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Introductory summary 

1 Malignant neoplasms of the lower respiratory system 

 

In the chest a variety of distinct types of cancer can arise from different tissues within and sur-

rounding the lung. Besides the genotypic lesions known to crucially drive malignant transfor-

mation and progression [1], the cells of origin within one organ also define the tumors [2]. There-

fore, within one tissue several subtypes of cancer can be found with again various histologies 

which determine diagnosis and treatment of the respective malignancies [3]. For the purpose of 

this thesis, the content will focus on primary cancers of the lungs and pleura. 

 

1.1 Malignancies of the lung epithelium 

With 1.8 million deaths in 2020, lung cancer is the leading cause of cancer-related mortality world-

wide in both men and women [4]. More than 2 million patients were diagnosed with lung cancer, 

whose clinical signs are characterized by anorexia, weight loss, fatigue, and more specific symp-

toms such as persisting cough, chest pain, worsening dyspnea, hemoptysis, and reoccurring 

pneumonia or bronchitis [5]. As these symptoms and thus the diagnosis usually only occur at 

already advanced stages of this malignancy, the 5-year survival rate amounts to only 10% to 20% 

[4, 6]. 

It is scientifically proven that tobacco smoking remains the dominant cause for lung cancer [7, 8]. 

Tobacco products and its smoke contain over 9,500 chemical compounds of which 83 are prov-

ably carcinogens [9]. But there are also other environmental exposures that have been shown to 

inflict cancer in the respiratory system. These risk factors include secondhand tobacco smoke, 

radiation, air pollution, radon, and occupational carcinogens such as asbestos [10-18]. Patients 

with COPD, bronchitis, emphysema, asthma, or another previous history of chronic respiratory 

diseases are subject to a higher risk of developing neoplasms in the lung [19, 20]. Furthermore, 

it has been demonstrated that infectious diseases affecting the lung can contribute to carcinogen-

esis [21-24]. 

Lung cancer can be divided into two major types, small-cell lung carcinoma (SCLC) and non-

small cell lung carcinoma (NSCLC). Globally, SCLC accounts for an incidence of roughly 250,000 

and 200,000 deaths every year [25]. Due to its easy relapse, the overall survival rate is with 

approximately 10 months very low [26]. At a limited stage of this disease (LS-SCLC) the malignant 

cells are still locally restricted, but 60% of the patients show evidence of extensive-stage SCLC 

(ES-SCLC). Here, the disease has already progressed and spread beyond the hemithorax [27]. 

The standard line of treatment is comprised of chemotherapy, radiation therapy, prophylactic cra-

nial radiation, or a combination thereof. Surgery can be an option in LS-SCLC. In the frequent 

case of recurrence, treatments concentrate on palliative care [28]. Some modest progresses 

could be achieved in the emerging field of immunotherapeutics targeting molecules such as poly 

ADP ribose polymerase (PARP), checkpoint kinase 1 (CHK1), programmed cell death 1 (PD-1), 

programmed death-ligand 1 (PD-L1), fibroblast growth factor receptors (FGFR), and cyclin-de-

pendent kinase 7 (CDK7) in combination with chemotherapy [29]. However, more research needs 

to be done to develop more effective and comprehensive responses. 
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NSCLC comprises about 85% of all lung cancer cases and can be further classified into three 

main categories. 40% of NSCLC patients are diagnosed with lung adenocarcinoma (LUAD) mak-

ing it the most dominant histopathologic subtype. With 25% lung squamous cell carcinoma 

(LUSC) ranks second and large cell carcinoma represents 15% of all NSCLC cases. The remain-

ing 20% are composed of other, rare forms such as large cell neuroendocrine, pleomorphic sar-

comatoid, and adenosquamous carcinoma, as well as carcinoid tumors [30]. The five-year relative 

survival rates for NSCLC are generally higher than for SCLC and amount to 23% and 6%, re-

spectively. However, the survival greatly depends on the stage of the disease at diagnosis [30]. 

When NSCLC patients are diagnosed at an early stage of the disease and the tumor is resectable, 

surgery together with adjuvant chemotherapy or radiotherapy is the preferred treatment [31, 32]. 

Nevertheless, as with 70% most patients already have more advanced cancer stages at the time 

of diagnosis, radiation therapy, combination chemotherapy, laser therapy, and/or targeted therapy 

are employed [33]. It has been demonstrated that radiation together with chemotherapy improves 

survival [34, 35]. Generally, the choice of therapeutics is defined by the tumor location, its resec-

tability and the presence of certain mutations. Mutations that can be targeted up to date include 

epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), proto-oncogene 

tyrosine-protein kinase (ROS), rapidly accelerated fibrosarcoma (RAF), tyrosine-protein kinase 

Met (MET), vascular endothelial growth factor (VEGF), and others [36]. If there is no actionable 

mutation present, immunotherapy presents a treatment option. However, acquired resistances 

are common [36]. 

 

1.2 Pleural neoplasms 

Malignant pleural mesothelioma (MPM) is a rare but devastating malignancy that evolves from 

the mesothelial cells lining the chest cavity [37, 38]. In 2020, the global incidence reached 31,000 

cases and 26,000 deaths could be observed [4]. Since an early detection of MPM is difficult with 

current diagnostic tools and due to its aggressive nature, the 5-year survival rate is below 5% [37, 

39]. Most MPM patients present with chest pain and dyspnea. Other symptoms may include 

weight loss, fatigue, dry cough, anorexia, sweats, and fever [38, 40]. Progressive breathlessness 

is usually caused by an elevated accumulation of fluid in the space between the visceral and 

parietal pleura which contains malignant cells. This phenomenon is called malignant pleural effu-

sion (MPE) and develops in approximately 90% of individuals [41, 42]. 

The vast majority of MPM (up to 90%) is induced by occupational exposure to the mineral asbes-

tos [43, 44]. It is well established that MPM can bet attributable to other mineral fibers such as 

erionite or fluoro-edenite, and therapeutic radiation [45-48]. Further risk factors may include 

chronic pleural inflammation and carbon nanotubes, but the data are sparse [43, 49-51]. 

MPM can be classified in three histologic subtypes: epithelioid, sarcomatoid, and biphasic. While 

sarcomatoid histology represents the worst prognosis, epithelioid tumors indicate the longest sur-

vival [52]. Patients with biphasic subtype have a more beneficial prognosis the higher the propor-

tion of differentiation towards epithelial cells is [53]. For early stage MPM patients, surgery is 

debated [40]. Chemotherapy has been proven to prolong the median survival for almost three 

months and drainage of the MPE fluid can improve dyspnea [54-56]. Despite the toxicity of radi-

ation therapy, it is used palliatively [57, 58]. As lung cancer, MPM can be treated with targeted 

therapy and immunotherapy including VEGF, EGFR, PDL-1, mesothelin, and cancer vaccines, 
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dendritic cell-therapy, and chimeric antigen receptor T-cell therapy, respectively [59, 60]. Never-

theless, MPM remains a deadly disease without cure, pointing out the urgent need for further 

investigations to achieve diagnostic and therapeutic advances. 

 

2 Mutational landscapes of thoracic malignancies 

 

Hanahan and Weinberg declared genomic instability and mutations as one of the ten hallmarks 

of cancer [61]. Genomic changes include base substitutions, so called single nucleotide variants 

(SNV), insertions and deletions. More extensive damage comprises copy number alterations 

(CNA), alternative splicing and chromosomal rearrangements such as gene fusions [62]. In addi-

tion to these aberrations, epigenetic changes influence tumor progression independent from the 

DNA. They involve predominantly post-translational histone and DNA methylation pattern modifi-

cations leading to abnormal gene expression [63]. Furthermore, gene expression can be modu-

lated by noncoding small RNAs, changes of which are known to act in cancer as well [64]. 

Organs that build the barrier to the environment such as the skin, but also the respiratory and 

gastrointestinal system, are directly affected by environmental exposures. Many of these can in-

duce genomic alterations and thus are toxic to the human body. Mutations and other genomic 

modifications have been proposed to be a hallmark of environmental insults [65]. Hence, tumors 

in such barrier organs carry a relatively high number of somatic mutations (Figure 1). Studies 

have already established numerous environmental chemicals as mutagenic. Efforts were made 

to expose pluripotent stem cells to environmental mutagens inducing alterations in the genome 

that were comparable to the mutation signatures of human cancers [66]. Similar studies were 

performed aiming to identify the causative origins of malignancies based on comparing their mu-

tational patterns [67-69]. 

It is highly valuable to enhance our knowledge about genomic alterations in human tumors. It will 

not only help to improve the biological understanding of the tumor, its progression and their puta-

tive role as driver or passenger mutations of each disease but might also possess prognostic 

and/or predictive value. New mutations might pose new biomarkers or therapeutic targets influ-

encing clinical decision making, or hint to causative agents. 

 

 

 

 



14  Introductory summary 

 
Figure 1. Mutation numbers of 32 different TCGA cancer studies. The Cancer Genome Atlas (TCGA) 

PanCancer Atlas (n = 11,133 patients) was queried for mutation numbers for each single cancer study and 

summarized in this plot. The counts for NSCLC and MPM are highlighted in red and green, respectively. The 

data are available at https://www.cbioportal.org/. Presented are medians (dashed lines), quartiles (dotted 

lines), and rotated kernel density plots (violin plots). P, probability, ordinary one-way ANOVA. ACC, adreno-

cortical carcinoma; BLCA, bladder urothelial carcinoma; CESC, cervical squamous cell carcinoma/endocer-

vical adenocarcinoma; CHOL, cholangiocarcinoma; COREAD, colorectal adenocarcinoma; GBM, glioblas-

toma multiforme; UCEC, uterine corpus endometrial carcinoma; ESCA, esophageal carcinoma; HNSC, head 

and neck squamous cell carcinoma; LIHC, liver hepatocellular carcinoma; BRCA breast invasive carcinoma; 

LAML/LCML, acute myeloid leukemia/chronic myelogenous leukemia; DLBC, lymphoid neoplasm diffuse 

large B-cell lymphoma; SKCM, skin cutaneous melanoma; MISC, miscellaneous; TGCT, testicular germ cell 

tumors; NSCLC, non-small cell lung carcinoma; OCMEL, ocular melanoma; OVCAR, ovarian serous cystad-

enocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma/paraganglioma; MESO, 

mesothelioma; PRAD, prostate adenocarcinoma; KIRC, kidney renal clear cell carcinoma; KIRP/KICH, kid-

ney renal papillary cell carcinoma/kidney chromophobe; SARC, sarcoma; THYM, thymoma; STAD, stomach 

adenocarcinoma; THCA, thyroid cancer. 

 

But, since cancer is a very heterogenous disease, its characterization and treatment poses a 

challenge for. Lung cancer and mesothelioma are likewise affected by intra- and inter-tumoral 

(spatial) but also by clonal (temporal) heterogeneity [70-72]. In lung cancer the most frequent 

mutations that can be detected in patients differ between the different histologic subtypes, alt-

hough there are some genes that are common. The most frequent inactivating mutations that can 

be found in SCLC include tumor protein p53 (TP53), RB transcriptional corepressor 1 (RB1), 

lysine methyltransferase 2D (KMT2D), phosphatase and tensin homolog (PTEN), notch receptor 

1 (NOTCH1), CREB binding protein (CREBBP), FAT atypical cadherin 1 (FAT1), neurofibromin 1 

(NF1), and APC regulator of WNT signaling pathway (APC) which are altered at rates of 89, 64, 

13, 7, 6, 5, 4, 4, and 4%, respectively [25]. Phosphatidylinositol-4,5-bisphosphate 3-kinase cata-

lytic subunit alpha (PIK3CA, 7%), EGFR (4%), KRAS proto-oncogene GTPase (KRAS, 3%) are 

prevalently activated oncogenes in this disease [25]. Hence, the most disrupted pathways are 

PI3K/AKT/mTOR, Ras-Raf-MEK-ERK, cell-cell signaling, transcription regulation, stress re-

sponse, and chromatin-remodeling. 

In NSCLC on the other hand, the genomic alterations can be frequently found in cyclin dependent 

kinase inhibitor 2A (CDKN2A), B-Raf proto-oncogene serine/threonine kinase (BRAF), ser-

ine/threonine kinase 11 (STK11), with CDKN2A being more prevalent in LUSC and BRAF and 

STK11 in LUAD [73]. Similarly to SCLC, high mutational burden can be found in TP53, KRAS, 

EGFR, NF1, PIK3CA, and PTEN, well known tumor suppressor genes and oncogenes. Especially 

elevated mutation frequencies can be observed for TP53 with 46 and 91% in LUAD and LUSC, 

respectively, and KRAS with 33% in LUAD [73]. In addition to these, rearrangements in genes 
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such as ALK receptor tyrosine kinase, amplification of oncogenes and more extensive deletions 

e.g., in CDKN2A are typical aberrations in lung tumors. 

MPM carry an average of only 24 protein-coding alterations which are mainly accumulated in the 

DNA repair and Hippo pathways [74, 75]. Genetic variation in up to 60% of the tumors can be 

observed in the tumor suppressor BRCA1-Assocated Protein 1 (BAP1) which is involved in DNA 

repair, cell cycle, and differentiation regulation [76-78]. Furthermore, Bueno et al. and Quetel et 

al. found that moesin-ezrin-radixin like (MERLIN) tumor suppressor (NF2), CDKN2A/B, TP53, and 

SET domain containing 2 histone lysine methyltransferase (SETD2), and large tumor suppressor 

kinase 2 (LATS2) are mutated at high frequency in MPM [74, 77, 79, 80]. Mutations in oncogenes 

such as EGFR, KRAS, and PIK3CA upregulating the Ras/Raf/MEK/ERK and PI3K/AKT/mTOR 

pathways and thus driving cellular survival and proliferation are rather rare in MPM, although 

recent data suggest an underestimated role for KRAS mutations in this malignancy [39, 81]. Table 

1 summarizes the most abundant mutations which can be found in both diseases, lung cancer 

and MPM. 

 

Table1. Most abundant somatic mutations common among lung cancer and MPM and their frequencies. 
 

Gene 
Mutation frequency [%] 

Main function 
SCLC LUAD LUSC MPM 

TP53 90 46 91 8 Tumor suppressor; cell cycle control, 

DNA repair, apoptosis 

CDKN2A  4 17  Tumor suppressor; cell cycle control, 

TP53 pathway 

NF1 4 11   Tumor suppressor; PI3K/AKT/mTOR 

signaling, Ras/Raf/MEK/ERK signaling 

PTEN 6  8  Tumor suppressor; PI3K/AKT/mTOR 

signaling 

KRAS 3 33  rare Oncogene; PI3K/AKT/mTOR signaling, 

Ras/Raf/MEK/ERK signaling 

EGFR 4 14  rare Oncogene; PI3K/AKT/mTOR signaling, 

Ras/Raf/MEK/ERK signaling 

PIK3CA  7 16 rare Oncogene; PI3K/AKT/mTOR signaling 

Data collected from [25, 73, 74] 

 

3 Digital droplet PCR 

 

Digital droplet polymerase chain reaction (ddPCR) is a molecular method that allows direct quan-

tification of nucleic acid molecules with a very high level of precision and sensitivity [82]. It can be 

used in various applications including mutation and genome edit detection, copy number exami-

nation, absolute quantification of nucleic acids, gene expression, and identification of microorgan-

isms [83]. This method can be a powerful tool for molecular diagnostics, especially for detecting 

rare mutations.  

By creating a water-in-oil emulsion of the sample, it is partitioned into up to 20,000 nanoliter drop-

lets which ideally contain only one copy of the target molecule and all PCR reagents. Then, PCR 

amplification runs in every single droplet providing high accuracy. The readout is performed by 
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detecting two-color fluorescent Taqman probes. In the subsequent analysis thresholds are set in 

order to discriminate positive and negative signals as e.g., wildtype from mutant droplets of a 

certain target gene (Figure 2). 

 

 

Figure 2. Schematic workflow of ddPCR. The single steps including droplet generation, PCR amplification, 

droplet reading, and analysis are visualized. Exemplary, wildtype copies of a target molecule are labelled 

with the fluorescent marker FAM (turquoise) and mutant copies with HEX (orange). 

 

As the detection of the PCR products happens at the end of the reaction, the outcome is much 

less influenced by its amplification efficiency and no standards or calibration is required, making 

ddPCR superior to conventional PCR and qPCR [84, 85]. This method allows the user absolute 

quantification of the target nucleic acid without bias and detection at a very low frequency of 

1:10,000 [82, 85]. The necessity of only low sample and reagent quantity poses another benefit 

reducing costs and saving precious samples. Thus, ddPCR is among other applications a suitable 

tool for molecular diagnostics. 

Next generation sequencing (NGS) or massively parallel sequencing represents another rising 

highly effective tool to analyze exomes, transcriptomes, and genomes in a comprehensive and 

high-throughput fashion [86]. With NGS, one can evaluate somatic mutations not only in known 

disease-related genes, but also previously uncharted genetic or epigenetic alterations. In com-

parison with ddPCR, it is not necessary to know the target sequence, but NGS will take more time 

and be more costly [87]. Additionally, NGS requires extensive computer capacity, storage space 

and bioinformatic expertise for analysis, which is not the case with ddPCR. Signatures extracted 

from NGS data pose approximations dependent on the mathematical approach and thresholds 

used [68]. Regarding the detection limit, both methods show high sensitivity levels with 0.001% 

and 0.001-1% for ddPCR and NGS, respectively, making ddPCR more sensitive in most cases 

[82, 87-89]. Despite its advantages, the target sequence needs to be known to develop specific 

assays for each single base alteration when applying ddPCR [88].  

We and others have observed that compared to NGS, ddPCR is faster and more sensitive for 

detecting specific mutations or pathogens in human specimen [89-91]. Taken together, ddPCR 

represents a very well-suited technique for the detection of especially rare mutations in known 

target sequences. 
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4 Spatiotemporal evolution of Kras mutations in murine 

lung adenocarcinoma 

 

Behrend SJ, Giotopoulou GA, Spella M, Stathopoulos GT. A role for club cells in smoking-asso-

ciated lung adenocarcinoma. Eur Respir Rev. 2021;30(162):210122. doi: 

10.1183/16000617.0122-2021 

and unpublished data (manuscript in preparation). 

 

With lung cancer being the number one cancer killer worldwide, we decided to investigate the 

mutation pattern and cell of origin of LUAD, the most abundant type of lung cancer, in a spatio-

temporal manner. Generally, the tumor initiating cells and their genetic alterations determine can-

cer formation and progression [92]. Thus, and due to their potential role as therapeutic targets, 

defining and studying the cell of origin is of high relevance. Together with cancer stem cells and 

mature cancer cells they share upregulation of self-renewal pathways [93]. Based on this fact, all 

pulmonary cell lineages that possess stem cell characteristics such as basal, club, alveolar type 

2 (AT2), and bronchioalveolar stem cells are potential cells of origin in LUAD [94-101]. It is plau-

sible that the enormous diversity of causes of this dreadful disease results in different tumor initi-

ating cells ultimately leading to the existing heterogeneity of patient subgroups [102]. This is a 

fact which should be covered in research addressing the cell of origin.  

Next to genetic mouse models which artificially introduce driver mutations found in patients, mu-

rine LUAD models which are inflicted by environmental carcinogens such as the tobacco chemi-

cals urethane (ethyl carbamate), N-nitrosodiethylamine, N-methyl-N-nitrosourea, 4-(methylnitros-

amino)-1-(3-pyridyl)-1-butanone, or Nʹ-nitrosonornicotine better recapitulate complex carcino-

genic processes, mutation accumulation signatures and pathophysiology [102-104]. These chem-

icals do not necessarily cause the exact mutation found in humans, but the relevant mutation 

range [104, 105]. The tobacco carcinogen urethane is able to reliably induce LUAD in susceptible 

FVB mice by a single injection of the chemical [106]. This mouse model displays the complex 

mutation patterns which can be found in human LUAD, and which reproducibly include KrasQ61R 

mutations [104, 105, 107]. In patients KRAS mutations are predominantly found in codon 12, and 

some in codons 13 and 61 [108]. 

KRAS is a key driver oncogene which is mutated in about one third of all LUAD patients and is 

associated with tobacco smoking [73, 109, 110]. Patients carrying a KRAS activation display a 

poorer prognosis and targeted therapies have been demonstrated to be challenging due to the 

biological heterogeneity of KRAS mutant lung cancer. Numerous clinical trials for new therapeu-

tics haven’t shown promising results so far [111]. The KRAS gene encodes a cell membrane 

bound GTPase which when carrying an activating mutation, enables various signal pathways 

such as enhanced proliferation, apoptosis repression, upregulated cell metabolism, angiogene-

sis, suppressed antitumor immunity, and metastasis [112]. 

A valuable approach to investigate the spatial LUAD development is lineage marking. Since the 

time axis of KrasQ61R mutation acquisition and the afflicted cell lineages are still obscure, we com-

bined this strategy with the urethane mouse model of environmentally induced LUAD to scrutinize 

when and which pulmonary cell types gain KrasQ61R mutations and ultimately conclude on the 

question whether urethane inflicted LUAD develops from the alveoli or airways. Clara cell secre-

tory protein (CCSP) and lysozyme 2 (LYZ2) are well established markers that are specifically 

https://doi.org/10.1183/16000617.0122-2021
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expressed in club cells of the bronchi and in AT2 cells and alveolar macrophages, respectively 

[98, 100]. Hence, different CRE-driver strains expressing the Cre recombinase under the promot-

ers of these two genes were intercrossed with a double fluorescent CRE-reporter strain (mT/mG) 

that switches from expression of membranous tdTomato (mT) to membranous GFP (mG) upon 

CRE recombination [113]. The heterozygous offspring CCSP.CRE;mT/mG and 

LYZ2.CRE;mT/mG with permanently labelled club cells, and AT2 cells and alveolar macro-

phages, respectively, received a single dose of urethane. Lungs were taken 0, 1, 2, 4, and 8 

weeks post-urethane and tumors were resected at 16, 24, and 32 weeks following the treatment 

(Figure 3A-B). 

We developed a duplexed ddPCR assay for the parallel detection of two targets. With this spe-

cialized method we checked for CRE recombination by probes against mT and the presence of 

KrasQ61R mutations by probes spanning the codons 57-64 of wildtype Kras. In both, lung samples 

at early phases following urethane administration and tumors at advanced stages of LUAD, we 

found an increasing proportion of lineage marked mG+ and KrasQ61R mutant droplets in 

CCSP.CRE;mT/mG mice and thus KrasQ61R mutant club cells. In AT2 cells the opposite effect 

could be observed for both sample types, indicating that club cells in the airways maintain driver 

Kras mutations while these tend to get lost in alveolar cells (Figure 3C-D). These findings suggest 

that club cells are cells of origin of LUAD induced by smoking as opposed to most of the current 

literature which shows AT2 cells as major progenitors in genetic mouse models of KrasG12D driven 

LUAD [114-116]. However, there has also been proof that tobacco specifically sensitizes epithelial 

cells of the bronchi and, similar to our results, the tobacco carcinogen urethane causes early Kras 

mutations in club cells which can lead to murine LUAD in sensitive mice [98, 117, 118]. 

As the data about the cell of origin of LUAD are contradictory, there is a high need for further 

investigation which takes into account the great heterogeneity of the underlying disease and its 

causes. Human studies scrutinizing the tumor initiating cells are challenging and sparse, since 

the disease usually is already progressed, and reconstruction of the clonal evolution can be solely 

done by correlation [119]. LUAD of smokers and never-smokers may arise from distinct cells 

acquiring different molecular characteristics [102, 120]. Thus, application of mouse models, line-

age tracing studies, single cell RNAseq, and verification in human relevant pre-clinical models 

might deliver valuable insights in the future.  
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Figure 3. Airway cells sustain KrasQ61R mutations during LUAD develop-

ment. (A, B) The timeline shows the design of this study (A). A single dose of 1 

g/Kg urethane was administered to CCSP.CRE;mT/mG and LYZ2.CRE;mT/mG 

mice (FVB strain). Whole lungs were harvested at 1, 2, 4, and 8 weeks and lung 

tumors were taken at 16, 24, and 32 weeks post-urethane. DNA was extracted 

from lungs (n = 36-45 samples/strain) and tumors (n = 63-74 samples/strain) at 

different time points (B). Duplexed ddPCR with specific primers and probes 

against Tomato (mT) and wildtype for Kras codon 61 (KrasQ61WT) alleles was per-

formed and mG+ (lineage marked) and KrasQ61R (mutant) droplets were calcu-

lated by exclusion. (C) Representative amplitude graphs demonstrating the gat-

ing strategy for quantification of KrasQ61R mutant and mG+ droplets (green 

boxes). (D, E) Percentage of KrasQ61R mutant and mG+ droplets normalized to 

time-point 1 week post-urethane in whole lungs (D; n = 5-7/data point) and LUAD 

(E; n = 8-40/data-point) over time. Shown are mean (circles) ± standard error of 

the mean (SEM) (bars). P, probability, two-way ANOVA. ** and ****, P < 0.01 and 

P < 0.0001, respectively, for comparison between strains, Sidak’s test. 
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5 Immunopathologic features reveal new human lung 

adenocarcinoma patient phenotypes independent of 

oncogenic driver mutation status 

 

Lamort AS, Kaiser JC, Pepe MAA, Lilis I, Ntaliarda G, Somogyi K, Spella M, Behrend SJ, Giot-

opoulou GA, Kujawa W, Lindner M, Koch I, Hatz RA, Behr J, Sotillo R, Schamberger AC, Statho-

poulos GT. Prognostic phenotypes of early-stage lung adenocarcinoma. Eur Respir J. 

2022;60(1):2101674. doi: 10.1183/13993003.01674-2021. 

 

Moving on to the human malady, we were able to obtain a cohort of 366 LUAD patients with 

resected tumor and adjacent tissue samples [121]. In order to characterize a large set of patients, 

we performed ddPCR for driver mutation detection and histologic stainings for examination of 

seven cancer hallmarks in 200 patients representative of the cohort [61, 122].  

We screened the specimen for alterations in the two most frequently mutated oncogenes in LUAD, 

KRAS and EGFR [73]. EGFR is a transmembrane receptor with tyrosine kinase function. It trig-

gers a signaling cascade inducing maintenance and growth of epithelial cells and preventing 

apoptosis [123]. Most mutations in EGFR comprise smaller deletions in exon 19 or the point mu-

tation L858R in exon 21, while KRAS mutations predominantly can be found in codons 12, 13 

and occasionally 61 [108, 124, 125]. Thus, we were scrutinizing alterations in KRAS codons 12/13 

and in EGFR exon 19 by sensitive ddPCR. In addition, the samples were checked for a common 

fusion with oncogenic action. An inversion in chromosome 2 leads to the fusion of the N-terminal 

half of echinoderm microtubule-associated protein-like 4 (EML4) with the kinase domain of ALK 

[124]. The resulting fusion EML4-ALK was detected in our human LUAD samples by reverse 

transcription. 

The cancer hallmarks that were stained and scored using immunohistochemistry include prolifer-

ating cell nuclear antigen (PCNA), TP53, NF1, terminal deoxynucleotidyl nick-end labelling 

(TUNEL), cluster of differentiation 45 (CD45), PD-1, and Coagulation factor VIII (FVIII) indicative 

of proliferation, genomic instability, KRAS pathway activation, apoptosis, inflammation, immune 

checkpoint activity, and angiogenesis, respectively [61].  

Since survival varies among LUAD patients, prognostic biomarkers are imperative. Immunohisto-

chemistry poses a well-established method in pathology to provide a platform for biomarker de-

tection. By scoring the expression of these seven cancer hallmarks, we were able to identify two 

patient clusters with either high TUNEL (apoptotic cluster) or high expression of the markers 

PCNA, TP53, NF1, CD45, PD-1, and FVIII (proliferative cluster) [122]. No or only slight correlation 

could be determined with clinical parameters, but with 70% the 5-year survival was elevated in 

patients within the apoptotic cluster as compared to 50% in the proliferative group. No connection 

could be observed with the presence of the tested driver mutations in KRAS, EGFR or EML4-

ALK. Hence, we were able to make out two different LUAD phenotypes in our cohort by solely 

immunostaining which could be verified in the TCGA PanCancer cohort [122]. 

Examination of the single markers and their correlation to overall survival revealed that specifically 

enhanced TP53 and PCNA expression can predict worse survival. All markers were included in 

an immunophenotypic LUAD death score to prognosticate overall survival and were validated in 

https://doi.org/10.1183/13993003.01674-2021
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the cohort and using the KMplot lung cancer module. Comparison revealed that TNM7 classifica-

tion is superior to our score which in turn outperforms WHO histology. As there is only marginal 

correlation with the TNM classification, this death score can be used alone or in combination with 

established clinical scores to predict patients’ survival [122]. Furthermore, we developed a for-

mula with 96% accuracy to predict the LUAD phenotype using the expression scores of PCNA, 

TP53, NF1, TUNEL, CD45, and FVIII which is easily applicable in the clinic.  

Taken together, these data highlight the role of immunohistochemistry as a valuable tool to predict 

overall survival in patients with resected LUAD as it is already applied in breast cancer [126]. We 

provide formulas which are ready to use in the clinic and it would be worthwhile to explore these 

patient clusters for potential prediction in response to therapies. Existence of different clusters 

also supports our hypothesis that there are multiple subtypes and several molecular ways to 

LUAD. The clusters identified in this study are not grouped by driver mutation or clinicopathologic 

parameters and may thus be explained by the cell of origin or environmental causes [122].  

 

 

6 Underestimated role of KRAS mutations in human 

malignant mesothelioma 

 

Marazioti A*, Krontira AC*, Behrend SJ*, Giotopoulou GA*, Ntaliarda G*, Blanquart C, Bayram 

H, Iliopoulou M, Vreka M, Trassl L, Pepe MAA, Hackl CM, Klotz LV, Weiss SAI, Koch I, Lind-ner 

M, Hatz RA, Behr J, Wagner DE, Papadaki H, Antimisiaris SG, Jean D, Deshayes S, Gré-goire 

M, Kayalar Ö, Mortazavi D, Dilege Ş, Tanju S, Erus S, Yavuz Ö, Bulutay P, Fırat P, Psallidas I, 

Spella M, Giopanou I, Lilis I, Lamort AS, Stathopoulos GT. KRAS signaling in ma-lignant pleural 

mesothelioma. EMBO Mol Med. 2022;14(2):e13631. doi: 10.15252/emmm.202013631. 

 

Mutations found in MPM affect patient survival as it had been shown for deactivating alterations 

in TP53 and CDKN2A to predict poor survival [76, 127]. Although KRAS mutations are scarcely 

detected in MPM, it has been found that RAS signaling is commonly upregulated in this disease 

[128]. Furthermore, Matallanas et al. could demonstrate a functional link between mutated KRAS 

and the activation of TP53 [129]. Along this line, we decided to scrutinize KRAS alterations and 

their putative interplay with TP53 loss-of-function during MPM evolution. 

Analysis of ten MPM studies revealed that KRAS and TP53 mutations made up 2 and 18% of all 

mutated genes [74, 76, 80, 130-136]. However, detailed exploration of the TCGA PanCancer 

MPM dataset unveiled a higher number of patients carrying mutations in KRAS and TP53, con-

sidering mutations, CNA, mRNA and protein expression [80]. In total, 20% of the patients carried 

a KRAS alteration, while 12% displayed a mutation in KRAS alone and 8% in both, KRAS and 

TP53 [90]. The MPM patients suffering KRAS mutations in general presented a tendency towards 

biphasic histology and thus worse survival. By unsupervised hierarchical clustering of gene ex-

pression data, the double mutant specimen formed an own cluster and showed higher aneuploidy 

and genome alteration indices. These findings indicate a molecular subclass of MPM in the TCGA 

dataset displaying alterations in KRAS alone or together with TP53 [90].  

https://doi.org/10.15252/emmm.202013631


22  Introductory summary 

To verify this subset of patients, we screened our cohort for mutations in KRAS codons 12, 13, 

and 61 as well as TP53 CNA using ddPCR. Cell pellets and pleural effusions of 45 patients caused 

by benign medical conditions, LUAD, MPM, or other metastatic tumors were scrutinized [121, 

137]. Out of 12 MPM samples we found 3 to be KRAS mutant and another 2 to be KRAS/TP53 

altered. To expand these data, we additionally tested two more cohorts of MPM inflicted MPE 

samples including 6 from Nantes, France and 17 from Istanbul, Turkey for alteration in these two 

genes [138, 139]. Here, we discovered 9 KRAS mutant and 3 KRAS/TP53 double altered patients. 

Sensitive ddPCR revealed that the obtained KRAS mutations had a copy number of below 10% 

in most cases, which would be likely missed by other molecular tools due to their lower sensitivity, 

low read depth and/or too stringent detection thresholds. In summary, we detected standalone 

KRAS mutations in 33% and co-occurring KRAS/TP53 alterations in 17% of all patients out of 

three different MPM cohorts [90]. These results suggest the existence of a molecular subgroup 

of MPM with KRAS and TP53 alterations or mutated KRAS alone. 

 

To this day suitable MPM models for functional studies such as cell lines and mouse models are 

limited and hard to obtain [140-143]. Surprisingly, single mutations in the most frequently altered 

genes in MPM such as BAP1, NF2, CDKN2A, TP53, or TSC1 alone are not sufficient to induce 

MPM [144-147]. Thus, there has been no mouse model displaying the complex mutational land-

scape together with clinicopathologic signs of MPM, enabling functional validation of driver muta-

tions.  

For validation of mutated KRAS as a driver in MPM, wildtype (WT) and conditional KRASG12D 

and/or Trpf/f mice received intrapleural injection of Adenovirus expressing CRE recombinase. 

Consequently, upon CRE recombination the mice carried the respective alterations in the pleural 

mesothelium, but not in the surrounding tissues [143, 148-150]. While WT, Trpf/WT, and Trpf/f didn’t 

show any disease, cachexia, pleural lesions, and reduced survival could be observed in KRASG12D 

mice. Epithelioid MPM was diagnosed, and inflammatory cells were infiltrating the pleura, similar 

to the inflammation upon pleural asbestos exposure [151]. However, in KRASG12D;Trpf/f mice we 

found MPE, pleural tumors invading the adjacent tissues, distress, and shortened lifespan. The 

tumors could be identified as biphasic MPM and the MPE displayed numerous typical features of 

patients with advanced MPM [152, 153]. KRASG12D;Trpf/WT mice revealed an intermediate disease 

with biphasic MPM [90]. 

To ascertain that in these mice indeed suffered MPM and not LUAD, we performed immunostain-

ing with widely used MPM and LUAD markers. Our mice showed high Wilms’ tumor 1, calretinin, 

osteopontin, podoplanin, and mesothelin as well as moderate vimentin, and cytokeratin 5/6, but 

no surfactant protein C expression. Hence, KRASG12D expressed in the mesothelium can cause 

biphasic MPM, and in co-occurrence with Trp53 deletion, inflicts more aggressive biphasic MPM 

with MPE in mice. Trp53 loss alone was not sufficient to induce MPM. 

Out of the KRASG12D;Trpf/f mice, we isolated 3 MPM cell lines, which displayed quick growth, 

elevated expression of Cdkn2a and Bap1, caused tumors bearing the initial alterations when in-

jected in the flanks of mice, and generated the same disease upon pleural instillation [154]. Ad-

ministration of the KRAS inhibitor deltarasin in a mouse model with intrapleurally injected MPM 

cell lines resulted in decreased cellularity and fewer and smaller effusions as compared to the 

untreated control [155]. RNAseq of these MPM cell lines identified several mutations in Bap1, 

which is the most commonly mutated gene in human MPM. In comparison with normal mesothe-

lial cells from the pleura, the MPM cells showed transcriptomic upregulation of well-known MPM 
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markers and novel potential mesothelioma markers. Furthermore, a publicly available MPM sig-

nature of 113 patients was enriched in our isolated MPM cell lines [90, 156]. In summary, the 

proposed mice and tumor cell lines derived thereof present a valid KRAS/TP53-driven MPM 

model with high similarity to the human disease and potential use in transplantation and drug 

screening of MPM. 

 

Taken together, these findings corroborate the presence of a subset in MPM patients which is 

driven by oncogenic KRAS, which has been underestimated so far. Due to its heterozygous na-

ture and thus low allelic frequency, mutations in KRAS may get lost during sampling and/or se-

quencing similar to other subclonal alterations in LUAD [118, 119, 157]. Additionally, most se-

quencing techniques show lower sensitivity and stringent detection thresholds resulting in the 

omission of many alterations. Therefore, very sensitive detection methods such as ddPCR or 

maximal depth sequencing should be utilized to identify this specific subgroup of MPM patients. 

Trp53 mutations alone could not induce mesothelioma but contributed to KRAS driven MPM car-

cinogenesis and a biphasic histologic subtype. Likewise, Trp53 promoted MPM evolution of Nf2 

or Tsc1 driven MPM in other studies [144, 145]. Hence, Trp53 loss-of-function mutations seem to 

cooperate with oncogenes driving MPM progression, metastasis, and poor survival. Further in-

vestigations of drugs targeting TP53 may advance personalized therapy for a large group of MPM 

patients. 
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