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2. Introductory summary

2.1 Glioblastoma 
Glioblastoma (GBM) is the most common malignant primary brain tumour, accounting for 

around 57% of all gliomas and 48% of all malignant primary tumour in the central nervous system 
(CNS) with annual incidence of 1.88–4.71 per 100,000 population (Ostrom, Cote, Ascha, 
Kruchko, & Barnholtz-Sloan, 2018; Ostrom, Gittleman, et al., 2018). Despite advances in the 
treatment of GBM including surgery, radiation therapy, chemotherapy and targeted therapy, the 
overall prognosis has not been favourable and long-term survival is rare (Taphoorn, Sizoo, & 
Bottomley, 2010). The median survival of patients who receive treatment including standard radi-
ation and chemotherapy with temozolomide after diagnosis is only 14.6 months, and median sur-
vival of patients without treatment is 4.5 months (Stupp et al., 2005; Wen & Kesari, 2008). Despite 
these incremental improvements in short-term survival with time, the 5-year survival rate was still 
relatively stable, with only 5.8% survival at 5 years after diagnosis (Ostrom, Gittleman, et al., 
2018). 

2.1.1 TERTp Mutation 

Telomeres and related shelterin complex are situated at the ends of linear eukaryotic chro-
mosomes. Telomeres usually consist of hexanucleotide repeats of TTAGGG (5′-3′ of the G-rich 
strand), the length of which varies considerably in different species, being 10-15 kb in humans. 
Telomere repeat sequences are mostly double-stranded, but terminate with a single-stranded G-
rich 150-200 nucleotide long 3′ tail (Maciejowski & de Lange, 2017; Nandakumar & Cech, 2013; 
Peng, Mian, & Lue, 2001; Roake & Artandi, 2020). Shelterin is a telomere-specific protein com-
plex that works with DNA-binding and adapters to protect unstable telomeres to inhibit the DNA 
damage response (O'Sullivan & Karlseder, 2010; Sfeir et al., 2009). The stability of chromosomes 
and the viability of cells rely on sufficient shelterin binding sites being maintained at each telo-
mere. Telomeres need to have a threshold of tandem repeats to enable shelterin proteins to form 
protective nucleoprotein structures that prevent triggering DNA damage signals resulting in end-
fusions and genomic instability (‘end-protection problem’) (de Lange, 2009; Maciejowski & de 
Lange, 2017; Masutomi et al., 2000; Sfeir & de Lange, 2012). Telomeric DNA can be lost as cells 
proliferate because the DNA replication machinery is unable to replicate DNA ends. This end 
replication problem is tackled by telomerase, a reverse transcriptase that adds telomeric repeats 
to the 3′ ends of chromosomes, thus, providing compensation for the loss of terminal sequences 
(Greider & Blackburn, 1985).  

Telomerase is a complex consisting of a catalytic subunit encoded by the telomerase reverse 
transcriptase (TERT) gene and an internal telomerase RNA component (TERC) (Shay & Wright, 
2019). While telomerase remains active in germ and proliferating cells, it is typically repressed in 
differentiated cells. This repression leads to the gradual shortening of telomeres due to incom-
plete replication and DNA damage. (Hockemeyer & Collins, 2015; Shay & Wright, 2019). Once 
telomeres reduce to a critical length and malfunction, the DNA damage response pathway is ac-
tivated, resulting in cells entering a stage of permanent growth arrest known as replicative senes-
cence. It is believed that senescence is an extremely effective mechanism to halt the proliferation 
and genetic mutations that arise from DNA replication. Infinite proliferation is one of the charac-
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teristics of malignant cells, and normally, tumour cells can escape senescence regulation via te-
lomere stabilization (Hanahan & Weinberg, 2011; Shay & Wright, 2019). Tumours have two mech-
anisms to stabilize telomeres: reactivation of telomerase to extend telomere length (85-90% of 
cancers), and homologous recombination between sister chromatids (3-10% of cancers) (Barthel 
et al., 2017; Holt, Wright, & Shay, 1996). 

TERC is commonly expressed in a variety of human cells, whereas the TERT gene is strictly 
inhibited by repressors and enhancers within the promoter of the gene encoding the catalytic 
subunit to limit telomerase activity (Surovtseva et al., 2009). Therefore, the activity of telomerase 
is controlled by TERT, which serves as a rate-limiting factor, and in human cells, induction of 
TERT is essential for acquiring telomerase activity. (Bodnar et al., 1998). Furthermore, the TERT 
promoter (TERTp) contains many binding sites for transcriptional activators to regulate TERT 
activity at the transcriptional level (Leão et al., 2018; L. Liu, Lai, Andrews, & Tollefsbol, 2004). 

TERTp result in increased promoter activity in cells (Rachakonda, Hoheisel, & Kumar, 2021). 
Various tumour lesions with promoter mutations expressed statistically significantly enhanced 
TERT transcription and telomerase activity (Heidenreich et al., 2014; Huang et al., 2015). TERTp 
mutations are independently related to older age, advanced clinical stage and worse prognosis 
in patients with GBM. TERTp mutations have been reported to be related to a low overall survival 
rate in patients with diffuse astrocytic gliomas in the absence of the isocitrate dehydrogenase 
gene mutation (IDH-wildtype) (Eckel-Passow et al., 2015; Labussière et al., 2014; Vinagre et al., 
2013). Specifically, TERTp mutations without IDH mutation have a poor prognosis than TERTp 
mutations together with IDH mutation (Batista et al., 2016; Killela et al., 2013; M. Simon et al., 
2015). And the presence of TERTp mutations decreases sensitivity of brain cancer to adjuvant 
radiation and chemotherapy with temozolomide (M. Simon et al., 2015). Therefore, TERTp mu-
tations are essential for the initiation of cancer and the prognosis of individuals (Arita et al., 2013; 
Killela et al., 2013; Matthias Simon et al., 2015), and the analysis of TERTp mutation status is of 
growing importance in the evaluation of IDH-wildtype glioma to make clinical treatment decision 
(Brat et al., 2018; Louis et al., 2020; Rushing, 2021). 

2.1.2 Survival Stratification 

The World Health Organization (WHO) included mandatory molecular markers in the diag-
nosis of CNS tumours classification in 2016 and updated them in 2021, which generated a stricter 
definition of entities with different prognosis (Louis et al., 2016; Louis et al., 2021). Particularly, 
patients with glioma in the absence of IDH mutation are more likely to have a more unfavourable 
prognosis (Tan et al., 2020) and based on the WHO 2021 guidelines, the absence of IDH mutation 
is one of the criteria for confirming, grade 4, glioblastoma diagnosis. Methylation status of the O-
6-methylguanine-DNA-methyltransferase (MGMT) promotor aid in the stratification of brain tu-
mour patients according to individual risk status as well (Esteller et al., 2000). But in IDH-wildtype
glioblastoma, a tumour type with a poor prognosis, some patients live for multiple years, whereas
others are classified as short-term survivors (STS) who die within 12 months after diagnosis,
suggesting the potential for further improvements in patient stratification (Van Meir et al., 2010).
It is critical for patients to balance life quality with intensive therapy that including radiotherapy
and chemotherapy (Pace et al.). Therefore, in addition to established molecular genetic markers,
the availability of other prognostic markers and survival stratification beyond neuropathological
classification of brain tumours will contribute to further improvement of individual prognosis and
patient management.
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2.2  [18F]FET PET 
O-(2-[18F]-fluoroethyl)-L-tyrosine ([18F]FET) is radiolabelled amino acid analogon, and serve 

as a tool applied to characterize and assess CNS cancers with positron emission tomography 
(PET) (Jansen, Suchorska, Wenter, Eigenbrod, Schmid-Tannwald, Zwergal, Niyazi, Drexler, 
Bartenstein, Schnell, Tonn, Thon, Kreth, & la Fougere, 2014; Jansen, Suchorska, Wenter, 
Schmid-Tannwald, Todica, Eigenbrod, Niyazi, Tonn, Bartenstein, Kreth, & la Fougere, 2015; 
Popperl et al., 2007). [18F]FET was first used in the human study about brain tumours in 1999, 
and then has been approved for imagining of brain tumour in Switzerland (Wester et al., 1999). 
The advantages of this radioactive component include ease of preparation, high stabilization, 
rapid absorption in the tumour area and low aggregation in non-tumour tissues (Wester et al., 
1999). 

After injection of [18F]FET 20 to 40 min, static image data (standard 20-40 minutes summation 
images)  are obtained and normally used for evaluation of brain tumour in accordance with the 
guidelines of Europe and Germany (Langen et al., 2011; Vander Borght et al., 2006). To quantify 
the uptake of [18F]FET in tumour and non-tumour tissues, the standardized uptake value (SUV) 
is commonly used. The SUV is decided by dividing the radioactivity (kBq/ml) in the area by the 
radioactivity injected per gram of body weight. Tumour uptake, in terms of proportion to healthy 
tissue, is less variable than tumour SUV and is more suitable for inter-individual comparisons. 
The reference for background regions of interest (ROI) in the normal cerebral hemisphere, which 
encompass both grey and white matter on the opposite side of the tumour, is utilized. Physiolog-
ical brain uptake is determined as the mean of SUVs in that region. Therefore, there are two 
important parameters: mean and maximum tumour-to-background ratio (TBRmean and TBRmax). 
To determine TBRmean and TBRmax, the mean and maximum SUV of the tumour ROI are divided 
by the mean SUV of the normal area. The volumes of FET-positive tumour, also known as bio-
logical tumour volumes (BTVs), are calculated by a 3D automated outlining process using a cut-
off TBR of 1.6 or higher (Jansen, Suchorska, Wenter, Eigenbrod, Schmid-Tannwald, Zwergal, 
Niyazi, Drexler, Bartenstein, Schnell, Tonn, Thon, Kreth, & la Fougère, 2014; Pauleit et al., 2005). 
This threshold is established from a pathological investigation conducted on gliomas, where a 
tumour-to-brain ratio of 1.6 proved to be the most effective criterion for distinguishing tumour from 
peri-tumoural tissue (Pauleit et al., 2005). It is worth noting that the TBRmax in particular depends 
on the quality of scans, methods of reconstruction as well as post-processing of data. As a result, 
cut-off values for TBRmax from different centres are not fully comparable. 

Study suggested that the grading of gliomas based on an early scan performed between 5 
to 15 minutes post-injection may be more meaningful (Albert, Winkelmann, Suchorska, Wenter, 
Schmid-Tannwald, Mille, Todica, Brendel, Tonn, Bartenstein, & la Fougere, 2016). This is be-
cause higher-grade gliomas, such as IDH-wildtype gliomas, have been demonstrated to exhibit a 
high uptake of tracer within the initial 5-15 minutes post-injection, followed by a decreasing time-
activity-curve. However, IDH-mutant gliomas typically showed a delayed increase uptake of 
radiopharmaceutical and the peaks occur at the later time ranges (Jansen et al., 2012; Jansen, 
Suchorska, Wenter, Eigenbrod, Schmid-Tannwald, Zwergal, Niyazi, Drexler, Bartenstein, 
Schnell, Tonn, Thon, Kreth, & la Fougère, 2014; Popperl et al., 2007). Conventional TBRmax val-
ues, however, are evaluated in standard static images which excludes early peak uptake of ag-
gressive gliomas. Hence, TBRmax acquired from early summation images demonstrate superior 
performance in distinguishing low- and high-grade gliomas than standard static images (Albert, 
Winkelmann, Suchorska, Wenter, Schmid-Tannwald, Mille, Todica, Brendel, Tonn, Bartenstein, 
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& la Fougere, 2016), which shows that the incorporation of early summation images can charac-
terize gliomas well.  

Furthermore, the assessment of dynamic [18F]FET PET time-activity curves (TAC) has been 
proved to generate valuable evidences of the characteristics of tumour (Kunz et al., 2019) with 
regard to tumour grading or differential diagnosis of other diseases (Galldiks, Langen, & Pope, 
2015). High-grade tumours have an early peak followed by a decrease in TAC, but low-grade 
tumours and non-tumorous lesions show a slowly increasing pattern of uptake (Pöpperl et al., 
2007; Weckesser et al., 2005). This different pattern of TAC seems to be a particular property of 
[18F]FET (Kratochwil et al., 2014). In the case of heterogeneous tumours, different regions may 
show different patterns of curve, suggesting that localized areas of tumour tissue are more ma-
lignant compared to the entire tumour, and that the delayed TAC may indicate the degree of 
malignancy of the tumour (Kunz et al., 2011; Thon et al., 2015). The TAC of [18F]FET can be 
described qualitatively as different curve patterns and can also be calculated quantitatively using 
the slope of the TAC and time-to-peak (TTP) in the late time frames (Ceccon et al., 2017; Jansen, 
Suchorska, Wenter, Schmid-Tannwald, Todica, Eigenbrod, Niyazi, Tonn, Bartenstein, Kreth, & la 
Fougère, 2015). In particular, in newly diagnosed gliomas, early TTP is correlated with an aggres-
sive disease process and is predictive of IDH-wildtype status (Suchorska et al., 2018; Vettermann 
et al., 2019). 

2.2.1 [18F]FET PET Clinical Application 

It is important to differentiate between primary and secondary brain tumours and non-neo-
plastic origin of the lesion including haemorrhage, infarction, infections and inflammatory pro-
cesses. [18F]FET PET contribute to the differential diagnosis, as neoplastic lesions usually have 
higher levels of FET uptake. A meta-analysis consisting of thirteen studies utilizing [18F]FET PET 
and involving a total of 462 patients revealed that a TBR threshold of 1.6 or higher and TBRmax  of 
2.1 or higher demonstrated the highest diagnostic efficacy in differentiating primary brain tumours 
from other diseases with a sensitivity of 82% and specificity of 76%. (Dunet, Rossier, Buck, Stupp, 
& Prior, 2012). A retrospective study of [18F]FET PET with 393 patients obtained a sensitivity of 
87% and a specificity of 68% in detecting brain tumours (Hutterer et al., 2013). Hence, [18F]FET 
PET plays a valuable role in the initial evaluation of newly diagnosed brain lesions. However, for 
a definitive pathological characterization of the lesions, histological evaluation of tissue through 
biopsy remains the gold standard in the majority of cases. 

As previously mentioned, the improvement can be achieved in in primary tumours and tu-
mours to distinguish low-grade from high-grade gliomas by using early summation images and 
dynamic [18F]FET PET data (Albert, Winkelmann, Suchorska, Wenter, Schmid-Tannwald, Mille, 
Todica, Brendel, Tonn, Bartenstein, & la Fougère, 2016; Calcagni et al., 2011), though standard 
20-40 minutes summation images does not perform well in this respect (Hutterer et al., 2013).
Particularly, IDH mutation status is one of the most important factors in the classification of brain
tumours according to the WHO classification of CNS in 2021 (Louis et al., 2021). A study on
dynamic [18F]FET including 341 patients showed that a short TTPmin in dynamic [18F]FET PET
data used as predictor of IDH-wildtype status in gliomas. Specifically, the subgroup of patients
with non-contrast-enhanced GBM demonstrated improved diagnostic outcomes, which will be
helpful in identifying patients with worse prognosis (Vettermann et al., 2019).
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A prospective longitudinal study support BTV generated from [18F]FET PET static images as 
an independent factor in prognosis of brain tumours (Suchorska et al., 2015). Another study in-
cluding 121 astrocytic high-grade glioma patients showed that TTPmin derived from dynamic 
[18F]FET PET can be a non-invasive factor in identification of patients with a poor prognosis 
(Jansen, Suchorska, Wenter, Schmid-Tannwald, Todica, Eigenbrod, Niyazi, Tonn, Bartenstein, 
Kreth, & la Fougère, 2015). When the morphological features of MR and the uptake of FET PET 
are considered together, this facilitates improved diagnostic performance in patients with low-
grade glioma (Floeth et al., 2007). In addition, studies of dynamic [18F]FET PET indicated that 
decreasing TAC in dynamic [18F]FET PET helps to detect high-risk astrocytic low-grade glioma to 
avoid undegrading and undertreatment (Jansen, Suchorska, Wenter, Eigenbrod, Schmid-
Tannwald, Zwergal, Niyazi, Drexler, Bartenstein, Schnell, Tonn, Thon, Kreth, & la Fougère, 2014; 
Thon et al., 2015). Thus, it can be seen that dynamic [18F]FET PET can provide more prognostic 
value than static one.  

It is challenging for MRI to differentiate between tumour progression or recurrence and treat-
ment-related changes, because an increase of enhancement in MRI without further tumour pro-
gression can be observed within first 3 months after radiotherapy and/ or chemotherapy with te-
mozolomide (Brandsma & van den Bent, 2009). This phenomenon is called pseudoprogression 
and can occur in 15–30% of patients with malignant gliomas (Brandsma, Stalpers, Taal, Sminia, 
& van den Bent, 2008; Young et al., 2011). [18F]FET PET can yield up to 90% accuracy in the 
differentiation between early tumour progression and pseudoprogression after radiochemother-
apy of GBM (Galldiks, Dunkl, et al., 2015; Kebir et al., 2016). Furthermore, post radiation necrosis 
has similarities in radiology to tumour progression and has become another relevant clinical prob-
lem for neurooncologists (Shah et al., 2013). The potential of [18F]FET PET to distinguish tumour 
recurrence from treatment-related changes in GBM have been assessed, and compared to con-
ventional MRI (85%),  [18F]FET PET can achieve much higher accuracy (93%). (Galldiks, Stoffels, 
et al., 2015). Similar results that [18F]FET PET performed better than MRI in this respect have 
been obtained in other studies (Pyka et al., 2018; Rachinger et al., 2005; Werner et al., 2019). 
The uptake of [18F]FET was also used to predict the treatment response in patients with early 
glioblastomas to radiochemotherapy, with a 10% reduction in uptake implying a longer progres-
sion-free survival than patients whose uptake is stable or increased following postoperative treat-
ment (Galldiks et al., 2012; Piroth et al., 2011). The application of anti-angiogenic drugs, such as 
bevacizumab, has led to rapid restoration of blood-brain barrier, causing a pseudoresponse in 
MRI (Vredenburgh et al., 2007). A rapid reduction in contrast enhancement after initiation of treat-
ment is observed with bevacizumab, generating a significantly high response rate. And it has 
been demonstrated that [18F]FET PET distinguishes between responders and non-responders 
ahead of MRI alone (Galldiks et al., 2013; Hutterer et al., 2011). 

2.3 Radiomics 
Medical images of all kinds contain a rich amount of valuable information about the charac-

teristics and progression of diseases. Radiomics makes it possible to select specific features or 
feature combinations to differentiate similar diseases and to predict treatment response and out-
comes by transforming medical images into high-dimensional quantitative features (Gillies, 
Kinahan, & Hricak, 2016; Lambin et al., 2012). Radiomics image analysis has gained increasing 
attention since the concept was first introduced in 2012 (Lambin et al., 2012).  
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Radiomics combines a range of computational techniques, which are employed to solve clin-
ical questions. There are several fundamental steps which constitute a pipeline of radiomics in-
cluding harvest of data, segmentation of tumours, extraction of features, selection of features as 
well as establishment of models. Radiomics requires a substantial quantity of images and out-
comes by exploring the relationships among them. CT images were first used in radiomic studies 
due to its good accessibility and its large quantities (Lambin et al., 2012). Then, MR images, PET 
images and ultrasound images were also included in the study of radiomics. As these medical 
images come from different machines with different parameters, are reconstructed and processed 
in different ways and come from different hospitals, it sets obstacles to the conduct of radiomics 
studies. For PET images, differences in PET scanners, parameters of reconstruction and post-
processing of data are the main reason of influence (Galavis, Hollensen, Jallow, Paliwal, & Jeraj, 
2010; van Velden et al., 2016; Yan et al., 2015). SUV discretization and respiratory motion also 
have a considerable impact on textural features (Grootjans et al., 2016; Oliver et al., 2015). There-
fore, it is necessary to perform pre-processing on the images derived from different machines to 
meet the requirements for feature extraction.  

Typically, radiomics only analyses images of the lesion area within predefined regions of 
interest (ROIs), which is due to the time-consuming process associated with studying the entire 
image. This means that it is important to segment ROIs from the images. There are three seg-
mentation methods including manual, semiautomatic, and automatic segmentation. Due to the 
lack of standardized criteria (Kumar et al., 2012), manual segmentation is highly variable and also 
depends on the experience of radiologists who perform the segmentation of ROIs. As semi-auto-
matic and automatic segmentation can improve the consistency of segmented of ROIs and save 
time, an increasing number of studies are using this approach as an alternative to manual seg-
mentation. In studies of PET, a semi-automatic segmentation method is mostly performed. In the 
study of FET-positive tumour lesions, for example, the area of the tumour is first roughly outlined 
and then the ROIs is determined using a cut-off TBR, which is used to determine the BTV in 
tumours, usually with a TBR of 1.6 or higher (Jansen, Suchorska, Wenter, Eigenbrod, Schmid-
Tannwald, Zwergal, Niyazi, Drexler, Bartenstein, Schnell, Tonn, Thon, Kreth, & la Fougère, 2014; 
Pauleit et al., 2005). However, in other images including CT, MRI and ultrasound, manual seg-
mentation is still the main method, which limited reliability and repeatability of radiomics re-
searches.  

Radiomic features are generated from the information contained in the ROIs of images. Pyra-
diomics is currently the most widely used package for feature extraction in python (van 
Griethuysen et al., 2017). Radiomic features can be divided into first-order, shape-based and 
texture features (van Griethuysen et al., 2017). First-order statistics features show the distribution 
of voxel intensities within ROIs (van Griethuysen et al., 2017). Shape-based features included 
descriptors of the two-dimensional or three-dimensional size and shape of the ROIs (van 
Griethuysen et al., 2017). Texture features refer to the texture characteristics of tumour in terms 
of the interrelationship between three or more pixels (van Griethuysen et al., 2017). In addition, 
the publication of Image Biomarker Standardization Initiative provides the basis for standardizing 
feature extraction (Zwanenburg et al., 2020). 

During feature extraction, a large number of features is assessed, which, however, contain 
too many redundant information. To avoid overfitting and to reduce time for modelling, feature 
selection will be needed before building prediction model. And three feature selection methods 
are available: filter, wrapper, and embedding (Z. Liu et al., 2019). Filter methods for assessing 
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features with no involvement of models. Univariate and multivariate methods are both filter meth-
ods. Univariate filters sort features according to their quality, and multivariate filter is consisting 
of a sorter and a subset selector, which considers redundancy when selecting relevant features. 
The wrapper methods are based on special mechanical learning modelling to find optimal features 
(Larue, Defraene, De Ruysscher, Lambin, & van Elmpt, 2017), while the embedded approach is 
to complete the feature selection during the iterative modelling of the training set (Bagherzadeh-
Khiabani et al., 2016).  

The main purpose of radiomics is to establish prediction models with related features to solve 
clinical issues. Machine learning modelling methods can be classified as supervised and unsu-
pervised, based on the availability of clinical outcomes. Unsupervised learning classifies data as 
clusters by summarising similarities among samples. Supervised learning classifiers like linear 
models, support vector machines as well as random forests are the more popular approach when 
the outcome is known (Larue et al., 2017). Training and testing are two steps to build models. 
During the training phase, samples are used in combination with the respective medical labels for 
training. The loss function is used to find the mathematical relationship between features and 
labels in the model. During the testing phase, a well-trained model will be tested its prediction 
ability (Z. Liu et al., 2019). It should be noted that over-fitting of the model may lead to too favour-
able results. The cross-validation is often utilized as an internal calibration method, using the area 
under the receiver operating characteristic curve (AUC) of the receiver operating characteristic 
(ROC) curve to assess models’ accuracy (Z. Li et al., 2019; Z. Li et al., 2021). Additionally, when 
assessing classification models, the predictive capability can be evaluated using AUC, accuracy, 
sensitivity, and specificity. (Z. Liu et al., 2019). 

2.3.1 Radiomics Clinical Application 

Since the concept of radiomics was developed, there has been an increasing number of 
studies focusing on radiomics in the diagnosis and therapy of patients. Here, the main focus is 
set to the studies of radiomics in brain tumours. 

Traditional medical imaging including CT, MRI and PET is already an important criterion in 
brain tumour grading, but radiomics is hoped to further improve this situation. One study used 
multiparametric diffusion-weighted imaging, a quantitative MRI technique, to distinguish low- and 
high-grade gliomas with machine learning approach, and achieved good results in the external 
testing cohort (Xu et al., 2022). Another study built a support vector machine (SVM) model, based 
on multiparametric MRI, which showed a high AUC of 0.987 to distinguish WHO grade 2 from 
grade 3 and 4 brain tumours (Q. Tian et al., 2018). Meanwhile, radiomics also plays a potential 
role in predicting the molecular genotype of brain tumours, which helps to improve the efficacy of 
targeted therapies. The study of MRI radiomics can not only distinguish the glioma grade, but also 
predict the IDH mutation and the 1p/19q codeletion status, respectively (Y. Li et al., 2022). In 
addition, the role of radiomics derived from MRI to predict TERTp mutation status in brain tumours 
has been shown by several studies (Fang et al., 2020; Jiang et al., 2020; Park et al., 2021). In 
glioma, a multiparametric MRI-based radiomics study has successfully established a model to 
predict the TERTp mutation status (H. Tian, Wu, Wu, & Xu, 2020). Besides, MGMT, alpha tha-
lassemia/mental retardation syndrome x-linked (ATRX) mutation status, epidermal growth factor 
receptor (EGFR), Ki-67 expression level and p53 status were successfully predicted with models 
generated from radiomic features (Y. Li, Liu, Qian, et al., 2018; Y. Li, Liu, Xu, et al., 2018; Y. Li, 
Qian, et al., 2018; Y. Li et al., 2017; Xi et al., 2018).  
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The prediction of treatment response and prognosis is another hot topic in radiomics. A mul-
ticentre study provided a radiomic model, which including diffusion- and perfusion-weighted MRI, 
to identify pseudoprogression in patients with GBM (Kim et al., 2019). Another study including 
172 patients with recurrent GBM before bevacizumab treatment extracted 4,842 quantitative MRI 
features and then classified patients into a low and high-risk cohort for progression-free and over-
all survival (OS) with a prediction model derived from supervised principal component analysis 
(Kickingereder et al., 2016). These studies both demonstrate the non-invasive role of radiomics 
in clinical treatment decisions. In addition, radiomics can serve as an independent preoperative 
tool to predict OS of patients with IDH-wildtype gliomas, and this was shown in a study of 142 
patients from two centres, which was conducted using the latest WHO 2021 criteria for classifica-
tion (S. Wang et al., 2021). A multiparametric MRI-based radiomic model also provide a favoura-
ble predictive ability on progression-free survival and OS of patients with GBM (B. Wang et al., 
2021). 

[18F]FET PET-based radiomic analysis has been used to differentiate brain metastasis recur-
rence and radiation injury in 2017 (Lohmann et al., 2017). And this research group then published 
another study of [18F]FET PET-based radiomics for the detection of pseudoprogression (Lohmann 
et al., 2020). Another study utilized radiomics generated from [18F]FET PET/MRI to predict the 
mutational status of IDH, MGMT, ATRX as well as 1p/19q codeletion status (Haubold et al., 2020). 
In addition, the assessment of [18F]FET PET radiomics’ prognostic significance following re-irra-
diation was conducted, which may be useful in selecting patients with recurrent GBM who would 
benefit from re-irradiation (Carles et al., 2021). Notably, however, while standard static images 
(20-40 min post-injection) have been used in studies of [18F]FET PET-based radiomics, no radi-
omics studies on dynamic [18F]FET PET or early summation images (5-15 min post-injection) have 
been published. 

2.4 Aims 
In summary, the aim of this thesis was to apply radiomics generated from [18F]FET PET to 

investigate clinical issues related to the diagnostic and prognostic prediction of brain tumours, 
particularly IDH-wildtype GBM. Concretely, the aim of paper I was to evaluate the value of radi-
omics generated from early summation images, standard static images and dynamic [18F]FET
PET images in predicting the status of TERTp mutation in patients with IDH-wildtype GBM prior 
to treatment. The aim of paper II was to establish and assess a predictive model that used a 
combination of clinical data and radiomic features extracted from static and dynamic [18F]FET 
PET data for survival stratification of IDH-wildtype GBM patients. 

2.5 Conclusions 
In conclusion, this thesis has demonstrated the predictive value of [18F]FET PET-based radi-

omics in the diagnosis as well as prognosis of glioblastoma. Radiomics based on TTP images 
generated from dynamic [18F]FET PET can predict the prognostically relevant TERTp mutation 
status in IDH-wildtype GBM patients with high accuracy before treatment (paper I). Furthermore, 
predictive models using [18F]FET PET-based radiomic features and clinical variables were con-
structed and validated to identify short-term survival in GBM patients (paper II). The maximum 
accuracy in detecting patients at risk was achieved with the conjunction of clinical parameters and 
radiomic features extracted from dynamic [18F]FET PET. The results indicate that dynamic 
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[18F]FET PET radiomic features can be incorporated with clinical parameters to improve the diag-
nostic performance for the stratification of patients beyond currently established prognostic mark-
ers. 
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