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2. Introductory summary

2.1 Glioblastoma

Glioblastoma (GBM) is the most common malignant primary brain tumour, accounting for
around 57% of all gliomas and 48% of all malignant primary tumour in the central nervous system
(CNS) with annual incidence of 1.88—4.71 per 100,000 population (Ostrom, Cote, Ascha,
Kruchko, & Barnholtz-Sloan, 2018; Ostrom, Gittleman, et al., 2018). Despite advances in the
treatment of GBM including surgery, radiation therapy, chemotherapy and targeted therapy, the
overall prognosis has not been favourable and long-term survival is rare (Taphoorn, Sizoo, &
Bottomley, 2010). The median survival of patients who receive treatment including standard radi-
ation and chemotherapy with temozolomide after diagnosis is only 14.6 months, and median sur-
vival of patients without treatment is 4.5 months (Stupp et al., 2005; Wen & Kesari, 2008). Despite
these incremental improvements in short-term survival with time, the 5-year survival rate was still
relatively stable, with only 5.8% survival at 5 years after diagnosis (Ostrom, Gittleman, et al.,
2018).

2.1.1 TERTp Mutation

Telomeres and related shelterin complex are situated at the ends of linear eukaryotic chro-
mosomes. Telomeres usually consist of hexanucleotide repeats of TTAGGG (5'-3' of the G-rich
strand), the length of which varies considerably in different species, being 10-15 kb in humans.
Telomere repeat sequences are mostly double-stranded, but terminate with a single-stranded G-
rich 150-200 nucleotide long 3' tail (Maciejowski & de Lange, 2017; Nandakumar & Cech, 2013;
Peng, Mian, & Lue, 2001; Roake & Artandi, 2020). Shelterin is a telomere-specific protein com-
plex that works with DNA-binding and adapters to protect unstable telomeres to inhibit the DNA
damage response (O'Sullivan & Karlseder, 2010; Sfeir et al., 2009). The stability of chromosomes
and the viability of cells rely on sufficient shelterin binding sites being maintained at each telo-
mere. Telomeres need to have a threshold of tandem repeats to enable shelterin proteins to form
protective nucleoprotein structures that prevent triggering DNA damage signals resulting in end-
fusions and genomic instability (‘end-protection problem’) (de Lange, 2009; Maciejowski & de
Lange, 2017; Masutomi et al., 2000; Sfeir & de Lange, 2012). Telomeric DNA can be lost as cells
proliferate because the DNA replication machinery is unable to replicate DNA ends. This end
replication problem is tackled by telomerase, a reverse transcriptase that adds telomeric repeats
to the 3' ends of chromosomes, thus, providing compensation for the loss of terminal sequences
(Greider & Blackburn, 1985).

Telomerase is a complex consisting of a catalytic subunit encoded by the telomerase reverse
transcriptase (TERT) gene and an internal telomerase RNA component (TERC) (Shay & Wright,
2019). While telomerase remains active in germ and proliferating cells, it is typically repressed in
differentiated cells. This repression leads to the gradual shortening of telomeres due to incom-
plete replication and DNA damage. (Hockemeyer & Collins, 2015; Shay & Wright, 2019). Once
telomeres reduce to a critical length and malfunction, the DNA damage response pathway is ac-
tivated, resulting in cells entering a stage of permanent growth arrest known as replicative senes-
cence. ltis believed that senescence is an extremely effective mechanism to halt the proliferation
and genetic mutations that arise from DNA replication. Infinite proliferation is one of the charac-



teristics of malignant cells, and normally, tumour cells can escape senescence regulation via te-
lomere stabilization (Hanahan & Weinberg, 2011; Shay & Wright, 2019). Tumours have two mech-
anisms to stabilize telomeres: reactivation of telomerase to extend telomere length (85-90% of
cancers), and homologous recombination between sister chromatids (3-10% of cancers) (Barthel
et al., 2017; Holt, Wright, & Shay, 1996).

TERC is commonly expressed in a variety of human cells, whereas the TERT gene is strictly
inhibited by repressors and enhancers within the promoter of the gene encoding the catalytic
subunit to limit telomerase activity (Surovtseva et al., 2009). Therefore, the activity of telomerase
is controlled by TERT, which serves as a rate-limiting factor, and in human cells, induction of
TERT is essential for acquiring telomerase activity. (Bodnar et al., 1998). Furthermore, the TERT
promoter (TERTp) contains many binding sites for transcriptional activators to regulate TERT
activity at the transcriptional level (Ledo et al., 2018; L. Liu, Lai, Andrews, & Tollefsbol, 2004).

TERTp resultin increased promoter activity in cells (Rachakonda, Hoheisel, & Kumar, 2021).
Various tumour lesions with promoter mutations expressed statistically significantly enhanced
TERT transcription and telomerase activity (Heidenreich et al., 2014; Huang et al., 2015). TERTp
mutations are independently related to older age, advanced clinical stage and worse prognosis
in patients with GBM. TERTp mutations have been reported to be related to a low overall survival
rate in patients with diffuse astrocytic gliomas in the absence of the isocitrate dehydrogenase
gene mutation (IDH-wildtype) (Eckel-Passow et al., 2015; Labussiére et al., 2014; Vinagre et al.,
2013). Specifically, TERTp mutations without IDH mutation have a poor prognosis than TERTp
mutations together with IDH mutation (Batista et al., 2016; Killela et al., 2013; M. Simon et al.,
2015). And the presence of TERTp mutations decreases sensitivity of brain cancer to adjuvant
radiation and chemotherapy with temozolomide (M. Simon et al., 2015). Therefore, TERTp mu-
tations are essential for the initiation of cancer and the prognosis of individuals (Arita et al., 2013;
Killela et al., 2013; Matthias Simon et al., 2015), and the analysis of TERTp mutation status is of
growing importance in the evaluation of IDH-wildtype glioma to make clinical treatment decision
(Brat et al., 2018; Louis et al., 2020; Rushing, 2021).

2.1.2 Survival Stratification

The World Health Organization (WHO) included mandatory molecular markers in the diag-
nosis of CNS tumours classification in 2016 and updated them in 2021, which generated a stricter
definition of entities with different prognosis (Louis et al., 2016; Louis et al., 2021). Particularly,
patients with glioma in the absence of IDH mutation are more likely to have a more unfavourable
prognosis (Tan et al., 2020) and based on the WHO 2021 guidelines, the absence of IDH mutation
is one of the criteria for confirming, grade 4, glioblastoma diagnosis. Methylation status of the O-
6-methylguanine-DNA-methyltransferase (MGMT) promotor aid in the stratification of brain tu-
mour patients according to individual risk status as well (Esteller et al., 2000). But in IDH-wildtype
glioblastoma, a tumour type with a poor prognosis, some patients live for multiple years, whereas
others are classified as short-term survivors (STS) who die within 12 months after diagnosis,
suggesting the potential for further improvements in patient stratification (Van Meir et al., 2010).
It is critical for patients to balance life quality with intensive therapy that including radiotherapy
and chemotherapy (Pace et al.). Therefore, in addition to established molecular genetic markers,
the availability of other prognostic markers and survival stratification beyond neuropathological
classification of brain tumours will contribute to further improvement of individual prognosis and
patient management.

10



2.2 ['®F]JFET PET

O-(2-["8F]-fluoroethyl)-L-tyrosine (['8F]FET) is radiolabelled amino acid analogon, and serve
as a tool applied to characterize and assess CNS cancers with positron emission tomography
(PET) (Jansen, Suchorska, Wenter, Eigenbrod, Schmid-Tannwald, Zwergal, Niyazi, Drexler,
Bartenstein, Schnell, Tonn, Thon, Kreth, & la Fougere, 2014; Jansen, Suchorska, Wenter,
Schmid-Tannwald, Todica, Eigenbrod, Niyazi, Tonn, Bartenstein, Kreth, & la Fougere, 2015;
Popperl et al., 2007). ['®F]FET was first used in the human study about brain tumours in 1999,
and then has been approved for imagining of brain tumour in Switzerland (Wester et al., 1999).
The advantages of this radioactive component include ease of preparation, high stabilization,
rapid absorption in the tumour area and low aggregation in non-tumour tissues (Wester et al.,
1999).

After injection of ['8F]FET 20 to 40 min, static image data (standard 20-40 minutes summation
images) are obtained and normally used for evaluation of brain tumour in accordance with the
guidelines of Europe and Germany (Langen et al., 2011; Vander Borght et al., 2006). To quantify
the uptake of ['8F]FET in tumour and non-tumour tissues, the standardized uptake value (SUV)
is commonly used. The SUV is decided by dividing the radioactivity (kBg/ml) in the area by the
radioactivity injected per gram of body weight. Tumour uptake, in terms of proportion to healthy
tissue, is less variable than tumour SUV and is more suitable for inter-individual comparisons.
The reference for background regions of interest (ROI) in the normal cerebral hemisphere, which
encompass both grey and white matter on the opposite side of the tumour, is utilized. Physiolog-
ical brain uptake is determined as the mean of SUVs in that region. Therefore, there are two
important parameters: mean and maximum tumour-to-background ratio (TBRmean and TBRmax).
To determine TBRmean and TBRmax, the mean and maximum SUV of the tumour ROI are divided
by the mean SUV of the normal area. The volumes of FET-positive tumour, also known as bio-
logical tumour volumes (BTVs), are calculated by a 3D automated outlining process using a cut-
off TBR of 1.6 or higher (Jansen, Suchorska, Wenter, Eigenbrod, Schmid-Tannwald, Zwergal,
Niyazi, Drexler, Bartenstein, Schnell, Tonn, Thon, Kreth, & la Fougére, 2014; Pauleit et al., 2005).
This threshold is established from a pathological investigation conducted on gliomas, where a
tumour-to-brain ratio of 1.6 proved to be the most effective criterion for distinguishing tumour from
peri-tumoural tissue (Pauleit et al., 2005). It is worth noting that the TBRmax in particular depends
on the quality of scans, methods of reconstruction as well as post-processing of data. As a result,
cut-off values for TBRmax from different centres are not fully comparable.

Study suggested that the grading of gliomas based on an early scan performed between 5
to 15 minutes post-injection may be more meaningful (Albert, Winkelmann, Suchorska, Wenter,
Schmid-Tannwald, Mille, Todica, Brendel, Tonn, Bartenstein, & la Fougere, 2016). This is be-
cause higher-grade gliomas, such as IDH-wildtype gliomas, have been demonstrated to exhibit a
high uptake of tracer within the initial 5-15 minutes post-injection, followed by a decreasing time-
activity-curve. However, IDH-mutant gliomas typically showed a delayed increase uptake of
radiopharmaceutical and the peaks occur at the later time ranges (Jansen et al., 2012; Jansen,
Suchorska, Wenter, Eigenbrod, Schmid-Tannwald, Zwergal, Niyazi, Drexler, Bartenstein,
Schnell, Tonn, Thon, Kreth, & la Fougére, 2014; Popperl et al., 2007). Conventional TBRmax val-
ues, however, are evaluated in standard static images which excludes early peak uptake of ag-
gressive gliomas. Hence, TBRmax acquired from early summation images demonstrate superior
performance in distinguishing low- and high-grade gliomas than standard static images (Albert,
Winkelmann, Suchorska, Wenter, Schmid-Tannwald, Mille, Todica, Brendel, Tonn, Bartenstein,
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& la Fougere, 2016), which shows that the incorporation of early summation images can charac-
terize gliomas well.

Furthermore, the assessment of dynamic ['8F|FET PET time-activity curves (TAC) has been
proved to generate valuable evidences of the characteristics of tumour (Kunz et al., 2019) with
regard to tumour grading or differential diagnosis of other diseases (Galldiks, Langen, & Pope,
2015). High-grade tumours have an early peak followed by a decrease in TAC, but low-grade
tumours and non-tumorous lesions show a slowly increasing pattern of uptake (Pépperl et al.,
2007; Weckesser et al., 2005). This different pattern of TAC seems to be a particular property of
['8FIFET (Kratochwil et al., 2014). In the case of heterogeneous tumours, different regions may
show different patterns of curve, suggesting that localized areas of tumour tissue are more ma-
lignant compared to the entire tumour, and that the delayed TAC may indicate the degree of
malignancy of the tumour (Kunz et al., 2011; Thon et al., 2015). The TAC of ['®F]FET can be
described qualitatively as different curve patterns and can also be calculated quantitatively using
the slope of the TAC and time-to-peak (TTP) in the late time frames (Ceccon et al., 2017; Jansen,
Suchorska, Wenter, Schmid-Tannwald, Todica, Eigenbrod, Niyazi, Tonn, Bartenstein, Kreth, & la
Fougeére, 2015). In particular, in newly diagnosed gliomas, early TTP is correlated with an aggres-
sive disease process and is predictive of IDH-wildtype status (Suchorska et al., 2018; Vettermann
et al., 2019).

2.2.1 ['®F]FET PET Clinical Application

It is important to differentiate between primary and secondary brain tumours and non-neo-
plastic origin of the lesion including haemorrhage, infarction, infections and inflammatory pro-
cesses. ["®F]FET PET contribute to the differential diagnosis, as neoplastic lesions usually have
higher levels of FET uptake. A meta-analysis consisting of thirteen studies utilizing ['"8F]FET PET
and involving a total of 462 patients revealed that a TBR threshold of 1.6 or higher and TBRmax of
2.1 or higher demonstrated the highest diagnostic efficacy in differentiating primary brain tumours
from other diseases with a sensitivity of 82% and specificity of 76%. (Dunet, Rossier, Buck, Stupp,
& Prior, 2012). A retrospective study of ['8F]JFET PET with 393 patients obtained a sensitivity of
87% and a specificity of 68% in detecting brain tumours (Hutterer et al., 2013). Hence, ['®F]FET
PET plays a valuable role in the initial evaluation of newly diagnosed brain lesions. However, for
a definitive pathological characterization of the lesions, histological evaluation of tissue through
biopsy remains the gold standard in the majority of cases.

As previously mentioned, the improvement can be achieved in in primary tumours and tu-
mours to distinguish low-grade from high-grade gliomas by using early summation images and
dynamic ['®F]FET PET data (Albert, Winkelmann, Suchorska, Wenter, Schmid-Tannwald, Mille,
Todica, Brendel, Tonn, Bartenstein, & la Fougere, 2016; Calcagni et al., 2011), though standard
20-40 minutes summation images does not perform well in this respect (Hutterer et al., 2013).
Particularly, IDH mutation status is one of the most important factors in the classification of brain
tumours according to the WHO classification of CNS in 2021 (Louis et al., 2021). A study on
dynamic ['8F]FET including 341 patients showed that a short TTPmin in dynamic ['®F]FET PET
data used as predictor of IDH-wildtype status in gliomas. Specifically, the subgroup of patients
with non-contrast-enhanced GBM demonstrated improved diagnostic outcomes, which will be
helpful in identifying patients with worse prognosis (Vettermann et al., 2019).
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A prospective longitudinal study support BTV generated from ['8F]FET PET static images as
an independent factor in prognosis of brain tumours (Suchorska et al., 2015). Another study in-
cluding 121 astrocytic high-grade glioma patients showed that TTPmin derived from dynamic
['8FIFET PET can be a non-invasive factor in identification of patients with a poor prognosis
(Jansen, Suchorska, Wenter, Schmid-Tannwald, Todica, Eigenbrod, Niyazi, Tonn, Bartenstein,
Kreth, & la Fougére, 2015). When the morphological features of MR and the uptake of FET PET
are considered together, this facilitates improved diagnostic performance in patients with low-
grade glioma (Floeth et al., 2007). In addition, studies of dynamic ['®F]FET PET indicated that
decreasing TAC in dynamic ['®F]FET PET helps to detect high-risk astrocytic low-grade glioma to
avoid undegrading and undertreatment (Jansen, Suchorska, Wenter, Eigenbrod, Schmid-
Tannwald, Zwergal, Niyazi, Drexler, Bartenstein, Schnell, Tonn, Thon, Kreth, & la Fougére, 2014;
Thon et al., 2015). Thus, it can be seen that dynamic ['®F]FET PET can provide more prognostic
value than static one.

It is challenging for MRI to differentiate between tumour progression or recurrence and treat-
ment-related changes, because an increase of enhancement in MRI without further tumour pro-
gression can be observed within first 3 months after radiotherapy and/ or chemotherapy with te-
mozolomide (Brandsma & van den Bent, 2009). This phenomenon is called pseudoprogression
and can occur in 15-30% of patients with malignant gliomas (Brandsma, Stalpers, Taal, Sminia,
& van den Bent, 2008; Young et al., 2011). ['®F]FET PET can yield up to 90% accuracy in the
differentiation between early tumour progression and pseudoprogression after radiochemother-
apy of GBM (Galldiks, Dunkl, et al., 2015; Kebir et al., 2016). Furthermore, post radiation necrosis
has similarities in radiology to tumour progression and has become another relevant clinical prob-
lem for neurooncologists (Shah et al., 2013). The potential of ['®F]FET PET to distinguish tumour
recurrence from treatment-related changes in GBM have been assessed, and compared to con-
ventional MRI (85%), ['®F]FET PET can achieve much higher accuracy (93%). (Galldiks, Stoffels,
et al., 2015). Similar results that ['F]FET PET performed better than MRI in this respect have
been obtained in other studies (Pyka et al., 2018; Rachinger et al., 2005; Werner et al., 2019).
The uptake of ['8F]FET was also used to predict the treatment response in patients with early
glioblastomas to radiochemotherapy, with a 10% reduction in uptake implying a longer progres-
sion-free survival than patients whose uptake is stable or increased following postoperative treat-
ment (Galldiks et al., 2012; Piroth et al., 2011). The application of anti-angiogenic drugs, such as
bevacizumab, has led to rapid restoration of blood-brain barrier, causing a pseudoresponse in
MRI (Vredenburgh et al., 2007). A rapid reduction in contrast enhancement after initiation of treat-
ment is observed with bevacizumab, generating a significantly high response rate. And it has
been demonstrated that ['8F]JFET PET distinguishes between responders and non-responders
ahead of MRI alone (Galldiks et al., 2013; Hutterer et al., 2011).

2.3 Radiomics

Medical images of all kinds contain a rich amount of valuable information about the charac-
teristics and progression of diseases. Radiomics makes it possible to select specific features or
feature combinations to differentiate similar diseases and to predict treatment response and out-
comes by transforming medical images into high-dimensional quantitative features (Gillies,
Kinahan, & Hricak, 2016; Lambin et al., 2012). Radiomics image analysis has gained increasing
attention since the concept was first introduced in 2012 (Lambin et al., 2012).
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Radiomics combines a range of computational techniques, which are employed to solve clin-
ical questions. There are several fundamental steps which constitute a pipeline of radiomics in-
cluding harvest of data, segmentation of tumours, extraction of features, selection of features as
well as establishment of models. Radiomics requires a substantial quantity of images and out-
comes by exploring the relationships among them. CT images were first used in radiomic studies
due to its good accessibility and its large quantities (Lambin et al., 2012). Then, MR images, PET
images and ultrasound images were also included in the study of radiomics. As these medical
images come from different machines with different parameters, are reconstructed and processed
in different ways and come from different hospitals, it sets obstacles to the conduct of radiomics
studies. For PET images, differences in PET scanners, parameters of reconstruction and post-
processing of data are the main reason of influence (Galavis, Hollensen, Jallow, Paliwal, & Jera;j,
2010; van Velden et al., 2016; Yan et al., 2015). SUV discretization and respiratory motion also
have a considerable impact on textural features (Grootjans et al., 2016; Oliver et al., 2015). There-
fore, it is necessary to perform pre-processing on the images derived from different machines to
meet the requirements for feature extraction.

Typically, radiomics only analyses images of the lesion area within predefined regions of
interest (ROIs), which is due to the time-consuming process associated with studying the entire
image. This means that it is important to segment ROIs from the images. There are three seg-
mentation methods including manual, semiautomatic, and automatic segmentation. Due to the
lack of standardized criteria (Kumar et al., 2012), manual segmentation is highly variable and also
depends on the experience of radiologists who perform the segmentation of ROIs. As semi-auto-
matic and automatic segmentation can improve the consistency of segmented of ROls and save
time, an increasing number of studies are using this approach as an alternative to manual seg-
mentation. In studies of PET, a semi-automatic segmentation method is mostly performed. In the
study of FET-positive tumour lesions, for example, the area of the tumour is first roughly outlined
and then the ROIs is determined using a cut-off TBR, which is used to determine the BTV in
tumours, usually with a TBR of 1.6 or higher (Jansen, Suchorska, Wenter, Eigenbrod, Schmid-
Tannwald, Zwergal, Niyazi, Drexler, Bartenstein, Schnell, Tonn, Thon, Kreth, & la Fougére, 2014;
Pauleit et al., 2005). However, in other images including CT, MRI and ultrasound, manual seg-
mentation is still the main method, which limited reliability and repeatability of radiomics re-
searches.

Radiomic features are generated from the information contained in the ROIs of images. Pyra-
diomics is currently the most widely used package for feature extraction in python (van
Griethuysen et al., 2017). Radiomic features can be divided into first-order, shape-based and
texture features (van Griethuysen et al., 2017). First-order statistics features show the distribution
of voxel intensities within ROIs (van Griethuysen et al., 2017). Shape-based features included
descriptors of the two-dimensional or three-dimensional size and shape of the ROIs (van
Griethuysen et al., 2017). Texture features refer to the texture characteristics of tumour in terms
of the interrelationship between three or more pixels (van Griethuysen et al., 2017). In addition,
the publication of Image Biomarker Standardization Initiative provides the basis for standardizing
feature extraction (Zwanenburg et al., 2020).

During feature extraction, a large number of features is assessed, which, however, contain
too many redundant information. To avoid overfitting and to reduce time for modelling, feature
selection will be needed before building prediction model. And three feature selection methods
are available: filter, wrapper, and embedding (Z. Liu et al., 2019). Filter methods for assessing
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features with no involvement of models. Univariate and multivariate methods are both filter meth-
ods. Univariate filters sort features according to their quality, and multivariate filter is consisting
of a sorter and a subset selector, which considers redundancy when selecting relevant features.
The wrapper methods are based on special mechanical learning modelling to find optimal features
(Larue, Defraene, De Ruysscher, Lambin, & van Elmpt, 2017), while the embedded approach is
to complete the feature selection during the iterative modelling of the training set (Bagherzadeh-
Khiabani et al., 2016).

The main purpose of radiomics is to establish prediction models with related features to solve
clinical issues. Machine learning modelling methods can be classified as supervised and unsu-
pervised, based on the availability of clinical outcomes. Unsupervised learning classifies data as
clusters by summarising similarities among samples. Supervised learning classifiers like linear
models, support vector machines as well as random forests are the more popular approach when
the outcome is known (Larue et al., 2017). Training and testing are two steps to build models.
During the training phase, samples are used in combination with the respective medical labels for
training. The loss function is used to find the mathematical relationship between features and
labels in the model. During the testing phase, a well-trained model will be tested its prediction
ability (Z. Liu et al., 2019). It should be noted that over-fitting of the model may lead to too favour-
able results. The cross-validation is often utilized as an internal calibration method, using the area
under the receiver operating characteristic curve (AUC) of the receiver operating characteristic
(ROC) curve to assess models’ accuracy (Z. Li et al., 2019; Z. Li et al., 2021). Additionally, when
assessing classification models, the predictive capability can be evaluated using AUC, accuracy,
sensitivity, and specificity. (Z. Liu et al., 2019).

2.3.1 Radiomics Clinical Application

Since the concept of radiomics was developed, there has been an increasing number of
studies focusing on radiomics in the diagnosis and therapy of patients. Here, the main focus is
set to the studies of radiomics in brain tumours.

Traditional medical imaging including CT, MRI and PET is already an important criterion in
brain tumour grading, but radiomics is hoped to further improve this situation. One study used
multiparametric diffusion-weighted imaging, a quantitative MRI technique, to distinguish low- and
high-grade gliomas with machine learning approach, and achieved good results in the external
testing cohort (Xu et al., 2022). Another study built a support vector machine (SVM) model, based
on multiparametric MRI, which showed a high AUC of 0.987 to distinguish WHO grade 2 from
grade 3 and 4 brain tumours (Q. Tian et al., 2018). Meanwhile, radiomics also plays a potential
role in predicting the molecular genotype of brain tumours, which helps to improve the efficacy of
targeted therapies. The study of MRI radiomics can not only distinguish the glioma grade, but also
predict the IDH mutation and the 1p/19q codeletion status, respectively (Y. Li et al., 2022). In
addition, the role of radiomics derived from MRI to predict TERTp mutation status in brain tumours
has been shown by several studies (Fang et al., 2020; Jiang et al., 2020; Park et al., 2021). In
glioma, a multiparametric MRI-based radiomics study has successfully established a model to
predict the TERTp mutation status (H. Tian, Wu, Wu, & Xu, 2020). Besides, MGMT, alpha tha-
lassemia/mental retardation syndrome x-linked (ATRX) mutation status, epidermal growth factor
receptor (EGFR), Ki-67 expression level and p53 status were successfully predicted with models
generated from radiomic features (Y. Li, Liu, Qian, et al., 2018; Y. Li, Liu, Xu, et al., 2018; Y. Li,
Qian, et al., 2018; Y. Li et al., 2017; Xi et al., 2018).
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The prediction of treatment response and prognosis is another hot topic in radiomics. A mul-
ticentre study provided a radiomic model, which including diffusion- and perfusion-weighted MR,
to identify pseudoprogression in patients with GBM (Kim et al., 2019). Another study including
172 patients with recurrent GBM before bevacizumab treatment extracted 4,842 quantitative MRI
features and then classified patients into a low and high-risk cohort for progression-free and over-
all survival (OS) with a prediction model derived from supervised principal component analysis
(Kickingereder et al., 2016). These studies both demonstrate the non-invasive role of radiomics
in clinical treatment decisions. In addition, radiomics can serve as an independent preoperative
tool to predict OS of patients with IDH-wildtype gliomas, and this was shown in a study of 142
patients from two centres, which was conducted using the latest WHO 2021 criteria for classifica-
tion (S. Wang et al., 2021). A multiparametric MRI-based radiomic model also provide a favoura-
ble predictive ability on progression-free survival and OS of patients with GBM (B. Wang et al.,
2021).

['8F]FET PET-based radiomic analysis has been used to differentiate brain metastasis recur-
rence and radiation injury in 2017 (Lohmann et al., 2017). And this research group then published
another study of ['8F]FET PET-based radiomics for the detection of pseudoprogression (Lohmann
et al., 2020). Another study utilized radiomics generated from ['®F]JFET PET/MRI to predict the
mutational status of IDH, MGMT, ATRX as well as 1p/19q codeletion status (Haubold et al., 2020).
In addition, the assessment of ['8F]FET PET radiomics’ prognostic significance following re-irra-
diation was conducted, which may be useful in selecting patients with recurrent GBM who would
benefit from re-irradiation (Carles et al., 2021). Notably, however, while standard static images
(20-40 min post-injection) have been used in studies of ['®F]FET PET-based radiomics, no radi-
omics studies on dynamic ['8F]FET PET or early summation images (5-15 min post-injection) have
been published.

24 Aims

In summary, the aim of this thesis was to apply radiomics generated from ['8F]FET PET to
investigate clinical issues related to the diagnostic and prognostic prediction of brain tumours,
particularly IDH-wildtype GBM. Concretely, the aim of paper | was to evaluate the value of radi-
omics generated from early summation images, standard static images and dynamic ["®F]FET
PET images in predicting the status of TERTp mutation in patients with IDH-wildtype GBM prior
to treatment. The aim of paper Il was to establish and assess a predictive model that used a
combination of clinical data and radiomic features extracted from static and dynamic ['®F]FET
PET data for survival stratification of IDH-wildtype GBM patients.

2.5 Conclusions

In conclusion, this thesis has demonstrated the predictive value of ['8F]FET PET-based radi-
omics in the diagnosis as well as prognosis of glioblastoma. Radiomics based on TTP images
generated from dynamic ['®F]FET PET can predict the prognostically relevant TERTp mutation
status in IDH-wildtype GBM patients with high accuracy before treatment (paper I). Furthermore,
predictive models using ["®F]FET PET-based radiomic features and clinical variables were con-
structed and validated to identify short-term survival in GBM patients (paper Il). The maximum
accuracy in detecting patients at risk was achieved with the conjunction of clinical parameters and
radiomic features extracted from dynamic ['®F]FET PET. The results indicate that dynamic
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['8F]FET PET radiomic features can be incorporated with clinical parameters to improve the diag-
nostic performance for the stratification of patients beyond currently established prognostic mark-
ers.
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Abstract

Purpose To evaluate radiomic features extracted from standard static images (2040 min p.i.), early summation images
(5-15 min p.i.), and dynamic ['*F]JFET PET images for the prediction of TERTp-mutation status in patients with IDH-
wildtype high-grade glioma.

Methods A total of 159 patients (median age 60.2 years, range 19-82 years) with newly diagnosed IDH-wildtype
diffuse astrocytic glioma (WHO grade III or IV) and dynamic ['*F]FET PET prior to surgical intervention were
enrolled and divided into a training (n=112) and a testing cohort (n=47) randomly. First-order, shape, and
texture radiomic features were extracted from standard static (20-40 min summation images; TBR,, 4,), early
static (5-15 min summation images; TBRs_;5), and dynamic (time-to-peak; TTP) images, respectively. Recur-
sive feature elimination was used for feature selection by 10-fold cross-validation in the training cohort after
normalization, and logistic regression models were generated using the radiomic features extracted from each
image to differentiate TERTp-mutation status. The areas under the ROC curve (AUC), accuracy, sensitivity,
specificity, and positive and negative predictive value were calculated to illustrate diagnostic power in both the
training and testing cohort.

Results The TTP model comprised nine selected features and achieved highest predictability of TERTp-mutation with an
AUC of 0.82 (95% confidence interval 0.71-0.92) and sensitivity of 92.1% in the independent testing cohort. Weak predic-
tive capability was obtained in the TBR5_;5 model, with an AUC of 0.61 (95% CI 0.42—-0.80) in the testing cohort, while no
predictive power was observed in the TBR, 4, model.

Conclusions Radiomics based on TTP images extracted from dynamic ["*F]JFET PET can predict the TERTp-mutation status
of IDH-wildtype diffuse astrocytic high-grade gliomas with high accuracy preoperatively.
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Introduction

Mutations in the telomerase reverse transcriptase promoter
(TERTp), leading to telomerase activation and lengthened
telomeres, play an important role in the formation of brain
cancer and individual prognosis [1-3]. In diffuse astrocytic
high-grade gliomas without mutation of the isocitrate dehydro-
genase gene (IDH-wildtype), TERTp mutations are reported
to be associated with poor overall survival [4-6]. Molecular
genetic analysis of the TERTp-mutation status has therefore
gained increasing attention in the clinical routine diagnosis of
IDH-wildtype diffuse astrocytic gliomas and will be included
in the upcoming glioma WHO classification [7-9].

Molecular imaging using positron emission tomography
(PET) with radiolabelled amino acids such as 0-(2-['*F]-
fluoroethyl)-L-tyrosine (['*F]FET) is a useful tool for the
characterization and evaluation of primary brain neoplasms
[10-12], and its application in the clinical management
of brain tumour patients has been recommended by the
Response Assessment in Neuro-Oncology (RANO) Working
Group [13-17]. While static image data (standard 2040 min
summation images) are particularly used for the delineation
of the tumour extent, the assessment of dynamic ['*F]FET
PET data has been shown to provide additional informa-
tion about tumour biology [18]. More aggressive gliomas
(i.e. high-grade gliomas and/or IDH-wildtype gliomas)
were shown to be characterized by a high tracer uptake
within the first 5-15 min post injection (p.i.) with subse-
quent curve decrease, while less aggressive gliomas (i.e. low
grade gliomas and/or IDH-mutant gliomas) typically show
a slowly increasing ['*F]FET uptake with highest values in
the later time frames [12, 19, 20]. As the early peak uptake
in aggressive gliomas is missed in the standard 2040 min
p.i. summation images, it does not surprise that the maximal
tumour-to-background ratio (TBR,,,,) evaluation obtained
in early summation images (5-15 min p.i.) was reported
to perform better than the standard static TBR ,, values
(2040 min p.i.) for the differentiation between low-grade
and high-grade gliomas [17], which led to the suggestion to
include these early summation images for a better glioma
characterization. Another interesting parameter derived
from dynamic ['®F]FET PET is the minimal time-to-peak
(TTP,,,), which is extracted from the time-activity-curves
and was reported to provide prognostic information [21].
Interestingly, an early TTP,;, was associated with an aggres-
sive disease course in newly diagnosed gliomas and was
able to predict an IDH-wildtype status [22, 23]. Yet, in our
recently published study investigating ['*F]JFET uptake
characteristics in TERTp mutant and TERTp wildtype glio-
blastomas, neither the standard TBR ,, as static parameter
nor TTP,,;, as dynamic parameter were associated with the
TERTp-mutation status [24].
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In recent years, radiomics have been increasingly investi-
gated as a promising non-invasive tool for accurate diagnosis
and prognosis assessment by converting medical images into
high-dimensional quantitative image features and establish-
ing predictive models [25-32]. However, radiomics have not
been applied for the detection of TERTp mutations on ['*F]
FET PET images so far. Therefore, the aim of this study
was to evaluate radiomic features extracted from standard
static images (20-40 min p.i.), early summation images
(5-15 min p.i.) as well as dynamic ['*F]JFET PET images
for the prediction of the TERTp-mutation status in patients
with newly diagnosed IDH-wildtype diffuse astrocytic high-
grade glioma.

Materials and methods
Patients

Patients with primary diagnosis of a glioma who had
received a pre-treatment dynamic [mF]FET PET scan at
the Department of Nuclear Medicine of the LMU Munich
between December 2005 and June 2016 were screened for
this retrospective study. Inclusion criteria were (1) neuro-
pathologically confirmed IDH-wildtype diffuse astrocytic
gliomas (WHO grade III or IV) according to the updated
2016 WHO classification [33], (2) availability of the TERTp-
mutation status, and (3) pre-treatment dynamic ['8F]FET
PET scan (ECAT EXACT HR +, Siemens Healthineers,
Inc., Erlangen, Germany Siemens Medical Systems, Inc.,
Erlangen, Germany). ['*F]FET-negative gliomas (tumour-
to-background ratio, TBR < 1.6) were excluded. All patients
had given written informed consent prior to the PET scan as
part of the clinical routine. The retrospective analysis of PET
imaging data was approved by the institutional ethics com-
mittee (604—16). A total of 61% of the investigated patients
(97/159) have been evaluated in a previous study [24].

Histopathology and molecular genetic analysis

Histopathology and molecular genetic analyses were per-
formed at the Institute of Neuropathology, LMU Munich,
Germany. All patients initially classified according to
the 2007 WHO brain tumour classification [34] were re-
classified according to the 2016 WHO classification [33].
The IDH-mutation status and TERTp-mutation status were
evaluated according to clinical standard protocols [35, 36].

["®FIFET PET imaging
['®F]FET PET scans were performed at the Department of

Nuclear Medicine, LMU Munich, Germany. Images were
acquired by using an ECAT EXACT HR + PET scanner
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(Siemens Healthineers, Inc., Erlangen, Germany) with the
standard protocol [11, 37]. Exactly 180 MBq of ['*F]FET
were injected after a 15-min transmission scan with a %*Ge
rotating rod source. After tracer injection up to 40 min post
injection in 3-D mode consisting of 16 frames (7x 10 s,
3%30s, 1X2 min, 35 min, and 2x 10 min) with a recon-
structed voxel size of 2.03 x 2.03 x2.43 mm? and matrix size
of 128 x 128 x63, dynamic emission recording was finished.
Two-dimensional filtered back-projection reconstruction
algorithm using a 4.9-mm Hann Filter was applied for image
reconstruction, then corrected for attenuation, decay, dead
time, and random and scattered coincidences. When relevant
motion was visible in dynamic PET data, a frame-wise cor-
rection was performed by using PMOD fusion tool (version
3.5, PMOD Technologies, Zurich, Switzerland) after frame-
wise checking for motion.

Segmentation of tumour volumes and brain
background

First, a background activity was extracted from a large cres-
cent-shaped volume of interest (VOI) in the contralateral
healthy hemisphere as published previously [38]. For tumour
segmentation, a VOI was drawn using a TBR-threshold of
1.6 in static 2040 min p.i. summation images as suggested
by Pauleit et al. [39]. All segmentations were processed
within the PMOD View tool (version 3.5, PMOD Technolo-
gies, Zurich, Switzerland).

Image normalization and TTP image generation

We used the in-house developed software described previ-
ously by Kaiser et al. [40] (C+ + with integration of the
ROOT data analysis framework, version 6.22/08, Cern,
Switzerland and ITK segmentation and registration toolkit
4.13.3, National Library of Medicine) to generate voxel-wise
parametric images. Then we normalized the image values
with the mean background value derived from each image by
using the VOI of background to generate early 5-15 min p.i.
(TBRs_;5) and late 20—40 min p.i. (TBRy, 4,) TBR images.
For TTP images, time-activity curves (TAC) were extracted
from each voxel, which were then classified according to the
time frame reaching the peak uptake (i.e. (1) <5 min, (2)
5-10 min, (3) 10-15 min, (4) 15-20 min, (5) 20-30 min, and
(6) 3040 min). To avoid influence from early blood flush,
TTP analyses did not include the first 2.7 min p.i. [40]. In
case of a positive late slope (1540 min p.i.), the TTP was
always assigned to group 6.

Radiomic feature extraction

Radiomic features from parametric images were extracted
with PyRadiomics (version 3.0.1) [41] as introduced
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previously by Kaiser et al. [42], and complied with the Imag-
ing Biomarker Standardization Initiative (IBSI) guidelines
[43]. Before extraction, images were resampled to isotropic
voxels using linear interpolation in PyRadiomics (size
2.03%2.03 x2.03 mm *). Classes of features extracted from
TBRs_;5, TBRy 4, and TTP images included first-order fea-
tures, shape features, and texture features. No image filters
were used. The chosen fixed intensity bin size was set to the
average interquartile range divided by 4, which led to 0.18
for TBR;_,5 images and 0.13 for TBRy, ,, images [42, 44].
As the smallest time frame duration considered in the TTP
categories was 5 min, this was used as the fixed bin width
for radiomics calculation of TTP images.

Feature selection

Before feature extraction, a stratified random split was
used to assign 70% of the patients to the training cohort
(n=112) and the remaining 30% to the testing cohort
(n=47), with a balanced distribution of TERTp-wildtype
and TERTp-mutation.

Features were standardized as follows: for each feature,
we calculated the mean value and the standard deviation.
The mean value was subtracted from each individual value,
which was then divided by the standard deviation. Feature
normalization was computed only in the training cohort and
then applied on the testing cohort. Since the number of fea-
tures was large, we compared the similarity of each feature
pair. If the Pearson correlation coefficient (PCC) value of
the feature pair was larger than 0.99, we removed one of
them. After this process, the number of the features was
reduced and each feature was independent to each other.
The recursive feature elimination (RFE) based on logistic
regression classifier was performed to reduce redundant fea-
tures and select potential TERTp-mutation related features
[45]. Considering the imbalance of comparison groups, we
performed the weighted logistic regression in the ‘balanced’
mode, which gives higher weight to the minority class and
lower weight to the majority class and therefore automati-
cally adjusts weights inversely proportional to class frequen-
cies in the input data [46]. Each iteration removes a feature
which is considered least important. After stratified split-
based 10-fold cross-validation, the area under the receiver
operating characteristic curve (AUC) of the model in the
training cohort was used to determine the optimal number
of features.

Model construction and testing
Logistic regression (LR) models were built to predict the

TERTp-mutation status by fitting the selected radiomic fea-
tures. Each model was generated by using only the radiomic
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features extracted from each image (i.e. TBR;_;5, TBR,; 4,
and TTP images) separately. According to the coefficients
of selected features generated by the LR models [47], the
risk probability of TERTp-mutation was calculated by the
following formula:

1

1+e 0™

P(y=1|x;6) =

x is the value of selected features, @ is the coefficient of
selected features, and f, represents the intercept. In case of
P > 0.5, TERTp-mutation status was considered as positive
by the LR model.

Model testing was applied to the independent testing
cohort, which was not involved in the process of model
training. The workflow of the process is presented in Fig. 1.

Statistical analysis

To evaluate the model performance, receiver operating char-
acteristic curve (ROC) analysis was performed in the train-
ing and testing cohort. The AUC was calculated as quanti-
tative measure to illustrate diagnostic power. The accuracy,
sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV) were calculated. 95% con-
fidence intervals (CI) were calculated by using a non-para-
metric bootstrap method, which was repeated 1000 times to
get a bootstrap distribution of the results.

Categorical variables or continuous variables were
reported as numbers and percentages or as mean and stand-
ard deviation. Categorical variables were compared by the

Image

Normalization

Datasets Segmentation

& TTP Image
Generation
Patients Based on
diagnosed with standard static
IDH-wildtype images with
gliomas (n= 159) TBR-threshold
of 1.6

Pre-treatment
"*F-FET PET
including
standard static,
early summation
and dynamic
images.

Software:
PMOD View tool

x* test, and continuous variables were compared by the
Mann-Whitney U test. P <0.05 were considered statistically
significant. Statistical analyses were programmed in Python
(v. 3.8.5; https://www.python.org/).

Results
Patient characteristics

A total of 159 patients (median age, 60.2 years; range,
19-82 years) were enrolled in this study. Exactly 31 patients
(19.50%) were diagnosed with TERTp-wildtype, and 128
patients had TERTp mutation. The clinical characteristics
are presented in Table 1. There were no significant differ-
ences between the training and testing cohorts with regard
to age, sex, WHO grade, and TERTp mutation status, with
TERTp-wildtype rates of 19.64% and 19.15%, respectively.

Radiomic feature extraction and selection

In this study, 107 radiomic features of candidates were gen-
erated from standard static images (2040 min p.i.), early
summation images (5—15 min p.i.), and dynamic ['*FJFET
PET images respectively, including first-order statistics,
shape-based features, and texture features. After PCC pro-
cess, 80 TBR,,, 4, features, 83 TBRs_;; features, and 91 TTP
features were retained. For the TBR, 4, model, based on the
AUC of the 10-fold cross-validation on the training cohort,

Machine
Learning

Features

Extraction Model Testing

Pyradiomics: Feature Model testing
first order selection: based on
features, shape based on RFE independent
features and testing cohort
texture features Model (n=47)
construction
No image filters » based on ’ Meodel
were used training cohort evaluation:
(n=112). each AUC,
LR model was accuracy,
generated by sensitivity,
using the specificity,
features PPV and NPV
extracted from
each image (i.e
TBR,
TBR,,,, and
TTP images)

Fig. 1 The workflow of process. TBR tumour-to-background ratio, TTP time-to-peak, RFE recursive feature elimination, LR logistic regression,
AUC area under the receiver operating characteristic curve, PPV positive predictive value, NPV negative predictive value
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Table 1 Clinical characteristics

Training cohort (n=112)

Testing cohort (n=47)

of the patients
TERTp-mutation TERTp-wildtype = TERTp-mutation = TERTp-wildtype P
Characteristic  (n=90) (n=22) (n=38) (n=9) 0.8958
Age, years 58.1+123 59.2+11.2 0.3699
Sex
Female 45 (40.2%) 17 (54.8%) 0.1449
Male 67 (59.8%) 14 (45.2%)
WHO grade
i1 39 (34.8%) 14 (29.8%) 0.5389
v 73 (65.2%) 33 (70.2%)
Data are means + standard deviations or numbers of p with p in par P value was

g
derived from the univariate association analyses between each clinical parameter. Calculated by using the
independent sample ¢ test for continuous variables and the #° test for categoric variables

14 features were finally selected to fit the LR model after
performing the RFE method. For the TBR4_;5 model and

the TTP model, 9 features and 10 features were selected for
inclusion in the LR model, respectively (Fig. 2).

a b
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Fig.2 The feature selection process of the RFE method. Each itera-
tion removes a feature that is considered least important and corre-

ber was selected. a TBRs_ ;5 model, b TBRy; 43, and ¢ TTP model;
9, 14, and 10 features were selected respectively. RFE recursive fea-

sponds to a 10-fold cross-validation. After 10-fold cross-validation,
the AUC of the model in the training cohort was used to determine
the optimal number of features. The minimum AUC of feature num-
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ture eli ion, AUC area under the receiver operating characteristic
curve
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Diagnostic Validation of the TBR,,_,, model, TBR;_;5
model, and TTP model

According to the above-mentioned formula, the risk prob-
abilities of TERTp-mutation were calculated. The coef-
ficients of selected features in the TBR,, 4, model and
TBR;_,5 model are shown in Table S1. The coefficients of
selected features in the TTP model are shown in Table 2.

No predictive power was observed in the TBRy 4,
model with an AUC of only 0.49 (95% CI0.30-0.69) in the
testing cohort (AUC of 0.90 in the training cohort (95% CI
0.85-0.95); see Fig. S1). The TBR4_; 5 model demonstrated
weak predictive capability to predict a TERTp-mutation
(Fig. 3a, b), with an AUC of 0.61 (95% CI 0.42-0.80) in
the testing cohort and an AUC of 0.80 (95% CI 0.71-0.89)
in the training cohort. The TTP model showed the strong-
est predictive power and achieved an AUC of 0.82 (95%
CI0.71-0.92) and 0.90 (95% CI 0.84-0.95) in the testing
cohort and training cohort, respectively (Fig. 3c, d).

Detailed information about the performance of each
model is shown in Table 3.

Discussion

Our study showed that radiomics based on dynamic ['*F]
FET PET data can reliably predict the TERTp-mutation
status of IDH-wildtype diffuse astrocytic high-grade glio-
mas. Best predictability was reached using the TTP model
derived from dynamic PET, and weak predictive capabil-
ity was obtained with radiomics based on early summation
images (5—-15 min p.i.), while no reliable information about
the TERTp-mutation status was possible based on the stand-
ard summation images (2040 min p.i.).

Previous studies have shown that patients with IDH-
wildtype TERTp-mutant glioblastoma have a significantly

Table 2 Coefficients of selected features in the TTP model

Features Coefficients
SmallDependenceLowGreyLevel Emphasis 1.508
Energy 1.404
SmallDependenceHighGreyLevelEmphasis —-1.283
GreyLevelNonUniformityNormalized -1.235
LeastAxisLength -1.219
Busyness -0.916
ShortRunHighGreyLevelEmphasis —0.699
Maximum2DDiameterColumn 0.654
LowGreyLevelZoneEmphasis —0.626
LargeDepend HighGreyLevelEmph 0.606

Intercept 8, is 0.599 in the TTP model. Details of features were
shown in Supplementary Information
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shorter progression free and overall survival compared to
those with TERT-wildtype status. Therefore, TERTp-muta-
tion status is now considered to be an important diagnostic
and prognostic factor in primary glioblastomas and espe-
cially in patients with IDH-wildtype glioma [3, 5, 8, 9, 48].
TERTp-mutations indicate tumours that require aggressive
and immediate treatments [3]. Hence, a preoperative tool
for the prediction of a TERTp-mutation would be useful for
early decision making and clinical management of patients
with suspected glioma.

Several studies have analyzed the value of MRI based
radiomics to predict the TERTp-mutation status in brain
tumour patients [49-51]. Although these studies reported to
achieve high accuracy values in the range of 79.88-93.80%,
only WHO grade II or/and III gliomas have been consid-
ered and a limited number of patients has been investigated
[49-51]. Besides, Tian et al. established a multiparam-
eter MRI based radiomics model for the prediction of the
TERTp-mutation status in patients with high-grade glioma
[52], but ignored that TERTp-mutations play different roles
in different IDH phenotypes [48].

Compared with conventional MRI, amino acid PET has
been shown to be more sensitive in the definition of brain
tumour extent [39], and dynamic ['*FJFET uptake param-
eters extracted from the TAC have shown to be an independ-
ent biomarker for prognosis [53, 54]. Several studies have
reported the informative value of ['*F]FET PET-based radi-
omics in personalized clinical decisions and individualized
treatment selection [27-29, 55]. Lohmann et al. found tex-
tural feature analysis in combination with TBRs to better dif-
ferentiate brain metastasis recurrence from radiation injury
than TBRs alone, and ['®F]FET PET radiomics achieved
a higher accuracy than the best standard FET PET param-
eter (TBR,,,) to diagnose patients with pseudoprogression
[27, 55]. Haubold et al. utilized multiparametric ['*F]FET
PET/MRI and MR fingerprinting to decode and phenotype
cerebral gliomas, which may serve as an alternative to inva-
sive tissue characterization [28]. In addition, Carles et al.
evaluated the prognostic value of ['*F]FET PET radiom-
ics after re-irradiation, and found it could contribute to the
selection of recurrent glioblastoma patients benefiting from
re-irradiation [29]. However, all studies included radiomics
based on standard static images (2040 min p.i.) only and
did not extract radiomic features derived from dynamic ['*F]
FET PET as well as early summation images (5-15 min p.i.)
even though two studies have shown the impact of dynamic
parameters on radiomics [32, 56]. Furthermore, no study has
evaluated the potential to predict the TERTp-mutation status
by ['®FJFET PET radiomics so far.

This study included standard static images (20—40 min
p.i.), early summation images (5-15 min p.i.), and
dynamic ["*F]FET PET images to develop the radiomic
models. A total of 107 features were extracted from each
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Fig.3 a TBR; 5 model reached an AUC of 0.80 in the training cohort, and b an AUC of 0.61 in the testing cohort. ¢ TTP model reached an
AUC of 0.90 in the training cohort, and d an AUC of 0.82 in the testing cohort. AUC area under the receiver operating characteristic curve

image. Our TTP model, built from ten dynamic ['*F]
FET PET features selected by RFE, achieved the highest
AUC of 0.82 in the independent testing cohort, indicat-
ing that the TERTp-mutation status can be predicted
by using ['"*F]FET PET based radiomics. Notably, our
former study did neither find an association between
the TERTp-mutation status and traditional static ['*F]

Table 3 Performance of each model

FET PET parameters (TBR,,, and TBR,,, in static
2040 min summation images) nor the standard dynamic
parameter TTP ; [24].

Interestingly, radiomics based on the standard TBRyq 49
model showed a low performance for the prediction of the
TERTp-mutation status, and even the TBR;_;5; model, gen-
erated from nine early summation ['®F]FET PET features,

TBR;_ 5 TBRyg 49

TTP

Training cohort Testing cohort

Training cohort

Testing cohort Training cohort Testing cohort

AUC 0.80 0.61 0.90 049 0.90 0.82
AUC 95%CI (0.71-0.89) (0.42-0.80) (0.85-0.95) (0.30-0.69) (0.84-0.95) (0.71-0.92)
Accuracy 0.75.0% 66.0% 83.0% 66.0% 78.6% 83.0%
Sensitivity 73.3% 73.7% 81.1% 13.7% 71.8% 92.1%
Specificity 81.8% 33.3% 90.9% 33.3% 81.8% 44.4%
PPV 94.3% 82.4% 97.3% 82.4% 94.6% 87.5%
NPV 42.9% 23.1% 54.1% 23.1% 47.4% 57.1%
CI confidence interval
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had an accuracy of only 66% and an AUC of 0.61 in the
testing cohort. With a high prediction accuracy of 83%
in the TTP model, our study demonstrates that radiomic
features extracted from dynamic PET data can achieve a
higher performance level than models based on static PET
data. Remarkably, the sensitivity of the TTP model reached
92.1% in the testing cohort, so that patients with aggressive
TERTp-mutant glioma can be identified non-invasively with
high probability [3]. With the generated multivariate LR-
based formula, health practitioners will be able to calculate
the patient individual risk probability of bearing a TERTp-
mutation before neurosurgical intervention. Our study shows
that even sophisticated radiomic analysis of static ['*F]FET
PET imaging cannot replace dynamic acquisitions, at least
with regard to the prediction of the TERTp-mutation status.

Traditional dynamic ['*FJFET PET parameters such as
the classification of the time-activity curve (increasing vs.
decreasing or increasing vs. plateau vs. decreasing), the
slope or the TTP;, were most frequently calculated from
a mean VOI-TAC of the tumour or from the hot-spot of the
tumour with a 90% isocontour [10, 12, 19]. Considering
the heterogeneity of gliomas, it may happen that the hot-
spot in standard summation images does not correspond
to the most suspicious tumour aggressiveness when only
considering TTP,;, and TAC and that, therefore, the most
aggressive areas are inadvertently not evaluated. In con-
trast, we extracted the dynamic ['®F]FET uptake informa-
tion in every voxel within the tumour VOI and generated
TTP images. This approach, which was first introduced by
Kaiser et al. [40, 42], ensures that the dynamic information
including the heterogeneity of uptake kinetics is extracted
and that radiomics can be performed on the prognostically
valuable dynamic data. The correlation between tumour het-
erogeneity and TERTp-mutation status can be considered
in GreyLevelNonUniformityNormalized (GLNN) feature,
which was used in the TTP model (see Table 2). GLNN
belongs to Gray Level Dependence Matrix (GLDM), which
is mathematically equal to first order—uniformity and is a
measure of the homogeneity of the image array. A low value
implies a greater heterogeneity, which was correlated with
the TERTp-mutation, indicating that tumours with more het-
erogeneous TTP images are more likely to be classified as
TERTp-mutant glioma.

Several limitations of this study should be discussed.
First, the number of investigated patients is relatively small.
However, it needs to be considered that we analyzed a very
homogeneous group of patients with newly diagnosed and
untreated IDH-wildtype diffuse astrocytic high-grade gli-
oma. To exclude any influence by scanner type, all images in
this study were derived from the same PET scanner, which
limited the number of patients as well. In order to increase
the number of patients, multi-centre validation studies
are needed which, however, require phantom studies and
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harmonization of reconstruction parameters to make images
from different PET scanners comparable. Another approach
to directly harmonize features extracted from different
devices may be to use the ComBat method [57]. In addition,
our results are difficult to extrapolate to other centres, as the
PET images analyzed in this study were acquired with our
old PET scanner with fixed time frames, resulting in rela-
tively long time frames (predominantly 5 and 10 min) in the
dynamic analysis which could not be changed afterwards,
and were reconstructed using filtered back-projection, while
most PET centres now use other reconstruction methods
such as ordered subset expectation maximization (OSEM).
Furthermore, radiomic features were only extracted from
the [IBF]FET-positive tumour VOI to construct the model.
Besides the tumour VOI, the remaining image (with nor-
mal seeming tissue) may still contain invisible but useful
information. To analyze the entire images, deep learning
methods will be necessary. Furthermore, our study focused
on PET-based radiomics only. A combination with MRI may
improve the performance of the prediction model and should
be evaluated in future studies.

Conclusion

While conventional ['*F]FET PET parameters assessed by
standard analyses have previously shown no association with
the TERTp-mutation status, radiomic models can predict
the TERTp-mutation status of IDH-wildtype diffuse astro-
cytic high-grade gliomas with high accuracy preoperatively.
Notably, this is only the case for radiomics based on dynamic
image data (TTP model) instead of standard summation
images (20—40 min). Further external validation in multi-
centre studies with a larger number of patients is needed to
evaluate the potential for clinical applications.
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Abstract

Purpose The aim of this study was to build and evaluate a prediction model which incorporates clinical parameters and
radiomic features extracted from static as well as dynamic ['®F]JFET PET for the survival stratification in patients with newly
diagnosed IDH-wildtype glioblastoma.

Methods A total of 141 patients with newly diagnosed IDH-wildtype glioblastoma and dynamic ['*F]FET PET prior to
surgical intervention were included. Patients with a survival time < 12 months were classified as short-term survivors. First
order, shape, and texture radiomic features were extracted from pre-treatment static (tumor-to-background ratio; TBR) and
dynamic (time-to-peak; TTP) images, respectively, and randomly divided into a training (7=99) and a testing cohort (n=42).
After feature normalization, recursive feature elimination was applied for feature selection using 5-fold cross-validation on
the training cohort, and a machine learning model was constructed to compare radiomic models and combined clinical-
radiomic models with selected radiomic features and clinical parameters. The area under the ROC curve (AUC), accuracy,
sensitivity, specificity, and positive and negative predictive values were calculated to assess the predictive performance for
identifying short-term survivors in both the training and testing cohort.

Results A combined clinical-radiomic model comprising six clinical parameters and six selected dynamic radiomic features
achieved highest predictability of short-term survival with an AUC of 0.74 (95% confidence interval, 0.60-0.88) in the
independent testing cohort.

Conclusions This study successfully built and evaluated prediction models using ['|F]FET PET-based radiomic features
and clinical parameters for the individualized assessment of short-term survival in patients with a newly diagnosed IDH-
wildtype glioblastoma, The combination of both clinical parameters and dynamic ['*F]JFET PET-based radiomic features
reached highest accuracy in identifying patients at risk. Although the achieved accuracy level remained moderate, our data
shows that the integration of dynamic ['|FIFET PET radiomic data into clinical prediction models may improve patient
stratification beyond established prognostic markers.

Keywords Radiomics - ['*F]FET PET - Survival - Glioma

Introduction

The inclusion of mandatory molecular markers for diagnosis
in the World Health Organization (WHO) Classification
Nathalie L. Albert and Lena Kaiser contributed equally to this work. of Tumors of the Central Nervous System (CNS) in 2016
and revised in 2021 has led to a more rigid definition of
prognostically distinct entities [1, 2]. In particular, the
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4 Zhicong Li isocitrate dehydrogenase (IDH)-wildtype status is associated

lzc1225@163.com with a worse prognosis in adult diffuse astrocytic gliomas [3]
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4, according to the 2021 WHO classification. Additional
predictive markers such as the methylation status of the
0-6-methylguanine-DNA-methyltransferase (MGMT)
promotor further help to stratify brain tumor patients
according to their individual risk profile [4]. However,
even within the distinct molecularly defined tumor type of
IDH-wildtype glioblastomas, few patients survive several
years whereas others remain short-term survivors (STS) and
decease within the first year, indicating further potential for
improvement regarding patient stratification [5]. Balancing
aggressive treatment including radiation and chemotherapy
with quality of life is critical for patients [6].Therefore,
additional prognostic markers beyond established molecular
genetic markers and a stratification of survival beyond the
neuropathological classification of brain tumors would be
helpful to further improve individual prognostication and
guide patient management accordingly.

Molecular imaging using positron emission tomography
(PET) with radiolabeled amino acids such as 0—(2—[13F]—
fluoroethyl)-L-tyrosine (['*F]FET) has been applied suc-
cessfully for the characterization and evaluation of primary
brain neoplasms [7-9]. Hence, PET imaging was recom-
mended by the Response Assessment in Neuro-Oncology
(RANO) Working Group as useful imaging method in addi-
tion to conventional magnetic resonance imaging (MRI) in
the clinical management of brain tumor patients [10]. Espe-
cially dynamic ["*FJFET PET has been shown to be helpful
for non-invasive tumor classification [11] and for individual
prognostication even within defined molecular subgroups [7,
12]. Here, radiomics have recently gained increasing interest
as a promising non-invasive tool, where quantitative features
are extracted from medical images and combined with clini-
cal and genomic information to establish predictive models
[13, 14]. However, up to now, there is no radiomic approach
based on dynamic ['*F]FET PET data which aims to per-
form survival stratification specifically in patients with an
IDH-wildtype glioblastoma, despite being one of the most
common and aggressive brain tumors.

Therefore, the purpose of this study was to build and
evaluate a prediction model, which incorporates clinical
parameters and radiomic features extracted from static as
well as dynamic ['"*F]FET PET for an individualized sur-
vival stratification in patients with a newly diagnosed IDH-
wildtype glioblastoma.

Materials and methods
Patients
The retrospective analysis of PET imaging and clinical data

was approved by the institutional review board of the LMU
Munich (604-16), and all patients gave written informed

@ Springer

30

consent before the PET scan. Patients with primary diag-
nosis of a glioma who received a pre-treatment dynamic
['8F]FET PET scan at the Department of Nuclear Medicine
of the LMU Munich were identified for this retrospective
study. The inclusion criteria for analysis were (1) histo-
logically confirmed IDH-wildtype glioblastoma according
to the updated 2016 WHO classification [1]; (2) pre-treat-
ment evaluation of a dynamic [lgF]FET PET scan (ECAT
EXACT HR +, Siemens Healthineers, Inc., Erlangen, Ger-
many; Siemens Medical Systems, Inc., Erlangen, Germany);
3) [lsF]FET—positive glioma (tumor-to-background ratio,
TBR > 1.6); and (4) availability of clinical characteristics,
including age, gender, Karnofsky Performance Score (KPS),
as well as MGMT promoter methylation status and telomer-
ase reverse transcriptase promoter (TERTp) mutation status.
Patients with no follow-up data were excluded. Patients with
a survival time < 12 months were defined as short-term sur-
vivors (STS) [15, 16].

["®FIFET PET image acquisition

['®F]FET PET images were acquired on an ECAT EXACT
HR + PET scanner (Siemens Healthineers) with the stand-
ard protocol [8, 17] at the Department of Nuclear Medicine
of the LMU Munich. Dynamic ['®F]FET PET images were
acquired over 40 as detailed in [14]. If relevant motion was
observed in dynamic PET images, a frame-wise correc-
tion was performed using PMOD fusion tool (version 3.5;
PMOD Technologies, Zurich, Switzerland) after frame-wise
checking for motion.

Segmentation of tumor volumes and brain
background

The mean background activity was assessed from a large
crescent-shaped volume of interest (VOI) in the contralateral
healthy hemisphere as published previously [18] and recom-
mended in the Joint EANM/EANO/RANO practice guide-
lines/SNMMI procedure standards for imaging of gliomas
using PET with radiolabeled amino acids [19]. For tumor
segmentation, a VOI was delineated with a TBR-threshold
of 1.6 in static 20-40 min p.i. summation images as previ-
ously described [20].

TBR and TTP image generation

The image values were normalized with the mean back-
ground value to generate static 20-40 min p.i. (TBRyg 49)
TBR images. An in-house developed software described
previously by Kaiser et al. [21] (C+ + with integration of
the ROOT data analysis framework, version 6.22/08, CERN,
Switzerland; and ITK segmentation and registration toolkit
4.13.3, National Library of Medicine, National Institutes of
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Health, USA) was applied to generate voxel-wise parametric
images. For the generation of TTP images, time—activity
curves (TACs) were derived from each voxel, which were
then classified according to the time frame reaching the peak
uptake, i.e., (1) <5 min, (2) 5-10 min, (3) 10-15 min, (4)
15-20 min, (5) 20-30 min, and (6) 30—40 min. TTP analyses
excluded the first 2.7 min p.i. to avoid influence from early
blood flush [21]. In case of a positive late slope (15-40 min
p.i.), the TTP was assigned to group 6.

Radiomic feature extraction

Images were resampled to isotropic voxels using linear inter-
polation (size 2.03 x2.03x2.03 mm?), then radiomic fea-
tures were extracted in Python (version 3.8.5) using PyRadi-
omics (version 3.0.1) [22], which complies with the Imaging
Biomarker Standardization Initiative (IBSI) guidelines [23].
The included feature classes were first-order features, shape
features and texture features, which were extracted from
TBR and TTP images, respectively. No image filters were
applied. As previously published, a fixed intensity bin size
was set to 0.13 for TBR,,, ,, images, resulting from the aver-
age interquartile range divided by 4 [21, 24, 25]. The small-
est time frame duration considered in the TTP categories
was 5 min, which was used as the fixed bin width for feature
extraction from TTP images.

Machine learning pipeline

Before feature selection, a stratified random split was used
to assign 70% of the patients to the training cohort (n=99)

Feature

Datasets Segmentation Extaction
Patients. Based on First order
diagnosed with standard static
IDH-wildtype images with Shape
diffuse astrocytic TBR-threshold
gliomas (n= 141) of 1.6 GLCM
Pre-treatment GLRLM
dynamic
['"*FIFET PET GLSZM
images TTP Image

Generation NGLDM
GLDM
TAC were
derived from No image filters
each voxel, » were used
which were then
classified

Fig.1 The workflow of radiomic process. TBR, tumor-to-background
ratio; TTP, time-to-peak; TAC, time-activity curves; GLCM, gray level
co-occurrence matrix; GLRLM, gray level run length; GLSZM, gray
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and the remaining 30% to the testing cohort (n=42), with
a balanced distribution of STS and non-STS (P=0.8654,
Pearson’s x2 test) and clinical parameters in both groups
using the FeAture Explorer (FAE) [26]. The independent
testing cohort was not involved in the process of model
training and used only for model testing. Machine learning
including feature selection and model construction was
implemented in Python (version 3.8.5) using scikit-
learn package (version 0.24.1) [27]. The workflow of the
processing pipeline is presented in Fig. 1.

Feature standardization was computed only on the train-
ing cohort and then applied to both the training and the
testing cohorts. For each feature, the mean value and the
standard deviation were calculated. The mean value was sub-
tracted from each individual value, which was then divided
by the standard deviation.

Before performance evaluation on the test set, feature
selection and model fitting was conducted on the training
set. Logistic regression (LR) models were built to predict
short-term survival of GBM patients in the testing cohort by
fitting selected features on the training cohort. For survival
classification, LR was applied in “balanced”” mode, which
gives higher weight to the minority class and lower weight
to the majority class. With this setting, weights are automati-
cally adjusted inversely proportional to class frequencies in
the input data to avoid the influence from the imbalance of
comparison groups [28]. Considering the small amount of
data, the solver “liblinear” was used and the maximum num-
ber of iterations was set to 1000 for the solver to converge.
The remaining settings of the logistic regression classifier
provided within the scikit-learn package were set to default.

Machine Learning Process

Clinical
[Parameters

| TesingCohort 18R ! TP ' Gin cal
| (n=42) | Model | f :

| Combined Models

Model |1

level size-zone matrix; NGLDM, neighborhood gray level different
matrix; GLDM, gray level dependence matrix
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Radiomic feature selection

Pearson correlation coefficient (PCC) was used to reduce
the dimensions of the feature matrix [29]. The PCC of two
features was compared iteratively. If the PCC was larger
than 0.99 [30], the second feature was removed. Further-
more, recursive feature elimination (RFE) based on logistic
regression classifier was performed to reduce the number
of redundant features and select potential survival-related
features [31]. During each iteration, a feature which is con-
sidered least important is deleted. The number of features
to select was chosen to range between 1 and 15. The per-
formance of each model with a different number of features
was assessed using the area under the receiver operating
characteristic curve (AUC) obtained from repeated stratified
cross-validation using three splits and five folds.

Model construction and testing

First, models considering radiomic features derived from
either TBR or TTP images or only clinical parameters were
generated and compared to each other. Radiomic signatures
were generated by using linear combinations of the selected
radiomic features according to the LR coefficients in the TBR
and TTP models. The clinical model was constructed from
all clinical parameters including age, gender, KPS, MGMT
promoter methylation status, and TERTp mutation status.
Second, the TBR-TTP model was built from a combination
of the TBR signature and the TTP signature. The combined
clinical-radiomic models were constructed by combining
clinical parameters and radiomic signatures, respectively.

Statistical analysis

Receiver operating characteristic curve (ROC) analysis was
performed on the training and testing cohorts to evaluate the
model performance. AUC, accuracy, sensitivity, specificity,
positive predictive value (PPV), and negative predictive value
(NPV) were calculated for diagnostic power when applying
the trained model on the testing cohort. Then, 95% confidence
intervals (CIs) were calculated by using a non-parametric
bootstrap method, which was repeated 1000 times to get a
bootstrap distribution of the results.

Categorical variables or continuous variables were reported
as numbers and percentages or as mean and standard deviation,
Categorical variables were compared using Pearson’s  ? test
and continuous variables were compared using Mann—Whitney
U test. P values <0.05 were considered statistically significant.

Statistical analyses were implemented in Python (version
3.8.5) using scikit-learn package (version 0.24.1) [27].
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Results
Patient characteristics

A total of 141 patients (median age, 59.3 years; range,
19.0-77.2 years) were included in this study. Of the 141
patients, 94 (66.7%) patients underwent stereotactic biopsy and
47 (33.3%) microsurgical resection at initial diagnosis, with
the same distribution between the training and testing cohorts
and no significant differences between both STS and non-STS
group (P value=0.355). Forty patients (28.4%) had a survival
time of less than 12 months and were classified as STS. The
variables which constructed the clinical model included age,
gender, Karnofsky Performance Score, CNS WHO grade,
MGMT promoter methylation status, and TERTp mutation
status, and are presented in Table 1. There were no signifi-
cant differences between the training and testing cohorts with
regard to clinical parameters, with STS rates of 28.3% and
28.6%, respectively. The initial therapies of STS and non-STS
are shown in Table S1.

Radiomic feature extraction and selection

The original features considered for the model construction
included six clinical parameters and 107 radiomic features
extracted from static and dynamic ['*F]FET PET images,
respectively. After the PCC-based exclusion of redundant
features, 79 features were retained from TBR images and
94 features were retained from TTP images. With RFE, two
features were finally selected for the TBR model and six
features for the TTP model (Fig. 2).

Diagnostic validation of the TBR model, TTP model,
and clinical model

The TBR model reached an AUC of 0.63 (95% CI, 0.52-0.75)
in the training cohort for the prediction of STS (Supplementary
Fig. Sla, S1b), with a sensitivity of 60.7% and a specificity of
60.6%, and a similar AUC of 0.63 (95% CI, 0.47-0.78) in the
testing cohort, with a sensitivity of 50.0% and a specificity of
73.3%. The TTP model showed a higher predictability of STS
(Fig. Slc, S1d) with an AUC of 0.77 (95% CI, 0.69-0.84) in
the training cohort (sensitivity 75.0% and specificity 63.4%),
and with an AUC of 0.71 (95% CI, 0.57-0.84) in the testing
cohort (sensitivity 50.0% and specificity 70.0%). The clinical
model demonstrated an accuracy at a comparable level as
the TTP model (Fig. Sle, S1f), with an AUC of 0.79 (95%
CI, 0.71-0.86) in the training cohort (sensitivity 75.0% and
specificity 64.8%) and an AUC of 0.69 (95% CI, 0.50-0.86)
in the testing cohort (sensitivity 66.7% and specificity 53.3%).

The coefficients of features in the clinical model are
shown in Supplementary Table S2. Radiomic signatures are



European Journal of Nuclear Medicine and Molecular Imaging

Table 1 Clinical characteristics

of the patients Training cohort (n=99) Testing cohort (n=42) P value
STS Non-STS STS Non-STS
Characteristic (n=28) (n=T71) (n=12) (n=30) 0.865
Age, years 56.7+11.8 58.5+13.1 0.121
Gender
Female (0) 40 (40.4%) 17 (40.5%) 0.857
Male (1) 59 (59.6%) 25 (59.4%)
KPS 80 (60-100) 80 (40-100) 0.587
WHO grade
I 32(32.3%) 16 (38.1%) 0.640
v 67 (67.7%) 26 (61.9%)
MGMT
Unmethyl. (0) 47 (53.0%) 20 (51.2%) 0.988
Methyl. (1) 52 (47.0%) 22 (48.8%)
TERTp
Wildtype (0) 21 (21.2%) 10 (23.8%) 0.516
Mutation (1) 78 (78.8%) 32 (76.2%)
Data are means + standard deviations or numbers of patients with percentages in parentheses. P value was
derived from the univariate association analyses between each clinical parameter. Calculated by using
the Mann-Whitney U test for continuous variables and Pearson’s xz test for categoric variables. Gender,
MGMT, TERTp with representative number of formula of risk probability in parentheses
STS short-term survivors, KPS Karnofsky Performance Score
a b
0.65 —4— Cross Validation 0.70 —4— Cross Validation
0.65
0.60 4
oss{_ | 1 | _ __l l ] ] il (WS 000 { l I ]
o 0.50 1 I 0.55
2 2
< <
0.45 0.50
0.40 - 0.45
0.354 0.40
0.30 1
— T 7T T T T T — T 0.35 T — T — —— — —T—
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15

Number of features selected

Fig.2 The feature selection process of the RFE. Each iteration
removes a feature that is considered least important and corresponds
to a 3-repeated 5-fold cross-validation. After cross-validation, the
average AUC of the model in the training cohort was used to deter-
mine the optimal number of features. The number of candidate fea-

provided in Supplementary section S2. Detailed information
about the performance of the different models is shown in
Table 2 and Supplementary Table S3.
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Number of features selected

tures was chosen to range from 1 to 15. The feature number with
maximal AUC was selected. a Two features were selected in the TBR
model and b six features were selected in the TTP model. RFE, recur-
sive feature elimination; AUC, area under the receiver operating char-
acteristic curve

Diagnostic validation of the combination models

The combined TBR-TTP model reached an AUC of 0.79
(95% CI, 0.72-0.87) in the training cohort for the prediction
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Table2 Performance of TBR, TTP, and clinical models for the testing
cohort

TBR model TTP model Clinical model

AUC 0.63 0.71 0.69

AUC 95% CI (0.47-0.78) (0.57-0.84) (0.50-0.86)
Accuracy 66.7% 64.3% 57.1%
Sensitivity 50.0% 50.0% 66.7%
Specificity 73.3% 70.0% 53.3%

PPV 42.9% 40.0% 36.4%

NPV 78.6% 77.8% 80.0%

CI confidence interval, TBR tumor-to-background ratio, TTP time-to-
peak

of STS (Supplementary Fig. S2a, S2b), with a sensitivity of
71.4% and a specificity of 69.0%, and an AUC of 0.74 (95%
CI, 0.61-0.86) in the testing cohort, with a sensitivity of
50.0% and a specificity of 70.0%.

The combined clinical- TBR model showed only slightly
higher predictability of STS than the TBR model, with an
AUC of 0.80 (95% CI, 0.72—0.87) in the training cohort and
0.64 (95% CI, 0.47-0.81) in the testing cohort (Fig. S2c,
S2d). The sensitivity and specificity were 75.0% and 70.4%
in the training cohort, and 58.3% and 60.0% in the testing
cohort, respectively.

The combined clinical-TTP model showed best predict-
ability of STS, with an AUC of 0.86 (95% CI, 0.78-0.92) in
the training cohort (sensitivity 82.1% and specificity 74.7%)
and 0.74 (95% CI, 0.60-0.88) in the testing cohort (sensitivity
66.7% and specificity 70.0%) (Fig. S2e, S2f).

The clinical- TBR-TTP model reached an AUC of 0.86
(95% CI, 0.70-0.93) in the training cohort for the prediction
of STS (Fig. S2g, S2h), with a sensitivity of 89.3% and a
specificity of 71.8%, and AUC of 0.72 (95% CI, 0.59-0.86) in
the testing cohort, with a sensitivity of 58.3% and a specificity
of 73.3%.

LR coefficients of the combined models are provided in
Supplementary section S3. Detailed information about the
performance of the combined models is shown in Table 3
and Supplementary Table S4.

Table 3 Performance of combined models for the testing cohort

Discussion

This study illustrates that integration of radiomics based
on dynamic ["*F]FET PET may improve the assessment of
short-term survival probability in patients with newly diag-
nosed IDH-wildtype glioblastoma. As opposed to prediction
models based on clinical parameters or radiomic features
alone, specifically a combined clinical-TTP model includ-
ing both clinical parameters and an additional radiomic sig-
nature derived from dynamic PET accomplished a higher
prognostic value for short-term survival.

Several studies have analyzed the role of ['*F]FET PET for
the assessment of survival probability in patients with glioma
[7, 8, 12, 32-35]. It has been reported that a large biological
tumor volume (BTV) on static ['*F]FET PET [32, 33, 35] as
well as a short TTP,,;, extracted from dynamic ['®F]JFET PET
at initial diagnosis are associated with STS [7, 12, 34, 35].
Besides, Bauer et al. showed that TTP,;, is an independent
prognostic factor for overall survival, reaffirming the value of
dynamic ["*F]FET PET in the prediction of survival in glioma
patients. Yet, initial radiomics data in high-grade glioma have
been provided by MRI studies, achieving high AUC values
for the prognostication of overall survival in the range of
0.652-0.858 in the test cohort [36—40] demonstrating that
radiomics might be a valuable tool to estimate survival in
brain tumor patients. Meanwhile, first promising studies
have brought ['*FJFET PET-based radiomics into the focus:
Radiomic features extracted from static ['*F]FET PET
showed better accuracy than conventional static parameters
(e.g., TBR,,,,) to identify pseudoprogression [13]. For the
differentiation between radiation injury and recurrence of
brain metastasis, textural features extracted from ['**F]JFET
PET had a diagnostic accuracy of 83% [41]. Carles et al.
reported that ['*F]FET PET radiomics could contribute
to the prognostic assessment [42], and Paprottka et al.
established a promising tool for objective differentiation
of tumor progression from treatment-related changes by
combining ['*FJFET PET and multiparametric MRI [43].
However, those initial studies only analyzed static ['*F]
FET PET features without taking into account important
clinical parameters and, furthermore, no study so far has

Model AUC 95% CI Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)
TBR-TTP 0.74 (0.61-0.86) 64.3 50.0 70.0 40.0 718
Clinical-TBR 0.64 (0.47-0.81) 59.5 58.3 60.0 36.8 783
Clinical-TTP 0.74 (0.60-0.88) 69.0 66.7 70.0 47.1 840
Clinical-TBR-TTP 0.72 (0.59-0.86) 69.0 58.3 733 46.7 81.5

CI confidence interval, TBR tumor-to-background ratio, 77P time-to-peak
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utilized dynamic ['®*F]FET PET-based radiomics to assess
the probability of poor prognosis within distinct molecular
brain tumor types.

The present study used clinical parameters combined
with ['®FJFET PET radiomic features to develop combined
clinical-radiomic models. A model based on clinical data
only, built from six important survival-related clinical
parameters, achieved an AUC of 0.69 in the independent
testing cohort. A TBR model, built from two static ['*F)
FET PET features, achieved an AUC of 0.63 in the testing
cohort and thus did not perform better than the clinical
model. The TTP model, however, generated from six
dynamic ['®F]FET PET features, achieved an AUC of 0.71
in the testing cohort, thus slightly exceeding the clinical-only
model and outranging the TBR-only model, highlighting the
importance of dynamic PET data in the context of survival-
related analyses. The combined purely imaging-based TBR-
TTP model achieved only slightly better results than each
model alone (AUC of 0.74 vs. AUC of 0.63 and AUC of
0.71). Eventually, the merger of the TTP radiomic signature
and clinical data, resulting in the combined clinical-TTP
model, achieved best predictive performance with an AUC
of 0.74. Integrated discrimination improvement (IDI) was
calculated between the clinical model and the combined
clinical-TTP model [44]. The value of IDI was 0.1089,
which was greater than 0, and the P value was 0.023, which
was statistically significant. It indicated that the combination
of TTP radiomics and clinical data, compared to clinical
parameters alone, led to an improved ability of the model
to identify patients at risk. Although intriguing to speculate
that the clinical TBR-TTP model would achieve highest
accuracy as it includes all available information, the AUC
did not improve, which may be related to the limited value
of TBR information in this context, but this should be
re-evaluated in larger cohorts. Taken together, as previously
shown for other entities, it seems beneficial not to narrow
the view to the clinical information alone when constructing
a predictive model but to include radiomic signatures in
clinical prediction studies as well, as the combination of
clinical and radiomic information seems to be of particular
value with regard to survival risk prediction [45]. When
considered on its own, an AUC of 0.74 still does not seem
satisfactory, as further underscored by a positive predictive
value for the identification of a short-term survivor of only
47.1% even for the best model (see Table 3). From a clinical
point of view, the positive and negative predictive values are
highly useful metrics in the context of decision-making as
they give an estimate on the correctness of a prediction. In
the clinical setting, it would be particularly beneficial to
identify patients at risk for short-term survival in order to
facilitate the selection of more aggressive treatments or
earlier inclusion in experimental treatment studies, rather
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than just standard treatment, to which approximately 30%
of patients do not respond. However, also the identification
of long-term survivors would be helpful in the clinical
routine, as pseudoprogression can occur in one-third of the
patients and may, when misinterpreted as tumor progression
on MRI, lead to a premature cessation of an effective
treatment. Of note, while the positive predictive value
was extremely low in all models, the negative predictive
value, reflecting the predictability of long-term survival,
reached 84% in the best model. Therefore, even though
the overall accuracies of our prediction models may not
yet be satisfactory for the clinical use and the low positive
predictive values impede the prediction of a short-term
survivor, the high negative predictive value may be helpful
for clinical decision-making. Our study supports that within
a neuropathologically homogenous group of aggressive
IDH-wildtype glioblastomas, especially the combination of
different types of information (in this case clinical data and
radiomic signature) can add value to a survival prediction
model and consequently hints to the potential, which lies
in the inclusion of even further image-based information.
Indeed, one might speculate that the addition of conventional
MRI data and in a next step more sophisticated MRI data
such as perfusion or diffusion-weighted MRI may further
increase the power of survival risk prediction of the
combined clinical-TTP model [46], but such analyses require
a standardized imaging protocol to assure comparability of
MRI-based radiomic features. In other tumor entities as
well, especially multiparametric imaging approaches have
shown highly promising results for survival prediction,
e.g., reaching an accuracy of up to 98% in a study on
cervical cancer as compared to only 56-60% for prediction
models using the standard clinical variables alone [47, 48].
Accordingly, dual PET imaging studies including other
tracers than ['*F]FET in IDH-wildtype glioblastoma, such
as TSPO-ligands which offer complementary information
to the ['®FJFET uptake [49], are of high potential to further
increase the power of survival prediction models, as
exemplified by recent successful multi-tracer PET prediction
approaches in other entities, such as prostate cancer [50].
Although the number of patients included in the cur-
rent study is by far higher than in most previous ['*F]JFET
PET radiomics studies, a further increase in patient num-
bers may in future result in outperforming radiomics-only
based approaches, as already shown in large-scale analyses
for other medical settings [51]. According to the above-
generated multivariate LR-based formulas, the known risk
factors of high WHO grade, unmethylated MGMT promoter,
TERTp mutation as well as higher patient age and lower
KPS at diagnosis of IDH-wildtype glioblastoma were more
likely associated with short-term survival [52-55]. However,
gender has different correlations in different formulas, which
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is inconsistent with the literature [53], although the weight
of this parameter was low. This may likewise be due to the
relatively low number of patients included in this study.

Whereas, in clinical routine, established dynamic ['*F]
FET PET parameters such as the time-activity curve and/or
the slope are usually only derived from representative sub-
volumes of interest within the tumor [7, 9, 56, in the current
study every single voxel of the tumor was analyzed in order
to generate whole-tumor TTP maps of dynamic ['*F]JFET
PET images. This comprehensive whole-tumor approach
facilitated radiomic features extraction in dynamic image
data and ensured to account for heterogeneity of uptake
kinetics which has a major clinical impact when assessing
brain tumors in dynamic ['*FIFET PET [57]. In this con-
text, a relationship between tumor heterogeneity and the
STS group could be found in the feature ClusterProminence
(CP). CP belongs to the Gray Level Co-occurrence Matrix
(GLCM) and measures the skewness and asymmetry of the
GLCM. A higher value implies more asymmetry while a
lower value indicates a peak near the mean value and less
variation around the mean. This correlation with the STS
group indicates that a patient with a heterogeneous tumor
in dynamic ['*F]FET PET images is more likely to be iden-
tified as high-risk patient for short-term survival. Another
exemplary radiomic feature, which is associated with the
STS group, is Maximum 3D diameter, 3D shape feature.
The latter is defined as the largest pairwise Euclidean dis-
tance between tumor surface mesh vertices. This correlation,
in simplified terms, indicates that patients belonging to the
STS group have a tumor that shows large spread on PET.
This finding is consistent with the literature—large tumor
volumes on ['®*F]FET PET were reported to be associated
with poor overall survival in glioblastoma patients before
radiation therapy with concomitant and adjuvant temozo-
lomide [32, 33]. Details of other features are shown in the
Supplementary information.

There are several limitations to this study. Only single-
center data have been investigated, which led to the relatively
small sample size and the lack of external validation. Yet,
only single-center data have been chosen in this study since
dynamic [‘*F]FET PET is not always acquired routinely in
other centers and pooling PET data with differences in time
framing, image reconstruction algorithm, and scanner type
may require prior implementation and validation of, e.g.,
feature harmonization procedures [58]. Moreover, it should
be noted that almost all previous ['*F]JFET PET radiomics
studies have been performed with much smaller numbers of
cases. The reliability of the reported scores was additionally
evaluated using nested cross-validation [59] with five random
splits in the outer loop, yielding a high AUC variability of
10% for the TTP model, 15% for the TBR model, and 11%
for the clinical model (Supplementary material S4). Thereby,
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different radiomic signatures were obtained for each split of
the outer loop since feature selection and model building are
not robust when dealing with small sample sizes. Feature
selection represents a challenge and has an impact on the
performance of prediction models. Other feature selection
methods comprise, e.g., filter methods such as minimum
redundancy maximum relevance (MRMR) or ensemble
methods, which provide a good balance between robust
feature selection and model performance. Wrapper methods
such as RFE have the advantage that feature dependencies can
be modeled and that they interact with the classifier, while also
bearing the risk of overfitting [60]. To enable standardized
segmentation of tumor regions, only positive ['*F]FET PET
images were included. Furthermore, MRI-based radiomics,
as a more widely established and complementary tool, were
not included in this study. Future studies may benefit from the
combined use of multiparametric MRI data.

Conclusion

This study built and evaluated prediction models for sur-
vival combining both radiomic features extracted from
static and dynamic ['®FJFET PET and clinical parameters.
Specifically, the combination of clinical parameters with
radiomics based on dynamic ['®F]FET PET data achieved
a higher prognostic accuracy for the individualized assess-
ment of short-term survival in patients with newly diagnosed
IDH-wildtype glioblastoma in comparison to models using
conventional clinical parameters only. Although the final
accuracy remained moderate, the integration of dynamic
['®F]FET PET radiomic data into clinical prediction models
may improve patient stratification beyond established prog-
nostic markers. Future prospective radiomic studies using
multimodal imaging data are needed to evaluate whether
the integration of additional imaging parameters may further
improve the prognostic performance and enhance the clinical
interpretation of the study results.
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