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In Gedenken an meine Eltern.
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Abstract

Graph Theory has proven to be a universal language for describing modern complex systems.
The elegant theoretical framework of graphs drew the researchers’ attention over decades. There-
fore, graphs have emerged as a ubiquitous data structure in various applications where a relational
characteristic is evident. Graph-driven applications are found, e.g., in social network analysis,
telecommunication networks, logistic processes, recommendation systems, modeling kinetic in-
teractions in protein networks, or the ’Internet of Things’ (IoT) where modeling billions of inter-
connected web-enabled devices is of paramount importance.

This thesis dives deep into the challenges of modern graph applications. It proposes a robus-
tified and accelerated spectral clustering model in homogeneous graphs and novel transformer-
driven graph shell models for attributed graphs. A new data structure is introduced for proba-
bilistic graphs to compute the information flow efficiently. Moreover, a metaheuristic algorithm
is designed to find a good solution to an optimization problem composed of an extended vehicle
routing problem. The thesis closes with an analysis of trend flows in social media data.

Detecting communities within a graph is a fundamental data mining task of interest in virtu-
ally all areas and also serves as an unsupervised preprocessing step for many downstream tasks.
One most the most well-established clustering methods is Spectral Clustering. However, stan-
dard spectral clustering is highly sensitive to noisy input data, and the eigendecomposition has
a high, cubic runtime complexity O(n3). Tackling one of these problems often exacerbates the
other. This thesis presents a new model which accelerates the eigendecomposition step by replac-
ing it with a Nyström approximation. Robustness is achieved by iteratively separating the data
into a cleansed and noisy part of the data. In this process, representing the input data as a graph
is vital to identify parts of the data being well connected by analyzing the vertices’ distances in
the eigenspace.

With the advances in deep learning architectures, we also observe a surge in research on graph
representation learning. The message-passing paradigm in Graph Neural Networks (GNNs) for-
malizes a predominant heuristic for multi-relational and attributed graph data to learn node rep-
resentations. In downstream applications, we can use the representations to tackle theoretical
problems known as node classification, graph classification/regression, and relation prediction.
However, a common issue in GNNs is known as over-smoothing. By increasing the number of
iterations within the message-passing, the nodes’ representations of the input graph align and
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ABSTRACT

become indiscernible. This thesis shows an efficient way of relaxing the GNN architecture by
employing a routing heuristic in the general workflow. Specifically, an additional layer routes
the nodes’ representations to dedicated experts. Each expert calculates the representations ac-
cording to their respective GNN workflow. The definitions of distinguishable GNNs result from
k-localized views starting from a central node. This procedure is referred to as Graph Shell
Attention (SEA), where experts process different subgraphs in a transformer-motivated fashion.

Reliable propagation of information through large communication networks, social networks,
or sensor networks is relevant to applications concerning marketing, social analysis, or monitor-
ing physical or environmental conditions. However, social ties of friendship may be obsolete,
and communication links may fail, inducing the notion of uncertainty in such networks. This
thesis addresses the problem of optimizing information propagation in uncertain networks given
a constrained budget of edges. A specialized data structure, called F-tree, addresses two NP-
hard subproblems: the computation of the expected information flow and the optimal choice of
edges. The F-tree identifies independent components of a probabilistic input graph for which
the information flow can either be computed analytically and efficiently or for which traditional
Monte-Carlo sampling can be applied independently of the remaining network.

The next part of the thesis covers a graph problem from the Operations Research point of
view. A new variant of the well-known vehicle routing problem (VRP) is introduced, where cus-
tomers are served within a specific time window (TW), as well as flexible delivery locations (FL)
including capacity constraints. The latter implies that each customer is scheduled in one out of a
set of capacitated delivery service locations. Practically, the VRPTW-FL problem is relevant for
applications in parcel delivery, routing with limited parking space, or, for example, in the scope
of hospital-wide scheduling of physical therapists. This thesis presents a metaheuristic built upon
a hybrid Adaptive Large Neighborhood Search (ALNS). Moreover, a backtracking mechanism
in the construction phase is introduced to alter unsatisfactory decisions at early stages. In the
computational study, hospital data is used to evaluate the utility of flexible delivery locations and
various cost functions.

In the last part of the thesis, social media trends are analyzed, which yields insights into user
sentiment and newsworthy topics. Such trends consist of bursts of messages concerning a par-
ticular topic within a time frame, significantly deviating from the average appearance frequency
of the same subject. This thesis presents a method to classify trend archetypes to predict future
dissemination by investigating the dissemination of such trends in space and time.

Generally, with the ever-increasing scale and complexity of graph-structured datasets and
artificial intelligence advances, AI-backed models will inevitably play an important role in ana-
lyzing, modeling, and enhancing knowledge extraction from graph data.
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Zusammenfassung

Die Graphentheorie hat sich zur einer universellen Sprache entwickelt, mit Hilfe derer sich
moderne und komplexe Systeme und Zusammenhänge beschreiben lassen. Diese theoretisch
elegante und gut fundierte Rahmenstruktur attrahierte über Dekaden hinweg die Aufmerk-
samkeit von Wissenschaftlern/-innen. In der heutigen Informationstechnologie-Landschaft
haben sich Graphen längst zu einer allgegenwärtigen Datenstruktur in Anwendungen etabliert,
innerhalb derer charakteristische Zusammenhangskomponenten eine zentrale Rolle spielen.
Anwendungen, die über Graphen unterstützt werden, finden sich u.a. in der Analyse von
sozialen Netzwerken, Telekommunikationsnetwerken, logistische Prozessverwaltung, Analyse
von Empfehlungsdiensten, in der Modellierung kinetischer Interaktionen von Proteinstrukturen,
oder auch im "Internet der Dinge" (engl.: ’Internet Of Things’ (IoT)), welches das Zusammen-
spiel von abermillionen web-unterstützte Endgeräte abbildet und eine prädominierende Rolle für
große IT-Unternehmen spielt.

Diese Dissertation beleuchtet die Herausforderungen moderner Graphanwendungen. Im
Bereich homogener Netzwerken wird ein beschleunigtes und robustes spektrales Clusteringver-
fahren, sowie ein Modell zur Untersuchung von Teilgraphen mittels Transformer-Architekturen
für attribuierte Graphen vorgestellt. Auf wahrscheinlichkeitsbasierten homogenen Netzwerken
wird eine neue Datenstruktur eingeführt, die es erlaubt einen effizienten Informationsfluss inner-
halb eines Graphen zu berechnen. Darüber hinaus wird ein Optimierungsproblem in Transport-
netzwerken beleuchtet, sowie eine Untersuchung von Trendflüssen in sozialen Medien diskutiert.

Die Untersuchung von Verbünden (engl.: ’Clusters’) von Graphdaten stellt einen Eckpfeiler
im Bereich der Datengewinnung dar. Die Erkenntnisse sind nahezu in allen praktischen Bere-
ichen von Relevanz und dient im Bereich des unüberwachten Lernens als Vorverarbeitungsschritt
für viele nachgeschaltete Aufgaben. Einer der weit verbreitetsten Methodiken zur Verbund-
analyse ist das spektrale Clustering. Die Qualität des spektralen Clusterings leidet, wenn die
Eingabedaten sehr verrauscht sind und darüber hinaus ist die Eigenwertzerlegung mit O(n3) eine
teure Operation und damit wesentlich für die hohe, kubische Laufzeitkomplexität verantwortlich.
Die Optimierung von einem dieser Kriterien exazerbiert oftmals das verbleibende Kriterium. In
dieser Dissertation wird ein neues Modell vorgestellt, innerhalb dessen die Eigenwertzerlegung
über eine Nyström Annäherung beschleunigt wird. Die Robustheit wird über ein iteratives Ver-
fahren erreicht, das die gesäuberten und die verrauschten Daten voneinander trennt. Die Darstel-
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ZUSAMMENFASSUNG

lung der Eingabedaten über einen Graphen spielt hierbei die zentrale Rolle, die es erlaubt die
dicht verbundenen Teile des Graphen zu identifizieren. Dies wird über eine Analyse der Dis-
tanzen im Eigenraum erreicht.

Parallel zu neueren Erkenntnissen im Bereich des Deep Learnings lässt sich auch ein
Forschungsdrang im repräsentativen Lernen von Graphen erkennen. Graph Neural Networks
(GNN) sind eine neue Unterform von künstlich neuronalen Netzen (engl.: ’Artificial Neural
Networks’) auf der Basis von Graphen. Das Paradigma des sogenannten ’message-passing’ in
neuronalen Netzen, die auf Graphdaten appliziert werden, hat sich hierbei zur prädominierenden
Heuristik entwickelt, um Vektordarstellungen von Knoten aus (multi-)relationalen, attribuierten
Graphdaten zu lernen. Am Ende der Prozesskette können wir somit theoretische Probleme ange-
hen und lösen, die sich mit Fragestellungen über die Klassifikation von Knoten oder Graphen,
über regressive Ausdrucksmöglichkeiten bis hin zur Vorhersage von relationaler Verbindun-
gen beschäftigen. Ein klassisches Problem innerhalb graphischer neuronaler Netze ist bekannt
unter der Terminologie des ’over-smoothing’ (dt.: ’Überglättens’). Es beschreibt, dass sich
mit steigender Anzahl an Iterationen des wechselseitigen Informationsaustausches, die Knoten-
repräsentationen im vektoriellen Raum angleichen und somit nicht mehr unterschieden werden
können. In dieser Forschungsarbeit wird eine effiziente Methode vorgestellt, die die klassische
GNN Architektur aufbricht und eine Vermittlerschicht in den herkömmlichen Verarbeitungs-
fluss einarbeitet. Konkret gesprochen werden hierbei Knotenrepräsentationen an ausgezeichnete
Experten geschickt. Jeder Experte verarbeitet auf idiosynkratischer Basis die Knoteninforma-
tion. Ausgehend von einem Anfrageknoten liegt das Kriterium für die Unterscheidbarkeit von
Experten in der restriktiven Verarbeitung lokaler Information. Diese neue Heuristik wird als
’Graph Shell Attention’ (SEA) bezeichnet und beschreibt die Informationsverarbeitung unter-
schiedlicher Teilgraphen von Experten unter der Verwendung der Transformer-technologie.

Eine zuverlässige Weiterleitung von Informationen über größere Kommunikationsnetzw-
erken, sozialen Netzwerken oder Sensorennetzwerken spielen eine wichtige Rolle in Anwen-
dungen der Marktanalyse, der Analyse eines sozialen Gefüges, oder der Überwachung der ph-
ysischen und umweltorientierten Bedingungen. Innerhalb dieser Anwendungen können Fälle
auftreten, wo Freundschaftsbeziehungen nicht mehr aktuell sind, wo die Kommunikation zweier
Endpunkte zusammenbricht, welches mittels einer Unsicherheit des Informationsaustausches
zweier Endpunkte ausgedrückt werden kann. Diese Arbeit untersucht die Optimierung des In-
formationsflusses in Netzwerken, deren Verbindungen unsicher sind, hinsichtlich der Bedingung,
dass nur ein Bruchteil der möglichen Kanten für den Informationsaustausch benutzt werden dür-
fen. Eine eigens entwickelte Datenstruktur - der F-Baum - wird eingeführt, die 2 NP-harte Teil-
probleme auf einmal adressiert: zum einen die Berechnung des erwartbaren Informationsflusses
und zum anderen die Auswahl der optimalen Kanten. Der F-Baum unterscheidet hierbei un-
abhängige Zusammenhangskomponenten der wahrscheinlichkeitsbasierten Eingabedaten, deren
Informationsfluss entweder analytisch korrekt und effizient berechnet werden können, oder lokal
über traditionelle Monte-Carlo sampling approximiert werden können.
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ZUSAMMENFASSUNG

Der darauffolgende Abschnitt dieser Arbeit befasst sich mit einem Graphproblem aus Sicht
der Optimierungsforschung angewandter Mathematik. Es wird eine neue Variante der Touren-
planung vorgestellt, welches neben kundenspezifischer Zeitfenster auch flexible Zustellstandorte
beinhaltet. Darüber hinaus obliegt den Zielorten, an denen Kunden bedient werden können,
weiteren Kapazitätslimitierungen. Aus praktischer Sicht ist das VRPTW-FL (engl.: "Vehicle
Routing Problem with Time Windows and Flexible Locations") eine bedeutende Problemstel-
lung für Paketdienstleister, Routenplanung mit eingeschränkten Stellplätzen oder auch für die
praktische Planung der Arbeitsaufteilung von behandelnden Therapeuten/-innen und Ärzten/-
innen in einem Krankenhaus. In dieser Arbeit wird für die Bewältigung dieser Problemstellung
eine Metaheuristik vorgestellt, die einen hybriden Ansatz mit der sogenannten Adaptive Large
Neighborhood Search (ALNS) impliziert. Darüber hinaus wird als Konstruktionsheuristik ein
’Backtracking’-Mechanismus (dt.: Rückverfolgung) angewandt, um initiale Startlösungen aus
dem Lösungssuchraum auszuschließen, die weniger vielversprechend sind. In der Evaluierung
dieses neuen Ansatz werden Krankenhausdaten untersucht, um auch die Nützlichkeit von flexi-
blen Zielorten unter verschiedenen Kostenfunktionen herauszuarbeiten.

Im letzten Kapitel dieser Dissertation werden Trends in sozialen Daten analysiert, die
Auskunft über die Stimmung der Benutzer liefern, sowie Einblicke in tagesaktuelle Geschehnisse
gewähren. Ein Kennzeichen solcher Trends liegt in dem Aufbraußen von inhaltsspezifischen
Themen innerhalb eines Zeitfensters, die von der durchschnittlichen Erscheinungshäufigkeit des-
selben Themas signifikant abweichen. Die Untersuchung der Verbreitung solches Trends über
die zeitliche und örtliche Dimension erlaubt es, Trends in Archetypen zu klassifizieren, um somit
die Ausbreitung zukünftiger Trends hervorzusagen.

Mit der immerwährenden Skalierung von Graphdaten und deren Komplexität, und den
Fortschritten innerhalb der künstlichen Intelligenz, wird das maschinelle Lernen unweiger-
lich weiterhin eine wesentliche Rolle spielen, um Graphdaten zu modellieren, analysieren und
schlussendlich die Wissensextraktion aus derartigen Daten maßgeblich zu fördern.
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1
Introduction

Logic is the foundation of the certainty of all the knowledge we acquire.

Leonhard Euler
1707-1783

In today’s environment, the systems we are working with have access to many data sources,
where the data types are multifarious. It spans the whole space from highly structured and semi-
structured data to raw data in text files, video files, or sensory data captured in various applica-
tions. With growing computational power and increasing memory capacities, we simultaneously
observed the processing of ever-growing complex data and data volume.

In the past, enterprises processed their data from text documentation, image data, or audio
files. In recent years, they also had to deal with another wave of unstructured data from social
media, streaming data, or data coming from ’smart’ devices, which are embedded in the ’Internet
of Things’ (IoT). According to the current forecasts, the estimation states that 80 percent of
worldwide data will be unstructured by 2025. Ironically, even though a company’s best asset is
its data, it is getting harder to manage it properly. Because today’s big data applications often
work with unstructured or semi-structured data, we require new tools and methods to analyze
them.

Talking about the ever-growing data volume, the International Data Corporation (IDC) up-
dated its Global DataSphere. It stated that from 2020 to 2025, new data creation will grow at
a compound annual growth rate (CAGR) of 23%, resulting in approximately 175 ZB of data
creation by 2025 1. Moreover, according to one of their projections, ’the amount of data created
over the next three years will be more than the data created over the past 30 years, and the world
will create more than three times the data over the next five years than it did in the previous five’.

Graph Theory serves as a lifebelt in various real-world settings in this constantly rising data
flood. The principle of connecting data in a meaningful way supports decision-making for plenty
of business concepts and gains insights into the context within an organization’s existing knowl-
edge. Hence, it has become fashionable to examine applications using graph theory in physics,

1https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
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1. Introduction

chemistry, communication science, electrical and civil engineering, architecture, operations re-
search, genetics, psychology, sociology, economics, anthropology, linguistics, and so forth. Fol-
lowing this trend, it is not surprising that big tech companies like Meta (Facebook), Twitter,
Amazon, Microsoft, and Alphabet (Google) invested millions of dollars in creating their own
graph data.

From a theoretical point of view, graph theory embraces elements from matrix theory, prob-
ability, topology, combinatorics, and group theory, to name a few. Nevertheless, in essence, it
encompasses any system involving a binary relation. Generally, graph data can be illustrated in
a relatively intuitive schematic representation. Hence, the hurdle in understanding a graph’s fun-
damental nature is rather straightforward, but it takes a lifetime to master the world of complex
networks.

This thesis presents novel heuristics and models applied in diverse settings embedded in
graph-backed applications. It discusses a novel spectral clustering approach in the scope of ho-
mogeneous networks, i.e., networks where entities are considered to be of the same type. A
deep learning enhanced representation learning heuristic is proposed for attributed graphs where
additional labels are given for the nodes, edges, and graphs, respectively. It also investigates the
problem of optimizing the information flow toward a designated source node in probabilistic net-
works, where connections between nodes are potentially unreliable. Moreover, a metaheuristic
solves an extension of a classical optimization problem. Specifically, a vehicle routing problem
for which vehicles serve customers within specific time windows and the customers’ capacitated
delivery locations are flexible. The thesis also analyzes archetypes of trends in social media data
to predict the dissemination of information on a global level.

1.1 History of Graph Theory

The earliest recorded occurrence of a graph-related formalization can be found in the work of
Leonhard Euler and marks the birth point of Graph Theory [56]. However, the fundamentals were
discovered independently in various settings as they naturally arise from applied mathematics.
Whereas Euler’s observation is based on the physical world, Gustav Robert Kirchhoff investi-
gated graph-related problems in electric networks. Arthur Cayley considered specific structures
in organic chemical isomers expressed as graphs. In the following, we will have a brief recap of
historical problems that are noteworthy in the context of any graph-related essay.

Königsberg problem.
In 1735, Leonhard Euler (1707-1783) stated the eminent Königsberg Bridge Problem [56]. Fig-
ure 1.1 shows the connections in Königsberg in Euler’s time, whereas Figure 1.2 shows Euler’s
sketch of it. The vertices can be understood as land sides, whereas edges denote bridges between
these pieces of land across the Pregel River. Figure 1.3 shows an abstraction of the problem.

2



1.1 History of Graph Theory

Euler imposed the question to the puzzle as follows: Could a pedestrian walk around Königs-
berg cross each bridge only once? In the language of graph theory, a walk can be interpreted as
an alternating sequence of vertices and edges, where the start and end points are vertices. Euler
started to formalize his observations and concluded that the Köngisberg problem defines a graph
problem being impossible to solve by an Eulerian path, where each bridge is visited exactly
once.

Figure 1.1: Königsberg in Eu-
ler’s day2

Figure 1.2: Euler’s illustration
[56]

C

A

B

D

Figure 1.3: Königsberg’s Prob-
lem as graph

Electric Networks.
G. R. Kirchoff (1824-1887) formalized in 1847 the theory of trees for applications in electrical
networks to solve systems of simultaneous linear equations [112]. In effect, Kirchhoff replaced
each electrical network with its underlying graph and showed that it is not necessary to consider
every cycle in the graph of an electric network separately to solve the system of equations. In-
stead, he showed that independent cycles of a graph determined by any of its ‘spanning trees’
suffice.

Chemical Isomers.
Ten years later, A. Cayley (1821-1895) formalized trees while trying to enumerate the isomers
of saturated hydrocarbons [28]. In this natural setting of organic chemistry, the problem was to
find the number of trees with p points in which every point has a degree of 1 or 4.

Four-color conjectures & ’Around the World’.
Two other milestones in graph theory define two essential markers. One was the four-color
conjecture stating that four colors are sufficient for coloring any map on a plane with the side
constraint that countries with common boundaries are colored differently.

The other milestone dates back to a game invented by Sir William Rowan Hamilton (1805-
1865) in 1859. The 20 vertices of a regular solid dodecahedron (a polyhedron with 12 faces
and 20 corners; each face is a regular pentagon and three edges which meet at each corner) are
labeled with names of famous cities. The player’s goal is to traverse "Around the World" by
finding a closed circuit along the edges where each vertex is passed exactly once.

2MacTutor History of Mathematics Archive: https://mathshistory.st-andrews.ac.uk/Extras/
Konigsberg/
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1. Introduction

1.2 Modern Graph Theory

Over the last twenty-plus years, the growing availability of graph data has given rise to the
theoretical formalization for novel characterization of complex real-world graph settings for
many new research directions. Some of the formalizations have been well-established in nu-
merous practical applications. However, there is open space for the proliferation of a diversity
of network models, including attributive information, heterogeneous information networks, dy-
namic networks, multi-layer networks, probabilistic networks, and last but not least, Knowledge
Graphs, among many other task-driven and data-driven models. The recent trends of numerous
academic research were majorly driven by the era of big data and the rise of artificial intelligence
algorithms, especially insights into modern deep learning architectures.

This thesis provides in § 2 the basic understanding of graph theory. It also highlights graphs’
definitions and the implications of how they are used in practical applications. The main chap-
ters introduce novel models and data structures for solving diverse tasks in modern complex
networks. § 8.2 also discusses perspectives on how Graph AI will be used in advanced applica-
tions in the future and highlights research questions and directions in a broad range of various
graph settings.

1.3 Scientific Scope

This dissertation examines novel problems arising in complex networks. It covers research ques-
tions spanning the dimension of various graph characteristics, from Homogeneous Graphs, At-
tributed Graphs, Probabilistic Graphs, to Spatial Graphs and Social Media Graphs. The tool-
boxes used to solve those problems range from classical query answering, where a novel data
structure is introduced, over modern deep learning approaches in the scope of graph neural net-
works to tools from operations research (OR).

On homogeneous graphs, this thesis shows an improved, accelerated spectral clustering as
a traditional data mining technique where graph structures are used to identify clusters in noisy
datasets.

Furthermore, it studies representational learning with graph neural networks where a graph
shell attention mechanism captures simultaneously short- and long-term dependencies in at-
tributed graphs. In doing so, the empirical evaluation shows that this novel approach economizes
on the number of parameters that have to be trained compared to other state-of-the-art models.

Introducing probabilities on the interactions between entities in a graph spans a new dimen-
sion of complexity. This thesis studies the problem of optimizing the information flow in a
probabilistic graph given a constraint budget of edges that can be traversed for the information
flow. It tackles two NP-hard problems where on the one hand, there is the calculation of the
information flow itself and, on the other hand, the proper selection of activated edges. This prob-
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1.3 Scientific Scope

lem is of great importance whenever the reliability of a system is of predominant priority, and an
information flow towards a designated source node has to be guaranteed.

Next, the thesis examines a vehicle routing problem (VRP) from an operations research (OR)
perspective. It originates from a combinatorial optimization problem that aims to identify an
optimal set of routes for a fleet of vehicles to serve a given set of customers. It can be seen
as a generalization of the traveling salesman problem (TSP), searching for the shortest route of
geo-annotated locations. Two dimensions extend the problem presented in this thesis. First, the
customers can only be handled in a pre-defined time window (VRPTW). Second, each customer
has a set of flexible delivery locations having capacity constraints (VRPTW-FL). That is, there is
a preferred location where the costs are reduced w.r.t. a customer, but other possible locations are
individually defined, resulting in higher costs. The presented metaheuristic solves the problem
by using an Adaptive Large Neighborhood Search (ALNS) extended by a Guided Local Search
(GLS).

Graph Theory entails processing data based on relationships that connect it. The last chapter
of this thesis is related to social network analysis, where existing data from a microblogging
service is used to answer the specific question, "Can we identify archetypes to classify trend
dissemination" to get a notion of how data (information) might evolve over time on a global
scale. The presented model uses a 4-dimensional tensor as input (flow-source, flow-destination,
time, trend). This 4-dimensional tensor can be as well understood as a graph, where the source
and destination points are entities in a graph. A relationship labeled by the trend connects the
two endpoints. Moreover, the relationship is annotated by temporal information, i.e., a timestamp
of the interaction between the two endpoints is given. The spatio-temporal dissemination flow
model classifies the archetypes upon the latent features given by a tensor factorization. This
yields information to predict the future dissemination of a specific trend.
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1.4 Attribution

The author has conceptualized, formalized, and evaluated the scientific works presented in this
dissertation. The author has revised the published content, partly restructured and extended it
for this thesis. The following paragraphs highlight the author’s contributions to the presented
publications.

Chapter 3: Homogeneous Graphs
The problems presented in § 3 have been researched in [88, 65]. The work [88] is a joint work
with colleagues from the Technical University of Munich and the Aarhus University. The author
of this work was involved in conceptualizing and evaluating the findings as well as writing the
paper in large parts which originated from this cooperation. The work has been presented by the
author on the ’International Conference on Very Large Databases’ 3.

Chapter 4: Attributed Graphs
The collaboration for [65] originated from discussions with a colleague from the Ludwig-
Maximilian University of Munich, as well as in cooperation with adjunct professor Dr. Matthias
Schubert. The author of this dissertation implemented and evaluated the novel heuristic,
conceptualized and formalized the problem with a proof scheme tackling the oversmoothing
problem, and finally wrote the paper of this cooperation. The work has been presented by
the author on the ’European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases’ 4.

Chapter 5: Probabilistic Graphs
The problem presented in § 5 has been researched in [61, 60] where a patent emerged [63].
The problem was first discussed with colleagues from the former Database System Group at the
LMU Munich. Prof. Dr. Matthias Renz contributed in the process of formalizing the problem.
The author of this dissertation invented the new data structure, implemented it and run thor-
ough experiments, and was majorly included in the writing process of the papers. An employee
from Siemens helped in the patent application. Next to the publication in the top-ranked journal
’Transactions of Knowledge Discovery and Data Engineering’ 5, the work has been presented
by the author of this thesis at the ’International Conference on Data Engineering’ 6.

3https://www.resurchify.com/conference_ranking_details.php?id=279; Ranking: A*
4https://www.resurchify.com/conference_ranking_details.php?id=52; Ranking: A
5http://portal.core.edu.au/jnl-ranks/415/; Ranking: A*, Q1
6https://resurchify.com/conference_ranking_details.php?id=271; Ranking: A*
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1.4 Attribution

Chapter 6: Spatial Graphs
A routing scheduling problem is in focus of § 6 and is presented in [66]. The work is a joint
work with external researchers and Prof. Dr. Rainer Kolisch from the Technical University
of Munich. The work presents an enriched framework implementing an Adaptive Large
Neighborhood Search (ALNS) being extended by a Guided Local Search (GLS). Moreover,
in order to find promising initial solutions, a novel backtracking mechanism is presented as
construction heuristic. The formalization of the problem builds upon a pilot study presented in
[102]. The whole framework had been re-implemented completely by the author of this thesis
and a novel evaluation of the problem is presented. Moreover, the formalization of the problem
has been partly re-formulated and extended by the author of the thesis compared to the former
report. For the ALNS procedure, several novel repair and destroy procedures are proposed and
were formalized in the paper. The work is published in the ’European Journal of Operational
Research’ 7.

Chapter 7: Social Media Graphs
The problem being discussed in § 7 has been presented in [183]. The work is a joint cooperation
with colleagues from the former Database System Group at the LMU Munich and colleagues
from the Honk Kong University (HKU). The author of this thesis proposed the usage of a tensor
factorization for identifying latent characteristics for the trend dissemination. He also helped in
the implementation process of the factorization step and in writing up the theoretical heart of the
paper. The work has been presented by a co-author at the ’International Conference on Data
Mining Workshops’ 8.

7https://vhbonline.org/vhb4you/vhb-jourqual/vhb-jourqual-3/gesamtliste; Ranking: A, Q1
8https://www.resurchify.com/conference_ranking_details.php?id=262; Ranking: A*
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1. Introduction

1.5 Overview
The top-level division of this dissertation is based on the characteristics of various graph
definitions. The first chapter gives a general motivation for the importance of graph theory in
modern applications. It also provides a brief history of Graph Theory and shows its development
from the birth hour up to now. It also encompasses the scientific scope of this thesis and the
author’s attribution to the presented publications.

§ 2 provides an overview of General Concepts in Graph Theory. It introduces various types
of networks, and their proper formal definition as practitioners use them in modern applications.
Moreover, it presents a graph configurator for classifying various graph types, which is used in
the introduction of each main chapter to classify the different research topics.

The main chapters focusing on the scientific contributions start with a description of the con-
text, the purpose, and the scientific contribution of the subsections. The five main chapters are
structured as follows:

§ 3 focuses on Homogeneous Graphs, i.e., graphs where nodes are not differentiated accord-
ing to their labels, nor it is distinguished between the various relationships connecting the nodes
in a network. In this chapter, a novel spectral clustering approach is presented where the graph
structure underneath reflects the inherent structure of the communities.

In § 4 the focus is on representational learning by applying a new graph shell attention heuris-
tic in the message-passing paradigm of Graph Neural Networks (GNNs) on Attributed Graphs.

§ 5 focuses on Probabilistic Graphs. The chapter answers the question how to optimize the
information flow to a designated source node within a network, where probability values are
attached to the connections between nodes. A novel data structure, called F-Tree, is introduced
to distinguish between components within a graph for which we can compute the information
flow analytically and efficiently and components for which a Monte-Carlo sampling is applied to
approximate the information flow.

In § 6, an optimization problem on Spatial Graphs defines the theoretical heart. The presented
research work introduces a metaheuristic based on an Adaptive Large Neighborhood Search
(ALNS) where the scheduling of (heterogeneous) vehicles of a fleet serves a set of customers
having temporal and spatial constraints. The evaluation shows a practical use-case scenario with
therapists in a hospital-related context.

The last § 7 analyses Social Media Graphs and provides a model that allows the extraction
and characterization of archetypes of trend dissemination flows.

The dissertation concludes in § 8 with a summary of the main results and provides an outlook
for future research topics and the practical relevance of Graph AI.
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2
General Concepts in Graph Theory

Philosophy is written in that great book which ever lies before our eyes — I mean the universe — but we
cannot understand it if we do not first learn the language and grasp the symbols, in which it is written.

Galileo Galilei
1564-1642

In the last decade, Graph data has become ubiquitous in many scientific areas and practical ap-
plications: communication infrastructures, drawing and coloring maps, scheduling tasks, and
social structures, to name a few. In the previous chapter, the notion of networks has informally
been introduced by some historical examples. To study networks in more depth, there is the need
to lay a common ground of terminologies that allow to be precise when we speak of distances,
neighborhoods, paths in a graph, and so forth. Therefore, at the beginning of every graph jour-
ney, one should start with some basic principles and gain a basic understanding of the expected
return when defining a network. In parallel to the plethora of applications where graphs are used
nowadays, we can also identify various network definitions reflecting the semantics necessary
for an application. A fundamental tenet is that graphs provide a contextualized understanding of
data.

This chapter helps in understanding the basic formulation of networks (see § 2.1) and how
they can be represented (see § 2.2). Moreover, in § 2.3, a Graph Configurator is presented in
order to classify various network types. In subsequent chapters, the graph configurator is used to
classify the graphs being covered by the scientific works presented in this thesis.

The definitions and representations in this chapter are not a thorough compilation covering
all definitions and characteristics of networks. Instead, it provides the essential understanding to
facilitate the step into the main chapters. More task-related definitions are given in the respective
contexts of the proposed models.
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2. General Concepts in Graph Theory

2.1 Definition of a Graph

This chapter introduces the required terminologies for the essential understanding of graphs.
We will start with an abstract view of the problems’ nature this thesis is about. Given any

input data, we can represent each data point by any symbol. Moreover, we can represent an
interconnection between those symbols by connecting them.

From a Network Science point of view, one would use the terminology of nodes for the sym-
bols representing the data points, and the connections between them are termed links. In Graph
Theory, the terms vertices and edges are used in the first place. When we speak of real-world sys-
tems, we would rather use network terminology, e.g., social networks, transportation networks,
the World Wide Web (WWW) is a network of web documents, metabolic networks reflecting
chemical reactions, etc. Formally speaking, for example, of the mathematical representation,
dealing with the data underneath, or referring to representations used as input for models, we
speak in terms of graph terminology. However, exceptions can be found, like the definition of
the interest graph. The terms networks / nodes / links and graphs / vertices / edges are used in-
terchangeably in the scientific literature. From an Operations Research point of view, the edges
are often referred to as arcs. In modern applications, the symbols in a network are referred to as
entities with relationships holding between them. Each subsequent chapter provides additional
definitions to be clear about the context.

This section provides the formal definitions. Hence, the definitions use the terminology of
Graph Theory. As the methods and models presented in this thesis are evaluated on real-world
scenarios, the thesis carries the practical insinuated title ’Learning from Complex Networks’.

A graph can be formally defined as follows:

Definition 1. A (homogeneous) graph G consists of a set V of vertices and a set of edges E ,
for which we write G = (V ,E ). Each edge e ∈ E is said to join two vertices, which are called
its end points. If e joins u,v ∈ V , we write e = ⟨u,v⟩. Vertices u and v in this case are said to be
adjacent. Edge e is said to be incident with vertices u and v, respectively.

The order of a graph is equal to the number of its vertices |V |; whereas the size of a graph
is defined by its number of edges |E |. When we impose certain properties on the set of edges E

the resulting graphs are diverse in their characteristics:

• If E is symmetric, then G is an undirected graph.

• If E is symmetric and anti-reflexive, i.e., there are no self-loops, and contains no duplicate
edges, then G is called a simple (undirected) graph.

• If E is non-symmetric, then G is a directed graph (or digraph).
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A graph can be traversed by following the directions given by the edges. The edges in an
undirected graph can be traversed in both directions. When storing the information on the way
from one starting vertex to a target vertex, we can come up with the notion of a walk:

Definition 2. A walk in a graph is a series of edges (not necessarily distinct):

⟨u1,v1⟩,⟨u2,v2⟩, . . . ,⟨up,vp⟩,

for which vi = ui+1 ∀i ∈ [1, . . . , p−1]. If vp = u1 then the walk is closed.

The characteristics of a walk give rise to the terminologies of a trail, path, cycle, and triangle.
Following the notation of Definition 2, we define these terms as follows:

Definition 3. A trail is a walk in which all edges are distinct. A path (defined via edges) is a trail
in which all ui are distinct. A closed path is called a cycle or circuit. A graph with no cycles is
called acyclic. A cylce of length 3 is called a triangle. The length of a walk/ trail/ path is given
by p.

A particular structure that is frequently used in graph analysis is defined as a tree:

Definition 4. A tree is a connected graph with no cycles. A forest is a union of trees.

In § 5, a novel data structure is presented for an efficient computation of the information flow
within a network. As we will see, the structure of trees allows an exact and efficient computation
of it. According to Cayley’s formula, in a graph with n vertices, there are nn−2 distinct labeled
trees with n nodes (up to isomorphism). In the case of unlabeled trees, there is no known formula
but their abundance appears to grow exponentially in n.

Any given vertex in a graph can be adjacent to a set of nodes, called its neighbors, connected
via incident edges. We define a neighbor set as follows:

Definition 5. Given a graph G = (V ,E ). The neighbor set N(u) of a vertex u ∈ V contains the
nodes being adjacent to u, i.e., N(u) = {v|v ∈ V ,∃e = ⟨u,v⟩ ∈ E }

A neighborhood graph of a central vertex u in a graph G is also referred to as the ego
graph of u. The hop-distance is measured by the number of edges being traversed from a source
node to a target node, i.e., the shortest path length to reach the target. The degree of a vertex
is the number of edges adjacent to it. In deep learning models building on top of Graph Neural
Networks, processing the k-hop neighborhood of a vertex is a fundamental property, as it is also
discussed in § 4.

A common concept in the field of graph theory is to extract a subset of V and E . By doing
so, we just take a look at a fragment H of the given graph G , called a subgraph of G .

Definition 6. A graph H = (V ′,E ′) is called a subgraph of G = (V ,E ) iff V ′⊆V and E ′⊆ E .
The subset E ′ is restricted such that ∀e = ⟨u,v⟩ ∈ E ′ : u,v ∈ V ′.
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Figure 2.1: Visualization of a graph with |V | = 7 vertices and |E | = 9 edges. A path from v1 to v7 of
length 4 is highlighted by green edges

Subgraphs play an essential role in § 4, where a representational learning model is proposed
that relies on processing various sub-parts of a graph. § 5 discusses the decomposition of an
input graph in distinctive subgraphs for an efficient transmission of information, and § 6 presents
a vehicle routing problem where the vehicles’ routes can be understood as subgraphs as well.

2.2 Graph Representation

This thesis uses various representations for networks. Whereas the visual representation is rather
intuitive, a prerequisite for understanding the subsequent chapters is to have a basic understand-
ing of fundamental matrices describing graphs.

2.2.1 Visual Graph Representation

A graph G = (V ,E ) can be visually illustrated as a set of symbols (rectangles, circles, icons, ...)
representing the nodes V and by a set of lines connecting the elements. These lines represent the
set of links E . A visual representation of a simple undirected graph with 7 nodes and 9 links is
shown in Figure 2.1.

2.2.2 Matrix Representations

An elementary description of a graph is given by a binary square matrix of order |V |× |V |:

Definition 7. Suppose G = (V ,E ) is a simple graph where |V |= n. For 1≤ i, j ≤ n, we define
the square matrix A = (ai j)

n
i, j=1 ∈ {0,1}|V |×|V | as the adjacency matrix of G which contains the
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following entries:

ai j =

{
1, ⟨i, j⟩ ∈ E

0, ⟨i, j⟩ /∈ E

Other important matrix representations of graphs are the Laplacian, the degree, and the dis-
tance matrices. The degree matrix is a diagonal matrix that contains information about the
number of edges attached to each node:

Definition 8. Let G = (V ,E ) be a simple graph and its adjacency matrix A ∈ {0,1}|V |×|V |. For
1≤ i, j ≤ n:

di j =

{
∑p Aip, if i = j

0 else
(2.1)

the diagonal matrix D = (di j)
n
i, j=1 ∈ N|V |×|V | is the degree matrix of G .

In Spectral Graph Theory, the study of Laplacian matrices is of special interest as they are
main tools for spectral clustering. The unnormalized graph Laplacian matrix is defined as fol-
lows:

Definition 9. Let G = (V ,E ) be a graph, A ∈ {0,1}|V |×|V | be the adjacency matrix and D ∈
N|V |×|V | be the diagonal degree matrix, then the (unnormalized) Laplacian matrix of G is
defined as:

L = D−A (2.2)

The spectral characteristics of the Laplacian yield information about the graphs’ connected-
ness. In § 3 a spectral method is presented by analyzing the structural behavior of a weighted
graph in order to uncover the clusters in highly noisy datasets.

The Laplacian matrix of Figure 2.1 is:

L = D−A =



2 0 0 0 0 0 0
0 3 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 4 0 0 0
0 0 0 0 3 0 0
0 0 0 0 0 3 0
0 0 0 0 0 0 1


−



0 1 0 1 0 0 0
1 0 1 0 1 0 0
0 1 0 1 0 0 0
1 0 1 0 1 1 0
0 1 0 1 0 1 0
0 0 0 1 1 0 1
0 0 0 0 0 1 0


=



2 −1 0 −1 0 0 0
−1 3 −1 0 −1 0 0
0 −1 2 −1 0 0 0
−1 0 −1 4 −1 −1 0
0 −1 0 −1 3 −1 0
0 0 0 −1 −1 3 −1
0 0 0 0 0 −1 1


Another representation is called the distance matrix which is given by a weighted adjacency

matrix, i.e., A ∈ R|V |×|V | where the weights are given by a weighting function w : E → R>0.
It contains information pertaining the distance between all connected pair of nodes and is used,
e.g., to solve optimization problems like the computation of the shortest path between two nodes.
A weighted adjacency matrix is used for the novel spectral clustering approach being presented
in § 3, and the metaheuristic used to optimize an extension of the vehicle routing problem in § 6.
It is also used in the analysis of trend flows in § 7.
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2.2.3 List Representation

To give the reader a notion about other representation, one can describe a graph G = (V ,E ) also
by its Adjacency List. For each node vi ∈ V , we keep a listing of its neighbors, i.e., all nodes
being adjacent to vi. The graph’s adjacency list of Figure 2.1 is:

v1 → v2→ v4

v2 → v1→ v3→ v5

v3 → v2→ v4

v4 → v1→ v3→ v5→ v6

v5 → v2→ v4→ v6

v6 → v4→ v5→ v7

v7 → v6

In sparse graph settings, i.e., where |E |< |V |, the representation via an adjacency list is more
memory efficient, as the matrix representations would include mainly ’0’-entries.

2.3 Types of Networks in Modern Graph Theory
With the rise of graph-backed applications, the graph community came up with new definitions
to include more characteristics being of practical relevance. This thesis encompasses scientific
findings from diverse applications using various graph types. In order to categorize graphs,
this thesis uses the Graph Configurator of Figure 2.2a, spanning an umbrella over the proposed
models. The configurator depicts various characteristics in a sunburst visualization. One can
define multiple graph characteristics by starting from the inner circles of the visualization, e.g.,
the dynamics, the composition, the reliability, and so on. The outer segments define a more fine-
granular view of the graph at hand and, therefore, specify the graph’s information in more detail.
For example, regarding the graph’s dynamics, we can characterize if the application uses static
or temporal graphs; the graph’s composition yields information if we have a homogeneous or a
heterogeneous setting; or the reliability of interconnections between the graph’s entities. One can
extend the flexible configurator by more characteristics, and it is used concisely here to depict the
scientific contexts of this thesis. Moreover, this thesis uses tools from various domains ranging
from classical Data Analytics, to Machine Learning (ML) techniques, Deep Learning (DL), to
heuristics originating from the Operations Research (OR) (cf. Figure 2.2b). The reader is guided
through the main chapters by first specifying the graph’s characteristics and the toolbox’s domain
to get the scientific context at first glance.
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Figure 2.2: Graph configurator and toolboxes being used for the categorization of graphs and classifi-
cation of methods being used in the thesis

2.3.1 Graph Types of the Thesis

This chapter provides an overview of various graph settings being in the focus of this thesis and
their general definitions. Slightly adaptions to the following definitions are made in respective
chapters to fit in the context they are used.

Attributed Graphs.
Naturally, graphs contain useful information simply by their topology and contextual informa-
tion. In real-world scenarios, we are faced with settings where we have many data sources that
may further enrich the information about nodes or connections between them. This leads to
settings that are described as node-attributed graphs or edge-attributed graphs, respectively, de-
pending on which information is provided by the input data. A straightforward way in deep
learning is to use the additional attributive information and express it as a vector representation.
In doing so, we gain additional information about the nodes and edges in a graph which enhances
the performance of a model. An attributed graph can be defined as follows:

Definition 10. An attributed graph is defined as G = (V ,E ,σ ,L) where V and E denote sets
of nodes and edges. The domain of attributes is denoted by σ and L is the function that assigns
attributes to vertices and edges. Specifically, we use l(v) and l(e) to represent the attributes of
vertex v ∈ V and edge e ∈ E , respectively.
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Generally, there are different types of attributed graphs with different types of attributes.
Depending on the configuration, one can distinguish between labeled graphs (single categorical
attributes), multi-labeled graphs (multiple categorical attributes), and property graphs (multi-
dimensional attributes in different domains). This thesis examines in § 3 a novel representation
learning model evaluated on real-world examples carrying additional attributive information on
the node and edge levels. Hence, we have a labeled graph, where each vertex/edge has a single
categorical attribute called its label. Moreover, the graph itself can have additional information,
which we will see for chemical compounds.

Probabilistic Graphs.
Nowadays, the reliability of a system is responsible for its success story. When modeling real-
world phenomena, it is likely to incur in situations where the communication between two nodes
in a graph is uncertain. The reasons for this unreliability can be manifold, e.g., the communi-
cation between sensors might be erroneous or noisy, the connection between two input devices
can be disruptive, the flow in a transportation network might be restricted in terms of capacity
limitations, the links in a social network might reflect the relative number of communications
two persons have, or even intentionally obfuscated for various reasons.

The uncertainty in a graph can be expressed via an additional function attaching to each edge
a probability. We define:

Definition 11. An probabilistic graph is defined as G = (V ,E , p), where function p : E → (0,1]
assigns a probability of existence to each edge.

In § 5, a novel data structure is introduced for maximizing the information flow towards a
designated source node in a probabilistic graph setting. Note that in § 5.2.3, the definition 11
is extended by a function W which maps to each node in the graph an additional information
weight.

Spatial Graphs.
In recent years, we observed an increasing availability of GPS-equipped end devices. This also
increased the demand for the development of location-based social networking (LBSN) services,
e.g., Google Maps, Tripadvisor, and Yelp. Even though location-based information is commonly
related to specific research fields examining geographical issues and analyses, the use of spatial
information also found its way to graph systems. Hence, several recent approaches now use
these geographical features as additional information for analyzing problems in social networks,
sensor networks, or logistics (e.g., transportation networks). We can encode spatial information
in various ways depending on the use case. This shall give an impression of the flexibility of
graph systems which can be adapted individually for certain tasks:

Definition 12. A location-location graph G = (V ,E ) is a graph where nodes v ∈ V represent
locations and edges e ∈ E represent the relation between two locations. Thereby, the semantic
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of the relation can be defined in various ways, e.g., the distance between two locations, the
similarity or visits by the same user.

Noteworthy, we see a connection to a weighted undirected graph, where the weights can be
interpreted as the relationship between two locations. We can also include the information of
users into a location-aware graph which can be defined as a bipartite graph, i.e., a graph whose
vertices can be divided into two disjoint and independent sets and edges connect only entities
between both sets:

Definition 13. A user-location graph G = (U ,V ,E ) is a bipartite graph where nodes u ∈ U

represent users, node in v ∈ V represent locations and edges in e ∈ E ⊆ U × V represent
relations between users and locations.

From a semantic point of view, the relation can be flexible, e.g., it may indicate that a user
visited or rated a certain location. We can also encode the location information between two
nodes on the edges of a graph. The following graph definition gives an idea of this interpretation:

Definition 14. A user-user graph G = (V ,E ) is a graph where nodes u,v ∈ V represent users
and directed edges in e ∈ E ⊆ V ×V represent relations between users.

Some typical edge semantics here may be physical distances, friendship relationships in an
LBSN, or features derived from users’ location histories (e.g., edges may connect users having
visited a common location). The evaluation chapter of analyzing the information flow in proba-
bilistic graphs in § 5 uses data from city datasets. Here, the reliability between two end-points is
expressed via the distance of two junctions. Moreover, § 6 presents an optimization heuristic for
solving an extension of the famous vehicle routing problem. In this scenario, we are naturally
faced with locations where the distance can be expressed as information attached to the links in
the graph.

Temporal Graphs.
Real-world phenomena are dynamic by nature, i.e., the interactions between entities evolve over
the temporal dimension. The interactions between entities are expressed either by a specific
timestamp or a time interval. The temporal information is used in temporal networks where dy-
namic features are essential. This temporal extension can be found under various terminologies
such as evolving graphs, time-varying graphs, timestamped graphs, dynamic graphs, and so on.
The interactions between entities can be expressed in two ways, either by attributive information
on the links or by an additional function mapping the edges into the temporal domain:

Definition 15. A temporal graph G = (V ,C) is defined by a set of vertices V with an associated
set of contacts C where each contact c ∈C is a triple u,v, t, where u,v ∈ V and t ∈ T , where T
denotes the temporal domain. Equivalently, a temporal network can be defined as G (V ,E ,τ),
where τ denotes a function associating each edge to its temporal information τ : E → T , where
T denotes the temporal domain.
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Notably, this definition can be combined with spatial information ending in spatial-temporal
information networks. This thesis handles node-level spatial information and temporal informa-
tion between entities in § 7, where endpoints contain spatial information and the relationship
between them yields temporal information about the interaction between the two entities.

2.3.2 Further Graph Types

The world of graphs is too colorful to be explored on its whole within a single thesis. To give
also a notion about other types of graphs and their characteristics which are in the focus of the
current research work (time of writing: year 2022), this paragraph presents three other types:

Heterogeneous Information Networks.
In modern applications, we observe that several types of entities interact with each other. More-
over, in real-world scenarios, it can be observed that entities interact in different ways, which
results in a pool of semantic interpretations. Whenever we observe that the underlying input
data contains more than one node type and relation type, we can define it as a Heterogeneous
Information Network.

Definition 16. An Heterogeneous Information Network is defined as a directed graph G =

(V ,E ) with an object type mapping function τ : V → A and a link type mapping function φ :
E → R, where each object v ∈ V belongs to one particular object type τ(v) ∈ A, each link e ∈ E
belongs to a particular relation φ(e) ∈ R, and if two links belongs to the same relation type,
the two links share the same starting object type as well as the ending object type. When the
types of objects |A|> 1 or the types of relations |R|> 1, the networks is called a heterogeneous
information network; otherwise, it is a homogeneous information network.

An ongoing research project of the author of this thesis is the relation prediction in Hetero-
geneous Information Networks and Knowledge Graphs. The problem is framed as an Reinforce-
ment Learning problem, where the agent tries to learn topologies of the endpoints to predict the
query relationship holding between them including temporal information [64].

Multilayer Networks.
In recent years, one can observe a rise in the interest in modeling interconnected systems to in-
crease connectivity. Basically, it encompasses the interconnectedness of different systems in an
infrastructure. This kind of modeling helps, for example, to react more sophisticatedly to random
failures compared to single-layer networks (also called ’monoplex’). Therefore, modeling multi-
layer networks provide a powerful tool for an in-depth analysis of real-world systems. Generally,
the layers display the entities in different interaction contexts where the participation of an entity
can occur on various layers. A first observation is that we can distinguish between two types of
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edges: the inter-layer edges linking instances in different layers and the intra-layer edges con-
necting instances within one layer. If inter-layer edges are defined as the coupling edges which
link different instances of the same entity, the model is referred to as a Multiplex Network. A
Multilayer Network is defined as follows:

Definition 17. Let L = {L1, . . . ,Ll} be a set of layers and V be a set of entities. We denote with
Vl ⊆ V ×L the set containing the entity-layer combinations in which an entity is present in the
corresponding layer. The set El ⊆ Vl×Vl contains the undirected links between such entity-layer
pairs. We denote with GL = (VL,EL,V ,L ) the multilayer network graph with set of nodes V .

Multilayer networks have been established as a profound tool to connect metadata to datasets.
For example, a 2-layer network can be used to model customer information being curated by
administrators whose information is stored on a separate level. In practice, we can observe a
trend for graph-backed metadata hubs. Some examples are Airbnb and its Dataportal platform 9,
Lyft with Amundsen, and LinkedIn with Datahub. The conflation of various data sources by an
additional layer will play a pivotal role in researching multimodality and developing modern ap-
plications. Multilayer Networks are essential for architectures including meta-data as discussed
in the outlook § 8.2.

Knowledge Graphs.
In 2010 Google introduced its concept of ’Knowledge Graphs’ (KGs) to a broader community
and has since then been used as a term in computer science articles, papers, and diverse
publications. Whereas graphs have always been pervasive as a major research area in Artificial
Intelligence (AI), nowadays, there is a need to enable machines to understand and give them
the ability to infer new knowledge. Therefore, one of the central intuitions behind Knowledge
Graphs was to be able to search for ‘things not strings’. With Google being undoubtedly one of
the pioneers in this area, other companies started using the concept of representing knowledge
as a graph. We can observe even KG-centric startups arising for all kinds of applications such as
in government, economic or non-profit, and last but not least, the KG ecosystem emerged as one
of the major research fields in cognitive automation systems. An ongoing research project of the
author of this thesis is the semantic disclosure of Knowledge Graphs [62].

9’Democratizing Data at Airbnb’, talk at GraphConnect, 2017, https://www.youtube.com/watch?v=
gayXC2FDSiA
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It is not inequality which is the real misfortune, it is dependence.

Voltaire
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Highlights

• Introducing SCAR, a novel spectral clustering method tackling both, robustness and speed;

• Incorporating the Nyström method to accelerate the eigendecomposition in robust spectral
clustering;

• Further enhancements for quality and stability of clusterings;

• Throughly, fairly and reproducibly evaluation of the method and comparison to recent
state-of-the art methods on established real-world benchmark datasets;
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3. Homogeneous Graphs

3.1 AI on Homogeneous Graphs

Machine Learning, as a subset of Artificial Intelligence, aims to provide models that learn and
improve from data. In the last decade, there have been impressive improvements in applying
machine learning to graph-structured data. Generally, the primary objective is to learn suit-
able representations on the node-/graph-level for certain prediction tasks, discover new patterns,
and learn complex dynamics occurring predominantly in graphs with temporal annotations. One
common problem in this area is the identification of clusters within a graph which is also referred
to as Community Detection. From a practical point of view, this is of interest for analyzing social
structures or classifying chemical graphs w.r.t. certain graph labels being provided by the input
data. Before the rise of deep learning, traditional approaches following standard machine learn-
ing paradigms were primarily used to solve the task at hand. This is achieved by incorporating
statistics and features defined by heuristic functions or domain knowledge and using a composite
of them as input to a standard machine learning classifier. The underlying idea is to apply a
shallow clustering technique on the calculated node embeddings. These embedding techniques
allow us to project nodes into a vector space where a distance measure representing the similar-
ity between nodes can be defined. After the projection, we can use, for example, distance-based
clusterings (e.g., K-Means [141, 140]), density-based clustering methods (e.g., Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) [55]), connectivity clustering (e.g.,
hierarchical clustering [29]) or distribution clustering (e.g., Gaussian mixture [168]). Depend-
ing on the clustering heuristic being used, we either get a hard or a soft clustering resulting in
non-overlapping communities or overlapping communities.

This chapter covers learning a graph data representation using a traditional Machine Learning
technique. In § 3.2, a graph partition procedure is discussed, based on processing the Laplacian
matrix representing the connectivity properties of a graph. Generally, spectral clustering is ob-
tained by applying a standard clustering algorithm (e.g., K-Means) on the eigenvectors of the
Laplacian matrix. Therefore, in some sense, spectral clustering can also be seen as a special
case of an embedding-based community detection algorithm where the vector representations
are given in the spectral embedding.

3.2 Robust and Accelerated Spectral Clustering

Spectral clustering is one of the most advantageous clustering approaches. However, standard
Spectral Clustering [151] is sensitive to noisy input data and has a high runtime complexity.
Tackling one of these problems often exacerbates the other. As real-world datasets are often large
and compromised by noise, we need to improve both robustness and runtime at once. Thus, in
this chapter Spectral Clustering - Accelerated and Robust (SCAR), an accelerated, robustified
spectral clustering method is proposed. In an iterative approach, it achieves robustness by sep-
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arating the data into two latent components: cleansed and noisy data. The eigendecomposition
– the most time-consuming step – is accelerated based on the Nyström method. In extensive
experiments, SCAR is compared to related recent state-of-the-art algorithms.

SCAR surpasses its competitors in terms of speed and clustering quality on highly noisy
data.

Graph Configuration.
The configuration for the following spectral clustering model is shown in Figure 3.1a. The setting
is a static, single-layer homogeneous graph with non-probabilistic and undirected edges. While
constructing the kNN graph, a weighting function is used to express the feature distance between
the data samples from the input data. The proposed model is associated to the technical domain
of Machine Learning.
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(a) Graph Configurator (b) Toolbox

Figure 3.1: Graph Configuration and methodology’s classification used to solve an accelerated and
robustified spectral clustering (SCAR)
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Figure 3.2: SCAR vs. state-of-the art related clustering algorithms on the moons dataset with noise =
0.15.

3.2.1 Motivation

Clustering is a fundamental data mining task needed in virtually all areas working with data and
also serves as an unsupervised preprocessing step for a plethora of subsequent tasks. One of the
most favorable clustering methods is spectral clustering: it is applicable to non-numeric datasets,
can find clusters of complex shapes and different densities, and optimizes a mathematically well-
defined problem [212]. However, real-world datasets are challenging for several reasons: with
newly developed data gathering methods (e.g., in medicine, chemistry, or biology), in recent
years datasets grew in dimensionality as well as in size. The runtime complexity of spectral
clustering methods is only linear in the number of dimensions, as it works on an affinity graph
of the data, making it superior to more traditional clustering methods when working on high-
dimensional data. However, the runtime complexity (for the naive implementation) of O(n3)

w.r.t. the number of data points is comparably large. Furthermore, real-world data often contains
noise that is neither handled well by standard spectral clustering methods nor by other clustering
methods. Clustering noisy data is in fact a very challenging task, as Figure 3.2 illustrates. It
shows a very noisy version of the well-known synthetic moons dataset as clustered by diverse
algorithms. It may not come as a surprise that standard Spectral Clustering fails to detect the
moons correctly. But also state-of-the-art algorithms that are designed specifically to be robust
against noise can only handle noise up to a certain degree and were not able to detect the two
clusters correctly. The competitors in Figure 3.2 (as well as in the experiments in Section 3.2.5)
are recent clustering algorithms published at high-quality conferences: RSC [20], DCF [201],
and SpectACl [84]. The authors of all methods performed extensive experiments showing their
superiority against a variety of other clustering methods regarding noise robustness. RSC and
DCF also successfully tackle the efficiency problems of clustering. Nevertheless, with the newly
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developed method SCAR (Spectral Clustering - Accelerated and Robust), there is a way to even
further improve both, clustering quality on highly noisy data and efficiency on high-dimensional
data.

SCAR uses weighted kNN graphs to capture highly complex structures in the data imply-
ing clusters of non-convex shapes. For a good segmentation of the graph, normalized cuts
have proven to be desirable [30, 41], suggesting a spectral approach. Based on the concept
of RSC [20], SCAR divides the data into a subset containing noise and a subset containing the
relevant information for clustering. However, RSC involves the frequent calculation of eigen-
decompositions in an iterative approach, which is accelerated with the Nyström method. With
an elaborated combination of synergistic methods and changes, the proposed model manages
to achieve highly competitive results regarding the clustering quality and robustness. In exten-
sive and reproducible experiments the thesis examines and compares its clustering results w.r.t.
quality and runtime. SCAR shows the desired behavior for highly noisy datasets, where it out-
performed recent state-of-the-art algorithms in quality, noise robustness, and runtime. The model
has been evaluated on diverse types of noise and well-known benchmark datasets were used.

Outline. In Section 3.2.2 the thesis gives an overview on related methods. In Section 3.2.3 it
explains the basics of the new method. In Section 3.2.4 the thesis introduces the new fast and
robust spectral clustering method, called SCAR. In Section 3.2.5 SCAR is evaluated thoroughly,
objectively, and reproducibly. Section 3.3 concludes this chapter.

3.2.2 Related Work

Spectral clustering refers to a set of clustering algorithms that partition a given dataset based
on the spectrum of the datapoints’ affinity matrix. They essentially follow three steps [212]:
(1) construct a similarity graph G , (2) compute the Laplacian of G and its eigendecomposition,
and (3) cluster its eigenvectors with a standard clustering method, e.g., k-Means [141, 140].
Spectral clustering surpasses traditional clustering techniques in several aspects: e.g., they find
arbitrarily shaped clusters, are applicable on categorical data, solve a clearly defined mathemati-
cal goal [212], and can handle varying densities. However, spectral clustering is noise-sensitive
[20, 84] and has a relatively high runtime. In the following, the thesis provides an overview of
related works in this research field.

3.2.2.1 Improving Runtime

Most recent advances improving any of the steps of spectral clustering can be found in [204].
In the following, the thesis focuses on approaches accelerating the most time-intensive step of
spectral clustering, the eigendecomposition. The acceleration is usually achieved with one of
two strategies: iteration or sampling.
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Iterative approaches. The probably most common method to accelerate the computation of
eigenvectors and eigenvalues of a matrix is the power iteration. By iteratively multiplying the
matrix with a randomly initialized vector (or an estimation of the dominant eigenvector), the
eigenvector belonging to the largest eigenvalue is approximated. Generally, the frequent ma-
trix multiplications are expensive, and only the dominant eigenvector can be approximated with
the original power method – for spectral clustering, the eigenvectors belonging to the smallest
eigenvalues are of interest. Note, that the behavior of convergence of iterative approaches usu-
ally depends on the distribution and gaps between the eigenvalues [204]. There is a wealth of
extensions based on the power iteration aimed at alleviating its downsides for spectral clustering.
Using Krylov subspaces allows approximating several eigenvectors at once: E.g., the Arnoldi
iteration [5] orthogonalizes the vectors spanning the Krylov subspace by applying the Gram-
Schmidt process. For Hermitian matrices like symmetric Laplacians, which are used in the pro-
cess of spectral clustering, the Lanczos method has been proposed [122]. The Lanczos method
approximates the largest k eigenvectors in O(|E |k+ |V |k2) for a graph G = (V ,E ,w) [204]. It
is used for spectral clustering in [191]. While the Lanczos method performs well even for sparse
matrices, it is often prone to numerical instability [26]. The Implicitly Restarted Lanczos Method
(IRLM) as used, e.g., in ARPACK [129], can reduce numerical instability. Further adaptions
involve among others using the inverse matrix to get the smallest eigenvalues and respective
eigenvectors [54]. The Krylov-Schur algorithm [195] alleviates additional problems emerging
with very large Hermitian or non-Hermitian matrices. As the convergence of symmetric cases
depends on the gap ratio of the eigenvalues [156], both ends of the spectrum are approximated,
e.g., with IRLM-BE.

Sampling-based approaches. Sampling based approaches work on (1) a subset of the edges
in the similarity graph or on (2) a subset of the nodes: (1) implies a sparser Laplacian than the
original one, while (2) implies a Laplacian of lower dimensionality.

Approach (1) accelerates the eigendecomposition by leveraging matrix operations that are
optimized towards sparse input matrices. Working on matrices defined by kNN graphs, choosing
a small k leads to sparse matrices that still hold relevant information on the structure of the data.
For general graphs, spectral sparsification can be applied. It approximates the graph Laplacian
with a matrix of same size containing fewer sampled entries. The sampling process ensures that
certain pre-defined properties are respected (cf. [204]).

Approach (2) includes graph coarsening methods (e.g., [204, 83, 105]) that reduce the orig-
inal similarity graph to a coarser graph, leading to an adjacency matrix of significantly lower
dimensionality. Computing the eigendecomposition on the lower-dimensional matrix and refin-
ing it afterwards leads to a significant acceleration.

In the model introduced in Section 3.2.4, it is used the sampling-based Nyström method,
which is an effective method to significantly speed-up spectral clustering while maintaining good
overall eigenvector accuracy (e.g., [59, 223, 134, 214]). The Nyström method has been ana-
lyzed, replicated and improved throughout multiple studies: [18], [45], [176], and [231] focus
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on the improvements of particular downsides, such as the partial loss of information by sampling
landmark points. Furthermore, they provide theoretical evaluations and frameworks on how the
quality of the resulting spectral embedding is affected by applying the Nyström approximation.
In [164], the impact of the number of landmarks selected as subsample as well as the influence
on the overall clustering accuracy is investigated. Thorough studies in [74], [148], and [119]
show the impact of sampling techniques picked for identifying the base subset for the Nyström
extension. A theoretical analysis of the algorithm’s performance and derivations of error bounds
are formulated in [31]. The thesis explains the Nyström method in detail in Section 3.2.3.2.

3.2.2.2 Improving Noise Robustness

As spectral clustering has no inherent noise-handling, its quality can suffer from diverse types
of noise that often occur in real-world data. In the following, it is distinguished between four
different notions of noise that are often mixed up in the literature or not clarified: (1) additional
noise points, (2) jitter, (3) noisy features, and (4) noisy edges. Even though they are closely
interrelated, they can imply different challenges for (spectral) clustering.

Additional noise points. The probably most common notion of noise is that there are addi-
tional noise points in the dataset. They are typically uniformly distributed (and iid) and do not
belong to any cluster. E.g., NRSC [138] tackles such noise for spectral clustering by assigning
all noise points to an extra cluster. However, they work on the fully connected graph and assume
that the majority of edges connected to a noise point has a low weight. AHK [94] also tackles this
kind of noise and simultaneously robustify spectral clustering regarding the parameter choice by
using an aggregated heat kernel. CAHSM [136] use a hypergraph to compensate for outliers and
noise.

Jitter. Adding noise to a dataset can also imply adding a small deviation to each point.
E.g., noise adjustment for the moons datasets regulates the deviation from the “perfectly-shaped”
moons. A similar effect can be achieved by data quantization. In [95], error bounds for spectral
clustering on data with jitter, resp., perturbed data are evaluated. Robustness against this type of
noise for spectral methods is evaluated, e.g., in SpectACL [84], and RSC [20].

Noisy features. Especially in high-dimensional data, we may encounter noisy features. These
refer, for example, to uniformly distributed dimensions of the data that are irrelevant for clus-
tering for at least some points. FWKE-SC [100], SSCG [78], [234], and [10] combine feature
weighting with spectral clustering to tackle this problem (similarly to subspace clustering). As
they mainly focus on the construction of the similarity matrix, they can be combined with the
proposed approach in future work.

Noisy edges. Noise in graphs can also occur as additional edges in the affinity graph of
the data. RSC [20] (cf. Sections 3.2.2.3 and 3.2.3.3) focuses on removing edges that connect
different clusters, which are also called corrupted edges. RSEC [198] regards noisy edges in the
context of spectral ensemble clustering. In [11], noise is regarded as “an additive perturbation to
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the similarity matrix”, including noisy edges as well as corrupted weights of existing edges.

The focus of the proposed model is on robustness w.r.t. noisy edges and jitter. For the other
types of noise, filtering additional noise points in a preprocessing step is suggested. For noisy
features, the approach can easily be combined with feature weighting approaches that adapt the
initial affinity matrix, as SCAR builds on top of the affinity matrix. For weighting the importance
of features, one can follow approaches like FWKE-SC [100], using the concept of knowledge
entropy, or apply importance scores for attributes that adapt to every point individually, like KISS
[16].

3.2.2.3 Comparative Methods

In the experiments in Section 3.2.5 the newly developed method SCAR is compared with stan-
dard Spectral Clustering (SC) [151] as well as high-quality state-of-the-art spectral methods that
aim at robustness and efficiency: Robust Spectral Clustering (RSC) [20] and SpectACL [84].
Furthermore, the thesis includes the very recently introduced method DCF [201] into its analy-
ses. DCF is not a spectral approach, but also aims at robustness and efficiency.

RSC jointly performs the standard Spectral Clustering and the decomposition of the adja-
cency matrix A. The latter is assumed to be an additive decomposition of two latent factors, a
graph containing corrupted edges and a graph representing the noise-free data. As RSC outper-
forms basic clustering principles like k-Means and density-based clustering methods on noisy
datasets [20], it serves as a baseline in the evaluation in Section 3.2.5.

SpectACL combines approaches from spectral clustering and DBSCAN to solve their ma-
jor drawbacks regarding noise sensitivity for minimum cut clustering and varying densities for
density-based clustering [84]. The core idea is to determine clusters with large average densities
while optimizing the density parameters using the spectrum of the weighted adjacency matrix.

DCF aims at improving peak-finding techniques for density-based clustering, which deter-
mine groups in a dataset based on their high density as well as distances to clusters of higher
density [201]. The approach applies the peak-finding criterion to determine cluster cores instead
of point modes, which enables the detection of clusters with varying densities.

3.2.3 Preliminaries

In the following, the thesis gives some preliminary basics for the proposed method SCAR. In
Section 3.2.3.1, it is clarified the notation used throughout the description of the novel model.
In Section 3.2.3.2 the thesis explains the Nyström method that is used to accelerate the eigen-
decomposition in detail. In Section 3.2.3.3 it is elaborated on the robustificaton method being
incorporated in the method SCAR.
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3.2 Robust and Accelerated Spectral Clustering

3.2.3.1 Notation

Let G = (V ,E ,w) be an undirected, weighted graph where V denotes a set of nodes, E denotes
a set of edges connecting nodes, and w denotes a weight function on the edges w : E → R>0. Its
adjacency matrix A ∈ Rn×n is defined by its entries ai j with ai j = w(vi,v j) if (vi,v j) ∈ E , else
ai j = 0. Let D := diag(deg(v1), . . . ,deg(vn)) ∈Rn×n be the degree matrix of G where deg(vi) :=
|{v j ∈ V | (vi,v j) ∈ E }| is the degree of node vi. The Laplacian L of G is defined as L :=
D−A. The Laplacian L is symmetric and positive-semidefinite in Rn×n. Hence, the n eigenvalues
Λ = [λ1, . . . ,λn] of L are real and positive. The associated eigenvectors are denoted by H =

[h1, . . . ,hn], resp., the approximated eigenvectors by Ĥ. Furthermore, X = {xi}n
i=1 denotes the

set of n input data samples, where xi ∈ Rd is a d-dimensional feature vector.

3.2.3.2 Nyström Method for Eigenvector Approximation

The Nyström method has shown great promise in existing literature to speed-up the eigenvec-
tor calculation (e.g., [59, 223, 134, 214]). To accelerate the eigenvector computation, only a
subsample of the whole dataset is used. A matrix M ∈ Rn×n can be partitioned into:

M =

[
M1 M2

T

M2 M3

]
, (3.1)

where M1 ∈ Rm×m represents the affinities between m sampled points in the subset, M2 ∈
R(n−m)×m contains all weights from the n−m remaining points to the m subsampled points
and M3 ∈ R(n−m)× (n−m) captures the remaining affinities between all points not chosen for the
subset. After choosing landmark points for the approximation, the eigenvectors H1 of M1 can
be calculated. The thesis introduces diverse eigendecomposition approaches that can be used in
Section 3.2.2.1 and compares them empirically in Section 3.2.5.6.2.

Using the Nyström extension [59], we can extrapolate the eigenvectors for all remaining
points. Let H and Λ be the eigenpairs of M, it follows:

M = HΛHT =

[
H1

H2

]
Λ

[
H1

H2

]T

=

[
H1ΛHT

1 H1ΛHT
2

H2ΛHT
1 H2ΛHT

2

]
(3.2)

Thus, if H1 denotes the eigenvectors for the subsampled points M1, we can deduce H2, the eigen-
vectors for all remaining points, with H2 = M2H1Λ−1. Sorting the extrapolated eigenvectors for
the remaining points back into the calculated eigenvectors for points chosen as subsample yields
the approximated eigenvectors Ĥ ∈ Rn×m for M:

Ĥ =

[
H1

M2H1Λ−1

]
(3.3)
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In the last step, the approximated eigenvectors Ĥ are orthogonalized. By using only a subsample
of the data, the time complexity can be reduced from O(n3) to O(nm2 +m3), where usually
m≪ n [135].

3.2.3.3 Robustifying Spectral Clustering

In order to robustify spectral clustering, the model follows RSC [20]. The main idea is to separate
the input graph with adjacency matrix A into two latent subcomponents described by Ag and Ac:

A = Ag +Ac (3.4)

Ac reflects the corrupted edges in the graph and Ag contains only the noise-free, “good” edges.
The partitioning into two segments can be determined and improved by independently optimiz-
ing the spectral embedding for each subgraph. In practice, it is sufficient to resolve only one
component, since its counterpart can easily be deduced from the original representation (see
Equation 3.4). In [212], it has been shown that spectral clustering can be transformed into a trace
minimization problem for A. Following this idea, in [20], the authors proved that the solution
to Ac can be attained by solving a maximization problem for Tr(HT L(Ac)H), where L(Ac) de-
notes the Laplacian of matrix Ac. The corresponding objective function for the unnormalized
Laplacian (cf. [20]) is defined as:

f ([ac
e]e∈E ) := ∑

(vi,v j)∈E
ac

i, j · ∥hi−h j∥2
2 (3.5)

Further constraints are given by θ and m. The parameter θ denotes the maximum num-
ber of global corruptions that are deleted: |{(vi,v j)|ac

i j ̸= 0}| ≤ 2 · θ . The parameter m im-
plies the minimum number of nodes that each node in Ag is connected to: |{v j|ag

i j ̸= 0}| ≥
m ·deg(vi) for each node vi.

To solve the maximization problem in order to find edges which should be assigned to Ac,
the models use a greedy approach that is described in [128]. The idea is to sort all edges e ∈ E

in descending order according to their scores pe being defined as:

pe = pi j = ai j · ||hi−h j||22 (3.6)

The model iteratively adds edges to Ac such that the side constraints defined by parameters θ

and m are fulfilled. Further details, proofs, and the reduction to the multidimensional knapsack
problem [159] can be found in [20].
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3.2 Robust and Accelerated Spectral Clustering

3.2.4 SCAR - Spectral Clustering Accelerated and Robust

The thesis proposes a new clustering method SCAR (Spectral Clustering – Accelerated and
Robustified). SCAR separates the affinity graph of the data in an iterative approach into two
latent components: a clean graph, which is used for the subsequent clustering, and a graph con-
taining noisy edges. Likewise to Robust Spectral Clustering (RSC) [20], it detects noisy edges in
each step that are disadvantageous for clustering. Therefore, it reaches overall robustness against
noise compared to the original spectral clustering [151]. SCAR is significantly faster than RSC
as it accelerates the most time-intensive step, the eigendecomposition, using the Nyström method
[59] explained in Section 3.2.3.2. Furthermore, several aspects of RSC were improved signifi-
cantly, such that SCAR is not only faster but also achieves remarkably better results in real-world
experiments as shown in Section 3.2.5. Figure 3.3 gives an overview of SCAR and highlights
the most important steps that deviate from RSC. In the following, it is described each step of the
novel method in more detail. Algorithm 1 shows the corresponding pseudocode.

Figure 3.3: Overview of SCAR. Green boxes imply steps in the method that are analogue to RSC [20]
and orange implies a significant change or addition.

Step 1 The procedure calculates the symmetric, weighted kNN graph G = (V ,E ,w) of the
input data X (cf. line 1 in the pseudo-code). Each data point xi ∈X implies a node vi ∈ V ,
where |X |= |V |= n, i.e., there exists a bijective mapping φ : X → V . Further, E = {(vi,v j) |
∀vi,v j ∈ V , i ̸= j : vi ∈ kNN(v j)∨ v j ∈ kNN(vi)}, and the weight of edges is defined by the
Gaussian similarity function:

w(vi,v j) = exp
(
−||φ−1(vi)−φ−1(v j)||2

2σ2

)
(3.7)

In the experiments, σ =
√

nd/2 is used per default. kNN graphs are suitable to find clusters
of arbitrary shapes and varying density. Thus, when using spectral clustering, they are on most
real world datasets superior to fully connected graphs (FCG), ε-neighborhood graphs, or Gabriel
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Graphs [96]. The evaluation in Section 3.2.5 supports these findings. In contrast to RSC [20],
SCAR uses a weighted kNN graph and apply the Gaussian kernel to weight the edges, which
gives more weight to closer points than to points farther away. This further improves clustering
results in general [151], as it offers more information that can be relevant for clustering.

Step 2 As elaborated in [85], the unnormalized Laplacian is more suitable than normalized
versions to discern between clusters and outliers, resp., noise in the eigenspace, amplifying the
difference between corrupted and clean edges later. Thus, the unnormalized graph Laplacian
(line 4) is calculated as L = D−A based on G .

Step 3 The model approximates the eigenvalues of L with the Nyström method as described in
Section 3.2.3.2. Following [148], an adaptive sampling approach is used, where α ·n points with
the highest degrees are chosen as landmarks (cf. line 6). As noise points are unlikely to be nearest
neighbors of nodes outside of their own neighborhood (compare to, e.g., ideas of outlier detection
algorithms ODIN [82] or kNN-LOF [225]), their corresponding nodes in the kNN graph tend to
have lower degrees. As we sample the nodes with the highest degrees, potential losses regarding
the set of edges concern prevalently the noisy edges, we want to remove anyway. The procedure
then approximate the first k eigenvectors on L1 ∈ R(αn)×(αn), which is a small submatrix of
L ∈ Rn×n (see Equation 3.1). The resulting matrix H̃1 ∈ Rαn×k contains the first k approximated
eigenvectors of L1. The sampling of the submatrix is outlined in lines 7-10, whereas line 11
shows the eigendecomposition. In line 12 the Nyström extension is carried out. In Section 3.2.5
the thesis thoroughly investigates several decomposition methods for computing the eigenpairs
of L1. In the following, the framework works on H̃ ∈ Rn×k, as obtained by Equation 3.3.

Step 4 SCAR checks in line 15 of the pseudo-code whether the trace of H̃T L(Ag)H̃ has de-
creased compared to the previous iteration. The identification and extraction of corrupted edges
in the graph is described in Section 3.2.3.3 and follows the approach of RSC [20]. SCAR ap-
plies Equation 3.6 in line 19, i.e., pi j is calculated for all edges (vi,v j) ∈ E . High values for
pi j indicate a high dissimilarity between node embeddings of vi and v j, even though the nodes
are connected. Thus, assigning an edge (vi,v j) with a high value pi j to the noise component Ac

improves the clustering quality as the edge is disregarded in the subsequent clustering step.
However, to ensure sparsity thresholds, bounds set with θ and m are respected [20]. The

parameter θ prevents eliminating too many edges required for reasonable clustering results by
limiting the maximum number of overall removable edges. The parameter m ensures a maximum
local sparsity, i.e., each node keeps at least a portion m of its originally connected edges. In the
experiments, m = 0.5 is used per default. If updates on the graph separation still lead to quality
improvements, SCAR recalculates L and approximates its eigendecomposition again with the
Nyström method. The procedure alternatingly updates Ag in line 22 and H̃ until the trace cannot
be significantly lowered.
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3.2 Robust and Accelerated Spectral Clustering

Algorithm 1: SCAR Algorithm
Input: Dataset X , user input k, nn, α , θ , m
Output: Clustering containing assigned labels

1 A← kNN_graph(X , nn);
2 Ag← A;
3 for iter < max_iterations do
4 L← Laplacian(Ag) ; // see Section 3.2.3.1
5 /* Nyström method */
6 Xl ← α · |X | landmarks;
7 i← indices_of(Xl);
8 j← indices_of(X\Xl);
9 L1← L[i, i];

10 L2← L[ j, i];
11 H̃1,Λ← eigendecomposition(L1);
12 H̃2← L2H̃1Λ−1 ; // see Equation 3.3
13 H̃← reassemble(H̃1, H̃2);
14 trace← sum(Λ);
15 if trace is minimal then
16 break;
17 end if
18 /* Removing corrupted edges */
19 pi, j← ai, j · ∥hi−h j∥2

2 ; // see Equation 3.6
20 removed_edges← edges(argmax(p), θ , m);
21 Ac← matrix(removed_edges);
22 Ag← A−Ac;
23 end for
24 H̄← row-wise_norm(H̃);
25 Clustering← k_means++(rows(H̄));

Step 5 As suggested by [20, 31, 59], the procedure orthogonalizes and norms the first k re-
sulting approximated eigenvectors row-wise (cf. line 24) which increases clustering quality and
stability:

H̄[i,:] =
H̃[i,:]

∥H̃[i,:]∥2
(3.8)

Step 6 In the last step (shown in line 25), the model clusters the first k rows of H̄ (that has
the eigenvectors of Ag as columns) with k-Means++ [6]. k-Means++ improves the selection of
initial cluster centers for k-Means, leading to an earlier convergence and thus further speed-up
compared to traditional spectral clustering approaches using k-Means.
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3.2.5 Evaluation

In the following, the thesis examines the method SCAR thoroughly. In Section 3.2.5.1, the exper-
imental setup is presented. In Sections 3.2.5.2 and 3.2.5.3 the thesis analyzes SCAR’s clustering
quality, noise robustness, efficiency and scalability. In Section 3.2.5.4 a summary of SCAR’s
clustering and speed performance and regard their mutual dependencies is presented. In Sec-
tion 3.2.5.5 the thesis evaluates the improvements of SCAR over RSC and SC. In Section 3.2.5.6
the thesis evaluates the influence of various hyperparameters and design choices. SCAR retained
an excellent balance between speed and quality over all experiments, while we refrained from
hiding experiments that did not deliver desirable results in order to prevent overoptimism [21].

3.2.5.1 Experimental Setup

Datasets. In the evaluation, two synthetic datasets and ten real-world benchmark dataset are
used. Both synthetic datasets, moons and circles, are constructed using data generator functions
from the scikit-learn library.

Real world benchmark datasets iris, dermatology, banknote, pendigits, and Letter Recogni-
tion (letters for short) were obtained from the UCI- MLR10. MNIST and USPS were obtained
from the repository of the CS NYU11. Similar to the work of [20], random subsamples were
selected for the MNIST dataset. For the pendigits dataset, specific subsets pendigits16 and
pendigits146 were defined as benchmark datasets in the literature [20, 94, 138]. For dermatology
the feature about the age of patients is omitted as the dataset is incomplete w.r.t this feature. The
data statistics are summarized in Table 3.1.
Competitors. The thesis compares SCAR with standard Spectral Clustering (SC) [151]12,
Robust Spectral Clustering (RSC) [20]13, normalized SpectACl [84]14, and Density Core Finding
(DCF) [201]15.
Implementation Details. SCAR is implemented in Python, building off of the implementation
of RSC [20]6. Additionally, the libraries scikit-learn, NumPy, Scipy and slepc4py/petsc4py 16

were used. Experiments were run on an Intel(R) Xeon(R) Silver 4208 CPU @ 2.10GHz using
32GB RAM.
Code: available on GitHub 17

Hyperparameter Setting. For the synthetic datasets the default value of 0.15 is used for the

10https://archive.ics.uci.edu/ml/index.php (retrieved: Feb 18, 2022)
11https://cs.nyu.edu/~roweis/data.html (retrieved: Feb 25, 2021)
12https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html (last accessed: Jul 14,

2022)
13https://github.com/abojchevski/rsc(last accessed: Jul 14, 2022)
14https://bitbucket.org/Sibylse/spectacl/src/master/ (last accessed: Jul 14, 2022)
15https://github.com/tobinjo96/DCFcluster (last accessed: Jul 14, 2022)
16https://slepc.upv.es/documentation/ (last accessed: Jul 14, 2022)
17https://github.com/SpectralClusteringAcceleratedRobust/SCAR.git
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3.2 Robust and Accelerated Spectral Clustering

Table 3.1: Dataset properties used in the analysis.

dataset n d k noise [%]18 LB-UB [%]19

sy
n. moons 1,000 2 2 15

circles 1,000 2 2 15

re
al

iris 150 4 3 7 5-9
dermatology 366 33 6 9 4-14
banknote 1,372 4 2 2 0-4
pendigits16 1,499 16 2 1 0-2
pendigits146 2,279 16 3 1 0-2
pendigits 7,494 16 10 9 2-13
USPS 11,000 256 10 24 12-33
MNIST-10K 10,000 784 10 24 13-29
MNIST-20K 20,000 784 10 21 11-27
letters 20,000 17 26 46 20-61

parameter noise that regulates the jitter. Note that this value is significantly higher than the values
applied in, e.g., RSC [20]. Let us tune α ∈ [0.1,0.2, . . . ,0.9]. For every dataset, the parameter
θ is fixed in all the experiments dataset-specific, where θ ∈ {20,30,200,500,1k,10k,30k,60k}.
Following the rule-of-thumb popularized by [46], the thesis uses 2

√
n as an upper bound for

nn and tested values in 10 percent steps for all methods, accordingly. For a fair comparison to
the competitor DCF, it is also evaluated the parameter β used in their method in the range of
[0.1,0.2, . . . ,0.9] to obtain best scores for the cluster metrics.

3.2.5.2 Clustering Quality

Clustering quality is measured using the Normalized Mutual Information (NMI) [196] and Ad-
justed Rand Index (ARI) scores, which range from 0 to 1. Higher values imply a better accordance
to the ground truth. Following the suggestion of [171], ARI should be used when the reference
clustering has large equal sized clusters; scores based on mutual information should be used
when the reference clustering is unbalanced and there exist small clusters. In the following, all
experiments were run for 10 trials and the average clustering scores per parameter setting are
reported if not stated otherwise.

3.2.5.2.1 Effectiveness
In Table 3.2 on the left, the thesis summarizes the best NMI and ARI scores evaluated on each
dataset. In order to obtain the best outcomes for each dataset and each method, a grid-search
over the respective parameter spaces is applied as outlined in Section 3.2.5.1. The dependence of
NMIs on the number of neighbors nn can be seen in Figure 3.4. The thesis discusses the runtimes

18for synth. datasets noise is added in the sklearn function as standard deviation of Gaussian noise, for real
datasets, noise is measured as ratio of inter-cluster edges vs. total edges in the k-Graph for all tested nn

19LB = noise lower bound, UB = noise upper bound
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shown in the right part of Table 3.2 – also in combination with the quality of the clusterings – in
Section 3.2.5.3 and analyzes the influence of hyperparameter settings in Section 3.2.5.6.

SCAR reaches on average the best NMI/ARI scores while those results were reached on
average with the second best runtime of all tested algorithms. SCAR’s average runtime is ap-
proximately an order of magnitude faster compared to the original standard spectral clustering
algorithm (SC) and DCF. SCAR always returns clusterings of solid quality, in contrast to, e.g.,
SpectACl, which is not able to find an acceptable clustering for the datasets banknote or subsets
of the pendigits dataset (marked in red in Table 3.2, see also Figure 3.4). Second best values
were often reached by SC, which is, however, not designed to reach fast runtimes. SC’s good
results on the benchmark datasets confirm the high potential of spectral methods for high-quality
clustering results. Further, we observe that SCAR can handle highly noisy datasets like moons,
where SC as well as RSC could not correctly detect the clusters, reaching NMIs (ARIs) of only
0.43 (0.72). The thesis regards the sensitivity of all methods w.r.t. the parameter nn in Fig-
ure 3.4. Where most methods are rather robust w.r.t. the parameter nn, their default settings may
not be optimal: in Figure 3.2, all algorithms’ default parameter settings are applied on the moons
dataset. Here, none of the competitors could find the clusters correctly. In contrast, optimized
parameter settings w.r.t. the NMI/ARI via a grid search is shown for Table 3.2. Furthermore,
the banknote dataset was perceived as an interesting case, as SCAR significantly surpassed its
competitors. SpectACl, e.g., was not able to produce any meaningful clustering results over a
variety of tested parameter settings, reaching a maximum NMI (ARI) of 0.02 (0.03). All other
competitors reached NMI/ARI scores around 0.62. The banknote dataset contains 4-dimensional
representations of forged and authentic banknotes. Its clusters overlap in all dimensions, making
its similarity graph highly noisy. Thus, the advantages of SCAR’s noise robustness can be seen
here, yielding an outstanding NMI (ARI) of 0.86 (0.90) for the proposed method.

Even though SCAR yields very good results for most datasets, there is still room to further
improve clustering results on high-dimensional datasets in future work. Especially, performance
on datasets emerging from pixel-data (USPS and MNIST versions) could benefit from applying
feature weighting approaches as outlined in Section 3.2.2. Table 3.2 shows that despite their
different strengths, the clustering metrics do not differ much in how the investigated methods
compare. Thus, only NMI is reported in the following as the default metric.
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3. Homogeneous Graphs

Figure 3.4: Comparison of NMI of all methods with their best parameter settings on all datasets de-
pending on nn.
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3.2 Robust and Accelerated Spectral Clustering

3.2.5.2.2 Robustness against Noise
To evaluate SCAR’s robustness against noise, the parameter settings for nn and α are fixed,
and only the amount of jitter is modified in the range of [0.0,0.05,0.1, . . . ,0.03] on the moons
dataset. The left graph in Figure 3.5 shows that SCAR consistently outperforms other mod-
els on the moons dataset for high noise levels (noise > 0.2). The NMIs of most comparative
methods drop heavily for noise values over 0.1, resp., 0.2. Qualitative results can also be seen
in Figure 3.2, where SCAR is the only method able to correctly discern the two moons for a
comparably high noise level of noise = 0.15. The right graph in Figure 3.5 gives all runtimes
in seconds. SCAR shows an almost constant runtime over different levels for noise. For RSC,
higher runtimes are observable as the eigendecomposition on the whole Laplacian is computed
in each iteration. Notably, DCF also shows increased runtimes for low noise values due to higher
densities within the clusters. The efficiency of SCAR evaluated on different benchmark datasets
is further discussed in the next section.

Figure 3.5: NMI scores (left) and runtime in [s] (right) for noise ∈ [0, . . . ,0.3] in 0.02 steps on moons
dataset.

Similar to [20], the thesis also examines the robustness against noisy edges: Gaussian dis-
tributed clusters (blobs) are generated and versions of the moons datasets where “corrupted”
edges are added to the associated kNN graph. I.e., edges between nodes of different clusters
were added using the planted-partition model. Intra-cluster edges were created with a proba-
bility of 30% and noise edges were added such that 10%, resp., 20% of all edges in the kNN
graph were corrupted. We evaluate the precision p = |Ec∩Er|/|Ec| and recall r = |Ec∩Er|/|Er|,
where Ec is the set of corrupted edges and Er is the set of edges removed by SCAR. In contrast
to [20], the thesis also regards the effect of removing corrupted edges on the clustering quality.
Figures 3.6a and 3.6b show precision and recall of the detected corrupted edges, as well as the
achieved NMIs of RSC and SCAR for increasing θ . Even though precision and recall – implying
the quality of detecting corrupted edges – of SCAR’s results are lower than for RSC, this does
not affect the overall clustering quality. Instead, the constant NMI scores, while increasing θ for
both cases (10% and 20% added noise edges), indicate that corrupted edges do not affect the ob-
tained clustering quality for Gaussian distributed clusters. Figures 3.6c and 3.6d imply that this
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3. Homogeneous Graphs

is different for moons datasets. Here, SCAR surpasses RSC w.r.t. precision and recall on both
noise settings throughout almost all tested values for θ . In contrast to the Gaussian distributed
clusters, for the moons dataset, removing corrupted edges enables a higher clustering quality:
The NMIs of SCAR are significantly higher than the NMIs for RSC throughout all tested values
for θ . Figure 3.6 shows that SCAR surpasses RSC in the detection of corrupted edges exactly
where these corrupted edges impede a high quality clustering by connecting hard-to-distinguish
clusters.
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3.2 Robust and Accelerated Spectral Clustering

(a) 10% artificial noise edges added to blobs

(b) 20% artificial noise edges added to blobs

(c) 10% artificial noise edges added to moons

(d) 20% artificial noise edges added to moons

Figure 3.6: Precision and recall (left) and NMI (right) for 10% or 20% artificial noise edges added to
blobs (n=1000, k=20) resp. moons averaged over random_state=[0−9].
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3.2.5.3 Runtime Analysis

In this section, the model’s runtime is evaluated. In Section 3.2.5.3.1, a general overview of
SCAR’s efficiency compared to state-of-the-art methods is provided. The thesis shows scalability
experiments in Section 3.2.5.3.2 and regards the complexity in Section 3.2.5.3.3

3.2.5.3.1 Efficiency
Table 3.2 shows on the right the minimum runtime in seconds for the trials with the highest NMI
scores as well as the minimum runtime of all tested parameter settings in brackets. We observe
that SCAR yields its best results w.r.t. the NMI almost always as the fastest or second fastest
algorithm. SCAR can generally provide faster results than standard SC. The speed-up, in par-
ticular, increases with larger datasets. Only on the quite small dermatology dataset, SCAR runs
0.02 seconds longer than SC. The highest speed-up is reached on the letters dataset, where SCAR
is more than 20 times faster than SC, while simultaneously increasing the NMI by 10%. Using a
similar design and notion of noise as RSC, it is noteworthy that SCAR surpasses RSC w.r.t. the
runtime on every tested dataset. Note also, that RSC already accelerates the eigendecomposition
by leveraging IRLM. SCAR reaches a maximum acceleration factor of 6.4 in relation to RSC for
the heavily noisy circles dataset, where it simultaneously improves the clustering quality from
an NMI (ARI) of 0.19 (0.08) to 0.50 (0.57). For further runtime comparisons with RSC and SC,
see Section 3.2.5.5.2. Even though DCF shows fast runtimes as well as good clustering results
for most datasets, it cannot reach acceptable runtimes on high-dimensional datasets like USPS or
MNIST variations (marked in red). Whereas experiments on lower-dimensional datasets show
comparable runtimes in the same order of magnitude for all algorithms, DCF needs on these three
high-dimensional datasets more than ten times longer than SCAR. Further investigations on the
dependence of all algorithm’s runtimes can be found in Section 3.2.5.3.2. SpectACl shows, sim-
ilar to SCAR, good runtimes for its best results, but mostly returns significantly worse clustering
results. Especially SpectACl’s performance on the datasets banknote and the first two pendigits
versions (marked in red) is of surprisingly low quality.

For some parameter settings, algorithms may have significantly lower runtimes than for oth-
ers. E.g., for a small number of nearest neighbors nn, the respective nearest neighbors graph has
less edges and, thus, most operations performed on it are faster. Analyzing the values in brack-
ets in Table 3.2, we see the best runtimes over all tested parameter settings that can be reached
for each experiment and each algorithm. I.e., in contrast to the runtimes regarded in the last
paragraph, where parameter settings for a high NMI are optimized, we now optimize parameter
settings for a low runtime. Also here, SCAR reaches most often the fastest runtimes. Notably,
even for the most suitable parameter settings, DCF cannot achieve an acceptable runtime on
high-dimensional datasets like USPS and MNIST variations (marked in red).

It can be observed that for all datasets, the minimum runtime for the best NMI results were
usually close to the respective minimum runtime over all tested settings. More precisely, most
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3.2 Robust and Accelerated Spectral Clustering

of them were at maximum twice as high as the fastest runtime for the respective algorithm.
This supports the idea that the model has a stronger influence on its runtime than the selected
parameter setting.

In conclusion, SCAR is stable in its anticipated clustering quality and yields good results at
high speed.

3.2.5.3.2 Scalability on Synthetic Datasets
Figure 3.7 shows the scalability of SCAR on the moons and blobs datasets, with a fixed noise
of 0.15 for moons and a default cluster standard deviation of 1.0 for blobs. On the former,
the number of data points were scaled in the range [100, . . . ,50k]. On the latter, the number of
features [2, . . . ,50k] were scaled. The number of neighbors that are taken into account for the
construction of the kNN graph is set to nn =

√
n in both experiments, where n denotes the num-

ber of data samples. All other parameters are frozen. The left diagrams show the obtained NMI
scores, and the right diagrams show the elapsed time for all evaluated methods. On the moons
dataset, SCAR’s scalability oupterforms RSC and SC w.r.t. both, computational time as well as
obtained NMI scores for increasing sample size. For smaller datasets, the novel approach also
shows superior performance compared to DCF, which cannot be maintained for increasing the
sample-size. However, DCF’s runtimes deteriorate for higher dimensionalities, as can be seen in
the lower part of Figure 3.7 (note the log-scale). SCAR’s runtime stays almost linear in the num-
ber of features. In Figure 3.8, DCF’s unfortunate runtime behavior w.r.t. the dimensionality can
also be observed on larger real-world datasets with higher dimensionality. While DCF yields low
runtimes for large datasets if they are low-dimensional, e.g., for letters, its runtime tremendously
increases on USPS, MNIST-10K and MNIST-20k.
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Figure 3.7: NMI scores (left) and runtime in seconds (right). Top: Moons dataset (noise=0.15) with
varying n. Bottom: Blobs dataset (n=1000, k=20, random_state=None) with varying d.

3.2.5.3.3 Complexity Analysis
Having the same fundamental structure as RSC, the thesis refers for the complexity analysis on
the explanations of [20], showing a runtime approximately linear in the number of edges. In the
following, it is elaborated on the differences between SCAR and RSC that potentially influence
the complexity (see also Figure 3.3). In Step (1), the weighted kNN graph is calculated in contrast
to the unweighted kNN graph for RSC and a Gaussian kernel on the edge weights is applied.
These changes do not increase the runtime complexity, as all edges of the kNN graph are accessed
in both approaches. In Step (3), [20] use the power iteration for the eigendecomposition. For
SCAR, the runtime is reduced by using the Nyström method, see Section 3.2.3.2. In Step (5), the
rows of the approximated, cleansed matrix H̃ ∈Rn×k are normalized, where H̃ contains the first k
vectors that are needed for the subsequent clustering step. Usually, we have k≪

√
n, such that the

complexity is not increased when working on a kNN graph (containing approximately O(n
√

n)
edges [149]). Overall, SCAR reaches a similar complexity as RSC, which is approximately
linear in the number of edges, while improving the runtime. The experiments in Section 3.2.5.3
confirm the improved runtime w.r.t. RSC.
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3.2 Robust and Accelerated Spectral Clustering

3.2.5.4 Effectiveness and Efficiency

Figure 3.8 summarizes the models’ performances on the various datasets, where the x-axis shows
the runtime and the y-axis shows the clustering scores. Optimal results are located in the upper
left reflecting a high NMI score reached within a short amount of time. It shows only the best
runs of all methods to reduce visual clutter, i.e., only runs that yielded at least 75% of the best
NMI score reached by the respective method are shown as single dots. On the highly noisy
moons dataset, SCAR’s robustness and efficiency dominates the other methods in terms of both,
clustering performance and runtime. On small real-world datasets (iris, dermatology, banknotes
and the pendigits variations), SCAR is highly competitive with other state-of-the-art models w.r.t.
NMI and runtime. As all tested methods have runtimes below one second for all smaller datasets,
larger datasets are more expressive for runtime analyses. Thus, in the following (as well as in
Figure 3.10), the datasets with more than 5000 points (pendigits, USPS, MNIST versions and
letters) are regarded when investigating runtimes. Noteworthy, SCAR is comparably fast on these
datasets and reaches low runtimes with a comparably low variance. For the low-dimensional
datasets pendigits and letters, DCF is even faster than SCAR, but for higher-dimensional datasets
(USPS and MNIST versions) advantages of using any of the newer spectral clustering approaches
become clear, as DCF’s runtime does not scale with the dimensionality. In summary, Figure 3.8
demonstrates that SCAR nearly always outperforms its competitors in either runtime, clustering
quality, or both and particularly highlights SCAR’s reliability.
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Figure 3.8: Runtimes and NMIs of all experiments that reached at least 75% of each method’s respective
best NMI.
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3.2 Robust and Accelerated Spectral Clustering

3.2.5.5 Improvements over RSC and SC

In the following, the thesis examines the improvements of SCAR over RSC and the original
Spectral Clustering algorithm (SC) in more detail. Section 3.2.5.5.1 regards the single compo-
nents that differentiate SCAR from RSC as well as their functional interaction. Section 3.2.5.5.2
regards runtime improvements over RSC.

3.2.5.5.1 Effectiveness Improvements of SCAR over RSC and SC
Figure 3.9 shows NMIs on the highly noisy moons dataset for various settings for nn and different
methods: on the left, RSC is compared with a straight-forward Nyström-accelerated version of
RSC and SCAR. On the right, an ablation study is performed w.r.t. the changes between RSC
and SCAR. (The results are condensed by setting α to the recommended default value α = 0.7).
The left part of the figure shows that a simple speed-up of RSC would lead to significantly
worse results, whereas SCAR drastically improves the results of RSC. On the right, we can
see that each of SCAR’s components is chosen meaningfully, leading to an improvement of
quality that is reached by the elaborated combination of concepts rather than any single adaption.
The reasons for the individual components are regarded in Section 3.2.4 and their impacts and
synergies are explained in the following. Using an unweighted graph can deliver good results
on the moons dataset, if exactly the right number for nn is chosen (i.e., such that only very
few corrupted edges exist). However, as seen in the first line of Figure 3.9 on the right, this
leads to a strong and unpredictable dependence on guessing a good value for nn. Weighting
the edges also allows for a more meaningful sampling of the edges for the Nyström method
with the adjusted sampling method being applied: as corrupted edges connect nodes of different
clusters (and distances between clusters are larger than distances inside clusters) they tend to
be longer than non-corrupted edges. Applying the Gaussian kernel for calculating the edges’
weights, this leads to smaller degrees of nodes connected by corrupted edges. Thus, sampling
the nodes with higher degrees allows to sort out corrupted edges (compare with line 3 on the right
of Figure 3.9). Using an unnormalized Laplacian further enhances the distinguishability between
corrupted and non-corrupted edges [85] in the eigenspace, reinforcing the positive effects of the
adjusted sampling method heavily (see line 2 on the right of Figure 3.9). Small perturbances in
the data can be compensated by normalizing the rows [59]. That accounts for jitter and pushes
points of a cluster even closer in eigenspace, which robustifies the adapted sampling step and
further improves the clustering (line 4 on the right of Figure 3.9).
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Figure 3.9: Ablation study of SCAR’s NMI performance on moons (avg. over 10 random instantiations)
depending on nn and for fixed α = 0.7. Dark colors imply better NMI scores.

3.2.5.5.2 Efficiency Improvements over RSC and SC
Figure 3.10 shows SCAR’s substantial runtime accelerations over RSC depending on their pa-
rameter settings on four larger benchmark datasets (where n ≥ 5000, resp., runtime > 1s). In
Figure 3.8, runtimes and their respective NMIs are shown for all methods. In particular for
larger datasets, SCAR nearly always outperforms SC and RSC regarding runtime significantly.
A more thorough discussion on the proper choice of hyperparameters α and nn is given in Section
3.2.5.6.1.

3.2.5.6 Hyperparameter Tuning

In this section, the thesis examines the influence of various parameter settings on the model’s
performance. In Section 3.2.5.6.1, the thesis examines the portion α denoting the number of
landmarks chosen for the Nyström subsample and the number of nearest neighbors nn for the
construction of the kNN graph. In Section 3.2.5.6.2, the performance of various decomposition
methods on the sampled submatrix is evaluated and how the clustering quality and computational
time depends on different configurations. In Section 3.2.5.6.3, the influence of the parameter θ

on the models’ performances of SCAR and RSC is investigated.

3.2.5.6.1 Number of Landmarks and Number of Neighbors
In Figure 3.11, the NMI scores for all tested datasets depending on nn and α are shown, where
darker, resp., lighter colors reflect higher, resp., lower NMI scores. For a more thorough analysis
of the impact of the number of neighbors, 2

√
n is used as an upper bound for nn [46]. We

see that the choice for nn and α has a strong effect on the clustering quality: The quality of
smaller datasets depends more heavily on a proper choice of α compared to larger datasets. The
experiments show that a higher amount of landmarks improves clustering results. Furthermore,
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3.2 Robust and Accelerated Spectral Clustering

the illustration reveals that on larger datasets, the performance is improved whenever the kNN
graph retains its sparse nature, i.e., by lowering the amount of nn. This effect also heavily
improves the efficiency of the proposed method as discussed in Section 3.2.5.3.1. On USPS, as
well as on the MNIST datasets, we observe higher peaks for lower values of nn. On smaller
datasets, it is more likely that the kNN graph connects samples from distinctive cluster, i.e.,
the graph contains misleading information. Comparing iris and dermatology, the evaluation
revealed that for the latter, it is more favorable to choose a smaller nn to identify the six clusters
properly, whereas on iris, with three clusters, we can choose higher values without mingling
the information of separate clusters. Per default, the suggestion is to use values α = 0.7 and
nn =

√
n.

Figure 3.10: Summary of time ratios SCAR / RSC depending on nn and α for large real world datasets.
Lighter colors imply better (i.e., faster) results for SCAR.

While good clustering results are a prerequisite for useful clustering algorithms, SCAR’s
major benefit is its runtime acceleration. Figure 3.10 summarizes obtained runtime quotients of
SCAR compared to RSC for four large real-world datasets and their dependence on nn and α . It
only displays the larger datasets here, as they require runtimes for RSC≫ 1s (see Table 3.2), and,
therefore, an acceleration analysis is more meaningful. The values in each heatmap depict the
ratio of runtimes between SCAR and RSC, i.e., runtime(SCAR)/runtime(RSC). Consequently,
smaller values indicate faster runtimes of SCAR compared to RSC. The effect and strength of
the Nyström method can be observed for all larger datasets. By sampling only a submatrix in
order to approximate the spectrum as a whole, we observe a performance boost compared to
RSC. The impact of the choice of α is shown on the y-axis, whereas the effect of nn is shown
on the x-axis. The experiments show that SCAR has significantly lower runtimes than RSC even
for high values of α , further supporting the quite high recommended choice for α = 0.7. For
larger values of nn SCAR’s speed-up becomes even clearer: Larger nn lead to more edges in
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the kNN graph and, therefore, more acceleration potential for SCAR over RSC as the graph is
more dense. Figure 3.4 indicates that SCAR’s clustering results are relatively robust against the
choice of nn. Thus, SCAR’s runtime improvements over RSC do not have a negative effect on
its clustering performance.

Figure 3.11: Summary of NMI obtained with SCAR depending on nn and α for all datasets.

50



3.2 Robust and Accelerated Spectral Clustering

3.2.5.6.2 Decomposition of Submatrix
In the following, the thesis evaluates commonly used decomposition methods on the sampled
submatrix of the Nyström Approximation explained in Section 3.2.3.2. Figure 3.12 shows the
highest observed NMI scores (left) within 10 trials as well as the respective runtimes (right) with
a fixed value of nn for each dataset. As the submatrix in the Nyström method is symmetric, the
Implicitly Restarted Lanczos Method (IRLM) is applied which is based on power iterations and
has also been used in [20] as decomposition heuristic. Additionally, various variants of IRLM
are evaluated with -Shift applying a shift-inversion on the spectrum to transform the smallest
eigenvalues to be the highest, and -BE for which eigenvalues are approximated from both ends
of the spectrum. For the latter, [156] showed, that approximating eigenpairs from both ends of
the spectrum can speed-up the convergence. A standard QR decomposition is also evaluated, as
well as the Krylov-Schur decomposition as proposed by [195].20 Empirically, all decomposition
methods yielded similar qualitative results w.r.t. the NMI score. Examining the runtimes on
smaller datasets, we observe a slight overhead in the computation of the shifting operation for
IRLM-Shift, as well as in applying a sampling from both ends of the spectrum. On larger datasets,
this effect flattens out and the Krylov-Schur decomposition that is optimized towards large, sparse
matrices shows a marginal benefit for larger α values. In the experiments, the standard IRLM is
used as default heuristic for the computation of the eigenpairs as it showed competitive results
over the full range of the tested datasets.

20State-of-the-art libraries are used, where IRLM and its variants are implemented in ARPACK, QR in LAPACK,
and krylov-schur as part of SLEPc/PETSc
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(a) synthetic data - moon

(b) real data - Iris

(c) real data - Letter Recognition

Figure 3.12: Avg. NMI scores (left) and runtimes (right) for decomposition methods IRLM, IRLM-Shift,
IRLM-BE, QR and krylov-schur on different datasets.
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3.2.5.6.3 Influence of Parameter θ

In Figure 3.13, the influence of parameter θ is evaluated on the clustering’s quality and runtimes
for SCAR and RSC [20]. As argued in Section 3.2.5.6.1, the parameter nn is fixed to nn =

√
n.

The number of expected corruptions is scaled in the dataset logarithmically: θ ∈ [10, 100, 1k,
10k]. On the moons dataset, the proposed approach outperforms RSC almost over the full range
of chosen θ whilst drastically reducing the computational time as shown on the right. Gener-
ally, increasing the sparsity threshold might lead to a clearer separation, however, the clustering
quality suffers for very large values as clean edges might be attached to the corrupted graph Ac.

Figure 3.13: NMI scores (left) and runtime in [s] (right) for θ ∈ [10,100,1k,10k] on moons dataset
(noise=0.15).
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3.3 Summary
The thesis introduced SCAR, a novel robust and efficient clustering method. It elucidates the
benefits from Robust Spectral Clustering [20] enhanced by the Nyström method for an acceler-
ated computation of the eigendecomposition. The sensitivity to noisy input data as well as the
runtime complexity compared to standard Spectral Clustering are significantly reduced.

In a thorough experimental study, the thesis compares SCAR’s clustering quality with state-
of-the-art models showing highly competitive results on real-world benchmark datasets, as well
as its robustness against noise on artificial data. Robustness w.r.t. noisy edges in the similarity
graph of the data as well as robustness w.r.t. jitter in the original data are evaluated, tackling
the two most difficult types of noise for clustering. SCAR consistently yielded low runtimes, in
particular it is significantly faster than RSC and SC, while returning highly competitive clustering
qualities on real-world and synthetic data. SCAR is recommendable when looking for a reliable,
fast and robust clustering method on large and high-dimensional datasets that tend to be noisy.
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Attributed Graphs

In nature we never see anything isolated, but everything in connection with something else which is
before it, beside it, under it and over it.

Johann Wolfgang von Goethe
1749-1832

Attribution
This Chapter uses material from the following publication:

• Christian M. M. Frey, Yunpu Ma, and Matthias Schubert. Sea: Graph shell
attention in graph neural networks. In European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases,
2022. [65]

See § 1.4 for an overview of incorporated publications and the author’s attribution.

Highlights

• Integration of expert-routing into Graph Neural Networks (GNNs);

• Novel Graph Shell Attention (SEA) models capturing short- and long-term dependencies,
simultaneously;

• Experiments showing a reduction in the number of model parameters to be learned com-
pared to state-of-the-art models;
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4. Attributed Graphs

4.1 Deep Learning on Attributed Graphs

In Deep Learning, we observe that Convolutional Neural Networks (CNNs) are well-defined
over grid-structured inputs like images, while Recurrent Neural Networks (RNNs), Long-Short
Term Memories and Gated Recurrent Units (GRU) are suitable for processing sequences (e.g.,
text, signals). In order to process graph data with deep learning heuristics, it was necessary
to define a new kind of deep learning architecture. A general framework for defining neural
networks on graph data is based on the so-called message-passing paradigm. Similarly, the idea
is to generate nodes’ representations that reflect the graph’s structure and additional information
being provided by the input data. Generally, this is achieved by neural message passing, where
the vector representations of nodes are exchanged and updated using neural networks [73].

§ 4.2 covers learning graph data representations using a novel heuristic based on deep learn-
ing techniques. The key idea is to use a transformer-based attention mechanism in combination
with a routing mechanism steering the process of learning the nodes’ representations to a set of
experts. The experts differ in processing nodes in the neighborhood of a query node. This novel
heuristic is referred to as Graph Shell Attention (SEA).

4.2 Graph Shell Attention in Graph Neural Networks

A common problem in Graph Neural Networks (GNNs) is known as over-smoothing. By in-
creasing the number of iterations within the message-passing of GNNs, the nodes’ representa-
tions of the input graph align and become indiscernible. The latest models employing attention
mechanisms with Graph Transformer Layers (GTLs) are still restricted to the layer-wise compu-
tational workflow of a GNN that are not beyond preventing such effects. In this thesis, the GNN
architecture is relaxed by means of implementing a routing heuristic. Specifically, the nodes’
representations are routed to dedicated experts. Each expert calculates the representations ac-
cording to their respective GNN workflow. The definitions of distinguishable GNNs result from
k-localized views starting from the central node. This procedure is called Graph Shell Attention
(SEA), where experts process different subgraphs in a transformer-motivated fashion. Intuitively,
by increasing the number of experts, the models gain in expressiveness such that a node’s rep-
resentation is solely based on nodes that are located within the receptive field of an expert. The
novel architecture is evaluated on various benchmark datasets showing competitive results while
drastically reducing the number of parameters compared to state-of-the-art models.

Graph Configuration.
The configuration for the novel graph neural network model is shown in Figure 4.1a. The set-
ting is a single-layer, static, non-probabilistic graph. The graphs used for the evaluation contain
attributes on the nodes, and two benchmark datasets also contain attributes on the edges. These
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4.2 Graph Shell Attention in Graph Neural Networks

additional nodes’, respectively, edges’ attributes point to the vector representations in the em-
bedding space. The technical domain of the proposed model is Deep Learning.
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Figure 4.1: Graph Configuration and methodology’s classification used to solve graph shell attention
(SEA) in graph neural networks (GNN)

4.2.1 Motivation

Graph Neural Networks (GNNs) have been proven to be an important tool in a variety of real-
world applications building on top of graph data [224]. These range from predictions in social
networks over property predictions in molecular graph structures to content recommendations
in online platforms. From a machine learning perspective, we can categorize them into various
theoretical problems that are known as node classification, graph classification/regression - en-
compassing binary decisions or modeling a continuous-valued function -, and relation prediction.
This thesis proposes a novel framework and show its applicability on graph-level classification
and regression, as well as on node-level classification tasks.
The high-level intuition behind GNNs is that by increasing the number of iterations l = 1, . . . ,L,
a node’s representation contains and, therefore, relies successively more on its k-hop neigh-
borhood. However, a well-known issue with the vanilla GNN architecture refers to a problem
called over-smoothing [226]. In simple words, the information flow in GNNs between two nodes
u,v ∈ V , where V denotes a set of nodes, is proportional to the reachability of node v on a
k-step random walk starting from u. By increasing the layers within the GNN architecture, the
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4. Attributed Graphs

information flow of every node approaches the stationary distribution of random walks over the
graph [89]. As a consequence, the localized information flow is getting lost, i.e., increasing the
number of iterations within the message-passing of GNN results in representations for all the
nodes in the input graph that align and become indiscernible [153]. One strategy for increasing
a GNN’s effectiveness is adding an attention mechanism. An adaption of the Transformer model
[206] on graph data has been introduced as Graph Transformer Layer (GTL) [49]. Generally,
multi-headed attention shows competitive results whenever we have prior knowledge to indicate
that some neighbors might be more informative than others. The novel framework proposed in
the following chapters further improves the representational capacity by adding an expert heuris-
tic into the GTL architecture. More specifically, to compute a node’s representation, a routing
module first decides upon an expert that is responsible for a node’s computation. The experts
differ in how their k-hop localized neighborhood is processed and they capture individually var-
ious depths of GNNs/GTLs. We refer to different substructures that experts process as Graph
Shells. As each expert attends to a specific subgraph of the input graph, the thesis introduces the
concept of Graph Shell Attention (SEA). Hence, whereas a vanilla GNN might suffer from over-
smoothing the nodes’ representations, the thesis introduces additional degrees of freedom in the
new architecture to simultaneously capture short- and long-term dependencies being processed
by respective experts.

4.2.2 Related Work

In recent years, the AI community proposed various forms of (self-)attention mechanisms in
numerous domains. Attention itself refers to a mechanism in neural networks where a model
learns to make predictions by selectively attending to a given set of data. The success of applying
attention heuristics was further boosted by introducing the Transformer model [206]. It relies on
scaled dot-product attention, i.e., given a query matrix Q, a key matrix K, and a value matrix
V , the output is a weighted sum of the value vectors, where the dot-product of the query with
corresponding keys determines the weight that is assigned to each value.

Transformer architectures have also been successfully applied to graph data. The work by
Dwivedi et al. [49] evaluates transformer-based GNNs. They conclude that the attention mech-
anism in Transformers applied on graph data should only aggregate the information from local
neighborhoods, ensuring graph sparsity. As in Natural Language Processing (NLP), where a
positional encoding is applied, they propose to use Laplacian eigenvectors as the positional en-
codings for further improvements. In their results, they outperform baseline GNNs on the graph
representation task. A similar work [117] proposes a full Laplacian spectrum to learn the po-
sition of each node within a graph. Yun et al. [230] proposed Graph Transformer Networks
(GTN) that are capable of learning on heterogeneous graphs. The target is to transform a given
heterogeneous input graph into a meta-path-based graph and apply a convolution operation af-
terwards. Hence, the focus of their attention framework is on interpreting generated meta-paths.
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4.2 Graph Shell Attention in Graph Neural Networks

Another transformer-based architecture that has been introduced by Hu et al. [92] is Heteroge-
neous Graph Transformer (HGT). Notably, their architecture can capture graph dynamics w.r.t.
the information flow in heterogeneous graphs. Specifically, they take the relative temporal posi-
tional encoding into account based on differences of temporal information given for the central
node and the message-passing nodes. By including the temporal information, Zhou et al. [232]
built a transformer-based generative model for generating temporal graphs by directly learning
from the dynamic information in networks. The work of Ngyuen et al. [152] proposes another
idea for positional encoding. The authors of this work introduced a graph transformer for ar-
bitrary homogeneous graphs with a coordinate embedding-based positional encoding scheme.
In [228], the authors introduced a transformer motivated architecture where various encodings
are aggregated to compute the hidden representations. They propose graph structural encodings
subsuming a spatial encoding, an edge encoding, and a centrality encoding. Furthermore, a work
exploring the effectiveness of large-scale pre-trained GNN models is proposed by the GROVER
model [172]. The authors include an additional GNN operating in the attention sublayer to pro-
duce vectors for Q, K, and V . Moreover, they apply single long-range residual connections and
two branches of feedforward networks to produce node and edge representations separately. In a
self-supervised fashion, they first pre-train their model on 10 million unlabeled molecules before
using the resulting node representations in downstream tasks. Typically, all the models are built
in a way such that the same parameters are used for all inputs. To gain more expressiveness, the
motivation of the mixture of experts (MoE) heuristic [190] is to apply different parameters w.r.t.
the input data. Recently, Google proposed Switch Transformer [57], enabling training above a
trillion parameter networks but keeping the computational cost in the inference step constant.
The thesis provides an approach how a similar routing mechanism can be integrated in GNNs.

4.2.3 Preliminaries

This section provides the basic notation (§ 4.2.3.1) being relevant for this chapter. Moreover, it
provides concise recaps of Graph Neural Networks (§ 4.2.3.2), the general idea of Transfomers
(§ 4.2.3.3), and Graph Transformer Layer (§ 4.2.3.4).

4.2.3.1 Notation

Let G = (V ,E ) be an undirected graph where V denotes a set of nodes and E denotes a
set of edges connecting nodes. Let Nk(u) be the k-hop neighborhood of a node u ∈ V , i.e.,
Nk(u) = {v ∈ V : dG (u,v) ≤ k}, where dG (u,v) denotes the hop-distance between u and v on
G . For N1(u) we can simply write N(u) and omit the index k. The induced subgraph by includ-
ing the k-hop neighbors starting from node u is denoted by G k

u . Moreover, in the following, a
real-valued representation vector hu ∈ Rd is used for a node u, where d denotes the embedding
dimensionality.
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4. Attributed Graphs

4.2.3.2 Recap: Graph Neural Networks

Given a graph G with node attributes XV = {Xu|u∈V } and edge attributes XE = {Xuv|(u,v)∈ E }
(cf. Definition 10), a GNN aims to learn an embedding vector hu for each node u, and a vector
hG for the entire graph G . The l-th layer is defined as:

ml
N(u) = AGGREGATEl({(hl

v) : v ∈ N(u)}) (4.1)

hl+1
u = UPDATEl(hl

u,m
l
N(u)) , (4.2)

where N(u) is the 1-hop neighborhood set of u, hl
u denotes the representation of node u at the l-th

layer, and h0
u is initialized as the node attribute Xu. From a spectral perspective, earlier rounds

contain higher-frequency components than outputs from later rounds. Since hu summarizes the
information of central node u, it is also referred as patch embedding in the literature. A graph’s
embedding hG is derived by a permutation-invariant readout function:

hG = READOUT({hu|u ∈ V }) (4.3)

A common heuristic for the readout function is to choose a function READOUT(·) ∈
{mean(·),sum(·),max(·)}.

4.2.3.3 Recap: Transformer

The vanilla Transformer architecture as proposed by Vaswani et al. [206] was originally in-
troduced in the scope of Natural Language Processing (NLP) and consists of a composition
of Transformer layers. Each Transformer layer has two parts: a self-attention module and a
position-wise feedforward network (FFN). Let H = [hT

1 , . . . ,h
T
n ]

T ∈Rn×d denote the input of the
self-attention module where d is the hidden dimension and hi ∈ R1×d is the hidden representa-
tion at position i of an input sequence. The input H is projected by three matrices WQ ∈ Rd×dQ ,
WK ∈ Rd×dK , and WV ∈ Rd×dV to get the corresponding representation Q, K, V . The self-
attention is calculated as:

Q = HWQ K = HWK V = HWV ,

A =
QKT
√

dk
, Attn(H) = softmax(A)V

(4.4)

Notably, in NLP as well as in computer vision tasks, the usage of transformer models were boost-
ers behind a large number of state-of-the-art systems. Recently, the Transformer architecture has
also been modified to be applicable to graph data [49], which is briefly recapped in the next
section.
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4.2 Graph Shell Attention in Graph Neural Networks

4.2.3.4 Recap: Graph Transformer Layer

As formalized in [49], a Graph Transformer Layer (GTL) update for layer l ∈ [1..L] including
edge features is defined as:

ĥl+1
u = Ol

h

Hn

i=1

( ∑
v∈N(u)

wi,l
uvV

i,lhl
v) , (4.5)

êl+1
uv = Ol

e

Hn

i=1

(ŵi,l
uv),where , (4.6)

wi,l
uv = softmaxv(ŵi,l

uv) , (4.7)

ŵi,l
uv = (

Qi,lhl
u ·Ki,lhl

v√
di

) ·E i,lel
uv , (4.8)

where Qi,l,Ki,l,V i,l,E i,l ∈ Rdi×d , and Ol
h,O

l
e ∈ Rd×d . The operator

f
denotes the concatenation

of attention heads i = 1, . . . ,H. Subsequently, the outputs ĥl+1
u and êl+1

uv are passed to feed-
forward networks and succeeded by residual connections and normalization layers yielding the
representations hl+1

u and el+1
uv .

A graph’s embedding hG is derived by a permutation-invariant readout function w.r.t. the
nodes in G :

hG = readout({hu|u ∈ V }) (4.9)

A common heuristic for the readout function is to choose a function READOUT(·) ∈
{mean(·),sum(·),max(·)}.

4.2.4 Methodology

This section introduces the novel Graph Shell Attention (SEA) architecture for graph data. SEA
builds on top of the message-passing paradigm of Graph Neural Networks (GNNs) while inte-
grating an expert heuristic.

4.2.4.1 Graph Shells Models

In the novel approach, Graph Transformer Layers (GTLs) [49] are implemented and the frame-
work is extended by a set of experts. A routing layer decides which expert is most relevant for
computing a node’s representation. An expert’s calculation for a node representation differs in
how k-hop neighbors are stored and processed within GTLs.

Generally, starting from a central node, Graph Shells refer to subgraphs that include only
nodes that have at maximum a k-hop distance (k-neighborhood). Formally, the i-th expert com-
prises the information given in the i-th neighborhood Ni(u) = {v ∈ V : dG (u,v) ≤ i)}, where
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(a) Individual experts up to l-hops

(b) Experts use aggregations of previous iterations

(c) Experts take k-hops into account (here: k=2)

GRAPH

SHELL #1

GRAPH

SHELL #N

Figure 4.2: Three variants of SEA models; for each model, the respective fields of 3 experts are shown
from left to right.

u ∈ V denotes the central node. The subgraph G i
u is referred to as the expert’s receptive field.

Notably, increasing the number of iterations within GTLs/GNNs correlates with the number of
experts being used. In the following, the thesis introduces three variants on how experts process
graph shells:

• SEA-GTL. The first graph shell model exploits the vanilla architecture of GTLs for which
shells are defined by the standard graph neural net construction. For a maximal number of L
iterations, a set {Ei(u)}N

i=1 of N = L experts is defined. The embeddings after the l-th iteration
are fed to the l-th expert, i.e., according to Equation 4.5, the information of nodes in G l

u for
a central node u has been processed. Figure 4.2a illustrates this model. From left to right, the
information of nodes being reachable by more hops is processed. Experts processing information
in early iterations refer to short-term dependencies, whereas experts processing more hops yield
information of long-term dependencies.
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4.2 Graph Shell Attention in Graph Neural Networks

• SEA-AGGREGATED. For the computation of the hidden representation hl+1
u for node u on

layer l+1, the second model employs an aggregated value from the preceding iteration. Follow-
ing Equation 4.5, the aggregation function (sum) in GLT considers all 1-hop neighbors N1(u).
For SEA-AGGREGATED, the aggregated value is propagated back to all of u’s 1-hop neighbors.
For a node v∈N1(u), the values received by v are processed according to an aggregation function
AGG ∈ {mean(·),sum(·),max(·)}. Formally:

hl+1
u = AGGl({hl+1

v : v ∈ N(u)}) (4.10)

Figure 4.2b illustrates this graph shell model. In the first iteration, there are no preceding lay-
ers, hence, the first expert processes the information in the same way as in the first model. In
succeeding iterations, the aggregated representations are first sent to neighboring nodes, which
in turn process the incoming representations. These aggregated values define the input for the
current iteration. Full-colored shells illustrate aggregated values from previous iterations.

• SEA-K-HOP. For this model, the aggregate function defined in Equation 4.5 is relaxed.
Given a graph G , we also consider k-hop linkages in the graph connecting a node u with all
entities having a maximum distance of dG (u,v) = k. The relaxation of Equation 4.5 is formalized
as:

ĥl+1
u = Ol

h

Hn

i=1

( ∑
v∈Nk(u)

wi,l
uv V i,l hl

v ) , (4.11)

attention scores Eq. 4.7

embds. of nodes
in k-hop dist.

where Nk(u) denotes the k-hop neighborhood set. This approach allows for processing each
N1(u), . . . ,Nk(u) by own submodules, i.e., for each k-hop neighbors, respective feedforward net-
works are employed to compute Q,K,V in GTLs. Notably, Equation 4.11 can be interpreted as a
generalization of the vanilla architecture, which is given by setting k = 1. Figure 4.2c shows the
k-hop graph shell model with k = 2.

4.2.4.2 SEA: Routing Mechanism

By endowing the new models with experts referring to various graph shells, we gain variable
expressiveness for short- and long-term dependencies. Originally introduced for language mod-
eling and machine translation, Shazeer et al. [190] proposed a Mixture-of-Experts (MoE) layer.
A routing module decides to which expert the attention is steered. This thesis uses a single expert
strategy [57].

The general idea relies on a routing mechanism for a node u’s representation to determine
the best expert from a set {Ei(u)}N

i=1 of N experts processing graph shells as described in the
previous Section 4.2.4.1. The router module consists of a linear transformation whose output is
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. . .→ . . . . . .→ . . .

Node u hu

FFN of 1-st expert FFN of w-th expert FFN of n-th expert

hw
u

router
Embedding

winner
expert

EXPERT #1 EXPERT #W EXPERT #N

Figure 4.3: Routing mechanism to N experts

normalized via softmaxing. The probability of choosing the i-th expert for node u is defined as:

pi(u) =
exp(r(u)i)

∑
N
j exp(r(u) j)

, r(u) = hT
u Wr +br , (4.12)

where r(·) denotes the routing operation with Wr ∈ Rd×N being the routing’s learnable weight
matrix, and br denotes a bias term. The idea is to select the winner expert Ew(·) that is the most
representative for a node’s representation, i.e., where w = argmax

i=1,...,N
pi(u) 21. A node’s represen-

tation calculated by taking the winner’s graph shells into account is then used as input for the
expert’s individual linear transformation:

hw
u = Ew(u)TWw +bw , (4.13)

where Ww ∈ Rd×d denotes the weight matrix of expert Ew(·), bw denotes the bias term. The
node’s representation according to expert Ew(·), is denoted by hw

u . Figure 4.3 shows how the
routing is integrated into the novel architecture.

4.2.4.3 Shells vs. Over-smoothing

Over-smoothing in GNNs is a well-known issue [226] and exacerbates the problem when we
build deeper graph neural net models. Applying the same number of iterations for each node
inhibits the simultaneous expressiveness of short- and long-term dependencies. The novel work-
flow gains expressiveness by routing each node representation towards dedicated experts pro-
cessing only nodes in their k-localized receptive field.

Let G = (V ,E ) be an undirected graph. Following the proof scheme of [153], let A =

21In DL libraries, the argmax(·) operation implicitly calls max()̇ forwarding the maximum of the input. Hence, it
is differentiable w.r.t. to the values yielded by the max op., not to the indices

64



4.2 Graph Shell Attention in Graph Neural Networks

(1(i, j)∈E )i, j∈[N]:={1,...,N} ∈ RN×N be the adjacency matrix and D := diag(deg(i)i∈[N]) ∈ RN×N be
the degree matrix of G where deg(i) := |{ j ∈ V | (i, j) ∈ E }| is the degree of node i. Let Ã :=
A+ IN , D̃ := D+ IN be the adjacent and the degree matrix of graph G augmented with self-loops,
where IN denotes the identity matrix of size N. The augmented normalized Laplacian of G is
defined by ∆̃ := IN−D̃−

1
2 ÃD̃−

1
2 and set P := IN− ∆̃. Let L,C ∈N+ be the layer and channel sizes,

respectively. W.l.o.g, for weights Wl ∈ RC×C(l ∈ [L] := {1, . . . ,L}), we define a GCN associated
with G by f = fL ◦ . . . ◦ f1 where fl : RN×C → RN×C is defined by fl(X) = σ(PXWl), where
σ(·) denotes the ReLU activation function. For M ≤ N, let U be a M-dimensional subspace of
RN . Furthermore, let M be a subspace of RN×C by M =U⊗RC = {∑M

m=1 em⊗wm | wm ∈RC},
where (em)m∈[M] is the orthonormal basis of U . For an input X ∈ RN×C, the distance between X
and M is denoted by dM = inf{∥X−Y∥F | Y ∈M }.

Considering G as M connected components, i.e., V =V1∪ . . .∪Vm, where an indicator vector
of the m-th connected component is denoted by um = (1{n∈Vm})n∈[N] ∈ RN . The authors of [153]
investigated the asymptotic behavior of the output XL of the GCN when L→ ∞:

Proposition 1. Let λ1 ≤ . . . ≤ λN be the eigenvalue of P sorted in ascending order. Then,
we have −1 < λ1,λN−M < 1, and λN−M+1 = . . . = λN = 1. In particular, we have λ =

maxn=1,...N−M|λn| < 1. Further, em = D̃
1
2 um for m ∈ [M] are the basis of the eigenspace as-

sociated with the eigenvalue 1.

Let s = supl∈N+
sl with sl denoting the maximum singular value of Wl , the major theorem and

their implications for GCNs is stated as follows:

Theorem 1. For any initial value X (0), the output of l-th layer X (l) satisfies dM (X (l)) ≤
(sλ )ldM (X (0)). In particular, dM (X (l)) exponentially converges to 0 when sλ < 1.

Proofs of Proposition 1 and Theorem 1 are formulated in [153].
Intuitively, the representations X align subsequently with the subspace M , where the distance

between both converges to zero. Therefore, it can also be interpreted as information loss of graph
neural nets in the limit of infinite layers.

The theoretical justification for the routing mechanism applied in the novel SEA models
comes to light when exploiting the monotonous behavior of the exponential decay where the
initial distance dM (X (0)) is treated as a constant value. The architecture includes the ex-
perts in a cascading manner, where the routing mechanism allows to point to each of the
(dM ( fl(X)))l=1,...,L, separately. From Theorem 1, we get:

dM (X (L))≤ (sλ )LdM (X (0))≤ (sλ )L−1dM (X (0))

≤ . . .≤ (sλ )1dM (X (0)),
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Domain Dataset #Graphs Task

Chemistry
ZINC 12K Graph Regression
OGBG-MOLHIV 41K Graph Classification

Mathematical Modeling PATTERN 14K Node Classification

Table 4.1: Summary dataset statistics

where each inequality is supported by the output of the l-th expert, separately:

L-th expert: dM (X (L)) ≤ (sλ )LdM (X (0))

L-1-th expert: dM (X (L−1)) ≤ (sλ )L−1dM (X (0))

. . . . . . ≤ . . .

1-st expert: dM (X (1)) ≤ (sλ )1dM (X (0))

Hence, the architecture does not suffer from over-smoothing the same way as standard GNNs,
as each captures a different distance dM compared to using a GNN where a pre-defined number
of layer updates is applied for all nodes equally and potentially leading to an over-smoothed
representation.

4.2.5 Evaluation

4.2.5.1 Experimental Setting

Datasets.
ZINC [98] is one of the most popular real-world molecular dataset consisting of 250K graphs.
A subset consisting of 10K train, 1K validation, and 1K test graphs is used in the literature as
benchmark [50].

The thesis also evaluates the new models on ogbg-molhiv [91]. Each graph within the dataset
represents a molecule, where nodes are atoms and edges are chemical bonds.

A benchmark dataset generated by the Stochastic Block Model (SBM) [1] is PATTERN.
The graphs within this dataset do not have explicit edge features.
The benchmark datasets are summarized in Table 4.1.

Implementation Details.
The implementation for this thesis uses PyTorch, Deep Graph Library (DGL) [215], and OGB
[91]. The models are trained on an NVIDIA GeForce RTX 2080 Ti. 22

22Code: https://github.com/christianmaxmike/SEA-GNN
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ZINC
Model #params. MAE

GCN [111] 505K 0.367
GIN [226] 509K 0.526
GAT [207] 531K 0.384
SAN [117] 508K 0.139

Graphormer-SLIM [228] 489K 0.122

Vanilla GTL 83K 0.227
SEA-GTL 347K 0.212

SEA-AGGREGATED 112K 0.215
SEA-2-HOP 430K 0.159

SEA-2-HOP-AUG 709K 0.189

(a) ZINC [98]

OGBG-MOLHIV
Model #params. %ROC-

AUC
GCN-GRAPHNORM [111] 526K 76.06

GIN-VN [226] 3.3M 77.80
DGN [14] 114K 79.05

Graphormer-FLAG [228] 47.0M 80.51

Vanilla GTL 386K 78.06
SEA-GTL 347K 79.53

SEA-AGGREGATED 133K 80.18
SEA-2-HOP 511K 80.01

SEA-2-HOP-AUG 594K 79.08

(b) ogbg-molhiv [91]

PATTERN
Model #params. % ACC

GCN [111] 500K 71.892
GIN [226] 100K 85.590
GAT [207] 526K 78.271

GraphSage [79] 101K 50.516
SAN [117] 454K 86.581

Vanilla GTL 82K 84.691
SEA-GTL 132K 85.006

SEA-AGGREGATED 69K 57.557
SEA-2-HOP 48K 86.768

SEA-2-HOP-AUG 152K 86.673

(c) PATTERN [1]

Table 4.2: Comparison to state-of-the-art; results are partially taken from [117, 50]; color coding
(gold/silver/bronze)

Model Configuration.
The implementation uses the Adam optimizer [110] with an initial learning rate ∈ {1e-3,1e-4}.
It applies the same learning rate decay strategy for all models that half the learning rate if
the validation loss does not improve over a fixed number of 5 epochs. It tunes the pairing
(#heads,hidden dimension)∈ {(4,32),(8,56),(8,64))} and uses READOUT ∈ {sum} as function
for inference on the whole graph information. Batch Normalization and Layer Normalization are
disabled, whereas residual connections are activated per default in GTLs. For dropout, the value
is tuned to be ∈ {0,0.01,0.05,0.07,0.1} and a weight decay ∈ {5e-5,5e-7}. For the number of
graph shells, i.e., number of experts being used, the thesis reports values ∈ {4,6,8,10,12}. As
aggregation function the implementation uses AGG ∈ {mean} for Equation 4.10. As laplacian
encoding, the 8 smallest eigenvectors are used.

4.2.5.2 Prediction Tasks

In the following series of experiments, the thesis investigates the performance of the Graph
Shell Attention mechanism on graph-level prediction tasks for the datasets ogbg-molhiv [91]
and ZINC [98], and a node-level classification task on PATTERN [1]. The evaluation uses
commonly used metrics for the prediction tasks as they are used in [50], i.e., mean absolute error
(MAE) for ZINC, the ROC-AUC score on ogbg-molhiv, and the accuracy on PATTERN.

Competitors. The thesis evaluates the new architectures against state-of-the-art GNN models
achieving competitive results. The report subsumes the vanilla GCN [111], GAT [207] that
includes additional attention heuristics, or more recent GNN architectures building on top of
Transformer-enhanced models like SAN [117] and Graphormer [228]. Moreover, it includes
GIN [226] that is more discriminative towards graph structures compared to GCN [111],
GraphSage [79], and DGN [14] being more discriminative than standard GNNs w.r.t. the
Weisfeiler-Lehman 1-WL test.
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Results. Tables 4.2a, 4.2b, and 4.2c summarize the performances of the SEA models compared
to baselines on ZINC, ogbg-molhiv, and PATTERN. Vanilla GTL shows the results of the imple-
mentation of the GNN model including Graph Transformer Layers [49]. SEA-2-HOP includes
the 2-hop connection within the input graph, whereas SEA-2-HOP-AUG process the input data
the same way as the 2-HOP heuristic, but uses additional feedforward networks for computing
Q, K, V values for the 2-hop neighbors.

For PATTERN, we observe the best result using the SEA-2-HOP model, beating all other
competitors. On the other hand, distributing an aggregated value to neighboring nodes according
to SEA-AGGREGATED yields a too coarse view for graphs following the SBM and loses local
graph structure.

In the sense of Green AI [186] that focuses on reducing the computational cost to encourage
a reduction in resources spent, the novel architecture reaches state-of-the-art performance on
ogbg-molhiv while drastically reducing the number of parameters being trained. Comparing
SEA-AGGREGATED to the best result reported for Graphormer [228], the new model economizes
on 99.71% of the number of parameters while still reaching competitive results.

The results on ZINC enforces the argument of using individual experts compared to vanilla
GTLs, where the best result is reported for SEA-2-HOP.

4.2.5.3 Number of Shells

Next, the thesis examines the performance w.r.t. the number of experts. Notably, increasing
the number of experts correlates with the number of Graph Shells which are taken into account.
Table 4.3 summarizes the results where all other hyperparameters are frozen, and we only have
a variable size in the number of experts. Each model is trained for 500 epochs and the best-
observed metrics on the test datasets are reported. The implementation applies an early stopping
heuristic, where the learning procedure is stopped if no improvements w.r.t. the evaluation met-
rics were observed or if the learning rate scheduler reaches a minimal value which is set to 10−6.
Each evaluation on the test data is conducted after 5 epochs, and the early stopping is effective
after 10 consecutive evaluations on the test data with no improvements. First, note that increasing
the number of experts also increases the model’s parameters linearly. This is due to additional
routings and linear layer being defined for each expert separately. Secondly, the thesis reports
also the average running time in seconds [s] on the training data for each epoch. By construction,
the running time correlates with the number of parameters that have to be trained. The number
of parameters differs from one dataset to another with the same settings due to a different num-
ber of nodes and edges within the datasets and slightly differs if biases are used or not. Note
that we observe better results of SEA-AGGREGATED by decreasing the embedding size from 64
to 32, which also applies for the PATTERN dataset in general. The increase of parameters of
the augmented 2-hop architecture SEA-2-HOP-AUG is due to the additional feedforward layers
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ZINC OGBG-MOLHIV PATTERN
Model #experts #params MAE time/

epoch
#params. %ROC-

AUC
time/
epoch

#params. % ACC time/
epoch

SEA-GTL
4 183K 0.385 13.60 182K 79.24 49.21 48K 78.975 58.14
6 266K 0.368 20.93 263K 78.24 68.67 69K 82.117 82.46
8 349K 0.212 26.24 345K 79.53 84.35 90K 82.983 108.41

10 433K 0.264 31.63 428K 79.35 107.11 111K 84.041 133.73
12 516K 0.249 38.26 511K 79.18 122.99 132K 85.006 168.47

SEA-AGGREGATED
4 49K 0.257 31.24 48K 77.87 60.98 48K 57.490 99.10
6 70K 0.308 44.61 69K 79.21 86.26 69K 57.557 106.79
8 91K 0.249 57.89 90K 77.19 86.93 90K 54.385 131.57

10 112K 0.215 73.49 111K 77.48 102.40 111K 57.221 173.74
12 133K 0.225 87.08 132K 80.18 124.08 132K 57.270 206.73

SEA-2-HOP
4 182K 0.309 14.28 180K 76.30 43.51 48K 86.768 94.04
6 265K 0.213 20.13 263K 77.27 59.82 69K 86.706 138.10
8 347K 0.185 24.91 345K 76.61 79.56 90K 86.707 178.64

10 430K 0.159 32.68 428K 78.38 95.69 111K 86.680 232.91
12 513K 0.188 38.73 511K 80.01 112.93 132K 86.699 269.71

SEA-2-HOP-AUG
4 248K 0.444 16.86 248K 77.21 48.65 65K 84.889 124.96
6 363K 0.350 24.84 363K 75.19 70.05 94K 85.141 203.38
8 478K 0.285 31.48 476K 76.55 90.78 123K 86.660 270.85

10 594K 0.205 39.25 594K 79.08 109.91 152K 86.673 363.58
12 709K 0.189 46.51 707K 77.52 133.48 181K 86.614 421.46

Table 4.3: Influence of the number of experts applied on various SEA models; best configurations are
highlighted in green

being used for the k-hop neighbors to compute the inputs Q, K, V in the graph transformer layer.
Notably, we also observe that similar settings apply for datasets where the structure is an im-
portant feature of the graph, like in molecules (ZINC + ogbg-molhiv). In contrast to that is the
behavior on graphs following the stochastic block model (PATTERN). On the latter one, the best
performance could be observed by including k-hop information, whereas an aggregation yields
too simplified features to be competitive. For the real-world molecules (ZINC + ogbg-molhiv)
datasets, the evaluation revealed that more experts boost the performance for the various SEA
extensions.

ZINC OGBG-MOLHIV PATTERN
Model #exp. k #prms MAE #prms %ROC-

AUC
#prms %ACC

SEA-K-HOP

6
2 265K 0.213 263K 77.27 69K 86.768
3 266K 0.191 263K 76.15 69K 86.728
4 266K 0.316 263K 73.48 69K 86.727

10
2 430K 0.159 428K 78.38 111K 86.680
3 433K 0.171 428K 74.67 111K 86.765
4 433K 0.239 428K 73.72 111K 86.725

Table 4.4: Influence of parameter k for the SEA-K-HOP model; best configuration for each model is
highlighted in green
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4.2.5.4 Stretching Locality in SEA-K-HOP

In the following, the thesis investigates the influence of the parameter k for the SEA-K-HOP

model. Generally, by increasing the parameter k, the model diverges to the full model being
also examined for the SAN architecture explained in [117]. In short, the full setting takes edges
into account that is given by the input data and also sends information over non-existent edges,
i.e., the argumentation is on a full graph setting. In the proposed architecture, the transition is
smoothed from edges being given in the input data to the full setting that naturally arises when
k, the number of hops, is set to a sufficiently high number. Table 4.4 summarizes the results for
the non-augmented model, i.e., no extra linear layers are used for each k-hop neighborhood. The
number of parameters stays the same by increasing k.

4.2.5.5 Distribution of Experts

Lastly, the thesis evaluates the distributions of the experts being chosen to compute the nodes’
representations. The number of experts is set to 8. Figure 4.4 summarizes the relative frequencies
of the experts being chosen on the datasets ZINC, ogbg-molhiv, and PATTERN. Generally, the
performance of the shell attention heuristic degenerates whenever expert collapsing can be ob-
served. In the extreme case, just one expert expresses the mass of all nodes, and the capability to
distribute nodes’ representations over several experts is not leveraged. To overcome expert col-
lapsing, a heuristic can be used where in the early stages of the learning procedure, an additional
epsilon parameter ε introduces randomness. Like a decaying greedy policy in Reinforcement
Learning (RL), the framework chooses a random expert with probability ε and choose the expert
with the highest probability according to the routing layer with a probability of 1−ε . The epsilon
value slowly decays over time. This ensures that all experts’ expressiveness is being explored to
find the best matching one w.r.t. to a node u and prevents getting stuck in a local optimum. The
figure shows the distribution of experts that are relevant for the computation of the nodes’ rep-
resentations. For illustrative purposes, values below 1% are omitted. Generally, nodes are more
widely distributed over all experts in the molecular datasets - ZINC and ogbg-molhiv - for all
models compared to PATTERN following a stochastic block model. Therefore, various experts
are capable of capturing individual topological characteristics of molecules better than vanilla
graph neural networks for which over-smoothing might potentially occur. We also observe that
the mass is distributed to only a subset of the available experts for the PATTERN dataset. Hence,
the specific number of iterations is more expressive for nodes within graph structures following
SBM.
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ZINC ogbg-molhiv PATTERN
(a) SEA-GNN

ZINC ogbg-molhiv PATTERN
(b) SEA-AGGREGATED

ZINC ogbg-molhiv PATTERN
(c) SEA-2-HOP

ZINC ogbg-molhiv PATTERN
(d) SEA-2-HOP-AUG

Figure 4.4: Distribution of 8 experts for models SEA-GNN, SEA-AGGREGATED, SEA-2-HOP, and
SEA-2-HOP-AUG for datasets ZINC, ogbg-molhiv and PATTERN. Relative frequencies are
shown for values ≥ 1%. Numbers attached to the slices refer to the respective experts.
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4.3 Summary
The thesis introduced the theoretical foundation for integrating an expert heuristic within
transformer-based graph neural networks. This opens a fruitful direction for future works that
go beyond successive message-passing to develop even more powerful architectures in graph
learning.

The thesis provides an engineered solution that allows selecting the most representative ex-
perts for nodes in the input graph. For that, the novel model exploits the idea of a routing
layer steering the nodes’ representations towards the individual expressiveness of dedicated ex-
perts. As experts process different subgraphs starting from a central node, the terminology of
Graph Shell Attention (SEA) is introduced, where experts solely process nodes that are in their
respective receptive field. Therefore, additional expressiveness is gained by capturing varying
short- and long-term dependencies expressed by individual experts. In a thorough experimental
study, the thesis shows on real-world benchmark datasets that the gained expressiveness yields
competitive performance compared to state-of-the-art results while being more economically.
Additionally, it reports experiments that stress the number of graph shells that are taken into
account.

A potent research direction is to work on more novel implementations and applications en-
hanced with the graph shell attention mechanism, e.g., where different hyperparameters are used
for different graph shells.
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Probabilistic Graphs

The most important questions of life are indeed, for the most part, really only problems of probability.

Pierre-Simon Laplace
1749 - 1827
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Highlights

• Theoretical complexity study of the flow maximization problem in probabilistic graphs;

• Efficient estimation of the expected information flow based on network graph decomposi-
tion and Monte-Carlo sampling;

• The proposed F-tree structure enables an efficient organization of independent graph com-
ponents and (local) intermediate results for an efficient expected flow computation;

• Algorithms for an iterative selection of edges to be activated to maximize the expected
information flow;

• Thorough experimental evaluation of proposed algorithms;
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5.1 Data Analytics on Probabilistic Graphs
In the analysis of graphs it becomes an integral part to analyze the structure of the data using
various algorithms and apply procedures to shape the data such that we can extract knowledge
from it. Generally, Data Analytics is essential for extracting hidden patterns and gaining knowl-
edge from data. Choosing the appropriate technical tools and for solving analytical questions
and problems is the key differentiator in the economic competition. In recent years, the advance-
ments in Artificial Intelligence (AI) and its Machine Learning and Deep Learning models is the
predominant development in solving special downstream tasks such as classification, clustering,
regression, recognition, pattern detection, association, and so forth. However, it starts with an
appropriate organization of the input data to process diverse tasks more efficiently. In the follow-
ing, the thesis introduces a novel data structure in the scope of probabilistic graphs, i.e., graphs,
where probability values are imposed on the connections of the graph. First, the chapter provides
an overview of different scenarios where probability values play an essential role in real-world
scenarios as the reliability of a graph system is often assumed to be given.

Fields of Application of Probabilistic Networks:

Social Networks.
Research topics in the field of modeling probabilistic graphs revealed innovative access in
creating and understanding the emergence and structure of social networks. In recent years
a growing number of scientists steered their attention on variety settings of social networks.
Those networks can be recognized in many disciplines of social, political and economic life
(cf. [158]). Nevertheless, the calculations of interactions between the involved parties can all
be accomplished in the same manner. The underlying problem just expresses itself in different
ways in diverse realms, i.e., it can be expressed as the dissemination of knowledge/information,
as the exertion of power/influence or as the interplay between companies and customers in the
area of viral marketing. With the opportunities of measuring and monitoring interactions in
a social network over a variable period of time, it also found its way in the sphere of social
science.
Figure 5.1 shows the concept of viral marketing expressed within a social network. The company
reaches potential customers through their advertising. One strategy could be to identify nodes,
e.g., other companies or influential persons, in order to acquire as much new customers as
possible. Therefore, it is needed to identify important links in the network. Further concepts
including the cooperation between various companies could be expressed with probabilities on
the links. One could formulate a statistical view of potential collaborations in the future. The
understanding of reliable dynamic developments in economic processes can be supported by a
sophisticated analysis of social networks.
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Genetic, Genomics and Postgenomics.
A fundamental problem in biology is to understand the structure and functional organization of
genomes. Likewise to other research fields, new technologies allow to collect more data. As a
result, an increase in demand for large-scale statistical methods came up. These can be applied
on so-called ’omics’ databases (’omics’= a neologism denoting data of genomics, proteomics or
metabolomics databases) and other types of biological data (cf. [192]). The processes in chem-
ical biology is expressed in dependency or independency in the collected data. The analysis can
be conducted in a discrete point of time or in a continuous context. Links can be made between
millions of correlated observations from a single individual at different scales, i.e., examining
observations on a molecular level up to an atomic one. By studying living systems, analytics can
answer questions referring prospective expectations or causal issues. With the data being repre-
sented in a graphical model, the understanding of biological mechanisms, predicting outcomes
and deciphering causal relationships can be facilitated. The possibility to express dependencies
within the data being one of the most defining feature of cellular and other biological data, is of
utmost importance.

Transportation Networks.
As web services such as ”Google Maps”, ”Yahoo! maps” or ”Open Street Map” came up with
answering queries like ”Finding the shortest path in travel time from point A to point B”, new
emerging techniques for traffic monitoring were included in this analysis. By collecting data of
roadside sensors or cell phone signals, more traffic data about road networks became available
(cf. [93]).

Data aggregated from roadside sensors include information about the traffic volume, vehicle
speeds etc. It is also possible to classify vehicles coinciding with certain criteria. The main
drawback on this stage is that the collected data cannot guarantee its total correction, i.e., ana-
lytics have to take a note of the limitations of necessary equipment and the delay or even loss
of data while transferring it to a root system. Analyzing the collected data, one should also take
into account the differences of the vehicles’ speed. Therefore, the travel time along each road
segment derived from the collected data of sensors are inherently uncertain and are based on
statistical calculations. Modeling a road network (see Figure 5.2) can be quite efficient using a
graph system. It is quite common to project the travel time onto edge’s weights in a road network.
To express its uncertainty, one can use random variables. A road network including statistical
information about the traffic is often referred to as an uncertain traffic network.

Ad-hoc Networks.
An Ad-hoc network connects temporarily diverse devices communicating with each other for a
certain purpose, i.e., sharing documents, playing multi-player games or providing Internet ac-
cess. The communication is accomplished by using wireless transceivers without the need for
a fixed infrastructure. Compared with more traditional networks like a wireless LAN, in which
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Figure 5.1: Example of viral marketing. Figure 5.2: Example of a road network

the included devices need to communicate through base stations, an ad-hoc network is of dy-
namic nature. In such a network the nodes are devices, i.e., laptops, smart phones, tablets etc.,
and communicating components are linked with each other (cf. [179]). Partially established in
public places (e.g., airport, shopping malls, ...), mobile devices can make Internet in combination
with base stations ubiquitous accessible (see Figure 5.3). In order to keep up a network, links
between devices have to be managed with the result that the communication within the included
components is never interrupted. Therefore, the system has to fulfill the task of maintaining the
information flow between the nodes. For now, it is also subject of research to develop stable
Vehicular Ad Hoc Network (VANet for short). In this context, nodes are vehicles or so-called
Road-Side-Units (RSU). A VANet has a high dynamic topology. Again, the task is to establish a
mobile Internet providing the ability that the vehicles could communicate with each other simul-
taneously. This might be of interest for safety purposes, e.g., rescue service, fire departments,
police cars, etc.

WSN - Wireless Sensor Networks.
A special type of ad-hoc networks are Wireless Sensor Networks (WSN). The nodes of such a
network - also referred to as a communication graph - are small sensors (see Figure 5.4). A WSN
is typically composed of components providing same features. Incorporated functionalities al-
low it to record, for example, thermal conditions, pressure measurements or register acoustic
signals. The sensors are also equipped with small processors being able to transmit or receive
information wireless at short-range. In difference to an ad-hoc network the sensors are in most
applications stationary. Also the number of nodes in a WSN is quite large giving a global view
of a monitored region. The sensors are exchanging information which is made accessible to an
user through one or more so-called gateway node(s). These gateways are designated sink nodes
(source, base station) of a sensor network. The reliability of a sensor network depends on the
set of wireless links connecting the nodes and, therefore, enabling the communication within
the integrated sensors. A link between two components can depend on i) the relative distance
between them, ii) the transmit power used to send the data, or iii) the surrounding environment
(cf. [179]). Considering a WSN observing the thermal conditions of a forested area. In order to
detect outbreaks of fire, the sensors are communicating anomalous values to adjacent nodes. By
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Figure 5.3: Example of viral marketing. Figure 5.4: Example of a road network

analyzing the recorded values of different sensors, the fire can be located geographically. This
evaluated information is transmitted to a gateway, where the ranger is informed about the forest
fire. One question arising in this scenario is how to ensure that the information is transmitted to
the gateway? Which sensors need to communicate with each other maximizing the probability
that the fire will be detected? Which links need to be established to increase the system’s reli-
ability? Answers to these questions can be given by analyzing the graph’s topology and direct
one’s attention to the optimization of information flow in probabilistic graphs.

5.2 Flow Tree for Probabilistic Graphs

Reliable propagation of information through large networks, e.g., communication networks, so-
cial networks or sensor networks is very important in many applications concerning marketing,
social networks, and wireless sensor networks. However, social ties of friendship may be ob-
solete, and communication links may fail, inducing the notion of uncertainty in such networks.
This thesis addresses the problem of optimizing information propagation in uncertain networks
given a constrained budget of edges. It is shown that this problem requires to solve two NP-hard
subproblems: the computation of expected information flow, and the optimal choice of edges. To
compute the expected information flow to a source vertex, the F-tree is proposed as a specialized
data structure, that identifies independent components of the graph for which the information
flow can either be computed analytically and efficiently, or for which traditional Monte-Carlo
sampling can be applied independently of the remaining network. For the problem of finding
the optimal edges, the thesis proposes a series of heuristics that exploit properties of this data
structure. The evaluation shows that these heuristics lead to high quality solutions, thus, yielding
high information flow, while maintaining low running time.

Graph Configuration.
The configuration used for the novel data structure is in the realm of single-layer, static, and
homogeneous graphs shown in Figure 5.5a. Additionally, probability values are attached to the
undirected edges to express the reliability of the linkage between two nodes. The transmission of
information units is expressed via weights being imposed on the nodes in the graph. In the eval-
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uation, transportation networks are discussed where nodes within the graph have attribute values
about the coordinates (highlighted in blue in the configurator). The proposed data structure to
compute the information flow in a probabilistic setting is settled in the technical domain of Data
Analytics.
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Figure 5.5: Graph Configuration and methodology’s classification used to solve the efficient maximiza-
tion information flow problem in probabilistic graphs by an Flow tree (F-tree)

5.2.1 Motivation

Nowadays, social and communication networks have become ubiquitous in our daily life to re-
ceive and share information. Whenever we are navigating the World Wide Web (WWW), up-
dating our social network profiles, or sending a text message on our cell-phone, we participate
in an information network as a node. In such settings, network nodes exchange some sort of
information: In social networks, users share their opinions and ideas, aiming to convince oth-
ers. In Wireless Sensor Networks (WSN), nodes collect data and aim to ensure that this data
is propagated through the network: Either to a destination, such as a server node, or simply to
as many other nodes as possible. Abstractly speaking, in all of these networks, nodes aim at
propagating their information, or their belief, throughout the network. The event of a successful
propagation of information between nodes is subject to inherent uncertainty. In a wireless sen-
sor, telecommunication or electrical network, a link can be unreliable and may fail with certain
probability [72, 175]. In a social network, trust and influence issues may impact the likelihood
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(a) original graph (b) Dijkstra MST (c) Optimal five-edge flow (d) possible world g1

Figure 5.6: Running example.

of social interactions or the likelihood of convincing another of an individual’s idea [77, 108, 2].
For example, consider professional social networks like LinkedIn. Such networks allow users to
endorse each others’ skills and abilities. Here, the probability of an edge may reflect the likeli-
hood that one user is willing to endorse another user. The probabilistic graph model is commonly
used to address such scenarios in a unified way (e.g., [133, 155, 162, 235, 229, 114, 236]). In
this model, each edge is associated with an existential probability to quantify the likelihood that
this edge exists in the graph. Traditionally, to maximize the likelihood of a successful communi-
cation between two nodes, information is propagated by flooding it through the network. Thus,
every node that receives a bit of information will proceed to share this information with all its
neighbors. Clearly, such a flooding approach is not applicable for large communication and so-
cial networks, as the communication between two network nodes incurs a cost: Sensor network
nodes have limited computing capability, memory resources and power supply, but require bat-
tery power to send and receive messages, and are also limited by their bandwidth; individuals
of a social network require time and sometimes even additional monetary resources to convince
others of their ideas. For instance, a professional networking service may provide, for a fee, a
service to directly ask a limited number of users to endorse another user Q. The challenge is to
maximize the expected number of endorsements that Q will receive, while limiting the budget
of users asked by the service provider. The first candidates to ask are Q’s direct connections. In
addition, if a user u has already endorsed Q, then u’s connections can be asked if they trust u’s
judgment and want to make the same endorsement.

This thesis addresses the following problem: Given a probabilistic network graph G with
edges that can be activated, i.e., enabled to transfer information, or stay inactive. The problem is
to send/receive information from a single node Q in G to/from as many nodes in G as possible
assuming a limited budget of edges that can be activated. To solve this problem, the main focus
is on the selection of edges to be activated.

Example 1. To illustrate the problem setting, consider the network depicted in Figure 5.6a. The
task is to maximize the information flow to node Q from other nodes given a limited budget of
edges. This example assumes equal weights of all nodes. Each edge of the network is labeled with
the probability of a successful communication. A naive solution is to activate all edges. Assuming
each node to have one unit of information, the expected information flow of this solution can be
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shown to be ≃ 2.51. While maximizing the information flow, this solution incurs the maximum
possible communication cost. A traditional trade-off between these single-objective solutions
is using a probability maximizing Dijkstra’s MST, as depicted in Figure 5.6b. The expected
information flow in this setting can be shown to aggregate to 1.59 units, while requiring six
edges to be activated. Yet, it can be shown that the solution depicted in Figure 5.6c dominates
this solution: Only fives edges are used, thus further reducing the communication cost, while
achieving a higher expected information flow of ≃ 2.02 units of information to Q.

The aim of this thesis is to efficiently find a near-optimal sub-network, which maximizes
the expected flow of information at a constrained budget of edges. In Example 1, the informa-
tion flow for an example graph is computed. But in fact, this computation has been shown to be
exponentially hard in the number of edges of the graph and, thus, impractical to be solved analyt-
ically. Furthermore, the optimal selection of edges to maximize the information flow is shown to
be NP-hard. These two subproblems define the main computational challenges addressed in this
thesis. To tackle these challenges, the remainder of this chapter is organized as follows. After a
survey of related work in Section 5.2.2, the thesis recapitulates common definitions for stochas-
tic networks and formally defines the problem setting in Section 5.2.3. After a more detailed
technical overview in Section 5.2.4, the theoretical heart of this work is presented in Section
5.2.5. The thesis shows how to identify independent subgraphs, for which the information flow
can be computed independently. This allows to divide the main problem into much smaller sub-
problems. To conquer these subproblems, the approach identifies cases for which the expected
information flow can be computed analytically, and it proposes to employ Monte-Carlo sampling
to approximate the information flow of the remaining cases. Section 5.2.5.3 is the algorithmic
core of the chapter, showing how aforementioned independent components can be organized hi-
erarchically in an F-tree which is inspired by the block-cut tree [199, 90, 222]. This structure
allows to aggregate results of individual components efficiently, and the thesis shows how previ-
ous Monte-Carlo sampling results can be re-used as more edges are selected and activated. The
experimental evaluation in Section 5.2.7 shows that the novel algorithms significantly outper-
form traditional solutions, in terms of combined communication cost and information flow, on
synthetic and real stochastic networks.

5.2.2 Related Work

Reliability and Influence computation in probabilistic graphs (a.k.a. uncertain graphs) has re-
cently attracted much attention in the data mining and database research communities. In the
following, state-of-the-art publications are summarized and the new model is related in this con-
text.

Subgraph Reliability. A related and fundamental problem in uncertain graph mining is the
so-called subgraph reliability problem, which asks to estimate the probability that two given (sets
of) nodes are reachable. This problem, well studied in the context of communication networks,
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has seen a recent revival in the database community due to the need for scalable solutions for
big networks. Specific problem formulations in this class ask to measure the probability that two
specific nodes are connected (two-terminal reliability [3]), all nodes in the network are pairwise
connected (all-terminal reliability [188]), or all nodes in a given subset are pairwise connected (k-
terminal reliability [86, 80]). Extending these reliability queries, where source and sink node(s)
are specified, the corresponding graph mining problem is to find, for a given probabilistic graph,
the set of most reliable k-terminal subgraphs [106]. All these problem definitions have in com-
mon that the set of nodes to be reached is predefined, and that there is no degree of freedom in
the number of activated edges - thus, all nodes are assumed to attempt to communicate to all their
neighbors, which can be overly expensive in many applications.

Reliability Bounds. Several lower bounds on (two-terminal) reliability have been defined
in the context of communication networks [22, 25, 68, 166]. Such bounds could be used in the
place of the proposed sampling approach, to estimate the information gain obtained by adding a
network edge to the current active set. However, for all these bounds, the computational com-
plexity to obtain these bounds is at least quadratic in the number of network nodes, making these
bounds unfeasible for large networks. Very simple but efficient bounds have been presented in
[109], such as using the most-probable path between two nodes as a lower bound of their two-
terminal reliability. However, the number of possible (non-circular) paths is exponentially large
in the number of edges of a graph, such that in practice, even the most probable path will have a
negligible probability, thus, yielding a useless upper bound. Thus, since none of these probability
bounds are sufficiently effective and efficient for practical use, the proposed data structure uses
a sampling approach for parts of the graph where no exact inference is possible.

Influential Nodes. Existing work motivated by applications in marketing provide methods to
detect influential members within a social network. This can help to promote a new product. The
task is to detect nodes, i.e., persons, where the chance that the product is recommended to a broad
range of connected people is maximized. In [43], [169] a framework is provided which considers
the interactions between the persons in a probabilistic model. As the problem of finding the most
influential vertices is NP-hard, approximation algorithms are used in [108] outperforming basic
heuristics based on degree centrality and distance centrality which are applied traditionally in
social networks. This branch of research has in common that the task is to activate a constrained
number of nodes to maximize the information flow, whereas the problem definition in this thesis
constrains the number of activated edges for a single specified query/sink node.

Reliable Paths. In mobile ad hoc networks, the uncertainty of an edge can be interpreted as
the connectivity between two nodes. Thus, an important problem in this field is to maximize the
probability that two nodes are connected for a constrained budget of edges [72]. In this work,
the main difference to the thesis’ work is that the information flow to a single destination is
maximized, rather than the information flow in general. The heuristics [72] cannot be applied
directly to the problem stated in this thesis, since clearly, maximizing the flow to one node may
detriment the flow to another node.
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Bi-connected components. The F-tree that is proposed in this thesis is inspired by the block-
cut tree [199, 90, 222]. The main difference is that the novel approach aims at finding cyclic
subgraphs, where nodes are bi-connected. For subgraphs having a size of at least three vertices,
this problem is equivalent to finding bi-connected subgraphs, which is solved in [199, 90, 222].
Thus, the proposed data structure treats bi-connected subgraphs of size less than three separately,
grouping them together as mono-connected components. More importantly, this existing work
does not show how to compute, estimate and propagate probabilistic information through the
structure, which is the main contribution of this thesis.

5.2.3 Problem Definition

A probabilistic undirected graph is given by G = (V ,E ,W,P), where V is a set of vertices,
E ⊆ V ×V is a set of edges, W : V 7→R+ is a function that maps each vertex to a positive value
representing the information weight of the corresponding vertex and P : E 7→ (0,1] is a function
that maps each edge to its corresponding probability of existing in G . Hence, Definition 11 is
extended by a weighting function. In the following, it is assumed that the existence of different
edges are independent from one another. Let us note, that the proposed approach also applies to
other models such as the conditional probability model [162], as long as a computational method
for an unbiased drawing of samples of the probabilistic graph is available.

In a probabilistic graph G , the existence of each edge is a random variable. Thus, the topology
of G is a random variable, too. The sample space of this random variable is the set of all possible
graphs. A possible graph g = (Vg,Eg) of a probabilistic graph G is a deterministic graph which
is a possible outcome of the random variables representing the edges of G . The graph g contains
a subset of edges of G , i.e. Eg ⊆ E . The total number of possible graphs is 2|E<1|, where |E<1|
represents the number of edges e ∈ E having P(e) < 1, because for each such edge, we have
two cases as to whether or not that edge is present in the graph. Let W denote the set of all
possible graphs. The probability of sampling the graph g from the random variables representing
the probabilistic graph G is given by the following sampling or realization probability Pr(g):

Pr(g) = ∏
e∈Eg

P(e) · ∏
e∈E \Eg

(1−P(e)). (5.1)

Figure 5.6a shows an example of a probabilistic graph G and one of its possible realization
g1 in 5.6d. This probabilistic graph has 210 = 1024 possible worlds. Using Equation 5.1, the
probability of world g1 is given by:

Pr(g1) =0.6 ·0.5 ·0.8 ·0.4 ·0.4 ·0.5 · (1−0.1)·
· (1−0.3) · (1−0.4) · (1−0.1) = 0.00653184

Definition 18 (Path). Let G = (V ,E ,W,P) be a probabilistic graph and let v0,vn ∈ V be two
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nodes such that v0 ̸= vn. An (acyclic) path path(v0,vn) = (v0,v1,v2, . . . ,vn) is a sequence of
vertices, such that (∀vi ∈ path(v0,vn))(vi ∈V ) and (∀vi ∈ path(v0,vn−1))((vi,vi+1) ∈ E ).

Notably, in contrast to Definition 3, a path in Definition 18 is based on the sequence of
vertices rather than on the sequence of edges being traversed.

Definition 19 (Reachability). The network reachability problem as defined in [101, 32] computes
the likelihood of the binomial random variable ↕(i, j,G ) of two nodes i, j ∈ V being connected
in G , formally:

P(↕(i, j,G )) := ∑
g∈W

∏
e∈Eg

P(e) · ∏
e∈E \Eg

(1−P(e)) · ↕(i, j,g),

where ↕(i, j,g) is an indicator function that returns one if there exists a path between nodes
i and j in the (deterministic) possible graph g, and zero otherwise. For a given query node Q,
the thesis’ aim is to optimize the information gain, which is defined as the total weight of nodes
reachable from Q.

Definition 20 (Expected Information Flow). Let Q ∈ V be a node and let G = (V ,E ,W,P) be a
probabilistic graph, then flow(Q,G ) denotes the random variable of the sum of vertex weights of
all nodes in V reachable from Q, formally:

flow(Q,G ) := ∑
v∈V

P(↕(Q,v,G )) ·W (v).

Due to linearity of expectations, and exploiting that W (v) is deterministic, we can compute the
expectation E(flow(Q,G )) of this random variable as

E(flow(Q,G )) = E( ∑
v∈V

P(↕(Q,v,G )) ·W (v)) = ∑
v∈V

E(P(↕(Q,v,G ))) ·W (v) (5.2)

Given the definition of Expected Information Flow in Equation 5.2, the formal problem definition
of optimizing the expected information flow of a probabilistic graph G for a constrained budget
of edges can be stated.

Definition 21 (Maximum Expected Information Flow). Let G = (V ,E ,W,P) be a probabilistic
graph, let Q ∈ V be a query node and let k be a non-negative integer. The Maximum Expected
Information Flow

MaxFlow(G ,Q,k) = argmaxG=(V ,E ′⊆E ,W,P),|E ′|≤kE(flow(Q,G )), (5.3)

is the subgraph of G maximizing the information flow towards Q constrained to having at most
k edges.
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Computing MaxFlow(G ,Q,k) efficiently requires to overcome two NP-hard subproblems.
First, the computation of the expected information flow E(flow(Q,G )) to vertex Q for a given
probabilistic graph G is NP-hard as shown in [32]. In addition, the problem of selecting the opti-
mal set of k vertices to maximize the information flow MaxFlow(G ,Q,k) is a NP-hard problem
in itself, as shown in the following.

Theorem 2. Even if the Expected Information Flow flow(Q,G ) to a vertex Q can be computed
in O(1) for any probabilistic graph G , the problem of finding MaxFlow(G ,Q,k) is still NP-hard.

Proof. In this proof, it is shown that a special case of computing MaxFlow(G ,Q,k) is NP-
complete, thus, implying that the general problem is NP-hard. As shown in Figure 5.7, we
reduce the 0-1 knapsack problem to the problem of computing MaxFlow(G ,Q,k). Thus, assume
a 0-1 knapsack problem: Given a capacity integer W and given a set {i1, ..., in} of n items each
having an integer weight wi and an integer value vi. The 0-1 knapsack problem is to find the
optimal vector x = (x1, ...,xn) ∈ {0,1}n such that ∑

n
i=1 vi · xi, subject to ∑

n
i=1 wi · xi ≤W . This

problem is known to be NP-complete [107]. We reduce this problem to the problem of comput-
ing MaxFlow(G ,Q,k) as follows. Let G = (V ,E ,G,P) be a probabilistic graph such that Q is
connected to n nodes {V1, ...,Vn} (one node for each item of the knapsack problem). Each node
Vi is connected to a chain of wi− 1 nodes {V 1

i , ...,V
wi−1
i }. All edges have a probability of one,

i.e., P(v ∈ V ) = 1. The information of a node is set to wi if it is the (only) leaf node vwi−1
i of the

branch of G connected to Vi and zero otherwise. Finally, set k =W . Then, the solution of the 0-1
knapsack problem can be derived from the constructed MaxFlow(G ,Q,k) problem by selecting
all items ni such that the corresponding node vwi−1

i is connected to Q. Thus, if we can solve the
MaxFlow(G ,Q,k) problem in polynomial time, then we can solve the 0-1 knapsack problem in
polynomial time: A contradiction assuming P ̸= NP.

Item Weight Value

i1 2 4

I2 4 3

i3 1 2

W=5

Q

0

4

0

0

0

3

2

k=5

Figure 5.7: Example of the Knapsack Reduction of Theorem 2
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5.2.4 Roadmap

To compute MaxFlow(G ,Q,k), we first need an efficient solution to approximate the reachability
probability E(P(↕(Q,v,G ))) from Q to/from a single node v. Since this problem can be shown
to be #P-hard, Section 5.2.5.3 presents an approximation technique which exploits stochastic
independencies between branches of a spanning tree of subgraph G rooted at Q. This technique
allows to aggregate independent subgraphs of G efficiently, while exploiting a sampling solution
for components of the graph MaxFlow(G ,Q,k) that contains cycles.

Once we can efficiently approximate the flow E(P(↕(Q,v,G ))) from Q to each node v ∈ V ,
we next tackle the problem of efficiently finding a subgraph MaxFlow(G ,Q,k) that yields a
near-optimal expected information flow given a budget of k edges in Section 5.2.6. Due to the
theoretic result of Theorem 2, the thesis proposes heuristics to choose k edges from G . Finally,
the experiments in Section 5.2.7 support the theoretical intuition that the thesis’ solutions for
the two aforementioned subproblems synergize: An optimal subgraph will choose a budget of k
edges in a tree-like fashion, to reach large parts of the probabilistic graph. At the same time, the
solutions exploit tree-like subgraphs for efficient probability computation.

5.2.5 Expected Flow Estimation via Flow Tree

In this section, the expected information flow of a given subgraph G⊆ G is estimated. Following
Equation 5.2, the reachability probability P(↕(Q,v,G )) between Q and a node v can be used
to compute the total expected information flow E(flow(Q,G )). This problem of computing the
reachability probability between two nodes has been shown to be #P-hard [72, 32] and sampling
solutions have been proposed to approximate it [130, 52]. In this section, the thesis presents
a solution to identify subgraphs of G for which the information can be computed analytically
and efficiently, such that expensive numeric sampling only has to be applied to small subgraphs.
First, the concept of Monte-Carlo sampling of a subgraph is introduced.

5.2.5.1 Traditional Monte-Carlo Sampling

Lemma 1. Let G = (V ,E ,W,P) be an uncertain graph and let S be a set of sample worlds
drawn randomly and unbiased from the set W of possible graphs of G . Then the average infor-
mation flow in samples in S

1
|S | ∑

g∈S
flow(Q,g) =

1
|S |
· ∑

g∈S
∑
v
↕(Q,v,g) ·W (v) (5.4)

is an unbiased estimator of the expected information flow E(flow(Q,G )), where ↕(Q,v,g) is an
indicator function that returns one if there exists a path between nodes Q and v in the (determin-
istic) sample graph g, and zero otherwise.
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Proof. For µ to be an unbiased estimator of E(flow(Q,G )), we have to show that E(µ) =
E(flow(Q,G )). Substituting µ yields E(µ) = E( 1

|S |∑g∈S flow(Q,g)). Due to linearity of ex-

pectations, this is equal to 1
|S |∑g∈S E(flow(Q,g)). The sum over |S | identical values can be

replaced by a factor of |S |. Reducing this factor yields E(flow(Q,g ∈S )). Following the as-
sumption of unbiased sampling S from the set W of possible worlds, the expected information
flow E(flow(Q,g)) of a sample possible world g ∈S is equal to the expected information flow
E(flow(Q,G )).

Naive sampling of the whole graph G has disadvantages: First, this approach requires to
compute reachability queries on a set of possibly large sampled graphs. Second, a rather large
approximation error is incurred. The thesis approaches these drawbacks by first describing how
non-cyclic subgraphs, i.e., trees (cf. Definition 4), can be processed in order to compute the
information flow exactly and efficiently without sampling. For cyclic subgraphs, the thesis shows
how sampled information flows can be used to compute the information flow in the full graph.

5.2.5.2 Mono-Connected vs. Bi-Connected graphs

The main observation that will be exploited is the following: if there exists only one possible
path between two vertices, then we can compute their reachability probability efficiently.

Definition 22 (Mono-Connected Nodes). Let G = (V ,E ,W,P) be a probabilistic graph and let
A,B ∈ V . If path(A,B) = (A = v0,v1, ...,vk−1,vk = B) is the only path between A and B, i.e.,
there exists no other path p ∈ V ×V ×V ∗ that satisfies Definition 18, then we denote A and B
as mono-connected.

In the following, when the query vertex Q is clear from the context, a vertex A is called
mono-connected if it is mono-connected to the query vertex Q.

Lemma 2. If two vertices A and B are mono-connected in a probabilistic graph G , then the
reachability probability between A and B is equal to the product of the edge probabilities included
in path(A,B), i.e.,

↕(A,B,G ) =
k−1

∏
i=0

P((vi,vi+1)) with vi ∈ path(A,B)

Proof. Following possible world semantics as defined in Definition 19, the reachability proba-
bility ↕(A,B,G ) is the sum of probabilities of all possible worlds where B is connected to A. It
is shown that A and B are connected in a possible graph g iff all k−1 edges ei = (vi,vi+1) with
vi,vi+1 ∈ path(A,B) exist.
⇒: By contradiction: Let A and B be connected in g, and let any edge on path(A,B) be missing.
Then there must exist a path pathprime(A,B) ̸= path(A,B) which contradicts the assumption that
A and B are mono-connected.
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⇐: If all edges on path(A,B) exist, then B is connected to A following the assumption that
path(A,B) is a path from A to B.

Due to the assumption of independent edges, the probability that all edges in path(A,B) exist
is given by ∏

k−1
i=0 P((vi,vi+1)).

Definition 23 (Mono-Connected Graph). A probabilistic graph G =(V ,E ,W,P) is called mono-
connected, iff all pairs of vertices in V are mono-connected.

Next, Lemma 2 is generalized to whole subgraphs, such that a specified vertex Q in that
subgraph has a unique path to all other vertices in the subgraph. Using Lemma 2, we constitute
the following theorem that will be exploited in the remainder of this thesis.

Theorem 3. Let G = (V ,E ,G,P) be a probabilistic graph, let Q ∈ V be a node. If G is mono-
connected, then E(flow(Q,G )) can be computed efficiently.

Proof. E(flow(Q,G )) is the sum of reachability probabilities of all nodes, according to Equa-
tion 5.2. If G is connected and non-cyclic, we can guarantee that each node has exactly one
path to Q and, thus, is mono-connected. Thus, Lemma 2 is applicable to compute the reach-
ability probability between Q and each node v ∈ V . Due to linearity of expectations, i.e.,
E(X +Y ) = E(X)+E(Y ) for random variables X and Y , we can aggregate individual reacha-
bility expectations, yielding E(flow(Q,G )).

Analogously to Definition 22, bi-connected nodes are defined.

Definition 24 (Bi-Connected Nodes). Let G = (V ,E ,W,P) be a probabilistic graph and let
A,B∈ V . If there exists (at least) two paths path1(A,B) and path2(A,B), such that path1(A,B) ̸=
path2(A,B), then we denote A and B as bi-connected.

Definition 25 (Bi-Connected Graph). A bi-connected graph [199, 90] is a connected probabilis-
tic graph G = (V ,E ,W,P) such that removal of any one vertex A∈ V will still yield a connected
probabilistic graph.

Lemma 3. In a bi-connected graph G of size |V | ≥ 3, all pairs of vertices are bi-connected
following Definition 24.

Proof. By contradiction, let A,B be two nodes in G that are mono-connected. Let path(A,B) be
the only path between them.
Case 1: path(A,B) = (A,B) contains no other vertices: Since G is bi-connected, removal of
vertex A yields a graph where B and C are connected by some path path(C,B). At the same time,
removal of vertex B yields a graph where A and C are connected by some path path(A,C). Thus,
the concatenation of these paths yields an alternative path between A and B, contradicting the
assumption that (A,B) are mono-connected by path (A,B).
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(a) (b)

Figure 5.8: Running example graph with corresponding F-tree

Case 2: path(A,B) = (A,C1, ...,Cn,B) contains other vertices. Let C1 be such a vertex. Since G is
bi-connected, removal of vertex C1 yields a graph where A and B are still connected, contradicting
the assumption that A and B are mono-connected by path(A,B) only.

The information flow within a bi-connected graph can not be computed efficiently using
Theorem 3, as the flow between any two nodes A to B is shared by more than one path. In
the next section, the thesis proposes techniques to substitute bi-connected subgraphs by super-
nodes, for which the information flow can be estimated using Monte-Carlo sampling exploiting
Lemma 1. By substituting the bi-connected subgraphs by super-nodes for which the method
applies sampling and memoizes the sampling information for these super-nodes, the procedure
yields a mono-connected graph that uses the substituted super-nodes. This approach maximizes
the partitions of the graph for which expensive Monte-Carlo estimation can be replaced using
Theorem 3.

The next section will show how to achieve this goal, by employing a F-tree of the graph. This
data structure borrowed from graph theory partitions the graph into bi-connected components
(a.k.a. “blocks”) generated by bi-connected subgraphs, and identifies vertices of the graph as
articulation vertices to connect two bi-connected components. These articulation vertices are
exploited by having them represent all the information flow that is estimated to flow to them
from their corresponding bi-connected component.

5.2.5.3 Flow tree (F-tree)

In this section, it is proposed to adapt the block-cut tree [199, 90, 222] to partition a graph
into independent bi-connected components. Instead of sampling the whole uncertain graph, the
purpose of this index structure is to exploit Theorem 3 for mono-connected components, and
to apply local Monte-Carlo within bi-connected components only. The employed Flow tree (F-
tree) memoizes the information flow at each node. Before it is shown how to utilize the F-tree
for efficient information flow computation, a formal definition is given.
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Definition 26 (Flow tree). Let G = (V ,E ,W,P) be a probabilistic graph and let Q ∈ V be
a vertex for which the expected information flow is computed. A Flow tree (F-tree) is a tree
structure defined as follows:
1) Each component of the F-tree is a connected subgraph of G . A component can be mono-
connected or bi-connected.
2) A mono-connected component MC = (MC.V ⊆ V ,MC.AV ∈ V ) is a set of vertices MC.V ∪
MC.AV that form a mono-connected subgraph (cf. Definition 23) in G . The vertex MC.AV is
called articulation vertex. Intuitively, a mono-connected components represents a tree-like struc-
ture rooted in MC.AV . Using Theorem 3, we can efficiently compute the information flow from
all vertices MC.V to MC.AV .
3) A bi-connected component BC = (BC.V,BC.P(v), BC.AV ) is a set of vertices BC.V ∪BC.AV
of size greater than two that form a bi-connected subgraph G ′ in G according to Definition 25.
Intuitively, a bi-connected component represents a subgraph describing a cycle. In this case, we
can estimate the likelihood of being connected to the articulation vertex BC.AV using Monte-
Carlo sampling in Lemma 1. The function BC.P(v) : BC.V 7→ [0,1] maps each vertex v ∈ BC.V
to the estimated reachability probability reach(v,BC.AV ) of v being connected to BC.AV in G .
4) For each pair of (mono- or bi-connected) components (C1,C2), it holds that the intersection
C1.V ∩C2.V = /0 of vertices is empty. Thus, each vertex in V is mapped to at most one compo-
nent’s vertex set.
5) Two different components may share the same articulation vertex, and the articulation vertex
of one component may be in the vertex set of another component.
6) The articulation vertex of the root of an F-tree is Q ∈ V .

Intuitively speaking, a component is a set of vertices together with an articulation vertex that
all information must flow through in order to reach Q. By the iterative construction algorithm
presented in Section 5.2.5.4, each component is guaranteed to have such an articulation vertex,
guiding the direction to vertex Q. The idea of the F-tree is to use components as virtual nodes,
such that all actual vertices of a component send their information to their articulation vertex.
Then the articulation vertex forwards all information to the next component, until the root of the
tree is reached where all information is sent to articulation vertex Q.

Example 2. As an example for an F-tree, consider Figure 5.8a, showing a probabilistic graph.
For brevity, assume that each edge e ∈ E has an existential probability of p(e) = 0.5 and that all
vertices v ∈ V have an information weight corresponding to their id, e.g., vertex 6 has a weight
of six. A corresponding F-tree is shown in Figure 5.8b. A mono-connected component is given
by A = ({1,2,3,6},Q). For this component, we can exploit Theorem 3 to analytically compute
the flow of information from any vertex in {1,2,3,6} to articulation vertex Q: vertices 3 and 6
are connected to Q with probability 0.5. Thus, these nodes contributed an expected information
flow of 3 · 0.5 = 1.5 and 6 · 0.5 = 3, respectively. Vertices 2 and 3 are connected to Q with a
probability of 0.5 · 0.5 = 0.25, respectively, following Lemma 2. Thus, these nodes contribute
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an expected information of 2 · 0.25 = 0.5 and 3 · 0.25 = 0.75. Following Theorem 3, we can
aggregate these probabilities to obtain the expected information flow from vertices {1,2,3,6} to
articulation vertex Q as 5.75.

A bi-connected component is defined by B = ({4,5},3), representing a sub-graph having a
cycle. Having a cycle, we cannot exploit Theorem 3 to compute the flow of a vertex in {4,5} to
vertex 3. But we can sample the subgraph spanned by vertices in {3,4,5} to estimate probabil-
ities that vertices {4,5} are connected to articulation vertex 3 using Lemma 1. With sufficient
samples, this will yield a probability of around 0.375 for both vertices to be reached. Again
using Theorem 3, we compute an information flow of 0.375 ·4+0.375 ·5 = 3.375 to articulation
vertex 3. Given this expected flow, we can use the mono-connected component A to compute
the expected information analytically that is further propagated from the articulation vertex 3
of component B to the articulation vertex Q of A. As the articulation vertex of component B is
in the vertex set of component A, component B is a child of component A in Figure 5.8b since
B propagates its information to A. As we have already computed above, the probability of ver-
tex 3 to be connected to its articulation vertex Q is 0.25, yielding an information flow worth
3.375 ·0.25 = 0.84375 units flowing from vertices {4,5} to Q. Again, exploiting Theorem 3, we
can aggregate this to a total flow of 5.75+0.84375 = 6.59375 from vertices {1,2,3,4,5,6} to Q.

Another bi-connected component is C = ({7,8,9},6), for which we can estimate the infor-
mation flow from vertices 7, 8, and 9 to articulation vertex 6 numerically using Monte-Carlo
sampling. Since vertex 6 is in A, component C is a child of A. We find another bi-connected com-
ponent D = ({10,11},9), and two more mono-connected components E = ({13,14,15,16},9)
and F = ({12},11).

In this example, the structure of the F-tree allows to compute or approximate the expected
information flow to Q from each vertex. For this purpose, only three small components B, C
and D need to be sampled. This is a vast reduction of sampling space compared to a naive
Monte-Carlo approach that samples the full graph: rather than sampling a single random variable
having 2|E | = 219 = 524288 possible worlds, we only need to sample three random variables
corresponding to the bi-connected components B, C and D having 23 = 8, 24 = 16, and 23 = 8
possible worlds, respectively. Clearly, this approach reduces the number of edges (marked in
red in Figure 5.8a) that need to be sampled in each iteration. More importantly, the experiments
show that this approach of sampling components independently vastly decreases the variance of
the total information flow yielding a more precise estimation at the same number of samples.

Having defined syntax and semantics of the F-tree, the next section shows how to maintain
the structure of an F-tree when additional edges are selected. It is important to note that the
intention is not to insert all edges of a probabilistic graph G into the F-tree. Rather, we only add
the edges that are selected to compute the maximum flow MaxFlow(G ,Q,k) given a constrained
budget of k edges. Thus, even in a case where all vertices a bi-connected, such as in the ini-
tial example in Figure 5.6a, it is notable and supported by the experimental evaluation, that an
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optimal selection of edges prefers a spanning-tree-like topology, which synergizes well with the
definition of an F-tree. The next section shows how to build the structure of the F-tree iteratively
by adding edges to an initially empty graph.

The next subsection proposes an algorithm, to update an F-tree when a new edge is selected,
starting at a trivial F-tree that contains only one component ( /0,Q). Using this edge-insertion al-
gorithm, the thesis shows how to choose promising edges to be inserted to maximize the expected
information flow. The selection of the edges of the F-tree will be shown in section 5.2.6.

5.2.5.4 Insertion of Edges into an F-tree

Following Definition 26 of an F-tree, each vertex v ∈ G is assigned to either a single mono-
connected component (noted by a flag v.isMC in the algorithm below), a single bi-connected
component (noted by v.isBC), or to no component, and thus disconnected from Q, noted by
v.isNew. To insert a new edge (vsrc,vdest), the edge-insertion algorithm derived in this section
differs between these cases as follows:
Case I) vsrc.isNew and vdest .isNew: We omit this case, as the edge selection algorithms presented
in Section 5.2.6 always ensure a single connected component and initially the F-tree contains
only vertex Q.
Case II) vsrc.isNew exclusive-or vdest .isNew: Due to considering undirected edges, we assume
without loss of generality that vdest .isNew. Thus, vsrc is already connected to F-tree.

Case IIa): vsrc.isMC: In this case, a new dead end is added to the mono-connected structure
MCsrc which is guaranteed to remain mono-connected. We add vdest to MCsrc.V .

Case IIb): vsrc.isBC: In this case, a new dead end is added to the bi-connected structure
BCsrc. This dead end becomes a new mono-connected component MC = ({vdest},vsrc). Intu-
itively speaking, we know that vertex vdest has no other choice but propagating its information to
vsrc. Thus, vsrc becomes the articulation vertex of MC. The bi-connected component BCsrc adds
the new mono-connected component MC to its list of children.
Case III) vsrc and vdest belong to the same component, i.e., Csrc =Cdest

Case IIIa) This component is a bi-connected component BC: Adding a new edge between
vsrc and vdest within component BC may change the reachability BC.P(v) of each vertex v∈BC.V
to reach their articulation vertex BC.AV . Therefore, BC needs to be re-sampled to numerically
estimate the reachability probability function P(v) for each v ∈ BC.V .

Case IIIb): This component is a mono-connected component MC: In this case, a new cy-
cle is created within a mono-connected component, thus, some vertices within MC may be-
come bi-connected. We need to (i) identify the set of vertices affected by this cycle, (ii) split
these vertices into a new bi-connected component, and (iii) handle the set of vertices that have
been disconnected from MC by the new cycle. These three steps are performed by the split-
Tree(MC,vsrc,vdest) function as follows: (i) The new cycle is identified as follows: Compare
the (unique) paths of vsrc and vdest to MC.AV , and find the first vertex v∧ that appears in both
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paths. Now we know that the new cycle is decribed by path(v∧,vsrc), path(vdest ,v∧) and the new
edge between vsrc and vdest . (ii) All of these vertices are added to a bi-connected component
BC = (path(v∧,vsrc)∪ path(vdest ,v∧) \ v∧,P(v),v∧) using v∧ as their articulation vertex. All
vertices in MC having v∧ (except v∧ itself) on their path are removed from MC. The probability
mass function P(v) is estimated by sampling the subgraph of vertices in BC.V . (iii) Finally, or-
phans of MC that have been split off from MC due to the creation of BC need to be collected into
new mono-connected components. Such orphans having a vertex of the cycle BC on their path to
MC.AV will be grouped by these vertices: For each vi ∈ BC.V , let orphani denote the set of or-
phans separated by vi (separated means vi being the first vertex in BC.V on the path to MC.AV ).
For each such group, a new mono-connected component MCi = (orphani,vi) is created. All
these new mono-connected components with vi ∈ BC.V become children of BC. If MC.V is now
empty, thus, all vertices of MC have been reassigned to other components, then MC is deleted
and BC will be appended to the list of children of the component C where BC.AV = v∧ ∈C.V .
In case of MC.V being not empty, we are left over with a mono-connected component MC with
v∧ ∈MC.V . The new bi-connected component BC becomes a child of MC.
Case IV) vsrc and vdest belong to different components Csrc ̸= Cdest . Since the F-tree is a tree-
structure itself, we can identify the lowest common ancestor Canc of Csrc and Cdest . The insertion
of edge (vsrc,vdest) has incurred a new cycle ⃝ going from Canc to Csrc, then to Cdest via the
new edge, and then back to Canc. This cycle may cross mono-connected and bi-connected com-
ponents, which all have to be adjusted to account for the new cycle. We need to identify all
vertices involved to create a new cyclic, thus bi-connected, component for ⃝, and we need to
identify which parts remain mono-connected. In the following cases, all components involved
in⃝ are adjusted iteratively. First, we initialize⃝= ( /0,P,vanc), where vanc is the vertex within
Canc where the cycle meets if Canc is a mono-connected component, and Canc.AV otherwise. Let
C denote the component that is currently adjusted:

Case IVa) C =Canc: In this case, the new cycle may enter Canc from two different articulation
vertices. In this case, Case III is applied, treating these two vertices as vsrc and vdest , as these two
vertices have become connected transitively via the big cycle⃝.

Case IVb) C is a bi-connected component: In this case C becomes absorbed by the new
cyclic component⃝, thus⃝.V =⃝.V ∪C.V , and⃝ inherits all children from C. The rational
is that all vertices within C are able to access the new cycle.

Case IVc) C is a mono-connected component: In this case, one path in C from one vertex v
to C.AV is now involved in a cycle. All vertices involved in path(v,C.AV ) are added to⃝.V and
removed from C. The operation splitTree(C,v,C.AV ) is called to create new mono-connected
components that have been split off from C and become connected to ⃝ via their individual
articulation vertices.

In the following, the graph of Figure 5.8a and its corresponding F-tree representation of
Figure 5.8a is used to insert additional edges and to illustrate the interesting cases of the insertion
algorithm of Section 5.2.5.4.
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(a) Case IIb: Insertion of edge a. (b) Case IIIa: Insertion of edge b.

(c) Case IIIb: Insertion of edge c (d) Case IVa-c: Insertion of edge d

Figure 5.9: Examples of edge insertions and F-tree update cases using the running example of Figure
5.8a.
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5.2.5.5 Insertion Examples

In the following, the graph of Figure 5.8a and its corresponding F-tree (FT) representation of
Figure 5.8b is used to insert additional edges and to illustrate the interesting cases of the insertion
algorithm of Section 5.2.5.4.

Let us start by an example for Case II in Figure 5.9a. Here, we insert a new edge a = (7,17),
thus connecting a new vertex 17 to the FT. Since vertex 7 belongs to the bi-connected component
BC, we apply Case IIb. A new mono-connected component G = ({17},7) is created and added
to the children of BC.

In Figure 5.9b, we insert a new edge b = (6,8) instead. In this case, the two connected
vertices are already part of the FT, thus, Case II does not apply. We find that both vertices belong
to the same component C. Thus, Case III is used and more specifically, since component C is
a bi-connected component BC, Case IIIa is applied. In this case, no components need to be
changed, but the probability function BC.P(v) has to re-approximated, as the probabilities of
nodes 7, 8 and 9 will have increased probability of being connected to articulation vertex 6, due
to the existence of new paths arising by inserting edge b.

Next, in Figure 5.9c, an edge is inserted between vertices 14 and 15. Both vertices belong
to the mono-connected component E, thus, Case IIIb is applied here. After insertion of edge
c, the previously mono-connected component E = ({13,14,15,16},9) now contains a cycle in-
volving vertices 13, 14 and 15. (i) We identify this cycle by considering the previous paths
from vertices 14 and 15 to their articulation vertex 9. These paths are (14,13,9) and (15,13,9),
respectively. The first common vertex on this path is 13; (ii) We create a new bi-connected com-
ponent G = ({14,15},13), containing all vertices of this cycle using the first common vertex 13
as articulation vertex. We further remove these vertices except the articulation vertex 13 from
the mono-connected component E; the probability function G.P(v) is initialized by sampling
the reachability probabilities within G; and component G is added to the list of children of E;
(iii) Finally, orphans need to be collected. These are vertices in E, which have now become
bi-connected to Q, because their (previously unique) path to their former articulation vertex 9
crosses a new cycle. We find that one vertex, vertex 16, had 15 as the first removed vertex on its
path to 9. Thus, vertex 16 is moved from component E into a new mono-connected component
H = ({16},15), terminating this case. Summarizing, vertex 16 in component H now reports
its information flow to vertex 15 in component G, for which the information flow to articula-
tion vertex 13 in component G is approximated using Monte-Carlo sampling. This information
is then propagated analytically to vertex 9 in component E, subsequently, the remaining flow
that has been propagated all this way, is approximatively propagated to articulation vertex 6 in
component C, which allows to analytically compute the flow to articulation vertex Q.

For the last case, Case IV, considering Figure 5.9d, where a new edge d = (11,15) connected
two vertices belonging to two different components D and E. We start by identifying the cycle
that has been created within the FT, involving components D and E, and meeting at the first

95



5. Probabilistic Graphs

common ancestor component C. For each of these components in the cycle (D,C,E), one of the
sub-cases of Case IV is used. For component C, we have that C =Canc is the common ancestor
component, thus, triggering Case IVa. We find that both components D and E used vertex 9 as
their articulation vertex vanc. Thus, the only cycle incurred in component C is the (trivial) cycle
(9) from vertex 9 to itself, which does not require any action. We initialize the new bi-connected
component⃝= ( /0,⊥,9), which initially holds no vertices, and has no probability mass function
computed yet (the operator⊥ can be read as null or not-defined) and uses vanc = 9 as articulation
vertex. For component D, we apply Case IVb, as D is a bi-connected component, it becomes
absorbed by a new bi-connected component⃝, now having⃝= ({10,11},⊥,9). For the mono-
connected component E Case IVc is used. We identify the path within E that is now involved
in a cycle, by using the path (15,13,9) between the involved vertex 15 to articulation vertex
9. All nodes on this path are added to ⃝, now having ⃝ = ({10,11,15,13},⊥,9). Using the
splitTree(·) operation similar to Case III, we collect orphans into new mono-connected com-
ponents, creating G = ({14},13) and H = ({16},15) as children of ⃝. Finally, Monte-Carlo
sampling is used to approximate the probability mass function⃝.P(v) for each v ∈⃝.V .

5.2.6 Optimal Edge Selection

The previous section presented the F-tree, a data structure to compute the expected information
flow in a probabilistic graph. Based on this structure, heuristics to find a near-optimal set of
k edges maximizing the information flow MaxFlow(G ,Q,k) to a vertex Q (see Definition 21)
are presented in this section. Therefore, the thesis first presents a Greedy-heuristic to iteratively
add the locally most promising edges to the current result. Based on this Greedy approach, the
thesis presents improvements, aiming at minimizing the processing cost while maximizing the
expected information flow.

5.2.6.1 Greedy Algorithm

Aiming to select edges incrementally, the Greedy algorithm initially uses the probabilistic graph
G0 = (V ,E0 = /0,P), which contains no edges. In each iteration i, a set of candidate edges
candList is maintained, which contains all edges that are connected to Q in the current graph Gi,
but which are not yet selected in Ei. Then, each iteration selects an edge e in addition maximizing
the information flow to Q, such that Gi+1 = (V ,Ei∩ e,P), where

e = argmax
e∈candList

E(flow(Q,(V ,Ei∩ e,P))). (5.5)

For this purpose, each edge e ∈ candList is probed, by inserting it into the current F-tree using
the insertion method presented in Section 5.2.5.3. Then, the gain in information flow incurred by
this insertion is estimated by Equation 1. After k iterations, the graph Gk = (V ,Ek,P) is returned.
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5.2.6.2 Component Memoization

This section introduces an optimization reducing the number of computations for bi-connected
components for which their reachability probabilities have to be estimated using Monte-Carlo
sampling, by exploiting stochastic independence between different components in the F-tree.
During each Greedy-iteration, a whole set of edges candList is probed for insertion. Some of
these insertions may yield new cycles in the F-tree, resulting from cases III and IV. Using com-
ponent Memoization, the algorithm memoizes, for each edge e in candList, the probability mass
function of any bi-connected component BC that had to be sampled during the last probing of
e. Should e again be inserted in a later iteration, the algorithm checks if the component has
changed, in terms of vertices within that component or in terms of other edges that have been
inserted into that component. If the component has remained unchanged, the sampling step is
skipped, using the memoized estimated probability mass function instead.

5.2.6.3 Sampling Confidence Intervals

A Monte Carlo sampling is controlled by a parameter samplesize which corresponds to the num-
ber of samples taken to approximate the information flow of a bi-connected component to its
articulation vertex. In each iteration, the amount of samples is reduced by introducing confi-
dence intervals for the information flow for each edge e ∈ candList that is probed. The idea is to
prune the sampling of any probed edge e for which we can conclude that, at a sufficiently large
level of significance α , there must exist another edge e′ ̸= e in candList, such that e′ is guaran-
teed to have a higher information flow than e, based on the current number of samples only. To
generate these confidence intervals, we recall that, following Equation 5.4 the expected informa-
tion flow to Q is the sample-average of the sum of information flow of each individual vertex.
For each vertex v, the random event of being connected to Q in a random possible world follows
a binomial distribution, with an unknown success probability p. To estimate p, given a number
S of samples and a number 0≤ s≤ S of ’successful’ samples in which Q is reachable from v, the
model borrows techniques from statistics to obtain a two sided 1−α confidence interval of the
true probability p. A simple way of obtaining such confidence interval is by applying the Central
Limit Theorem of Statistics to approximate a binomial distribution by a normal distribution.

Definition 27 (α-Significant Confidence Interval). Let S be a set of possible graphs drawn from
the probabilistic graph G , and let p̂ := s

S be the fraction of possible graphs in S in which Q is
reachable from v. With a likelihood of 1−α , the true probability E(P(↕(Q,v,G ))) that Q is
reachable from v in the probabilistic graph G is in the interval

p̂± z ·
√

p̂(1− p̂), (5.6)

where z is the 100 · (1− 0.5 ·α) percentile of the standard normal distribution. We denote the
lower bound as Elb(P(↕(Q,v,G ))) and the upper bound as Eub(P(↕(Q,v,G ))). We use α = 0.01.
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To obtain a lower bound of the expected information flow to Q in a graph G , we use the sum
of lower bound flows of each vertex using Equation 5.4 to obtain

Elb(flow(Q,G )) = ∑
v∈V

Elb(P(↕(Q,v,G ))) ·W (v)

as well as the upper bound

Eub(flow(Q,G )) = ∑
v∈V

Eub(P(↕(Q,v,G ))) ·W (v)

Now, at any iteration i of the Greedy algorithm, for any candidate edge e′ ∈ candList having
an information flow lower bounded by lb := Elb(flow(Q,Gi)∪ e), any other candidate edge e′ ∈
candList is pruned having an upper bound ub := Eub(flow(Q,Gi∪ e′)) iff lb > ub. The rational
of this pruning is that, with a confidence of 1−α , it is guaranteed that inserting e′ yields less
information gain than inserting e. To ensure that the Central Limit Theorem is applicable, this
pruning step is only applied if at least 30 sample worlds have been drawn for both probabilistic
graphs.

5.2.6.4 Delayed Sampling

For the last heuristic, the number of Monte-Carlo samplings is reduced that need to be performed
in each iteration of the Greedy Algorithm in Section 5.2.6.1. In a nutshell, the idea is that an edge,
which yields a much lower information gain than the chosen edge, is unlikely to become the edge
having the highest information gain in the next iteration. For this purpose, the thesis introduces
a delayed sampling heuristic. In any iteration i of the Greedy Algorithm, let e denote the best
selected edge, as defined in Equation 5.5. For any other edge e′ ∈ candList, let us define its
potential pot(e′) := E(flow(Q,(V ,Ei∩e′,P))

E(flow(Q,(V ,Ei∩e,P))
, as the fraction of information gained by adding edge e′

compared to the best edge e which has been selected in an iteration. Furthermore, let us define
the cost cost(e′) as the number of edges that need to be sampled to estimate the information gain
incurred by adding edge e′. If the insertion of e′ does not incur any new cycles, then cost(e′) is
zero. Now, after iteration i where edge e′ has been probed but not selected, we define a sampling
delay

d(e′) = ⌊logc
cost(e′)
pot(e′)

⌋,

which implies that e′ will not be considered as a candidate in the next d iterations of the Greedy
algorithm of Section 5.2.6.1. This definition of delay, makes the (false) assumption that the
information gain of an edge can only increase by a factor of c > 1 in each iteration, where
the parameter c is used to control the penalty of having high sampling cost and having low
information gain. As an example, assume an edge e′ having an information gain of only 1% of
the selected best edge e, and requiring to sample a new bi-connected component involving 10
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edges upon probing. Also, let us assume that the information gain per iteration (and thus by
insertion of other edges in the graph), may only increase by a factor of at most c = 2. We get
d(e′) = ⌊log2

10
0.01⌋ = ⌊log21000⌋ = 9. Thus, using delayed sampling and having c = 2, edge e′

would not be considered in the next nine iterations of the edge selection algorithm. It must be
noted that this delayed sampling strategy is a heuristic only, and that no correct upper-bound c
for the change in information gain can be given. Consequently, the delayed sampling heuristic
may cause the edge having the highest information gain not to be selected, as it might still be
suspended. The experiments show that even for low values of c (i.e., close to 1), where edges are
suspended for a large number of iterations, the loss in information gain is fairly low.

5.2.7 Evaluation

In this section, the thesis empirically evaluates efficiency and effectiveness of the proposed solu-
tions to compute a near-optimal subgraph of an uncertain graph to maximize the information flow
to a source node Q, given a constrained number of edges, according to Definition 21. As mo-
tivated in the introducing Section 5.2.1, two main application fields of information propagation
on uncertain graphs are: i) information/data propagation in spatial networks, such as wireless
networks or a road networks, and ii) information/belief propagation in social networks. These
two types of uncertain graphs have extremely different characteristics, which require separate
evaluation. A spatial network follows a locality assumption, constraining the set of pairwise
reachable nodes to a spatial distance. Thus, the average shortest path between a pair of two ran-
domly selected nodes can be very large, depending on the spatial distance. In contrast, a social
network has no locality assumption, thus, allowing to move through the network with very few
hops. As a result, without any locality assumption, the set of nodes reachable in k-hops from a
query node may grow exponentially large in the number of hops. In networks following a locality
assumption, this number grows polynomial, usually quadratic (in sensor and road networks on
the plane) in the range k, as the area covered by a circle is quadratic to its radius. The experi-
ments have shown, that the locality assumption - which clearly exists in some applications - has
tremendous impact on the performance of the algorithms proposed in this thesis, including the
baseline. Consequently, both cases are evaluated separately.

All experiments were evaluated on a system with Linux 3.16.7, x86_64, Intel(R) Xeon(R)
CPU E5,2609, 2.4GHz. All algorithms were implemented in Python 2.7. Dependencies: Net-
workX 1.11, numpy 1.13.1.

5.2.7.1 Dataset Descriptions

This section describes the employed uncertain graph datasets. For both cases, i.e., with locality
assumption and no-locality assumption, synthetic and real datasets were used.
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Synthetic Datasets: No locality assumption. The first model Erdös is based on the idea
of the Erdös-Rényi model [53], distributing edges independently and uniformly between nodes.
Probabilities of edges are chosen uniformly in [0,1] and weights of nodes are integers selected
uniformly from [0,10]. It is known that this model is not able to capture real human social
networks [132], due to the lack of modeling long tail distributions produced by “social animals”.
Thus, this data generation is only used in the first set of experiments and real social network data
is employed later.

Synthetic Datasets: Locality assumption. Two synthetic data generating scheme to gen-
erate spatial networks are used. For the first data generating scheme - denoted by partitioned -,
each vertex has the same degree d. The dataset is partitioned into n = 2 · |V |d partitions P0, ...,Pn−1

of size d. Each vertex in partition Pi is connected to all and only vertices in the previous and next
partition P(i−1) mod n and P(i+1) mod n. This data generation allows to control the diameter of a
resulting network, which is guaranteed to be equal to n−1.

For a more realistic synthetic data set - denoted as WSN -, a wireless sensor network is
simulated. Here, vertices have two spatial coordinates selected uniformly in [0,1]. Using a
global parameter ε , any vertex v is connected to all vertices located in the ε-distance of v using
Euclidean distance. For both settings, the probabilities of edges are chosen uniformly in [0, 1].

Real Datasets: No locality assumption. This thesis uses the social circles of Facebook
dataset published in [131]. This dataset is a snapshot of the social network of Facebook - con-
taining a subgroup of 535 users which form a social circle, i.e., a highly connected subgraph,
having 10k edges. These users have excessive number of ’friends’. Yet, it has been discussed
in [219] that the number of real friends that influence, affect and interact with an individual is
limited. According to this result, and due to the lack of better knowledge which people of this
social network are real friends, we apply higher edge probabilities uniformly selected in [0.5;1.0]
to 10 random adjacent nodes of each user. Due to symmetry, an average user has 20 such high
probabilities ’close friends’. All other edges are assigned edge probabilities uniformly selected
in ]0;0.5].

For the experiments on collaboration network data, the computer science bibliography DBLP
is used. The structure of this dataset is such that if an author vi co-authored a paper with author
v j, where i ̸= j, the graph contains a undirected edge e from vi to v j. If a paper is co-authored
by k authors this generates a completely connected (sub)graph (clique) on k nodes. This dataset
has been published in [227]. Probabilities on edges are uniformly distributed in [0;1]. The graph
consists of |V |= 317,080 vertices and |E |= 1,049,866 edges.

Finally, the proposed methods were also evaluated on the YouTube social network, first pub-
lished in [146]. In this network, edges represent friendship relationships between users. The
graph consists of |V |= 1,134,890 vertices and |E |= 2,987,624 edges. Again, the probabilities
on edges are uniformly distributed in [0;1].

Real Datasets: Locality assumption. For the experiments on spatial networks, the road net-
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(a) Changing Graph Size with locality assumption

(b) Changing Graph Size without locality assumption

Figure 5.10: Experiments with changing graph size

work of San Joaquin County23 was used, having |V |= 18,263 vertices and |E |= 23,874 edges.
The vertices of the graph are road intersections and edges correspond to connections between
them. In order to simulate real sensor nodes located at road intersections, we have connected
vertices that are spatially distant from each other have a lower chance to successfully communi-
cate. To give an example, for two vertices having a distance of a in meters, the communication
probability is set to e−0.001a. Thus, a 10m, 100m and 1km distance will yield a probability of
e−0.01 = 99%, e−0.1 = 90%, and e−1 = 36%, respectively.

5.2.7.2 Evaluated Algorithms

The algorithms that were evaluated in this section are denoted and described as follows:
Naive As proposed in [130, 52] the first competitor Naive does not utilize the strategy of

component decomposition of Section 5.2.5 and utilizes a pure sampling approach to estimate
reachability probabilities. To select edges, the Naive approach chooses the locally best edge, as
shown in Section 5.2.6, but does not use the F-tree representation presented in Section 5.2.5.3.
A constant Monte-Carlo sampling size of 1000 samples is used.

Dijkstra Shortest-path spanning trees [193] are used to interconnect a wireless sensor net-
work (WSN) to a sink node. To obtain a maximum probability spanning tree, we proceed as
follows: the cost w(e) of each edge e ∈ E is set to w(e) = − log(P(e)). Running the traditional
Dijkstra algorithm on the transformed graph starting at node Q yields, in each iteration, a span-
ning tree which maximizes the connectivity probability between Q and any node connected to Q
[187]. Since, in each iteration, the resulting graph has a tree structure, this approach can fully
exploit the concept of Section 5.2.5, requiring no sampling step at all.

23https://www.cs.utah.edu/ lifeifei/SpatialDataset.htm
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(a) Changing Graph Density with locality assumption

(b) Changing Graph Density without locality assumption

Figure 5.11: Experiments with changing graph density

FT employs the F-tree proposed in Section 5.2.5.3 to estimate reachability probabilities. To
sample bi-connected components, 1000 samples were drawn for a fair comparison to Naive. All
following FT-Algorithms build on top of FT.

FT+M additionally memoizes for each candidate edge e the pd f of the corresponding bi-
connected component from the last iteration (cf. Section 5.2.6.2).

FT+M+CI further ensures that probing of an edge is stopped whenever another edge has a
higher information flow with a certain degree of confidence, as explained in Section 5.2.6.3.

FT+M+DS instead tries to minimize the candidate edges in an iteration by leaving out edges
that had a small information gain/cost-ratio in the last iteration (cf. Section 5.2.6.4). Per default,
the penalization parameter is set to c = 2.

FT+M+CI+DS is a combination of all the above concepts.

5.2.7.3 Experiments on Synthetic Data

This section employs randomly generated uncertain graphs. We generate graphs having no-
locality-assumption using Erdös graphs and having locality assumption using the partitioned
generation. Both generation approaches are described in Section 5.2.7.1. This data generation
allows us to scale the topology of the uncertain graph G in terms of size and density. Unless
specified otherwise, a graph size of |V | = 10,000 is used, a vertex degree of 6 and a budget of
edges k = 200 in all experiments on synthetic data.

Graph Size. We first scale the size |V | of the synthetic graphs. Figure 5.10a shows the
information flow (left-hand-side) and running time (right-hand-side) for the synthetic data set
following the locality assumption. First, we note that the Dijkstra-based shortest-path spanning
tree yields an extremely low information flow, far inferior to all other approaches. The reason
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is that a spanning tree allows no room for failure of edges: whenever any edge fails, the whole
subtree become disconnected from Q. We further note that all other algorithms, including the
Naive one, are oblivious to the size of the network, in terms of information flow and running
time. The reason is that, due to the locality assumption, only a local neighborhood of vertices
and edges is relevant, regardless of the global size of the graph. Additionally, we see that the de-
layed sampling heuristic (DS) yields a significant running time performance gain, whilst keeping
the information flow constantly high. The combination of all heuristics (FT+M+CI+DS) yields
significant loss of information flow due to the pruning strategy of the confidence interval heuris-
tic (CI). Figure 5.10b, shows the performance in terms of information gain and running time for
the Erdös graphs having no locality assumption. The first observation is that Dijkstra and Naive
yield a significantly lower information flow than the proposed approaches. For Dijkstra, this re-
sult is again contributed to the constraint of constructing a spanning tree and, thus, not allowing
any edges to connect the flow between branches. For the Naive approach, the loss in information
flow requires a closer look. This approach samples the whole graph only 1000 times, to estimate
the information flow. In contrast, the F-tree approach samples each individual bi-connected com-
ponent 1000 times. Why is the later approach more accurate? A first, informal, explanation is
that, for a constant sampling size, the information flow of a small component can be estimated
more accurately than for a large component. Intuitively, sampling two independent components n
times each, yields a total of n2 combinations of samples of their joint distribution. More formally,
this effect is contributed to the fact that the variance of the sum of two random variables increases
as their correlation increases, since Var(∑n

i=1 Xi) = ∑
n
i=1Var(Xi)+2∑1≤i< j≤nCov(Xi,X j) [150].

Furthermore, the Naive approach also incurs an approximation error for mono-connected com-
ponents, for which all F-tree (FT) approaches compute the exact flow analytically. We further
see that the Naive approach, which has to sample the whole graph, is by far the most inefficient.
On the other end of the scope, the Dijkstra approach, which is able to avoid sampling entirely
by guaranteeing a single mono-connected component, is the fastest in all experiments, but at the
cost of information flow. We also see that in Figure 5.10b all algorithms stay in the same order of
magnitude in their running time and information flow as the graph increases. This is due to the
fact that in this experiment we stay constant in the average vertex degree, i.e., deg(vi) ≈ 10 for
all vi ∈ V . We also observe that the CI heuristic yields an overhead of computing the intervals
whilst losing information gain due to its rigorous pruning strategy.

Graph Density. In this experiment, the average degree of vertices is scaled. In the case of
graphs following the locality assumption, the gain in information flow of all proposed solutions
compared to Dijkstra is quite significant as shown in Figure 5.11a, particularly when the degree
of vertices is low. This is the case in road networks, but also in most sensor and ad hoc networks.
The reason is that, in such case, spanning trees gain quickly in height as edges are added, thus,
incurring low-probability paths that require circular components to connect branches to support
the information flow. For larger vertex degrees, the optimal solutions become more star-like,
thus, becoming more tree-like. For a small vertex degree, we observe also that the same bi-
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(a) Changing budget k with locality assumption

(b) Changing budget k without locality assumption

Figure 5.12: Experiments with changing Budget

connected-components are occurring in consecutive iterations resulting in a running time gain
for the memoization approach. As the complexity of the graph grows, the gap between the FT
and FT+M shrinks as more candidates result in an increased number of possibilities where bi-
connected components can occur and, thus, make cached results for bi-connected components
obsolete. The results shown in Figure 5.11b indicate that the Dijkstra approach is able to find
higher quality result in graphs without locality assumption for small (average) vertex degrees.
This is contributed to the fact that in graphs with this setting, the optimal result will be almost
tree-like, having only a few inter-branch edges. The algorithms FT+M+CI and FT+M+CI+DS
yield a trade-off between running time and accuracy, i.e., we observe a slightly loss in informa-
tion gain coming along with a better running time for a setting with a larger (average) vertex
degree.

Scaling of parameter k. In the next experiments, shown in Figure 5.12, the thesis shows how
the budget k of edges affects the performance of the proposed algorithms. In the case of a network
following the locality assumption, we observe in Figure 5.12a that the overall information gain
per additional edge slowly decreases. This is clear, since in average, the hop distance to Q
increases as more edges are added, increasing the possible links of failure, thus, decreasing the
likelihood of propagating a nodes information to Q. We observe that the effectiveness of Dijkstra
in the locality setting quickly deteriorates, since the constraint of returning a tree structure leads
to paths between Q and other connected nodes that become increasingly unlikely, making the
Dijkstra approach unable to handle such settings. Here, the memoization heuristic M performs
extremely well. A sever loss of information gain is observed when running FT+M+CI and
FT+M+CI+DS due to its pruning policy. Later one is the best in terms of running time.
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(a) WSN ε = 0.05

(b) WSN ε = 0.07

Figure 5.13: Experiments in synthetic Wireless Sensor Networks

In contrast, using a network following no locality assumption in Figure 5.12b, we see that both
Dijkstra and Naive yield an low information gain for a large budget k. For Dijkstra, the reason is
that for large values of k, the depths of the spanning tree, which is lower bounded by logdk, incurs
longer paths without any backup route in the case of a single failure. For the Naive approach, the
low information gain is contributed to the high variance of sampling the information flow of the
whole graph for each edge selection. Further, we see that the Naive approach further suffers from
an extreme running time, requiring to re-sample the whole graph in each iteration. The F-tree
in combination with the memoization give a consistently high information gain while having a
low running time. The heuristics suffering from a loss in information gain yield a slightly better
running time.

Synthetic Wireless Sensor Networks (WSN). In these experiments, real world wireless sensor
networks (WSN) are simulated. We embed a number of vertices - here |V |= 1,000 - according
to a uniform distribution in a spatial space [0;1]× [0;1]. For each vertex, we observe adjacent
vertices being in its proximity which is regulated by an additional parameter ε . Figure 5.13
shows the results. We observe nearly the same behavior as in Figure 5.11a. As the parameter ε is
a regulator for the graph’s interconnectivity, we observe again a fair trade-off of information gain
and running time for the proposed heuristics. By increasing the parameter ε , hence, simulating
dense graphs, the gap between Dijkstra and the F-tree approaches is reduced. For these datasets,
we can also observe the benefit of FT+M+CI+DS which still identifies a high information gain
whilst reducing the running time, as the number of candidates are reduced, respectively, we can
prune candidates in earlier stages of each iteration.
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(a) San Joaquin County Road Network (b) Circle of Friends - Facebook

(c) DBLP (d) YouTube

Figure 5.14: Experiments on Real World Datasets

Parameter c. The thesis also evaluated the penalization parameter c of the delayed sampling
heuristics and summarizes the results. In all evaluated settings, ranging from 1.01 ≥ c ≥ 16,
the running time consistently decreases as c is decreased, yielding a factor of 2 to 10 speed-up
for c = 1.2, depending on the dataset, and a multi-orders of magnitude speed-up for c = 1.01.
Yet, for c < 1.2 we start to observe a significant loss of information flow. For the extreme
case of c = 1.01, the information flow became worse than Dijkstra, as edges become suspended
unreasonable long, choosing edges nearly arbitrarily. For the default setting of c = 2 used in all
previous evaluations, the delayed sampling heuristics showed insignificant loss of information,
but yielding a better running time.
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5.2.7.4 Experiments on Real World Data

The first real world data experiments use the San Joaquin County Road Network. As road net-
works are of very sparse nature, and follow a strong locality assumption, the proposed approaches
outperforms Dijkstra significantly as k is scaled to k = 250. Thus, Dijkstra is highly undesirable
as budget is wasted without proper return in information flow. In this setting, following the lo-
cality assumption, we see that all heuristics yield a significant run time performance gain, while
the information flow remains similar for all heuristics.

In the next experiment, the social circles of friends dataset is employed, an extremely dense
network with no locality assumption, where most pairs of nodes are connected. As described in
Section 5.2.7.1, each vertex in this graph only has ten high-probability links, whereas all other
nodes have a lower probability. Figure 5.14b shows that Dijkstra yields a most significant loss of
information, as it is forced to quickly build a large-height tree to maintain high probability edges.
Further, we see that the memoization heuristic yields a significant running time improvement of
about one order of magnitude. Notably, in such dense settings, heuristics CI and DS show almost
no effect in both, runtime and information flow.

Figure 5.14c shows similar results on the DBLP collaboration network dataset, a sparse net-
work which follows no locality assumption. Again, we observe a loss of potential information
flow for Dijkstra as k increases.

Finally, we observe similar behavior of all approaches on a bigger graph such as the YouTube
social network, which refers to a sparse setting with no locality assumption. Figure 5.14d shows
the results. As in the other settings, we can observe an extremely low information flow of Di-
jkstra, and an extreme running time of the Naive approach. It is interesting that in this setting,
the memoization approach FT+M yields only a minimal gain in running time, like the other
heuristics. Fortunately, none of these heuristics shows a significant loss of information flow.
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5.2.7.5 Experimental Evaluation: Summary

To summarize the experimental results of the thesis, let us reiterate the shortcomings of the naive
solutions, and briefly discuss which of the heuristics are best used in which setting.

Naive: The Naive competitor, which applies a Greedy edge selection (c.f. Section 5.2.6)
but does not use the F-tree, is multiple orders of magnitude slower than other approaches in all
real-data experiments (cf. Figure 5.14). Further, large sampling errors also yield a significantly
lower information flow in most settings.

Dijkstra: A Dijkstra-based spanning tree algorithm runs extremely fast, but at the cost of an
extreme loss of information, yielding low information flow. The information loss is particularly
high for social networks (e.g., Figure 5.14b), where cycles are required to increase the odds of
connecting a distant node to the source.

FT: Employing the F-tree proposed in Section 5.2.5.3 maximizes the information flow. Com-
pared to the Naive approach, smaller partitions need to be sampled yielding smaller sampling
variation while being multiple orders of magnitude faster.

FT+M: The memoization heuristic technique described in Section 5.2.6.2 was shown to be
simple and effective. It yields vast reduction in running time of up to one order of magnitude on
real-data (see Figure 5.14), while showing no notable detriment to the information flow.

FT+M+CI: Employing confidence intervals as described in Section 5.2.6.3 has shown a
significant improvement in running time on spatial networks following the locality assumption
(cf. Figures 5.10a, 5.11a, and 5.14a). However, this heuristic yields no improvement (and often
has a detrimental effect) in settings without locality assumptions such as in social networks (cf.
Figure 5.14b-5.14d). This heuristic should not be employed in such settings.

FT+M+DS: The delayed sampling heuristic presented in Section 5.2.6.4 yields an improve-
ment in running time in networks following the locality assumption. This improvement is espe-
cially large in cases having a high vertex degree (cf. Figure 5.11a). However, in social networks
which do not follow the locality assumption, the gain of this heuristic is often marginal (cf. Fig-
ure 5.14b-5.14d). Yet, this heuristic comes at minimal loss of information flow, such that it is not
detrimental to enable it by default.

FT+M+CI+DS: The combination of all heuristics inherits the problems of FT+M+CI and
FT+M+DS for the cases without locality assumption. But for the cases with locality assump-
tion, the experiments on real world data show that in most cases the combination of all heuristic
achieves significant lower running time compared to setting where each of the heuristics is ap-
plied separately proofing the importance of each proposed heuristic.
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5.3 Summary
In this chapter, the thesis discussed solutions for the problem of maximizing the information flow
in an uncertain graph given a fixed budget of k communication edges. It identified two NP-hard
subproblems that needed heuristical solutions: (i) Computing the expected information flow of
a given subgraph; and (ii) selecting the optimal k-set of edges. For problem (i), an advanced
sampling strategy was developed that only performs an expensive (and approximative) sampling
step for parts of the graph for which we can not obtain an efficient (and exact) analytic solution.
For problem (ii), the thesis proposes the F-tree representation of a graph G , which keeps track
of bi-connected components - for which sampling is required to estimate the information flow -
and mono-connected components - for which the information flow can be computed analytically.
On the basis of the F-tree representation, further approaches and heuristics were introduced
to handle the trade-off between effectiveness and efficiency. The evaluation shows that these
enhanced algorithms are able to find high quality solutions (i.e., k-sets of edges having a high
information flow) in efficient time, especially in graphs following a locality assumption, such as
road networks and wireless sensor networks.
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If people do not believe that mathematics is simple,
it is only because they do not realize how complicated life is.

John von Neumann
1903-1957
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Highlights

• New type of vehicle routing with multiple capacitated service locations;

• Hybrid self-adapting metaheuristic quickly reaching good regions of the solution space;

• Backtracking mechanism to revert unsatisfactory decisions early in construction phase;

• New neighborhoods exploiting flexibility of service locations;

• Algorithm is effective and efficient on realistic hospital data;
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6.1 Operational Research for Routing Problems

The Traveling Salesman Problem (TSP) is known to be one of the most classical optimization
problems. The challenge is to compute an optimal sequence of nodes that minimizes the costs of
visiting all nodes that define a path in a graph, starting from a default source node and possibly
returning to this node. The extension of this fundamental problem is known under the terminol-
ogy of Vehicle Routing Problems (VRPs) [202, 203, 125], where the task is to visit these nodes
using one or several (heterogeneous) fleets of vehicles. From a practical point of view, these
nodes can describe depots, cities, customers’ locations, and so on. The problem can be seen as
a combination of two subtasks. First, which nodes have to be allocated to a vehicle defining a
path (route), and second, what is the optimal solution of the TSP over this subset of nodes? De-
pending on the problem setting, VRPs come in different complexity levels. For example, we can
define resource constraints on the vehicle-specific traveling times from one node to another or
on the capacities associated with the carrying load. One can also define time-window constraints
for time intervals where a pickup and delivery service must be scheduled or if a vehicle can serve
only one or several routes.

The following chapter is devoted entirely to solving an optimization problem under the lens of
operational research using graph-theoretic tools. It focuses on a vehicle routing problem where
several constraints are defined. The problem is extended by time-window constraints stating
that customers have to be served within a specific time interval. This is commonly known as
Vehicle Routing Problem with Time Windows (VRPTW). Furthermore, the problem is extended
by flexible locations, meaning that customers gain the flexibility that they can be served in several
capacitated locations. The practical relevance arises, for example, in delivery services, where
customers can receive their sendings in several locations, e.g., at home, at a pickup station, or
working place. Hence, the thesis presents a novel heuristic to solve the vehicle routing problem
with time windows in a spatial network with flexible locations (VRPTW-FL) of customers served
by a set of heterogeneous vehicles.

6.2 Metaheuristic for VRPTW-FL

The thesis discusses a new variant of the well-known vehicle routing problem (VRP): the VRP
with time windows and flexible delivery locations (VRPTW-FL). Generally, in the VRP each
customer is served in one fixed service location. However, in the VRPTW-FL each customer
is served in one of a set of potential service locations, each of which has a certain capacity.
From a practical point of view, the VRPTW-FL is highly relevant due to its numerous applica-
tions, e.g., parcel delivery, routing with limited parking space, and hospital-wide scheduling of
physical therapists. Theoretically, the VRPTW-FL is challenging to solve due to the limited lo-
cation capacities. When serving a customer, location availability must be ensured at every time.
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To solve this problem, the thesis presents a mathematical model and a tailored hybrid adaptive
large neighborhood search. The proposed heuristic makes use of an innovative backtracking ap-
proach during the construction phase to alter unsatisfactory decisions at an early stage. In the
meta-heuristic phase, novel neighborhoods are employed and updates of the objective violation
weights are dynamically adapted. For the computational analysis, hospital data is used to evalu-
ate the utility of flexible delivery locations and various cost functions. The proposed algorithmic
features improve the solution quality considerably.

Graph Configuration.
The configuration used to solve the routing problem being proposed in this chapter, consists of a
single-layer, non-probabilistic, static, monopartite graph as illustrated in Figure 6.1a. The rout-
ing of vehicles through the network are expressed via directed, weighted edges where weights
denote the distance between two nodes, respectively, the locations within the routing network.
The proposed problem is discussed in the realm of capacitated locations, hence, each node con-
tains attributive information about its maximal capacity. To solve the scheduling problem, a
metaheuristic is proposed which is affiliated with the technical domain of Operations Research
(OR).
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Figure 6.1: Graph Configuration and methodology’s classification used to solve the vehicle routing
problem with time windows and flexible locations (VRPTW-FL)
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6.2.1 Introduction

Vehicle routing is well-studied in the operations research and management science literature.
It has theoretical as well as practical relevance to scientific communities and industries, such
as logistics and healthcare. In the classic vehicle routing problem (VRP), vehicles traverse a
network with the objective to, e.g., minimize routing costs or the number of vehicles used. Each
destination in the network corresponds to exactly one customer, and each customer is visited
once. For the VRP, several extensions exist on the demand and delivery side. For example,
on the delivery side assigning capacities to the vehicles leads to the capacitated VRP, while on
the demand side associating customers with time windows leads to the VRP with time windows
(VRPTW) [38].

In this chapter, the thesis presents an extension of the VRP with substantial enhancement of
the demand side: the VRP with flexible delivery locations (VRP-FL). In this problem, a customer
is no longer automatically assigned to his/her service location. Instead, in the VRP-FL each
customer must be served at exactly one capacitated location among a set of multiple alterna-
tives. In this context, capacitated means that the number of customers, which can be served at
one location at the same time is limited. When, additionally, time windows for customers are
considered, we obtain the VRP with time windows and flexible delivery locations (VRPTW-FL).
Note that by assigning capacities to service locations, the complexity of the problem increases
significantly. Non-availability of locations leads to rerouting of customers to alternative service
location. Thus, the location capacity directly influences the routing decision.

There is little literature on VRPs incorporating flexible customer locations. This thesis
presents a pioneering study of this type of problem with capacitated locations from a theoret-
ical side and introduces a compact mathematical definition of the problem. The VRPTW-FL has
been inspired by a problem in the health care industry, where it is known as the hospital-wide
therapist scheduling and routing problem [70]. Hospital planners have to decide which therapist
treats which patient in which room at which time. Therapists can treat patients either at the ward
or in a therapy center. For the VRPTW-FL, vehicles represent therapists, customers represent pa-
tients and locations for the customers represent treatments rooms. Especially in larger hospitals,
the travel times of therapists are considerable. Reducing travel times allows more time to treat
patients, which in the long run reduces the average waiting time for an appointment.

Another application of the VRPTW-FL is flexible parcel delivery. Companies such as DHL
and Amazon have experimented with delivering to different locations depending on the time of
the day [8]. For example, a parcel can be sent to a customer’s home, the trunk of the customer’s
car or to a parcel box.

This thesis presents a mixed integer program (MIP) for the VRPTW-FL. As a generalization
of the VRP, the VRPTW-FL is also NP-hard. It is shown that the VRPTW-FL can be described
with a limited number of linear constraints when location capacities are modeled as resource
flows. However, this problem is extremely hard to solve to optimality. Therefore, to tackle
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the problem a hybrid meta-heuristic based on adaptive large neighborhood search (ALNS) and
guided local search (GLS) is employed.

The construction heuristic is based on insertion, and a backtracking mechanism is added to
alter unsatisfactory decisions at an early stage. The solution derived by the construction heuristic
is then further improved by the hybrid ALNS. The self-adaptiveness of the ALNS is extended by
allowing feasibility violations which are penalized in the objective function. The penalty weights
are dynamically adjusted following a GLS approach, which adds robustness to the ALNS, and
may make it more suitable for future applications.

In the computational study, the algorithm is assessed from a theoretical and a practical per-
spective. In the theoretical part, the performance of the heuristic procedure is examined in gen-
eral and its new features in particular. In the practical part, the heuristic is tested against current
hospital planning, and the potential benefit of flexibility is evaluated by applying different cost
functions for serving customers in different locations and are put into relation to the vehicles’
travel costs.

The results show that the heuristic works well; combining the ALNS with a GLS leads the
heuristic to considerably better regions of the planning horizon, and backtracking provides much
better initial solutions than traditional construction heuristics. When applied to the hospital case,
the heuristic clearly outperforms current hospital planning methods. In general, the results en-
courage planners facing similar problems to consider some degree of location flexibility when-
ever possible.

Outline. The remainder of this chapter is structured as follows. It begins in § 6.2.2 with an
overview of related work focusing on VRPs incorporating location decisions. In § 6.2.3, a math-
ematical formulation for the VRPTW-FL is developed and the underlying graph structure is
discussed. In § 6.2.4, the hybrid meta-heuristic procedure is presented which is used to solve
the problem. Evidence of the algorithm’s capabilities is provided in § 6.2.5 and the chapter
concludes in § 6.3.

6.2.2 Related work

The VRPTW-FL is inspired by the therapist scheduling and routing problem (ThSRP) presented
in Gartner et al. [70]. Gartner et al. [70] put the focus on the scheduling perspective and model
the problem as a variant of the resource constraint project scheduling problem, see, e.g., Brucker
et al. [23]. The problem is solved to optimality by adding routing cuts to a scheduling problem be-
ing called each time a cut is introduced. Service and travel times are multiples of 30 minute time
buckets. More granular intervals, e.g., five minutes, would lead to intractable computing times
as the number of variables in the scheduling problem would exponentially grow. In contrast, by
modeling the ThSRP as a VRP instead of a scheduling problem, it is possible to use existing effi-
cient solution approaches already successfully applied to rich VRPs, like the ALNS (see [161]),
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allowing more granular time buckets and larger instances. Jungwirth et al. [103] work on the
same definition of the VPRTW-FL as this thesis. The authors focus firmly on the application
of hospital therapist scheduling and develop a computational demanding branch-price-and-cut
algorithm. In contrast to Jungwirth et al. [103], the thesis studies the VPRTW-FL also from a
theoretical side, i.e., it presents a compact mathematical definition of the problem, and, more-
over, it highlights the structural differences with the classic VRPTW and derives implications on
optimality bounds.

The VRP and its extensions have been studied extensively in the literature. Textbooks in-
clude Toth and Vigo [202, 203] as well as Golden et al. [76], while literature reviews are pro-
vided by, e.g., Desrochers et al. [39], Laporte and Osman [124], Desrochers et al. [40], Cordeau
et al. [34], Eksioglu et al. [51], Laporte [123], Lahyani et al. [120] and Vidal et al. [210]. The
review presented here focuses on routing problems incorporating location decisions being the
major feature of the VRPTW-FL.

The first works considering both location and routing aspects date back to the 1960s,
e.g., Maranzana [144], von Boventer [211], Webb [217], Watson-Gandy and Dohrn [216]. Since
then a multitude of different problems have arisen, all having routing and location decisions (see,
e.g., [165]). However, to the best of the author’s knowledge, this thesis is the first presenting a
mathematical formulation for the problem encompassing time-dependent capacitated and flexible
locations for customers. In literature, we find four problem types in the field of VRPs showing
similarities to the presented problem: (1) the vehicle routing-allocation problem (VRAP) intro-
duced by Beasley and Nascimento [15], (2) the generalized VRP (GVRP) introduced by Ghiani
and Improta [71], (3) the VRP with synchronization constraints (VRPSC), see Drexl [44] for
a general overview and taxonomy of synchronization constraints, and (4) the electric VRP (E-
VRP) or Green VRP discussed by, e.g., Froger et al. [67] and Bruglieri et al. [24], respectively.

(1) VRAP In the VRAP, being a special case of the location routing problem (LRP), no location
capacities and time windows are considered. This is a significant difference to the problem being
discussed in the following.

(2) GVRP The GVRP is an extension of the VRP in which vehicles visit clusters of potential
delivery sites instead of individual customers. Each cluster has a given demand and only one
delivery site in the cluster must be visited, e.g., when routing vessels in maritime transportation,
only one port in a certain region is visited; see, e.g., Baldacci et al. [12], Bektaş et al. [17]. In
contrast to the VRPTW-FL, the locations of customers are disjoint from each other, the cus-
tomers’ time windows span across the entire planning horizon and multiple visits of a locations
are not possible. Moccia et al. [147] introduce the GVRP with time windows (GVRPTW), where
an individual time window is assigned to each node within a cluster, i.e., the time windows are
location and not customer specific. In the VRP with roaming delivery locations, a special case of
the GVRPTW (see [167, 154]), multiple service locations can exist for a customer. However, the
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location capacities are set to one and the time windows for the nodes in one cluster are disjoint
from each other. The VRP with delivery options represents an extension of the GVRPTW by
incorporating non-renewable location capacities (see [47, 48, 200]).

(3) VRPSC Using the taxonomy of Drexl [44], the time-dependent location capacities of the
VRPTW-FL belong to resource synchronization while the precedence constraints belong to op-
erations synchronization. With synchronization constraints, tours are not independent anymore,
i.e., a change of one tour may affect other tours.

According to Drexl [44] resource synchronization is given if “the total utilization or con-
sumption of a specified resource by all vehicles must be less than or equal to a specified limit” at
any point in time. For example, the VRP of Lam and Hentenryck [121] considers location con-
gestion where vehicles are synchronized with regard to, e.g., parking lots and forklifts. Opera-
tions synchronization are equivalent to precedence constraints (see [44]) occurring in many appli-
cations, e.g., in dial-a-ride problems and in pickup-and-delivery problems (see, e.g., [13, 42, 87]).
However, there is no VRPSC incorporating also flexibility for customers’ service locations.

(4) Green-VRP In the Green-VRP or E-VRP vehicles can be recharged between two cus-
tomer visits at a number of capacitated charging stations; see Froger et al. [67] for E-VRPs, and
Bruglieri et al. [24] for the Green-VRPs. However, these flexible charging locations are dif-
ferent from the service locations which are flexible in the problem being discussed. Charging
stations could not be visited at all and the charging duration is a decision variable. Moreover,
time windows, precedence relations and a heterogeneous fleet are not considered in the E-VRP.

6.2.3 Model Development

In this section, the mathematical model is developed and the underlying graph structure is dis-
cussed. Section 6.2.3.1 gives a formal problem description and introduces the notation. The
thesis follows the standard notation for VRPs and VRPTWs as presented in [97] and [38], re-
spectively. However, it deviates from their notation when necessary to model the special proper-
ties of the VRPTW-FL. In Section 6.2.3.2, the graph structure of the VRPTW-FL is detailed and
its differences from the graph of the classic VRPTW is demonstrated. Finally, Section 6.2.3.3
presents a linear mixed integer problem formulation for the VRPTW-FL.

6.2.3.1 Formal Problem Description

The classic VRP serves a set of customers I = {1,2 . . . , I} with specific demand qi > 0 for a
single good using a set of homogeneous vehicles K = {1, . . . ,K} with given capacity Q > 0. A
vehicle starts its tour in the depot, visits a subset of customers S ⊆I and returns to the depot,
which is denoted as dummy customer 0 for the outward trip, and I+1 for the return trip. In both
cases the demand is assumed to be q0 = qI+1 = 0.
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The connections between two customers i and j, including the depot as dummy customers,
are associated with travel cost ctravel

li,l j
with li and l j being the service locations for customer i and

j. The aggregated demand of the customers visited by a single vehicle must be less than or equal
to the vehicle’s capacity. The objective is to minimize the total travel costs over all vehicles while
serving all customers.

The VRPTW extends the VRP by assigning a specific service time si and time window [ai,bi]

to each customer i, with ai and bi being the earliest and latest possible start of service, respec-
tively. The travel time between two customers is denoted as ti, j ≥ 0. Generally, a hard time
window restriction is used, which means a vehicle can arrive at the customer before ai but never
after bi. In case of early arrival, the vehicle must wait at the site of customer i until ai.

The VRPTW-FL extends the VRPTW by allowing additional locations for serving the cus-
tomers. The set of locations is defined as L = {0, . . . ,L} and a customer i can be served in a
subset of locations Li ⊆L \{0} with location 0 being the depot. Location l ∈L has a capac-
ity Cl defining the maximum number of customers which can be served at the same time. For
unbounded locations, let Cl = ∞. When serving customer i at location l, fixed location costs
clocation

i,l ≥ 0 are incurred. In the hospital setting, location costs are 0 if the patient is treated at the
ward and equal the cost for transporting the patient to the central treatment room, if the patient
is treated there. The objective of the VRPTW-FL is to minimize the sum of travel and location
costs, where travel costs ctravel

l,r are defined as the cost of traveling between two locations l,r ∈L

instead of traveling between two customers i, j ∈I ∪{0}.
The crucial information in the VRPTW-FL is if a certain location l ∈L is available for any

arbitrary small time interval τ ∈ [aτ ,bτ ] with 0 ≤ aτ ≤ bτ or if the location capacity is already
fully used. Therefore, an indicator function I(i, l,k,τ) is introduced which is 1 if customer i is
served in location l by vehicle k in time interval τ and 0 otherwise. Using this indicator, the
number of customers being served at a specific location in any given time interval is calculated.

Therapist scheduling as a practical application of the VRPTW-FL incorporates two additional
aspects: precedence relations between customers and heterogeneous vehicles. Certain customers
have to be visited before other customers can be visited. Note, in therapist scheduling a “cus-
tomer" corresponds to a treatment and multiple treatments might be required for a single patient
during the planning horizon. Some treatments have to be executed before other treatments can
start, e.g., a cast must be removed before a stretching or strengthening exercise can be done.
Therefore, a set P is defined as the precedence relations between customer tuple ⟨i, j⟩, in which
customer i must be served before customer j can be served.

Therapists also differ in skills and shift patterns. Each therapist belongs to one of two shift
types: regular shifts or short shifts. Furthermore, each therapist has a certain skill set which
defines treatments that can be carried out by the therapist. Thus, it might be that a therapist is
not qualified for a particular treatment or the shift pattern does not allow for visiting a customer
during his/her time window. Therefore, therapists are modeled by heterogeneous vehicles and
each vehicle k can service a subset of customers Ik ⊆I .
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6.2.3.2 Structural Differences of VRPTW and VRPTW-FL

Having introduced the basic notation, this section examines the structural differences between
the VRPTW and the VRPTW-FL. A graphical representation for the VRPTW-FL is derived and
it is shown that the optimal objective function value of the VRPTW always yields an upper bound
for the VRPTW-FL.

To represent the VRPTW-FL as a network, a directed graph G = (V ,A ) with vertex set V

and arc (=edge; cf § 2.1) set A is used. In the proposed problem, each vertex corresponds to a
customer-location tuple ⟨i, l⟩ ∈ {I ∪{0}}×Li. For arc set A ⊆V ×V , we have ⟨⟨i, l⟩,⟨ j,r⟩⟩ ∈
A for ⟨i, l⟩,⟨ j,r⟩ ∈ V : i ̸= j iff customer i can be served at location l before customer j is served
at location r by the same vehicle k. Each arc is associated with a cost value ctravel

l,r and a time value
t travel
l,r . Note that for two vertices vi,l and v j,r, only locations l and r are relevant to determine the

travel cost and travel time between the vertices.
Let S ⊆ V be a subset of the vertex set. The in-arcs, having their head node in S , are

defined as δ−(S ) = {⟨vi,l,v j,r⟩ ∈ A : vi,l /∈ S ,v j,r ∈ S } and the out-arcs, having their tail
node in S , as δ+(S ) = {⟨vi,l,v j,r⟩ ∈ A : vi,l ∈ S ,v j,r /∈ S }. Singleton sets S = {vi,l} are
defined as δ+|−(vi,l) := δ+|−({vi,l}). If ⟨i, l⟩ ∈ δ−( j,r), then ⟨ j,r⟩ ∈ δ+(i, l), meaning if ⟨i, l⟩
is a predecessor of ⟨ j,r⟩, then ⟨ j,r⟩ is a successor of ⟨i, l⟩.

If each customer can only be served at one location, then the graph of the VPRTW-FL is equal
to the routing network of the VRPTW. To show the benefit of the VRPTW-FL over the VRPTW,
let us consider the graph in Figure 6.2, which shows a routing network for three customers, three
service locations, and the depot. The first customer has two possible locations L1 = {1,2},
the second customer has three possible locations L2 = {1,2,3} and the third customer has one
possible location L3 = {3}.24 The time windows [ai,bi] are given below the customer-location
tuples. Let the travel times equal the travel costs, the service time si of each customer is equal
to 1, and each customer has a preferred location (marked by bold boxes). Furthermore, if the
customer is served in the preferred location, location costs of 0 occur and if the customer is
served in another location, location costs of 1 occur. Arcs within the same location have travel
costs of 0.

If, as in the VRPTW, only one location per customer exists, i.e., for the VPRTW-FL the
customers must be served in their preferred location, a vehicle can either serve customers i1
and i3, or i2 and i3 but never customers i1 and i2. Thus, two vehicles are required leading to a
total travel time of 14. In the VRPTW-FL, however, serving customer i2 at his/her alternative
location 1 guarantees that one vehicle can serve all customers within a travel time of 10 and
additional location swapping cost of 1.

In general, the infeasibility of a VRPTW-FL implies the infeasibility of the corresponding
VRPTW, but not vice versa. Moreover, the objective function of an optimal solution of the

24Note that edges between the customer-location tuples are needed to track the sequence in which customers are
served. Tracking would not be possible in a network only consisting of the locations.
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⟨i1, l⟩
[ai1 ,bi1 ]

location l (Cl)

⟨ j1,r⟩
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location r (Cr)

⟨in, l⟩
[ain ,bin ]

⟨ jm,r⟩
[a jm ,b jm ]

...
...

tl,r

tl,r

Figure 6.2: Routing network example: VRPTW vs. VRPTW-FL. Dotted boxes denote locations and
include all customers that can be served at this location. Nodes belonging to the same
customer are printed in the same color. Bold boxes denote that this location is the customer’s
preferred location. The dashed arrow displays the connection that is impossible due to time
window restrictions. Service times are not displayed as si = 1 for all i ∈I .

VRPTW yields an upper bound for the VRPTW-FL. To formalize this, function η : I ×L 7→ V

is introduced for mapping the swap of customer i from the preferred location to another location
at cost clocation

i,l . Then, a VRPTW-FL instance is uniquely given by tuple ⟨K ,I ,V ,η⟩ and
Theorem 1 holds.

Theorem 1. Having instances τ1 = ⟨K ,I ,V ,η⟩ and τ2 = ⟨K ,I ,V ′,η⟩, which only differ
in the vertex sets V and V ′ defined by the customer-location combinations, let z∗1 and z∗2 be the
optimal solution for instance τ1 and τ2, respectively. If V ′i ⊆ Vi holds for all V ′i ∈ V ′ and Vi ∈ V

with i ∈I , then z∗2 ≥ z∗1.

If each customer can be assigned to any location, i.e., all location costs clocation
i,l are 0 and each

location is uncapacitated, then the VRPTW-FL becomes an easy problem because all customers
can be served at the location closest to the depot. However, if the location costs are greater than 0
or the locations’ capacities are bounded by at least I−1, the VRPTW-FL is NP-hard.
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6.2.3.3 Mathematical Model

For the VRPTW-FL, we have two main decision variables: xi,l, j,r,k = 1, if vehicle k ∈K serves
customer i∈I in location l ∈Li immediately before serving customer j ∈I in location r∈L j,
and 0 otherwise, and Ti,l,k being the start time of serving customer i ∈ I in location l ∈Li by
vehicle k ∈ K . Binary variables xi,l, j,r,k constitute the tours, while continuous variables Ti,l,k

yield the scheduling decisions.

To account for heterogeneous vehicles, sets and parameters corresponding to a certain vehicle
are indexed by k, e.g., Vk are all vertices which can be reached by vehicle k. The subset of
vehicles which can serve a customer i are denoted as Ki. Let P define the precedence relations
between two customers ⟨i, j⟩. Customer j can only be served if customer i has already been
served.

The location capacity and their utilization is modeled based on the continuous time formu-
lation of the resource-constrained project scheduling problem (cf. [7, 115]). Binary variable
yi,l, j,r = 1, if service of customer i in location l precedes service of customer j in location r.
Flow variable fi, j,l states the number of resource units of location l ∈L bounded that flow from
customer i to customer j, i.e., if i is served right before j in location l. Ql defines the available
number of resource units in location l. For modeling purposes, it is distinguished between two
sets of pairs of customer-location-tuples ⟨⟨i, l⟩,⟨ j,r⟩⟩: (1) set W containing all possible pairs,
and (2) set U for which we know that ⟨i, l⟩ must start before ⟨ j,r⟩.

W = {⟨⟨i, l⟩,⟨ j,r⟩⟩ ∈ {⟨i, l⟩ ∈ V \⟨I +1,0⟩}×⟨ j,r⟩ ∈ δ
+(i, l)} (6.1)

U = P ∪{⟨⟨i, l⟩,⟨ j,r⟩⟩ ∈W |bi,l ≤ a j,r} (6.2)

Further, let Wl ⊆ W be the subset for which the location component of both tuples in the pairs
corresponds to l. The VRPTW-FL can now be stated as model (6.3)-(6.24):

min ∑
k∈K

∑
⟨i,l⟩∈Vk\⟨I+1,0⟩

∑
⟨ j,r⟩∈δ

+
k (i,l)

(
ctravel

l,r + clocation
j,r

)
· xi,l, j,r,k (6.3)

subject to

∑
k∈Ki

∑
⟨i,l⟩∈Vk

∑
⟨ j,r⟩∈δ

+
k (i,l)

xi,l, j,r,k = 1 ∀ i ∈I (6.4)

∑
⟨ j,r⟩∈δ

+
k (0,0)

x0,0, j,r,k = 1 ∀k ∈K (6.5)

∑
⟨i,l⟩∈δ

−
k ( j,r)

xi,l, j,r,k− ∑
⟨i,l⟩∈δ

+
k ( j,r)

x j,r,i,l,k = 0 ∀k ∈K ,⟨ j,r⟩ ∈ Vk (6.6)
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∑
⟨i,l⟩∈δ

−
k (I+1,0)

xi,l,I+1,0,k = 1 ∀k ∈K (6.7)

ai,l ≤ Ti,l,k ≤ bi,l ∀k ∈K ,⟨i, l⟩ ∈ Vk (6.8)

Ti,l,k + si + t travel
r,l −Tj,r,k ≤ (1− xi,l, j,r,k) ·Mi,l, j,r ∀k ∈K ,⟨i, l⟩ ∈ Vk\⟨I +1,0⟩,⟨ j,r⟩ ∈ δ

+
k (i, l)

(6.9)

∑
(i,l)∈Vk

qi ∑
( j,r)∈δ

+
k (i,l)

xi,l, j,r,k ≤ Qk ∀k ∈K (6.10)

Ti,l,k1 + si + t travel
r,l ≤ Tj,r,k2 ∀⟨i, j⟩ ∈P, l ∈Li,r ∈L j,k1 ∈Ki,k2 ∈K j (6.11)

yi,l, j,r = 1 ∀⟨⟨i, l⟩,⟨ j,r⟩⟩ ∈U (6.12)

Ti,l,k1−Tj,r,k2 ≤ (1− yi,l, j,r) ·Mi,l, j,r ∀⟨⟨i, l⟩,⟨ j,r⟩⟩ ∈W \U ,k1 ∈Ki,k2 ∈K j (6.13)

Ti,l,k1−Tj,r,k2 ≤ 0 ∀⟨⟨i, l⟩,⟨ j,r⟩⟩ ∈U ,k1 ∈Ki,k2 ∈K j (6.14)

fi, j,l− yi,l, j,l ≤ 0 ∀ l ∈L bounded,⟨i, j⟩ ∈Wl\⟨⟨0,0⟩,⟨I +1,0⟩⟩ (6.15)

∑
j∈Il∪⟨I+1,0⟩:

i̸= j

fi, j,l = ∑
k∈K

∑
⟨ j,r⟩∈δ

+
k (i,l)

xi,l, j,r,k ∀ l ∈L bounded, i ∈Il (6.16)

∑
i∈Il∪⟨0,0⟩:

i ̸= j

fi, j,r = ∑
k∈K

∑
⟨i,l⟩∈δ

−
k ( j,r)

xi,l, j,r,k ∀r ∈L bounded, j ∈Ir (6.17)

∑
j∈Il∪⟨I+1,0⟩

f0, j,l = Ql ∀ l ∈L bounded (6.18)

∑
i∈Il∪⟨0,0⟩

fi,I+1,l = Ql ∀ l ∈L bounded (6.19)

fI+1,0,l = Ql ∀ l ∈L bounded (6.20)

xi,l, j,r,k ∈ {0,1} ∀k ∈K ,⟨i, l⟩ ∈ Vk,⟨ j,r⟩ ∈ δ
+
k (i, l) (6.21)

Ti,l,k ≥ 0 ∀k ∈K ,⟨i, l⟩ ∈ Vk (6.22)

yi,l, j,r ∈ {0,1} ∀⟨⟨i, l⟩,⟨ j,r⟩⟩ ∈W (6.23)

0≤ fi, j,l ≤ Ql ∀ l ∈L bounded,⟨i, j⟩ ∈Wl (6.24)
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Objective function (6.3) minimizes the sum of travel and location costs. The VRPTW-FL’s
constraints can be divided into three parts:

Tour constraints (6.4)-(6.7): Constraints (6.4) ensure that every customer is served ex-
actly once. Constraints (6.5)-(6.7) define the tour of each vehicle: constraints (6.5) and (6.7)
impose a tour start and end at the depot, while constraints (6.6) are the flow conservation
constraints.
Scheduling constraints (6.8)-(6.11): Constraints (6.8) set the start times for serving customer
i, while constraints (6.9) set the time difference between two customers served consecutively by
the same vehicle by linking variables xi,l, j,r,k and Ti,l,k. Constraints (6.10) ensure that a vehicle k
cannot satisfy more customer demand than its capacity limit Qk. Constraints (6.11) ensure the
precedence relations.
Location capacity constraints (6.12)-(6.20): Constraints (6.12) fix the sequences that are
already implied by the possible start times of the customers or the precedence relations. Correct
separation times between preceding customer-location tuple ⟨i, l⟩ and succeeding tuple ⟨ j,r⟩ are
guaranteed by constraints (6.13) and (6.14). Parameter Mi,l, j,r is a sufficiently large constant that
can be set to Mi,l, j,r = max{bi,l + si + t travel

l,r − a j,r,0}. Constraints (6.15) connect the variables
yi,l, j,r and fi, j,l , and ensure that a resource flow only exists between preceding customer-location
tuples. Both the outflow (6.16) and the inflow (6.17) of a resource flow can only exist if the
involved customers are served in the respective locations. Constraints (6.18) to (6.19) ensure
that the total flow of one resource is equal to the corresponding location capacity.

The variable domains are given in constraints (6.21) to (6.24).

6.2.4 Solution Methodology

When using a standard MIP solver and the compact formulation presented in § 6.2.3.3, only
very small problem instances can be solved. To solver larger problems, exact decomposition
or heuristic solution approaches could be used. Jungwirth et al. [103] present a branch-price-
and-cut algorithm for the VRPTW-FL. However, the algorithm is computational demanding and
requires a state-of-the-art commercial MIP solver, which might not be pertinent for practitioners.
Therefore, the proposed solution approach is based on an Adaptive Large Neighborhood Search
(ALNS) framework where the general idea behind the algorithm is easy to grasp and close to
optimal solution can be obtained relatively quickly without the need for an additional solver.

The ALNS is a well-established framework for solving routing problems. It was originally
developed by [173] and is still used in publications addressing new variants of VRPs (see, e.g.,
[145, 116, 9, 137, 142, 157, 182]). The ALNS works well for the VRPTW-FL not only due to its
good performance for the VRP, but also due to the incorporation of other desirable features such
as the simplicity of the underlying concept and its flexibility with respect to VRP variants [125].
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The ALNS is an extension of the Large Neighborhood Search (LNS) introduced by Shaw
[189] and relies on the ruin-and-recreate principle applied in Schrimpf et al. [184], which is
similar to the rip-up principle of Dees and Karger [37]. In a first phase, an initial solution
is constructed, and then in an improvement phase, the ALNS iteratively destroys parts of this
solution using randomly selected destroy operators and reconstructs the destroyed solution with
randomly selected repair operators. The combination of destroy and repair operators defines the
neighborhood in which the new solution will be sought. If the solution is accepted according to
an acceptance criterion, the current solution is replaced by the new solution and the procedure
starts again. The probability of selecting a particular destroy and a repair operator is adjusted
based on the success (or lack thereof) of improving a temporary solution in the past.

The proposed ALNS incorporates innovative features in both, the construction phase and the
improvement phase. In the former, the heuristic follows the k-regret insertion approach of Potvin
and Rousseau [163], which is extended with a backtracking mechanism to alter unsatisfactory de-
cisions at an early stage. To counteract infeasible sequences of subsequently planned customers
due to the simple nature of the k-regret procedure, the procedure returns to an earlier stage of the
insertion with a given probability, and restarts from this stage by inserting another customer.

In the improvement phase, the proposed framework deviates from the standard ALNS pre-
sented by [173] in three ways: (1) it allows temporarily infeasible solutions, however, sanction
the infeasibilities in the objective function with penalties; (2) it dynamically adjusts these penal-
ties depending on how often certain features have been violated in past iterations; and (3) new
operators were developed, which exploit the underlying problem structure of potentially having
more than one location per customer.

The generation of temporarily infeasible solutions enables a better traversing of the search
space because it reduces the chance of getting stuck in a local optimum [34], and by oscillating
between feasible and infeasible regions with the appropriate penalty parameters the border of
feasibility is sought, a region which is very promising for finding high quality solutions [75, 209].
For the VRPTW-FL, the framework allows four infeasibilities: (1) unscheduled customers, (2)
violations of time windows, (3) violations of precedence relations, and (4) skill violations. In
therapist scheduling, these are precisely the four aspects that a human planner would relax when
faced with a hard scheduling task, where no feasible solution can be obtained manually.

Updating penalties for the violation terms dynamically extends the self-adaptiveness from
operator probability updates to objective function weights and, therefore, makes the approach
more flexible and robust for dealing with the problem at hand. From a formal point of view,
the proposed approach combines the ALNS with a Guided Local Search (GLS) as employed in
Voudouris and Tsang [213] and, thus, leads to a hybrid version of the ALNS. A simpler version
of such an adaptive mechanism was originally formulated by Cordeau et al. [33] and is, e.g.,
used in Schiffer and Walther [182].
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In what follows, the hybrid ALNS framework is first formalized in § 6.2.4.1. In § 6.2.4.2,
the construction heuristic is detailed, including the backtracking mechanism. In § 6.2.4.3, the
reader is provided with information about the destroy and repair operators used, and the update
procedures for the operators and objective function weights. Finally in § 6.2.4.4, implementation
details are provided focusing on preprocessing and parameter optimization. A concise overview
of the parameters that are introduced in the following subsections and their corresponding values
used in the computational study are given in the addendum § 6.4.2 of this chapter.

6.2.4.1 Formal Hybrid ALNS Framework

Let s be a vector representing any (partial) solution for the VRPTW-FL and let f (s) be the func-
tion that returns the objective function value for s as stated in (6.3), then the proposed heuristic
works on the modified objective function:

min f mod(s) = f (s)+ ∑
i∈I

∑
υ∈{na,tw,pred,skill}

(λ υ · pυ
i · Iυ

i (s)) , (6.25)

where Ina
i (s), Itw

i (s), Ipred
i (s), and Iskill

i (s) are indicator functions equal to 1, if in a solution s
customer i is not assigned to any vehicle, if the time window of customer i is violated, if the
precedence relation of customer i is violated, and if the skill level is violated, respectively.25 The
penalty terms are denoted by pna

i , ptw
i , ppred

i , and pskill
i ; see § 6.2.4.3.2 for how penalties are set

and updated. The weights of penalties compared to routing and location costs is controlled by
λ υ , where υ ∈ {na, tw,pred,skill}.

Algorithm 2 provides the pseudo code for the hybrid ALNS framework. A solution is repre-
sented by s, and an initial solution sinit from the construction phase serves as input. The initial
solution is set equal to the best global optimum found thus far (see Algorithm 2 Line 1).

In the main loop 2 – 19, destroy operator d ∈ Ω− and repair operators r ∈ Ω+ modify the
current solution scurrent. In each iteration h of the main loop, q ≥ 1 pairs of destroy and repair
operators are randomly selected to destroy and repair n ∈ [nh, n̄h] elements in solution scurrent.
Parameters nh and n̄h define the lower and upper bounds of affected elements in each iteration h.

The framework randomly selects a pair of destroy and repair operators in Step 3. The destroy
and repair operators are described in detail in § 6.2.4.3.3 and § 6.2.4.3.4, respectively. When
deriving these operators, a destroyed solution should be repairable by any repair operator. The
probability of selecting a destroy operator ρ− and a repair operator ρ+ depends on their past
success. The update procedure for the probabilities ρ+ and ρ− is described in § 6.2.4.3.1.

If the new solution stemp improves the best global solution sbest, the framework updates sbest

and the current solution scurrent (see Lines 5 - 6). Otherwise, the algorithm checks whether the
temporary solution stemp is accepted as a new searching point using some criteria defined by the

25Precedence violation of customer i is defined as service of i has started although service of preceding customer
j has not been finished yet.

125



6. Spatial Graphs

local search framework (see Lines 8 - 16). In the proposed method, a Simulated Annealing (SA)
framework (see Kirkpatrick et al. [113]) is used, which defines the acceptance of the solution and
the direction of the destroy and repair operators.

The structure of Algorithm 2 is based on Pisinger and Ropke [161]. However, the main
difference is Line 18, where the objective penalty terms pna, ptw, ppred, and pskill are updated
(see § 6.2.4.3.2 for a detailed description). The algorithm terminates after a stopping criteria
has been met, e.g., a total number of iterations or iterations without improvement, then the best
global solution sbest is returned.

Algorithm 2: HYBRID ADAPTIVE LARGE NEIGHBORHOOD SEARCH

input : initial solution sinit with objective f mod(sinit) ; // (see § 6.2.4.2)
1 sbest = scurrent = sinit, ρ−(1, . . . ,1), ρ+(1, . . . ,1) ;
2 while stopping criteria is not met do
3 select a pair of destroy and repair operators d ∈Ω− and r ∈Ω+ based on ρ− and ρ+

; // (see § 6.2.4.3.3 and § 6.2.4.3.4)
4 stemp = r(d(scurrent));
5 if f simple(sbest)< f simple(stemp) then ▷ cf. Eq. 6.27
6 sbest = scurrent = stemp ;
7 updatePi (d, r, σ1);
8 else if stemp not visited ∧ f mod(stemp)< f mod(scurrent) then ▷ cf. Eq. 6.25
9 scurrent = stemp;

10 updatePi (d, r, σ2);
11 else if stemp not visited ∧ (stemp is accepted) then
12 scurrent = stemp;
13 updatePi (d, r, σ3);
14 else
15 // No new solution found ;
16 end if
17 update ρ− and ρ+ according to Eq. 6.29 ; // (see § 6.2.4.3.1)
18 update objective penalty terms pna, ptw, ppred, and pskill ; // (see § 6.2.4.3.2)
19 end while
20 return sbest

Figure 6.3 shows exemplary the relationship between the costs for sbest,scurrent, and stemp for
a hospital instance with n = 40 customers and 25′000 iterations. The green skyline denotes the
costs for sbest, the blue line shows the costs for scurrent which can still be accepted due to simulated
annealing, and gray dots represents the costs for stemp, i.e., the costs after each iteration.

In Figure 6.4, the behavior of the simulated annealing w.r.t. the temperature value is shown.
The chance by accepting a solution – even though it shows worse cost values – decreases over
time. The parameter settings for the simulated annealing are reported in the addendum § 6.4.2.

126



6.2 Metaheuristic for VRPTW-FL

Figure 6.3: Example of ALNS on hospital instance with n=40 customers for 25k iterations showing the
relationship between sbest,scurrent, and stemp .

Figure 6.4: Example of the simulated annealing used for the ALNS run shown in Figure 6.3

6.2.4.2 Construction Phase

The construction heuristic is similar to the κ-regret26 approach of Potvin and Rousseau [163],
which can be seen as a greedy based insertion heuristic with a look ahead perspective (see Al-
gorithm 3). In the VRPTW-FL, the look ahead perspective becomes even more crucial than in
the VRPTW as a good assignment of customers to vehicle routes may still be infeasible due to a
poor assignment of customers to locations.

A route rk for each vehicle k ∈K is represented by an ordered sequence

rk =
[
⟨i0, l0,T0⟩, . . . ,⟨imk−1, lmk−1,Tmk−1⟩,⟨imk , lmk ,Tmk⟩,
⟨imk+1, lmk+1,Tmk+1⟩, . . .⟨ink , lnk ,Tnk⟩

]
of customer-location-start time tuples with ⟨imk , lmk⟩ ∈ V and Tmk ∈ [aim,bim]. The customers in
each route rk are served according to the order given in the route sequence, i.e., for each position

26To avoid confusing indices k for vehicles and the k-regret approach, index κ is used for the k-regret approach.
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0≤ mk ≤ nk in route rk we have:

Tmk−1 + simk−1 + t travel
lmk−1,lmk

≤ Tmk . (6.26)

At the beginning of the construction heuristic, each vehicle route rk contains only tuples for
starting and ending the tour in the depot, i.e., ⟨i0, l0,T0⟩= ⟨0,0,0⟩ and ⟨ink , lnk ,Tnk⟩= ⟨n+1,0,T ⟩,
respectively.

The goal of the heuristic is to sequentially insert one customer-location-start time tuple in
one position of one of the |K | routes (one route for each vehicle) such that the capacities of the
locations are satisfied and Inequality (6.26) holds. However, instead of selecting the best greedy-
based position within the routes, the next route position yielding the highest regret between
the 1-st and the κ-th best insertion position between all routes is selected. A large gap between
the best and the κ-st position indicates that a later assignment might be difficult or infeasible. The
difference between the proposed regret approach and Potvin and Rousseau [163] is that the κ best
insertion positions over all routes is considered while Potvin and Rousseau [163] consider the κ

best routes to insert a customer. The proposed construction heuristic works on a simplification
of objective function (6.25) where the penalty values (costs) for each type of violation are fixed
and equal for each customer:

min f simple(s) = f (s)+λ · ∑
i∈I

∑
υ∈{na,tw,pred,skill}

(cυ · Iυ
i (s)) (6.27)

Let R be the set of all routes over all vehicles k ∈K and let gκ(i,R) denote the objective
function value, if customer i is inserted in the κ-th best position of all routes rk ∈ R, i.e., we
have gκ(i,R) ≤ gκ+1(i,R) for all rk ∈R. For objective function value gκ(i,R), let us denote
by l(gκ(i,R)), T (gκ(i,R)) and m(gκ(i,R)) the corresponding location, start time, and insertion
position of customer i in routes R. Let gκ(i,R) = ∞ for all κ ≥ 2 if only one possible insertion
position is left for customer i, i.e., customer i can only be assigned and scheduled in one location
and in one route at one insertion position. Let I na be the subset of customers, which have not
yet been assigned to one route. For all routes rk ∈R and customer i ∈I na the following regret
measure is computed:

∆gκ(i,R) = gκ(i,R)−g1(i,R). (6.28)

Measure ∆gκ(i,R) yields the difference between the best insertion position for a customer i and
its κ-th best insertion position with respect to all routes. The regret for a customer indicates what
can be lost in later insertions, if the customer is not immediately inserted in the best insertion
position. A large regret measure indicates that the number of interesting alternative positions for
inserting the customer is small and, thus, this customer should be considered first. On the other
hand, a small regret measure indicates that the customer can easily be inserted into alternative
positions in later iterations without losing much. The customer and vehicle with the greatest
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regret measure is given by customer-route combination ⟨i∗,rk∗⟩ = arg max
i∈I na

{∆gκ(i,R)}. Thus,

customer i∗ is inserted in route rk∗ ∈R at position m(g1(i∗,rk∗)); the service of customer i∗ starts
at time T (g1(i∗,rk∗)) at location l (g1(i∗rk∗)). If customer i cannot be inserted into any route, the
regret measure ∆g1(i,R) is 0 as we define that ∞−∞ = 0. This is either the result of a bad
insertion of one or several customers in previous iterations or the instance is generally infeasible.

Let us assume that a feasible solution exists. Then, current infeasibility originates either
because no insertion position exists such that Inequality (6.26) holds or because no location is
available for customer i. To provide a repair mechanism, a backtracking-branching procedure is
implemented.

Algorithm 3 illustrates the different steps of the constructive heuristic with backtracking. The
initial solution s0, only containing the depot nodes, is added to the solutions set S , which con-
tains all partial solutions that could not be pruned due to infeasibility (see Algorithm 3 Lines 1-2).
The algorithm randomly removes a customer i1 from the set of not yet assigned customers I na,
and adds customer i1 who will be served in the preferred location l1 to route rk0 (see Lines 3-7).
To increase diversity and, thus, to find potentially better solutions, the entire heuristic is started
multiple times (Line 3) and the subsequent steps are performed for several κ values (Line 8).

While not all customers have been assigned, the regret measure for inserting every remaining
customer i ∈I na in partial solution sh is calculated (Lines 9-11). If for all remaining customers
a positive regret measure exists, i.e., every customer can be inserted in the partial solution sh, the
best insertion position is determined. The set of not yet assigned customers I na and the solution
set S are then updated (Lines 12-16).

However, if for at least one customer no positive regret measure exists, i.e., this cus-
tomer cannot be inserted in the partial solution, this solution becomes infeasible. The pro-
cedure then removes sh, the partial solution which was earlier added to the set of partial so-
lutions S , and returns to pred(sh), the predecessor of sh. To proceed to another solution
from pred(sh), the deleted customer-location-start time tuple and the corresponding route rk is
stored as tuple ⟨ih, lh,Th,rkh⟩ in a list of forbidden insertions F (pred(sh)) of the partial solu-
tion pred(sh) (Lines 17-20). The next insertion will then be the best customer-route combination
with respect to regret measure (6.28) such that the corresponding customer-location start time
route tuple is not contained on forbidden list F (pred(sh)), i.e., (i∗,r∗k) = arg max

i∈I na

{
∆gκ(i,R) |

(i, l(gκ(i,R)),T (gκ(i,R)),R) /∈F (pred(sh))
}

.
If again no feasible successor exists, i.e., the regret measure is 0 for at least one customer,

the procedure returns to pred(sh)’s predecessor, for which the corresponding customer-location
start time route tuple is forbidden which would lead to pred(sh) again. Therefore, the procedure
generates a search tree in a depth-first search manner.

Finally, solution sbest having the minimal objective function value is returned (Line 26). A
graphical example of the backtracking mechanism is provided in Figure 6.5.
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Algorithm 3: CONSTRUCTION PHASE

1 Initialize partial solution s0 with rk = [⟨0,0,0⟩,⟨n+1,0,T ⟩] ∀k ∈K ; I na = I ;
2 set S = {s0};
3 while max number of restarts not reached do
4 randomly select i ∈I na; set I na = I na\{i};
5 if ∆gκ(i,R)> 0 then
6 s1← add tuple ⟨i1, l1(g(i,R), t1(g(i,R))⟩ to position m1(g(i,R)) in route

rk0 ∈R of s0;
7 set S = S ∪{s1} ;
8 foreach regret κ do
9 while I na ̸= /0 do

10 sh← select last inserted partial solution in S ;
11 compute regret measure for all not inserted customers ;
12 if ∆gκ(i,R)> 0 ∀ i ∈I na then
13 (i∗,r∗k)← arg max

i∈I na
{∆gκ(i,R)};

14 sh+1← add tuple ⟨i∗h+1, lh+1(g(i∗,r∗k)), th+1(g(i∗,r∗k))⟩ to position
mh+1(g(i∗,r∗k)) in route r∗kh+1

, i.e.
r∗k =

[
⟨0,0,0⟩, . . . ,⟨i∗, l(g(i∗,r∗k)), t(g(i∗,r∗k))⟩, . . . ,⟨n+1,0,T ⟩

]
15 I na = I na\{i∗};
16 set S = S ∪{sh+1};
17 else
18 set S = S \{sh} ;
19 return to predecessor of pred(sh) ;
20 set predecessor’s forbidden list

F (pred(sh)) = F (pred(sh))∪
{
⟨ih, lh,Th,rkh⟩

}
;

21 end if
22 end while
23 end foreach
24 end if
25 end while
26 sbest← argmins∈S

{
f mod(s)

}
;

27 return sbest

During the first computational tests, the following observation was made: Returning to the
direct predecessor of an infeasible partial solution does generally not correct the solution as
desired, especially, if only a few customers are left to insert. Many iterations of backtracking are
needed, until a feasible solution is found. The reason is that an insertion influences the insertion
position of every subsequently inserted customer. Thus, customers being inserted earlier have
greater influence on the structure of the solution than later ones. If poor insertion decisions have
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Figure 6.5: Example for backtracking in the constructive phase

been made early, it is unlikely to correct these tens of iterations later by backtracking. Therefore,
once a partial solution becomes infeasible, the procedure does not backtrack to its immediate
predecessor but to one of the first n, e.g., n = 5, customers inserted. By doing so, high quality
solutions are generated while saving much computational time, compared to a full depth-first
search.

6.2.4.3 Operators and Update Functions

The algorithmic behavior of an ALNS depends heavily on (a) the destroy operators Ω− and repair
operators Ω+ employed, i.e., the neighborhoods that can be searched, and (b) the updates of the
operator weights, i.e., how fast the ALNS adjusts the probabilities of selecting a certain operator.
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In the proposed hybrid ALNS, the updates of the penalty terms in the objective function also
play a crucial role. In this section, it is described how the update procedures work and what
operators are used. The focus lies on newly developed operators employing specific properties
of the VRPTW-FL, such as multiple locations.

6.2.4.3.1 Update Operator Weights
To adjust the likelihood of selecting a specific operator, the framework follows the approach
of [173]. Initially all operators j ∈ Ω+|− get assigned the same weight w j, e.g., 1, and the
probability ρ j of selecting an operator j is:

ρ j =
w j

∑
|Ω|
i=1 wi

(6.29)

For a given number of iterations, the success of the operators is measured by a score π j with
j ∈Ω+|−. Four cases are distinguished:

1. if a new global best solution is found, the score is raised by σ1;

2. if a new and not yet visited solution is found with a better objective function value than the
current solution, the score is raised by σ2 < σ1;

3. if a new and unvisited solution did not improve the current solution but is still accepted,
the score is raised by σ3 < σ2;

4. if a solution is found, but this solution has already been visited in prior iterations, the score
remains unchanged.

Once a certain number of iterations has been reached, the operator weights are updated according
to the recorded scores π j and the counter θ j (cf. Equation (6.30)). The counter θ j measures how
often the operator has been applied:

wupdated
j = w j · (1− r)+ r ·

π j

θ j
(6.30)

Reaction factor r controls how fast the weights adapt to the success in the last iterations.

6.2.4.3.2 Update Objective Penalty Terms
In the augmented cost function (6.25), penalty terms are used to penalize feasibility violations.
These penalties are dynamically adjusted depending on the frequency of the violation in the past
and the severity of the violations. This approach of dynamically adjusting objective function
weights follows the GLS employed in Voudouris and Tsang [213] and will be described in the
following.
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Let f j be a specific feature, e.g., the non-assignment of customer i1, and indicator func-
tion I j(s) is 1, if solution s has feature f j, and 0 otherwise. Each feature f j, i.e., the violation
of a specific constraint, is associated with a constant cost value c j and a dynamically adjust-
ing penalty value p j for the objective function. All penalty values are set to 0 initially, i.e.,
pna

i = ptw
i = ppred

i = pskill
i = 0 ∀ i ∈I . After a certain number of iterations, the penalty values

are updated for a predefined number of features yielding the highest utility value as defined in
Equation (6.31), where sh is the current solution at iteration h and n( j)

i denotes the number of
occurrences of the j-th penalty for customer i since the last update.

ui(sh, f ( j)) = I( j)
i (sh) ·

n( j)
i c( j)

1+ p( j)
i

(6.31)

The utility function is used because (a) updating all violated features equally would not change
the direction of the search and lead to very similar solutions, and (b) updating only the penalties
of features with the highest cost would bias the algorithm towards penalizing high cost features.
The denominator 1+ p j counteracts the latter since an increasing penalty p j reduces the utility
value. Note that while Voudouris and Tsang [213] update the penalties once the heuristic is stuck
in a local minimum, the proposed framework updates the penalties after a certain number of
iterations, which is similar to updating the operator weights in an ALNS (cf. §6.2.4.3.1).

6.2.4.3.3 Destroy Operators
A very useful property of the ALNS is that it can incorporate a multitude of neighborhoods
to address specific characteristics of the problem at hand and, thus, a multitude of destroy and
repair operators have been developed (see [116] for a good overview). In this section, the destroy
operators being applied are described, and in the subsequent section the repair operators being
applied. As the VRPTW-FL is a generalization of the VRPTW (see §6.2.3.2), all operators
are also applicable for the VRPTW. The effectiveness of the procedures will be shown in the
computational study in § 6.2.5.2.3. The operators used are largely taken from the literature, and
adapted to the problem setting with flexible delivery locations. Furthermore, the thesis presents
seven additional operators specifically designed to deal with flexible delivery locations. The
operators taken from the literature and the corresponding sources are: random destroy, worst
destroy, simplified Shaw (proximity) destroy, cluster destroy, time related destroy, history based
destroy (neighbor graph destroy, request graph destroy) [173, 174, 160], related (Shaw) destroy
[189], and random route destroy [142].

For the VRPTW-FL, the customer-locations are very important. Therefore, the thesis intro-
duces four operators specifically addressing the spatial arrangement of service locations: location
related destroy, cluster k-means destroy, zone destroy, and subroute destroy. In addition, a mod-
ified time related destroy is used and the thesis introduces a start time flexibility destroy. For
all operators incorporating some kind of relatedness, the algorithm first removes one customer-
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location tuple randomly and then determines the relatedness with regards to this tuple to remove
further tuples.

Time related destroy In the time-related destroy operator, those customers i and j are se-
lected which have a strong relation to each other with respect to possible service times. The
relatedness Dtime(i, j) between two customers is measured as follows:

Dtime(i, j) =
T(

α1 · T̄i, j +α2 · |Ti−Tj|
) , (6.32)

where T̄i, j is the average time difference between all possible start times of i and j:

T̄i, j =

∣∣∣∣ai +bi

2
−

a j +b j

2

∣∣∣∣ , (6.33)

and |Ti− Tj| is the time difference between the start times of customers i and j in the current
solution. At first, one customer i is removed at random, and then the n− 1 customers who are
most related to i are removed. This logic also applies to the other related destroy operators. Note
that in the time related destroy presented in [160] only the term |Ti− Tj| is used to select the
removals.

Location related destroy Similar to the time related destroy, this operator removes vertices,
which are very similar in terms of their locations (cf. Equation (6.34)). The location related-
ness Dloc(i, j) between two customers i and j is the number of common possible service loca-
tions divided by the number of locations available for the customer with less location flexibility
(min{|Li|, |L j|}).

Dloc(i, j) = 1− simloc(i, j) = 1−
|Li∩L j|

min{|Li|, |L j|}
(6.34)

Location and time related destroy The weighted combination of the location related destroy
and the time related destroy is defined as:

Dloc,time(i, j) = β1 ·Dloc(i, j)+β2 ·Dtime(i, j). (6.35)

If β1 = 0 the operator is equal to the time related destroy, if β2 = 0 the operator is equal to the
location related destroy.

Cluster destroy k-means While Ropke and Pisinger [174] describe a cluster destroy based
on the minimum spanning tree algorithm by Kruskal [118], the thesis introduces a cluster destroy
based on the very popular k-means clustering. The goal of k-means clustering is to partition a
set into k disjoint subsets, such that the sum of the squared deviations (distances) from the posi-
tions x j of all elements j in the clusters Si to the clusters’ centers µi is minimal. Mathematically,
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this is:

min
k

∑
i=1

∑
j∈Si

(
x j−µi

)2
. (6.36)

For a recent overview of clustering algorithms and a more detailed description of k-means clus-
tering, see [99]. Depending on the underlying real-world application, it might not be possible
to calculate geometric center for a subset of points. For therapist routing the modified Equa-
tion (6.37) is used:

min
k

∑
i=1

∑
j∈Si

(
tl j,lcenter

j

)2
. (6.37)

minimizing the travel time from the most centrally located location lcenter
j to all other locations

l j in the cluster. Once the clusters have been generated, clusters are randomly selected and all
customers in the selected clusters are removed until the desired number of removals has been
performed. The number of cluster k can be set arbitrarily.

Zone destroy Similar to the simplified Shaw destroy, the zone destroy operator randomly
selects one customer i with his/her location li. It then removes all customers, who could be
assigned to one location within a given distance around location li. If the number of removed
customers is below n, the distance around li is increased until n customers have been removed.
Thereby, the operator does not only consider customers who are already close to one another but
also customers who are currently served in another location but could also be served in the zone.

Subroute destroy A customer-location tuple is randomly selected and then, starting from
this tuple, a virtual route of length n is constructed in a greedy fashion. Afterwards, all tuples in
this virtual route are removed from the existing routes in the temporary solution.

Start time flexibility destroy In the hospital setting, customers have very different time
window lengths. Outpatients generally have fixed appointments and, thus, a fixed start time,
and some of the inpatiens have quite large time windows. The start time flexibility destroy first
removes those customers who have the most flexibility in terms of possible start times. These
customers are more likely to find another insertion position, while customers with fixed start
times might already have a good position in the current solution.

Skill mismatch destroy As introduced in Section § 6.2.3.3, the model accounts for a hetero-
geneous fleet. In the hospital setting, the heterogeneity is expressed in the different skills of the
therapists. Generally, a vehicle k ∈K can serve customer i ∈I in location l ∈L if and only
if vehicle k has the skill required for serving customer i. The skill mismatch destroy operator re-
moves customers from a vehicle’s route if the discrepancy between the required and the provided
skill is largest. Let kskill denote the provided skill level of vehicle k, and iskill the required skill
level of customer i, the skill discrepancy is defined as:

Dskill(i,k) = |kskill− iskill| (6.38)
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In order to enhance the exploration of the solution space, the following destroy operators are
randomized: neighbor graph, simplified Shaw (proximity), time related, worst, skill mismatch,
and time flexibility. This prevents that entities are removed in a deterministic way inhibiting a
diverse exploration. The stochasticity is controlled by an operator-specific parameter p(op) where
low values correspond to large randomness in the selection of a destroy operator.

6.2.4.3.4 Repair Operators
To reinsert the removed customers, three types of repair operators, namely greedy repair, κ-regret
repair operators with κ ranging from 2 to 6, and skill match repair are employed. For the κ-regret
repair, the same regret measure is used as in the construction heuristic (cf. Equation (6.28) in
§ 6.2.4.2).

Skill match Insertion The skill match insertion heuristic is based on the reverse idea of the
equivalent destroy operator described in the previous section. This operator schedules customers
i ∈I to vehicles k ∈K for which the discrepancy between the required and the provided skill
level is small.

6.2.4.4 Implementation Details

During the execution of the algorithm, feasibility must be checked frequently. Testing for ca-
pacity violations is computationally expensive; however, it does not have to be done for all
customer-location combinations. Because of the start time windows and the service duration, we
know for some customers that serving them in a specific location will never lead to a capacity
violation, since not enough other customers exist, who could be served in this location at this
specific time. Therefore, to accelerate the algorithm, we determine in a preprocessing step all
locations and corresponding time intervals which could have capacity violations. During the
execution of the heuristic, the algorithm tests location capacity only for those customer-location
combinations which could potentially lead to capacity violations.
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6.2.5 Computational Study

In this section, the thesis investigates the performance of the proposed model. In particular, in
§ 6.2.5.1 it is described how the data used in the computational experiments has been gener-
ated. The thesis evaluates the newly introduced algorithm features in § 6.2.5.2. In particular,
it is investigated the value of (a) the backtracking procedure in the construction phase, (b) the
GLS, and (c) the newly introduced destroy operators. Furthermore, the heuristic is compared to
current hospital planning in § 6.2.5.3. In addition to evaluating the solution quality, the thesis
also studies the value of flexibility, i.e., how solutions change depending on different cost func-
tions for customer travel times. Thereby, it is possible to trade off customer and vehicle travel
times. Finally, in § 6.2.5.4, the performance of the algorithm for the VRPTW on the Solomon
benchmark instances [194] is shown.

The algorithms were coded in JAVA using Amazon Corretto 11 as JDK and executed on an
Ubuntu 20.04.2 LTS platform employing an AMD Ryzen Threadripper 1950X 16-Core Proces-
sor @ 3.40GhZ with 124 GB of RAM. The source code has been made publicly available at
https://github.com/christianmaxmike/ALNS-VRPTW-FL.

6.2.5.1 Data and Instance Generation

Since no benchmark instances exist for the VRPTW-FL, instances based on data provided by
a cooperating hospital were created. To account for different problem sizes and to ensure reli-
ability of the results, we developed an instance generator to create generic problem instances.
Three components define an instance: (a) the network layout representing the hospital, (b) the
demand scenario representing customers (treatments), and (c) the fleet of vehicles representing
therapists.27

Network layout This thesis distinguishes three layouts, which are defined by the number of
buildings B∈{1,2,6} and the number of floors per building F ∈{1,3,6}. Each floor has a certain
number of rooms (locations) R ∈ {6,7, . . . ,10} drawn from a discrete uniform distribution. One
of the buildings contains the therapy centers, which has a capacity between 2 and 6. The capacity
at the ward rooms is always unlimited since patients cannot be scheduled to other patients’ ward
room. The travel time between two buildings is drawn at random from the set {10,15,20}
minutes. The travel time between neighboring floors is assumed to be 5 minutes, and the travel
time between two rooms on the same floor is either 5 or 10 minutes. As stated above, travel costs
are equated with travel times.

Demand scenarios The thesis distinguishes six demand scenarios having 20, 40, 60, 80, 100
and 120 treatments. A 10% probability exists that the patient is an outpatient, i.e., he/she can
only be treated in a therapy center and the start time for the treatment is fixed. Ten percent of the
patients are bedridden, i.e., the patient must not be moved and can only be treated in his/her room

27Data publicly available: https://zenodo.org/record/6772201#.YrsDJJDP3Kp
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at the ward. However, these latter patients have a rather wide start time window of 90 minutes.
The remaining patients are regular inpatients, of which 50% have location flexibility, i.e., the
patient can be treated at the ward and in the therapy center. For each patient with location
flexibility, the preferred room is selected randomly with each room having the same selection
probability. For each preferred location the location costs is set to 0 and for the non-preferred
locations the location costs are set to the distance from the preferred location. By this, the
additional effort for transporting the patient between locations are reflected. In § 6.2.5.3.2, the
thesis reports about a computational study where the location costs were systematically varied.
The start time window length of these patients varies between 30 and 45 minutes. Thirty percent
of the patients receive multiple treatments (2 or 3) in one day.

Every treatment job has a duration of 10 to 45 minutes and requires a certain skill level. Let
us assume hierarchical skills ranging from 1 (lowest) to 3 (highest). The probabilities that a job
requires a certain skill are 60%, 30% and 10% for skills 1, 2 and 3, respectively.

Vehicles A heterogeneous fleet is used, since therapists differ in their skills as well as their
shift patterns. The skills are the same as for the jobs; however, the probabilities of having skill
1, 2 and 3 are 10%, 60% and 30%. A therapist has a regular (long) shift with 80% probability.
Otherwise, the therapist has a short shift with 50% probability of being a morning or evening
shift. We assume that therapists start and end their shifts in the break room (depot), which is 5
minutes away from the therapy centers.

Final instance set Two sets of data were generated: a training set and a test set. The training
set is used to pre-test the features of the heuristic and to tune its parameters, and the test set
is used for the numeric study. Each set consists of 5 · 3 · 6 = 90 instances, as five instances
were created for each combination of the three layouts and six demand scenarios. As the daily
scheduling problem decomposes into a morning and afternoon part separated by a lunch break,
and following Jungwirth et al. [103], the instances were split into a morning and an afternoon
part each containing approximately half the number of customers.

6.2.5.2 Evaluation of Algorithmic Features

The thesis introduced three essential features for the ALNS: backtracking in the construction
heuristic, a GLS to penalize violations of constraints, and new destroy operators specifically
tailored for a problem structure, where multiple service locations exist for customers. For each
feature, it first evaluates the benefit of the individual features by comparing the performance of
the heuristic with and without the feature, and then it evaluates the performance of all features
combined.

6.2.5.2.1 Value of Backtracking
The backtracking mechanism adds a look-ahead perspective to the construction heuristic to alter
unsatisfactory decisions during the insertion process (cf. § 6.2.4.2). To evaluate the value of
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backtracking, the construction heuristic including backtracking is compared to a version without
backtracking, i.e., the best solution generated by the greedy and κ-regret insertions with κ =

{2,3, . . . ,6}. For backtracking, stepping back to the first five inserted customers is allowed with
the following probabilities 1.0, 0.6, 0.3, 0.2 and 0.1, i.e., a 10% probability exists to step back to
the fifth customer, and if this is rejected, the procedure steps back to the fourth customer with a
probability of 20%, etc. These probabilities are independent of one another, i.e., for each stage
to which it can be backtracked, a new random number is drawn if backtracking was rejected in
the prior stages.

The result of the comparison of the construction heuristic with and without backtracking
can be found in Table 6.1. For each combination of layout (B, F) and demand scenario (|I |),
it is displayed the average values over five instances and three runs for the objective function
value f (s∗) of the best solution found s∗, the number of not assigned customers in that solution
|Ina(s∗)|, the number of precedence violations |Ipred(s∗)|, the percentage of feasible solutions
nfeas, and the number of backtrackings nbt. Note that neither time window nor skill violations are
possible during the construction phase.

By enabling backtracking, the solution quality after the construction phase could be increased
substantially. On average, the objective function value was improved by 30.70% , the numbers
of not assigned customers by 91.22%, and precedence violations were completely eliminated.
The fraction of instances for which feasible solutions were found increased by 45.5% up to 89%.
The number of backtrackings used per instance averaged at 1076.36, where in the evaluation, the
number of maximal backtracking steps was set to 5000.

A proper initialization is critical for the ultimate model’s performance as an inappropriate
initial solution might lead to a subpar local minimum and, therefore, leads to a slow-down in
the convergence of the algorithm. A good initial solution comes with the cost of larger running
times for the construction phase. Due to the exponential growth of the tree being explored dur-
ing the backtracking, a full depth-first search is too time-consuming. Therefore, the number of
backtrackings are restricted and a termination criteria for the backtracking heuristic is fulfilled
whenever the maximal number of backtracking is reached.
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6.2.5.2.2 Value of ALNS+GLS
A standard ALNS working on objective function (6.27) was tested against an ALNS working
on objective function (6.25), which dynamically adjusts penalizing infeasibilities. Since both
version use different objective functions, the development of the best feasible solution is used as
the metric for fair comparison. Figure 6.6 shows the development for all runs on a logarithmic
scale. For each iteration the gap to best known solution states how far the best feasible solution
of the current run is apart from the best feasible solution over all runs for the same instance.

Figure 6.6: Comparison of ALNS (above, blue lines) and ALNS+GLS (below, orange lines). Thin lines
represent the percentage gap to the best feasible solution found over all runs. The bold lines
represent the average percentage gap.

The ALNS with GLS is able to get into much better regions of the solution space and is able
to improve feasible solutions even in later iterations.

Table 6.2 shows the percentage gaps after n iterations. The gap between the two algorithms
increases with increasing number of customers. The gap also increases slightly with the number
of iterations, from 2.32% at n = 10,000 to 2.53% at n = 25,000.

While the average performances of the ALNS and ALNS+GLNS are sufficiently good for
real-world hospital operations, Figure 6.6 shows a considerable variance in the performances
over the entire instance set. Strong inter-dependencies between the parameters steering the
ALNS and the parameters steering the GLS could be observed. An in-depth analysis of these
inter-dependencies, and an instance-based parameter tuning that, e.g., considers different hospi-
tal layouts, is a fruitful area of further research. Automated design for meta- and matheuristics as
described by Stützle and López-Ibáñez [197] and Maniezzo et al. [143] seems to be a promising
starting point.
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6. Spatial Graphs

Table 6.2: Achieved gap reduction in percent after n iteration by using ALNS+GLS compared to ALNS.
Each row represents the average values of all five instances per setting, each ran three times.

|I | B F ∆
gap
n=5,000 ∆

gap
n=10,000 ∆

gap
n=15,000 ∆

gap
n=20,000 ∆

gap
n=25,000

20 1 6 3.19 2.69 2.69 2.69 2.69
2 3 4.26 4.26 4.26 4.26 4.26
6 1 -1.25 -1.35 -1.21 -1.21 -1.21

40 1 6 14.47 14.23 14.78 14.78 14.78
2 3 17.79 18.90 18.90 18.90 18.90
6 1 3.66 3.86 4.00 4.00 4.00

60 1 6 5.26 7.16 7.15 7.15 7.15
2 3 -0.43 -1.94 -1.49 -1.49 -1.49
6 1 2.33 4.83 5.41 5.41 5.41

80 1 6 -1.02 0.20 -0.34 -0.34 -0.34
2 3 -0.83 1.54 1.49 1.49 1.49
6 1 -1.54 -1.62 -1.15 -1.15 -1.15

100 1 6 -3.67 0.49 0.91 0.91 0.91
2 3 -3.39 -2.98 -3.45 -3.45 -3.45
6 1 -3.80 -1.41 -1.49 -1.49 -1.49

120 1 6 -1.65 -1.51 0.57 0.57 0.57
2 3 -6.26 -3.19 -3.42 -3.42 -3.42
6 1 -3.88 -2.47 -2.08 -2.08 -2.08

Avg. 1.29 2.32 2.53 2.53 2.53

6.2.5.2.3 Value of New Operators
To specifically tackle the underlying problem structure, several new neighborhoods (cf.
§ 6.2.4.3.3) were developed. The thesis investigates their impact by analyzing the probability
of selecting a specific operator over time. The more successful a certain operator has been in
earlier iterations, the more likely it will be selected in later iterations. The results for the destroy
operators are given in Figure 6.7 and the results for the repair operators are given in Figure 6.8.
The graphics are both organized in the same way. Each tile highlights the selection probability
for one operator averaged over all instances and all runs.

Most of the operators generally used in the literature perform well and most of the newly
developed operators can add additional value. Especially, the start time flexibility destroy and
the skill mismatch destroy provide significant value, and k-means clustering is a valid alternative
to clustering based on Kruskal’s minimal spanning trees.

Noteworthy, the location-related and location-and-time-related destroy operators did not per-
form well. A possible explanation might be, that the location that is shared most by customers
is the therapy center. The therapy center, however, is capacitated which limits the amount of
customers, which can be placed in this neighborhood.
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6.2 Metaheuristic for VRPTW-FL

Figure 6.7: Probabilities of drawing the destroy operators over 25,000 iterations. Each subplot displays
the average probability of an operator over the 90 instances. Black thin lines represent
operators from the literature. Blue thick lines represent new operators. Light gray lines
represent the operators which are not the focus of the subplot. Above average performance
is displayed by solid line segments while dotted lines represent under average performance.

Figure 6.8: Probabilities of drawing the repair operators over 25,000 iterations. Each subplot displays
the average probability of an operator over the 90 instances. Black thin lines represent
operators from the literature. Light gray lines represent the operators which are not the
focus of the subplot. Above average performance is displayed by solid line segments while
dotted lines represent under average performance.
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6. Spatial Graphs

With the exception of the two location related destroys, all the averaged results are rather
close together. The main reason is that the individual performance equals out over 180 instances
repeated three times. However, performance in the individual runs varies significantly. To present
a typical example, Figure 6.9 displays the distribution of the individual runs for the Location-
related destroy.

Figure 6.9: Distribution of the probability developments over time for the location-related destroy. Thin
gray lines represent the individual runs, while the bold black line represents the average
over all runs.

The solution qualities of the ALNS with and without the new operators are similar. However,
for bigger instances (100, 120 customers) slightly better performance was observed when using
the new operators. The number of unscheduled customers decreases by 6.67% to 0.078, the
objective function value decreased imperceptibly from 95.64% to 95.14% (−0.52%), and the
average runtime also decreased lightly from 67.0 seconds to 66.57 (−0.66%).

6.2.5.2.4 Value of All Features
After having tested the algorithmic features individually, it is important to examine how the
features interact when used together. The results of testing a standard ALNS against one with
backtracking in the construction, GLS and new operators are displayed in Table 6.3.

Moderate improvements are achieved when using all features. The objective function value
is improved by 1.1% mainly due to consistently reducing the number of unscheduled customers
(−80%). However, this comes with an increase in number of time window violations (12%) and
skill violations (3%). Thus, the ratio of instances where the best solution found was feasible
decreased to 85% (−7.3% over standard ALNS).
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6.2.5.3 VRPTW-FL Applied to Therapist Scheduling and Routing

After investigating the algorithmic features in the last part, this part focuses on the hospital case
and the value an ALNS can add to current planning practice.

6.2.5.3.1 VRPTW-FL Compared to Manual Planning
To compare the proposed ALNS to current hospital planning, the sequential allocation heuristic
(SAH) was used as described in Gartner et al. [70]. According to Gartner et al. [70], this approach
resembles manual planning. The central idea of the SAH is to separate customers with fixed start
times, which are assigned first, from those with flexible start times, which are assigned later.
Sorting is used to facilitate assignment of customers to good tours, e.g., vehicles are sorted in
order of increasing shift start times and customers are sorted by earliest start time.

The results for the SAH and the proposed ALNS are given in Table 6.4. The novel approach
presented in this thesis clearly outperforms the SAH by increasing the ratio of feasible solutions
found from 29% up to 85%. The ALNS leaves almost no customers unscheduled and reduces the
number of precedence violations by 100%. Reducing precedence violations is highly relevant for
practice because in most cases, medical reasons exist for those precedence relations. However,
this comes at the cost of violating the desired time windows in 11% of the instances and the
violating the required skill level in 3% of the instances.

6.2.5.3.2 Impact of Location Costs
In order to assess the impact of different location costs, four different cost functions are consid-
ered for assigning a customer to a non-preferred location: (1) no costs, (2) costs of one, (3) costs
equal to the distance between preferred location and assigned location tr,l , and (4) costs equal to
this distance squared (tr,l)2.

Table 6.5 summarizes the results for the different cost functions. For increasing location
costs, the share of patients served at the preferred location becomes greater. At the same time, the
total distance traveled by the therapists increases. When comparing the extreme cases, location
costs of 0 and (tr,l)2, the average ratio of patients treated in the preferred location increases by
255% from 37.8% to 96.2%, and the travel distance of the therapists increase by 224% from 35.7
to 80.02.
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6. Spatial Graphs

Table 6.5: Impact of location costs. Each row represents the average values of all five instances per
setting, each ran three times.

|I | B F distance therapists frac. preferred locations
0 1 tr,l (tr,l)2 0 1 tr,l (tr,l)2

20 1 6 14.30 14.44 27.86 32.90 0.29 0.34 0.82 0.96
2 3 14.80 14.80 23.50 34.64 0.37 0.45 0.71 0.93
6 1 16.16 16.43 23.50 34.20 0.40 0.44 0.71 0.98

40 1 6 35.36 37.24 47.80 56.64 0.53 0.62 0.85 0.94
2 3 32.26 32.66 43.34 53.04 0.60 0.64 0.84 0.96
6 1 35.70 36.40 43.24 51.46 0.65 0.71 0.86 0.97

60 1 6 37.75 38.54 61.54 69.83 0.48 0.56 0.87 0.94
2 3 30.40 31.64 56.84 68.40 0.36 0.48 0.86 0.97
6 1 38.76 39.74 57.74 77.50 0.46 0.53 0.80 0.97

80 1 6 36.76 39.10 74.76 87.76 0.34 0.47 0.85 0.94
2 3 40.03 41.66 81.54 93.56 0.32 0.42 0.89 0.97
6 1 40.40 42.56 69.44 89.24 0.34 0.45 0.83 0.98

100 1 6 46.46 48.66 96.50 113.06 0.30 0.41 0.88 0.97
2 3 41.24 43.90 81.80 100.56 0.30 0.46 0.85 0.97
6 1 42.58 44.42 78.54 102.75 0.30 0.42 0.81 0.97

120 1 6 50.84 53.10 109.94 129.40 0.27 0.37 0.86 0.96
2 3 43.70 43.90 94.36 123.10 0.27 0.38 0.82 0.97
6 1 45.04 47.60 96.54 122.34 0.24 0.36 0.82 0.96

Figure 6.10 displays this causal relationship grouped by the different demand scenarios (num-
ber of customers). When costs are (tr,l)2, deviating from the preferred locations is avoided when-
ever possible, only in cases of limited capacity in the therapy center an alternative location is
assigned. Increasing the cost for alternative locations from 0 to 1 does only have a very small
impact on the travel costs of therapists. For costs of 1, location preferences are almost entirely
neglected, i.e., patients will be scheduled to alternative rooms although this only slightly im-
proves the travel distances of the therapists. Presumably, a good trade-off in hospital planning is
to use location costs equivalent to the distance between the preferred location and the assigned
locations. However, this might not generalize to other routing contexts with very different un-
derlying network structures.

6.2.5.4 ALNS on Solomon Instances

To show the general capabilities of the novel algorithm, its performance for the VRPTW on
the well-known Solomon benchmark instances [194] were evaluated. Note that the algorithm’s
parameters were not tuned for the Solomon instances, instead the parameters obtained by tuning
for the hospital instances were used as described in § 6.2.5.1. The results for the 29 instances
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6.2 Metaheuristic for VRPTW-FL

Figure 6.10: Travel distances of therapists (vehicles) in blue and fraction of treatments in preferred
locations in orange for different location costs (0, 1, tr,l , (tr,l)2). Each line groups the
results for different instances sizes (20, 40, . . . , 120 customers).

of the first class with relatively narrow time windows are given in Table 6.6. Considering that
the proposed algorithm is not tuned for these instances, it performs well. For the 25-customer
instances, optimality is reached in all cases, for 50 customer in 7, and for 100 customers in 2
cases. The optimality gaps are larger than, e.g., in Vidal et al. [208], which is expected as the
proposed algorithm was developed to cope with the very distinct properties of the VRPTW-FL.

Table 6.6: Performance of the ALNS on Solomon benchmark instances. The types are clustered (C),
random (R), partially random/clustered (RC), optimum is the optimal solution, ALNS is the
average result achived by the ALNS over five runs, gap is the relative gap between ALNS and
the optimal solution, and n optimal states how often the optimal solution was found for each
instance.

type customers optimum ALNS gap n optimal

C 25 190.59 190.59 0.0 9 / 9
50 361.69 373.83 0.03 5 / 9

100 826.70 944.36 0.14 1 / 9
R 25 463.37 463.37 0.0 12 / 12

50 766.13 777.02 0.02 2 / 12
100 1173.61 1258.68 0.08 0 / 12

RC 25 350.24 350.78 0.0 6 / 8
50 730.31 736.14 0.01 0 / 8

100 1334.49 1444.39 0.09 0 / 8
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6.3 Summary
The VRPTW-FL is a relevant and highly complex problem. Considering multiple possible ser-
vice locations in routing problems receives increasing interest in the VRP community and this
thesis addressees a mathematical formulation of location capacities in the service locations for
the first time. The VRPTW-FL occurs in scheduling physical therapists for which the solution
approach was developed. The proposed model built on an ALNS framework and was enhanced
with several innovative ideas, i.e., (a) a backtracking procedure in the construction phase to cor-
rect poor assignment of customers to vehicles, (b) a guided local search (GLS) that dynamically
adjusts how infeasibilities are penalized, and (c) new neighborhoods exploiting the underlying
problem structure.

The algorithm was evaluated on a set of generic instances designed to represent different hos-
pital layouts and different demand scenarios. The computation results show that the developed
enhancements add value to better solving the VRPTW-FL. The thesis generated insights how
different cost functions for assigning customers to location different from the preferred location
affect the overall planning. These insights can be used by hospital managers to decide which
cost function to be used depending on their healthcare system and/or customer preferences. A
more in-depth investigation of the interplay between hyperparameters steering the ALNS and the
parameters steering the GLS is likely to lead to a more robust version of the novel algorithm and
presents a promising research direction.

The authors of the joint work [66] – which has been presented in this chapter – believe that
VRPTW-FL and related problems will receive more attention in near future. Savelsbergh and
Woensel [180] describe these problems as an opportunity in city logistics and we believe that
for many applications location capacities become a limiting factor, e.g., limited parking space
availabilities are so far completely ignored in the OR literature.
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6.4 Addendum

6.4 Addendum

6.4.1 Detailed Computational Results

Table 6.7 lists the computational details for the individual instances. The instance name name
is composed of i followed by the number of customers in the instance, b followed by number
of buildings and f followed by the number of floors per building defining the hospital layout,
v the instance number for this combination of customers and hospital layout, and either m for
the morning part or a for the afternoon part. Further, the following notation is used: number of
customers in the morning/afternoon part |I |, fitness value of the solution after the construction
phase sc, number of backtracking steps during the construction phase nbt, computation time for
the construction phase tc, fitness value after the ALNS phase salns, computation time for the
ALNS pahse talns, number of vehicles used K used, binary indicator if the solution is feasible
feas, number of non-assigned customers nna, number of timewindow violations ntw, number of
precedence violations npred, and number of skill violations nskill.

Table 6.7: Detailed results for ALNS with all new features (i.e., backtracking in
construction, additional repair and destroy operators, and GLS)

id name |I | sc nbt tc salns talns K used feas. nna ntw npred nskill

1 i020-b1-f6-v1-m 10 52.0 0.04 37.0 5.36 3 1
2 i020-b1-f6-v1-a 10 37.0 0.01 35.0 4.12 3 1
3 i020-b1-f6-v2-m 8 42.0 0.04 29.0 2.72 2 1
4 i020-b1-f6-v2-a 12 51.0 2 0.03 42.0 5.45 3 1
5 i020-b1-f6-v3-m 7 36.0 0.04 26.0 2.82 2 1
6 i020-b1-f6-v3-a 13 51.0 1 0.03 40.0 6.32 4 1
7 i020-b1-f6-v4-m 12 53.0 118 0.32 43.4 5.41 3 1
8 i020-b1-f6-v4-a 8 50.0 0.01 40.0 2.19 3 1
9 i020-b1-f6-v5-m 11 58.0 0.04 42.0 4.11 3 1

10 i020-b1-f6-v5-a 9 37.0 0.02 34.0 3.51 3 1
11 i020-b2-f3-v1-m 10 53.0 0.05 41.0 3.84 3 1
12 i020-b2-f3-v1-a 10 53.0 0.02 35.0 4.08 3 1
13 i020-b2-f3-v2-m 13 35.0 7 0.09 29.0 5.64 3 1
14 i020-b2-f3-v2-a 7 30.0 0.01 28.0 2.33 2 1
15 i020-b2-f3-v3-m 8 33.0 0.05 26.0 3.60 3 1
16 i020-b2-f3-v3-a 12 49.0 2 0.03 48.0 5.00 3 1
17 i020-b2-f3-v4-m 11 54.0 2501 0.10 37.0 4.24 4 1
18 i020-b2-f3-v4-a 9 40.0 3 0.01 31.0 2.46 3 1
19 i020-b2-f3-v5-m 11 39.0 65 0.16 31.0 4.18 3 1
20 i020-b2-f3-v5-a 9 71.0 5000 0.06 32.0 2.75 3 1
21 i020-b6-f1-v1-m 13 63.0 0.06 49.4 5.35 4 1
22 i020-b6-f1-v1-a 7 44.0 0.01 37.0 2.56 4 1
23 i020-b6-f1-v2-m 9 41.0 6 0.05 31.0 3.70 3 1
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Table 6.7: Detailed results for ALNS with all new features (i.e., backtracking in
construction, additional repair and destroy operators, and GLS) (contin-
ued)

id name |I | sc nbt tc salns talns K used feas. nna ntw npred nskill

24 i020-b6-f1-v2-a 11 41.0 0.02 28.0 3.71 3 1
25 i020-b6-f1-v3-m 12 55.0 0.05 46.0 6.91 4 1
26 i020-b6-f1-v3-a 8 33.0 7 0.02 27.0 2.52 3 1
27 i020-b6-f1-v4-m 15 58.0 0.06 45.0 10.16 3 1
28 i020-b6-f1-v4-a 5 17.0 93 0.03 17.0 1.74 2 1
29 i020-b6-f1-v5-m 10 42.0 0.06 35.0 4.22 3 1
30 i020-b6-f1-v5-a 10 48.0 0.03 36.0 3.92 3 1
31 i040-b1-f6-v1-m 17 74.0 58 0.33 62.8 10.13 5 1
32 i040-b1-f6-v1-a 23 116.0 5000 0.45 75.4 24.22 5 1
33 i040-b1-f6-v2-m 22 87.0 195 0.84 64.0 16.18 5 1
34 i040-b1-f6-v2-a 18 64.0 4 0.06 54.0 12.23 4 1
35 i040-b1-f6-v3-m 19 94.0 0.09 75.0 14.54 7 1
36 i040-b1-f6-v3-a 21 104.0 5000 2.76 93.0 12.76 4 1
37 i040-b1-f6-v4-m 21 89.0 77 0.42 64.0 13.25 6 1
38 i040-b1-f6-v4-a 19 80.0 0.09 50.0 11.72 5 1
39 i040-b1-f6-v5-m 21 102.0 5000 1.61 54.8 13.15 4 1
40 i040-b1-f6-v5-a 19 105.0 5000 0.90 66.8 14.72 6 1
41 i040-b2-f3-v1-m 23 63.0 2146 5.20 54.0 17.62 5 1
42 i040-b2-f3-v1-a 17 64.0 868 1.35 44.0 9.23 5 1
43 i040-b2-f3-v2-m 17 93.0 5000 2.07 49.8 9.63 6 1
44 i040-b2-f3-v2-a 23 83.0 13 0.12 58.0 18.17 5 1
45 i040-b2-f3-v3-m 19 86.0 0.08 56.0 12.64 5 1
46 i040-b2-f3-v3-a 21 129.0 5000 1.24 72.8 12.10 5 1
47 i040-b2-f3-v4-m 16 65.0 3 0.09 50.0 8.95 4 1
48 i040-b2-f3-v4-a 24 74.0 1003 4.49 58.0 32.54 5 1
49 i040-b2-f3-v5-m 18 76.0 17 0.19 53.0 10.98 4 1
50 i040-b2-f3-v5-a 22 108.0 5000 8.90 61.8 16.07 5 1
51 i040-b6-f1-v1-m 24 102.0 2665 4.85 82.4 20.02 6 1
52 i040-b6-f1-v1-a 16 76.0 5000 1.76 72.0 7.31 4 1
53 i040-b6-f1-v2-m 24 85.0 2518 1.08 57.0 18.66 6 1
54 i040-b6-f1-v2-a 16 47.0 228 0.74 35.0 9.27 4 1
55 i040-b6-f1-v3-m 22 86.0 18 0.26 60.0 16.10 5 1
56 i040-b6-f1-v3-a 18 77.0 0.04 57.0 13.26 4 1
57 i040-b6-f1-v4-m 23 95.0 5000 4.07 58.8 16.63 6 1
58 i040-b6-f1-v4-a 17 65.0 0.02 49.0 9.52 4 1
59 i040-b6-f1-v5-m 23 108.0 5000 1.73 68.0 16.30 5 1
60 i040-b6-f1-v5-a 17 63.0 0.01 46.0 8.39 4 1
61 i060-b1-f6-v1-m 31 129.0 1682 4.92 90.0 42.49 7 1
62 i060-b1-f6-v1-a 29 127.0 2555 3.77 90.0 51.65 7 1
63 i060-b1-f6-v2-m 31 149.0 5000 4.64 91.0 40.48 7 1
64 i060-b1-f6-v2-a 29 103.0 5 0.07 81.0 39.03 6 1
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Table 6.7: Detailed results for ALNS with all new features (i.e., backtracking in
construction, additional repair and destroy operators, and GLS) (contin-
ued)

id name |I | sc nbt tc salns talns K used feas. nna ntw npred nskill

65 i060-b1-f6-v3-m 23 81.0 0.11 66.0 20.23 5 1
66 i060-b1-f6-v3-a 37 153.0 5000 50.76 109.6 72.92 8 2
67 i060-b1-f6-v4-m 31 120.0 195 1.76 88.0 37.43 7 1
68 i060-b1-f6-v4-a 29 126.0 3791 2.38 81.0 50.22 6 1
69 i060-b1-f6-v5-m 29 116.0 5000 4.05 63.6 34.09 6 1
70 i060-b1-f6-v5-a 31 128.0 2585 3.56 70.0 36.88 6 1
71 i060-b2-f3-v1-m 27 109.0 0.15 74.0 33.49 7 1
72 i060-b2-f3-v1-a 33 111.0 15 0.21 70.4 47.44 7 1
73 i060-b2-f3-v2-m 27 104.0 7 0.27 71.0 33.54 6 1
74 i060-b2-f3-v2-a 33 141.0 62 0.60 95.0 47.83 6 1
75 i060-b2-f3-v3-m 29 98.0 25 0.72 75.0 40.22 7 1
76 i060-b2-f3-v3-a 31 111.0 145 1.28 80.8 38.28 7 1
77 i060-b2-f3-v4-m 27 118.0 19 0.38 88.0 31.32 6 1
78 i060-b2-f3-v4-a 33 115.0 27 0.77 73.0 50.26 7 1
79 i060-b2-f3-v5-m 30 99.0 16 0.39 74.0 39.32 7 1
80 i060-b2-f3-v5-a 30 100.0 3851 4.16 69.0 57.98 6 1
81 i060-b6-f1-v1-m 28 99.0 157 1.48 80.0 31.95 8 1
82 i060-b6-f1-v1-a 32 140.0 5000 0.38 86.0 44.80 8 1
83 i060-b6-f1-v2-m 34 168.0 5000 2.83 99.0 47.61 7 1
84 i060-b6-f1-v2-a 26 114.0 0.04 82.0 23.80 8 1
85 i060-b6-f1-v3-m 20 79.0 0.09 62.0 15.24 5 1
86 i060-b6-f1-v3-a 40 139.0 5000 6.25 95.0 85.80 9 2
87 i060-b6-f1-v4-m 38 127.0 291 4.72 94.0 79.82 8 1
88 i060-b6-f1-v4-a 22 75.0 2 0.06 55.0 20.21 5 1
89 i060-b6-f1-v5-m 33 144.0 5000 5.34 94.8 47.98 8 1
90 i060-b6-f1-v5-a 27 120.0 11 0.19 90.0 36.68 6 1
91 i080-b1-f6-v1-m 34 117.0 28 0.95 91.0 72.25 7 1
92 i080-b1-f6-v1-a 46 158.0 2583 71.89 117.0 168.26 8 1
93 i080-b1-f6-v2-m 49 157.0 2951 32.98 101.0 203.56 11 1
94 i080-b1-f6-v2-a 31 122.0 43 0.56 91.0 53.09 6 1
95 i080-b1-f6-v3-m 40 141.0 1 0.36 102.0 99.61 9 1
96 i080-b1-f6-v3-a 40 158.0 31 1.10 120.0 102.19 10 1
97 i080-b1-f6-v4-m 36 118.0 0.25 84.0 67.28 8 1
98 i080-b1-f6-v4-a 44 151.0 354 7.95 110.0 118.61 9 1
99 i080-b1-f6-v5-m 45 196.0 5000 32.28 113.0 114.07 9 1
100 i080-b1-f6-v5-a 35 158.0 5000 10.86 87.0 131.65 8 1
101 i080-b2-f3-v1-m 40 142.0 261 4.85 104.0 92.18 9 1
102 i080-b2-f3-v1-a 40 126.0 497 12.35 98.0 141.98 8 1
103 i080-b2-f3-v2-m 48 173.0 1748 29.30 110.0 162.79 10 1
104 i080-b2-f3-v2-a 32 124.0 21 0.36 87.0 57.18 7 1
105 i080-b2-f3-v3-m 37 148.0 136 2.45 110.0 73.55 9 1
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Table 6.7: Detailed results for ALNS with all new features (i.e., backtracking in
construction, additional repair and destroy operators, and GLS) (contin-
ued)

id name |I | sc nbt tc salns talns K used feas. nna ntw npred nskill

106 i080-b2-f3-v3-a 43 159.0 121 2.81 130.0 110.34 9 1
107 i080-b2-f3-v4-m 32 111.0 11 0.61 87.0 56.81 7 1
108 i080-b2-f3-v4-a 48 191.0 2650 14.05 130.0 159.52 10 1
109 i080-b2-f3-v5-m 42 170.0 813 15.27 124.0 111.57 11 1
110 i080-b2-f3-v5-a 38 169.0 0.08 120.0 86.61 8 1
111 i080-b6-f1-v1-m 34 119.0 6 0.36 90.0 57.67 9 1
112 i080-b6-f1-v1-a 46 184.0 5000 59.01 125.4 139.06 9 1
113 i080-b6-f1-v2-m 31 104.0 8 0.42 70.0 41.58 6 1
114 i080-b6-f1-v2-a 49 186.0 2847 33.24 134.0 256.63 10 1
115 i080-b6-f1-v3-m 44 145.0 233 5.40 103.0 131.77 9 1
116 i080-b6-f1-v3-a 36 139.0 216 3.00 92.0 69.88 8 1
117 i080-b6-f1-v4-m 39 158.0 0.29 104.0 99.43 8 1
118 i080-b6-f1-v4-a 41 139.0 181 3.62 113.4 96.46 9 1
119 i080-b6-f1-v5-m 35 137.0 255 3.48 97.0 65.93 7 1
120 i080-b6-f1-v5-a 45 175.0 7 0.31 135.0 147.43 9 1
121 i100-b1-f6-v1-m 55 223.0 55 3.06 160.0 245.75 11 1
122 i100-b1-f6-v1-a 45 175.0 11 0.45 137.8 128.75 10 1
123 i100-b1-f6-v2-m 56 216.0 5000 53.09 138.0 244.59 11 1
124 i100-b1-f6-v2-a 44 140.0 1396 12.13 110.0 148.59 9 1
125 i100-b1-f6-v3-m 47 173.0 589 13.12 140.0 156.50 9 1
126 i100-b1-f6-v3-a 53 212.0 940 70.19 144.0 450.93 10 1
127 i100-b1-f6-v4-m 50 199.0 64 3.29 144.0 214.60 10 1
128 i100-b1-f6-v4-a 50 192.0 4 0.50 137.0 234.52 10 1
129 i100-b1-f6-v5-m 44 193.0 0.48 115.0 135.33 8 1
130 i100-b1-f6-v5-a 56 246.0 60 3.07 151.0 263.59 11 1
131 i100-b2-f3-v1-m 51 174.0 107 4.29 107.0 208.58 10 1
132 i100-b2-f3-v1-a 49 168.0 45 1.64 128.0 207.98 10 1
133 i100-b2-f3-v2-m 45 163.0 9 1.28 118.0 146.07 9 1
134 i100-b2-f3-v2-a 55 187.0 208 20.95 126.0 571.09 11 1
135 i100-b2-f3-v3-m 53 168.0 395 17.91 122.0 256.99 10 1
136 i100-b2-f3-v3-a 47 148.0 32 1.30 114.0 171.12 11 1
137 i100-b2-f3-v4-m 50 175.0 75 3.43 127.0 203.48 10 1
138 i100-b2-f3-v4-a 50 147.0 189 7.41 112.0 202.93 9 1
139 i100-b2-f3-v5-m 48 199.0 136 5.31 137.0 191.06 10 1
140 i100-b2-f3-v5-a 52 234.0 99 5.15 164.0 217.45 10 1
141 i100-b6-f1-v1-m 50 174.0 55 2.88 120.0 216.46 11 1
142 i100-b6-f1-v1-a 50 163.0 3804 13.67 107.0 234.30 11 1
143 i100-b6-f1-v2-m 56 220.0 44 3.25 156.4 262.93 14 1
144 i100-b6-f1-v2-a 44 157.0 165 5.00 102.0 146.85 10 1
145 i100-b6-f1-v3-m 52 174.0 566 19.94 115.0 245.43 12 1
146 i100-b6-f1-v3-a 48 172.0 18 1.19 128.0 197.31 9 1
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Table 6.7: Detailed results for ALNS with all new features (i.e., backtracking in
construction, additional repair and destroy operators, and GLS) (contin-
ued)

id name |I | sc nbt tc salns talns K used feas. nna ntw npred nskill

147 i100-b6-f1-v4-m 49 149.0 1416 11.12 114.0 179.81 11 1
148 i100-b6-f1-v4-a 51 162.0 160 7.16 116.0 199.81 9 1
149 i100-b6-f1-v5-m 47 177.0 722 21.63 130.0 174.88 10 1
150 i100-b6-f1-v5-a 53 200.0 198 8.99 139.0 206.13 11 1
151 i120-b1-f6-v1-m 60 239.0 27 2.85 166.0 418.13 11 1
152 i120-b1-f6-v1-a 60 242.0 84 7.83 164.0 376.96 12 1
153 i120-b1-f6-v2-m 58 222.0 5000 207.58 150.0 322.66 11 1
154 i120-b1-f6-v2-a 62 234.0 71 5.85 157.8 369.72 12 1
155 i120-b1-f6-v3-m 48 187.0 4 0.92 135.0 225.98 10 1
156 i120-b1-f6-v3-a 72 327.0 5000 310.03 201.8 718.60 16 1
157 i120-b1-f6-v4-m 56 208.0 20 1.77 137.0 308.69 11 1
158 i120-b1-f6-v4-a 64 258.0 544 48.75 166.0 410.90 12 1
159 i120-b1-f6-v5-m 59 239.0 45 3.76 156.0 328.58 12 1
160 i120-b1-f6-v5-a 61 262.0 4 0.89 176.0 410.50 12 1
161 i120-b2-f3-v1-m 63 223.0 292 40.11 168.0 440.63 13 1
162 i120-b2-f3-v1-a 57 265.0 25 1.84 167.0 334.91 12 1
163 i120-b2-f3-v2-m 61 216.0 186 11.32 142.0 351.82 13 1
164 i120-b2-f3-v2-a 59 180.0 3047 208.06 126.0 369.77 12 1
165 i120-b2-f3-v3-m 65 206.0 9 1.68 155.0 443.73 13 1
166 i120-b2-f3-v3-a 55 190.0 7 0.69 135.0 305.97 11 1
167 i120-b2-f3-v4-m 56 212.0 2453 95.86 157.0 306.54 11 1
168 i120-b2-f3-v4-a 64 245.0 2714 96.34 171.0 463.33 13 1
169 i120-b2-f3-v5-m 61 221.0 39 3.92 156.4 391.98 11 1
170 i120-b2-f3-v5-a 59 219.0 341 25.18 138.0 396.75 11 1
171 i120-b6-f1-v1-m 55 198.0 52 4.13 147.0 319.41 12 1
172 i120-b6-f1-v1-a 65 234.0 1794 157.85 161.0 537.17 13 1
173 i120-b6-f1-v2-m 72 270.0 5000 300.97 166.0 681.53 13 1
174 i120-b6-f1-v2-a 48 171.0 10 0.60 130.0 206.55 11 1
175 i120-b6-f1-v3-m 73 259.0 547 50.04 168.0 607.88 14 1
176 i120-b6-f1-v3-a 47 181.0 6 0.54 121.0 188.12 10 1
177 i120-b6-f1-v4-m 54 207.0 27 2.47 150.0 279.39 12 1
178 i120-b6-f1-v4-a 66 253.0 103 9.77 175.0 470.97 13 1
179 i120-b6-f1-v5-m 63 262.0 566 34.98 185.0 398.25 13 1
180 i120-b6-f1-v5-a 57 222.0 105 8.20 158.0 394.42 11 1

155



6. Spatial Graphs

6.4.2 Overview ALNS+GLS Parameters

An overview of all hyperparameters used for the ALNS+GLS is provided in Table 6.8.

Table 6.8: ALNS parameters in alphabetical order

∆ = 0.05 Deterioration parameters of initial solution; used to calculate start tem-
perature

min(ρ) = 0.01 Minimum probability of drawing a destroy or repair operator.
λ na = 12.8 Weight for not assigning a customer
λ pred = 3.6 Weight for violating a precedence relation
λ skill = 1.4 Weight for violating a skill level by one time unit
λ tw = 1.2 weight for violating a time window by one time unit
σ1 = 33 Score if new global best solution was found
σ2 = 18 Score if new and unvisited solution was found with better objective

function value than current solution
σ3 = 9 Score if new and unvisited solution, not better than current objective

value, but still accepted
τ = 50 Number of iterations per segment, number of iterations before proba-

bility update of operators
ω = 25,000 Number of total iterations
Ω = 0.5 Parameter for acceptance of initial solution; used to calculate start tem-

perature
c = 0.99977 Cooling rate
cna = 5 ·maxi, j(ctravel

i, j ) Costs of not assigning a customer
cpred = 8.7 Costs of violating a precedence relation
cskill = 3.4 Costs of violating a skill level by one time unit
ctw = 1.8 Costs of violating a time window by one time unit
max(nbt) = 5000 Maximum number of backtracking steps.
r = 0.2 Reaction parameter (roulette parameter)
tPercent Auxiliary parameter to determine the end temperature
qlb

1 = 0.1 Auxiliary value to determine lower bound on number of nodes that are
removed from current solution

qlb
2 = 30 Auxiliary value to determine lower bound on number of nodes that are

removed from current solution
qlb Lower bound on number of nodes that are removed from current solu-

tion. qlb = min
{
|I | ·qlb

1 , qlb
2
}

qub
1 = 0.4 Auxiliary value to determine upper bound on number of nodes that are

removed from current solution
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ALNS parameters in alphabetical order (continued)

qub
2 = 60 Auxiliary value to determine upper bound on number of nodes that are

removed from current solution
qub Upper bound on number of nodes that are removed from current solu-

tion. qub = min
{
|I | ·qub

1 , qub
2
}

T start Start temperature T start =− ∆

lnΩ
· f (s0)

T end End temperature T end = T start · tPercent

p(op) = 9 Control parameter for the randomness of the removal operators
10 Number of features for penalty update
25 Iterations between penalty updates
1.1 Penalty initial value
0.69 Penalty increase if feature is violated
0.08 Penalty reduction if feature is not violated
3 Maximum time window violation expressed in time units
100 Number of solutions that are considered when calculating the request

graph. Needed for request graph (historic) destroy operator.
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We’re all in this together if we’re in it at all.

Johnny Cash
1932-2003

Attribution
This Chapter uses material from the following publication:

• Klaus Arthur Schmid, Christian Frey, Fengchao Peng, Michael Weiler, An-
dreas Züfle, Lei Chen, and Matthias Renz. Trendtracker: Modelling the
motion of trends in space and time. In Carlotta Domeniconi, Francesco
Gullo, Francesco Bonchi, Josep Domingo-Ferrer, Ricardo Baeza-Yates, Zhi-
Hua Zhou, and Xindong Wu, editors, IEEE International Conference on
Data Mining Workshops, ICDM Workshops 2016, December 12-15, 2016,
Barcelona, Spain, pages 1145–1152. IEEE Computer Society, 2016. doi:
10.1109/ICDMW.2016.0165. URL https://doi.org/10.1109/ICDMW.
2016.0165. [183]

See § 1.4 for an overview of incorporated publications and the author’s attribution.

Highlights

• Modeling trends of a microblogging system as a 4-dimensional trend-flow tensor;

• Identification of archetypes of dissemination of trend flows;

• Evaluation shows various trend-archetypes such as political trends, disaster trends and
celebrity trends;
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7. Social Media Graphs

7.1 Machine Learning for Analyzing Social Media Data

In the late 1990s, the first social network applications (e.g., Classmates, SixDegrees) were pub-
lished. Since then, social networks such as Facebook, Twitter, and Instagram, among others,
have attracted billions of users worldwide. Nowadays, many integrated interactions with other
people via those platforms in their daily lives to talk about topics ranging from simple entertain-
ment, to politics to recent advances in various research fields. Social media not only brought up
a new way of communication but also drastically changed the spread of information and opened
up new business branches. Users can share ideas and opinions, post updates and feedback, en-
gage in activities and events, share their interests, offer products, communicate job offers, and
so forth. The most natural way of modeling the interactions in a social network is provided by
Graph Theory. The vertices in a graph correspond to persons, and edges represent any inter-
action two persons can have with each other, e.g., following each other, giving feedback in the
form of likes, sharing posts in a thread, and so forth. Hence, graphs provide a very powerful
tool to model and finally extract valuable knowledge about user behaviors, interpret interactions
among single persons or communities, or integrate users’ interests in a recommendation system.
Due to the nature of ever-growing social networks, we are faced with highly complex problems
in understanding the dynamics arising in those highly active platforms.

This chapter presents a model to analyze the dynamics of trends in a social network using
machine learning. The first step is to extract the topics contained in a text database. Due to
the users’ location affiliation, the texts sent to the social media platform can be geo-tagged.
Hence, we are given information about trends and statistically significant topics arising in a
specific location. Furthermore, the messages are sent at a certain time. Therefore, we can follow
the messages in two dimensions, in the spatial as well as the temporal domain. The problem
discussed in the following is identifying archetypes referring to disseminating trends over space
and time. Given the natural mapping of graph representations and their matrices (cf. § 2.2.2),
we can model the spatial-temporal trend flow in a 4-dimensional tensor, where two dimensions
refer to the spatial locations, one to the temporal domain, and one to the various trends. In the
language of graph theory, the trend flow, which shows the flow of one piece of information to
another, represents two connected vertices. Additionally, we are given the amount of information
flow as attributes on the edges. Moreover, the connection also contains information about the
temporal occurrence and the topic which arise in both locations.

7.2 Tracking Trends in Social Media

Both the current trends in technology such as smart phones, general mobile devices, stationary
sensors and satellites as well as a new user mentality of utilizing this technology to voluntarily
share information produce a huge flood of geo-textual data. Such data includes microblogging
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platforms such as Twitter, social networks such as Facebook, and data from news stations. Such
geo-textual data allows to immediately detect and react to new and emerging trends. A trend
is a set of keywords associated with a time interval where the frequency of these keywords is
increased significantly.

In this chapter, the thesis investigates the dissemination of trends over space and time. For
this purpose, a four-step framework is proposed. In the first step, the model employs existing
solutions to mine a large number of trends. Second, for each trend a spatio-temporal dissemina-
tion model is created, which describes the motion of this trend over space and time. To model
this dissemination, a (flow-source, flow-destination, time, trend)-tensor is employed. In the third
step, the model clusters these trend-tensors, to identify groups of archetype trends. For each
archetype, all tensors of the same archetype are aggregated and a tensor factorization approach
is employed to describe this archetype by its latent features. As the fourth step, an algorithm
is proposed which can classify the trend-archetype of a new trend, in order to predict the future
dissemination of this trend.

The experiments reveal that the space of trends does exhibit clusters, each corresponding to
a trend-archetype such as political trends, disaster trends and celebrity trends. Furthermore, it is
shown that by identifying the trend-archetype of a trend, we can effectively predict the future of
this trend.

Graph Configuration.
The graph’s configuration for the analysis of trends flows in social media is shown in Figure 7.1a.
The setting is a single-layer, non-probabilistic, non-static, homogeneous graph. The occurrence
of topic mentions is expressed as weights on the nodes, and weight values on the edges express
the trend dissemination between two locations. Moreover, attributive information on the edges
indicate the relevant topic, whereas attributive information on the nodes indicate the spatial di-
mensions of the respective locations. Because of permitting multiple relationships between pair
of nodes, we are in a setting of a multigraph, and by allowing self-loops we have a pseudograph.
Even though, the methodology is primarily discussed using a 4-dimensional tensor, the map-
ping to a graph is relatively trivial (cf. Matrix Representations § 2.2.2). The technical tools are
affiliated to the scope of Machine Learning.

7.2.1 Motivation

Social media such as Twitter or other microblogging platforms are a popular source for live
textual data, often associated with geographic information. Such data may describe an event,
an experience or a point of interest that is relevant to a user. More generally speaking, such
microblogs describe events, objects and persons that are on the mind of a user. The prediction
of trends has a plethora of economic applications in targeted marketing and investment banking,
by knowing what people will have on their mind tomorrow. In this chapter, the aim is not to
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Figure 7.1: Graph Configuration and methodology’s classification used to analyze trend dissemination
in social networks by TrendTracker

predict new trends. However, the proposed model predicts the flow of existing trends over the
globe. For instance, trends related to fashion might often arise in France, then move over to the
rest of Europe within a few days, then start to affect North America within weeks, and then flow
to Australia within weeks and months. In contrast, technological trends might often be initiated
in Japan and South Korea, then flow to North America, and only then flow to Europe.

As an example of such a trend, Figure 7.2 shows the location of tweets issued in July of
2014 corresponding to the lost Malaysian Airlines flight “MH17”. The trend shows initial strong
bursts in Malaysia as well as in the Netherlands, from where the missing flight originated, as
seen in Figure 7.2a. From there, the trend quickly spread all across the world – two days later,
the rest of Europe as well as North America are just as involved in the trend. This can be seen in
Figure 7.2b.

Another trend development can be seen in Figure 7.3, where the location of tweets containing
the string “Pokémon” is shown for several days. Beginning with the first of July, 2016, Figure
7.3a exhibits a globally low interest in this topic, indicating no trend at that time. As the free-to-
play game “PokémonGo!” was released for cell phones in the United States, Figure 7.3b shows
a highly significant burst of tweets on this topic on July the 6th, originating in the US alone.
One week later, on July 13th, the trend has moved to Europe as the game was released in several
countries there. This can be seen in Figure 7.3c. Asia follows, mainly with the Japan release on
July 22nd, with a high activity regarding the topic as shown in Figure 7.3d.
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(a) July 17th 2014 (b) July 19th 2014

Figure 7.2: Distribution of trend “MH17”

(a) July 1st 2016 (b) July 6th 2016

(c) July 13th 2016 (d) July 22nd 2016

Figure 7.3: Distribution of trend “PokémonGo!”

Intuitively, different types of trends are expected to show different distributions. While a few
trends spread to a global scale within hours due to dissemination through news networks, other
trends may be more local, spread slower, might be originating from specific regions, or might
disseminate to specific regions only.

In the following, the proposed method models and mines such dissemination of trends over
space and time. That is, the model observes the flow of trends, specified by source and target
regions, over time. Figure 7.4 exemplifies such flows for the two examples given before, namely
“MH17” and “PokémonGo!”. The arrows on the map indicate a flow in activity from source
(red) to target (blue). For the sake of readability, the representation has been kept coarse and
omits certain regional interdependencies. Geographical regions are referenced by their position
in the index (drawn in black outlines), and thickness of arrows indicates strength of the depen-
dence. Figures 7.4a and 7.4b exhibit trend dissemination of the trend “MH17” in a full world
view and one of the south-east Asian region alone, respectively. As can be seen very clearly,
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(a) ”MH17”- world map

(b) ”MH17” - detail map - south-east Asian

(c) ”PokémonGo!” - world map

Figure 7.4: Spatio-Temporal Trend Dissemination

the trend originates from Malaysia and spreads over the world from there, partially using other
regions as intermediate hops. In contrast, Figure 7.4c uses the same representation for the trend
“PokémonGo!” on a world-wide scale and while there is a general main direction from the US
east coast, several rules in the opposite direction indicate a more diverse dissemination pattern.
Curiously, once again, south-east Asia is a strong hub for this trend, resulting from a local burst
on this topic from Indonesia.

But rather than looking at a few, hand-selected, trends as shown in these figures, existing
trend mining solutions are used to automatically extract the disseminations of a large number of
past trends. Each trend yields a spatio-temporal trend-tensor, containing for each discrete time
interval, and each spatial region the number of corresponding tweets. As a first contribution,
the thesis postulates and verifies the hypothesis that trends follow different archetypes, which
differ strongly in terms of their dissemination patterns. Using a clustering approach, the model
identifies these archetypes trends. For new trends, this result can be used to quickly classify a
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new trend as an archetype trend, to more effectively predict its future dissemination, allowing to
predict where a trend will move to in the near future.

To model the dissemination of trends in space and time, the chapter is organized as follows.
The next section, Section 7.2.4 gives an overview over the state-of-the-art of modeling trends
in space and time. Section 7.2.2, formally defines a trend, and introduces the notion and data
structures to define the spatio-temporal motion of a trend. Section 7.2.3.4 presents the technical
concept for modeling the dissemination of a trend. This concept is experimentally evaluated in
Section 7.2.5, and the chapter concludes in Section 7.3.

7.2.2 Preliminaries

This section defines terms and notations used throughout this chapter, and formally defines the
problems tackled in the following. In this thesis, spatio-temporal text data is considered, that is
text data annotated with a geo-location and a timestamp, such as obtained from Twitter.

Definition 28 (Spatio-Temporal Text Database). A spatio-temporal text database D is a collec-
tion of triples (s, t,c), where s is a point in space, t is a point in time, and c is a textual content.

A concept that is adapted from the literature is the concept of a trend as introduced in [185].

Definition 29 (Trend). A trend τK,t is a set of keywords K that appear significantly more often
starting at a time t.

A more formal definition, which introduces the requirements of a set of terms to be consid-
ered as significant, is given in Section 7.2.3.1. The set of spatio-temporal text objects which
support trend τK,T , is denoted as

DτK,T = {(s, t,c) ∈D |c ∈ K∧ t ∈ T}.

Definition 30 (Spatio-Temporal Occurrence). Let τK,T be a trend. Let S = {S1, ...,S|S|} be a
partitioning of space into spatial regions, and let T be a partitioning of time into equi-sized
time intervals denoted as epochs. Further, let T := t ∩T = {T1, ...,T|T |} be the set of epochs
overlapping the trending time T . Then

OccτK,T ,S = |{(s, t,c) ∈D |s ∈ S∧ t ∈ T ∧ c ∈ K}|.

is the number of occurrences of trend τK,T at region S.

The aim of this thesis is to find the dissemination of trends, that is, pairs of spatial locations
(S1,S2) such that any trend that appears in region S1 is significantly more likely to appear in S2

in the next epoch.
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To describe the motion of a trend (K, t) in space and time, each trend is described by a time-
space matrix, describing for each spatial region and each epoch t ∈ T the number of tweets of
the trend.

Definition 31 (Trend Count Matrix). The trend count matrix D(τK,T ) ⊆ R|S|×R|T | contains all
occurrences of trend τK,T over space and time, and is defined as follows:

D(τK,T )i, j = Occ(τK,Ti,S j)

In this model, the main task is to analyze and mine multiple trend count matrices as defined in
Definition 31, in order to identify groups of similar trends, groups of similar spatial regions, and
to find common spatio-temporal dissemination of trends. These problems are formally defined
as follows.

Definition 32 (Trend Clusters). Let D be a spatio-temporal text database, let Dτ be a set of
trends mined from D , and let D(τ ∈ Dτ) denote the trend count matrix of each trend. A trend
cluster C ⊆Dτ is a set of trends that exhibit mutually similar trend count matrices.

Given a set of trends, the main challenge is to find association rules of the form “Any trend
observed in region A today, is likely to appear in region B tomorrow”. This kind of spatio-
temporal trend dissemination is defined as follows.

Definition 33 (Spatio-Temporal Trend Dissemination Rule). Let Dτ be a set of trends and their
corresponding trend count matrices D(τ ∈ Dτ). For two spatial regions Ss and St , a spatio-
temporal trend dissemination rule Ss→ St implies that a large trend count at source region Ss at
any time t indicates a large trend count at target region St at time t +1, formally:

(Ss→ St)↔∀i,∀τ ∈Dτ : D(τ)i,s→ D(τ)i+1,t ,

where D(τ)i,s→D(τ)i+1,t denotes that a large value in D(τ)i,s implies a large value in D(τ)i+1,t

Finally, Definition 33 allows to define the problem of spatio-temporal trend dissemination
rule mining.

Definition 34. Let Dτ be a set of trends and their corresponding trend count matrices D(τ ∈Dτ).
The problem of spatio-temporal trend dissemination rule mining is to find all pairs of spatial
regions (Ss,St) such that (Ss→ St) holds.

7.2.3 Spatio-Temporal Trend Dissemination Rule Mining

This section describes the novel approach at mining spatio-temporal trend dissemination rules.
As a first step, we need to acquire past trends, to mine dissemination rules from. For this purpose,
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existing textual trend mining solutions proposed in the recent past are applied, which are briefly
sketched in Section 7.2.3.1 for self-containment. Next, as a second step used for preprocessing,
a space composition scheme is employed in Section 7.2.3.2 to ensure having a similar number of
tweets in each spatial region using a k-d tree. As a third step, the flow of trends over space and
time is modeled in Section 7.2.3.3. Therefore, a trend count matrix, as defined in Definition 31,
is transformed into a trend flow tensor, which describes the flow from any source region to any
target region at any point in time for any trend. Consequently, constructing a trend flow tensor for
each trend that was mined in the first step, yields a four-mode Space × Space × Time × Trends
tensor, which will be fed to the fourth step, the mining step. In the mining step proposed in
Section 7.2.3.4, a tensor factorization approach is employed to discover latent features of trends,
latent features of trend-source-regions and latent features of trend-target-regions. These latent
features allow to cluster trends into sets of trends which disseminate similarly over space and
time. Then, for each cluster of similar trends, trend flows are obtained from the reconstructed
trend flow tensor.

7.2.3.1 Traditional Trend Mining

The model uses SigniTrend [185] to establish a trend baseline. SigniTrend uses Count-min data
structures [35] for approximate counting and tracks the average and standard deviation of term
and term pair frequencies. In order to estimate the average EWMA and the variance EWMVar for
a frequency x on a data stream, they can rely on earlier work by Welford [218] and West [221] on
incremental mean and variance. The update equations given by Finch [58] for the exponentially
weighted variants allow these values to be efficiently maintained on a data stream:

∆← x−EWMA

EWMA← EWMA+α ·∆
EWMVar← (1−α) · (EWMVar+α ·∆2)

The learning rate α can be set using the half-life time t1/2; a parameter a domain expert will
be able to choose easily based on his experience and needs:

αhalf-life = 1− exp
(
log

(1
2

)
/t1/2

)
To capture interesting relationships among trends (such as "Facebook" bought "WhatsApp"

or Edward "Snowden" traveled to "Moscow") SigniTrend also tracks word pairs. A single term is
thereby modeled as a co-occurrence with itself. Given a word pair (w, l) where w and l are single
word tokens, SigniTrend uses a classic model from statistics to measure the significance: Let
ft(w, l) be the relative frequency of this pair of tokens within the documents Dt = {d1, . . . ,dn} at
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time t, i.e.:

ft(w, l) :=
|{w ∈ d∧ l ∈ d | d ∈ Dt}|

|Dt |
(1)

then they use the series of previous values f1, . . . , ft−1 to compute an estimated value and a
standard deviation. To facilitate aging of the data and to avoid having to store all previous values,
they employ the exponentially weighted moving average (EWMA[ f (w, l)]) and moving standard
deviation (EWMVar[ f (w, l)]). With these estimates, the z-score of the frequency is computed as
follow:

zt(w, l) :=
ft(w, l)−max{EWMA[ f (w, l)],β}√

EWMVar[ f (w, l)]+β
(2)

The term β is motivated by the assumption that there might have been β · |D| documents that
contained the term, but which have not been observed due to incomplete data. With this Laplace-
style smoothing we prevent instability for rare observations of pairs (w, l). For Twitter, the sug-
gested value for this term is β = 10/|D|: intuitively we consider 10 occurrences to be a by chance
observation. This also adjusts for the fact that we do not have access to the full Twitter data.

Terms and pairs with corresponding z-scores (see Equation 2) larger than a given threshold τ

are considered as trends. For the experiments shown in this thesis, τ = 3 is used.

7.2.3.2 Space Decomposition Scheme

To fit a flow model between spatial regions, we need to minimize the bias that results from having
a non-uniform distribution of tweets on earth. The model remedies this problem by partitioning
the geo-space in a way that minimizes the difference of tweets between spatial regions. For this
purpose, the geo-locations of all tweets in the input database are inserted into a k-d tree, having
a maximum node capacity of 1000. Thus, every leaf node of this k-d tree is guaranteed to have
between 500 and 1000 two-dimensional points. Each of this leaf node is then used as a spatial
region in the remainder of this thesis. The decomposition that is obtained this way is exemplarily
depicted in Figure 7.5. Note that this tree is constructed upon a typical, yet static, set of tweets.

7.2.3.3 Trend Flow Modeling

In this section, the novel approach of obtaining a trend flow from raw trend s is described. Thus,
for a given trend, all N occurrences of this trend at some time t are considered and all M oc-
currences at the next time t + 1. All the regions having the trend at time t can be considered as
sources of the trend, and all regions having the trend at time t + 1 can be considered as targets
of the trend. Yet, we do not know any more specifically, which source region has affected which
target region and to what degree, since we do not know through which channels and medias the
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Figure 7.5: k-d tree based space decomposition

trend was disseminated. Thus, due to lack of better knowledge, the assumption holds that all
sources affect all target uniformly. This flow model is formalized as follows:

Definition 35 (Spatio-Temporal Trend Flow Model). Let τK,T be a trend having a set of keywords
K and having a time interval T = {T1, ...,T|T |} which covers |T | epochs. Let S = {S1, ...,S|S |}
be a space composition into |S | spatial regions. Furthermore, let D(τK,T )i, j = Occ(τK,Ti,S j) be
the trend matrix of τK,T . We define the trend flow model F(τK,T ) of trend τK,T as a S ×S ×
{T1, ...,T|T−1|} tensor, such that

F(τK,T )i, j,k =
Occ(τK,Tk ,Si) ·Occ(τK,Tk+1,S j)

∑Sn∈S Occ(τK,Tk+1,Sn)

Intuitively, an entry F(τK,T )i, j,k of tensor F(τK,T ) corresponds to the absolute flow of occur-
rences from region Si to region S j from time Tk to time Tk+1.

Example 3. To illustrate the construction of tensor F(τK,T ), consider an example depicted in
Figure 7.6. Here, the occurrences matrix of a tensor of a trend is shown for four spatial regions.
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Figure 7.6: Trend Flow Modeling

At the first point of time ti, the trend appears twice in the first region and once in the fourth region,
yielding the vector (2,0,0,1)T . The second ti+1 and third point of time ti+2, the distribution
of occurrences is (3,1,0,5)T and (2,1,3,4)T , respectively, yielding the trend matrix shown in
Figure 7.6. Transitioning from the first epoch ti to the second epoch ti+1, the occurrences change
from (2,0,0,1)T to (3,1,0,5)T . The first spatial location S1, having an initial value of two
tweets, is thus a source of the trend. Since we cannot observe the latent means of dissemination
of a trend (through the internet, via TV, radio, word-of-mouth, etc.), one can estimate that region
S1 disseminates its trend to all other regions having this trend. Since a fraction 3

9 of all tweets at
time ti+1 are observed in region S1, we estimate a trend-from of 2·3

9 from region S1 to itself. In
contrast, only one trending tweet is observed at location S2 at time ti+1, of which we contribute
a flow of 2·1

9 to S2. Similarly, a flow of 1·5
9 is contributed from S4 to S4.

It is notable that each time-slice of tensor F(τK,T ) is a rank-1 matrix, as all lines are multi-
ples of each other. This redundancy is desirable, as it evenly distributes the flow from all source
regions to all target regions, and this redundancy will be removed in a later tensor factorization
step. For each trend τK,T a three-mode tensor as described in Definition 35 is obtained. Concate-
nating these tensors for each trend τ ∈Dτ yields a four-mode tensor F (D) which is passed into
the trend flow mining step described in the next section.

As insinuated in § 7.2, the trend flow model can also be interpreted as a graph:

Definition 36. The pseudograph G = (S ,E ,φ ,ψ) is a directed multigraph with self-loops,
where S denotes the set of vertices for the locations and E denotes the labeled edge set re-
flecting the trend flow between locations. The function psi : τK,T ×V →R yields the occurrence
of trend τK,T for a specific location as node weight. The edges in the graph indicate the flow of
trend τK,T from a region Si ∈S to region S j ∈S from time Tk to time Tk+1. We define a function
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Figure 7.7: Trend Flow Modeling - Tensor Decomposition

φ : τK,T ×E → R yielding the information of F(τK,T )i, j,k as edge weight.

Recall, a graph is a multigraph if multiple edges are allowed between vertices for modeling
several trends between locations. It is also called a pseudograph if self-loops are allowed. As
discussed in Figure 7.6, the source location of a trend can also be the destination of it.

7.2.3.4 Trend Flow Mining

The thesis proposes to decompose tensor F (D) ∈RI1×...×IN using a CANDECOMP/PARAFAC
tensor decomposition [27], [81] using k latent features, where k is a parameter of the algorithm.
A CP factorization decomposes a tensor into a sum of component rank-one-tensors, i.e.:

F (D)≈
k

∑
r=1

u1
r ◦ · · · ◦uN

r

where un ∈RIn for n= 1, . . . ,N. Hence, as illustrated in Figure 7.7, this factorization decomposes
the four-mode S ×S ×T ×Dτ tensor into four sets of vectors:

• a set of k vectors of latent features of length |S | describing each source spatial region,

• a set of k vectors of latent features of length |S | describing each target spatial region,

• a set of k vectors of latent features of length |T | describing each time epoch, and

• a set of k vectors of latent features of length |Dτ | describing each trend.

These k-dimensional feature vectors can be used to identify mutually similar source spatial re-
gions, mutually similar target spatial regions, mutually similar points in time, and mutually sim-
ilar trends.
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7.2.3.5 Trend Archetype Clustering

In the first mining step, clusters of mutually similar trends are identified, i.e., trends which have a
similar feature vector after the factorization and, thus, since the tensor F (D) describes the flow
of trends over time, exhibit a similar dissemination over space and time. Each of the resulting
clusters is called a trend archetype. This approach allows to classify future trends among all
archetypes, and allows to predict the future dissemination of a new trend by using the dissemi-
nation model of their archetype.

Definition 37. Let Dτ be a set of trends, and for each trend τ ∈Dτ let feat(τ) be a set of features
describing τ . Further, let C (Dτ) = {C1, . . . ,Cn} be a clustering of all trends in Dτ into n clusters.
Then we denote each cluster C ∈ C as an archetype, and all trends τ ∈C are said to belong to
the same archetype.

7.2.3.6 Trend Archetype Flow Modeling

After the trend clustering step of Section 7.2.3.5, sets of trends are identified which belong to
the same dissemination archetype. Therefore, we return to the full tensor F (D), and for each
archetype C ∈ C , we select only the trends τ ∈ C, thus, yielding a S ×S × T ×C tensor
F (D ,C) for each archetype C. Using F (D ,C), a projection on two modes S ×S is performed
by averaging over all trends τ ∈C and all epochs Ti ∈ T to obtain the flow model of archetype
C.

7.2.4 Related Work and Discussion

The problem of event detection in social media streams has attracted much attention in recent
years. Ritter et al. [170] developed an event extraction system based on Twitter streams. Using
the entity recognition and sequence classification, they extracted a 4-tuple representation of each
event, showing the entities, mentions, calendar, and type of each event. Schubert et al. [185]
proposed a statistical metric based on the term frequency, and reported an event when there
was a large deviation in the metric of a particular term. They applied hierarchical clustering
to merge terms that burst together into large-scale topics. In addition to textual information,
Kalyanam et al. [104] also considered the communities of users who are interested in certain
topics. They applied non-negative matrix factorization (NMF) to incorporate both textual and
social information in studying the topic detection and evolution. Lin et al. [139] applied a Gibbs
Random Field model regularized by a topic model to track the popular events in social media. For
each evolving event, they reported a stream of text information and a stream of network structures
indicating the event diffusion. Weng et al. [220] applied Wavelet Transform to build signals for
each word. Then they built a graph based on the cross-correlation of signals and clustered words
into events using a modularity-based graph partitioning technique. Sayyadi [181] et al. applied
community detection technique to detect events in social streams. They built a graph of words
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based on their co-occurrence. Then they removed the vertices with high betweenness centrality
score and regarded the communities that remained as the keywords for events.

However, none of these works exploited the spatio-temporal characteristics of an event.
Unankard et al. [205] extracted user locations and event locations from geo-tagged posts. They
defined a location correlation score between user and event locations and used it to identify the
hotspot events. Zhou et al. [233] extended the Latent Dirichlet Allocation (LDA) to incorpo-
rate the location information of social messages, and proposed a novel location-time constrained
topic model. Then they detected events by conducting similarity joins in streams of social mes-
sages. Sakaki et al. [177] conducted semantic analysis in user posts to detect natural disasters.
They used exponential distribution to study the temporal characteristics of disasters. They used
kalman filter and particle filter to predict the spatial trajectories of disasters. From the perspec-
tive of query processing, Lappas et al. [126] defined two types of spatio-temporal burstiness
patterns, aiming at finding terms which had unusually high frequencies in a spatial region within
a particular time interval. Sankaranarayanan et al. [178] developed a news system based on
Twitter streams. They used Naïve Bayes Classifier to distinguish valuable news from junk posts
and used an algorithm called leader-follower clustering to cluster news into topics. Appice et al.
[4] proposed a technique where trend clusters are used to summarize sensor readings. However,
such clusters consist of sensor entities themselves as opposed to trends.

7.2.5 Evaluation

7.2.5.1 Parameters and dataset

The proposed workflow is evaluated on a dataset mined from Twitter using their public API,
feeding from a global 1%-sample over the years 2014 through 2016 (until August of 2016). Out
of the tweets returned from the API, those without a geolocation specified are removed. Tweets
were aggregated over one-day periods by their UTC-timestamp. The number of tweets per day
ranged from around 50,000 to 150,000.

For each trend from the SigniTrend framework, tweets were extracted from one day before
and five days after the respective associated date to cover the entire trend dissemination pat-
tern. Unless otherwise specified, each day was subdivided into epochs of six hours to allow for
timeshift in different hemispheres. For the majority of the experiments, the top-100 trends of the
year 2014 were used.

7.2.5.2 Evaluation of trend archetypes

Table 7.1 depicts some exemplary resulting trend archetypes from data covering the year 2014.
Keywords for the top-100 trends were extracted using SigniTrend and used to filter geo-tagged
tweets occurring within a 5 day timeframe around the trend date. Underscores "_" between words
denote a boolean conjunction, requiring all connected words to occur in any possible order within
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Table 7.1: Trend Archetypes of 2014

# Size Example 1 Keywords Example 2 Keywords

1 8 mh17 malaysia_crash ferguson michael_brown riot

2 3 ellen degeneres selfie robin williams suicide

3 5 whatsapp facebook takeover supreme_court obergefell hodges

4 10 germany fifa14 brazil germany fifa14 argentina

5 4 brazil world_cup ebola

6 12 eu_sanction eu_russia putin peskov conference

7 1 chile iquique earthquake -

8 10 flappy_bird removed_appstore how_I_met_your_mother_finale

9 18 mh370 malaysia_missing qz8501 air_asia missing

10 14 scotland independence_poll india bharatiya janata election

11 14 sydney siege hostage ottawa gunman parliament

12 1 merry chistmas -

one tweet. Spaces between keywords or conjuctions of keywords denote a boolean disjunction.
Keywords listed are not exhaustive.

Each line of the table corresponds to a resulting archetype of trends with similar dissemina-
tion, resulting from a clustering of the latent feature vector feat(τ). While column “Size” refers
to the true cardinality of each cluster, (up to) two examples are given to illustrate the nature of
each archetype. Each example lists some keywords for one trend grouped into this archetype.

Some rather interesting results emerge by comparing the keywords to their respective histor-
ical events. While archetype #9 contains two trends referring to airplanes going missing without
a trace (MH370 in March and QZ8501 in December), another lost airplane is grouped together
with riots in the aftermath of a police shooting in the US in archetype #1. Looking at the re-
spective tweet heatmaps in Figure 7.8, a similarity in pattern emerges: a first main event occurs
(“plane crashes in Ukraine” vs. “riots after jury decision not to indict shooter”) causing an initial
burst mainly in the affected areas (Figures 7.8a for MH370 and 7.8b for the shooting). After
the initial burst, new information sheds different light on the events, making them stand out and
causing a more steady flow of messages internationally (“plane grounded by missile” vs. “several
people killed as riots spread”). This more steady output can be seen over Figures 7.8c and 7.8e
for MH370 and Figures 7.8d and 7.8f for the shooting. Bear in mind that the grouping occurred
solely based on the numerical features of the respective trends’ spatial dissemination, regardless
of their content.

Trend archetype #2 grouped some strong international trends themed around society, con-
taining Ellen DeGeneres’ selfie picture taken at the Oscar ceremony as well as Robin Williams’
sudden suicide. Archetype #3 contains trends with more specialized contents such as financial
(“Facebook buys WhatsApp”) or judicial (“Obergefell vs. Hodges, Supreme Court deciding on
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(a) MH370 - March 8th 2014 (b) Ferguson - Nov 25th 2014 (c) MH370 - March 10th 2014

(d) Ferguson - Nov 27th 2014 (e) MH370 - March 12th 2014 (f) Ferguson - Nov 29th 2014

Figure 7.8: Dissemination of trends “MH370” and “Ferguson”

same-sex marriage”).
Another distinction is made between archetypes #4 and #5, both containing trends regarding

the FIFA world cup 2014 in Brazil: while #4 represents game results and surprising or strong
wins, #5 contains the more steady general discussion about the event, as well as other longer–
term themes sparking much discussion. Among those is also the repeated outbreak of the Ebola
virus in West Africa. Despite the entirely different nature of those topics, both represent a great
public interest that dominated news media for longer periods of time.

7.2.5.3 Evaluation of approximation quality

The tensor decomposition employed in the flow modeling process exhibits a high quality for
even low numbers of k, i.e., a small number of latent features per feature vector. This indicates
large eigenvalues of the first k latent features, thus, indicating that these features are able to
accurately describe the whole tensor with little loss of information. However, some information
is still lost compared to an undecomposed tensor. The quality of the decomposition is evaluated
by summing up the least-squared error between a reconstruction of the original tensor from its
k-feature-vectors, and the original tensor itself. Let us refer to the inverse of this error as “fit”,
ranging from 1.0 for an exact match to 0.0 for no correlation.

Figure 7.9a shows that for a k = 4, the reconstructed tensor matches its original with a fit
of 0.6, which is why k = 4 is chosen to be set in all subsequent experiments unless otherwise
specified. As can be seen, the gain in fit slows down with additional latent features.

Figure 7.9b displays fit for different lengths of trend epochs, the granularity of the analysis in
temporal dimension, ranging from 2 hours to 24 hours. The amount of days looked at per trend
remained the same, so a longer epoch will result in a smaller number of epochs overall, reducing
the size of F (D) in the T dimension. Intuitively, a smaller tensor F (D) is easier to reconstruct,
increasing the fit for longer epochs. However, this does not hold for epochs of 24 hours. We
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(a) Fit for number of latent features. (b) Fit for length of trend episodes.

Figure 7.9: Approximation fit of factorized tensor.

Figure 7.10: Fit over tree cells for varying latent features.

believe this to be due to a counter effect of more diversity in tree cell population as epochs get
longer and, thus, more tweets are grouped in the same epoch. In other experiments, the epoch
length was set to 6 hours unless otherwise specified – although it is not the peak for fit, we found
it to best approximate trends from different global regions, hence, being able to compare trends
in different hemispheres where peaks happen at different hours in the day.

The effect of varying spatial resolution can be seen in Figure 7.10 for four alternative settings
of k. Although the underlying k-d tree is built on global tweet distribution to assure tweets in the
same region from different trends are matched to the same cell, varying its node capacity upon
indexing results in a higher- or lower resolved spatial grid, hence, lowering or increasing the
size of F (D) in both spatial dimensions. Naturally, a smaller grid is easier to approximate with
the same amount of latent features, yet the experiments show that features have a much higher
impact on approximation quality than changing spatial resolution. As can be seen, fit values do
not deteriorate much for higher numbers of grid cells.

The impact of different numbers of trends τK,T is stronger, particularly for smaller k. Figure
7.11 displays fit values for four alternative settings of k and the number of trends ranging from
20 to 100. As in previous experiments, fit decreases as the size of F (D) increases. However, for
higher k the effect is drastically smaller, maintaining a good approximation quality at the cost of
a higher complexity.
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Figure 7.11: Fit over trends for varying latent
features.

Figure 7.12: Runtime over tree cells for varying
latent features.

Figure 7.13: Runtime over trends for varying latent features.

7.2.5.4 Evaluation of algorithmic runtime

The following experiments evaluate runtime of the tensor generation, decomposition and projec-
tion on two modes S× S. Filtering of tweets is not included in this evaluation since it depends
heavily on the actual keyword settings as well as size of the underlying dataset. All experiments
were performed on Arch Linux on an Intel i7 notebook with 16 GB of memory, implemented in
python using numpy, pandas, and the sktensor package for tensor decomposition.

Figure 7.12 examines runtime in seconds over spatial resolution, for four different settings of
k. Since an increase in the number of tree cells causes a quadradic increase in the size of F (D),
runtimes scale superlinear for higher spatial resolutions.

The effect of different numbers of trends τK,T on runtime is shown in Figure 7.13. Run-
times show only a slight superlinear increase for higher amounts of trends, as the size of F (D)

increases linearly with trends.
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7.3 Summary
In this chapter, the thesis studied the dissemination of trends in space and time. For each historic
trend, the proposed model constructs a spatio-temporal trend dissemination model, describing
the flow of a trend through space and time. By applying a tensor factorization approach, latent
features of trends are extracted, to which a clustering approach is applied to obtain sets of trends
having a similar dissemination archetype. The qualitative evaluation of these trend archetypes
on Twitter trends show meaningful dissemination archetypes, such as political trends, celebrity
trends, and disaster trends. The quantitative analysis shows that the tensor factorization yields a
high approximation quality for a low number of latent features. This result implies that a small
number of latent features we derive from the flow of each trend is able to discriminate trends
with a high-precision.

The next step of this research direction, is to make the trend flow based classification action-
able for decision making. Thus, instead of classifying historic trends, the task is to deploy the
system in an on-line streaming environment. For this purpose, the approach is to build a sys-
tem which observes current and new trends (taken from existing trend mining solutions such as
SigniTrend [185]), to classify the archetype of a trend as soon as possible, thus, allow to predict
the spatio-temporal dissemination of trend. If successful, this approach will allow to predict the
regional news of tomorrow, today.
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8
Conclusion

I believe in intuition and inspiration. Imagination is more important than knowledge. For knowledge is
limited, whereas imagination embraces the entire world, stimulating progress, giving birth to evolution.

It is, strictly speaking, a real factor in scientific research.

Albert Einstein
1879-1955

Attribution
This Chapter uses material from all publications attributed in the previous Chap-
ters.

See § 1.4 for an overview of incorporated publications and the author’s attribution.
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8.1 Summary & Conclusions
Complex graph systems describe relationships, dependencies, and the mutual exchange among
individual data points reflecting real-world components. They encompass anything where multi-
ple components interact with each other. Graph Theory provides the mathematical tools to model
the requirements necessary in an interlinked world. A plethora of business problems are complex
by nature and require graph thinking. Modern graph analysis and systems are the focus of this
thesis.

Chapter 3: Homogeneous Graphs
§ 3 focuses on advanced analytics on homogeneous graphs. A novel spectral clustering approach
called SCAR [88] is introduced, which improves robustness and efficiency simultaneously. The
framework achieves this by replacing the eigendecomposition of the Laplacian with a Nyström
approximation. Given input data, the first step is calculating a kNN graph. The key idea is to
sample data points having the highest degree in the constructed graph. These points are referred
to as landmark points that reflect the data’s dense areas. A matrix decomposition is applied only
on the subsample of the whole dataset. By integrating the Nyström extension, the eigenvectors
of the whole matrix can be approximated. In an iterative process, the graph information is fil-
tered such that only edges are retained, reflecting the true communities in the graph. In each
iteration, noise edges are removed according to a scoring function measuring the distance in the
eigenspace. The runtime complexity O(n3) can be reduced to O(nm2 +m3), where m denotes
the size of the subsample with m≪ n. The in-depth evaluation shows a significant improvement
in robustness against noisy edges in the constructed similarity graph as well as robustness w.r.t
jitter in the original data. Therefore, it tackles the two most difficult types of noise for cluster-
ing. Applying the Nyström method, the proposed model shows consistently low runtimes while
returning highly competitive clustering qualities on real-world benchmark datasets. A potential
research direction is to extend the proposed approach with feature weighting approaches that
adapt the initial affinity matrix.

Chapter 4: Attributed Graphs
In § 4, the thesis dives into novel techniques that apply Graph Neural Networks (GNN) on at-
tributed real-world graphs. Generally, deep learning models show promising results in a variety
of downstream tasks, like representation learning for classification. This thesis lays the theoret-
ical foundation for integrating an expert heuristic within transformer-based GNNs. Therefore,
the framework provides the keystones for future works surpassing the successive thought of
message-passing to develop even more powerful architectures in graph learning. By endowing
graph neural networks with a set of experts, we gain a new level of expressiveness. The thesis
shows how the most representative expert for learning a node’s representation is selected. How-
ever, the routing layer introduced for this selection task is also combinable with several graph
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learning models. In doing so, the learning procedure for a node can be affiliated with a specific
model. Generally speaking, the experts differ in how to process subgraphs starting from a query
node. The thesis introduces the terminology of Graph Shell Attention (SEA) [65] for referring
to the nodes in an expert’s receptive field. In terms of the over-smoothing problem, it is shown
that the framework captures varying short- and long-term dependencies expressed via individ-
ual experts simultaneously. An empirical study on various real-world benchmark datasets shows
highly competitive results while economizing a large number of parameters compared to other
state-of-the-art models. For future work, the shell attention mechanism can be equipped either
with different embedding methods being applied on the shells or with varying hyperparameter
setting being individually defined for each shell.

Chapter 5: Probabilistic Graphs
By nature, the occurrence and effects of most real-world phenomena come with a notion of
chance. The study of probability encompasses the formal description of the notion of uncertainty.
§ 5 studies a graph problem, where uncertainty is expressed in the information transmission of
one node to another. In the language of Graph Theory, we can define a function which maps to
each edge in a graph to a probability. The problem discussed in this thesis is centered around the
maximization of the information flow in an uncertain graph given a budget of k communication
edges. From a theoretical point of view, there are two NP-hard problems to solve. First, the
computation of the expected information flow of a subgraph towards a designated source node,
and second, the selection of the optimal k-set of edges. In order to solve these problems, this
thesis proposes a novel data structure, called the Flow-Tree (F-Tree) [61, 60, 63]. From a high
level perspective, it decomposes a graph into several components which can be categorized either
to be a mono-connected component - for which the information flow can be calculated analyt-
ically - or to be a bi-connected component - for which an Monte-Carlo sampling is applied in
order to estimate the information flow. Speaking in terms of Graph Theory, the former type of
component relates to tree structures in a graph, whereas the second type relates to component,
where at least one cycle can be observed in the extracted subgraph. From a practical point of
view, the F-Tree is especially suitable for graphs where a locality assumptions holds such as for
location-aware/spatial networks (e.g., road networks).

Chapter 6: Spatial Graphs
§ 6 introduces a novel variant of the vehicle routing problem (VRP; cf. Toth and Vigo [202]).
Specifically, the problem is extended in two dimensions. First, the scheduling considers time
windows being defined for each customer individually. Second, the problem implies flexible ca-
pacitated delivery locations, i.e., a customer’s service is flexible w.r.t the location a customer is
served. In the first phase, an initial solution is constructed where a novel backtracking mechanism
is applied. Greedily, customers are inserted in the scheduling. If the resulting solution is infeasi-
ble, the procedure jumps back to one of the former steps and explores the solution space by sus-
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pending insertions, having been observed leading to infeasibilities. After the construction step,
an improvement phase starts. In order to solve the optimization problem, a metaheuristic based
on the Adaptive Large Neighborhood Search (ALNS; cf. [173]) is proposed, a well-established
framework for solving routing problems. The framework is extended by a Guided Local Search
(GLS). The extended ALNS framework iteratively destroys parts of this solution using randomly
selected destroy operators and reconstructs the destroyed solution with randomly selected repair
operators [66]. The combination of destroy and repair operators defines the neighborhood where
the new solution will be sought. The procedure allows for temporary infeasibilities in solutions
to further enhance the exploration of the solution space. The Guided Local Search dynamically
adjusts how these infeasibilities are penalized. The algorithm is evaluated on a set of generic
instances designed to represent different hospital layouts and various demand scenarios. The
extension with GLS and novel repair and destroy procedures show superior performance to the
standard ALNS. Moreover, the evaluation gives insights into how different cost functions for
assigning customers to locations different from the preferred location affect the overall plan-
ning. Noteworthy, a more in-depth analysis of the interplay between hyperparameters steering
the ALNS and the parameters steering the GLS is likely to lead to a more robust version of the
novel algorithm and presents a promising research direction.

Chapter 7: Social Media Graphs
A subfield studying social systems using graph-theoretic tools is known as Social Network Anal-
ysis (SNA). In § 7, social analysis is applied to examine the dissemination of trends in both
dimensions, space and time. The proposed model is called TrendTracker [183]. The links in
the underlying graph reflect the observations of trends occurring in connected locations within a
specific time interval. Hence, the vertices in the graph are the locations with labels on linkages
denoting the trend being observed in a particular time interval. This yields adjacency matrices
reflecting the trend flows between areas. Considering all temporal time intervals, we get a 3-
dimensional tensor and, finally, a 4-dimensional tensor when considering additionally all topics.
A tensor factorization is then applied to reveal the latent features. Finally, a clustering approach
is applied to obtain sets of trends having a similar dissemination archetype. The evaluation
shows that trends referring to political topics, celebrities, or disasters have unique dissemination
patterns. A promising research direction is to apply the approach of TrendTracker on so-called
exchange networks, where dissemination pattern between various entities have to be examined
from the spatial and temporal domain.
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8.2 Outlook & Perspectives of Graph AI

I want to conclude this thesis with a personal outlook of Graph AI from two angles: i) what are
open research questions (cf. § 8.2.1) and ii) the relevance of network science from a business’
value point of view (cf. § 8.2.2).

Generally speaking, explainable AI, interpretability, transparency, and trustworthiness will
play pivotal roles in the success story of Graph AI. The disclosure of the mystery of ’black
boxes’ is a predominant argument for the success of deep learning in practical applications
where rule-based algorithms are still favorable. The integration of meta-backed Knowledge
Graphs will help in cases of imbalanced training datasets or in cases where data is of poor
quality. Graph Theory and its implementation in products and platforms will help transition
data into knowledge. The value of graph applications gives incentives to invest in AI techniques
in light of a competitive economy being also induced by these techniques. The integration of
graph-theoretic analysis will help businesses to make a big step forward in our connected world.

8.2.1 Scientific Outlook

Explainable Graph AI.
In order to be implementable in the decision-making process of business applications, predic-
tions made by deep learning systems must be interpretable by experts and, probably even more
importantly, explainable to the public. Explainable AI provides a human-friendly way to ana-
lyze semantically linked data enabling visualization of decision paths computed by AI models.
This implies, for example, analyzing the context of where the information came from, which
methods were used, what meta-data is being used, where is the data coming from being used, is
there bias in the data, and so forth. Therefore, explainability is a required component of AI to
reach acceptance in more sectors, and being context driven by graph-backed algorithms improves
explainability.

Dynamic Graph AI.
Living in a constantly changing environment, we must adapt our choices according to dynam-
ically varying circumstances. In 2018, it was shown that methods for static knowledge graphs
are not always feasible for the case of temporal Knowledge Graphs (tKGs), like in the case of
Knowledge Graph completion [127, 69, 36]. Thus, new methods are needed for graph-theoretic
analysis to analyze temporal data evolving over the temporal axis. Dynamic graph learning al-
gorithms are also of particular interest in traffic networks, in social network analysis to identify
concept drifts in the data or in various streaming environments.
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Generative and Self-supervised Graph AI.
Whereas in recent years, the research community provided sophisticated generative models for
constructing graphs fulfilling homophily properties, a heterophily property brings up new chal-
lenges. Inspired by Generative Adversarial Networks (GANs), generative graph learning models
unify a generative and discriminative component playing a game-theoretical min-max game. The
ability to distinguish between artificial graphs and real-world graphs has shown promising results
in downstream tasks like link prediction, recommendation systems, and the analysis of network
evolution. In this sense, it is also noteworthy that self-supervised learning (SSL) will play a
crucial role in AI losing the necessity of a full-labeled training dataset that resembles the human
learning process to a greater extent.

Combinatorial Optimization with Graph AI.
Combinatorial optimization problems are the family of integer constrained optimization
problems that are NP-hard. Traditionally, classical optimization problems such as Traveling
Salesman Problem (TSP), Job-shop Scheduling Problem (JSP), or Vehicle Routing Problem
(VRP; cf. [202]) have been solved by exact algorithms which work up to a limited amount
of nodes. Heuristics and metaheuristics have been established for larger problem instances
like § 6 presents it for the VRPTW-FL. Recent end-to-end approaches leverage advances
in graph representation learning and have shown competitive performance with OR solvers.
Bengio et al. [19] illustrates how machine learning in general can be applied in combinatorial
optimization. The interdisciplinary research of Neural combinatorial optimization shows the
synergies between DL and CO algorithms merging the best of two domains to develop new
algorithms, especially for applied problems.

Meta-data Graph AI.
The semantic analysis of graphs encompasses vertical as well as horizontal analysis, which will
further help in understanding processes in practical applications. A vertical analysis includes
the identification of categories in a domain, whereas a horizontal analysis is of interest in
cross-cutting concerns. New and open research questions arise when we want to link various
taxonomies and ontologies to enable interoperability. In a world of an increasing amount of data,
new ways have to be developed to integrate data from multiple information sources to provide a
de-duplicated view of the data one is interested in. Meta-data layers have shown their benefits
in practical applications, where organization-wide data is connected such that a unified view of
local graph data with data retrieved from third-party systems is provided. The value of such an
ecosystem provides not only insights into the data lineage but also cross-functional information.
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Overarching/Multimodal Graph AI.
Remarkably, Machine Learning and Deep Learning models significantly improve their decision
process when contextual information is taken into account. A specific issue herewith is graph
modeling allows AI architectures to look across a number of different datasets to infer context.
The increased information provided by the relationships between various data points increase
the information an AI model is fed with which result in more accurate and ultimately in more
human-like, cognitive conclusions. This enables an AI system to learn if anomalies occur only
local or not.

8.2.2 Practical Relevance

In gaining better insights into modern deep learning architectures and formal Graph Theory in
general, an increasing number of platforms and applications leverage network science for so-
phisticated data analysis. Nowadays, high-performance computing allows for processing graphs
containing millions and billions of entities. For example, the latest note about the size of Google’s
Knowledge Graph in mid-2020: "It [Google’s Knowledge Graph; author’s note] has amassed
over 500 billion facts about five billion entities." 28. Therefore, data analytics enhanced with
graph theory gets pervasive all over various business branches. Microsoft Azure’s Cosmos DB
for Apache Gremlin29, AWS’s Neptune 30, Neo4j31, or TigerGraph32 are examples of how ac-
celerating and adopting graph analytics in modern data analytics with all the confidence and
alacrity. Deep Learning architectures implementing graph neural networks in combination with
technologies and tools becoming affordable for a broad range of end users is one of the most
promising and brightest trends in enterprise IT. The evolution of open-source libraries for mod-
ern AI technologies, frameworks, high-performant engines, and specialized accelerators leads to
solutions with high-end AI models to predict developments across various industry verticals in
an automated way. Graph Theory provides the tools and algorithms to connect the thinkers of
tomorrow today.

28https://blog.google/products/search/about-knowledge-graph-and-knowledge-panels/; last
access Oct 18, 2022

29https://learn.microsoft.com/en-us/azure/cosmos-db/gremlin/introduction
30https://aws.amazon.com/de/neptune/
31https://neo4j.com/
32https://www.tigergraph.com/
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