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Introduction

In 1906, Dr. Alois Alzheimer noticed abnormalities in a patient that had passed away
of a rare mental disease (1). The symptoms included unpredictable behavior, language
problems, and memory loss. During the autopsy, unusual clumps and tangled bundles of
fibers were found in the brain - nowadays known as amyloid plaques and neurofibrillary
tangles (NFTs), respectively. Years later, this neurodegenerative disorder is known as
Alzheimer’s Disease (AD) and it has been labeled as the most common type of dementia
(between 50-70% of the cases) '. The World Alzheimer Report (2), released by Alzheimer’s
Disease International, stated that around 50 million suffer from Dementia worldwide
bringing the overall cost to 818 billion dollars. Patients suffering from AD experience a
progressive and irreversible cognitive decline that in the long run disables the patient’s
capabilities of carrying out day-to-day activities (3).

4.1 Alzheimer’s Disease pathology and stages

NFTs are mostly formed by abnormally phosphorylated and aggregated tau protein, which
destabilizes the microtubules and affects axonal transport (4). More recent studies have
also shown a link between cognitive deficits in early AD and tau pathology (5). Another
very key factor of AD development is the sequential cleavage of the amyloid precursor
protein (APP) by the y— and f—scretase enzymes, which causes amyloid-£ peptide (Af)
accumulation (6). In addition to plaque deposition, A5 oligomers (ASOs) seem to play
an important role in the cognitive decline produced during AD (7). These toxins accu-
mulate in the cerebrospinal fluid (CSF) of the brain, affecting the synapse structure and
composition and causing memory loss (8).

Subjects suffering from AD start experiencing pathophysiological changes in their brain
long before the first symptoms appear. During the preclinical stage, patients might not
notice any cognitive decline, however, the progressive amyloid deposition will start af-
fecting their short-time memory. This stage of the disease is known as prodromal AD
stage or Mild Cognitive Impairment (MCI) due to AD. In future stages of the disease,
other brain areas get affected as well as the cognitive functions associated to them. This
results in a lack of autonomy for the patient due to severe memory loss and metabolic
derangements. While the spectrum of AD development has been deeply studied and de-
picted, the boundaries between the different stages are hard to draw (e.g. asymptomatic
AD patients are hard to differentiate from subjects that are healthily aging).

thttps:/ /www.alzheimers.org.uk/
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4.1.1 The role of the hippocampus in Alzheimer’s Disease

The hippocampus is a subcortical structure that plays a key role in forming new memories.
Its different sub-regions help with the generation of episodic memory (9). The CA3 area of
the hippocampus is responsible for producing sharp-wave ripples (SWR). SWR propagates
new memory traces into the neocortex and consolidates the memory (10). In the process
of developing AD, the hippocampus is one of the first parts of the brain to be affected by
the disease. In the early stages of the disease, while other structures might not experience
many changes, the hippocampus shows rapid atrophy. NFTs first accumulate in the CA1
area of the hippocampus. Later in the disease, they extend and affect the subiculum,
CA2, CA3, and DG (11). In addition, AS deposition has been observed to reduce the
hippocampus inputs (12). Therefore, studying the deformation of the hippocampus over
time can be a key biomarker to detect the early stages of AD.

4.2 Deep Learning on Alzheimer’s Disease

As seen in the previous section, AD is a very complex neurodegenerative process, involving
several areas of the brain. Researchers can use several biomarkers to detect it. However,
given the large volumes of data, Machine Learning (ML) and in particular Deep Learning
(DL) could be used to aid that decision. In addition, current tools could help identify
patterns in the evolution of patients suffering from AD.

4.2.1 Detecting AD based on Hippocampus shapes

While these changes happen in many areas of the brain, analyzing them on a structural
level can help as painting a better picture of this process. As discussed in section 4.1.1,
medical research has been able to observe acute changes in the hippocampus in patients
developing AD. For that reason, an interesting research question would be to analyze
whether hippocampal atrophy can also be detected by DL models, and can be used as
a classification method to differentiate AD patients from healthy controls. This could
confirm the importance of this structure for automatic diagnosis.

One thing to take into account when looking at single parts of the brain is that these
can be encoded as a 3D shape(i.e. the 3d form of an object defined by boundary lines,
angles, and surfaces). In section 5.1, we explain different ways of representing a shape and
introduce DL methods that can work on this type of input. In section 5.3.2, we explain
how to obtain these representations from MRI scans.

4.2.2 Early detection using longitudinal data

Once the ability of Neural Networks (NNs) to capture changes in the hippocampus is
confirmed (as can be seen in chapters 8 and 9), we can apply these findings to early
detection off the disease. As mentioned in section 4.1, AD is a continuum of changes that
happen over time. Therefore, observing the patients evolution can provide a better view
on their prognosis. A great way to capture the cognitive decline is by monitoring subjects
during a period of time as part of a study. In these longitudinal studies, the subjects enroll
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at a particular date, known as baseline visit. Images, as well as other biomarkers and
questionnaires, are taken in each visit as part of the screening process. The time between
visits vary depending on the study, but it is usually consistent among all the patients.
One of the main challenges in this type of studies is that not all the subjects attend each
visit, leaving some of the entries in the database empty. This makes analyzing the data
and identifying patterns a cumbersome task. Predicting these missing entries would not
only help with this issue, but it could also help understanding better how the disease
progresses under different circumstances. Latest work in the field of Natural Language
Processing (NLP), such as Transformers (13), and its recent application to other types
of temporal data (e.g. frame prediction in video sequences), has shown very promising
results on predicting future states of longitudinal data. However, while their popularity
has grown in many fields beyond NLP, to the best of our knowledge, their application for
medical data imputation has not been explored. In section 5.2 we provide an overview on
how these type of networks work.

4.3 Goal and layout

In short, the goal of this thesis is to analyze the importance of the hippocampus in the
development of AD, from a Deep Learning perspective, and with a particular focus on early
detection based on longitudinal trajectories. First, we will study the abilities of Geometric
Deep Learning methods to detect the disease based on the hippocampus (chapter 8), as
well as best practices for representing this structure (chapter 9). Then our findings will be
applied to the clinical problem of forecasting/imputing missing trajectories and how this
can help identify patients that are converting from MCI to AD (appendix A.3). Before
explaining the contributions of this thesis, in chapter 5 we will introduce certain concepts
that are relevant for a better understanding of this work, as well as insights into the data
used for the different experiments.
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Background

5.1 Geometric Deep Learning

Since the early 2000s, deep learning models, such as convolutional neural networks (CNNs),
have revolutionized many fields. Given their high number of learnable parameters, these
models were able to outperform the previous state-of-the-art in vision tasks such as image
classification, segmentation, or object detection. While the range of applications is wide,
the majority of these models were limited to Euclidean data, i.e. input data that could
be represented in a grid-like structure (e.g. images). Graphs, meshes, or point clouds
are only a few examples of data representations that do not fall into this category, and
therefore, cannot benefit from regular CNNs. In 2017, the concept of Geometric Deep
Learning (GeomDL) was introduced for the first time (14). Its purpose was to serve as
an umbrella term that established a mathematical framework for existing neural network
architectures that were able to work on non-Euclidean data, as well as for developing fu-
ture ones. This type of model is particularly interesting for medical shape analysis since
it allows us to study fine-grained changes in anatomical structures (e.g. hippocampus).
In particular, there are two types of shape representations that have been relevant for
anatomical shape analysis: point clouds and meshes.

5.1.1 Point Clouds

Point clouds (Figure 5.1 ) are very lightweight
representations, composed of unordered sets of
points that represent a 3D surface. They are
usually represented as a vector of 3-D Carte-
sian coordinates (z,y, z). Point clouds are com-
monly used in 3D Computer Vision tasks where
laser scanners (e.g. LiDAR(15)) generate a
point for each measurement of the laser scan.
However, they can also be sampled from a con-
tinuous surface (e.g. a segmentation mask) or
a mesh.

PointNet (16) was one of the first deep learning
architectures proposed for 3D point cloud anal-
ysis. The main idea behind this method is to

e
AT

© x,y,z coordinates

Figure 5.1: Hippocampus point cloud.
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Figure 5.2: Left: Original PointNet architecture. Shared MLPs are used for obtaining
features for each point. A max-pooling layer is used to obtain the global descriptor of the
point cloud. Right: The input point cloud is split in point cloud subsets. For of these

points, a PointNet is used to extract the cluster descriptors. This hierarchical behavior
continues until the last layer, where the local descriptors are pooled into a global one.

extract features for every point in the point cloud by passing them through a Multi-layer
Perceptron(MLP) that shares its weights across all points. In order to extract a global de-
scriptor, all the individual feature vectors are collapsed using a max-pooling layer, which
is a key factor to make the network order invariant, since it will capture the most relevant
features without taking into account their position in the point cloud. In chapter 8, we
explore the application of this network to AD analysis.

While PointNet was able to expand the applications of DL to point cloud analysis, its
design limits the network to solely describe the overall shape, being unable to capture
fine-grained local structural information. Many methods have been proposed to overcome
this limitation(17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29). For example, the same
authors introduced PointNet++(17), which builds on top of the original network, but
captures local changes by clustering the structure in smaller subsets of point clouds and
extracting features for each cluster (similar to regular CNNs). This concept of capturing
features at increasingly larger scales along a multi-resolution hierarchy has also been
explored in (18, 19). Other works introduce convolutional operations, similar to the ones
in CNNs. However, in contrast to kernels for 2D grid structures, defining these operators
is not as straightforward for 3D point clouds.The work in (20, 21, 22, 23, 24) define
convolutional kernels on a continuous space, by considering the spatial distribution of the
subset of points when weighting the contribution of each of them. The main difference
between these works is the approach used to define the subset of points considered for the
convolution. Finally, another group of methods approaches local information limitation
by considering each point in the point cloud as a vertex of a graph(25, 26, 27, 28, 29).
For example, DGCNN(25) defines a set of connections/edges between each point/vertex
in the point cloud. However, the structure of the graph is not fixed along the network
layers, since it is not defined by the proximity of the points in the Euclidean space, but by
the similarity of their descriptors. In appendix A.2, we compare some of these networks
and explore a set of recalibration blocks to improve their performance.
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An advantage of these architectures is that they do not need inter-subject correspondences,
which sometimes are harder to get when the topology of the different structures varies
along the dataset. On the other hand, not having correspondences can increase the overall
number of trainable parameters of the network, since pre-computations are not possible.
In addition, interpreting the decision process of the model is more challenging, since the
order of each point within the point cloud is different.

5.1.2 Meshes

Meshes are defined by a set of vertices (sim-
ilar to Point Clouds) and edges that connect
them (Figure 5.3 ). Having connectivity infor-
mation establishes a more comprehensive repre-
sentation of the underlying anatomical surface

of the organ, compared to point clouds. More-
over, meshes can flexibly adapt to the complex-

ity of the geometry, i.e. flatter regions of the
shape can be represented with a small num-
ber of vertices and edges, while more complex
areas can be captured by increasing the res-
olution. For brain structures, meshes can be
directly obtained from segmentation softwares
(e.g. FSL-FIRST) or by applying algorithms
(e.g. marching cubes (30)) to segmentation masks.
Deep learning methods for meshes can be divided according to their need to register to
a template mesh that establishes correspondences between all the meshes in the dataset.
This means that all mesh samples need to have the same number of vertices and the
same connectivity. The main advantage of this type of models is the possibility of pre-
computing certain operations only once for the template, and then applying them to the
samples in the dataset. This implies a significant reduction of the model complexity as
well as the inference time. Some examples of template-based methods are Convolutional
Mesh Autoncoder (CoMA) (31) and SpiralNet++ (32). The former uses of fast spectral
convolutions, which operate in the frequency domain, as the main operators. In order
to reduce operational complexity, fast spectral convolutions approximate the product
between the convolution kernel and the Fourier transform of the vertices using recursive
Chebyshev polynomials (33). SpiralNet++, on the other hand, defines the operators in
the spatial domain. For each vertex, a spiral sequence along its neighbors is defined.
This method takes advantage of the template, by pre-defining the spiral sequences on
the template and extrapolating them to the rest of the samples. The convolutions are
performed by concatenating the features within the spiral sequence and passing them
through a MLP. Both CoOMA and SpiralNet++ apply the same method for deciding which
vertices to pool after each convolutional block: vertex pairs are iteratively contracted so
they would minimize the quadric error between the original mesh and the down-sampled
one.

While template-based models present multiple computational advantages, defining a com-
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Figure 5.4: SpiralNet++ (32) main operations. Left: Spiral sequence used for computing
the convolution. Right: Pooling operation based on smallest quadric error. Vertices that
lead to the smallest difference to the surface are pooled.

mon topology across all the meshes in the dataset might not be possible for certain appli-
cations. Thus, methods that do not require of a reference shape, and fixed structure for
all the samples, are also worth studying. Two examples of non-template-based methods
are MeshCNN (34) and MeshNet (35). MeshCNN associates a set of descriptors for each
edge in the mesh and directly operates on them. Therefore, the convolution operation
is computed using invariant kernels. Edges associated with the lowest magnitude in the
feature space are pooled after each convolutional block. On the other hand, MeshNet
defines the faces of the mesh as the main feature unit and operates on them. Face-based
features provide more regularity and order invariance, compared to other methods.

In our work added to appendix A.1), we compared the four methods with PointNet on
the task of AD prediction. We observed that SpiralNet++ yields the best performance
while being very efficient in terms of trainable parameters.

5.1.3 Euclidean representations

Despite the benefits of the previously discussed shape representations, it is worth studying
Euclidean alternatives. As previously mentioned, the majority of CNNs methods have
been developed for this type of data, presenting a clear advantage for them. In chapter 9,
we compare point clouds and meshes (with their corresponding SotA methods) to three
Euclidean forms of representing the hippocampus: masks, texturized masks, and region
of interest (ROI). Masks are the binary output from any type of segmentation software,
where voxels belonging to the structure (e.g. hippocampus) are set to 1 and the rest to
0. Texturized masks are obtained by substituting the 1-entries in the binary mask for
the original values in the MRI. Finally, we can also define a 3D bounding box around
the segmentation mask, and include all the values inside the bounding box as a ROI (see
Figure 5.5).

11
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ROI Texture Mask

Figure 5.5: Euclidean representations

5.2 Transformers

Transformers(13) have become the new SotA for NLP applications. Until their appear-
ance, language models were based on Recurrent NNs (RNNs), which keep the temporal
information of the sequence in their hidden states. While this was able to capture rela-
tional patterns among the input elements, it enforces a sequential nature, which limits
their parallelization, something that is particularly critical for long sequences. Trans-
former models overcome this issue by fully relying on attention mechanisms that can
capture relationships between each pair of elements in the sequence. These operations
can be computed in parallel, since it does not depend past states. Transformers have not
only become a breakthrough for NLP, but for many other many fields such as Computer
Vision (36) or Medical Image Segmentation (37).

5.2.1 Inputs

The input to the Transformers is a set of embeddings. Every element in the sequence
(e.g. a word) is projected to a latent space. This operation can be done by a pre-defined
dictionary, where each word is associated with a vector, or it can be computed by a neural
network (e.g. (36)). Therefore the sequence would be translated into an input matrix,
X € RV*4 where N is the sequence length and d is the embedding dimension.

5.2.2 Encoder and Decoder stacks

The original Transformer architecture proposed (13) is formed by a stack of encoder blocks
and another one of decoder blocks. Encoder and decoder blocks are practically identical
in design. They are formed by a multi-head self-attention module, followed by a position-

12
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Multi-Head
Attention

Figure 5.6: Transformer encoder block.

wise fully connected forward module. Residual connections are added to this modules
as well as a layer normalization block (38) (See Figure 5.6). Decoder blocks also add an
additional attention layer that incorporates the information from the encoder blocks to
the decoding path.

5.2.3 Multi-Head Attention

The input matrix, X € R¥*4 (being N the length of the sequence) , is multiplied by three
learnable matrices WQ € R¥*de WK ¢ RI*dx and WV € R¥%  resulting into three
new matrices: Query Q, Keys K and Values V. The new projections Q and K of the
matrix are used to computed the self-attention coefficients that will multiply the values,
V. The output of the Self-Attention module is computed as:

T

Attention(Q, K, V) = softmaz(
ven

% (5.1)

where dj, is the dimension of each row element in K.

However, instead of only performing one single attention output, the operation is per-
formed (in parallel) h times, where each of these attention heads will project the data on
to a different latent space and perform the attention in it. Multi-head self attention will
allow to build different spaces in which jointly attend to the information coming from the
Queries and the Keys. The new attention output is computed by concatenating all the
self-attention heads:

MultiHeadAttention(heady, ..., head),, W) = Concat(head,, ..., head,)W©° (5.2)
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with
head; = Attention(XW2, XWEK XWY) (5.3)

where W2 ¢ R¥*de WK ¢ R WY e R™% are the projection matrices for each
head, and WO ¢ Rv*4 i5 a weight matrix jointly trained with the attention heads.

5.2.4 Positional Encoding

Transformer models do not contain any structural information, since they do not use
recurrent mechanisms. Therefore, in order to encode the order of the elements in the
sequence, a set of positional embeddings (P € RY*?) can be defined, such as that they are
unique for every position. These embeddings can be fixed following a particular pattern
(e.g. cosine functions of different frequencies (13)) or learnt together with the rest of the
model (36). Transformers have also been applied to medical data. From predicting entries
from electric health records (39) to analyzing medical images (40). In apendix A.3, we
explore their application to predicting changes in the hippocampus.

5.3 Data

5.3.1 Datasets

In our experiments, we use data from The Alzheimer’s Disease Neuroimaging Initiative
(ADNI; (41)) and The Australian Imaging, Biomarker & Lifestyle Flagship Study of
Ageing (AIBL; (42)).

ADNI

ADNI is a longitudinal study started in 2004 and lead by Dr.Michael W. Weiner. Its
main goal is to detect AD at the earliest possible stage in order to support new advances
on its prevention, intervention and treatment. Since its creation, ADNI has been able
to enroll more than 1800 subjects between the ages 55 to 90 around 57 sites in the
United States and Canada, divided in four groups: elderly controls, early MCI, late MCI
and AD. After obtaining informed consent, participants undergo a set of initial tests
which will be repeated in 6 months to 1 year intervals. These test might include clinical
and neuropsychological evaluation, genetic testing, lumbar puncture and brain image
acquisition (MRI and PET).

AIBL

AIBL was launched in 2006 in Australia in order to develop a better understanding of
AD. With more than 1000 participants over the age of 60 across two centers, AIBL is
the largest study of its kind in the country. Participants are grouped in three groups:
AD, MCI and healthy volunteers. During the study, subjects undergo a set of tests
including clinical and cognitive evaluation, biomarkers extraction, lifestyle questionnaires
and neuroimaging (MRI and PET).

14
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Mask Mesh Point Cloud

FreeSurfer

F'SL

Figure 5.7: Output differences between FreeSurfer and FSL

5.3.2 Processing

The hippocampus shape are extracted from T1-weighted brain MRI scans. These are first
conformed into a resolution 256 x 256 x 256 and an isotropic voxel size of Imm?3. After the
conforming step, the NAITK (43) algorithm is used for bias field correction. The resulting
image is registered , using the SyN (44) affine registration algorithm implemented in
ANTs, to the MNI space using the ICBM 2009¢ non-linear symmetric template (45).
This pipeline guarantees that all the scans will be in the same space and have the same
resolution, which will facilitate the following segmentation steps.

Segmentation and shape extraction

For segmenting the hippocampus we made use of two different softwares: FreeSurfer (46)
and FSL-FIRST (47). FreeSurfer is an atlas-based method, i.e. a selected reference vol-
ume, which has been previously labeled, is deformed to better align with each patient.
In contrast, FSL-FIRST proposes an Bayesian framework, utilizing the principles of Ap-
pearance Models and Active Shape , to build probabilistic relationships between shape
and intensity.

The outputs of each segmentation software are also different (see Figure 5.7). FreeSurfer
generates a voxel-wise segmentation map. By using marching cubes algorithm (48), we
are able to extract 3D surfaces. After applying Laplacian smoothing to adjust the vertex
coordinates, we can sample points from the reconstructed surface in order to generate a
point cloud. The main limitation of this method is that the output meshes are not reg-
istered among each other, and therefore cannot be used by the template-based methods
described in section 5.1.2. FSL-FIRST, on the other hand, can directly output 3D tri-
angular meshes with vertex-wise correspondences along all the subjects and a template.
Therefore, not only we can sample point clouds from the output surfaces to train the
point cloud networks, but the generated meshes can be used for training template-based
mesh neural networks described in section 5.1.2.
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Abstract

Alzheimer’s Disease (AD) represents between 50-70% of the cases of dementia, which
translates in around 25-35 million people affected by this disease. During its develop-
ment, patients suffering from AD experience an irreversible cognitive decline, which limits
their autonomy on their daily lives. While many of the causes of AD are still unknown,
researchers have noticed a abnormal amyloid deposition and neurofibrillary tangles that
will start affecting the short-term memory of the patient, together with other cognitive
functions. In fact, these pathophysiological changes start taking place even before the
patient experiences the first symptoms. One of the structures that is first affected by
the disease is the hippocampus. During the development of AD, this part of the brain
experiences an irregular deformation that affects its capabilities of forming new memories.
Therefore, many clinical work has set a focus on studying this structure and its evolution
along the disease. Identifying the changes it suffers can help us understand better the
causes of the patient’s cognitive decline.

Given the complexity that characterizes AD, identifying patterns during its development
is still a cumbersome task for physicians.Thus, aiding the diagnosis and prognosis of
the disease using Deep Learning methods can be highly beneficial, as seen for other
medical applications (49). In particular, if the focus is set on single structures (e.g. the
hippocampus) Geometric Deep Learning offers a set of models that are best suited for 3D
shape representations. We believe these methods can help doctors identify abnormalities
in the structure that can lead to AD in the future.

In this work, we first study the capabilities of current Geometric Deep Learning meth-
ods in diagnosing patients suffering from AD, by only looking at the hippocampus. We
start by studying one of the simplest 3d representations, point clouds. We continue by
comparing this representation to other non-Euclidean representations, such as meshes,
and also Euclidean ones (e.g. 3d masks). We observe that meshes are one of the optimal
ways of representing 3d structures for capturing fine-grained changes, but they carry ad-
ditional pre-processing steps that Euclidean representations do not require. Finally, once
we have confirmed that Geometric Deep Learning, particularly mesh neural networks,
can properly capture the effects of AD on the hippocampus, we expand their application
to longitudinal analysis of the structure. We propose a new temporal model based on
Spiral Resnet and Transformers that sets a new state-of-the-art for the task of predicting
longitudinal trajectories of the hippocampus. We also evaluated the effect that imput-
ing missing longitudinal data has on detecting subjects that are developping to AD. Our
experiments show an increase of a 3% in distinguishing between converting and stable
trajectories.
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Zusammenfassung

Die Alzheimer-Krankheit macht zwischen 50 und 70% der Falle von Demenz aus, was in
etwa 25-35 Millionen Menschen entspricht. Im Verlauf der Krankheit kommt es bei Pa-
tienten mit Alzheimer zu einem irreversiblen Verlust kognitiver Fahigkeiten, wodurch sie
den Alltag nicht mehr eigenstandig bewaltigen kénnen. Wahrend die genauen Ursachen
der Alzheimer-Krankheit noch unbekannt sind, haben Forscher festgestellt dass eine ab-
norme Aggregation von Amyloid-Peptiden und Neurofibrillen das Kurzzeitgedéchtnis der
Patienten sowie andere kognitive Funktionen beeintrachtigen. Diese pathophysiologischen
Veranderungen beginnen bereits bevor der Patient die ersten Symptome zeigt. Ein Teil
des Gehirns, der zuerst von der Krankheit betroffen ist, ist der Hippocampus. Wéhrend
der Entwicklung der Alzheimer-Krankheit wird dieser Teil des Gehirns beschéadigt, was
die Gedachtnisbildung beeintrachtigt. Daher haben sich viele klinische Arbeiten zu der
Alzheimer-Krankheit auf die Untersuchung des Hippocampus konzentriert. Angesichts der
Komplexitat der Alzheimer-Krankheit kann der Einsatz von Deep-Learning-Methoden bei
der Diagnose und Prognose der Krankheit von grofflem Nutzen sein. Insbesondere wenn
der Fokus auf einzelne Gehirnstrukturen— wie dem Hippocampus— gelegt wird, bietet
das geometrische Deep Learning eine Reihe von Modellen, die sich speziell fiir dreidi-
mensionale Geometrien eignen. Wir glauben, dass diese Methoden Arzten helfen konnen,
Anomalien im Hippocampus zu identifizieren, die in Zukunft zu Alzheimer fithren kénnen.
In dieser Dissertation untersuchen wir zunachst die Fahigkeiten aktueller geometrischer
Deep Learning-Methoden bei der Diagnose von Patienten mit Alzheimer, indem wir nur
den Hippocampus betrachten. Wir beginnen mit der Untersuchung einer der einfach-
sten dreidimensionalen Darstellungen, den Punktwolken. Anschliefend vergleichen wir
diese Darstellung mit anderen nicht-Euklidischen Darstellungen, wie z. B. Gitternetzen,
und auch Euklidischen Darstellungen (z. B. 3D-Masken). Wir stellen fest, dass Gitter-
netze eine der besten Moglichkeiten zur Darstellung von 3D Strukturen sind um feine
Anderungen zu erfassen. Allerdings erfordern sie zusétzliche Vorverarbeitungsschritte,
die bei Euklidischen Darstellungen nicht erforderlich sind. Nachdem wir bestatigt haben,
dass geometrisches Deep Learning, insbesondere neuronale Netze mit Gitternetzen, die
Auswirkungen von Alzheimer auf den Hippocampus richtig erfassen kénnen, erweitern
wir ihre Anwendung auf die longitudinale Analyse des Hippocampus. Wir schlagen ein
neues temporales Modell auf der Grundlage von Spiral Resnet und Transformers vor, das
einen neuen Stand der Technik fiir die Vorhersage von longitudinalen Trajektorien des
Hippocampus darstellt. Wir haben auch ausgewertet, welchen Nutzen das Imputieren
fehlender longitudinaler Daten auf die Erkennung von Personen hat, die eine Alzheimer-
Krankheit erleiden. Unsere Experimente zeigen eine Steigerung von 3% bei der Differen-
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zierung zwischen konvertierenden und stabilen Trajektorien.
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Publication I: Discriminative and gen-
erative models for anatomical shape
analysis on point clouds with deep neu-
ral networks

Gutierrez-Becker, Benjamin, Ignacio Sarasua, and Christian Wachinger. ” Discriminative
and generative models for anatomical shape analysis on point clouds with deep neural

networks.” Medical Image Analysis 67 (2021): 101852.
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tations for deep learning on Alzheimer’s
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Sarasua, Ignacio, Sebastian Polsterl, and Christian Wachinger. ”Hippocampal represen-
tations for deep learning on Alzheimer’s disease.” Scientific reports 12.1 (2022): 8619.
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Conclusion

This work has focused on analzying the role of the hippocampus during the development
of AD from a DL perspective. First, we evaluated the ability of Geometric DL networks
to detect differences between HC and AD patients. Later on, we applied our findings in
studying longitudinal trajectories combining GeomDL networks and Transformers.

10.1 Geometric DL for AD diagnosis based on hip-
pocampus shapes

We have confirmed the medical findings on the importance of this structure during AD
development. In particular, we have observed that the most simple representations, point
clouds, can already provide good accuracy in detecting AD. However, if we compare its
performance to other shape representations, we can see that meshes are the best non-
Euclidean form of representing the hippocampus. Nevertheless, while we have confirmed
that these models can be applied to the target task, and even outperform regular CNNs
that work on 3D images, they might not be an optimal choice for detecting AD. Working
with non-Euclidean representations currently still presents several challenges that their
Euclidean counterparts do not (e.g. pre-processing). In addition, contrary to shape
representations, working directly on 3D volumes allow us to define a continuous region
of interest, that can include several structures or even the whole brain. While fitting a
whole 3D volume in a GPU was challenging in the past, recent technological advances in
the field have made larger memories more affordable, which can help fit larger amounts
of data. In addition, given that AD affects so many parts of the brain at the same time,
this feature can be quite decisive, especially in early detection tasks. Moreover, one of our
latest works (appendix A.4), has shown that PET is a more fitting modality for detecting
AD. We, therefore, believe that working on larger regions of the brain, and on PET data
(if possible), yields the best performance when the task is to solely detect AD based on
medical imaging data.
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10.2 Longitudinal analysis using Transformers on Hip-
pocampus meshes

When studying the overall evolution of subjects developing AD, using large regions of
brain scans might not be as suitable anymore. While registration algorithms can provide
a good alignment between scans, having perfect correspondences between areas of the
brain is still not possible. This issue is particularly present when working on PET scans,
due to their low resolution. In those instances, shape analysis, applied to segmentations
coming from MRI, has always been a better way of approaching the problem. In particular,
software that provides perfectly registered meshes, like FSL-FIRST, is useful since they
enable vertex-wise differences between two different meshes. When observing longitudinal
data, this feature is especially convenient, since it allows us to identify more patterns in the
disease progression. In addition, neural networks working on this type of mesh data can
lower the complexity by pre-computing many of their operations. Given the light weight
of these networks, they can be easily be integrated in heavier temporal models, such as
Transformers. In appendix A.3 we have observed that combining spiral convolutions with
pre-trained transformers, can help to solve the problem of data imputation as well as
predict future stages of the disease, even in datasets with limited amount of samples.
Imputing and forecasting shape trajectories can be particularly useful to detect patients
that are converting from MCI to AD.

10.3 Future directions

AD is a very complex phenomenon, which involves several functional and structural
changes in the brain. In addition, many of their symptoms can be confused with other
diseases (such as depression). Currently, researchers approach its diagnosis from a mul-
timodal perspective, where they combine the information from different biomarkers. We
believe DL research should follow the same direction and study the following topics:

10.3.1 Detection of different types of Dementia and AD

While AD is the most prevalent type of dementia, there are other types of dementia
that are also affecting a large portion of society. The most common ones after AD are
Vascular, Lewy Body Disease, and Frontotemporal. Even though their symptoms might
be similar, the physiological effects in the brain differ. Early detection and differentiation
of the different types will lead to a better aid for the treatment.

It is also worth noting that, while AD is characterized as one type of dementia, different
subtypes of this disease have been observed(50). Accounting for these differences when
building our models will make them more robust and easier to generalize, which is strongly
desirable before deploying them in clinical practice.
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10.3.2 Integration with multimodal data and explainability

AD (as well as other types of dementia) is a very complex disease that involves various
processes in the brain. As seen in section 4.1, there are several biomarkers that could be
included in forming a decision. One of the advantages of DL is the capacity of including
large inputs without having to preselect the features and letting the model decide which
ones are the most relevant for the target task. However, this black-box behavior is not
ideal in clinical practice. Physicians need to ensure that the decision has been made based
on factors that correlate with previous medical findings. We believe a possible extension of
this work would be to incorporate several sources of data (e.g. shape, imagining, genetics)
and together with explainability algorithms, to get a more informed decision.

10.3.3 Longitudinal analysis of multiple shapes

The hippocampus is not the only structure affected by AD. Our findings should motivate
future work on incorporating further shapes into the analysis to build a more holistic
picture of the disease evolution. This is particularly beneficial for those types of AD
where the hippocampus is not affected (i.e. hippocampus sparing (50)). In addition,
combining several structures at the same time will help finding correlations between the
changes observed in the different structures at each stage of the disease.
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