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Zusammenfassung

Seit der Verwirklichung der Bose-Einstein-Kondensation und entarteter Fermi-Gase sind
ultrakalte Atome mit verstimmbaren Wechselwirkungen zu einer wesentlichen Plattform
für die Untersuchung von Quantenvielteilchenphänomenen geworden. Bemerkenswerte
Beispiele sind die Realisierung des BCS-BEC-Übergangs und die Simulation des Bose-
/Fermi-Hubbard-Modells. Ultrakalte polare Moleküle könnten mit ihrer langreichweitigen
Dipol-Dipol-Wechselwirkung den Werkzeugkasten für Quantengase bereichern, was nicht
nur neue Möglichkeiten in der Vielkörperphysik, wie die Realisierung des topologischen
Suprafluid und des erweiterten Hubbard-Modells, eröffnet, sondern auch Anwendungen
in der Quantenchemie, der Quantenberechnung und bei Präzisionsmessungen bietet. Die
große Anzahl interner Freiheitsgrade der Moleküle stellt jedoch eine große Herausforderung
dar, wenn es darum geht, sie bis zur Quantenentartung abzukühlen und ihre Wechsel-
wirkungen zu kontrollieren. Im Gegensatz zu atomaren Gasen leidet eine dichte molekulare
Probe unter schnellen Kollisionsverlusten, was die Anwendung von Verdunstungskühlung
und die Beobachtung von Streuresonanzen verhindert. In dieser Dissertation beschreiben
wir, wie wir das seit langem bestehende Problem der Kollisionsverluste durch Mikrowellen-
abschirmung gelöst, ein entartetes Fermi-Gas aus 23Na40K-Moleküle produziert und eine
neue Art von Streuresonanz entdeckt haben, durch die wir die ersten ultrakalten tetratom-
ischen Moleküle erzeugen konnten.

Indem wir die Rotation polarer Moleküle mit einem zirkular polarisierten elektrischen
Mikrowellenfeld synchronisieren, statten wir die Molekülprobe mit einem hochgradig ma-
nipulierbaren intermolekularen Potenzial aus. Dies stabilisiert das Gas nicht nur gegen in-
elastische Kollisionen, sondern ermöglicht auch feldinduzierte Streuresonanzen zur präzisen
Kontrolle der Streulängen. Im Fernbereich interagieren die Moleküle über ihre induzierten
rotierenden Dipolmomente. Wenn sie sich einander nähern, richten sie sich neu aus,
wodurch eine abstoßende Kraft erzeugt, durch die unelastische Kollisionen in geringer
Entfernung abgeschwächt werden. Mit einem Verhältnis von elastischen zu unelastischen
Stößen von 500 haben wir eine Verdunstungskühlung des Molekülgases bis auf 21 nK und
das 0,36-fache der Fermi-Temperatur erreicht und damit einen neuen Rekord für das bisher
kälteste polare Molekülgas aufgestellt.

Dank der Kollisionsstabilität mikrowellenabgeschirmter Moleküle können wir sie direkt
in eine einzelne Schicht eines magischen optischen 3D-Gitters laden und so einen Spitzen-
füllungsgrad von 24% erreichen. Diese ultrakalten Moleküle bieten aufgrund ihrer langen
Lebensdauer im Grundzustand und ihrer weitreichenden dipolaren Kopplung eine einzig-
artige Plattform zur Untersuchung des Quantenmagnetismus. Mit dem erreichten hohen
Füllungsgrad sind wir in der Lage, Nicht-Gleichgewichts-Spindynamik wie Rotationssyn-
chronisation und Spin-Squeezing zu studieren.

Wir haben gezeigt, dass die Wechselwirkung zwischen mikrowellenabgeschirmten polaren
Molekülen über die Mikrowellenleistung, die Verstimmung und die Polarisation manipulier-
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bar ist. Wenn das Wechselwirkungspotenzial tief genug ist, um feldinduzierte gebundene
Zustände an der Kollisionsschwelle zu erlauben, wird eine Formresonanz induziert, die es
uns ermöglicht, die Streurate über drei Größenordnungen zu varieren. Die feldinduzierten
Resonanzen ermöglichen eine Kontrolle der Streulänge in ähnlicher Weise wie die Feshbach-
Resonanz für ultrakalte Atome und versprechen die Realisierung stark korrelierter Phasen,
wie z. B. dipolarer p-Wellen-Suprafluide. Sie ebnet auch den Weg zur Untersuchung des
Zusammenspiels zwischen Kurzstrecken- und Langstrecken-Wechselwirkungen in neuart-
igen Quantenmaterien, wie z. B. exotischen Superfestkörpern.

Darüber hinaus haben wir durch eine feldinduzierte Resonanz zum ersten Mal ultrakalte
tetratomische Moleküle im 100 nK-Bereich mit einer Phasenraumdichte von 0,04 assoziiert.
Der Übergang von einem Fermi-Gas aus zweiatomigen Molekülen zu einem Bose-Gas aus
tetratomischen Molekülen ist ein erster Schritt hinzu einem dipolaren BCS-BEC Übergang.

Mit mikrowellenabgeschirmten polaren Molekülen haben wir ein Quantengas mit hoch-
gradig manipulierbaren Langstreckenwechselwirkungen realisiert. Die Technik ist uni-
versell für polare Moleküle mit einem ausreichend großen Dipolmoment und bietet somit
eine allgemeine Strategie zur Kühlung und Manipulation polarer Moleküle und zur Assozi-
ation schwach gebundener ultrakalter polyatomarer Moleküle. Unter Verwendung des für
ultrakalte Atome entwickelten Werkzeugkastens hat diese Plattform das Potenzial, einen
völlig neuen Bereich der Quantensimulation der Vielteilchenphysik zu erschließen.
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摘要

自实现玻色-爱因斯坦凝聚和简并费米气体以来, 具有可调相互作用的超冷原子已成为研

究量子多体现象的重要平台, 包括实现 BCS–BEC 渡越和模拟玻色/费米哈伯德模型。超

冷极性分子通过长程偶极-偶极相互作用进一步丰富了量子气体工具箱, 这不仅为多体物

理 — 如拓扑超流体和扩展哈伯德模型 — 提供了新的机遇, 也为量子化学、量子计算和

精密测量带来了广泛的应用前景。然而, 分子内部自由度的数量之大, 给分子冷却至量子

简并和控制其相互作用带来了重大挑战。不同于原子气体，在致密分子气体系统中，碰

撞损耗限制了系统寿命，从而阻碍了蒸发冷却和可调散射共振的有效实施。在本论文中，

我们针对这一长期挑战，通过微波屏蔽技术成功解决了碰撞损耗问题，从而实现了费米

简并 23Na40K 分子气体的制备。进一步地，我们还发现了一种新型散射共振现象，并借

助该共振成功制备了首个 100 nK 温区的超冷四原子分子气体。

在近圆偏微波驱动下, 分子与交流电场同步旋转, 从而诱导出可调的分子间相互作用。

该相互作用不仅能稳定气体, 抑制非弹性碰撞, 同时还能实现场联散射共振, 控制散射长

度。在远距离上, 分子通过诱导的旋转电偶极矩相互作用。当分子相互接近时, 它们的取

向会重新调整以相互排斥, 从而阻止近距离非弹性碰撞的发生。在微波屏蔽下, 弹性碰撞

与非弹性碰撞的比率为达到了 500, 使得我们可以将分子蒸发冷却至 21 nK, 仅为费米温

度的 0.36 倍。这是迄今为止最冷的极性分子气体。

得益于微波屏蔽所带来的碰撞稳定性, 我们能够直接将大部分分子装载到一个魔术三

维光学晶格的单层中, 实现了约 24% 的峰值填充率。由于这些超冷分子在基态下的长寿

命及其长程偶极耦合, 它们为研究量子磁性提供了一个独特的平台。高填充率为研究非

平衡自旋动力学, 如旋转同步和自旋压缩, 做好了准备。

我们展示了微波屏蔽相互作用可以通过微波功率、失谐和偏振进行精确调解。当相互

作用势的深度足以在碰撞阈值处容纳场联（field-linked）束缚态时,就会诱发形状共振,从

而使我们能够在三个量级内调节碰撞速率。场联共振能够以类似于超冷原子中 Feshbach

共振的方式控制散射长度, 促成强相关多体相的实现, 例如偶极 p 波超流体。这一机制还

为研究新型量子材料中短程和长程相互作用的联合效应提供了实验基础, 比如实现奇异



viii

超固体。

此外, 借助场联共振, 我们首次在 100 nK 温区缔合了相空间密度为 0.04 的弱束缚超

冷四原子分子。从双原子分子的费米气体过渡到四原子分子的玻色气体, 为实现偶极

BCS-BEC 渡越铺平了道路。

通过微波屏蔽极性分子, 我们成功实现了一种具有高度可调长程相互作用的量子气体。

该技术对具有足够大偶极矩的极性分子具有广泛适用性, 因此为冷却极性分子以及制备

超冷多原子分子提供了一种通用策略。利用超冷原子–分子工具箱, 这一平台有望开启多

体物理学量子模拟的全新篇章。
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Abstract

Since the realization of Bose–Einstein condensates and degenerate Fermi gases, ultracold
atoms with tunable interactions have become an essential platform for studying quantum
many-body phenomena. Notable examples include the realization of BCS–BEC crossover
and the simulation of the Bose/Fermi Hubbard model. Ultracold polar molecules could
enrich the quantum gas toolbox with their long-range dipole-dipole interaction, which of-
fers not only new opportunities in many-body physics, such as realizing the topological
superfluid and the extended Hubbard model, but also applications in quantum chemistry,
quantum computation, and precision measurements. However, the large number of inter-
nal degrees of freedom of molecules present a significant challenge in both cooling them
to quantum degeneracy and controlling their interactions. Unlike atomic gases, a dense
molecular sample suffers from fast collisional losses, preventing the implementation of evap-
orative cooling and the observation of scattering resonances. In this thesis, we describe
how we solved the long-standing issue of collisional losses by microwave shielding, created
a degenerate Fermi gas of 23Na40K molecules, and discovered a new type of scattering
resonances via which we created the first ultracold tetratomic molecules in the 100-nK
regime.

By synchronizing the rotation of polar molecules with a circularly polarized microwave
electric field, we equip the molecular sample with a highly tunable intermolecular potential.
This not only stabilizes the gas against inelastic collisions but also enables field-linked scat-
tering resonances for precise control over scattering lengths. At long range, the molecules
interact via their induced rotating dipole moments. As they approach each other, their
orientations realign to produce a repulsive force, thereby mitigating inelastic collisions at
close distances. With an elastic-to-inelastic collision ratio of 500, we have achieved evapo-
rative cooling of the molecular gas down to 21 nK and 0.36 times the Fermi temperature,
setting a new record for the coldest polar molecular gas to date.

Thanks to the collisional stability of microwave-shielded molecules, we can directly load
them into predominantly a single layer of a magic 3D optical lattice, achieving a peak
filling fraction of 24%. These ultracold molecules, owing to their long lifetimes in their
ground state and their long-range dipolar coupling, provide a unique platform to study
quantum magnetism. With the achieved high filling fraction, we are prepared to study
non-equilibrium spin dynamics such as rotational synchronization and spin squeezing.

We demonstrated that the interaction between microwave-shielded polar molecules is
highly tunable via the microwave power, detuning, and polarization. When the interaction
potential is deep enough to host field-linked bound states at the collisional threshold, a
shape resonance is induced, allowing us to tune the scattering rate by three orders of
magnitude. The field-linked resonances enables controls over the scattering length in a
similar fashion as Feshbach resonance for ultracold atoms, promising the realization of
strongly correlated phases, such as dipolar p-wave superfluid. It also paves the way to
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investigate the interplay between short-range and long-range interactions in novel quantum
matters, such as exotic supersolid.

Moreover, through a field-linked resonance, we associated for the first time weakly bound
tetratomic molecules in the 100-nK regime, with a phase space density of 0.04. The tran-
sition from a Fermi gas of diatomic molecules to a Bose gas of tetratomic molecules paves
the way for dipolar BCS–BEC crossover.

With microwave-shielded polar molecules, we have realized a quantum gas featuring
highly tunable long-range interactions. The technique is universal to polar molecules with
a sufficiently large dipole moment, and thus offers a general strategy for cooling and manip-
ulating polar molecules, and for associating weakly bound ultracold polyatomic molecules.
Utilizing the toolbox developed in ultracold atoms, this platform possesses the potential
to unlock an entirely new realm of quantum simulation of many-body physics.



xi

Publications
The papers listed below were published during the course of this PhD thesis. Those most
relevant to this thesis are highlighted in bold font.

• Roman Bause, Ming Li, Andreas Schindewolf, Xing-Yan Chen, Marcel Duda, Svet-
lana Kotochigova, Immanuel Bloch, and Xin-Yu Luo, Tune-out and magic wave-
lengths for ground-state 23Na40K molecules. Physical Review Letters 125, 023201
(2020).

• Roman Bause, Andreas Schindewolf, Renhao Tao, Marcel Duda, Xing-Yan Chen,
Goulven Quéméner, Tijs Karman, Arthur Christianen, Immanuel Bloch, and Xin-Yu
Luo, Collisions of ultracold molecules in bright and dark optical dipole traps. Physical
Review Research 3, 033013 (2021).

• Roman Bause, Akira Kamijo, Xing-Yan Chen, Marcel Duda, Andreas Schindewolf,
Immanuel Bloch, and Xin-Yu Luo, Efficient conversion of closed-channel-dominated
Feshbach molecules of 23Na40K to their absolute ground state. Physical Review A
104, 043321 (2021).

• Xing-Yan Chen*, Marcel Duda*, Andreas Schindewolf, Roman Bause, Immanuel
Bloch, and Xin-Yu Luo, Suppression of unitary three-body loss in a degenerate Bose–
Fermi mixture. Physical Review Letters 128, 153401 (2022).

• Marcel Duda, Xing-Yan Chen, Andreas Schindewolf, Roman Bause, Jonas von Mil-
czewski, Richard Schmidt, Immanuel Bloch, and Xin-Yu Luo, Transition from a
polaronic condensate to a degenerate Fermi gas of heteronuclear molecules. Nature
Physics 19, 720-725 (2023).

• Marcel Duda*, Xing-Yan Chen*, Roman Bause, Andreas Schindewolf, Immanuel
Bloch, and Xin-Yu Luo, Long-lived fermionic Feshbach molecules with tunable p-
wave interactions. Physical Review A 107, 053322 (2023).

• Andreas Schindewolf, Roman Bause, Xing-Yan Chen, Marcel Duda,
Tijs Karman, Immanuel Bloch, and Xin-Yu Luo, Evaporation of
microwave-shielded polar molecules to quantum degener-
acy. Nature 607, 677-681 (2022).

• Xing-Yan Chen*, Andreas Schindewolf*, Sebastian Eppelt, Roman
Bause, Marcel Duda, Shrestha Biswas, Tijs Karman, Timon A.
Hilker, Immanuel Bloch, and Xin-Yu Luo, Field-linked resonances of polar
molecules. Nature 614, 59-63 (2023).

https://doi.org/10.1103/PhysRevLett.125.023201
https://doi.org/10.1103/PhysRevLett.125.023201
https://doi.org/10.1103/PhysRevResearch.3.033013
https://doi.org/10.1103/PhysRevResearch.3.033013
https://doi.org/10.1103/PhysRevA.104.043321
https://doi.org/10.1103/PhysRevA.104.043321
https://doi.org/10.1103/PhysRevLett.128.153401
https://doi.org/10.1038/s41567-023-01948-1 
https://doi.org/10.1038/s41567-023-01948-1 
https://doi.org/10.1103/PhysRevA.107.053322
https://doi.org/10.1038/s41586-022-04900-0
https://doi.org/10.1038/s41586-022-05651-8


xii

• Fulin Deng, Xing-Yan Chen, Xin-Yu Luo, Wenxian Zhang, Su Yi, and Tao Shi, Ef-
fective potential and superfluidity of microwave-shielded polar molecu-
less. Physical Review Letters 130, 183001 (2023).

• Xing-Yan Chen, Shrestha Biswas, Sebastian Eppelt, Andreas Schindewolf, Fulin
Deng, Tao Shi, Su Yi, Timon A. Hilker, Immanuel Bloch, and Xin-Yu Luo, Ultra-
cold field-linked tetratomic molecules. Accepted by Nature, arXiv:2306.00962
(2023).

• Fulin Deng, Xing-Yan Chen, Xin-Yu Luo, Wenxian Zhang, Su Yi, and Tao Shi,
Formation and dissociation of field-linked tetramers. in preparation.

* Equal contributions

https://doi.org/10.1103/PhysRevLett.130.183001
https://arxiv.org/abs/2306.00962
https://arxiv.org/abs/2306.00962


Contents

Abstract v

1 Introduction 1
1.1 Ultracold molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Reaching quantum degeneracy . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Sticky collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Collisional shielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Manipulating interaction potentials: a route to field-linked tetramers . . . 8
1.6 This thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Experimental setup 11
2.1 Making and probing ultracold 23Na40K molecules . . . . . . . . . . . . . . 11

2.1.1 Double-degenerate atomic mixture . . . . . . . . . . . . . . . . . . 11
2.1.2 Molecular assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Imaging and thermometry . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 A magic 3D optical lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Magic trapping of diatomic molecules . . . . . . . . . . . . . . . . . 18
2.2.2 Basics of optical lattices . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 3D lattice and light sheet . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.4 Calibration of the lattice depths . . . . . . . . . . . . . . . . . . . . 24

3 Microwave field generation 27
3.1 Microwave antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Radiation fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Different types of antennas . . . . . . . . . . . . . . . . . . . . . . 29

3.2 A dipole microwave probe . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Calibration of the sensitivity . . . . . . . . . . . . . . . . . . . . . 34
3.2.3 Characterizing the waveguide antenna . . . . . . . . . . . . . . . . 35

3.3 Characterizing the microwave field with molecules . . . . . . . . . . . . . . 35
3.3.1 Microwave transitions . . . . . . . . . . . . . . . . . . . . . . . . . 35



xiv CONTENTS

3.3.2 Field strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.3 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.4 Polarization tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Microwave circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.1 Design principles of low-noise microwave circuits . . . . . . . . . . 39
3.4.2 The setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.3 Phase noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Control electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.1 Power control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.2 Phase control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.3 Arbitrary waveform generation . . . . . . . . . . . . . . . . . . . . 50

3.6 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Microwave shielding and evaporative cooling 53
4.1 Microwave dressing of the rotational states . . . . . . . . . . . . . . . . . . 54

4.1.1 Dressed states and their preparation . . . . . . . . . . . . . . . . . 54
4.1.2 One-body lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.3 Induced rotating dipole moment . . . . . . . . . . . . . . . . . . . 59

4.2 Microwave shielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.1 Theory of microwave shielding . . . . . . . . . . . . . . . . . . . . . 60
4.2.2 Inelastic collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.3 Elastic collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Evaporation to Fermi degeneracy . . . . . . . . . . . . . . . . . . . . . . . 71
4.4 Collective modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5 Prospects and challenges of reaching 0.1TF . . . . . . . . . . . . . . . . . . 74
4.6 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Lattice loading and dipolar spin models 79
5.1 Ultracold polar molecules in optical lattices . . . . . . . . . . . . . . . . . 79
5.2 Lattice loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 Isentropic loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.2 Loading into the vertical lattice . . . . . . . . . . . . . . . . . . . . 84
5.2.3 Loading into the ground band of the horizontal lattice . . . . . . . 86
5.2.4 In-situ imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2.5 Lifetime of molecules in a deep lattice . . . . . . . . . . . . . . . . 87

5.3 Spin dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.1 Spin-echo Ramsey spectroscopy . . . . . . . . . . . . . . . . . . . . 88
5.3.2 Numerical simulation of the initial decoherence . . . . . . . . . . . 90
5.3.3 Prospects of rotational synchronization and spin squeezing . . . . . 90

5.4 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Field-linked resonances 93
6.1 Field-linked bound states and scattering shape resonances . . . . . . . . . 93



CONTENTS xv

6.1.1 Physical picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.1.2 Effective potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.1.3 Resonance condition . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.4 p-Wave scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Experimental observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2.1 Resonance map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2.2 Temperature dependence of the inelastic scattering . . . . . . . . . 102
6.2.3 Elastic scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Prospects of dipolar p-wave superfluid . . . . . . . . . . . . . . . . . . . . 105
6.4 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 Field-linked tetratomic molecules 109
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.2 Electroassociation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.3 Binding energy and lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.3.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.4 Estimation of collision rates of tetramers . . . . . . . . . . . . . . . . . . . 116
7.4.1 Tetramer dipole moment . . . . . . . . . . . . . . . . . . . . . . . . 116
7.4.2 Dipolar collision rate . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.4.3 Upper bound for the inelastic collision rate . . . . . . . . . . . . . . 118

7.5 Association and dissociation processes . . . . . . . . . . . . . . . . . . . . 118
7.6 Conditions for efficient electroassociation . . . . . . . . . . . . . . . . . . . 119
7.7 Ramp dissociation and thermometry . . . . . . . . . . . . . . . . . . . . . 122
7.8 Modulation dissociation and tetramer wave function . . . . . . . . . . . . . 123
7.9 Prospects of electroassociation of complex polyatomic molecules . . . . . . 125
7.10 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8 Holistic view of shielding 129
8.1 A simple model for resonant shielding . . . . . . . . . . . . . . . . . . . . . 129
8.2 D.C. and microwave FL resonances . . . . . . . . . . . . . . . . . . . . . . 132
8.3 Shielding in confined geometries . . . . . . . . . . . . . . . . . . . . . . . . 133
8.4 Comparison of shielding schemes . . . . . . . . . . . . . . . . . . . . . . . 135

9 Conclusion and outlook 137

Appendix A 23Na40K properties and constants 139
A.1 Rotation and hyperfine structures . . . . . . . . . . . . . . . . . . . . . . . 139
A.2 The STIRAP scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.2.1 Feshbach state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.2.2 Intermediate excited state . . . . . . . . . . . . . . . . . . . . . . . 142
A.2.3 Coupling strength . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.3 Polarizabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



xvi CONTENTS

A.3.1 Off-resonant transitions . . . . . . . . . . . . . . . . . . . . . . . . 144
A.3.2 866 nm near-resonant transitions . . . . . . . . . . . . . . . . . . . 144
A.3.3 785 nm near-resonant transitions . . . . . . . . . . . . . . . . . . . 145

Appendix B Elastic scattering between two rotating dipoles 147

Appendix C Determination of the microwave ellipticity 149

Appendix D Partial wave expansion of the effective potential 153

Appendix E Quantum gas gallery 155

Bibliography 159

Acknowledgement 181



Further discoveries in another field
(liquefaction of helium) have made
necessary, in an unexpected
connection, the examination of many
properties (of substances) in the
neighborhood of absolute zero.1

Heike Kamerlingh OnnesChapter 1

Introduction

The field of ultracold molecules has recently experienced remarkable advancements. I am
fortunate to have witnessed these exciting developments during my PhD, and to have had
the opportunity to contribute to the frontier of this field. This introduction provides the
necessary background for the work presented in this thesis, with a particular emphasis on
recent breakthroughs in the creation of Fermi degenerate molecules, the characterization
of sticky collisions, and the realization of collisional shielding.

1.1 Ultracold molecules
Matter exhibits fascinating behaviors at low temperatures. When prepared under ultracold
conditions,2 molecules display quantum properties [1–4], making them suitable for applica-
tions such as quantum simulation [5,6] and computation [7–9], ultracold chemistry [10,11],
and precision measurements [12, 13]. These applications stem from the intricate internal
structure of molecules and the tunable long-range dipole-dipole interactions. However,
the complexity of these molecules poses challenges for the implementation of cooling tech-
niques [14–18].

1This excerpt from Onnes’ Nobel lecture outlines his research into the properties of matter at low
temperatures, facilitated by the production of liquid helium. In a parallel vein, the realization of ultracold
atoms has spurred the assembly of ultracold molecules.

2The definition of the “ultracold regime” is context-dependent. Most molecules already exist in their
rovibrational ground state at room temperature. Achieving the hyperfine ground state typically neces-
sitates cooling to submillikelvin temperatures. Further cooling to the submicrokelvin range is requisite
to control the orbital degree of freedom, ensuring that the lowest partial wave predominantly governs
intermolecular collisions. In the scope of this thesis, we focus on the 100-nK regime, where dipole-dipole
interactions become the dominant force governing molecular collisions. At even lower temperatures, the
gas reaches quantum degeneracy, laying the groundwork for the preparation of many-body ground states.
This is the regime requisite for quantum simulation and is the ultimate goal of our experimental endeavors.

1
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Figure 1.1: Assembly of ultracold tetratomic molecules. Starting from an ultra-
cold mixture of sodium and potassium atoms, we first ramped the magnetic field through
a Feshbach resonance to associate weakly bound Feshbach molecules. Next the diatomic
molecules are transferred to their ground state via stimulated Raman adiabatic passage
(STIRAP) by applying two coherent laser pulses. We subsequently switch on a micro-
wave field, causing the molecules to rotate and interact via dipole-dipole interactions.
By ramping the microwave field through a field-linked resonance, two sodium-potassium
molecules come together to form a weakly bound tetratomic molecule. Figure inspired
by Ref. [29].

The first molecules prepared under submicrokelvin temperatures were weakly bound
homonuclear dimers, associated from degenerate atomic gases by photoassociation [19,20]
or magnetoassociation [21–23]. These assembled molecules inherit the ultracold tempera-
tures of the degenerate atomic gases. The process of magnetoassociating a Bose-Einstein
condensate (BEC) of Feshbach molecules [24–26] from a superfluid of two-component de-
generate Fermi gases [27] represents the BCS–BEC crossover [28], a phenomenon with rich
physics that has sparked a field of its own.

Following the success of homonuclear dimers, interest in heteronuclear dimers has grown.
Heteronuclear dimers in the deeply bound state exhibit a large dipole moment, making
them intriguing candidates for quantum simulation of many-body systems with long-range
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interactions and the search for the electron electric dipole moment. The first ultracold
ground-state polar molecules were realized at JILA, where 40K87Rb molecules were associ-
ated from an atomic mixture by magnetoassociation and transferred to the rovibrational
ground state by stimulated Raman adiabatic passage (STIRAP) [30]. A similar tech-
nique was also demonstrated for homonuclear Cs2 molecules [31]. Since then, several bial-
kali ground-state molecules, including 87Rb133Cs [32, 33], 23Na40K [34, 35], 23Na87Rb [36],
23Na39K [37], 23Na7Li [38], 23Na133Cs [39,40], and 6Li40K [41,42] have been created in this
manner. NaCs [43], 85Rb87Rb [44], and RbCs [45] molecules have also been assembled from
atoms trapped in optical tweezers.

Over the past decade, direct laser cooling [46–48] has made significant progress, catching
up with the progress of molecular assembly. This has been achieved through breakthroughs
in magneto-optical trapping (MOT) [49], sub-Doppler cooling [50–54], and subsequent
loading of molecules into optical tweezer arrays [55–57] and sideband cooling [58,59]. These
molecules can be directly imaged with high fidelity, offering an advantage for the detection
and manipulation at the single molecule level. Moreover, theoretical calculations indicate
that certain large polyatomic molecules can be laser cooled with a manageable number of
lasers [60, 61]. While symmetric top molecules have been successfully laser-cooled in one
dimension [62], the efficacy of laser cooling for larger molecules (tetratomic or beyond) in
three dimensions — and down to the submicrokelvin regime — remains an open question.

The work presented in Chapter 7, together with Ref. [63], has allowed the molecule as-
sembly method to enter the realm of ultracold polyatomic molecules. We formed ultracold
tetratomic molecules from pairs of diatomic polar molecules, as shown in Fig. 1.1. The
success of assembly relies on starting with a degenerate gas, ensuring that the wave func-
tions of the dimers overlap sufficiently. The following sections present the challenges in
achieving quantum degeneracy of these diatomic molecules.

1.2 Reaching quantum degeneracy
Homonuclear Feshbach molecules created from fermionic atoms were quickly brought to
Bose-Einstein condensation shortly after their initial creation [24–26]. The key was to
maintain the Feshbach molecules in a weakly bound state, allowing Pauli blocking to
effectively suppress both atom-dimer and three-body losses. This suppression is absent
in a heteronuclear mixture, and the collisional losses hinder efficient magnetoassociation.
More than a decade after their first creation, heteronuclear molecules finally achieved
quantum degeneracy. Here, Fermi degenerate Feshbach molecules were created from a
BEC of Rb and a degenerate Fermi gas of K, where about 43% of Rb was converted into
molecules [65]. This efficient conversion contradicted previous observations and simulations
from the same group, which suggested that association efficiency decreases with the onset
of the BEC due to the different quantum statistics of the mixed gases [66,67]. The puzzling
high efficiency of KRb formation motivated us to investigate the mechanism behind the
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Figure 1.2: Quantum phase transition in a density-matched Bose–Fermi mix-
ture. Phase diagram of degenerate Bose–Fermi mixtures, characterized by the density
ratio nB/nF and the dimensionless interaction strength (kiaBF )

−1. When nB < nF , a
quantum phase transition between Polaronic and Molecular phases is expected. This
transition may be of either first order, accompanied by phase separation, or second or-
der. The long-dashed line in the diagram represents the critical point for the complete
depletion of the condensate, given by (kFaBF )

−1
c , while the dotted line marks the onset

of phase separation at (kFaBF )
−1
ps in cases where it occurs. Additionally, the dash-dotted

line indicates a possible further quantum phase transition of unknown order. Experimen-
tal realization is achieved through a dual-color optical trap that allows for the density
matching of the Bose–Fermi mixture (indicated by the red star). By ramping across a
Feshbach resonance, Fermi degenerate Feshbach molecules are created (red arrow). Fig-
ure reproduced from Ref. [64].



1.3 Sticky collisions 5

magnetoassociation of a degenerate Bose–Fermi mixture.

Initially, magnetoassociation from a double-degenerate mixture did not yield successful
results in our experiment due to the lighter mass of the Na and K atoms and the associated
one-order-of-magnitude higher unitary losses near the Feshbach resonance [68, 69]. To
overcome these losses, we matched the density between the mixed gases so that the BEC
could be efficiently depleted and thus not simultaneously present with the dimers. With
the suppressed losses, we investigated the process of magnetoassociation in the degenerate
regime. As illustrated in Fig. 1.2 the high association efficiency should be understood
as a result of an underlying quantum phase transition from Fermi polarons to molecules,
whose order parameter can be directly probed by the condensate fraction [64]. Near the
transition point, Bose and Fermi statistics are blended by the strong interspecies coupling,
thus resolving the puzzle of phase space overlap.

The Fermi degenerate Feshbach molecules were subsequently transferred to the ground
state by STIRAP. However, due to the limited STIRAP efficiency (80-90%), it randomly
creates 10-20% holes in the Fermi sea, leading to heating. Moreover, the recoil energy
and the sudden change of magnetic levitation after magnetoassociation further heat up the
sample. Therefore, we still need a method to further cool down the molecules after their
creation.

1.3 Sticky collisions
Historically, evaporative cooling has served as the final step in achieving quantum degen-
eracy in ultracold atoms. A prerequisite for evaporative cooling is collisional stability, i.e.,
a high ratio of elastic-to-inelastic collisions. Since the creation of the ground-state KRb
molecules, the JILA group observed collisional loss in the optical trap [72]. They observed
a universal1 two-body loss [73], implying that every collision reaching short range results in
a loss. This universal loss also occurs in the presence of a d.c. electric field [77], where the
centrifugal barrier is reduced for collisions along the head-to-tail direction, leading to an
increase in loss with the electric field strength. To suppress these reactions, they confined
the molecules in a deep 3D optical lattice [78], and for the first time, observed dipolar
spin-exchange interactions between molecules [79].

The realization of ultracold molecules has triggered extensive theoretical studies on their

1In this thesis, the term “universal” is employed in various contexts, and we summarize its use here.
In every instance, “universal” refers to the broad applicability of the scattering calculation, which relies
solely on the long-range potential and mass, regardless of the specifics of short-range interactions. First,
“universal loss” assumes a unitary loss probability at short range, so the loss rate is entirely dictated by
the long-range van der Waals and dipolar interaction, and the mass of the molecules [73, 74]. Second,
the dipolar elastic collision between two polar molecules is governed exclusively by the dipole moment
and the mass of the molecules [75]. Third, the field-linked resonance is universal because it stems from
microwave-induced long-range interactions [76].
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photo-
excitation

 τ stick  

Figure 1.3: Sticky collisions of ultracold molecules. The survival probability of
two molecules following a collision under the influence of 1064-nm light is calculated
according Ref. [70]. In each collision, an intermediate sticky complex is formed. At high
light intensities, these complexes are almost invariably lost through photoexcitation.
Conversely, at low intensities, the complex is allowed to decay back into ground-state
molecules, characterized by a mean sticking time of τstick = 18µs [70]. The distinction
between these two behaviors is characterized by a critical intensity Ic, marking the point
at which the survival probability is 50%. Figure reproduced from Ref. [71].

collisional properties. However, the seemingly simple scattering problem of two diatomic
molecules surprisingly remains poorly answered, due to the limited accuracy of the four-
body potential energy surfaces [80] and a large number of intermediate states [81]. At that
time, it was believed that the universal loss of KRb molecules was due to their chemical
instability against the reaction to form K2 and Rb2, and that chemically stable molecules,
including NaK, NaRb, NaCs, KCs, and RbCs, should be collisionally stable [82]. Encour-
aged by these perspectives, several experiments began to study these chemically stable mol-
ecules. However, nearly all the bialkali molecules studied so far [32,37,38,40,71,77,83–85],
have exhibited nearly universal two-body losses, irrespective to their chemical stability. In
2022, a Feshbach resonance between NaLi in the spin-triplet state was reported [86]. For
other bialkali molecules in the absolute ground state,1 the occurrence of such resonances
is less likely due to their greater mass and the absence of a magnetic moment.

To understand the mystery of universal loss, a series of papers proposed and refined
the hypothesis of sticky collisions [70, 87–89]. This theory predicts that the intermediate
product of the collision, i.e., the collisional complex, remains together long enough that
the loss is due to photoexcitation or three-body collisions of these complexes before they
are able to dissociate back. Two key parameters in this theory are the sticky time and
the photoexcitation rate of the complex, as shown in Fig. 1.3. However, the sticky time is

1Here, the “absolute ground state” refers to the spin-singlet rovibrational ground state, which is of
particular interest as it uniquely exhibits a large dipole moment in bialkali molecules.
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challenging to calculate. Theory predictions from statistical models vary by several orders
of magnitude, depending on whether or not the hyperfine state is preserved during the
collision.

In a calculation by Christianen et al. [89], the sticky time was predicted to be much
shorter than the inelastic collision rates of the molecules. Instead, they predicted that the
complex lifetime would be limited by photoexcitation due to the trapping light [70]. If the
theory is correct, the collisional loss can be suppressed by either trapping the molecules in
the dark or chopping the trap to increase the dark time. Initially, experiments with KRb
[90] and RbCs [91] agreed with the theory. The experiment in the Ni group was particularly
convincing as they directly detected the intermediate complex by photoionization and mass
spectroscopy [92]. However, subsequent experiments with fermionic NaK [71], bosonic NaK
and NaRb [93], and NaCs [94] disagreed with the theory’s prediction on either complex
lifetime or photoexcitation rates by up to 5 orders of magnitude. To date, the sticky
collision remains a mystery, but we have provided experimental bounds to the lifetime and
photon scattering rates of the complexes for theory to work with [81], and new apparatuses
to directly probe these complexes are under constructions.

Studies on atom–molecule collisions have also been conducted, with the perspective of
sympathetically cooling molecules with atoms. In contrast to molecule–molecule collisions,
many atom–molecule collisions show non-universal losses, and Feshbach resonances have
been observed in NaK + K [95], NaLi + Na [96], NaRb + Rb [97]. Moreover, the Ketterle
group has demonstrated sympathetic cooling, effectively cooling NaLi molecules using Na
atoms, facilitated by a low collisional loss rate [98].

Ultimately, we need to overcome the universal loss of molecules to create a collision-
ally stable molecular sample, and collisional shielding appears to be the most promising
approach.

1.4 Collisional shielding
Collisional stability of molecular gases has been achieved using shielding techniques with
either d.c. or a.c. electric fields. The first instance of shielding was demonstrated by Jun
Ye’s group with KRb molecules confined in 2D pancake traps with a d.c. field perpendicular
to the strong confinement [99]. In a 2D geometry, head-to-tail collisions are suppressed,
leading to a predominance of repulsive side-by-side collisions [100, 101]. Later, the same
group demonstrated Förster resonance1 shielding in both 2D and 3D for molecules in the
rotationally excited state [102–105]. This was accomplished by applying a targeted d.c.
electric field to mix the rotational states and induce an avoided crossing, ensuring that the

1Typically, scattering resonances are associated with the emergence of a zero-energy bound state from
the collisional threshold. In contrast, Förster resonances are not resonances mediated by specific tetramer
bound states, as emphasized in Ref. [102]. In that context, resonance refers to the degeneracy of two
threshold energies rather than the interaction with a particular bound state.
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molecules remain on the repulsive branch of the potential energy surfaces.

However, d.c. field shielding requires a large electric field, which varies with the molecular
species. For NaK, resonant shielding occurs at around 7 kV/cm [103]. Achieving this high
electric field is challenging and requires careful design of the electrodes. Unfortunately, our
in-vacuum electrodes are placed less than 1 cm from the glass cell. We observed stochastic
charging of the glass cell for electric fields above 1 kV/cm. These charges shift the STIRAP
transition and need to be removed by applying UV lights for approximately half an hour.

An alternative shielding method using a.c. electric fields was first demonstrated by the
Doyle group with CaF in optical tweezer arrays [106]. This approach employs a high-power,
circularly polarized microwave, that is blue-detuned to the first rotational transition of
the molecules. Following this approach, we achieved a high ratio of elastic-to-inelastic
collision rates with NaK molecules, enabling us to evaporatively cool them down to 21 nK
and 0.36TF [107]. Afterwards, microwave shielding was also realized in NaCs [108] and
NaRb [109].

1.5 Manipulating interaction potentials: a route to
field-linked tetramers

Microwave shielding is more than just a shielding technique. The versatile tuning capa-
bilities of the microwave — power, frequency, and polarization — allow us to engineer
the shape and depth of the interaction potential with a high degree of control. This is in
stark contrast to collisions in the presence of static fields, where the potentials can only
be relatively shifted by the Stark shift of the entrance channel.

With this unprecedented level of control over the interaction potential, we can in-
duce scattering shape resonances,1 known as field-linked (FL) resonances, between the
microwave-shielded polar molecules [76,111,112]. This universal type of resonance provides
a long-sought tool for ultracold molecules, enabling us to control the scattering length as
is routinely done with ultracold atoms via Feshbach resonances.

Furthermore, we can gradually adjust the potential depth to adiabatically populate the
long-range bound states associated with the FL resonances. In doing so, we create, for the
first time, tetratomic molecules in the 100-nK regime with a phase space density (PSD) only
two orders of magnitude below quantum degeneracy [113]. The FL tetramers represent an
increase in PSD of eleven orders of magnitude compared to the coldest tetratomic molecules
created prior to this work, see Table 1.1.

1A shape resonance in quantum mechanics is caused by a temporary trapping of a pair of particles
within their interaction potential due to the shape of the potential energy curve, as depicted in Fig. 1.4.
Unlike a Feshbach resonance, where the resonance occurs due to an interaction between two different
channels, a shape resonance occurs within the same scattering channel.
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Figure 1.4: Field-linked resonances. Colliding dipolar molecules experience both
attractive and repulsive interactions in a rotating microwave field. With a suitable ellip-
tical deformation of the field, so-called field-linked states are created. Figure reproduced
from Ref. [110].

Table 1.1: Polyatomic molecules that have achieved submillikelvin temperatures. The
asterisk superscript denotes that the molecule is in a weakly bound state.

Molecule Method Temperature PSD Source
CaOH direct laser cooling 57(8) µK (in trap) 9(5)× 10−8 [114]
NaK∗

2 magnetoassociation ∼ 100 nK ∼ 0.05 [63]
H2CO optoelectrical cooling 420(90) µK 5× 10−13 [115]
(NaK)∗2 electroassociation 134(1) nK 0.040(3) [113]

Looking back on the time when we realized evaporative cooling, we could have never
predicted our progress with microwave shielding. Yet, this is merely the beginning. By
optimizing initial conditions, it is possible to generate a BEC of tetratomic molecules and
achieve a dipolar BCS–BEC crossover [116]. Furthermore, the FL tetramers provide an
ideal starting point for optical transfer to deeply bound states. The physics of microwave-
shielded molecules is a vast territory waiting to be further explored, promising many more
developments in the near future.

1.6 This thesis
This thesis delves into the physics of microwave-shielded polar molecules. Chapter 2 pro-
vides an overview of the experimental setup, with a focus on the preparation of ultracold
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23Na40K molecules and a 3D magic lattice for rotational qubits. Chapter 3 presents a
microwave setup designed to realize microwave shielding. Chapter 4 covers the theory and
experiment of microwave shielding and the process of evaporative cooling to achieve Fermi
degeneracy. Chapter 5 presents the loading of microwave-shielded molecules into predomi-
nantly a single layer of a 3D optical lattice and the signature of spin-exchange interactions.
Chapter 6 describes the realization of field-linked scattering resonances. Chapter 7 dis-
cusses the association of field-linked tetratomic molecules. Chapter 8 provides a compara-
tive analysis between microwave shielding with other existing shielding techniques. Finally,
Chapter 9 concludes the thesis and offers an outlook on potential future experiments.



Shall we do it NOW?1

Xin-Yu Luo (罗鑫宇)

Chapter 2

Experimental setup

This chapter covers the experimental setup. We discuss the preparation and detection of an
ultracold gas of 23Na40K molecules, and a three-dimensional rotational-state independent
magic optical lattice. The magic lattice plays a crucial role in enhancing the rotational
coherence time of the molecules, a prerequisite for studying lattice spin models.

2.1 Making and probing ultracold 23Na40K molecules
The NaK apparatus was constructed by the first generation of students, Nikolaus Buchheim
[117], Zhen-Kai Lu [118], and Frauke Seeßelberg [119]. Since then, our generation, including
Roman Bause [120], Marcel Duda [121], and myself, have made several improvements,
enabling us to routinely create 25, 000 ground state molecules at a temperature of 200 nK
[121]. This ultracold molecular gas serves as the starting point for the work described in
this thesis.

2.1.1 Double-degenerate atomic mixture
To create fermionic NaK molecules, we utilize the naturally occurring isotope of bosonic
sodium, 23Na, and the only stable fermionic potassium isotope, 40K. The core of the
setup is the ultra-high vacuum system (see Fig. 2.1). It comprises the main chamber, the
science cell, and two oven regions for each of the two species. Sodium atoms from the
oven travel through a Zeeman slower, while potassium atoms are transversely cooled by a
2D-MOT. We further increase the flux of potassium with a resonant pushing beam. Both
sodium and potassium are then loaded into a MOT followed by a compressed MOT in
the main chamber. We optionally perform gray molasses cooling for sodium at the end of
the MOT, as described in my master’s thesis [122]. After a typical MOT loading time of

1Thumbs up to Xin-Yu, who never allows technical challenges to deter him from pursuing new ideas.

11
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Figure 2.1: The vacuum system. The vacuum system of the NaK apparatus. The
oven sections for sodium and potassium are connected to the central chamber via a
Zeeman slower for sodium and a 2D-MOT chamber for potassium. Within the main
chamber, both species are loaded into a 3D-MOT. Following evaporation within the
magnetic trap, the atoms are transported to the glass cell where the experiments are
conducted. Figure reproduced from Ref. [121]
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2 s, both sodium and potassium are transferred to a plugged (532 nm) magnetic trap [123]
and prepared in their stretched, low-field seeking hyperfine states, |F,mF ⟩ = |2, 2⟩ and
|9/2, 9/2⟩. Sodium is then evaporated with a radio-frequency (RF) knife, while potassium is
sympathetically cooled via elastic collisions. This process essentially conserves the number
of potassium atoms, allowing us to start with small 40K numbers, which is convenient
because the fermionic isotope has a very low abundance — even in the enriched sample
we use, only 3% are 40K atoms. We then load the 6µK cold mixture into an X-shaped
transport trap generated by two 1064 nm laser beams at a 2.6◦ angle (power in each beam:
11W, beam waist: (wx, wz) = (100, 50)µm), which we send in through the front facet of
the glass cell. Right after loading the dipole trap, we transfer the sodium atoms into |1, 1⟩
to minimize their collisional loss with potassium. We can move the atoms by 27 cm from
the MOT chamber to the science cell, simply by shifting the focal point of the transport
beam (13.5 cm in 1.1 s) using an air-bearing translation stage (Aerotech MTC150P). The
X-shape design increases the transverse confinement to increase the speed of the transport.

To compress the mixture in the glass cell, we add a second far-detuned optical dipole
beam horizontally, which forms a crossed dipole trap with the transport beam. Initially,
we used a 1550 nm beam, but later replaced it with 1064 nm as we observed unexpected
one-body loss which increases linearly with the power of the beam. We suspect that we
hit some 1550 nm + 1064 nm transition of the molecules. In the crossed trap, the atoms
are further evaporatively cooled to a mixture of 2.5× 105 potassium atoms at T/TF = 0.2,
and 1.0 × 105 sodium atoms with a condensed fraction of more than 60%. Finally, we
prepare the potassium in |9/2,−9/2⟩ at a magnetic field of 80G, right above the Feshbach
resonance which we use to create molecules.

2.1.2 Molecular assembly
The sequence of molecule creation is shown in Fig. 2.2. First, a density-matched, double-
degenerate mixture of 23Na and 40K atoms are associated into weakly bound Feshbach
molecules via magnetoassociation, a process that involves ramping the magnetic field across
a Feshbach resonance at 78.3G. Detailed descriptions of the preparation process can be
found in Refs. [121], and a reference of the relevant molecular states evolved is provided in
Appendix A.

The key to creating a degenerate molecular gas lies in starting with a degenerate atomic
mixture, and converting atoms to molecules as efficiently and adiabatically as possible.
This is a challenging task due to the unitary collisional loss near the Feshbach resonance,
which sets a lower limit for the ramp speed across the resonance. We have systematically
characterized all loss processes involved [68, 69] and devised a density-matching technique
to mitigate them [64]. By using a dual-color dipole trap, we differentially trap the potas-
sium degenerate Fermi gas and the sodium BEC to match their 3D density distributions.
This ensures that no global mass transport is needed for the gas to maintain thermal equi-
librium during the association. More importantly, density matching efficiently converts the
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Figure 2.2: Magnetoassociation and STIRAP. a, Absorption images of the optical
density (OD) of sodium (Na) atoms and Feshbach molecules (NaK*) following an 18-
ms time of flight. These images capture the transition from the polaronic phase to the
molecular phase. b, Magnetic field ramps utilized for the association and dissociation
of Feshbach molecules. The term “Clearout” refers to a 20-ms magnetic field gradient
pulse that serves to remove any unassociated atoms. The dashed gray line denotes the
location of the Feshbach resonance. c, Schematic of the three-level system in STIRAP.
The intermediate excited state |E⟩ is linked to the Feshbach-molecule state |FB⟩ by
means of the pump beam (bright red), and to the ground state |G⟩ via the Stokes beam
(dark blue). d, Pulse shapes for the pump and Stokes beams in the STIRAP process.
Figure reproduced from Ref. [64, 124].
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Figure 2.3: Trapped molecular gas. a, ground-state molecules driven by the micro-
wave electric field emitted from a waveguide antenna. b, Time-of-flight image of mole-
cules after evaporative cooling. Azimuthally integrated optical densities (OD) extracted
from time-of-flight absorption images (inset). The black line is a fit to the Fermi–Dirac
distribution Eq. (2.1), the orange line is a Gaussian fit to the thermal wing Eq. (2.4).
The extracted temperature is 21(5) nK, corresponding to T/TF = 0.36(9).

BEC into molecules, thereby eliminating any remaining sodium atoms that could undergo
inelastic collisions with the molecules. Using this technique, we can create up to 60, 000
Feshbach molecules at a temperature of 120 nK, corresponding to T/TF ≈ 0.3, where TF
is the Fermi temperature. However, it should be noted that the Feshbach molecules are
not in global thermal equilibrium as there are no elastic collisions to thermalize them.

Following magnetoassociation, the deeply bound Feshbach molecules can no longer be
levitated by gravity due to their low magnetic moment, causing them to slosh in the trap.
To compensate for this, we ramp up the magnetic field gradient to levitate the molecules
while kicking out the atoms. Once the sloshing is mitigated, we are left with 70-80% of
the molecules, which are heated up to 150 nK. Subsequently, the molecules are transferred
to their rovibrational and hyperfine ground state via stimulated Raman adiabatic passage
(STIRAP). The cloud is again heated by the two-photon recoil from the STIRAP beams,
leaving us with typically 25, 000 molecules at 200 nK, corresponding to T/TF ≈ 1. This
provides the starting point for microwave shielding. Figure 2.3a illustrates the trapped
molecules and the microwave antenna. Details about the microwave field generation is
discussed in Chapter 3.

2.1.3 Imaging and thermometry
We use time-of-flight absorption imaging to obtain number and temperature of the mole-
cules, as shown in Fig. 2.3b. If the microwave is applied to dress the molecules, we first
need to ramp it off to transfer the molecules back to the non-dressed ground state. Sub-
sequently, the dipole trap is turned off and return STIRAP pulses are applied to bring
the molecules back into the weakly bound state. After time of flight, typically 10ms, the
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atoms are dissociated by ramping the magnetic field back over the Feshbach resonance.
The magnetic field has to cross the Feshbach resonance slowly to minimize the release
energy. In the end, the dissociated molecules are imaged via absorption imaging. We
estimate that the derived temperature of the molecular sample could be overestimated by
about 7(3) nK due to the residual release energy. This heating is confirmed by directly
image the Feshbach molecules without dissociation. Nevertheless, we note that the values
of T and T/TF reported in this work do not account for the released energy [107].

To obtain the temperature of the molecular sample, we fit the absorption images with
the Fermi–Dirac distribution

nFD(x, z) = nFD,0 Li2
[
−ζ exp(− x2

2σ2
x

− z2

2σ2
z

)

]
, (2.1)

where nFD,0 is the peak density, Li2(x) is the dilogarithmic function, ζ is the fugacity and
σi=x,z are the cloud widths in the x- and z-direction. Given a cloud width σi, we can
calculate the temperature Ti by

σi =

√
1 + ω2

i t
2
TOF

ωi

√
kBTi
M

, (2.2)

where ωi is the trapping frequency in the i-th direction, tTOF is the time of flight and M is
the mass of the molecules. The fugacity can be associated to the ratio of the temperature
T and the Fermi temperature TF with the relation(

T

TF

)3

= − 1

6Li3(−ζ)
, (2.3)

where Li3(x) is the trilogarithmic function. TF = (6N)1/3h̄ω̄/kB is given by the molecule
number N and the geometric mean trap frequency ω̄ = (ωxωyωz)

1/3. By rewriting ζ and
fixing TF , we are only left with the fitting parameters nFD,0, Tx, and Tz. We note that the
temperature in the direction of the imaging beam Ty is assumed to be equal to Tx.

We can also independently fit the thermal wings of the cloud to a Gaussian distribution

nth(x, z) = nth,0 exp
(
− x2

2σ2
x

− z2

2σ2
z

)
, (2.4)

where nth,0 is the peak density. Similar to Ref. [99], we first fit a Gaussian distribution to
the whole cloud. We then constrain the Gaussian distribution to the thermal wings of the
cloud by excluding a region of 1.5σ around the center of the image.

2.2 A magic 3D optical lattice
The molecules can be loaded into a three-dimensional (3D) magic lattice in the glass cell
to establish the necessary conditions for realizing the desired Hamiltonian for quantum
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a b

c d

Figure 2.4: Polarizability and hyperpolarizability of a 1550 nm magic-angle
trap. a, a.c. Stark data at E = 144.3 V/cm to extract the differential polarizability, ∆α.
b, Differential polarizability ∆α for various lattice polarization angles. At approximately
54◦ a magic trapping condition is fulfilled and the differential polarizability vanishes. c,
a.c. Stark data to extract the hyperpolarizability β for five electric field values in units
of V /cm. d, Hyperpolarizability β at the magic angle for various DC electric fields. The
red lines in b and c show theory calculation. Figure reproduced from Ref. [119].
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simulation. The lattice comprises a horizontal 2D lattice built by Scott Eustice [125] and
a vertical shallow-angle lattice built by Quentin Redon [126] and Renhao Tao [127]. The
lattice setup has previously been utilized to characterize photon scattering rates near a
866 nm narrow line transition [128], and to generate a double insulator for the creation of
Feshbach molecules. Later, we adapted the setup to the magic conditions for the rotational
molecular qubits and use it to study lattice spin models.

2.2.1 Magic trapping of diatomic molecules
Qubits encoded in rotational states of polar molecules, naturally interact via dipolar spin-
exchange interactions. Given the long lifetime of ground state molecules, this platform
is promising for studying spin dynamics and extended Hubbard models. To extend the
coherence time of rotational qubits, it is crucial to eliminate the differential light shift
between the rotational states, thereby achieving the so-called magic trapping.

Optical trapping, which utilizes the a.c. Stark shift from electric dipole transitions, is
widely used for ultracold particles due to its flexibility in controlling the trap’s shape and
depth [129]. In a single-mode light field, the differential light shift between the states of
interest, | ↓⟩ = |J = 0⟩ and | ↑⟩ = |J = 1,MJ⟩, can be expanded as a function of light
intensity I

δω↓↔↑ =
1

h̄

(
αI + βI2 +O

(
I3
))
, (2.5)

where α and β are the first- and second-order differential polarizability, which can be ob-
tained from second-order and fourth-order perturbation theory. Magic trapping is achieved
when the first-order differential light shift vanishes, with the leading order given by higher-
order polarizabilities.

The a.c. Stark shift from second-order perturbation theory is described by the Hamilto-
nian [130, 131]

Ha.c. = −(α(0) + α(2)P2(cos θ))I, (2.6)

where θ is the angle between the laser polarization and the internuclear axis of the molecule.
Translating to the lab frame, the Hamiltonian has the following matrix elements

⟨J ′,M ′
J |Iα|J,MJ⟩ = Iα(0)δJJ ′δMJM

′
J

+ Iα(2)
∑
M

d20M(ϕ)(−1)M
′
N

√
(2J + 1) (2J ′ + 1)

×
(
J ′ 2 N
0 0 0

)(
J ′ 2 J

−M ′
J M MJ

)
, (2.7)

where d2(ϕ) is the Wigner d-matrix, and ϕ is the angle between the polarization and the
quantization axis. To avoid mixing by the off-diagonal coupling between rotational and
hyperfine states, a large electric or magnetic bias field is applied so that the d.c. Stark
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shift or the Zeeman splitting is larger than the off-diagonal coupling. In such cases, we can
consider only the diagonal a.c. Stark shift, which yields

α =
2

5
α(2)P2(cosϕ), (2.8)

for | ↑⟩ = |1, 0⟩.

An approximation for β can be derived by considering the contribution from four-photon
couplings to the excited states and back. It is related to the tensor polarizability α(2)

by [132]

β(E, ϕ) =
3Brot

5d20E
2
(α(2))2 sin2(2ϕ), (2.9)

where Brot is the rotational constant of the ground state manifold, d0 is the dipole moment
in the body-fixed frame of the molecule, and E is the amplitude of the d.c. electric field.

There are two general methods to realize magic trapping of polar molecules. The first
method involves aligning the molecules to a “magic angle” of ϕ ≈ 54◦ to the external
field, where the tensor term P2(cosϕ) vanishes. In this case, the hyperpolarizability is
present but can be suppressed with a moderate electric field [132], see Fig. 2.4. This
magic trapping scheme has been demonstrated in KRb [133], NaK [132], RbCs [134, 135],
NaRb [136,137], and CaF [138]. The magic-angle scheme works for linear polarization. An
alternative off-resonant magic trapping scheme, which explores elliptical light polarization,
was demonstrated with NaCs [139].

The off-resonant magic trapping scheme can be implemented with conveniently available
trapping lasers, however, at the cost of high sensitivity to fluctuations of the polarization
and the intensity of the laser. These problems are overcome in the second method, which
does not require a specific alignment but requires trapping at a “magic wavelength” that
is near-resonant to rotational or vibrational transitions between the ground state and a
narrow-line excited electronic state. This adds additional terms to Eq. (2.6) which represent
the near-resonant coupling. For state |i⟩ = | ↑⟩ or | ↓⟩, the near-resonant polarizability is
given by

αi = −
∑
j

z2ji
2h̄ϵ0c

1

∆ji

. (2.10)

Here zji = |⟨j|d̂ · ϵ|i⟩| denotes the coupling strength of a laser with polarization ϵ on
a dipole-allowed transition between states |i⟩ and |j⟩, and d̂ denotes the dipole-moment
operator. Differential coupling can be achieved through the rotational selection rule. As
illustrated in Fig. 2.5a, for | ↓⟩ = |J = 0⟩ the dominant contribution is the coupling to
|J ′ = 1⟩ in the excited state, while for | ↑⟩ = |J = 1,mJ = 0⟩ there is coupling to both
|j⟩ = |J ′ = 0⟩ and |J ′ = 2⟩. By changing the detuning to these transitions, magic trapping
can be achieved at various polarizations. Remarkably, for the magic wavelength at ϕ = 0,
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a b

c

Figure 2.5: Magic-frequency trapping near the X ↔ b transition. a, Level
diagram of the NaK molecule, showcasing the X ↔ b transition from | ↓⟩ and the
two nearest transitions from state | ↑⟩. b, Schematic representation of the potential
experienced by | ↓⟩ (dark blue) and | ↑⟩ (bright blue) molecules in a dipole trap. The
left panel demonstrates the tune-out detuning for | ↓⟩, the center panel shows the tune-
out detuning for | ↑⟩, and the right panel illustrates the magic detuning condition. c,
Frequency-dependent polarizability for states | ↓⟩ (dark blue) and | ↑⟩ (bright blue), with
the assumption of light polarization parallel to the quantization axis. Each pole in the
graph corresponds to one of the transitions depicted in a. h denotes the Planck constant.
Figure reproduced from Ref. [128].
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the hyperpolarizability vanishes as well [124]. The same transition can also be used to
realize tune-out and anti-magic trapping schemes.

We use the transition to the lowest electronic state manifold for the magic wavelength
trapping of our molecules. This transition has a linewidth of 13.0(5) kHz, which is much
narrower than the rotational constant, allowing for a large dynamic range of frequency
tuning, and the photon scattering can be negligible at a detuning of a few GHz. The
relevant constants of this transition can be found in Appendix A. Similar narrow-line
transitions were explored in KRb [140], NaRb [141], and RbCs [142].

In the current experiment, we observe a maximum Ramsey coherence time of T2 ≈ 1ms,
which is limited by the d.c. electric field inhomogeneity of roughly 10mV/cm [128]. With
additional compensation electrodes, which are currently absent, we have achieved a Ramsey
coherence time of 10ms [132].

2.2.2 Basics of optical lattices
Two interfering laser beam generates a periodic lattice potential

V (x) = Vlat sin2
(π
a
x
)
, (2.11)

with a lattice spacing a = λ/2 sin(θ/2) determined by the wavelength and the relative
angle θ between the beams. The lattice depth Vlat depends on the intensity of the laser
and the polarizability of the particles.

The lattice introduces a new energy scale, which is the recoil energy Er = h̄2(π/a)2/2m.
When the lattice is sufficiently deep Vlat ≳ 5Er, the motion of a particle in the lattice is
described by its quasimomentum q and the energy band E(q). The dispersion relation of
the ground band, which is of the most interest, can be approximated by [143]

E(q) = −2t cos(qa) (2.12)

t ≈ 4√
π
s3/4e−2

√
sEr, (2.13)

where t is the nearest-neighbor tunneling amplitude, s = Vlat/Er is the lattice depth
normalized by Er. In a deep lattice s ≫ 1, each lattice site can be approximated by a
harmonic trap with trapping frequency

ω = 2
√
sEr/h̄, (2.14)

and the band gap can be approximated by h̄ω.

2.2.3 3D lattice and light sheet
The lattice beams are illustrated in Fig. 2.6. We employ two orthogonal, retroreflected
1064 nm beams to form a square lattice in the horizontal plane, with a lattice constant of
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16°
θ

Eac
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Figure 2.6: Schematics of the 3D
lattice. Molecules loaded into a sin-
gle plane formed by a 866 nm shallow-
angle lattice (blue arrow). The hori-
zontal lattice is formed by two pairs
of retroreflected 1064 nm laser beams
(red arrows). The polarization of the
horizontal lattice is at the magic an-
gle ∼ 54◦ to the vertical direction,
which is also the quantization axis de-
fined by the d.c. electric field.
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Figure 2.7: Shallow-angle lattice setup. Optics as projected on the plane along (a)
or perpendicular (b) to the gravity axis. Non-labeled optics correspond to cylindrical
lenses with a flat curvature in the projected plane. Lenses are labeled by their focal
lengths in millimeters. The red circle marks the position of the molecules. Figure repro-
duced from Ref. [127].

532 nm, see Fig. 2.10. For the vertical lattice, we use two 866 nm beams propagating at an
angle of 16◦, forming a vertical lattice with a lattice constant of 3.1µm. These two beams
are derived from a Wollaston prism placed at the focus of a convex lens, see Fig. 2.9.

A light sheet at 785 nm, with a beam waist of 24µm (the same beam used for density
matching of the atomic mixture), is used to compress the molecules and enhance the
loading efficiency into a single layer of the shallow-angle lattice. To maximize the contrast
of the lattice, the polarization of the two beams should be aligned and linearly polarized
in the lattice plane. This requirement leads us to use the magic wavelength method for
the shallow-angle lattice. Using two pairs of half-wave plates, we align the polarization of
the horizontal lattice beams to be at the magic angle with respect to the quantization axis
defined by the electric field, which is in the vertical direction.
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2.2.4 Calibration of the lattice depths
We calibrate the depth of the lattices using Kapitza–Dirac (KD) scattering of a BEC off the
lattice potential. By pulsing the lattice, the BEC is diffracted into plane-wave components.
The population dynamics of the diffraction pattern can be used to determine the lattice
depth. For a strong pulse s ≫ 1, the BEC will be significantly depleted and a number of
diffraction peaks with momentum ±2nh̄k will be populated with a fraction proportional
to [144]

Pn = J2
n(sErt/2h̄), (2.15)

where t is the pulse width and Jn is the ordinary Bessel function of order n. For the shallow-
angle lattice, it is easy to enter the strong pulse regime, as the large lattice constant leads to
a small Er. The diffraction pattern and the extracted populations for the first 5 diffraction
orders are shown in Fig. 2.9.

For a weak pulse s ≲ 4, high-order diffraction is suppressed. We observe a coherent
oscillation between n = 0 and 1, as shown in Fig. 2.10. The lattice depth can be obtained
from the oscillation period T by [144]

s =

√
2

(
h

TEr

)2

− 32. (2.16)

For the horizontal lattices, we can reach a maximum lattice depth of 180Er,NaK in each
direction at a power of 10W, corresponding to a band gap of 53 kHz. For the shallow-angle
lattice, we can reach 440Er,NaK at a power of 150mW in each beam, corresponding to a
band gap of 3.4 kHz. For the shallow-angle lattice, we also double check the band gap
with the parametric heating method. We modulate the lattice power to excite atoms from
the ground band to the second excited band of the lattice, leading to heating and loss of
atoms. The result is consistent with the KD scattering method.

With a BEC loaded into the 3D lattice we can also characterize the lattice depth by
the superfluid to Mott insulator transition [145]. In addition, the lattice stability can be
probed by measuring the lifetime of the superfluid. With an old vertical lattice setup we
measured the lifetime of superfluid in the 3D lattice to be more than 9 s, indicating a
heating rate less then 100 nK/s [125].

The 3D magic lattice provides the starting point for simulating dipolar lattice Hamil-
tonian, which will be the topic of Chapter 5. With the integration of a high NA objec-
tive [146] and Raman sideband cooling of 40K atoms, we plan to realize a quantum gas
microscope [147–149] for our molecules.

In the following chapter, we will introduce the microwave setup, a critical technique for
microwave shielding that deserves its own dedicated chapter.
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Figure 2.9: Kapitza–Dirac scattering of a Na BEC by the shallow-angle lat-
tice. a, Time-of-flight images of a Na BEC after pulsing on the shallow-angle lattice
beam at 180 mW power. b, Population oscillation extracted from a. The higher orders
are represented by darker colors. The solid lines are obtained from a combined fit to
Eq. (2.15).
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a

b

Figure 2.10: Kapitza–Dirac scattering of a Na BEC by the horizontal lattice.
a, Time-of-flight images of a Na BEC after pulsing on one of the horizontal lattice beam
at 2 W power. b, Population oscillation extracted from a. The main peak (dark blue)
and the first diffraction peak (red) are fitted to a common oscillation period. Figure
reproduced from Ref. [125].
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Chapter 3

Microwave field generation

Microwave shielding serves as a versatile tool for stabilizing and manipulating intermolec-
ular collisions. The primary challenge in realizing microwave shielding lies in generating a
low-noise high-power microwave field with a clean circular polarization. Here, we present
a setup designed to address this task. The microwave setup is capable of generating a
high-power 5.6GHz microwave field with tunable polarization and ultra-low phase noise,
enabling us to explore microwave shielding and field-linked resonances. We have also imple-
mented a monitoring setup to detect the actual output of the microwave field and actively
stabilize the output power.

3.1 Microwave antennas
An antenna bridges the microwave circuits and free space, converting wave signals from a
transmission line into electromagnetic waves that propagate through free space.

The antenna used for microwave shielding should fulfill two key requirements: it should
produce a highly concentrated radiation field at the position of the molecules as well as offer
tunable polarization. The ability to tune the polarization provides us with the flexibility
to compensate for distortions caused by reflections from surrounding metal structures,
including the steel vacuum chamber, magnetic field coils, and optics mounts.

3.1.1 Radiation fields
Given the geometric constraints of the glass cell, we need to operate the antenna (outside
the vacuum) at a certain distance from the molecules. As a result there is an optimum
gain/directivity which trades off the field concentration in the near-field and the divergence

1When the company’s sales representatives inquired about the intended use of the ordered PCBs, we
showcased our hand-soldered waveguide antenna (see Fig 3.3).

27
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at the position of the molecules.1 We can understand this optimization process with a
Gaussian beam approximation to the radiation field.

Let us consider the radiation field of an antenna in free space. For a radiation power P ,
the maximum power density at distance r far away from the antenna is given by

p(r) =
GiP

4πr2
(r → ∞), (3.1)

where Gi is the antenna directivity or gain. The corresponding field strength (amplitude)
is given by

Emw(r) =

√
GiPZ0

2πr2
, (r → ∞), (3.2)

where Z0 = µ0c ≈ 4π × 30Ohm is the vacuum impedance.

The radiation field in the near field can be approximated by a Gaussian beam

Emw(r) =
E0√

1 + (r/zR)2
, (3.3)

where the maximum field strength E0 =
√
4PZ0/(πw2

0) at an effective beam waist w0 =√
Gi

2
λ
2π
, with an effective Rayleigh range zR =

πw2
0

λ
= Gi

8π
λ. The formula approaches the

simple 1/r equation when r ≫ zR. The Gaussian beam approximation works well when
the effective beam waist w0 is much larger than the wavelength λ, which is however not
the case for our antenna. However, it provides a good starting point for more sophisticated
numerical simulations.

From Eq. (3.3), the optimum gain to optimize the field strength at a given distance r is
given by,

Gi,opt =
8πr

λ
, (3.4)

and the optimum field strength is

Eopt =

√
2PZ0

λr
. (3.5)

For a frequency of 5.6GHz and a distance r = 22mm, the formula yields Gi,opt = 10 dBi.
With 10W power, the optimum field strength is Eopt = 25V/cm.

The electric field corresponds to a Rabi frequency of

Ω =
dEmw(r)

h̄
, (3.6)

1In the literature, it is common to encounter angular plots of antenna directivities, which characterize
far-field radiation patterns. These plots may give readers the impression that higher directivity is always
better. However, this notion can be misleading when it comes to near-field operations, as discussed in this
text.
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where d = d0/
√
3 is the transition dipole moment between the ground and the first

rotational excited state of the molecule. For NaK, the body-fixed dipole moment is
d0 = 2.73(6)D [150]. A field strength of 25V/cm corresponds to a Rabi frequency of
Ω = 2π × 20MHz.

The a.c. electric field can be decomposed into σ+ (σ−) polarizations

Emw(r) =
Emw(r)

2
e−iωt(ê1 cos ξ + ê−1 sin ξ) + c.c. (3.7)

where ê±1 = ∓(êx ± iêy)/
√
2, and the angle ξ describes the ellipticity.

3.1.2 Different types of antennas
Various types of antennas have been employed in experiments involving ultracold molecules,
including helical antennas [107], microwave horns [151], and phase arrays of loops [152] or
helical [106] antennas. In this section, we will concentrate specifically on the antennas that
have been utilized in our experimental setup, namely the helical antenna and the dual-feed
waveguide antenna.

Dipole antenna

Figure 3.1: Dipole an-
tenna.

A dipole antenna comprises two opposing wires or one wire in-
stalled on a ground plane, with its mirror image serving as the
counter feed. When the operation wavelength is a quarter of the
wire’s length, the antenna functions in the resonant mode, where
the electromagnetic wave forms a standing wave within the wire.
The radiation peaks in the wire’s orthogonal plane, with a gain of
Gi,dipole = 2.15 dBi. Figure 3.1, shows a homemade dipole antenna
with a large ground plane. We use it as a quick calibration tool
for the microwave probe mentioned in the next section.

Helical antenna

A straightforward method to generate a circularly polarized field is by employing a helical
antenna, which consists of a helical wire mounted perpendicular to a ground plane. When
the helix’s circumference approximates the wavelength of operation, the antenna functions
in the so-called axial mode, which directs the traveling wave away from the feedpoint. In
this mode, the radiation is oriented along the helix axis, and the polarization is circular.
The orientation of the radiation field aligns with the helix’s winding, opposing the direction
of radiation. Impedance matching is accomplished by adjusting the wire near the feedpoint,
which serves as an impedance transformer between the helix and the ground plate. The
gain of a helical antenna varies with its geometry and can be simulated numerically [153].
In general, the gain increases with the number of turns. For enhancing field strength, one
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a b

Figure 3.3: Dual-feed waveguide antenna. a, A cross-sectional view of the waveg-
uide antenna, revealing the interior of the waveguide and illustrating the transition from
the coaxial cable, distinguished by its red jacket, to the feed. b, Prototype of the waveg-
uide antenna.

can combine four helical antennas to create a phase array [154] and connect each field to
an amplifier. The amplified interference among the feeds can boost the field strength by a
factor of four compared to a single helical antenna.

Figure 3.2: Helical an-
tenna used in Ref. [107]

For the initial demonstration of microwave shielding and evap-
orative cooling, we utilize a single 5-turn helical antenna,1 with
a diameter of 18.8mm and a vertical separation between turns of
12.4mm, as shown in Fig. 3.2. Despite its high gain, it is incapable
of compensating for the polarization distortion caused by the sur-
rounding metals at the position of the molecules. Therefore, we
have to adjust the polarization by wrapping a metal sheet around
it. The sheet opening breaks its rotation symmetry, and can com-
pensate for the imperfect polarization from the antenna [155].

Waveguide antenna

Achieving tunable polarization requires additional degrees of freedom by incorporating
more antennas. A simple method to synthesize tunable polarization involves summing
two orthogonal linearly polarized fields with a controllable phase difference. Each linearly
polarized field can be generated utilizing a dipole antenna.

To increase the gain of a dipole antenna, we can confine its radiation by mounting the
antenna within a waveguide. In our experiment, the waveguide is manually soldered from
copper-coated glass-fiber-reinforced epoxy laminates. The waveguide’s inner dimensions
are w× d× h = 33× 33× 58mm. A flange of 10mm broadens the effective opening of the

1The antenna is manufatured by Causemann Flugmodellbau. Similar antennas are widely used for
controlling model aircraft, as circular polarization can maintain a more consistent signal than linear po-
larization when the orientation between the transmitter and the receiver are constantly changing.
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waveguide and enhances the gain. The waveguide’s width is selected such that the cut-
off frequency ωc = πc/w of the transverse electric (TE10) mode is beneath the rotational
transition frequency of the molecules at 5.6GHz and that the microwave field strength at
the position of the molecules is optimal. Impedance matching is achieved with two feeds,
each 13mm long, corresponding to a quarter wavelength in free space. In practice, the feed
lengths are fine-tuned by minimizing the return loss using a network analyzer. To excite the
base TE mode of the waveguide, the dipole feeds are placed 22mm from the waveguide’s
backplate, roughly a quarter wavelength in the waveguide. The two feeds are orthogonal to
each other, and each produces a nearly linearly polarized electric field at the position of the
molecules, approximately 25mm from the waveguide’s top. Balancing the field strengths
of these subfields and adjusting the relative phase of the feeds facilitates straightforward
tuning of the field polarization. A relative phase of approximately 90◦ (−90◦) results in a
σ+ (σ−) polarized field, while approximately 0◦ (180◦) produces a linearly polarized field
along the y (x) direction.

The gain of an open-ended waveguide antenna is approximately given by [156]

G (dBi) = −10.02819 + 41.30528

(
ω

ωc

)
− 51.80386

(
ω

ωc

)2

+ 36.23459

(
ω

ωc

)3

− 12.70621

(
ω

ωc

)4

+ 1.751408

(
ω

ωc

)5

,

(3.8)

for 1.1 ≤ ω/ωc ≤ 2. The formula yields G = 5.69 dBi for the described geometry, which is
less than numerical simulation with COMSOL, yielding G = 6.47 dBi. The discrepancy is
partially attributed to the formula excluding the flange’s enhancement.

Figure 3.4 shows the simulated radiation field by feeding a single feed with 10 dBm
microwave power. Additionally, we include the glass cell and four electrodes in the simu-
lation. The simulation matches the field strengths measured with a microwave probe (see
Section 3.2).

There are several improvements to make for the current antenna setup. Firstly, the
gain is lower than optimum gain estimated in Eq. (3.4). In a later version we increase
the gain of the antenna by incorporating an additional horn, which realizes a higher field
strength at the position of the molecules [151]. However, the horn’s size is too large to
accommodate our setup. Thus we fill the horn with Teflon to decrease the wavelength,
thereby reducing the horn’s size and also achieving a better impedance matching with the
glass cell. Secondly, the cross talk between the two feeds can be reduced with a rectangular
waveguide, which allows placing the two feeds at different heights [151].
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Figure 3.4: Radiation pattern of the waveguide antenna. COMSOL simulation
of the radiation pattern with (a) and without (b) the glass cell and electrodes. The
simulation is performed with 10 W in one feed, and the second feed being terminated.
c, Electric field strength along the center of the waveguide. Blue and orange color
represent with and without glass cell and electrodes, respectively. The vertical black lines
represents the position of the electrodes and the vertical gray lines represents the glass
cell. The solid data points are measurements with the microwave probe (see Section 3.2).
The measurements are performed with 10 mW in one feed, and the second feed being
terminated. The solid lines are the COMSOL simulation. The dashed line is the Gaussian
beam approximation Eq. (3.3), which deviates from simulation in the near field.
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a

b

c

Figure 3.5: Dipole microwave probe. a, Schematics of the dipole probe. It con-
sists of five main components: a short dipole printed on dielectric substrate, a nonlinear
detector (zero-bias Schottky diode) connected between dipole arms, a low-pass filter, a
resistive transmission line (printed carbon) and a monitoring instrument. Figure repro-
duced from Ref. [157]. b, Photo of the probe attached to a rotation mount. c, Test
setup for simulating the electric field strength inside the glass cell, surrounded by four
electrodes and the magnetic coils.
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Figure 3.6: Calibration of the microwave probe. a, Calibration of the probe
against a standard waveguide antenna. The measurements are conducted in an anechoic
chamber and the setup is covered by microwave-absorptive materials. b, Probe reading
vs. electric field strength. The solid line is a fit to Eq. (3.9). The measurement was
conducted by Shrestha Biswas and Christian Buchberger.

3.2 A dipole microwave probe

3.2.1 Design
To swiftly iterate through various antenna designs, we have constructed a dipole probe
based on the design in Ref. [157]. The dipole antenna samples the a.c. electric field, which
is then followed by a rectifying diode and a low-pass filter that converts the signal into
d.c. The rectifying diode is a BAT15-03W Schottky diode with a high speed and a small
offset. We utilize a combination of 100 kΩ and 1 nF for the low-pass filter, corresponding
to a cutoff frequency of 1.6 kHz.

The length of the dipole is approximately λ/3 = 18mm for the operating frequency,
representing a compromise between sensitivity and spatial resolution. To minimize distur-
bance to the microwave field by the probe, we connect the dipole probe to a high impedance
(1MΩ) voltage meter via 200mm long carbon wires with a high resistance of 7.5 kΩ.

3.2.2 Calibration of the sensitivity
We calibrate the probe’s response to electric field at our working frequency using a com-
mercial waveguide antenna with a well-simulated gain. The measurements are conducted
in an anechoic chamber, with all nearby metal surfaces covered in microwave-absorptive
materials. These materials, structured like a series of cones, essentially eliminate normal
reflections from the surface.
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The relationship between the probe reading and the field strength is dictated by the
response of the rectifier diode, which behaves quadratically in the small signal regime and
linearly in the large signal regime. We have derived an empirical expression to fit the
response curve, (

V − V0
a

)2

−
(
E − E0

b

)2

= 1, (3.9)

which results in E0 = 4.04mV/cm, V0 = −43.7mV, a = 44.4mV, b = 39.8mV/cm.

3.2.3 Characterizing the waveguide antenna
Using the probe, we assess the field strength and ellipticity of the antenna. As shown
in Fig. 3.5c, we devise a setup resembling the glass cell, electrodes, and magnetic field
coils, and place the probe at the position of the molecules. The probe measures a field
strength which aligns with the simulation. By individually feeding 2.5 dBm to each feed
and measuring the field with the probe over a full 360◦ rotation, we found that each feed
emits an almost linearly polarized field, with an axial ratio of about 4:1. The deviation
from linearity is likely due to cross-talk between the two feeds. In subsequent designs, we
experiment with rectangular waveguides, where the feeds can be placed at different heights,
thereby reducing cross-talk and improving the axial ratio to 10:1 [151].

3.3 Characterizing the microwave field with molecules
3.3.1 Microwave transitions
We utilize the rotational transition between the J = 0 and J = 1 states for microwave
shielding. The full hyperfine structure of the excited rotational state J = 1 is showcased
in Fig. 3.7a. The molecular Hamiltonian and the relevant constants are provided in Ap-
pendix A. Unlike the situation in CaF [106], NaK, similar to all bialkali molecules, lacks fine
structure in the electronic ground state. Therefore, the rotationally excited states, which
can couple to the absolute ground state and possess (mi,Na,mi,K) = (3/2,−4) character,
are distributed over just a few hundred kilohertz, substantially less than the microwave
detunings utilized for shielding. Here, mi,Na and mi,K represent the projections of the nu-
clear spins of Na and K onto the magnetic field axis, respectively. In a strong microwave
field, the nuclear spin projections are purified, maximizing the transition dipole moment
(TDM) to the value of d0/

√
3.

3.3.2 Field strength
We measure the effective Rabi frequency Ωeff =

√
Ω2 +∆2 at detunings sufficiently large

to inhibit coupling to undesired transitions. For these measurements, we temporarily
deactivate the optical dipole traps to circumvent ac Stark shift from the trapping light. We
then generate a rectangular microwave pulse using a fast microwave switch that controls the



36 3. Microwave field generation

0.0 0.4 0.8

Time (ms)

0

4

N
0
 (1

03
)

0.0 0.4

Time (ms)

0.0 0.2

Time (ms)

σ−σ+ π

0 40 80 120 160

Magnetic field (G)

300

400

500

600

(E
ne

rg
y−
E

0
)/
h 

(k
H

z)
 −

5.
64

3 
G

H
z

TDM/(d0/31/2)

σ−

σ+

π

0 1

a

db c

Figure 3.7: Microwave transitions of NaK molecules. a, Zeeman diagram il-
lustrating the microwave transition frequencies from the absolute ground state (with
energy E0) to the hyperfine manifold of the excited rotational state (J = 1). The
color scales represent the transition dipole moment (TDM) for different microwave po-
larizations. The assumption is that the ground state has the nuclear spin projections
(mi,Na,mi,K) = (3/2,−4), a good approximation for magnetic fields exceeding 3G. The
state energies and TDMs are computed using the code from Ref. [158] and the param-
eters detailed in Appendix A. Symbols indicate specific transitions: the circle marks
the σ− transition used for microwave shielding, while the diamond, triangle, and square
highlight the microwave transitions employed to probe the polarization of the micro-
wave field. b–d, Resonant Rabi oscillations at the σ+ (b), π (c), and σ− (d) transitions
shown in a, taken at 135G. The sinusoidal fits yield Rabi frequencies of 2π×2.96(8) kHz,
2π×2.58(13) kHz, and 2π×9.9(4) kHz, respectively. The microwave power is attenuated
by 55dB in b and 61dB in c and d. Figure reproduced from Ref. [107].
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Figure 3.8: Fast Rabi oscillation. Off-resonant Rabi oscillations at full microwave
power with a detuning of ∆ = 2π × 8MHz from the σ− transition at 72.35G. The data
show the number of molecules in the absolute ground state N0 as a function of the pulse
time. The error bars are the standard error of the mean of two repetitions. The line is
a sinusoidal fit function that yields a Rabi frequency Ω = 2π × 49.6(2)MHz.

input of our microwave amplifier. The microwave pulse induces Rabi oscillations between
the rotational states, as depicted in Fig. 3.8. We exclude the oscillations during the initial
5µs of the microwave pulse from the fit, as the amplifier requires some time to reach full
output power. These measurements are conducted at low molecule density to prevent
dephasing and inelastic collisions between the molecules. At the maximum achievable
power, i.e. 100 W in each feed, we achieve Ω = 2π × 49.6(2)MHz.

3.3.3 Polarization
We use different microwave transitions of the molecules to characterize the polarization
of the microwave field in situ. In order to resolve the individual transitions, only weak
microwave fields can be applied. As a result, the microwave polarization can only be
characterized in the frame of the d.c. magnetic field which defines the quantization axis
at such low microwave field strengths. We probe the polarization at 135G, where we can
still stabilize the magnetic field and where the used transitions, marked in Fig. 3.7a, are
reasonably isolated. The TDMs of the selected σ+, π, and σ− transitions are 0.875 d0/

√
3,

0.789 d0/
√
3, and 0.989 d0/

√
3, respectively. From the measured Rabi frequencies, the

relative microwave power, and the TDMs, we can determine the ratio of the electric field
amplitudes. The measurements, shown in Fig. 3.7(b–d), are performed similarly to the
measurements of Ωeff as described earlier. However, here we measure on resonance and the
microwave power is attenuated by 55–61 dB. The microwave power has to be low enough
to avoid off-resonant coupling to neighboring transitions but strong enough to realize Rabi
oscillations of at least 2π × 2 kHz, because we can only turn off the dipole traps for about
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Figure 3.9: Calibration of the field polarization. a, Rabi frequencies of rotational
σ+ (red), π (green), and σ− (blue) transitions at low microwave power as a function
of the phase shift ϕ between the antenna feeds. The error bars show the fitting error
of the Rabi oscillations. The solid lines are fits to Eq. (3.11). b, Ellipticity of the
microwave field in the frame of the microwave. The data points show the ellipticity
angle ξ calculated from the data in a. The error bars denote the uncertainty of ξ that
originates from the projection from the frame of the magnetic offset field to the frame of
the microwave field due to the unknown phase relation between the three field components
(see Appendix C). The gray band, derived from Eq (3.10), accounts for the uncertainty
of both the microwave orientation and the offset phases ϕ0, with its width encapsulating
these combined uncertainties. Figure reproduced from Ref. [112]
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1ms before we start losing molecules.1

The measured field components at low fields are relative to the quantization axis defined
by the magnetic field, which is vertical in the lab frame. At high fields, however, the
quantization axis is defined by the microwave, and due to environmental reflections, it is
not necessarily vertical. We need to obtain the ellipticity relative to the microwave frame.
If the orientation of the microwave is unknown, we can only provide a possible range of
the ellipticity, leading to a systematic uncertainty of the ellipticity

1

2
arcsin

(
2E+E− − E2

π

E2
+ + E2

− + E2
π

)
≤ ξ ≤ 1

2
arcsin

(
2E+E− + E2

π

E2
+ + E2

− + E2
π

)
. (3.10)

Here Ei = h̄Ωi/di denotes the electric field strengths for the ith component, where i = σ±

or π. With additional knowledge about the orientation angles, we can unambiguously
determine the ellipticity (see Appendix C).

3.3.4 Polarization tuning
When we change the relative phase ϕ between the feeds, each field component, and thus
each Rabi frequency, individually oscillates with a period of 360◦ due to the interference
between the two subfields, as shown in Fig. 3.9a. We fit these oscillations with the function

Ω(ϕ) =
√

Ω2
1 + Ω2

2 + 2Ω1Ω2 cos(ϕ+ ϕ0), (3.11)

with the fit parameters Ω1 and Ω2, which define the contributions of the two individual
feeds, as well as their relative phase ϕ0. The offset phases ϕ0 have an uncertainty of 2.9◦,
which we attribute to the hysteresis and imperfect tuning of the mechanical phase shifters.
Note, for the calibration measurements presented in Fig. 3.9a, the power balance between
the feeds was tuned to minimize the σ− component around ϕ = 90◦. Fig. 3.9b shows
the calculated the ellipticity ξ from the fitted Rabi frequencies for each individual relative
phase using Eq. (3.10). The finite ellipticity of the subfields causes the field strengths at
other angles of ϕ to be unbalanced, so that we do not get pure σ+ polarization at ϕ = −90◦

and the phases values that provide linear polarization shift away from 0◦ and 180◦.

3.4 Microwave circuits
3.4.1 Design principles of low-noise microwave circuits
Building a microwave setup that delivers high power while maintaining low phase noise
is challenging, primarily due to the additional noise introduced by microwave amplifiers.

1This occurs because the molecules fall outside the coverage of the STIRAP beam and are consequently
not converted back to atoms for imaging. In Chapter 7, we enlarge the STIRAP beam, enabling a time-
of-flight duration of 5.5ms of ground state molecules without sacrificing counts. We note that Feshbach
molecules can be detected after a time-of-flight up to 20ms, limited only by the size of the imaging beam.
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This noise typically takes two forms: one contributes to the noise floor sufficiently away
from the carrier, while the other contributes to the noise close to the carrier.

The increased noise floor introduced by an amplifier can be characterized by its noise
factor F or noise figure NF = 10 log10(F ). The noise factor is defined as the ratio between
the signal-to-noise ratio (SNR) at the amplifier’s output and input. When multiple devices
are chained together, the total noise factor can be calculated using the Friis’ formula

F = F1 +
F2 − 1

G1

+ · · ·+ Fn − 1

G1G2 · · ·Gn−1

, (3.12)

In this formula, Fn is the noise factor for the nth device, and Gn represents the power
gain (linear, not in dB) of the nth device. The first amplifier in a chain generally has
the most substantial effect on the total noise factor. This is because the noise factors of
subsequent stages are reduced by the amplifier gains of the previous stages. Therefore,
using a low-noise preamplifier with a high gain is beneficial for suppressing noise factor of
the subsequent power amplifier. The noise floor L0 is given by

L0 =
kBT0F

Pc

, (3.13)

where kBT0 = −174 dBm/Hz is the thermal noise1 at T0 = 290K, and Pc is the carrier
power. Given F < 3 dB achieved in our setup, the noise floor is negligible for a carrier
power exceeding 40 dBm.

In the vicinity of a carrier, the noise level no longer remains constant; instead, it often
rises as the frequency gets closer to the carrier. This noise originates from the near-d.c. noise
which is up-convereted by the amplifier. Since the near-d.c. noise is added independently
to the carrier power, it is not suppressed by preamplification [160]. However, it can be
efficiently suppressed using bandpass filters for narrowband applications.

3.4.2 The setup
The microwave setup is illustrated in Fig. 3.10. To achieve independent control over the
two feeds of the antenna, the microwave signal from the source is split into two paths by
a power splitter. Each path consists of a voltage-controlled attenuator (VCA), a phase
shifter, a 3W preamplifier, a cavity filter, and a 100W power amplifier.

We use a mechanical phase shifter in one of the path and a voltage-controlled phase
shifter in the other path. The VCPS facilitates dynamic phase control, which is useful for
electroassociation (see Chapter 7) and for compensating phase shift at different microwave

1Also known as the Johnson-Nyquist noise. It arises from fluctuations in electron density in the resistors,
which occur because the electrons are in thermal equilibrium with the surrounding environmental thermal
radiation. According to the equipartition theorem, the noise power generated by a resistor within a
bandwidth ∆f is given by P = kBT∆f [159].
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frequencies due to the difference in the length of the two paths. We have inserted an
additional cable of 15 cm to reduce for path difference introduced by the mechanical phase
shifter, ensuring that the phase difference between the two paths does not exceed 2π.

As shown in Fig. 3.10, the output of the power amplifier is partially divided by a direc-
tional coupler and then further split into four paths. The first path connects to a linear
power detector (PD) for power monitoring, the second leads to a logarithmic power detec-
tor for power stabilization, the third path is directed into a mixer for phase monitoring,
and the fourth path left free for debugging.

Source

We utilize a Rohde & Schwarz SMA100B signal generator (which employs a yttrium-iron-
garnet oscillator) equipped with the noise suppression option SMAB-B711 as our microwave
source. With this configuration, the phase noise is −160 dBc/Hz at a 10MHz offset, and
the output power ranges from −120 dBm to 20 dBm.

VCA

Each path incorporates a D1954 voltage-controlled attenuator (VCA) for power control.
This VCA provides a nominal transfer function of 10 dB attenuation per volt and a maxi-
mum attenuation of 60 dB. The VCA exhibits a nonlinear phase shift versus attenuation.
To minimize their phase shifts, we typically operate below 10 dB attenuation during mi-
crowave shielding.

Phase shifters

For path 1, we utilize a mechanical phase shifter QMPS60. For path 2, a voltage-controlled
phase shifter (VCPS) PA0408 is employed, offering a 360◦ dynamic range for input voltages
from 0V to 9V. Initially, we were concerned that the VCPS might introduce additional
phase noise, but we did not observe a significant increase in phase noise when a d.c. voltage
was applied. We only noted an increased phase noise of 10 dBm when a white noise of
amplitude 5mVpp was applied. Applying a white noise also revealed that the bandwidth
of the VCPS is around 30MHz.

Preamplifier

Each path employs an ERZ-HPA-0200-1800-30 amplifier for preamplification. The small
signal gain is 32 dB, the maximum power is 33 dBm, and P1 dB ≈ 32 dBm. The noise figure
is measured to be less than 2 dB.

Cavity filter

We employ cavity filters (Qualwave QBF-passband-13) to filter out phase noise on the order
of the Rabi frequency. The cavity permits transmission at the resonant frequency while
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Figure 3.11: Scattering parameters of the cavity filter. Example |s11| (a) and
|s21| (b) of a cavity filter. The measurement was performed with a Rohde-Schwarz ZNL14
vector network analyzer.

reflecting other nearby frequencies. The −3 dB bandwidth is roughly 5MHz, determined
by the cavity’s quality factor (around 100). The insertion loss at the operating frequency
is −2 dB. At a 10 MHz detuning from the resonant frequency, the relative attenuation
is about −20 dB. Therefore, we have to manually switch between different filters with
different transmission frequencies to cover a large range of microwave detunings. Since
these cavities cannot handle the full power of the power amplifiers, we position them
between the preamplifier and the power amplifier.

Power amplifier

Each path utilizes a Qualwave QPA-5600-5800-18-47 amplifier with a maximum output
power of 100 W. The noise figure is measured to be 17 dB. The two power amplifiers
exhibit different gains and saturation powers due to manufacturing variations. For certain
input powers, self-oscillation in the output power can lead to spectrum spikes with 1MHz
spacing and a power of −140 dBc. The frequencies of these spikes are unstable and average
out in the displayed average spectrum. This self-oscillations are caused by the switching
noise of the digital electronics at the gate of the amplifier chip. We bypass part of the
digital circuits to get rid of this noise.

We also measure the phase shift versus input power using a network analyzer (R&S
ZNL14) that can vary the output power. We observe a constant phase below P1 dB and a
significant increase in phase in the saturation regime, see Fig 3.12. To maintain a stable
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Figure 3.12: Power and phase of the microwave at the output of the power
amplifiers. a, Power output as a function of the input power. This measurement is
performed with an Agilent MXA N9020A spectrum analyzer. The input is provided by
a preamplified signal source. b, Output phase as a function of the input power. This
measurement is performed with a Rohde-Schwarz ZNL14 vector network analyzer, whose
Port 1 is connected to the input of the preamplifier and Port 2 is connected to the output
of the power amplifier after the directional coupler. The preamplifier works below the
saturation regime so we ignore its phase shift.
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relative phase between the two paths, we operate below the saturation regime.

Logarithmic power detector

To achieve a control voltage that scales linearly with the output power in dBm, we use a
logarithmic power detector (Mini-Circuits ZX47-40+) for power feedback control in each
path. This power detector is sensitive to environmental microwave fields and power input
noise, so we shield the detector inside an aluminum box and apply a 1.9MHz low-pass
filter to its d.c. power input. The control electronics is presented in the next section.

Linear Power Detector

For power monitoring, we use a linear power detector (DZR124AA) in each path. This
detector is passive, and offers greater sensitivity in the high power regime.

Mixer

We utilize a mini-circuits ZMX-8GLH mixer as a phase detector. To calibrate the out-
put voltage versus the phase difference, we conduct a linear phase scan using the VCPS
and record the mixer output. The response is a sinusoidal oscillation of period 2π. The
amplitude of the response function depends on the power in the two paths and has to be
calibrated for different combinations.

3.4.3 Phase noise
Measurement with a spectrum analyzer

A straightforward method for measuring the phase noise of a microwave signal is through
a spectrum analyzer (Agilent MXA N9020A). This method assumes that the noise around
the carrier is predominantly phase noise, which is a reasonable assumption for our setup.

The measurement procedure is as follows: firstly, we record the carrier power Pc. Then,
we shift to a specified frequency offset f , which lies on one side of the sideband, and
measure the noise power Pn over a bandwidth of B. The single-sideband noise can then
be calculated using the following equation

L(f) = Pn (dBm)− Pc (dBm)− 10 log10(B (Hz)), (dBc/Hz). (3.14)

When measuring noise close to the spectrum analyzer’s noise floor, we subtract the noise
floor from the sideband noise Pn, as shown in Fig. 3.14b.

Measurement near the carrier can increase the noise floor and reduce the dynamic range
of the phase noise measurement. This is caused by the spectral leakage from the carrier,
which saturates the internal ADCs even when it lies outside the measurement region.
Moreover, the signal-to-noise of the measurement will be limited by the phase noise of the
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Figure 3.13: Using the cavity reflection as a notch filter to improve the dynamic range
of phase noise measurements.

internal signal source of the spectrum analyzer used for heterodyne detection. The Agilent
MXA N9020A spectrum analyzer has a nominal dynamic range of -148 dBc/Hz at 10 MHz
offset frequency.1

Notch Filter

We observe that if the carrier power is excessively high, its spectral leakage occurs even
for detunings greater than 1MHz. To suppress the carrier and to further enhance the
dynamic range of the phase noise measurement, we employ a notch filter to reduce the
carrier power, as shown in Fig. 3.13. We use the reflection of the cavity filter as a notch
filter, which suppresses the signal within its bandwidth. We achieve a 25 dB suppression
for the carrier, which correspondingly increases the dynamic range of the phase noise
measurement, yielding −173 dBc/Hz.

Phase noise performance

First, we measure noise of the signal source. For the test measurement here, we use R&S
SMF100A which has a higher noise of about −150 dBc/Hz at 10MHz. Next, we examine
the output of the power amplifier. Within the filter bandwidth, there is a small increase of
phase noise by the amplifier. Outside the filter bandwidth the noise is suppressed as the
frequency offset increases. Beyond 30MHz, the measured noise measurement is limited by
the noise floor of the spectrum analyzer. We obtain a phase noise of ≲ −180 dBc/Hz after
subtracting the noise floor of the spectrum analyzer.

1We typically detuning our measurement regime more than 1 MHz from the carrier to reduce the effect
of spectral leakage. This could slightly improve the dynamic range of the phase noise measurement.
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Figure 3.14: Phase noise. a, Phase noise at the output of the signal source (blue) and
the power amplifier (orange), and their corresponding noise floor (light blue and orange).
In this measurement the source is R&S SMF100A, which has a 10 dB higher noise floor
compared to R&S SMA100B. The measured carrier of the signal source is 10 dBm, while
for the power amplifier is only -9.2 dBm due to the notch filter. The noise floor with
the notch filter (light orange) shows the enhanced dynamic range at offset frequencies
exceeding the filter band width. b, Phase noises with the noise floor subtracted.
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Figure 3.15: Schematics of the power control circuit. Power controller for one
feed of the antenna. The circuit can be powered by a ±15V linear power supply. The
power supply and its decoupling low pass filters are omitted in the drawing for clarity.
Inset shows the block diagram of an abstract feedback loop [161].

3.5 Control electronics

3.5.1 Power control

The output power of the power amplifier is controlled via a feedback circuit. Several
benefits can be derived from employing this method. Firstly, a systematic change in
microwave power versus detuning is observed, due to the nonlinear frequency response of
the amplifiers. The power feedback, when paired with phase control, can compensate for
this systematic deviation. Secondly, the feedback loop can mitigate unwanted amplitude
modulation from the power amplifiers. Lastly, feedback control is more convenient to
manage and more resilient to adjustments made to the setup.

Figure 3.15 displays the schematics of the power feedback loop, which comprises three
main parts: the controller, the system being controlled, and the sensor circuits. The
closed-loop transfer function is given by [161]

L =
KG

1 +KGH
, (3.15)

where K, G, and H are the transfer functions of the controller, the system, and the sensor,
respectively.
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PI controller

The core of the control circuit is a single operational amplifier PI controller. The transfer
function is given by

K(s) = KtKp(1 +
1

iωTi
), (3.16)

whose parameters are determined by the resistance values (R1 and R2) and capacitance
(C). The P gain is defined as Kp = R2/R1, and the integration time is Ti = R2C. The
total gain (Kt = KR3Kref) is adjustable by the potentiometer (R3) and the voltage divider
at the reference voltage, where Kref = R4/(R4 + R5) ≈ 0.25. An IN4148 diode (D1) is
utilized to keep the output voltage positive.

System response

Next we discuss the system response to the control signal. In the operation regime of
the logarithmic PD, the output voltage is linearly dependent on the input power in dBm,
i.e., P ≈ 80 − 40VPD (dBm). With no microwave input, the PD outputs its offset voltage
V0,PD ≈ 2.1V. The VCA also has a linear attenuation of power in dB versus voltage, such
that P ≈ 50−10VVCA (dBm). The output power is regulated by the VCA and the low-pass
filter. In sum, the total transfer function of the system is given by

G(s) = Glow-pass(s)Gmw, (3.17)

where Gmw is the gain of the rest of the system, whose delay is negligible compared to the
low-pass filter. In the linear regime, Gmw is simply the attenuation factor of the VCA,
which is −10 dBm/V.

Sensing electronics

The output power is sensed by a directional coupler and converted to voltage by a log-
arithmic PD. The voltage signal is processed by the sensing circuit and compared with
the reference voltage Vref to produce the error signal. The transfer function of the sensing
circuit is defined as:

H(s) = (−1)HPD/Kref, (3.18)
where HPD = −0.25V/dBm in the linear regime. The additional minus sign results from
the inverted polarity at the instrumentation amplifier (INA128).

Stationary operation

In addition, we examine the circuit’s stationary operation. A reference voltage of 0V sets
the feedback to open loop, i.e., it outputs the maximum voltage to the input of the VCA.
This translates into VPD = V0,PD for Vref = 0V. Thus, we apply an offset voltage V0,PD to
the instrumentation amplifier. Under stationary operation, we get

P ≈ 10Vref (dBm), (3.19)
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Figure 3.16: Calibration of the power control and monitoring. a, Power output
as a function of control voltage. The powers are measured after the directional coupler at
different control voltages for feed 1 (blue) and 2 (orange). b, Microwave Rabi frequency
as a function of the voltage of the linear power detectors with only feed 1 (blue) or 2
(orange) activated.

in the linear regime, and the maximum attenuation at Vref = 0V. Eq. (3.19) is confirmed
in the measurement shown in Fig. 3.16a.

Feedback bandwidth

The response time of the VCA and the amplifiers are faster than 1µs. Instead, the cut-off
frequency of the low-pass filter constrains the bandwidth of the feedback loop. For each
cut-off frequency, we optimize feedback by switching capacitors and adjusting the gain via
the potentiometer. The capacitors, typically within the range of 10∼50 pF, are selected
such that the integration time is roughly the inverse of the cut-off frequency. For the final
setup, we use a combined 1.9MHz and third-order 100 kHz filter to limit the d.c. noise
from the control signal, thereby restricting the response time to 10µs.

3.5.2 Phase control
We apply a time-dependent voltage to the VCPS to dynamically control the relative phase
and thus the ellipticity of the microwave field. The VCPS has a bandwidth of 30MHz. We
implement a low-pass filter with a 1.9MHz cut-off frequency to reduce d.c. noise from the
control voltage, which limits the response time to 0.5µs.

3.5.3 Arbitrary waveform generation
We utilize two dual-channel Agilent 33522 arbitrary waveform generators (AWG), with one
controlling the power and the other controlling the phase. The AWG features a maximum
sampling rate of 30MSa/s, memory of 16MSa, and can output ±10V for 1MOhm output
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impedance. We employ the waveform sequencing option to generate the waveform for the
experiment. A sequence comprises segments that are either played once or repeated a
specified number of times. Only the segments are stored in the memory, so repeating a
segment does not increase memory usage. However, the communication between our timing
system and the AWG limits the available number of samples, likely due to inadequacies
in the implemented driver. We typically use up to 50 kSa to avoid system crashes due to
communication delays. To make efficient use of the samples, we adapt the sampling rates
for different measurements.

3.6 Conclusion and outlook
Equipped with this microwave setup, we are well-positioned to delve into the study of
microwave-shielded polar molecules. Potential future upgrades to the system could in-
clude increasing the field strength by incorporating additional amplifiers. Another valu-
able upgrade would be the integration of a third antenna emitting a microwave field with
a polarization orthogonal to that generated by the waveguide antenna. This would enable
the synthesis of arbitrary polarizations in any spatial orientation.

The configuration detailed in this chapter represents the latest generation of our micro-
wave setup and was employed in Chapter 7. Earlier generations, discussed in Chapters 4,
5, and 6, each employed progressively more sophisticated setups than their predecessors.



52 3. Microwave field generation



Antishielding! It’s something!1

The first nonzero signal

Chapter 4

Microwave shielding and evaporative
cooling

During Christmas 2020, we successfully created Fermi degenerate Feshbach molecules via
magnetoassociation and subsequently transferred them into their ground state. Since then,
our research has focused on identifying signatures of dipolar interactions and exploring
methods of evaporative cooling, whether in bulk or within optical lattices. However, we
encountered two challenges.

Firstly, it was necessary to apply a strong d.c. electric field to polarize the molecules
to induce dipole-dipole interactions (see Fig. 4.1), and to carry out Förster resonance
shielding [99, 104, 105]. For NaK, the required field strength for resonant shielding is
around 7 kV/cm [103]. However, in our setup, when the field strength exceeded 1 kV/cm,
we observed sporadic charging events in the glass cell due to the electrodes. It can take
up to 30 minutes for these to fully discharge using UV LED illumination. Following this,
the machine requires another warm-up period. We found this process to be quite time
consuming.

We have also tried to work in a 3D lattice to pin down the molecules and avoid collisions.
To achieve this, we loaded the Feshbach molecules into the optical lattice and subsequently
performed STIRAP. However, the loading process is not adiabatic and the efficiency is low,
due to the fact that the fermionic Feshbach molecules are non-interacting away from the
atomic Feshbach resonance [69].

In February 2021, a paper that demonstrated microwave shielding with CaF in optical
tweezer arrays drew our attention [106]. Previous experiments with NaK [162] and NaRb

1Excerpt from the lab book dated May 19, 2021: The very next day, we successfully achieved microwave
shielding.

53
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[163] had only observed microwave enhanced losses rather than suppression. We had been
preparing the hardware for microwave shielding, including amplifiers and antennas, but
had yet to conduct any experiments, given the perceived difficulty in generating a clean,
circularly polarized microwave [76, 164, 165].

Inspired by the work with CaF, we proceeded to construct a microwave setup for shield-
ing. The setup is straightforward, encompassing a signal source (Keysight E8267D), a
VCA, a 10 W amplifier (Kuhne PA510590), and a custom-made helical antenna. No mon-
itoring or active feedback was implemented. It is fortunate that the rotational transition
frequency of NaK molecule (5.6 GHz) lies near the WiFi band, so that microwave com-
ponents are readily available. To our delight, the simple helical antenna, combined with
a metal sheet designed to protect the coil mount from UV LED lights, generated a fairly
clean circular polarization. We fine tuned the polarization by adjusting the orientation of
the metal sheet relative to the helical antenna, optimizing shielding in the process.

With the use of a bulk gas, comprising a few ten-thousand molecules, we are able to
measure both elastic and inelastic collisions, achieving a high gamma ratio. Additionally,
the bulk gas possesses a much higher phase space density compared to what was achieved in
optical tweezers, providing a good initial condition for evaporation. Starting from a near-
degenerate molecular sample, we evaporatively cool the samples down to a remarkable
0.36TF and 21 nK. The collisionally stable Fermi degenerate polar molecules provides new
opportunities for exploring dipolar many-body physics.

Results of publications [107, 116] are contained in this chapter.

4.1 Microwave dressing of the rotational states
4.1.1 Dressed states and their preparation
Before diving into the scattering problem between two molecules, we examine a single
molecule in the presence of a strong microwave field. The microwave is near-resonant with
the rotational transition between the ground and the J = 1 rotational excited state. When
the microwave Rabi frequency greatly exceeds the hyperfine coupling, the hyperfine states
are decoupled, thereby remaining preserved throughout the collisional process. Conse-
quently, only the rotational degree of freedom is relevant, and we focus on the Hilbert space
defined by the internal states of a molecule represented by four states: |J,MJ⟩ = |0, 0⟩,
|1, 0⟩, |1,−1⟩, and |1, 1⟩.

Furthermore, a heteronuclear diatomic molecule’s electric dipole moment is expressed
as d0d̂ with d̂ representing the unit vector along the internuclear axis of the molecule.
The molecules are driven by an elliptically polarized microwave field represented as Emw =
(Emwe

−iωteikzz(ê1 cos ξ+ ê−1 sin ξ)+ c.c.)/2, propagating along the z axis. Here, Emw is the
microwave amplitude, ω0 is the microwave frequency, ê±1 = ∓(êx ± iêy)/

√
2 denote the



4.1 Microwave dressing of the rotational states 55

basis vectors, and ξ is the ellipticity angle.

The coupling between the microwave and the molecular rotational states within the
internal-state Hilbert space gives rise to the Hamiltonian as follows

ĥmw =
h̄Ω

2
e−iω0t|ξ+⟩⟨0, 0|+ h.c., (4.1)

where Ω = Emwd0/(
√
3h̄) denotes the Rabi frequency and |ξ+⟩ is defined as cos ξ |1, 1⟩ +

sin ξ |1,−1⟩. Consequently, in the interaction picture, the eigenstates of the internal-state
Hamiltonian — given by

ĥin = ĥrot + ĥmw

— are spanned by |0⟩ ≡ |1, 0⟩, |ξ−⟩ ≡ cos ξ |1,−1⟩ − sin ξ |1, 1⟩, |+⟩ ≡ u|0, 0⟩ + v|ξ+⟩,
and |−⟩ ≡ u|ξ+⟩ − v|0, 0⟩. Here u =

√
(1 + ∆/Ωeff)/2 and v =

√
(1−∆/Ωeff)/2, where

Ωeff =
√
Ω2 +∆2. The corresponding eigenenergies are denoted as E0 = Eξ− = 0 and

E± = (∆±Ωeff)/2. A schematic representation of the molecular level structure is provided
in Fig. 4.1b.

In our experiment, the dressed states are generated by maintaining a fixed detuning
∆ while gradually increasing the Rabi frequency Ω. In the rotating frame aligned with
the microwave frequency, the Bloch vector of the dressed state adiabatically follows the
orientation dictated by the driving field. Specifically, the vector’s direction changes from
pointing towards the pole to aligning towards the equator as the ratio ∆/Ω decreases.
After the ramp, the microwave remains on to continuously to suppress dephasing. If the
microwave is turned off after the ramp, the dressed state will quickly dephase due to trap
inhomogeneity and dipolar interactions, which occurs on a faster time scale (∼ 1 ms) than
the collisional loss between the molecules.

To investigate the necessary timescale for the dressing to be adiabatic, we simulate this
process by numerically solving the time-dependent Schrödinger equation with Ω = Ω(t).
Two types of ramps are utilized: a linear ramp of microwave power in dB and a linear ramp
in Rabi frequency. The linear-dB ramp mirrors the actual experimental ramp by applying
a linear voltage ramp on the VCA, which reduces the power attenuation from -60 dB to
0 dB. As shown in Fig. 4.2a, the timescale for adiabaticity in the dB ramp is 3 µs, whereas
for the linear Rabi frequency ramp, it is more than 10 µs.

4.1.2 One-body lifetime
Another key practical aspect of microwave dressing involves the one-body lifetime of the
dressed states in the presence of phase noise. Here I provide a simple derivation of the
formula for the dressed state lifetime which generalizes to the case with detuning. The
derived lifetime aligns with the derivation using the transition matrix provided in Ref. [166],
and is a factor of two shorter than in Ref. [106, 167]. The discrepancy arises from the
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Figure 4.1: Energy shift and induced dipole moment of NaK. a, Energies of
rotational states in a d.c. electric field. Different mJ states are decoupled. The solid,
dashed, dashed-dotted lines correspond to |mJ | = 0, 1, 2, respectively. b, Energy levels of
rotational states in an a.c. electric field. The inset illustrate the rotating dipole moment
following the electric field. At large blue detuning, the rotation of the dipole is out of
phase with the driving field. c, Induced dipole moment of the ground state as a function
of the electric field strength. d, Induced rotating dipole moment as a function of the
relative detuning ∆/Ω for circular (solid) and linear (dashed) polarizations.
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Figure 4.2: Dressed state preparation and decay. a, Infidelity of the dressed state
preparation vs. ramp duration for exponential (blue) and linear (orange) ramps in Rabi
frequency. b, One-body lifetime as a function of phase noise. Prediction from Eq. (4.6)
(line) compared with experimental data (points). The error bar shows the fitting error
of exponential fits to the measured decay curves.

omission of phase diffusion perpendicular to the equator of the Bloch sphere in Ref. [106,
167].

We add a phase fluctuation ϕ(t) to the microwave field defined in Eq. (3.7). The single-
particle internal-state Hamiltonian in the rotating frame of the microwave can be expressed
as

ĥin = h̄∆|0, 0⟩⟨0, 0|+
(
h̄Ω

2
e−iϕ(t)|ξ+⟩⟨0, 0|+ h.c.

)
. (4.2)

When dealing with a minor modulation amplitude, we retain the leading order of ϕ(t),
transform the basis into {|+⟩, |0⟩, |ξ−⟩, |−⟩}, and adopt a rotating wave approximation
(RWA). This gives us

ĥin,RWA = h̄Ωeff|+⟩⟨+|+ ϕ(t)
h̄Ω

2
(|+⟩⟨−|+ h.c.) . (4.3)

To obtain the transition probability between |+⟩ and |−⟩, we use time-dependent per-
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turbation theory [168], which yields

P+↔− = lim
T→∞

1

T

∣∣∣∣−ih̄
∫ T

0

dt′ĥmw(t
′)eiΩefft

′
∣∣∣∣2

=

(
Ω

2

)2

lim
T→∞

1

T

∫ T

0

dt′
∫ T−t′

−t′
dτeiΩeffτϕ(t′)ϕ(t′ + τ)

=

(
Ω

2

)2 ∫ ∞

−∞
dτei2πfeffτ ⟨ϕ(t)ϕ(t+ τ)⟩t

=

(
Ω

2

)2

Sϕ(feff),

(4.4)

where we introduce ⟨ϕ(t)ϕ(t + τ)⟩t =
∫ T

0
dtϕ(t)ϕ(t + τ)/T and feff = Ωeff/2π. Here, Sϕ

represents the two-sided1 power spectral density of the random phase, which is normalized
by
∫∞
−∞ Sϕ(f)df = ϕ2

RMS. We have applied the Wiener–Khinchin theorem. The power
spectral density in practice is measured as the single-sideband phase noise L(f) = Sϕ(f).
From the above derivation, we see that the population of in an isolated dressed state
undergoes an exponential decay into a fully mixed state

P+(t) =
1

2

[
1 + exp

(
−Ω2

2
L(feff)t

)]
. (4.5)

When applying this formula, one needs to convert the phase noise given as 10 log10(L(f))
which is in units of dBc/Hz, back to rad2/Hz. For a trapped ensemble, molecules in
the lower dressed state are anti-shielded and undergo drastic collisional loss with other
molecules. Therefore, each transition leads to loss of two molecules and the number follows
an exponential decay to zero

P+(t) = exp
(
−Ω2

2
L(feff)t

)
. (4.6)

Figure 4.2b compares the experimentally measured the one-body lifetime of different
generation of the microwave setup. The number decay is measured with a shielded
sample at low density to suppress collisional loss. All measurements are performed at
Ω ≈ 2π × 10MHz and ∆/Ω ≈ 0.5 where two-body loss is suppressed. The phase noise of
different microwave setups is summarized in Table 4.1. Their measurement are discussed in
Section 3.4.3. The measured lifetime at low phase noises are limited by residual two-body
collisions and photon scattering from the trap, and is shorter than the predicted one-body
loss.

1Another common practice is to use the one-sided power spectral density SI
ϕ, which aggregates noise

at the positive and negative frequency offsets. Consequently, SI
ϕ(f) = 2Sϕ(f) for f > 0 and undefined for

f < 0.
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Table 4.1: Microwave setup and phase noise at 10 MHz offset frequency from the carrier.

Source Filter Phase noise (dBc/Hz)
Rohde & Schwarz SMF100A - -149

Keysight E8267D - -152
Rohde & Schwarz SMA100B - -161
Rohde & Schwarz SMA100B cavity filter -171

4.1.3 Induced rotating dipole moment
The microwave field, which dresses the particles, induces a rotating dipole moment, as
illustrated in Fig. 4.1b. This can be shown by evaluating the dipole moment operator in
the rotating frame. The dipole moment in the laboratory frame can be expressed as

d(t) =
√
2deffe

−iωt(ê1 cos ξ + ê−1 sin ξ) + c.c., (4.7)

where deff = d0/
√
12(1 + (∆/Ω)2). Eq. (4.7) implies that the time-averaged dipole moment

is zero. However, all the molecules rotate in phase with the microwave, leading to a non-
zero time-averaged interaction. The average interaction is given by

Vdd(r) =
d2eff

4πϵ0r3
(3 cos2 θ − 1 + 3 sin 2ξ sin2 θ cos 2ϕ)

=
d2eff

4πϵ0r3
[
(1− sin 2ξ)(3 cos2 θ − 1)− 2 sin 2ξ(3 cos2 θ′ − 1)

]
.

(4.8)

Written in this form, it becomes clear that at circular polarization ξ = 0◦, the interaction
Vdd(r) =

d2eff
4πϵ0r3

(3 cos2 θ − 1) represents a dipole-dipole interaction along the z-axis with
an additional negative sign. While linearly oscillating dipoles ξ = 45◦ interact via a
normal dipole-dipole interaction Vdd(r) =

2d2eff
4πϵ0r3

(1 − 3 cos2 θ′), with θ′ representing the
angle between r and the y−axis. Between linear and circular polarization, the interaction
breaks rotational symmetry in all directions, but retains mirror symmetry along the x, y,
and z axes.

The advantage of microwave dressing, compared to d.c. polarizing, is that microwave
photons bridge the gap between rotational states and achieve strong rotational mixing even
with a small electric field strength. In contrast, d.c. Stark shift is inhibited by the large
rotational energies, as depicted in Fig. 4.1. However, microwave dressing has a drawback:
the maximum dipole moment is constrained to d0/

√
12 because only the J = 1 rotational

state is involved. Meanwhile, a d.c. field off-resonantly couples all odd/even rotational
states, allowing the molecule to be fully polarized at sufficiently high field strength. A
more comprehensive comparison of various shielding schemes is provided in Chapter 8.
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4.2 Microwave shielding
Having gained an understanding of a single microwave-dressed molecule, we now progress
to discuss collisions between two such molecules. This section covers the theory and exper-
iment of microwave shielding, which also lays a foundation for understanding field-linked
resonances and tetramers in the subsequent chapters.

4.2.1 Theory of microwave shielding
The concept of suppressing inelastic collisions using a circularly polarized a.c. electric
field has historical roots dating back to the 1990s. During that time, optical shielding of
alkali atoms was observed in MOTs [169–171] and subsequently interpreted theoretically
[172, 173]. In those collisions, a blue-detuned optical photon elevates the S state of the
atom above the excited P state, creating an avoided crossing between the two states and
yielding a repulsive potential. One limiting factor in this approach was the spontaneous
emission from the excited state. A similar induced van-der-Waals interaction has been
extensively studied in Rydberg dressing [174], in the regime of large detuning and strong
dipole-dipole interaction.

In contrast to atoms, molecules exhibit rotational transitions that are free from sponta-
neous emission. These transitions occur within the microwave regime, leading to the termi-
nology of “microwave shielding”. Early proposals for microwave shielding advocated the use
of large detuning and Rabi frequencies Ω similar to those in optical shielding [175–177].
However, microwave-dressed molecules typically exhibit weaker resonant dipole interac-
tions than optically dressed atoms, necessitating larger values of Ω for optimal shield-
ing [164]. A systematic investigation into this regime was conducted in Ref. [76, 164].
Subsequent calculations explored shielding with imperfect circular polarization [165, 178].
These theoretical studies eventually led to successful experimental realizations of micro-
wave shielding [106–109].

More recently, optical shielding has been proposed for polar molecules [179, 180]. The
feasibility of this approach remains an open question, particularly concerning the limited
spontaneous emission rate of the electronic excited state, and the technical challenges
associated with minimizing laser phase and intensity noise.

Physical picture

The goal of microwave shielding is to induce a repulsive interaction that effectively prevents
molecules from experiencing short-range universal losses. This repulsive interaction can be
sourced from the dipolar spin-exchange interaction between the ground and the |J = 1⟩
states. To harness this, we excite the ground state with a microwave photon blue detuned
to the rotational transition. This ensures the state |J = 0, nmw = 1⟩ is positioned above
the excited state in the interaction image, where nmw denotes the number of microwave
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Figure 4.3: Principle of microwave shielding.
Collisional shielding of ground state rotational mol-
ecules J = 0, using a blue-detuned ∆ > 0, circularly
polarized microwave field. The dipole-dipole inter-
action creates an effective repulsive adiabatic curve
(red), preventing the molecules to approach at short-
range. Note that to keep things simple we consider
here a small Rabi frequency, which is not the regime
for efficient shielding. Figure adapted from Ref. [76].

photons, as depicted in Fig. 4.3. The resulting avoided crossing between the upper channel
and the lower ones leads to a repulsive interaction for the dressed ground state molecules.

Alternatively, the shielding potential can be understood as a result of realignment of
the colliding dipoles. This realignment originates from a competition between the dipole-
dipole interaction and the Stark shift. Beyond a certain separation, the dipole-dipole
interaction begins to dominate over the Stark shift. As shown in Fig. 4.4b and c, two
compass needles realign themselves from side-by-side to head-to-tail as they approach each
other to minimize the total energy. As a result, the dipolar force also flips sign from
repulsive to attractive. In the quantum realm, the dipoles can realign to either minimize
or maximize the total energy, depending on their internal states. In the maximum-energy
branch, the dipoles reorient themselves into a repulsive arrangement, which is opposite to
the classical analog. A similar flipping of the dipoles occurs between polar molecules in a
d.c. electric field [104, 105], between Rydberg atoms [181], and between ions and Rydberg
atoms [182].

A “classical simulation” is performed to demonstrate the realignment process, utilizing
two floating compass needles.1 Fig. 4.5 illustrates the progression during the collision
process. Each compass needle was positioned atop a floating piece of paper on water, and
the collision was initiated by pushing the left needle towards the right. Initially aligned
parallel to the Earth’s magnetic field, the needles encountered a repulsive dipole-dipole
force as they approached each other perpendicularly to the magnetic field, deflecting their
collision course. Concurrently, the dipoles began to realign into a head-to-tail attractive
configuration. Following contact, the needles formed a collective dipole that eventually
reoriented itself parallel to the magnetic field, completing the simulated process.

Multichannel scattering theory

Understanding microwave shielding quantitatively necessitates an examination of the mul-
tichannel scattering problem. Here we follow the formalism developed in Ref. [116]. The
Schrödinger equations that govern the relative motion of two colliding molecules are pre-

1The needles are obtained from the compasses in Fig. 4.4b.
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Figure 4.4: Interaction potentials and their classical analog. a, Adiabatic po-
tential energy curves for (OH)2. The flipping of dipoles occurs in both the highest (blue)
and the lowest (red) channel. Figure reproduced from Ref. [111]. b and c, two compasses
realign themselves at close distance, demonstrating the classical analog of the interaction
(red) in (a). The compass on the left is elevated with paper, such that the two compasses
can be placed closer. d, Potential curves for microwave-shielded NaK molecules, with
circular polarization, ∆ = 2π× 8MHz and Ω = 2π× 11MHz. The solid and dashed lines
show the potential energy of molecules colliding along (θ = 0◦) and orthogonal (θ = 90◦)
to the microwave propagation direction, respectively. Here a0 is the Bohr radius. e,
Close-up of the shielded collisional channel |++⟩. The inset shows the alignment of the
rotating molecules with respect to each other. At intermediate range, the molecules align
with respect to the intermolecular axis.
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Figure 4.5: Classical simulation of dipolar collisions. A series of images during
the collision between two floating compass needles. The top left legends show the time
stamps in seconds.

sented below

7∑
ν′=1

(
− h̄

2∇2

M
δνν′ + Vνν′

)
ψν′(r) =

h̄2k2ν
M

ψν(r). (4.9)

In this equation, ψν(r) is the wave function of the νth scattering channel, Vνν′ = ⟨ν|V |ν ′⟩,
and kν =

√
k21 −MEν/h̄2 represents the incident momentum of the νth scattering channel.

For two molecules with dipole moments d0d̂1 and d0d̂2, their dipole-dipole interaction is
expressed as follows

V (r) = d20
4πϵ0r3

[
d̂1 · d̂2 − 3(d̂1 · r̂)(d̂2 · r̂)

]
, (4.10)

Here, ϵ0 denotes the electric permittivity of the vacuum, r = |r|, and r̂ = r/r. The two-
particle Hamiltonian Ĥ2 =

∑
j=1,2 ĥj + V (r1 − r2) is noted to possess a parity symmetry,

hinting at the decoupling of the symmetric and antisymmetric two-particle internal states
in the Hamiltonian Ĥ2. This analysis focuses on the ten-dimensional symmetric subspace
where the shielding states of the molecules lie. It turns out that, under the rotating-wave
approximation, V (r) in the seven-dimensional (7D) symmetric subspace, S7 ≡ {|ν⟩}7ν=1, is
decoupled from the remaining three-dimensional symmetric subspace, where |1⟩ = |+,+⟩,
|2⟩ = |+, 0⟩s, |3⟩ = |+, ξ−⟩s, |4⟩ = |+,−⟩s, |5⟩ = |−, 0⟩s, |6⟩ = |−, ξ−⟩s, and |7⟩ = |−,−⟩
with |i, j⟩s = (|i, j⟩ + |j, i⟩)/

√
2. Correspondingly, with respect to the asymptotical state

|ν = 1⟩, the energies of these states are Eν = {0, 1
2
(δ − Ωeff),

1
2
(δ − Ωeff),−Ωeff,

1
2
(δ −

3Ωeff),
1
2
(δ − 3Ωeff),−2Ωeff}.

In order to solve the above equations, we first expand the wave functions ψν(r) =∑
lm Ylm(r̂)ϕνlm(r)/r in the partial-wave basis, where l is odd for indistinguishable fermions.

This expansion yields a set of equations for ϕνlm which can be numerically evolved using
Johnson’s log-derivative propagator method. By comparing the results with the asymp-
totical boundary condition, we can derive the scattering amplitude and cross section for
the (νlm) to (ν ′l′m′) scattering.
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Figure 4.6: Interaction potentials and loss mechanisms. The arrows quantita-
tively shows the direction and relative strength of the scattering amplitude in different
collisional channels. The detuning is fixed to ∆ = 2π × 5MHz, while Ω and ξ differs. a,
Ω = 2π × 1MHz and ξ = 0◦. b, Ω = 2π × 10MHz and ξ = 0◦. c, Ω = 2π × 10MHz and
ξ = 20◦. d, Ω = 2π × 10MHz and ξ = 45◦. The solid, dashed, and dash-dotted lines
represents collision along z, x, and y axis, respectively. Calculated with the help of Fulin
Deng.



4.2 Microwave shielding 65

Adiabatic potentials and loss mechanisms

To establish a link between the multichannel scattering problem and the simplified physical
picture of microwave shielding, we consider the adiabatic potential curves under the Born-
Oppenheimer approximation. This approximation holds true when the kinetic energy of
the molecules is much less than the energy level spacing between internal states (∼ Ωeff).
Upon diagonalizing V (r) in S7, we identify seven adiabatic potentials that correspond to
different dressed-state channels, as shown in Fig. 4.6. By inspecting these potential curves
we can identify the parameter regime for efficient shielding.

There are two loss mechanisms between colliding microwave-shielded molecules: the first
is entering short range and undergoing universal loss, and the second is tunneling to lower
dressed states and release energy on the order of h̄Ω, sufficient to eject molecules from
the optical dipole trap. The first loss process is suppressed by a large shielding core (see
Fig. 4.7a), which reduces the wave function leakage to short range. The second loss process
is suppressed by the energy gap between the upper and lower potentials. While the size of
the shielding core increases with detuning ∆, the energy gap reduces. These two competing
effect leads to an optimum detuning which minimizes loss rates. The optimum detuning
∆/Ω increases as the temperature reduces, as the two loss processes are energy dependent,
as shown in Fig. 4.10a.

The angular distribution of the shielding core and the energy gap are crucial for the
understanding of shielding at different microwave polarizations. Figure 4.6 shows the
potential curves under the sudden approximation, which consider collisions along a fixed
direction θ while neglecting nonadiabatic coupling involving d/dθ [165]. A closer look at the
interaction potentials at various polarizations reveals that the interaction potential is most
attractive along the direction of the microwave ellipse. This direction also experiences the
largest collisional loss. Figure 4.7 shows the shielding core and the energy gap between the
upper channel and the attractive channel calculated using the effective potential Eq. (6.3).
As the ellipticity increases, both the shielding core and the energy gap diminish along the
y-axis. The shielding core deforms from a “dumbbell” into a “bioconcave disc”,1 while
the gap deforms from a sphere into an apple shape. As a result, increasing the tunneling
rates to short range and the lower dressed states. The effect of polarization tuning and the
resulting scattering field-linked resonances will be discussed in more detail in Chapter 6.

At low temperatures and near the optimum detuning for shielding, the inelastic collision
rate follows the Wigner threshold law. For indistinguishable fermions, the loss rate coeffi-
cient scales linearly with the collisional energy, resulting from the scaling of the tunneling
rate either through the rotational barrier into short range [73, 74] or to the lower dressed
states.

The loss coefficient in presence of shielding is often compared with the universal loss rate

1The shape of a red blood cell.
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Figure 4.7: Angular distribution of the shielding core and the energy gap.
a and e, Close-up of the potential curves in Fig. 4.6c for collisions along the y axis.
The vertical arrow marks the gap between the two highest channels. The horizontal
arrow marks the shielding core. The shielding core (b-d) and the energy gaps (f-h) are
calculated with Rabi frequency of Ω = 2π× 10MHz and ∆ = 2π× 5MHz for circular (b
and f), ξ = 20◦ (b and g) and, linear (d and h) polarizations. The size of the shielding
core is calculated as the classical turning point for a given kinetic energy of 500 nK.

coefficient [73]

βuniversal =
Γ(1/4)6

Γ(3/4)2
ā3
kBT

h
, (4.11)

where ā = [2π/Γ(1/4)2]
(
MC6d/h̄

2
)1/4 is the characteristic length of the short-range poten-

tial [183]. For NaK, the direct van der Waals coefficient C6d = 4.9 × 10−74 kgm8/s [184],
leading to a loss rate coefficient βuniversal = 6.5× 10−12 cm2/s at 100 nK. In absence of the
microwave, the measured loss coefficient agrees with the calculated universal loss.1

4.2.2 Inelastic collisions
We prepare samples at varying temperatures by adiabatically compressing the trap to dif-
ferent trapping frequencies following the magnetoassociation. After dressing the molecules,
we hold them in trap for a variable amount of time before measuring the remaining number
of molecules. The loss dynamics are fitted to a combination of one-body and two-body
decay, accompanied by linear heating. The one-body lifetime is separately determined in
an experiment conducted with a low number of molecules to minimize two-body loss.

One limitation of measurements at high Rabi frequencies is the impact of the microwave
1The measurements performed after we replaced the 1550 nm trapping laser with a 1064 nm one show

a consistent result with the universal loss [112], while measurements prior to that are larger by a factor of
2 [71, 107]. The discrepancy could either be a systematic error in the density calibration, or some extra
loss caused by the 1550 nm laser.
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force. The inhomogeneity of the microwave field exerts a force on the molecules propor-
tional to the a.c. Stark shift. This force reduces the trap depth, causing evaporation. Such
evaporation leads to an effective two-body loss and cooling of the sample. To reduce evap-
oration during the loss measurements, we keep the truncation parameter kBT/Utrap above
six, where Utrap is the trap depth. The results are shown in Fig. 4.8.

4.2.3 Elastic collisions
Universal dipolar scattering

When inelastic collisions are suppressed, scattering between polar molecules is dominated
by the universal elastic dipolar scattering [75]. Unlike the case with atoms, where predict-
ing the scattering lengths or volumes can be challenging, the low-energy collisions between
polar molecules can be approximately determined given their mass and the induced dipole
moment. This universal scattering occurs when the long-range dipole-dipole interaction
dominates over the short-range potential. For indistinguishable bosons, the s-wave scatter-
ing length should be included in addition. For indistinguishable fermions, the short-range
effect is suppressed by the rotational barrier, making detailed knowledge of the short-range
scattering unnecessary. The dipolar scattering can also be influenced by scattering reso-
nances, which we will discuss in the Chapter 6. Here, we focus on off-resonant scattering
between indistinguishable fermions.

The nature of universal scattering is determined by the interplay between the de Broglie
wavelength λ = 1/k and the dipolar length add = Md2eff/8πϵ0h̄

2. In the threshold regime



68 4. Microwave shielding and evaporative cooling

0 15 30 45

» (deg)

1.0

1.2

1.4

1.6

1.8

2.0

I(»
)

Figure 4.9: The function used in the Eikonal approximation (see Appendix B).

where kadd < 1, we can employ the Born approximation, in which case the scattering cross
section is expressed as

σBorn =
32π

15
a2dd(1 + 3 sin2 2ξ). (4.12)

When kadd > 1, we transition to the semiclassical regime, where the Eikonal approximation
can be applied

σEi =
8πadd

3k
I(ξ), (4.13)

where I(ξ) is a monotonic function in the interval 0◦ ≤ ξ ≤ 45◦, with I(ξ = 0◦) = 1 and
I(ξ = 45◦) = 2, as plotted in Fig. 4.9. A derivation for the scattering cross sections is
provided in Appendix B. The Eikonal approximation fails at high energies when

√
add/k

becomes smaller than the length scale of the short-range interaction ā. However, this is
typically not encountered in the ultracold regime.

Cross-dimensional thermalization

We measure the elastic collision rates from the rate of cross-dimensional thermalization,
which is proportional to the collision rates and scaled by a geometric multiplication factor
[105, 185]. For this purpose, we use parametric heating by modulating the intensity of
the 1064-nm beam at twice the vertical trap frequency. The elastic and inelastic collision
rate coefficients βel and βin are experimentally determined from the time evolution of the
measured molecule number N , the average temperature (2Th + Tv)/3 and the differential
temperature Tv − Th by numerically solving the differential equations [77, 105]

dN

dt
=

(
−K 2Th + Tv

3
n− Γ1

)
N, (4.14)

dTh

dt
=

1

12
KTvThn+

Γth

3
(Tv − Th), (4.15)
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Figure 4.10: Elastic and inelastic collisions. a, Rate coefficients for elastic (orange)
and inelastic (blue) scattering events. The colored solid and dashed lines show coupled
channel calculations for a thermal sample with T = 800 nK and a degenerate sample with
T = 30 nK, respectively. The data points show the measurement results for T = 800 nK.
The shaded area indicates the limit for measurements of the elastic collision rate imposed
by the hydrodynamic regime. The vertical gray dashed line separates the semiclassical
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(bright) and ∆ = 2π×80MHz (dark). The lines are fits of a coupled differential equation
system modelling the collision rates. c, The ratio γ of elastic to inelastic collision rates
based on the measurements presented in a. Figure reproduced from Ref. [107].
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dTv

dt
=

1

12
K(2Th − Tv)Tvn− 2

Γth

3
(Tv − Th), (4.16)

with the mean density
n =

N

8
√
π3k3BT

2
hTv/M3ω̄6

. (4.17)

Here, K is the temperature-independent two-body loss coefficient, averaged for simplicity
over all collision angles, and

Γth =
nσelv

Ncol
(4.18)

is the rethermalization rate with the elastic scattering cross section σel and the thermally
averaged collision velocity

v =
√

16kB(2Th + Tv)/(3πM). (4.19)

The average number of elastic collisions per rethermalization is taken from Ref. [185] as

Ncol = N̄z(ϕ) =
112

45 + 4 cos(2ϕ)− 17 cos(4ϕ) (4.20)

where ϕ is the tilt of the dipoles in the trap, which, in our case, corresponds to the tilt of the
microwave wave vector with respect to the dc magnetic field. Following our characterization
of the microwave polarization, we assume N̄z(29

◦) = 2.05.

The anti-evaporation terms, i.e., the first terms in Eqs. (4.15) and (4.16), assume a
linear scaling of the two-body loss rate with temperature. Our calculations predict that
this assumption does not hold for small detunings (∆ < 2π × 20MHz), as illustrated in
Fig. 4.10. Our results, however, do not significantly change when we instead assume no
temperature dependence in this regime.

Finally, after determining σel and K, the elastic and inelastic collision rate coefficients

βel = σelv (4.21)

and
βin = K(2Th + Tv)/3 (4.22)

are plotted in Fig. 4.10a assuming a fixed temperature T = Th = Tv.

Results

The results of the measurements are compared with coupled-channel calculations for a
thermal sample at T = 800 nK and 30 nK. The calculations account for a residual ellipticity
of the microwave polarization. The inelastic cross section is also presented. The shielding is
most efficient at ∆ = 2π×8MHz, where βin drops to 6.2(4)×10−12 cm3/s, corresponding to
an order of magnitude suppression of the two-body losses, as illustrated in Fig. 4.10a. Note
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that these measurements are performed with a single helical antenna where the ellipticity
is limited to about ξ ≈ 6◦, thus not optimum for shielding.

For spin-polarized fermionic polar molecules, the elastic collision rate is dominated by
dipolar scattering. For the temperature explored here, the scattering is in the threshold
regime at large detunings, and enters the semiclassical regime for ∆/Ω < 1. The corre-
sponding scattering cross section can therefore be tuned over multiple orders of magnitude
with the detuning of the microwave. In the regime of weak interactions, i.e., at large detun-
ings, the rethermalization rate is proportional to βel. However, for ∆ ≤ 2π × 10MHz the
elastic collisions become so frequent that the mean free path of the molecules is less than the
size of the molecular cloud, even though here, we intentionally reduced the initial density to
n0 = 0.7× 1011 cm−3. In this hydrodynamic regime, the rethermalization rate is limited to
about ω̄/(2π) ≈ 120Hz, where ω̄ is the geometric mean trap frequency [186]. Consequently,
measured values of βel saturate near the so-called hydrodynamic limit Ncolω̄/(2πn0) where
Ncol ≈ 2 is the average number of collisions required for rethermalization in our system.
This also limits the maximal measured value of γ to 460(110), as illustrated in Fig. 4.10c.
Away from the hydrodynamic regime, we find excellent agreement between the experimen-
tally determined and the calculated values of βel and γ for T = 800 nK. Our calculations
show that γ can exceed 1000 for ideal values of ∆. In the future, it should be possible
to improve the shielding and achieve γ ≈ 5000 by optimizing the purity of the microwave
polarization.

4.3 Evaporation to Fermi degeneracy
With γ ≳ 500 at the optimum shielding detuning ∆ = 2π × 8MHz, evaporative cooling
of our molecular sample proceeds straightforwardly. We begin with a low-entropy yet
non-thermalized sample comprising roughly 2.5× 104 molecules, produced from a density-
matched degenerate atomic mixture [64]. The two horizontally propagating laser beams
which hold the molecules against gravity and thus determine the effective trap depth Utrap.
The trap depth is reduced exponentially over a span of 150ms. This allows the most
energetic molecules to escape the dipole trap in the direction of gravity. Subsequently, the
remaining molecules rethermalize via elastic dipolar collisions, effectively lowering both T
and T/TF. The calculated elastic collision rate during evaporation is approximately 500 Hz,
significantly surpassing the trap frequencies, leading to a saturation of the rethermalization
rate at around ω̄/(2π) ≈ 60Hz.

To sustain a high rethermalization rate while reducing the trap depth, we enhance the
horizontal confinement by exponentially increasing the power of an additional vertical
beam, which is the same beam for density-matching the atomic mixture (see Chapter 2).
Throughout the evaporation, we begin with near-degenerate molecules at frequencies of
2π × (45, 67, 157)Hz and stop at, for example, 2π × (52, 72, 157)Hz in case I, or 2π ×
(42, 56, 99)Hz in cases II and III (see Fig. 4.11).
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Figure 4.11: Evaporation. a, Phase space density (PSD) and T/TF against the
remaining number of molecules N following 150ms of evaporative cooling, examined at
various final trap depths. The line represents a linear fit in log scale to the data within
the range 0.5 < T/TF < 1 and N > 4000, excluding consideration of the error bars. b,
Number decay during the plain evaporation hold time th subsequent to 150ms of forced
evaporation. The dashed line is the fitted the one-body decay. Inset shows the trap
depth during the evaporation sequence. c, Variation of T/TF over the hold time th. The
error bars for N in a and b are computed as the standard error of the mean across 5 to
20 repetitions. The error bars for T/TF in a and c reflect the standard deviation derived
from fitting the averaged images. Insets display the optical density of the samples after
a 10ms time-of-flight.
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We characterize the evaporation when changing the final trap depth. Figure 4.11a illus-
trates T and T/TF against the remaining number of molecules N after 150 ms of forced
evaporation, with values derived from a polylogarithmic fit to the momentum distribution,
imaged after a 10 ms time of flight (see Section 2.1.3). When the trap depth is maintained,
the molecules will thermalize but not evaporate. Initially, the molecules display a sloshing
motion in the trap due to photon-recoil transfer from the STIRAP pulses. Damping of such
collective excitations and particle loss considerably diminish the phase space density of the
sample. After 150 ms of holding at the initial trap depth, we obtain 1.43(5)×104 molecules
at a temperature of 176(5) nK with T/TF = 1.00(3) (inset I). If we instead evaporate down
to 3.6(3)× 103 molecules by reducing the final trap depth to about kB × 250 nK, we reach
38(2) nK with T/TF = 0.47(2) (inset II). However, the evaporation continues beyond this
point. We can allow the molecular sample to remain for an additional hold time th in the
trap to exploit plain evaporation, as depicted in Fig. 4.11b and 4.11c. This plain evapora-
tion endures for about 100 ms, followed by an exponential decay in the molecule number
with a 1/e lifetime of approximately 600 ms. At th = 150ms, we measure 21(5) nK with
T/TF = 0.36(9) (inset III).

We verified that the temperatures obtained from the Fermi–Dirac fit align with those
deduced from a Gaussian fit to the thermal wing, where the potential influence of dipolar
interactions is relatively minor. Intriguingly, the optical density in a small region of the
cloud center exceeds the Fermi–Dirac fit in the coldest sample III (see also Fig. 2.3).
However, the low signal-to-noise ratio precludes a conclusive determination of whether
this discrepancy is due to imaging noise or potential dipolar interaction effects. Future
investigations will likely shed light on the underlying mechanism.

4.4 Collective modes
As evidence of strong dipole-dipole coupling, we investigate the excitation spectrum of the
confined dipolar gas through parametric heating. Following forced evaporation (case II), we
ramp the microwave detuning in 50 ms to adjust the dipole-dipole interaction strength. We
subsequently modulate the vertical beam for 50 ms to induce motional excitations of the
gas. We image the molecules after an additional hold time of 20 ms and a time-of-flight of
8 ms. Since we start in a near-pancake trap with trapping frequency ωx ≈ ωy = ωr < ωz,
modulation of ωr predominantly excite the radial breathing mode of the trapped Fermi
gas [187]. Nonetheless, given the trap’s deviation from perfect cylindrical symmetry, other
surface modes may also be excited. We selectively probe the modulation spectrum at
frequencies below ωz and above ωr, which are not high enough to excite the axial mode,
but suffice to probe the radial breathing or radial quadrupole modes. When the modulation
frequency resonates with the frequency of the collective modes, it induces oscillations and
heats up the sample along the horizontal direction.

Figure 4.12 shows the aspect ratio of the cloud after the expansion. At a 200 MHz detun-
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Figure 4.12: Parametric heating. Ratio of the cloud width along the horizontal σh
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respectively. The solid lines represent fits to a Lorentzian lineshape. The modulation
amplitude of the vertical beam is 40% of its power.

ing, where the interaction strength is comparatively small, the modulation initiates para-
metric heating along the horizontal axis at a frequency approximately twice the trapping
frequency, denoted as 2ωr. For increased interaction strengths, the excitation peak broad-
ens and shifts towards lower frequencies, signifying a transition from the non-interacting,
collisionless regime to the hydrodynamic regime with collective mode frequencies

√
10/3ωr

(breathing mode) and
√
2ωr (quadrupole mode) [188, 189].

Future experiments could be conducted in a single-beam, cigar-shaped trap with cylin-
drical symmetry, where axial and radial modes can be selectively excited and probed [190].
Time-domain measurements in such a setup would offer a more precise determination of
the frequencies and damping rates of these collective modes. These elementary excita-
tions provide crucial insights into the properties of the dipolar gas. They could serve as a
precise test of the equation of state [191] under different interaction strengths and temper-
atures [192], reveal the anisotropy of dipole-dipole interactions [193], and detect the onset
of superfluidity [194].

4.5 Prospects and challenges of reaching 0.1TF

Although the present achieved Fermi degeneracy is already sufficient to explore some many-
body effects such as the deformation of Fermi surface [195] and the hydrodynamic modes
[196], we want to further cool down the sample to below 0.1TF , which is required to explore
p-wave superfluidity and achieve above 90% filling fraction after loading into optical lattices
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(see Fig. 5.2). Here we discuss the challenges and their potential solutions.

First of all, it is always desirable to start with a better initial condition. In Ref. [64] we
estimated based on particle loss the initial temperature of the non-thermalized ground-state
molecules to be 0.52TF. However, damping of collective excitations during the rethermal-
ization in combination with particle loss leads to a sample temperature of about 1.0TF
after 150ms if we do not force evaporation. The initial phase space density can be in-
creased by optimizing the magnetoassociation, the levitation of the Feshbach molecules,
and the efficiency of STIRAP transfer.

Next, we need to enhance the efficiency of evaporation. The currently achieved effi-
ciency, given by −d(ln PSD)/d(ln N) = 1.1(1), is below what is typically realized with
atoms [195,197,198]. To improve this efficiency, a longer evaporation time is required, thus
necessitating a further reduction in collisional loss and various sources of heating. Firstly,
we may operate at a larger Rabi frequency, while carefully avoiding the field-linked reso-
nances near 90MHz, as illustrated in Fig. 4.13. The sensitivity of the loss coefficient to
ellipticity poses a challenge to the stability of the microwave polarization, which prompted
us to develop the waveguide antenna and investigate the field-linked resonances in Chap-
ter 6. Secondly, we can reduce the density of the cloud while avoiding the hydrodynamic
regime, without sacrificing the thermalization rate. This approach is feasible due to the
higher elastic scattering rate between microwave-shielded polar molecules compared to
atoms. With these improvements, a two-body lifetime much longer than 10 s can be
achieved, even for a hot sample as in our current initial condition. Thirdly, technical heat-
ing issues such as trap stability and intensity noise need to be minimized [199]. Ultimately,
any cooling technique for fermions will be constrained by the escalating hole heating rate
and Pauli blocking effect in the deep Fermi degenerate regime [200]. Therefore, a minimum
number of molecules must be preserved to maintain the evaporative cooling rate against
heating [201].

Once deep Fermi degeneracy is attained, it remains unanswered how to probe the temper-
atures in this regime. The time-of-flight images can no longer be fitted by the momentum
distribution of a non-interacting gas. Fermi surface deformation, a phenomenon observed
to affect only a few percent in magnetic atoms, will exceed 10% for our NaK molecules,
consequently influencing the fitting to Eq. (2.1). Hence, a theoretical framework, such as
Hartree–Fock–Bogoliubov theory [202], is needed to calculate the momentum distribution
of a trapped dipolar Fermi gas within the Fermi degenerate regime at finite temperatures.
Additionally, one could examine solely the momentum distribution of the thermal wing,
which however, diminishes with Fermi degeneracy and thus requires an improvement to
signal-to-noise ratio of the current imaging system. Damping and shifts of hydrodynamic
modes [193], dispersion of sound waves [203] or RF ejection spectroscopy [204] might also
serves as thermometry methods. If the temperature falls below the critical temperature
for superfluidity, it may also be inferred from the associated tetramer fraction [25], a topic
we will explore in Chapter 7.
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Figure 4.13: Inelastic rate coefficient at detuning ∆ = 2π×1MHz and temper-
ature of 20nK. a, 2D map of loss rate coefficient βin as a function of Rabi frequency
Ω and ellipticity ξ. b, Example loss rate coefficient for ξ = 0◦ (blue), 1◦ (orange), and
2◦ (green). The discretization of the resonance feature at high Rabi frequencies is an
artifact due to a finite step in ξ of 1◦. Calculation performed by Tijs Karman.

4.6 Conclusion and outlook
In conclusion, we have demonstrated a general approach to evaporatively cool ultracold
polar molecules to quantum degeneracy in 3D by dressing the molecules with a blue-
detuned circularly polarized microwave, achieving very low temperatures together with
strong tunable dipolar interactions. The simplicity of the technical setup makes our method
directly applicable in a wide range of ultracold molecule experiments. Our results point to
an exciting future of long-lived degenerate polar molecules for investigating novel quantum
many-body phases with long-range anisotropic interactions and for other applications in
quantum sciences.

With the coldest samples realized in our experiment, the dipolar interaction in the system
corresponds to about 5% of the Fermi energy. This is three times higher than what was
reached in degenerate Fermi gases of magnetic atoms [205]. In the near future, intriguing
dipolar many-body phenomena such as modifications of collective excitation modes [193],
hydrodynamic weltering motion [196], distortion [205] or the collapse [206] of the Fermi
sea should be observable in suitable trap geometries and with improved detection of the
cloud expansion. The collisionally stable sample also provides an ideal starting point for
loading into optical lattices, as presented in Chapter 5.

Once we manage to reach temperatures below 0.1TF, many intriguing quantum phases
will be within reach [6,177,207–213]. Especially, fermionic polar molecules can pair up and
form a superfluid with anisotropic order parameter and even a Bose–Einstein condensate
of tetramers [207–209]. Up to now, such scenarios have rarely been theoretically investi-
gated because it was believed that polar molecules could not be sufficiently stable under
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conditions where both attractive and repulsive interactions play an important role. We
will revisit this topic in Chapter 6 and 7. In the next chapter, we shift our focus from
collisional studies to spin physics, where the dipole-dipole interactions continue to play the
central role.
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Let’s measure something other than
loss.

After two years’ of loss measurements1

Chapter 5

Lattice loading and dipolar spin
models

Quantum simulations using polar molecules in optical lattices has always been one of our
scientific goals. In 2019, we managed to achieve only a filling fraction of a few percent,
brought about by the Feshbach association from a Mott insulator of sodium atoms and a
band insulator of potassium atoms in the 3D lattice. Back then the major limiting factor
was the low quality of the vertical lattice potential, which was generated by sending a
retroreflected laser beam through a high-NA objective [125]. Upon stabilizing the molecules
via microwave shielding, we deemed it appropriate to return to the lattice. Half a year of
subsequent efforts revealed that the performance of our microwave shielding still hindered
us, which ultimately drove us to upgrade the system and delve deeper into collision studies,
as presented in Chapter 6. Despite these challenges, our accomplishments thus far are
promising. We have managed to prepare a molecular sample predominantly in a single
layer of a vertical shallow-angle lattice, and in the ground band of the horizontal lattice,
achieving around 24% filling fraction. These findings will be discussed in the following.

5.1 Ultracold polar molecules in optical lattices
In this section, we introduce the general Hamiltonian realized by polar molecules in optical
lattices, and show how this Hamiltonian reduces to either the lattice spin model or the
extended Hubbard model under specific conditions.

In the presence of a d.c. electric field, polar molecules in the ground band of an optical

1We often joke that we’ve done so many loss measurements, we might as well call it our version of
“quantum simulation”.

79
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lattice yield the t-J-V -W model, represented by the following Hamiltonian [214–216]

H = −t
∑
⟨i,j⟩m

[
c†imcjm + h.c.

]
+

1

2

∑
i ̸=j

1− 3 cos2 θij
r3ij

×
[
J⊥
2
(S+

i S
−
j + h.c. ) + JzS

z
i S

z
j + V ninj +W (niS

z
j + njS

z
i )

]
. (5.1)

Here, c†im (cim) creates (annihilates) a molecule on site i in rotational state m = 0 or
1. The operator ni = Σmnim = Σmc

†
imcim counts the number of molecules on site i.

The operators Sz
i = (ni1 − ni0)/2, S+

i = c†i1ci0, and S−
i = (S+

i )
† are the usual spin-1/2

angular momentum operators on site i. The t-J-V -W Hamiltonian captures several key
phenomena: the tunneling (t), the spin-1/2 exchange process (J⊥), and the electric field-
dependent processes (Jz, V , and W ). The strength of the interactions depends on the
choice of the excited rotational state. For | ↑⟩ = |J = 1,MJ = 0⟩, the spin-exchange
interaction is given by

J⊥ = 2d2↓↑/4πε0a
3, (5.2)

where a is the lattice constant and d↓↑ = d↑↓ = ⟨↓ |d̂0| ↑⟩ denotes the transition dipole
moment between two spin states and d̂q denotes the spherical components of the dipole
operator. The other terms require a non-zero lab frame dipole moment and are therefore
absent at zero electric field. They are related to the dipole matrix elements by Jz =
(d↑− d↓)

2, W = (d2↑− d2↓)/2, and V = (d2↑+ d2↓)/4, with d↑ = ⟨↑ |d̂0| ↑⟩, d↓ = ⟨↓ |d̂0| ↓⟩, and
1/4πε0a

3 omitted.

Figure 5.1a illustrates the example interactions of the t-J-V -W model. There, the cou-
plings are evaluated in the spin decoupled basis and reduced to the single-particle dipole
matrix elements

⟨↓↓ |Vdd| ↓↓⟩ =
Jz
4

+ V −W = d2↓, (5.3)

⟨↑↑ |Vdd| ↑↑⟩ =
Jz
4

+ V +W = d2↑, (5.4)

⟨↓↑ |Vdd| ↓↑⟩ = ⟨↑↓ |Vdd| ↑↓⟩ = −Jz
4

+ V = d↓d↑, (5.5)

⟨↓↑ |Vdd| ↑↓⟩ = ⟨↑↓ |Vdd| ↓↑⟩ =
J⊥
2

= d2↓↑. (5.6)

Here again the prefactor 1/4πε0r3ij is omitted. Note that the coupling extend beyond the
nearest neighbor, and falls off with 1/r3ij. The coupling strength are given in unit of d20.
Their dependence to electric field strength is shown in Fig. 5.1b. For NaK molecules with
d0 = 2.72D, we have d20/4πε0a3 = h × 7.31 kHz for a 532 nm spacing optical lattice. The
electric field strength is in unit of B/d0 = 2.05 kV/cm.

In addition to the Hamiltonian described in Eq. (5.1), another key consideration is the
substantial collisional loss between molecules. This losses suppress the occupancy of two
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Figure 5.1: t-J-V -W model. a, Spin-1/2 dipolar fermions in a 2D optical lattice.
Examples of direct spin-spin couplings are represented by rectangles, and spin-exchange
interaction and tunneling are represented by two-headed arrows. b, Dipole coupling
matrix elements as a function of d.c. electric field strength.

molecules on the same lattice site due to the Quantum Zeno effect [79, 217]. Typically,
at the lattice depth when tunneling is relevant, the on-site interaction surpasses the band
gap. This causes molecules to be excited to higher bands, leading to a loss rate that 5
times larger than what would be predicted by single-band calculations [217]. Therefore,
it is desirable to reduce the collisional loss either by constraining the molecules within a
deep lattice or by employing a shielding scheme to engineer a repulsive interaction.

In a deep lattice, the tunneling term becomes negligible, giving rise to the dipolar spin
model. This model has gained recent attention across various platforms, particularly with
trapped ions [218,219] and Rydberg atoms in optical tweezer arrays [220–224]. The field of
Rydberg atoms has seen rapid progress, thanks in part to their fast cycling rates, adaptable
atomic arrangements, and their scalability. However, the primary constraint with Rydberg
atoms lies in their short lifetime, compounded by the fact that they are untrapped. Con-
versely, ground-state molecules typically exhibit a trapped lifetime on the scale of seconds,
making them an attractive candidate for exploring long-term spin dynamics.

In terms of shielding, we are currently constrained to working with a single internal
state. Consequently, we lose the spin degree of freedom and realize the extended Hubbard
model

H = −t
∑
⟨i,j⟩

[
c†icj + h.c.

]
+

1

2

∑
i ̸=j

1− 3 cos2 θij
r3ij

[
V −W +

Jz
4

]
ninj (5.7)

= −t
∑
⟨i,j⟩

[
c†icj + h.c.

]
+

1

2

∑
i ̸=j

d2↓(1− 3 cos2 θij)
r3ij

ninj (5.8)

This Hamiltonian exhibits checkerboard and stripe phases, which have been previously
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observed in dipolar excitons [225] and magnetic atoms [226]. Nevertheless, there is a
wealth of physical phenomena still awaiting exploration at lower temperatures or with
different lattice geometries [6]. Moreover, the shielding schemes of polar molecules are, in
principle, insensitive to the hyperfine states of the molecules, allowing spin to be encoded
in these hyperfine levels.

5.2 Lattice loading
One method to achieve a high filling fraction of molecules is to form them directly within
the lattice. This process typically starts from a double insulator of the atomic mixture,
where each site is occupied by one atom from each species, leading to a high conversion
efficiency from atoms to molecules on sites. However, realizing a double insulator poses
a significant challenge, especially when the tunneling and on-site interaction of the two
atomic species differs considerably. So far, the highest filling fraction achieved using the
double insulator method is approximately 30% [227–229]. This approach will ultimately
be constrained by the efficiency of STIRAP, thus posing a challenge to attain unit filling.

Efficient shielding enables us to load molecules directly into the lattice. Here, the STI-
RAP only limits the detection efficiency instead of affecting the lattice filling fraction. As
shown in Fig. 5.2, starting with a degenerate sample of T/TF = 0.36 as obtained in our
experiment, adiabatic loading would result in a filling fraction of 30%. With further cooling
to T/TF < 0.1, we expect a filling fraction above 96%.

The experiments in this chapter were conducted with the microwave setup of a single
helical antenna, a signal source of −149 dBc/Hz (Rohde&Schwarz SMF100A),1 and a 10W
amplifier (Kuhne PA510590). The relatively high phase noise and imperfect polarization of
the helical antenna limit the performance of microwave shielding, thus affecting the lattice
loading efficiency. In the future, we plan to attempt lattice loading with the upgraded
microwave setup.

5.2.1 Isentropic loading
We calculate the lattice filling fraction after loading from a 3D bulk gas. To estimate
the maximum loading efficiency, we assume the the entropy is conserved and the gas is in
thermal equilibrium. The final temperature and distribution can be obtained from entropy
and molecule number conservation. The thermodynamic quantities of a Fermi gas is related
to the density of states in the external potential.

N =

∫ ∞

0

dϵg(ϵ) 1

e(ϵ−µ)/kBT + 1
, (5.9)

1This signal source, which we borrowed from the Rempe group, has greater phase noise in comparison
to the one previously used in Chapter 4, which we borrowed from Walther Meißner Institute.
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Figure 5.2: Isentropic loading from a 3D trapped gas into lattices. Filling
fraction (a) and entropy per particle (b) as a function of the initial T/TF in the trap.
The solid and dashed lines show the case for 2D and 3D lattices, respectively. The circles
mark the measured filling fraction and the calculated entropy per particle (Eq. (5.19))
starting from (T/TF )3D trap = 0.46(5) after forced evaporation.

E =

∫ ∞

0

dϵg(ϵ) ϵ

e(ϵ−µ)/kBT + 1
, (5.10)

Ω = −kBT
∫ ∞

0

dϵg(ϵ) ln(e(µ−ϵ)/kBT + 1), (5.11)

S =
E − µN − Ω

T
, (5.12)

where µ is the chemical potential, E is the energy, Ω is the grand potential, and S is the
entropy. The density of states is related to the trapping frequency geometrically ω̄ averaged
over all the confinement directions. For a trapped 3D gas, the density of states is

g3D trap(ϵ) =
ϵ2

2(h̄ω̄3D trap)3
. (5.13)

While in a 2D/3D lattice in the tight binding limit, the density of states is given by [230]

g2D lattice(ϵ) =
2π

mω̄2
2D latticea

2
, (5.14)

g3D lattice(ϵ) = 2π
√
ϵ

(
1

2
ma2ω̄2

3D lattice

)−3/2

. (5.15)

These integrals can be evaluated analytically using the following result∫ ∞

0

dϵϵnF (ϵ, µ) = − (kBT )
n+1 Γ(n+ 1)Lin+1(−eµ/kBT ), (5.16)

F (ϵ, µ) = (1 + e(ϵ−µ)/kBT )−1. (5.17)
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where Lin(x) is the polylogarithmic function of order n, Γ(x) is the gamma function, and
F (ϵ, µ) is the Fermi–Dirac distribution function. We assume the the molecules remains
in the ground band of the lattice. At zero temperature, the Fermi gas will form a band
insulator in the center of the lattice, with unity filling fraction. At finite temperatures, the
peak filling fraction can be calculated from the Fermi–Dirac distribution

ρpeak = F (0, µ) = (1 + e−µ/kBT )−1. (5.18)

Figure 5.2 shows filling fraction loaded from a bulk gas into 2D/3D lattices. The entropy
per particle is related to the filling fraction by

s(ρ) = −kB
ρ
(ρ ln(ρ)− (1− ρ) ln(1− ρ)). (5.19)

5.2.2 Loading into the vertical lattice
Our aim is to load a degenerate gas of microwave-shielded molecules from the bulk into
predominantly a single layer of the shallow-angle lattice, and then transfer them into the
ground band of the horizontal lattice. As we are dealing with fermionic molecules, each
layer has a maximum molecule number that can be populated, whereby the molecules form
a band insulator. This is determined by the condition EF = ∆E, where EF = h̄ω̄(6N)1/3

denotes the Fermi temperature, and ∆E ≈ h̄ωs.a.lattice represents the band gap of the
shallow-angle lattice. Given the on-site trapping frequencies of the shallow-angle lattice
2π × (20, 20, 3.4× 103)Hz, this maximum number amounts to approximately 6000.

To achieve single-layer loading, we first transfer the molecular gas into a light sheet
to decrease the vertical cloud radius before introducing the shallow-angle lattice. The
light sheet compresses mainly vertically, with trapping frequencies 2π × (20, 35, 520)Hz.
Assuming adiabatic compression of a cloud of 3000 molecules at T/TF = 0.3, we achieve
a vertical cloud 1/e radius of 2µm, which is smaller than the lattice constant. However,
we observe substantial two-body loss and evaporation during the compression, due to the
increased density after compression and the reduced trapping volume of the light sheet
compared to the crossed dipole trap. The loss occurred during the single-layer loading
has motivated us to upgrade the microwave setup to achieve higher power and tunable
polarization.

We determine the molecule distribution using the matter-wave refocusing technique [231–
233]. After loading, we switch off the lattice and switch on the light sheet, which provides
a strong vertical confinement. The cloud oscillates in the light sheet for a quarter of its
trapping period, mapping the vertical position r into the momentum p = mωr, where ω is
the vertical trapping frequency. The cloud is then released from the trap and undergoes a
time-of-flight of ttof. The final real-space coordinate rtof = (ωttof)r. With a large trapping
frequency ω and a prolonged time-of-flight, the cloud is magnified by a factor of ωttof. For
a finite time-of-flight, a pulse duration slightly less than a quarter period can eliminate the
effect of the initial momentum spread and obtain a focused image.
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Figure 5.3: Matter wave refocusing of molecules in the vertical lattice. Mol-
ecules loaded after forced (a) and plain (b) evaporation. The data points show the
distribution of the OD integrated along the horizontal direction. Each point represent-
ing an average over a 5-pixel range in the vertical direction. The solid line shows a
combined Gaussian fit and the colored regions show contributions from the individual
layers. The insets shows the absorption images, where the right and left correspond to
up and down, respectively. Each image is averaged over 3 repetitions.
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Figure 5.4: Quasimomentum and real space distributions of molecules in the
lattice. Band-mapping (a) and in-situ images (b) in the 3D lattice. The imaging axis is
vertical, perpendicular to the plane of the shallow-angle lattice. Each image is averaged
over three repetitions.

Figure 5.3 shows the images after matter-wave refocusing, from which we infer the pop-
ulation distribution among the layers of the shallow-angle lattice. We use a time-of-flight
of ttof = 9ms and a trapping frequency of ω = 2π × 900Hz, leading to a magnification
of 50. The fitted lattice spacing considering this magnification is 3.0 µm, consistent with
the designed lattice spacing of the shallow-angle lattice. Starting from a molecular gas
after forced evaporation, a majority of the population is loaded into the central layer. As a
comparison, loading a thermal cloud at approximately 200 nK populated over three layers,
with a lower peak OD in each layer. To quantitatively extract the population in each
layer, we first extract the width of individual layers and their relative spacing by fitting to
Fig. 5.3b. Next, we fix the extracted width and spacing, and fit only the relative popula-
tions in Fig. 5.3a. From the fit, we conclude that about 60% of the molecules are in the
central layer.

5.2.3 Loading into the ground band of the horizontal lattice

Following the loading into the shallow-angle lattice, we ramp on the horizontal lattice in
50ms. After loading, we use the band mapping technique to probe the band population
[234, 235]. By slowly ramping down the lattice in 1 ms, a particle with a quasimomentum
q in the extended Brillouin zone is adiabatically transferred to a momentum p = q state
in free space. Subsequently, a time-of-flight imaging directly probes the quasimomentum
distribution, and thus the band occupation. Such a band mapping image is displayed in
Fig. 5.4a. A distinct first Brillouin zone is visible, suggesting a high occupation of the
ground band.
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Figure 5.5: Lifetime of molecules in a deep lattice. a, Microwave is turned off
after loading. A fit to exponential decay yields a lifetime of τ = 10.3(7) s. b, Microwave
remains on after loading. A fit to yields a dressed-state lifetime of τ1 = 0.4(1) s.

5.2.4 In-situ imaging
We use in-situ imaging to probe the density distribution and thereby estimate the filling
fraction of the lattice, as shown in Fig. 5.4b. A Gaussian fit applied to the image gives a
cloud radius of Rx = 34µm and Ry = 30µm. From the matter-wave refocusing shown in
Fig. 5.3, we deduce that r0 = 60% of these molecules are loaded into a single layer. From the
molecule number N ≈ 3900, we obtain a peak filling fraction of fpeak = r0Na

2/πRxRy ≈
24%, which is consistent with the initial degeneracy of our molecules.

5.2.5 Lifetime of molecules in a deep lattice
Following the lattice loading, we measure the lifetime of the molecules in a deep horizontal
lattice with a lattice depth of Vhor = 20Er, see Fig. 5.5. If the microwave remains on,
we observe an initial drop to half of the molecular count, succeeded by a slower decay.
This initial decrease is attributed to the dephasing of the microwave-dressed states, as
discussed in Section 4.1. After dephasing, the cloud becomes a 50/50 incoherent mixture
of molecules in the ground and excited rotational states. Given that only the ground state
can be transferred back by STIRAP, only half of the total count is detected. We thus fit
the number decay to

N(t) = N0

(
e−t/τ1 +

1

2

)
e−t/τ . (5.20)

We obtain a one-body lifetime of τ1 = 0.4(1) s, which is as expected due to the limited phase
noise of −149 dBc/Hz. Alternatively, when the microwave is switched off after loading, the
lifetime increases to 10 s, constrained primarily by the photon scattering of the lattice.
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5.3 Spin dynamics
As an initial step towards quantum simulation with polar molecules in our setup, we explore
the dipolar XY model, which is naturally realized in the presence of a moderate d.c. electric
or magnetic field. We apply a d.c. field of 86V/cm perpendicular to the lattice plane to
decouple hyperfine spins, which suppresses hyperpolarizability as discussed in Section 2.2.
The Hamiltonian can be expressed as

H =
∑
i ̸=j

J⊥

2r−3
ij

(S+
i S

−
j + S−

i S
+
j ). (5.21)

For | ↓⟩ = |J = 0,mJ = 0⟩ and | ↑⟩ = |J = 1,mJ = 0⟩, the interaction is antiferromagnetic
with J⊥ = d20/6πϵ0a

3 > 0, and for | ↑⟩ = |J = 1,mJ = ±1⟩, the interaction is ferromagnetic
with J⊥ = −d20/12πϵ0a3. The antiferromagnetic Hamiltonian is predicted to exhibit a
rotational synchronization transition beyond a critical filling fraction of 15%, where a
portion of the coherence is protected by the long-range dipole-dipole interaction [236]. At
lower filling fractions, the spin dephasing time is inversely proportional to the mean-field
dipolar interaction, offering an alternative method to calibrate the lattice filling fraction
other than in-situ imaging.

5.3.1 Spin-echo Ramsey spectroscopy

We probe the spin dynamics using a spin-echo Ramsey spectroscopy sequence, as illustrated
in Fig. 5.6. The spin-echo technique mitigates the residual single-particle dephasing arising
from the inhomogeneous light shift across the molecular cloud, resulting in an extended
coherence time. Starting from ground state | ↓⟩, the initial π/2 pulse prepares the molecules
in a superposition state (| ↓⟩ + | ↑⟩)/

√
2. After an evolution time of T/2, an echo π-pulse

is applied to reverse single-particle dephasing. After another evolution period of T/2, a
second π/2 pulse is applied with a phase ϕ relative to the first pulse. By altering the
phase ϕ and observing the number of molecules in the ground state, we can obtain a
Ramsey fringe which follows Ntot

2
(1 +C cos(ϕ+ ϕ0)). The fringe contrast C represents the

residual spin coherence. The phase offset ϕ0 exhibits a linear increase with respect to the
evolution time, scaling proportionally to χ0 = Jz − J⊥ [237]. In experiments with KRb,
the contrast follows an overall decay, and on top of that, an oscillation with a frequency
of J⊥/2h due to the nearest-neighbor interaction [79]. For NaK, the oscillation is much
faster and thus requires much finer sampling to resolve. Instead we focus on the overall
decay. Figure. 5.6 displays the time evolution of the fringe contrast C and numerical
simulation. The experimental fringe contrasts are systematically lower than the numerical
simulation, suggesting additional decoherence mechanisms that are not cancelled by the
spin-echo pulse.



5.3 Spin dynamics 89

ŷ

ẑ

x̂

ŷ

π/2 π/2π

ŷ n̂
T/2 T/2

n̂

0 10 20 30 40 50 60

Time T (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
on

tr
as

t

-2 0 2

Phase Á (rad)

0.0

0.5

1.0

N
um

b
er

 (a
.u

.)

a

b

Figure 5.6: Spin dynamics of lattice dipolar XY model. a, sequence of spin-echo
Ramsey spectroscopy. The phase of the second π/2 pulse is scanned to yield the fringes.
b, measured (points) and simulated (line) contrast decay over the hold time T . Inset
shows example Ramsey fringes for T = 0.1ms (orange) and T = 30ms (green).
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5.3.2 Numerical simulation of the initial decoherence
At a low filling fraction < 15%, comparing the spin dynamics with numerical simulations
provides an alternative way to determine the filling fraction of the lattice. We anticipate the
coherence time τ to scale with the molecule filling fraction ρ as τ ∝ 1/⟨Eint⟩ ∝ 1/J⊥ρ

3/2.
We employ the Moving Average Cluster Expansion (MACE) method [216,238] to calculate
the spin dynamics at various filling fractions. In a MACE simulation, one generates a
randomly distributed molecular sample, then divide the system into separate clusters. The
dynamics of these clusters can be calculated precisely, and averaging over the clusters yields
the global observable. For each molecule, we choose 8 nearest molecules to form a cluster,
where the spin dynamics are calculated by exact diagonalization. As shown in Fig. 5.7, we
extract the coherence time at different filling fraction ρ, then fit to the expected scaling,
yielding

τ ≈ 1.44
h

J⊥ρ3/2
. (5.22)

We also plot the result of the MACE simulation at an expected 24% filling fraction, together
with the data in Fig. 5.6.

5.3.3 Prospects of rotational synchronization and spin squeezing
The aforementioned MACE simulation does not consider coherence beyond the cluster
size, which proves adequate at low filling fractions. However, as the filling fraction in-
creases, dipolar interactions gradually overshadow the positional disorder due to random
filling. In such cases, long-range coherence needs to be considered to accurately deduce
the Ramsey spin dynamics. It has been predicted that beyond a critical filling fraction of
ρc ≈ 15%, a fraction of coherence — which scales with √

ρ− ρc — will endure much longer
than the initial fast dephasing [236]. This interaction-protected coherence is attributed to
the long-range order of the dipolar XY model in the ferromagnetic regime at a negative
spin temperature [239]. The emergence of long-range order at a finite temperature for a
ground state with broken U(1) symmetry in 2D is a distinct feature of dipole-dipole inter-
actions [240], which can be understood as a BEC of the spin waves [239]. To demonstrate
that, a systematic measurement of spin dynamics at different filling fraction needs to be
performed. Moreover, we can also probe the spin fluctuations, which is directly related to
the condensate fraction of the spin wave and thus would provide a more direct evidence
for such synchronization.

Rotational synchronization manifests following an extended evolution time1 in excess of
10h/J⊥, during which spins either reach thermal equilibrium or enter a many-body local-
ized state. Investigating this phenomenon necessitates the examination of spin dynamics
over time intervals exceeding 100ms. Currently, we are still constrained by technical de-
coherence, such as the instability of the electric field and noise in the microwave pulses.

1The required time scale for such evolution exceeds what is presently achievable on alternative platforms.
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In the future, to extend the coherence time, we could employ more sophisticated dynam-
ical decoupling schemes, such as the XY8 multi-pulse sequence [241], which are capable
of enhancing the coherence time of polar molecules by more than one order of magni-
tude [56, 57, 237]. Alternatively, we can utilize the bootstrapping technique, which is also
immune to the dephasing caused by shot-to-shot fluctuation of the d.c. electric field [242].

5.4 Conclusion and outlook
We have loaded a Fermi degenerate molecular sample from the bulk into predominantly a
single layer of a 3D magic lattice, with the majority of the population in the ground band,
and a 24% peak filling fraction. As a preliminary step towards quantum simulation, we
have investigated the dipolar XY model by pinning down the molecules in a deep lattice.
We have observed the decoherence due to dipolar spin-exchange interaction.

We are also constructing a bow-tie pinning lattice [243] and a setup for Raman sideband
cooling of potassium atoms [147,148], with the goal of realizing a quantum gas microscope
for NaK molecules [149]. Single-site imaging would give access to the correlation function
of the many-body states, serving as a powerful probe of the system.

For bialkali molecules, the detection fidelity is inherently limited to 80-90% due to the
STIRAP efficiency. This limitation arises from the natural linewidth of the intermediate
state and laser phase noise [124, 244, 245]. However, employing active noise cancellation
techniques, as demonstrated in Ref. [246], could potentially increase the STIRAP efficiency
beyond 95%. Such an improvement would bring the imaging fidelity of bialkali molecules
on par with that of directly laser cooled molecules [247, 248].

With the upgraded microwave setup presented in Chapter 3, and a better understanding
of microwave shielding presented in Chapter 6 and 7, we plan to improve evaporation and
revisit lattice loading, potentially achieving a lattice filling fraction close to unity.
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Creating this “field-linked” state
essentially means grabbing the
molecules to stop them from slamming
into each other.1

John Bohn
Chapter 6

Field-linked resonances

In the summer of 2021, while optimizing the shielding with the phase array antenna, we
discovered unexpected resonance features in the molecule loss signal whenever the polariza-
tion deviated significantly from circular. These features were highly reproducible, leading
us to believe there were new physics at play. However, we were unable to easily control
the polarization with the phase array antenna. We tabled these observations temporar-
ily to focus on lattice loading, but found ourselves again limited by inefficient shielding.
Inspired by the need for better polarization control, we developed a dual-feed waveguide
antenna (see Chapter 3), capable of conveniently tuning the polarization through a single
parameter — the relative phase between the two feeds. After implementing this upgrade in
early 2022, we systematically examined the resonances, which matched qualitatively with
predictions from our theory collaborator, Tijs Karman. As we were drafting the paper, we
began searching for a suitable term to describe these novel resonances. We came to realize
that these so-called field-linked resonances had been predicted for molecules shielded by
circularly polarized microwaves in 2018 [76], and in d.c. electric fields as far back as two
decades ago [111].

Results of publications [112, 116] are contained in this chapter.

6.1 Field-linked bound states and scattering shape res-
onances

Scattering resonances, long-desired tools for ultracold polar molecules, have been instru-
mental in ultracold atom experiments for controlling contact interaction [250], creat-
ing strongly correlated quantum phases [251], and producing ultracold diatomic mole-

1Excerpt from a news article [249] published two decades ago, reporting the prediction of field-linked
states.
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cules [252]. Independent control over contact and long-range interactions using a scatter-
ing resonance in ultracold molecules could potentially allow the realization of novel quan-
tum phenomena such as exotic self-bound droplets and supersolid quantum phases [210].
Furthermore, measurements of scattering resonances provide an accurate benchmark for
calculations of the molecular potential energy surfaces (PESs) [11, 95] and pave the way
for controlled quantum chemistry [96].

A scattering resonance occurs when the scattering state couples strongly to a quasibound
state. Depending on whether the quasibound state is hosted by the same or a different
channel than the scattering channel, the resonance is classified as either a shape resonance
or a Feshbach resonance.

Shape and Feshbach resonances have been observed in atom-molecule and molecule-
molecule collisions by adjusting the collision energy using molecular beams at kelvin and
sub-kelvin temperatures [11, 253–256]. In the ultracold (sub-microkelvin) regime, scatter-
ing resonances are typically induced by an external electromagnetic field that shifts the
relative energy between the quasibound state and the scattering state [257, 258]. Mag-
netically tunable Feshbach resonances have been observed in collisions between weakly
bound Feshbach molecules and recently between NaLi molecules in the spin-triplet ground
state [86].

However, the magnetic tuning scheme crucial to Feshbach resonances requires a nonzero
electronic spin, making it unlikely to be applicable for bialkali molecules in the spin-singlet
ground state. The spin-singlet absolute ground state of bialkali molecules is of particular
interest because it is the only long-lived state where the molecules exhibit strong electric
dipole-dipole interactions. Additionally, Feshbach resonances are not expected to occur
between ground-state molecules due to nearly universal loss, resulting from the high density
of tetramer states near the collisional threshold and the loss mechanisms associated with
collisional complexes [87, 89, 259]. A general method to realize collisional resonances of
ultracold dipolar molecules remains elusive.

Field-linked (FL) resonances offer a universal approach to creating such resonances in
collisions between dipolar molecules by coupling them to the long-range FL states [111,260].
These weakly bound states are induced by the attractive long-range intermolecular poten-
tial via microwave dressing [76, 177]. Unlike conventional resonances, where an external
field merely adjusts an existing short-range quasibound state into resonance, the long-range
FL states exist solely in the presence of the microwave field. The sensitive dependence of
the FL states on the microwave field offers an unprecedented level of control over in-
termolecular interactions. In this chapter, we showcase this tunability by observing two
resonance branches in the inelastic scattering rate, whose peak positions shift continuously
with the microwave frequency and polarization. We further characterize the change in the
thermalization rate related to a diverging scattering length in a resonant collision channel.
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6.1.1 Physical picture
Field-linked states are weakly bound states within the long-range interaction potential.
They are held together by attractive dipole-dipole interactions, yet they remain distant
from each other due to the presence of the shielding core. One can visualize field-linked
states as two dipoles oscillating relative to each other while simultaneously flipping their
orientation to balance attraction and repulsion, as illustrated in Fig. 4.4. When field-linked
states emerge from the collisional threshold, they become energetically degenerate with the
scattering waves, resulting in strong coupling. Consequently, a pair of scattering molecules
can be temporarily trapped by their interaction potential and intensely interact with each
other, leading to a scattering resonance.

6.1.2 Effective potential
In Chapter 4, we introduced the multichannel scattering problem of microwave-shielded
polar molecules and their corresponding adiabatic potential curves. Although this multi-
channel scattering is crucial for the quantitative calculation of collisional cross sections, it
can be cumbersome to handle. However, if our interest lies only in elastic collisions, we can
approximate the process by considering solely the adiabatic potential of the upper channel.
This allows us to construct an effective potential, capable of calculating the elastic cross
section with high precision.

When expressing the two-body Hamiltonian Ĥ2 within the symmetric subspace S7 (de-
fined in Section 4.2.1), it is clear that the upper channel |1⟩ has direct coupling only
with |2⟩ and |3⟩. By applying second-order perturbation theory to the upper channel, we
derive [116]

E
(2)
1 (r) = [Ĥ2(r)]11 +

[Ĥ2(r)]
2
12 + [Ĥ2(r)]

2
13

h̄(Ωeff −∆)/2
(6.1)

with

[Ĥ ′
2(r)]11 = Du2v2(cos2 θ − 1

3
+ sin 2ξ sin2 θ cos 2φ),

[Ĥ ′
2(r)]12 =

1

2
Du2v sin 2θ(e−iφ cos ξ − eiφ sin ξ),

[Ĥ ′
2(r)]13 =

1√
2
Du2v sin2 θ(e−2iφ cos2 ξ − e2iφ sin2 ξ), (6.2)

where D = d20/(4πϵ0r
3). We observe that the first-order energy shift represents the in-

duced dipole-dipole interaction Vdd, which is also obtained semiclassically in Section 4.1.3.
The second-order energy shift illustrates the repulsive van der Waals interaction from the
avoided crossing to the lower dressed state, thereby giving rise to the shielding potential.
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Hence, we obtain the effective potential

Veff(r) ≡ E
(2)
1 (r) =

C3

r3
[3 cos2 θ − 1 + 3Fξ(φ) sin2 θ]

+
C6

r6
sin2 θ{1−F2

ξ (φ) + [1−Fξ(φ)]
2 cos2 θ}, (6.3)

where Fξ(φ) = sin 2ξ cos 2φ, C3 = d20/ [48πϵ0(1 + δ2r )] and C6 = d40/
[
128π2ϵ20h̄Ω(1 + ∆2

r)
3/2
]

with δr = ∆/Ω. The effective potential provides a good approximation for the upper adia-
batic potential for ξ ≲ 15◦ and Ω ≲ 2π× 20MHz. Beyond this ellipticity, the higher-order
coupling from the lower channels becomes non-negligible. Nevertheless, by extracting the
C6 coefficient from fitting the numerically calculated adiabatic potential, Eq. (6.3) can be
applied to much larger Rabi frequencies.

A deviation from circular polarization breaks the azimuthal symmetry of the interaction
and enhances the depth of the potential well along the y-axis, which deepens enough to
support one or more bound states (see Fig. 6.1a–c). These bound states are the field-
linked states, whose properties are strongly dependent on the external fields. By adjusting
the binding energy of the FL state across the collisional threshold — for example, using
microwave detuning (see Fig. 6.1d and e) — FL resonances occur, which drastically alter
the scattering properties between the molecules.

6.1.3 Resonance condition
For a comprehensive understanding of the resonance, we deduce the elastic and inelastic
scattering rate coefficients by employing the multichannel scattering theory detailed in
Chapter 4. In Fig. 6.2b and c, we illustrate the elastic cross section σν′l′m′

νlm = σ111
111 (in the

multichannel context) and σl′m′

lm = σ11
11 (using the effective potential) on the Ω–δr plane for

ξ = 0 and k1 = 0.45kF . A prominent resonant peak emerges when the parameters satisfy
δr ≲ 0.3 and Ω/(2π) ≳ 80MHz.

Of particular interest is the observation that a minor ellipticity ξ can substantially
reduce the Rabi frequency where the FL resonance occurs. The underlying explanation is
as follows: with ξ = 0, the resonant bound states in channels m = ±1 remain degenerate.
Introducing an elliptical polarization with ξ > 0 connects channels m and m±2, removing
the degeneracy and leading to a symmetric superposition of two bound states possessing
reduced binding energy. As a result, resonances become more accessible with a reduced Ω.
Since the bound state is predominantly of p-wave character, the angular part Y11+Y1−1 ∼
sin θ sinφ of its wave function indicates that the amplitude peaks along the y-axis, i.e.,
θ = π/2 and φ = ±π/2. This orientation aligns with the valley of the dipolar interaction
within the effective potential in the xy plane.

Furthermore, the resonance condition can be interpreted through the WKB approxima-
tion. We also ignore the contribution from the centrifugal barrier, facilitating an analytical
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Figure 6.1: Interaction potentials and bound states of microwave-dressed
ground-state molecules. a–c, The cut-open three-dimensional surfaces illustrate the
interaction potentials U(r) including the p-wave centrifugal potential between two mol-
ecules in the xy-plane for different ellipticity angles ξ. Below, a projection of the same
potential is shown. The interaction potential along the z direction (not shown) is always
repulsive. The microwave is on resonance (∆ = 0). The shaded areas in b and c show
the radial wave function of the bound states. The insets visualize the rotating electric
field and sketch the interaction between the rotating dipoles colliding along the x or y
direction. The markers on the color bar denote the potential depths for the three cases.
d and e, Coupled-channel calculations of the energy of the tetramer bound states as a
function of ∆ for the indicated values of ξ. In all panels the Rabi frequency is set to
Ω = 2π × 10MHz. Figure reproduced from Ref. [112].
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assessment of the integration. The WKB phase is expressed as [116]

φWKB =

∫
v1(r)≤0

√
−Mv+(r)/h̄

2dr (6.4)

∝
[

d40Ω

(1 + δ2r )
5/2

(1 + 3 sin 2ξ)4
8 + sin 2ξ − 3 sin2 2ξ

]1/6
(6.5)

Here, vq(r) =
∫
dr̂|Y1q(r̂)|2Veff(r) represents the projection of Veff onto the partial waves

Y1q. Resonances occur when φWKB approximates nπ, with n as a positive integer. We
discern that the shape resonance manifests in the regime characterized by larger values of
Ω or ξ, and smaller δr. Note that a precise prediction of the resonance position requires
the diagonalization of the matrix corresponding to the effective potential in partial wave
expansions. Subsequently, the lowest potential energy curve should be utilized for the
calculation of the WKB phase. Further discussion of the WKB phase is presented in
Chapter 8.

6.1.4 p-Wave scattering
In this section, we discuss the p-wave characteristics of the scattering cross section, as it
dominates over all other partial waves for ultracold fermions. Figure 6.2a represent the
Ω dependency of σ11

11 and σ111
111 for δr = 0.1 and k1/kF = 0.04, 0.45, and 1. Here, k1 is

the wave number of the relative motion, kF = (6π2n0)
1/3 is the Fermi wave number, with

n0 = 1012 cm−3 denoting the peak density of the experimentally realized molecular gas.

We observe that for k1/kF = 0.04, σ111
111 exhibits minimal change as Ω varies over a broad

range. A narrow scattering resonance then appears at Ω/(2π) ≈ 87.7MHz, indicating
the formation of a tetramer bound state. For k1/kF = 1, the resonant peak shifts to
Ω/(2π) ≈ 73.6MHz with the width of the resonance significantly broadened.

To understand the effect of collisional momentum k1, we note the existence of a cen-
trifugal barrier for the p-wave potential. A scattering resonance at finite k1 suggests that
the incident particle is on resonance with a quasi-bound state localized inside the barrier.
As k1 increases, the energy of the quasi-bound state on resonance with the incident par-
ticle also rises, moving closer to the top of the barrier. As a result, the lifetime of the
quasi-bound state is reduced due to a higher decay rate, leading to a broader resonance.
Moreover, as k1 increases, the quasi-bound state on resonance with the incident energy
becomes more shallow, a condition achievable by increasing C6. Hence, the resonant peak
shifts towards the lower Ω direction as k1 increases. Intriguingly, the observation that the
p-wave scattering cross section can be efficiently tuned via Ω implies that the short-range
potential (i.e., C6) can have a substantial impact on the scattering properties due to the
large shielding core.
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Figure 6.2: Elastic p-wave scattering. a p-wave scattering cross sections σ1111k2F (solid
lines) and σ111111k

2
F (dashed lines) as functions of Ω for ξ = 0, δr = 0.1 and k1/kF = 0.04

(black lines), 0.45 (red lines), and 1 (blue lines). b and c are the distributions of σ111111k
2
F

on the Ω-δr plane with ξ = 0 and Ω-ξ plane with δr = 0.1, respectively, for k1/kF = 0.45.
Figure reproduced from Ref. [116].
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6.2 Experimental observations
In our experimental study, we observed the FL resonances by measuring the loss dynamics
over a range of different detuning ∆ and ellipticity ξ, at a static Rabi frequency at Ω ≈
2π×10MHz. The microwave was generated using a waveguide antenna powered by two 10-
W amplifiers (Kuhne PA510590). The relative phase between the two feeds of the antenna
was adjusted using two mechanical phase shifters. Neither monitoring nor feedback control
were implemented. We noticed that variations in Ω is accompanied by a shift in the
ellipticity ξ, originated from the differential phase shift between the two amplifiers for the
two antenna feeds. Consequently, we decided to maintain Ω as a constant throughout the
experiment. For the latest microwave setup presented in Chapter 3, this systematic phase
shift is monitored and can be compensated with the VCPS.

6.2.1 Resonance map
We map out the resonances by measuring the inelastic rate coefficient βin of collisions be-
tween the dressed molecules. For most measurements, the temperature T of the molecular
ensemble is 230 nK and the initial average density n0 is about 5 × 1011 cm−3. Next, the
microwave is ramped on in 100 µs to dress the molecules. After a variable hold time the
remaining molecules are released from the optical trap and we determine the number of
molecules and the temperature from time-of-flight images (see Section 2.1.3).

As we tune the ellipticity of the microwave from circular to linear, up to two FL states
emerge from the dressed potential. Figure 6.3a shows examplary loss rate coefficients for
three different ellipticities. At ξ = 6(2)◦, the potential is too shallow to support a bound
state thus no resonance is observed. In this regime, the inelastic collision is suppressed by
the shielding potential at small detunings [107]. For ξ = 19(2)◦, the interaction potential
supports a single bound state, leading to enhanced inelastic scattering at ∆ ≈ 2π×10MHz.
For ξ = 37(2)◦, the potential becomes deep enough to support two bound states, leading
to two resonance peaks.

A unique feature of the FL resonances is their sensitivity to external fields. We show that
the resonance position continuously changes with the microwave parameters by mapping
out the two resonance branches while varying the microwave detuning and polarization.
Figure 6.3b shows two branches of FL resonances, starting at ξ ≈ 10◦ and ξ ≈ 32◦. As
the polarization ellipticity ξ increases, less dipole-dipole interaction is needed to support
bound states and the resonances therefore shift to larger detuning. However, the global
inelastic rate coefficient increases as the polarization becomes more elliptical, due to the
increased coupling to the other dressed states [261]. Overall our measurements show good
agreement with our theory predictions (see Fig. 6.3c). We attribute the broadening and
shift of the resonance peaks compared to theory to an increase of Rabi frequency as we
scan the detuning. These systematic errors affect mostly the FL resonances near linear
polarization, where the potential depth is more sensitive to the relative detuning.
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Figure 6.3: Field-linked resonances. a, Inelastic collision rate coefficient βin between
microwave dressed NaK molecules as a function of the microwave detuning ∆ for various
microwave polarizations with the ellipticity angle ξ = 6(2)◦ (green), 19(2)◦ (blue), and
37(2)◦ (orange) at the Rabi frequency Ω ≈ 2π × 10MHz. The solid lines show the
corresponding theory calculations. The shaded regions show the calculations within the
uncertainty of ξ (see Section 3.2.2). The grey dashed line denotes the universal loss
coefficient βuniversal and the grey dotted line denotes the single-channel unitarity limit.
The colored error bars show the standard deviation of the fit results and the black error
bar illustrates examplarily the systematic uncertainty. b and c, Color density maps of
the experiment data b and the theory calculation c of the inelastic rate coefficient as a
function of microwave detuning and ellipticity. The triangles on the right axis of b mark
ellipticity for the data shown in a. Figure reproduced from Ref. [112].
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Figure 6.4: Temperature dependence of the inelastic scattering. Experimental
results (a) and theoretical calculations (b) of the inelastic collision rate coefficient βin are
displayed as functions of the microwave detuning ∆ at temperatures of 700 nK (orange),
230 nK (blue), and 20 nK (purple). The colored error bars represent fitting uncertainties,
while the black error bar encompasses both fitting and systematic uncertainties. Solid
lines correspond to coupled-channel calculations, and the dashed lines denote the uni-
tarity limit for the respective temperatures. The measurements are performed with the
molecules dressed by a microwave field characterized by an ellipticity of ξ = 19(2)◦ and
a Rabi frequency of Ω ≈ 2π × 10MHz. Figure reproduced from Ref. [112].

6.2.2 Temperature dependence of the inelastic scattering
The temperature dependence of the inelastic scattering rate varies with the strength of the
interaction. As discussed in Chapter 4, at a large detuning where the dipole-dipole inter-
action is reduced, the scattering is in the threshold regime. The inelastic scattering rate
is universal [73] and scales linearly with temperature for indistinguishable fermions. At a
small detuning, the scattering enters the semi-classical regime, where βin is independent
of the temperature [75]. On the scattering resonance, the collision rate has a temperature
dependence that is reminiscent of the unitarity limit [96, 162], while the loss remains sub-
stantially smaller than this limit due to shielding. Meanwhile, the width of the resonance
feature is broadened by thermal averaging. As a consequence, for temperatures as high as
700 nK, the resonance becomes less visible as shown in Fig. 6.4. When the collision energy
becomes lower than the centrifugal barrier of the interaction potential, the resonance peak
would be further narrowed due to the increased lifetime of the quasibound state. Therefore,
reaching ultracold temperatures is crucial for the observation of FL resonances.

6.2.3 Elastic scattering
Scattering resonances are accompanied not only with enhanced losses of the molecules, but
more importantly, the ability to control elastic scattering. With FL resonances, we can
tune the elastic scattering rate while keeping the inelastic rate small.
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Figure 6.5: Elastic scattering. a, The data points display the thermalization rate
Γth normalized by the mean in-situ density n as a function of the microwave detuning
∆ at an ellipticity angle of ξ = 19(2)◦ and a Rabi frequency of Ω ≈ 2π × 10MHz. The
temperature is 230nK. Error bars are the standard error of the mean of 7–16 repetitions.
For comparison, the solid line shows the corresponding theory calculation of the elastic
collision rate coefficient βel. The uncertainty of ξ is taken into account by the shaded area.
The dashed line is the Born approximation of the background collision rate coefficient,
which holds in the threshold regime for detunings ∆ ≳ 8MHz. The insets show the
normalized linear density ñ along the lattice axis averaged over ten repetitions, as a
function of the molecule velocity v in the lattice direction for ∆ = 2π × 10MHz and
2π×25MHz. b, Coupled-channel calculations of the energy-dependent scattering length
with the same microwave parameters and a fixed collision energy of kBT , with T =
230nK. The solid (dashed) lines are the real (imaginary) part of the scattering lengths in
the channel px (orange), py (blue), and pz (green). The dotted line is a fit to Eq. (6.6).
The inset illustrates the partial waves of the scattering channels. Figure reproduced from
Ref. [112].

To characterize the effect of the FL resonances on the elastic collision rate, we measure
the thermalization rate of the samples. Typically, this is accomplished by quenching the
trapping confinement in one dimension and observing the global cross-dimensional ther-
malization [185]. However, for small ∆/Ω our samples are in the hydrodynamic regime,
where the global thermalization rate is limited by the trapping frequencies [107]. Instead,
we perturb the momentum distribution of the molecular cloud by pulsing on an optical-
lattice beam for 300 µs. The lattice pulse diffracts some molecules and sends them to collide
along the y-axis, defined as the long-axis of the microwave field (see Fig. 6.1), along which
the dipole-dipole interaction is most attractive. Fast local thermalization smears out the
diffraction pattern that is formed in momentum space during the lattice pulse (see insets in
Fig. 6.5a). From the contrast of the diffraction pattern we can estimate the thermalization
rate Γth.

We note that the measured thermalization rate follows a similar trend as the calculated
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value of βel (see Fig. 6.5a). Besides the contribution from the dipole-dipole interaction,
which scales with d2eff and decreases as ∆ increases, a clear resonance feature is visible
around the FL resonance. The shift of the resonance between the experiment data and
theory is within the systematic uncertainty of the ellipticity. The average number of elastic
collisions that is needed per particle to reach thermalization is so far unknown in the regime
of elliptical microwave polarization. From the comparison between the measured Γth/n and
βel from our coupled-channel calculations, we find that this factor is close to 1 under the
present experimental conditions.

The observed elastic scattering rate includes contributions from both contact interaction
and long-range dipole-dipole interaction. The dipole-dipole interaction contributes in all
partial wave channels, whereas the contact interaction only has significant contribution
in the resonant channel, due to its unfavorable scaling with the wave vector. While such
an interplay between contact interaction and dipole-dipole interaction limits the change
in the total elastic scattering rate, the underlying scattering length, however, shows diver-
gent behavior in the resonant channel. Figure 6.5b shows the energy-dependent scattering
length ãlm(k) = − tan δlm(k)/k [73,262] for the three p-wave channels at the average colli-
sion energy. The real (imaginary) part of the scattering length corresponds to the elastic
(inelastic) scattering. The FL resonance occurs in the py channel where the interaction
is most attractive. The corresponding scattering length shows a resonance feature, where
the real part can be tuned to large positive or negative values, while the imaginary part
remains small. The ratio of elastic-to-inelastic collisions is about ten on the resonance, and
can be further enhanced at smaller ellipticity, where the resonance shifts towards higher
Rabi frequencies.

A simple analytic formula describing the resonant elastic scattering length is given by

ã1y = add

(
−1 + 3 sin 2ξ

10

)(
1 +

∆∗(k)

∆−∆0(k)

)
, (6.6)

where ∆0(k) and ∆∗(k) denote the position and the width of the resonance. The width
∆∗(k) ∝ k2 follows the scaling of the p-wave contact interaction. For the collision energy
considered here, we extract ∆0 ≈ 2π × 10.99 MHz and ∆∗ ≈ 2π × 3.29 MHz from the fit
to the coupled-channel calculations. The resonance position ∆0(k) also has a weak energy
dependence. As a consequence, the resonance position with thermal averaging is broadened
and slightly shifted towards lower detuning. These thermal effects, however, will be greatly
suppressed in a degenerate Fermi gas, where the scattering predominantly occurs near the
sharp Fermi energy [116].

The elastic-to-inelastic collision ratio near the FL resonances can be improved with bet-
ter shielding near circular microwave polarization and lower temperatures. Under these
conditions, the FL resonance occurs at a much higher Rabi frequency compared to the ob-
served resonances at more elliptical polarizations. However, this is still realistic to achieve
by using an improved antenna design with increased microwave power. The ratio is then
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onance near circular micro-
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1MHz. Figure reproduced from
Ref. [112].

about 900 at the maximum elastic scattering rate and about 130 at the scattering reso-
nance, as shown in Fig. 6.6.

6.3 Prospects of dipolar p-wave superfluid
Here we discuss an example application of FL resonance for studying many-body physics,
namely the enhancement of the critical temperature for dipolar p-wave superfluidity. We
have shown that a FL resonance can greatly enhance the p-wave scattering amplitude due
to the tetramer bound state hosted in the long-range potential. The unitary scattering
amplitude near the FL resonance increases the critical temperature of p-wave superfluidity
to the critical temperature of BEC, i.e. Tc ≈ 0.137TF . As shown in Fig. 6.7a, for lower
Rabi frequencies away from the resonance, the critical temperature reduces. This enhanced
interaction is due to the shrinking of the shielding core at higher Rabi frequency, and is
present even for a fixed long-range dipole-dipole interaction. In fact, if we rely solely on
the long-range interaction, the critical temperature for NaK at the same density would
be less than 0.05TF [202, 208], which is not realistic to achieve given the present cooling
technique.

The pairing wave function, as shown in Fig. 6.7b, displays a clear anisotropic distribution
peaked at the Fermi momentum kF , indicating the formation of Cooper pairs around the
Fermi surface. In Fig. 6.7c for density n0 = 1012 cm−3 and δr = 0.1, ψ∆(k) along the kx
direction shows the broadening peak width with increasing Ω, which indicates the formation
of Cooper pairs over a broader momentum range under a stronger attractive interaction.

6.4 Conclusion and outlook
Field-linked resonances provide a novel and universal tool to control the collisions between
ultracold polar molecules. These resonances occur as long as the Rabi frequency is suffi-
ciently large, such that the interaction potential is deep enough to support bound states.
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Figure 6.7: Dipolar p-wave superfluidity. a, Critical temperature Tc as a function
of the Rabi frequency Ω and the relative detuning δr ≡ ∆/Ω. The inset depicts the
dependence of Tc on the peak density n0 for δr = 0.1 and Ω/2π = 28 (solid line),
38 (dashed line), and 48MHz (dash-dotted line). b, Momentum distribution of the
normalized pairing function ψ∆(kx, 0, kz) for δ = 0.1 and Ω/2π = 58MHz. c, Normalized
pairing function ψ∆(kx, 0, 0) along the kx direction for δr = 0.1 with Ω/2π values of
48MHz (solid line), 58MHz (dashed line), and 66MHz (dash-dotted line). The density
of the gas is maintained at n0 = 1012 cm−3, unless otherwise stated. Figure reproduced
from Ref. [116].
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Quantitative predictions of FL resonances only require knowledge of the mass, the dipole
moment, and the rotational structure of the individual molecules as well as their loss rate
at short range. This is in stark contrast to molecular collisions involving close contact
between the molecules, where a large number of collision channels are involved and the
existing knowledge of the PES are too imprecise to predict the number of bound states,
leave alone their position. Additionally, FL states can serve as an ideal starting point in
photoassociation spectroscopy to probe short-range potentials [111].

The ability to control the scattering length through FL resonances paves the way for
exploring many-body physics that incorporates both contact and dipole-dipole interac-
tions. In a degenerate Fermi gas, the resonant interaction facilitates realization of dipolar
superfluidity [177,207,208]. Specifically, pairing between molecules is enhanced due to the
presence of the FL bound state. Therefore the critical temperature for Bardeen–Cooper–
Schrieffer (BCS) superfluidity increases drastically near the FL resonance, i.e., to about
14% of the Fermi temperature for NaK molecules [116]. The anisotropic nature of such
a dipolar superfluid gives rise to novel quantum phenomena such as gapless superfluid-
ity [214] and topological px + ipy symmetry [263]. In a Bose–Einstein condensate (BEC),
independent control over s-wave scattering length and dipolar length has led to the ob-
servation of self-bound droplets and the formation of supersolids in magnetic atoms [264].
Making use of FL resonance with bosonic polar molecules, whose dipolar lengths are orders
of magnitude larger than magnetic atoms, would enable the study of such exotic phenom-
ena in entirely unexplored regimes [265]. The superfluidity can be detected, for example,
by stirring the cloud and measure heating, or by inducing vortices in a rotating trap or a
rotating microwave field alignment [266].

FL resonances also confirm the existence of FL states, a novel class of long-range poly-
atomic molecular states. Tetramer molecules with approximately twice the dipole moment
of the individual diatomic molecules could potentially be created by adiabatically ramp-
ing the microwave field across a FL resonance or by radio-frequency association. Those
composite bosonic tetramers are expected to be long lived at small binding energies [260]
and could be collisionally stable due to the shielding between the constituent molecules.
Below the critical temperature, a tetramer gas could form a BEC [25] and may lead to a
novel crossover from a dipolar BCS superfluid to a BEC of tetramers. The formation and
dissociation of FL tetramers is presented in Chapter 7.

In summary, we have unveiled a novel type of universal scattering resonances among
ultracold polar molecules that is associated with field-linked tetramer bound states in
the long-range potential well. The resonances are highly tunable via microwave power,
frequency, and polarization, which makes them a versatile tool for controlling molecular
interactions. Since FL states are insensitive to species-dependent short-range interactions,
the FL resonance is applicable to a wide range of polar molecules. These results provide
a general route to strongly interacting molecular gases and open up new possibilities to
investigate novel quantum many-body phenomena. Additionally, they facilitate the pro-
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duction of long-lived dipolar tetramer molecules — a topic we will explore in the next
chapter.



No problem, we can calculate it
rigorously.1

Tao Shi (石弢)

Chapter 7

Field-linked tetratomic molecules

Our exploration of tetratomic molecules begins with a parallel between the atomic Fesh-
bach resonances and the FL resonances. Feshbach resonances serve as an indispensable
tool for controlling interactions in ultracold atoms, thereby making them as a promis-
ing platform for simulating many-body physics. Chapter 6 highlighted FL resonances as
a universal tool to control the scattering lengths of polar molecules, which brings forth
opportunities to investigate phenomena such as dipolar p-wave superfluidity and exotic
dipolar supersolids. Beyond their role in interaction control, Feshbach resonances pave
the way for the association of Feshbach molecules and the study of BCS–BEC crossover in
degenerate Fermi gases.

Feshbach resonances, however, are challenging to observe in polar molecules. FL res-
onances, by contrast, are ubiquitous in polar molecules with a sufficiently large dipole
moment, and the bound states associated with them are expected to be long-lived and col-
lisionally stable (see Table 7.1). Given these properties, we foresee FL resonances possessing
similar potential as atomic Feshbach resonances. In this study, we report the formation of
tetratomic molecules, paving the way for realizing dipolar BCS–BEC crossover.

In October 2022, we consulted with theorists regarding the plausibility of associating
tetramers. We were informed that, for fermionic molecules, threshold collisions are sup-
pressed by the centrifugal barrier, making their association unlikely [267]. Despite this
seemingly discouraging news, we were hopeful that in the degenerate regime, association
efficiency can be enhanced by frequent collisions and other many-body effects. Although
calculations in the degenerate regime surpass current theoretical capabilities, we decided to
try it out experimentally. To our delight, electroassociation proved efficient in the deeply
degenerate regime.

1Considering the complexity of molecular collisions, we are pleased to learn that our theorists can
rigorously calculate many of our tetramer properties without resorting to free parameters.

109
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Table 7.1: FL resonances vs. molecular Feshbach resonances.

Field-linked Feshbach
Number of channels single multiple

Tunability electric magnetic
Size of the bound state ∼ 1000 a0 < 100 a0

Lifetime of the bound state up to 100 ms ∼ 1µs [86]
Induced dipole moment nonzero zero

Applicablity universal to polar molecules unique

Our experiment is conducted in close collaboration with Fulin Deng (邓富林), Tao Shi
(石弢), and Su Yi (易俗), who have contributed extensively to the theory of FL tetramers.
We concurrently carry out experiments and theoretical calculations, and subsequently com-
pare the results. It appears that there is a remarkable agreement between the observed
and expected binding energy and one-body lifetime of the tetramers, indicating a compre-
hensive understanding of these molecules. The theorists also assist us in comprehending
the physics behind the modulation dissociation spectrum, the electroassociation process,
and the dipole and quadrupole momenta of the tetramers.

Results of publications [113, 268] are contained in this chapter.

7.1 Introduction
The association of ultracold tetratomic molecules marks an important step in the con-
text of ultracold polyatomic molecules. Ultracold polyatomic molecules have emerged as
a powerful platform for various applications including tests of beyond-Standard-Model
physics [269], non-equilibrium dynamics [92], and quantum information processing [270–
272], thanks to their additional degrees of freedom compared to diatomic molecules. Signif-
icant progress has recently been made in the field of molecular cooling, enabling quantum
degeneracy in ultracold gases of diatomic dipolar molecules [64, 65, 273]. However, for
larger molecules, reaching the ultracold regime remains challenging due to their increased
complexity and adverse collisional properties. Direct cooling techniques such as buffer gas
cooling [15], supersonic expansion [17], beam deceleration [16], cryofuges [18], and optoelec-
trical Sisyphus cooling [274] have only marginally reached ultracold temperatures. Laser
cooling of larger polyatomic molecules represents an active area of research [48,54]. While
symmetric top molecules have been laser-cooled in one dimension [62], the efficiency of laser
cooling for large molecules (tetratomic or larger) in three dimensions remains unexplored.
It is still an open question whether temperatures below the submicrokelvin regime can
be achieved. Recently, magnetoassociation of ultracold molecules via Feshbach resonances
has been extended to weakly bound triatomic NaK2 molecules in the 100-nK regime [63],
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where the molecules inherit the low temperature from the atom–diatomic molecule mix-
ture. However, this technique requires resolvable Feshbach resonances between the colli-
sional partners. For larger, polyatomic molecules, the high number of the intermediate
collisional states and their fast loss mechanisms at short range results in a nearly universal
collisional loss rate [81], preventing the occurrence of such Feshbach resonances.

Here with FL resonances, we demonstrate a novel and general approach to form weakly
bound ultracold polyatomic molecules by electroassociation of smaller polar molecules
[267, 268]. We create ultracold tetratomic (NaK)2 molecules from pairs of microwave-
dressed fermionic NaK molecules by ramping the microwave field across a field-linked (FL)
scattering resonance [76,111,112,275]. This approach benefits from the universality of FL
resonances and can be applied to any molecule with a sufficiently large dipole moment. We
measure a lifetime up to 8(2)ms of our FL tetramers near the dissociation threshold and
achieve a phase space density of 0.040(3). With microwave-field modulation dissociation
after time-of-flight, we directly image the tetramers and reveal the expected anisotropic
angular distribution.

7.2 Electroassociation
By ramping the microwave field across a FL resonance, a pair of scattering NaK dimers can
be adiabatically associated into a weakly bound (NaK)2 tetramer, as depicted in Fig. 7.1a.
We refer to this process as electroassociation [267], analogous to magnetoassociation using
a magnetic Feshbach resonances [250].

The concept behind electroassociation involves a smooth transition from low-lying scat-
tering states of a dimer pair to the bound tetramer state by gradually ramping the micro-
wave field over time [267, 268]. The increase of the microwave field ellipticity, as depicted
in Fig. 7.1b,c, enhances the depth of the interaction potential, leading to the emergence of
the tetramer state from the collisional threshold and an increase in its binding energy (see
Fig. 7.1d). Microwave shielding of the dimers leads to an enhanced collisional stability of
the FL tetramers [106, 164, 268], which can therefore be efficiently associated from a low
entropy gas of dimers.

7.3 Binding energy and lifetime
7.3.1 Theory
We utilize the same formalism as in Chapter 4 and 6 to compute the properties of tetramers.
To obtain an approximated binding energy, we solve the eigenvalue problem of the effective
potential. As we cross the scattering shape resonance, as indicated by the dashed line in
Fig. 7.1c, a tetramer bound state, |ψB⟩ =

∫
drψB(r) |r⟩ |α(r)⟩ emerges. By numerically

solving the Schrödinger equation HeffψB(r) = εBψB(r), we can acquire the wavefunction
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Figure 7.1: Electroassociation of field-linked (FL) tetramers. a, Microwave
dressed NaK dimers are associated into (NaK)2 tetramers as the microwave polarization
is ramped from circular to elliptical. b,c, Interaction potentials between two dimers
approaching along the long axis of the microwave field at ξ = 0◦ (blue) and ξ = 14◦

(orange). The potential depth increases and a tetramer bound state emerges from the
collisional threshold. The light orange line shows the radial wave function of the tetramer,
and the black solid line indicates its binding energy. d, Calculated binding energy of the
tetramers. The FL resonance (dashed line) marks the onset of the tetramer state. The
stars and the arrow mark the electroassociation trajectory in the experiment. Within the
range of experimental parameters, there exists only a single FL tetramer state. Figure
reproduced from Ref. [113].
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ψB(r) and the binding energy εB of the tetramer state. Here, the effective Hamiltonian is
represented as Heff = −h̄2∇2/M + Veff(r).

Figure 7.1d shows the binding energy εB in the Ω–ξ plane. A positive ξ > 0 enhances
the attractive DDI along the long axis of the microwave ellipse, and the overall depth of Veff
increases with Ω. As a result, the binding energy increases with either ξ or Ω. In the case
of circularly polarized microwaves, i.e., ξ = 0◦, the resulting rotational symmetry along
the z-direction ensures the conservation of the projected angular momentum m, resulting
in two nearly degenerate bound states for m = ±1. At ξ > 0, this degeneracy is lifted, and
the new eigenstates are superpositions of m = ±1 (see Section 6.1.3).

To ensure a more precise calculation, we tackle the multichannel scattering problem,
which includes lower dressed state channels and also accounts for the direct van der Waals
interaction.1 This allows us to extract both the binding energy and the one-body lifetime
of the tetramers.

Without loss of generality, we concentrate on the cross section σ210
210 of the incident and

out-going molecules in the channel (210). When the incident energy is resonant with the
tetramer state, a peak appears in the cross section σ210

210, where the width of the peak is the
decay rate of the tetramer. The cross section σ210

210 quantitatively agrees with the lineshape

σ(E) =
2π

k22

∣∣ig2G(E) + Sbg − 1
∣∣2 , (7.1)

where G(E) = 1/(E − Eb + iΓ/2) is the tetramer propagator, k2 =
√
M(E − E2) and Sbg

are the incident momentum and the background scattering amplitude of molecules in the
dressed state channel |2⟩, respectively. By fitting σ210

210 and σ(E), we obtain the binding
energy Eb and the decay rate Γ of the tetramer. We remark that for the incident and
out-going molecules in other channels α = 3 ∼ 7, the propagator G(E) in Eq. (7.1) does
not change. Therefore, fitting σα′l′m′

αlm in a different scattering channel leads to the same
binding energy Eb and decay rate Γ.

As was discussed in Chapter 4, near circular polarization, one of the primary loss mech-
anism is the tunneling from the upper channel to the lower channel, accompanied by a
significant release of energy on the scale of MHz. This tunneling is suppressed by a high
Rabi frequency and a low ellipticity. However, as the Rabi frequency continues to rise be-
yond the resonance, the binding energy increases and the tetramer becomes more confined,
thus reducing the lifetime due to the increased wave function overlap between the tetramer
state and the high momentum scattering state in the lower channel (see Fig 7.2).

1The same interaction determines the universal loss rate in absent of microwave, as discussed in Chap-
ter 4.
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Figure 7.2: Potential curves and tetramer
wave functions. The blue lines are the po-
tential curves similar to Fig. 4.6. The orange
line represents the tetramer wave function, and
the black line marks the position of the binding
energy. The green line represents the scatter-
ing wave function in the second channel. The
microwave parameters are Ω = 2π × 28.5MHz,
∆ = 2π × 9.5MHz, and ξ = 14◦.

7.3.2 Experiment
Our experiments begin with trapped microwave-shielded molecules after evaporative cool-
ing. Depending on the trap depth at the end of the evaporation, we prepare various
initial conditions of the molecular gas. The minimum temperature is T = 50(1) nK at a
dimer molecule number ND of 5.7(3) × 103, corresponding to T/TF = 0.44(1), where TF
is the Fermi temperature of the trapped gas. The trapping frequencies are (ωx̃, ωỹ, ωz) =
2π × (42, 61, 138)Hz, where z is the vertical direction.

We probe the binding energy of the tetramers via microwave-field modulation association
spectroscopy. We start the experiment with a circularly polarized microwave field at a Rabi
frequency Ω = 2π×29(1)MHz and detuning∆ = 2π×9.5MHz [107]. We then quickly ramp
the microwave in 100 µs to a target ellipticity ξ above the FL resonance and modulate the
ellipticity at various frequencies for up to 400ms. The ellipticity ξ is defined such that tan ξ
gives the ratio of the left- and right-handed circularly polarized field components. When
the modulation frequency ν is slightly above the binding energy, tetramers are formed and
subsequently decay into lower dressed states accompanied by a large release energy. This
leads to a significant reduction of the remaining dimer number, which we detect in the
experiment. As shown in Fig. 7.3a, we observe clear asymmetric lineshapes in the spectra,
where the onset frequency of the tetramer association corresponds to the binding energy of
the tetramer. We can thereby determine the binding energy of the tetramers at different
target ellipticities (see Fig. 7.3b) and find excellent agreement between the experimental
data and coupled channel calculations without free parameters.

We assume the dimer loss in the modulation spectra to be proportional to the number
of formed tetramers. The lineshape can be modeled via Fermi’s golden rule [276]

NT(ν) ∝
∫ ∞

0

dϵrF (ϵr)g(ϵr)e
−(hν−Eb−ϵr)2/σ2 (7.2)

where ν is the modulation frequency and Eb is the binding energy of the tetramer. The
function g(ϵr) ∝ e−ϵr/kBT denotes the number of colliding pairs per relative kinetic energy
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Figure 7.3: Tetramer binding energy and lifetime. a, Tetramer association spec-
tra at various ellipticities are depicted, obtained by modulating the microwave ellipticity.
The solid lines show the fitted lineshapes, and the dashed lines mark the binding ener-
gies. Line shapes are shifted and broadened by the linewidth of the tetramer states and
other technical effects. The Rabi frequency is Ω = 2π × 29(1)MHz and the detuning is
∆ = 2π × 9.5MHz. We use a peak-to-peak modulation amplitude of 1◦, and a modu-
lation time of 100ms, except for the lowest ellipticity where the amplitude is 0.5◦ and
the duration is 400ms. Error bars represent the standard error of the mean of four
repetitions. b, Binding energy Eb, obtained from the spectra (circles), compared with
theory (line). Statistical error bars are smaller than the symbol size. Black error bar
marks the systematic uncertainty of ellipticity, and the shaded area shows theory cal-
culations including the systematic uncertainty in Rabi frequency. The inset illustrates
the association process. c, Decay rate Γ of tetramers in time-of-flight (circle) and in
the trap (triangle), compared to theory (line). Error bars show fitting errors. The inset
shows example decay curves at ξ = 7(1)◦ and ξ = 11(1)◦ in time-of-flight, with error bars
representing the standard error of the mean of eight data sets. Figure reproduced from
Ref. [113].
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interval dϵr. Here, the temperatures T are obtained from the data located away from the
association transitions. The function F (ϵr) ∝

√
ϵr(1+ϵr/Eb)

−2 denotes the Franck–Condon
factor F (ϵr) between the unbound dimer state and the tetramer state, which we assume to
take the same form as for Feshbach molecules [276]. The product F (ϵr)g(ϵr) is convoluted
with a Gaussian distribution with the width σ to account for the line width of the tetramer
state and the finite energy resolution. The extracted line width shows a similar trend with
ellipticity as the theoretical line width, but slightly larger.

Next, we probe the lifetime of the tetramers by measuring their loss dynamics. The dom-
inant loss process for tetramers is spontaneous dissociation into lower microwave dressed
states [164,268] accompanied by a large gain in kinetic energy, which, effectively, leads to a
one-body decay of the tetramer number. In order to investigate this process, we first create
tetramers by ramping the ellipticity to ξ = 8(1)◦ in 0.67ms, and then quickly ramp to a
target ellipticity in 20 µs. The quick ramp makes sure that the measurements at different
ellipticities start with the same tetramer and dimer number. There we hold for a variable
time, then reverse the ellipticity ramps to dissociate the tetramers back to dimer pairs to
map the loss of tetramers during the hold time onto the total dimer number. We turn
off the trap after the association to minimize collisional loss. We observe that when the
binding energy is high, the observed dimer number quickly undergoes a fast initial decay
and afterwards remains constant during the hold time. Near the collisional threshold, the
decay is much slower (see inset of Fig. 7.3c). These initial decays are much faster than
the expected dimer–dimer collisional loss rates, and are absent if we jump from ξ = 0◦ to
the target ellipticity, so that no tetramers are expected to form. We therefore attribute
this initial decay process to the one-body loss of the tetramers, in good agreement with
theory predictions. The corresponding 1/e lifetime is longer than 6(1)ms when the bind-
ing energy is below 8.2(2) kHz, and a maximum of 8(2)ms lifetime is observed near the
dissociation threshold. With higher Rabi frequencies and at circular polarization, theory
predicts lifetimes in excess of 100ms at Eb < h× 4 kHz, as shown in Fig. 7.4.

7.4 Estimation of collision rates of tetramers

7.4.1 Tetramer dipole moment

To estimate the dipolar scattering rates of dimer–tetramer and tetramer–tetramer colli-
sions, we first determine the dipole moment dtetra = 2d

∫
dr ⟨α(r)| d̂ |α(r)⟩ |ψB(r)|2 of the

tetramer via ψB(r). As shown in Fig. 7.5, the tetramer wavefunctions are localized around
the minimum of the effective potential outside the shielding core, where |α(r)⟩ is predom-
inantly described by |+,+⟩. Thus, dtetra ∼ 2d ⟨+,+| d̂ |+,+⟩ is approximately the dipole
moment of two molecules. The difference in dipole moments between the two molecules
and the tetramer is less than 10%.
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Figure 7.5: Dipole moment of a FL tetramer. The dipole moment of a FL tetramer
along the x and y directions, represented by the solid blue and red curves, respectively.
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ξ = 10◦ in a and a Rabi frequency of Ω = 2π× 28.5MHz in b. Insets shows the tetramer
wave function distributions in coordinate space. Figure reproduced from Ref. [268].
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7.4.2 Dipolar collision rate
The elastic scattering rate coefficient is given by β = σv, where v =

√
8kBT/πµ denotes

the average relative velocity and σ denotes the cross section. In the regime of large dipole
moment E > h̄6/µ3d21d

2
2 the cross section σ can be estimated using the semiclassical formula

given by [75]

σ =
2

3

d1d2
ϵ0h̄

√
µ

2E
. (7.3)

Here d1 and d2 are the dipole moments of the two colliding particles, µ is the reduced mass,
and E is the kinetic energy. We neglect the effect of a small ellipticity ξ, and estimate the
effective dipole moment of the dimers to be d0/

√
12(1 + (∆/Ω)2). The dipole moment of

tetramers is roughly twice as large as dimers. With that, the above formula provides an
estimation for the elastic scattering rates to be 9.7× 10−9 cm3s−1 for dimer–tetramer and
1.9 × 10−8 cm3s−1 for tetramer–tetramer. This implies that tens of elastic collisions can
occur within the lifetime of tetramers.

To investigate the collisional stability of tetramers, we measure their lifetimes while the
dipole trap remains active. Our observations indicate a combined one-body and two-body
loss of the detected dimer number, and we confirm that the two-body loss arises from
dimer–dimer collisions. Apart from data near the collisional threshold ξ = 5(1)◦, where
in-trap measurements are influenced by thermal dissociation, we do not detect notable
additional loss of tetramers in in-trap measurements compared to those in time-of-flight
experiments. The deduced inelastic collision rates are consistent with zero within error
bar. We estimate that more than ten elastic collisions can occur throughout the lifetime
of tetramers, which suggests that collisions with tetramers are predominantly elastic.

7.4.3 Upper bound for the inelastic collision rate
Figure 7.6b,c show the tetramer decay in trap and in free space are similar. The extracted
decay rates differs by 9(9)×101 Hz, which we use to obtain an upper bound for the inelastic
scattering rate coefficients. By assuming that the additional loss is either purely dimer–
tetramer or tetramer–tetramer, we estimate the upper bounds for their inelastic collision
rate coefficients to be 2(2) × 10−10 cm3s−1 and 9(9) × 10−10 cm3s−1, respectively. Both
values are consistent with zero within error bar. Even for the worst-case estimation, the
inelastic collision rate coefficients remain orders of magnitude lower than the estimated
elastic dipolar scattering rate coefficients.

7.5 Association and dissociation processes
We probe the association and dissociation process by ramping the ellipticity starting from
ξ = 0 with a constant ramp speed of 14◦ ms−1 (27◦ ms−1 for the dissociation) to a target
ellipticity, as illustrated in Fig. 7.7b,c. To distinguish the tetramers from the unpaired
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Figure 7.6: Tetramer lifetime in trap and in time-of-flight. a, Example loss of
molecule number in the trap, illustrating the difference between the scenarios with (or-
ange) and without (blue) removal of tetramers at an ellipticity of ξ = 7(1)◦. b,Normalized
tetramer decay measured during time-of-flight at the same ellipticity value ξ. c, Extracted
tetramer number derived from the data in a, where no notable additional loss is evident
when compared to b. The error bars included in the graphs represent the standard error
of the mean, calculated from ten repetitions. Figure reproduced from Ref. [113].

dimers we selectively remove the tetramers from the dimer–tetramer mixture by quickly
ramping the ellipticity to ξ = 14(1)◦ in 20 µs and hold for 0.4ms. At this point the
tetramers are deeply bound and rapidly decay, which removes them from the sample.

Figure 7.7 shows the evolution of the detected dimer number during the association
and the dissociation processes. The number of unpaired dimers (light blue in Fig. 7.7a)
reduces as we ramp the ellipticity across the FL resonance, indicating tetramer formation.
Remarkably, as shown in Fig. 7.7d, the number of detected dimers revives as we ramp
back to circular polarization, indicating that the formed tetramers can be reversibly disso-
ciated back into dimer pairs. In addition, we characterize the association process without
removing the tetramers but followed by a dissociation ramp back to ξ = 0◦. The detected
dimer number (dark blue in Fig. 7.7a) partially revives until ξ ≳ 12◦, where the tetramers
decay during the ramps before they can be dissociated back into dimers.

7.6 Conditions for efficient electroassociation
We first investigate the tetramer formation in the dilute gas regime theoretically. We
consider a slow ramp of either Ω or ξ across the shape resonance in a thermal molecular
sample. As the parameters C3, C6, and Fξ vary with time, the effective Hamiltonian Heff(t)
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Figure 7.7: Association and dissociation processes. a, Remaining dimer number
ND after the association ramp. Dark blue circles represent the total number of dimers,
including dissociated tetramers; light blue circles denote the dimer number after the
tetramers’ removal. Solid blue line corresponds to a fit using an error function; vertical
dashed line indicates the theoretical resonance position. b,c, Waveforms of the associa-
tion (b) and dissociation (c) ramps. In b, blue solid (dashed) line portrays the waveform
with (without) removal of the tetramers; horizontal dashed lines mark the theoretically
predicted resonance position. Circles in b and c represent the target ellipticity of the as-
sociation or dissociation ramp, corresponding to the data plotted in a and d. d, Increase
in detected dimer number during the dissociation ramp; solid orange line represents a fit
to an error function; vertical dashed line denotes the predicted resonance position. Error
bars stand for the standard error of the mean from ten experimental repetitions. Figure
reproduced from Ref. [113].
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Figure 7.8: Conditions for efficient electroassociation. a, Tetramer number NT
plotted against the association time, with the solid blue line representing a fit to a double
exponential function to capture both the formation and decay of the tetramers. Error
bars denote the standard error of the mean, calculated from eight repetitions. b, Con-
version efficiency η displayed as a function of the initial ratio T/TF of the dimer gas
temperature to the Fermi temperature. A ramp speed of 7◦ms−1 is used for the elec-
troassociation, and the initial T/TF values are extracted separately without performing
electroassociation. Error bars indicate the standard error of the mean, based on four
repetitions. Figure reproduced from Ref. [113].

is time dependent. The conversion efficiency [277]

c = 2nλ3T

∫
dke−β k2

M pa
k (7.4)

to the tetramer can be evaluated using the density n of molecular gases, the thermal de
Broglie wavelength λT = (4πβ/M)1/2 at the temperature T = 1/kBβ, and the transition
probability pa

k =
∣∣∣⟨ψB| T exp[−i

∫ ta
0
dtHeff(t)] |ψk⟩

∣∣∣2 in the association time ta. Here, the
initial state |ψk⟩ is the scattering eigenstate of Heff(0) in the molecule region, and the final
state |ψB⟩ is the bound state of Heff(ta) in the tetramer region. It should be noted that this
result, obtained from two-body scattering calculations, is not valid in the saturation regime
of c, where many-body effects must be considered using the non-Markovian Boltzmann
equation [277].

We experimentally identify the optimum condition for electroassociation. We obtain the
tetramer number from the difference between images with and without the tetramer re-
moval process outlined previously. First, we probe the timescale of the tetramer formation.
We ramp the ellipticity from ξ = 0(1)◦ to 8(1)◦ and vary the ramp speed. As shown in
Fig. 7.8a, we observe the formation of tetramers within 0.3(1)ms and subsequently decay
due to the finite lifetime. We estimate that the tetramers scatter on average more than
once during the association, bringing them close to thermal equilibrium with the remaining
dimers.
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We apply the following double exponential fit to the tetramer number as a function of
ramp time t in Fig. 7.8a

NT(t) = N0(1− e−t/τ )e−tT/τT , (7.5)
where τ gives the timescale for association and τT gives the timescale for tetramer decay.
The time tT ≈ 0.4(t+ tdisso) is the time where the ramp is above the FL resonance, which
is about a factor of 0.4 of the association time t and the dissociation time tdisso = 0.5ms.
We extract τ = 0.3(1)ms and τT = 2(1)ms.

Next, we investigate the role of quantum degeneracy for efficient electroassociation. For
magnetoassociation of Feshbach molecules, it has been shown that a low entropy sample is
crucial to achieve high conversion efficiency, due the improved phase-space overlap between
the atoms [278]. Here we vary the degeneracy of our initial dimer samples by changing the
final trap depth of the evaporation [107]. We observe an increase of the conversion efficiency
η, that is the fraction of dimers converted into tetramers, with quantum degeneracy of the
dimer gas. We achieve a maximum η = 25(2)% conversion efficiency at T = 0.44(1)TF.
Similar as for magnetoassociation [278], a maximum unity conversion efficiency is expected
at zero temperature.

7.7 Ramp dissociation and thermometry
To detect the tetramers, a dissociation process can be employed by converting it back into
two molecules. Two dissociation protocols are proposed: a fast ramp by decreasing either
Ω or ξ, and a modulation δξ(t) = δξ0 sinωdt around the elliptic angle ξ, where δξ0 is the
amplitude and ωd is the modulation frequency.

For the dissociation time td in the first protocol, the probability to detect a pair of
molecules with relative momentum k is pd

k =
∣∣∣⟨k| T exp[−i

∫ td
0
dtHeff(t)] |ψB⟩

∣∣∣2, which is
obtained via solving the time-dependent Schrödinger equation numerically. Figure 7.9
shows the energy distribution p(E) = Mk

∫
dΩkp

d
k/2 in the final state for different ramp

times of ξ and Ω, where k =
√
ME and Ωk is the solid angle in the momentum space.

We also plot the thermal distribution pT (E) = Mk
∫
dΩke

−βk2/M/2 at T = 100 nK as a
reference. The insets in Fig. 7.9a,b depict the dissociation energy Ediss =

∫
dkpd

kk
2/M as

a function of t−1
d . As the ramp speed increases, the energy distribution p(E) of the final

state becomes broader, leading to a decrease in the peak value and a larger dissociation
energy. The small overlap of p(E) and pT (E) allows for the differentiation of molecules
dissociated from tetramers and the thermal excitations.

In experiment however, we tried fast dissociation ramp but could not observe a clear
increase in the dissociation energy. We instead focus on measuring the temperature with
ramp dissociation, by doing a relatively long time-of-flight and only dissociate the tetramers
(and subsequently dimers) at the end of the time-of-flight to reduce the effect of release en-
ergy in the time-of-flight. The images of the tetramer momentum distribution are obtained
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Figure 7.9: Dissociation via microwave ramp. a, Energy distributions of the final
state in the dissociation for ξ = 10◦, with a ramp of Ω from 2π× 5MHz to 2π× 35MHz.
The dissociation times are depicted as td = 11µs (solid blue curves), 22µs (dashed blue
curves), and 67µs (dash-dotted blue curves). The reference thermal distribution pT is
also plotted. Insets display the dissociation energy. The detuning is ∆ = 2π × 9.5MHz.
b, Similar to a, but for Ω = 2π × 28.5MHz and a ramp of ξ from 1◦ to 12◦. Figure
reproduced from Ref. [268].

by subtracting images without from images with removal of tetramers at high ellipticity.
Examples of such tetramer images are shown in Fig. 7.10. From a fit to such time-of-flight
images and considering the mass of the particles, we determine the temperature of the
tetramers to be 134(3) nK, which is slightly higher compared to the dimer temperature
97(6) nK. The fact that the tetramer cloud is smaller than the dimer background suggests
partial thermalization and therefore elastic scattering during the electroassociation. Be-
yond that, heating might occur during the association and dissociation process. From the
number and trapping frequencies, we obtain a peak density of 5.0(2) × 1011 cm−3 and a
phase space density of 0.040(3) in the trap. We only consider the statistical error in this
analysis.

7.8 Modulation dissociation and tetramer wave func-
tion

We image modulation-dissociated tetramers to probe the angular distribution of their
single-particle wave function. A similar protocol has been demonstrated in the photodis-
sociation of diatomic molecules [279]. Here we modulate the ellipticity at a modulation
frequency ν > Eb/h, which couples the tetramer states to the scattering continuum. The
coupled scattering state possesses a large wave function overlap with the tetramer state,
and thus exhibits a similar momentum distribution, which is then probed by time-of-flight
imaging. We note that the dissociation pattern is not a one-to-one mapping of the tetramer
wave function, but only preserves its angular distribution.
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Figure 7.11: Momentum distributions of the modulation dissociated
tetramers. a, Tetramer dissociation spectrum. Tetramers are created at ξ = 8(1)◦

and the ellipticity is modulated with an amplitude of 1.4◦ for 2ms. The solid line repre-
sents a fit to the dissociation lineshape, and the error bars denote the standard error of
the mean based on ten repetitions. b,c, Time-of-flight images of modulation-dissociated
tetramers, obtained using a modulation frequency of 30 kHz and an amplitude of 3.6◦
for 2ms. Although the microwave ellipticity is approximately the same in b and c, the
field orientation differs by about 90◦. The dashed lines mark the extracted long axes
of the patterns. The images are averaged over 84 and 40 measurements for b and c,
respectively, with each pixel representing a binning of 5× 5 pixels from the raw images.
d, Theoretical tetramer wave function in momentum space, where the microwave field
propagates along the z axis and its long axis is oriented along the y axis. The cut-open
surfaces correspond to probability densities of 1.5× 108 a30 (orange), 3.5× 108 a30 (blue),
and 6 × 108 a30 (green), respectively. e, The theoretical dissociation pattern integrated
along the propagation axis of the microwave field, with the imaging plane (b and c)
roughly perpendicular to the z axis. Figure reproduced from Ref. [113].
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We begin by measuring the dissociation spectrum of the tetramers. We create tetramers
at ξ = 8(1)◦ via electroassociation, then modulate the ellipticity for 2ms to dissociate
tetramers. Meanwhile, we turn off the trap to suppress further association of dimers. Af-
terwards we remove the remaining tetramers and let the dissociated dimers expand for
another 6ms before absorption imaging. The dissociation spectrum, depicted in Figure
7.11, demonstrates an increase in the observed dimer number ND caused by the presence
of dissociated tetramers when the modulation frequency ν exceeds the frequency associated
with the binding energy of the tetramer Eb/h = 17.8(3) kHz. However, at higher frequen-
cies, ND declines due to a decrease in dissociation efficiency resulting from the diminished
Franck–Condon factor. We fit the dissociation spectrum with a dissociation lineshape that
is similar to the one used to describe dissociation of Feshbach molecules [250]

NT(ν) ∝ Θ(ν − Eb/h)

√
ν − Eb/h

ν2 + γ2/4
, (7.6)

where Θ(ν −Eb/h) is the step function, and γ = 20(7) kHz accounts for the broadening of
the signal.

We take the difference between images with and without modulation to obtain images
of the dissociated tetramers. We verify that modulation at a higher frequency results in a
larger pattern due to the higher dissociation energy. We choose a modulation frequency
of ν = 30 kHz to optimize the contrast of the images. As shown in Fig. 7.11, the disso-
ciation pattern has two lobes, which are oriented along the long axis y of the microwave
polarization1 and match qualitatively with the theoretical wave function in Fig. 7.11d and
e. Radial integration of the image reveals the angular distribution of the wave function,
which follows p-wave symmetry [280] in the py channel cos2 ϕ, where ϕ is the angle from
the y axis. The broken rotational symmetry along the quantization axis is a result of the
elliptical microwave polarization. When we rotate the microwave field by roughly 90◦, by
flipping the sign of the relative phase between the two feeds of the antenna, the dissociation
pattern is similar but rotated by about 90◦, which demonstrates the tunable control of the
tetramer wave function through the microwave field.

7.9 Prospects of electroassociation of complex poly-
atomic molecules

Field-linked resonances can be used to associate polyatomic polar molecules into even larger
molecules. For molecules whose dipole moment is orthogonal to one of the axes of inertia,
the same calculation can be performed within the corresponding rotational subspace, as
shown in Ref. [76] for CaOH and SrOH. For more complex molecules where the body-frame

1Here we set the y axis along the long axis of the microwave, in order to be consistent with the convention
of the effective potential Eq. (6.3). In Ref. [113], the x axis is defined to align with the long axis of the
microwave.
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dipole moment is not orthogonal to any of the three the axes of inertia, the microwave can
induce the π transition between the ground state and the mJ = 0 rotational excited state.
However, this detrimental π coupling can be suppressed by applying a d.c. electric field
to shift the mJ = 0 state away from the mJ = ±1 states, so that the microwave can be
off-resonant to the π transition, as shown in Ref. [178]. With that, a similar analysis of FL
resonances can be applied.

7.10 Conclusion and outlook
By efficient electroassociation in a degenerate Fermi gas of diatomic molecules, we have
created a gas of field-linked tetramers at unprecedentedly cold temperature. The associated
weakly bound (NaK)2 molecules are more than 3,000 times colder than any other tetratomic
molecules produced so far [274]. The created tetramers possess a phase space density 11
orders of magnitude higher the previous record, and is only two orders of magnitude below
quantum degeneracy. Remarkably, the lifetime of the long-range FL tetramers is much
longer than those observed in polyatomic Feshbach molecules, which are either short lived
(< 1 µs) [86] or unstable in the presence of an optical trap [63]. These features make them
a promising candidate for realizing a BEC of polyatomic molecules.

There are two possible ways to create a BEC of FL tetramers. Firstly, we can make use
of the increasing conversion efficiency with lower temperatures. Starting below the critical
temperature of 0.14TF, we expect a tetramer BEC to emerge from a degenerate Fermi gas
of dimers [25], realizing a BCS–BEC crossover [28] which features anisotropic pairing due
to the dipolar interactions [116], as illustrated in Fig. 7.12a. The other possibility is to ex-
tend the tetramer lifetime using the resonance at circular polarization, where the improved
shielding increases tetramer lifetime to hundreds of milliseconds. As our experiments sug-
gest that they are collisionally stable against dimer–tetramer collisions, it is promising to
evaporatively cool tetramers to lower temperatures [24].

Another interesting direction is to study the excited states of the FL tetramers. At
higher ellipticities and Rabi frequencies, the potential is deep enough to hold more than
one bound state, which corresponds to rovibrational excitation of the tetramers. For
vibrational (rotational) excitations, the radial (axial) wave function of the constituent
dimers has one or more nodes [260]. Such excited FL states have more complex structures,
which can be probed similarly with microwave-field modulation.

The creation of FL tetramers opens up a pathway to explore the rich landscape of
the four-body potential energy surfaces. Similar to diatomic molecules, the long-lived
weakly bound FL state provides an ideal starting point for deterministic optical transfer
to deeply bound states within the PES [281–283]. For the PES of (NaK)2 molecules, there
are three energy minima which feature distinct geometries including D2h, Cs, and C2v

symmetries [80], as illustrated in Fig. 7.12b. These states possess electric dipole and/or
quadruple moments, and together with their rich rovibrational structures, opening up new
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possibilities for studying eight-body collisions and quantum many-body phenomena with
both strong dipolar and quadrupolar interactions.

The demonstrated electroassociation via FL resonances is applicable to any polar mol-
ecules with a sufficiently large dipole moment [76, 106, 108, 109, 267, 268]. For example,
it can be applied to laser cooled polyatomic molecules, such as CaOH and SrOH [76],
to form hexatomic molecules and beyond. It can also facilitate association of few-body
bound states consisting of more than two polar molecules [275]. Electroassociation can be
generalized to d.c. electric fields, where interspecies FL resonances could allow association
of two molecules from distinct molecular species. One can even imagine a scalable assem-
bling process, where we sequentially associate pairs of deeply bound molecules into weakly
bound FL molecules, convert them into deeply bound states via optical transfer [281,282],
then associate these molecules into even larger FL molecules, as depicted in Fig. 7.12c.

In conclusion, we have created and characterized field-linked tetratomic (NaK)2 mole-
cules, which is so far the first tetratomic molecules attained in the 100 nK regime. The
properties of these tetramers are highly tunable with the microwave field, and can be
sufficiently long-lived and collisional stable. Thanks to the universality of field-linked res-
onance, our approach can be generalized to a wide range of polar molecules, including
more complex polyatomic molecules. Our results provide a general approach to assemble
weakly bound ultracold polyatomic molecules and open up possibilities to investigate new
quantum many-body phenomena.
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Chapter 8

Holistic view of shielding

With a comprehensive understanding of microwave shielding in hand, we are ready to
compare it with other shielding schemes. In this chapter, I will discuss microwave shielding
and Förster resonance shielding, comparing their respective advantages and disadvantages.
The treatment is inspired by Ref. [116, 284], and for completeness, I will also mention
shielding in confined geometries.

8.1 A simple model for resonant shielding

Both Förster resonance shielding and microwave shielding exploit an avoided crossing that
couples the upper branch of the potential energy curve to a repulsive lower branch. The
term “resonant” refers to the situation when the upper and lower branches become en-
ergetically degenerate. In the case of Förster resonance shielding, this degeneracy occurs
between the states |J = 1,MJ = 0⟩|10⟩ and |20⟩|00⟩, while for microwave shielding, it
occurs when dressing on resonance to the rotational transition ∆ = 0. Hereafter, we refer
to Förster resonance shielding as d.c. shielding. Near this degeneracy, a two-level problem
involving a 2× 2 matrix can be considered [116, 284]

(
Ea(r, θ) W (r, θ)
W (r, θ) Eb(r, θ)

)
. (8.1)

1A dimensionless analysis for shielding and FL resonance is presented in Table 8.1. The reader is
welcome to look up their favorite molecule.
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For d.c. shielding, the terms are defined as [284]

Ea(r, θ) =
d211
r3

(1− 3 cos2 θ) + E1, (8.2)

Eb(r, θ) =
d00d22 + d02d20

r3
(1− 3 cos2 θ) + E2, (8.3)

W (r, θ) =
√
2
d10d12
r3

(1− 3 cos2 θ). (8.4)

Here, dij are the dipole matrix elements introduced in Chapter 4, and E1 and E2 represent
the threshold energies of the two collisional channels. We adopt natural units with 4πϵ0 =
h̄ = 1. For microwave shielding with circular polarization, the terms are [116]

Ea(r, θ) = − d20
3r3

u2v2(1− 3 cos2 θ), (8.5)

Eb(r, θ) = −d
2
0

r3
u2(1 + 3 cos2 θ)− 1

2
(Ωeff −∆), (8.6)

W (r, θ) =
d20√
2r3

u2v sin θ
√
1 + cos2 θ. (8.7)

The coefficients are as defined in Chapter 6. The potential energy surfaces are given by
the eigenvalues of the matrix

E±(r, θ) =
1

2
(Ea + Eb)±

1

2

√
(Ea − Eb)2 + 4W 2. (8.8)

D.C. shielding is most effective at around dE/B = 3.4 [103], where E1 > E2. Thus,
we can expand Eq. (8.8) for W ≪ E1 − E2 and obtain an effective potential similar to
Eq. (6.3) for microwave shielding

E+ ≈ Ea +
W 2

E1 − E2

. (8.9)

Ignoring the energy offset, we obtain a form analogous to Eq. (6.3)

Veff,d.c. =
C3

r3
(1− 3 cos2 θ) + C6

r6
(1− 3 cos2 θ)2. (8.10)

Here C3 = d211 and C6 = 2(d10d12)
2/(E1 − E2). The choice of C6 ensures its s-wave

contribution is the same as for microwave shielding. For comparison, Eq. (6.3) for the
circularly polarized case is copied here

Veff,mw =
C3

r3
(3 cos2 θ − 1) +

C6

r6
sin θ2(1 + cos2 θ). (8.11)

Besides the difference in coefficients, the angular dependence of C6 and the sign of the
dipole-dipole interaction differ between the two shielding schemes. This is attributed to
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the different symmetry of a d.c. field and a circularly polarized microwave. As we will
discuss later, for a d.c. field, the first FL resonance occurs along the z-direction, in contrast
to the xy-plane for microwave shielding.

As a further simplification, we can consider the projection of the effective potentials in
the corresponding partial waves. For indistinguishable bosons, the dominant partial wave
is s-wave, and the interaction averages as

⟨Veff(r)⟩ =
∫ π

0

1

2
Veff(r, θ) sin θdθ =

4

5

C6

r6
. (8.12)

Interestingly, the C3 contribution vanishes due to the scattering being isotropic. As a
result, its leading-order contribution arises from coupling to d-wave, resulting in a 1/r4

potential, given by [75]

⟨V (2)
eff (r)⟩ = −

V 2
eff,0020

l(l + 1)/Mr2
= − 2

15

MC2
3

r4
. (8.13)

Here, I utilize the partial wave expansion provided in Appendix D.

For indistinguishable fermions, where the dominant partial wave is p-wave, the expres-
sions for m = 0 and m = ±1 are as follows

⟨Veff(r)⟩ =
∫ π

0

3

2
Veff(r, θ) sin θ cos2 θdθ,

=


−4

5

C3

r3
+

44

35

C6

r6
, d.c.

4

5

C3

r3
+

4

7

C6

r6
, mw

(8.14)

and for m = ±1

⟨Veff(r)⟩ =
∫ π

0

3

4
Veff(r, θ) sin θ sin2 θdθ,

=


2

5

C3

r3
+

4

7

C6

r6
, d.c.

−2

5

C3

r3
+

32

35

C6

r6
, mw.

(8.15)

To evaluate C3 and C6 for d.c. shielding, we obtain the dipole matrix elements by diag-
onalizing the rotational Hamiltonian under the d.c. electric field. A similar calculation has
been performed for the t-J-V -W model in Chapter 5, and the results are partially depicted
in Fig. 5.1. The relative d.c. Stark shift is shown in Fig. 8.1a, and the avoided crossing
between |10⟩|10⟩ and |20⟩|00⟩ occurs at F = 3.25.
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Figure 8.1: Dimensionless Analysis of d.c. Shielding. (a) Energies for the two
pertinent channels in d.c. shielding, plotted as a function of the rescaled field F = d0E/B.
(b) WKB phase of d.c. shielding versus F , as computed from Eq. (8.19).

Ref. [76, 103] performed a dimensionless analysis for both d.c. and microwave shielding.
In both cases, the shielding performance is characterized by the rescaled rotational constant

B̃ =
BM3

h̄6

(
d20
4πϵ0

)2

. (8.16)

For B̃ > 108, corresponding to all bialkali except KRb and NaLi, both d.c. and microwave
shielding operate efficiently, achieving a gamma ratio above 1000. Even for a less favorable
species, KRb, a gamma ratio of 10 has been observed in 3D [105].

8.2 D.C. and microwave FL resonances
In this section, I examine the condition for FL resonances using the WKB approximation,
as previously described in Chapter 6. The WKB phase is given by

φWKB =

∫
V (r)≤0

√
−MV (r)dr. (8.17)

For a potential expressed as V (r) = C2m/r
2m − Cn/r

n with n < m, the integral can be
analytically evaluated

φWKB =
√
MC

2−n
2(2m−n)

2m C
m−1
2m−n
n

√
πΓ
(

n−2
4m−2n

)
2(m− 1)Γ

(
m−1
2m−n

) . (8.18)
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The WKB phase can be calculated using the effective potentials. For bosons, we have

φl=0 ≈ 0.117
M3/2C2

3

C
1/2
6

=


0.117

C̃2
3

C̃
1/2
6

B̃1/2, d.c.

0.0650
ad

aΩ(1 + δ2r )
5/4
, mw.

(8.19)

Here, C̃3 and C̃6 are numerical coefficients dependent on the field strength F , ad is the
dipolar length for d = d0, and aΩ =

√
2h̄/MΩ. For fermions, we ignore the centrifugal

potential to derive analytic expressions. For d.c. shielding, where only m = 0 is attractive,
we find

φl=1,d.c. ≈ 1.51
M1/2C

2/3
3

C
1/6
6

= 1.51
C̃

2/3
3

C̃
1/6
6

B̃1/6. (8.20)

For microwave shielding, where both m = ±1 are attractive, we obtain

φl=1,mw ≈ 1.00
M1/2C

2/3
3

C
1/6
6

= 0.52

(
ad

aΩ(1 + δ2r)
5/4

)1/3

. (8.21)

The distinction between different molecular species ultimately lies in the rescaled rotational
constant B̃ and a coefficient related to F . For microwave shielding, the rotational constant
B in the WKB phase cancels out, thus only ad, aΩ and δr are relevant.It should be noted
that the formulas derived here serve as leading-order approximations. When additional
partial waves are incorporated into the calculations, higher-order terms related to the
dimensionless parameter M1/2C

2/3
3 C

−1/6
6 will be included.

Resonance occurs when the WKB phase is sufficiently large. We can determine this phase
by employing exemplary coupled-channel calculations. The first FL resonance of fermionic
NaK occurs at 83 MHz (δr = 0), leading to φl=1,mw/π ≈ 1.6. The first resonance of bosonic
NaRb [285] occurs at 3 MHz, corresponding to φl=0,mw/π ≈ 2.8. For d.c. shielding, we refer
to Ref. [103] and extract the phases for the first four resonances as φl=0,d.c./π ≈ 1.0, 4.0,
10, and 17. As depicted in Fig. 8.1b, the dependence of φWKB,d.c. on F is not monotonic
and reaches a maximum at F = 3.44. Consequently, FL resonances may either not occur,
if the maximum WKB phase is too small, or may appear in pairs. The analytical results
of d.c. and microwave FL resonances for different molecular species are summarized in
Table 8.1.

8.3 Shielding in confined geometries
Shielding within confined geometries functions by constraining the direction of collisions
through external confinement. By confining the molecules within one or two dimensions
and polarizing them along the confinement direction, the collisions are dominated by the
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Table 8.1: Shielding of polar molecules. For each molecule, the table lists the dipole
moment d0, dimensionless rotational constant B̃, electric field for shielding Eshield

d.c. , the
number of FL resonances for d.c. shielding N res

d.c., and the Rabi frequency of the first
microwave FL resonance Ωres

a.c.. The parameters used in the calculations are taken from
Ref. [76, 120, 286]. The asterisks in the Rabi frequency represent the value for fermionic
molecules. Given the simplified model and the approximations made, the results in the
last column should be considered as qualitative estimations.

d0 (D) B̃
Eshield

d.c. (kV/cm)

F = 3.25 - 3.8
N res

d.c.
Ωres

a.c./2π(MHz)
(approximated)

1Σ

NaLi 0.463 3.12× 105 159 - 186 - 3.1× 105

KRb 0.574 5.47× 106 12.5 - 14.6 - 1.7× 103, 5.1× 103∗

RbCs 1.17 1.62× 108 2.70 - 3.16 - 26
NaK 2.72 8.51× 108 6.70 - 7.83 - 28, 83∗

KCs 1.906 1.40× 109 3.15 - 3.68 - 5.6, 17∗

LiK 3.45 2.37× 109 14.6 - 17.1 - 28, 82∗

NaRb 3.1 5.67× 109 4.35 - 5.09 2 3.1
LiRb 4.0 3.00× 1010 10.7 - 12.4 2 1.8, 5.5∗

NaCs 4.75 7.59× 1010 2.42 - 2.83 2 0.20
LiCs 5.52 3.26× 1011 6.78 - 7.93 4 0.15, 0.44∗

FrAg 9.20 3.66× 1012 0.452 - 0.528 8 1.5× 10−3

2Σ

CaOH 1.465 1.88× 108 44.2 - 51.7 - 4.5× 102

RbYb 1.218 3.11× 108 1.96 - 2.29 - 10
RbSr 1.54 3.34× 108 2.26 - 2.64 - 14
CsYb 1.478 7.45× 108 1.09 - 1.28 - 2.8
SrOH 1.9 2.21× 109 25.4 - 29.7 - 29
CaF 3.07 4.12× 109 21.6 - 25.2 - 21
CaH 2.53 7.88× 109 323 - 378 2 1.4× 102

SrF 3.47 2.94× 1010 14.0 - 16.4 2 2.2
BaF 3.17 5.57× 1010 13.2 - 15.4 2 1.0
YO 4.524 1.24× 1011 16.6 - 19.4 4 0.79
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repulsive side-by-side collisions, while attractive head-to-tail collisions are suppressed [99–
101]. If we assume the confinement and the induced dipole moment d are both aligned
along the z-axis, the intermolecular interaction is given by [100]

V =
µω2

zz
2

2
+
h̄2 (m2 − 1/4)

Mρ2
− C6d

r6
+
d2

r3

(
1− 3z2

r2

)
, (8.22)

where r = (ρ, ϕ, z) denotes the relative position between two molecules in cylindrical co-
ordinates, and r ≡ |r|. The harmonic trap of frequency is represented by ωz, leading to a
characteristic length ah =

√
2h̄/Mωz. The projection m of the relative angular momen-

tum is conserved, and the term related to C6d describes the short-range van der Waals
interaction with a characteristic length as defined in Chapter 4.

Efficient shielding occurs in the dipolar-dominated regime, characterized by the separa-
tion of energy scales add > ah ≫ ā, where add is the dipolar length as defined in Chapter 4.
This is similar to the case for microwave shielding, whereas here the trapping frequency
plays the role of the microwave Rabi frequency. As predicted in Ref. [100], a gamma
ratio of 100 is attainable for d > 0.3D and ωz/2π > 25 kHz for bosonic molecules. For
fermions, a gamma ratio exceeding 100 can occur either near d = 0.2D (as demonstrated
with KRb [99]) or for d > 0.5D.

The confinement shielding scheme depends solely on the mass and the induced dipole
moment of the molecules, which is similar to microwave shielding. However, the maximum
dipole moment can reach d0, which is a factor of

√
12 higher than microwave shielding,

making it applicable to a broader range of molecular species. The drawback of confinement
shielding lies in the limited tunability of the short-range potential. Since the potential is
repulsive in 2D, it cannot host tetramer bound states and, consequently, cannot utilize
FL resonances to control the scattering length. Additionally, in a confined geometry, the
interaction is isotropic and thus is not suitable for probing the anisotropic effects of dipole-
dipole interaction.

8.4 Comparison of shielding schemes
Table 8.2 offers a comparison of the three shielding schemes, each with its distinct benefits
and limitations. For setups lacking in-vacuum electrodes, or where electrodes are situated
too close to the glass cell, generating the requisite electric field for d.c. shielding becomes
problematic. In such scenarios, microwave shielding serves as a valuable alternative, as the
microwave setup can be placed outside vacuum and be easily maintained. Conversely, d.c.
shielding is not constrained by one-body loss, as the electrodes inherently act as a low-
pass filter for high-frequency noise corresponding to the energy splitting of the collisional
channels, which is on the order of the rotational constant. However, this filtering advantage
comes at the cost of slower dynamic responsiveness, unlike microwaves, which can be
adjusted on a submicrosecond timescale. When the body-fixed dipole moment is a limiting
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factor, d.c. shielding in a confined geometry is preferred due to its capability of fully
polarizing the molecules.

Broadening the scope to consider molecules with large dipole moments, such as CsAg
and FrAg [286], alleviates the difficulties in generating the necessary electric fields. Conse-
quently, the choice between shielding schemes becomes less influenced by technical limita-
tions. Microwave shielding then emerges as the more attractive option due to its flexibility
in manipulating the interaction potential and its rapid dynamic response, which are partic-
ularly advantageous for both the preparation and probing of many-body quantum phases.

Table 8.2: Comparison of existing shielding schemes for polar molecules. The
columns specify the technical requirements, applicability to various molecular species,
existence of FL resonances, and the maximum effective dipole moment dmax. The defined
scope of applicability is such that a gamma ratio higher than 1000 can be achieved.

Requirements Applicability FL resonance dmax

Microwave
shielding

Low-noise,
high power,

circularly polarized
microwave.

B̃ ≳ 108

[76]
Universal.

Tunable anisotropy
with ellipticity.

d0/
√
12

Förster
resonance
shielding

Stable high
d.c. electric field.

B̃ ≳ 108

[103]
B̃ ≳ 109 [103] 0.145d0

D.C.
shielding
in 2D

Intermediate
d.c. electric field,
strong confinement.

d0 ≳ 0.4D
[100]

Not applicable d0
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Chapter 9

Conclusion and outlook

In this thesis, we establish microwave shielding as a powerful tool for stabilizing molecular
collisions for evaporative cooling, inducing scattering resonances to tune their interaction,
and associating weakly bound tetratomic molecules. The application of this robust tool
within our Fermi degenerate molecular gas offers ample opportunities for quantum sim-
ulations, particularly those involving long-range dipole-dipole interaction, as discussed in
corresponding chapters. As a near term goal in our setup, we are striving to enhance the
evaporation efficiency to reach below the critical temperature for dipolar p-wave superflu-
idity, and to create a BEC of FL tetramers.

Microwave shielding exhibits its utmost potential in molecules possessing a larger dipole
moment, such as NaRb, NaCs, LiRb and LiCs, which are either predicted or observed to
have a larger shielding factor than NaK [76,108,109]. Their large dipole moment allows for
easier polarization and the attainment of a high Rabi frequency. Furthermore, the Rabi
frequencies required for FL resonance in these molecules are considerably lower than in
NaK, e.g. the first FL resonance for LiRb occurs at 2π × 4MHz which is 20 times smaller
than for NaK [285]. With the same microwave power one can explore the regime of high
order FL resonances and the excited states of tetratomic molecules.

From a theoretical perspective, the sizable shielding core of microwave-shielded molecules
sets them fundamentally apart from atoms. Ultracold atomic scattering can be regarded as
a contact interaction due to the phase shift rendering the details of the short-range poten-
tial at ≲ 10 a0. However, with the shielding core of microwave-shielded molecules reaching
up to 1000 a0, comprising over 10% of the intermolecular distance, their interactions can
no longer be approximated as zero-range. Consequently, conventional notions of scatter-
ing length/volume become insufficient, necessitating higher order momentum dependent
terms [285]. In fact, this large-core interaction is a critical component of interactions in
condensed-matter systems. For instance, it underlies the anti-bunching phenomenon in
liquid helium superfluids, restricting the condensate fraction to 10%, which is in stark

137
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contrast to a pure condensate of bosonic atoms. The tunable shielding potential thereby
offers a platform to study such phenomena. Moreover, the shielding core challenges the
mean-field treatment for dipolar gases, indicating the potential for a stable sample to exist
even in the regime of mean-field collapse.

Microwave-shielded ultracold polar molecules have emerged as a novel platform for quan-
tum simulation, teeming with unexplored quantum many-body phenomena. As various re-
search groups strive to expand the boundaries of this platform, we anticipate that through
combined theoretical and experimental efforts, we will enhance our control over ultracold
polar molecules and deepen our understanding of their many-body physics in the near
future.



Appendix A

23Na40K properties and constants

This appendix contains constants for the relevant molecular states presented in this the-
sis. The most relevant electronic states are X1Σ+(the ground state), a3Σ+(the Feshbach
state), b3Π (the excited state for near-resonant trapping), B1Π ∼ c3Σ+(the STIRAP in-
termediate state). Here, the Σ states are close to Hund’s case (b), while the Π states are
close to Hund’s case (a) [287].

A.1 Rotation and hyperfine structures
In Chapter 4, we present the rotational and hyperfine energy levels and coupling strengths
of 23Na40K in the electronic and vibrational ground state by diagonalizing the Hamiltonian
[289]

H = Hr +Hhf +HS +HZ, (A.1)

where

Hr =BvJ⃗
2 −DvJ⃗

2J⃗2, (A.2)
Hhf =

∑
i=Na,K

V⃗i · Q⃗i +
∑

i=Na,K
ciJ⃗ · I⃗i (A.3)

+ c3I⃗Na · T⃗ · I⃗K + c4I⃗Na · I⃗K, (A.4)
HS =− d⃗ · E⃗, (A.5)
HZ =− grµJJ⃗ · B⃗ −

∑
i=Na,K

gi (1− σi)µJI⃗i · B⃗. (A.6)

The Hamiltonian consists of four parts. Firstly, the rotational Hamiltonian Hr is related
to the angular momentum J⃗ for rotation of the molecule about its center of mass. The
rotational constants and centrifugal distortion are denoted as Bv and Dv, respectively.
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Figure A.1: Molecular potential curves for NaK. The potentials are calculated
based on Ref. [288]. Internuclear distances are given in units of the Bohr radius a0. Solid
lines correspond to singlet states, dashed lines to triplets.
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The second contribution is the hyperfine Hamiltonian Hhf, which is related to the nuclear
spins Ii. It is comprised of four parts. The first term represents the electric quadrupole
interaction, given by the coupling constants (eqQ)Na and (eqQ)K. Following that, the
second component describes the interaction between the nuclear magnetic moments and the
magnetic field, which is generated by the molecule’s rotation. The coupling constants cNa
and cK are linked with this spin-rotation interaction. The third and fourth terms describe
the tensor and scalar interactions between the nuclear magnetic moments, characterized
by the tensor and scalar spin-spin coupling constants c3 and c4 respectively.

The next term HS describes the Stark shift in a d.c. electric field, where d⃗ = d0d̂ is
the body-fixed dipole moment pointing along the internuclear axis d̂. The electric field
couples different rotational states with the same mJ , and induces a dipole moment in the
lab frame, as shown in Fig. 4.1a and c.

The last term is the Zeeman Hamiltonian HZ , which is related to the projection of the
angular momentums along the magnetic field. This contribution includes two terms repre-
senting the interaction of rotational and nuclear components with an externally imposed
magnetic field. The molecular rotation induces a magnetic moment proportional to the
molecule’s rotational g-factor (gr). In a similar manner, the nuclear interaction is propor-
tional to the nuclear g-factors (gNa, gK) and the nuclear shielding constants (σNa, σK) for
each species.

We adapt the python script maintained by the Durham group [158] for diagonalizing
this Hamiltonian.

A.2 The STIRAP scheme
To accurately model the STIRAP process, it is required to obtain the wave functions
corresponding to the relevant molecular states, as well as their coupling matrix elements.
Additionally, the natural linewidth of the excited state needs to be considered.

A.2.1 Feshbach state
We use a Feshbach resonance at 78.3G between Na |F = 1,mF = 1⟩ and K |9/2,−9/2⟩ for
creating Feshbach molecules. The coupling from the Feshbach state |FB⟩ to the excited
state |E⟩ is mostly contributed by the close channel component of the Feshbach state,
whose fraction Z increased with the binding energy of the Feshbach molecule Eb. The
closed-channel fraction is approximately given by the ratio of magnetic moment between
the Feshbach state and the bare molecular state

Z ≈ 1

µc

∂Eb

∂B
,
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Table A.1: Values of the coupling constants relevant to the NaK hyperfine Hamiltonian.

Constant Value Source
iNa 3/2

iK 4

d0 2.72(6)D [150]
Bv=0 h× 2.8217297(10)GHz [290]
Dv=0 ignored

(eQq)Na −h× 0.187(35)MHz [290]
(eQq)K h× 0.899(20)MHz [290]
cNa h× 117.4 Hz [289]
cK −h× 97.0 Hz [289]
c3 −h× 48.4Hz [289]
c4 −h× 409(10)Hz [290]
gr 0.0253 [289]

gNa (1− σNa) 1.477 [289]
gK (1− σK) −0.3236 [289]

where µc is the magnetic moment of the bare molecular state. We typically perform
STIRAP at a magnetic field of 72.4G, where the absolute magnetic moment of the Feshbach
state vanishes µo − ∂Eb

∂B
= 0, thus |FB⟩ is insensitive to the magnetic field fluctuations,

which is beneficial for the STIRAP stability. At that field, the close channel fraction is
more than 80%.

The closed-channel wave function is dominated by the highest bound state in the triplet
potential a3Σ, with good quantum numbers N = 0, S = 1, and J = 1, where N is the
total angular momentum excluding the electron spin. Its wave function can be written in
the spin decoupled basis

|FB⟩ ∝
∑

MJmiNamiK

cfNSJMJmiNamiK
|NSJ,MJmiNamiK⟩. (S7)

The coefficients in the uncoupled basis are given by Table A.2, obtained from coupled-
channel calculations provided by Eberhard Tiemann.

A.2.2 Intermediate excited state
The intermediate excited state |E⟩ used for the new STIRAP scheme contains strong
components of |c3Σ+, v = 35, J = 1⟩ and |B1Π, v = 12, J = 1⟩, with 64% triplet and 36%
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Table A.2: The closed-channel wave function of the Feshbach state.

MJ miNa miK cfNSJ,MJ ,miNa ,miK

-1 -3/2 -1 0.0614
-1 -1/2 -2 -0.236
-1 1/2 -3 0.365
-1 3/2 -4 -0.132
0 -3/2 -2 0.0663
0 -1/2 -3 0.160
0 1/2 -4 -0.585
1 -3/2 -3 -0.362
1 -1/2 -4 0.534

singlet fraction. The contribution of different hyperfine states is given in Table A.3. This
state was characterized in Ref. [291].

A.2.3 Coupling strength
The total coupling strengths and the excited state line width are obtained experimentally
from two-photon spectroscopy [124]. At 72.4G, corresponding to a closed-channel fraction
of 0.84, we found Ω̄p = 2π×6.3(4) kHz/

√
mW/cm2 and Ω̄S = 2π×142(8) kHz/

√
mW/cm2.

The measured excited-state line width is γ = 2π × 11(1)MHz.

The relative contribution from each hyperfine states can be calculated from [292]

ΩS ∝ ⟨ψB1Π|d0|G⟩

∝ ceJ ′Ω′MJmiNamiK
(−1)J

′−MJ

(
J ′ 1 J
MJ qS −MJ

)
, (A.8)

and

Ωp ∝ ⟨ψc3Σ|d0|FB⟩

∝
∑

MJmiNamiK

ceN ′S′J ′MJmiNamiK
cfNSJMJmiNamiK

(−1)J
′−MJ

(
J ′ 1 J
MJ qp −MJ

)
, (A.9)

where q denotes the polarization, with qp = 1 denotes σ+ for the pump beam, and qS = −1
denotes the σ− for the Stokes beam.
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Table A.3: Quantum numbers of the STIRAP intermediate state, |E⟩. Only the eight
strongest contributions, which together make up 99.2% of the weight, are shown [124].

Manifold mJ miNa miK amplitude
0 1/2 −3 0.120

B1Π
0 3/2 −4 −0.275

1 −1/2 −3 0.0988

1 1/2 −4 −0.508

0 1/2 −3 −0.160

c3Σ+
0 3/2 −4 0.365

1 −1/2 −3 −0.132

1 1/2 −4 0.677

A.3 Polarizabilities
A.3.1 Off-resonant transitions
The background polarizabilities (as defined in Eq. (2.6)) at the experiment relavent wave-
lengths are given in Table A.4.

Table A.4: Background polarizabilities at different wavelengths.

Wave length (nm) α∥ (Hz/(W/cm2)) α⊥ (Hz/(W/cm2)) Source
1550 34 12 [132]
1064 47.5 16.9 [293]
866 105(3) 20(1) [128]

A.3.2 866 nm near-resonant transitions
The polarizability contributed from the |X1Σ+, v = 0, J⟩ ↔ |b3Π0, v

′ = 0, J ′⟩ transition is
given by [128]

αJ=0 = −3πc2

2ω3
0

Γ

∆
, (A.10)

αJ=1,MJ=0 = −3πc2

2ω3
0

(
Γ cos2 θ

∆+ 2(B +B′)/h̄
+

1

5

Γ(cos2 θ + 3)

∆− 2(2B′ − B)/h̄

)
, (A.11)

for linearly polarized light, in the case where ∆ = ω−ω0 is much larger than the hyperfine
structure of the resonance. Here, θ is the angle between the light polarization and the
quantization axis. The relevant constants are given in Table A.5.
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The photon scattering rate of molecules in |0⟩ near the X ↔ b transition is given by

γsc =
3πc2

2h̄ω3
0

ΓΓe

∆2
I, (A.12)

where I is the light intensity and Γe is the natural linewidth of the excited state.

Table A.5: Summary of the molecular response at the X ↔ b transition [128].

Quantity Value
ω0 2π × 346.123 58(7)THz
Γ 2π × 301(10)Hz
Γe 2π × 13.0(5) kHz
B′ h× 2.79(2)GHz

A.3.3 785 nm near-resonant transitions
We characterize the 785 nm transition which we use for density matching the Na BEC and
the K Fermi gas, and to compress molecules during evaporation and shallow-angle lattice
loading.

α = −3π1c
2

2ω3
1

Γ1

ω − ω1

− 3π2c
2

2ω3
2

Γ2

ω − ω2

+ α0,785, (A.13)

γsc/I =
3πc2

2h̄ω3
1

Γ1Γe1

(ω − ω1)2
+

3πc2

2h̄ω3
1

Γ2Γe2

(ω − ω2)2
+ β0,785, (A.14)

Table A.6: Summary of the molecular response near 785 nm.

Quantity Value
ω1 2π × 379.785 72(8)THz
ω2 2π × 382.111 59(8)THz
Γ1 2π × 109(17) kHz
Γe1 2π × 34(5)MHz
Γ2 2π × 123(18) kHz
Γe2 2π × 20(3)MHz
α0,785 2π × 255(21) kHz
β0,785 2π × 5(1)mHz/(W/cm2)
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Appendix B

Elastic scattering between two
rotating dipoles

Here I generalize the derivation in Ref. [75,294] to polar molecules dressed with microwave
with ellipticity ξ. The scattering amplitude under the Born approximation is the sum of
the contribution form each term of the interaction potential, which reads

fBorn(k
′,k) =

2

3

[
(1− sin 2ξ)(3 cos2 θq − 1)− 2 sin 2ξ(3 cos2 θ′q − 1)

]
, (B.1)

where θq(θ′q) is the angle between the momentum transfer q = k − k′ and the z(y)-axis.
Following that, the averaged total cross section for indistinguishable fermions is given by

σBorn =
16π

15
(1 + 3 sin2 2ξ)a2dd. (B.2)

The eikonal cross section is generalized by noting that the interaction potential is no
longer cylindrical symmetric, thus its orientation has to be parametrized by the three Euler
angle (α, β, γ) instead of only (α, β). The angle (α, β) describes the propagation direction
of the microwave ϵ̂∥, and the angle γ described the orientation of the polarization ellipse
ϵ̂⊥. The eikonal phase is then given by

χ = − 2

kb2

(
−(1− sin 2ξ)[1− (k̂avg · ϵ̂∥)2 − 2(b̂ · ϵ̂∥)2] + 2 sin 2ξ[1− (k̂avg · ϵ̂⊥)2 − 2(b̂ · ϵ̂⊥)2]

)
=

2

kb2
(A(α, γ) cos(2ϕ− 2β) + B(α, γ) sin(2ϕ− 2β)), (B.3)

where b is the impact parameter, k̂avg is the unit vector along the average collision mo-
mentum between incident and scattered wave. Following that, the total cross section for
incident wavevector k̂i is given by

σEi(k̂i) =
4πadd

k

√
Aξ(α, γ)2 +Bξ(α, γ)2, (B.4)
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with

Aξ(α, γ) =
1

2

(
(cos 2α + 3) cos 2γ sin 2ξ − 2 sin2 α

)
, (B.5)

Bξ(α, γ) = 2 cosα sin 2γ sin 2ξ. (B.6)

Averaging over the Euler angles we obtain the averaged total cross section

σEi =
1

2π

∫ 2π

0

dγ
∫

dk̂iσEi(k̂i) (B.7)

=
8πadd

3k

3

(4π)2

∫ π

0

sinαdα
∫ 2π

0

dβ
∫ 2π

0

dγ
√
Aξ(α, γ)2 +Bξ(α, γ)2

≡ 8πadd

3k
I(ξ). (B.8)



Appendix C

Determination of the microwave
ellipticity

In this Appendix, I will show that the ellipticity ξ can be uniquely determined from
the electric field components, given the tilting angle of the microwave ellipse. This is
experimentally relevant as the tilt angle of the projected microwave ellipse can be obtained
from the dissociation pattern of the tetramers as shown in Fig. 7.11.

We define the xyz coordinates in the lab frame, where z is the vertical direction, and y
is direction of the horizontal imaging. After a rotation along the z axis for an angle β we
define x′y′z′ coordinates, where x′ orients along the long axis of the microwave ellipse in
the x′y′ plane. In this frame, we parametrize the microwave ellipse by

x′(t) = a′ cos t, (C.1)
y′(t) = b′ sin t, (C.2)
z′(t) = c′ cos(t+ t0), (C.3)

where a′, b′, and c′ are the field strengths, which related to the field strength in the σ± and
π basis by a coordinate transform

a′ = (E+ + E−)/
√
2, (C.4)

b′ = (E+ − E−)/
√
2, (C.5)

c′ = Eπ. (C.6)

The projection of the microwave ellipse in the xz plane is given by

x(t) = x′ cos β − y′ sin β = a′ cos β cos t− b′ sin β sin t, (C.7)
z(t) = z′ = c′ cos(t+ t0). (C.8)
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Figure C.1: Microwave el-
lipse. The ellipse of the a.c.
electric field (blue) and its pro-
jection to the xy (orange) and
yz (green) planes. The blue
dashed line marks the direc-
tion of propagation. The or-
ange and green dashed lines
mark the direction of the long
axis of the projected ellipse.

Now we make use of the angle α, which is the tilt of the projection of the ellipse in the xz
plane, for an alternative parametrization

x(t) = a sinα cos(t+ t1)− c cosα sin(t+ t1), (C.9)
z(t) = a cosα cos(t+ t1) + c sinα sin(t+ t1). (C.10)

Comparing the two parametrization we obtain the following relation

a′ cos β = a cos t1 sinα− c sin t1 cosα, (C.11)
b′ sin β = a sin t1 sinα + c cos t1 cosα, (C.12)
c′ cos t0 = a cos t1 cosα + c sin t1 sinα, (C.13)
c′ sin t0 = a sin t1 cosα− c cos t1 sinα. (C.14)

Eq. (C.11)-(C.14) determine the offset phase t0, thus determines the polarization.

To obtain the ellipticity we first calculate the long and short axis of the ellipse

a = max(r(t)), (C.15)
b = min(r(t)), (C.16)

r(t) =
√
x2 + y2 + z2. (C.17)

The ellipticity can then be calculated as

tan ξ = a− b

a+ b
. (C.18)

After simplification we obtain

ξ =
1

2
arcsin

(√
(a2 − b2 + c2 cos(2t0))2 + (c2 sin(2t0))2

a2 + b2 + c2

)
. (C.19)
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Without the angular information α and β, the unknown phase t0 leads to a systematic
uncertainty of the ellipticity between

ξ|t0=0 =
1

2
arcsin

(
2E+E− + E2

π

E2
+ + E2

− + E2
π

)
, (C.20)

and
ξ|t0=π =

1

2
arcsin

(
2E+E− − E2

π

E2
+ + E2

− + E2
π

)
. (C.21)
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Appendix D

Partial wave expansion of the
effective potential

In the derivation of the WKB phase Eq. (6.4) and the effective potentials in Chapter 8,
we use the following partial wave expansion of the effective potential [116]

Veff,lml′m′(r) = 2C3

r3

√
2l′ + 1

2l + 1
C l0

l′020[C
lm
l′m′20 +

√
3

2
sin 2ξ(C lm

l′m′22 + C lm
l′m′2−2)]

+
2C6

r6

√
2l′ + 1

2l + 1
{[2
5
(1− 1

3
sin2 2ξ)δll′δmm′

− 1

7
C l0

l′020[2(1−
2

3
sin2 2ξ)C lm

l′m′20 +

√
2

3
sin 2ξ(C lm

l′m′22 + C lm
l′m′2−2)]

−
√

2

35
C l0

l′040[

√
2

35
(2 + sin2 2ξ)C lm

l′m′40

+
2√
7
sin 2ξ(C lm

l′m′42 + C lm
l′m′4−2) + sin2 2ξ(C lm

l′m′44 + C lm
l′m′4−4)]}. (D.1)

For l = 1, ml = ±1, we have

v1111 = −2

5

C3

r3
+

4

35

C6

r6
(8− 3 sin2 2ξ), (D.2)

v111−1 = −6

5

C3

r3
sin 2ξ + 4

35

C6

r6
sin 2ξ. (D.3)

For the Y+ channel, we have
v1+ = v1111 + v111−1, (D.4)

= −2

5

C3

r3
(1 + 3 sin 2ξ) + 4

35

C6

r6
(8 + sin 2ξ − 3 sin2 2ξ). (D.5)
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Appendix E

Quantum gas gallery

A unique opportunity of working with ultracold bialkali fermionic molecules is the si-
multaneous access to thermal gases, BEC, and degenerate Fermi gases. These quantum
gases are subjected to external electromagnetic fields, and various optical potentials includ-
ing dipole traps, optical lattices, and patterns generated by a digital-micromirror-device
(DMD) [295]. The interplay of the quantum gases and external forces give rise to complex
dynamics, which we probed by absorption imaging. During the course of this thesis, we are
constantly amazed by the fascinating images of our atoms and molecules, many of them are
created by accident. We have already seen images such as the growth of the KD scattering
pattern (Fig. 2.9) and the moon-shape dissociation pattern of tetramers (cover). Here I
collect more of those images and briefly explain how they were created, without going into
details about the underlying physics.
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Figure E.1: “Atom laser”.1This image shows a sodium BEC (unintentionally) leaking
out of the shallow-angle lattice due to gravity (from left to right). The periodic patterns
arise from matter wave interference between different layers [296]. Created on 2021.02.01.

Figure E.2: “Double-helix”. This series of images show the imperfect matter-wave
refocusing of a BEC in the shallow-angle lattice. Different images correspond to different
width of the refocusing pulse, which increases from left to right. The pattern arises due
to the motion of the BEC during the refocusing. Created on 2021.11.17.

1For an atom laser, the gain medium is a thermal atomic ensemble, while the coherent wave is derived
from a BEC. Atoms can be out-coupled from the confining trap through quantum tunneling of the potential
barrier [297]. An optical lattice serves as one such out-coupling potential [296]. Alternative out-coupling
schemes include radio-frequency [298–300] and two-photon transfers [301]. Interestingly, my supervisor,
Immanuel, was among the pioneering researchers of atom lasers. Following our discussion, he remarked,
“Yes, my PhD work!” in our laboratory chat room.
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a b

dc

Figure E.3: a, “Beating heart”. Potassium atoms situated in a crossed dipole trap
were subjected to a potent magnetic field gradient pulse. Although the aim was to initi-
ate an oscillation and quantify the trapping frequency, the force applied was excessively
strong, causing the atomic cloud to be overly perturbed. As a result, the “heart” of
the cloud bet up and down with the oscillation in the trap. Created on 2019.03.02. b,
“Hourglass nebula”. Kapitza–Dirac scattering of a BEC by a 1D horizontal lattice.
The scattering pattern resembles the differential cross section of the atom–atom colli-
sions. Created on 2021.10.19. c, “Christmas tree”. After implementing the DMD, we
imprinted a isosceles triangle, onto a sodium BEC. The pattern is supposed to represent
a Christmas tree, as a present for the group. Created on 2021.12.21. d, “Parachute”.
Loading from crossed-dipole trap into a light sheet. The light sheet was misaligned,
causing the atoms to spread into its flat potential. Created on 2023.04.22.
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