: f1 = f2 = 0.3, v0 = 0.0 km s−1, d0 =
0.3 pc. The left-hand side shows the merger face-on, whereas the right-hand side shows a
cut through the merger. The three different time steps are chosen as the initial conditions,
the highest compression in y-direction and its first relaxation. This shows the oscillatory
pattern of the merger.
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5.4 Theory of merging filaments

Already in our first paper, Hoemann et al. (2021), we discussed the theory of merging
filaments. We found that special initial conditions are necessary for filaments to merge
before they collapse. Since the timescale on which filaments merge

tmerge =

√
π

G(µ1 + µ2)

d0
2
, (5.8)

with µ1, µ2 being the line-masses of the filaments and d0 their initial distance, is on the
same order of magnitude as their collapse time (Clarke & Whitworth, 2015; Hoemann
et al., 2023a). However, we showed in Hoemann et al. (2023b) that density gradients at
the ends of the filament can slow down the collapse, which makes the merger much more
probable.

In the following, we will go into more detail about how a merger evolves for finite and
infinite filaments, respectively.

5.4.1 Infinite filaments - oscillatory pattern

In order to investigate the evolution of a filament merger, we start from the same initial
condition as in our first paper: two parallel filaments with a distance d0 in a box with
periodic boundary conditions along the filament and open boundaries perpendicular to
the filament’s main axis. The evolution of the simulation is depicted in Figure 5.1.
The left column shows density cuts in the z-y plane and the right column in the x-y
plane. The initial conditions are given in the first row. As the simulation evolves, the
filaments fall into each other’s potential and merge. The highest compression along the
y-axis is given in the second row and the third shows the maximum relaxation in the y
direction. This oscillation around their common centre of mass is long-lived and depends
on the initial condition of the merger. A similar behaviour is seen in recent 2D MHD
simulations of merging filaments by Kashiwagi et al. (2023), showing oscillatory patterns
for magnetically subcritical filaments.

The first oscillation can be described by adding a drag term to the gravitational
acceleration as the two filaments start to overlap:

a = −2Gµ(r)

r
− bv2ρ(r). (5.9)

The dependency of µ(r) means the enclosed line-mass within r (derivation in Appendix
5.7)

µ(r) = µcrit

[
1−

(
1 +

r2

H2

)−1
]
, (5.10)

whereas ρ(r) represents the density at position r and the free parameter b is fitted to
the simulation. An example is given in Figure 5.2: the model for the radius evolution
is given by the solid blue line in the top panel. It fits well to the first oscillation period
of the simulation in y-direction displayed by the light blue dots. At later times, the
pattern gets too messy to predict. Since observers can only detect the line of sight



90 5. Paper IV – Merging filaments II

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ra
di

us
 [p

c]

Sim. y
Sim. x

Model

21.0

21.5

22.0

22.5

lo
g 

N(
H 2

) [
cm

2 ]

Sim. projection along x

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
Time [Myr]

0.0

0.2

0.4

0.6

N
T/c

s

Merger

Figure 5.2: Time evolution of Radius, column density and the mach number of the
simulation of two merging filaments with f1 = f2 = 0.3, d0 = 0.3 pc and no initial
velocity. The top panel shows the radius evolution where the proposed model is given by
the blue line (parameter b = 4 × 10−3 pc2M⊙

−1) and the simulated values by the light
blue dots. As observations can only detect the movement along the line of sight, the
component in the y direction is given by the orange triangles as a comparison. The two
lower panels show the corresponding quantities in projection along the x-axis, the line of
sight in this example.
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velocity, the oscillation in z-direction is plotted in orange for comparison. Especially
for the first oscillation the two phases are shifted by half a period. Thus, when the
highest compression in the z-direction appears, the radius in the y-direction is maximally
extended, followed by a maximal extension in the z-direction. This leads to alternating
peaks in column density and velocity dispersion, displayed in the two lower panels. These
quantities can be observed since they are measured along the line of sight (x-axis) where
the gas is either compressed, meaning a high column density, or relaxing, seen as a peak
in velocity dispersion.

To approximate the maximum velocity which can be observed in a merger, we use
energy conservation between the initial and final state, assuming dissipative losses are
small:

Epot,i + Ekin,i = Ekin,f . (5.11)

The potential energy for infinite filaments is given by (derivation in Appendix 5.7):

Epot(r) =2Gm

[
µ log

(
r2

R2

)
+ µcrit log

(
R2

H2
+ 1

)]
, (5.12)

considering µ1 = µ2 = µ. This leads to the maximal velocity which can be reached
during the merger:

vmax =

√√√√4G

[
2µ log

(
d0
R

)
+ µcrit log

((
R

H

)2

+ 1

)]
+ v20, (5.13)

with v0 the initial velocity. Altogether, with this simple model, some characteristics as
the maximal velocity and the radius evolution for the first oscillation can be predicted.

5.4.2 Finite filaments - tuning forks

As depicted in Figure 5.3 the merger of two inclined, finite filaments leads to a tuning fork-
shaped structure. The figure shows three different snapshots of the column density from
the simulation at 0.00, 0.18 and 0.27Myr. On the left-hand side, the initial conditions
are shown. As expected the filaments merge, forming a tuning fork-shaped structure
reminiscent of those observed in the ISF (e. g., OMC-1 ridge, OMC-2 FIR 6, see Hacar
et al., 2018). Since the ends on the left side merge first before the right part, the tuning
fork shows the time evolution of the merger with infinite filaments along the merger. This
is shown in Figure 5.4 where the blue line indicates the evolution of the radius predicted by
the model. Thus, on the right-hand side, the filaments have not merged yet, the highest
contraction along the y-axis is reached at about −0.1 pc and relaxation happens then
to the left. The dashed green line shows the distance of the filaments in the simulation
where they do not overlap yet. The light blue dots then show the radius evolution along
the filament in the already merged regions. The simulation is well reproduced by the
model discussed in Section 5.4.1. Therefore, you would also expect peaks in the column
density and the velocity dispersion due to the oscillation happening along the merger. In
addition to the fact that the sum of the respective line-masses should match the one of
the merged region, these can be used as indications in observations to determine merged
filaments.
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Figure 5.3: Evolution of two merging filaments, creating a tuning fork-like structure as
observed in Orion. Three snapshots in time are given, depicting the column density
of the merger as indicated by the colour bar. The filaments both have a criticality of
f = 0.6, their initial velocity is v0 = 0.7 km s−1 and l1 = 0.25 pc, l2 = 0.3 pc, ρb =
4.7× 10−20 g cm−3, d0 = 0.2 pc.

The merging of filaments is not only important to understand the structure formation
in the interstellar medium but also for their fragmentation. Since the overlapping region
can become supercritical filament merger can trigger core formation. This creates cores
aligned along the merger as depicted in Figure 5.3 which shows the column density of
the merged filament and the formed sink particles as circles whose size scales with their
mass. The core formation is not as ordered as perturbation theory predicts. The pattern
is much more messy and due to the dynamics of the system, cores also merge frequently.
In this example, the core at the first overlapping point is created earliest and afterwards
merges with several of the later formed cores and is therefore the most massive one.
Mergers with flatter angles seem to produce more cores since the over-dense area is larger
than for a more inclined merging angle.

In conclusion, finite filaments can produce tuning fork shapes due to merging. They
undergo long-lived oscillations which produce characteristic features in the velocity dis-
persion and column density. In addition, chaotic core formation can be triggered along
the merger.

5.5 Comparison to observations

We also searched for the aforementioned characteristic signatures in ALMA observations
of the ISF where several tuning fork-like structures are observed. For our comparison, we
chose the LDN 1641-North in the Orion A tail because it seems to be a good candidate for
a merging filament since it shows a clear, isolated tuning fork-shaped structure. Figure
5.5 shows ALMA 12m observations (Project: 2019.1.00641.S) combined with IRAM 30m
observations of N2H

+(1-0) as tracer of the distribution of the dense gas (> 1× 105 cm−3)
along the LDN 1641-North region (a full description of the data reduction and combina-
tion is included in Hacar et al. 2023, in prep.). A final resolution of θFWHM = 4.5” is
reached. It is a star-forming region within the Orion A molecular cloud complex located
at an average distance of 414 ± 7 pc (Menten et al., 2007) (this value is used for the
following analysis). LDN 1641-North is an active star-forming region forming a small
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Figure 5.4: The distance (green dashed line) and radius (light blue dots) of a tuning
fork simulation are depicted in comparison to the corresponding model calculations rep-
resented by the blue line, using the same value for b = 4 × 10−3 pc2M⊙

−1 as in the
previous section. The simulation was done with the following parameters: l1 = 0.55 pc,
l2 = 0.75 pc, ρb = 4.7 × 10−20 g cm−3, f1 = f2 = 0.3, v0 = 0.7 km s−1 and d0 = 0.22 pc.
The model reproduces the simulated merger well.

cluster including 13 Class 0/I (aka protostars; cyan triangles in Figure 5.5) and more
than 30 Class II (not shown) within the central parsec at the northern end of this cloud
(Megeath et al., 2012, 2016). A small cluster is forming at the tuning fork which shows
that it is an actively star forming region. In the subplot of Figure 5.5 a zoom onto the
tuning fork structure is given. The axes were manually drawn following the high crest of
the H2 column density map derived from the N2H

+ emission following a similar method
that the one described in Hacar et al. (2018). They were centred by making cuts of the
length of the beam size divided by 2 and determining the average coordinates in the cut
by weighting the column density to the power of 4. The properties in each position were
then extracted by sampling over the axis pixel-by-pixel and taking the average for each
cut.

As a first indicator of a merger, we determine if the line-masses of both filaments
add up in the merged region. Using the column density map of H2 the mass can be
calculated for each pixel. The sum of the pixels associated to one structure divided
by its length is the corresponding line-mass which we derived for the merged part and
both unmerged parts of the tuning fork: The blue non-merged part has a line mass of
µblue = 75M⊙ pc−1, the orange non-merged part µorange = 86M⊙ pc−1 and the merged
part µjunction = 176M⊙ pc−1 which is in good agreement with the sum of the non-merged
regions.

From theory and simulation, we expect an oscillation between column density and
velocity dispersion, as was shown in the previous section. Figure 5.6 shows a comparison
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0.1 pc

4.5’’

Figure 5.5: N2H
+(1-0) map of LDN 1641-North as observed by ALMA (Project:

2019.1.00641.S). The triangles represent the young stars in the region given by Megeath
et al. (2016). A zoom onto the tuning fork is given in the subplot. The coloured re-
gions are the extracted filaments, defined by their main axis given by the corresponding
coloured lines. The red line marks the potentially merged region.

between the observation in LDN 1641-North and our simulation. The example simulation
was done with filaments with a length of l1 = l2 = 0.7 pc, a criticality of f1 = f2 = 0.4,
an initial distance of d0 = 0.07 pc, a velocity of v0 = 0.3 km s−1 and a boundary density
of ρb = 3.92 × 10−19 g cm−3. The merged region is marked in red and indeed both
show peaks in column density and velocity dispersion, as expected. This could be a
hint, that the structure in LDN 1641-North is indeed a merged filament. The order of
magnitude of velocity dispersion and column density are also well reproduced by the
example simulation.

5.6 Discussion

The similarity of our simulation and the observation in LDN 1641-North indicates that
the tuning fork structure could be created due to filament mergers. If the tuning fork
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Figure 5.6: The column density and the mach number are displayed in the top and bottom
panel respectively. The left-hand side shows the observed values along the blue axes in
LDN 1641-North defined in Figure 5.5. The red area determines the potentially merged
part. It indicates signatures of merged filaments: peaks in column density and velocity
dispersion. In comparison an example from the simulation is depicted showing a similar
pattern with parameters: l1 = l2 = 0.07 pc, f1 = f2 = 0.4, d0 = 0.07 pc, v0 = 0.3 km s−1

and ρb = 3.92× 10−19 g cm−3.



96 5. Paper IV – Merging filaments II

features were just projection effects or originated from one structure we would not expect
the peaks in column density and velocity dispersion. However, this is not final proof
since also other phenomena, as collapsing cores, could lead to similar data. Further
observations have to show whether other structures also show these indicators.

If there was a perfect compression and relaxation along the tuning fork the peak in
column density and velocity dispersion would be shifted since the peak in column density
represents the highest contraction along the line of sight and the velocity dispersion the
following relaxation, as indicated in Figure 5.2. In the simulation, a minimal shift is
present, whereas the resolution of the observation is not sufficient to capture this. The
inclination between the merging parts could influence the separation of the peaks since
this determines the gradient in initial conditions.

In addition, these merges could lead to a different core spacing, since the cores are
created by the merger and not by initial perturbations. Our simulation showed a chaotic
distribution of cores undergoing a lot of merges. Further studies should address the
triggered core formation in merging filaments and what role perturbation theory plays in
that regard. It would be interesting to address whether mergers can lead to any structured
core formation and whether they can create more massive cores, as observations detect in
hub filamentary systems (Peretto et al., 2013; Kumar, M. S. N. et al., 2022; Hacar et al.,
2023).

Already in the first paper we discussed, that initial velocities increase the probability
of filaments to merge before collapsing. However, the escape velocity sets an upper limit
for filaments mergers:

vescape =

√√√√4G

(
2µ log

(
d0
R

)
+ µcrit log

((
R

H

)2

+ 1

))
, (5.14)

again considering µ1 = µ2 = µ. For a filament with f = 0.3 and R = 0.04 pc this would
result in vescape = 0.67 km s−1. Below this velocity, filaments merge alone due to gravity.
Above, it is rather unlikely for them to merge having a random velocity orientation,
since their paths have to cross. In this case, outer dynamics would need to influence
the movement of the filament. This could happen due to magnetic fields, an outside
gravitational potential or shock fronts for example.

5.7 Conclusion

Filament mergers produce tuning fork-like structures. These induce long-lived oscillations
which can be observed through peaks in column density and velocity dispersion together
with an increase in line-mass in the merged region. Observations with ALMA of the LDN
1641-North region in Orion show the expected sum in line mass and similar characteristic
features in velocity dispersion and column density, indicating that the tuning fork-shaped
filament could indeed be produced by a merger.
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Appendix

5.A Derivation of the enclosed line-mass

To calculate the enclosed mass we integrate the Ostriker profile for r < R otherwise
µ(r) = µ

µ(r) =

∫ r

0

dr′
∫ 2π

0

dθρc

[
1 +

(
r′

H

)2
]−2

r′. (5.15)

Substituting u = r′2

H2 ,
du
dr′

= 2r′

H2 leads to

µ(r) = πH2ρc

∫ r2/H2

0

du(1 + u)−2

= πH2ρc(−1) · (1 + u)−1
∣∣∣r2/H2

0

= µcrit

[
1−

(
1 +

r2

H2

)−1
]
, (5.16)

with µcrit =
2c2s
G

and H2 = µcrit
πρc

.

5.B Derivation of the potential energy

We derive the potential energy for µ1 = µ2 = µ

Epot(r) =

∫ r

0

dr′FG =

∫ r

0

dr′mr̈′

=

∫ r

0

dr′2µ(r′)m
2G

r′
. (5.17)
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For |r| > R this leads to

Epot(r) =4Gm

∫ r

R

dr′
1

r′
· µ+

∫ R

0

dr′
1

r′
· µcrit

1−(1 + ( r′
H

)2
)−1

 .
The potential energy is then given by:

Epot(r) = 2Gm

[
µ log

(
r2

R2

)
+ µcrit log

(
R2

H2
+ 1

)]
. (5.18)



Chapter 6

Project – Multi-scale machine
learning for column density factors
in turbulent flows

Elena Hoemann, Miles Cranmer, Shirley Ho, Stefan Heigl, Kai Widmaier and
Andreas Burkert, 2022, summer project at the Center for Computational Astrophysics
at the Flatiron Institute in New York City

Chemical tracers are essential for simulations of the interstellar medium as they
are needed for the correct description of heating and cooling. However, evolving
a chemical network is computationally expensive for many reasons. One major
bottleneck is for instance the attenuation of external UV-irradiation for which the
local column density has to be determined. In order to circumvent this calculation
we present a machine learning approach to determine column density factors using
a U-Net which aims at reducing the cost of hydrodynamic simulations. Indeed, we
show that the network is able to calculate column density factors and the speedup
factor compared to the conventional method is approximately six. Nevertheless,
further work has to be done to improve the accuracy and to adapt it to a real use
case.
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6.1 Introduction

The gas and dust located between the stars is called the interstellar medium (ISM). In its
coldest regions, with temperatures of several Kelvin, molecules form and dense filaments
are observed which are the sites where stars form (Schneider & Elmegreen, 1979; André
et al., 2010; Könyves et al., 2015).

In order to determine the dynamics of these filaments, their collapse and the for-
mation of prestellar cores, hydrodynamic simulations are performed (Smith et al., 2014;
Clarke & Whitworth, 2015; Hoemann et al., 2021; Heigl et al., 2021). For more realistic
modelling and comparison to observations, it is necessary to employ a chemical network
(e. g. KROME Grassi et al. (2014) and GRACKLE Smith et al. (2017)), which traces
the formation and evolution of different molecules (Walch et al., 2015; Anathpindika &
Francesco, 2021) and determines the local heating and cooling rates.

As the chemistry strongly depends on external UV irradiation, the surrounding density
structure is important to the evolution of the local cell. Accounting for this is compu-
tationally very expensive, as for every cell the surrounding structure must be evaluated
which is currently done by ray tracing approaches (e. g. Razoumov & Scott, 1999; Abel
et al., 1999; Raga et al., 1999; Razoumov & Cardall, 2005; Cantalupo & Porciani, 2011;
Valdivia & Hennebelle, 2014), which will be discussed in section 6.2.

In order to avoid this costly calculation, we introduce a machine learning approach to
predict the column density factor for each cell. Once trained, this leads to a significant
speedup of the simulation, as the evaluation of the network is six times faster than the
actual calculation. Not only does this benefit the calculation of chemical networks, but
it can also potentially be used for radiative transfer. Code and data are made available
at: https://github.com/ehoemann/density2attenuation

6.2 Data

As a test example for our machine learning approach, we use a continuously driven
turbulent 3D-box simulation with a turbulent Mach number of 5. The simulation was
performed with RAMSES (Teyssier, 2002), a hydrodynamic grid code. The simulation
volume was (5 pc)3 with a resolution of (0.0195 pc)3 and periodic boundary conditions.
The simulation evolved for nearly 40Myr with 80 evenly spaced outputs. As the produced
density cubes are rather large (256)3 we decided to reduce the input in a first step to
boxes of (80)3 voxels. Thus, we could create a training set out of the sub-boxes of the
simulation. 152 boxes were used, which we mirrored to increase the training sample,
leading to a total of 564 density distributions which we used as input for our machine
learning model.

For supervised learning, labels for the input have to be provided. Thus, we used the
established method to determine the column density in a simulation via the so-called ray
tracing approach (e. g. Razoumov & Scott, 1999; Abel et al., 1999; Raga et al., 1999).
For each cell with index i, j, k the density is summed along several rays r, evenly covering
the sphere around the cell, giving the local average column density:

N̄ijk =
1

NRays

∑
Rays

ρijkdr (6.1)

https://github.com/ehoemann/density2attenuation
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Figure 6.1: Example how a ray is traced for a specific cell. The rays start at the origin
of the cell and sum up density until they reach a pixel below a certain column density.

We stop the summation along the ray if it reaches a voxel with low column density,
as the ray can escape from there. The lower threshold for column density was set to
6.05× 10−5 g cm−2 in this study, a graphical illustration is given in Figure 6.1. We define
the column density factor η as:

ηijk = exp(−N̄ijk). (6.2)

With this, the attenuation can be determined as χijk = ηijk exp(σ), where σ is the
wavelength-dependent absorption cross-section.

Since we loop over every cell and the number of rays, this method is computationally
very expensive and strongly depends on resolution, the amount of voxels and the number
of rays. Hence, there have been already some modified ray tracing approaches to reduce
computing time (e. g. Razoumov & Cardall, 2005; Cantalupo & Porciani, 2011; Valdivia
& Hennebelle, 2014). However, a machine learning approach does not have to loop over
all the rays and thus could lead to a significant speedup.

6.3 Model

To determine the column density factors via machine learning we used a U-Net archi-
tecture. U-Nets were first used for biomedical image segmentation (Ronneberger et al.,
2015), but are recently also applied in physics (e. g. He et al., 2019; Chen et al., 2020;
Stachenfeld et al., 2021; Grassi et al., 2021; Wadekar et al., 2021; Jamieson et al., 2022).
It consists of a de- and encoder, see Figure 6.2. First, the network is reduced by several
convolution and pooling operations and then scaled up again using the spacial informa-
tion stored while down sampling. As input the whole 3D density cube is inserted, in
this case (80 × 80 × 80). The desired output is the 3D cube of column density factors
(40×40×40), which are known from the ray tracing approach. We chose the input to be
of higher dimension than the output since the local average column density depends on
its surroundings and, thus, reasonable predictions can only be made for embedded vox-
els. Furthermore, input and output data were normalized using the mean and standard
deviation (respectively, for density and column density factor) over all simulations, which
made the code converge much easier.

After producing the predicted column density factors ŷ, the loss, given by the mean
squared error (MSE), determines the distance between the prediction and the ground
truth y, which in this case is the column density factors calculated by ray tracing. We
weighted the contribution of each voxel to the loss function, to address that low column
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Figure 6.2: 3D U-Net adapted form the 2D version in Ronneberger et al. (2015) (licence:
GNU GPL). Determine the 3D column density factors (output) from a 3D density dis-
tribution (input). The left part shows the down sampling as the right the up sampling
part.

densities are overrepresented, whereas we are interested in the dense parts. The weights
for each voxel were the inverse of a fitted power law to the occurrence of its column
density (occurrence is depicted in Figure 6.4), although an exponential function is a
better representation the network performed worse.

6.4 Results

Example snapshots of the results are given in Figure 6.3. In the first step, we performed
a proof of concept. For that, we only considered the column density factor calculated by
one ray. With a small training set, we overfitted the data (loss: MSE, without weights),
which is displayed in the first row of Figure 6.3. The first column shows the inserted
density structure, the second the column density factor determined with the ray tracing
approach and in contrast to the machine learning approach in the third column. In the
last column, the residuals between the two approaches are depicted.

The general model was done with the full data set described in Section 6.2. As can be
seen in the second row of Figure 6.3 the structure is recovered quite well for the training
data. However, an example of the test set is given in the third row where the high-density
regions are not captured. This is also depicted in Figure 6.4, on the left-hand side the
occurrence of column density factors in the two approaches are compared for the whole
data set, where the machine learning approach misses the high-density part. The right-
hand side shows the ratio between the 2D power spectra of the two methods of a subset
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Figure 6.3: Comparison of the density input (first column), the column density factor de-
termined with the ray tracing method (second column) and the machine learning method
(third column) and the residuals from the two approaches (fourth column). The first row
shows an example of the overfitted data, the second the bigger training set and the third
the testing set.
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Figure 6.4: Left: The histogram shows the normalized column density factor in the
simulation. Green indicates the machine learning approach and blue the ray tracing
method. They agree well for the low column density part but show strong deviations for
the dense one.
Right: The ratio between the 2D power spectra of the two methods of several simulations.
For low frequencies,e. g. large scales, they agree well and for small scales, they deviate
strongly.
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of the simulation. It shows that the large structures are reproduced, whereas the small
structures are smeared out and deviate strongly.

6.5 Discussion and Conclusion

This study shows a proof of concept that column density factors can be determined by
machine learning, as the training data is reproduced well. However, further work has to
be done before applying this approach to simulations during runtime, since we see strong
deviations in the testing set. The accuracy of the prediction has to be increased possibly
with a bigger training set and an optimized set of hyperparameters.

The considered data contained only results from one single turbulent box simulation.
It needs to be tested, how the network performs on different simulations or different
setups, in order to see how well it can be generalised.

Several run time tests showed that one can expect the machine learning method to
achieve a speedup of a factor of six in comparison to the classical ray tracing approach.
The tests were performed each on one identical CPU.
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Chapter 7

Final remarks

The thesis demonstrated how filaments merge, fragment, and collapse.

In the first paper, we showed that filaments can only merge under specific require-
ments. Since the timescales on which filaments merge and on which filaments collapse
are similar, initial conditions such as velocity, mass, and distance determine whether two
filaments can merge. We derived analytic models to describe the merger of two parallel
filaments and how cores form at the end of a filament, validated by hydrodynamic simu-
lations. We compared the corresponding timescales of merging and edge effect formation
to the overall collapse time of a filament, which leads to quantitative constraints: mergers
are expected for filaments with high velocities (> 0.3 km s−1) and small initial distances
(< 0.4 pc).

In the second paper, we developed a model which describes the longitudinal collapse
of a filament, assuming a two-phase approach. The first phase is purely dominated by
the self-gravity of the filament. Since the acceleration at the filament’s ends is nearly
independent of its length, the core feels a uniform acceleration in this phase. At some
point, the ram pressure of the swept-up gas inside the filament counterbalances the self-
gravity of the filament, leading to a uniform inward movement in the second phase. By
assuming an instantaneous transition between the phases, an analytic solution was found
for the evolution of the filament length. We could then determine the collapse timescale
of a filament which explains the empirical timescale found already in Clarke & Whitworth
(2015). Although the analytic solution was derived for filaments with a uniform density
distribution, we found that it is basically independent of their radial profile and thus also
a good approximation for filaments in hydrostatic equilibrium and for observed profiles
which tend to be flatter.

In the third paper, we showed that the dominant fragmentation mechanism depends
on the end region of the filament. Since a density gradient at the filament end softens
the acceleration in this region, the edge effect can be slowed down but not stopped
since the collapse is also delayed. If the slowdown is sufficient, perturbations inside the
filament can grow faster than the edge effect itself. By comparing the timescales on which
perturbations grow and end cores are created, we found a critical gradient for which the
two effects occur at the same time. Thus, filaments with shallower density gradients
fragment mainly through the growth of perturbations whereas filaments with steeper
gradients form dominant end cores which was confirmed by hydrodynamic simulations.
However, the simulations showed deviations from the critical gradient for low line-mass
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filaments because of the approximations used in the derivation. Besides, the critical
gradient depends not only on the criticality and density of the filament but also on the
perturbation strength. For the observed perturbation strength, filaments with f > 0.7
would always grow perturbations faster than end cores.

In the fourth paper, we demonstrate that tuning fork-like structures, which are ob-
served in the ISM, can be the result of filament mergers. Considering that a filament
merger undergoes long-lived oscillations, an angle between the axes of the merging fila-
ments leads to oscillations along the resulting structure. These produce peaks in velocity
dispersion and column density which can be used as merger indicators in observations.
We found such signatures in the ALMA observations of LDN 1641-North in the Orion A
tail, suggesting that this structure has been created by a merger.

Finally, we showed some first approaches using machine learning to speed up hydro-
dynamic simulations. The integration of chemistry in turbulent ISM simulations is com-
putationally very expensive due to the calculation of attenuation coefficients for external
UV irradiation. We developed a three-dimensional U-Net which determines attenuation
coefficients from the density distribution of the simulation. The overall structure is al-
ready well reproduced by our network which shows that it is a good proof of concept.
However, a larger data set and further optimisation of hyperparameters are needed to
predict the small-scale features and the underrepresented high-density regions.

The new findings pose a lot of new questions that should be addressed to further under-
stand the physics of star-forming filaments.

The merging of filaments needs to be investigated in more detail. Comparing higher-
resolution observations with simulations can enhance our confidence that tuning fork-like
structures are produced by filament mergers since they can better resolve the anticipated
oscillation. In addition, a more statistical analysis would be necessary to show whether
the already observed features are a coincidence or a common feature. From the the-
oretical side, there are also many questions to unravel. The quantitative dependency
between initial and resulting quantities is yet unknown and needs to be investigated via a
parameter study. Important parameters in that regard would be the amplitude heights,
line-masses, merging angles, velocities, and outside pressures. It would also be interesting
to investigate how the merging of filaments triggers star formation and how it influences
the fragmentation modes. We already saw that the common fragmentation schemes do
not apply to filament mergers where the process is way more chaotic and dominated by
the merger of sink particles. This also raises the question of whether filament mergers
could be a scenario for high-mass star formation. Since the cores are triggered by the
merger and not by the growth of perturbations, it is not restricted to the mass limit
given by perturbation theory. With several filaments merging hub-like features may be
created, which are observationally already indicated to host high-mass star formation.
Consequently, simulations with a central gravitational potential would be interesting,
where several filaments converge to a joint centre.

For the critical gradient, it would be interesting to see whether observations can
confirm that this density gradient suppresses the edge effect. Observations of filament
ends in different environments, with and without edge effect, would be necessary to
validate this prediction. From the theory side, it would be interesting to see how the
density gradient influences the overall filament lifetime since it not only slows down the
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edge effect but also the overall collapse. This could have an impact on the lifetimes of
filaments.

The machine learning project where we determined attenuation coefficients of UV
irradiation with a neural network is only at its start, therefore, there is still a lot to
improve. First, a bigger and statistically more relevant sample is needed to train the
network. High-density regions have to be more prominent, such that it is easier for the
network to learn these features and to fully converge. Furthermore, an adjustment of
the hyperparameters would be necessary. For example, the loss function needs to be
modified to better emphasise what features are important for the network to reproduce.
In addition, the shape of the network and the data normalisation are parameters which
could be optimised. The network would need to be tested during the simulation in
comparison to the ray tracing approach to determine how accurate its predictions need
to be to capture the underlying physics correctly. Moreover, a study on the actual
speed up for simulations has to be done, also in comparison to non-classical ray tracing
approaches.

Altogether, isolated simulations are necessary to understand the fundamental physical
processes governing filaments. The determination and comparison of the corresponding
timescales provide us insights into their initial conditions, evolution, and fragmentation.
In the long run, these simulations have to be advanced step by step to determine the
influence of the surroundings, such as magnetic fields, stellar feedback, or turbulence.
The comparison between simulations and observations highlights the accuracy of state-
of-the-art models and allows to reassess the current understanding of the underlying
physics. As both simulations and observations will advance in resolution driven by better
technical equipment and higher computing power, the forthcoming years and decades will
be an exciting era to study the physics of star formation.
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Arzoumanian, D., André, P., Didelon, P., et al. (2011), Characterizing interstellar fila-
ments with Herschel in IC 5146 , A&A, 529, L6
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Hennebelle, P., Pérault, M., Teyssier, D., and Ganesh, S. (2001), Infrared dark clouds
from the ISOGAL survey. Constraints on the interstellar extinction curve, A&A, 365,
598

Heyer, M., Krawczyk, C., Duval, J., and Jackson, J. M. (2009), Re-Examining Larson’s
Scaling Relationships in Galactic Molecular Clouds , ApJ, 699(2), 1092

Hill, T., Motte, F., Didelon, P., et al. (2011), Filaments and ridges in Vela C revealed by
Herschel: from low-mass to high-mass star-forming sites , A&A, 533, A94

Hoemann, E., Heigl, S., and Burkert, A. (2021), Merging filaments I: a race against
collapse, Monthly Notices of the RAS, 507(3), 3486

Hoemann, E., Heigl, S., and Burkert, A. (2022), Filament collapse: A two phase process ,
arXiv e-prints, arXiv:2203.07002

Hoemann, E., Heigl, S., and Burkert, A. (2023a), Filament collapse: a two phase process ,
MNRAS, 521(4), 5152

Hoemann, E., Heigl, S., and Burkert, A. (2023b), Filament fragmentation: Density gra-
dients suppress end dominated collapse, arXiv e-prints, arXiv:2307.11162

Hollenbach, D. and Salpeter, E. E. (1971), Surface Recombination of Hydrogen Molecules ,
ApJ, 163, 155

Hosseinirad, M., Naficy, K., Abbassi, S., and Roshan, M. (2017), Gravitational instability
of filamentary molecular clouds, including ambipolar diffusion, MNRAS, 465(2), 1645

Inutsuka, S.-I. and Miyama, S. M. (1992), Self-similar Solutions and the Stability of
Collapsing Isothermal Filaments , ApJ, 388, 392

Jamieson, D., Li, Y., Alves de Oliveira, R., et al. (2022), Field Level Neural Network
Emulator for Cosmological N-body Simulations , arXiv e-prints, arXiv:2206.04594

Kainulainen, J., Hacar, A., Alves, J., et al. (2016), Gravitational fragmentation caught in
the act: the filamentary Musca molecular cloud , A&A, 586, A27

Kashiwagi, R., Iwasaki, K., and Tomisaka, K. (2023), Simulation of Head-on Collisions
Between Filamentary Molecular Clouds Threaded by a Lateral Magnetic Field and Sub-
sequent Evolution, arXiv e-prints, arXiv:2307.07698

Keto, E. and Burkert, A. (2014), From filaments to oscillating starless cores , MNRAS,
441(2), 1468
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Pon, A., Toalá, J. A., Johnstone, D., et al. (2012), Aspect ratio dependence of the free-fall
time for non-spherical symmetries , ApJ, 756(2), 145

Raga, A. C., Mellema, G., Arthur, S. J., et al. (1999), 3D Transfer of the Diffuse Ionizing
Radiation in ISM Flows and the Preionization of a Herbig-Haro Working Surface, Rev.
Mex. Astron. Astrofis., 35, 123

Razoumov, A. O. and Cardall, C. Y. (2005), Fully threaded transport engine: new method
for multi-scale radiative transfer , MNRAS, 362(4), 1413

Razoumov, A. O. and Scott, D. (1999), Three-dimensional numerical cosmological radia-
tive transfer in an inhomogeneous medium, MNRAS, 309(2), 287

Recchi, S., Hacar, A., and Palestini, A. (2013), Nonisothermal filaments in equilibrium,
A&A, 558, A27

Recchi, S., Hacar, A., and Palestini, A. (2014), On the equilibrium of rotating filaments ,
MNRAS, 444(2), 1775

Redman, M. P., Keto, E., and Rawlings, J. M. C. (2006), Oscillations in the stable starless
core Barnard 68 , MNRAS, 370(1), L1

Ronneberger, O., Fischer, P., and Brox, T. (2015), U-Net: Convolutional Networks for
Biomedical Image Segmentation, arXiv e-prints, arXiv:1505.04597



116 BIBLIOGRAPHY

Rouleau, F. and Bastien, P. (1990), Collapse and Fragmentation of Isothermal and Poly-
tropic Cylindrical Clouds , ApJ, 355, 172
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