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Zusammenfassung

Der Ausbau der erneuerbaren Energien ist ein entscheidender Beitrag zum Klimaschutz.
Dabei ist Photovoltaik (PV) eine der am weitesten verbreiteten Quellen für sauberen und
nachhaltigen Strom. Die Stromerzeugung durch PV hängt allerdings in hohem Maße von
der solaren Einstrahlung ab und ist damit anfällig für atmosphärisch bedingte Schwankun-
gen. Innerhalb einzelner Minuten können Wolken auch ausgedehnte PV-Anlagen beschat-
ten, was zu Fluktuationen in der Stromerzeugung führt. Diese Schwankungen stellen
eine Herausforderung für die Stabilität der Stromnetze dar. Die genaue Kenntnis der
zu erwartenden Einstrahlung trägt zur verbesserten Nutzbarkeit von PV-Strom bei. Da-
her sind kurzfristige Prognosen der Einstrahlung erforderlich, diese werden auch Nowcast
genannt. Wolkenbilder können als Grundlage für Nowcasts der nächsten Minuten und Stun-
den genutzt werden. Diese werden analysiert, um Position, Bewegung und, wenn möglich,
auch die optischen Eigenschaften vonWolken abzuleiten. Mit Fischaugenkameras, sogenan-
nten all-sky imagern (ASI), können lokal Wolkenbilder in hoher zeitlicher und räumlicher
Auflösung aufgenommen, aber nur bedingt die optischen Eigenschaften abgeleitet werden.
Multi-spetrale Bilder von geostationären Meteosat Second Generation (MSG) Satelliten er-
lauben die Ableitung von wolkenoptischen Eigenschaften bei großer räumlicher Abdeckung,
sind allerdings nur in grober Auflösung von einigen Kilometern verfügbar. In dieser Arbeit
wird MACIN vorgestellt, ein neuartiges Modell für das Nowcasting von Direktstrahlung,
das durch eine von der Datenassimilation inspirierte Methode verschiedene Beobachtungen
nutzen kann. MACIN kann beispielsweise Bilder von mehreren Kameras und Zeitpunkten
verwenden. Wolkenmasken werden mit einem neuronalen Netz (CNN) aus Kamerabildern
abgeleitet und mittels Stereographie wird die Wolkenhöhe ermittelt, wodurch die Posi-
tion von Wolken über einer PV-Anlage berechnet werden kann. Aus aufeinanderfolgenden
Bildern wird die Wolkenbewegung bestimmt, wodurch die Wolkenposition extrapoliert wer-
den kann. Mit aktuellen Einstrahlungsmessungen können Nowcasts der Direktstrahlung
aus den prognostizierten Wolkenfeldern berechnet werden. Eine Erweiterung des einge-
führten Modells nutzt zusätzlich MSG-Satellitenbilder, um die wolkenoptischen Eigen-
schaften genauer zu bestimmen. Zur Validierung und Evaluierung wurde MACIN auf syn-
thetische Bilder von simulierten Wolken und reale Beobachtungen angewendet. Das neue
Strahlungstransportmodell LASCAT wurde eigens zur schnellen Berechnung synthetischer
Bilder eingeführt. Die erfolgreiche Validierung der abgeleiteten Wolkeninformation ergab
eine Genauigkeit der Pixelklassifizierung der Wolkenmasken von über 94 %, einen relativen
Fehler der Wolkenhöhe im Bereich von 4 % und einen Fehler der Wolkenbewegung von etwa
±0.1 m s−1. Die Nowcasts der Direktstrahlung zeigen signifikante Verbesserung gegenüber
der Persistenz. Experimente mit den synthetischen Daten beleuchten den Einfluss der
Wolkenentwicklung und der ASI-Bildgeometrie auf den Vorhersagefehler. Nowcasts mit
dem erweiterten Modell zeigen zusätzliche Verbesserungen und demonstrieren das Poten-
tial des vorgestellten Modells verschiedene Beobachtungen wie Kamera- und Satelliten-
bilder gewinnbringend zu kombinieren.
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Abstract

The transition towards renewable energy is crucial to address climate change. Photovoltaic
(PV) power is one of the most widespread and promising sources of clean and sustainable
energy. However, PV power production is highly dependent on incident irradiance, mak-
ing it susceptible to fluctuations caused by atmospheric conditions. Clouds can shadow
PV power plants in a single minute, leading to highly variable power production. This
intermittency challenges the stability of power grids with high penetration of PV. Ac-
curate knowledge of upcoming fluctuations can help to tackle this challenge. Therefore,
short-term predictions are required, nowcasts of incident irradiance. Nowcasts of the next
minutes to hours can be derived from cloud images analyzed to retrieve position, motion,
and possibly also optical properties of clouds. On-site all-sky imagers (ASIs) capture cloud
images in high spatial and temporal resolution, but usually allow only limited retrievals
of cloud optical properties. Meteosat second generation (MSG) geostationary satellites
provide multi-spectral images, which offer large spatial coverage at the cost of kilometer
scale resolution. Cloud optical properties can be derived from these multi-spectral im-
ages. This work proposes a novel model for all-sky image based cloud and direct irradiance
nowcasting (MACIN) that can make use of various observations with a method inspired
by data assimilation. MACIN is designed to use images from multiple ASIs and multi-
ple times. Cloud masks are generated from images using a convolutional neural network
(CNN) and cloud-base height is derived by stereography. The derived cloud information
is utilized in MACIN to describe cloud positions above the PV plant. Cloud motion de-
rived from consecutive images is used by MACIN to extrapolate the cloud positions up to
lead times of 30 min. Latest on-site irradiance measurements allow deriving direct normal
irradiance (DNI) nowcasts according to the extrapolated cloud positions. An extended
MACIN-S makes additional use of MSG satellite images for an enhanced estimate of cloud
optical properties. MACIN is thoroughly validated using synthetic ASI images of modeled
cloud scenes and also evaluated on real data. This work introduces LASCAT, a novel
model for 3D radiative transfer. It is used for the fast computation of required synthetic
images. Cloud masks achieving over 94 % accuracy, relative cloud-base height errors of
approximately 4 %, and cloud motion errors within a range of ±0.1 m s−1 demonstrate the
quality of derived cloud information in the synthetic setup. DNI nowcasting performance
surpasses a persistence baseline nowcast, and particularly errors for large nowcasted areas
reduce. Synthetic experiments shed light on the impact of cloud evolution and ASI view-
ing geometry on nowcast performance. Evaluation of MACIN-S DNI nowcasts showcases
the strength in the design of the proposed nowcasting model. The approach inspired by
assimilation allows for the integration of additional MSG satellite observations, which im-
prove nowcast performance. Although nowcasting direct irradiance is the main focus of
this work, it also highlights the potential benefits of MACIN-S for PV power nowcasting.
In summary, this work presents an innovative approach for nowcasting direct irradiance
based on camera and satellite images. Comprehensive validation in a synthetic setup and
evaluation on real data highlight the potential of MACIN and MACIN-S in addressing the
challenges associated with fluctuating PV power production.
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Chapter 1

Introduction

Climate change requires the increased use of renewable energy. Photovoltaic (PV) and
concentrating solar power (CSP) plants are an important contribution. As of 2022, a total
of 67.4GW PV peak power was installed in Germany, producing 60.8TW h over the course
of the year (UBA, 2023). This contributed more than 11% to the countries electric energy
consumption in 2022. While PV plays an important role in power production, it comes
with the major drawback of volatility due to weather and the position of the Sun. The
Sun’s position can be calculated precisely for any desired time and location on Earth.
More challenging to predict are short-term fluctuations in PV power production due to
cloud shading. These fluctuations are challenging for grid integration of PV (Katiraei and
Agüero, 2011). They may cause grid instabilities and require the allocation of reserve
power plants or storage for compensation. Short-term predictions – so-called nowcasts –
of irradiance for the next minutes to hours can help with improved grid integration of PV
(e.g.; West et al., 2014; Law et al., 2016; Boudreault et al., 2018; Saleh et al., 2018; Samu
et al., 2021; Chen et al., 2022). The NETFLEX project investigated the potential of such
predictions for the intelligent management of biogas power plants in regional grids with
high PV penetration. A subproject focused on nowcasting of irradiance for a combined PV
and biogas power plant as described in this work.
Many nowcasting systems make use of images of the current cloud situation (e.g.; Peng

et al., 2015; Schmidt et al., 2016; Sirch et al., 2017). These images are processed to derive
position, motion, and, if possible, also optical properties of clouds. On the basis of the
current cloud motion, they predict future cloud positions and estimate the corresponding
irradiance. Cloud images can be captured with satellite instruments or ground-based fish-
eye cameras, also known as all-sky imagers (ASIs). They offer cloud imagery from below
in high spatial and temporal resolution but with limited spatial coverage. ASIs are often
affordable consumer-grade cameras, which are not spectrally calibrated and provide only
limited information about the optical properties of clouds. ASI-based nowcasting models
are usually designed for minute-ahead nowcasting. Many ASI-based irradiance nowcast-
ing systems have been proposed over the years (e.g.; Peng et al., 2015; Schmidt et al.,
2016; Kazantzidis et al., 2017; Nouri et al., 2022), which derive cloud masks and cloud
motion from images, extrapolate cloud positions, and estimate future irradiance. Setups
with multiple ASIs have become feasible due to the availability of consumer-grade fisheye
cameras, which are inexpensive and weather resistant. Simultaneous images from different
ground positions can be exploited to derive cloud base height (Nguyen and Kleissl, 2014;
Beekmans et al., 2016; Kuhn et al., 2018). An even more precise three-dimensional (3D)
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representation of clouds is derived by Nouri et al. (2018) from a setup with four ASIs us-
ing a technique called voxel carving. Rodríguez-Benítez et al. (2021) deployed three ASIs
for independent irradiance nowcasts per imager, which were averaged into a single mean
irradiance nowcast. The Eye2Sky network of dozens of ASI distributed in northwestern
Germany was established for spatial observation of the cloud situation and nowcasting
(Blum et al., 2021). This ASI network can be used, for example, to derive the spatial
distribution of irradiance (Blum et al., 2022).
Commercial PV and CSP plants often span hundreds of meters, while irradiance is mea-

sured by single devices with sensors covering only a few square centimeters. Irradiance
nowcasts are commonly validated against localized irradiance measurements, which is in
contrast to the reality of spatially extent PV plants. Kuhn et al. (2017a) developed a
method to derive irradiance maps from a camera that monitors the shadows on the ground.
These area irradiance maps were used in Kuhn et al. (2017b) to validate irradiance now-
casts for the area of a CSP. Nowcast improvements over persistence were found, especially
for situations with large variability. Multiple irradiance measurements distributed over an
area of approximately 1 km were used as a reference by Nouri et al. (2022). They found
smaller nowcast errors if nowcasted and measured irradiances for all sites were averaged
before comparison. This indicates that nowcast errors for areas can be smaller than for a
single point.
A major challenge in nowcasting based on ASI is the identification of clouds in images

to create cloud masks. Li et al. (2011) proposed a method based on pixel color ratios and
histogram thresholding for the computation of cloud masks. The large field of view of
ASIs comes with varying sky color within single images, even under cloud-free conditions.
An additional clear sky library, a library of cloud-free images, can be used to extend the
method and account for these intra-image background variations (e.g.; Shields et al., 2009;
Chow et al., 2011; Schmidt et al., 2016). More recently, advances in convolutional neural
network (CNN) based image segmentation have been exploited for the derivation of cloud
masks. Multiple studies demonstrated the use of CNNs for cloud image segmentation and
irradiance nowcasting (Ye et al., 2017; Dev et al., 2019; Xie et al., 2020; Hasenbalg et al.,
2020). Fabel et al. (2022) trained a CNN to segment cloud images into clouds in three
height layers instead of a binary cloud or cloud-free segmentation. Masuda et al. (2019)
developed a technique to derive cloud optical depths from ASI images. They combined
synthetic cloud images of modeled cloud scenes, a spectral camera model, and a CNN. A
synthetic setup was also used by Kurtz et al. (2017) based on high-resolution large eddy
simulations (LES) of clouds and synthetic ASI images of these clouds. The synthetic setup
allows for extended validation of developed methods, as the geometry and properties of
the imaged clouds are known perfectly. Furthermore, experiments for the investigation of
error sources can be designed with the synthetic setup. For example, Kurtz et al. (2017)
investigated errors due to the viewing geometry of ASIs with the synthetic setup.
In contrast to ASI images, satellite-based imagery offers the advantage of larger spatial

coverage and multispectral information. Meteosat second generation (MSG) geostation-
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ary satellites offer continuous reflectance measurements for Europe. However, the spatial
resolution is on the order of multiple kilometers. The larger spatial coverage allows for
larger nowcast horizons. Therefore, satellite-based nowcasting models are usually designed
for hour-ahead nowcasting (e.g.; Wang et al., 2019; Hammer et al., 2015; Sirch et al.,
2017). Attempts have been made to bring ASI and satellite cloud information together
for improved nowcasting. Sirch (2018) used high spatial cloud outlines from ASI images
to potentially improve satellite-derived cloud positions in a direct normal irradiance (DNI)
nowcasting model. However, no benefits were found. A CNN with elaborate structure was
trained in Paletta et al. (2023) to make use of time series of satellite and ASI images to-
gether to improve irradiance nowcasting. They found an improved nowcast performance of
combined satellite and ASI-based nowcast over nowcasts based exclusively on ASI images
for lead times of about 20 min and more. Another way of combining satellite-based and
ASI-based nowcasts is suggested by López-Cuesta et al. (2023). They compute indepen-
dent satellite- and ASI-based nowcasts in this approach, and merge them with a random
forest into a combined nowcast. For lead times less than 50 min, significant improvements
in nowcast performance were found.
Commonly nowcasted irradiance quantities are global horizontal irradiance (GHI) and

DNI. In general, irradiance is the radiative power on a horizontal unit area and can be
divided into direct and diffuse irradiance. DNI accounts for all light coming directly from
the Sun without scattering in the atmosphere on a plane perpendicular to the incident
direction. Diffuse horizontal irradiance (DHI) accounts for all light scattered at least once
in the atmosphere and incident in a horizontal plane. GHI is the sum of diffuse and direct
irradiance in a horizontal plane. DNI is directly influenced by clouds and the atmosphere in
line of sight towards the Sun. DHI depends on the complex 3D-radiative transfer through
the atmosphere, e.g., also the constellation of clouds. Fig. 1.1 gives irradiance measure-
ments for three example days, a clear-sky day without clouds, a fully occluded day with
constant cloud cover, and a day with broken clouds. For clear situations, as shown in
Fig. 1.1a, mainly the daily cycle is important for the prediction of irradiance. For overcast
conditions, as depicted in Fig. 1.1b, DNI can be constantly shaded and variations in optical
properties of the dense cloud layer cause DHI variations. PV power production is related to
global irradiance, which is significantly lower under overcast conditions. With the overall
small PV power production, fluctuations in DHI pose a smaller challenge to grid stability
in overcast conditions than variations in DNI for broken cloud situations. Fig. 1.1c shows
a day with broken clouds and GHI ramps of several hundred W m−2 in a single minute.
Such situations pose a major challenge due to the large variability in PV power and the
possibly large contribution of PV to the overall power production. Although also DHI
fluctuates for broken cloud situations, these fluctuations are usually smaller in magnitude
and less rapid than for DNI. In this case, the fastest and largest changes in GHI can be
mainly attributed to fluctuations in DNI. Therefore, irradiance nowcasting often focuses
on DNI first and less on DHI (Chow et al., 2011). This work focuses on DNI for the same
reason; in the outlook, an extension to the nowcasting of GHI and PV power is given.
This work introduces a novel model for all-sky image based cloud and direct irradiance
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(c) 16 July 2021

Figure 1.1: Measurements of global, direct and diffuse irradiance in Egling a.d. Paar for 3 example days in June
and July 2021. Irradiance measurements indicate (a) clear-sky conditions on 14 June 2021, (b) overcast sky on 17
July 2021, and (c) broken clouds on 16 June 2021.

nowcasting (MACIN), which uses methods inspired by data assimilation and makes use of
cloud images from multiple ASIs. A synthetic setup is introduced to validate MACIN and
its components and investigate the error sources. MACIN is applied to real-world data
to evaluate nowcast performance. An extension to MACIN is developed and evaluated
to include satellite data and to evaluate improvements with these additional data. This
extended model for all-sky image based cloud and direct irradiance nowcasting using addi-
tional satellite data (MACIN-S) demonstrates the ability of the assimilation-inspired tech-
nique to make use of different observations for improved nowcasts. Additionally, a model
for irradiance nowcasts based exclusively on satellite images is introduced to schematically
demonstrate the use of satellite data for irradiance nowcasting.
This work is structured as follows:

• Section 2 gives the theoretical background on radiative transfer, clouds, and data
assimilation and introduces important quantities used throughout this work.

• Section 3 describes the data and methods used for irradiance nowcasting based on all-
sky imager and satellite images. This includes methods used to generate synthetic
input and reference data for ASI nowcasting. Real-world measurements and ASI
images from a PV plant are introduced, as well as satellite measurements. Last
but not least, the developed irradiance nowcasting models and their components are
described in this section.

• Section 4 is subdivided into four parts. The first part focuses on the validation of
MACIN and its components using synthetic data and follows Gregor et al. (2023).
Additional synthetic experiments are presented in this part as well to investigate error
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sources even more in detail. The performance of MACIN on real-world data is eval-
uated in the second part of this section. The third part focuses on the performance
of nowcasts based exclusively on satellite images, while the fourth part evaluates the
nowcast performance of irradiance nowcasts using both ASI and satellite images.

• Section 5 gives a conclusion of this work, as well as an overview of the remaining
challenges and possible future work. Further steps to convert DNI nowcasts from
MACIN into actual PV power nowcasts are described as an outlook. The evaluation
of these nowcasts demonstrates the potential for energy applications.

Parts of this work were published in Gregor et al. (2023).
As mentioned before, this work was carried out in the framework of the project NET-

FLEX which investigated the potential of managed biogas plants for stabilizing regional
grids with high penetration of PV. The project was centered on a combined biogas and
PV power plant in Bavaria. Therefore, this work focuses on single MW scale PV power
plants and minute-ahead nowcasts, which can theoretically be used for fine-grained man-
agement of biogas plants but also for other applications. The Fachagentur Nachwachsende
Rohstoffe funded the NETFLEX project on behalf of the German Federal Ministry of Food
and Agriculture.

All-sky images are given on the lower page corners of this work for an illustration of the used data.
Odd pages give images captured by the ASI-16126 in Egling a.d. Paar in 2 min steps starting from 11:00:00
UTC on 20 July 2021. Synthetic images for LES clouds are given on even pages, starting at model time
3 h and decreasing in 2min time steps.
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Chapter 2

Theory

2.1 Radiative Transfer

The propagation of electromagnetic waves through the atmosphere determines the radiative
energy available on the ground for photovoltaic power plants. The main effects relevant for
describing the radiative transfer in the context of this work are interaction with molecules,
particles, and other matter by scattering and absorption. This section introduces funda-
mental quantities associated with radiative transfer and describes the two relevant types of
scattering as well as the radiative transfer equation (RTE). It is based on Andrews (2000),
Zdunkowski et al. (2014), and Liou (2002) with adapted notation. For a more thorough
and complete description of radiative transfer in the atmosphere, the reader is referred to
this literature.

2.1.1 Radiative quantities

Fundamental quantities and definitions associated with radiative transfer are introduced in
the following. The main effect of radiative transfer is the transport of energy through the
atmosphere. The amount of energy is commonly given by one of the following quantities:

• Radiance L: Radiance gives the radiative energy dQ per area dA and time dt from
or to a solid angle dΩ as

L = dQ
cos θdAdΩdt (2.1)

in Wm−2sr−1. The angle θ gives the zenith angle of dΩ with respect to the surface
normal and cos θ accounts for the orientation of the surface.

• Irradiance E: The radiative energy per time per area gives the irradiance

E = dQ

dAdt
=
∫

2π
L(Ω) cos θ dΩ (2.2)

in Wm−2 with the angle between Ω and the surface normal vector θ. It can be derived
from the radiance by integration over a half-sphere (2π).
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• Actinic flux F : Actinic flux gives all the light available for a place in the atmosphere.
For this work, it is defined as the integral of radiance over the full sphere

F =
∫

4π
L(Ω) dΩ (2.3)

in Wm−2.

In the atmosphere, electromagnetic waves interact with molecules, particles, and matter in
general in two ways: scattering and absorption. These interactions can be described using
the following physical quantities:

• σsca, σabs: The scattering and absorption cross section give the magnitude of scat-
tering and absorption respectively of electromagnetic waves interacting with a single
particle or molecule. The unit is m2.

• Qsca: The scattering efficiency is the ratio of the scattering cross section and the
geometric cross section of the particle or molecule

Qsca = σsca
π r2 (2.4)

with the particle radius r.

• σext: The extinction cross section gives the overall magnitude of interaction of elec-
tromagnetic waves with a single particle or molecule σext = σsca + σabs.

• βsca, βabs, βext: The scattering, absorption and extinction coefficient give the mag-
nitude of interaction of electromagnetic waves with all molecules in a unit volume.
For n molecules in the unit volume, the coefficients depend on the respective cross
sections by

βsca|abs|ext = n · σsca|abs|ext (2.5)

in m−1.

• ω0: The single scattering albedo gives the ratio of scattered over extincted radiation
as

ω0 = βsca
βext

. (2.6)

• τ : The optical thickness is the integral of the extinction coefficient over a path s

τ =
∫
s
βext(s′) ds′ . (2.7)
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• P(Ω′,Ω): The scattering phase function is the probability of scattering light from inci-
dent direction Ω′ into direction Ω. This function strongly depends on the wavelength
of scattered light, as well as the particle or molecule it is scattered by. Sect. 2.1.2
gives more detailed information on phase functions for scattering on molecules and
particles.

Radiance and irradiance, as well as the interaction quantities above, are given here as
wavelength integrated. They can also be formulated as spectral quantities per wavelength.
Mainly the radiative energy integrated over the solar spectrum over all wavelengths up
to approximately 3.5 µm is of interest for this work. Spectrally integrated quantities for
this solar spectrum will be assumed if not stated otherwise. Note, that the absorption
and scattering cross sections and coefficients and therefore also the optical depths can be
combined linearly. Therefore, these quantities can be separated to differentiate the effects
of clouds, aerosol and molecules, e.g., τ = τcld + τaerosol + τmol.
For solar energy applications within this work, standardized definitions of irradiance are

used (ISO/TR 9901, 2021). These distinguish between GHI, DHI and direct normal irra-
diance DNI. GHI gives downward irradiance on a horizontal plane. DHI gives downward
irradiance on a horizontal plane, but only considers light that was scattered at least once.
DNI gives irradiance of direct, unscattered sun light for a plane perpendicular to the angle
of incidence. Thus, GHI consists of direct and diffuse irradiance as

GHI = DHI + DNI cos θ (2.8)

with sun zenith angle θ.

2.1.2 Mie and Rayleigh scattering

A significant fraction of solar radiation is scattered on its way through the atmosphere.
Apart from scattering cross sections mentioned before, the angular distribution of scat-
tered radiation is a key component for understanding and modeling radiative transfer.
The Maxwell equations describe the propagation of electromagnetic waves. Mie-Theory is
based on the Maxwell equations and describes the scattering of electromagnetic waves on
spherical particles. Mie scattering is often assumed for particles in the atmosphere with
sizes in the order of the wavelength. The Rayleigh approximation (Rayleigh, 1871) gives a
simpler formulation for a special case of the Mie-Theory. It is applicable for molecules and
other particles that are small compared to the wavelength of scattered radiation. Within
this work, scattering will be separated into Rayleigh scattering for atmospheric molecules
and Mie scattering for cloud droplets and aerosols. The two types of scattering differ
in characteristics of the scattering phase function. Additionally, the scattering efficiency
depends more on wavelength for Rayleigh scattering than for Mie scattering. The latter
can be visualized by the fact that the clouds are grayish, while the cloud-free sky is blue.
Rayleigh scattering is more efficient for shorter wavelengths, meaning that more blue light
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is scattered by molecules than red light, resulting in a blue sky. In contrast, the efficiency of
Mie scattering in clouds is relatively independent of wavelength, and clouds appear white
or gray. A non-normalized version of the scattering phase functions for examples of Mie
and Rayleigh scattering is depicted in Fig. 2.1. The Rayleigh scattering phase function is
relatively uniform with a small forward and backward tendency. It can be described by

PR(Θ) = 3
4
(
1 + cos2 Θ

)
(2.9)

Mie scattering features a large forward and backward peak as well as an overall com-
plex structure. To simplify Mie scattering for radiative transfer modeling, the Mie phase
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Figure 2.1: Example angle distribution of Mie (upper half) and Rayleigh scattering (lower half, dashed). Θ
gives the scattering angle relative to incidence. Note the logarithmic scale on the axes. Taken from Fig. 9.7 in
Zdunkowski et al. (2014). ©W. Zdunkowski, T. Trautmann & A. Bott, 2007; Reproduced with permission of The
Licensor through PLSclear.

function is commonly approximated by the Henyey-Greenstein phase function

PHG(Θ, g) = 1
4π

1− g2

(1 + g2 − 2g cos Ω)1.5 (2.10)

with asymmetry parameter g. For water clouds, g is typically on the order of 0.85.
A more detailed introduction into atmospheric scattering and Mie-Theory can be found,

e.g., in Zdunkowski et al. (2014).

2.1.3 Radiative transfer equation

The radiative transfer equation (RTE) was proposed by Chandrasekhar (1950) and uses the
quantities introduced before. It describes the change in radiance over path s in direction
Ω based on all the relevant processes:
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• attenuation due to scattering and absorption

−βextL(Ω) (2.11)

• scattering of radiation from all directions into Ω

βsca
4π

∫
4π
L(Ω′)P(Ω′,Ω) dΩ′ (2.12)

• thermal emission for temperature T according to Planck’s law (Planck, 1901)

βabsB(T ) (2.13)

The radiative transfer equation can be written as

dL(Ω)
ds = −βextL(Ω) + βsca

4π

∫
4π
L(Ω′)P(Ω′,Ω) dΩ′ + βabsB(T ). (2.14)

In the solar spectrum, thermal emission for typical temperatures in the atmosphere of the
Earth can be neglected B(T ) ≈ 0.
The Bouguer-Lambert-Beer law describes the reduction of radiance over a path of optical

thickness τ

L = L0 e
−τ (2.15)

with the initial radiance L0 and is a simplification of the RTE in case of no in-scattering
and no emission. Due to the oriented nature of direct irradiance on a path towards the
Sun, this exponential relation can be used to describe the reduction of DNI as

DNI = DNI0 e−τ . (2.16)

The relative reduction itself describes the transmittance

T = e−τ . (2.17)

2.2 Clouds

Clouds are a major modulator of irradiance, especially on short timescales of minutes to
hours. Therefore, this work focuses on the nowcasting of irradiance with respect to clouds.
Clouds are accumulations of particles of liquid and solid water. They extend over hundreds
of meters to kilometers, while being made up of water particles on micrometer scales. A
sufficient amount of water droplets, ice crystals and intermediate states is necessary for
clouds to significantly impact solar radiation and be visible. However, a strict threshold is
hard to define. Clouds are generally advected by wind, but also reshape due to gradients in
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the wind field and turbulence. Growth, e.g., by condensation of additional water vapor, and
shrinking, for example, due to evaporation can be observed in nature as well. Important
factors for reshaping are the vertical motion of air, wind shear, radiative heating and
cooling, and the entrainment of dry and moist air. In short, many processes determine
the evolution of clouds over time, which includes changes in position, shape, and optical
properties of clouds. A more detailed introduction to clouds can be found in, e.g., Lohmann
et al. (2016).
All cloud droplets and ice crystals can interact with solar radiation by scattering and

absorption. For modeling radiative transfer in cloudy atmospheres, this interaction is
usually not considered particle by particle but summed for all particles in a discrete volume.
The relevant properties of the water cloud used for radiative transfer modeling in this work
are the liquid water content lwc and the mean effective radius reff, both for a discrete
volume. Here, lwc gives the total amount of water contained, usually in g m−3. The
effective radius gives a single droplet radius, which is representative of the radiative effect
of all the cloud droplets in the volume. As a rule of thumb, water cloud optical depth in
a layer of height ∆z, can be estimated as

τcld ≈
3 · lwc

2 · ρw · reff
∆z (2.18)

with the density of water ρw. Large eddy simulation (LES) models are numerical models for
modeling the atmosphere on scales of 10s to 100s of meters. They can be used to simulate
the evolution of clouds over time. However, modeled scales are still orders of magnitude
larger than cloud droplet sizes. Microphysical processes like cloud droplet growth are
therefore described by parameterizations. Comparisons of LES models demonstrated the
capability of these models to compute realistic clouds situations (e.g.; Neggers et al., 2003;
Stevens et al., 2005).

2.3 Data assimilation

Numerical weather prediction (NWP) models are designed to forecast future atmospheric
states based on the current state. Therefore, these models need to extrapolate an initial
state by modeling the relevant physical processes. A good initial state is a prerequisite for
a good forecast. Data assimilation (DA) addresses the problem of finding the initial state
based on observations and previous model runs. This section gives a brief introduction
to DA based on Pu and Kalnay (2019) and Katsafados et al. (2022) and focuses on the
4D-Var DA method proposed by Le Dimet and Talagrand (1986).
Continuous in situ and remote sensing measurements provide valuable data on the cur-

rent atmospheric state. These measurement data come with several challenges for the
determination of an initial state. Measurements are rarely evenly distributed on the reg-
ular grid of a numerical weather model, are subject to uncertainties, and are available at
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varying times. Additionally, observed quantities may not correspond to model variables
directly but require an operator that describes the relation between them and allows for
comparison. Missing observations can be compensated for by the use of a background
state. A previous predicted model state for the new forecast start time is thereby used
as a data source in addition to the new observations. Data assimilation methods are de-
signed to determine an initial model state for the new forecast start time considering these
challenges and based on observations and background state.
A four-dimensional variational (4D-Var) data assimilation method was proposed by Le

Dimet and Talagrand (1986) to find an analysis state. It relies on a cost function which
accounts for differences between initial state and states from previous forecasts, as well as
all observations over an assimilation interval. The cost function is minimized to find an
analysis state, which is the initial state that best matches previous forecasts and measured
data. The 4D-Var cost function can be formulated following Pu and Kalnay (2019) as

J [x(t0)] =1
2
[
x(t0)− xb(t0)

]T
B−1

0

[
x(t0)− xb(t0)

]
(2.19)

+1
2

N∑
i=0

[H(xi)− yoi ]
T R−1

i [H(xi)− yoi ] (2.20)

with initial state x(t0), background state xb(t0) from previous forecasts, background error
covariance B0, observations yoi and observation error covariance matrices R−1

i for N ob-
servations. The observation operator H converts a model state to the observation space to
match the location and time of the measurement.
For use in this work, the 4D-Var method is used with several adaptations and simplifica-

tions. Due to dense measurements and large forecast errors and therefore background error
covariance, no background state is considered. The comparison of observations and model
state is done in model space instead of observation space for simplification. Additionally,
the error covariance matrix is assumed to be diagonal, i.e., measurement errors are as-
sumed to be uncorrelated in most cases. When the methods in this work are described as
assimilation-based or inspired by data assimilation, this is done to reflect the idea of using
4D-Var data assimilation with adaptations and simplifications. For improved readability,
the method inspired by assimilation is in some places also directly referred to as ”data
assimilation”. This is done without the intention of overselling the method, but for better
readability. As the background state is omitted, the method used in this work is more an
initial state estimation by combination of observations than data assimilation.
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Chapter 3

Methods

3.1 Radiative transfer solvers

The radiative transfer equation (Eq. 2.14) can be solved numerically in multiple ways. The
Monte Carlo solver MYSTIC (Mayer, 2009) and the independent column solvers two-stream
(Zdunkowski et al., 2014) and DISORT (Stamnes et al., 1988; Buras et al., 2011; Motamedi
et al., 1989) are used in this work and will be introduced briefly in Sect. 3.1.1. Additionally,
a novel method to efficiently compute radiances and generate synthetic images for modeled
cloud situations is explained in Sect. 3.1.2.

3.1.1 Existing radiative transfer solvers

MYSTIC traces single photons physically through 3D cloudy atmospheres. Scattering
and absorption of a photon is described by drawing random numbers according to the
physically correct distributions. By tracing many photons, a physically correct distribution
of photons in the atmosphere can be derived. This represents the distribution of radiation
in the atmosphere and can be converted into, e.g., radiances and irradiances.
In contrast to MYSTIC, DISORT (Stamnes et al., 1988; Motamedi et al., 1989) solves

the RTE only for a horizontally homogeneous atmosphere instead of full 3D atmospheres.
The assumption of horizontally homogeneous atmospheres is commonly applied per column
in numerical weather model grids and known as independent column approximation. The
atmosphere is effectively reduced to the vertical dimension. DISORT solves the RTE for
such 1D atmospheres based on Legendre polynomials, which describe streams in discrete
angles defined by the user. The two-stream solver can be seen as a simplification of DISORT
where only two streams in upward and downward direction are considered to solve the RTE.
The restriction to two streams limits the physical accuracy in favor of computational speed.
The MYSTIC, DISORT and two-stream RTE solvers are embedded in the libRadtran

library for radiative transfer (Mayer and Kylling, 2005; Emde et al., 2016), which also
provides optical properties for a given atmospheric composition and cloud situation.
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3.1.2 Ray-marching image generation – LASCAT

Gregor et al. (2023) uses a computationally efficient approximation of the RTE to generate
artificial images for synthetic cloud scenes. While unnamed in Gregor et al. (2023) and
referenced as ray-marching image generation, this approximation will be introduced in
the following as last scattering approximation model for 3D radiative transfer (LASCAT).
LASCAT computes radiances in the solar spectrum for a given point by solving the RTE
for the path between the last scattering and a virtual sensor. The theoretical foundation
of LASCAT as well as a description of the implementation are outlined in this section.

Theoretical foundation

For a given atmosphere with optical properties, radiance at a sensor is the integral over a
path s from distance 0 to ∞ in direction Ω over all light scattered towards the sensor and
attenuated between scattering and additionally a background radiance at top of atmosphere
(toa) attenuated by the atmosphere

L(Ω, 0) = L(Ω, toa)e
−

toa∫
0
s·βextds

+
toa∫
0

e
−

s∫
0
s′·βextds′

βext ω0,s

∫
4π

L(Ω′, s)Ps(Ω′,Ω) dΩ′

︸ ︷︷ ︸
=Lin-scat(Ω,s)

 ds

(3.1)

where the index s denotes the local value at this position along the path. Lin-scat(Ω, s)
needs to be known to compute the radiance at a sensor. It can be split up

Lin-scat(Ω, s) = Lin-scat, dir(Ω, s) + Lin-scat, dif(Ω, s) (3.2)

into contributions due to in-scattering of direct light Lin-scat, dir(Ω, s) and in-scattering of
diffuse light Lin-scat, dif(Ω, s). Lin-scat, dir(Ω, s) can be computed using the so-called local
estimate

Lin-scat(Ω, s) = e−τs,toa Lsun(Ωsun, toa)Ps(Ωsun,Ω) (3.3)

where Lsun(Ωsun, toa) is the incoming radiance at toa in direction Ωsun from the position s
on the path towards the Sun. This implicitly assumes

Lsun(Ω, toa) = 0 if Ω 6= Ωsun. (3.4)

The optical thickness between s and toa is given as

τs,toa =
toa∫
s

s′ · βext ds′ . (3.5)
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In contrast to direct radiation, the angular dependence and amount of diffuse radiation
for all positions are expensive to derive, as a physically correct RTE solver like MYSTIC
is required. Computer graphics methods comparable to LASCAT (e.g. Schneider, 2018)
roughly approximate the contribution of diffuse radiation. For example, multiple scat-
tering in clouds is not represented correctly there. Although geometrically not correct,
independent column solvers such as the two-stream solver can compute irradiances and
actinic fluxes while accounting for multiple scattering. LASCAT utilizes pre-computed ac-
tinic fluxes to approximate Lin-scat, dif(Ω, s). The pre-computed actinic flux at s is divided
into a direct and a diffuse component Fact,dif(s). Actinic flux does not give any directional
information. Therefore, the phase function is assumed to be independent of direction, i.e.
isotropic. The in-scattered diffuse radiance is therefore approximated as

Lin-scat, dif(Ω, s) = Fact,dif(s)
4π . (3.6)

The validity of this assumption is limited for diffuse light, e.g. in optically thin clouds.
Light may be scattered twice or three times only with a large fraction of forward scattering
because of the anisotropy of Mie scattering. For optically thick clouds and higher orders
of scattering, the approximation of isotropy becomes more reasonable.
For consistency, also the in-scattered direct radiance can be calculated from a pre-

computed direct actinic flux Fact,dir(s) by assuming

Lsun(Ωsun, toa)e−τs,toa ≈ Fact,dir(s). (3.7)

LASCAT can make use of actinic fluxes pre-computed with any RTE solver as long as the
actinic fluxes are provided for the entire 3D atmosphere. Radiances for many directions
can be computed in parallel, because of the independence of sampled paths. In this work
and Gregor et al. (2023), LASCAT is implemented with actinic fluxes computed by a tilted
independent column two-stream solver, and the integration over the path is done in discrete
steps by so-called ray-marching. It is used to generate images of modeled cloud scenes and
is referenced as ray-marching image generation. The RT method of successive orders of
scattering (Deuzé et al., 1989; Lenoble et al., 2007) and LASCAT share the idea of treating
light differently depending on how often it was scattered. In contrast to successive orders of
scattering, LASCAT only distinguishes between light, which is scattered either not at all,
once or multiple times, and treats orders of scattering larger than one equally. Furthermore,
successive orders of scattering was developed for horizontally homogeneous and cloud-free
atmospheres with aerosol, while LASCAT is targeted at cloudy 3D atmospheres.

Ray-marching implementation

A ray-marching implementation of LASCAT is used in this work and Gregor et al. (2023).
It relies on the theoretical foundation outlined above to compute radiances and synthetic
ASI images. This algorithm allows for the fast computation of approximated ASI images
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of LES cloud data and is therefore used throughout Gregor et al. (2023) and for synthetic
images in this work.
The ray-marching technique is commonly used in computer graphics and the computer

game industry (e.g.; Hillaire, 2016; Schneider, 2018) to visualize volumetric data, such as
clouds in the atmosphere. Per image pixel, a ray in the viewing direction of the imager
is constructed and marched iteratively. For each marching step, the marched mainly two
effects are considered. The in-scattering of light into the direction of the imager and the
attenuation of light for this step. Effectively, this is a discretized integral of all light that
gets scattered into the line of sight of the imager, weighted with the attenuation in the
medium.
For use in atmospheric science and this work, a more physically based model is desirable

than that used, e.g., for computer games where speed and ”epic sky scapes” (Schneider,
2015) are desired. The implementation of LASCAT follows the basic principles of ray-
marching. For every image pixel, a ray is stepped in line of sight of a virtual sensor with
discrete step size. At every step, in-scattering is computed, and together with transmit-
tance of the path between current position and sensor the contribution to the radiance at
the sensor is calculated. The implementation used in Gregor et al. (2023) and this work
therefore focuses on the lower atmosphere up to 10 km. The molecular rayleigh optical
depth for wavelength λ in the lower atmosphere is parametrized as a simple function of
height z (in km) according to Stephens (1994) and Eq. 16 in Bodhaine et al. (1999) as

τStephens(λ, z) = 0.0088λ(−4.15+0.2λ)e−0.1188z−0.00116z2 (3.8)

where units are neglected. This can be converted into a rayleigh optical depth of a layer
between levels at height zi+1 and zi by

τR(λ) = τStephens(λ, zi)− τStephens(λ, zi+1). (3.9)

Synthetic cloud data from LES are converted into effective radius and liquid water content
according to, e.g. Bugliaro et al. (2011). A 3D field of cloud optical depths τcld is then
computed according to Eq. 2.18. These atmospheric optical properties are used to compute
actinic fluxes and the amount of in-scattering.
In order to compute actinic fluxes, independent columns through the atmosphere up to

10 km are constructed for every ground pixel of the LES data. To allow for clouds that,
e.g., shade each other, the columns are tilted towards the Sun, as illustrated in Fig. 3.1.
The optical properties are sampled from the nearest horizontal grid box for every layer
of the tilted column. For each column, direct and diffuse irradiances are computed for
all levels using the two-stream radiative transfer solver. The diffuse actinic flux Fdif,i for
the layer between levels i and i + 1 at heights zi is calculated from the diffuse irradiance
absorbed in this layer. Therefore, the absorption in this layer is computed as

Ai = 1
zi+1 − zi

[(E↑,i − E↑,i+1) + (E↓,i+1 − E↓,i) + (Edir,i+1 − Edir,i)] (3.10)
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with diffuse upward and downward irradiances E↑,i and E↓,i as well as direct irradiance Ei
at level i. The absorbed diffuse irradiance can be computed by subtracting the absorbed
direct irradiance by

Adif,i = Ai −
1

zi+1 − zi
Edir,i+1 · e−τ ·(1−ω0) (3.11)

where τ = τcld + τR is the optical depth of the layer and ω0 is the single scattering albedo.
For ω0 > 0 the overall diffuse actinic flux can be derived from the absorption as

Fdif,i = Adif,i

βabs
(3.12)

with the scattering cross section

βabs = (1− ω0) τ

zi+1 − zi
(3.13)

The direct actinic flux can be computed using the absorption of the direct irradiance, which
is

Fdir,i = Ai − Adif,i

βabs
. (3.14)

Pre-computed fields of 3D actinic fluxes are then used for the ray-marching. Radiance L
at the sensor of a virtual ASI is summed stepwise in line of sight. The appropriate actinic
fluxes and optical depths are retrieved from the input fields. As the ray-marching steps
are not equal to the vertical grid spacing, optical depths are rescaled to the step length.
For diffuse light, the directional distribution is difficult to assess. Since multiple scattering
in clouds is the main consideration for this application, isotropic scattering of diffuse light
is assumed. Therefore, the in-scattering probability of diffuse light into line of sight is
assumed to be 1

4π . In-scattered diffuse radiance at step j is approximated by

Ldif,j = 1
4π · Fdif,i ·

[
ω0,R · (1− e−τR) + ω0,cld · (1− e−τcld)

]
(3.15)

where i corresponds to the grid box index relevant for the jth step. As the direction of
direct light is known, the Rayleigh phase function

PR(Ω) = 3
16π (1 + cos2 Ω) (3.16)

and the Henyey-Greenstein function as approximation of a phase function for Mie scattering

PHG(Ω, g) = 1
4π

1− g2

(1 + g2 − 2g cos Ω)1.5 (3.17)
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Figure 3.1: Schematic of the ray-marching along an exemplary ray from the imager through the tilted atmospheric
columns as used in the implementation of LASCAT.

can be used to calculate the probability of in-scattering with the scattering angle Ω and
asymmetry parameter g. Note, that the normalization of PR differs from Eq. 2.9 due to
the 3-dimensionality here.
In-scattered direct radiance is computed by

Ldir,j = Fdir,i · [PR(Ωsun-ray) · ω0,R · (1− e−τR) (3.18)
+PHG(Ωsun-ray, g) · ω0,cld · (1− e−τcld)

]
(3.19)

with the angle between the ray which is marched in line of sight and the unit vector towards
the Sun Ωsun-ray. Not all light scattered into line of sight reaches the imager, as it may
be scattered or absorbed between the step position and the virtual ASI according to the
optical depth along this way τj. The radiance for J steps is calculated as

L =
J∑
j=1

(Ldir,j + Ldif,j) · e−τj + Lbg · e−τJ (3.20)

with a background intensity Lbg to add the direct light of the Sun disc and light scattered
into line of sight above 10 km. The optical depth above 10 km is computed using the
libRadtran software package for the US standard atmosphere and in-scattering for this
upper atmosphere is computed once at 10 km. The asymmetry parameter for the scattering
in clouds is assumed to be g = 0.85 and the single scattering albedo for Rayleigh scattering
is set to ω0,R = 0.999999. To obtain a blue, green, and red channel for each pixel, the
computation is done for the wavelengths 450 nm, 550 nm, and 600 nm. The intensities
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for these wavelengths are scaled according to the solar spectrum of Kurucz (1994). The
ray-marching is ended if the distance marched is greater than 100 km, the height of 10 km
above ground is exceeded, or the optical depth is accumulated along the line of sight of
τj > 50. In accordance with the two-stream model, the optical depth, single scattering
albedo, and asymmetry parameter for Mie scattering are delta scaled for use here. Finally,
post-processing is applied to convert the calculated pixel intensity to pixel values using
white balance according to the solar spectrum, a black level, maximum light intensity, and
a gamma correction.
The ray-marching implementation of LASCAT can be summarized as follows. First, the

direct and diffuse actinic fluxes for all points in the atmosphere are pre-computed. The ray-
marching algorithm steps through these pre-computed fields. For every step, local optical
properties are considered to compute the fraction of the actinic fluxes which is actually in-
scattered towards the imager and therefore contributes to the computed intensity. This is
done for three wavelengths that represent the color channels of an RGB camera. Through
a post-processing routine in the style of a digital camera, an RGB image is generated.
The computational speed of the method is the result of simple approximations and

independent calculations for all pixels. Therefore, it is well portable to GPUs and was
implemented for this work using the OpenGL graphics computing framework. Further
simplifications, e.g. not splitting the atmosphere between above and below 10 km, as well
as adaptations like the full compliance to optical properties used in radiative transfer
models, are left for future work. While the pixel intensity determined by ray-marching
theoretically could be interpreted as radiance, this is left for further studies evaluating the
physical quality of the derived pixel intensities.

3.2 Data

This section describes the data that were later used as input and reference for nowcasting.
This work uses synthetic data for modeled cloud scenes, as well as real-world data measured
on-site on a PV power plant and by satellites. The synthetic setup with images and DNI
computed for modeled cloud scenes is given in Sect. 3.2.1. An on-site measurement setup
with two ASIs and irradiance measurements on a PV plant is described in Sect. 3.2.2.
Satellite measurements for a region around the PV plant are described in Sect. 3.2.3. This
includes satellite images together with further processing to obtain cloud optical depth
layers and DNI estimates.
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3.2.1 Synthetic data

Synthetic data generation

This subsection corresponds to Sect. 2.1 in Gregor et al. (2023), but omits the marginal
description of the ray-marching image generation LASCAT given there. Instead, a more
detailed explanation of this technique can be found in this work in Sect. 3.1.2. The ASI
geometry referred to in the following is taken from the intrinsic ASI-16142 calibration
described in Sect. 3.2.2.
The synthetic data were prepared by Jakub and Gregor (2022). This dataset is a 6 h

LES run computed with the University of California Large-Eddy Simulation (UCLALES)
model (Stevens et al., 2005). The horizontal resolution is 25 m, and LES output fields are
given every 10 s. The initial atmospheric profile was chosen to produce a single shallow
convection cloud layer with a cloud-base height of roughly 1000 m developing from a cloud
fraction of 0 % in the beginning to roughly 100 % at the end of the simulation after 6 h.
The reader is referred to Jakub and Gregor (2022) for more details and impressions of the
cloud scenes used in this study.
This dataset provides realistic cloud situations and allows for detailed benchmarking.

Cloud liquid water content (lwc) is the most important variable of the dataset for this study.
To calculate the optical properties of clouds, the effective radius is also needed. As the
LES output field does not contain this information, a fixed cloud droplet number density of
120×106 m−3 was assumed. The effective radius of cloud droplets was calculated following
Bugliaro et al. (2011). For simplicity, other atmospheric parameters like water vapor,
temperature, pressure, and molecular composition from the LES output are neglected
within this study, and the US Standard Atmosphere (Anderson et al., 1986) is assumed.
While these atmospheric parameters and their variations are generally not negligible for
radiative transfer, the setup for this study was simplified to focus on clouds as a major
modulator of irradiance. Within this study, the Sun was assumed to be at a constant
zenith angle of 30◦ to the south.
We assume a fish-eye camera model corresponding to the OpenCV fish-eye camera model

(Bradski, 2000) for synthetic images generated from these LES cloud fields. The parame-
ters for this projection model were derived from the calibration of a CMS Schreder ASI-16
camera. This ASI features a 180◦ FOV fish-eye objective to capture hemispheric images
of the cloud situation. This study employs two distinct approaches to generating all-sky
images from LES cloud scenes. We generate images with the viewing geometry derived
according to the fish-eye camera model for the ASI-16 camera. As our methods are devel-
oped to work with cameras that are not necessarily calibrated spectrally, the images are
only roughly optimized to resemble the colors of the ASI-16. We use a simple spectral
camera model with white balance, black level, gamma correction, and an upper intensity
limit to convert radiances into pixel values.
One of the image generation methods uses synthetic radiances from the Monte Carlo 3D
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Figure 3.2: (a) Real ASI image captured with a CMS Schreder ASI-16 in the Bavarian countryside (48◦10′50.3′′N,
11◦00′27.4′′ E) on 14 July 2020. (b–d) Synthetic images for an LES time of 9900 s generated using (b) MYSTIC,
(c) ray-marching, and (d) ray-marching followed by projection. (e) Cloud mask derived from the projected ray-
marching image and (f) LES cloud optical depth τ in the line of sight with the additional yellow contours illustrating
τthresh = 1.0. Only a few pixels are labeled “undecided” by the CNN, as depicted in panel (e). Colors were adapted from

Gregor et al. (2023).

radiative transfer model MYSTIC (Mayer, 2009), which does not introduce any simpli-
fying assumptions in radiative transfer. These radiances can be converted into synthetic
images using the camera model. While MYSTIC radiances are physically correct, they
are computationally expensive. Computation of these radiances for a single image requires
multiple CPU hours; therefore, this approach was only used for 29 images with a resolu-
tion of 240 pixels× 240 pixels. In contrast, our second approach [LASCAT] is only a rough
approximation of radiative transfer. This technique is implemented using the OpenGL
framework and allows us to generate 960 pixel× 960 pixel images within seconds. Gener-
ated images are interpolated to the original ASI resolution in a post-processing step for
both generation methods. Figure 3.2a–c show a real-world image as well as images gener-
ated using MYSTIC and ray-marching. Because of the low computational cost of image
generation, we work with ray-marching images throughout this work if not stated other-
wise. We derived cloud masks from both MYSTIC and ray-marching images to confirm
the usability of the latter for our purpose.
As a first step in working with generated images, the camera model is applied to project

them onto a horizontal, ground-parallel image plane. During re-projection, image features
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may be distorted and blurred. However, re-projection allows one to work on an image that
is plane parallel to the ground, simplifying further image processing. Figure 3.2c and d
display an image as captured by the ASI and its projected correspondence as generated
using ray-marching. While the original ASI resolution is 1920 pixels× 1920 pixels, we
project images to 480 pixels× 480 pixels for use within our nowcasting model.

Synthetic validation setup

This subsection corresponds to Sect. 2.3 in Gregor et al. (2023). A description of error
measures is omitted here and can be found in Sect. 3.7. References were adapted for the
integration in this work. This section describes the setup used for the synthetic validation
of derived cloud masks, cloud-base heights, and cloud motion as well as nowcasting perfor-
mance. The setups for the additional experiments for error investigation are included in
the description of the experiments and results in the respective parts of Sect. 4.1.2.
The synthetic setup allows us to compare quantities derived by the nowcasting model

to synthetic reference values. Within this study, we simulate a setup around a fictional
500 m×500 m area PV power plant. As depicted in Fig. 3.3, all-sky images are generated for
synthetic imagers at positions P1 and P2 centered on the northern and southern boundaries
of this area. Direct normal irradiance values were calculated for point P1 and the full
500 m × 500 m area A1 as explained later on. Images are rendered with MYSTIC and
ray-marching, as explained in Sect. 3.2.1, for a synthetic ASI at P0 at the southeastern
edge of A1 to compare both methods. Ray-marching images for P1 and P2 are used for
actual nowcasting and all other applications in this study.

0m 500m
0m

500m

A1

P0 P1

P2
y

x

Figure 3.3: Spatial setup for the synthetic experiments conducted in this study. Shown are the ground coordinates
within the LES domain. Synthetic all-sky images were generated at points P0, P1, and P2. Direct normal irradiance
was simulated for point P1 and area A1. Nowcasts rely on images from P1 and P2 and predict values for point P1
and area A1.Colors were adapted from Gregor et al. (2023).

Validation quantities used within the experiments in Sect. 4.1 are explained in the follow-
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ing. Cloud optical depth (τ) is traced in the line of sight for every pixel of the corresponding
ASI image and used to validate derived cloud masks. By applying a threshold to the re-
sulting τ fields, we can calculate reference cloud masks. Figure 3.2f shows an example
τ field. These are used for the validation of the derived CNN cloud masks. The cloud-base
height reference is computed in compliance with the view of an ASI. The last scattering
of light before reaching the ASI sensor gives the origin of pixel information – in this case,
cloud height as seen from below. MYSTIC can be used not only to compute radiances
but also to obtain these scattering positions. A cloud motion reference is hard to define,
as clouds in the LES simulation – as in nature – are not moving as solid objects but may
change size and shape or even appear and disappear. Therefore, wind velocities at cloud
level may not be an exact benchmark for the overall observable cloud motion. Within
this study, we use the vertically integrated liquid water path (lwp) from the LES fields
as an indicator of horizontal cloud distribution. The maximum cross-correlation between
the domain-wide lwp of two successive time steps is assumed to be a reference for average
cloud motion. This reference describes the mean displacement for all time steps of the LES
cloud data. However, clouds are convectively reshaping, growing, and shrinking in these
data, which makes this cloud motion definition vague. The synthetic data allow for a more
direct validation of cloud motion. LES cloud fields can be frozen for a time step and their
position shifted. This basically simulates scenes of pure advection without any convective
effects. To simulate this advective case for cloud motion validation, we use two images
of the same cloud scene but taken from different positions. The choice of an assumed
time difference between the images ∆t defines the advective cloud velocity. For simplicity,
we use images taken within a 500 m north–south distance, as represented by P1 and P2.
Assuming ∆t = 60 s, we obtain theoretical cloud velocities of −8.3 m s−1 meridionally and
0 m s−1 zonally.
The Monte Carlo 3D radiative transfer solver MYSTIC was used to compute radiances

for images and true direct normal irradiances at ground level. We calculated direct normal
irradiance for two different synthetic references, as depicted in Fig. 3.3. A DNI point
reference is simulated at P1, and an area reference of the 500 m × 500 m region A1 is
simulated with ASIs centered at the northern and southern boundaries at P1 and P2. As
a benchmark for the DNI nowcasting model, persistence nowcasts for start time t0 and
nowcast time t are calculated from simulated DNI “measurements” at DNIP1 as follows:

DNIpers(t) = DNImeas(t0). (3.21)

3.2.2 Ground-based observations

Measurement Setup

In this thesis a PV power plant included in the project NETFLEX is used as a case study
and practical motivation. The PV power plant is located in the Bavarian countryside near
the town of Egling and consists of two PV fields of approximately 250 meter× 250 meter



26 3. Methods

each and about 7 MW installed peak power with a capped grid feed-in of about 5 MW.
Fig. 3.4 gives a map of the PV plant. Two measurement sites (station 1/2) were installed
and maintained on the concrete containers of the PV plant from 01 October 2019 to 01 Au-
gust 2022. Power connection was provided within the containers, internet connection was
enabled with an LTE-modem per measurement site. The sites are located at coordinates
given in Tab. 3.1 with a distance of approximately 531 m between ASIs.

latitude longitude altitude (m A.S.L.)
ASI-16126 48.185338◦N 11.0069◦E 558
ASI-16142 48.180633◦N 11.0076◦E 561

Table 3.1: Measurement locations of the two ASIs on-site of the PV-plant. The irradiance measurements were
colocated 5 m south of ASI-16142

On both sites CMS Schreder ASI-16 ASIs were installed to capture images of the cloud
scene. These cameras feature fish-eye lenses with a FOV of 180◦, ventilation and heat-
ing as well as a sensor to measure temperature and humidity. Images with 1920 pixel ×
1920 pixel were captured automatically in 10 s intervals for times between sunrise and
sunset. Throughout this work, the two installed ASIs will be referred to by their serial
numbers, ASI-16142 on site 1 and ASI-16126 on site 2.
An Eko STR-22 sun-tracker was installed at site 1 as shown in Fig. 3.5 for the measure-

ment of irradiances additional to the cloud images. It is equipped with two ventilated and
heated Eko MS-80 secondary standard pyranometers to measure GHI and DHI. The DHI
measurement is colocated with the GHI measurement and only differs as a shadow ball of
the sun-tracker masks out direct radiance. Additionally, an Eko MS-57 pyrheliometer for
DNI measurements is mounted on a shoulder of the sun-tracker and is tracking the Sun.
Measured DNI, DHI and GHI were logged in 2 s-intervals by a Campbell Scientific CR6
datalogger. Example irradiance measurements for three days are given in Fig. 1.1.
Maintenance and cleaning of the ASIs and irradiance measurement devices was scheduled

according to measurement problems and depending on the expected contamination of the
measurement devices. However, maintenance and cleaning were only possible in limited
time intervals due to the rural location and long approach.

Geometric all-sky imager calibration

To map e.g. clouds from ASI images, the geometry represented by the imager needs to
be known. More specifically, the viewing direction of every single pixel of ASI images is
necessary. This knowledge can be obtained by geometric calibration, which is subdivided
into an intrinsic and extrinsic part as described in the following. Intrinsic calibration is
done to determine the viewing direction of each pixel relative to each other and the sensor
of the ASI. This sensor is not necessarily oriented parallel to the ground while directions
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Figure 3.4: Map of the PV power plant reference in this work with locations of ASI-16126 and ASI-16142. Created
using Google Earth on 28 June 2023.

Figure 3.5: ASI-16126 (left), ASI-16142 (middle) and STR-22 (right) as installed on the measurement sites.
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in a real-world coordinate system would be desirable. Therefore, an extrinsic calibration
is done to determine the orientation of the camera in space.

Intrinsic calibration aims to derive the viewing direction of each pixel relative to the
sensor. This can be described by two parts: The camera matrix and a distortion. As we
use the fish-eye camera model implemented in OpenCV (Bradski, 2000), the description
here follows largely the description given by the documentation. The camera matrix is
used to map from pixel coordinates onto an image plane at a distance z = 1 from the
sensor. Therefore, it contains information about an offset and scaling of coordinates in
both horizontal directions. The offset effectively converts to coordinates relative to a center
point at (cx, cy), and the scaling is given by the focal length in the respective directions
(fx, fy) as well as a skewness α. The camera matrix thus connects the pixel coordinates u
and v with the coordinates in the image plane x′, y′ asuv

1

 =

fx α cx
0 fy cy
0 0 1


x
′

y′

1

 (3.22)

However, incoming light on the sensor has to pass through the ASI fish-eye lense first, which
changes the direction of the light depending on its angle of incidence. This distortion maps
from x and y to distorted coordinates x′ and y′ and is assumed to be radially symmetric,
thus mapping the angle of incidence θ on the lens and the distorted θ′. θ can be calculated
using the relation

tan θ =
√
x2

z2 + y2

z2 . (3.23)

The distortion by the fish-eye lense is modeled as

θ′ = θ +
4∑
i=1

kiθ
2i+1 (3.24)

with distortion coefficients ki. The distorted coordinates are derived as

x′ = x
θ′√

x2 + y2 , (3.25)

y′ = y
θ′√

x2 + y2 . (3.26)

Using this model for the camera and distortion, calibration means to find values for the
free parameters cx, cy, fx, fy and k1, k2, k3, k4 to describe the actual camera. This can be
achieved by a set of known x, y and its respective u, v and optimizing the free parameters
to match the conversion. As these sets are usually very hard to derive, a workaround is
used. For real-world coordinates of points which are on a regular grid are at least their



3.2 Data 29

relative positions can be used. E.g. the corners of a checkerboard fulfill this requirement
and can be detected automatically in images as shown in Fig. 3.6. The OpenCV library
provides functions to optimize the free parameters using a set of images of a checkerboard
in various positions and orientations. The respective intrinsic calibration was done with
88 of checkerboards from ASI-16126 and 82 images from ASI-16142. Resulting values for
the free parameters are given in Table 3.2. Re-projection error is 0.04 pixel for ASI-16126
and 0.05 pixel for ASI-16142

Figure 3.6: Example image of a checkerboard as used for calibration of ASI-16142 with detected checkerboard
corners (left). The image after projection according to the derived intrinsic calibration is shown on the right.

Extrinsic calibration derives the viewing directions in a physical 3 dimensional coordi-
nate system. This physical coordinate system was defined for this work with the origin at
the position of the imager, the first dimension from west to east (e), the second dimension
from south to north (N) and the third dimension upwards from ground to local zenith (U).
In this East-North-Up (ENU)-coordinate system planar information at a certain height is
parallel to the ground. The intrinsic calibration enables the projection of images onto an
image plane normal to the central viewing direction of the ASI. The extrinsic calibration is
done to rotate this image plane into a plane parallel to the ground. In order to determine
this rotation, the Sun is used. For a given image time, the sun zenith and azimuth angle
and thereby a theoretical sun unit vector ~sENU in ENU-coordinates can be calculated us-
ing, e.g., the algorithm suggested in Blanco-Muriel et al. (2001). In case of a non-occluded
Sun, it can be detected as the brightest spot in the image. To automatically detect the
Sun in an image, the image is first converted into a 8-bit grayscale image and afterwards
smoothed with a gaussian kernel with standard deviation of 2 pixels and kernel size 11
pixels. Then an image mask is created from the smoothed image to separate pixel values
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Table 3.2: Parameters of the camera matrix and distortion coefficients as derived by intrinsic calibration. The
varying number of decimal places corresponds to the actual values used throughout this work.

ASI-16126 ASI-16142

fx 623.5807911573587 627.1123486153717
fy 623.7659532721502 627.0845351791108
cx 959.3648952511157 952.8484084880499
cy 960.1688183095001 957.5755356539634
α 0.12873137444614266 −0.4722503587850302
k1 0.010882902055434084 0.003738368145621751
k2 0.0007580342753094159 0.008900092963916566
k3 −0.00552134914672609 −0.012686478988446341
k4 0.0008343242331998851 0.0037518552472331768

larger than 250. A series of 2 erosions, 4 dilations as well as an opening morphology and a
closing morphology with a 5x5 pixel kernel are performed in order to obtain a continuous
and closed estimate of the position of the Sun and ignore e.g. diffraction on the glass dome
is partly mitigated A minimum circle enclosing the derived Sun pixels is computed and its
center point is used as the Sun pixel in the image. Using the mapping obtained by intrinsic
calibration, a viewing direction and unit vector ~scam in the camera coordinate system can
be calculated for the Sun pixel. The extrinsic calibration is used derive the rotation R
matrix for

~sENU = R · ~scam (3.27)

The Sun position was detected in 96 images of ASI-16126 and 84 images of ASI-16142 to
obtain the unit vectors. With these sets of vectors, the rotation was iteratively optimized
to comply with Eq. 3.27. As the rotation between 360° and 0° poses a singularity for
the optimization, the rotation matrix R was not optimized directly. Instead, quaternions
were used. They are an extension of complex numbers which can describe 3-dimensional
rotations. A good introduction to quaternions for a similar application can be found in the
Appendix of Grob et al. (2020). For the optimized quaternion, rotation is finally converted
into a rotation matrix R for further use after calibration. This rotation is the desired
conversion from the image plane as projected according to the intrinsic calibration into a
ground parallel image plane. The rotation matrices for ASI-16126 and ASI-16142 are

RASI-16126 =

 0.04982132 0.99845747 −0.02450561
−0.99874338 0.04967217 −0.00665851
−0.00543099 0.02480655 0.99967752

 , (3.28)

and

RASI-16142 =

 0.02920351 0.99946398 0.01479544
−0.99949952 0.02937822 −0.01173149
−0.01215986 −0.01444544 0.99982172

 . (3.29)



3.2 Data 31

respectively. Figure 3.7 shows a clear-sky situation used for extrinsic calibration with
marked center of the intrinsic calibration, derived zenith, as well as detected and theoretical
sun position. On average, theoretically calculated and derived Sun position deviate by 0.14◦
for ASI-16142 and 0.09◦ for ASI-16126. Errors in the intrinsic calibration as well as the
rough estimate of the Sun position in the image contribute to this angular uncertainty.
ASI images can be projected onto a ground parallel plane using the derived extrinsic and

intrinsic calibration. Figure 3.2c and d show an image in original geometry and projected
respectively. Projected images are used throughout this work if not stated otherwise. The
angular uncertainty described above is assumed to be small and neglected.

Figure 3.7: ASI-16142 image from 10:30:00 UTC on 12 June 2020 with detected Sun position (red circle), theoretical
Sun position (black circle), centerpoint (cx, cy) from intrinsic calibration (red cross) and actual zenith (black cross).
Note that flipped images are used to convert between ASI view from below and the desired ENU-coordinate system.
The redish image regions are due to refraction on the glass dome of the ASI.

3.2.3 Satellite data

Satellite images depict the current cloud situation and offer large spatial coverage. The
use of satellite data and its products allows for the exploitation of better information on
cloud physical characteristics with respect to radiative transfer. Therefore, they can be
used to estimate and nowcast direct irradiance (e.g.; Sirch et al., 2017; Wang et al., 2019).
This section gives a brief introduction to satellite images overall followed by a description
of further processing to derive optical properties for two cloud layers, correct geometry and
estimate irradiance on the ground.
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Satellite images

Figure 3.8: Natural color composite of MSG rapid scan 10:00:00 UTC on 02 July 2021.

The Meteosat second generation (MSG) satellites are designed for meteorological obser-
vation of atmosphere and earth. These satellites are situated in a geostationary orbit above
the equator with varying longitudes and the main instrument is the Spinning Enhanced
Visible and InfraRed Imager (SEVIRI). This instrument is capable of measuring spatially
resolved reflectances of the full earth disk in 15 min-intervals with 12 spectral channels.
2 channels are in the visible wavelength range, 1 in the near infrared and 8 channels are
for infrared wavelengths. An additional high resolution visible channel with improved
spatial resolution is available, but will not be used in this work. More details about the
spectral channels can be found in Schmetz et al. (2002). The sampling distance of the
regular resolution channels is 3 km for the sub-satellite point, which increases for pixels
with increasing distance from the sub-satellite point due to the curvature of the earth and
viewing geometry. This work uses the Meteosat-10 satellite placed at a longitude of 9.5◦
E. It provides rapid scans of the northern third of the earth disk in 5 min-intervals instead
of the usual 15 min MSG full earth scans. Figure 3.8 gives an example natural color com-
posite image of a MSG rapid scan. This composite is created using the VIS006, VIS008
and IR_016 channel. The application in this work focuses on nowcasts for a specific PV
plant in southern Germany. Therefore, a subdomain of approximately 2000 km× 2000 km
centered around the PV plant near Egling a.d. Paar was chosen. An example composite
image of the subdomain is given in Fig. 3.9a. The subdomain consists of 424× 455 pixels
longitudinally and meridionally respectively and is completely included in the rapid scan
domain. Therefore, spectral reflectances from the rapid scan service are used in this work
for DNI nowcasting. The spectral reflectance measurements will also be referred to satellite
images in the following.
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Cloud optical depth retrievals and cloud layers

Spectral images can be exploited to derive cloud information from satellite images. Clouds
reflect a large fraction of incoming light in visible channels and absorb in the thermal
infrared channels of satellites. This is exploited by the two algorithms APICS and CiPS
which were utilized to derive cloud optical thickness from MSG images.
The APICS algorithm is described in Bugliaro et al. (2011). It applies multiple thresholds

to MSG images to detect clouds and differentiate between water and ice clouds. Cloud
optical thickness is computed from a combination of two channels with different wave-
lengths following the method of Nakajima and King (1990) and Nakajima and Nakajma
(1995). Using further relevant parameters like the sun zenith angle, sensor viewing direc-
tion, surface albedo, and a radiative transfer model, cloud optical thickness is derived. In
contrast to APICS, the CiPS algorithm (Strandgren et al., 2017) is not targeted at all
types of clouds. CiPS is specially designed to derive properties of ice clouds. Based on
MSG images and data of an additional satellite, separate artificial neural networks (ANNs)
are used to derive a cirrus cloud flag, cloud top height (CTH), ice cloud optical thickness
τice,CiPS and an opacity detection flag.

(a) (b) (c)

(d) (e) (f)
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Figure 3.9: Panel (a) shows a natural color composite of the domain around Egling a.d. Paar for 10:00:00 UTC 02
July 2021. Derived APICS cloud optical depths for water and ice clouds are given in panel (d) and (e), respectively.
Derived CiPS cirrus cloud probability pcirrus, opacity probability popaque, and ice cloud optical depth are given in
panels (b), (c), and (f), respectively. The red line in panels (c) and (f) indicates the thresholds used for inferring
binary masks.

The retrieved optical properties from APICS and CiPS are used to construct two layers
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of optical properties, τlow for liquid, mixed phase and optically thick ice clouds and τup
for cirrus clouds. The idea is to use τice,CiPS for thin cirrus clouds in a upper layer and
otherwise use APICS for optically thicker ice clouds as well as mixed-phase and liquid
water clouds in a lower layer. Two approaches to construct these layers are used in this
work. The first approach follows Sirch (2018) but replaces the COCS (an earlier version of
the CiPS approach) by CiPS. It relies on fixed optical depth thresholds for the separation
of the layers as

τlow =


τliq,APICS if τice,CiPS < 0.1
τice,APICS if τice,APICS > 2.5 and (τice,APICS − τice,CiPS) > 2.3
0 else

(3.30)

and

τup =
τice,CiPS if τice,CiPS > 0

0 else
(3.31)

Due to the increased sensitivity and reliability of CiPS, the thresholds were slightly adapted
compared to Sirch (2018). Resulting layer optical depths are referred to as τlow and τup.
The second approach aims to make full use of the advanced features of CiPS not included

in COCS. CiPS provides estimates of a cirrus cloud flag (pcirrus) and an opacity estimate
(popaque) for every pixel additional to τice,CiPS. With the thresholds of 0.62 for pcirrus and
0.86 for popaque, binary pixel masks can be created (Strandgren et al., 2017). pcirrus provides
information on whether a cirrus cloud was detected and popaque estimates whether the
cloud optical depth in a satellite pixel is outside the range of the CiPS training data and,
therefore, whether it is unreliable. The two cloud layers can then be constructed as

τ ′low =


τliq,APICS if pcirrus ≤ 0.62
τice,APICS if pcirrus > 0.62 and popaque > 0.86
0 else

(3.32)

and

τ ′up =
τice,CiPS if popaque ≤ 0.86

0 else
(3.33)

Fig. 3.9 shows cloud optical depths and other quantities as derived by APICS and CiPS
for an example scene. The estimated layer cloud optical depths τlow, τup, τ ′low, and τ ′up for
this scene are given in Fig. 3.10.
The two layers of optical thickness τlow and τup or τ ′low and τ ′up respectively are used for

advection and irradiance calculations as described in the following. Cloud heights for both
layers are estimated using the CiPS cloud top height product. Derived cloud top height
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Figure 3.10: Cloud optical depths as derived using the method implemented following Sirch (2018) for (a) lower
and (b) upper cloud layer. (c) and (d) give the respective layer cloud optical depths when split using the extended
CiPS information. Derived for an example scene for 10:00:00 UTC on 02 July 2021. Layers are constructed from
CiPS and APICS data depicted in Fig. 3.9

is used as cloud top height for the upper layer where τup ≤ 0.1 or if pcirrus > 0.62 when
using τ ′low and τ ′up. Otherwise, it is set as the cloud top height for the lower layer. Cloud-
base height is set to 2 km below cloud top height. Note that this is an arbitrary choice
and should be improved for future applications by using cloud-base heights derived by
stereography on ASI images or a ceilometer as, e.g., done in Sirch (2018). The cloud-base
height from CiPS is especially targeted at cirrus clouds and therefore may not be reliable
for other cloud types. It is nevertheless used here, as other cloud top height products may
be inconsistent with CiPS detection of cirrus clouds. In the explanations of the following
sections τlow and τup are used by default for the simple notation. If the difference between
τlow, τup and τ ′low, τ ′up is relevant, used quantities are named explicitly.

Parallax correction

Cloud top heights provided by CiPS give the height about ground and pixel latitudes
and longitudes are provided along the MSG image data. However, the longitude and
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latitude information is determined for pixels depicting the Earth’s surface. Clouds are
usually multiple kilometers above the surface. This leads to apparently shifted clouds as
schematically depicted in Fig. 3.11. The shift depends on the viewing geometry, cloud
height and earth shape. This effect is known as parallax in satellite applications and needs
to be corrected for accurate geometric applications. Vicente et al. (2002) developed a
method to determine actual longitude and latitude coordinates for all pixels depending
on the cloud height. The suggested method was applied to derive parallax-corrected pixel
coordinates for the upper and lower layer advection fields. Values from the resulting
irregular grid are interpolated onto the initial regular grid for easier successive use.

Figure 3.11: Illustration of the parallax displacement in satellite images. Due to viewing geometry and cloud
height, cloud positions are mapped to a shifted position on the Earth’s surface. Adapted from Sirch (2018).

Pixel coordinates can be converted into metric coordinates according to the geoinforma-
tion provided along MSG data. Due to the spherical shape of the Earth, depicted areas
vary between pixels, which is still considered in the parallax correction. For simplification,
however, it is assumed for all subsequent processing of satellite images that all pixels cor-
respond to equal surface areas. The metric pixel extent is therefore derived from the MSG
pixel including the PV plant location in Egling a.d. Paar and assumed to be constant for
all pixels of the domain used here. It is 4.74 km in East-West direction and 5.61 km in
South-North direction.

Irradiance computation

This section describes the last necessary step for the computation of irradiances from
satellite images. Established radiative transfer solvers like two-stream and DISORT can
make use of the cloud optical depths of derived and parallax-corrected cloud layers. These
solvers compute global, direct, and diffuse irradiance for given atmospheric and cloud
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optical properties. Therefore, the main challenge of this last step is the determination of
the optical properties relevant for a specific ground position. The US standard atmosphere
was chosen as a background atmosphere. The AERONET network (Holben et al., 1998)
measures aerosol optical depth. The AERONET level 1.5 is used to scale the aerosol
optical depth at 500 nm of libRadtrans default aerosol. The European Centre for Medium-
Range Weather Forecasts (ECMWF) reanalysis dataset ERA5 (Hersbach et al., 2023)
gives atmospheric states for past times. This ERA5 reanalysis dataset is used to scale
water vapor and ozone concentrations to conditions describing the state corresponding to
the nowcast time. The relevant cloud optical depths for upper layer ice clouds and lower
layer liquid water clouds are geometrically determined from cloud optical depth fields.
The parallax corrected fields are used to determine cloud optical depths for the radiative
transfer calculations. For a given point on the ground a vector to the Sun is constructed
and traced through the atmosphere. More specifically, it is traced through the height
mapped cloud optical depth fields towards the Sun as depicted in Fig. 3.12. The cloud
optical depths are scaled according to the sun zenith angle and the intersection of traced
path and τlow as well as τup. Cloud optical depths from the upper layer are interpreted as
ice cloud optical depth τic and from the lower layer as water cloud optical depth τwc. These
are the cloud optical thicknesses used as input to the radiative transfer calculations. As
descried above, a US standard atmosphere profile is assumed with scaled aerosol optical
depth, water vapor and ozone concentration. Ice and water clouds are added according
to τic and τwc. Effective radius is assumed as 20 µm for ice particles and 10 µm for water
droplets. The 1D radiative transfer solver DISORT is used to compute irradiances for an
independent column with the cloud optical depths as derived for the slanted path to the
Sun.

3.3 Clear-sky irradiance and smart persistence

Even though weather is highly variable, the current weather situation is often a good
indicator for near future weather. The assumption of constant weather conditions is the
simplest possible prediction and called persistence. However, even for constant atmospheric
conditions irradiance varies during years and also during days dependent on the position of
the Sun. Therefore, a smart persistence is used as a benchmark for irradiance nowcasting
systems in literature (e.g.; Inman et al., 2013; Quesada-Ruiz et al., 2014; Logothetis et al.,
2022) and also in this study. It assumes constant radiative properties of the atmosphere
but considers the effects of changing Sun position. In the following, the method to compute
smart persistence for DNI is given. The smart persistence nowcasts for DHI and GHI are
retrieved analogously and are therefore not explained additionally.
The current atmospheric conditions can be parametrized as the ratio between currently

measured DNI and a theoretical DNI for atmospheric reference conditions. This ratio is
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Figure 3.12: Illustration of the determination of relevant cloud optical depths for irradiance at a point below cloud
optical depth fields. Atmospheric columns are created for all model pixels with ice and water cloud optical depth
placed in heights according to the cloud optical depth fields. A path from the ground towards the Sun is traced
and intersections with cloud optical depth layers in the atmospheric columns are calculated. Determined relevant
cloud optical depths can be used for irradiance calculations.

the clear-sky index

kDNI = DNImeas

DNIcs
(3.34)

computed from measured DNImeas and modeled clear-sky DNIcs direct normal irradiance.
Clear-sky indices GHIcs and DHIcs can be computed accordingly.
Clear-sky irradiances were computed using libRadtran and its implementation of the

DISORT model. Values for GHI, DHI and DNI were computed for all nowcasted days
in intervals of 1 min and linearly interpolated for all times in between. Sun zenith angle,
sun azimuth and the annually changing distance between Sun and Earth were changed
according to the desired time for every radiative transfer computation. The US standard
atmosphere (Anderson et al., 1986) was assumed for all times. Atmospheric composition
was adapted to comply with the aerosol optical depth as provided by the AERONET
level 1.5 product (Holben et al., 1998) from the station Hohenpeißenberg, which is located
approximately 42 km from the measurement setup and PV plant in Egling a.d. Paar.
Daily aerosol optical depth values were used and interpolated linearly in case of missing
data. US standard atmosphere profiles of water vapor and ozone were scaled to match the
corresponding vertically integrated columns obtained from the ERA5 reanalysis dataset
(Hersbach et al., 2023). Fig. 3.13 gives an example clear-sky day as measured in Egling
a.d. Paar as well as corresponding calculated clear-sky irradiances and demonstrates the
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compliance between measured and modeled clear-sky irradiance. Even though the mod-
eled clear-sky irradiances comply well with measurements, some deviations can be found.
However, perfect agreement between modeled and measured irradiance is not required due
to the consistent use of the clear-sky index in this work, as long as the structure of the
diurnal cycle matches.
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Figure 3.13: Measured irradiances and modeled clear-sky irradiances for the measurement site in Egling a.d. Paar
for 17 June 2021.

For the smart persistence, clear-sky index at nowcast start time t0 is assumed constant
and converted into future irradiance for time t by

DNIpers(t) = kDNI(t0) ·DNIcs(t). (3.35)

In case of the synthetic experiments in Sect. 4.1.2 there is no diurnal cycle to be considered.
The persistence therefore simplifies to

DNIpers(t) = DNImeas(t0) (3.36)

based on the latest DNI measurement DNImeas(t0).
As stated in Sect. 1 and visible in Fig. 1.1, diffuse irradiance tends to fluctuate less

than direct irradiance. In contrast to the relatively simple attenuation of direct irradiance
between the Sun and the observer, diffuse irradiance relies on complex 3D scattering.
Therefore, smart persistence is used for DHI nowcasting not as a nowcasting method of
choice. DHI measurements up to the nowcasting start time are divided by clear-sky DHI to
construct a DHI clear-sky index. The exponentially weighted mean with half-width time
of 10 min of the latest DHI clear-sky index kDHI is then used to compute the DHI nowcast
for time t by

DHI(t) = kDHI ·DHIcs(t) (3.37)

with the reference clear-sky DHIcs. Using DHI and DNI nowcasts, GHI nowcasts can be
constructed as

GHI(t) = DHI(t) + DNI(t) · cos θ(t) (3.38)

with the sun zenith angle θ(t) for time t. Note, that the focus of this work is set on DNI
nowcasts. DHI and GHI nowcasts are only computed and evaluated in Sect. 5.
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• Should I move the GHI and DHI part to the outlook or keep here?

3.4 All-sky imager based direct irradiance nowcasting
model – MACIN

This section introduces the model for all-sky image based cloud and direct irradiance
nowcasting MACIN consisting of methods to derive cloud information from images, an
advection model, a procedure for determining the initial model state inspired by data
assimilation, and a radiative transfer parametrization. The section is based on Gregor et al.
(2023) and gives extensions for the application on real-world data. Sect. 3.4.2 to 3.4.5 as
well as Sect. 3.4.6 are taken from Gregor et al. (2023). Section 3.4.1is written based on
Sect. 2.1.1 and Appendix A1 of Gregor et al. (2023). Fig. 3.14 was taken directly from this
study.

3.4.1 Cloud mask

As clouds are a major short-term modulator of irradiances, knowledge about their position
is crucial for nowcasting. The classification of ASI image pixels as clear or cloudy and
therefore the computation of a cloud mask is a first step towards this. The segmentation
of images into regions of different classes is a typical computer vision task. CNN are
successfully used for such segmentation tasks, also for the specific application of cloud
masks (Dev et al., 2019; Hasenbalg et al., 2020; Fabel et al., 2022). For this thesis, a
DeepLabV3+ CNN (Chen et al., 2018) with a ResNet-34 (He et al., 2015) pretrained on
ImageNet data (Russakovsky et al., 2014) was used. In-depth theory and explanation of
CNNs is omitted, as it is used for this thesis as a tool and plenty of detailed and well
written descriptions are already existing.
As the distinction between clear and cloudy pixels in images is not always obvious, three

cloud mask classes (clear/cloudy/undecided) are introduced. For specific training, 793
images were manually segmented to assign class labels to pixels. To speed up labeling,
superpixels (Achanta et al., 2012) were calculated for the images. These are groups of
similar-looking neighboring pixels. It allows users to label complete superpixels at once.
To support more fine-grained labeling, recomputation of superpixels is supported, e.g., for
the remaining unlabeled part of the image or with a higher number of superpixels. Due
to the inhomogeneous light situation across the sky and the vague shape and definition
of clouds, it is often hard to explicitly assign a superpixel clear or cloudy. The third
cloud mask class undecided is offered to label uncertain pixels for which the CNN is not
supposed to learn a – possibly erroneous – class. Instead, the CNN is trained to reproduce
manually labeled clear and cloudy pixels. By learning the definition of these two classes,
the CNN acquires the capability of consistently assigning classes also to pixels, which were
manually labeled undecided. The manually labeled images can therefore be seen as sparse
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segmentation ground truth. The pixel-wise ground truth was formatted to contain one
channel per class, which has a value of 1 for the assigned class and 0 otherwise. The CNN
is set up to give predictions in this so-called one-hot encoding format.
For training, the image dataset was split into a training and test dataset with 635 and

158 labeled images respectively. Images were resized to 512 pixel × 512 pixel and used
at this size for testing. Training images were randomly cropped to 256 pixel × 256 pixel
and mirrored or rotated in steps of 90◦. This augmentation artificially increases the size
of the training dataset and improves the generalization of the model. The training was
done using the Adam optimizer (Kingma and Ba, 2014) with a learning rate of 7 × 10−5

and batches of 26 training images per iteration. A custom sparse soft cross-entropy loss
function (ssce) was defined to comply with the sparsely labeled data. This ssce ignores
pixels that were manually labeled undecided and focuses on the ones distinctively labeled
as clear or cloudy. The loss for the ith image pixel is computed from the CNN prediction
ypr,i,c and the ground truth ygt,i,c for this pixel and class c by

ymask,i = 1− ygt,i,undecided (3.39)

LogSoftmax(yi,c) = log
(

exp(yi,c)∑
d exp(yi,d)

)
(3.40)

sscei =
∑

c∈{cloudy,clear}
LogSoftmax(ypr,i,c) · ygt,i,c · ymask,i. (3.41)

The ground truth label ygt,i,c is 1 for the class this pixel was manually labeled as and
otherwise 0. For the nowcasting application, each pixel i is assigned a class label as
arg max

c
[ypr,i,c]. The LogSoftmax accounts for this and rescales the CNN predictions into

more decisive values, increasing the largest values and decreasing smaller values. While
the loss is used to compute the increment during optimization, an additional metric is used
to quantify the overall performance of the CNN, especially on the test dataset. A sparse
version of mean intersections over union mIoU is used as

I =
∑
i

∑
c∈{cloudy,clear}

ygt,ic · ypr,i,c · ymask,i (3.42)

U =
∑
i

∑
c∈{cloudy,clear}

(ygt,i,c + ypr,i,c) · ymask,i − I (3.43)

mIoU = I

U + ε
(3.44)

with ε = 10−7 to ensure numerical stability. A final mIoU = 0.986 was reached after 48
epochs of training. A hyperparameter search determined the training parameters.
For the usage of the CNN predictions as cloud masks within this thesis, the pixel class

is determined by

arg max
c

[ypr,i,c] . (3.45)
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The class is then converted into scalar values with 0.0 for clear, 0.5 for undecided, and
1.0 for cloudy. Fig. 3.14 gives an overview of example images from the test dataset.
Additionally, hand-labeled ground truth and segmentation computed by the trained cloud
mask CNN used in this work are depicted.

3.4.2 Cloud-base height

In order to map cloud masks to 3D coordinates, cloud-base height (CBH) is required. For
the experiments presented here, two ASIs are located within a 500 m north–south distance.
Thus, for each time step, two viewing angles can be exploited to derive the CBH. Features
from simultaneous ASI images of the same cloud scene are sparsely matched using efficient
coarse to fine PatchMatch (CPM; Hu et al., 2016), a pixel-based pyramidal matching
method. For a grid of pixels on the first input images, DAISY feature descriptors (Tola
et al., 2010) are computed, and their best-matching counterparts in the second image are
determined. As a result, we obtain a list of matched pixels from both images, which
are supposed to depict the same part of a cloud. We use the derived cloud masks to
filter matched pixels; valid matched pixels must be marked as cloudy in the corresponding
cloud masks for both images to be accepted. Using the known camera geometry, a cloud-
base height can be derived for each matched pair of pixels with the mispointing method
developed by Kölling et al. (2019). This results in up to several thousand feature positions
per pair of simultaneously captured images, which theoretically allows for a fine-grained
treatment of the CBH. However, the nowcasting model presented in this study currently
assumes a single cloud layer. Therefore, an image-wide average CBH is derived from the
mean height of the feature positions.

3.4.3 Cloud motion

Cloud motion needs to be derived to predict future shading by clouds. Using the CPM
matching algorithm on consecutive images taken in intervals of 60 s, we obtain matches
describing the displacement of features. Computed cloud masks are used again to exclude
matches lying outside of detected cloud areas. Average image cloud-base height and camera
model are used to scale detected pixel movement to physical velocities within the assumed
plane of clouds. A dense cloud motion field is obtained by nearest-neighbor interpolation
of these sparse velocities.

3.4.4 Advection scheme

The nowcasting model is based on a 2D grid with a grid spacing of ∆x = ∆y = 10 m and
a number of grid points N = M = 1600 in the x and y directions, respectively, thereby
covering 16 km× 16 km. Variables on each grid point are cloudiness state (cm) and cloud
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clear undecided cloudy

Figure 3.14: Example images from the validation set (left column) hand-labeled segmentation (middle column),
and cloud mask predicted by the trained CNN (right column).Colors were adapted from Gregor et al. (2023).
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velocities (u and v) in the x and y directions, respectively. Starting from an initial state at
the first iteration t0 = 0 s and a temporal resolution of ∆t = 60 s, future cloudiness states
at times ti = t0 + i ·∆t are computed using advection as follows:

cmti+1(n,m) = cmti (ñ, m̃) , (3.46)
ñ = n− int (λ · u(n,m)) , (3.47)
m̃ = m− int (λ · v(n,m)) , (3.48)

where λ = ∆t/∆x. The coordinates (ñ, m̃) determined by advection using physical ve-
locities are restricted to discrete grid coordinates and, therefore, integers. This constrains
actually representable velocities to multiples of ∆x/∆t. Continuous boundary conditions
are assumed. The same advection scheme is applied to the horizontal velocities fields
ut(n,m) and vt(n,m) as well.
Remark: The continuous boundary conditions can be seen as nearest neighbor extrapo-

lation and implemented by

cmti+1(n,m) = cmti (ñ′, m̃′) with

with

ñ′ = max (1,min (ñ, N)) , ñ′ = max (1,min (ñ, N)) .

In case a value outside the model grid would be desired, the value of the nearest boundary
grid box within the model grid is used.

3.4.5 Initial state estimation by combination of observations1

The cloud mask and horizontal velocity field from one imager and time step as well as
an estimation of cloud-base height would be sufficient to initialize the advection model.
However, for each nowcast, we do have cloud masks and velocities from two imagers with
different viewing geometries and multiple time steps. In order to make use of as much
information as possible for the initial state, we employ a method similar to 4D-Var data
assimilation 2 (Le Dimet and Talagrand, 1986) in numerical weather prediction models.
The general idea is to define a scalar function of an initial model state that measures
differences between model states and measurements. This so-called cost function is then
iteratively minimized to find an optimal model state for given measurements. We reference
“measurements” in this section and the following. We thereby mean the synthetic generated
ASI images and simulated DNI values, not real measurements.
The difference between model state and measurements needs to be assessed at matching

times. Model states for multiple time steps are therefore computed from the initial state at
1This section corresponds to Sect. 2.2.2 in Gregor et al. (2023). Notation was corrected to replace σ

by σ2 for better compliance with the 4D-Var terminology. Erroneous units were corrected.
2A comment on the use of the term ”data assimilation” can be found in Sect. 2.3.
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time t0 using the previously described advectionM . Model cloudiness states at time tk will
be denoted as cm(tk) = M(cm, tk) with initial cloudiness state cm. Horizontal velocities
u and v are described analogously. We define the cost function J for L time steps in the
interval [t0, tl] and two ASIs (p ∈ 1, 2) as follows: 3

J(cm, u, v) =
∑
N,M

L∑
l=0

2∑
p=1

(
1
σ2

cm

·
(cm(tl)− cmmeas,l,p)2

+ 1
σ2
uv

· (u(tl)− umeas,l,p)2

+ 1
σ2
uv

· (v(tl)− vmeas,l,p)2
)

+ R(u, v),

(3.49)

with measurements of cloud masks cmmeas,l,p and horizontal velocities at time step l from
imager p interpolated to the model grid. Summation over all grid points is indicated by∑
N,M for better readability. The coefficients σ2

cm = 0.1 and σ2
uv = 10.0 m2 s−2 are supposed

to account for uncertainties in the respective measurements but are mainly used as tuning
parameters here. More complex, non-scalar coefficients could differentiate, for example,
between varying measurement quality within ASI images or between different imagers, but
they require characterization of the system, which is usually not available. The additional
regularization term denoted as R(u, v) is used to suppress measurement errors, especially
outliers in the velocity field. In detail, it is

Ruv(u, v) = σ2
R,uv ·

(
(∇u)2 + (∇v)2

)
, (3.50)

with tuning parameter σ2
R,uv = 250 s−2 chosen to smooth the velocity field. As cloud masks

are especially hard to derive from ASI images in the bright region of the Sun, measurement
values are excluded from the assimilation if they are derived from an image region of 2.5◦
around the Sun. Erroneous cloud mask values derived for the bright Sun and zero velocities
derived from the static Sun position are thereby avoided. Figure 3.15 illustrates the mea-
surements, first guess, and analysis state after assimilation for an example assimilation run.
Due to the limited complexity of the advection scheme and the high-resolution observations
from images, a background state is not used. Model states of previous nowcast runs are
not used within assimilation. This means that successive nowcast runs are independent, as
states from previous model runs for the nowcast start time are not considered in additional
terms in Eq. (3.49). Average cloudiness state and velocities from all measurements avail-
able at the time of the initial state are used as a first guess for cost function minimization.
The cost function is minimized using the bounded L-BFGS-B algorithm (Zhu et al., 1997).
For efficient optimization, the advection model and cost function were implemented using

3Note that cm(tl) is the variable to be optimized cm extrapolated forward in time with the advection
scheme to the time corresponding to the observation cmmeas,l,p.
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the PyTorch framework (Paszke et al., 2019), which allows for automatic calculation of
the adjoint of the cost function. The optimized model state is finally used for the actual
nowcast as the initial state of the advection model.

ASI P1

ASI P2

t0 t1

analysis state t0

first guess
assimilation

velocities

velocities

cloudmasks

nowcasting
/

advection

Figure 3.15: Illustration of cloud mask measurements, the derived first guess used for assimilation, and the analysis
state found by assimilation for an LES time t0 = 8940 s. Shown is the cloudiness state and the inner 8 km × 8 km
of the domain. The analysis state is less sharp on cloud edges due to the consideration of multiple cloud mask
measurements.Colors were adapted from Gregor et al. (2023).

Enhanced measurement uncertainty estimates

This section describes an extension of MACIN over the version presented above and in
Gregor et al. (2023).
The assimilation-inspired method used within MACIN is based on a cost function, which

compares the state of the model with measurements and comes with an additional regular-
ization term. Differences between single measurements and the model state are weighted
against each other on the basis of the uncertainty of the measurement. This prioritizes
less uncertain measurements to be considered during optimization. In full-grown 4D-var
data assimilation this weighting is done using an error covariance matrix. In the simplified
version of MACIN published in Gregor et al. (2023), scalar weights are used for these mea-
surement uncertainties and as tuning parameters in (cf. Eq. 3.49). A single weight is used
for all pixel values of derived cloud masks. This assumption was introduced for simplifi-
cation. However, the viewing angle differs between pixels in an ASI image. More distant
clouds are viewed under a larger zenith angle θ. As explored later on in Sect. 4.1.2, this
leads to a misinterpretation of the cloud shape and relevant cloud mask especially for more
distant pixels. Blum et al. (2022) investigated the spatial patterns of cloud shadows and
fused overlapping cloud information from multiple ASIs. They suggested a cloud mask un-
certainty, which varies depending on the viewing geometry for a pixel or grid point. Their
formulation is closely followed for this work with adaptations as explained in the following.
Changes over Blum et al. (2022) are discussed at the end of this paragraph. The goal is
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to compute a viewing zenith angle dependent cloud mask uncertainty

σ2
cm,var(θ) =

√
(σ2

cm)2 + u2
θ + u2

bounds,θ (3.51)

for the viewing zenith angle θ of the pixel or grid point. σ2
cm = 0.1 is the previously used

basic uncertainty associated with classification errors of the cloud mask CNN. The viewing
geometry uncertainty

uθ = A · tan(θ) (3.52)

gives the errors due to the viewing geometry with A = 1/3 according to the estimation of
Blum et al. (2022). The vertical extension of the cloud is increasingly misinterpreted as
horizontal cloud extension with increasing zenith angle, due to the 2D nature of camera
images. For a smooth transition at the boundary of the imaged area and a maximum
viewing zenith angle of θmax = 75◦,

ubounds,θ =
2/(θmax − θ) , if θ < θmax

∞, else
(3.53)

is used. The major difference to the uncertainty used in Blum et al. (2022) is the neglection
of a term that reflects increased uncertainty in the immediate Sun region. This is omitted
here, as the Sun region is completely masked in MACIN also for a constant cloud mask
uncertainty. Furthermore, the maximum viewing zenith angle was set to 75 ◦ in this work
to obtain a smaller valid region than with 78 ◦ in the original publication. For a more
thorough explanation of the uncertainties, the reader is referred to Blum et al. (2022).
Figure 3.16 shows that the constant cloud mask uncertainty dominates for θ < 17◦, while
for larger viewing zenith angles uθ is the largest contribution to σ2

cm,var until the maximum
zenith angle is approached and ubounds becomes the largest contribution for θ > 73◦.
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Figure 3.16: Values of the varying cloud mask uncertainty and its components over viewing zenith angle θ.

Note, that the uncertainty of derived velocities was not adapted and is assumed to
be constant throughout this work. If not stated otherwise, the constant measurement
uncertainties are used throughout this work, especially with the synthetic setups.
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3.4.6 Radiative transfer parametrization

This section describes the radiative transfer parametrization of MACIN for synthetic data
and for real-world data. The description of the synthetic radiative transfer parametrization
corresponds to Sect. 2.2.3 in Gregor et al. (2023).

Synthetic radiative transfer parametrization

Direct solar irradiance is reduced by interaction with molecules, aerosol, and clouds. For
this study, we assume that short-term changes in direct irradiance are mainly caused
by clouds and neglect other variations. DNI is parameterized using previous irradiance
measurements on site as well as predicted cloud masks. “Measurements” in the following
do not describe real-world measurements with, for example, a pyranometer, but instead
detail DNI values simulated for LES scenes. The idea of the parametrization is to derive
references for occluded and non-occluded cases from measurements. Depending on the
cloudiness state, the DNI is then interpolated from these references. Therefore, a time
series of clear-sky index (CSI) values k is constructed from DNI measurements as the ratio
of measurements and a simulated clear-sky DNIclear. From this time series, values of k are
extracted for two sub-series: occluded (k > 0.9) and non-occluded (k < 0.1) times. We
define the occluded CSI koccl and non-occluded CSI kclear as the exponentially weighted
mean with a half-life time of 10 min from respective measurement subsets. CSI values for a
non-occluded and a fully occluded Sun are interpolated linearly. A Sun disk of 0.5◦ opening
angle at the given Sun elevation and azimuth is projected onto the 2D model grid. The
mean cloudiness state of all grid points in the Sun disk (cmsun) is used to calculate DNI
for time t as follows:

DNI(t) = DNIclear · ((1− cmsun(t)) · kclear + cmsun(t) · koccl) . (3.54)

The exponentially weighted mean is used for the computation of koccl and kclear in order to
smooth the latest fluctuations and provide a values for all times.

Measurement-based radiative transfer parametrization

Whilst the cloud mask computation from ASI images does not differ for synthetic and
real ASI images, the computation of irradiance in MACIN needs to be adapted for real-
world applications. This requires an adaptation of the DNI parametrization presented for
synthetic data, as well as a method to additionally parametrize DHI and GHI. For real-
world applications, the position of the Sun changes over time and the clear-sky irradiance
is therefore a function of time. Atmospheric conditions aside from clouds may vary over
time as well and impact irradiance. E.g., vertically integrated water vapor and aerosol
optical depth can modulate clear-sky irradiances. Additionally, the synthetic setup is
focused on shallow cumulus clouds which are usually optically thick enough to shadow
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direct irradiance completely. However, many different types of clouds can be observed
in real-world applications, which may be optically thinner and shadow direct irradiance
partially. Future implications of clouds for direct irradiance should reflect this. As the
cloud mask and cloudiness state do not differentiate between types of clouds, this is done
by adapting the clear-sky index for occluded and clear sky used in Eq. 3.54. Therefore, a
method is required to recognize times, in which DNI measurements can be separated into
DNI for clear and occluded sky respectively. This method is explained in the following and
visualized in Fig. 3.17. Basically, if there is no cloud in front of the Sun, the measured DNI
is used to get an estimate of overall atmospheric conditions apart from clouds. If there is a
cloud in front of the Sun, the measured DNI is used to get an estimate of DNI attenuation
by clouds. To reflect also the diurnal cycle of DNI, not the DNI measurement but the
computed clear-sky index is used. The challenge therefore is to recognize whether or not
the DNI measurement is affected by a cloud in front of the Sun. As the DNI measurement
and the ASI-16142 were co-located in a distance of about 4 m, the ASI images were used to
detect occlusion of the Sun. A CNN was trained to decide whether the Sun is visible or not
in ASI images. To simplify occlusion detection, only a cropped 256 pixel× 256 pixel subset
of the image centered around the Sun was given to the CNN. Some examples of input
images are depicted in Fig. 3.17. Overall, 1000 images were classified manually as occluded
sun, non-occluded sun or not representative and split up into a training set of 800 images
and a test set of 200 images. A fully connected layer with three outputs for the classes was
appended to a ResNet-34 (He et al., 2015) pretrained on ImageNet (Russakovsky et al.,
2014). A batch size of 64 images was chosen and the training with the Adam optimizer
was separated into two parts. First, only the weights of the fully connected layer were
optimized for 40 epochs and with a learning rate of 10−3. After that, all weights of the
ResNet and the fully connected layer were optimized for further 60 epochs with a learning
rate of initially 10−4 which was reduced by a multiplicative factor of 0.9 every 10 epochs.
Cross Entropy Loss was used with a relative weight of 10 for the class not representative
as the number of samples for this class in the dataset is lower than the number of samples
for the other classes.
For the RT parametrization in MACIN, the CNN is applied to ASI images taken every

minute up to the forecasting time. Minutely averaged DNI measurements are divided by
clear-sky DNI reference to obtain a time series of DNI clear-sky index k. All times of k
for which the CNN classified the image as occluded sun are extracted as a sparse time
series. With an exponentially weighted mean with half-life time of 10 min, a current clear-
sky index for occluded sun situations koccl is computed. Equally, the CNN classification
as non-occluded sun is used to construct a current clear-sky index for non-occluded sun
situations kclear. These are used to convert predicted cloudiness states into DNI according
to Eq. 3.54.
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Figure 3.17: Schematic of the computation of time series of koccl and kclear in the radiative transfer parametrization
as used for application with real-world ASI images. Illustrated on the example of 29 June 2021.

3.5 Satellite-exclusive irradiance nowcasting model

A model for satellite-based irradiance nowcasting is introduced in the following, which
utilizes the method of deriving DNI from MSG images. This model combines cloud motion
derived from successive satellite images, an advection scheme and utilizes the methods
introduced in Sect. 3.2.3 for DNI nowcasting. An evaluation of performance of satellite-
based nowcasts is given in Sect. 4.3. Note that the satellite-based irradiance nowcasting
model described here was developed to showcase the use of satellite data for nowcasting and
ensure the DNI derived from MSG images can be used beneficially for such applications.

3.5.1 Cloud motion and advection model

In order to nowcast future irradiances, future cloud situations need to be predicted. The
cloud situation is described by the derived layers of optical thickness of an upper and
lower layer τlow and τup (cf. Sect. 3.2.3). Prediction is done by advection of these layers.
Therefore, cloud motion is derived from the latest set of optical thicknesses at nowcast
start time t0 and the previous time t−1 = t0 − 15 min. Cloud motion is derived separately
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for both layers. Therefore, the fields of optical thicknesses are converted into 8-bit images
and optimized for matching. Pixel values for 8-bit images are computed as

px(τ, τmin, τmax) =


0 if τ < τmin(

τ
τmax

)0.5
if τmin ≤ τ ≤ τmax

1 else (τmax < τ)
(3.55)

with the threshold values τmin = 0 and τmax = 40 for the lower layer and τmin = 0.15 and
τmax = 2.3 for the upper. Analogously to the ASI images in Sect. 3.4.3, two successive
images of a layer are matched using CPM (Hu et al., 2016). Matched points are filtered,
only points of τ > 0.15 and pixel shifts of less than 50 pixels between images are considered.
The shift of the matched points describes the pixel velocity, which can be converted into
physical velocites using the knowledge about metric pixel coordinates.

(a) (b) (c) (d)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
u (ms 1)

Figure 3.18: Illustration of the construction of dense motion fields from (a) initial zonal cloud motion derived by
sparse matching of τup between 09:45:00 UTC and 10:00:00 UTC on 02 July 2021. (b) and (c) show this sparse
cloud motion field after 1 and 5 iterations of smoothing by convolution with a gaussian kernel. (d) gives the dense
motion field after interpolation. For better visibility, only a cutout of the domain is shown. Note that pixels with
velocities in (a), (b), and (c) are enlarged for better visibility. The shown region is a 90 pixel × 90 pixel excerpt of
the subdomain used in this work. Fig. 3.19 left equals (d) but shows the entire subdomain.

A dense velocity field is derived from the sparse velocities in the next step. Figure 3.18 vi-
sually accompanies the following explanation by showing intermediate states for a zoomed
area of an example case. It starts from the raw sparse velocities after matching in Fig. 3.18a.
Cloud areas belonging together are expected to move similarly. Therefore, derived sparse
matches are smoothed locally by a 2D-convolution with a gaussian kernel. Standard de-
viation of the kernel was chosen as 20 pixels. Kernel size was limited to 40 pixels for
a restriction to local smoothing and for computational efficiency. This smoothes intra-
cloud velocities, while velocities are not smoothed in case of large gaps between clouds.
By iteratively applying the convolution 5 times, velocities are smoothed for larger areas
within connected cloud areas. Note, that only the sparse velocities are smoothed by these
convolutions as shown in Fig. 3.18b-c.
The sparse cloud motion pixels are interpolated to obtain dense cloud motion fields in a

last step as depicted in Fig. 3.18d. Interpolation between points with valid velocity is done
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Figure 3.19: (a) zonal and (b) meridional dense cloud motion fields derived from τup between 09:45:00 UTC and
10:00:00 UTC on 02 July 2021 for the full subdomain used in this work. The black squares indicate the region used
in Fig. 3.18. Note the different color scales.

linearly and values for pixels outside are set to the nearest valid value. This procedure
for sparse to dense velocity interpolation with convolutions was developed to overcome
shortcomings in the method used by (Sirch, 2018). This previous study derived solid
cloud objects and calculated mean velocities for these. As a result, similarities between
neighboring clouds were neglected and large continuous cloud fields extending hundreds
of kilometers were modeled with a single speed and direction. The convolution approach
described above is a simple attempt to overcome these shortcomings.
In an intermediate step, cloud optical depth, cloud-base and cloud-top height are smoothed

for both cloud layers. The fields are convolved with a gaussian-kernel with standard devi-
ation of 1 pixel and kernel size of 4 pixels. This is done to suppress possible noise by the
retrieval algorithm CiPS, which processes pixels independently from each other. Further-
more, Schmetz et al. (2002) suggests that the satellite measurement takes a larger area in
account than the pixel size in the discretized image implies.
Advection of quantities is done as for the ASI images using the same advection scheme

as used in the ASI nowcasting model (cf. Sect. 3.4.4). Before the advection, however, all
velocity and cloud optical depth fields are linearly interpolated to increase resolution by a
factor of eight. This is done to avoid problems due to the restricted discrete advection step
sizes. The two layers τlow and τup are advected separately according to the derived velocity
fields. The velocity fields, cloud top and base height are advected as well. Figure 3.20
demonstrates the advection of τlow and τup fields for an example case and different lead
times. An extended evaluation of the quality of the nowcasted optical depth fields was
omitted in this work due to its limited extent and the focus on ASI-based nowcasting.

3.5.2 Irradiance calculations

Irradiance can be calculated for advected cloud optical depth layers as described in Sect. 3.2.3.
Cloud optical depths for a given nowcast time are sampled along a path from a specific
ground position towards the Sun. However, this gives an irradiance estimate for a single
moment in time. Due to the resolution of the satellite instrument and the advection time
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Figure 3.20: Nowcasted cloud optical depth τlow (left) and τup (right) for nowcast start at 10:00:00 UTC on 02
July 2021 for various lead times.
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stepping, irradiance nowcasts with time resolution of single minutes or less are not realis-
tic. Exact geometric ray-tracing for an instance in time and cloud boxes with kilometer
scale resolution contradict each other. This questions the validity of a single irradiance
computation for 15 min averages. To overcome this shortcoming, irradiances for multiple
paths representing 1 min values are computed and averaged into a 15 min average. Due to
the limited resolution of the nowcasting model, advected fields are only available in 15 min
time steps. In order to create 1 min steps of the cloud field, the 15 min cloud optical depth
fields are frozen and shifted according the cloud motion of the grid point of the desired
location. This cloud motions is assumed constant over 15 min and in the near surrounding.
For simplicity, cloud motion of upper and lower layer is averaged into a single representa-
tive velocity for both layers. Both layers are shifted accordingly. The shift of cloud optical
depth fields can be implemented as shift in the desired ground position in the opposite
direction. Figure 3.21 illustrates this procedure of tracing multiple paths. Irradiances are
calculated for each of these paths and averaged for 15 min mean irradiances.

Figure 3.21: Determination of relevant cloud optical depths for a ground position from satellite cloud optical depth
fields Equal to Fig. 3.12 but for multiple traced paths constructed for times relative to the 15-minute step t0. Note
that this is just an illustration and not to scale.

3.6 Combined all-sky imager and satellite-based now-
casting model – MACIN-S

The ASI-based irradiance nowcasting model MACIN is developed for minute-ahead now-
casting of spatially and temporally high resolved irradiance. Data from the MSG satellites
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cover the whole globe, and cloud optical depth retrievals can exploit the spectral channels.
High resolved ASI images allow for high resolution nowcasts but depict only a limited area
of the sky. The use of binary cloud masks makes it harder to compute accurate irradiance
values, as ASIs often do not provide a quantitative cloud optical thickness. This section is
meant to explore a method to address the shortcomings of the ASI-based nowcasting by
additional use of satellite information. This includes two aspects:

• Using satellite derived cloud estimates as boundary condition for the ASI model.
Satellite-based values can be used where ASI cloud masks give no information, e.g.
in distant regions of the cameras.

• Adapting the irradiance estimation in the ASI-based nowcasting model to consider
the satellite-based cloud optical depth retrievals. This can be done by adapting the
cloudiness state of the ASI.

In practice, both aspects can be covered at once in the assimilation-inspired implementation
of the ASI-based nowcasting model.
MACIN needs to be adapted to make use of satellite data. First, a satellite-based ir-

radiance field is computed for the nowcast start time based on the methods outined in
Sect. 3.2.3. As MACIN represents clouds internally by a cloudiness state field, this irra-
diance field is not directly comparable to the model state. Instead, the irradiance fields
are converted into a cloudiness state according to the ASI model RT parameterization.
Note that the cloudiness state was originally introduced to represent a mixture of binary
cloud masks in MACIN and originally does not contain detailed quantitative information
about irradiance itself. Here, the satellite data provides irradiance information and by re-
versing the RT parametrization, a quantitatively more meaningful cloudiness is computed
for satellite information. By an additional term in the cost function, this satellite-based
cloudiness field is considered during the optimization of an initial model state. For grid
points without valid ASI cloud mask observation, the satellite cloudiness is the only obser-
vation and therefore the satellite data is implicitly used to set boundary values. For grid
points with valid ASI cloud mask observations, the model state is optimized to comply
with observations from both, ASI and satellite. The comparably low spatial resolution of
MSG data of more than 4 km in the region of the PV power plant is thereby the main
challenge for its use in the cost function with a model grid with 10 m resolution. The
cloud optical depth towards the Sun can in theory be computed for every grid point of the
ASI nowcasting model. However, the satellite retrieved cloud optical depth fields are con-
stant per satellite pixel and therefore over multiple kilometers. The resolution of clouds
in MSG data is much lower than the resolution of the ASI model grid. Deriving cloud
optical depth estimates for a high resolution grid from the low resolution satellite data is
misleading as it artificially increases resolution. It is therefore assumed, that derived high
resolution satellite information has a correlation length of about the size of MSG pixels. To
account for this correlation length, averages of satellite derived information are compared
with averages of the model state after bringing both quantities onto the same grid.
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Figure 3.22: Illustration of the procedure used to compute the deviation between satellite cloudiness observations
and model cloudiness state for a cumulus cloud scene at 10:00:00 UTC on 02 July 2021. Shown model states
correspond to the values after two iterations of optimization. The model state (center, top) is averaged into lower
resolution. Low resolution model state and satellite observations are convolved with a gaussian kernel before the
difference between these two fields is computed. The squared difference is used in the cost function to compute the
next step of the iterative optimization.
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Figure 3.22 and 3.22 illustrate model fields for intermediate steps of the following expla-
nation. Within this explanation, single values within fields of a 2D variable are indicated
by an index In case of no index, the entire 2D field is meant. For every desired satellite
data grid point the cloud optical depths are determined as explained in Sect. 3.2.3. For
computational efficiency, the satellite irradiances are computed on a grid with lower reso-
lution of 200 m and not for the model grid with a resolution of 10 m As for the ASI derived
quantities, it is desired to compare also satellite measurements with the nowcasting model
state in the model space. The satellite derived cloud optical depths are therefore converted
into cloudiness values. This can be done by calculating a satellite derived clear sky index

ksat = DNIsat
DNIcs

= e−(τlow+τup). (3.56)

Solving the radiative transfer parametrization of Eq. 3.54 for cm, a satellite cloudiness
value can be derived as

cmsat = 1− ksat
1− koccl

kclear

(3.57)

based on the current MACIN clear-sky index estimations in case of occluded sky koccl and
clear sky kclear (cf. Sect. 3.4.6). Fig. 3.22 illustrates satellite cloudiness and schematically
displays the following steps for two example times.
The model cloudiness field is blockwise averaged to the lower resolution (N ′,M ′) of the

derived satellite cloudiness state over P ×Q pixels

cmlr,n′,m′ = 1
P ·Q

(n′+0.5)P∑
i=(n′−0.5)P

(m′+0.5)Q∑
j=(m′−0.5)Q

cmi,j. (3.58)

For pixels outside the nowcasting model domain, e.g. i < 0, nearest neighbor interpolation
is applied. Satellite derived and low resolution model cloudiness state can theoretically be
compared directly based on this. However, the size of satellite pixels is still larger than the
low resolution grid size and spatial correlations of the satellite information would therefore
not be represented realistically.
A convolution with a gaussian kernel g with half-width of σc = 4 km is used to represent

the correlation length based on the original satellite data resolution. The kernel is defined
for the discrete low resolution coordinates as

g(i, j) =

ω−1e
− i2+j2

2s2
c if |i|≤ sc and |j|≤ sc

0 else
(3.59)

with correlation length in grid coordinates sc = σc/∆x′ for grid resolution of ∆x′ = ∆y′.
The limitation of the kernel size to twice the correlation length is implemented for compu-
tational efficiency. ω is chosen for normalization to 1, i.e.

ω =
sc∑

i=−sc

sc∑
j=−sc

e
− i2+j2

2s2
c (3.60)
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with the correlation length in pixel coordinates .
By convolution with this kernel on the discrete model grid, smoothed fields of the model

cloudiness cm and satellite cloudiness cmsat are retrieved as

cmlr,n′,m′ = G (cmlr, n
′,m′) (3.61)

and

cmsat,n′,m′ = G (cmsat, n
′,m′) (3.62)

where

G(a, n′,m′) =
sc∑

i=−sc

sc∑
j=−sc

an′+i,m′+j · g(i, j) (3.63)

is the convolution formulated as a sum over the discrete coordinates.
The summed squared difference of these two fields is used as the deviation between model

state and satellite measurements

Jsat(cm) = 1
σsat2

N ′∑
n′=1

M ′∑
m′=1

[
(cmlr,n′,m′ − cmsat,n′,m′)2 · γbounds,n′,m′

]
(3.64)

with the satellite measurement uncertainty σ2
sat = 0.3 and the value validity parameter

γbounds,n′,m′ . Equally to the uncertainties in Eq. 3.49, σsat is roughly estimated and in
detail chosen as a tuning parameter. The value validity parameter is introduced to ignore
the advected boundary values in Eq. 3.64. To determine whether a value is advected
from boundary values, the nowcasting model was extended by a model variable b that is
additional to cm, u, and v, which is also advected. It is initialized as

bn,m(t0) =
0 if n ∈ {0, N} or n ∈ {0,M}

1 else.
(3.65)

Blockwise averages blr,n′,m′ are computed parallel to Eq. 3.58 from bn,m advected to the
time of the satellite observation. These are converted into

γbounds,n′,m′ =
0 if blr,n′,m′ = 0

1 else.
(3.66)

Therefore, γbounds,n′,m′ effectively eliminates deviations between model and satellite for low-
resolution grid points, whose values are entirely determined by the boundary values. Note
that this only has an influence in case of t 6= t0. Nowcasting runs are started in the setup
used in this work at times which are multiples of 5 min. These are exactly the times MSG
rapid images would be available. As the assimilation-inspired procedure takes ASI images
from earlier timesteps into account, the optimization start time t0 is not equal to the time
where MSG images are available. The use of γbounds,n′,m′ therefore has an influence.
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The cost function is the sum of the original ASI-only cost function J in Eq. 3.49 and the
additional satellite cost function in Eq. 3.64

JMACIN-S(cm, u, v, b) = J(cm, u, v, b) + Jsat(cm). (3.67)

The derived satellite cloudiness can take values greater than 1 according to Eq. 3.57.
Therefore, the bounds for cloudiness during optimization of the cost function was set to

0 ≤ cm ≤ 1
1− koccl

kclear

(3.68)

with the upper bound derived from the condition of non-negative DNI(cm) ≥ 0 and
Eq. 3.54.

convolve
gaussian kernel

use squared difference to update 
model field for next iteration
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Figure 3.23: As Fig. 3.22, but for a scene with high cirrus clouds at 15:00:00 UTC on 03 July 2021. Shown model
states correspond to the values after five iterations of optimization.

The satellite input field, the model state in high and low resolution, the gaussian con-
volved low-resolution fields, and the resulting deviation which is used to calculate the
update for iterative optimization of the cost function are visualized in Fig. 3.22 for a cu-
mulus scene and in Fig. 3.23 for a cirrus cloud scene. In the cumulus scene, the satellite
does not detect clouds in the region depicted by the ASIs. This miss is most likely due to
the limited resolution of MSG, its pixel size is larger than the scale of single clouds. In
the cirrus scene, the satellite detects cirrus clouds for the entire model domain. Satellite
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cloudiness observations larger than one thereby mean that the satellite observations sug-
gest larger cloud optical depth, than the RT parameterization in MACIN-S would expect.
Also, the satellite observations suggest spatial variations in the cloud optical depth. The
derived ASI cloud masks would not be able to describe such variations and the satellite
observations may contribute helpful information in this case.
Several things should be mentioned about the above presented method. The lower resolu-

tion grid was introduced for computational efficiency and the choice of 200 m is arbitrary.
Also, the choice of σc = 4 km is most likely in the right order of magnitude but needs
further optimization in future studies. Finally, the spatial averaging and the convolution
with a gaussian filter could also be represented in an observation error covariance matrix.
However, the description here follows the actual implementation and this work does not
give the procedure in terms of an observation error covariance matrix.

3.7 Error Measures

This section is based on the definitions of error measures in Sect. 2.3 of Gregor et al. (2023)
and extends these for this work.
To quantify the performance of applied methods, several error measures are used through-

out this work. Most of them rely on a comparison of the derived or nowcasted value xi
and the reference value xref,i. The index i ∈ 1, ..., N is a running index that reflects that
the error measures are a statistic over N values, for example, grid points and times. The
error measures used are the root-mean-square-error

RMSE =

√√√√ 1
N

N∑
i=1

(xi − xref,i)2, (3.69)

and its normalized version

NRMSE =

√√√√ 1
N

N∑
i=1

(
xi − xref,i
xref,i

)2

(3.70)

as well as the mean-bias-error

MBE = 1
N

N∑
i=1

(xi − xref,i). (3.71)

To easily benchmark nowcasts against smart persistence, skill is used as

skillRMSE = 1− RMSE
RMSEpers

. (3.72)
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For the evaluation of cloud masks, the pixel accuracy determines how many pixels were
detected correctly as clear or cloudy as

PA = CCLR + CCLD
Npx

(3.73)

where CCLR and CCLD are the number of correctly clear and cloudy classified pixels
compared to the overall number of pixels Npx.
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Chapter 4

Validation and application of
nowcasting models

4.1 Validation of MACIN with synthetic data

MACIN and its components were validated on synthetic data as described in this section.
Section 4.1.1 gives the validation of cloud information derived from ASI images. Additional
to the validation of derived cloud information, the performance of MACIN DNI nowcasts
in the synthetic setup is assessed in the first part of Sect. 4.1.2. Further DNI nowcasts
were performed for additional synthetic setups to investigate nowcast error sources. These
setups, results of nowcasts and findings are described in the remaining parts of Sect. 4.1.2.
Large parts of this section are taken from Gregor et al. (2023) and references were updated
for this work. Section 4.1.1 consists of Sect. 3.1, 3.2, and 3.3 of Gregor et al. (2023). The
first part of Sect. 4.1.2 corresponds to Sect. 3.4 in Gregor et al. (2023). Note, that in
accordance with Gregor et al. (2023), the ASI-based MACIN was used with constant cloud
mask uncertainty (cf. Sect. 3.4.5) in this section.

4.1.1 Derived cloud information

Cloud mask

The CNN cloud mask model was successfully trained and validated on hand-labeled real-
world images, as explained in Sect. 3.4.1 [...]. We evaluate derived cloud masks to show
that it is reasonable to apply the cloud mask CNN to the synthetic images in this study.
We calculated the path cloud optical depth (τ) for all viewing angles of our ASI and every
desired time step. Together with a threshold, this gives a reference cloud mask. To validate
pixel-wise cloud classifications, we use a threshold of τthresh = 1.0 to create reference cloud
masks from τ . Values of τ ≥ τthresh are linked to cloudy areas in these τthresh cloud masks.
We evaluated CNN cloud masks from ray-marching images for position P1 and 360 time
steps at 60 s intervals covering all LES times. The contingency table (Table 4.1) displays
the distribution of classes of τthresh cloud masks against our CNN cloud masks. In general,
we find very good compliance. Each of the cloudy and clear classes makes up about 50 %
of the compared pixels, which corresponds well to the τthresh cloud masks. Cloud masks of
our CNN exhibit a slight bias towards classifying too few pixels as cloudy. Pixel accuracy
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Table 4.1: Contingency table for the cloud mask classes from the CNN and cloud optical depth τ in the line of
sight thresholded given by τthresh = 1 as a reference. All values are given as a percentage.

Reference
τ < 1.0 τ ≥ 1.0 ∑

Clear 46.43 2.54 48.97
CNN Undecided 0.22 0.25 0.47

Cloudy 2.33 48.23 50.56∑ 48.98 51.02 100

is PA = 94.66 % against the τthresh cloud masks.
Beyond ray-marching images, we calculated 29 MYSTIC images and computed CNN

cloud masks for these. By doing the same with corresponding ray-marching images, we
could ensure that the derived cloud masks exhibit similar performance for both image
generation approaches. As MYSTIC images are physically correct, we conclude that the
usage of approximated ray-marching images does not affect the validity of our results.

Cloud-base height

We used data from for the entire LES scene and, effectively, 319 time steps with clouds
for the validation of derived CBH. Ray-marching images taken at P1 and P2 were used
to derive the CBH as in the nowcasting model. Computed scattering positions give the
reference CBH. As our nowcasting model assumes a single cloud-base height, we average
the derived CBH per image pair. Figure 4.1a shows the derived average CBH per image
pair and the corresponding reference CBH. For these averaged heights, we obtain a MBE
for the mispointing method of 50.7 m, an RMSE of 56.9 m, and a NRMSE of 4.0 %. When
subtracting the found bias of 50.7 m from the derived image average cloud-base heights,
the RMSE could be reduced to 25.6 m and NRMSE to 2.6 %. Increasing systematic error
can be observed for the reference CBH up to about 1400 m. A histogram of all derived
pixel heights, which are the basis for the averaged CBH, and their reference is shown in
Fig. 4.1b. Similar to the image-wide average cloud-base height, derived pixel heights show
good agreement with reference heights and a small systematic overestimation. Reference
pixel heights show a wider distribution compared with derived values, resulting in the
stripes visible in Fig. 4.1. Found height errors could result from discrete viewing directions
due to the limited resolution of images, from the projection process, and from the discrete
stepping of the image generation ray-marching algorithm. Error sources were not investi-
gated further, as errors are in the range or even lower than those found in other studies
with respect to derived cloud-base heights (e.g., Nguyen and Kleissl, 2014; Kuhn et al.,
2019; Blum et al., 2021). Equally, no additional work was done to mitigate the observed
systematic errors for use in nowcasting.
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Figure 4.1: Histogram of (a) image mean cloud-base height and (b) height derived for the matched pixels of all
images compared against synthetic references.

Cloud motion

As wind is not necessarily an exact benchmark for cloud motion in convective cloud scenes,
we chose two ways to validate our derived cloud motion for two cases. Cloud motion
according to the LES is used as a convective case where clouds also develop and decay.
Additionally, we are interested in the performance when cloud motion is pure advection,
i.e., only displacement of frozen cloud fields. This advective case allows one to derive an
exact reference for cloud motion, and the convective case allows one to validate the quality
of the derived cloud motion in the presence of clouds that change their size and shape.
Validation of cloud motion in the convective case is done on images every 60 s for LES

times from 0 to 21540 s. Figure 4.2 shows cloud fraction as a function of LES time. The
average displacement of the vertically integrated liquid water path (lwp) between time steps
is calculated using maximum cross-correlation and used as a reference. This describes mean
translation and is, therefore, a proxy for domain-averaged reference cloud motion. Cloud
motion vectors derived by sparse matching are averaged per time step and ASI and are
compared against this reference. Figure 4.2 shows zonal and meridional winds derived for
both the ASI and the reference determined by lwp cross-correlation. The cloud fraction
derived from cloud masks of an ASI at P1 is given as an indicator of the cloud situation.
Up to an LES time of approximately 3600 s, no significant visually detectable clouds are
present; therefore, no velocities are derived. Up to approximately 6000 s, derived velocities
are relatively unstable over time, with changes in estimated velocities of up to 1.7 m s−1

over 60 s. We relate this to the rapidly changing nature of small convective clouds in
combination with a low cloud fraction. During this time, some of the small clouds appear
and disappear in between time steps and are, therefore, mismatched. After approximately
6000 s, derived zonal velocities vary in a range of ±0.5 m s−1 between time steps. Zonal
cloud motion close to zero matches the LES initialization without zonal wind. Meridional
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Figure 4.2: (a) Cloud fraction from cloud masks of the ASI at P1 for LES times. Per time step scene-averaged
cloud motion derived using cross-correlation of the lwp field of the LES simulation and our cloud motion derivation
based on feature matching for east to west motion u (b) and south to north motion v (c).

velocities increase from about 3 m s−1 at 6000 s to a maximum of 4.7 m s−1. In general, our
derived zonal velocities show a less noisy estimate compared with the reference. Derived
velocities from both ASIs show very similar patterns. This further affirms the stability of
the cloud motion derivation. However, we do not have an absolute reference to benchmark
derived velocities in the convective case, as pure displacement of convective clouds is hard
to capture and may differ strongly from main winds. We validate derived cloud velocities
using artificially advected cloud fields to overcome this limitation. The same LES times
as in the convective validation are used, but each time step is assumed to be independent.
Cloud motion is generated by freezing the cloud field and shifting it for each time step.
This results in an objective reference cloud motion. A shift of 500 m from north to south at
a time difference of 60 s gives a theoretical u of 0 m s−1 and v of −8.3 m s−1. No velocities
were derived in the absence of clouds up to approximately 2500 s. For longer times, the
derived velocities match the theoretical displacements well with an RMSE of 0.019 m s−1

zonally and 0.11 m s−1 meridionally.
Overall, these results prove that the derived cloud motions are reliable for the cloud

situations used in this study. This can also be seen as a further validation of derived
CBHs, as they are necessary for the calculation of physical velocities.

4.1.2 Direct normal irradiance nowcasts

MACIN DNI nowcasts on synthetic data are validated and investigated in this section.
The first part of this section is taken from Gregor et al. (2023) and addressed DNI nowcast
performance. References were adapted where necessary. Additional nowcasts for different
setups and configurations are evaluated in further parts of this section to investigate now-
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cast error sources beyond the work of Gregor et al. (2023). For better readability this work
differentiates between setup and configuration to indicate two different things. A setup
refers to the cloud scenes used for nowcasting, while a certain configuration stands for a
specific composition of the nowcasting model.

Nowcast performance

Evaluation of the nowcasting model is done using multiple steps that are described and
discussed in the following. MACIN is compared against persistence to evaluate overall
performance. Additionally, variations of MACIN using ideal cloud masks were run to
investigate the implications of errors in CNN-derived cloud masks. These variation runs
will be called “cloud mask variation” and “continuous cloud mask variation” hereafter and
explained later on. Finally, a simplification of MACIN is used to assess possible benefits
of the expensive assimilation of MACIN. This variation will be referred to as “simple
variation”. For MACIN and all its variations, one nowcast run was started every 60 s for
LES times from 60 to 21 540 s for a total of 359 nowcast runs. The maximum nowcast
lead time was chosen as 20 min. Nowcast time steps exceeding the maximum LES time of
21 600 s were discarded. DNI nowcasts are always derived simultaneously for point P1 and
area A1. Errors for point and area forecasts show similar characteristics. Therefore, they
are discussed jointly in the following. If not stated otherwise, error values are given for the
point DNI with the area DNI given in parentheses.
Figure 4.3a and b show the average RMSE and MBE for point nowcasts of persistence,

MACIN, and cloud mask variation grouped by lead time. Figure 4.3c and d give the same
for area nowcasts. Errors of persistence and MACIN give the overall performance of the
introduced nowcasting model and are, therefore, analyzed first. Persistence nowcasts start
without error at a lead time of 0 min, but the RMSE increases strongly up to approximately
a constant value of 300 W m−2 (250 W m−2) after 6 min. The persistence MBE increases
linearly up to approximately 50 W m−2 and is linked to the tendency of a growing cloud
fraction over time. MACIN exhibits a nonzero RMSE at nowcast start but a smaller
increase in the RMSE over time compared with persistence. In terms of the RMSE, MACIN
outperforms persistence for lead times longer than 1min. Improvements over persistence
for these longer lead times are thereby typically on the order of 50 W m−2 (50 W m−2) or
more. In general, the RMSE of nowcasts for areas is about 50 W m−2 lower than nowcasts
for points. The MBE is mostly negative for MACIN, with magnitudes in the range of
the persistence MBE. The nonzero RMSE at a lead time of 0 min may be a result of
erroneous cloud masks in the region of the Sun, errors in the radiative transfer (RT)
parametrization, or smearing out during the assimilation because of multiple time steps
and viewing geometries.
To further investigate the initial nowcast error discussed above, a cloud mask variation

of MACIN was run. Perfect cloud masks were used as input for the nowcasting model
instead of CNN cloud masks. These perfect cloud masks are derived from the LES cloud
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Figure 4.3: The (a) RMSE and (b) MBE for 359 point DNI nowcasts compared to DNI point reference values
and evaluated per lead time. Nowcasts were done using MACIN and the cloud mask variation. Panels (c) and
(d) show corresponding error values for the area nowcasts and DNI area reference.

optical depths in the line of sight τ (see also Section 3.2.1 and Fig. 3.2f) with a threshold of
τthresh = 1.0 to distinguish between cloudy and clear-sky conditions. By using these perfect
cloud masks for nowcasting, the influence of cloud mask errors within the nowcasting model
can be assessed. As for the persistence and MACIN, nowcast errors for the cloud mask
variation are given in Fig. 4.3. The RMSE of the cloud mask variation is very similar to
the RMSE of MACIN. This suggests that the CNN cloud masks provide a good estimate
of the cloud situation for our nowcasting. However, the cloud mask variation outperforms
MACIN by 31 W m−2 (32 W m−2) for a lead time of 0 min and converges to the RMSE
of MACIN for lead times of 3 min and longer. The cloud mask variation point MBE is
initially about 0 W m−2; therefore, the negative MBE of MACIN, especially during the first
minutes of the nowcasts, can be associated with erroneous cloud masks in the vicinity of
the Sun. The minor improvement for longer lead times when using perfect cloud masks
might also be a result of the convectively growing, shrinking, and reshaping clouds. As
the nowcasting model cannot describe these processes, perfectly outlining clouds in the
beginning may not be that relevant for longer lead times. The nonzero RMSE of the cloud
mask variation for a lead time of 0 min may result from errors in the RT parametrization
or smearing out by assimilation, as described for MACIN before. To further investigate the
implications of the RT parametrization, the continuous cloud mask variation was run. It
differs from MACIN only with respect to the input cloud masks. In contrast to the cloud
mask variation, which gives discrete cloud mask values for clear-sky and cloudy classes,
the continuous cloud mask variation relies on cloud masks with continuous values. The RT
parametrization maps model cloudiness states linearly to DNI values. Model cloudiness
states of MACIN usually rely on CNN cloud masks with discrete values for the three classes
(clear, cloudy, and undecided), whereas actual cloud optical depth is a continuous variable.
Continuous cloud masks are used to check whether this discrete representation causes a
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significant fraction of nowcast error. These cloud masks are derived from τ used for the
cloud mask validation, but they comply with the exponential attenuation of intensity in
radiative transfer by cmcont = 1− exp (τ). The continuous cloud mask variation uses these
continuous cloud masks. The resulting errors of the continuous cloud mask variation are
not depicted, as they strongly resemble the errors of the cloud mask variation with slight
improvements in the RMSE in the range of about ±5 W m−2. Therefore, we conclude that
the RT parametrization and discrete nature of cloud masks is not a major error source, and
the nonzero RMSE for a lead time of 0 min is a result of smearing out during assimilation.
A further variation of MACIN was run to assess the benefits of the assimilation scheme.

Therefore, the simple variation of MACIN was run with just a single cloud mask and
velocity field from the ASI at P1 as input. The Sun region is not masked out in the cloud
mask and velocity field for the simple variation. With this variation, we assess the possible
benefits of the additional complexity and computational cost of MACIN. The resulting
errors differ from the errors of MACIN, mainly for point nowcasts. For a lead time of
0 min, the RMSE of the simple variation is about 300 W m−2. For longer lead times, the
RMSE resembles the RMSE of MACIN but is approximately 75 W m−2 larger. The MBE
of the simple variation is strongly negative, with values of around 75 W m−2 and even more
for a lead time of 0 min. As the Sun region is not masked out in the simple variation and
the cloud mask CNN tends to classify the Sun in synthetic images as cloudy, the initial
model cloudiness state is incorrect in this region, and the derived DNI for a lead time of
0 min gives large errors. In case of clear sky, the erroneously cloudy detected Sun is steady;
therefore, this “cloud” does not move and gives an offset for all lead times. This explains the
large RMSE offset and the large negative MBE. We are aware that these larger errors are
mainly due to the co-location of the ASI and nowcasted point in our setup. Nevertheless,
this demonstrates the capabilities of our nowcasting model to use multiple data sources for
error reduction. For example, when using projected images of ASIs at different positions
and superimposing one over the other for the derived CBH, the Sun is in different regions
of the images. When we exclude, per the ASI, the immediate region of the Sun from the
used cloud mask, cloud mask information from another ASI is used to fill in this region.
Thus, erroneous cloud masks in the region of the Sun can be mitigated by assimilation.
In general, the nowcast quality is influenced by the variability in DNI. Completely cloud-

free and also fully overcast situations result in low variability and are simple to nowcast.
Broken clouds can cause strong variations in DNI and are more challenging to nowcast.
Therefore, other nowcasting systems in the literature (e.g., Nouri et al., 2019a) are bench-
marked not only on all available situations but also separately on situations grouped into
eight variability classes. This showcases the nowcast quality under different weather con-
ditions and variability. We investigated the performance of MACIN by computing error
metrics for subsets of the 359 nowcasts of this study. The subsets were determined by the
cloud fraction. Overall, a small absolute RMSE can be found, especially for small and
large cloud fractions, with minor to no improvements in MACIN over persistence. Errors
are larger for broken clouds and medium cloud fractions, and the improvement in MACIN
over persistence increases in these cases. However, the significance of these cloud-fraction-
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dependent results is limited due to the small number of nowcasts and the restriction to the
shallow-cumulus LES data. Therefore, these results are not displayed nor discussed here
in detail.

Nowcast errors from viewing geometry

All-sky imagers view clouds from below and viewing angles depend on the relative position.
These viewing angles may differ from the angle in which the cloud shadow is cast. The
cross section of a cloud seen by an ASI therefore can differ strongly from the cross section
of the cloud relevant for the cloud shadow and therefore direct irradiance. This difference
is illustrated in Fig. 4.4. The viewing geometry of an ASI converges towards the imager,
while direct sun light is approximately parallel with an incidence angle dependent on the
position of the Sun. Kurtz et al. (2017) found that this difference between cloud cross
section as derived in ASI cloud masks and the cloud cross section relevant for shading
strongly impacts the performance of ASI nowcasts.

Legend
               Sun geometry

               Converging ASI geometry

               Projected cloud widths

         ASI             Direct sun light

Figure 4.4: Illustration of the cross section of a cloud as viewed by an ASI due to its converging geometry and the
cross section of the cloud for the parallel geometry of sun light, which is relevant for shadows on the ground.

With the synthetic setup in this study this systematic nowcasting errors due to the
imperfect viewing geometry and cloud projection are revisited as described in the following.
The nowcasting model was run again on the LES cloud data, but with another set of input
cloud masks. To obtain cloud masks actually representing the cloud cross section relevant
for shadows, previously computed direct irradiance fields were exploited. With knowledge
about clear-sky DNIcs, cloud optical depth τ towards the Sun can be computed as

τ = − ln
(

DNI
DNIcs

)
(4.1)

from reference DNI computed with MYSTIC. A threshold τthresh, sun = 0.3 was chosen to
construct discrete sun geometry cloud masks. The value of 0.3 was determined in order
to approximately match the number of cloudy pixels in the CNN derived cloud masks.
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Nowcast runs with these sun geometry cloud masks will be indicated by sun geometry in
the following.
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Figure 4.5: (a) RMSE (b) MBE for 359 point nowcasts with sun geometry cloud masks. As a reference, errors of
persistence and corresponding MACIN nowcasts with CNN derived cloud masks as well as cloud mask variation
nowcast errors are given. (c) and (d) give the same for area nowcasts.

359 nowcasts were performed, starting in intervals of 60 s for the full LES times. In
the following, nowcast performance for point nowcasts is discussed with respect to the
baseline MACIN and cloud mask variation nowcasts. RMSE and MBE for the sun geometry
nowcasts and the reference nowcasts are given in Fig. 4.5. Similar to MACIN nowcasts,
RMSE is non-zero in the beginning and increases faster for small lead times than large
lead times. Sun geometry nowcasts outperform MACIN nowcasts for lead times up to
3 min by up to about 20 W m−2 and show comparable performance for longer lead times.
A positive tendency can be observed in MBE of sun geometry nowcasts, comparable to the
positive tendency of persistence nowcasts, but with variations of up to 25 W m−2 and not
as linearly.
As the cloud masks for sun geometry are derived from the reference, improved RMSE

performance in the beginning meets expectations due to the better initial knowledge about
the cloud situation. A difference between sun geometry and cloud mask variation nowcasts
for these small lead times can be explained by the different cloud optical depth thresholds
used. As a τthresh = 0.3 was chosen for the sun geometry cloud masks, initial RMSE and
MBE differs from cloud mask variation, where a threshold of cloud optical depth 1.0 was
assumed. While relevant cloud size is overestimated for distant clouds in converging ASI
geometry, sun geometry cloud masks give a more objective cloud size and therefore no
strong negative DNI bias. The similar tendency over lead time between sun geometry now-
casts and smart persistence suggest that there is no significant erroneous bias in estimated
cloud fraction over time. The small improvement in RMSE over MACIN in the beginning
and no significant improvement for longer times suggests once more that derived CNN
cloud masks are already really good and that initial good knowledge about cloud geometry
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is not helpful for longer lead times, as cloud evolve and change shape which is not modeled
in MACIN.

Nowcast errors from cloud evolution

In the nowcast runs of MACIN on synthetic data, also perfect cloud masks did not lead to
perfect nowcasts. The RT parametrization, smoothing by the assimilation-inspired scheme
and restriction of cloud evolution to simple displacement were proposed as possible error
sources. A nowcasting experiment was designed, where clouds behave as represented in
the nowcasting model. These clouds are only displaced over time and do not shrink, grow
or reshape. The synthetic cloud data and ASI image generation allow for such a setup by
freezing the LES cloud field and shifting it over time. This setup will be called no-evolution
setup in the following. Comparability with the reference run from Gregor et al. (2023)
and explained before is desired. This allows to assess the implications of complex cloud
dynamics for nowcast errors. For comparison with the reference run, the corresponding
LES cloud field is frozen per nowcast start time and displaced with the mean velocity
derived in the reference run for this time. Due to the discrete nature of the LES cloud
grid, this displacement velocity is rounded to an integer number of shifted grid cells per
∆t = 60 s. However, the cloud fraction increases in the LES cloud data over time and also
throughout reference nowcast runs whereas it is constant for the frozen cloud fields within
a nowcast run for a single start time of the no-evolution setup. Therefore, the reference
run was extended by additional nowcasts on the LES cloud fields. The existing forward
reference runs with an increasing cloud fraction were supplemented with nowcast runs on
reversed LES times backward and with decreasing cloud fraction. Within this section
evolution setup will be used to indicate this forward and backward setup for the MACIN.
Also the no-evolution setup describes two nowcast runs per start time. The frozen LES
cloud fields are shifted once according to the forward velocities from the evolution setup
and once according to the backward velocities. This is done to equalize the number of
nowcasts between the two approaches and also account for the fact that the overall cloud
movement is from south to north for the forward direction and north to south for the
backward direction, i.e. the distance between clouds moving into the view of the ASI and
the Sun in the images differs depending on the time direction. DNI irradiance reference
fields are computed as described in Sect. 3.2.1. Also, persistence is calculated separately
for the clouds of the evolution setup and the no-evolution setup.
The nowcasting errors are shown in Fig. 4.6. The evolution setup nowcasts show similar

error patterns as observed for the forward-only reference run in Gregor et al. (2023), but
the reduction of RMSE compared to the persistence is smaller. This can be attributed to
the nowcast runs on the evolution setup being performed to LES cloud data in forward
and backward time direction. In general, the nowcasting model overestimates the cloud
fraction especially for larger lead times and therefore for clouds close to the horizon. The
actual LES cloud fraction increases in forward time direction for the evolution setup. This
coincidence between erroneous overestimation and actually increasing cloud fraction re-
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Figure 4.6: (a) RMSE, (b) skill and (c) MBE for 718 nowcasts performed with MACIN on synthetic cloud data
with cloud evolution and without cloud evolution. As a reference, errors of persistence are given.

duces nowcast errors for the forward time direction. In contrast, LES cloud fraction for
the evolution setup decreases in backward time direction and contradicts the nowcasting
models overestimation. The nowcast errors for the backward time direction are therefore
larger than for the forward time direction for the evolution setup. LES cloud fraction is
constant per nowcast time for the no-evolution setup and therefore this difference between
forward and backward time direction cannot be observed for this setup.
The no-evolution setup nowcasts exhibit the same large RMSE for nowcast start as

evolution setup nowcasts, but only slowly increasing error over time. However, the cloud
situations are not exactly equal for the no-evolution setup and evolution setup nowcasts
as indicated by the difference in respective persistences. The comparison of both setups
for lead times larger than 1 min is therefore done by evaluating skill, which describes
the improvement over the corresponding persistence (cf. Fig. 4.6). Overall, skill of the
no-evolution setup nowcasts shows improvements of 0.2 and more over evolution setup
nowcasts for most lead times. This can be observed for point and area nowcasts equally.
For area nowcasts and lead times of 2 min to 13 min, the skill of the no-evolution setup is
above 0.5, the RMSE is reduced by more than 50% compared to the persistence. On the
one hand, this indicates a major nowcast improvement when using the model for situations
without growing, shrinking or reshaping clouds. On the other hand, the more complex
cloud evolution in the evolution setup, which can actually take place in the real atmosphere,
is a major hurdle for good nowcasts and reduces the performance of the nowcasting model
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significantly.

Nowcast errors from viewing geometry and cloud evolution combined

An additional synthetic nowcasting experiment was designed to investigate the joint effect
of both systematic errors described above. The combined assumption of advected, non-
evolving clouds as well as the converging ASI geometry are part of MACIN and other ASI-
based DNI nowcasting models. This experiment is designed to showcase the joint errors
resulting from these sources. Therefore, synthetic cloud scenes of the no-evolution setup
described above were used with one difference. Cloud masks complying to the sun geometry
were derived for these cloud scenes and injected into the nowcasting model instead of the
CNN derived cloud masks. The performance of nowcasts of the MACIN configuration
with sun geometry cloud masks in the no-evolution setup is evaluated in the following.
This combination of the sun geometry configuration of MACIN and the no-evolution cloud
scenes will be referred to as no-evolution sun geometry experiment in the following.
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Figure 4.7: (a) RMSE, (b) skill and (c) MBE for 718 nowcasts performed with the sun geometry cloud masks on
synthetic cloud data with cloud evolution and without cloud evolution. As a reference, errors of MACIN nowcasts
and persistence are given.

The resulting nowcast RMSE, MBE and skill are given in Fig. 4.7. The focus is set
in the following on point nowcasts, area nowcasts are displayed in the figure as well for
completeness. A strong improvement of skill over all prior nowcasting experiments was
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found for the no-evolution sun geometry experiment. Before a lead time of 2 min, skill
is below 0.6. Skill of 0.6 to 0.7 is observed up to 12 min, afterwards the skill slowly
declines. Smaller skill in the beginning is not strictly linked to larger nowcast RMSE of this
experiment, but can be explained with smaller RMSE of the persistence during these times.
Persistence RMSE and no-evolution sun geometry nowcast RMSE are relatively constant
for longer lead times, resulting in stable skill. For lead times longer than about 16 min, skill
decreases. Initially distant clouds from the ASI become more and more important for DNI
at these times. Due to the limited field of view, these are not observed and represented in
the nowcasting model. Instead, information outside the domain is estimated by continuous
boundary condition. Obviously, this leads to larger errors in the nowcasting experiment.
Meanwhile the persistence error for these times stays approximately constant, which leads
to a decrease in skill. Compared to the reference run nowcasts, skill is drastically improved
by up to 0.6.
Improvement in skill of no-evolution sun geometry nowcasts over the no-evolution now-

casts is approximately 0.2 and relatively stable up to lead times of about 16 min. In this
case, the sun geometry cloud masks are helpful for longer lead times than for evolution
nowcasts. This supports the hypothesis, that sun geometry nowcasts cannot outperform
the reference run nowcast for lead times of more than 4 min due to the strongly evolv-
ing clouds. If cloud evolution is eliminated in the no-evolution experiments, the additional
improvement due to the sun geometry cloud masks is steady over time. Altogether, the no-
evolution sun geometry experiment demonstrates the potential for a strong improvement in
nowcast performance if clouds could be modeled as they actually evolve and geometric rep-
resentation of the clouds can be improved. Measurement configurations with multiple ASIs
imaging the same cloud can help to improve the geometric representation of the cloud. E.g.
Nouri et al. (2018) used 4 ASIs for a 3D-retrieval of clouds and an accordingly improved
cloud geometry. As a first step towards better cloud geometry in MACIN, the assumption
of cloudiness on a flat 2D plane at cloud-base height could be extended to 2D cloud layer
with a vertical extent. Modeling the cloud evolution correctly on the required temporal and
spatial scales brings up three major problems: physically accurate modeling of all relevant
processes, knowledge about the exact initial state and computational constraints. Highly
resolved numerical weather prediction models – so called large eddy simulations (LES) –
are capable of simulating clouds and turbulence down to scales of 10 meters. Still, some
microphysical processes like cloud droplet growth need to be parametrized. Whether these
are accurate enough to exactly model evolution of a field of specific clouds for the next min-
utes would have to be proven. Even in case of a perfect model, chaos theory suggests that
small uncertainties in the initial conditions may lead to large deviations in the predicted
states. 3D knowledge about winds, temperature, water vapor and more variables would be
necessary for a good initial state of a physically accurate model. Deriving this information
and therefore an accurate initial knowledge about the atmosphere from 2D ASI images is
very challenging. Lastly, running physics simulations on the required scales and accuracy
requires large computational power and poses a further challenge as nowcasts have to be
provided within single minutes. Overall, modeling cloud evolution for irradiance nowcast-
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ing remains a major challenge. Statistical models and machine learning approaches can be
developed to approximate relevant physical processes, extract most important information
encoded in ASI images and are computationally feasible. For example Carpentieri et al.
(2023) demonstrated improved nowcast performance through statistical modeling of cloud
evolution.

4.2 All-sky imager based nowcast performance on real
data

MACIN and its components were extensively validated on synthetic data in Gregor et al.
(2023) as described in Sect. 4.1. Additionally, Sect. 3.4.5 and 3.4.6 describe changes com-
pared to Gregor et al. (2023) for the application of MACIN to real-world data. This
section evaluates MACIN nowcast performance on real data. Section 4.2.1 explains the
chosen cloud situations. DNI nowcast performance is evaluated in Sect. 4.2.2. The focus
is on errors of the final DNI nowcasts, intermediate steps are only investigated if necessary
to explain observed errors.

4.2.1 Evaluation setup

Settings of MACIN were chosen as in the synthetic experiments, ASI images from fore-
cast start time and 1 min before are used if available. Two ASIs and a sun-tracker with
pyranometer were installed in Egling a.d. Paar for the project NETFLEX as explained in
Sect. 3.2.2. ASI images are available as MACIN input in 1 min-intervals and reference DNI
measurements with the pyranometer in 2 s time resolution which is resampled to 1 min
averages. July 2021 was chosen as validation period and nowcasts were started in 5 min
intervals between 08:00:00 UTC and 15:00:00 UTC. The restriction to these times was cho-
sen to focus on situations with sun zenith angles less than 60◦ for which the ASIs capture
clouds relevant for occlusion of the sun in the near future. Additionally, the PV plant
is tilted towards the south, leading to an increased importance of Sun positions in the
south as observed around noon. 2040 nowcasts were performed and evaluated for MACIN
configurations with constant cloud mask uncertainty and varying cloud mask uncertainty
respectively. 13 and 21 July 2021 were excluded due to missing data. Cloud fraction
for the validation period is computed from cloud masks for the ASI-16142 as the average
numeric cloud mask value of all pixels with zenith angles smaller than 50◦. A tendency
towards large cloud fractions was found as displayed in Fig. 4.8, but also days with low
cloud fraction can be found around 21 July 2021. Equal to cloud fraction, also image
average cloud-base height was computed for the validation period. As shown in Fig. 4.8,
low cloud situations with cloud-base height up to 3 km dominate, but also periods with
mid-level cloud-base height of about 4 km as well as high-level cloud-base height of more
than 8 km are included.
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Figure 4.8: Overview of (a) cloud fraction and (b) image average cloud-base height for all nowcast start times
in the evaluation period. Note that the default cloud-base height of 1 km is used in case of existing images but
no detected clouds. Black indicates missing data due to missing images. As the stereographic cloud-base height
retrieval requires simultaneous images from both ASIs, panel (b) shows more gaps.

In the real-world setup, 1 min DNI averages are used as a reference, while DNI references
for the synthetic setup were computed for a specific moment in time. To comply better
with these 1 min DNI averages used as a reference, the MACIN cloudiness of a larger area
around the Sun is assumed to be relevant. For all real-world applications, the cloudiness
used for further calculation in the MACIN radiative transfer parametrization is averaged
over all model grid points within a 2.5 ◦ opening angle around the Sun position. For the
synthetic setup, this opening angle was 0.5 ◦. Additionally, cloud situations in real-world
situations may be more complex than the LES shallow cumulus cloud fields. The amount
of shading can differ a lot more between successive clouds. To account for this, the half-
width time of the exponentially weighted mean of the DNI clear-sky indices was increased
from 10 min for the synthetic setup to 30 min for the real-world setup. This means, that
the expected radiative effect of the next predicted clouds on DNI relies on a longer time
series of the measured radiative effect of previous clouds.

4.2.2 Nowcast performance

Figure 4.9 displays RMSE and MBE of MACIN DNI nowcasts along with smart persistence
as a reference. The results for the MACIN configuration with constant cloud mask uncer-
tainty as used in the synthetic experiments are discussed first. The alternative configuration
with varying uncertainty is discussed at the end of this section and explores the differences
between the configurations. For lead times of more than 2 min up to about 19 min RMSE
of MACIN nowcasts is approximately 20 Wm−2 to 25 Wm−2 lower than RMSE of smart
persistence. This corresponds to a reduction in RMSE of approximately 7.5% to 10%. For
longer lead times, no RMSE improvements are found and MACIN cannot outperform smart
persistence for lead times greater than 23 min. Smart persistence is perfect for nowcast
start and outperforms MACIN for lead time 1 min as well. MBE of the smart persistence
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Figure 4.9: RMSE and MBE per lead time for 2040 MACIN DNI nowcasts in July 2021. Performance of smart
persistence is given as a reference.

nowcasts is stable and in the range of 0 Wm−2 to −5 Wm−2 and therefore small compared
to RMSE. MBE of MACIN nowcasts is approximately −20 Wm−2 at the beginning and
approximately 0 Wm−2 for lead times of 23 min. An increasing negative MBE can be ob-
served for larger lead times. The structure of these MACIN errors for real-world data
complies well with the structure of errors for synthetic data described and discussed in
Sect. 4.1.2. MACIN can therefore be used beneficially for real-world applications. How-
ever, relative nowcast improvement differs between real-world and synthetic data. Multiple
reasons can explain the smaller relative nowcast improvement when applying MACIN to
real-world data. These include data quality, cloud scenes, and additional errors from the
DNI parametrization. Especially in smart persistence MBE, but also in MACIN MBE,
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Figure 4.10: Measured DNI averaged per relative minute in 5 min intervals for all nowcast times.

less negative values are observed for times which are multiples of 5 min. This is due to a
systematic in the DNI measurements used as reference and basis for the nowcasts. When
averaging DNI values for every minute of 5 min intervals, values for minute 0 are on average
about 5 Wm−2 less than for minutes 1 to 4 as visible in Fig. 4.10. This matches exactly
the MBE structure of smart persistence. The structure within 5 min intervals is also found
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in corresponding PV power measurements (cf. Sect. 5.2.2), which was measured indepen-
dently by a third party. Fluctuations in the local power grid are assumed to influence the
CR6 datalogger and cause these systematics in the measurements.

(a) (b)

(c) (d)

Figure 4.11: Example ASI images of limited quality. (a) Refraction on glass dome of ASI-16142 due to spider web
at 11:25:00 UTC on 19 July 2021. (b) Rain on glass dome of ASI-16126 at 12:10:00 UTC on 11 July 2021. (c)
Insect in field of view of ASI-16126 at 09:49:00 UTC on 23 July 2021. Pollution in the region of the Sun is visible
as well. (d) Bird in field of view of ASI-16126 at 09:04:00 UTC on 23 July 2021. An additional example of strong
refraction on the glass dome of ASI-16142 is given in Fig. 3.7.

Images used in the real-world cases were not quality controlled. This step was omitted
purposely, as MACIN is targeted at actual solar energy applications. Consistent cleaning of
the ASI glass dome cannot be guaranteed. E.g., rain drops, insects, and birds are realistic
obstructions in the images. Figure 4.11 gives examples of low-quality images used in the
validation.
The mis-detection of clouds due to obstruction in the images can obviously lead to in-

creased nowcast errors. As shown in Fig. 4.8, the validation period featured plenty of times
of very high or very low cloud fraction. To further investigate this, nowcasts were grouped
by cloud fraction at nowcast start time into 5 bins. Error measures were computed per bin
and are given in Fig. 4.12. Cloud fraction is more uniformly distributed for the synthetic
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Figure 4.12: RMSE per lead time of 2040 MACIN real-world nowcasts grouped by cloud fraction at nowcast start
time. The cloud fraction bin and the number of nowcasts per bin are given in the header of the respective panel.
Note the differences in scaling of the Y-axes.
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data. More than 51 % of all real-world nowcasts start with cloud fraction of at least 0.8
and more than 27 % start with cloud fraction of less than 0.2. For these extreme cloud
fractions, variability is limited and persistence is therefore a good assumption. RMSE
improvement of MACIN over persistence is limited for these bins (Fig. 4.12a and e). In
these cases, persistence is a relatively good assumption and therefore RMSE improvement
over persistence is limited for these bins (Fig. 4.12a and e). As these bins comprise the
majority of nowcasts, this directly impacts RMSE performance of all nowcasts together.
Outperforming persistence is therefore harder for the real-world dataset compared to the
synthetic dataset. For cloud fractions in the range of 0.2 to 0.8, persistence RMSE is
larger than for very high and low cloud fractions, most of the time by two or three times.
MACIN shows its strength in these situations of broken clouds and large DNI changes
and significant RMSE improvements of MACIN can be found. For lead times of about
7 min and more, RMSE for persistence and for cloud fractions below 0.2 is almost con-
stant around 200 W m−2, while RMSE for MACIN is strongly increasing to finally about
320 W m−2.These striking nowcast errors are most likely connected to the overestimation
of distant clouds, which are seen under a large viewing zenith angle.
The synthetic experiments featured a constant position of the sun and a single layer

of shallow cumulus clouds. The large cloud optical depth of shallow cumulus clouds is
linked to very low transmissivity. The DNI is therefore more or less binary. In real-world
applications, all kinds of clouds can be observed, resulting in all kinds of DNI reduction.
Furthermore, multilayer clouds can cause strongly different transmissivity between clouds
in the same ASI image. The current DNI parameterization assumes a common trans-
missivity for all clouds in an image, and especially multilayer clouds are not represented
in MACIN. The increased complexity of DNI in real-world data is more challenging to
nowcast compared to synthetic data.
RMSE per lead time for the MACIN configuration with varying cloud mask uncertainty

(cf. Sect. 3.4.5) is displayed as well in Fig. 4.9. In general, errors for both MACIN con-
figurations are similar for lead times up to about 12 min. MBE shows a stronger negative
trend for the MACIN configuration with constant cloud mask uncertainty for longer lead
times. This can be explained by the use of cloud mask information with θ > 75◦ in case of
constant cloud mask information. Cloudiness is generally overestimated for larger zenith
angles due to the misinterpreted view of cloud sides. This overestimation results in a
negative bias of estimated DNI. The configuration with varying cloud mask uncertainty
therefore performs better for lead times larger than 21 min in terms of RMSE and is still
comparable to smart persistence for these times. RMSE per lead time for the MACIN
configuration with varying cloud mask uncertainty was also computed separately for the
5 cloud fraction bins discussed above It is shown in Fig. 4.12. The improved performance
of the MACIN configuration with varying cloud mask uncertainty compared to the con-
figuration with constant cloud mask uncertainty is mainly due to a reduction of RMSE
for situations of low cloud fraction. Especially the considerable RMSE for cloud fractions
below 0.2 and lead times of more than 15min is reduced. Overall, the consideration of
nowcast errors per cloud fraction emphasizes that the overestimation of distant clouds is
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a major error source of MACIN. The varying cloud mask uncertainty partly compensates
for this error in some cases. However, the configuration with constant cloud mask uncer-
tainty gives smaller RMSE for cloud fractions larger than 0.6. This effect needs further
investigation in future studies.

4.3 Satellite-exclusive nowcast performance

July 2021 was chosen as evaluation period for nowcast performance of satellite only now-
casts performed with the model introduced in Sect. 3.5, analogously to the evaluation of
MACIN in Sect. 4.2. Nowcasts were done for the PV plant in Egling a.d. Paar, where
DNI measurements are available. APICS and CiPS cloud information can be computed for
the 5 min intervals of Meteosat-10 rapid scans, and nowcasts were started accordingly in
5 min intervals between 08:00:00 UTC and 15:00:00 UTC in compliance with the MACIN
nowcasts. 2019 nowcasts were performed with the satellite-based model configured as de-
scribed above. These are 21 nowcasts less than those performed with MACIN due to
missing satellite imagery. Cloud optical depth layers (τlow and τup) are computed accord-
ing to the threshold-based layer separation. Maximum nowcasted lead time was chosen as
4 h. DNI reference measurements are averaged over 15 min centered around the relevant
times. Smart persistence is also computed as a reference based on 15 min DNI measure-
ment averages. However, to conform with the concept of smart persistence as a reference
nowcast only information up to the nowcast start time t0 can be used. Smart persistence
is therefore based on an average over t0 − 15 min to t0 while the DNI reference values for
t0 are averages over t0 − 7.5 min to t0 + 7.5 min.
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Figure 4.13: RMSE and MBE per lead time for 2019 nowcasts performed with the satellite-based irradiance
nowcasting model. Smart persistence is given as a reference. Further on, errors for 15 min averages of 2040 MACIN
nowcasts are indicated (averaged from 0 min to 14 min and from 15 min to 29 min).
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RMSE and MBE of satellite-based nowcasts are given per lead time in Fig. 4.13. For
lead times of 30 min and more, satellite-based nowcasts outperform smart persistence in
terms of RMSE. The largest RMSE improvement is approximately 45 Wm−2 or 17% for
lead time 1 h 30 min and 3 h 15 min. Smart persistence RMSE is lower than satellite-based
nowcast RMSE for lead times up to 30 min. This is analogously to errors of MACIN
nowcasts discussed in Sect. 4.1.2 and 4.2. The initial cloud state is subject to errors in
the complex satellite-based nowcasting model, while the smart persistence relies directly
on a very good estimate from measurements. For longer lead times, changes to the initial
state become more important and the possibility of detection of upcoming changes in
satellite images leads to smaller errors compared to the smart persistence which cannot
predict upcoming changes. MBE of satellite-based nowcasts is found to be negative up to
−43 Wm−2. The structure of MBE for exclusively satellite-based nowcasts resembles the
MBE structure found for MACIN nowcasts but on longer timescales. Semi-large negative
values in the beginning are followed my values close to zero and a negative trend for lead
times larger than 1 h. As exclusively satellite-based nowcasts are only a minor part of this
work, detailed investigation of error sources is omitted. Some potential error sources can,
however, be named. As in MACIN, cloud evolution is modeled purely by advection in
the satellite-based nowcasting model. This is a rough approximation, as complex cloud
evolution on microscale, mesoscale and synoptic-scale can be relevant in the time frame of
hour-ahead nowcasts. Also, the kilometer-scale resolution of MSG images limits the quality
of satellite-based nowcasts. Vertical cloud mapping and according parallax correction are
potentially large error sources as well.
Figure 4.13 also displays errors of MACIN nowcasts averaged over 15 min intervals as a

reference. Two main messages can be derived by the comparison of these nowcasts with
the satellite-based nowcasts. Firstly, ASI-based nowcasts significantly outperform satellite-
based nowcasts in the first minutes, therefore justifying the additional effort of on-site
measurements. Additionally, RMSE of ASI-based nowcasts is even larger than RMSE of
satellite-based nowcasts for lead times on the order of about 20 min to 30 min. This similar
performance indicates that the satellite images contain valuable information for nowcasting
on these timescales. It further motivates the combined ASI- and satellite-based nowcasting
model MACIN-S, which is evaluated in Sect. 4.4.
The configuration of a satellite-based irradiance nowcasting model presented here uses

smoothed cloud layers τlow and τup computed using thresholds, gaussian smoothed veloc-
ity field and 15 time subsamples averaged per nowcast step. Nowcasts with additional
configurations were evaluated to find the best configuration and potentially justify major
adaptations to the original model proposed by Sirch et al. (2017). Therefore, also nowcasts
with alternative configurations of the satellite-based model were evaluated to investigate
the effect of the most significant changes introduced compared to Sirch et al. (2017). Now-
casts were run for a total of 4 alternative model configurations, each differing in only one
aspect from the configuration used in Sect. 3.5. The resulting RMSE and MBE over lead
time is shown in Fig. 4.14 These are configurations with
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Figure 4.14: RMSE and MBE of 2019 nowcasts in July 2021 performed with four alternative configurations of the
satellite-based nowcast model. Errors of nowcasts with the proposed configuration of the satellite-based nowcast
model and smart persistence are given as a reference.

• velocity field interpolation according to Sirch et al. (2017) instead of the gaussian-
based smoothing described in Sect. 3.5.1,

• cloud layers τ ′low and τ ′up computed according to extended CiPS information as de-
scribed in Sect. 3.2.3 instead of the threshold-based cloud layers τlow and τup respec-
tively,

• cloud layers τlow and τup not smoothed before advection as described in Sect. 3.5.1,

• or without the additional time subsampling explained in Sect. 3.5.2.

The nowcast performance of these configurations is briefly discussed in the following and
reasons for errors are proposed but were not investigated in detail. If not stated otherwise,
the errors of the proposed configuration of the exclusively satellite-based model are used
as a reference. The configuration with cloud motion interpolation according to Sirch et al.
(2017) shows significantly larger RMSE in the beginning, which gets closer to RMSE of the
proposed configurations towards the maximum lead time of 4 h. MBE for this alternative
configuration is positive up to 26 W m−2 in the beginning and slowly decreasing after 1h.
This difference in MBE compared to the proposed configuration resembles the differences
observed in RMSE and could potentially be the explanation for larger errors performance.
One possible reason for the tendency towards positive MBE could be the underestimation
of velocities in cloud-free regions by the Sirch et al. (2017) motion field construction. At
nowcast start time, cloud optical depth fields are not yet advected and are identical to the
proposed configuration. The differences in MBE despite equal cloud optical depth fields
can be explained by the performed time subsampling to compute 15 min DNI averages.
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This subsampling makes use of the velocity field and can explain MBE differences at lead
time 0 min for nowcasts with the Sirch et al. (2017) cloud motion field configuration.
The nowcast model configuration with cloud layers τ ′low and τ ′up shows larger RMSE and

a positively shifted MBE curve. A comparison of the cloud optical depth layers τlow and
τup used in the proposed configuration as well as τ ′low and τ ′up is shown in Fig. 3.10. τ ′low
exhibits cloud gaps in areas where τlow shows compact cloud structures. This indicates
that the additional information of CiPS is not ideally harmonized with the definition of
water and ice clouds of APICS, at least for the configuration used in this work. The gaps
in cloud optical depth could explain also the positive shift in MBE.
A smoothing of the cloud optical depth fields was introduced to suppress the minimal

noise from CiPS retrieval, which is working on single pixels. In reality, neighboring MSG
pixels are correlated and cannot be perfectly separated (Schmetz et al., 2002). RMSE
is larger for nowcasts with the configuration without this cloud optical depth smoothing,
suggesting that the smoothing is helpful for better representation of cloud optical depths.
An extensive study on the type and extent of smoothing is omitted here, but could lead
to further nowcast improvements.
The fourth alternative configuration omits the time subsampling. RMSE and MBE for

nowcasts with this configuration differ only slightly compared to the proposed configura-
tion. This shows that the time subsampling is not as important as the other adaptations as
it is currently implemented. The large spatial extent of MSG pixels results in an implicit
smoothing in time, which can explain why there is no improvement by the subsampling.
For long lead times, errors in the cloud motion field as well as neglected cloud evolution
dominate. Time subsampling is not helpful, if the advected cloud optical depth fields have
limited quality for large lead times.
The development of an exclusively satellite-based nowcasting model was not a central

part of this work and its performance may not be competitive with other scientific and
commercial satellite-based models.

4.4 Combined all-sky imager and satellite-based now-
cast performance

MACIN was designed as an irradiance nowcasting model, which can make use of multiple
cloud information sources. Section 3.6 explains the method to use information derived from
satellite measurements within MACIN. This extended MACIN-S was used to perform
and evaluate DNI nowcasts as described in the following. The nowcast performance of
MACIN-S with satellite information is evaluated on data in July 2021 for the PV plant in
Egling a.d. Paar. Nowcasts were performed for the same time and location as nowcasts
of MACIN without satellite data, as evaluated in Sect. 4.2. Note that only 21 out of the
2040 nowcasts are performed without satellite information. Nowcasts were performed with
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two MACIN-S configurations that differ only in the used cloud mask uncertainty. One
configuration assumes constant cloud mask uncertainty (cf. Sect. 3.4.5), while the second
configuration uses varying cloud mask uncertainty.
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Figure 4.15: RMSE and MBE per lead time for 2040 MACIN-S DNI nowcasts in July 2021. Performance of MACIN
with constant cloud mask uncertainty and smart persistence is given as a reference.

RMSE and MBE per lead time are computed for MACIN-S nowcasts and given in
Fig. 4.15 along with error values for smart persistence. Additionally, error values for
MACIN with varying cloud mask uncertainty but without satellite data is provided as a
reference for ASI-based nowcasting without satellite information. The comparison in the
following focuses on the difference between MACIN-S and MACIN to investigate possible
benefits due to satellite measurements. Smart persistence is mainly given for complete-
ness. RMSE of MACIN-S and MACIN nowcasts differs only marginally up to a lead time
of 10 min. For longer lead times, the MACIN-S nowcasts show improvements in RMSE
over MACIN in the range of approximately 8 Wm−2. Nowcasts for both MACIN-S con-
figurations perform similar, with marginal differences up to lead times of about 23 min.
For longer lead times, systematically lower RMSE is found for nowcasts of MACIN-S with
varying cloud mask uncertainty compared to MACIN-S with constant cloud mask uncer-
tainty. MBE of nowcasts for both MACIN-S configurations, and the MACIN reference, are
structurally similar up to lead times of about 17 min with MBE differences in the range of
2 Wm−2 to 4 Wm−2. For larger lead times, MACIN-S nowcasts with constant cloud mask
uncertainty show a tendency of increasing negative bias as observed for MACIN nowcasts.
In contrast, MBE of MACIN-S nowcasts with varying cloud mask uncertainty is found to
be in the range of 0 Wm−2 to −5 Wm−2 for these larger lead times. For completeness, it
shall also be mentioned that the RMSE of 15 min averaged MACIN-S nowcasts shows im-
provements over MACIN. It also fits well with the RMSE of the exclusively satellite-based
nowcasts for lead times of more than 15 min as shown in Fig. 4.16. This could be expected,
as the satellite observations help to estimate boundary information in MACIN-S, leading
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Figure 4.16: RMSE and MBE per lead time for 2019 nowcasts performed with the satellite-based irradiance
nowcasting model. Smart persistence is given as a reference. Further on, errors for 15 min averages of 2040 MACIN
and MACIN-S nowcasts are indicated (averaged from 0 min to 14 min and from 15 min to 29 min.

to a smooth transition between ASI- and satellite-based nowcasts.
Figure 4.17 shows the RMSE of the MACIN-S nowcasts grouped by cloud fraction, as

discussed for MACIN in Sect. 4.2.2. The large RMSE of MACIN nowcasts for cloud frac-
tions smaller than 0.2 and lead times of more than 15 min, is decreased for MACIN-S. The
MACIN-S configuration with varying cloud mask uncertainty even matches the RMSE of
persistence in these cases. This implies that satellite imagery provides reasonable infor-
mation for distant clouds, which helps to improve the cloud representation in the model
state. For situations with cloud fractions of more than 0.6 (Fig. 4.17d and e and large
lead times of 15min, the nowcasts of MACIN with constant cloud mask uncertainty show
a lower RMSE than all other benchmarked nowcasts. This configuration also shows the
largest overestimation of cloudiness and the largest negative MBE for these lead times,
which may be connected to smaller RMSE for larger cloud fractions.
Overall, the additional use of satellite data in MACIN proved beneficial for nowcasts,

RMSE can be reduced especially for lead times larger than 10 min and situations of low
cloud fraction. Information from the border of the ASI field of view becomes more impor-
tant for larger lead times. This is extrapolated by nearest neighbor interpolation within
MACIN. This extrapolation introduces a negative bias in nowcasted irradiances. The
additional consideration of satellite data in the assimilation-inspired procedure provides
cloud information for longer lead times. Especially the MACIN-S configuration with vary-
ing cloud mask uncertainty demonstrates the benefits of additional satellite measurements.
Due to the assumed larger uncertainty of ASI cloud masks for larger viewing zenith angles,
relative importance of satellite measurements gradually increases towards the border of
ASI field of view. This can be seen as a confirmation of the proposed varying cloud mask
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Figure 4.17: RMSE per lead time of 2040 MACIN and MACIN-S real-world nowcasts grouped by cloud fraction
at nowcast start time. The cloud fraction bin and the number of nowcasts per bin are given in the header of the
respective panel. Note the differences in scaling of the Y-axes.
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uncertainty. In the case of constant cloud mask uncertainty, the relative importance of
satellite measurements is only increased for model grid points not covered by projected
ASI images. The tendency for negative MBE for large lead times can be found also with
satellite data in this case. An investigation of RMSE depending on cloud fraction, suggest
that this negative MBE may actually contribute to slightly improved nowcast performance
in case of large cloud fraction. More detailed assessments of the uncertainties of cloud
masks and satellite contributions, as well as their spatial distribution, could give further
insights and additional enhancements. Due to the limited extent of this work, this was not
addressed here and remains for future work.
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Chapter 5

Conclusion and Outlook

5.1 Conclusion

This work introduced MACIN, a novel model for all-sky image based cloud and direct
irradiance nowcasting. MACIN is designed for intra-hour nowcasts up to lead times of ap-
proximately 30 min and with a time resolution of 1 min. It evaluates cloud images from two
and possibly also more all-sky imagers (ASIs) to derive cloud masks with a convolutional
neural network (CNN), cloud-base height (CBH) by stereography and cloud motion from
consecutive images. These cloud observations are combined into a MACIN model state us-
ing a technique inspired by 4D-Var data assimilation (Le Dimet and Talagrand, 1986). The
model state is extrapolated to the future using an advection scheme. Predicted cloudiness
is converted into DNI by a radiative transfer (RT) parameterization, which exploits previ-
ous on-site measurements of DNI for an occluded and non-occluded Sun. The assimilation
technique allows for the easy integration of additional observations for improved nowcasts.
The extension of the nowcasting model by satellite data to MACIN-S demonstrates this
capability.
A synthetic setup was developed for the extensive validation of MACIN, which was also

published in Gregor et al. (2023). A method was developed to rapidly generate synthetic
ASI images of Large eddy simulation (LES) cloud fields. Reference irradiance, CBH and
motion as well as perfect cloud masks are derived for these LES cloud fields to validate
MACIN in detail. Overall, the derived cloud information is very reliable with more than
94% pixel accuracy of cloud masks, 4.0% relative RMSE of CBH and RMSE of cloud
motion in the order of ±0.1 m s−1. MACIN DNI nowcasts outperform smart persistence
for lead times of 1 min and more in terms of RMSE in the synthetic setup, proving MACIN
to work. Multiple different nowcast experiments were conducted for detailed analysis of
nowcast errors, e.g., with perfect cloud masks or shifting frozen cloud fields. This also
extends the work of Gregor et al. (2023) and broadens the understanding of nowcasting
errors. The initial large MACIN nowcast RMSE could be attributed mainly to imperfect
cloud masks in the region of the Sun and to the RT parameterization. The strong increase
in RMSE over lead time could be attributed to cloud evolution. MACIN models only
the displacement of clouds, as other ASI-based irradiance models in the literature (e.g.,
Schmidt et al., 2016; Nouri et al., 2022). These models currently do not capture full
cloud evolution with growth, decay, and reshaping. ASIs view distant clouds under large
zenith angles and the vertical cloud extent is often misinterpreted as horizontal extent
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in images. Overestimation of the cloudiness of distant regions leads to a negative bias
in the nowcasted DNI. Finally, the synthetic setup allows for validating nowcasts for
areas directly. While real-world irradiance measurements are point measurements and
area irradiance is usually not measurable directly, the synthetic setup offers the possibility
of perfect area DNI references. As previous studies (Kuhn et al., 2017b; Nouri et al.,
2022) suggested, the nowcast performance can be greatly improved when spatially averaged
irradiances are nowcasted.
MACIN was also run with real world ASI images to evaluate DNI nowcast performance for

real cloud situations. A total of 2040 nowcasts was performed for July 2021. The nowcast
errors found agree well with the findings of the synthetic setup, but the improvement over
the persistence of MACIN nowcasts is generally greater for real data. This was attributed to
additional challenges due to imperfect ASI images and more complex cloud situations, e.g.
with multiple layers. In addition, the distribution of cloud fractions differs strongly between
the real data and synthetic data. Note that the real ASI images were intentionally not
filtered and quality-controlled to simulate an operational use case. In conclusion, MACIN
outperforms smart persistence for synthetic and real-world data.
The Meteosat second generation (MSG) and other similar geostationary satellites provide

spectral cloud images with large spatial coverage. This work describes how these images
can be used for DNI nowcasting. At first, a method was introduced to derive DNI from
MSG images. Following Sirch et al. (2017) and using the cloud optical depth retrievals
CiPS (Strandgren et al., 2017) and APICS (Bugliaro et al., 2011), two cloud layers with
optical depth are derived from images. For a given ground position, the relevant cloud
optical depths can be extracted from these layers to compute DNI. A satellite-based DNI
nowcasting model based on these methods was described and evaluated. This illustrates
the potential benefit of MSG images for irradiance nowcasting applications and validates
the method to derive DNI. The method of deriving DNI from MSG images was also
exploited for the main intended use in this work: an extension of MACIN. MACIN was
extended to make use of MSG images in addition to ASI images. Satellite-derived DNI
fields are converted into a cloudiness state, which is assimilated in the extended MACIN-S
together with cloud information from ASI images. Again, 2040 DNI nowcasts were run
with MACIN-S for July 2021. For lead times of more than 10 min, MACIN-S nowcasts
outperform MACIN nowcasts with an RMSE reduction of approximately 8 W m−2 and with
improved MBE for lead times of 20 min and more. Overall, this illustrates the potential of
using the assimilation technique to combine ASI and MSG images for improved minute-
ahead DNI nowcasting.
In summary, the key points of this work are:

• A novel model for all-sky image based cloud and direct irradiance nowcasting (MACIN)
was introduced along with an extended model (MACIN-S), which makes additional
use of MSG images.

• MACIN was successfully validated in a synthetic setup with extended error investi-
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gation and evaluated on real-world data.

• The combined ASI- and satellite-based nowcasts from MACIN-S showed further per-
formance improvements over nowcasts from MACIN.

The main part of this work focuses on the nowcasting of direct irradiance, but PV power
usually depends on global irradiance. Therefore, Sect. 5.2 gives an extended outlook on
GHI and PV power nowcasting based on MACIN-S and demonstrates the potential of the
nowcasting model for actual applications.
MACIN was developed within a subproject of the NETFLEX project. Its irradiance

nowcasts were designed for use in the minute-scale management of a biogas power plant.
The processing of irradiance nowcasts and management of the biogas power plant were
developed in another subproject not addressed by this work. While MACIN is able to
compute DNI nowcasts operationally within one minute, he computational times of the
PV power plant model developed in another NETFLEX subproject contrasted with the
desired minute-scale management of the power plant. Additionally, knowledge of the state
of degradation and the details of the PV plant was limited. Therefore, the MACIN now-
casts were only used as a minor contribution and the focus was shifted more to economic
and engineering aspects for the management of the biogas plant. However, knowledge of
upcoming irradiance and PV power fluctuations were provided the biogas management as
well and potential for optimized management of the plant was found. The developed ir-
radiance nowcasting models can be used in other applications beyond biogas power plants
as well. Optimized charging or discharging of large battery storage and the management
of island grids with diesel generators and PV are two possible use cases.

Remaining challenges and possible future work

While MACIN and MACIN-S were successfully validated, the improvement over smart
persistence is still relatively small and nowcast errors need to be reduced. Investigat-
ing the source of errors revealed possible starting points. An improved representation of
cloud evolution could drastically improve nowcast performance. Physical cloud evolution
is challenging to model based only on ASI images and, e.g., LES models come with large
computational cost, which may even rule out the use for minute-ahead nowcasting. In
the related field of radar-based precipitation nowcasting, statistical and machine learning-
based cloud modeling approaches are already becoming more and more popular, as they
can potentially approximate not only a shift of clouds, but also growth, decay, and re-
shaping (e.g. Pulkkinen et al., 2019; Ayzel et al., 2020; Ravuri et al., 2021) from a series
of two-dimensional images. Carpentieri et al. (2023) already applied one of the statistical
approaches for satellite-based irradiance nowcasting. Some of these more advanced cloud
modeling methods also provide probabilistic nowcasts, another potentially interesting idea
for MACIN. Not only deterministic irradiances are predicted but also probabilities or a
range of irradiances, e.g. by an ensemble of nowcasts. In numerical weather prediction,
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ensemble predictions are commonly used. Each member of the ensemble starts from a dif-
ferent initial state. Therefore, data assimilation techniques such as the Ensemble Kalman
Filter (see e.g. Pu and Kalnay, 2019) can be used and could potentially be adapted for
use within MACIN. It should also be mentioned here that this work focused on classical
ASI-based irradiance nowcast models like MACIN. These models extract cloud informa-
tion from images, plug this into a simple numerical model to extrapolate future cloud
states and convert future cloud information into irradiance with an RT parameterization
(Peng et al., 2015; Schmidt et al., 2016; Dittmann et al., 2021; Richardson et al., 2019;
Nouri et al., 2022). Recently, more and more machine learning models have been proposed,
which use ASI images and measured irradiance as input to, e.g. a CNN and output irra-
diance nowcasts potentially without intermediate steps (e.g.; Paletta et al., 2022; Song
et al., 2022).Currently, these models show performance comparable to models based on the
classical approach (Logothetis et al., 2022).
The RT parameterization of MACIN was identified as an additional source of significant

errors. Nouri et al. (2019b) proposes another way of determining relevant cloud optical
depth than currently used in MACIN, which could be adapted. Situations with multiple
cloud layers often come with different cloud optical properties per level. A representation
of more than one cloud layer in MACIN and the respective extensions to the RT parame-
terization could significantly improve estimated DNI. In addition to multiple cloud layers,
also a vertical extent per cloud layer could be introduced in MACIN. This may help to
reduce the overestimation of the cloud fraction for distant clouds. In case of multiple
cloud layers, images provide only information for upper layers if there is no cloud in line
of sight of the ASIs on a lower layer. The initial state of the upper layer would in such
cases be partially undefined. In case of broken clouds in lower layers, the use of a data
assimilation background field in MACIN can provide additional information. Parts of the
upper layer which are currently out of sight, may have been visible at the previous nowcast
start. This background information can be used to find a reasonable analysis state even
in regions without current observations. Additionally, a background field can help in case
of no images. In case of, e.g., problems with all ASIs, the cloud information of a previous
nowcast run can be used. The use of a background field was omitted in this work, as the
oversimplified advection scheme leads to limited quality of predicted cloudiness fields for
lead times on the order of 5 min and more. The errors of the background fields are currently
too large for beneficial use. However, a better model for cloud evolution could make the
improved predicted cloudiness attractive as a background state. In theory, MACIN can
directly make use of more than two ASI by considering additional observations in the cost
function. For example, a dense network of ASIs could improve nowcast performance due
to the better estimation of relevant cloud cross sections. Also other types of ground-based
imagers, e.g., infrared cameras can be used to potentially improve nowcasts.
A major drawback of MSG satellite images is the comparably low resolution on the order

of 3 km for the sub-satellite point and even more elsewhere. In December 2022, the first
Meteosat third generation geostationary satellite was launched and is planned to become
operationally available around the end of 2023. The flexible combined imager onboard this
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next-generation satellite will provide images with 16 spectral channels at a spatial sampling
distance of 1 km for the sub-satellite point. Moreover, the image frequency will be reduced
compared to MSG. This higher resolution satellite imagery can enable a leap forward in
satellite- and MACIN-S-based nowcasting performance. In theory, MACIN could also be
used as a satellite-based nowcasting model without ASI images. While this
LASCAT, the method developed for fast generation of synthetic images of modeled cloud

scenes was not validated within this work. Future studies could validate the radiance
computed with this model and investigate its ability to approximate 3D radiative transfer.
Investigation of possible further enhancements is conceivable in this context, e.g. improved
estimation of angular distribution of diffuse radiation.
Isolated use of MACIN demonstrated the performance of the DNI and PV nowcasts.

However, even perfect nowcasts are useless if not used for a beneficial application. There-
fore, it is highly desirable to evaluate the potential of MACIN for specific applications.

5.2 Outlook on global irradiance and photovoltaic power
nowcasting

The nowcasts presented in the previous chapters focused on DNI. For actual use with PV
power plants, nowcasts of global irradiance in plane of array (POA) are required. Ideally,
even a PV power nowcast is provided to the power plant or grid operator. This section
explains the necessary further steps to calculate PV power nowcasts from DNI nowcasts
and demonstrates the performance of PV power nowcasts derived with simple further steps.
Section 5.2.1 describes the extension to nowcasts for global horizontal irradiance and the
resulting nowcast performance. The final setup and performance of the PV power nowcasts
are given in Sect. 5.2.2.

5.2.1 Global horizontal irradiance nowcasts

Global irradiance on a horizontal plane was measured on the PV plant in Egling a.d. Paar
with an Eko MS-80 pyranometer (cf. Sect. 3.2.2). GHI nowcasts can be seen as a first
step towards PV power nowcasts and are explained in the following. Global horizontal
irradiance is the sum of direct and diffuse contributions as

GHI = DHI + DNI cos θsun (5.1)

where DNI is converted onto a horizontal plan by accounting for the sun zenith angle θsun
(see also Sect. 2.1.1). For GHI nowcasts, DNI nowcasted by MACIN-S can be used, and
additional DHI nowcasts are required. Diffuse irradiance usually varies less than direct
irradiance and depends on complex 3D RT. Smart persistence is therefore commonly used
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to nowcast diffuse irradiance (e.g.; Nouri et al., 2018). Analogously to smart persistence
for DNI (Eq. 3.35), smart persistence DHI nowcasts for time t can be computed by

DHIpers(t) = kDHI(t0) ·DHIcs(t) (5.2)

based on the diffuse clear-sky index

kDHI = DHImeas

DHIcs
(5.3)

for the nowcast start time t0. In this work, the exponentially weighted mean with a half-
width time of 10 min is used to determine kDHI(t0) from a series of clear-sky indices. This
averaged kDHI(t0) is desired since DHImeas is a point measurement and intended to be
used to compute the PV power, which depends on large area irradiance. Here, the spatial
coverage and averaging of irradiance by the PV plant is reflected by a temporal average of
the diffuse irradiance.
The nowcasted GHI value for time t can then be formulated as

GHIMACIN-S(t) = DHIpers(t) + DNIMACIN-S(t) (5.4)

where the MACIN-S configuration with varying cloud mask uncertainty was chosen to
compute DNI because of its improved performance (cf. Sect. 4). GHI smart persistence was
calculated additionally as a combination of smart persistence of DHI and DNI according
to Eq. 5.1.
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Figure 5.1: RMSE and MBE per lead time for 2040 GHI nowcasts based on MACIN and MACIN-S. Errors for
smart persistence are given as a reference.

Figure 5.1 shows the results of GHI nowcasts with smart persistence and MACIN-S as
well as MACIN. The structure and systematic resemble DNI nowcasts and are therefore
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not discussed here in detail. MACIN-S nowcasts give a lower RMSE than smart persistence
for lead times greater than 5 min. As for DNI nowcasts, MACIN-S is able to outperform
MACIN. In conclusion, the developed ASI-based DNI nowcasting model can be extended
to nowcast GHI for improved performance over smart persistence.

5.2.2 Photovoltaic power nowcasts

PV power plants convert incident radiation on PV panels into electrical power. The key
factors for the magnitude of electrical power are the incoming radiative power (irradiance)
and the PV panel temperature. PV panel efficiency decreases with increasing temperature
Mavromatakis et al. (e.g.; 2014). Accurate PV power plant models need to consider not
only these two variables, but also the wiring of panels, regulation of inverters, spectral
response and pollution of PV panels, degradation of components and cables, as well as
operational constraints like a maximum allowed power production. This section addresses
PV power nowcasts based on irradiance nowcasts and is intended as a demonstration of
possible benefits. As PV power models are not the focus of this work, a simple statistical
PV model is described and used to illustrate the performance of the PV power nowcast.

Plane of array irradiances

The PV panels of the power plant in Egling a.d. Paar are installed in lines from east to
west and facing south with a tilt. For PV power applications, measured and predicted
irradiances should be given for this plane of array (POA) orientation. The orientation
of direct normal irradiance depends on time and can be described by a vector in the
direction of the Sun ~rDNI(θsun, φsun) in spherical coordinates with the zenith angle θsun and
the azimuth angle φsun under which the Sun is observed for a given time. Parallel to
this, a panel normal vector ~rpanel(θpanel, φpanel) with zenith θpanel = 30◦ and azimuth angle
φpanel = 180◦ for the PV power plant in Egling a.d. Paar. The angle between these two
vectors θinc describes the difference in orientation between the DNI plane and POA and
therefore the relative angle of incidence. It can be derived using the dot product between
the normal vectors as

cos θinc = ~rDNI · ~rpanel
||~rDNI|| ||~rpanel||

. (5.5)

DNI is converted into direct plane of array irradiance by

Edir,POA = max (0,DNI cos θinc) . (5.6)

On the contrary, the measured DHI has no single direction, but is composed of diffuse ra-
diances from potentially all angles. The conversion of DHI into POA strongly depends on
the distribution of these radiances. Efforts have been made to approximate typical angle
distributions for given atmospheric conditions (e.g.; Kuchler, 1979; Perez et al., 1988; Hay,
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1993) and formulate parameterization for the conversion from DHI to diffuse POA irradi-
ance. To keep things simple, a very basic approximation was chosen for this work. Diffuse
irradiance is assumed to be isotropic; i.e., diffuse radiance is assumed to be independent of
angles. For DHI, these are only radiances from the sky. The contribution of reflected light
from the ground is not considered. The diffuse POA irradiance can be described following
Hottel and Woertz (1942) as

Edif,POA = DHI 1 + cos θpanel
2 (5.7)

which is DHI scaled by the fraction of sky seen for a panel with zenith angle θpanel. Total
plane of array irradiance can be calculated as

Etot,POA = Edir,POA + Edif,POA. (5.8)

Note that the position of the Sun changes over time and therefore the relation between
Edir,POA and DNI changes over time. However, sun zenith and azimuth angle changes
over 15 min are assumed to be small and time averaged Edir,POA is computed as the POA
irradiance for time averaged DNI

Edir,POA ≈ max
(
0,DNI cos θinc

)
. (5.9)

Photovoltaic power measurements

The PV power plant is monitored by the company GP JOULE GmbH which provided
measurements of grid input PV power in 15 min intervals for years 2020 and 2021 as well
as 1 min values for July 2021. Figure 5.2 gives an overview of the 15 min values. Data
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Figure 5.2: Available 15 min PV power measurements for the years 2020 and 2021. Highlighted regions indicated
times excluded due to obvious malfunctions or limitations of the power plant and the evaluation month July 2021.
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between 08 March 2020 and 16 May 2020 as well as between 01 November 2020 and 18
March 2021 were excluded due to obvious external limitation or partly malfunction of the
PV power plant. The 15 min values are used to fit the PV model in the following and the
1 min values are used as a reference for PV power nowcasts in the following. According
to personal communication with the owners of PV power plants, the maximum power
input to the electric grid is limited to 5000 kW. PV power is an area quantity, while the
available irradiance measurements give values for a single point. To partly compensate
for this, the 15 min PV power and 15 min GHI mean are used to fit the PV model. The
temporal averaging is assumed to represent the missing spatial coverage and the averaging
of measured GHI. For 1 min PV power nowcasting, MACIN-S DNI nowcasts are derived
for areas and DHI persistence is assumed to be valid for areas as well.
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Figure 5.3: 1 min PV power production averaged per relative times within 5 min intervals for all times in the DNI
nowcasts.

Averaging the 1 min PV power values per minute in 5 min intervals gives a structure
similar to that described for the DNI equivalents in Sect. 4.2.2. As shown in Fig. 5.3, the
average PV power is lower for minute 0 than for the other minutes. Although the CR6
datalogger recording irradiance measurements is not at the same location as the PV grid
input measurement, both are in the same electric sub-grid of the PV power plant. The
coincidence of this structure suggests that either the PV power input varies every fifth
minute and influences the CR6 datalogger or the measurement of the PV power input and
DNI both are influenced by variations in the electricity sub-grid.

Photovoltaic power plant model

For this study, the PV power plant in Egling a.d. Paar is modeled statistically. A linear
regression is fitted to describe PV power as a function of Etot,POA and air temperature T in
K as an indicator for panel temperature. 15 min averages of PV power and POA irradiances
are used. POA irradiances are calculated from the 15 min averages of the measured DHI
and DNI. Air temperature measurements are available in 10 min intervals from the DWD
weather station 06346 in Maisach-Galgen (48.2070◦N, 11.2035◦E) approximately 15 km
east of the PV power plant. Data were restricted to times with measured PV power in the
range of 0 kW to 5000 kW. These are interpolated to 15 min intervals as well. The resulting
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Table 5.1: Parameter values for the linear PV power model.

parameter value unit
a0 -25.18600964 kW
a1 4.70735819 103 m2

a2 0.16957067 K−1 kW

linear regression is

MPV,raw = a0 + a1Etot,POA + a2 T (5.10)

with the parameter values given in Tab. 5.1. Taking into account the allowed limits of PV
power for the power plant in Egling a.d. Paar gives the PV power model

MPV =


0 kW if MPV,raw < 0 kW
5000 kW if MPV,raw > 5000 kW
MPV,raw else.

(5.11)

RMSE ofMPV PV power for the data used for fitting is 293 kW while the average measured
PV power is 1333 kW. Note that a2 is positive and therefore indicates increasing PV power
for higher temperatures in this model. This is contrary to the previous statement about
the theoretical relation of these quantities. The linear regression does not state anything
about physical causality; temperature may also be used here as a only proxy variable, e.g.,
indicating diurnal and annual cycle of sun zenith angle. Given the latitude of the PV
plant and the tilt of the panels, this can be expected to be positively correlated. This is
one possible explanation for a2 > 0. Further on, nowcasted irradiance is integrated over
the solar spectrum. The spectral response of PV panels is not uniform in this wavelength
range (e.g., Gouvêa et al., 2017), an enhanced physical model of the PV plant would need
to take this into account.

Photovoltaic power nowcast performance

The MACIN-S irradiance nowcasts were performed as described in Sect. 4.4, but for an area
that approximately covers the PV plant. Two squares 300 m × 300 m define this nowcast
area, one with the lower right corner at ASI-16142 and one with the lower left corner
300 m north of this imager. MACIN-S DNI nowcasts were computed with 10 m resolution
for these squares and spatially averaged. DHI was assumed to be spatially constant and
smart persistence nowcasts based on localized measurements were assumed to be suitable.
The nowcasted irradiances were converted into nowcasts of global POA irradiance and fed
into the model of the PV power plant described above to compute 2040 PV power nowcasts
for July 2021 with 1 min time resolution. PV power persistence serves as a reference and
is calculated from 1 min PV power measurements at the nowcast start time. Note that the
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PV power persistence is not a smart persistence but gives a constant value over lead time in
contrast to the smart persistence of DNI and DHI. Due to the lack of an exact PV model,
the diurnal cycle of PV power for cloud-free conditions cannot be accurately modeled. For
nowcast horizons of 30 min and nowcasts for times between 08:00:00 UTC and 15:00:00
UTC, the diurnal cycle is, however, a limited influence, and PV power persistence is still
considered to be a relevant baseline nowcast for comparison.
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Figure 5.4: RMSE and MBE per lead time for 2040 PV power nowcasts in July 2021. Nowcasts are computed from
PV power persistence, and MACIN-S-based irradiance nowcasts.

Figure 5.4 gives the resulting RMSE and MBE over lead time for PV power persistence
and MACIN-S-based nowcasts. The RMSE of the PV power persistence is 0 kW at the
beginning and increases up to about 1100 kW for lead times of 22 min and more. RMSE
increases strongest for small lead times and levels out for longer lead times. MACIN-S-
based nowcasts give RMSE of 574 kW for lead time 0 min with a steady increase up to
about 982 kW for lead time 22 min and about 1027 kW for lead time 30 min. MACIN-S-
based nowcasts give lower RMSE than PV persistence for lead times of more than 5 min.
MBE of the persistence nowcasts is in the range of −20 kW to 40 kW with a positive trend
for longer lead times. It exhibits a 5 min interval structure with most positive values for lead
times which are multiples of 5 min. MBE of the nowcasts based on MACIN-S is constantly
negative, starting at −105 kW with a positive trend towards −22 kW for lead time 10 min
and a negative trend for even longer lead times up to −64 kW at lead time 27 min. The
5 min interval structure in MBE is also observable for MACIN-S-based nowcasts. Overall,
the MBE structure MACIN-S-based PV power nowcasts resembles the structure found
for the corresponding DNI nowcasts with an additional negative offset and stronger 5 min
interval structure.
The RMSE improvements of the MACIN-S-based PV power nowcasts over the PV per-

sistence nowcasts demonstrate the potential of MACIN-S for PV power applications. Due
to the main focus of this work on DNI nowcasting, multiple components are implemented
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in simplified ways to calculate the PV power nowcasts based on these MACIN-S DNI now-
casts. The use of smart persistence for DHI, the simplified conversion of diffuse irradiance
to POA, and the roughly approximated PV power plant model leave room for improve-
ment. Therefore, the performance of the presented MACIN-S-based PV power nowcasts
is a conservative estimate of the possible benefits achievable by using the MACIN-S DNI
nowcasts as a basis for PV power nowcasts.
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