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experimental work, data analysis and interpretation of this study. Throughout the entire process,
she gave valuable intellectual input and wrote portions of the manuscript.

The candidate selected and established the used digital droplet polymerase chain reaction
(ddPCR) assays for the precise detection of driver mutations in KRAS codons 12, 13, and 61 as
well as TP53 copy number alterations (CNA) in patients suffering pleural effusions from different
underlying diseases. Upon DNA extraction she independently designed and performed three dif-
ferent sensitive ddPCR assays on n = 93 samples of 44 patients. She analyzed the data including
setting appropriate thresholds and normalization on the programming language R, followed by
visualization and statistical calculations of the results and findings derived therof. Additionally,
she validated the findings in two further cohorts of malignant pleural mesothelioma (MPM) pa-
tients resulting in a total of n = 120 samples of 71 patients. During this process she corresponded
with the collaborators from Istanbul, Turkey who provided one of the additional cohorts. With these
findings she could significantly help showing the relevance of the specific KRAS mutant subset
of MPM patients with or without co-occurring TP53 mutations.

Furthermore, the author participated in the immunostainings of seven MPM and lung adenocar-
cinoma (LUAD) mouse models with the markers mesothelin, Wilms’ tumor 1 and vimentin for a
more comprehensive assessment of tumors. Subsequent imaging and scoring were carried out.

In addition, she conducted further analyses which were not used in the final version of the manu-
script. Following RNA extraction and coordination for RNA sequencing (RNAseq) submission,
she performed mutation detection in a mononucleotide and trinucleotide context, single nucleotide
variation (SNV) extraction, gene expression and pathway analysis on n = 6 MPM patients includ-
ing creating heatmaps and hierarchical clustering of the acquired data. In the publicly available
Cancer Genome Atlas (TCGA) PanCancer MPM patient data set (n = 86 patients), she similarly
analyzed transcriptomics and pathway activation including their visualization.

The first authorship of this paper was shared among Antonia Marazioti, Anthi C Krontira, Georgia
A Giotopoulou, Giannoula Ntaliarda and the candidate due to their equally major contribution to
this work. Their common effort in designing the study and conducting experiments was accom-
panied by discussions throughout the whole progress of the study. All four authors wrote equiva-
lent portions of the manuscript.
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in the oncogenic driver KRAS in codons 12/13 and EGFR in exon 19 from n = 200 patients rep-
resentative of the cohort. Additionally, the co-author helped with cutting and immunostaining of
the FFPE tissues for the genomic instability marker TP53 and angiogenesis marker FVIII. She
provided intellectual input and reviewed the paper draft.
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The author of this PhD thesis helped conceiving the concept, conducted literature research, and
analyzed data. She wrote ample parts of the manuscript and helped reviewing the full draft.
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Introductory summary

1 Malignant neoplasms of the lower respiratory system

In the chest a variety of distinct types of cancer can arise from different tissues within and sur-
rounding the lung. Besides the genotypic lesions known to crucially drive malignant transfor-
mation and progression [1], the cells of origin within one organ also define the tumors [2]. There-
fore, within one tissue several subtypes of cancer can be found with again various histologies
which determine diagnosis and treatment of the respective malignancies [3]. For the purpose of
this thesis, the content will focus on primary cancers of the lungs and pleura.

1.1 Malignancies of the lung epithelium

With 1.8 million deaths in 2020, lung cancer is the leading cause of cancer-related mortality world-
wide in both men and women [4]. More than 2 million patients were diagnosed with lung cancer,
whose clinical signs are characterized by anorexia, weight loss, fatigue, and more specific symp-
toms such as persisting cough, chest pain, worsening dyspnea, hemoptysis, and reoccurring
pneumonia or bronchitis [5]. As these symptoms and thus the diagnosis usually only occur at
already advanced stages of this malignancy, the 5-year survival rate amounts to only 10% to 20%
[4, 6].

It is scientifically proven that tobacco smoking remains the dominant cause for lung cancer [7, 8].
Tobacco products and its smoke contain over 9,500 chemical compounds of which 83 are prov-
ably carcinogens [9]. But there are also other environmental exposures that have been shown to
inflict cancer in the respiratory system. These risk factors include secondhand tobacco smoke,
radiation, air pollution, radon, and occupational carcinogens such as asbestos [10-18]. Patients
with COPD, bronchitis, emphysema, asthma, or another previous history of chronic respiratory
diseases are subject to a higher risk of developing neoplasms in the lung [19, 20]. Furthermore,
it has been demonstrated that infectious diseases affecting the lung can contribute to carcinogen-
esis [21-24].

Lung cancer can be divided into two major types, small-cell lung carcinoma (SCLC) and non-
small cell lung carcinoma (NSCLC). Globally, SCLC accounts for an incidence of roughly 250,000
and 200,000 deaths every year [25]. Due to its easy relapse, the overall survival rate is with
approximately 10 months very low [26]. At a limited stage of this disease (LS-SCLC) the malignant
cells are still locally restricted, but 60% of the patients show evidence of extensive-stage SCLC
(ES-SCLC). Here, the disease has already progressed and spread beyond the hemithorax [27].
The standard line of treatment is comprised of chemotherapy, radiation therapy, prophylactic cra-
nial radiation, or a combination thereof. Surgery can be an option in LS-SCLC. In the frequent
case of recurrence, treatments concentrate on palliative care [28]. Some modest progresses
could be achieved in the emerging field of immunotherapeutics targeting molecules such as poly
ADP ribose polymerase (PARP), checkpoint kinase 1 (CHK1), programmed cell death 1 (PD-1),
programmed death-ligand 1 (PD-L1), fibroblast growth factor receptors (FGFR), and cyclin-de-
pendent kinase 7 (CDK7) in combination with chemotherapy [29]. However, more research needs
to be done to develop more effective and comprehensive responses.
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NSCLC comprises about 85% of all lung cancer cases and can be further classified into three
main categories. 40% of NSCLC patients are diagnosed with lung adenocarcinoma (LUAD) mak-
ing it the most dominant histopathologic subtype. With 25% lung squamous cell carcinoma
(LUSC) ranks second and large cell carcinoma represents 15% of all NSCLC cases. The remain-
ing 20% are composed of other, rare forms such as large cell neuroendocrine, pleomorphic sar-
comatoid, and adenosquamous carcinoma, as well as carcinoid tumors [30]. The five-year relative
survival rates for NSCLC are generally higher than for SCLC and amount to 23% and 6%, re-
spectively. However, the survival greatly depends on the stage of the disease at diagnosis [30].
When NSCLC patients are diagnosed at an early stage of the disease and the tumor is resectable,
surgery together with adjuvant chemotherapy or radiotherapy is the preferred treatment [31, 32].
Nevertheless, as with 70% most patients already have more advanced cancer stages at the time
of diagnosis, radiation therapy, combination chemotherapy, laser therapy, and/or targeted therapy
are employed [33]. It has been demonstrated that radiation together with chemotherapy improves
survival [34, 35]. Generally, the choice of therapeutics is defined by the tumor location, its resec-
tability and the presence of certain mutations. Mutations that can be targeted up to date include
epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), proto-oncogene
tyrosine-protein kinase (ROS), rapidly accelerated fibrosarcoma (RAF), tyrosine-protein kinase
Met (MET), vascular endothelial growth factor (VEGF), and others [36]. If there is no actionable
mutation present, immunotherapy presents a treatment option. However, acquired resistances
are common [36].

1.2 Pleural neoplasms

Malignant pleural mesothelioma (MPM) is a rare but devastating malignancy that evolves from
the mesothelial cells lining the chest cavity [37, 38]. In 2020, the global incidence reached 31,000
cases and 26,000 deaths could be observed [4]. Since an early detection of MPM is difficult with
current diagnostic tools and due to its aggressive nature, the 5-year survival rate is below 5% [37,
39]. Most MPM patients present with chest pain and dyspnea. Other symptoms may include
weight loss, fatigue, dry cough, anorexia, sweats, and fever [38, 40]. Progressive breathlessness
is usually caused by an elevated accumulation of fluid in the space between the visceral and
parietal pleura which contains malignant cells. This phenomenon is called malignant pleural effu-
sion (MPE) and develops in approximately 90% of individuals [41, 42].

The vast majority of MPM (up to 90%) is induced by occupational exposure to the mineral asbes-
tos [43, 44]. It is well established that MPM can bet attributable to other mineral fibers such as
erionite or fluoro-edenite, and therapeutic radiation [45-48]. Further risk factors may include
chronic pleural inflammation and carbon nanotubes, but the data are sparse [43, 49-51].

MPM can be classified in three histologic subtypes: epithelioid, sarcomatoid, and biphasic. While
sarcomatoid histology represents the worst prognosis, epithelioid tumors indicate the longest sur-
vival [52]. Patients with biphasic subtype have a more beneficial prognosis the higher the propor-
tion of differentiation towards epithelial cells is [53]. For early stage MPM patients, surgery is
debated [40]. Chemotherapy has been proven to prolong the median survival for almost three
months and drainage of the MPE fluid can improve dyspnea [54-56]. Despite the toxicity of radi-
ation therapy, it is used palliatively [57, 58]. As lung cancer, MPM can be treated with targeted
therapy and immunotherapy including VEGF, EGFR, PDL-1, mesothelin, and cancer vaccines,
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dendritic cell-therapy, and chimeric antigen receptor T-cell therapy, respectively [59, 60]. Never-
theless, MPM remains a deadly disease without cure, pointing out the urgent need for further
investigations to achieve diagnostic and therapeutic advances.

2 Mutational landscapes of thoracic malignancies

Hanahan and Weinberg declared genomic instability and mutations as one of the ten hallmarks
of cancer [61]. Genomic changes include base substitutions, so called single nucleotide variants
(SNV), insertions and deletions. More extensive damage comprises copy number alterations
(CNA), alternative splicing and chromosomal rearrangements such as gene fusions [62]. In addi-
tion to these aberrations, epigenetic changes influence tumor progression independent from the
DNA. They involve predominantly post-translational histone and DNA methylation pattern modifi-
cations leading to abnormal gene expression [63]. Furthermore, gene expression can be modu-
lated by noncoding small RNAs, changes of which are known to act in cancer as well [64].

Organs that build the barrier to the environment such as the skin, but also the respiratory and
gastrointestinal system, are directly affected by environmental exposures. Many of these can in-
duce genomic alterations and thus are toxic to the human body. Mutations and other genomic
modifications have been proposed to be a hallmark of environmental insults [65]. Hence, tumors
in such barrier organs carry a relatively high number of somatic mutations (Figure 1). Studies
have already established numerous environmental chemicals as mutagenic. Efforts were made
to expose pluripotent stem cells to environmental mutagens inducing alterations in the genome
that were comparable to the mutation signatures of human cancers [66]. Similar studies were
performed aiming to identify the causative origins of malignancies based on comparing their mu-
tational patterns [67-69].

It is highly valuable to enhance our knowledge about genomic alterations in human tumors. It will
not only help to improve the biological understanding of the tumor, its progression and their puta-
tive role as driver or passenger mutations of each disease but might also possess prognostic
and/or predictive value. New mutations might pose new biomarkers or therapeutic targets influ-
encing clinical decision making, or hint to causative agents.
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Figure 1. Mutation numbers of 32 different TCGA cancer studies. The Cancer Genome Atlas (TCGA)
PanCancer Atlas (n = 11,133 patients) was queried for mutation numbers for each single cancer study and
summarized in this plot. The counts for NSCLC and MPM are highlighted in red and green, respectively. The
data are available at https://www.cbioportal.org/. Presented are medians (dashed lines), quartiles (dotted
lines), and rotated kernel density plots (violin plots). P, probability, ordinary one-way ANOVA. ACC, adreno-
cortical carcinoma; BLCA, bladder urothelial carcinoma; CESC, cervical squamous cell carcinoma/endocer-
vical adenocarcinoma; CHOL, cholangiocarcinoma; COREAD, colorectal adenocarcinoma; GBM, glioblas-
toma multiforme; UCEC, uterine corpus endometrial carcinoma; ESCA, esophageal carcinoma; HNSC, head
and neck squamous cell carcinoma; LIHC, liver hepatocellular carcinoma; BRCA breast invasive carcinoma;
LAML/LCML, acute myeloid leukemia/chronic myelogenous leukemia; DLBC, lymphoid neoplasm diffuse
large B-cell lymphoma; SKCM, skin cutaneous melanoma; MISC, miscellaneous; TGCT, testicular germ cell
tumors; NSCLC, non-small cell lung carcinoma; OCMEL, ocular melanoma; OVCAR, ovarian serous cystad-
enocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma/paraganglioma; MESO,
mesothelioma; PRAD, prostate adenocarcinoma; KIRC, kidney renal clear cell carcinoma; KIRP/KICH, kid-
ney renal papillary cell carcinoma/kidney chromophobe; SARC, sarcoma; THYM, thymoma; STAD, stomach
adenocarcinoma; THCA, thyroid cancer.

But, since cancer is a very heterogenous disease, its characterization and treatment poses a
challenge for. Lung cancer and mesothelioma are likewise affected by intra- and inter-tumoral
(spatial) but also by clonal (temporal) heterogeneity [70-72]. In lung cancer the most frequent
mutations that can be detected in patients differ between the different histologic subtypes, alt-
hough there are some genes that are common. The most frequent inactivating mutations that can
be found in SCLC include tumor protein p53 (TP53), RB transcriptional corepressor 1 (RB17),
lysine methyltransferase 2D (KMT2D), phosphatase and tensin homolog (PTEN), notch receptor
1 (NOTCH1), CREB binding protein (CREBBP), FAT atypical cadherin 1 (FATT), neurofibromin 1
(NF1), and APC regulator of WNT signaling pathway (APC) which are altered at rates of 89, 64,
13,7, 6, 5, 4, 4, and 4%, respectively [25]. Phosphatidylinositol-4,5-bisphosphate 3-kinase cata-
lytic subunit alpha (PIK3CA, 7%), EGFR (4%), KRAS proto-oncogene GTPase (KRAS, 3%) are
prevalently activated oncogenes in this disease [25]. Hence, the most disrupted pathways are
PIBK/AKT/mTOR, Ras-Raf-MEK-ERK, cell-cell signaling, transcription regulation, stress re-
sponse, and chromatin-remodeling.

In NSCLC on the other hand, the genomic alterations can be frequently found in cyclin dependent
kinase inhibitor 2A (CDKNZ2A), B-Raf proto-oncogene serine/threonine kinase (BRAF), ser-
ine/threonine kinase 11 (STK11), with CDKNZ2A being more prevalent in LUSC and BRAF and
STK11 in LUAD [73]. Similarly to SCLC, high mutational burden can be found in TP53, KRAS,
EGFR, NF1, PIK3CA, and PTEN, well known tumor suppressor genes and oncogenes. Especially
elevated mutation frequencies can be observed for TP53 with 46 and 91% in LUAD and LUSC,
respectively, and KRAS with 33% in LUAD [73]. In addition to these, rearrangements in genes
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such as ALK receptor tyrosine kinase, amplification of oncogenes and more extensive deletions
e.g., in CDKNZ2A are typical aberrations in lung tumors.

MPM carry an average of only 24 protein-coding alterations which are mainly accumulated in the
DNA repair and Hippo pathways [74, 75]. Genetic variation in up to 60% of the tumors can be
observed in the tumor suppressor BRCA1-Assocated Protein 1 (BAP1) which is involved in DNA
repair, cell cycle, and differentiation regulation [76-78]. Furthermore, Bueno et al. and Quetel et
al. found that moesin-ezrin-radixin like (MERLIN) tumor suppressor (NF2), CDKN2A/B, TP53, and
SET domain containing 2 histone lysine methyltransferase (SETDZ2), and large tumor suppressor
kinase 2 (LATS?2) are mutated at high frequency in MPM [74, 77, 79, 80]. Mutations in oncogenes
such as EGFR, KRAS, and PIK3CA upregulating the Ras/Raf/MEK/ERK and PI3K/AKT/mTOR
pathways and thus driving cellular survival and proliferation are rather rare in MPM, although
recent data suggest an underestimated role for KRAS mutations in this malignancy [39, 81]. Table
1 summarizes the most abundant mutations which can be found in both diseases, lung cancer
and MPM.

Table1. Most abundant somatic mutations common among lung cancer and MPM and their frequencies.

Mutation frequency [%]

Gene SCLC LUAD LUSC MPM Main function

TP53 90 46 91 8 Tumor suppressor; cell cycle control,
DNA repair, apoptosis

CDKN2A 4 17 Tumor suppressor; cell cycle control,
TP53 pathway

NFE1 4 11 Tumor suppressor; PISBK/AKT/mTOR
signaling, Ras/Raf/MEK/ERK signaling

PTEN 6 8 Tumor suppressor; PISBK/AKT/mTOR
signaling

KRAS 3 33 rare Oncogene; PI3K/AKT/mTOR signaling,
Ras/Raf/MEK/ERK signaling

EGFR 4 14 rare Oncogene; PI3K/AKT/mTOR signaling,
Ras/Raf/MEK/ERK signaling

PIK3CA 7 16 rare  Oncogene; PISK/AKT/mTOR signaling

Data collected from [25, 73, 74]

3 Digital droplet PCR

Digital droplet polymerase chain reaction (ddPCR) is a molecular method that allows direct quan-
tification of nucleic acid molecules with a very high level of precision and sensitivity [82]. It can be
used in various applications including mutation and genome edit detection, copy number exami-
nation, absolute quantification of nucleic acids, gene expression, and identification of microorgan-
isms [83]. This method can be a powerful tool for molecular diagnostics, especially for detecting
rare mutations.

By creating a water-in-oil emulsion of the sample, it is partitioned into up to 20,000 nanoliter drop-
lets which ideally contain only one copy of the target molecule and all PCR reagents. Then, PCR
amplification runs in every single droplet providing high accuracy. The readout is performed by
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detecting two-color fluorescent Tagman probes. In the subsequent analysis thresholds are set in
order to discriminate positive and negative signals as e.g., wildtype from mutant droplets of a
certain target gene (Figure 2).

§ g % G Wildtype

&EHO OO0 O] = Pl Mot
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©eeeEceceesle

Figure 2. Schematic workflow of ddPCR. The single steps including droplet generation, PCR amplification,
droplet reading, and analysis are visualized. Exemplary, wildtype copies of a target molecule are labelled
with the fluorescent marker FAM (turquoise) and mutant copies with HEX (orange).

As the detection of the PCR products happens at the end of the reaction, the outcome is much
less influenced by its amplification efficiency and no standards or calibration is required, making
ddPCR superior to conventional PCR and qPCR [84, 85]. This method allows the user absolute
quantification of the target nucleic acid without bias and detection at a very low frequency of
1:10,000 [82, 85]. The necessity of only low sample and reagent quantity poses another benefit
reducing costs and saving precious samples. Thus, ddPCR is among other applications a suitable
tool for molecular diagnostics.

Next generation sequencing (NGS) or massively parallel sequencing represents another rising
highly effective tool to analyze exomes, transcriptomes, and genomes in a comprehensive and
high-throughput fashion [86]. With NGS, one can evaluate somatic mutations not only in known
disease-related genes, but also previously uncharted genetic or epigenetic alterations. In com-
parison with ddPCR, it is not necessary to know the target sequence, but NGS will take more time
and be more costly [87]. Additionally, NGS requires extensive computer capacity, storage space
and bioinformatic expertise for analysis, which is not the case with ddPCR. Signatures extracted
from NGS data pose approximations dependent on the mathematical approach and thresholds
used [68]. Regarding the detection limit, both methods show high sensitivity levels with 0.001%
and 0.001-1% for ddPCR and NGS, respectively, making ddPCR more sensitive in most cases
[82, 87-89]. Despite its advantages, the target sequence needs to be known to develop specific
assays for each single base alteration when applying ddPCR [88].

We and others have observed that compared to NGS, ddPCR is faster and more sensitive for
detecting specific mutations or pathogens in human specimen [89-91]. Taken together, ddPCR
represents a very well-suited technique for the detection of especially rare mutations in known
target sequences.
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4 Spatiotemporal evolution of Kras mutations in murine
lung adenocarcinoma

Behrend SJ, Giotopoulou GA, Spella M, Stathopoulos GT. A role for club cells in smoking-asso-
ciated lung adenocarcinoma. Eur  Respir Rev. 2021;30(162):210122. doi:
10.1183/16000617.0122-2021

and unpublished data (manuscript in preparation).

With lung cancer being the number one cancer killer worldwide, we decided to investigate the
mutation pattern and cell of origin of LUAD, the most abundant type of lung cancer, in a spatio-
temporal manner. Generally, the tumor initiating cells and their genetic alterations determine can-
cer formation and progression [92]. Thus, and due to their potential role as therapeutic targets,
defining and studying the cell of origin is of high relevance. Together with cancer stem cells and
mature cancer cells they share upregulation of self-renewal pathways [93]. Based on this fact, all
pulmonary cell lineages that possess stem cell characteristics such as basal, club, alveolar type
2 (AT2), and bronchioalveolar stem cells are potential cells of origin in LUAD [94-101]. It is plau-
sible that the enormous diversity of causes of this dreadful disease results in different tumor initi-
ating cells ultimately leading to the existing heterogeneity of patient subgroups [102]. This is a
fact which should be covered in research addressing the cell of origin.

Next to genetic mouse models which artificially introduce driver mutations found in patients, mu-
rine LUAD models which are inflicted by environmental carcinogens such as the tobacco chemi-
cals urethane (ethyl carbamate), N-nitrosodiethylamine, N-methyl-N-nitrosourea, 4-(methylnitros-
amino)-1-(3-pyridyl)-1-butanone, or N'-nitrosonornicotine better recapitulate complex carcino-
genic processes, mutation accumulation signatures and pathophysiology [102-104]. These chem-
icals do not necessarily cause the exact mutation found in humans, but the relevant mutation
range [104, 105]. The tobacco carcinogen urethane is able to reliably induce LUAD in susceptible
FVB mice by a single injection of the chemical [106]. This mouse model displays the complex
mutation patterns which can be found in human LUAD, and which reproducibly include Kras®1R
mutations [104, 105, 107]. In patients KRAS mutations are predominantly found in codon 12, and
some in codons 13 and 61 [108].

KRAS is a key driver oncogene which is mutated in about one third of all LUAD patients and is
associated with tobacco smoking [73, 109, 110]. Patients carrying a KRAS activation display a
poorer prognosis and targeted therapies have been demonstrated to be challenging due to the
biological heterogeneity of KRAS mutant lung cancer. Numerous clinical trials for new therapeu-
tics haven’t shown promising results so far [111]. The KRAS gene encodes a cell membrane
bound GTPase which when carrying an activating mutation, enables various signal pathways
such as enhanced proliferation, apoptosis repression, upregulated cell metabolism, angiogene-
sis, suppressed antitumor immunity, and metastasis [112].

A valuable approach to investigate the spatial LUAD development is lineage marking. Since the
time axis of Kras@®'R mutation acquisition and the afflicted cell lineages are still obscure, we com-
bined this strategy with the urethane mouse model of environmentally induced LUAD to scrutinize
when and which pulmonary cell types gain Kras@'R mutations and ultimately conclude on the
question whether urethane inflicted LUAD develops from the alveoli or airways. Clara cell secre-
tory protein (CCSP) and lysozyme 2 (LYZ2) are well established markers that are specifically
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expressed in club cells of the bronchi and in AT2 cells and alveolar macrophages, respectively
[98, 100]. Hence, different CRE-driver strains expressing the Cre recombinase under the promot-
ers of these two genes were intercrossed with a double fluorescent CRE-reporter strain (mT/mG)
that switches from expression of membranous tdTomato (mT) to membranous GFP (mG) upon
CRE recombination [113]. The heterozygous offspring CCSP.CRE;mT/mG and
LYZ2.CRE;mT/mG with permanently labelled club cells, and AT2 cells and alveolar macro-
phages, respectively, received a single dose of urethane. Lungs were taken 0, 1, 2, 4, and 8
weeks post-urethane and tumors were resected at 16, 24, and 32 weeks following the treatment
(Figure 3A-B).

We developed a duplexed ddPCR assay for the parallel detection of two targets. With this spe-
cialized method we checked for CRE recombination by probes against mT and the presence of
Kras@6'R mutations by probes spanning the codons 57-64 of wildtype Kras. In both, lung samples
at early phases following urethane administration and tumors at advanced stages of LUAD, we
found an increasing proportion of lineage marked mG+ and Kras®'R mutant droplets in
CCSP.CRE;mT/mG mice and thus Kras®'R mutant club cells. In AT2 cells the opposite effect
could be observed for both sample types, indicating that club cells in the airways maintain driver
Kras mutations while these tend to get lost in alveolar cells (Figure 3C-D). These findings suggest
that club cells are cells of origin of LUAD induced by smoking as opposed to most of the current
literature which shows AT2 cells as major progenitors in genetic mouse models of Kras®'2P driven
LUAD [114-116]. However, there has also been proof that tobacco specifically sensitizes epithelial
cells of the bronchi and, similar to our results, the tobacco carcinogen urethane causes early Kras
mutations in club cells which can lead to murine LUAD in sensitive mice [98, 117, 118].

As the data about the cell of origin of LUAD are contradictory, there is a high need for further
investigation which takes into account the great heterogeneity of the underlying disease and its
causes. Human studies scrutinizing the tumor initiating cells are challenging and sparse, since
the disease usually is already progressed, and reconstruction of the clonal evolution can be solely
done by correlation [119]. LUAD of smokers and never-smokers may arise from distinct cells
acquiring different molecular characteristics [102, 120]. Thus, application of mouse models, line-
age tracing studies, single cell RNAseq, and verification in human relevant pre-clinical models
might deliver valuable insights in the future.
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Figure 3. Airway cells sustain Kras®'R mutations during LUAD develop-
ment. (A, B) The timeline shows the design of this study (A). A single dose of 1
g/Kg urethane was administered to CCSP.CRE;mT/mG and LYZ2.CRE;mT/mG
mice (FVB strain). Whole lungs were harvested at 1, 2, 4, and 8 weeks and lung
tumors were taken at 16, 24, and 32 weeks post-urethane. DNA was extracted
from lungs (n = 36-45 samples/strain) and tumors (n = 63-74 samples/strain) at
different time points (B). Duplexed ddPCR with specific primers and probes
against Tomato (mT) and wildtype for Kras codon 61 (Kras®'"T) alleles was per-
formed and mG+ (lineage marked) and Kras®'R (mutant) droplets were calcu-
lated by exclusion. (C) Representative amplitude graphs demonstrating the gat-
ing strategy for quantification of Kras®'R mutant and mG+ droplets (green
boxes). (D, E) Percentage of Kras®'R mutant and mG+ droplets normalized to
time-point 1 week post-urethane in whole lungs (D; n = 5-7/data point) and LUAD
(E; n = 8-40/data-point) over time. Shown are mean (circles) + standard error of
the mean (SEM) (bars). P, probability, two-way ANOVA. ** and ****, P < 0.01 and
P < 0.0001, respectively, for comparison between strains, Sidak’s test.



20 Introductory summary

5 Immunopathologic features reveal new human lung
adenocarcinoma patient phenotypes independent of
oncogenic driver mutation status

Lamort AS, Kaiser JC, Pepe MAA, Lilis |, Ntaliarda G, Somogyi K, Spella M, Behrend SJ, Giot-
opoulou GA, Kujawa W, Lindner M, Koch |, Hatz RA, Behr J, Sotillo R, Schamberger AC, Statho-
poulos GT. Prognostic phenotypes of early-stage lung adenocarcinoma. Eur Respir J.
2022;60(1):2101674. doi: 10.1183/13993003.01674-2021.

Moving on to the human malady, we were able to obtain a cohort of 366 LUAD patients with
resected tumor and adjacent tissue samples [121]. In order to characterize a large set of patients,
we performed ddPCR for driver mutation detection and histologic stainings for examination of
seven cancer hallmarks in 200 patients representative of the cohort [61, 122].

We screened the specimen for alterations in the two most frequently mutated oncogenes in LUAD,
KRAS and EGFR [73]. EGFR is a transmembrane receptor with tyrosine kinase function. It trig-
gers a signaling cascade inducing maintenance and growth of epithelial cells and preventing
apoptosis [123]. Most mutations in EGFR comprise smaller deletions in exon 19 or the point mu-
tation L858R in exon 21, while KRAS mutations predominantly can be found in codons 12, 13
and occasionally 61 [108, 124, 125]. Thus, we were scrutinizing alterations in KRAS codons 12/13
and in EGFR exon 19 by sensitive ddPCR. In addition, the samples were checked for a common
fusion with oncogenic action. An inversion in chromosome 2 leads to the fusion of the N-terminal
half of echinoderm microtubule-associated protein-like 4 (EML4) with the kinase domain of ALK
[124]. The resulting fusion EML4-ALK was detected in our human LUAD samples by reverse
transcription.

The cancer hallmarks that were stained and scored using immunohistochemistry include prolifer-
ating cell nuclear antigen (PCNA), TP53, NF1, terminal deoxynucleotidyl nick-end labelling
(TUNEL), cluster of differentiation 45 (CD45), PD-1, and Coagulation factor VIII (FVIIl) indicative
of proliferation, genomic instability, KRAS pathway activation, apoptosis, inflammation, immune
checkpoint activity, and angiogenesis, respectively [61].

Since survival varies among LUAD patients, prognostic biomarkers are imperative. Immunohisto-
chemistry poses a well-established method in pathology to provide a platform for biomarker de-
tection. By scoring the expression of these seven cancer hallmarks, we were able to identify two
patient clusters with either high TUNEL (apoptotic cluster) or high expression of the markers
PCNA, TP53, NF1, CD45, PD-1, and FVIII (proliferative cluster) [122]. No or only slight correlation
could be determined with clinical parameters, but with 70% the 5-year survival was elevated in
patients within the apoptotic cluster as compared to 50% in the proliferative group. No connection
could be observed with the presence of the tested driver mutations in KRAS, EGFR or EML4-
ALK. Hence, we were able to make out two different LUAD phenotypes in our cohort by solely
immunostaining which could be verified in the TCGA PanCancer cohort [122].

Examination of the single markers and their correlation to overall survival revealed that specifically
enhanced TP53 and PCNA expression can predict worse survival. All markers were included in
an immunophenotypic LUAD death score to prognosticate overall survival and were validated in
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the cohort and using the KMplot lung cancer module. Comparison revealed that TNM7 classifica-
tion is superior to our score which in turn outperforms WHO histology. As there is only marginal
correlation with the TNM classification, this death score can be used alone or in combination with
established clinical scores to predict patients’ survival [122]. Furthermore, we developed a for-
mula with 96% accuracy to predict the LUAD phenotype using the expression scores of PCNA,
TP53, NF1, TUNEL, CD45, and FVIII which is easily applicable in the clinic.

Taken together, these data highlight the role of immunohistochemistry as a valuable tool to predict
overall survival in patients with resected LUAD as it is already applied in breast cancer [126]. We
provide formulas which are ready to use in the clinic and it would be worthwhile to explore these
patient clusters for potential prediction in response to therapies. Existence of different clusters
also supports our hypothesis that there are multiple subtypes and several molecular ways to
LUAD. The clusters identified in this study are not grouped by driver mutation or clinicopathologic
parameters and may thus be explained by the cell of origin or environmental causes [122].

6 Underestimated role of KRAS mutations in human
malignant mesothelioma

Marazioti A*, Krontira AC*, Behrend SJ*, Giotopoulou GA*, Ntaliarda G*, Blanquart C, Bayram
H, lliopoulou M, Vreka M, Trassl L, Pepe MAA, Hackl CM, Klotz LV, Weiss SAl, Koch |, Lind-ner
M, Hatz RA, Behr J, Wagner DE, Papadaki H, Antimisiaris SG, Jean D, Deshayes S, Gré-goire
M, Kayalar O, Mortazavi D, Dilege S, Tanju S, Erus S, Yavuz O, Bulutay P, Firat P, Psallidas |,
Spella M, Giopanou |, Lilis I, Lamort AS, Stathopoulos GT. KRAS signaling in ma-lignant pleural
mesothelioma. EMBO Mol Med. 2022;14(2):e13631. doi: 10.15252/emmm.202013631.

Mutations found in MPM affect patient survival as it had been shown for deactivating alterations
in TP53 and CDKNZ2A to predict poor survival [76, 127]. Although KRAS mutations are scarcely
detected in MPM, it has been found that RAS signaling is commonly upregulated in this disease
[128]. Furthermore, Matallanas et al. could demonstrate a functional link between mutated KRAS
and the activation of TP53 [129]. Along this line, we decided to scrutinize KRAS alterations and
their putative interplay with TP53 loss-of-function during MPM evolution.

Analysis of ten MPM studies revealed that KRAS and TP53 mutations made up 2 and 18% of all
mutated genes [74, 76, 80, 130-136]. However, detailed exploration of the TCGA PanCancer
MPM dataset unveiled a higher number of patients carrying mutations in KRAS and TP53, con-
sidering mutations, CNA, mRNA and protein expression [80]. In total, 20% of the patients carried
a KRAS alteration, while 12% displayed a mutation in KRAS alone and 8% in both, KRAS and
TP53[90]. The MPM patients suffering KRAS mutations in general presented a tendency towards
biphasic histology and thus worse survival. By unsupervised hierarchical clustering of gene ex-
pression data, the double mutant specimen formed an own cluster and showed higher aneuploidy
and genome alteration indices. These findings indicate a molecular subclass of MPM in the TCGA
dataset displaying alterations in KRAS alone or together with TP53 [90].
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To verify this subset of patients, we screened our cohort for mutations in KRAS codons 12, 13,
and 61 as well as TP53 CNA using ddPCR. Cell pellets and pleural effusions of 45 patients caused
by benign medical conditions, LUAD, MPM, or other metastatic tumors were scrutinized [121,
137]. Out of 12 MPM samples we found 3 to be KRAS mutant and another 2 to be KRAS/TP53
altered. To expand these data, we additionally tested two more cohorts of MPM inflicted MPE
samples including 6 from Nantes, France and 17 from Istanbul, Turkey for alteration in these two
genes [138, 139]. Here, we discovered 9 KRAS mutant and 3 KRAS/TP53 double altered patients.
Sensitive ddPCR revealed that the obtained KRAS mutations had a copy number of below 10%
in most cases, which would be likely missed by other molecular tools due to their lower sensitivity,
low read depth and/or too stringent detection thresholds. In summary, we detected standalone
KRAS mutations in 33% and co-occurring KRAS/TP53 alterations in 17% of all patients out of
three different MPM cohorts [90]. These results suggest the existence of a molecular subgroup
of MPM with KRAS and TP53 alterations or mutated KRAS alone.

To this day suitable MPM models for functional studies such as cell lines and mouse models are
limited and hard to obtain [140-143]. Surprisingly, single mutations in the most frequently altered
genes in MPM such as BAP1, NF2, CDKN2A, TP53, or TSC1 alone are not sufficient to induce
MPM [144-147]. Thus, there has been no mouse model displaying the complex mutational land-
scape together with clinicopathologic signs of MPM, enabling functional validation of driver muta-
tions.

For validation of mutated KRAS as a driver in MPM, wildtype (WT) and conditional KRASG12D
and/or Trp™ mice received intrapleural injection of Adenovirus expressing CRE recombinase.
Consequently, upon CRE recombination the mice carried the respective alterations in the pleural
mesothelium, but not in the surrounding tissues [143, 148-150]. While WT, Trp"™T, and Trp" didn’t
show any disease, cachexia, pleural lesions, and reduced survival could be observed in KRAS®12D
mice. Epithelioid MPM was diagnosed, and inflammatory cells were infiltrating the pleura, similar
to the inflammation upon pleural asbestos exposure [151]. However, in KRASG'2D; Trpf mice we
found MPE, pleural tumors invading the adjacent tissues, distress, and shortened lifespan. The
tumors could be identified as biphasic MPM and the MPE displayed numerous typical features of
patients with advanced MPM [152, 153]. KRASG'2D; Trp™T mice revealed an intermediate disease
with biphasic MPM [90].

To ascertain that in these mice indeed suffered MPM and not LUAD, we performed immunostain-
ing with widely used MPM and LUAD markers. Our mice showed high Wilms’ tumor 1, calretinin,
osteopontin, podoplanin, and mesothelin as well as moderate vimentin, and cytokeratin 5/6, but
no surfactant protein C expression. Hence, KRAS®'2P expressed in the mesothelium can cause
biphasic MPM, and in co-occurrence with Trp53 deletion, inflicts more aggressive biphasic MPM
with MPE in mice. Trp53 loss alone was not sufficient to induce MPM.

Out of the KRAS®'2P; Trp* mice, we isolated 3 MPM cell lines, which displayed quick growth,
elevated expression of Cdkn2a and Bap1, caused tumors bearing the initial alterations when in-
jected in the flanks of mice, and generated the same disease upon pleural instillation [154]. Ad-
ministration of the KRAS inhibitor deltarasin in a mouse model with intrapleurally injected MPM
cell lines resulted in decreased cellularity and fewer and smaller effusions as compared to the
untreated control [155]. RNAseq of these MPM cell lines identified several mutations in Bap1,
which is the most commonly mutated gene in human MPM. In comparison with normal mesothe-
lial cells from the pleura, the MPM cells showed transcriptomic upregulation of well-known MPM
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markers and novel potential mesothelioma markers. Furthermore, a publicly available MPM sig-
nature of 113 patients was enriched in our isolated MPM cell lines [90, 156]. In summary, the
proposed mice and tumor cell lines derived thereof present a valid KRAS/TP53-driven MPM
model with high similarity to the human disease and potential use in transplantation and drug
screening of MPM.

Taken together, these findings corroborate the presence of a subset in MPM patients which is
driven by oncogenic KRAS, which has been underestimated so far. Due to its heterozygous na-
ture and thus low allelic frequency, mutations in KRAS may get lost during sampling and/or se-
quencing similar to other subclonal alterations in LUAD [118, 119, 157]. Additionally, most se-
quencing techniques show lower sensitivity and stringent detection thresholds resulting in the
omission of many alterations. Therefore, very sensitive detection methods such as ddPCR or
maximal depth sequencing should be utilized to identify this specific subgroup of MPM patients.

Trp53 mutations alone could not induce mesothelioma but contributed to KRAS driven MPM car-
cinogenesis and a biphasic histologic subtype. Likewise, Trp53 promoted MPM evolution of Nf2
or Tsc1 driven MPM in other studies [144, 145]. Hence, Trp53 loss-of-function mutations seem to
cooperate with oncogenes driving MPM progression, metastasis, and poor survival. Further in-
vestigations of drugs targeting TP53 may advance personalized therapy for a large group of MPM
patients.
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Abstract

Malignant pleural mesothelioma (MPM) arises from mesothelial
cells lining the pleural cavity of asbestos-exposed individuals and
rapidly leads to death. MPM harbors loss-of-function mutations in
BAP1, NF2, CDKN2A, and TP53, but isolated deletion of these genes
alone in mice does not cause MPM and mouse models of the
disease are sparse. Here, we show that a proportion of human
MPM harbor point mutations, copy number alterations, and over-
expression of KRAS with or without TP53 changes. These are likely
pathogenic, since ectopic expression of mutant KRAS®'?® in the
pleural mesothelium of conditional mice causes epithelioid MPM
and cooperates with TP53 deletion to drive a more aggressive
disease form with biphasic features and pleural effusions. Murine
MPM cell lines derived from these tumors carry the initiating
KRAS®™?® |esions, secondary Bap1 alterations, and human MPM-like
gene expression profiles. Moreover, they are transplantable and
actionable by KRAS inhibition. Our results indicate that KRAS alter-
ations alone or in accomplice with TP53 alterations likely play an
important and underestimated role in a proportion of patients
with MPM, which warrants further exploration.
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Introduction

Malignant mesothelioma annually kills up to forty persons per
million population worldwide (Liu et al, 2017; Carbone et al, 2019).
It most commonly arises from the mesothelium of the pleural cavi-
ties that line the lungs (visceral pleura) and the interior chest wall
(parietal pleura) and only occasionally from the peritoneal mesothe-
lium (Bibby et al, 2016; Mutti et al, 2018). Human malignant pleural
mesothelioma (MPM) is mainly caused by inhaled asbestos, which
caused 145,235 deaths in 1990 increasing by 51% to 218,827 deaths
in 2016, most of them in high-income countries (GBD 2016 Occupa-
tional Carcinogens Collaborators, 2020). However, other bioactive
materials such as nanofibers can also cause mesothelioma in
rodents and possibly in humans (Ryman-Rasmussen et al, 2009;
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Nagai et al, 2011). MPM manifests with or without a malignant (Zalcman et al, 2016; Yap et al, 2017; Scherpereel et al, 2018; Cour-
pleural effusion (MPE), that is, exudative fluid accumulation that tiol et al, 2019]). The clinicopathologic manifestation of MPM at

causes chest pain and dyspnea, and is histologically classified into diagnosis impacts patient survival, with advanced stage, sarcoma-
epithelioid, sarcomatoid, or biphasic subtypes (Scherpereel et al, toid histologic subtype, poor physical performance status, elevated
2010; Galateau-Salle et al, 2016; Thomas et al, 2017; Paajanen et al, numbers of peripheral blood leucocytes, male sex, uncontrolled
2018). The disease progresses relentlessly despite contemporary pleural effusion, and other factors portending dismal prognosis

combination therapies, with a median survival of mere 9-18 months (Fennell et al, 2005; Tsao et al, 2009; Pass et al, 2016; Rusch et al,
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Figure 1. KRAS alterations in human MPM from published datasets and the cancer genome atlas (TCGA) pan-cancer MPM cohort.

A KRAS and TP53 mutation frequencies in MPM from the catalogue of somatic mutations in cancer (COSMIC) stratified by histologic subtype (n = 775 patients).

B Top 25 mutated genes from 10 molecular studies of human MPM (n = 838 patients)

C-E KRAS and TP53 alterations in the cancer genome atlas (TCGA) pan-cancer MPM dataset {n = 86 patients). Shown are clinical and molecular data plot with
alteration frequencies (C) and patients reclassified as KRAS- or TP53-altered (asterisks), copy number variation data summary (D), and segments of the KRAS and

7P53 loci (E).

Data information: In (A), data are presented as cumulative percentages of patients tested mutant respective to patients tested for every gene. P, overall probability, two-
way ANOVA. In (B), data are presented as cumulative numbers (n; numbers above bars) and percentages (%) of patients with KRAS (red bar), TP53 (blue bar), and other
(gray bars) mutations. In {C), each column represents one patient and each row one clinical or molecular feature, Asterisks indicate KRAS and TP53 alterations not
identified by the TCCA, but reclassified as altered in this study due to 12p gain, 17p loss, KRAS locus gain (z > 0.3), and/or TP53 locus loss (z < -0.3). In (D), data are
presented as raw data points (circles), rotated kernel density distributions (violing), and patient numbers (n) between thresholds of normal (solid black line at z = @), low
amplification (dotted red line at z = 0.1), low loss (dotted blue line at z = -0.1), high amplification (selid red line at z = 0.3), and deep less (solid blue line at z = -0.3)

P, probability, paired Wilcoxon rank sum test. In (E), KRAS (red line) and TP53 (blue line) loci segments of all 87 patients are shown. Each horizontal segment represents
one patient. White and shades of red and blue indicate ne change and magnitude of gain and loss, respectively.

Source data are available online for this figure.

2016; Cheah et al, 2017; Thomas et al, 2017; Kindler et al, 2018;
Hassan et al, 2019).

Multiple comprehensive analyses of MPM genomes identified a
mosaic mutational landscape characterized by widespread loss-of-
function of tumor suppressor genes (BAPI, NF2, CDKN2A, TP53,
TSCI, etc), sporadic gain-of-function of proto-oncogenes (PIK3CA,
EGFR, KRAS, NRAS, HRAS, BRAF, etc), and inconclusive addiction/
exclusion patterns thereof (Bott et al, 2011; Enomoto et al, 2012;
Mezzapelle et al, 2013; Shukuya et al; 2014; Guo et al, 2015; Lo
lacono et al, 2015; Bueno et al, 2016; De Rienzo et al, 2016; Kato
et al, 2016; Hmeljak et al, 2018). Interestingly, KRAS proto-
oncogene GTPase (KRAS) alterations were detected more frequently
using targeted compared with massive parallel sequencing
approaches by the studies above. In addition, NF2 mutations that
cause persistent KRAS signaling (Tikoo et al, 1994), as well as BAPI
and CDKN2A mutations that are functionally related with TP53 loss-
of-function (Stott et al, 1998; Arizti et al, 2000; Bi et al, 2016), are
very common in MPM. KRAS mutations have also been shown to

activate the TP53 cell cycle checkpoint (Matallanas et al, 2011). In
addition to clinicopathologic presentation, MPM mutations also
impact prognosis, with TP53 and CDKN2A loss-of-function occurring
more frequently in non-epithelioid MPM and portending poor
survival (Bott et al, 2011; Yap et al, 2017).

There is an unmet clinical need for mouse models that recapitu-
late the mutation spectrum and clinicopathologic manifestations of
human MPM. In this regard, MPM cell lines for transplantable
models, asbestos-induced mouse models, and genetic models of the
disease are characterized by scarcity, limited availability, and signif-
icant difficulty of implementation (Ikediobi et al, 2006; Fridlender
et al, 2009; Forbes et al, 2015; Agalioti et al, 2017). Interestingly,
standalone mesothelial loss-of-function of BAPI, NF2, CDKNZA,
TP53, and TSC! is not sufficient to cause MPM in mice, rendering
the drivers of the disease resistant to functional validation (Jongsma
et al, 2008; Guo er al, 2014; Menges et al, 2014; Xu et al, 2014;
Kukuyan et al, 2019). Moreover, faithful models of MPM are
urgently needed, as most existing studies have focused on the rare

Figure 2. KRAS pathway activation in MPM from the cancer genome atlas (TCGA) pan-cancer MPM dataset.

A-F  Molecular and clinical features of the cancer genome atlas (TCGA) pan-cancer MPM patients (n = 87) stratified by the presence of KRAS standalone (n = 10) and
combined KRAS/TP53 (n = 7) alterations. Shown are unsupervised hierarchical clustering of n = 86 patients (gene expression data were not available for one patient)
by 40 genes significantly overexpressed in KRAS/TP53-altered over KRAS-altered over KRAS/TP53-normal patients (A} and data summaries of mononuclectide change
signatures (B}, of indices of genomic instability and mutation burden (C), of clinical features and KRAS/TP53/NF2 co-mutation frequency (D, E), and of overall

survival (F).

G KRAS/TPS3 pathway adapted from Matallanas et al (2011) and Tikoo et al (1994). Color-coded genes were identified by TCCA and PANTHER pathway analyses.

2=

PANTHER and Reactome KRAS and TP53 pathways significantly altered in the cancer genome atlas (TCGA) pan-cancer MPM patients. Shown are volcano plot of

fold-enrichment versus —log;g(probability) (H), and data summary of fold-enrichment of KRAS and TP53 versus all other pathways with fold-enrichment > 05 (1).

Data information: In (A), data are presented as heatmap of 40 differentially expressed genes (rows) in 86 individual patients (columns), color code of unsupervised
hierarchical clusters, KRAS/TP53 status, and heatmap (legend), and probabilities (P) for enrichment of KRAS- and KRAS/TP53-altered patients in cluster 1. The scale bar
represents the color-coded z-scores. In (B), data are presented as heatmap of six different possible mononucleotide changes (rows) in patients grouped by KRAS/TPS3
status (columns) and color code of mean mutation number (legend). ****, FDR g < 2 x 1077 compared with all other mononucleotide changes, 2-way ANOVA with
Benjamini, Krieger, and Yekutieli two-stage linear step-up procedure. In (C) and (1), data are presented as raw data points (circles), rotated kernel density distributions
(violins), medians (solid lines), and quartiles (dotted lines). P, overall probability, Kruskal-Wallis test. (C): * and **: P < 0.05 and P ¢ 0.01, respectively, compared with
KRAS/TPS3-normal patients, Dunn’s post-tests. {I): ** and ****: P < 0.01 and P < 0.0001, respectively, compared with other pathways, Dunn's pest-tests. In (D) and (E),
data are presented as patient numbers (n) and overall probability (P) by »” or Kruskal-Wallis tests (D) or hypergeometric test for enrichment of KRAS mutations in TP53-
altered or biphasic MPM (E). In (F), data are presented as sample size (n), Kaplan-Meier survival estimates (lines), censored observations (line marks), log-rank P value,
and hazard ratio (HR) with 95% confidence interval (35% Cl). In (H), data are presented as color-coded individual pathways (circles), threshold of significance (horizontal
dotted line), no enrichment baseline reference (vertical dotted line), and selected pathway names and codes. P and R initials in pathway codes denote PANTHER and
Reactome pathways, respectively. n, sample size; FOR g, probability, false discovery rate; AGE, differential gene expression.

Source data are available online for this figure.

© 2021 The Authors
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Figure 2.

peritoneal disease and only one elegant study targeted NF2/
CDKNZA/TP53 deletions to the pleural mesothelium (Jongsma et al,
2008). Such mouse models would represent different molecular
subtypes of MPM, would have high penetrance, and would also be
specific for MPM with or without MPE development.

Based on our previous observation of a Kras“'** mutation (Kras,
Mus musculus Kirsten rat sarcoma viral oncogene homolog) in an
asbestos-induced murine MPM cell line (Agalioti et al, 2017; Marazi-
oti et al, 2018), on published work that showed RAS pathway acti-
vation in MPM (Patel et al, 2007), and on the functional
interconnection between mutant KRAS and TP53 signaling (Matal-
lanas et al, 2011), we hypothesized that KRAS alterations are
involved in MPM development, alone or in accomplice with TP53

4 of 22 EMBO Molecular Medicine  e13631 | 2021

(n=2423) (n=20) (n=86)

alterations. Indeed, here we query the TCGA MPM dataset and
employ sensitive methods in our own clinical cohorts to discover
KRAS and TPS53 alterations in a subset of patients with MPM. We
further show that targeting oncogenic KRA5“2? alone to the murine
pleural mesothelium causes MPM and, when combined with Trp53
deletion, triggers aggressive MPM with MPE. Murine MPM is shown
to carry the initiating KRAS®'*" mutations, to harbor Bap! inactivat-
ing mutations, to be transmissible to naive mice, and to resemble
the molecular signatures of human MPM. Hence, KRAS mutations
are implicated in MPM pathobiology, the contributions of TP53 in
shaping the disease’s manifestations are described, and new mouse
models are provided for the study of the biology and therapy of a
molecular subclass of MPM that is driven by KRAS signaling.

© 2021 The Authors
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Results
KRAS and TP53 alterations in human MPM

In MPM from the catalogue of somatic mutations in cancer (COSMIC;
Forbes et al, 2015), KRAS and TP53 mutation frequencies of 1-3%
and 10-20%, respectively, were evident (Fig 1A; dataset available at
https://cancer.sanger.ac.uk/cosmic/browse/tissue?wgs = off&sn = pleura
&ss = all&hn = mesothelioma&sh = &in = t&src = tissue&all_data=n).
KRAS and TP53 mutations comprised, respectively, 2 and 18% of all
mutated genes in a dataset composed of 10 large MPM studies (Bott
et al, 2011; Enomoto et al, 2012; Mezzapelle et al, 2013; Shukuya
et al, 2014; Guo et al, 2015; Lo lacono et al, 2015; Bueno et al, 2016;
De Rienzo et al, 2016; Kato et al, 2016; Hmeljak et al, 2018) (Fig
1B). The aforementioned analysis consisted of manual curation of
the main and supplementary data, while the latter study, the cancer
genome atlas (TCGA) pan-cancer MPM dataset (n = 86 patients;
Hmeljak et al, 2018) available at https://www.cbioportal.org/study/
summary?id = meso_tcga_pan_can_atlas_2018 (Cerami et al, 2012),
was analyzed in detail, via a systematic query of mutations, copy
number alterations, and mRNA and protein expression of KRAS and
TP53. According to TCGA criteria, eight patients showed alterations
in KRAS two of which had dual KRAS/TPS53 changes. However,
when copy number alterations (CNA) at the KRAS12p12.1 (position
chr12:25,357,180-25,404,863) and TP53 17pl3.1 (position
chr17:7,570,720-7,591,868) loci were scrutinized using integrative
genomics viewer (Robinson et al, 2011), additional high KRAS gains
were discovered in nine and deep TP53 losses in 13 patients, with
five patients harboring changes in both genes (Fig 1C-E). For this,
KRAS locus gain (z > 0.3) and/or TP53 locus loss (z < —0.3), as well
as chromosome 12p gains and 17p losses, were taken into account
(Smith & Sheltzer, 2018). Hence, a KRAS alteration alone was deter-
mined in 7 = 10 patients (12%) and a combined KRAS/TP53 alter-
ationinn = 7 (8%), for a total KRAS alteration rate of 20%.

We subsequently examined the transcriptomes of TCGA MPMs
(available at https://xenabrowser.net/datapages/?dataset = TCGA-
MESO.htseq_fpkm-uq.tsv&host = https % 3A % 2F % 2Fgdc.xenahubs.

EMBO Molecular Medicine

net&removeHub =https % 3A % 2F % 2Fxena.treehouse gi.ucsc.edu%3
Ad43) stratified by the presence of a KRAS alteration alone (n =
10), a combined KRAS/TPS3 alteration (n = 7), or none of the
above (n = 69). Forty genes were biologically and statistically
significantly overrepresented in KRAS/TP53-altered over KRAS-
altered over normal patients, which were able to cluster patients by
genetic alteration in an unsupervised hierarchical fashion (Fig 2A).
KRAS/TP53-altered patients showed loss of a C>T mononucleotide
signature that preponderated in KRAS/TP53-normal patients and
displayed higher aneuploidy and genome alteration indices (Figs 2B
and C). KRAS and TP53 alterations were co-occurring at a rate
expected by chance, while KRAS-altered patients displayed a non-
significant repulsion of NFZ mutations, a statistically significant
preponderance of biphasic histology, and significantly worse prog-
nosis (Figs 2D-F). Interestingly, when all mutated genes from this
cohort were entered into the Protein Analysis Through Evolutionary
Relationships System (PANTHER; http://www.pantherdb.org/),
multiple KRAS and TP53 signaling pathways were biologically and
statistically significantly enriched in MPM, which, together with the
KRAS-NF2 repulsion described above, aligned along a biological
KRAS-TP53 pathway proposed elsewhere (Tikoo et al, 1994; Matal-
lanas et al, 2011) (Fig 2G-I). Our results were concordant with the
TCGA pan-cancer pathway analysis that reported 9 and 21% alter-
ation frequencies of the RTK/RAS and p53 pathways in MPM
(Sanchez-Vega et al, 2018). Hence, we describe a molecular subclass
of MPM patients in the TCGA dataset that involves ~ 20% of
patients, which harbor KRAS gain-of-function with or without TP53
loss-of-function. This molecular MPM subset features KRAS path-
way activation, different mutation spectra, gene expression profiles,
histology, and survival compared to other MPMs,

To further test this, we interrogated KRAS and TP53 in our
MPM patients, whose clinical characteristics are given in
Appendix Table $1. We employed digital droplet polymerase chain
reaction (ddPCR) in order to detect KRAS codon 12/13 and 61 muta-
tions, as well as TP53 CNA in pleural fluid and cell pellets of 45
patients with pleural effusions from our cohorts in Munich,
Germany (Klotz et al, 2019a, 2019b). The effusions were caused

Figure 3. KRAS and TP53 alterations in human MPM from Germany and human MPM cell lines from France.

A-D Pleural fluid cell pellets and supernatants from 45 patients (called ASK #) with pleural effusion fram Munich, Germany (Klotz et al, 2019a, 2019b), were subjected
to digital droplet polymerase chain reaction (ddPCR) for the detection of mutant ("""} copies of KRAS codon 12/13 (KRAS®™"%) and KRAS codon 61 (KRASY), as well
as copies of TP53 and TERT. Diagnoses were benign pleural effusion (n = 5), lung adenocarcinoma (LUAD; n = 16), MPM (n = 12), and other extratheracic cancers
[n = 13). The assays were designed for detection of down to 1:20,000 capies using EKVX (KRASYTTP535510T) 549 (KRAS“12*TP53WT), NCI-HA60 (KRAS M TR53"T),
NCI-H3122 (KRAS™TTP53%%™), and NCI-H3255 (KRAS™TTP53%%" ) human LUAD cells as controls. Shown are individual patient (KRAS plot) and individual sample
(TP53 plot) allelic frequencies with color code and limits of normal TP53 allelic frequency as vertical dashed lines in the TP53 plot {4}, representative gated dotplots
of codon 12/13 KRAS ddPCR (B) and TPS3/TERT (C), and results summary table (D). Any number of KRAS-mutant droplets detected in any sample (KRAS plot in A) and
any patient that failed to achieve normal TP53 ploidy by any sample (TP53 plot in A) was deemed altered.

E-G Results summary (E), representative KRAS CNA segments (F), and data summary of individual cell line CNA z-score (C) from Affymetrix CytoScanHD Arrays of 33
primary MPM cell lines (called MESO #) from Mantes, France (GEO dataset GSE134349). Red lines denote the KRAS locus on chromosome 12p12.1.

H Data summary of mutant allelic frequency of KRAS compared with NF2 and BAPI in all mutated samples from {A-G).

Data information: In (A), data are presented as data summary of the highest mutant copy percentage detected per individual sample (kR4S plot) or of all Individual
samples assessed (TP53 plot). In (D), data are presented as number of patients (n). P, probability, hypergeometric test for enrichment of KRAS mutations in MPM versus
other tumors. In (E), data are presented as individual cell lines (columns), genes (rows), legend, and number of patients (p in table). P, probability. hypergeometric test for
enrichment of KRAS mutations in TP53-mutant MPM. In (G), data are presented as raw data points (circles), rotated kernel density distribution (violins), and cell line
numbers {n) cutside thresholds of amplification (dotted red line at 2.3) and loss (solid blue line at 1.7). P, probability, paired Wilcoxon rank sum test. In (H), data are
presented as raw data points (circles), rotated kernel density distributions (violins), and medians (lines). P, overall probability, one-way ANOVA, * and **; P < 0.05 and

P < 0.0, respectively, compared with KRAS, Tukey's post-test.
Source data are available online for this figure.

© 2021 The Authors
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Figure 3.

from benign etiologies (n = 5), MPM (n 12), metastatic lung
adenocarcinoma (LUAD; n = 16), or metastatic other bodily tumors
(n = 12). The assays were designed for the detection of down to
1:20,000 mutant (YY) or wild-type (*") copies. We detected

6 of 22 EMBO Molecular Medicine e13631 | 2021

P1

standalone KRAS mutations and combined KRAS/TPS3 alterations
in three and two of our 12 patients with MPM, respectively (Fig 3A-
C). KRAS and TP53 alterations co-occurred at a rate expected by
chance (Fig 3D). We next used sensitive Affymetrix CytoScanHD
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Figure 4. KRAS and TP53 alterations in MPM patients from France and

Turkey.

A B Pleural fluid cell pellets and supernatants from 10 patients (called
CRCINA #) with pleural effusion from Nantes, France (Cueugnon et al,
2011; Smeele et al, 2018), and pleural tumor samples from 17 patients
(called TR#) with MPM from Istanbul, Turkey, were subjected to digital
droplet polymerase chain reaction (ddPCR) for the detection of mutant
(M“7) copies of KRAS codon 12/13 (KRAS“*#™) and KRAS codon 61
(KRASZY), as well as copies of TP53 and TERT, Diagnases were lung
adenocarcinoma (LUAD; n = 4) and MPM (n = 23). The assays were
designed for detection of down to 1:20,000 copies using EKVX
(KRAS™TTRS3%610T) A549 (KRASSIZTPS3WT) NCI-HA60 (KRASZTRS3WT),
NCI-H3122 (KRASYTTPS3#), and NCI-H3255 (KRAS™TTP53%° 1% human
LUAD cells as controls. Shown are individual patient (KRAS plot) and
individual sample (TP53 plot) allelic frequencies with color code and
limits of normal TP53 allelic frequency as vertical dashed lines in the
TP53 plot (A) and results summary table (B). Any number of KRAS-mutant
droplets detected in any sample (KRAS plot in A) and any patient that
failed to achieve normal TP53 ploidy by any sample (TP53 plot in A) was
deemed altered.

Data information: In (A), data are presented as data summary of the highest
mutant copy percentage detected per individual sample (KRAS plot) or of all

individual samples assessed (TP53 plot). In (B), data are presented as number
of patients (n). P, probability, 7° test.

Source data are available online for this figure.

© 2021 The Authors
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Arrays utilizing 2.67 million markers and targeted next-generation
sequencing to identify KRAS and TP53 alterations in a cohort of 33
primary MPM cell lines from Nantes, France (GEO dataset
GSE134349; Gueugnon et al, 2011; Data ref: Blanquart et al, 2019;
Delaunay et al, 2020; Quetel et al, 2020) The clinical characteristics of
the cell line donors are given in Appendix Table 52. We detected
standalone KRAS and combined KRAS/TP53 alterations in nine and
five cell lines, respectively, and KRAS and TP53 alterations again co-
occurred at a rate expected by chance (Fig 3E). In addition, the KRAS
and TP53 loci were statistically significantly amplified and deleted,
respectively, across all cell lines irrespective of genotype (Fig 3F and
G). Interestingly, 80% of the samples with KRAS™"" copies from both
studies displayed low mutant copy numbers (< 10%) that would be
likely missed by other techniques with lower read depths or stringent
detection thresholds (Fig 3H). We also tested a patient with MPM
from the Malignancy of Pleural Effusions in the Emergency Depart-
ment (MAPED; ClinicalTrials.gov # NCT03319472) Study (preprint:
Marazioti et al, 2021) for KRAS and TP53 status by Sanger sequenc-
ing, RT-PCR, and qPCR. We found four different KRAS point muta-
tions in this patient, as well as discrepant TP53 expression levels by
RT-PCR and gPCR, strongly indicative of a TP53 mutation (Fig EV1).
To obtain definitive validation, we finally examined by ddPCR for
KRAS codon 12/13 and 61 mutations, as well as TP53 CNA, addi-
tional six MPM-associated MPE samples from Nantes (Gueugnon
et al, 2011; Smeele et al, 2018) and 17 MPM tumor samples from
Istanbul, Turkey (patients’ clinical characteristics are given in
Appendix Table 53). Indeed, we found that nine patients had stan-
dalone KRAS mutations, whereas another three had combined KRAS/
TP53 alterations (Fig 4A and B). Taken together, we examined 36
human tumor/effusion samples from four countries to find stan-
dalone KRAS alterations in 12 (33%) and combined KRAS/TP53 alter-
ations in 6 (17%) patients. These results indicate that a molecular
subset of MPM that is driven by KRAS with/without TP53 alterations
indeed exists outside the TCGA cohort.

MPM in mice expressing mesothelial-targeted KRAS®*??

To functionally validate KRAS mutations in MPM, we targeted trans-
genes to mesothelial surfaces using type 5 adenoviral vectors (Ad).
For this, mT/mG CRE-reporter mice that switch from somatic cell
membranous tomato (mT) to green fluorescent protein (mG) expres-
sion upon Cre-mediated recombination (Muzumdar et al, 2007)
received 5 x 10° plaque-forming units (PFU) intrapleural Ad encoding
Melanotus luciferase (Ad-Luc) or Cre recombinase (Ad-Cre) followed
by serial bioluminescence imaging. Ad-Luc-treated mice developed
intense bilateral chest light emission (mice lack mediastinal separa-
tions; Stathopoulos et al, 20006) that peaked at 4-7 and subsided by 14
days post-injection (Fig EV2ZA). At this time point, when transient Ad-
Luc expression ceased and therefore maximal Ad-Cre-mediated
recombination was achieved, Ad-Cre-treated mice displayed wide-
spread recombination of the pleural mesothelium even in contralat-
eral pleural fissures, but not of the lungs, chest wall, or pleural
immune cells (Fig EV2B-E). Similar results were obtained from
intraperitoneal 5 x 10® PFU Ad-Cre-treated mT/mG mice after 2 weeks
(Fig EV2F). Importantly, Ad-Cre did not cause inflammation in wild-
type (Wt) mice, as evident by imaging and cellular analyses of lumi-
nescent bone marrow chimeras used as real-time myeloid tracers
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(Cao et al, 2004; Giannou et al, 2015; Agalioti et al, 2017; Fig EV3).
These results show that intraserosal Ad-Cre treatment efficiently and
specifically recombines mesothelial surfaces in vivo.

To test whether oncogenic KRAS can cause MPM, Wt mice and
mice carrying conditional KRASS'P andjor Trp53f/f alleles
expressed or deleted, respectively, upon Cre-mediated recombina-
tion (Marino et al, 2000; Jackson et al, 2001; Meylan et al, 2009)
received 5 x 10° PFU intrapleural Ad-Cre and were longitudinally
followed and sampled (Fig SA-F). Wi, Trp53f/Wt, and Trp53f/f
mice survived up to 16 months post-Ad without clinical or patho-
logic disease manifestations (median survival undefined). In

Antonia Marazioti et al

contrast, KRASS'*? mice developed cachexia and succumbed by
6-12 months post-injection (median [95% CI] survival = 339 [285-
379] days; P = 0.005 compared with controls, log-rank test]. At
necropsy, no pleural fluid or inflammatory cell accumulation was
evident, but diffuse visceral and parietal pleural nodular and peel-
like lesions were found in all mice. These lesions expressed prolifer-
ating cell nuclear antigen (PCNA) unlike the normal pleura and
were diagnosed by a board-certified pathologist as epithelioid MPM
(Fig 5C). In addition, chimeric KRAS®'?? recipients adoptively trans-
planted with luminescent bone marrow revealed an early pleural
inflammatory infiltrate composed of CD11b*Gr1™ myeloid cells at

We, Trp536W,
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Figure 5. Human-like malignant pleural mesotheliomas and effusions of mice with pleural mesothelial-targeted oncogenic KRAS®**° and/or Trp53 deletion.

Wild-type (Wt), KRASSMP and Trp53flf mice (all C57BL/6) were intercrossed and all possible offspring genotypes received 5 x 10° PFU intrapleural Ad-Cre (n is given in

survival table in [C]).

A Representative photographs of the tharax before (top) and after (bottom) chest opening (t, tumors; |, lungs; cw, chest wall; h, heart; dashed lines, effusion; ppt,

parietal pleural tumors).
Kaplan-Meier survival plot,
Survival table.

Incidence of pleural tumors and effusions.

mTmo N o

Data summary of pleural effusion volume and nucleated cells (n is given in table in [C]).

Representative May-Gruenwald-Giemsa-stained pleural fluid cytocentrifugal specimen from a KRAS®'%,Trp53fjf mouse showing macrophages (M, black arrow),

lymphocytes (L®, purple arrow), and neutrophils (N, green arrow) and summary of cellular and biochemical features of effusions of KRAS“ 2%, TrpS 3fif mice (n = 10).
G Gross macroscopic and microscopic images of visceral and parietal tumars stained with hematoxylin and eosin or PCNA (n is given in table in [E])

Data information: In (B) and (C), data are presented as Kaplan—Meier survival estimates (lines), censored observations {line marks) 95% confidence interval (shaded areas)
and number of mice at risk. P, overall probability, log-rank test. ** and ***: P < 0.01 and P < 0.001, respectively, for the comparisons indicated, log-rank test. In (D}, data
are presented as raw data points (circles), rotated kernel density distribution (violins), and medians (lines). £, overall probability, one-way ANOVA. *™**: P < 0.0001, for
comparison with all other groups, Bonferroni post-tests. In (E), data are presented as number of mice (n). P, probability for comparison with the top-three groups,
Fischer's exact test. In (F), data are presented as mean + 95% confidence interval. Wt, wild-type; KRAS“1C, Lox-STOP-Lox kRAS“Y?%; TrpS3fif, conditional Trp53-deleted;
Ad, adenovirus type 5 PFU, plaque-forming units; Cre, CRE recombinase gene; PCNA, proliferating cell nuclear antigen; LDH, lactate dehydrogenase; ANOVA, analysis of

variance; VEGF, vascular endothelial growth factor.
Source data are available online for this figure.

7-14 days post-Ad-Cre (Fig EV3), emulating the inflammatory
response observed after pleural asbestos instillation (Nagai er al,
2011) that is thought to drive MPM development (Fridlender et al,
2009; Patil et al, 2018; Courtiol et al, 2019).

The phenotype of intrapleural Ad-Cre-injected KRAS®"*"; Trp53f/f
mice was fulminant, with respiratory and locomotor distress and
retracted body posture culminating in death by 3-6 weeks post-Ad-
Cre (median [95% CI] survival = 41 [38-73] days; P < 0.001
compared with any other genotype, log-rank test). Examination of
the thorax revealed massive MPE in most and visceral/parietal pleu-
ral tumors in all mice, which invaded the lungs, chest wall, and medi-
astinum and uniformly presented as PCNA* biphasic MPM with
mixed sarcomatoid/epithelioid features. Effusions were bloody but
non-coagulating, contained abundant cancer and inflammatory cells,
and had low pH and glucose and high protein, VEGF, and lactate
dehydrogenase levels, resembling effusions of human advanced MPM
(Robinson et al, 2005; Patil et al, 2018) and of C57BL/6 mice injected
with KRAS““““mutant AE17 mesothelioma cells (Agalioti et al,
2017). KRASS"“Y;Trp53f/Wt mice displayed an intermediate pheno-
type (median [95% CI] survival = 118 [97-160] days; P < 0.003
compared with any other genotype, log-rank test), biphasic histology,
and a single MPE occurrence. Wt, Trp53f/f, and KRASClZD;TrpSEf/f
mice also received 5 x 10* PFU intraperitoneal Ad-Cre (Fig EV4).
Again, Wt and TrpS3f/f mice displayed unlimited survival without
signs of disease (median survival undefined), but KRASCIZD;TrpS_if/f

Figure 6. Maolecular phenotyping of murine mesothelioma.

mice developed abdominal swelling and succumbed by 2-5 months
post-Ad-Cre (median [95% CI] survival = 95 [60-123] days; P <
0.001 compared with controls, log-rank test). At necropsy, nodular
and diffuse tumors throughout the abdominal cavity and loculated
ascites with features similar to MPM with MPE were detected.

To corroborate that our mice had mesothelioma and not pleural
spread of LUAD (Jackson et al, 2001), immunostaining for specific
markers of both tumor types was performed based on expert guideli-
nes for distinguishing human MPM from LUAD (Scherpereel et al,
2010; Galateau-5alle et al, 2016; Courtiol et al, 2019) and on previ-
ous published experience from mouse models (Jongsma et al,
2008). In parallel, LUAD of intratracheal Ad-Cre-treated (5 x 10
PFU) KRAS™" and of urethane-treated mice were examined
(Mason et al, 2000; Spella et al, 2019). Our murine MPM displayed
ubiquitous strong Wilms’ tumor 1, patchy moderate vimentin, ubig-
uitous moderate mesothelin, ubiquitous strong calretinin/podo-
planin/osteopontin, and patchy moderate cytokeratin  5/6
expression, but no evidence of surfactant protein C expression, in
contrast with LUAD that expressed some of these markers and
SFTPC (Fig 0), supporting that our tumors are indeed MPM of the
biphasic subtype. These results show that pleural mesothelial-
targeted KRASS'?P causes epithelioid MPM in mice. Furthermore,
that standalone TP53 loss does not trigger MPM, but cooperates
with mutant KRAS to accelerate MPM development, to promote
biphasic histology, and to precipitate effusion formation.

© 2021 The Authors

Wild-type (Wt), KRAS®?C, and Trp53fIf mice were intercrossed, and all possible offspring genotypes received 5 x 10° PFU intrapleural or intratracheal Ad-Cre and were
sacrificed when moribund. In parallel, C57BL/6 mice received 10 consecutive weekly intraperitoneal injections of 1 gfkg urethane and were sacrificed after 6 months.
Data summary (heatmap) and representative images of immunoreactivity of tissue sections of pleural and pulmonary tissues and tumors from these mice for different
markers of human malignant pleural mesothelioma (MPM) and lung adenocarcinoma (LUAD). n = 10 mice/group were analyzed for each marker. Brown color indicates
immunoreactivity and blue color nuclear hematoxylin counterstaining. Note the ubiguitous strong expression of Wilms' tumor 1 (WT1), patchy moderate expression of
vimentin (VIM), ubiquitous moderate expression of mesothelin (MSLN), ubiquitous strong expression of calretinin (CALB2), podoplanin (PDPN), and ostespantin (SPP1),
patchy moderate expression of cytokeratin 5/6 (CK5/6), and the absence of expression of surfactant protein C (SFTPC) in murine KRAS-driven mesotheliomas. Note also
the ubiguitous strong expression of WT1, the patchy moderate expression of VIM, the ubiguitous low-level expression of MSLN, the ubiguitous strong expression of
CALB2 and SPP1, the ubiquitous low-level expression of PDPN, the variable moderate expression of CK5/6, and the ubiquitous moderate expression of SFTPC in murine
KRAS®*?"-driven and urethane-induced LUAD.
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helioma (KPM) cell lines.

KRAS'®.TrpS3flf pleural mesothelioma (KPM), pleural mesothelial (PMC), and asbestos-induced AEL7 mesothelioma cells (all from C578L/6 mice) were analyzed.
A KPM cell culture showing anoikis (white arrows) and spindle-shaped marphology (black arrows).
B Representative colonies of KPM1 cells (7.5 x 10° cells/vessel) seeded on a soft agar-contalning 60-mm petri dish and stained with crystal violet after a month

{n = 3/group).

C  Data summaries from in witre MTT reduction (top; 2 x 10* cells/well; n = 6 independent experiments) and in vive subcutaneous tumar growth after injection of 10°

cells per C57BL/6 mouse (bottom; n = S/group).

D KRAS/Kras mRNA Sanger sequencing shows wild-type Kras (Kras™™) of PMC and mutant murine Krasfhuman KRAS alleles (KRAS™® and Kras®'*%) of KPM and AE17

cells (arrows).

E, F RT-PCR (E) and qPCR (F) of KPM cells and parental tumors show Trp53fif allele deletion (4) and Bapl and Cdkn2a overexpression compared with PMC.

Data information: In (C), data are presented as mean (circles) and 95% confidence interval (bars). P, overall probability, two-way ANOVA ****: P < 0.0001 for AE17 cells
(top) or for KPM cells (bottam) compared with all other groups, Bonferroni post-tests. In (F), data are presented as raw data points (circles), rotated kernel density
distribution (violins), and medians (lines). P, overall probability, two-way ANOVA. *, ** and ****: P < 0.05, P < 0.01, and P < 0.0001, respectively, for comparison with

PMC, Bonferroni post-tests.
Source data are available online for this figure.

Transplantable and actionable murine MPM cell lines
with KRAS®1??, Trp53, and Bapl mutations, and a
human-like transcriptome

We subsequently isolated three different MPM cell lines from Ad-
Cre-treated KRASS'?P;Trp53f/f mice (called KPM1-3) using long-
term tumor culture (Pauli et al, 2017; Kanellakis et al, 2019, 2020).
KPM cells displayed anchorage-independent growth (anoikis),

© 2021 The Authors

spindle-shaped morphology, and rapid growth in minimal-
supplemented media and in soft agar. In addition, KPM cells were
tumorigenic when injected subcutaneously into the flank of C57BL/
6 mice and carried the original KRAS®'*®/Trp53 lesions (Fig 7A-E,
and Appendix Fig 51). KPM cells and their parental tumors featured
enhanced Bap! and Cdkn2a, but not Nf2 expression (Fig 7E and F,
and Appendix Fig S1), consistent with previous work that identified
TP53-mediated repression of BRCAI and CDKN2A expression (Stott

EMBO Molecular Medicine  e13631]2021 11 of 22
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Tumors

Deltarasin

Figure 8. Transplantable and actionable murine mesothelioma models using KPM cells.
C57BL/6 mice received 2 x 10° intrapleural KRAS“ ?"-Trp53fff pleural mesothelioma cells (KPM), pleural mesothelial cells (PMC), or asbestos-induced AE17 MPM cells.

A Kaplan-Meier survival plot with survival table.

B Data summary of pleural effusion volume and total cells (n = 10, 12, 10, 9, and 9 mice/group, respectively, from left to right].
C Images of the chest before and after opening, showing effusion (dashed lines), visceral (vpt), and parietal (ppt) pleural tumors on the costophrenic angle (ca), the

diaphragm (d), and the chest wall (cw, arrows). t, tumors; |, lungs; h, heart.

D May-Gruenwald—Ciemsa-stained pleural cells (macrophages, Md: black arrow; lymphocytes, L purple arrow; neutrophils, N®: green arrow; eosinophils, Ed:

orange arrow).

E Effusion cytology and biochemistry data summary (total n = 10 mice; n = 4, 3, and 3 effusions from mice injected with KPM1, KPM2, and KPM3 cells, respectively,

were analyzed and shown are pocled data).

F.G C57BLI6 mice received pleural KPM1 cells followed by a single intrapleural injection of liposomes containing 1% DMSO or 15 mg/lkg deltarasin in 1% DMSO at day
9 post-tumor cells. Shown are data summaries of MPE volume {n = 8 and 7 DMSO0 and deltarasin-treated mice/group, respectively) and pleural fluid nucleated cells
at day 19 post-KPM1 cells (F), as well as representative images of pleural effusions (dashed lines) and tumors (t in [C]).

Data information: In (A), data are presented as Kaplan—Meier survival estimates (lines), 95% confidence interval (shaded areas), and number of mice at risk (n). P,
probability of overall comparison and of any comparisan to PMC, log-rank test. In (B) and (F), data are presented as raw data points (circles), rotated kernel density
distribution (violins), and medians (lines). Numbers in red font and arrows in (F) indicate end-point reduction by deltarasin effect. £, probability, one-way ANOVA (B) or
Student’s t-test (F). *, **, *** and ****: P < 0.05, P < 0.0, P < 0.001, and P < 0.0001, respectively, for comparison with PMC, Banferroni post-tests. In {E), data are

presented as mean + 95% confidence interval. LDH, lactate dehydrogenase.
Source data are available online for this figure,

et al, 1998; Arizti et al, 2000). RNA sequencing of KPM cells (GEO
dataset GSE94415; Data ref: Stathopoulos et al, 2017) revealed that
they carry the pathogenic KRAS'*"/Trp53 lesions, but also multiple
stochastic single nucleotide variants in exon 6 and insertions in
exon 11 of Bapl, all validated by Sanger sequencing, although
immunohistochemistry revealed persistent nuclear BAP1 expression
rendering these Bapl mutations of uncertain functional significance
(Nasu et al, 2015) (Fig EV5). Finally, 2 x 10° pleural-delivered KPM
cells could inflict to naive C57BL/6 mice secondary disease identical
to primary MPM of KRASS™P;TrpS3f/f mice in terms of

12 of 22 EmBO Molecular Medicine 13631 | 2021

manifestation, pathology, cytology, and biochemistry (Fig 8A-E),
fulfilling modified Koch's postulates (Byrd & Segre, 2016).

To determine the potential efficacy of KRAS inhibition against
murine KRAS/TP53-driven MPM, C57BL/6 mice received pleural
KPM1 cells, followed by a single intrapleural injection of liposomal-
encapsulated KRAS inhibitor deltarasin (15 mg/kg; Zimmermann
et al, 2013) or empty liposomes on day nine post-tumor cells, in
order to allow initial tumor implantation in the pleural space (Agali-
oti et al, 2017). At day 19 after pleural injection of KPM1 cells,
deltarasin-treated C57BL/6 mice developed fewer and smaller MPE

© 2021 The Authors
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with decreased cellularity compared with controls (Fig 8F and G).
These results collectively show that our murine MPM is indeed malig-
nant, originate from recombined mesothelial cells, and cause trans-
plantable disease that can be used for hypothesis and drug testing.

Finally, RNA sequencing of KPM cells comparative to normal
pleural mesothelial cells revealed a distinctive transcriptomic signa-
ture that included classic mesothelioma markers (Msin, Spp1, Efem-
pl, Pdpn, Wt1) as well as new candidate mesothelioma genes (Fig
9A-C and Appendix Table 54). A human 150-gene mesothelioma
signature derived from a cohort of 113 patients via comparison of
MPM against multiple other malignancies (GSE42977; De Rienzo
et al, 2013; Data ref: De Rienzo et al, 2012) was highly enriched in
our KPM cell line signature (Fig 9D). These data indicate that
murine KRAS/TP53-driven MPM present Bapl mutations, a gene
expression profile that is highly similar to human MPM, and can be
used for transplantable and druggable MPM models in syngeneic
mice. Collectively, the murine and human findings support the exis-
tence of a KRAS-driven subset of MPM patients or clones that are
likely missed during sequencing and/or sampling (Comertpay et al,
2014; Li et al, 2020).

Discussion

Our results demonstrate that, alone or in combination with TP53,
KRAS is perturbed in a proportion of human MPM and can poten-
tially drive the murine mesothelium toward MPM development.
KRAS mutations, amplifications, and overexpression, as well as
chromosome 12p gains, are shown to exist in 20% of patients from
the TCGA MPM dataset and low allelic frequency KRAS mutations
are discovered in 50% of MPM samples from our own human
cohorts using sensitive techniques. Furthermore, KRAS mutations
are shown to occasionally co-exist with TP53 mutations, to repulse
NF2 mutations, and to be associated with biphasic MPM histology.
Targeting of oncogenic KRASS'P alone to the pleural mesothelium
caused epithelioid MPM in mice and together with Trp53 deletion
resulted in biphasic MPM with MPE. We further show that murine
MPM carry the initiating KRAS®'*"/Trp53 mutations and multiple
secondary Bapl mutations, are transplantable and druggable, and
highly similar to human MPM in terms of molecular markers and
gene expression. Collectively, the data support a pathogenic role for
KRAS mutations in a fraction of MPMs and provide new models to
study this patient group.

Qur striking findings can be reconciled with the sporadic nature
of KRAS mutations in human MPM sequencing studies (Bott et al,
2011; Guo et al, 2015; Bueno et al, 2016; Hmeljak et al, 2018) and
the incomplete penetrance of standalone Bapl, Cdknla, Nf2, or
Trp53 deletions in causing MPM in mice (Jongsma et al, 2008; Guo
et al, 2014; Menges et al, 2014; Xu et al, 2014; Kukuyan et al, 2019).
To this end, mesothelial KRAS mutations may initiate MPM in some
patients, but may be lost during sampling and sequencing, as has
been shown for other mutations in LUAD that persist at a subclonal
level (Abbosh et al, 2017; Jamal-Hanjani et al, 2017). The low allelic
frequency of KRAS mutations is explicable by their heterozygous
nature and the robust inflammatory responses KRAS-mutant tumors
generate (Agalioti et al, 2017; Marazioti et al, 2018) and is not limit-
ing their driver capabilities in other tumor types (Abbosh et al,
2017; Jamal-Hanjani et al, 2017; Li et al, 2020). The fact that these

© 2021 The Authors
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mutations were not detected by most next-generation sequencing
studies of MPM can be explained by the relative low sensitivity of
these methods compared with ddPCR, as well as the low allelic
frequency of KRAS mutations. To this end, typical read depths of 50—
100 are employed in most next-generation sequencing studies yield-
ing a sensitivity of 1-2%, compared with the theoretical 0.005% or
actual 0.1% of ddPCR (Demuth et al, 2018). In addition, most next-
generation sequencing studies set discovery cutoffs of 25% allelic
frequency, likely rendering many KRAS mutations undiscovered. Our
findings are plausible, since MPM is likely polyclonal (Comertpay
et al, 2014), cell lines display KRAS activation and mutations (Patel
et al, 2007; Agalioti et al, 2017), NF2 is a KRAS suppressor (Tikoo
et al, 1994), and KRAS signaling is interconnected with the TP53 cell
cycle checkpoint (Matallanas et al, 2011). The postulation that KRAS
mutations in MPM might be early events can be tested in the future
by genome doubling analyses. Taken together, our data and the liter-
ature support that, in a subset of patients, low allelic frequency KRAS
alterations conditionally accomplice with TP53 to drive mesothelial
cells toward MPM. These tumors may be selectively responsive to
KRAS blockade and detectable by sensitive methods like ddPCR or
maximal depth sequencing (Li et al, 2020).

We also corroborate the critical role of TP53 in MPM progres-
sion, since TP53 mutations are frequent in MPM. Although stan-
dalone TrpS3 deletion did not induce MPM in mice, it promoted
KRAS“"P-driven MPM progression and biphasic histology, as was
also observed in combination with Nf2 and Tscl deletion (Jongsma
et al, 2008; Guo et al, 2014), suggesting that Trp53 loss may condi-
tionally cooperate with other oncogenes in MPM. In addition,
Trp53-deleted KRASS'?® MPM was accompanied by effusions, a
human MPM phenotype that likely affects survival (Ryu er al, 2014)
and that was previously not reproducible in mice. Again, Trp53 loss
was not causative, but likely potentiated the effusion-promoting
effects of KRAS, which we recently identified in metastatic effusions
(Agalioti et al, 2017). Taken together with published work, our find-
ings functionally validate the role of TP53 mutations in human
MPM in driving biphasic histology, tumor progression and metasta-
sis, and poor survival (Bueno et al, 2016; Yap et al, 2017). Hence,
TP53-targeted therapies may be prioritized for biphasic MPM when
available (Brown et al, 2009).

Another surprising finding was the multiple and different Bap!l
mutations of our MPM cell lines, since they originated from tumors
inflicted by KRAS®'?” and Trp53 loss. Frequent copy number loss
and recurrent somatic mutations in BAP! have been identified in
MPM (Bott et al, 2011; Guo et al, 2015; Nasu et al, 2015). Based on
the multiplicity and variety of the Bapl mutations we observed, we
postulate that they were secondarily triggered by the genomic insta-
bility caused from combined KRAS mutation and TP53 loss. What-
ever their cause may be, their presence strengthens our findings of
an involvement of KRAS signaling in MPM pathobiology, as well as
the relevance of the novel mouse models we developed, since Bapl
is the single most commonly mutated gene in human MPM.

Research on MPM is hampered by the paucity of mouse models
(Blanquart et al, 2020). We provide multiple new mouse models
with defined phenotype, histology, and latency: (i) a genetic mouse
model of pleural epithelioid MPM; (ii) genetic and transplantable
models of pleural and peritoneal biphasic MPM with accompanying
effusion; and (iii) three new MPM cell lines of defined genotype,
transcriptome, and phenotype that are syngeneic to C57BL/6 mice.
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Figure 9. The molecular signature of KPM cells is enriched in human mesothelioma.
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RNA sequencing results (CEQ dataset GSE94415) of KRAS“™".Trp5 3fif mesothelioma (KPM) cells (n = 3) compared with pleural mesothelial cells (PMC; n = 1 pooled
triplicate). n denotes biological replicates, since pooled triplicate technical replicates from each cell line were sequenced.
A Unsupervised hierarchical clustering shows distinctive gene expression of KPM versus PMC.

Voleano plot showing some tap KPM versus PMC differentially expressed genes.

B

C KPM and PMC expression of classic mesothelioma markers (top) and top KPM versus PMC overexpressed genes (bottom)

D Gene set enrichment analysis, including enrichment score and nominal probability value of the 150 gene-signature specifically over-represented in human
mesothelioma cempared with other thoracic malignancies derived from 113 patients (GSE42977) within the transcriptome of KPM cells versus PMC shows significant

enrichment of the human mesothelioma signature in KPM cells.

Data information: In (C), data are presented as mean (columns) and 85% confidence interval (bars). P: probability, two-way ANOVA. ns, *, **, and *™*: P > 0.05, P < 0.05,

P < 001, and P < 0.001, respectively, compared with PMC, Bonferroni post-tests.
Source data are available online for this figure.

These are positioned to enhance MPM research by overcoming the
need for immune compromise providing intact immune responses
critical for MPM pathogenesis (Burt et al, 2012; Westbom et al,
2014; Kadariya er al, 2016; Patil et al, 2018), by widening the
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repertoire of existing cell lines, by recapitulating MPM with effusion,
and by addressing pleural MPM.

In conclusion, our findings support that oncogenic KRAS signal-
ing causes MPM in a proportion of humans and in mice. As some
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mutations along this signaling pathway are currently druggable or
are likely to become such in the near future (Herbst et al, 2002;
Brown et al, 2009; Flaherty et al, 2010; Stephen et al, 2014), our
findings may facilitate therapeutic innovation. Pending validation of
our human findings in larger cohorts, we provide novel tools for the
study of a molecular subclass of MPM that will hopefully aid in drug
discovery and personalized treatment of patients with MPM driven
by KRAS signaling.

Materials and Methods

Computational biologic analyses

The dataset for Fig 1A was generated by manual curation of
COSMIC data (https://cancer.sanger.ac.uk/cosmic/browse/tissue?
wgs = off&sn = pleura&ss = all&hn = mesothelioma&sh = &in = t&src=
tissue&all data=n). The dataset for Fig 1B was generated by
manual curation of the main text and supplementary data of publi-
cations (Bott et al, 2011; Enomoto et al, 2012; Mezzapelle et al,
2013; Shukuya et al; 2014; Guo et al, 2015; Lo lacono et al, 2015;
Bueno et al, 2016; De Rienzo et al, 2016; Kato et al, 2016; Hmeljak
et al, 2018). Raw data from 86 human TCGA MPM patients were
retrieved from the cBioPortal for Cancer Genomics (www.
cbioportal.org/) using inputs “mesothelioma”, “Mesothelioma
(TCGA, PanCancer Atlas)”, “Query by Gene KRAS and TP53”,
“Mutations”, “Putative copy-number alterations from GISTIC”,
“mRNA expression z-scores”, and “Protein expression z-scores”
were downloaded and analyzed. Gene expression data from these
patients, normalized with the log,(fpkm-ug + 1) method, were
downloaded (https://xenabrowser.net/datapages,/?dataset = TCGA-
MESO.htseq_fpkm-uq.tsv&host = https % 3A % 2F % 2Fgdc.xenahubs.
net&removeHub = https % 3A % 2F % 2Fxena.treehouse.gi.ucsc.edu%3
A443), ENSEMBL gene IDs were converted to gene symbols using
https://www biotools.fr/mouse/ensembl_symbol_converter, the
data were filtered, differential gene expression (AGE) was analyzed,
and heatmap visualization was performed using R* and packages
limma R 3.42.2  (https://bioconductor.org/packages,/
release/bioc/html/limma.html) and edgeR (https://bioconductor.
org/packages/release/bioc/html/edgeR.html). Both rows and
columns were clustered using Pearson correlation and complete
linkage. All mutations (n = 2,150) of all patients (n = 86) with
MPM from the TCGA pan-cancer dataset were retrieved from www.
cbhioportal.org/ and were fed into the protein analysis through
evolutionary relationships (PANTHER) Classification System (www.
pantherdb.org/) using parameters: organism, Homo Sapiens; analy-
sis, statistical overrepresentation test > PANTHER pathways or reac-
tome pathways (both analyses were done); whole-genome reference
list: Homo Sapiens; test type: binomial; and correction: false discov-
ery rate, All raw data from the two independent PANTHER and reac-
tome pathway analyses were retrieved, merged, and analyzed. Gene
set enrichment analysis (GSEA) was performed with the Broad Insti-
tute preranked GSEA module software  (http://software.
broadinstitute.org/gsea/index.jsp;Subramanian et al, 2005). All
aforementioned raw data were downloaded from the sources refer-
enced above in *.csv format, are provided as source data files with
this publication, and were reanalyzed using R*, Prism v8.0
(GraphPad, La Jolla, CA), and Excel (Microsoft, Redmont, WA).

version
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Reagents

Adenoviruses type 5 (Ad) encoding Melanotus luciferase (Luc) or
CRE-recombinase (Cre) were from the Vector Development Labora-
tory, Baylor College of Medicine (Houston, TX); 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay
from Sigma-Aldrich (St. Louis, MO), and D-luciferin from Gold
Biotechnology (St. Louis, MO). Primers and antibodies are listed in
Appendix Tables 55 and 56. All cell culture reagents were from
Thermo Fisher Scientific.

Human studies

All human experiments conformed to the principles set out in the
WMA Declaration of Helsinki and the Department of Health and
Human Services Belmont Report. The Munich clinical study was
prospectively approved by the Ludwig-Maximilians-University
Munich Ethics Committee (approvals #623-15 and #711-16). All
patients gave written informed consent a priori. Diagnoses were
made according to current standards by a board-certified pathologist
at the Asklepios Fachkliniken Gauting, Munich, Germany. Pleural
fluid was centrifuged at 300 g for 10 min at 4°C, genomic DNA was
extracted from cell pellets, supernatants, and pleural tumor tissues
using TRIzol (Thermo Fisher) and purified using GenElute Mamma-
lian Genomic DNA Miniprep (Sigma Aldrich), and 200 ng DNA were
used to analyze KRAS codons 12/13 and 61, and TP53 copies with
ddPCR KRAS G12/G13, KRAS G61, TP53 CNV, and TERT CNV Kits
and QuantaSoft Analysis Pro software (BioRad, Hercules, CA) as
described elsewhere (Poole et al, 2019). Thresholds for KRAS™T,
KRASMUT  TPs3, and TERT droplet amplitude gates were, respec-
tively, 6,000, 10,000, 5,500, and 7,000. Data were normalized by
accepted droplet numbers to yield absolute mutant (M"") and wild-
type (V) droplet percentages, which were determined using thresh-
olds derived from cell line controls and from LUAD patient samples
clinically confirmed to have KRAS mutations and TP53 copy number
changes, according to the formula:

KRASmutant copies % =
Mpositive mutant droplets 100

(”pnsmve mutant droplets T Mpositive wild type ﬂmplpls)

I Tirpss ive dropl
TP53 copies % = — > Poslive JOPEE y g
TLTERT positive droplets

In the Nantes Study, MPM cell lines, as well as pleural fluid cells
and supernatants, were derived from pleural fluid aspirates obtained
for diagnostic and therapeutic purposes. The study was approved by
the French Ministry of Research (DC-2011-1399), and all patients
gave written informed consent a priori for their excess pleural fluid
to be used for the establishment of cell lines. MPE samples from
aver 120 patients with MPM were used to generate the 33 cell lines,
since the success rate is < 30%, as described elsewhere (Gueugnon
et al, 2011; Delaunay et al, 2020). Diagnoses were established by
both fluid cytology and immunohistochemical staining of pleural
biopsies performed by the pathology department at Laénnec Hospi-
tal (St-Herblain, France) and then externally confirmed by MESO-
PATH, the French panel of pathology experts for the diagnosis of
mesothelioma. All recruited patients had received no prior
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anticancer therapy. All cell lines were maintained in RPMI-1640
medium supplemented with 2 mM r-glutamine, 100 IU/ml peni-
cillin, 0.1 mg/ml streptomycin, and 10% heat-inactivated fetal calf
serum and cultured at 37°C in 5% C0,-95% air. Genomic DNA from
33 MPM cell lines was extracted with Nucleospin Blood kit
(Macherey-Nagel, Diiren, Germany) and 500 ng were hybridized to
Affymetrix CytoScanHD Arrays (Thermo Fisher). Detection, quan-
tification, and visualization of single nucleotide variations (SNV)
and copy number alterations (CNA) were performed using Affyme-
trix Chromosome Analysis Suite v3.1.1.27 (Thermo Fisher) and data
are available at GEO datasets (GSE134349; Data ref: Blanguart et al,
2019). The cell lines were also sequenced in a targeted fashion
focusing on 21 genes and the TERT promoter on a MiSeq system
(IMumina, San Diego, CA) (Quetel et al, 2020). The MAPED (Clinical
identification of malignant pleural effusions in the emergency
department) study entailed a few samples from patients enrolled in
a prospective clinical trial (preprint: Marazioti et al, 2021). MAPED
was registered with ClinicalTrials.gov (#NCT03319472), and written
informed consent was obtained from all patients a priori. MAPED
was approved by the University of Patras Ethics Committee (ap-
proval #22699/21.11.2013). Pleural fluid was centrifuged at 300 g
for 10 min at 4°C, RNA and DNA were extracted from cell pellets
using TRIzol (Thermo Fisher) and purified using GenElute Mamma-
lian Genomic DNA Miniprep (Sigma-Aldrich), and 200 ng RNA/
DNA were used for RT-PCR, gPCR, and Sanger sequencing. The
Istanbul study was approved by the Kog¢ University Ethics Commit-
tee on Human Research (approval #2021.223.IRB2.042/06.05.2021).
Both Nantes pleural fluid and Istanbul pleural tumor specimens
were processed and analyzed identical to the Munich study.

Mice

CS7BL/6 (#000664), B6.129(Cg)-Gt(ROSA)26S0rmHACTB dlomaio, BCEPILuo , g
(mT/mG; #007676; Muzumdar et al, 2007), FVB-Tg(CAG-luc,-GFP)
L2G85Cheo/ ] (CAG.Luc.eGFP; #008450; Cao et al, 2004)*, B6.12954-
Kras™*™yJ (KRAS®""; #008179; Jackson et al, 2001), and
B6.129P2-TrpS3"™ B ™ /1 (Trp53f/f: #008462; Meylan et al, 2009)
mice were obtained from Jackson Laboratories (Bar Harbor, ME)
and bred on the C57BL/6 background at the University of Patras
Center for Animal Models of Disease. Experiments were approved
by the Prefecture of Western Greece’s Veterinary Administration
(approval 118018/578-30.04.2014) and were conducted according to
Directive 2010/63/EU (http://eur-lex.europa.eu/legal-content/EN/
TXT/?uri=CELEX%3A32010L0063). Sex-, weight (20-25 g)-, and
age (6-12 week)-matched experimental mice were used, and their
numbers (total n = 432) are detailed in Appendix Table 57.

Mesothelial transgene delivery

Isoflurane-anesthetized C57BL/6 and mT/mG mice received 5 x 10°
PFU intrapleural or intraperitoneal Ad-Cre or Ad-Luc in 100 pl PBS
and were serially imaged for bioluminescence on a Xenogen Lumina
II (Perkin-Elmer, Waltham, MA) after receiving 1 mg retro-orbital D-
luciferin under isoflurane anesthesia, and data were analyzed using
Living Image v.4.2 (Perkin-Elmer; Stathopoulos et al, 2006; Spella
et al, 2019), or were euthanized and pleural lavage was performed,
lungs were explanted, and parietal pleura was stripped. For pleural
lavage, 1 ml PBS was injected, was withdrawn after 30 s, and was

16 of 22 EMBO Molecular Medicine 13631 | 2021

Antonia Marazioti et al

cytocentrifuged onto glass slides (5 x 10* cells, 300 g, 10 min) using
CellSpin (Tharmac, Marburg, Germany). Lungs were embedded in
optimal cutting temperature (OCT; Sakura, Tokyo, Japan) and
sectioned into 10-pum cryosections. The parietal pleura was placed
apical side up onto glass slides. Samples were stained with Hoechst
55238 and were examined on AxioObserver D1 (Zeiss, Jena,
Germany) or TCS SP5 (Leica, Heidelberg, Germany) microscopes.

Primary MPM models

Wild-type (W), KRAS“'?Y, and Trp53f/f mice were intercrossed and
all possible offspring genotypes received isoflurane anesthesia and 5
% 10° PFU intrapleural or intraperitoneal Ad-Cre. Mice were moni-
tored daily and sacrificed when moribund or prematurely for pathol-
ogy. Mice with pleural fluid volume > 100 pl were judged to have
effusions that were aspirated. Animals with pleural fluid volume <
100 pl were judged not to have effusions and underwent pleural
lavage. For isolation of primary murine pleural mesothelial cells
(PMC), pleural myeloid and lymphoid cells were removed by pleu-
ral lavage followed by pleural instillation of 1 ml DMEM, 2% trypsin
EDTA, aspiration after 1 min, and culture.

Bone marrow transfer

For adoptive BMT, C57BL/6 mice received 107 bone marrow cells
obtained from CAG.Luc.eGFP donors i.v. 12 h after total-body irradi-
ation (1,100 Rad]. Full bone marrow reconstitution was completed
after one month, as described elsewhere (Agalioti et al, 2017).

Transplantable mesothelioma cell lines

Murine KRASS'*P; Trps3f/f pleural mesotheliomas were minced and
cultured in DMEM 10% FBS for > 30 passages, yielding three
KRASC' P Trp53f/f mesothelioma (KPM1-3) cell lines, which were
compared to AE17 cells (Kras®'*“-mutant asbestos-induced murine
mesothelioma) and PMC (Agalioti et al, 2017). PMC were generated
in our laboratory as primary cultures of murine pleural lavage with
DMEM 2% trypsin, whereas AE17 cells were donated by Dr. YC
Gary Lee (University of Western Australia, Perth, Australia) and
have been both extensively described elsewhere (Giannou et al,
2015, 2017; Agalioti et al, 2017; Marazioti et al, 2018). For this, 2 x
10° cells in 100 pl PBS were delivered intrapleurally to isoflurane-
anesthetized C57BL/6 mice that were followed as above. For solid
tumor formation, C57BL/6 mice received 10° subcutaneous PMC,
KPM, or AE17 cells in the rear flank, three vertical tumor dimen-
sions (8", 8°, %) were monitored serially, and the formula x5'6%6° /6
was used to calculate tumor volume., RNA sequencing was done on
an lonTorrent sequencer (Thermo Fisher); data were deposited at
GEO datasets (GSE94415) and were analyzed using Bioconductor
(Data ref: Stathopoulos et al, 2017). Gene set enrichment was done
with the Broad Institute pre-ranked GSEA module (Subramanian
et al, 2005).

PCR and Sanger sequencing
Cellular RNA was isolated using TRIzol (Thermo Fisher Scientific,

Waltham, MA) followed by RNAeasy purification and genomic DNA
removal (Qiagen, Hilden, Germany). For tumor RNA, tissues were
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passed through 70-pm strainers (BD Biosciences, San Jose, CA) and
107 cells were subjected to RNA extraction. One pg RNA was
reverse-transcribed using Oligo(dT),s and Superscript Il (Thermo
Fisher). c¢DNAs were amplified wusing specific primers
(Appendix Table S5) and Phusion Hot Start Flex polymerase (New
England Biolabs, Ipswich, MA). DNA fragments were run on 2%
agarose gels or were purified with NucleoSpin gel and PCR clean-up
columns (Macherey-Nagel, Diiren, Germany) and were sequenced
using their primers by VBC Biotech (Vienna, Austria). qPCR was
performed using specific primers (Appendix Table S5) and SYBR
FAST gPCR Kit (Kapa Biosystems, Wilmington, MA) in a StepOne
cycler (Applied Biosystems, Carlsbad, CA). Ct values from triplicate
reactions were analyzed with the 27T method (Pfaffl, 2001).
mRNA abundance was determined relative to glycuronidase beta
(Gusb) and is given as 274CT = g~ (Ctof transerint)—~(Ctof Gush) The Sanger
sequencing trace files were further analyzed for double peak parser
using Bioconductor (https://www.bioconductor.org/) with a thresh-
old of 25 Phred quality core (Ewing et al, 1998). The mismatch base-
calls in respect to the wild-type samples were grouped by sample
and used as template to generate the lollipop plot per each KPM cell
line for a visual representation of all the mutations detected (Jay &
Brouwer, 2016). Lollipop plots were generated using MutationMap-
per (https://www.cbioportal.org/mutation_mapper; Cerami et al,
2012).

RNA sequencing

RNA sequencing was done on an lonTorrent sequencer (Thermo
Fisher), and data were analyzed using Bioconductor (https://www.
bioconductor.org/). File alignments were performed with Tmap
(https://github.com/iontorrent/TMAP). Coverage and alignments
plot from sequencing were generated using Integrative genome
viewer (Robinson et al, 2011). Alignments are represented as gray
polygons with reads mismatching the reference indicated by color.
Loci with a large percentage of mismatches relative to the reference
are flagged in the coverage plot as color-coded bars. Alignments
with inferred small insertion or small deletion are represented with
vertical or horizontal bars, respectively. Gene set enrichment analy-
sis (GSEA) was performed with the Broad Institute pre-ranked GSEA
module software (http://software.broadinstitute.org/gsea/index.jsp;
Subramanian et al, 2005). The raw *.bam files, one for each RNA-
Seq sample, were summarized to a gene read counts table, using the
Bioconductor package GenomicRanges. In the final read counts
table, each row represented one gene, each column one RNAseq
sample, and each cell the corresponding read counts associated with
each row and column. The gene counts table was normalized for
inherent systematic or experimental biases (e.g., sequencing depth,
gene length, and GC content bias) using the Bioconductor package
DESeq after removing genes that had zero counts over all RNASeq
samples (20,007 genes). The output of the normalization algorithm
was a table with normalized counts, which can be used for differen-
tial expression analysis with statistical algorithms developed specifi-
cally for count data. Prior to the statistical testing procedure, the
gene read counts were filtered for possible artifacts that could affect
the subsequent statistical testing procedures. Genes presenting any
of the following were excluded from further analysis: (i) genes with
length less than 500 bp (2,051 genes), (ii) genes whose average
reads per 100 bp was less than the 25" percentile of the total
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normalized distribution of average reads per 100 bp (0 genes with
cutoff value 0.02248 average reads per 100 bp), (iii) genes with read
counts below the median read counts of the total normalized count
distribution (11,358 genes with cutoff value 16 normalized read
counts). The total number of genes excluded due to the application
of gene filters was 5,298. The total (unified)] number of genes
excluded due to the application of all filters was 32,595. The result-
ing gene counts table was subjected to differential expression analy-
sis for the contrast KPM versus PMC using the Bioconductor
package DESeq. The final numbers of statistically significant dif-
ferentially expressed genes were 2,344 genes and of these, 650 were
up-regulated and 1,694 were down-regulated according to an abso-
lute fold-change cutoff value of 2.

Cell culture

All KPM cell lines are available upon request. Cells were cultured
at 37°C in 5% CO,-95% air using DMEM 10% FBS, 2 mM -
glutamine, 1 mM pyruvate, 100 U/ml penicillin, and 100 mg/ml
streptomycin and were tested biannually for identity (by short
tandem repeats) and Mycoplasma Spp. (by PCR). In vitro cell
proliferation was determined using 3-(4,5-dimethylthiazol-2-yl}-
2,5-diphenyltetrazolium bromide (MTT) assay. For in vivo injec-
tions, cells were harvested with trypsin, incubated with Trypan
blue, counted on a hemocytometer, and > 95% viable cells were
injected into the pleural space (2 x 10°) or into the skin (10°) as
described elsewhere (Agalioti et al, 2017). Mouse numbers used
are detailed in Appendix Table §7.

Cell and tissue analyses

MPE fluid was diluted in 10-fold excess red blood cells lysis buffer
(155 mM NH.CI, 12 mM NaHCO;, 0.1 mM EDTA). Total pleural cell
counts were determined microscopically in a hemocytometer and
cytocentrifugal specimens (5 x 10" cells each) of pleural fluid cells
were fixed with methanol for 2 min. Cells were stained with May—
Griinwald stain in 1 mM Na;HPQ,, 2.5 mM KH,P0,, pH = 6.4 for 6
min and Giemsa stain in 2 mM Na,HPO,4, 5 mM KH,PO,, pH = 6.4
for 40 min, washed with H,0, and dried. Slides were mounted with
Entellan (Merck Millipore, Darmstadt, Germany), coverslipped, and
analyzed. For flow cytometry, 10° nucleated pleural fluid cells
suspended in 50 pl PBS supplemented with 2% FBS and 0.1% NaN;
were stained with the indicated antibodies according to manufac-
turer’s instructions (Appendix Table S6) for 20 min in the dark,
washed, and resuspended in buffer for further analysis. Lungs, visc-
eral pleural tumors, parietal pleural tumors, and chest walls were
fixed in 4% paraformaldehyde overnight, embedded in paraffin or
optimal cutting temperature (OCT) and were stored at room temper-
ature or —80°C, respectively. Five-pym paraffin or 10-pm cryosections
were mounted on glass slides. Sections were labeled using the indi-
cated antibodies (Appendix Table 56), counterstained with Envision
(Dako, Carpinteria, CA) or Hoechst 33258 (Sigma-Aldrich, 5t. Louis,
MO), and mounted with Entellan new (Merck Millipore) or Mowiol
4-88 (Calbiochem, Gibbstown, NJI). For isotype control, primary
antibody was omitted. Bright-field and fluorescent microscopy were
done on AxioLab.Al (Zeiss), AxioObserver.D1 (Zeiss), or TCS SP5
(Leica) microscopes and digital images were processed with Fiji
(Schindelin et al, 2012).
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The paper explained

Problem

In a proportion of patients with human malignant pleural mesothe-
lioma (MPM), a dreadful disease most commonly inflicted by occupa-
tional asbestos inhalation but also possibly by smeking, sporadic
mutations of KRAS is observed. However, their functional impact and
significance have not been addressed and experimental model
systems suitable for the study of this molecular subclass of MPM are
not available.

Results

We systematically interrogate KRAS alterations in the TCGA pan-
cancer dataset of human MPM and in MPM patients from our centers
employing sensitive techniques. 20% of TCGA and 50% of our patients
show activating mutations or amplification of KRAS, in 30% of the
cases accompanied by TP53 mutations or loss. These changes are
associated with enhanced signaling downstream of KRAS. KRAS and
TP53 are shown to cooperate for MPM development in conditional
mouse models. Three new MPM cell lines are developed that are
highly similar to the human disease, and these experimental MPM
models are shown to be actionable by a novel KRAS inhibitor.

Impact

Multiple new tools for investigations on MPM biology are provided
together with proof-of-concept data that support involvement of KRAS
signaling in MPM pathogenesis. The findings can be rapidly translated
to clinical trials of KRAS pathway inhibition in a molecular subset of
MPM patients.

Liposomal deltarasin preparation and treatment

Deltarasin-encapsulating liposomes were prepared as described else-
where (Markoutsa et al, 2014; Marazioti et al, 2019), by freeze-
drying 30 mg of empty DSPC/PG/Chal (9:1:5 mol/mol/mol) unil-
amelar sonicated vesicles with 1 ml of deltarasin solution (5 mg/ml)
in PBS, or plain PBS (for empty liposomes), followed by controlled
rehydration. Liposome size was decreased by extrusion though
Lipo-so-fast extruder polycarbonate membranes (Avestin Europe,
Mannheim, Germany] with 400-nm pore diameter. Liposome lipid
concentration, size distribution, surface charge (zeta-sizer, Malvern
Panalytical Ltd, Malvern, United Kingdom), and drug encapsulation
efficiency were estimated by measuring non-liposomal drug absorp-
tion at 284 nm as reported elsewhere (Markoutsa et al, 2014;
Marazioti et al, 2019). Deltarasin-encapsulating liposomes were
delivered intrapleurally into C57BL/6 mice 9 days post-intrapleural
KPM1 cells, when the first pleural tumors were already established
(Agalioti et al, 2017).

Statistics

Sample size was estimated using G*power (Faul et al, 2007)
assuming o = 0.05, § = 0.05, and effect size d or ¢ = 1.5.
Animals were allocated to treatments by alternation and transgenic
animals case-control-wise. Data acquisition was blinded and no
data were excluded from analyses. Data were tested for normality
of distribution by Kolmogorov-Smirnov test and are given as mean
+ 95% confidence interval (CI). Sample size (n) refers to biological
replicates. Differences in means or medians were examined by
t-test, Mann-Whitney test, Wilcoxon matched-pairs signed rank
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test, one-way analysis of variance (ANOVA) with Tukey’s or
Bonferroni’s post-tests, or Kruskal-Wallis test with Dunn’s post-
tests, as indicated and appropriate. Differences in frequencies were
tested by Fischer’s exact or »* tests. Molecular and longitudinal (bi-
oluminescence, MTT, tumor growth) data were analyzed by two-
way ANOVA with Bonferroni's, Sidak’s, Dunnett’s, or Tukey’s
post-tests, or with two-stage linear step-up procedure of Benjamini,
Krieger, and Yekutieli. Survival was analyzed using Kaplan—Meier
estimates, log-rank (Mantel-Cox) test for probability, and Mantel-
Haenszel estimates of hazard ratio. Probability (P) values are two-
tailed and P < 0.05 was considered significant. Analyses and plots
were done on Prism v8.0 (GraphPad, La Jolla, CA) and Excel
(Microsoft, Redmont, WA).

Data availability

Affymetrix CytoScanHD Microarray data: GEO dataset GSE134349
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgifacc = GSE1343
49).

lonTorrent RNA sequencing data: GEO dataset GSE94415 (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgif&acc = GSE94415).

Expanded View for this article is available online.
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Abstract

Background Survival after curative resection of early-stage lung adenocarcinoma (LUAD) varies and
prognostic biomarkers are urgently needed.

Methods Large-format tissue samples from a prospective cohort of 200 patients with resected LUAD were
immunophenotyped for cancer hallmarks TP53, NF1, CD45, PD-1, PCNA, TUNEL and FVIII, and were
followed for a median of 2.34 (95% CI 1.71-3.49) years.

Results Unsupervised hierarchical clustering revealed two patient subgroups with similar
clinicopathological features and genotype, but with markedly different survival: “proliferative” patients
(60%) with elevated TP53, NF1, CD45 and PCNA expression had 50% 5-year overall survival, while
“apoptotic™ patients (40%) with high TUNEL had 70% 5-year survival (hazard ratio 2.23, 95% CI 1.33—
3.80; p=0.0069). Cox regression and machine learning algorithms including random forests built clinically
useful models: a score to predict overall survival and a formula and nomogram to predict tumour
phenotype. The distinct LUAD phenotypes were validated in The Cancer Genome Atlas and KMplotter
data, and showed prognostic power supplementary to International Association for the Study of Lung
Cancer tumour-node-metastasis stage and World Health Organization histologic classification.
Conclusions Two molecular subtypes of LUAD exist and their identification provides important
prognostic information.

Introduction

Lung adenocarcinoma (LUAD), the most frequent histologic subtype of lung cancer, accounts for an
estimated 1 million annual deaths [1, 2]. Although surgical resection remains the preferred definitive cure
for early-stage LUAD [3], survival thereafter is highly variable, necessitating the development and
validation of prognostic biomarkers [4]. Such biomarkers can be clinicopathological features [5-7],
genomic alterations [8-12], gene expression profiles [13, 14], imaging characteristics [15, 16] and
immunochistochemical expression of single markers [17-22]. However, no biomarker to date has found
widespread applicability. Patients with resectable LUAD are currently treated with (neo)adjuvant
chemotherapy, radiotherapy, targeted therapy and/or immunotherapy dictated by tumour-node—metastasis
(TNM) stage and driver mutations, and are followed in a uniform fashion [3, 9-12]. This is in contrast to
other cancer types, where immunodetection of key tumour hallmarks dictates therapy and prognosis. For
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example, immunohistochemistry (IHC) expression of marker of proliferation Ki-67 and oestrogen,
progesterone and epidermal growth factor type 2 receptors dictate treatment and prognosis in breast cancer [23].

Here, we analysed 200 patients with resected LUAD [7] using conventional (non-tissue microarray-based)
[HC of large, representative tumour tissue areas and a clinical-grade scoring system for cancer hallmarks
[24] tumour protein 53 (TP53), neurofibromatosis 1 (NF1), cluster of differentiation 45 (CD45),
programmed cell death-1 (PD-1), proliferating cell nuclear antigen (PCNA), terminal deoxynucleotidyl
nick-end labelling (TUNEL) and anti-haemophilic factor (FVIII). We followed patients for prolonged
periods of time (cumulative/median follow-up 507/2.34 (95% CI 1.71-3.49) years) to discover two
phenotypes of LUAD with markedly different overall survival. These phenotypes were validated in two
independent datasets. Clinicians are provided with tools to predict LUAD phenotype and with proposals
for their potential clinical implementation.

Materials and methods
Research resources are listed using Research Resource Identifiers (RRIDs) (https:/scicrunch.org/resources)
and CAS Registry Numbers (www.cas.org/cas-data/cas-registry), where appropriate.

Study design

The present study was conducted in accordance with the Helsinki Declaration, was prospectively approved
by the Ludwig Maximilian University of Munich Ethics Committee (623-15) and was registered at the
German Clinical Trials Register (DRKS00012649). All patients gave written informed consent.

During 2011-2017, 200 patients with full clinical data and ample available tissues were recruited for the
present study, designed to reflect the whole cohort of 366 patients [7] (supplementary table E1) and to detect
medium effect sizes (d=0.25) with ¢=0.05 and $=0.90 using G*Power academic software (www.psychologie.
hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower; RRID:SCR_013726).

Patient data and tumour samples

Anonymised data and samples were comprehensively reviewed by a dedicated panel (A-S.L., J.C.K., M.A.
AP, SJB, GAG, ACS., ML, LK., RAH., JB. and G.T.S.), including International Association for
the Study of Lung Cancer (IASLC) TNM stage (the 7th edition (TNM7) was used due to the timing of the
study) [25], World Health Organization (WHO) histologic growth pattern (the 2015 classification was
used) [2, 5] and “spread through air spaces” (STAS) [26-28]. Tissue samples were cut into two equal parts
for THC and for DNA/RNA extraction using guanidinium thiocyanate—phenol—chloroform extraction
(TRIzol; Thermo Fisher, Waltham, MA, USA).

IHC and TUNEL

Tissues were formalin-fixed (CAS 50-00-0) and paraffin-embedded (CAS 8002-74-2), cut into serial tissue
sections (5 pm thick), and stained with primary antibodies and their corresponding horseradish
peroxidase-linked secondary antibodies (supplementary table E2). For negative controls, primary antibodies
were omitted. TUNEL was performed with the Click-iT TUNEL kit (Thermo Fisher). For negative
controls, dUTP (CAS 94736-09) was omitted. Slides were counterstained with haematoxylin (Roth,
Karlsruhe, Germany; CAS 517-28-2) and coverslipped using Entellan (Merck, Darmstadt, Germany). 10
different areas of each tumour and five different fields of view of each tissue section were analysed by
three trained blinded readers (A-S.L., WK. and G.T.S.) at low magnification (x20), the percentage of
stained cells was semiquantitatively scored as 0 (<5%), 1 (5-24%), 2 (25-49%), 3 (50-74%) or 4 (>74%)
on an Eclipse E400 microscope (Nikon, Melville, NY, USA; RRID:SCR_020320) using TCapture
software (Tucsen Photonics, Fuzhou, China; RRID:SCR_020956) and the results were averaged by patient,
as routinely done and described elsewhere [17-20, 23]. Cancer-specific hallmark expression was also
determined in randomly selected paired normal lung tissues (n=50).

Digital droplet PCR

DNA was purified with GenElute Mammalian Genomic DNA Miniprep (Sigma-Aldrich, St Louis, MO,
USA), and KRAS codon 12/13 and EGFR exon 19 were analysed with digital droplet PCR KRAS G12/G13
and EGFR exon 19 del Screening Kits, respectively, using QuantaSoft Analysis Pro software (Bio-Rad,
Hercules, CA, USA). Data were normalised by accepted droplet numbers to yield absolute mutation allelic
frequencies; 25% mutant droplets was used as the cut-off to discriminate wild-type from mutant tumours.

ALK fusion detection
50 ng RNA was used for reverse transcription using the Quantitect Reverse Transcription Kit (Qiagen,
Hilden, Germany). The manufacturer’s protocol was followed, except that 0.25 uL. ALK-specific reverse
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primer (hAlk.cdna.revl) was added to the primer mix to enrich transcripts carrying the 3" part of the ALK
gene. RNA from human cell lines (NCI-H3122, EML4/ALK variant 1, RRID:CVCL_5160; NCI-H2228,
EML4/ALK wvariant 3, RRID:CVCL_1543) served as positive controls. 10 ul. PCR reactions were
performed using HotStarTaq Master Mix (Qiagen) and 200 ng cDNA template. PCR products were run on
10% agarose gels. EML4-ALK-positive reactions were repeated, and the PCR products were purified and
sequenced to confirm EML4/ALK transcripts. Variant-specific forward (hEml4.cdna.v1.forl; hEml4.cDNA.
v2.forl; hEml4.cdna.v3.forl) and universal reverse (hAlk.cdna.rev2) primer sequences were: hAlk.cdna.
revl, CTCCTTCAGGTCACTGATGG; hAlk.cdnarev?, TTGCCAGCAAAGCAGTAGTTGG; hEml4.
cdna.vl.forl, AGTTTCACCCAACAGATGCAAATACC; hEml4.cdna.v2.forl, TAGATGAACCAGGACA
CTGTGCAG; hEml4.cdna.v3.forl, AGCCCTCTTCACAACCTCTCC.

Computational analyses and statistics

Statistics and heatmap visualisations were done using R* (www.r-project.org; RRID:SCR_001905) and
Prism version 8.0 (GraphPad, San Diego, CA, USA; RRID:SCR_002798). Unsupervised hierarchical
clustering was performed using Euclidean distance and clustering method “ward.D2” on the R* package
pheatmap (RRID:SCR_016418). To investigate predictors of overall survival and prevalence of the
proliferative phenotype, a combination of machine learning and regression techniques was applied.
Kaplan—-Meier, Cox regression and random forests were selected to determine optimal cut-offs and overall
survival at different end-points (1 and 3 years). Random forests were grown using the R* package
randomforestSRC (RRID:SCR_015718). Covariables for further regression analysis were confirmed based
on mean decreased accuracy. From simulated random forests, nonparametric estimates of probabilities for
overall survival depending on pertinent covariables (TP53, NF1, CD45, PD-1, PCNA, TUNEL and FVIII)
were derived. Partial probability estimates were generated by focusing on a single covariable of interest for
which the influence of the remaining covariables was averaged out by summation. Random forest results
were used to obtain suggestions for pertinent covariables, to guide the introduction of nonlinear categorical
dependencies, and to produce a formula and a nomogram for single-patient phenotype prediction. Overall
survival analyses were done with Kaplan-Meier estimates and Cox regression (RRID:SCR_021137).
Moreover, survival objects were formed in R* based on right-censored follow-up and survival status which
were used in random forest generation and Cox regression. The quality of data explanation for random
forests was judged by area under the curve (AUC) in classification mode. However, random forests were
mainly applied to guide the regression analysis and not for rigorous prediction assessment. Finally, the
preferred regression models were chosen based on goodness-of-fit measured by the Akaike Information
Criterion (AIC) and biological plausibility. To characterise the predictive power of a given model, the
AUC for logistic regression and the integrated AUC (or concordance) for Cox regression were reported.
Associations between variables were examined using Mann-Whitney tests, two-way ANOVA with Sidak’s
post-tests, Chi-squared tests, Fischer’s exact tests and Spearman’s correlations. Two-tailed probabilities
p<0.05 were considered significant. Graphs and tables were generated in Prism version 8.0 and Excel
(Microsoft, Redmond, WA, USA).

Results

We selected 200 patients with complete clinical information and ample LUAD and adjacent lung tissues
that were representative of the originating cohort (supplementary table E1) [7]. All 200 large-format
tumour samples as well as 50 randomly selected normal tumour-adjacent lung samples were
immunolabelled for TP53, NF1, CD45, PD-1, PCNA, TUNEL and FVIIIL, and 10 independent tumour
areas were scored for immunoreactivity on a clinically relevant semiquantitative 0 (none)—4 (highest) scale,
using normal lung tissues as background controls. Average relative interobserver variability was <5% for
any blinded reader comparison and the three scores for each sample/marker were averaged. Raw data are
given in supplementary figure E1 and supplementary table E3.

All seven cancer hallmarks were overexpressed in tumour compared with adjacent lung tissues (figure 1).
Unsupervised hierarchical clustering of IHC data alone using Euclidean metrics identified two patient
clusters: a majority cluster highly expressing the intercorrelated markers TP53, NF1, CD45 and PCNA
comprised of 121 (60%) patients (hereafter called “proliferative”) and a minority highly TUNEL-labelled
cluster encompassing 79 (40%) patients (hereafter called “apoptotic”) (figure 2a and b, and supplementary
figure E2). Interestingly, cancer hallmark THC and the two patient clusters were only marginally or not at
all correlated with clinicopathological variables (including sex, smoking status, chronic obstructive
pulmonary disease stage, histologic growth pattern, STAS, pathologic TNM7 stage and oncogene status),
likely reflecting something novel (figure 2b and c, and supplementary figures E3 and E4). Importantly,
proliferative compared with apoptotic patients displayed markedly decreased overall survival (5-year
survival 50% versus 70%, respectively; hazard ratio (HR) 2.23, 95% CI 1.33-3.80; log-rank p=0.0069),
while STAS and mutation status had no impact on overall survival (figure 2d). To validate the existence of
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FIGURE 1 Immunophenotyping of early-stage lung adenocarcinoma (LUAD) (n=200} and randomly selected
adjacent normal lung tissues (n=50) for seven cancer hallmarks. Data are shown as raw data points (circles) on
a semiquantitative scale from 0 (no expression) to 4 (highest expression), rotated kernel density distributions
(violins), medians (dashed lines), quartiles (dotted lines), patient numbers (n), p-values (Mann-Whitney test)
and squared Spearman’s correlation coefficients (p®) for n=50 tumour-normal tissue pairs. Note that all seven
cancer hallmarks are overexpressed in cancerous compared with adjacent tissues and that expression values
between the two compartments are not correlated. TP53: tumour protein 53; CD45: cluster of differentiation
45; PCNA: proliferating cell nuclear antigen; TUNEL: terminal deoxynucleotidyl transferase dUTP nick-end
labelling; FVIII: coagulation factor VIIl; NF1: neurofibromatosis 1; PD-1: programmed cell death protein 1.

these two molecular LUAD phenotypes, we analysed The Cancer Genome Atlas LUAD pan-cancer data
(https://bit.ly/3blzgFp), which include reverse-phase protein assay data for TP53 and PCNA (but none of
the other markers) from 340 patients [29]. Similar to our findings, TP53 and PCNA protein expression
were tightly correlated, unsupervised hierarchical clustering identified two patient clusters with high
(n=134 (39%)) and low (n=206 (61%)) TP53/PCNA expression ratios, and patients with a high PCNA/
TP53 expression ratio displayed significantly worse overall survival (figure 3). Collectively, these results
suggest the existence of two LUAD phenotypes, i.e. proliferative and apoptotic, in two independent patient

cohorts (figure 4a).

We next analysed the impact of individual cancer hallmarks on overall survival using univariate Kaplan—
Meier estimates of our cohort stratified by optimal cut-offs defined by the KMplotter custom module
(http:/kmplot.com/analysis/index.php?p=service&cancer=custom_plot), performed multivariate Cox
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FIGURE 2 Two patient clusters of early-stage lung adenocarcinoma (LUAD) with markedly different survival. a) Heatmap shows unsupervised
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patient and each row represents one marker. b) Heatmaps show Spearman’s correlation coefficients (p) between immunoreactivity for the seven
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cluster (left), “spread through air spaces” (STAS) (middle) and oncogene status (right). Data are shown as patient numbers (n), Kaplan-Meier
survival estimates (lines), censored observations (line marks), survival tables, hazard ratio (95% Cl) and log-rank p-values. FVIIl: coagulation factor
VIIl; TUNEL: terminal deoxynucleotidyl transferase dUTP nick-end labelling; PD-1: programmed cell death protein 1; CD45: cluster of differentiation
45; NF1: neurofibromatosis 1; PCNA: proliferating cell nuclear antigen; TP53: tumour protein 53; COPD: chronic obstructive pulmonary disease;
TNM: tumour-node-metastasis; WT: wild-type; BMI: body mass index (kg-m‘z); FVC: forced vital capacity (% pred); FEV,: forced expiratory volume
in 1s (% pred); Dico: diffusing capacity of the lung for carbon monoxide (% pred); V. alveolar volume (L); GOLD: Global Initiative for Chronic

Obstructive Lung Disease,

regression and grew random forests. High TP53 and PCNA expression emerged as significant predictors of
worse overall survival by all three methods, while high CD45 expression was associated with worse overall
survival on Cox and random forest analyses (figure 4b—e). Importantly, TP53, PCNA and CD45 competed
with important clinicopathological predictors of overall survival identified previously in several
independent cohorts, such as T and N stage and histologic growth pattern, as well as patient age, lung
function and smoking status (figure 4f) [4-7]. In addition to TP53, PCNA and CD45, there was also a
trend for the remaining cancer hallmarks to impact overall survival (figure 5a, graphs). These findings
show that THC-assessed expression of stand-alone cancer hallmarks, especially TP53, PCNA and CD45,
possesses some weak prognostic power for incipient overall survival of resected LUAD.

To improve the prognostic power of individual cancer hallmarks and to provide clinicians with a tool to
manage individual patients, all cancer hallmarks were incorporated in an unweighted immunophenotypic
LUAD death score (LADERSy), in homology to a clinical LUAD death score (LADERSqp )
developed previously [7], according to cut-offs determined by a single method or a combination of
methods (figure 5a, table). We designed LADERSy for easy clinical implementation on any individual
patient, by incorporating high expression of TP53, NF1, CD45, PCNA and FVIII as predictors of worse
overall survival and of TUNEL and PD-1 as predictors of better overall survival. Indeed, 66 patients with
high LADERS (5-6 points) had 5-year overall survival of 43%, while 118 patients with intermediate
LADERS; (3-4 points) 61% and 16 patients with low LADERS;ypy (0-2 points) 100%, with 2-3-fold
hazard ratios for every low-to-intermediate-to-high LADERSyp increment (figure 5b and c). When
LADERSyn and LADERS i (a survival score that incorporates age, lung function, N stage, time from
diagnosis to resection and histologic growth pattern, and that outperforms TNM7 stage in predicting
survival) [7] were compared by correlation, linear regression and x statistic of agreement, they were only
weakly related, hence they are positioned to synergise in predicting overall survival (figure 5d). To this
end, 73 patients with intermediate or high values (=3) for both scores had 25% 5-year overall survival,
while the remaining 127 patients had >75% 5-year overall survival, for a >5-fold hazard ratio (figure 5Se).
These data support the clinical applicability of LADERS;; alone or in combination with TNM stage and
other clinicopathological prognosticators of overall survival in patients with resected LUAD. To validate
LADERS i, MRNA expression data for the seven cancer hallmarks TP53, NF1, CD45, PD-1, PCNA,
TUNEL and FVIII were sought in the KMplotter lung cancer module (https:/kmplot.com/analysis/index.
php?p=service&cancer=lung). When good probes for our markers were not available, the most relevant
genes were used (CLTA for CD45, SPATA?2 for PD-1, MKI67 for PCNA and apopain/CASP3 for TUNEL).
Again, all markers independently performed similar to our cohort in predicting better or worse overall
survival (figure 6a). When their average expression was examined (apopain/CASP3 and PD-1 were
inverted similar to LADERSp), the combination of cancer hallmarks equivalent to LADERSm
predicted overall survival in all lung cancers and in LUAD, but not in squamous cell lung carcinoma
(figure 6b). Hence, cancer hallmarks TP53, NF1, CD45, PD-1, PCNA, TUNEL and FVIII alone or
combined into a score predict overall survival in two independent LUAD patient cohorts. We further
compared LADERS;yy with IASLC TNM7 stage and WHO histologic subtype in predicting overall
survival using Kaplan-Meier and Cox analyses. LADERSy was inferior to TNM7, but superior to
WHO histology (figure 7a—c), and its prognostic power was stronger in patients with advanced TNM?7
stage or solid growth pattern known to have poor overall survival [2, 5, 25], indicating its complementarity
to the TNM7 and WHO classifications.

As opposed to using individual cancer hallmarks to directly predict overall survival, we next examined
whether cancer hallmark ITHC can be integrally used to identify individual patient phenotype and to
indirectly prognose overall survival. Using logistic regression and random forests, all cancer hallmarks
except PD-1 predicted phenotype (figure 8a and b). In figure 8¢ we provide a formula and its performance
measures designed for clinical use to predict LUAD phenotype. The formula for Microsoft Excel is
Pprovrerativie=1/(1+eM(—(—4.942.5¥TP53+1.9*CD45+1.2*PCNA—1.1*TUNEL—0.7*FVIII+1.7*NF1))),
where cancer hallmark scores range from 0 (none) to 4 (highest). For this, we used cross-validation with
the leave-one-out method. Cut-off Pproprerarive=0.538 was determined for maximal specificity/

https://doi.org/10.1183/13993003.01674-2021 6
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FIGURE 3 The Cancer Genome Atlas (TCGA) protein data support the existence of two lung adenocarcinoma
(LUAD) phenotypes. Tumour protein 53 (TP53) and proliferating cell nuclear antigen (PCNA) protein expression
(no others from the selected markers are available) in n=340 patients with LUAD from the TCGA pan-cancer
dataset define two patient clusters, are tightly correlated and determine overall survival. Data were retrieved
from www.cbioportal.org on 19 March 2021. a) Heatmap shows unsupervised hierarchical clustering of n=340
patients by protein expression of tumour tissues for TP53 and PCNA assessed by reverse-phase protein assay
(RPPA). Each row represents one patient and each column represents one marker, ****: p=0.0001, for
comparison between the two clusters (Sidak’s post-test). b) Correlation and linear regression between TP53
and PCNA protein expression. Shown are raw data points (circles) colour-coded by mutation status,
Spearman’s correlation coefficients and p-values, as well as linear regression line, formula and p-value,
c) Overall survival of all patients stratified by PCNA/TP53 expression ratio. Data are shown as patient numbers
(n), Kaplan-Meier survival estimates (lines), censored observations (line marks), survival table, hazard ratio
(95% CI) and log-rank p-value, Raw data were analysed using the KMplotter custom module on 19 March 2021
(https:/kmplot.com/analysis/index.php?p=service&cancer=custom_plot). TNM: tumour-node-metastasis.
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FIGURE 4 Single-marker analyses targeted at overall survival. a) Schematic of the two identified lung adenocarcinoma (LUAD) phenotypes and
their respective cancer hallmark expression patterns. b-f) Overall survival analyses by single-marker cut-offs optimised using b} univariate Kaplan-
Meier estimates, ¢) multivariate Cox regression, d, e) random forest analyses with end-points set at d) 1year and e) 3 years, and f) variable
importance plot of variable importance rank from random forest probability values versus minimal depth rank order from logistic regression, Data
in b, c) are shown as immunoreactivity cut-offs (y-axis numbers) and hazard ratios (95% Cl). *: p<0.05; **: p<0.01, compared with hazard ratio=1
(log-rank test in b) and Cox regression in c}). Data in d, e) are shown as probability of overall survival by marker expression. Data in f) are shown as
estimates (circles), cut-offs (dashed lines) and regression (solid line). TP53: tumour protein 53; CD45: cluster of differentiation 45; PCHA:
proliferating cell nuclear antigen; TUNEL: terminal deoxynucleotidyl transferase dUTP nick-end labelling; FVIIl: coagulation factor VIII; NFL:
neurofibromatosis 1; PD-1: programmed cell death protein 1; AIC: Akaike Information Criterion; FEV,: forced expiratory volume in 1s; FVC: forced
vital capacity; BMI: body mass index; Dyco: diffusing capacity of the lung for carbon monoxide; V,: alveolar volume; T: tumour; N: node.

sensitivity as the median of n=200 Pgpyrpar from cross-validation. Ppropiperarive=0-538 means
classification of a patient as proliferative, whereas Ppropirerarnve<0.538 means classification of a patient
as apoptotic. The formula is visualised as a nomogram (figure 8d) and is easily applicable (patient
examples in supplementary figure E5). The receiver operator characteristic curve of the formula (figure 8e)
achieves AUC 96%, while the agreement of the formula and nomogram with actual patient phenotype was
almost perfect (x 0.833, 95% CI 0.755-0.912). Formula/nomogram-predicted phenotype significantly
affected overall survival, performing equal to actual phenotype (figure 8f). Hence, cancer hallmarks
collectively can determine patient phenotype using a formula or a nomogram, indirectly prognosticating
overall survival.

Discussion

Here, we assessed the expression of seven key cancer hallmarks [24] of genomic instability (TP53), KRAS
pathway activation (NF1), tumour-associated inflammation (CD45), immune checkpoint activity (PD-1),
cellular proliferation (PCNA), tumour cell apoptosis (TUNEL) and angiogenesis (FVIIT) in a cohort of
patients with early-stage resected LUAD hypothesising that this will aid prognosis. We examined
large-format tumour and normal tissues, and applied clinical-grade semiquantitative scoring to multiple

https://doi.org/10.1183/13993003.01674-2021 8
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FIGURE 5 An immunophenotypic score determines survival in lung adenocarcinoma (LUAD). a) Univariate (Kaplan-Meier (KM)), multivariate (Cox)
and random forest (RF) survival analyses identified optimised cut-offs of single-marker immunoreactivity. Shown is overall survival of all patients
stratified by single-marker immunoreactivity (graphs) and composite immunophenotypic survival score [table). b) Patient distribution by
immunophenotypic LUAD death score (LADERS ). ¢) Overall survival of all patients stratified by LADERS;un. d) Comparison of LADERS, with a
previously derived clinical LUAD death score (LADERSc,) shows that these are only marginally related. Shown are Spearman's correlation
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neurofibromatosis 1; PD-1: programmed cell death protein 1.
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FIGURE 7 Lung adenocarcinoma (LUAD) immunophenotypic score complements International Association for the Study of Lung Cancer (IASLC) 7th
edition tumor-node-metastasis (TNM7) stage and World Health Organization (WHO) histologic subtype. a, b) Overall survival of all patients stratified
by TNM7 stage, histologic subtype and immunophenotypic score a) without and b) with category grouping shows that immunophenotypic score
outperforms WHO histologic subtype and is outperformed by IASLC TNM7 stage. c) Results of Cox regression using TNMT7 stage, histologic growth
pattern and immunophenotypic score (LADERS;u) as inputs and overall survival as the target, showing Akaike Information Criterion (AIC),

concordance index (Clitsem and overall log-rank p-value. *: p=<0.05; **:

p=<0.01; ***; p=<0.001, Cox regression. d) Overall survival of early- and

advanced-stage patients with solid or other histologic growth patterns stratified by immunophenotype shows the increased value of the latter in
advanced and solid disease. Data in a, b, d) are shown as patient numbers (n), Kaplan-Meier survival estimates (lines), censored observations (line

marks) and log-rank p-values.
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FIGURE 8 Cancer hallmarks predict lung adenocarcinoma (LUAD) phenotype and overall survival. a, b)
Phenotype-predictive power of single cancer hallmarks using a) binary logistic regression and b) random forest
analyses. Data in a) are shown as hazard ratios (95% CI), with area under the curve (AUC) (95% CI). ¢) Formula
with its performance measures and d) nomogram for single-patient phenotype prediction by integral cancer
hallmark expression. For examples of how to use the formula and nomogram, see the text and supplementary
figure E5. €) Receiver operator characteristic of formula/nomogram in LUAD phenotype prediction. f) Overall
survival of all patients stratified by formula-predicted phenotype. Data are shown as patient numbers (n),
Kaplan-Meier survival estimates (lines), censored observations (line marks), hazard ratio (95% Cl) and log-rank
p-value. AIC: Akaike Information Criterion; TP53: tumour protein 53; CD45: cluster of differentiation 45; PCNA:
proliferating cell nuclear antigen; TUNEL: terminal deoxynucleotidyl transferase dUTP nick-end labelling; FVIII:
coagulation factor VIII; NF1: neurofibromatosis 1; PD-1: programmed cell death protein 1.
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tumour areas and sections, as is done in routine pathology. Advanced statistics and machine learning
identify two LUAD phenotypes solely detectable by cancer hallmarks and not any other clinical,
pathological or molecular feature. Proliferative versus apoptotic LUAD phenotypes define overall survival
to an extent comparable to TASLC TNM?7 stage and WHO histologic pattern. A score, a formula and a
nomogram to identify LUAD phenotypes and to predict overall survival are provided.

The hallmarks of cancer [24] have streamlined our perceptions of tumour biology, but their clinical impact
is still under exploration. Phenotyping of bodily cancers by clinical-grade IHC provides pertinent guidance
for treatment and prognosis, with the best example being breast cancer [23]. However, patients with
early-stage resectable LUAD are still treated in a uniform fashion, grouped with other nonsmall cell lung
tumours [2, 3], despite the fact that multiple studies have found that TNM stage-based overall survival
prediction can be enhanced by many clinical, pathological and molecular variables [5-22]. We examined
the possibility that LUAD patients might benefit from the current approach to breast cancer, which is
treated and prognosticated based on validated molecular variables including THC expression of marker of
proliferation Ki-67 and oestrogen, progesterone and epidermal growth factor type 2 receptors [23]. We
designed the present study in order to bridge this gap and investigated the value of THC for cancer
hallmarks in prediction of overall survival of LUAD patients. Indeed, we describe two LUAD phenotypes
with markedly divergent overall survival. These proliferative TP53"NF1"CD45"PCNA™ and apoptotic
TUNEL"™ phenotypes can be discriminated immediately after surgery with 96% accuracy and can
accurately predict overall survival. The findings can be readily tested in other cohorts using the score,
formula and nomogram provided, and can potentially be incorporated in clinical trial design and/or patient
management. For example, the findings can be used to prompt clinical and radiological vigilance for
proliferative cases, but also to enhance clinical trial design for novel adjuvant therapies. To this end, we
postulate that proliferative and apoptotic patients may exhibit differential therapeutic responses to adjuvant
chemotherapy, targeted therapy and immunotherapy post-resection, based on their differential expression of
PCNA (a proliferation marker), NF1 (a KRAS inhibitor) and CD45 (an inflammatory marker).

Our findings also trigger mechanistic hypotheses on LUAD evolution. In addition to histologic growth
pattern and genomic landscape [5, 9], epidemiological data from atom bomb survivors [30] spark
hypotheses on the existence of multiple molecular varieties of LUAD. The results presented here support
such hypotheses: two phenotypes of LUAD are discovered solely based on expression of cancer hallmarks,
which cannot be identified by driver mutation or any other clinicopathological feature. These phenotypes
may be related to early initiating events such as environmental cause, replicative stress and/or cell of
origin, or, more likely in our view, to late tumour diversity emanating from divergent mutagenic processes.
Whatever the reason for their existence, we provide the means for characterisation of two molecular
phenotypes of LUAD, which can be used for clinical management, trial design, as well as mechanistic
studies on LUAD pathobiology. Notwithstanding the limitations of the present work, such as the use of an
older TNM staging system and of a limited number of markers, future validation and clinical
implementation of the proliferative and apoptotic phenotypes of LUAD described here may lead to
therapeutic and research innovation.
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Abstract

The cellular origin of lung adenocarcinoma remains a focus of intense research efforts. The marked
cellular heterogeneity and plasticity of the lungs, as well as the vast variety of molecular subtypes of lung
adenocarcinomas perplex the field and account for the extensive variability of experimental results. While
most experts would agree on the cellular origins of other types of thoracic tumours, great controversy exists
on the tumour-initiating cells of lung adenocarcinoma, since this histologic subtype of lung cancer arises in
the distal pulmonary regions where airways and alveoli converge, occurs in smokers as well as
nonsmokers, is likely caused by various environmental agents, and is marked by vast molecular and
pathologic heterogeneity. Alveolar type II, club, and their variant cells have all been implicated in lung
adenocarcinoma progeny and the lineage hierarchies in the distal lung remain disputed. Here we review the
relevant literature in this rapidly expanding field, including results from mouse models and human studies.
In addition, we present a case for club cells as cells of origin of lung adenocarcinomas that arise in
smokers.

Introduction

Lung cancer is the most lethal cancer worldwide causing more than 1.7 million deaths in 2018 [1]. Lung
adenocarcinoma (LUAD) is the most prevalent histologic subtype of lung cancer and accounts for almost
half of all lung cancer deaths because of its indolent clinical presentation and its peripheral location in the
lung parenchyma [2, 3]. As most lung cancers, and especially LUAD, are diagnosed when they have
already become locally advanced or metastatic, the 5-year survival rate amounts to only 15% [4]. Despite
rapid improvements in lung cancer prevention through smoking cessation and screening programmes, as
well as targeted and multi-modality therapies in the last few decades, lung cancer remains a dreadful
disease [5, 6]. While the incidence and mortality of many other types of lung cancer such as squamous
cell lung carcinoma and small cell lung carcinoma are continuously dropping in more developed countries
where smoking incidence is declining, LUAD incidence and mortality are constantly rising, a phenomenon
ascribed to the changing face of manufactured cigarettes and the increasing occurrence of LUAD in
nonsmokers [7-12].

Cancers are defined by both their genetic alterations and their cells and tissues of origin [13]. These
precancerous cells and tissues of origin define which cells can potentially lead to cancer, and are likely
distinct from stem cells in established tumours, which constitute the subset of cancer cells that possesses
stem cell characteristics and can drive tumour progression, therapy resistance, relapse and metastasis [13].
It has been demonstrated that self-renewal pathways such as Wnt, Hedgehog, and Notch that are
upregulated in embryonic stem cells are also commonly reactivated in tumour-initiating and cancer stem
cells as well as in mature lung cancers, driving proliferation, resistance to apoptosis, epithelial-to-mesenchymal
transition, metastasis, acquisition of new blood vessels and further genomic permutation [14]. Such lung
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cancer initiating and stem cells possess self-renewal properties and are able to execute programmes of
repair and normal tissue replacement during precarcinogenesis and established carcinogenesis [15].

Several cell types of the lungs hold tumour-initiating and stem cell properties and are thus potential cells
of origin of lung cancer. To this end, p63(+)Krt5(+) distal airway stem cells likely relevant to airway basal
cells have been shown to maintain and repopulate the airway and alveolar epithelium following viral
injury, while club cell secretory protein (CCSP)-expressing club cells have also been shown to be capable
of maintaining and repairing smaller bronchioles and alveolar structures [16-20]. Similarly, surfactant
protein C (SFTPC)-producing alveolar type II (ATII) cells are responsible for maintenance of the alveolar
epithelium [21, 22]. However, CCSP+SFTPC+ double positive bronchioalveolar stem cells (BASC) that
reside in the terminal and respiratory bronchioles and alveolar ducts and can differentiate into club cells as
well as alveolar cells were also shown to possess strong regenerative potential of both airway and alveolar
epithelium [23]. An often underestimated and disputed pool of lung stem cells are of mesenchymal origin,
located in all human tissues and organs and shown to migrate and differentiate into non-mesodermal cell
types [24-26]. Additional cells that are lineage negative have been shown to reside in the lungs and to
possess strong regenerative potential, while mesothelial cells were also shown to repopulate mesenchymal
cells of the lungs and other internal organs [27, 28]. While lung stem cells and their functions are
authoritatively reviewed elsewhere [29-33], the present review will summarise the current knowledge on
the cells of origin of lung cancer with a special focus on club cells and their potential role as cancer stem
cells of LUAD.

Methods

In addition to articles already known to the authors, PubMed (https:/pubmed.ncbi.nlm.nih.gov/) was
queried on 17 May 2021 using theterms: (‘lung cancer’[Title/Abstract] OR ‘lung adenocarcinoma’[Title/
Abstract] OR ‘squamous cell lung carcinoma’[Title/Abstract] OR ‘squamous cell lung cancer’[Title/
Abstract] OR ‘small cell lung cancer’[Title/Abstract] OR ‘small cell lung carcinoma’[Title/Abstract]) AND
(‘stem cell’[Title/Abstract] OR ‘cell of origin’[Title/Abstract]), retrieving 1385 results. Titles and journal
names were manually curated to yield 416 articles whose abstracts were screened to yield the articles that
built the knowledgebase and reference list of the present review.

Results
The causes of cancer translated to lung adenocarcinoma
Heredity causes multiple forms of cancer that can be clinically manifest in childhood, but also in adult life,

and can be spontaneous or co-precipitated by germline mutations and environmental factors such as
smoking [34, 35]. Heredity can also indirectly cause cancer by influencing our interactions with the
environment, as is the case with a single nucleotide polymorphism in the habenular nicotinergic
acetylcholine receptor which renders individuals susceptible to nicotine addiction and thereby to COPD,
lung cancer and peripheral arterial disease [36]. Environmental carcinogens are thought to be even more
important than heredity in precipitating chest tumours in humans. The relationship between tobacco
smoking and lung cancer is one of the best documented epidemiologic relationships, while the same goes
for asbestos exposure and mesothelioma [37-44]. Radiation has also been tightly linked with lung cancer
development based on a number of different data sources, including atom bomb survivors, nuclear plant
workers, uranium miners, radiotherapy patients, and participants of lung cancer screening programmes
[45-54]. Finally, an increasingly stronger case is in the making for the connection between urban air
pollution and lung cancer [55-58]. While the list of environmental carcinogens that impact the lungs and
pleura is getting longer every day, and are comprehensively reviewed elsewhere [38], a fascinating new
hypothesis saw the light of day in recent years: the bad luck hypothesis by Tomasern and VOGELSTEIN
examines the possibility of a significant proportion of human cancers resulting from stem cell divisions
gone awry [59-62]. This ground-breaking work was based on measurements of cell division rates in the
various organs using proliferating cell nuclear antigen (PCNA) and marker of proliferation Ki-67 staining
of proliferating cells and extrapolation of the data by organ size and cell number. Indeed, PCNA+ cells in
the resting lung are very sparse, and increase tremendously in lung cancers [59-62].

Hence, several different environmental and endogenous causes can precipitate lung cancer originating from
the same and/or different lung lineages, and this heterogeneity is most evident with LUAD. It is highly
likely that different molecular subtypes of LUAD exist, which emanate from different cells of origin that
were tumour-initiated by different triggers, and such patient subgroups are evident in molecular and
epidemiologic datasets. For example, we identified two subgroups of patients with LUAD in atom bomb
survivors from Hiroshima and Nagasaki included in the Life Span Study that can be explained by
exposures to smoking and to irradiation, and validated their existence in the TCGA cohort from the US [48].
In addition, molecular subsets of KRAS-mutant LUAD were identified within the TCGA cohort via elegant
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genomic analyses [63]. This interpatient heterogeneity of LUAD needs to be addressed by future studies
on the cell of origin of lung tumours, which should ascertain the tumour subtype under study.

Evidence from genetic mouse models of LUAD

Studies on the origins of LUAD have been boosted tremendously by the use of genetically engineered
mouse models, which are valuable tools for tumour induction and lineage tracing. Model organisms have
been genetically manipulated to conditionally express oncogenic or tumour suppressive alleles, in
conjunction with CRE recombinase expressed under the control of a promoter active specifically in one of
the different respiratory cell lineages, and are therefore ideal for the tracing of a specific cell population
carrying specific mutations in time and space. Prominent focus has been given to the development of
mouse models harbouring KRAS proto-oncogene GTPase (encoded by the human KRAS and the murine
Kras genes) and tumour protein 53 (encoded by the human TP53 and the murine Trp53 genes) mutations,
as oncogenic mutations of the KRAS and TP53 genes are found in 34% and 54% of human LUAD [64, 65].
As a result, several mutant Kras/KRAS knock-in and Trp53 knockout mouse models have been generated,
with the most widely used among them being the Lox-Stop-Lox-KRAS"'*” madel, which develops LUAD
within 4 months post intranasal administration of adenoviral CRE, and the Lox-Trp53-Lox model, in which
Trp53 can be deleted in specific lineages and can cause more aggressive LUAD when combined with the
Lox-Stop-Lox-KRAS®"*® model, as well as other transgenic mouse models that cannot be all mentioned
here [64-68]. Pulmonary lineage tracing studies in the respiratory epithelium of these genetically modified
mice following forced expression of the Kras”'?" mutation in club airway epithelial cells expressing
CCSP, or in ATII alveolar epithelial cells expressing SFTPC, or in bronchoalveolar epithelial cells
expressing both markers, resulted interchangeably in LUAD formation, leading to inconclusive data as to
the progenitors of LUAD in adult mice [22, 23, 69-71]. This is partly attributable to the fact that some of
the above-referenced lineage tracing mouse models feature incomplete and/or promiscuous lung cell
labelling, to the heterogeneity among ATII cells regarding their proliferative and to tumour-initiating cell
properties [22], but also to the viral-induced injury itself, since it was also shown that adenoviral infection
alone contributed to the transformation of lung cells towards LUAD [71]. Similar genetically engineered
mouse models reproducing other LUAD driver mutations such as EGFR mutations and EML4-ALK fusions
have also been established and have proven the oncogenicity of the respective molecular changes when
forcefully expressed in alveolar cells, implying that ATII cells are the cellular origins of multiple
oncogene-driven LUAD tumours [72-74].

Evidence from environmental LUAD induction in mice

Although the above-referenced genetic mouse models have enhanced our mechanistic understanding of
LUAD development, oncogene function and cell of origin, they do not fully capture the mutation diversity
and burden of human LUAD, which is caused by environmental carcinogens rather than single oncogenes
[74, 75]. To better recapitulate the mutational acquisition pattern and dissect the complex pathobiology of
human LUAD, alternative strategies can be employed that combine conditional respiratory lineage tracing
with carcinogenic insults. This approach is advantageous in recapitulating pathophysiologic endogenous
carcinogenic events and in unravelling key events taking place during early tumour initiation, knowledge
which can prove valuable for the development of LUAD early detection of chemoprevention strategies.
Along these lines, we recently showed that as early as two weeks following treatment of lineage-marked
mice with urethane (ethyl carbamate, a chemical carcinogen contained in tobacco smoke) [76], Kras¥®'®
driver mutations accumulate specifically in club and not in ATII cells [20], in line with evidence from
human airway epithelial cells found to be sensitised by tobacco smoke to a single-hit KRAS mutation [77]
and from a massive parallel sequencing approach [78]. These results are also in accord with earlier studies
that dictate that only club cells possess the cytochrome CYPZEL [79, 80] that is required to convert the
tobacco pre-carcinogen urethane (ethyl carbamate) to carcinogenic derivatives vinyl carbamate and its
epoxide [81, 82], which in turn have a half-life of a few femtoseconds and can thus only injure the DNA
of the same cell that metabolically activates them [83, 84]. Thus, club cells are likely to be the cellular
source of LUAD triggered by the tobacco carcinogen urethane as opposed to ATII cells as cells of origin
of transgenic lung tumours in mice [20, 85].

Indeed, environmental-induced LUAD in susceptible inbred mouse strains is a versatile research tool. To
this end, single-hit LUAD emerge in sensitive FVB and A/] mice 6-9 months post-treatment with
intraperitoneal urethane (ethyl carbamate), N-nitrosodiethylamine (DEN), 4-(methylnitrosamino)-1-
(3-pyridyl)-1-butanone (NNK), N-nitrosonornicotine (NNN), and N-methyl-N-nitrosourea (MNU), and
uniquely recapitulate the mutational landscape of human LUAD (20, 75, 86-93]. Such models have been
successfully used to study oncogene function in the genomic context and to reproduce human-relevant
LUAD mutanomes in mice [75, 93]. Although chemical models of LUAD do not necessarily rely on
human-relevant Kras mutations, they rather generate a human-relevant mutation spectrum in terms of
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single nucleotide variants in the mono- and tri-nucleotide, as well as the gene contexts [75, 87]. For
example, urethane-induced LUAD in mice feature the Kras®®'™ mutation, which is very rare in human
LUAD, but at the same time they harbour multiple mutations in critical LUAD genes such as Alk and
Crebbp that are highly relevant to human LUAD [75]. Combining such tools with lineage tracing allows
spatiotemporal exploration of whole adverse outcome pathways leading from a specific carcinogen to
lineage-restricted molecular initiating events, key progression events and clinicopathologic and molecular
signatures that indicate the initiating agent and cell type. Using such an approach, club cells were shown to
contribute to lung maintenance, repair and carcinogenesis, to possess stem cell features and to sustain
chemical-induced KRAS mutations as LUAD cells of origin would [20, 85].

Evidence from human LUAD

Human LUAD patient cohorts have also been interrogated for cell of origin signatures, since abundant
evidence supports that cell of origin is imprinted and deductible from molecular data [94, 95]. These
studies have been sparse but imperative, since there are marked differences between mouse and human
lung epithelial cell biology, rendering translation of mouse lineage tracing data to the human setting
uncertain. Such studies are marked by inherent uncertainty, since lineage plasticity in the lungs is
tremendous and even malignant lung tumours can switch histology and molecular profiles upon acquisition
of new genomic alterations [96, 97]. To this end, one study exploited the finding of co-mutations of KRAS
and KEAPI in 5% of LUAD [63] to ascribe different cells of origin (airway versus alveolar), as well as
immunometabolic profiles to KRAS-mutant LUAD with or without KEAPI alterations [98]. In another
effort to determine genomic imprints of cell fate, squamous and adenomatous lung tumours appeared
highly similar, suggesting a common ancestor [99]. In our view, tumours of smokers and nonsmokers may
very well have different cellular origins, and hence studies should focus on molecular hallmarks of
smoking when examining lineage of origin, since such markers have been described, including KRAS and
TP53 mutations, as well as the C>A transversions described elsewhere [100-102]. These data show the
need for genetic lineage tracing models in the search for cells of origin of lung tumours, and for
biomarkers of environmental and endogenous lung cancer causative agents. Furthermore, they illustrate the
marked heterogeneity of LUAD, which needs to be taken into account in such lineage tracing studies.

Conclusions

The contribution of cells with stemness properties to tissue homeostasis, regeneration and tumour
progression is undeniable, and this trait renders them attractive therapeutic targets. In heterogeneous
tumours, stem cells will sustain tumour growth and possibly tumour recurrence. Chemical carcinogenesis
mouse models faithfully recapitulate human LUAD, and have highlighted club cells as a central respiratory
cell population with a key role in early initiation events leading to LUAD. Future perspectives should
therefore be targeted to better characterise this cell type and to increase our comprehension of the
mechanisms regulating cell biology, biomarker expression, mutational acquisition spatiotemporal patterns,
molecular dynamics of tumour evolution and tumour architecture. Novel technologies, such as organoids,
3D whole organ imaging with single cell resolution, and single cell sequencing, have been developed to
compliment the knowledge gained from transgenic mouse models and better understand the underlying
tumour pathobiology. The new knowledge should be tested on human-relevant experimental pre-clinical
models, so that effective therapies can be developed.
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