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Abbreviations 

 

ALS  amyotrophic lateral sclerosis 

CANVAS cerebellar ataxia, sensory neuropathy and vestibular areflexia syndrome 

Clin-CATS clinical nanopore Cas9-targeted sequencing 

CRISPR Clustered Regularly Interspaced Short Palindromic Repeats 

DNA  desoxyribonucleic acid 

dNTP  desoxynucleotides triphosphates 

FMRP  fragile X mental retardation protein 

FSHD  facioscapulohumeral muscular dystrophy 

FSHD-MPA facioscapulohumeral muscular dystrophy – methylation profile analysis 

FRDA  Friedreich’s ataxia   

FXTAS  fragile-X-associated tremor/ataxia syndrome 

FXS  fragile-X syndrome 

HD  Huntington’s disease 

HMW  high-molecular-weight 

NGS  next-generation sequencing 

ONT  Oxford Nanopore Technology 

ORF  open-reading frame 

PacBio  Pacific Biosciences 

PCR  polymerase chain-reaction 

RAN  repeat associated non-AUG 

RBP  RNA binding proteins 

RNA  ribonucleic acid 

RU  repeat unit 

SCA  spinocerebellar ataxia 

SMRT  single-molecule real-time 

STR  short tandem repeat 

TR  tandem repeat 

UTR  untranslated region 

VNTR  variable number tandem repeats 

ZMV  zero-mode waveguide
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2 Introduction 

2.1 Repetitive elements in the human genome and their role in 

pathology 

It is estimated that half of the human genome consists of repetitive sequences,7 with tandem repeats 

being among the most important representatives.8 Tandem repeats (TR) are arrays of simple nucleotide 

sequences that are repeated in direct succession. Based on the size of one repeat unit, short tandem 

repeats (STRs, also known as microsatellites) with sizes of less than 10 base pairs are differentiated 

from variable number tandem repeats (VNTRs, also known as minisatellites) with 10 to 100 base pairs 

in size and satellites with more than 100 base pairs.9 Large satellites consisting of several kilobases are 

called macrosatellites.10 Due to slippage events during DNA replication, DNA repair, and nonallelic 

homologous replication, tandem repeats are highly unstable with respect to their length and show 

mutation rates of up to five orders of magnitude higher than the average mutation rate of the genome.11,12 

Therefore, TRs are a great source of phenotypic variability but also of heritable human disorders.13 

Currently, more than 50 disorders are known to be caused by the expansion of TRs beyond a locus-

specific threshold (mostly STRs) that mainly impair different parts of the nervous system.14 They include 

fragile-X syndrome (FXS, FMR1 locus), Huntington’s disease (HD, HTT locus), amyotrophic lateral 

sclerosis (ALS, C9orf72 locus), Friedreich’s ataxia (FRDA, FXN locus) and many other conditions.15 

Despite their high abundance and relevance in diseases, tandem repeats are poorly characterized due 

to difficulties in sequencing and assigning them to the reference genome using current short-read 

sequencing technologies.16–18 As such, the genotype-phenotype correlation for known repeat disorders, 

as well as their pathomechanism is not fully understood. Especially the effect of repeat interruptions or 

base modifications, such as methylation, on the inheritance and disease severity requires further studies 

and a standardized analysis in genetic testing. Currently, diagnostics still rely on the laborious 

determination of the repeat length by Southern blotting or PCR-based methods.1 Recently, the high 

potential of novel long-read sequencing technologies for the accurate repeat analysis was shown in the 

research setting.19–21 These techniques allow for capturing not only the size of the repeats, but also the 

entire sequence and methylation status of a locus. This is especially important for the diagnosis of 

recently discovered complex repeat disorders such as RFC1 spectrum disorder, SCA31, or SCA37 in 

which the motive of the altered tandem repeat sequence rather than the repeat size determines 

pathogenicity, as preliminary studies indicate.22–24 Additionally, long-read sequencing techniques allow 
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multiple repeat disorders to be analyzed simultaneously. Thus, differential diagnoses can be evaluated 

within one analysis without selecting a subset of single analyses by preconceptions based on the clinical 

phenotype.1 Long-read sequencing is likely to overcome the current limitation of repeat testing, refine 

known genotype-phenotype correlations and to identify additional TRs associated with human 

diseases.1,25  

Facioscapulohumeral muscular dystrophy (FSHD) is unique among the repeat disorders, as it results 

from the contraction of a macrosatellite array (D4Z4 repeat array) and not the expansion of a STR.26 As 

such, it presents with a unique pathomechanism: the derepression of a somatically silenced gene 

(DUX4) resulting in damage to the skeletal muscle.27–29 Despite several therapeutic approaches to target 

FSHD and its high prevalence,30–34 diagnostics based on genetic features (haplotype, repeat length, 

pathogenic variants in SMCHD1, and other epigenetic suppressor genes) remained imprecise.2 For 

FSHD2 patients, in particular, there is a risk of not detecting the disease. Furthermore, predictive testing 

of family members is limited due to the incomplete penetrance of the disease, as is the prediction of 

disease severity. To overcome these diagnostic limitations, diagnostic methods based on epigenetic 

features (methylation) of the D4Z4 macrosatellite array have been proposed but are not implemented in 

routine diagnostics.35–37 In particular, the recent debate on whether methylation plays a role in the 

pathogenesis of FSHD influences a broader investigation and implementation of such methods in 

diagnostics.38,39 

2.2 Repeat expansion disorders as origin of adult-onset ataxia 

2.2.1 General 

The majority of known repeat expansion disorders originate from a microsatellite repeat array that is 

present in each individual and becomes pathogenic when it exceeds a certain size. Due to the high 

instability of microsatellite repeat arrays, repeat expansion disorders show some general features that 

differ from other genetically static disorders.15 The size of microsatellite repeat arrays varies when 

inherited from one individual to another. As such, a repeat disorder may manifest in previously 

unaffected families, especially if paternal individuals carry repeat sizes in the upper normal range. In 

general, the longer the repeat, the more severe and the earlier the disease manifests. Because 

pathogenic repeat expansions tend to expand further in the next generation, individuals of this 

generation often exhibit more severe and earlier manifesting phenotypes, which is referred to as 

anticipation.  
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 Repeat expansion disorders are a frequent cause of hereditary ataxia.40 Hereditary ataxias are 

overlapping neurological conditions characterized by progressive stance and gait disorder, ocular motor 

disturbance, speech difficulties, limb ataxia, and dysdiadochokinesia.1 The manifestation may result 

from dysfunction of the cerebellum, the spinal cord or peripheral sensory loss. Depending on their mode 

of inheritance, autosomal-dominant ataxias such as spinocerebellar ataxias (SCA) 1, 2, 3, 6, 7, 8, 17 

and SCA27B (the latter discovered after publishing paper I of this thesis) are differentiated from the X-

linked fragile-X-associated tremor/ataxia syndrome (FXTAS) and from autosomal-recessive ataxias 

such as Friedreich’s ataxia (FRDA), RFC1 spectrum disorder (Figure 1).1,14,41–43  

 

 

 

Figure 1. Schematic representation of the most prevalent repeat expansion disorders causing hereditary ataxia in 

the European population with their (pathogenic) microsatellite motive, mode of inheritance and position in the 

genome. Own illustration. Abbreviations: AD: autosomal-dominant, AR: autosomal-recessive. 

2.2.2 Pathomechanism of repeat expansion disorders 

Repeat expansions can be part of both coding as well as non-coding regions of the genome.1 While first 

(e.g. SCA1, 2, 3, 6, 7, 17) are usually small in size and contain less than one hundred repeat units, 

repeat expansions in non-coding regions (SCA8, SCA27B, FRDA, RFC1 spectrum disorder, FXTAS) 

are significantly larger.1 They contain several hundred to several thousand repeat units. Associated with 

their location in the genome, there are different viable pathomechanisms (Figure 2) that can act at the 

same time: 

(A) Transcriptional gene silencing: As in fragile-X syndrome (FXS) full mutations (> 200 CGG repeat 

units) within the 5’UTR of FMR1 cause CpG promotor methylation and gene silencing (Figure 2A). 

Absence of the fragile-X mental retardation protein (FMRP) essential for brain development and 

neuronal signaling causes serve intellectual disability, developmental retardation and behavioral 

problems.44,45 Transcriptional silencing is also the origin of Friedreich’s ataxia. In contrast to FXS, 

expansions of the GAA repeat in intron 1 of the frataxin gene in Friedreich´s ataxia do not cause 

promotor methylation but the formation of secondary DNA structures hindering transcription by blocking 

RNA polymerase and heterochromatization.46,47 

(B) Toxic gain of function of repeat mediated proteins: SCA1–3, 6, 7 and 17 are caused by expansion 

of the CAG microsatellites in the coding region. Expression results in proteins with large polyglutamine 
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chains that undergo conformational changes (Figure 2B), aggregate and induce toxicity to the cell.48 

Additionally, normal protein function is altered.  

(C) RNA toxicity: RNA that contains a transcribed repeat expansion can form multiple secondary 

structures that bind RNA-binding proteins (RBPs) with high affinity forming RNA foci (Figure 2C). 

Sequestration of RBPs leads to their deficiency in physiological processes such as splicing resulting in 

disruption of cell physiology, e.g. in myotonic dystrophies.49 

(D) Repeat associated non-AUG (RAN) translation: Translation of repetitive elements without an AUG 

start codon is the pathomechanism of several repeat expansion disorders such as FXTAS and SCA8 

(Figure 2D). The mechanism of RAN translation initiation is only partly understood and likely involves 

secondary RNA structures formed by the repeat-containing regions.50 There are multiple reading-frames 

in sense and antisense direction for each microsatellite that can result in different RAN proteins. Similar 

to polyglutamine proteins caused by CAG repeat expansions in coding regions, some of these proteins 

can accumulate and aggregate in specific cell types inducing toxicity by various mechanisms.51 Protein-

mediated toxicity likely overlaps with RNA-mediated toxicity.52  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Exemplified pathomechanism of repeat expansion disorders. (A) Gene silencing mechanism as in FXS. 

A CGG repeat expansion causes promotor methylation and repression of FMR1 transcription leading to the absence 

of FMRP. (B) Toxic gain of function of proteins as in SCA1–3, 6, 7 and 17. (C) RNA toxicity due to artificial binding 

of RBP disturbing physiological cellular processes. (D) RAN translation of the CGG repeat in FXTAS patients. RAN 

proteins resulting from antisense transcripts of the CGG repeat are not shown. Own illustration adapted from 53. 
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2.2.3 RFC1 spectrum disorder – a complex repeat expansion disorder 

Recently, the genetic origin of another adult-onset ataxia, RFC1 spectrum disorder was identified that 

equals cerebellar ataxia, sensory neuropathy and vestibular areflexia syndrome (CANVAS) in its full 

presentation (Figure 3A).24,54–56  

 

 

 

 

 

 

 

 

Figure 3. (A) Clinical spectrum of RFC1 spectrum disorder. (B) Schematic representation of the RFC1 locus and 

selected variants of the intronic microsatellite repeat array with their clinical evaluation. Own illustration adapted 

from 24. 

In addition to the symptoms represented by the acronym, presyndromal irritative cough, autonomic 

dysfunction, motoneuron involvement and other symptoms may occur.57,58 The disease is inherited 

autosomal-recessively and originates from a pentameric microsatellite array in the intronic region of the 

replication factor C1 (RFC1) gene. In contrast to other repeat expansion disorders, RFC1 spectrum 

disorder does not simply rely on the expansion of a wildtype microsatellite array. Rather, it requires its 

substitution for a specific alternative microsatellite motive that is expanded (usually AAGGG) (Figure 

3B). Thus, diagnosis of RFC1 spectrum disorder requires the determination of repeat motive and size. 

Various methods are currently used for diagnosing RFC1 spectrum disorder such as Southern blotting 

or repeat-primed PCR. However, neither method can span the entire region and determine both repeat 

length and repeat motive.1,59  

The detailed molecular mechanism by which biallelic AAGGG repeat expansions are causing 

multisystem neuronal damage involving the cerebrum, the cerebellum, and peripheral and cranial nerves 

remains elusive.54,60 Recent studies have shown that patients who are compound-heterozygous for an 

AAGGG repeat expansion and a truncating pathogenic variant in RFC1 can also develop a phenotype 

of RFC1 spectrum disorder that tends to be more severe.61,62 Reduced RFC1 mRNA levels were 

detected in these patients compared to healthy individuals and patients with biallelic AAGGG repeat 

expansions in RFC1, suggesting a loss-of-function mechanism. A heterozygote carrier frequency of 0.7 
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to 4% in the European population indicates a high prevalence of RFC1 spectrum disorder which might 

to be one of the most common causes of hereditary adult-onset ataxia in Europe.1,24,55,56,63 

2.2.4 Long-read sequencing methods  

Recently developed long-read sequencing techniques are capable to overcome current limitations of 

next-generation sequencing (NGS) in genetic testing, which are the analysis of structural variants, 

(large) repeat expansions and genes with corresponding pseudogenes as well as the phasing of 

variants.18 Two commercial long-read sequencing platforms are currently available: Pacific Bioscience 

single molecule real-time sequencing (PacBio SMRT) and Oxford Nanopore Technology (ONT) 

sequencing (Figure 4).64  

 

Figure 4. Principle of PacBio SMRT (left) and ONT sequencing (right). Own illustration adapted from 64. 

PacBio SMRT is based on nanostructures that provide a small illuminated volume, called zero-mode 

waveguides (ZMW), sized to accommodate and observe only one DNA molecule at a time.65 Each ZMW 

contains an immobilized DNA polymerase that binds the circular DNA template (SMRTbell). It consists 

of the double-stranded DNA fragment (up to several hundered kilobases in size) to be sequenced and 

hairpin adapters on both sides. The DNA polymerase turns around the SMRTbell and synthesizes a 

new DNA strand by incorporating one of the four desoxynucleotides triphosphates (dNTP) bound to a 

specific fluorescent label. After binding of the dNTP by the polymerase, the fluorophore is excited by a 
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laser, and the emission is detected by a camera. By native ligation of the dNTP to the existing DNA 

strand, catalyzed by the polymerase, the fluorophore is cleaved and diffuses out of the illuminated 

volume. The steps of dNTP incorporation and recording of the emission are repeated thousands of times 

and performed in parallel in the ZMWs of a flow cell (up to 8 million). While the chronological order of 

the different light emissions determines the DNA sequence, the kinetics of the polymerase reaction gives 

information about base modifications.  

In contrast, the ONT platform does not rely on sequencing by synthesis and uses linear DNA molecules. 

A flow cell used for sequencing contains thousands of nanopores within a membrane that is under an 

electrical voltage.66–68 A constant current flow passes through the nanopores. To determine the DNA 

sequence, the double-stranded DNA bound to an adapter is separated into single strands and pulled 

through the nanopore by a motorprotein, assisted by the polarity of the electrical voltage. When the DNA 

strand is translocated through the pore, the current changes depending on which nucleotide passes 

through and what modification it has. Recording and real-time analysis of the resulting current allows to 

determine the DNA sequence and its base modification (so-called base-calling).  

2.2.5 First aim of this thesis – Diagnosis of repeat expansion disorders 

causing adult-onset ataxia 

The first aim of this thesis is to implement a long-read sequencing method for the parallel diagnosis of 

the most prevalent repeat expansion disorders causing adult-onset ataxia in the European population. 

In addition to repeat length, which is the most important diagnostic parameter in current analyses, 

additional parameters such as repeat sequence as well as the methylation pattern in relevant loci will 

be determined. This allows for the diagnosis of RFC1 spectrum disorder, the detection of repeat 

interruptions for the assessment of stability and pathogenicity of intermediate alleles and further 

characterization of expansions in the FMR1 gene. For validating the method, repeat lengths determined 

by long-read sequencing will be compared to those determined by PCR based methods. Additionally, 

individuals with confirmed repeat expansions will be analyzed as positive controls. After implementing 

and validating the method, it will be applied to a cohort of patients with adult-onset ataxia. The 

composition of the RFC1 repeat array in the whole cohort and the phenotype of patients with RFC1 

spectrum disorder will be characterized in detail. 

The results of this study will be summarized in a publication (Paper I: Parallel in-depth analysis of repeat 

expansions in ataxia patients by long-read sequencing).1 
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2.3 Facioscapulohumeral muscular dystrophy – an epigenetic 

disease  

2.3.1 Clinical and genetic background of facioscapulohumeral muscular 

dystrophy 

Facioscapulohumeral muscular dystrophy (FSHD, OMIM #158900) is the third most common hereditary 

autosomal-dominant muscular dystrophy with an estimated prevalence of four to ten patients per 

100.000 individuals.33,34 FSHD is clinically characterized by slowly progressive and asymmetric 

weakness of facial muscles, muscles of the scapula, the upper limb, and the distal lower limb among 

variable manifestations in other muscles.69 The clinical phenotype of FSHD varies highly regarding the 

involvement of muscle groups, the clinical severity or age at disease manifestation and overlaps with 

the phenotype of other myopathies.70–72 The disease is caused by the epigenetic derepression of the 

double homeobox protein 4 (DUX4) gene which is silenced in somatic cells of healthy individuals after 

early embryonic development.73  

In FSHD patients, stable DUX4 expression in myocytes impairs various cellular signaling pathways 

leading to damage and cell death, which in turn results in muscle atrophy.27–29 The entire DUX4 open 

reading frame (ORF) is present in the last repeat unit of a D4Z4 macrosatellite repeat array in the 

subtelomeric 4q35 region (Figure 5).74,75 Stable gene expression requires the presence of a specific 

haplotype (4qA and its variant 4qAL) that provides a polyadenylation signal in the DUX4 ORF, which is 

referred to as permissive haplotype.26  

 

 

 

 

Figure 5. Location and architecture of the 4q35 region containing the D4Z4 repeat array in healthy individuals. 
DUX4 present within the most distal repeat unit is silenced and not expressed. Own illustration. 

FSHD shows an autosomal-dominant inheritance as it relies on a gain-of-function mechanism. While 

the majority of cases are associated with contractions of the D4Z4 repeat array to less than 12 repeat 

units on a permissive allele (referred to as FSHD1), a minority of cases (referred to as FSHD2) are 
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caused by hypomethylation of the D4Z4 repeat array on a permissive 4q allele due to pathogenic 

variants in SMCHD1, DNMT3B, LRIF1 or other yet unknown factors (Figure 6).76–78  

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Genetic characteristics of FSHD1 (top) and FSHD2 patients (bottom). 5’-ATTAAA-3’ present in exon 3 is 

the PAS defining the permissive haplotype. White triangles represent hypomethylated D4Z4 repeat arrays. Own 

illustration.  

2.3.2 Diagnosis of FSHD 

Diagnosis of FSHD is usually based on determining the genetic parameters associated with FSHD1 

(repeat contraction of the D4Z4 repeat array) and FSHD2 (pathogenic variants in epigenetic suppressor 

genes such as SMCHD1) in combination with a haplotype analysis. 76–79 Determining the repeat length 

is traditionally performed by Southern blotting.80 Here, high-molecular-weight (HWM) DNA is digested 

with the combination of different restriction enzymes (EcoRI, XapI and BlnI) to isolate the D4Z4 repeat 

array and align it to chromosome 4 or 10 after gel electrophoresis, blotting and visualization using a 

radioactively labeled p13E11 probe (Figure 7).79,81  

Additional methods for determining repeat size and haplotype at the same time are molecular combing 

and single-molecule optical mapping.82–84 Especially the first method allows for deciphering complex 

rearrangements that might escape Southern blotting.85 Analysis of epigenetic suppressor genes is 

usually performed by next-generation sequencing together with genes causing overlapping clinical 

phenotypes. For determining the haplotype, different assays exist. Most commonly, the assay of 

Tsumagari et al. is used that identifies the 4q161 haplotype as the most prevalent permissive haplotype 

based on a few single nucleotide polymorphisms within the FSHD locus.86  
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Diagnosis of FSHD based on genetic parameters is limited in precision. Repeat contractions and a 

permissive haplotype might not be penetrant as they are found in 1-2% of the general population, which 

do not show symptoms of FSHD.87,88 Similarly, pathogenic variants in SMCHD1 and other epigenetic 

suppressor genes are not fully penetrant. Especially large D4Z4 repeat arrays are likely to prevent 

derepression of DUX4 expression.89 Additionally, some FSHD2 patients might be missed because 

global hypomethylation of the D4Z4 array has other causes than pathogenic variants in known 

epigenetic suppressor genes.76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. (A) D4Z4 repeat arrays on chromosome 4q35 and 10q26 and their restriction sides. (B) Examples of 

Southern blot results in FSHD testing. (Left) Uncontracted 4q35 and 10q26 arrays giving only fragments larger than 

48 kb in each digest. (Middle) Repeat contraction of one 4q35 D4Z4 repeat array giving a fragment of 31 kb when 

digested with EcoRI that is further reduced in size by 3 kb after co-digest with EcoRI and BlnI and not visible after 

digest with XapI. Result is compatible with FSHD1 when the contraction is in cis to a permissive haplotype. (Right) 

Repeat contraction of one 10q26 D4Z4 repeat array giving a fragment of 26 kb when digested with EcoRI that is 

reduced in size by 5 kb when digested with XapI and not detectable after co-digest with EcoRI and BlnI. The 

individual is negative for FSHD1 as the D4Z4 repeat array on chromosome 4q35 is uncontracted. Own illustration. 

Although it is consensus that FSHD is caused by epigenetic changes leading to the expression of DUX4, 

it is under debate whether, and if so to what extent, methylation profiles represent these changes.39,90,91 

It is discussed whether methylation represents disease status and directly correlates with DUX4 
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expression or whether changes are unspecific in FSHD patients. The evaluation of methylation is 

complicated by contrary results from a few epigenetic tests that utilize different techniques and analyze 

varying regions of the FSHD locus. Especially the amplification of homologous regions not originating 

from the 4q35 macrosatellite array can falsify results.38 Several epigenetic assays have been developed 

for FSHD testing, but still need to be established in diagnostics.35–37 

Technically, methylation patterns can be assayed by bisulfite sequencing reactions (Figure 8).92,93 The 

method is based on hydrolytic deamination of unmethylated cytosines to uracil catalyzed by bisulfite. 

Because of the higher electrophilicity of unmethylated cytosines, the reaction occurs almost exclusively 

for unmethylated and not for methylated cytosines. After PCR amplification of the converted fragments, 

uracil will be replaced for thymine. Comparison of the initial sequence with the sequence after bisulfite 

conversion and PCR amplification allows to determine the methylation state of the cytosines in the native 

DNA.  

 

 

 

 

 

 

 

 

 

Figure 8. (A) Mechanism of the bisulfite catalyzed hydrolytic deamination of unmethylated cytosine to give uracil: 
(Top) The reaction is initiated by reversible nucleophilic addition of hydrogen sulfite to cytosine leading to a 
dearomatized sulphonate intermediate. After addition of water, ammonia is irreversibly eliminated and gives the 
sulfonated uracil. Rearomatization by elimination and regeneration of hydrogen sulfite gives uracil. (Bottom) Due to 
the decreased electrophilicity of methylated cytosine, addition of hydrogen sulfite is not favored preventing 
deamination. (B) Sequence of methylation analysis by bisulfite conversion. Denatured fragments of interest are 
treated with bisulfite to convert unmethylated cytosines into uracils that are replaced by thymines after PCR 
amplification. Own illustration. 
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2.3.3 Second aim of this thesis – Diagnosis and phenotype-genotype studies 

of FSHD patients 

A comprehensive evaluation of epigenetic methods for the diagnosis of FSHD is urgently needed, to 

gain further insight into the FSHD pathomechanism, establish new biomarkers for the disease, and 

develop new therapeutics. Therefore, the second aim of this thesis is to evaluate methylation profiles of 

the 4q35 D4Z4 repeat array first as a reliable qualitative biomarker for diagnosing FSHD and second as 

a quantitative parameter representing disease severity. Based on the implemented methylation profile 

analysis (FSHD-MPA), the results of this epigenetic test are compared with genetic parameters from 

Southern blotting and NGS sequencing and discussed in the context of the patients’ phenotypes. 

Additionally, the clinical severity of affected patients will be assessed and scored to correlate it with 

D4Z4 repeat length and methylation level within the most distal repeat unit, respectively. Consequences 

for the genetic testing in patients with FSHD phenotype will be derived. 

Implementation and validation of the diagnostic method (previous work) and subsequent revalidation of 

the method and phenotype-genotype studies (subject of this work) will be summarized in a joined 

publication (Publication 2: Methylation of the 4q35 D4Z4 repeat defines disease status in 

facioscapulohumeral muscular dystrophy).2 In addition, potential advancements in FSHD diagnostics 

through ONT long-read sequencing will be explored.3
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3 Zusammenfassung 

Die Analyse und Sequenzierung von komplexen genomischen Regionen, die aus repetitiven Elementen 

aufgebaut sind, stellt eine Herausforderung in der klinischen Genetik dar. Die molekulare Diagnose 

entsprechender Erkrankungen wie Repeatexpansionserkrankungen oder der Fazioskapulohumeralen 

Muskeldystrophie (FSHD) ist daher aufgrund technischer Limitationen der bisher angewandten 

Methoden  eingeschränkt. Weiterhin ist der Zusammenhang zwischen Genotyp und Phänotyp für viele 

Erkrankungen bisher nicht vollständig verstanden.  

Im Rahmen der vorgelegten Doktorarbeit wird zum einen (1) eine neue diagnostische Methode zur 

parallelen Erfassung von Repeat-Expansionserkrankungen implementiert und validiert: Eine long-read 

Sequenziermethode zur gezielten und parallelen Repeatanalyse  (clinical nanopore Cas9-targeted 

sequencing, Clin-CATS) von Patienten mit im Erwachsenenalter manifestierender Ataxie. Zum anderen 

(2) wird im Rahmen der Arbeit die Relevanz von Methylierungsprofilen in der Diagnostik und klinischen 

Bewertung der FSHD untersucht.  

(1) Für eine umfassende Repeatanalyse von Patienten mit einer Ataxie des Erwachsenenalters wurde 

Clin-CATS entwickelt, das die zehn in Deutschland am häufigsten ursächlichen 

Repeaterkrankungen (Stand: Zeitpunkt der Publikation des zugehörigen Papers1) erfasst: Die 

spinocerebellären Ataxien (SCA) 1-3, 6-8, 17, RFC1-Spektrumserkrankung, Friedreich-Ataxie 

(FRDA) und Fragiles-X-assoziiertes Tremor/Ataxie-Syndrom (FXTAS). Assoziierte 

Repeatregionen werden mit CRIPSR/Cas9 angereichert und anschließend mit Oxford Nanopore 

Technology long-read Sequenzierung sequenziert. Aus den Sequenzdaten werden die 

Repeatlängen, die Repeatsequenzen zur Bestimmung von Repeatunterbrechungen und der 

Zusammensetzung des RFC1 Repeatarrays, sowie die FMR1-Promotor-Methylierung abgeleitet. 

Der Vergleich der mittels Clin-CATS bestimmten Repeatlängen zeigt eine hohe Übereinstimmung 

mit denen der konventionellen PCR-basierten Repeatanalysen. Pathogene Repeatexpansionen 

werden zuverlässig erkannt. Weitere Parameter, die im Rahmen der Analyse bestimmt werden, 

verbessern zusätzlich die diagnostische Präzision. Die Analyse von 100 Patienten mit einer im 

Erwachsenenalter manifestierenden Ataxie mittels Clin-CATS identifizierte ursächliche 

Repeatexpansionen bei 28 Patienten. Darunter sind seltene Erkrankungen wie eine sehr spät 

manifestierende FRDA oder ein männlicher FXTAS Patient, der trotz eines vollständig 

expandierten FMR1-Repeatarrays passend zum Phänotypen einen nicht-methylierten FMR1-
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Promotor aufwies. Clin-CATs verdeutlicht die hohe Variabilität des RFC1-Repeatarrays und zeigt, 

dass die RFC1-Spektrumserkrankung in Deutschland eine häufige Ursache für erbliche Ataxien 

des Erwachsenenalters ist. 

(2) Als Voraussetzung für die Implementierung von FSHD-MPA als präzise diagnostische Methode zum 

Nachweis von FSHD basierend auf epigenetischen Parametern, wurde zunächst gezeigt, dass sich 

gesunde Personen, sowie FSHD1- und FSHD2-Patienten in den Methylierungsmustern des D4Z4-

Repeatarrays auf Chromosom 4q35 signifikant unterscheiden. Mit Hilfe der Bisulfit-Konvertierung 

wird mittels FSHD-MPA der Methylierungsgrad einer Region innerhalb des distalen D4Z4-Repeat-

Arrays von permissiven 4q35-Allelen, sowie der durchschnittliche Methylierungsgrad einer zweiten 

Region, die in jedem D4Z4-Repeat auf Chromosom 4q35 vorhanden ist, bestimmt. Es wird gezeigt, 

dass der gesamte Repeatarray gesunder Personen hypermethyliert ist, während bei FSHD1-

Patienten lediglich der distale Repeat hypomethyliert ist und FSHD2-Patienten eine globale und 

distale Hypomethylierung des Repeatarrays aufweisen. In einer Kohorte von 148 Patienten mit 

einem klinischen FSHD Phänotyp oder einer positiven Familienanamnese für FSHD verdeutlicht 

der Vergleich epigenetischer und genetischer Parameter, dass Methylierungsprofile präzise 

diagnostische Parameter darstellen. Darüber hinaus zeigen FSHD1- und FSHD2-Patienten eine 

epigenetische Überschneidung, erkennbar an einigen Patienten mit globaler und distaler 

Hypomethylierung, die keine pathogenen Varianten in bekannten epigenetischen 

Suppressorgenen, aber eine Repeatkontraktion aufweisen. Methylierungsprofile ermöglichen die 

Einschätzung der Penetranz genetischer Parameter, weshalb sie als prädiktive Marker fungieren 

können. Der Methylierungsgrad innerhalb des distalen Repeatarrays korreliert stark mit der 

alterskorrigierten klinischen Schwere und weist einen stärkeren Zusammenhang  mit dieser auf als 

es die Repeatlänge tut. Somit ist die distale Methylierung in der vorliegenden Studie ein präziserer 

und universellerer Biomarker für den Schweregrad der Erkrankung. Der Krankheitsstatus der FSHD 

wird somit besser durch epigenetische als durch genetische Parameter repräsentiert. 

Repeatkontraktionen und pathogene Varianten in epigenetischen Suppressorgenen sind eher als 

Risikofaktoren der Krankheit anzusehen, als als direkte Krankheitsursachen. Zur Weiterentwicklung 

der aktuellen FSHD Diagnostik mittels FSHD-MPA wurden erste Analysen des D4Z4 Repeatarrays 

mittels ONT long-read Sequenzierung durchgeführt.3 Die Ergebnisse zeigen, dass aktuelle 

Limitierungen der FSHD Diagnostik mittels ONT Sequenzierung überwunden werden können, da 

die Methode die Bestimmung aller relevanter Parameter (Methylierungsprofil, Haplotyp, 
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Repeatlänge) spezifisch für jedes Allel innerhalb einer Analyse ermöglicht. Zusätzlich ist das 

Methylierungsprofil des gesamten FSHD Locus und nicht nur das Methylierungslevel spezifisch 

amplifizierbarer Bereiche zugänglich. Zusammen mit anderen Arbeiten verdeutlichen diese 

Ergebnisse, dass die Epigenetik des FSHD Locus die fehlende Verknüpfung zwischen Phänotyp 

und genetischen Merkmalen darstellt.94–96 

Zusammenfassend zeigen beide Projekte, dass neue diagnostische Methoden ein Schlüssel sind, um 

die große Komplexität von Erkrankungen, die in Zusammenhang mit der Veränderung von repetitiven 

Elementen unseres Genoms stehen, präziser zu erfassen. Dies ist insbesondere mit Hinblick auf eine 

Vielzahl von bisher nicht bekannten Repeat-assoziierten Erkrankungen oder Risikofaktoren in unserem 

Genom von hoher Relevanz.
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4 Abstract 

The analysis of repetitive elements in the human genome remains a challenge in clinical genetics. As 

next-generation sequencing is limited in analyzing repeat disorders and complex regions within the 

human genome, specific diagnostic methods are required. This thesis describes (1) the implementation 

and validation of a long-read sequencing method for parallel repeat analysis of patients with adult-onset 

ataxia as well as (2) the analysis of the relevance of methylation profiles in the diagnosis and clinical 

evaluation of FSHD.  

For a comprehensive repeat analysis of patients with adult-onset ataxia, clinical nanopore Cas9-targeted 

sequencing (Clin-CATS) was designed to cover the ten repeat disorders most frequently causing adult-

onset ataxia in Germany (status when publishing manuscript 1): spinocerebellar ataxias (SCA) 1–3, 6–

8, 17, RFC1 spectrum disorder, Friedreich’s ataxia (FRDA) and fragile-X-associated tremor/ataxia 

syndrome (FXTAS). Associated repeat loci are enriched using CRIPSR/Cas9 and subsequently 

sequenced using Oxford Nanopore Technology long-read sequencing. Sequencing data are used to 

derive repeat length, repeat sequence to identify repeat interruptions and the repeat composition of the 

RFC1 repeat array, as well as FMR1 promoter methylation. Repeat lengths obtained by Clin-CATS show 

a high concordance to those determined by conventional PCR-based repeat analysis. Pathogenic 

repeat expansions were reliably detected and the comprehensive set of parameters determined 

improved diagnostic precision of Clin-CATS over conventional repeat testing. The analysis of 100 

patients with an adult-onset ataxia phenotype by Clin-CATS revealed causative repeat expansions in 

28 patients, including rare conditions such as a very-late onset FRDA or a high-function FXTAS male 

carrying a non-methylated FMR1 promotor despite a fully expanded FMR1 repeat array. Clin-CATs 

highlights the high polymorphism of the RFC1 repeat array and reveals RFC1 spectrum disorder to be 

a frequent cause of hereditary adult-onset ataxia in Germany.  

After verifying FSHD1 and FSHD2 patients as well as healthy individuals to significantly differ in the 

methylation patterns of their D4Z4 repeat arrays on chromosome 4q35, FSHD-MPA was established as 

a diagnostic method for diagnosing FSHD. Utilizing bisulfite conversion FSHD-MPA determines the 

methylation level of a region within the most distal D4Z4 repeat array of 4q35 alleles carrying the 

permissive haplotype (4qA or 4qAL, distal methylation) and the average methylation level of a second 

region present within each D4Z4 repeat unit of chromosome 4q35 (global methylation). Healthy 

individuals show global and distal hypermethylation, while FSHD1 patients show isolated distal 
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hypomethylation and FSHD2 patients global and distal hypomethylation. Within a cohort of 148 patients 

with a clinical phenotype of FSHD or a positive family history of FSHD, methylation profiles are proven 

as precise diagnostic parameters for diagnosing FSHD by comparing the results from our epigenetic 

test with the results of Southern blotting and NGS sequencing of the epigenetic suppressor genes 

SMCHD1, DMNT3B and LRIF1 as well as the clinical phenotype. Furthermore FSHD1 and FSHD2 

patients show an epigenetic overlap as some patients with global and distal hypomethylation have 

repeat contractions in the absence of pathogenic variants in known epigenetic suppressor genes. 

Methylation profiles allow to access the penetrance of genetic parameters indicating their potential in 

predictive testing. Distal methylation level and age-corrected clinical severity show high correlation level 

that are stronger than those of repeat length and age-corrected clinical severity in the cohort studied. 

As such distal methylation is a more precise and universal biomarker for disease severity in the present 

study accounting for FSHD1 as well as for FSHD2. Thus, the disease status of FSHD is better 

represented by epigenetic than by genetic parameters. Repeat contractions and pathogenic variants in 

epigenetic suppressor genes should be considered more as risk factors of the disease than as direct 

causes of the disease. Further refinements of FSHD diagnostics can be achieved by ONT long-read 

sequencing which yields all relevant diagnostic parameters within one analysis and specific for each 

allele including the methylation profile of the whole D4Z4 repeat locus.  
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