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Abstract

Quantum Gravity (QG) theories pursue the goal of reconciling the pillar theories of General
Relativity (GR) and Quantum Field Theory (QFT) in theoretical physics and a coherent
description of the physical world surrounding us. This prosperous field of research is a
crossroad of various disciplines in physics, ranging from the phenomenological to the most
abstract mathematical ones.

In this thesis, we devote our focus to the emergence of continuum gravitational physics
from the QG background independent approach of Group Field Theory (GFT). In partic-
ular, we explore its relation to other QG models such as Spin Foam (SF) in the context
of model-building of 4d Lorentzian quantum geometries, the interface between quantum
entanglement (considered as the preview of emergence) and quantum geometry through
the exploitation of spin network states characterizing quantum geometries, and finally
the culminating stage of extracting an effective description of the cosmological version of
the theory in the language of a field theory propagating on a curved background. More
precisely, the three research focal points of this thesis are summarized as follows:

First, we present the construction of a new SF model for 4d Lorentzian quantum gravity
based on the description of quantum simplicial geometry relying on edge vector variables.
On the representation theoretic side, quantum states of geometry are built from irreducible
representations of the translation group on Minkowski space or functions on the translation
group itself. We also show how the new model connects to the Lorentzian Barrett-Crane
Barrett-Crane (BC) spin foam model, for a sector of its quantum configurations. The
new model manifestly possesses all the relevant degrees of freedom to describe simplicial
geometry at the quantum level and thus constitutes a promising proposal for Lorentzian
quantum gravity. Hence, it may be seen also as a completion (or a necessary reference point)
for known spin foam models based on constrained BF quantization and a formulation of
quantum geometry in terms of quantum edge vectors.

We then move on to inspecting the entanglement/geometric characterization of generic
superposed quantum geometries. The proposal that spacetime and its geometric properties
are emergent entities from purely non-geometric degrees of freedom that are subsequently
closely related to entanglement measures has attracted a lot of attention in the sector
of quantum information Quantum Information Theory (QIT). We present a straightfor-
ward implementation of these techniques in QG models where we focus on a particular
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set of QG states. More concretely, we show how studying the entanglement properties of
a superposition of QG states, precisely spin network graph states endowed with different
combinatorial structures, naturally leads to a generalization of the usual von Neumann
entropy obtained for spin network states in Loop Quantum Gravity (LQG) calculations.
This is indeed achieved once we borrow different entropic notions and measures from quan-
tum information theory, wherein the studied case of the superposition of states, the von
Neumann entropy of entangled regions gives rise to the so-called interaction entropy in
QIT already at the kinematical level of the theory.

Lastly, in the absence of any notion of metric background or alternatively, in the pres-
ence of diffeomorphism invariance in the theory, the available technology to generate the
dynamics is to employ the relational framework. A GFT model where this has been im-
plemented is available and importantly it succeeded in extracting continuum physics in
a cosmological context relying on GFT condensates, and more precisely that of a ho-
mogeneous Friedmann–Lemaître–Robertson–Walker (FLRW) universe with perturbations
included. Starting from such results, we derive the explicit solution to the GFT condensate
effective dynamics including the treatment of scalar perturbations. This first step allowed
us to investigate further the matter content, and formulate its dynamics in the form of field
theory on a curved background. This in turn produced additional emergent properties the
field theory possesses in comparison with the classical one, which was further mirrored at
the level of the perturbation. Where it the latter case, we attained a modified dispersion
relation for the perturbed scalar field.



Abstrakt

QG-Theorien streben danach, die grundlegenden Theorien von GR und QFT in der theo-
retischen Physik mit einer kohärenten Weltbeschreibung in Verbindung zu bringen. Dieses
dynamische Forschungsgebiet ist eine Kreuzung verschiedener physikalischer Disziplinen,
die von der phänomenologischen bis hin zur abstrakten mathematischen Physik reichen.
In dieser Arbeit widmen wir uns der Entstehung der Kontinuumsgravitationsphysik aus
dem QG-Hintergrund unabhängigen Theorie der GFT. Insbesondere untersuchen wir seine
Beziehung zu anderen QG-Modellen wie SF im Rahmen der Modellbildung für 4d Lorentzsche
Quantengeometrien, die Berührung zwischen Quantenverschränkung (als Preview von Entste-
hung) und Quantengeometrie durch die Ausnutzung von Spin-Netzwerk-Zuständen, die
Quantengeometrien charakterisieren, und schließlich die kulminierende Phase der Extrak-
tion einer effektiven Beschreibung der kosmologischen Fassung der Theorie in der Sprache
einer Feldtheorie, die sich auf einem gekrümmten Hintergrund ausbreitet. Diese Forschungss-
chwerpunkte dieser Dissertation lassen sich wie folgt präzise zusammenfassen:

Zunächst stellen wir die Konstruktion eines neuen SF-Modells für 4d Lorentz’sche
Quantengravitation vor, das auf der Beschreibung einer vereinfachten Quantengeometrie
beruht, die sich auf edge vector-Variablen stützt. Auf der repräsentationstheoretischen
Seite werden Quantenzustände der Geometrie aus irreduziblen Darstellungen der Transla-
tionsgruppe auf dem Minkowski-Raum oder Funktionen auf der Translationsgruppe selbst
gebildet. Wir zeigen auch, wie das neue Modell mit dem Lorentzschen Barrett-Crane
BC-Spinschaum-Modell für einen Sektor seiner Quantenkonfigurationen zusammenhängt.
Das neue Modell besitzt offensichtlich alle relevanten Freiheitsgrade, um die vereinfachte
Geometrie auf Quantenebene zu beschreiben, und stellt somit einen vielversprechenden
Vorschlag für die Lorentzsche Quantengravitation dar. Es kann daher auch als Ergänzung
(oder notwendiger Bezugspunkt) für bekannte Spin-Schaum-Modelle angesehen werden,
die auf einer eingeschränkten BF-Quantisierung und einer Formulierung der Quantenge-
ometrie in Form von Kantenvektoren basieren.

Anschließend untersuchen wir die Verschränkung/geometrische Charakterisierung von
generischen überlagerten Quantengeometrien. Der Vorschlag, dass die Raumzeit und ihre
geometrischen Eigenschaften aus rein nicht-geometrischen Freiheitsgraden entstehen, die
dann wiederum eng mit Verschränkungsmaßen verknüpft sind, hat im Bereich der Quan-
teninformation QIT viel Aufmerksamkeit erregt. Wir stellen eine unkomplizierte Um-
setzung dieser Techniken in QG-Modellen vor, bei denen wir uns auf eine bestimmte
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Gruppe von QG-Zuständen konzentrieren. Konkret zeigen wir, wie die Untersuchung der
Verschränkungseigenschaften einer Überlagerung von QG-Zuständen, genauer gesagt von
Spin-Netzwerk-Graph-Zuständen mit unterschiedlichen kombinatorischen Strukturen, auf
natürliche Weise zu einer Verallgemeinerung der üblichen von-Neumann-Entropie führt,
die für Spin-Netzwerk-Zustände in LQG-Berechnungen erhalten wird. Dies wird in der
Tat erreicht, wenn wir verschiedene entropische Begriffe und Maße aus der Quanteninfor-
mationstheorie entlehnen, wobei der untersuchte Fall der Überlagerung von Zuständen,
die von-Neumann-Entropie verschränkter Regionen bereits auf der kinematischen Ebene
der Theorie zur so genannten Interaktionsentropie in QIT führt. Darüber hinaus wird ein
Vergleich zwischen dem zweiten Quantisierungsformalismus dieses Schemas, der auf der
Überlagerung von Zuständen beruht, und dem der LQG-Ergebnisse vorgestellt.

Schließlich besteht die verfügbare Technologie zur Erzeugung der Dynamik in der Ver-
wendung des relationalen Rahmens, wenn kein Begriff des metrischen Hintergrunds oder
alternativ dazu die Diffeomorphismusinvarianz in der Theorie vorhanden ist. Ein GFT-
Modell, in dem dies umgesetzt wurde, ist verfügbar, und vor allem ist es gelungen, Kon-
tinuumsphysik in einem kosmologischen Kontext zu extrahieren, der auf GFT-Kondensaten
beruht, genauer gesagt in einem homogenen FLRW-Universum mit eingeschlossenen Störun-
gen. Ausgehend von diesen Ergebnissen leiten wir die explizite Lösung der effektiven Dy-
namik von GFT-Kondensaten her, die auch skalare Störungen berücksichtigt. Dieser erste
Schritt ermöglichte es uns, den Materiegehalt weiter zu untersuchen und seine Dynamik in
Form einer Feldtheorie auf einem gekrümmten Hintergrund zu formulieren. Dies wiederum
führte zu zusätzlichen emergenten Eigenschaften, die die Feldtheorie im Vergleich zur klas-
sischen Theorie besitzt, was sich auch auf der Ebene der Störung widerspiegelt. Im letzteren
Fall haben wir eine modifizierte Dispersionsrelation für das gestörte Skalarfeld erhalten.
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Chapter 1

Introduction

The quest for a quantum theory of gravity is still in pursuit in the field of theoretical
physics and perhaps at its most glorious stages thanks to the active dialog between the
various research fields and the constant developments and flow of information provided
by cosmological observations. Indeed, there has been a lot of recent progress to solve the
riddle of quantizing GR in the last several decades [3], bringing together the collective
effort of several research communities, tackling the various facets of the problem of QG.
In particular, the conceptual issues plaguing GR and QFT have called for the intervention
and input provided by the philosophy and foundations of the physics community [4–7],
since most of the raised questions in this regard are present in very different approaches to
QG reflecting the remarkable and unique blueprint of the physics of QG. In parallel to this,
the desperate need to be in contact with observations any theory of QG exhibits brings
forth the different attempts to derive physical predictions subject to observations [8, 9].
This, in turn, has called for the craft of the phenomenology of QG as well experimental
physics [10–13], inspirations from condensed matter physics, and taking initiatives to in-
vestigate QG signatures in numerical GR (the army of researchers behind the inquiry of
gravitational waves).
Yet the problem of QG is still remnant and presents itself as a prosperous field of research,
and a promising one when it comes to acquiring a deeper understating of the world sur-
rounding us. Indeed, already contemplating the lessons we have learned from QFT and
GR is the very reason why the quest of QG was born. In particular, with the discovery
of GR and QFT, the distinctive fundamental notions of matter, space, time, causality,
and measurements have been undergoing a great deal of redefinitions since the time of
Plato, Copernicus, and Newton. What is interesting in this situation is that, on the one
hand, when QFT successfully describes matter (particles) and their quantum interactions,
whether being of strong, weak, or electromagnetic nature, it fails to provide a similar syn-
thesis for the gravitational sector. On the other hand, GR describes with amazing accuracy
the physical phenomena at large scales with the revolutionary concept of the smooth space-
time fabric, treating time and space on equal footing and how matter behaves in it, however
only to some extent, since it exhausts all of its power when it enters the quantum realm.



2 1. Introduction

Now, the main apprehensive approaches to bring together these aspects of the theories rely
on the straightforward quantization of GR to extract a corresponding quantum theory of
gravity. Some models apply quantization schemes directly to the full spacetime geometry,
for instance, canonical loop quantum gravity [14, 15]; others follow path integral formu-
lations of quantum gravity [16, 17] and their modern evolution mostly based on lattice
structures e.g. causal dynamical triangulations [18] or group field theories GFT [19] which
is the framework this thesis is based on. String theory [20], started as a tentative enhance-
ment to the graviton-based formalism to QG, naturally resulting from considering extended
string-like (and brane-like) variables. It has as well mirrored striking quantum aspects of
the gravitational field despite the absence of a more fundamental description of its micro-
scopic nature. All these approaches agree on the quantum nature of spacetime, but more
importantly, they inevitably hint towards a more fundamental structure constituting the
very core of gravity. Despite this vast landscape of diverse, yet complementary, approaches
to the problem of QG, these models commonly indicate the crucial change in perspective
towards the quantum nature of spacetime [21,22], namely that the fundamental nature of
our usual notion of continuous spacetime is tightly related to the idea of building blocks
as “atoms of space”, of no direct gravitational, spatiotemporal or geometric interpretation,
and from which it has to emerge, whence, giving rise (probably in a suitable approximation)
to the usual notion of geometry, gravity, and fields, producing the physics we are familiar
with. There are several proposals to the very nature of the emergence of spacetime in
this picture, among the most popular ones is the exploitation of the quantum property of
entanglement [23–25] and adapting a mean-field theory approach [21, 26]. The argument
supporting the first path is supported by a handful of results in QG and beyond [27–30], we
can mention those obtained from the duality between the gravitational theory of asymp-
totically Anti de Sitter (AdS) spacetime and a Conformal Field Theory (CFT) living on
the boundary of the latter, known as the AdS/CFT correspondence (conjecture) [31, 32]
as well the one extracted with the background independent GFT approach [33–35]. What
distinguishes the calculation carried out from a GFT perspective is that the theory is de-
fined as the quantum field theory of spacetime, where the quanta are simplicial complexes,
for instance in 4d they are tetrahedra, that get entangled by gluing them in an algebraic
combinatorial manner. The entanglement of the quantum geometry can be expressed and
fully characterized by the technology provided by QIT [36–39]. We will probe this aspect
further in this thesis.
The focus in the second route into achieving an emergent continuum spacetime through
the mean-field theory approach is based on studying the continuum phase space of QG
models, where we restrict our attention to GFT’s, inspired by the techniques employed
in condensed matter physics [40, 41]. We can see the emergence of spacetime through the
lenses of condensed matter physics as a phase transition from some fundamental micro-
scopic degrees of freedom to a continuum condensate one [21, 22, 42]. If we take seriously
the perspective of quantum geometry being a quantum many-body system, then indeed a
phase transition is inevitable for the emergence to occur. In the context of a condensate
phase, one can then adapt a mean field approach to extract an effective description to get
access to the new As we will see in this thesis, this is the route that (by far) made contact
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with the physics at the classical regime and particularly the cosmological sector of it. In
reality, it does not only succeed in reproducing the standard continuum limit but it also
comes with the natural advantage of providing answers to the very inquiries the classical
theories of GR and QFT failed to address. Indeed, the most urgent problem of a consistent
theory of quantum gravity is to provide a well-defined predictive theory over a wide range
of scales, and hence renormalizable, implying that it should possess a controlled contin-
uum limit. Furthermore, a candidate theory for QG should succeed in providing consistent
physical predictions to the theoretical as well as observational constraints posed in the
cosmological sector and beyond, with the recent observation of gravitational waves and the
confirmation of the existence of black holes [43–45]. Therefore a predictive theory of QG
should pass these complementary consistency checks.

Outline of the thesis

We sketched above the general idea of the problem of quantum gravity that is born to
reconcile the current theories of GR and QFT. In order to grasp and fully capture the
model-building process of any theory of QG, we need to identify and comprehend the var-
ious components that enter such a mechanism. We delve into this already in the second
chapter of the thesis (chapter 2), where we discuss in more detail the fundamental ingredi-
ents that any theory QG should take into account by pointing to their necessary role in the
existing theories of GR and QFT. In chapter 3 we explore several background independent
approaches to QG that are based on first discretizing geometry to isolate the supposedly
fundamental building blocks of the fabric of spacetime geometries, and then quantizing this
entity. More precisely we will show how the formulation of GR in a background indepen-
dent manner is made possible by pointing out its relation to the so-called BF theories. We
will indeed present how we can recover GR by constraining a BF theory in 4d. In turn, this
constraint must also be quantized when we transition to the quantum description of the
discretized geometry. In fact, this very step of quantizing is the most relevant one to chap-
ter 5 of this thesis, exactly for the reason that this step is what distinguishes a QG from
its relative (in a broader way). In this context, we will focus on the covariant quantization
approach to GR or shortly SF models, for its relevance to the GFT framework. After this
step, we will see that the common lesson we can learn from quantizing GR either canoni-
cally or covariantly or by means of introducing a QFT over group manifolds (GFT’s) the
prominent state that encodes the quantum nature of the discrete geometry is captured by
spin network states. Therefore, we will spend some time discussing their properties, their
geometric interpretations, and the spaces they live in. After this brief journey through the
existing models, solved and unresolved issues within them, we propose a new SF model
for 4d Lorentzian quantum gravity based on an edge vector description (in contrast to
the common area variable description) and its implementation within GFT in chapter 5.
This is motivated by curing some of the problems that arise from the quantization of the
above-mentioned constraints in commonly considered SF models. We then move on to the
investigation of the role of entanglement characterizing the most generic quantum state
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of geometry, namely that of a superposition of spin network states with different graph
structures in chapter 6. In particular, we will show how we can extract information about
the connectivity of the quanta of spacetime accomplished through the entropic calculation
of the entanglement braiding the quantum fabric of geometry. Note that in this chapter
we do not address the more ambitious goal of coarse-graining such states due to the lack
of technology to pursue it. However, as we already emphasized above, we do this relying
on the mean-field approach to achieving the emergence of continuum physics in chapter
7. We rely on the machinery of the GFT condensate effective (mean-field) cosmology and
its success in reproducing a homogeneous isotropic FLRW universe, where in this picture,
the classical singularity is washed away by the presence of a quantum bounce. This is
the ancillary data starting from which we derive a classical field formulation of GFT on
a curved background. More importantly, we perform this procedure at the level of a ho-
mogeneous background and then later on when scalar perturbations are introduced. This
is of interest to us since we aim to better understand how to bridge the gap between QG
and observations, for instance in this case it may allow us to better understand the Cosmic
Microwave Background (CMB) spectrum from a QG origin without the need to call for
inflationary scenarios.



Chapter 2

The program of Quantum Gravity

In this chapter, we tackle the main conceptual components of the program of quantum
gravity and the implications of such ingredients in the model-building process of several
approaches. In particular, we will reflect on the nature of such ingredients in section 2.1
and briefly go through the relevant ones to the thesis in section 2.2 and section 2.3. We then
discuss how these elements come together with the goal of making contact with classical
continuum physics (spacetime and matter) through the notion of emergence in section 2.4.
These are the fundamental components that will enter the framework of GFT, which is
the one we work with throughout the thesis. Being quantum fields of spacetime, defined
on group manifolds, we will see how this formalism endorses the necessary ingredients to
be advocated as a promising and consistent theory of QG.

2.1 Revision of the conceptual components

Quantum theories of gravity are by far the most interesting and puzzling fields of research
in modern theoretical physics. According to our current knowledge, one is able to de-
scribe most of the fundamental interactions governing our physical reality using QFT at
tiny scales. This powerful framework combines in a simple manner classical field theory,
special relativity, and quantum mechanics [46–48]. Despite the debatable and somehow
bewildering conceptual (even universal) foundations this theory is based on, such as the
superposition- and uncertainty principles, it has so far surpassed several experimental tests
to describe matter at the quantum level [ref]. To paint the picture of such peculiar quantum
objects that describe our world, let us lay out their properties. Quantum fields are physical
entities living on a Hilbert space and are invariant under Poincaré symmetries. They are
dynamical degrees of freedom of the theory living on a fixed (non-dynamical) background
metric. In this framework, spacetime is then a mere spectator. Another interesting feature
about QFT is that this probabilistic mathematical framework comes to life by means of
physical observations through the concept of observables and measurements [49]. We may
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have conveyed that this is an idealized framework, but in reality, QFT is afflicted with
several issues.

On the other end of the spectrum of theories, lies the theory of GR, harnessing the
gravitational interaction. The success of GR may be summarized in the famous quote:
Spacetime tells matter how to move; matter tells spacetime how to curve [50] and this
becomes evident once we work out the mathematics of the Einstein equations [51,52]. More
precisely, GR reveals the gravitational field as a classical (pseudo)-Riemannian spacetime
metric, the dynamics of which are of deterministic nature [53,54]. The revolutionary idea of
geometrizing gravity replaced the Newtonian perception of space and time as two separate
entities [55], where time is considered as absolute and the dynamics of mechanical systems
taking place within space, with the covariance principle [56]. This is underlined by the
gauge invariance of the theory under diffeomorphism transformation. These ingredients are
what makes GR a powerful theory, that so far is able to describe the world surrounding us at
large scales, even more, unraveling the existence of new physical objects in the observable
universe such as black holes and gravitational waves [57, 58]. Despite its achievements,
just like QFT fails to incorporate the gravitational interactions, GR breaks down at the
quantum scale. Indeed, from the above description of QFT, if we put compare it to GR
we can see there are paradoxical differences, however complementary they may seem. The
quest of reconciling both theories is what defines the research field of QG. Let us spell
out several motives as to why we are attracted by putting together the lessons we learned
from these pillar theories, starting from which we can identify the main ingredients that
should be present in any theory of QG. We do not intend to list all of them, since this
also depends on the various perspectives one can adopt, but rather focus on those that are
relevant to the scope of this thesis.

There are several incentives to why we would seek a quantum theory of gravity besides
the conceptual inconsistencies between QFT and GR. Perhaps the most important ones
are the issue of time [5, 21, 59], the unification of all theories (and hence the reductionism
path: a coherent quantum theory of all interactions should also include a quantum theory
for gravity) and the puzzling phenomena yet to be better understood and answered in the
universe (such as the GR singularities, the gravitational field of a quantum field, the ther-
modynamical behavior of black holes, dark matter, dark energy). There are several reasons
as to why one should be and in fact is interested in quantizing gravity, or reconciling these
two theories of physics [60, 61]. Moreover, the universal coupling of the gravitational field
to all known forms of energy enhances the argument that it is only reasonable to argue
that gravity has to be implemented in a quantum framework too.
What we can learn from the above reflections on both theories, is that we can unambigu-
ously identify what are the fundamental ingredients that any program of quantum gravity
should have. From the QFT side we have the observables symbolizing the operations or the
means by which contact to our tangible reality is achieved, discreteness and symmetries are
pillars of both theories and the covariance principle as well (as we will discuss below). On
the other hand, what GR empathizes is the obvious need to redefine the standard perspec-
tive of the background (the stage) on top of which physics takes place. Diffeomorphism
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invariance is in fact nothing but a call for adopting a relational perspective on the subject
at hand. That being said, the description of the evolution of physical processes can only
take place with respect to one another rather than on a fixed absolute reference frame
(as is the case of QFT) [62]. In the following sections, we discuss these components and
underline the pressing necessity for such ingredients in any fundamental theory of QG [3]
to be viable.

Another point we would like to emphasize is, putting aside all the technical as well
conceptual issues we are faced with in such a quest, a central problem impeding the process
of formulating a QG theory is the absence of a clear empirical guideline [63]. This can be
understood as the challenges raised by the validity scale of both GR and QFT, where we
expect that quantum effects of gravity should undeniably be manifest and relevant in the
Planck scale. This scale is a dimensional system of Planck length, lP, Planck time, tP, and
Planck mass, mP, respectively. They are given by the expressions

lP :=
√
ℏG
c3 ≈ 1.62 × 10−33 cm , tP := lP

c
=
√
ℏG
c5 ≈ 5.39 × 10−44 s , (2.1.1)

mP := ℏ
lPc

=
√
ℏc
G

≈ 2.18 × 10−5 g ≈ 1.22 × 1019GeV/c2 . (2.1.2)

At the level of astrophysical observations, the order of magnitude of these scales is of no
relevance (except in the case of black hole physics). However, as argued above, these are the
scales where quantum gravitational effects are expected to be significant and these are also
the scales that we have so far no access to due to the lack of technological advancements.
Now that we have roughly a clear idea about the necessary elements and concepts any
quantum theory of gravity must be able to consistently address and incorporate, we can
further explore them with scrutiny and see how they are relevant in the GFT approach.

2.2 Background independence

In the following, we reflect on the relational background independent ingredient provided
by GR. A backup argument for this is provided by the hole argument argument stating
that the theory does not distinguish reference system objects from dynamical objects. This
is translated at the level of the manifold M as the vanishing of the physical meaning to
its constituent points, and promoting instead relative localization of events. This in turn
resonates with the claim of active diffeomorphism invariance of the theory [64]. What this
means is that a physical state is not located somewhere [56,65,66] but can only be located
with respect to another state.

Indeed, in a truly background independent QG formulation (taking into account the
diffeomorphism invariance), no reference to any classical metric should enter either the
characterization of the quantum state of geometry or the dynamical variables of the theory
[67, 68]. The metric should then be treated from an operational perspective and might
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be associated with different quantum states of geometry, or a superposition thereof [69].
Now, once we are provided with an operator for the metric, the picture of spacetime at
this level must be revisited. To take into account the relationalism induced by the theory’s
gauge invariance, the quantum states associated with the metric operator can only be
interpreted as quantum excitation of spacetime itself. But then the question that is raised
at this point is, what is then the physical content these states must bear in order to
recover the usual notion of geometry (spacetime)? In the absence of a background defined
by a manifold, one answer to this inquiry is to the logical conclusion that the quantum
states of spacetime should entail some sort of non-geometric (or rather pre-geometric)
diffeomorphism invariant information, or conceptions that enables the reconstruction of
spacetime. Therefore, they should be of a non-local nature. If we take this seriously, then
the quantum geometric information can only be combinatorial and algebraic, capable of
translating and reproducing the structure of the manifold as we will encounter in several
approaches to QG in the next chapters.

Relationalism in the classical realm. There have been several successful tentatives
to highlight the relational character of classical non-relativistic, relativistic, and quantum
mechanics [49, 70, 71]. Here we start by illustrating the notion of relationality with the
simplest example of the nonrelativistic particle. To this scope, let us consider the action
of the particle with a fixed mass m = 1/2 for simplicity, this reads

S =
∫

dt q̇
2

4 , (2.2.1)

where q is the position of the particle and the dot denotes the derivative with respect
to t. Usually in non-relativistic physics, the parameter t is perceived as the time of an
external clock that does not interfere or interact with the dynamics of the system. As
we argued above, this is different in GR since there is no preferred notion of external
time. Let us see how we can formulate this for the case of (2.2.1). We then introduce
an arbitrary parameter s to obtain an extended two-dimensional configuration space Qext

and we consider the action principle for an extended phase space that can be obtained by
promoting the variable t to a dynamical one. This can be precisely implemented provided
that solutions to the equations of motion (t(s), q(s)) as a function of s can be combined
such that at the end of the day, we end up with the same solutions q(t) of the equations
of motion of the action (2.2.1). This extended action yields

Sext ≡
∫

dsLext =
∫

ds q
′2

4t′2 ,

where the prime denotes a derivative with respect to s now. Let us note that the system
described by the above-extended action is in fact invariant under reparametrization s 7→
s̃(s). One can push further the analysis and conduct the Hamiltonian formulation of the
above action. In fact, the property of being invariant under reparametrization generates
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constraints in the Hamiltonian theory. Indeed, one can show that we end up with a primary
constraint

CH = pt + p2 ≈ 0 (2.2.2)
where the canonically conjugate variables p and pt associated to q and t are given by

p ≡ ∂L
∂q′ = 1

2
q′

t′
, pt ≡ ∂L

∂t′
= −1

4

(
q′

t′

)2

, (2.2.3)

and where ≈ is to denote that the equality is only valid only on the constraint surface
denoted by C [72, 73]. As a result, the extended Hamiltonian is proportional to this con-
straint,

Hext ≡ ptp
′ + pq′ − Lext = t′ (q, p, t, pt)CH ≡ N (q, p, t, pt)CH , (2.2.4)

with t′ = N . Obviously, as the Hamiltonian above entails, all observables are independent
of s. Nonetheless, we know that this is artificial and only due to the reparametrization we
considered above. We present now how to recast the dynamics as a physical evolution by
making use of the notion of relational observables. We fix N = 1 and study the solutions
to the equations of motion written in terms of s. The only non-trivial quantities that do
not have vanishing Poisson brackets with the constraints are

t′ = {t, CH} = 1, q′ = {q, CH} = 2p (2.2.5)
⇒ t(s) ≡ αs

CH
(t) = s+ t , and q(s) ≡ αs

CH
(q) = 2ps+ q . (2.2.6)

Let us outline the steps of defining a relational observable from this scheme [70,74,75];

• Separate the physical degrees of freedom in system variables and clock ones. In the
case of the absence of any preference of what degree of freedom should be used as a
clock, we denote this theory to be clock neutral then.

• Reformulate the dynamics by inverting the gauge evolution of the chosen clock as a
function of s and then plug it back into the dynamics of the system. This produces
an explicit dependence on the clock.

Let us illustrate this in more detail. Assuming that our clock system is given by t and
pt. For each value t(s) = τ , the first equation above can be inverted following the steps
outlined above and we obtain

Qq,t(τ) ≡ αs
CH

(q)
∣∣∣
αs

CH
(t)=τ

= q + 2p(τ − t), Pp,t(τ) ≡ αs
CH

(p)
∣∣∣
αs

CH
(t)=τ

= p .

One can show that these functions are canonically conjugated, {Qq,t(τ), Pq,t(τ)} = 1. In
fact, they underline the relation between q and p with t when t reads the value τ , meaning
that they answer to the question [74, 75]: What is the position q and momentum p of
the particle when the clock t reads τ? Furthermore, they are gauge invariant since their
respective commutator with the constraint vanishes and in particular if we choose for
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instance the correspondence t(s) = τ0, we end up with a specific gauge fixing of the gauge
constraint.

Now, we can notice that if we fix τ0, the gauge invariant function Qq,t (τ0) can be
evaluated at any point of the gauge orbit. In this sense, if we allow the parameter τ to
run, we can leaf through the entire constraint surface C through Qq,t(τ). It is from this
perspective that Qq,t(τ) represents a gauge-invariant extension of a gauge fixed quantity.
This is made clear since τ browses all the possible values of t(s), Qq,t(τ) and Pq,t(τ) indeed
describe the evolution of q and p with respect to t. Therefore, they are relational observables
(also known as complete observables). The corresponding observables associated with the
clock variables,

Tt,t(τ) = αs
CH

(t)
∣∣∣
αs

CH
(t)=τ

= τ

Ppt,t(τ) = αs
CH

(pt)
∣∣∣
αs

CH
(t)=τ

= pt

are entailing redundancy. In fact, they do not hold physical information anymore. In
principle, one can generalize the above example to the case [75]. Gauge fixing: As in the
simple example discussed above, it is important to the degrees to notice that the degrees
of freedom associated with T are generally redundant and it might be more convenient
to find to redundant-free formulation of it. In general, it is not possible to carry out this
procedure over the whole phase space because of two reasons

1. The clock and the system degrees of freedom may not be separable in general. This
in turn does not allow us to distinguish between the system and the clock degrees of
freedom. In this case, a phase space reduction is not possible.

2. It is possible that the Poisson bracket {T,CH} ≠ 0 is valid only locally meaning that
the clock function does not admit a global definition. Therefore, the elimination of
clock degrees of freedom cannot be performed over the whole phase space.

To remedy some aspects of these issues, we can make a few assumptions that will come
in handy. In particular, we speculate that

• The total phase space can be split into a product of the clock and the system phase
spaces: P ≃ PC × PS, with PC and PS being the clock and the system phase spaces
respectively.

• We will also assume that the two systems do not interact, meaning that

CH = cS + cC ≈ 0

with cC being a function on PC and cS being a function on PS. Furthermore, we
require {T,CH} = {T, cC} = 1, in order to guarantee that T is a globally good clock.

The relational formalism we just sketched can be in principle straightforwardly generalized
to GR.
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Relationalism in quantum gravity. We saw in the previous paragraph that relational-
ism is a concept well-established approach in the field of classical mechanics. This changes
drastically when we move the discussion to treat it at the quantum. In particular, the issue
of evolution and the very definition of time in the sector of QG has two facets, conceptual
subtleties, and technical ones. The conceptual issues start to pop up already when we com-
pare the quantum time t used in Quantum Mechanics (QM) as an absolute parameter with
that one in terms of which spacetime is dynamical. If we were to take the program of QG
seriously, we need to consider that clocks (in classical mechanics and GR) in such a regime
are in fact of quantum nature. However, this becomes incomprehensible and challenging
due to the quantum principle that needs to be accounted for [59,76] such as superposition,
uncertainty, and observations. In retrospect to this unclear setting, a relational evolution is
very poorly understood and it is so far unclear how to define it. On the side of the technical
issues, the reflections made on the problem of time in QG rises already as soon as we try
to canonically quantize GR. In general, there are two formal paths one can choose, dealing
with the quantum clock after having quantized the geometry or before. In this sense, it is
a tempus ante/post-quantum approach [77], where relational evolution is established only
before/after the theory is quantized. In the following, we will explain an alternative way
of dealing with the problem of relational evolution, namely that of effective relational ones
for its relevance to the extraction of continuum physics in chapter 4 and chapter 7.

The principles behind the definition of the emergent effective relational framework are:

1. Emergence. The effective dynamics ought to emerge as a collective phenomenon.
In this context, a formulation in terms of operators corresponding to collective ob-
servables and states encoding collective behavior of the underlying degrees of freedom
should be available.

2. Effectiveness. The relational evolution ought to hold on average, where the op-
erators playing the role of the internal clock should have small quantum (and ther-
mal, when relevant) fluctuations. This is important to reach a semi-classical regime.
Moreover, large fluctuations drive effective relational dynamics to be poorly trusted.

The macroscopic physics in such a formalism is depicted by means of expectation values
and fluctuations of the collective observables of the theory. This is computed on states
that capture some information on the proto-geometric phase defining the conversion to
the effective level. To summarize this section in a very simple idea, let us state that the
relational strategy amounts to identifying the necessary internal degrees of freedom of the
entire system composed of metric and matter fields that can be used as approximate rods
and clocks to parametrize the spatial relations and temporal evolution of the remaining
degrees of freedom.1

1This formalism forces us to work with the fact that physical clocks and physical rods will never be
perfect. Perfect meaning in this context is labeled with the idealized notion of time and space that are
present at the level of the coordinate systems.
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2.3 Fundamentality and discreteness

In chapter 1 we emphasized that a consistent and well-established theory of quantum
gravity must harbor at its core the various defining aspects of the theory of the gravitational
interaction and that of quantum field theory. In this section we are interested in zooming
in into the fabric of the underlying spacetime manifold and gaining a deeper insight into
its microscopic structure, bearing in mind the above-raised components of operationality,
relationality, and pre-geometric nature of the observed geometry and quantum matter.

In section 2.1 we pointed out that the testability of any QG theory is expected to be rel-
evant at the Planck scale since the gravitational force is then expected to be at its strongest.
At this scale, just as in solid-state physics, condensed matter, or molecular physics, there is
no reason to believe that the observed smooth manifold defining spacetime still maintains
such a structure. In fact, if we learned anything about the structure of matter is that on
the macroscopic level, where it does manifest a coherent and sometimes continuous shape,
it is only the manifestation of the fine-coarse groaning of more fundamental microscopic
structures endorsing such properties. In fact, once we take a closer look and study the
fabric of the microstructure, we find out they are not that regularly smooth but rather of
finite and discrete nature. The same logic can be applied to the architecture of spacetime
(the manifold). So far there is no obvious reason to believe it withholds such a property
at the Planck scale. In fact, if we zoom back one may think of what we actually observe
is nothing but the successive and strategic refinement of smaller discrete entities, such as
points (events).

Now, we can illustrate this argument with a more mathematical tool from topological
theories [78]. The example is based on the logic of substituting the continuum manifold
with a finitary topological space which under the necessary condition of approximating
in a clear sense the latter [79]. This of course calls for a definition of a limit where the
approximation procedure becomes more precise. We consider a topological space X. One
can define a notion of closeness between sets where formally speaking, two sets are close if
they are arbitrarily near to each other. In other words, we have the following definition

Definition 1. A topological space is a set X together with a collection of open subsets T
that satisfies the following conditions:

• The empty set is in T .

• X is in T .

• The intersection of a finite number of sets in T is also in T .

• The union of an arbitrary number of sets in T is also in T .

According to this definition, open subsets can talk to other subsets but in a finite way.
Systematically speaking, starting from a subset T we can gather enough information by
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identifying an open subset that characterizes the space S(T ). More precisely, given the open
cover T of X, assumed to form a subtopology of X, i.e. to be finite and closed under union
and intersection, we consider x, y ∈ X as equivalent if and only if ∀t ∈ T, x ∈ T ⇔ y ∈ T .
Then the space S(T ) is the quotient of X with respect to this equivalence relation.
We can also mention another relevant example to our discussion in the next chapter, which
is also an equivalent characterization of a finitary space. This discretization example can
be provided by an open covering of a given manifold in terms of simplicial complexes.
This combinatorial geometric notion is defined as a family of sets that is closed under
taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely
combinatorial description of the geometric notion of a simplicial complex. For instance, in
a 2d simplicial complex, the sets in the family are the triangles (sets of size 3), their edges
(sets of size 2), and their vertices (sets of size 1). This already induces the notion of a nerve
of an open covering, which is the simplicial complex having as vertices the open sets of the
open covering, and as simplices the finite families of open sets of it whose intersection is
non-empty.

As we will encounter in chapter 3 most of the background independent approaches to
QG, construct their framework based on these introduced notions of simplicial complexes
as substitutes for a continuum spacetime. As we mentioned above, they may actually
represent the finite character of spacetime and hence one step closer to a fundamental
description thereof. Moreover, before proceeding to the emergence step of the QG program,
let us point out that in the case of fixing a discrete substratum to be the fundamental
version of spacetime, then (as we suggested above), QG would be analogous to solid state
physics where field theoretical methods are used adopting the approximation of a smooth
manifold by means of the crystal lattice. The cut-off is then enforced in the so-constructed
field theories and it has a clear interpretation in terms of the atomic structure of the
space on which these fields live. To address the issue of diffeomorphism invariance, in
such a scheme, there are several perceptions one can take which inevitably differentiate
QG models and their technical issues [21, 65,78,80,81]. Moreover, identifying the discrete
structure of spacetime needs to be complemented by a quantum description. In fact, we
can make sense of a discretized piece of geometry only if we are provided with its equivalent
quantum description from which its physical properties can be extracted in a meaningful
manner. This is fundamental to the purpose of QG programs and we will encounter how
it is performed in several background independent models in section 3.1.2 (chapter 3),
where we first catalog the various discrete structure of geometry and then study how this
information is translated in a quantum setting.

2.4 The notion of emergence

In section 2.2 concerning the background independence and the notion of relationality in
the classical and QG setting, we stumbled upon the conception of the emergent nature of
the relational dynamics, which in its own way tackles some radical issues of the problem
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of time. In this section, we generalize this notion to the entire spacetime fabric, not only
the time one. Let us first provide a prominent attempt to characterize and define what
we mean by emergence, following [4, 21, 82, 83]. Emergence is to be understood as the
appearance of properties that are novel with respect to a more fundamental description of
the same system. They must be endowed with enough substantial and vigorous features,
allowing them to generate a new description of the physical system and to fashion new
predictions stemming from it. From these lenses, emergence is usually accompanied by
some limiting procedure and some levels of approximations in order to provide enough
“space” for the novel properties of the system and its consequences to become visible.
In the context of QG, this is already reminiscent of the previous section, where we unraveled
several fundamental components that should be considered in any theory of QG. The main
role of emergence is then to organize them in a meaningful and precise way, such that each
ingredient takes its right “place” at the right “moment”. In simpler words, it is the process
during which the connection between the complete theory of QG and that of the classical
world takes place and comes into existence. However, let us not exaggerate the implica-
tions of such a scheme, in fact in practice, the emergence process is usually implemented
after having identified a coarse graining procedure, a semi-classical limit. There have been
several implementations of this line of reasoning, and in this thesis, we will encounter some
of them such as GFT and spin foams. In particular, in such theories, one can identify four
levels of emergence as argued by [21], however, we will not go into the details of such levels.
The main feature we would like to emphasize in such a program is that they all endorse new
types of quantum degrees of freedom which are not geometric in a straightforward way and
are in fact of a different nature (usually combinatorial and algebraic) as we already spoiled
in the previous sections. The discreteness ingredient we mentioned in section 2.3 and its
possible quantum description, is an element shared by most of such theories. For instance,
we will see how this can be made explicit with the spin network states of LQG in section
3.3.2 with their dual functional dependence on group elements or group representations
associated with graphs, and their histories labeled by the same algebraic data and associ-
ated to cellular complexes in section 3.2. More interestingly, the quanta of GFT can be
described both as generalized spin networks (section 4.3) and simplicial building blocks of
piecewise-flat geometries (whose quantum dynamics merges the idea of spin foam models as
we will see in section 4.2) are also theories capturing all the above-mentioned components
and it is by so far a well-established theory of QG. In fact, the notion of emergence can be
very well formulated in such a framework, respecting the aspect of discreteness, relational-
ism, operationality, and causality. The emergence, in this case, is understood as effective,
and stemming from the collective behavior of the fundamental atoms of spacetime. For
more details on this, we refer to the literature, see for instance [59, 84–87]. Or it can also
be by employing the quantum properties of the pre-geometric states in the theory, such
as entanglement, along with the appropriate coarse graining procedure. In fact, this is a
prominent idea in QG approaches such as in the pinpointed duality between entanglement
and geometry within the AdS/CFT 1-1 correspondence [24,88–90].
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To be consistent with the above-mentioned programs, it is compulsory to raise several
conceptual issues that are usually not addressed in a direct manner. Regarding the relation
between entanglement and geometry; the claim made here is that if we take connectivity
as entanglement definition implies there is some kind of equity at the fundamental level.
We tend to put this by hand and give it a geometrical interpretation without really dis-
tinguishing between the true definition of it and the definition we really need in order to
make the theory consistent. As for the emergence within any quantum theory of gravity,
the question that we are faced with is: how far can we trust this approach? And what
can make us so confident that the silent degrees of freedom are not relevant? Is there a
parameter that can witness or detect such deficiency? Moreover, it seems that the uni-
directionality of the emergence proposal implies descriptive irreversibility. Meaning that,
due to the process of emergence, it seems just it is not possible to reverse engineer its
action. For instance, this can be illustrated by examples of thermodynamical emergence
from the microscopic statistical degrees of freedom.
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Chapter 3

On the background independent
approaches to quantum gravity

Discretizing GR in vacuum is in itself a very beautifully formulated theory of geometry.
As we argued in the previous chapter, a fundamental picture of spacetime ought to be
of discrete nature. As we will see in this chapter, it breaks down the smooth fabric of
spacetime (4d geometry) to elementary fundamental simplicial building block as we briefly
explained in section 2.3 (for a more technical definition of a simplex we refer to section
4). The identification of such discrete geometric structure depends on the dimension we
are considering and the chosen triangulation applied to chop the spacetime manifold M
into pieces (see figure 3.1c for examples of triangulations). Now, this line of reasoning is
usually followed by lattice gauge theories, simplicial geometry, spin foams, and group field
theories to provide a background independent QG. All of these approaches share this logic
in discretizing the underlying geometry of spacetime, however, the difference between them
becomes evident when they reach the step of defining the quantum counterpart of such
procedure; this is exactly what distinguishes them from one another. As already empha-
sized in chapter 2, we are interested in SF since they are related to the issue addressed in
chapter 5 and their relation to the formalism of GFT (chapter 4), which is the framework
we work with throughout this thesis.
The idea behind the SF model approach to quantum gravity is to appropriately discretize
the gravitational action (Einstein-Hilbert (EH)), and perform all impositions of the con-
straints, gauge fixings, as well as path integral quantization of such discretization. We will
go through this formalism in section 3.2, where we present the basic tools and concepts in
two well-known models of SF, namely the BC and the Engle-Pereira-Rovelli-Livine (EPRL)
models, and in particular we will pinpoint how these QG models are differentiated. But
first, we need to warm up with the principle notions of discretizing geometry from an in-
dependent background point of view. This procedure is very well understood and realized
in the context of topological BF theory and we will discuss it in section 3.1. Throughout
each section, we shall discuss the main steps to build Hilbert spaces and quantum states
that can be associated with discretized geometry. To acquire some geometric intuition, we
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discuss the case of 3d geometry and then proceed to the 4d case. Finally, we point out
in section 3.3 the common feature shared by all the presented background independent
models, namely that of the quantum state of geometry captured by spin networks. This
will be the basis from which we will study the generic superposed states in chapter 6. The
starting point for the discussion in this chapter is the EH (in metric variables) given by

S[gµν ] = 1
2κ

∫
M

dx4R
√

−gd4x , (3.0.1)

where κ = 8πG/c3 = 8πℓ2
p/ℏ.

3.1 Quantization of discretized geometry

In section 3.1.1 we present the method to carry out the discretization of spacetime in 3d as
a warm-up to acquire an intuition behind such a procedure. Furthermore, it will enable us
to answer several questions before even transitioning to the 4d which can be easily done in
the 3d case. This will allow us to discover the properties of GR at such discretized picture.
In particular, we will see that GR in its first order formulation belongs in fact to a larger
family of the so-called BF theory type. This can be provided by transforming the metric
parametrization of the EH action in GR to first order formulation. We then proceed to
the 4d case, where the situation becomes peculiar and more interesting since as we will
see we would need to identify some constraint to recover GR. After obtaining somewhat a
geometric chopped picture of the geometry we proceed with the quantization treatment in
section 3.1.2.

3.1.1 Discretizing gravity

In the following, we start by rewriting GR in 3d in a first order formalism and present
its discretized version as a warm-up and then move to the more interesting case of 4d
geometries. We will see how the notion of BF theories will allow us to work in a background
independent context. We then transition to the quantum realm of each dimension in section
3.1.2.

First order Palatini formulation and BF theory in 3 dimensions.

The starting point for our discussion in the following is to establish the first order formula-
tion of three dimensional geometries, where the derivation is carried out for Lorentzian as
well Riemannian gauge groups. The Lorentzian gauge group for its relevance to the physi-
cal world and the Riemannian one for its simple structure, the possibility to perform Wick
rotations, and its use in QFT, along with enabling a thermodynamic interpretation. Such
a connection is made clear once we adopt orthonormal frames instead of metric parameters
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to describe the underlying 3d geometry. This is precisely described by the triad field eI
a,

where uppercase indices are Lie algebra indices, while lowercase ones are spacetime indices.
This enables us to write the metric as a composite object, namely

gab = eI
ae

J
b ηIJ , (3.1.1)

where ηIJ is the internal metric in 3d and its explicit signature depends on whether we
are considering the local gauge group SO(2, 1) for Lorentzian geometry or SO(3) for Rie-
mannian one. The covariant derivative d(ω) is carried out with respect to the connection
expressed in such a frame. In 3d, the connection is the spin connection ωIJ and the
curvature tensor and its components are respectively defined through

F IJ = dωIJ + ωI
K ∧ ωKJ , F IJ

µν = ∂µω
IJ
ν − ∂νω

IJ
µ + ωI

Kµω
KJ
ν − ωJ

Kµω
KI
ν . (3.1.2)

This formulation in terms of a triad (orthonormal frame) and connection of EH in (3.0.1)
produces the so-called Palatini action of the GR action and it reads

S[eIJ
a , ωAB

a ] = 1
2κ

∫
M
ϵIJK

(
eI ∧ F JK(ω)

)
= 2

∫
M

tr(e ∧ F ) , (3.1.3)

where we set κ = 1 in the second equality. The equations of motion stemming from (3.1.3)
are obtained through applying the variation principle with respect to e and connection ω

δeS = 0 , δωS = 0 . (3.1.4)

Such equations of motion are equivalent to the Einstein equations in 3d and they read

F (ω) = 0 , d(ω)(e) = 0 . (3.1.5)

The set of dynamical equations in (3.1.5) forces the metricity of the spin connection as
well the compatibility between the triad (metric field) e and the connection ω. Notice that
it also constrains the curvature F (ω) to be vanishing everywhere, thus prohibiting any
non-flat configuration and local excitation such as gravitational waves.

BF theory and Palatini action. The Palatini action in (3.1.3) is indeed interesting
due to its relation to a much larger class of theories, called Background Field B and F
(BF ). This family of theories is defined by specifying the choice of the d-dimensional
manifold M we work with, a semi-simple group G, a 1-form connection A with values on
the Lie algebra of the group g, its curvature 2-form F and a (d − 2)-value form B. The
action for a BF theory is then expressed in terms of these variables [17,91] and it is given
by the simple expression

S[B ,A] =
∫

M
tr (B ∧ F (A)) , (3.1.6)

where tr(B ∧ F ) is the d-form produced by taking the wedge product of the differential
form part of B and F and using the bilinear form ⟨x, y⟩ = tr(xy) to pair their Lie algebra
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valued components (the trace here is taken in the adjoint representation). This action is
topological in any dimension and the equations of motion always force the connection to
be flat [17]. This is made clear once we derive the dynamical equations after varying the
action and we have

δ
∫

M
tr(B ∧ F ) =

∫
M

tr(δB ∧ F +B ∧ δF︸︷︷︸
d(A)δA

) =
∫

M
tr
(
δB ∧ F +B ∧ d(A)δA

)
=
∫

M
tr
(
δB ∧ F + (−1)n−1 d(A)B ∧ δA

)
= 0 ,

where in the last step we integrated by parts and neglected the boundary term1. Therefore,
the equations of motion are

F = 0, d(A)B = 0 . (3.1.7)
Again, the above set of evolution equations are quite simple and they are merely a hint
that BF theories are topological field theories. This becomes more clear when we study
the symmetries of the BF theory, where we will see that all solutions for the field B
and connection can always be mapped via a gauge transformation, rendering the theory
topological. Indeed, suppose that we define a transformation of the A and B fields where
A is left unchanged, while B changes by a term which is the external derivative of a
(d− 3)-form, i.e.,

A 7−→ A , B 7−→ B + d(A)η, (3.1.8)
for some (n − 3)-form η with values in g. The action above in (3.1.6) is invariant under
such transformation∫

M
tr
((
B + d(A)η

)
∧ F

)
=
∫

M
tr
(
B ∧ F + d(A)η ∧ F

)
=
∫

M
tr
(
B ∧ F + (−1)nη ∧ d(A)F

)
=
∫

M
tr(B ∧ F )

where we used integration by parts and the Bianchi identity d(A)F = 0. Indeed, this is
a gauge symmetry of BF theories since two solutions differing by this transformation are
perceived as physically equivalent. Furthermore, for a vanishing curvature for F = 0 we
end up with a flat connection A, this affects the B field in a way such that d(A)B = 0
can be written locally as d(A)η for some η. Notice that we only discussed the case of the
translation symmetry (shifting the field B while keeping A invariant). To completely gauge
fixed BF, we also need to take into account the Lorentz transformation, which is necessary
to show that all connections are the same up to gauge transformation. This completely
fixes the BF theory at hand. As a matter of fact, this becomes clear when we work out
the above evolution equation where the Bis gauge transformed. We see that the field B
is an exact form, but its gauge transformations are defined up to any exact form. We are
then left with no statement about how many solutions we can obtain for A (besides being

1We mention that in principle boundary terms in this action and previous ones can be included and
studied, however, for the purpose of this thesis we neglect them and refer to the literature on their
implication in QG models [29,92–94]
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flat), and exactly for this reason we need to have the Lorentz gauge transformations. This
further implies that one can always gauge away any local degree of freedom of BF theories,
proving that the theory contains only global, i.e. topological information.

The Palatini action (3.1.3) we encountered above, is in fact nothing but a BF theory
once we fix the gauge group G to be SO(2, 1) or SO(3). This means that GR in 3d is
indeed nothing but a topological theory [17,91].
Now, we are interested in discovering what the discretization of such a geometric theory of
spacetime will produce. To this aim, we need to introduce some tools and notations that
we will employ throughout this section and the overall thesis.

Definition 2. n-simplex: is the convex hull of n+1 points in Rd, where d ≥n. We define
then the following geometric notions

• 0-simplices are vertices, 1-simplices lines,

▲ 2-simplices correspond to triangles, and 3-simplices are associated with tetrahedra.

✧ 4-simplices are simply constructed by gluing 5 tetrahedra along their common trian-
gles, exactly as tetrahedra are gathered through the collection of four triangles glued
along their common edges.

Another notation that is very important as we will see in the quantum definition of
discretized geometry is

Definition 3. The face of an n-simplex: The convex hull of a non-empty subset of
points defining an n-simplex σ is called a face f of σ.

Definition 4. Simplicial complex: is a finite collection of simplices K = {σ} such that

• if σ′ is a face of σ ∈ K, then σ′ ∈ K

• if σ, σ′ ∈ K with σ ∩ σ′ ̸= ∅, then σ ∩ σ′ is a face of σ and σ′

The definition of a triangulation of a simplicial complex is now presented.

Definition 5. Triangulation T of simplicial complex:

❜ Triangulation: a triangulation T of a continuous manifold M is specified by a pair
(K,h) with K a simplicial complex and h : ∪σ∈K → M is a homeomorphism which
maps the set of all simplices in K to the manifold.

❜ Dual complex: is defined as follows: given a triangulation T , its dual is constructed
by identifying each d-simplex with a node and connecting the nodes whenever the
corresponding d-simplices have a common a face.
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(a) Triangle (face of a tetrahe-
dron).

(b) Tetrahedron within a 4-
simplex.

(c) Oriented pair of tetrahedra
in the same simplex.

Figure 3.1: Examples of spacetime triangulations.

In this way, n-dimensional objects of the triangulation are dual to (d−n)-dimensional ones.
In 3d for instance, a face f shared by two tetrahedra becomes dual to a one dimensional
object, an edge e⋆, and an edge e becomes dual to a face f ⋆, where we denote the dual of
an object by ⋆.

Now we put these notions and definitions at work to extract a discrete version of the
three dimensional manifold (spacetime).

Discretizing BF theories and 3d gravity The procedure of discretizing BF theories
and hence an equivalent formulation of 3d GR is well studied and quite understood [17,95].
Let us now describe how this is precisely implemented. We start by considering an oriented
geometric triangulation T of the 3d manifold M and we generate the discretization as
follows:

⊙ B field discretization: being a 1-form, the (what would be in GR) triad field can
be naturally integrated along 1-dimensional objects, i.e along the edges e of the
triangulation, and when we do so, we obtain a collection of Lie algebra elements and
hence we write BA

e =
∫

e B
A.

⊙ The A-connection discretization: since it is a 1-form, similarly to the triad field we
perform the discretization procedure in such a way that we associate 1-dimensional
objects that should be able to measure the curvature located on the edges. Thus, we
consider the dual simplicial complex T ⋆ and the connection A can then be integrated
along the dual link e⋆ defining therefore holonomies ge⋆ ≡ P exp (

∫
e⋆ A). These are

clearly group elements. We presented some properties that the holonomies enjoy in
Appendix A.1.

⊙ The Curvature F: The discretized curvature in this picture is then naturally repro-
duced as the product of the group elements ge⋆ associated with the links of the
boundary of the dual face f ⋆, and it is thus associated with the dual face itself;
gf⋆ = ∏

e⋆⊂∂f⋆ ge⋆ . This is in turn dual to the edges of the triangulation T , so we have
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the simplicial curvature associated with them, as we wanted. The logarithm of the
group element gf∗ log(gf∗) gives a Lie algebra element that we denote by Fe, that we
can think of as the substantial discretization of the curvature field on the edges of T .

This is the discretization prescription of variables (Be, Fe) that is dual to the edges of a
given triangulation T which we summarized in table 3.1.

Continuous variables Discretized variables∫
M

∑
e∈T

The B field BA
e ≡

∫
e B

A

The connection A ge∗ ≡ P exp (−
∫

e∗ Aω)
The curvature Fe gf⋆ = ∏

e⋆⊂∂f⋆ ge⋆

The measure D[B] ∏
e dB

A
e

The measure D[A] ∏
e dge∗

S[B ,A] =
∫

M tr (B ∧ F (A)) S[B,A] = ∑
e∈T tr (BeFe)

Table 3.1: On the left-hand side of the table we have the continuous variables of BF theory and
on the right-hand side, we can read off the discretized version of it. Examples of triangulations
of the continuous manifold are given in figure 3.1c.

The discretized action is then given by the discrete sum over the edges of the triangu-
lation T and it yields

S[B,A] =
∑
e∈T

tr (BeFe) . (3.1.9)

There is also the necessary check that this action is endowed with all of the discrete
counterparts of the symmetries of the continuum action [17, 95]. The partition function
associated with an arbitrary triangulation T can be written as

Z(T ) =
∫ ∏

e

dBe

∏
e⋆

dge⋆ exp
{
i
∑

e

tr (BeFe)
}

=
∫ ∏

e⋆

dge⋆

∏
f⋆

δ (gf⋆) , (3.1.10)

where in the second equations we end up with a δ-function on the group element gf⋆

representing the holonomy of the connection around a dual face f ⋆ after exploiting the fact
that Lie algebra variables Be act essentially as Lagrange multiplier.
This procedure can be naturally generalized to the case of 4d gravity as we will see in the
next paragraph. In fact, it is a direct implementation of the prescription presented in table
3.1.

Discretizing 4d Gravity, Plebanski and Plebanski-Holst action

Now that we went through the description of GR in terms of the triad variable e and the
connection, which is depicted by the first order Palatini formulation, we proceed to the
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case of four dimensional spacetime. Once we have the first order formulation of the 4d
gravity we study its relation to BF theory. Let us then start by promoting the triad to
its four dimensional counterpart, i.e. we then replace it with the tetrad field eI

a and write
the spacetime metric gab = eI

ae
J
b ηIJ . Hence, after implementing this parametrization, the

action (3.1.3) produces the Palatini action of GR in 4d

S[eIJ
a , ωAB

a ] =
∫
ϵIJKL eI ∧ eJ ∧ FKL(ω) , (3.1.11)

where ωIJ is the Lorentz connection this time, taking values in the Lie algebra of the
Lorentz group so(3, 1) (or so(4) for a Riemannian manifold). The equations of motion are
obtained by varying with respect ω and e and they read

ϵIJKL e
J ∧ FKL(ω) = 0 , dω(eI ∧ eJ) = 0 . (3.1.12)

Notice their algebraic simplicity. If the tetrad field is invertible meaning that a non-
degenerate metric can be constructed, then the above equations are equivalent to Ein-
stein’s equation. However, the field equations, as well as the action (3.1.11) continue to
make sense for degenerate tetrads. For example, the no-geometry state e = 0 (diffeomor-
phism invariant vacuum) solves the equations and makes perfect sense in terms of the
new variables. Moreover, the symmetries of the action are, just as in the 3d case, the
usual diffeomorphism invariance and the invariance under the internal gauge group, i.e.,
the Lorentz group SO(3, 1) (or SO(4) for Riemannian geometries).

It is important to mention that it is possible to show that there is another possible
combination of the tetrads and the curvature that enjoy the same set of symmetries of the
Palatini action [96] that leads to the same classical evolution equations of GR in vacuum.
This is given by the term proportional to∫

e ∧ e ∧ F . (3.1.13)

This is called the Holst term, and it can supplement the Palatini action such that

S[e, ω] =
∫
e ∧ e ∧ ⋆F [ω] + 1

γ

∫
e ∧ e ∧ F [ω] , (3.1.14)

where ⋆ stands for the Hodge star product [96,97]. The above coupling constant is chosen
as the inverse of the Barbero-Immirzi parameter γ2, defined in LQG as a free parameter
of the theory [14,98]. The two terms can be collected into the Plebanski-Holst action:

S[e, ω] =
∫ (

⋆e ∧ e+ 1
γ
e ∧ e

)
∧ F [ω] . (3.1.15)

2It is worth mentioning that this term has no particular influence on the equations of motion and it
can be shown to be vanishing on-shell [96].
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This formulation is equivalent to GR in the classical framework. However, as we will
discover in section 3.1.2 it becomes relevant when we enter the quantum description of the
theory in section 3.2.
Similarly to the 3d case, we can write down the BF formulation of the action (3.1.11) which
can be produced once we write the B field satisfying the quadratic Plebanski constraint
[51,96,99]

BIJ = ϵIJ
KL e

K ∧ eL . (3.1.16)
This condition imposed on the B field in this setting, restricts the topological theory to one
with local degrees of freedom, i.e. to that of GR in first order formulation. In this sense,
we can start off from a BF theory, implement the above constraint and we end up with
the familiar GR action. It is then reasonable to consider GR as a topological, dynamically
constrained BF theory. More precisely the above constraint imposed on the B field is
consistently incorporated through the Plebanski action [16] that yields

S[B,ω, µ] =
∫

M

[
BIJ ∧ FIJ(ω) − 1

2µIJKLB
KL ∧BIJ

]
, (3.1.17)

where B and F are both two-forms with values in the algebra so(3, 1) (or so(4)) and the
field strength F IJ = d(ω)ωIJ for a connection 1-form valued again in the respective algebra.
Here the constraint is imposed thanks to the Lagrange multiplier µ obeying the symmetries

µIJKL = µ[IJ ][KL] = µ[KL][IJ ], µIJKL ϵ
IJKL = 0.

The equations of motions are thus obtained by varying with respect to ω, B, and µ. More
importantly, the variation with respect to µ forces

ϵIJKL B
IJ
ij B

KL ij = 0 , (3.1.18)

implying that Bij is a simple bivector. It is exactly for this reason that this constraint goes
as the quadratic simplicity constraint in the literature [16, 99]. The geometric solution to
the above constraint corresponds to the following configurations for the bivector

BIJ
± = ±ϵIJ

KL

2 eK ∧ eL , (3.1.19)

where eA = eA
a dxa is a real tetrad field. For completeness, let us mention that the sim-

plicity constraint can also be defined to include the Barbero-Immirzi parameter γ present
in the Holst action (3.1.14) and we denote this constraint by Sγ(B). This naturally forces
the B field to take the form [100]

B = ±
(
1 + ⋆γ−1

)
e ∧ e , (3.1.20)

where ⋆ defines the Hodge dual. The constraint on the bivector can then be imposed on
the BF analog of the Holst action in (3.1.14) that is identified as the Plebanski-Holst action
given by

S[B,ω, µ] =
∫

[tr(B ∧ F [ω]) + µ · Sγ(B)] , (3.1.21)
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where the field B is given by (3.1.20), which reduces to (3.1.18) if we take the limit γ → ∞.
The actions (3.1.21) and (3.1.11) do not change the principles of discretizing the geometry
at the classical level of the theory, however, their differences lie within the operation of
implementing the constraints at the quantum level. Let us then first proceed to derive
the discretization scheme thereof following the same steps as in the 3d case, but now one
dimension higher.For this purpose, we work with a triangulation T of spacetime, where the
spin-connection of the BF theory is again naturally discretized along the links e⋆ of the
dual complex, in such a way that we end up with a Lie algebra element associated with
each dual link e⋆, or analogously to each tetrahedron τ connecting two 4-simplices, namely

ωIJ
e⋆ =

∫
e⋆

dxiωIJ
i ∈ g . (3.1.22)

and so similarly to the 3d (see table 3.1 for a summary) case but one dimension higher we
have the following discretization prescription:

• Connection: we consider path-ordered exponential of the discretized connection ωe⋆,
namely ge⋆ ≡ Pωe⋆ and match the curvature to the faces f ⋆ of the dual complex
(corresponding to triangles ∆ ∈ T ) by the logarithmic operation that yields

F∆ = log (gf∗) ∈ g , (3.1.23)

with gf⋆ is the product of group variables corresponding to the links circling the face
f ⋆, dual to the triangle ∆.

• Discretization of B: B is a two form, it can be naturally discretized on triangles
∆ ∈ T :

BIJ
∆ ≡

∫
∆

dxi dxjBIJ
ij . (3.1.24)

This then can be used as inputs to produce the partition function associated with the
triangulation T for the unconstrained, discretized BF theory:

Z(T ) =
∫ ∏

∆
dB∆

∏
e⋆

dge⋆ exp
{
i
∑
∆

tr (B∆F∆)
}
. (3.1.25)

In this setting, GR is recovered once we correctly implement the discrete counterpart of
the simplicity constraint Sγ. This is translated into imposing a delta function forcing the
constraint on the B field configurations Sγ (B∆) = 0, this then yields

Z(T ) =
∫ ∏

∆
dB∆

∏
e∗

dge∗δ (Sγ (B∆)) exp
{
i
∑
∆

tr (B∆F∆)
}
. (3.1.26)

where δ (Sγ (B∆)) encapsulates the imposition of the discretized constraint that reduces
the BF theory to GR. As we will see in section 3.2, it is exactly the quantization of this
constraint through the presence of the delta function, that gives rise to different quantum
gravity models.



3.1 Quantization of discretized geometry 27

e1

e2

e3

B12 = e1 ∧ e2
e1 + e2 + e3 = 0

Figure 3.2: Closure of a triangle based on three edges. Illustrated is also a bivector B12

constructed out of the wedge product of two edge vectors, e1 and e2.

3.1.2 Quantization procedure of discrete gravity

So far we managed to successfully provide a discretized version of spacetime in 3d and 4d
in terms of triangles and tetrahedra as fundamental building blocks, where their dynamics
are captured by the discretized partition functions in (3.1.10) and (3.1.26). Now, we want
to construct the quantum picture associated with such discretized simplicial geometries
which is the main goal of any QG theory. To achieve this, we start by showing how all
the elements of the triangulation are given a quantum description and how quantum states
are constructed. This simplifies the identification of the fundamental building blocks for
the transition amplitudes as we will see below. In the next section, we give an explicit
derivation of the partition function and transition amplitudes for the theory based on these
building blocks provided by the spin foam model.

Quantization of 3d simplicial geometry

We start by presenting the quantum version of the discretized geometry discussed above
motivated by quantum simplicial geometry. More precisely, we provide the logic behind
constructing the Hilbert space associated with the set of edges, triangles, tetrahedra, and
the corresponding quantum states, spanning such a space. The key idea is then to quantize
the basic variables of the theory and to obtain a state associated with each 2-dimensional
surface in the simplicial manifold. This is obviously given by a collection of triangles glued
together along common edges where an amplitude for each 3-dimensional manifold is then
provided by a group of 3-simplices, tetrahedra, glued together along common triangles.
Finally, we can generate the path integral expression for the transition amplitudes. In
order to systematically implement this program, we follow a very simple line of reasoning:
we write down the classical constraint that is imposed on the elementary discrete edges
to close and form a triangle and then we lay out its quantum counterpart, starting from
which we can perform the same steps for the tetrahedron.

Once we have fixed a triangulation T , we saw that in 3d the geometry of the d − 1
boundary data are simply given by triangles. These objects can then be glued together
to build the fundamental structure of the discretized simplex which are tetrahedra as
illustrated in figure 3.3.
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Figure 3.3: Closure of a tetrahedron τ on its four faces by identifying the common edges in
each pair of faces (triangles).

Now, a single tetrahedron can be understood as the convex envelope of four points in
R3 [101]. With reference to figure 3.2, we see that a set of triads e⃗1, e⃗2, e⃗3 of independent
vectors defines completely the triangle, such that

3∑
i=1

e⃗i = 0 , (3.1.27)

and we call this equation at the classical level of the geometric description the closure
constraint. The fundamental parameter used in expressing geometric quantities is the
discrete variable that can be associated with the triad field e. We saw when we derived
the discretization of BF theory in 3d (section 3.1.1) that the discretization is performed
by associating to each edge an SU(2) group element. There is then a natural algebraic
way to construct its quantum analog. Now the quantization program can be implemented
canonically, by promoting the above algebra variables to operators, which once assigned
a representation, can act on a given Hilbert space (representation space V j2) 3. In the
current situation, it will act on the Hilbert space of the quantum tetrahedron.
Let us then implement the sketched quantization procedure in the case of the discretized
3d geometry.

• Quantum vector: we choose a representation je and turn its Lie algebra into an
operator acting on the representation space V je . This gives us the Hilbert space

3In fact, we can associate to each edge an element of the canonical basis of the SU(2) Lie algebra, Ji in
some representation j. Doing this, the operator corresponding to the square of the edge length ea · ea for
the edge a is given by the SU(2) Casimir C = L2 = Ja · Ja, which is diagonal on the representation space
V ja , La = ja(ja + 1). Therefore we see that the representation label j gives the quantum length L of e
to which the corresponding representation is assigned, thus the Hilbert space Vj can be interpreted as the
Hilbert space for a 3-vector with squared length j(j + 1).
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Figure 3.4: Spin network state describing the quantum triangle abc with edges labeled by spin
representations j1 , j2 , j3. The closure of the triangle is translated to requiring the invariance of
the tensored state of the respective edges. This defines the vertex state.

and a set of operators acting on it and they are associated with each edge of the
triangle. The edge Hilbert space is given by the direct sum of all Hilbert space that
can reproduce a possible fixed edge length: He = ⊕jeV

je . It is important to stress
that this is the fundamental Hilbert space starting from which we can construct the
one for the triangle as well as the one for the tetrahedron.

• Quantum triangle: As we have already introduced above, a classical triangle is given
by a set of three vectors that close together (3.1.27). The quantum state that we can
give to triangles is obviously constructed based on three copies of the quantum edge
vector extracted above. However, we need to define the quantum counterpart of the
closure constraint imposed so that the edges close, meaning that we have to constrain
the space of three edges given by the tensor product V j1 ⊗ V j2 ⊗ V j3 . The closure
constraint is translated to a very well-known invariant tensor in the representation
theory of SU(2), namely the intertwiner between the three representations j1, j2, j3,
i.e. the 3j symbol:

φ∆ = Ij1j2j3
m1m2m3 =

(
j1 j2 j3
m1 m2 m3

)
. (3.1.28)

The resulting quantum state is unique and is usually called a vertex (see figure 3.4).
The full Hilbert space for the quantum triangle ∆ (abc) is then given by4:

H∆ = ⊕ja,jb,jc Inv
(
V j1 ⊗ V j2 ⊗ V j3

)
. (3.1.29)

Now, classically, a generic 2d surface is constructed out of glued triangles along their
common edges. In the quantum picture, this is translated into gluing the corresponding

4If one takes into account the triangle inequalities, this can be converted at the quantum level to
inequalities for the representation parameters ja, given by |j1 − j2| ≤ j3 ≤ j1 + j2. When this holds, there
is then only one possible choice for the state of the quantum triangle [102].
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states of the quantum triangles where the gluing is basically defined through the tracing
over the common representation space of tensored triangles. The amplitude in this case, is
automatically associated with a quantum tetrahedron τ . This can be naturally provided by
the construction mentioned above in terms of quantized edges and their Hilbert spaces. A
tetrahedron τ can be seen as a cobordism S3 → C given by 4 boundary triangles (meaning
6 boundary edges as illustrated in figure 3.3 and figure 3.1b) [103, 104]. In this case, we
can associate it with the amplitude

τ(j) : ⊗iφ∆i
= ⊗i Inv

(
V j1i ⊗ V j2i ⊗ V j3i

)
→ C. (3.1.30)

The above amplitude is quite simple and it preserves all the information we need about
τ . Indeed, the representations associated with the six edges of the tetrahedron obey the
triangle inequalities and are invariant under the group of rotations SU(2). Consequently,
it can be obtained by explicitly constructing the four invariant tensors (3j-symbols) for
the four triangles5, thus getting a scalar as a result. The amplitude can be then expressed
for the case of a fixed spin value as

τ(j) = Ij1j2j3
m1m2m3I

j3j4j5
m3m4m5I

j5j1j6
m5m1m6I

j6j2j4
m6m2m4 = {6j} , (3.1.31)

i.e. by the 6j-symbol and for a generic choice of spin labels, we end up with the more
general amplitude

τ =
∏

i

∑
ji

∆ji

 {6j} . (3.1.32)

For a generic simplicial complex, the amplitude is simply given by a product of 6j-symbols,
one for each tetrahedron, where we also similarly sum over representations for all the edges
in it. The above outlined quantization procedure of the classical discretized partition
function in 3d is summarized in table 3.2.

Classical discrete parameters Quantization Hilbert space

Edge vector ei of a triangle ∆ je He = ⊕jeV
je

Triangle ∆ φ∆ = Ij1j2j3
m1m2m3 H∆ = ⊕ji

Inv (V j1 ⊗ V j2 ⊗ V j3)

Tetrahedron τ ⊗iφ∆i
(3.1.30) τ =

(∏
i

∑
ji

∆ji

)
{6j}

Table 3.2: Quantization prescription of the edges, triangles and tetrahedra. The implementation
of the classical closure constraints in already performed. The resulting fundamental elementary
state of quantum geometry is depicted in figure 3.4.

5This is an operation that mimics the closure of the four triangles to build up the boundary sphere S3.
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4d quantum discretized geometry

In the four dimensional case, we are dealing with one dimension higher for the boundary
geometry. We are dealing then with tetrahedra instead of triangles which are glued among
their common faces. This construction is the basic entity characterizing the geometry
triangulation T , namely 4-simplices. Similarly to the case of 3d geometry, we start by
describing the classical geometric objects we need to reproduce the continuum geometry
and then proceed to its quantum counterpart (see table 3.2 for a concise outline of the 3d
case).
The main difference with the 3d geometry is that a classical tetrahedron can be described
through a set of four bivectors that are normal to each of its triangular faces. Analogously
to the 3d case, in order to proceed with its quantization we rely on the isomorphism be-
tween the space of bivectors for Riemannian or Lorentzian signature with the respective
Lie algebra elements.

First, let us start by stating that the analog of the closure constraints in (3.1.27) is
then applied to the bivectors on the faces of a given tetrahedron. This forces the closure
of the tetrahedron and it reads as

4∑
i=1

BIJ
i = 0 , (3.1.33)

There is an additional constraint that we need to impose on the bivectors which is the
geometric condition that they have to lie in the same three dimensional hypersurface [101,
102]. This can be specified by finding a vector X that must be normal to all four bivectors,
illustrated in figure 3.6. This condition makes the bivector simple, and we call it the linear
simplicity constraint. It is of great importance to mention that, the quadratic simplicity
constraint admits two sectors of solutions of the topological and gravitational sectors [1].
However, the linear simplicity constraint has solutions only in the gravitational sector,
making it a slightly stronger condition than the quadratic one, but it picks out the correct
solution sector. As we will see later on, once we discuss spin foam models in section
3.2, this constraint can be imposed in different ways, birthing different QG models. The
quantization of a tetrahedron then proceeds exactly in the same way as the 3d case. In the
following we denote Hilbert spaces of triangles with the subscript ∆ and representation
with t. We can explicitly describe it in the Lorentzian (and Riemannian) cases as follows:

1. We use the isometry ∧2 R4 ≃ so(4) ≃ spin(4) and in the Lorentzian case the isometry∧2 R3,1 ≃ so(3, 1). This naturally allows us to associate the bivector attributed to a
triangle ∆ with a generator of the algebra:

BIJ(t) → ∗J IJ(t) = ϵ IJ
KLJ

KL . (3.1.34)

2. We then promote these variables into operators. This is (as in the 3d case) carried
out by associating to the different triangles ∆ an irreducible representation (irrep) ρt
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of the group and the corresponding representation space using the geometric quan-
tization map as in the 3d case so that the generators of the algebra act on it. This
of course depends on the group at hand and its harmonic analysis. Again, as we will
see later on, this very step will differentiate QG models.

3. The Hilbert space of a quantum triangle: the group we are working with is in the
Lorentzian case SL(2,C), the double cover of the Lorentz group SO(3, 1) (and in the
Riemannian Spin(4) being the double cover of SO(4)). In the Lorentzian case, the
irreps in the principal series are characterized by a pair (ρ, ν) of a natural number ν
and a real number ρ. For the case of SO(4) the unitary representations are labeled by
two half integers (j1, j2). The Hilbert spaces of the un-constrained quantum triangle
in these cases yield

H = ⊕ν,ρH(ν,ρ) (3.1.35)
in order to impose the quantum constraint to reproduce a bivector we rely on the
map (3.1.34) which produces a condition on vanishing Casimir [105–107]

J (ρt) · ∗J (ρt) = ϵIJKLJ
IJ (ρt) JKL (ρt) = C2 (ρt) = 0 . (3.1.36)

where t labels a triangle. For the Lorentzian case, we end up with the representa-
tion labeled by (ρ, 0) corresponding to time-like triangles and (0, ν) corresponding to
spacelike triangles that solve the constraint (in SO(4) case we have only represen-
tation of the form (j, j)) as explained in the appendix A.1. The associated Hilbert
spaces for both cases read respectively

H∆ = ⊕νH(ν,0) ∪ ⊕ρH(0,ρ) , H∆ = ⊕jH(j,j) . (3.1.37)

4. Tetrahedron Hilbert space: the Hilbert space for the tetrahedron is obtained from
that of its triangles, in particular, it is assembled by four of them, mimicking the
classical picture where we need four triangles to close in order to obtain τ . There-
fore we are considering each tetrahedron, with given representations assigned to its
triangles, to be a tensor product: H∆1 ⊗ H∆2 ⊗ H∆3 ⊗ H∆4 of the four representation
spaces for its faces where the tensored spaces decompose pairwise into those labeled
with the balanced (simple) representations only. We still have to impose the closure
constraint we associate to the tetrahedron through an intertwiner between the four
simple representations associated with its faces acting as the map

Bρ1ρ2ρ3ρ4 : H∆1 ⊗ H∆2 ⊗ H∆3 ⊗ H∆4 → C (3.1.38)
and this is illustrated in figure 3.5. Therefore the Hilbert space of a quantum

tetrahedron is given by:
Hτ = Inv (H∆1 ⊗ H∆2 ⊗ H∆3 ⊗ H∆4) , (3.1.39)

with H∆i
being the Hilbert space for the i-the triangle ∆ defined above. Each state

in this Hilbert space is then a group intertwiner called the Barrett-Crane intertwiner.
We will discuss this invariant quantity when we again encounter the BC model in
section 3.2.
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Figure 3.5: The vertex depicting a quantum tetrahedron in 4d with four outgoing links labeled
by spin representations. The links are dual to the faces (triangles) of the tetrahedron and the
invariance at the vertex is translated to the closure of the four of them.

5. 4-Simplex amplitude: the quantum amplitude for a 4-simplex σ, interpreted as an
elementary dynamical variation affecting the geometry, thus expressing the dynamics
of the theory, is indeed the fundamental building block for the partition function and
the transition amplitudes of the quantum theory. As in the 3d case, this amplitude is
built out of the tensors associated with the tetrahedra in the 4-simplex. This clearly
allows us to immediately take into account the conditions to describe the geometry
of the simplicial manifold, at both the classical and quantum level and has to be
invariant under the gauge group (again, to reproduce GR it is the groups SL(2,C)
or Spin(4)). This can be obtained by contacting the five required tetrahedra to get

Aσ : ⊗i Inv
(
H1i ⊗ H2i ⊗ H3i ⊗ H4i

)
→ C , (3.1.40)

This amplitude is for fixed representations associated with the triangles, meaning we
are also fixing the area of the corresponding triangles. Finally, the full amplitude
takes into account all representations, where (3.1.40) plays the role of weight for each
configuration.

The quantization of the classical constraints produces different spin foam models as
we will discuss in section 3.2. As we already emphasized, the transition to the quantum
picture is achieved through implementing such a constraint at the level of the representation
labels decorating the fundamental building blocks. Below in table 3.3 we report the main
ingredients to perform such quantization in 4d.

3.2 Covariant quantization program

We have seen that in BF theory the partition function can be computed by triangulating
spacetimes in 3d and 4d considering all the ways of labeling dual faces by irreducible
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Classical discrete parameters Quantization Hilbert space

Triangle ∆ φ∆ = Ij1j2j3
m1m2m3 H∆ = ⊕νH(ν,0) ∪ ⊕ρH(0,ρ)

Tetrahedron τ Bρ1ρ2ρ3ρ4 (3.1.38) Hτ = Inv (⊗4
i H∆i

)

Table 3.3: Quantization prescription of the discretized partition function (3.1.26) in 4d. The
implementation of the classical closure and simplicity constraints is already performed and made
evident by selecting the balanced representation of the principle series of SL(2,C). The resulting
fundamental elementary state of quantum geometry (the tetrahedron) is illustrated in figure 3.5.
Notice that we reported here only the Lorentzian quantum geometry data.

.

representations and dual edges by intertwiners. The amplitude is then constructed such
that for each of such labeling, we view an amplitude as the product of amplitudes for
dual faces, dual edges, and dual vertices. To formalize this concept and directly relate
it to the EH action, we introduce the formalism of spin foams (SF). Spin foam models
resulted from the line of research that follows the path integral quantization technique. It
started off as an attempt to write down a Feynman path integral for GR [108–110] and
was later on motivated by the lack of a concrete successful description for the dynamics of
the quantized 3d geometries provided by the spin network states [102, 111, 112]. This also
means the picture of a 4d quantum geometry is lacking (and still is). It is at this stage
that spin foams propose an approach to address such a problem of properly imposing the
quantum dynamics of geometries.
Analogously to spin networks is defined as a graph Γ with edges labeled by spins and
vertices labeled by intertwining maps, a SF is a 2d piecewise linear cell complex with faces
decorated by spins and edges labeled by intertwining operators. As we will see later in
section 3.3 when we discuss the notion of spin networks, we can conceptualize SF either
abstractly or embedded in spacetime. In both cases, a generic slice of a SF at a fixed time
gives a spin network. Edges of this spin network come from faces of the SF. The vertices
on the other hand of the spin network come from edges of the SF. In this picture, as we
move the slice along the timeline, the topology of this spin network dynamically changes
only when the slice passes a vertex of the spin foam.

General structure of the spin foam model

Let us start with the definition of what is a spin foam. It is very analogous to the definition
of a spin network that we will study extensively in section 3.3, but everything is one
dimension higher. More precisely [17]:

Definition 6. (Spin foam) Given a spin network Ψ = (Γ, ρ, ι), a spin foam F : ∅ → Ψ is
a triple (σ, ρ̃, ι̃)

• σ is a 2 -dimensional oriented complex such that Γ (the graph) borders σ, ρ̃ is a
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labeling of each face f of σ by an irreducible representation ρf of a group G,

• ι̃ is a labeling of each edge e not lying in Γ by an intertwiner mapping the irre-
ducible representations (irreps) of the faces incoming to e to the tensor product of
the irreducible representations of the faces outgoing from e,

• for any edge e′ of Γ we have; ρ̃f = ρe′ if f is incoming to e′ and ρ̃f = ρ∗
e′ if it is

outgoing from it, and for any vertex v in Γ, ι̃e = ιv with appropriate dualization.

As we emphasized earlier, we now explore two SF models that differ due to the im-
position of the simplicity constraint of the bivectors at the quantum level. In section
3.2.2 we see how the linear simplicity constraint appearing in the Plebanski-Holst action
is implemented, whereas in section 3.2.1 we present the main point of the Barrett Crane
(BC) model imposing the quadratic simplicity constraint. Furthermore, it is important to
emphasize that the techniques we developed in quantizing BF theory can not be borrowed
and implemented a the level of SF. This can be explained by the fact that the path integral
of spin foam theory is regularized on a triangulation and consequently fixing it [16]. This
means that at the level of its 2-complex, the degrees of freedom are truncated. Indeed, we
can discretize and quantize the topological theory first. The B-fields are assigned to the
faces of the 2-complex, triangles, and encode their geometry. However, the connection is
regularized by considering only its holonomy responsible for the parallel transport along
the (half-)edges of the 2-complex (from one tetrahedron to another). As explained above,
the topological theory partition function consists of a collection of delta functions imposing
flatness of each face of the 2-complex.

3.2.1 The Lorentzian Barrett Crane model

In the following, we want to sketch the main idea behind the Barrett-Crane model since
the main results obtained in chapter 5 are an extension of this formalism. The BC model is
one of the most extensively studied spin foam models for quantum gravity from a covariant
formulation [102,113,114]. Let us present the main features that led to such a construction,
referring for more extensive and detailed analysis to the literature [16,115–117]. We focus
on the Lorentzian BC model in 4d since it is the main spin foam model related to the
setting in chapter 5, the discussion can be simply generalized to cover the Riemannian
case. The BC model can be formally viewed as a spin foam quantization of Plebanski’s
formulation of GR. For now, we focus only on this action, leaving the Plebanski-Holst
action treatment to section 3.2.2 when we discuss the EPRL model.

Classical geometry description: We saw that in 4d, we can write the EH action in
a first order formulation captured by the Plebanski action in (3.1.21) which is basically a
constrained BF. The recovery of GR as a subclass of the BF family theories is based on
the identification of the B field with the bivector associated with the triad field, namely
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BIJ = ±ϵIJKLeK ∧ eL, and BIJ = ±eI ∧ eJ , (3.2.1)

The BC model provides an attempt for the quantum translation of these geometric con-
straints and a framework for their implementation in a consistent QG model. The starting
point is the formalism developed in 3.1 where GR is reproduced in a simplicial geometric
setting by constraining the BF theory in four dimensions. This description paves the way
to introduce a background independent attempt to quantize it. As already spoiled several
times, what makes a QG model different from its relatives is how to quantize the above
constraint imposed onto the bivectors. In the following, we perform this for the simple ex-
pression (3.2.1). We carry out the same steps of quantization provided by the map (3.1.34)
for the bivector [2,115,118], where the gauge group is the Lorentzian one (the Riemannian
case is similarly constructed):

B = ∗(e ∧ e) . (3.2.2)

Let us go a bit into the details to understand how to implement such a very simple con-
straint at the quantum level. To do so, we start by describing the classical set of constraints
imposed on the B-field in the BF theory which is now imposed automatically on the bivec-
tor:

➤ The bivectors change sign when the orientation of the triangles ∆ within a given
tetrahedron τ is changed.

➤ The bivector is simple.

➤ The bivectors associated with neighboring triangles sum to simple bivectors, if both
of them share an edge.

➤ The four bivectors associated with the faces of a tetrahedron sum to zero:
4∑
i

BIJ
i = 0 . (3.2.3)

Quantum bivector and tetrahedron: The quantization procedure of these constraints
is similar to the one derived in section 3.1.2 and it amounts in providing a consistent de-
scription of the quantum bivector. The Barrett-Crane quantization proceeds by associating
to each triangle ∆ an irrep of the Lorentz group in the principal unitary series, with the
identification

BIJ(t) ↔ ∗LIJ ((ρ, ν)∆) , (3.2.4)

where L is the generator of the Lorentz algebra and (ρ, ν)∆ are the representations labels
such as ν being a half-integer number, and ρ a real positive number labeling them (for
the detailed input provided by group theory of the Lorentz group, we refer the reader
to Appendix A.1). The corresponding representation space (on which the generator L
acts) are attached to each triangle ∆, and assigned to each tetrahedron τ an invariant
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tensor (intertwiner) in the space given by the tensor product of the four representation
spaces associated with its faces, intertwining, therefore, the triangle Hilbert spaces. This
is basically the action of gluing the set of triangles to build a given tetrahedron. This
identification then allows a quantum translation of the classical constraints listed above as:

➭ If a triangle changes orientation, the representations are then interchanged with their
dual.

➭ The representations that we associate to the bivector are only the simple (balanced)
ones: (0, ν) or (ρ, 0). This is translated as setting this restriction through C2 =
L ((ρ, ν)∆) · ∗L ((ρ, ν)∆) = νρ = 0, where C2 is the second invariant Casimir of the
algebra (see Appendix A.1). These selected representations can be realized in the
spaces of square integrable functions on the hyperboloids in Minkowski space M4. We
will consider only the representations that are associated with spacelike tetrahedra
(simple bivector with ν = 0) since they are the only ones relevant to our discussion
for the BC model.6 The Hilbert space is then given by

H(0,ρ) = L2[Q1] =
⊕

µ

R0 ,ρ dρ ρ2 . (3.2.5)

➭ The representations associated with adjacent triangles sum to simple representations
(fulfilling C2 = 0), if ∆ and ∆′ share an edge; this also implies that the tensor
for a tetrahedron τ must be decomposed into its Clebsch-Gordon series where the
contributions in the entries of such a sum are non-zero for simple representations
only.

➭ The tensor associated with a τ is an invariant tensor under the action of SO(3, 1).
Thus we associate an intertwiner Iτ to each of these building blocks.

This set of conditions allows the identification of a unique state Ψτ for each tetrahedron
in the triangulation T . Geometrically, the simplicity constraint is translated to have the
bivectors lying in the same hypersurface illustrated by figure 3.6. This is exactly given by
the invariant tensor called the Barrett-Crane intertwiner.

The partition function. Using the same BF derivation for the partition function, we
consider the L2 square integrable functions on the hyperboloids in Minkowski space M4

and realize the BC constraint by using a suitable projector on it [105,114]. The geometric
6This reason is laid down as follows: for the quantization procedure, the algebra associated with the

two spectra of the balanced irreps have different Poisson structures. For instance, the spacelike simple Lie
algebra elements include the subalgebra su(2), for which there exists a quantization condition that the
symplectic form is integral and as a consequence, this naturally leads to a discrete series of representations.
On the other hand, the corresponding cohomology class for the time-like elements vanishes, so there is no
known quantization condition so far. This produces an arbitrariness of the parameter [114].
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Figure 3.6: Geometric interpretation of the simplicity constraint. The gray surface is the
hypersurface where all the four bivectors normal to the faces of the triangles must be embedded.

meaning of such a projection is to restrict to spacelike triangles that are defined through
time-like bivectors (see Appendix A.1). The above constraints are then implemented as
follows:

1. Upper hyperboloid Q1: The simple representations are then considered once we re-
strict the Hilbert space to the irreps in the principle series which are realized once
we impose invariance under the SU(2) group action on the representations associated
the each face of the triangle (defined by the corresponding bivector).

2. Closure constraint of τ : Relying on the same set of SU(2) invariant representations,
we further demand invariance under the action of the Lorentz group of the product
of the four representation functions corresponding to the four triangles of τ .

In both cases, the employed projectors realize the simplicity constraint. Now, let us see the
intertwiner that can be constructed by considering the tensor product of spacelike triangles
labeled by the quantum labels of the balanced representations within the principle series.
The tetrahedron-intertwiner yields [102,114]

Bρ1ρ2ρ3
j1k1j2k2j3k3j4k4 =

∫
SL(2,C)/SU(2)∼Q1

dxDρ1
00j1k1(x)Dρ2

00j2k2(x)Dρ3
00j3k3(x)Dρ4

00j4k4(x), (3.2.6)

where the Dρ(g) are matrix elements of the representation ρ of the group element g as
explained in Appendix A.1 and x are the coordinate on Minkowski space. Notice that
here, the required invariance under the action of SU(2) turns the integral over SL(2,C)
into an integral over the homogeneous space Q1 (as we anticipated above)7. This invariant

7Of course, in the Lorentzian case, where the integration domain is noncompact, we are not at all
certain that the integral is well defined or even makes sense. We will discuss this in detail later in chapter
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tensor represents, as we said, the state of a tetrahedron whose faces are labeled by the
given representations; it can be represented graphically as in figure 3.3.

Now we have all the ingredients to compute the transition amplitude associated with
the BC model. It can be obtained by contacting the five tetrahedra as in (3.1.40). This am-
plitude is for fixed representations associated with the triangles, i.e. for fixed triangle areas;
the full amplitude involves a sum over these representations with the above amplitude as a
weight for each configuration. The resulting model is then given by the partition function
based on continuous representations where the measure is provided by the Plancherel one,

Z =
∏

f

∫
ρf

dρfρ
2
f

(∏
v,ev

∫
Q1
dxev

)∏
e

Ae (ρk)
∏
v

Av (ρk, xi) , (3.2.7)

with the amplitudes8 for edges (tetrahedra) and vertices (4-simplices) being given by

Ae (ρ1, ρ2, ρ3, ρ4) =
∫

Q1
dx1dx2K

ρ1 (x1, x2)Kρ2 (x1, x2)Kρ3 (x1, x2)Kρ4 (x1, x2) ,

whereKρ is the invariant kernel resulting from the contraction of two simple representations
and it is naturally invariant under SU(2). It is then associated with each triangle in each
4-simplex. The face amplitude is given by the product of the Plancharel measure∏

f

∫
ρf

dρfρ
2
f

 . (3.2.8)

Whereas the vertex amplitude is given by [2, 119]

Av (ρk, xi) = Kρ1 (x1, x2)Kρ2 (x2, x3)Kρ3 (x3, x4)Kρ4 (x4, x5)Kρ5 (x1, x5) (3.2.9)
Kρ6 (x1, x4)Kρ7 (x1, x3)Kρ8 (x3, x5)Kρ9 (x2, x4)Kρ10 (x2, x5) . (3.2.10)

The explicit expression of K that will turn out to be very useful for the computations in
chapter 5 reads as

Kρk (xi, xj) = 2 sin (ηijρk/2)
ρk sinh ηij

, (3.2.11)

where ηij is the hyperbolic distance between the points xi and xj on the hyperboloid Q1.
This vertex is depicted by the figure 5.4 in chapter 5.
It is interesting to mention that the amplitudes describe an interaction among the rep-
resentation labeled by ρ gluing different 4-simplices and tetrahedra in the triangulation
every time they share a triangle, and an interaction among the different tetrahedra in each

5.
8Note that the integration measure here is given by the Plancharel one for the corresponding group and

SL(2,C) we have infinite dimensional space for the group representations.
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4-simplex.
The outlined Lorentzian QG model encountered several improvements to include the ge-
ometric information coming from the normal vectors to the tetrahedron that we will also
discuss in chapter 5 [100,120–122].

3.2.2 The EPRL spin foam model

We saw in section 3.1, the Plebanski formulation of GR provided us with a topological
description for the 4d geometry by expressing it as a constrained BF. We also encountered
the basic variables of the BF theory are a 2-form B conjugated to a connection A (with
curvature F ) in this case. Imposing the linear simplicity constraint on the B field reduces
the BF action to the Holst one in (3.1.14). We saw that the corresponding partition
function is then given by (3.1.26).
The task is then to implement a quantum version of the constraints in order to recover
the gravitational physical degrees of freedom. As we already previously mentioned, this
is not a straightforward task due to the simplicial framework the action is formulated in.
As a matter of fact, there is so far no canonical quantization procedure in such discretized
scheme. However, this is a price that has to be paid for requiring background independence.
To address the Holst contribution properly, we examine the linear simplicity constraint in
a rather different way. Consider a space-like hypersurface Σ of the manifold M where we
choose to fix the internal gauge to be the temporal gauge9. The normal to Σ is then simply
given by nI = (1, 0, 0, 0). This gauge fixing clearly breaks the Lorentz symmetry of the
theory, reducing it to an SO(3) rotational symmetry, and is actually equivalent to selecting
a preferred Lorentzian frame. This allows us to separate the bivector components into
boost and rotational parts and we can then establish the relation

KI = nJB
IJ = nJ(⋆e ∧ e)IJ , LI = nJ(⋆B)IJ = 1

γ
nJ(⋆e ∧ e)IJ , (3.2.12)

from which we can deduce
KI = γLI . (3.2.13)

Moreover, the anti-symmetric properties of BIJ are sufficient to deduce that the compo-
nents of the boost and rotational parts of the bivector (K0 and L0 normal to Σ) vanishes.
This enables us to view K and L as 3d vectors where (3.2.13) reduces to:

K⃗ = γL⃗ , Ki = Bi0 , Li = 1
2ϵ

i
jkB

jk . (3.2.14)

Now translating this to the quantum versions amounts to promoting the above boost and
rotation to operators acting on the Hilbert space and then weakly imposing the constraint,

9As we will see this is also the gauge of the canonical quantization in LQG. In fact, it is very common
to refer to the EPRL model and more generally SF as the covariant completion of LQG.
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highlighting the relation between the Casimir operators, this amounts to explicitly writing
the Casimirs as

K2 − L2|ρ, k, j,m⟩ =
(
γ2 − 1

)
L2|ρ, k, j,m⟩ , L⃗ · K⃗|ρ, k, j,m⟩ = γL2|ρ, k, j,m⟩. (3.2.15)

This can be interpreted as a set of conditions imposed on the eigenvalues of the operators,
namely

ρ2 − k2 + 1 =
(
γ2 − 1

)
j(j + 1),

ρk = γj(j + 1)

which are solvable for large enough quantum numbers (to reproduce in the continuum limit
the continuous simplicity constraint) [123]

ρ = γj k = j . (3.2.16)

The irreps of SL(2,C) relevant in the Lorentzian model are then acting on the Hilbert
space H(γj,j). Hence again, there is a one-to-one correspondence between SU(2) irreps
and the SL(2,C) ones used in the theory. The key ingredient of the EPRL model is
this isomorphism map. It embeds the spin j of the SU(2) representation into the lowest
spin sector of the unitary irrep restricted to the principal series of SL(2,C) labeled by
(ν, ρ) = (j, γj). Moreover, the EPRL prescription enforces this map at every vertex of the
2-complex, enforcing the restriction of the irreps to γ-simple ones given by the matrices
Dγj,j

jmjn(g). If the 2-complex has a boundary, the spin foam partition function maps states
from the LQG kinematical Hilbert space into the complex numbers. The EPRL spin foam
partition function is given as a state sum over SU(2) spins jf on the faces and intertwiners
Ie on the edges of the 2-complex, i.e.

Z =
∑
jf ,ie

∏
f

Af (jf )
∏
e

Ae (ie)
∏
v

Av (jf , ie) , (3.2.17)

defined in terms of the face amplitude Af , and the edge amplitude Ae and the vertex
amplitude Av. Requiring the correct convolution property of the path integral at a fixed
boundary, the form of the face amplitude Af (jf ) = 2jf + 1 and the edge amplitude
Ae (ie) = 2ie + 1 are fixed [123, 124]. This allows us to define the Lorentzian edge and
vertex amplitudes:

Ae (ie) = 2ie + 1 ,

Av (jf , ie) =
∑
lf ,ke

(∏
e

dkeB
L
4 (jf , lf , ie, ke)

)
{15j} (lf , ke, i

′) ,

where we have the Lorentzian boost function

BL
4 (ja, la, i, k) ≡

∑
m′

a

(
ja

m′
a

)(i) (
la
m′

a

)(k) ∫ ∞

0
dµ(r)

∏
a

d
(γja,ja)
jalam′

a
(r) .
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The EPRL SF is a model for the quantum geometry of (3+1)-spacetime with a Lorentzian
signature. Electric and magnetic components of bivectors can be mapped into the boost
and rotation generators of sl(2,C). Again, the simplicity constraint translates at the
quantum level into relations between the stabilizer SU(2) spin labels with representation
labels of SL(2,C) : |ν| = j and ρ = γj. In this sense, the weak imposition of the simplicity
constraint in the EPRL model is basically carried out by introducing a cut-off in the infinite
summation over the SL(2,C) irreps.

In the GFT case imposing the constraint is different and it takes into account the
information that the normal vector to the hypersurface, where all bivectors lie, as an
additional degree of freedom. In fact, since simplicity forces the tetrahedra to be on the
same 3d surface, it forces invariance of each bivector under rotations belonging to the
stabilizer of the normal X [120, 125]. When this normal is chosen to be time-like, the
stabilizer is a subgroup SU(2)X ∈ SL(2,C). We will discuss this point in chapter 4.

The notions outlined above of the Lorentzian quantum geometry provided by EPRL
will be used to extract cosmological dynamics in chapter 7 from a GFT setting. Let us
summarize the cavities of both models since we will address them in the following chapters:

3.1 The cavities in BC and EPRL

▷ The first step towards deriving a quantum discrete version in the case of
Lorentzian GR, is to first work the from the BF theory the constraints that
will reproduce the dynamical equations of GR. This is basically restricting the
B field to the tetrad one through the general constraint (when we take γ to
infinity we recover the BC bivector instead of the EPRL one)

B = ±
(
1 + ⋆γ−1

)
e ∧ e , (3.2.18)

▷ The quantization procedure is to associate the bivector with Lie algebra ele-
ments formally written as B = ⋆L.

▷ Imposing the simplicity constraint at the level of the balanced representations,
after having solved the Casimirs. This allows us to identify the Hilbert spaces
and quantum states. For the EPRL model, we get the pair of labels (γj, j)
whereas for BC they are labeled by ρ. The limitations in the BC model are
the following:

1. The ultra locality issue: the 4-simplices are identified through the triangle
areas; we also have the bivectors associated with the same triangle in
different simplices that are not identified.

2. The presence of degenerate geometries. For instance, they can correspond
to the no-geometry state e = 0 (diffeomorphism invariant vacuum).



3.3 Spin network states as quantum states of discrete geometries 43

▷ The EPRL model includes only the upper and lower hyperboloids in the
Minkowskian space, this is mainly due to the weak imposition of the simplicity
constraint.

We will provide an alternative model to address such issues in chapter 5, where the
formulation for the geometry is based on the edge vectors defining the bivector instead of
the bivector itself as in these models. Indeed, a description based solely on bivectors of the
quantum geometry is not good enough to encode all degrees of freedom of the discretized
geometry.

3.3 Spin network states as quantum states of discrete
geometries

Spin networks defined as graphs decorated by quantum data appear in several contexts and
approaches to quantum gravity, as we saw in the previous sections. Indeed, they are present
in quantum gauge theories, QG, topological quantum field theories, and CFT. Here we are
interested in their role in background independent QG. As we will discuss below and in the
next chapter 4, they provide an orthonormal basis of states for the quantum geometry of
space; in this role, they in fact enter the QG approaches of LQG [15,111,126,127], spin foam
models [91,128] and GFT [19,85,129–131]. In fact, all of these approaches share the same
standpoint that spin network states are indeed states of quantum geometry. However, as we
will see below, what differentiates one theory from the other is the structure of the Hilbert
space and the reorganization of the spin network degrees of freedom. In this section, we
will show how such quantum states of geometry enter each QG model. This is important
to study the more general case of a superposition of such states in the GFT formalism that
we address in chapter 6. There, we focus on studying a superposition of spin networks
with different combinatorial structures from the lenses of quantum information theory.

3.3.1 Origins of spin network states

Spin networks were first introduced by Penrose as a purely combinatorial object and were
proposed as a substitute for a spacetime manifold [119, 132]. In this original formulation,
they are trivalent graphs with edges labeled with irreducible representations of a group
and intertwining operators. In fact, Penrose tried to replace the notion of continuum space
avoiding the path of providing an approximation of it, but instead, he aimed for a complete
new reformulation of the theory. This new description in fact relies on the discrete concepts
which are then considered as primary concepts, based on the idea evoked in chapter 2 of
the possibility that our picture of spacetime as a manifold breaks down at the Planck
scale, hence promoting the conception of discrete structures. This is the same perception
of finding the basic building blocks of the theory. In this picture, the continuous quantities
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Figure 3.7: Penrose spin network in terms of units of ℏ.

are then expected to emerge in the limit where the complexity of the model increases.
However, this demands a definition of the notion of complexity in this context.

In developing the theory of spin networks, Penrose was inspired more by the QM theory
of angular momentum than by the details of the geometry of GR. We now lay down the
basic notions he introduced to define his model of quantum states of geometry. The Penrose
model is defined by a set of units, each one representing a block with a well-defined total
angular momentum j = nℏ

2 , where n ∈ N is the spin number ; a unit with spin-number
n is called an n-unit. Now these units are associated with line pieces that converge to
each other to form a node. This can be seen in figure 3.7. What is interesting is that
the units do not carry any meaning in terms of the usual motions of particles but Penrose
describes them as basic systems responsible for carrying the angular momentum around.
They interact at nodes where the conservation of total angular momentum is satisfied. In
fact, the only relevant information is the combinatorics and the spin assignment to each
link in the unity.
Moreover, in this context, every spin network is assigned an integer, called norm which is
a purely combinatorial quantity. Another requirement such a norm should satisfy is that,
for it to be non-zero, the labeling of the network must be applied such that: at each vertex,
the QM rules for the combination of total angular momenta are respected. At the level of
the graph, this is equivalent to grouping an a-unit, a b-unit, and a c-unit subject to the
following two conditions:

• a+ b+ c ≤ 2 max{a, b, c} (triangle inequality) and

• a+ b+ c even (conservation of the fermionic number mod 2).

The norm is defined through the notion of a value of a closed spin network defining
a graph without open edges. We conceptualize it as follows: starting from a closed spin
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network, we replace every n-unit with n parallel strands within a network say, γ where at
each node, pairs of strand ends (belonging to different units) are then connected together.
The QM conservation of angular momentum guarantees that all strands that are flowing
into a node are connected. This is illustrated as follows: There are several ways in which
the strands can be routed (r stands for the different routing), such that each one results
in a number N of loops (closed) contained in what we call the stranded diagram. In this
setting, the value V [γ] of the closed spin network γ is then nothing but

V [γ] =
 ∏

edges

1
n!

∑
r

ϵ(−2)N , (3.3.1)

where ϵ is a sign that tells us how the points between several and different strands at the
nodes are connected. The norm of a generic open spin network β is then given by the
modulus of V [β#β], where β#β is the closed spin network obtained by connecting β with
a copy β of itself through the coupling of the corresponding free-end units.

Penrose went on to prove we can have a quantum probability interpretation starting
from such a notion of the norm. What is compelling in this theory is that he was actually
able to prove that in the limit of large spin numbers, one can recover a notion of directions
in space. Penrose theory of spin networks is one of the first attempts that hinted to
reconsider the structure of spacetime and its relation to the QM principles. It was indeed
further improved when Rovelli and Smolin discovered that spin networks can be used to
describe kinematical states in LQG [111], as we will see in section 3.3.2.

3.3.2 Spin networks in Covariant Loop quantum gravity

In order to clearly understand how the spin networks enter the SF amplitudes and the
Hilbert spaces they live in, we need first to discuss the canonical quantization approach
to GR, as provided by LQG. In fact, if we take a generic slice of a given SF, we get a
spin network, describing therefore the geometry of space at a given time. This is the key
difference between Penrose original formulation of spin networks. What we are discussing
in the following is sort of an upgrade of the 3d Penrose spin networks to ones that capture
space at a given “moment”. LQG is a background independent approach to the problem of
QG that belongs to the line of research that is invested in extracting the canonical quanti-
zation of GR [73,133]. The starting point in this program is the Hamiltonian formulation
of the Einstein Hilbert action [51] through rewriting it with the geometric tools provided
by the 3+1 formalism [134, 135]. This allows a natural setup to introduce the notion of
time evolution and hence specify the role of the time derivative needed to obtain conjugate
variables within a Hamiltonian formulation. Therefore, in the following we will sketch the
main steps in deriving the kinematical Hilbert space of LQG and the elements of such
space, representing the geometric quantum states of the quantized spacetime. We then
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discuss the lack of a dynamical physical Hilbert space and explain how SF (in particular
the EPRL one) is perceived as the dynamical completion of LQG10.

Tetrad formulation of classical GR As in the case of discretizing spacetime in section
3.1 we introduce the frame field provided by four co-vectors eI

a and consider the four
dimensional spacetime metric as a composite object similar to (3.1.1) in 4d. In this manner,
the tetrad frame can also be decomposed in terms of lapse and shift variables where in this
case it takes a simpler form

eI
0 = eI

µτ
µ = NnI +NaeI

a, δije
i
ae

j
b = gab , i, j = 1, 2, 3, (3.3.2)

where the triad ei
a represents the spatial counterpart of the tetrad. The LQG approach to

quantizing gravity is crucially dependent on choosing the so-called time gauge11. This is
equivalent to imposing

eI
µn

µ = δI
0 e0

µ = (N, 0) −→ eI
0 =

(
N,Naei

a

)
. (3.3.3)

This gauge fixing restricts the Lorentz gauge group to the rotation subgroup that leaves
the time normal vector to the hypersurface invariant, namely SU(2) ⊂ SL(2,C). We
can furthermore define the densitized triad and the Ashtekar-Barbero connection [14,127]
respectively

Ea
i = eea

i = 1
2εijkε

abcej
be

k
c , Ai

a = γω0i
a + 1

2ε
i
jkω

jk
a , (3.3.4)

where γ is the Immirzi parameter, the new internal index i corresponds to the adjoint
representation of SU(2) and ω is the spin-connection of the 3d hypersurface Σt being
the spacelike hypersurface at time t. These two extended variables, are in fact conjugate
variables and can be used to write down the alternative expression for the ADM action
[52,73] in the tetrad frame, namely

S (A,E,N,Na) = 1
γ

∫
dt
∫

Σ
d3x

[
Ȧi

aE
a
i − Ai

0DaE
a
i −NH −NaHa

]
, (3.3.5)

where we can identify the constraints12 appearing above as
Gj ≡ DaE

a
i = ∂aE

a
j + εjkℓA

j
aE

aℓ ,

Ha = 1
γ
F j

abE
b
j − 1 + γ2

γ
Ki

aGi ,

H =
[
F j

ab −
(
γ2 + 1

)
εjmnK

m
a K

n
b

] εjkℓE
a
kE

b
ℓ

detE + 1 + γ2

γ
Gi∂a

Ea
i

detE .

(3.3.6)

10Let us mention here that, a canonical analysis of first order Palatini action exists. However, there is
no canonical quantization formulation of it. The covariant quantization, in this case, is then the BC model
then

11In this sense, time-gauge amounts to adjusting the time axis in the frame field to the one that is
singled out by the foliation of spacetime. This is what induces the breaking of the Lorentz invariance of
the theory in 4d.

12The invariance under local Lorentz transformations gives rise to new gauge symmetry in the action
and hence additional constraints.
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The vector constraint Ha is responsible for generating the 3d diffeomorphisms on the hyper-
surface Σt, whereas the scalar one H is devoted to the time evolution. The new formulation
in terms of tetrads has brought up an extra constraint, the Gauss constraint (Gj), that is
responsible for generating gauge transformations. Notice that this gauge transformation
is the result of the time gauge implemented at the triad and is not to be confused with
the diffeomorphisms of GR. Indeed, one can show that Eb

j and Ai
a transform respectively

as an SU(2) vector and as an SU(2) connection under this transformation [112, 127].The
change of variables we performed and the partial gauge fixing (the time gauge) is the reason
behind this change in the gauge symmetry group.
It will be useful later on to deal with the smeared version of these canonical variables in the
quantization procedure. The densitized triad is a 2-form and thus, it is natural to smear
it on a surface, namely

Ei(S) ≡
∫

S
naE

a
i d2σ , na = εabc

∂xb

∂σ1

∂xc

∂σ2
, (3.3.7)

with na is the normal to the surface. With this smearing, we identify the quantity Ei(S)
as the flux of E across a surface S. The connection is a 1-form, so we can smear it on a one
dimensional path. To this end, if we consider a path e and a corresponding parametrization

xa(s) : [0, 1] → Σt , (3.3.8)

we can associate a given connection Ai
a with an element of SU(2) such that Aa ≡ Ai

aτi,
with τi

13 being the generators of SU(2). We can therefore integrate Aa along the path e
given as a line element, namely

Ai
a −→

∫
e
A ≡

∫ 1

0
dsAi

a(x(s))dxa(s)
ds τi . (3.3.9)

Then, as we encountered in section 3.1 we can make use of the notion of holonomy of A
along the path e as

he = P exp
(∫

e
A
)

=
∞∑

n=0

∫∫∫
sn>0

A (e (s1)) · · ·A (e (sn)) ds1 · · · dsn , (3.3.10)

with the path-ordered product P and the parametrization s ∈ [0, 1]. We avoided the
explicit description of the properties of holonomies in section 3.1 and also here we list
them in Appendix A.1.

Kinematical Hilbert space of Loop Quantum Gravity

The formulation introduced above is clearly related (but not yet equivalent) to the BF
formulation of GR discussed in section 3.1. The 3d hypersurface is in fact GR in 3d in

13The τi are the Pauli matrices and should not be confused with the tetrahedron symbol τ that we
encounter when are dealing with discretized geometry. Furthermore, for the integration of such connection
along a path, we use the same notation as in section 3.1, namely a path is associated with e.
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the temporal gauge. However, the quantization procedure here is different as we will see
shortly. The usual procedure for canonical quantization of a gauge theory relies on the role
played by the metric that enables the definition of a measure for the kinematical Hilbert
space. However, for the present case of GR in 4d, this notion is absent and there is no
background metric at the disposal to define the integration measure. The challenge then
is to define such a measure on the space of connections without relying on a background
metric, which is naturally provided by the so-called cylindrical functions.
A graph γ is defined to be the collection of paths e ⊂ Σt meeting at most at their endpoints.
Given such a graph γ ⊂ Σt with Ne being the number of edges that it contains, an element
ψγ,f ∈ Cylγ is labeled by a smooth function f and a graph γ. This smooth function f is
defined as f : SU(2)Ne → C and it is given by a functional of the connection defined as

ψγ,f [A] := f
(
he1 [A], he2 [A], · · · , heNe

[A]
)
, (3.3.11)

where ei for i = 1, · · · , Ne are the edges of the corresponding graph. Taking the union of all
these functionals constitutes the notion of cylindrical functions of generalized connections
denoted Cyl, such that

Cyl = ∪γCylγ . (3.3.12)

This represents the algebra of the physical observables from which we will show to define
the kinematical Hilbert space Hkin. This space of functionals once endowed with a proper
scalar product can be turned into a Hilbert space. In fact, one can show that the full
kinematical Hilbert space is provided by the direct sum Hkin = ⊕

γ⊂Σt

Hγ, where Hkin is the
kinematical Hilbert space overall gauge connections A on Σt, once we use the inner product
provided by the Ashtekar and Lewandowski [91,127],

Hkin = L2 [A, dµAL] , µAL (ψγ,f ) =
∫ ∏

e⊂γ

dhef
(
he1 , he2 , · · ·heNe

)
, (3.3.13)

with dµAL introduced as the Ashtekar-Lewandowski measure. We start by introducing an
orthogonal basis on the space using the Peter-Weyl theorem.This implies that any function
ψ(γ,f)[A] ∈ Hγ can be decomposed in unitary irreducible representation of the group

ψ(Γ,f)[A] =
∑

je,me,ne

f̂ j1,...,jn
m1,...,mn,n1,...,nn

D(j1)
m1n1 (he1 [A]) . . . D(jn)

mnnn
(hen [A]) . (3.3.14)

What we have accomplished with this program so far is the definition of a well-behaved
kinematical Hilbert space for GR14. Following the Dirac quantization scheme, we can pro-
ceed with quantizing the constraints appearing in (3.3.5)

Hkin
Ĝi=0−→ H0

kin
Ĥa=0−→ HDiff

Ĥ=0−→ Hphys . (3.3.15)
14It carries a representation of the canonical Poisson algebra, and as a bonus, this representation is

unique.
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This can be summarized as follows:
⊙ Quantum Gauss constraint: Its solution are quantum states that are gauge invariant

under SU(2). Imposing gauge-invariance then means requiring the cylindrical function to
be invariant under the action of the group at the nodes, which can be easily implemented
via group averaging. This amounts to inserting on each edge a projector selecting the gauge
invariant part of ⊗e V

(je), namely defined as

P =
∫

dg
∏
e∈n

D(je)(g) ,
∏
e

D(je)
mene

(he) ∈
⊗

e

V (je) . (3.3.16)

Denoting the intertwiner15 by iα as a ket in the basis of P , with α = 1, . . . , dim V (0),
V 0 being the singlet space, and i∗α the dual. This leads us to the notion of spin network
states. These states are labeled with a graph γ, with an irreducible representation D(j)(h)
of spin-j of the holonomy h along each link, and with an element i of the intertwiner space
Hn ≡ Inv

[⊗
e∈n V

(je)
]

and are defined as

ψ(γ,je,in) [he] =
⊗

e

D(je) (he) ⊗
n
in . (3.3.17)

Imposing the gauge invariance in this manner allows us to present the solutions for the
Gauss constraints, namely Ĝiψ = 0 where the spin network basis forms a complete basis
of the Hilbert space of solutions H0

kin of it. H0
kin decomposes as a direct sum over spaces

on a fixed graph that subsequently decomposes as a sum over intertwiner spaces, namely

H0
kin = ⊕

γ⊂Σ
H0

Γ , (3.3.18)

H0
γ = L2

[
SU(2)L/SU(2)N , dµHaar

]
= ⊕jl

(⊗nHn) . (3.3.19)

These equations are of the same nature as equations that simulate a Fock-decomposition
of a Hilbert space.

⊙Spatial diffeomorphism quantum constraint: Due to the notion of linear functional on
H0

kin, namely η(ϕ̂ψ) = η(ψ), ∀ψ ∈ H0
kin, with η ∈ H0∗

kin (the space of linear functionals),
we can define a projector PDiff on HDiff in a way that we sum over all diffeomorphism
except those that correspond to the trivial ones in TDiffγ. Hence the expression for the
projector yields

⟨ψ|ψ′⟩Diff ≡ ⟨ψ |PDiff |ψ′⟩ =
∑

ϕ∈Diff/TDiffγ

〈
ϕ̂ψ|ψ′

〉
. (3.3.20)

This step amounts to ordering the spin network states into equivalence classes of graphs
under diffeomorphisms which we will call knots.

15A suitable method to build them amounts to add first two irreps only, then the third, and so on, that
lead to a virtual decomposition of links.
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(a) An example of a spin network with all
modes considered. The numbers refer to
the spin labels decorating the edges of the
graph.

(b) An example of a spin network without the zero
mode link. The numbers refer to the spin labels dec-
orating the edges of the graph.

Figure 3.8: Spin network in loop quantum gravity.

⊙ Quantum Hamiltonian constraint: Till now there is no clear way to correctly im-
plement the proper quantization procedure on the Hamiltonian constraint encoding the
dynamics of GR. A way to do this is by using Thiemann’s trick using the properties of the
geometrical operator of the volume, and other established entities [127].

Quantum geometric operators

The main physical prediction of the above-outlined quantum gravity model relies on the
crucial role that some geometric operators play. It is worth mentioning that these operators
are not Dirac observables in general. Interestingly for special situations, they can be, for
instance, the area operator is a Dirac observable in LQG black hole computations, i.e. it
commutes with all the constraints and not just the Gauss one [112].

• Quantizing the area operator given a surface S characterized by its normal na and
the densitized triad the discretized area is given by [134]

A(S) =
∫

S
dσ1dσ2

√
Ea

i E
binanb . (3.3.21)

For a surface intersected only once by the holonomy path. We introduce a decompo-
sition of S in N two-dimensional cells and write the integral as the limit of a Riemann
sum.

A(S) = lim
N→∞

AN(S) = lim
N→∞

N∑
I=1

√
Ei(SI)Ei(SI) , (3.3.22)

where Ei(SI) is the flux going through the I’th cell. Promoting it to an operator
amounts to defining the area operator, namely Â(S) = limN→∞ ÂN(S). The operator
Êi now acts on a generic spin network state, labeling a generic graph γ. Therefore
once the decomposition is sufficiently fine so that each SI is punctured once and only
once and hence taking a further refinement has no effect. The limit now amounts to
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simply the sum of the contributions of the finite number of punctures p of S created
by the links of the graph which reads

Â(S) = lim
N→∞

N∑
I=1

√
Êi(SI)Êi(SI)ψ(γ,f) =

∑
p∈S∪γ

ℏ
√
γ2jp(jp + 1)ψγ . (3.3.23)

This expression presents the spectrum of the area operator. It also implies that it
acts diagonally on spin network states, thus allowing them to be eigenstates of the
area operator.

• Volume operator: Similarly to the area operator, we consider a partition of the region
into cubic cells ϵ. This would allow us to write the definition of the volume in terms
of the flux and it reads [126]

V (R) = lim
ϵ→0

∑
I

√√√√ 1
48ϵijk

∑
αβγ

Ei(Sα
I )Ej(Sβ

I )Ek(Sγ
I ) . (3.3.24)

Notice the presence of the epsilon tensor implying that the three fluxes must be
different and that the volume does not act on links. Hence the volume operator acts
only on the nodes of the graph. In fact, its matrix elements vanish between different
intertwiner spaces. The volume operators turn out to be diagonalized by spin network
states as well. We do not go into detail in the calculation of the spectrum of the
volume operator, for which we refer to the literature.

3.2 Spin networks in Covariant Loop Quantum Gravity

▷ A spin network is a graph γ ⊂ Σ with edges e labeled by irreps of G, namely
spins je ∈ N

2 , and vertices v labeled by intertwiners ιv ∈ Iv, i.e. G-invariant
tensors of (the tensor product of) the representations attached to all edges
converging at a vertex.

▷ A spin network state |Γ, j⃗e, ι⃗v⟩ is the state corresponding to the following wave-
function on the space of generalized connections:

Sγ,⃗je ,⃗ιv
(⃗he) =

⊗
v⊂Γ

ιv
⊗
e⊂Γ

√
2je + 1Dje(he) (3.3.25)

where he ∈ G is the holonomy of the Ashtekar connection Ai
a along the edge e

of γ. That is, a spin network is a wavefunction defining a probability amplitude
on the holonomies.

▷ Spin network states (defined on graphs) are gauge invariant states and provide
a basis of the space of solutions of the Gauss constraint.

▷ Spin network states diagonalize the area and the volume operator and can be
understood as representing quantum twisted geometries: every link is dual to
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a surface S ⊂ Σ intersecting it, and the spin attached to the link is related
to the area of such surface according to; every node is dual to an elementary
portion of space, and the intertwiner attached to it is related to its volume.

▷ The invariance under spatial diffeomorphisms for spin networks gives rise to
spin-knot states.

▷ Spin network states invariant under spatial diffeomorphisms and defined on
closed graphs (thereby gauge invariant) represent kinematical states of the
theory, whose evolution is implemented via the scalar constraint.

▷ A consistent covariant dynamical description of these 3d quantum geometries
in LQG is provided by SFa. In this context, SF describes the transition ampli-
tude from a geometric state S to S ′ where the vertices take into account any
topological change (interaction). Therefore the states describing the boundary
of the 4-simplex are provided by LQG spin network graphs.

aRecall that LQG is based on canonical quantization where the states in this formalism describe
the geometry of space at a fixed time (due to the time gauge).



Chapter 4

Group field theories

In the previous chapter 3, we discussed the program of the background independent ap-
proaches to the problem of quantum gravity. The elegant formulation of GFT as a QFT
of spacetime makes it peculiar and a powerful theory to provide a promising attempt to
quantize gravity. In this chapter, we will present the basic notions and definitions that
underline this approach since it is the framework we work with throughout this thesis.
We start by pointing out the powerful technology provided by GFT. Perhaps one of the
most powerful ones is the purely algebraic and combinatorial aspect of the theory. This is
made evident below where we will see how the GFT action describes the combinatorially
non-local dynamics of the scalar function of group elements. Expanding the action (in the
form of a partition function) of such a field requires only the representation associated with
the group of the field domain. The resulting Feynman diagrams encode the interaction of
the theory and are in fact purely topologically combinatorial. This analysis is based on
the harmonic resolution of the functions on the group and its representations. The field
theory in this context does not encode any reference to any notion connected to spacetime.
It is only after having specified the group (that might correspond to the gauge group in
GR) and how many copies of it must be considered (giving the right dimensionality) that
we could even start thinking of a quantum theory of spacetime. It is in this sense that
GFT presents all the aspects of a background independent approach to the problem of QG.
Moreover, GFT is considered as the completion of the spin foam proposal in QG as we will
see in section 4.2, where we discuss its general relation to this class of QG theories and
examine how the BC and EPRL models are reproduced from a GFT setting. In section 4.3
we take a different route (and rather non-perturbative approach) within GFT to induce
connectivity within the quantum states of geometry, mimicking therefore the continuum
notion at the quantum level. This can be precisely expressed by entangling the fundamen-
tal degrees of freedom of the theory giving rise to the idea of entanglement graphs. We
then end this chapter in section 4.4 with a possible coarse graining scheme that the GFT
approach implements in order to extract physical predictions in the cosmological sector of
physics. Before embarking on this endeavor, let us briefly discuss the basic setup of GFT.
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A GFT is the theory of a quantum field φ defined on d copies of a group manifold G,
i.e.

φ : Gd → C , (4.0.1)
g1, . . . , gd 7→ φ(g1, . . . , gd) , (4.0.2)

where d is the dimension of spacetime which should emerge from the GFT model. The
GFT action enjoys a non-local interaction term and the full dynamics are encoded in the
expression

SGFT [φ∗, φ] =
∫

[dgI ]2 φ∗ (gI) K (gI , g
′
I)φ (g′

I) (4.0.3)

+
∑

i

λi

Di

∫
[dgI ]Di φ∗ (gI1) . . .Vi

(
gI1 , . . . , gIDı

)
. . . φ

(
gIDi

)
+ c.c. , (4.0.4)

where i specifies the type of interactions of the field φ, characterized by a different number
Di of fields involved and where the integration is carried out over d copies of the group
manifold based on the Haar measure of the product space Gd such that dgI ≡ dg1 . . . dgd.
The kinetic and interaction kernels K and V , respectively. They are in general functions
which are specified by the given model, and they encode, in particular, specific constraints
that need to be imposed on the GFT field in order to establish a direct connection with
existing QG models.
Moreover, it is important to emphasize that the presence of combinatorial non-local in-
teractions in the action is responsible for the gluing of GFT quanta of discrete geometric
structures. In fact, the fundamental (d−1)-simplices combine into d-complexes of arbitrary
topology, which can be envisaged as discrete pieces of the continuum spacetime emerging
from them (in some appropriate limit) [85, 136]. As we will see later when we discuss the
GFT dynamics in section 4.2 these d-complexes are dual to the Feynman diagrams in the
perturbative expansion of the GFT partition function, i.e.

Z =
∫
DφDφ∗e−SGF T [φ,φ∗] =

∑
Γ

λN(Γ)

sym(Γ)Z(Γ), (4.0.5)

where Γ is the Feynman graph, N(Γ) is the number of interaction vertices in Γ, sym(Γ) is
a symmetry factor and Z(Γ) is the Feynman amplitude associated to Γ. At the boundary
of the Feynman diagrams one can show that the states are described by spin-networks as
used for instance in LQG (summarized in Box 3.2) and the Feynman amplitudes coincide
with SF amplitudes [16]. This can be made explicit once we perform the Peter-Weyl
decomposition of the group functions, as we will see in section 4.2. Let us finally mention
that GFT can be regarded as a generalization of random tensor models [137–139], where
the combinatorial structures of the latter are enriched with the input coming from the
group-theoretic data. As we will clarify in section 4.3, precisely this additional information
delivered from the group theory side is responsible for the interpretation of the graphs
associated with GFT states as patterns of entanglement among field quanta.
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4.1 General construction of the kinematical sector of
GFT

In this section, we explore the multitude of possible representations that we can make use of
to express the GFT field. We focus on the 4d case. This is important for section 4.2 since we
will show that depending on the representation we associate to the field, the pairing with the
corresponding SF is made easier, and the problem of the quantum simplicity constraint is
better addressed and formulated. In fact, to make the connection with the previous chapter
on discretizing geometry, we can think of the group elements gI entering the field definition
as the equivalent of the bivector associated with each triangle of the tetrahedron. The
closure procedure and gluing of simplices reproduced by a geometric entity are addressed
by the dynamics and symmetries of GFT. The above definition of the GFT field was
expressed in the group basis. In the following, we present other representations, that may
provide more insight into the physical (kinematical as well dynamical) properties of the
models. Throughout the thesis, it will prove therefore useful to oscillate between such
representations.

•GFT in representation basis. We define the transform of a square integrable (L2)
function f on the Lie group G in terms of unitary representations U as follows [124,140–143]

f(U) =
∫

dgf(g)Ug−1 . (4.1.1)

For several groups including the ones we will be considering throughout the thesis, we can
invert the above formula obtaining [105,144]

f(g) =
∫

G̃
dµ
(
Uλ
)

tr
(
f
(
Uλ
)
Uλ

g

)
, (4.1.2)

and we integrate over all equivalence classes λ of the irreducible unitary representations
U of the group G, denoted by G̃. The quantity µ

(
Uλ
)

is the Plancherel measure. Let us
give two explicit examples of this decomposition into unitary representations for the GFT
over the groups SU(2) and SL(2,C).

⊙ SU(2) GFT: similarly to what we encountered in section 3.3, this group is a semi-
simple compact Lie group, so its unitary irreducible representations are finite dimensional
and labeled by half-integers j ∈ {0, 1/2, 1, . . .} (see Appendix A.1). The dimension of the
representation spaces is d(j) = 2j+1. The above formula becomes in the case of this group

f(g) =
∑

j

d(j)
j∑

m,n=−j

f j
mnD

j
mn(g) . (4.1.3)

where Dj
mn are the Wigner matrices and m,n are the magnetic indices related to the spin

j. The delta function on the group δ(g), with transform δ (U j) = Id(j), can be decomposed
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in terms of the group character χj.

δ(g) =
∑

j

d(j)χj(g), χj(g) ≡ trDj(g) . (4.1.4)

Therefore, for a GFT field φ defined on d copies of SU(2) we have the general decomposition
rule in this group

φ (gI) =
∑

j1,...,jd

(
d∏

i=1
d (ji)

)
tr⃗j

[
φj⃗

d⊗
i=1

Dji

]
. (4.1.5)

where the vector notation stands for the collection of different spin labels j⃗ = j1 , · · · , jd.

⊙ SL(2,C) GFT: The representation theory of SL(2,C) is rather complicated in com-
parison to SU(2) as we encountered in the discussion regarding SF. The non-compactness
of the group causes also a problem for the GFT case, as we will discuss in chapter 5. The
unitary irreps of SL(2,C) are labelled by the pair (ρ, ν). To define the measure, we rely on
the Plancherel inversion formula and it reads for a function f ∈ L2(SL(2,C)),

f(g) =
∫ ∞

0
dρ

∑
ν∈Z/2

4
(
ρ2 + ν2

) ∞∑
j=|ν|

∞∑
l=|ν|

j∑
m=−j

l∑
n=−l

fρν
jmlnD

(ρ,ν)
jmln(g) . (4.1.6)

Therefore, for a GFT field defined on d copies of SL(2,C) we have

φ (gI) =
 r∏

i=1
d
∫ ∞

0
dρi

∑
νi∈Z/2

4
(
ρ2

i + ν2
i

) ∞∑
ji=|νi|li=|νi|

∞∑
mi=−ji

ji∑
ni=−lt

 (4.1.7)

× fρi...
j1m1...jrmdl1n1...ldnd

d∏
i=1

D
(ρi,νt)
jtmtllnt

(gI) . (4.1.8)

•GFT in the noncommutative (NC) Lie algebra basis. As we will see later on
in chapter 5, this basis will play a convenient role to derive the new GFT model in terms
of edge vectors, addressing therefore the subtleties summarized in Box 3.1. Now, let us
see how we can express the GFT field in terms of this dual basis. This can be carried
out by means of noncommutative Lie algebra variables [100, 122]. The latter is obtained
from the group-based representation via a noncommutative Fourier transform. What is
peculiar about this Fourier transform is that, it unitarily maps functions on the group
G to functions on the corresponding Lie algebra g, where the group Fourier transform is
defined through the plane waves [145–147],

e : G× g → C , (g,B) 7→ eg(B). (4.1.9)

The Lie algebra g can be always identified with RdG as a vector space, the eg can be
understood as elements of the continuum space of functions on RdG , C

(
RdG

)
. Denoting
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the closure of their linear span as Cκ

(
RdG

)
, the composition rules of these plane waves can

be used to define a noncommutative product on the algebra of functions Cκ

(
RdG

)
, namely

by extending

⋆ : Cκ

(
RdG

)
× Cκ

(
RdG

)
→ Cκ

(
RdG

)
, (4.1.10)

(eg1 , eg2) 7→ eg1 ⋆ eg2 ≡ eg1g2 , (4.1.11)

to the whole space Cκ

(
RdG

)
. This defines the noncommutativity of the Lie algebra through

the star product ⋆. Since we will be mostly working with the SU(2) group let us write
down the GFT in its NC algebra basis [148]. The plane waves are defined as eg(B) ≡
exp[i tr(Bg)], with B ≡ B · σ, in a basis σi (with σi being Pauli matrices) of su(2). The
trace is taken in the fundamental representation. The ⋆-product above is then defined on
two copies of Cκ (R3), since su(2) can be identified with R3. Using the plane waves, the
Fourier transform F of a function f is given by

F(f)(B) ≡ f̃(B) ≡
∫

G
dgeg(B)f(g) . (4.1.12)

More importantly, it is possible to define a delta function on the Lie algebra as

δB (B′) ≡
∫

dg eg−1(B)eg (B′) , (4.1.13)

that has the following action on functions∫
dB′ (δB ⋆ f) (B′) =

∫
dB′ (f ⋆ δB) (B′) = f(B) , (4.1.14)

(f ⋆ δB) (B′) = (f ⋆ δB′) (B) . (4.1.15)

Now, the quantities presented above are defined for functions on a single copy of a Lie
group which can easily be extended on several copies of the same group. This is obviously
required to achieve a GFT description. For example, in the case of a d group copies, the
GFT field decomposition yields

φ̃ (BI) ≡
∫

dgI

[
d∏

i=1
egi

(Bi)
]
φ (gI) , (4.1.16)

where now, for each group element gI , we have a group element BI ∈ g and I = 1, . . . , d.
The interpretation of these algebra variables will become clear in the following section.

4.2 GFT dynamics and spin foams

In the following, we point out the relation of the GFT formalism to that of SF. In particular,
we will focus on the BC- and the EPRL models in 4d, since these are exactly the SF that
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Figure 4.1: Group field theory propagator: each of the four strands carries a (simple) repre-
sentation of the group and the box stands for a symmetrization of the four arguments, i.e. for a
sum over given permutations of the ordering of the arguments [1].

will be at the basis of the results extracted in chapter 5 and chapter 7. In the standard
theory of quantum fields, the basic QFT can be expressed in coordinate space as well as
momentum one. It is also endowed with a partition function, from which one successfully
extracts the Feynman diagrams that encode the dynamics the QFT is endowed with. The
same line of reasoning can be exactly implemented in the GFT formalism, but in a rather
richer way than the standard QFT one, due to the multifold algebraic tools group theory
brings to the game. It is a group theory of group manifolds (these are then the equivalent
of the coordinates) and its dynamics are dictated as in standard QFT by a kinetic term
K, from which one can study the propagator of the theory, and an interaction term V that
depicts how the elementary building blocks interact with each other. This picture, precisely
tells us how the group elements (that are dual to simplices as we saw in section 3.1.2) get
glued together. To proceed, let us first try to build some intuition behind what kind of
propagator- and vertex- structure we are dealing with in this picture we then move on to
stressing the relation between GFT and SF through the perturbative expansion of (4.0.5)
relying on the different representation of the GFT that we use as input in this partition
function.

•Building an intuition for Feynman diagrams ▷ The GFT propagator is illustrated
in figure 4.1 and can be represented by four straight parallel lines, depicting the four argu-
ments of the field (g1, g2, g3, g4). This propagator has a group variable at the two ends of
each line. On the other hand, the vertex is a more involved structure, it is endowed with a
combinatorial structure, since it is responsible for the gluing and pairing of the arguments
of the GFT fields building a 4-simplex σ, with five vertices and four lines coming out of
each of them (five tetrahedra-propagators with four triangles-lines each).
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Figure 4.2: Group field theory vertex depicting the combinatorial nature of the interaction of
the 4-simplex [1].

▷ The Feynman diagrams are obtained in this case, by connecting a number of vertices
with the propagators (see figure 4.1) constructing fat graph. This is done for all admissible
permutation of the lines in the propagator, reflecting the combinatorial character of the
interactions.

▷ Assigning an orientation to the vertices and propagators, every single strand of the
propagator gets glued to another one in the five open sites of the vertex, illustrated in
figure 4.2. Furthermore, the GFT field is endowed with a permutation symmetry affecting
the group elements labels. This is translated at the level of the propagator to be assigned
to all various terms resulting from the different ways in which the four carried indices can
be permuted (see figure 4.1).

▷ In this picture, the sum over Feynman graphs Γ can be re-written as a sum over fat
graphs γ with an amplitude for each fat graph given by

Z(λ) = 1 +
∑

γ

v(γ) · λN(γ)Z(γ) , v(γ) = l(γ)
N(γ)! · (5!N(γ) · (4!)e(γ)N(γ) , (4.2.1)

where v(γ) provides us with the number of inequivalent ways of labeling the vertices of
γ with N(γ) symbols and e(γ) is the number of links in γ. So in principle, each of these
stranded fat graphs can go through different propagators and vertices, where we don’t
exclude the possibility of forming a cycle by closing on itself. This process of cycling
(generating faces) is labeled in the GFT momentum space by the representation assigned
to the strand, giving rise to a labeled 2-complex i.e. a SF. Therefore, we see that there is
a 1-1 correspondence between the Feynman graphs of our field theory and that of SF. In
turn, we are able to interpret such a perturbation as a sum over SF (labeled 2-complexes)
where the amplitude Z(Γ) plays the role of amplitude for each SF, and it is the partition
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function itself specifies a SF model. It is worth noticing that, unlike the SF point of view of
fixing the triangulation, the above partition function generates all possible triangulations
of a given topology and those entering all topologies as well. Indeed, this corresponds to
all the possible pairing of lines, translating to all possible gluing of faces (triangles). It is
in this sense that the GFT framework provides a completion to SF. Let us now put some
mathematics to these words.

It is also important to underline the fact that GFT generates a sum over topologies
as well as a sum over different triangulations of the same topology and not a fixed one.
This then takes into account the full space of the degrees of freedom defining thus a full
background independent theory of spacetime [1].

•General construction of the GFT Feynman diagrams The identification of GFT
with a specific SF model relies on the way we can decompose the field theory as a scalar
function of a group. This is of course very well studied in group theory and depends on
the group domain G. This is manifest once we decompose the GFT by expanding it in
Fourier modes [109,149–151] provided by the Peter-Weyl theorem

φ (g) =
∑

r
f (r)m

n
∏
u

√
dim ru U

(ru)
mu

nt (gu) , (4.2.2)

where the bold notation refers to a collection of group elements g = g1 , · · · , gu, their
respective quantum number in the irreducible representation labeled by r and f (r)m

n are
the mode coefficients in such a basis. Inserting this expansion in the action (4.0.3), we
can read out both the propagator and vertex. The calculation is straightforward due to
the simple form provided by the Peter-Weyl decomposition of the group field. Indeed
this allows us to use the orthogonality relation of the representation matrices. Now, the
propagator resulting from the kinematics of such field decomposition

K[ψ] = 1
2 · 4!

∑
r

[
f (r)m

n

]∗
f (r)m

n , (4.2.3)

produces the propagator of the field

P r1m;r′
2n =

∑
σ∈S4

δr1σ(r2)δ
m1
σ[m2]δ

σ[n2]
n1 (4.2.4)

with δb
a = ∏4

t=1 δ
bt
at

and σ the permutation acting on the group elements labels. To express
the interaction term V in terms of the coefficients f in a simple manner, we make use of
further representation-theoretic notion. If g12 ∈ G defines a parallel transport on the edge
from node 1 to node 2 then g21 = (g12)−1 defines parallel transport along the inverse edge
from 2 to 1. In this picture, a unitary representation U r,m1

m2 of the element g21, to consider
the parallel propagator from 2 to 1 in the complex conjugate of the representation r such
that (

U(g21)r,m1
m2

)∗
=
(
U(g21)r,m1

m2

)−1
. (4.2.5)
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For simplicity, let us focus on the case of a fixed representation on all edges. In general,
the

(
U (r)

)∗
are not associated with U (r∗) of its own equivalence class, but instead, it is only

unitarily equivalent to it1. This calls for the introduction of a new quantity. We define
ε(r)

mn to be a unitary matrix such that

U (r)∗ = ε(r)†U (r∗)ε(r) (4.2.6)

and we allow ε(r)mn =
(
ε(r)

mn

)∗
, which is the inverse of ε(r)

mn such that ε(r)
mxε

(r)nx = δn
m .

Now, before we proceed to the vertex expression, notice that from (4.2.6) we are led to
conclude that ε(r)

mn is an invariant tensor, hence an intertwiner, where m is a covector index
of the representation r∗ and n is a covector index of the representation r. We can then
make use of their properties and in particular, we have

U (r)n
m1

(
h1h

−1
2

)
= U (r)x

m1 (h1)
[
U (r)x

n (h2)
]∗

= U (r)x
m1 (h1) ε(r)

xyU
(r∗)y
m2 (h2) ε(r)nm2 . (4.2.7)

Adopting when needed the relation rij = r∗
ji for i > j we are able to write the interaction

term for the fields as [149]

V =
∑
r.,I.

A(r..)I ·

∏
i ̸=j

√
dim rij

U (rij)
mij
xij

(
hj

i

)∏
k

W
mk1...mkk−1mkk+1...mk5
Ik

∏
i<j

ε(rij)
xijxji

. (4.2.8)

The invariance of ε induces the resulting tensors Wmk
Ik

to be also invariant and they are
considered as intertwiners that are coupling the incident representations rki. The above
equation is then the expression of the interaction term on the field in spin representation,
where bivalent vertices are characterized by intertwiners ε(rij)

xijxji (which is
√

dim rij times the
unique normalized bivalent intertwiner). Thus, the orientations of the edges are present
only through the ordering of the indices in this ε. Now let us write the expression for V . If
we use the reality of φ to replace φ by φ∗ in (4.0.3) the integrals can be carried out using
the above derived expression for K and V

V = 1
5!
∑

r..,.I.

A(r..)I.
∏
k

[
b(rk.)mk.xk

]∗
Wmk

Ik

∏
i<j

ε(rij)
xijxji

.

The term V is even simpler when expressed in terms of the spin-network coefficients
in an expansion of the gauge-invariant field φ∗(h) =

∫
G φ(gh)dg. A spin-network-type

expansion of this field can be obtained by inserting into the expansion of the field the
projector ∫

G

4∏
t=1

U (rt)
mt

nt(g)dg =
∑

I

[
W

(r)m1m2m3m4
I

]∗
W

(r)n1n2n3n4
I .

1For example, all representations of SU(2) are equivalent to their conjugates, however on the other
hand, unitary irreps of non-integer spins are not real and are indeed not equal to their conjugates.
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The field then has the simpler form

φ∗(h) =
∑
r,I

c(r)I
nW

(r)m
I

4∏
t=1

√
dim rtU

(rt)nt
mt

(ht) (4.2.9)

and the interaction term is then given by

V = 1
5!
∑
r..,I.

A(r..)I.
∏
k

[
c(rk.)Ikxk

]∗ ∏
i<j

ε(rij)
xijxji

,

which tells us that it is simply A times the result of contracting together the indices of
five c∗ in the pattern of a 4-simplex. This formula allows us then to express the functional
integral of the path integral action of the GFT action as an ordinary integral over the
coefficients f . (which are finite in number if the spin foam model has been regulated by
cutting off the sum over representations).

•The relation between the extended GFT model and BC and EPRL spin foam
models. In the previous discussion, we came across the bridging relations between GFT
and SF. Now we would like to explicitly express this for two SF models. The GFT field
describing quantum pieces of 4d spacetime is encoding the theoretic-algebraic information
about the bivector associated with each face of a given tetrahedron (one of the four tri-
angles). As we discussed above, the interaction term in the GFT action in (4.0.3) takes
care of the gluing of such fundamental building blocks of the quantum geometry, further
underling the highly non-local combinatorial aspect of the dynamics. In the following, we
focus on the Riemannian definition of geometry and then move on to the Lorentzian case.
Recall that in section 3.2.1 we encountered that the information specified by the normal
vector to the set of bivectors is indeed crucial [145]. Precisely for this reason, one can then
promote the normal vector to the tetrahedron to a kinematical variable X ∈ S3 ≃ SU(2) by
adding it as an independent argument in representing tetrahedron [120,122,145], achieving
an enhancement to the properties of the field under closure and simplicity constraints.
Henceforth, in this extended formulation, GFT field can be expressed in the Lie algebra
representation, where the group now is Spin(4), as

φ (B1, . . . , B4) → φ (B1, . . . , B4;X) , X ∈ SU(2) , (4.2.10)
where a rotation by h ∈ Spin(4) acts also on the normal X and in this representation, the
closure constraint can be easily implemented. The invariant under rotation expressed in
the Lie algebra representation reads

φ (B1, . . . , B4;X) = φ (B1, . . . , B4;h ▷ X) ⋆ Eh (B1) . . . Eh (B4) , (4.2.11)

Using the properties of the group Spin(4), we can decompose the action of h ∈ Spin(4)
on X ∈ SU(2) by using the isomorphism Spin(4) ≃ SU(2) × SU(2), so that an element
h ∈ Spin(4) can be written as h = (h+, h−), with h+ and h− being elements of two copies
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of SU(2). This allows us to redefine the invariance of the normal vector X (4.2.11) in terms
of a projector that can which can be imposed in the following way

(Chφ) (B1, . . . , B4;X) =
∫

dhφ (B1, . . . , B4;h ▷ X) ⋆ Eh (B1) . . . Eh (B4) . (4.2.12)

The action on the normal X is then given by [147]

h ▷ X = h+n
(
h−
)−1

. (4.2.13)

Now let us introduce the plane waves associated with the decomposition of the bivector
and its dual in terms of SU(2) ones relying on the same isomorphism articulated above

Eh(B) ≡ eh−

(
B−

)
eh+

(
B+

)
, (4.2.14)

where B = (B−, B+) is the corresponding decomposition of the Lie algebra (4) ≃ su(2) ×
su(2). Moving to the group representation, the closure constraint is translated as

φ (g1, . . . , g4;X) = φ
(
g1h

−1, . . . , g4h
−1;h ▷ X

)
, (4.2.15)

as one can show by making use of an NC Fourier transform. This completely addresses the
issue of the normal vector to the set of bivectors. At this stage, we can proceed with the
implementation of the simplicity constraint. At the discrete level and relying on the above
decomposition of the bivector, a more compact and general way of expressing it yields

XB−
i X

1 + βB+
i = 0, ∀i = 1, 2, 3, 4, β ≡ γ − 1

γ + 1 . (4.2.16)

We already mentioned that this constraint should not be imposed too strongly at the
quantum level to cover some of the full phase space of the gravitational degrees of freedom
as in the case of the EPRL model. It is, nonetheless, very practical to combine them in a
more general equation, namely(

Sβ ▷ φ
)

(B1, . . . , B4;X) = φ (B1, . . . , B4;X) ⋆ Sβ
X (Bi) , (4.2.17)

where Sβ
X (Bi) encrypts the different ways in which the constraint can be imposed on the

GFT field and it is given by

Sβ
X(B) =

∑
J=(j+,j−)

∑
j

d(J)d(j)ω(J, j, β)ΘJ(x) ⋆ χj
(
XB−X−1 +B+

)
. (4.2.18)

The quantity χj above is the character for su(2), defined from a Fourier transform of the
SU(2) character χj(g) = trDj(g)

χj(B) =
∫

dgχj(g)eg(B), ∀x ∈ su(2), ∀g ∈ SU(2) , (4.2.19)
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and where denote by ΘJ the character of the Lie algebra Spin(4), defined in terms of its
su(2) decomposition such as

ΘJ(B) ≡ χj− (
B−

)
χj+ (

B+
)
, ∀B =

(
B+, B−

)
∈ spin(4).

The coefficients ω(J, j, β) are responsible for the details of the implementation procedure.
They define the relations between J = (j+, j−) and j. For instance, if we take to be equal
to the identity ω(J, j, β) = 1, it is then clear that Sβ reduces also to the identity. On the
other hand, letting γ → ∞, which corresponds to the BC model, the coefficients read

ω(J, j, β) = δj+j−δj0 (BC) (4.2.20)

which delivers as a constraint δ (XB−X−1 +B+ ). As for the EPRL model, we have

ω(J, j, β) = δj−|β|j+δj(1−β)j+ (EPRL) (4.2.21)

we refer to the original literature on the detailed derivation of this compact and concise
expression [100]. Before proceeding to the Lorentzian description of the above program,
let us add that, the imposition of both constraints Ch and Sβ guarantees the geometricity
of the quantum entities that we are building. For these reasons, let us stress this fact by
introducing the combined constraint

Gβ = Ch ◦ Sβ = Sβ ◦ Ch , (4.2.22)

which is called the geometricity constraint. Moreover, it is worth emphasizing that it
is possible to show that the closure and simplicity constraint do in fact commute, an
important feature that is required for the addition of the normal vector to be guaranteed.

•GFT and the Lorentzian BC model As we encountered in section 3.2.1, the BC
model has succeeded so far in providing a consistent (despite its rigid) formulation of
quantum geometry with Lorentzian signature only for spacelike tetrahedra and thus de-
fined through time-like normal. We show now how we recover the BC counterpart in the
GFT framework, where we explicitly point out the BC intertwiner, which will be useful
for chapter 5. We consider then the BC imposition of simplicity, for a timelike normal
X ∈ H3 ≃ SL(2,C)/SU(2). In group representation, this yield

φ (G1, . . . , G4;X) = φ (G1g1, . . . , G4g4;X) , ∀gI ∈ SU(2)X , ∀GI ∈ Spin(4)X .
(4.2.23)

Similarly to what we discovered in section 3.2.1, in terms of Lie algebra elements, the above
condition forces the second Casimir of the group to vanish

C2 ≡ KIL
I ≡ B · ⋆B = 0 .

At the level of representations labeled by (ρ, ν) the choice ν = 0 is identified with spacelike
bivectors. This respects indeed the requirement to be orthogonal to a timelike normal
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meaning that the simplicity constraint takes care of that. Moving to the closure condi-
tion, we analogously impose it as above. It is when both of these geometric conditions
are respected that we end up with geometric spacelike tetrahedra. These are naturally
represented by functions φ (GI ;X) which in spin representation read

φ (GI ; [a]) =
∏

i

∫
dρi4ρ2

i

∑
jimi

φρi0,00
jimi

∏
i

D
(ρi,0)
jimi00 (gia) , (4.2.24)

where [a] = X is a representative of Q1 ≃ SL(2,C)/SU(2). Integrating over the normal we
obtain

φ (GI) ≡
∫

H3
dXφ (GI ;X) =

∫
dρI

∑
jI ,lI

∑
mI ,nI

φρI
jImI

[ 4∏
i=1

(
4ρ2

i

)
D

(ρi,0)
jimilini

(gI)
]
BρI

lInI
,

(4.2.25)
where BρI

lInI
is the BC intertwiner, i.e.

BρI
lInI

≡
∫

H3
dX

4∏
i=1

D
(ρi,0)
jimi00(X) .

•GFT and the EPRL model. Analogously to the BC case explained above, we
proceed by applying the same steps for the EPRL model. In this case, the simplicity
constraint at the quantum level is established through relations between the stabilizer
SU(2) spin labels with the representation labels of SL(2,C) : |ν| = j and ρ = γj. We
can then use these relations to form an equivalent description of the resulting field in
terms of SU(2)/SU(2)diag , with the SU(2) embedding in SL(2,C) being described by the
map (4.2.11), however with G1, . . . , G4 ∈ SL(2,C). After further imposing the closure
constraint, we obtain functions on SU(2)4/SU(2)diag . This reads in the spin representation
basis

φ (gI) =
∑

ι

∑
jI

∑
mI ,nI

φj1,...,j4;ι
m1,...,m4

[ 4∏
i=1

√
d (ji)Dji

mini
(gI)

]
Ij1,...,j4;ι

n1,...,n4 ≡
∑

α⃗

φα⃗ψα⃗ (gI) , (4.2.26)

where α⃗ = {jI ,mI , ι} and Ij1,...,j4;ι
n1,...,n4 is an SU(2) intertwiner obtained from the right-diagonal

invariance imposed on the field.
It is worth emphasizing that the only crucial difference between the BC and EPRL decom-
position of the filed is that the intertwiner space in the BC case is one-dimensional. More-
over, the above equation shows that the degrees of freedom of the GFT field, α⃗ = {jI ,mI , ι}
are exactly spin-network data, showing a direct connection of SU(2) models with LQG.

This summarizes the completion of the GFT approaches to the several covariant quan-
tization proposals to gravity. There is another path that relies on interesting properties
of the quantum geometries that can shed more light on the continuum problem every QG
approach is confronted with, namely quantum entanglement. This perspective is based on
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the argument that the emergence of spacetime is traced back to their entangled fundamen-
tal quantum states. In the next section, we will see how this is systematically implemented
in GFT. This will be further generalized in the results of chapter 6.

4.3 GFT spin-network states as entanglement graphs

In the following, we discuss how to glue pieces of quantum geometries relying on GFT
entanglement graphs. To easily grasp the techniques of how we can do this procedure,
we need tools from quantum information theory as we will see below. Furthermore, it is
of great importance to pinpoint how the structure of the considered Hilbert space enters
the entropic calculations which quantifies the entanglement between quantum geometries.
This is extensively studied in the LQG approach and GFT but as we will see, due to
the different Hilbert space structure of the two theories, the corresponding entanglement
measure is different. We start here by exposing the essential tools of entanglement graphs
characterized by the spin-network states in the GFT Hilbert space.

The kinematical states of GFT. spin-networks can be interpreted in several quantum
gravity models as discretized spatial geometries [119]. As anticipated, we focus mainly on
GFT states [152], where spin-network graphs are understood as the collection of individ-
ual vertices (representing building blocks of space, where the particles picture thereof is
described by the GFT Fock space) correlated with each other. As already mentioned, a
closely related formalism to that of GFT is LQG. The equivalent states to those consid-
ered as GFT particles arise in this case from the discretization of the base manifold and
quantizing it canonically as we encountered in section 3.3.2.

More specifically, as we encountered in section 3.3.2 and section 4.1 for both approaches
the elementary portion of space is a quantum (d − 1)-simplex dual to a d-valent vertex,
whose edges are decorated by elements of a group G [85,153] (see figure). The phase space
of the quantum simplex is realized by the Hilbert space H = L2

(
Gd/G

)
, where the group

G is usually chosen to be G = SU(2). As we explain in the following, in GFT the picture of
a connected set of such building blocks of space is comprehended by correlating the degrees
of freedom living on the dual vertices. As we saw in the previous section, the quantum
state of the geometry of the simplex can be fully described in the spin representation. In
fact, according to the Peter-Weyl theorem a vertex wave function can be decomposed into
irreducible representations of the group G = SU(2) in terms of the spin-network basis

φ(g⃗) =
∑
j⃗n⃗ι

ψj⃗ι
n⃗ Sj⃗n⃗ι (g⃗) , (4.3.1)

where the vector notation refers to a collection of edge variables: group variables g⃗ =
{g1, . . . , gd}, spins (SU(2) irreducible representations) j⃗ = {j1 . . . jd}, and magnetic num-
bers n⃗ = {n1, . . . , nd} (which can be thought of as quantum numbers attached to the edge
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free-ends); and the symbol ι is the intertwiner quantum number encoding the gauge in-
variance of the individual vertex. In fact, it labels a basis in the invariant Hilbert space
under the action of SU(2)

I j⃗ = InvSU(2)[V j1 ⊗ · · · ⊗ V jd ] , (4.3.2)
where V ji is the representation space of the edge carrying the spin ji. The functions
Sj⃗n⃗ι⃗ (g⃗) appearing in the harmonic decomposition of (4.3.1) are the spin-network basis
wave functions [105,134] and throughout this section and in chapter 6

Sj⃗n⃗ι(g⃗) =
∑
m⃗

I j⃗ι
m⃗

∏
i

√
dji
Dji

mini
(gi) , (4.3.3)

where I j⃗ι
m⃗ ∈ I j⃗ is the normalized intertwiner tensor, Dji

mini
(gi) is the Wigner matrix repre-

senting the group element gi and dji
= 2ji + 1 is the dimension of the representation space

V ji . A spin-network basis state |⃗jn⃗ι⟩ is then defined by the wave function ⟨g⃗|⃗jn⃗ι⟩ = Sj⃗n⃗ι(g⃗)
and possesses a clear geometrical interpretation. In fact, recall that as we saw in section
3.3.2, the spin-network basis diagonalizes the area and volume operators of LQG [134,153]
which somehow refines our geometric intuition about such quantum gravity states. At the
level of the Hilbert space of the single vertex, the Peter-Weyl decomposition yields

H = L2
(
Gd/G

)
=
⊕

j⃗

(
I j⃗ ⊗

d⊗
i=1

V ji

)
, (4.3.4)

and the state of the single vertex then reads

|φ⟩ =
⊕

j⃗

∑
n⃗ι

φj⃗
n⃗ι|⃗jn⃗ι⟩. (4.3.5)

If we are interested in considering the case of N -vertices, we are faced with two different
approaches. We list them now:

1. In the framework of LQG, we usually start from a graph Γ based on L edges and N
vertices. We systematically construct the corresponding space of square integrable
functions by taking L copies of the group G associated with each link, namely HΓ =
L2(GL/GN). If the case where the graph is completely connected, then the Hilbert
space consists only of that of the intertwiners HΓ = L2(GL/GN) = ⊕

j⃗ I j⃗.

2. However, in the GFT formalism, the focus is mainly based on the vertices struc-
ture (which are not gauge invariant structures). Therefore, the graph emerges from
their quantum correlations through the procedure of gluing. More specifically, if we
consider N distinguishable vertices, the corresponding GFT Hilbert space (for distin-
guishable particles) is nothing more than the tensor product of all the single-vertex
Hilbert spaces associated with each one of them

L2
(
Gd×N/GN

)
:= H ⊗ · · · ⊗ H︸ ︷︷ ︸

N

= HN , (4.3.6)

where H is defined by (4.3.4).
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The gluing of vertices in the GFT picture, corresponds in the spin representation, to
entanglement between the degrees of freedom living on the edges, and the resulting spin-
network graphs are referred to as entanglement graphs [36]. A N -open vertices-state living
on this Hilbert space (4.3.6) is denoted by |ψN⟩ and is obtained by taking the N− tensor
product of single-vertex states in (4.3.5) yielding

|φN⟩ =
⊗
N

⊕
j⃗

∑
n⃗ι

ψj⃗
n⃗ι|⃗jn⃗ι⟩ . (4.3.7)

By taking the direct sum of the Hilbert spaces associated with all possible number of
vertices N one ends up with the GFT pre-Fock space that reads

pre-F(H) =
∞⊕

N=1
HN . (4.3.8)

It is possible from this formulation to build a Fock space of the theory which is naturally
obtained by symmetrizing every term of the direct sum over the vertex labels

F(H) =
∞⊕

N=1
sym

H ⊗ · · · ⊗ H︸ ︷︷ ︸
N

 . (4.3.9)

The second-quantization formulation of GFT is then provided by promoting the GFT
field to an operator φ̂ and φ̂† that satisfy the following bosonic commutation relations, i.e.

[φ̂(g⃗), φ̂†(g⃗′)] =
∫
dh

d∏
i=1

δ(hgi(gi′)−1), [φ̂(g⃗), φ̂(g⃗′)] = [φ̂†(g⃗), φ̂†(g⃗′)] = 0, (4.3.10)

where the r.h.s. of the first equation is the gauge-invariant Dirac delta distribution on Gd.
The GFT Fock space is then generated from the repeated action of the creation operator on
the vacuum state |0⟩. This vacuum state is identified with the state annihilated by φ̂(g⃗). In
this second quantization language, the modes appearing in the Peter-Weyl decomposition
of (4.3.1), for which we use again the simple notation φα⃗ := φj⃗

n⃗,ι where α⃗ := {⃗j, n⃗, ι}, are
similarly promoted to creation and annihilation operators which satisfy

[φ̂α⃗, φ̂
†
α⃗′ ] = δα⃗,α⃗′ , [φ̂α⃗, φ̂α⃗′ ] = [φ̂†

α⃗, φ̂
†
α⃗′ ] = 0 . (4.3.11)

In this setting, achieving an entangled state can be realized by projecting states living on
(4.3.6) onto maximally entangled state of a pair of edge-spins. This induces a connected
set of links between the vertices. For instance, two edges ei

x and ei
y can be glued to form a

link ℓi
xy by projecting the state |ψ⟩ onto the maximally entangled state:

|ℓi
xy⟩ :=

⊕
j

1√
dj

∑
n

(−1)j+n |j , n⟩ ⊗ |j ,−n⟩ , (4.3.12)

to obtain a more general entangled state that includes N -vertices with possible open links.
Let us now introduce some tools from the theory of quantum information to methodically
implement this correlating procedure for an arbitrary number of labeled vertices, which can
be generalized to unlabeled ones. The basic idea we chase here is to view two connected
vertices through a link adjacent to each other.
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Adjacency matrix and gluing procedure. In order to systematically implement this
within the graph structure, let us introduce some notions from graph theory that will
facilitate the task, underlying thus the combinatorial patterns for distinguishable and in-
distinguishable vertices. For these and other notions of graph theory, we refer to [154].
Definition 7. Labeled graph: is a graph γ where there is an ordered set of vertices V =
{v |v = 1, . . . , N} connected according to a certain pattern. A labeled graph composed of
N vertices can be described by a N ×N matrix A, called adjacency matrix, whose entries
encode the adjacency relations among vertices: Axy takes value 1 if vertex x is connected to
vertex y, and 0 otherwise. Since A encodes all information about γ (which simply consists
of who is glued to whom) we refer to a graph by using both notations, i.e. γ ≡ A.

Two graphs are said to be isomorphic if they differ only by the labels decorating their
vertices, so in principle, two labeled graphs γ = A and γ′ = A′ with the same number of
vertices N are isomorphic if there exist a permutation operation π on N elements such that
A′ = PπAP

−1
π , where Pπ is the matrix obtained by permuting the columns of the identity

matrix according to π [36, 155].
Definition 8. An unlabeled graph [γ] is the combinatorial pattern represented by [A], where
γ ≡ A.

In the above definition, we encounter the notion of equivalent classes for the adjacency
matrices, we clarify this now. For this purpose, given an adjacency matrix A, we denote
by [A] the equivalence class of matrices obtained by permuting rows and columns of A:

[A] = {A′|A′ = PπAP
−1
π , π ∈ SN}, (4.3.13)

where SN is the set of possible permutations of N elements. Consequently, it is obviously
two isomorphic graphs belong to the same equivalence class of adjacency matrices. Fur-
thermore, two unlabeled graphs [γ] and [γ′] are said to be isomorphic if and only if they
have a common adjacency matrix and two isomorphic graphs have exactly the same set of
adjacency matrices.

The properties encoded in the adjacency-matrix encoding of a graph can also take into
consideration the collection of edges outgoing from a given edge carrying different colors
or labels. This can be naturally implemented in the case of spin networks. Therefore, in
the following, we denote by ei

x the edge carrying the color i departing from vertex x and
by ℓi

xy the link formed by fusing the edges ei
x and ei

y. This can be made clear in figure 4.3.
If the pair of vertices can be connected through the edge ℓi

xy, we can collect and store
this information about all possibly connected vertices within a certain graph in the matrix

Axy =


a1

xy 0 . . . 0
0 . . .
... . . .
0 ad

xy

 , (4.3.14)
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Figure 4.3: Gluing two links emanating from two vertices x and y. The glued link ℓxy is the
resulting common link after the entangling procedure. At the level of the tetrahedra, this gluing
procedure results in identifying common faces. The fusion of these faces is symbolized by the
parallel dashed lines between the tetrahedra.

where the entries are denoted by ai
xy and are equal to 1 (0) if vertices x and y are connected

(not connected) along their edges labeled by i. We also define the following substructures
of a labeled-graph γ described by such generalized adjacency matrix

∗ L = {ℓi
xy |x, y ∈ V : (Axy)ii = 1} set of internal links of γ,

∗ ∂γ = {ei
x |x ∈ V : (Axy)ii = 0 ∀ y ∈ V } set of boundary edges of γ,

∗ E = L ∪ ∂γ set of all edges of γ.

These are the notions that we will use throughout this section and in chapter 6, where we
generalize the notion of a single entanglement graph to the case of a superposition.

Starting from such a class of states, it is then possible to construct labeled graph states
according to a pattern γ whose connectivity is encoded in the so-called adjacency matrix
within the GFT formalism. This is carried out by mainly implementing it at the level of
the gluing procedure defined through the map [36]:

Definition 9. The gluing map of (open) links connecting two vertices x and y is carried
out by the map

Pℓ : L2(G2) → L2(G2/RG), (4.3.15)
where the two copies of the group G are attached to the edges ei

x and ei
y to be fused together,

ℓ is a short notation for ℓi
xy and R is the factorization over the right action of the group.
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The link map Pℓ is defined as

Pℓ :=
∫

dhdgi
xdg

i
y |gi

x⟩ ⟨gi
xh| ⊗ |gi

y⟩ ⟨gi
yh| . (4.3.16)

In fact, this gluing operation is equivalent to the realization of an averaging through
the right action of the group on the two open edges carrying gi

x and gi
y [36, 156]

∫
dhψ(. . . , gi

xh, . . . , g
i
yh, . . . ) = ψℓ(. . . , gi

x(gi
y)−1, . . . ). (4.3.17)

Clearly the convolution depending on the group element h forces ψ(g⃗1, . . . , g⃗N) to depend
on gi

x and gi
y through the product gi

x(gi
y)−1 representing the group variable associated to

the internal link ℓi
xy. The expansion of a graph wave function defined with N vertices

underlining the gluing operation through this procedure can be captured in the expression

Ψγ ({gℓ}) =
∫ ∏

x<y

dhxy
i ψ ({gx

i h
xy
i }) =

∑
ψj⃗ι

n⃗ I j⃗ι
m⃗

∫ ∏
x<y

dhxy
i

∏
x,i

√
djx

i
D

jx
i

mx
i nx

i

(
gx

i h
xti(x)
i

)
,

(4.3.18)

with hxy
i is the gluing element, connecting the vertices x and y, here we define the quantity

ti(x) as the target tensor that encodes the information delivered from the adjacency matrix
that dictates the connectivity of the graph, I j⃗ι⃗

p⃗ := ∏
x Ijxιx

px and ψj⃗ι⃗
n⃗ := ψj⃗

p⃗n⃗I j⃗ι⃗
p⃗

∏
x,i

√
dx

ji
and

the sum is over all repeated indices. By performing the integral over the gluing elements,
we obtain

Ψγ ({gℓ}) =
∑

Ψ{j
xti(x)
i }⃗ι

∂γ{nx
i } I{j

xti(x)
i }⃗ι

m⃗

∏
x,i:x<ti(x)

√
d

j
xti(x)
i

D
j

xti(x)
i

mx
i m

ti(x)
i

(
gx

i g
ti(x)−1

i

)
(4.3.19)

×
∏

x,i:ti(x)=0

√
djx

i
D

jx
i

mx
i nx

i
(gx

i ) .

In the spin-network basis, gluing edges is equivalent to entangling the degrees of freedom
attached to their free ends. We can show this once we compute the entanglement measure,
quantifying such correlations.

GFT Hilbert space structure. The LQG can be perceived as a GFT Hilbert space,
however, governed by a different organization of its elements (and excluding the zero
modes). A generic LQG state is in fact associated with all possible graphs {Γ} (embedded
in the spacial manifold) and lives on the Hilbert space given by HLQG = ⊕

Γ HΓ where HΓ
is the individual Hilbert space underlying a graph γ. Such superposed states correspond
to states in the GFT Hilbert space HGF T = ⊕∞

N=0 HN , for more details see [131,157]. It is
of great importance at this level to address the differences between the Hilbert spaces of
the theories.
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∗ Starting from the GFT Hilbert space H defined in (4.3.6) we take a direct sum over
the number of vertices, as opposed to the set of graphs in LQG, and we do not impose
any cylindrical equivalence (and, thus, in particular, one keeps the zero modes in the
Hilbert space). See figure 3.8b and 3.8a.

∗ States associated with different graphs end up being organized very differently in
HGF T = F(H) compared to the LQG space: states associated to graphs with a
different number of vertices are orthogonal, whereas states associated to different
graphs but with the same number of vertices are, generically, not orthogonal.

∗ This distinguishes the GFT Fock space F(H) in the sense that it decreases the
importance of the exact graph structure, as compared to the LQG Hilbert space.

∗ The GFT formalism is not only considered as the second quantized version of LQG
but it is actually a completion of the LQG definition of the quantum dynamics of
spacetime. We already saw this at the level of the dynamics in section 4.2. To be
more precise, there is a simple and straightforward map that transforms the canonical
spin network states into group field theory states which are exactly provided by the
group averaging one, or the link map defined above. This clearly preserves the
quantum geometric information. Starting from the GFT field we can always obtain
a corresponding LQG wave function ψΓ, namely

ψΓ =
∑

{mj
i}
φj⃗i ,⃗ιi

m⃗i

∏
lγi

δja
i ,jb

j
δma

i ,mb
j
. (4.3.20)

This indeed clarifies the embedding of ψΓ ∈ HLQG into HGF T . Indeed, (4.3.20)
manifests states associated with the graph Γ as possible elements of the GFT Hilbert
space contains, among its elements, states. It is also worth mentioning that the
Hilbert space HLQG is a Hilbert subspace of HGF T , this is evident once we see that
the scalar product on the first is in fact the one induced by the latter [156].2

These properties can be traced back to the fact that GFT graphs do not provide a direct
definition of the kinematical Hilbert space, and they rather emerge as entanglement pat-
terns among building blocks defined in the pre-Fock space. This is a crucial property that
makes the GFT graph states a more powerful tool to extract more information about the
entanglement from such pre-geometric states, from which spatial-temporal entities should
emerge. As we will see later when we compute the entanglement entropy of the more
general case of a superposition of states in chapter 6, while the LQG and GFT (pre-Fock)
Hilbert space structure might agree to some extent on some entropic terms entering the
entanglement measure, the fact that the GFT states are not necessarily orthogonal results

2Notice that this statement is representation-independent. This can be formulated as follows; it is only
reasonable to consider that any closed LQG states can be broken down in such a way that they can be
written as a linear combination of states describing disconnected open spin-network vertices of an arbitrary
number. It is exactly the extra conditions implementing the gluing that ensures their reconstruction [131].
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in the rise of an additional expression that can be interpreted in quantum information
theory as an interaction information [158,159].

4.4 Effective cosmologies from Group Field Theories

In this section, we focus on a certain class of coherent states that the GFT formalism em-
ploys to extract an effective cosmological prediction from a QG origin. We will go through
the assumptions we are making in the model and mention several physical predictions that
will be useful for us in chapter 7. The assumptions that will allow us to do so enter the
GFT approach at the kinematical level as well the dynamical one.

For the remainder of this section let us focus on the simplest case of GFT field in the
group representation decomposed in the spin-network basis using (4.3.1)

φ (gI) =
∑

ι

∑
jI

∑
mI ,nI

φj1,...,j4;ι
m1,...,m4

[ 4∏
i=1

√
d (ji)Dji

mini
(gI)

]
Ij1,...,j4;ι

n1,...,n4 ≡
∑

α⃗

φα⃗ψα⃗ (gI) . (4.4.1)

where we denoted as usual the quantum labels with the abbreviated vector notation α⃗ ={⃗
j, m⃗, ι

}
. The wave function above, as already emphasized, depicts a discrete portion of

what would be identified as spacetime after taking the continuum limit. As mentioned in
chapter 1, attaining a physical structure that could be understood as spacetime can be
achieved once we understand the continuum limit as the emergence of classical physical
properties from the characterizing behavior of the underlying microscopic pre-geometric
and pre-matter degrees of freedom. The resulting physical quantities obtained in such a
way will be referred to as effective ones.

The above quantum states bear the seeds of the geometry we aim to reproduce at
the effective level and they were intensively studied in various quantum gravity models
[77,86,160,161]. To better understand the phenomena of the emergence of matter degrees
of freedom along the geometrical ones, we are faced with the necessity of considering
additional degrees of freedom that would play the role of pre-matter. As we will mention
below, the simplest set of degrees of freedom that fulfills such a task is that of scalar fields
and in this thesis, we focus only on this class. Implementing scalar fields as pre-matter
degrees of freedom can be carried out in two ways, where we can make the distinction
between a set of fields that represent a relational reference frame (clock and rods) and
another playing the role of matter content [75, 77, 162, 163]. This can be observed already
at the level of the corresponding defined GFT operators and then later on at the effective
level, once we try to match the obtained physics to the classical ones [164]. In the next
paragraphs, we explain more in detail how this can be precisely done in GFT.
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4.4.1 Kinematics of relational GFT.

The scheme discussed above can be precisely implemented once we couple the pre-geometric
data encoded in the GFT field to the scalar fields ones [165]. Following this line of reasoning,
one can introduce the so-called pre-matter data alongside the purely geometric degrees of
freedom encoded in the discretized simplex. Clearly, this must be performed in such a way
that the perturbative expansion of the GFT partition function (see section 4.2) matches the
discrete path-integral of the simplicial gravity model minimally coupled with the massless
scalar fields one wants to reproduce. In the following, we work with a set of five massless
scalar fields, where four of them will play the role of a relational reference frame minimally
coupled to our GFT, whereas the fifth will be considered as the matter field.
At the level of the GFT, minimally coupling n massless scalar field, the group field operator
takes the form φ̂ (gI , χ

a) ≡ φ̂ (gI , χ
1, . . . , χn), for running from a = 1, . . . , n. Of course, the

commutation relation in (4.3.10) changes as well and it reads as[
φ̂ (gI , χ

a) , φ̂†
(
g′

I , (χ′)a
)]

= IG (gI , g
′
I) δ(n)

(
χa − (χ′)a

)
. (4.4.2)

The additional degrees of freedom encoded in the scalar field induce a change on the level of
the kinematical structure of the Fock space and it is reflected also in the second quantized
operators, which now involve integrals over all the possible values of χa ∈ Rn. For instance,
the number operator is expressed now as

N̂ =
∫

dnχ
∫

dgIφ̂
† (gI , χ

a) φ̂ (gI , χ
a) . (4.4.3)

A crucial quantity for describing cosmological geometries is the volume operator and it is
given by

V̂ =
∫

dnχ
∫

dgI dg′
Iφ̂

† (gI , χ
a)V (gI , g

′
I) φ̂ (g′

I , χ
a) , (4.4.4)

whose matrix elements V (gI , g
′
I) are defined from those of the first quantized volume

operator in the group representation. Similarly to the defined geometric operators such
as the volume and area operator, we are able to construct a set of observables naturally
associated with the pre-matter fields, through polynomials and derivatives with respect to
χa for each a = 1, . . . , n. In particular, the two fundamental, self-adjoint ones that can be
derived in this way are the scalar field- and the momentum operator,

χ̂b ≡
∫

dnχ
∫

dgIχ
bφ̂† (gI , χ

a) φ̂ (gI , χ
a) , (4.4.5)

Π̂b = 1
i

∫
dnχ

∫
dgI

[
φ̂† (gI , χ

a)
(
∂

∂χb
φ̂ (gI , χ

a)
)]

, (4.4.6)

Notice that thanks to the relational scheme to describe the dynamics and evolution of
observables at the quantum level, the expectation values of the above operators (4.4.5)
and (4.4.6) on appropriate semi-classical and continuum states would be associated to the
scalar field itself and conceivably its momentum.
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GFT quantum gravity states and relationalism The relational program encapsu-
lating as well the evolution of small inhomogeneities in GFT in a cosmological setting (as
we will see later on), relies heavily on the class of quantum gravity states we work with.
These states should conceal some proto-geometric interpretation in terms of approximate
continuum geometries. Such semi-classical states are expected to be formed following an
appropriate coarse-graining procedure of the underlying microscopic degrees of freedom.
In the GFT framework, this aspect is associated with the collective behavior, encoding
the hydrodynamic description of the underlying quantum gravity model. One of the sim-
plest forms of states describing such collective behavior is encoded by the condensate ones,
where each fundamental quantum is attributed the same coherent wave function (assump-
tion QL.1):

|σ⟩ = N e||σ||2/2e
∫

dgIdnχa σ(gI ,χa)φ̂†(gI ,χa) |0⟩ . (4.4.7)
The normalization condition of this state captures a very interesting physical quantity
which is the number of particles in terms of expectation value N .

||σ||2 =
∫

dgI

∫
dnχa |σ(gI , χ

a)|2 = ⟨σ| N̂ |σ⟩ = ⟨N̂⟩ . (4.4.8)

Moreover, this coherent state is a superposition of infinitely many spin-network degrees of
freedom captured by a single collective function. An additional important property of this
state is that they are eigenstates of the GFT field operator φ̂

φ̂ (gI , χ
a) |σ⟩ = σ (gI , χ

a) |σ⟩ . (4.4.9)
Before proceeding to the effective relational dynamics our GFT model produces, it is
important to present the symmetry assumptions we assume this class of states should be
endowed with. These can be listed as follows:

• diagonal left-invariance: The condensate wave function is diagonal left-invariant:
σ (gI , χ

a) = σ (hgI , χ
a), ∀h ∈ SU(2). Geometrically, this can be interpreted as an

average over the relative embedding of the tetrahedron in the corresponding algebra
[164,166]. This gives rise to an isometry between the domain of the condensate wave
function to the space of all the spatial metrics at a point (minisuperspace).

• Isotropy: this symmetry condition (assumption QL.3) renders the wave function
effectively dependent on only one spin label j:

σ (gI , χ
a) =

∞∑
j=0

σj (χa) I∗jjjjj,ι+m1m2m3m4Ijjjj,ι+
n1n2n3n4

√
d(j)4

4∏
i=1

Dj
mini

(gI) , (4.4.10)

where d(j) = 2j+1 and ι+is the largest eigenvalue of the volume operator compatible
with j. Therefore, the condensate wave function in spin representation reads as

σα⃗ (χa) ≡ σ{j,m⃗,ι+} (χa) = σj (χa) Ijjjj,ι+
m1m2m3m4 . (4.4.11)

The dependence of the condensate wave function on a single spin simplifies the com-
plications at the computational level to bridge the transition between the microscopic
and the effective level of the theory [86,161,167].
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The implementation of the effective relational description of physical quantities in the GFT
formalism is thoroughly discussed in [77]. The relational evolution of geometric observables
with respect to a scalar field clock and rods was constructed by making use of the concept
of Coherent Peaked State (CPS). This gives a class of states which - as the name entails - is
coherent, equipped with a wave function that has strong peaking properties on the scalar
field variables (assumption QL.2). Working with a spacetime dimension d, with d ≤ n„
the condensate wave function is then adjusted as follows

σϵµ,πµ;xµ (gI , χ
a) =

d−1∏
µ=0

ηϵµ (χµ − xµ, πµ)
 σ̃ (gI , χ

a) , (4.4.12)

where ηϵµ (gI ;χµ − xµ, πµ) is the peaking function [77, 164, 168]. The equation for each
µ = 0, . . . , d − 1, would encode the distribution of spatial geometric data for each point
xµ of the physical manifold coordinatized by the frame fields χµ. The peaking function is
taken to be a Gaussian associated with a small width. The most studied case is usually
related to a single field variable, namely a clock. [77] showed that in order to correctly
implement such assumptions the parameter ϵ ≪ 1 should not tend to zero. This results
in suppressed quantum fluctuations and as discussed in [77,168], it should satisfy ϵπ2

0 ≫ 1
where π0 (being the clock momentum) determines the non-trivial phase of the Gaussian.
By construction, the expectation value of the intrinsic version of the second quantized field
operators χ̂µ in (4.4.5) on the above states is approximately given by

⟨χ̂µ⟩σ ≡ ⟨X̂µ⟩σ

⟨N̂⟩σ

≃ xµ , (4.4.13)

which allows us to identify the change with respect to xµ as physical. These are the funda-
mental states that we will work with when we extract physical predictions in cosmology.
Since the most important operator in cosmological application in quantum gravity models,
is the volume operator (which in our work should be capturing isotropic perturbations),
we will further make the assumption that the reduced wave function is isotropic as well as
the peaking properties of the condensate

σϵ,δ,π0,πx;xµ (gI , χ
µ, ϕ) = ηϵ

(
χ0 − x0; π0

)
ηδ (|χ − x|; πx) σ̃ (gI , χ

µ, ϕ) , (4.4.14)

where |χ − x|2 = ∑d
i=1 (χi − xi)2. Furthermore, it is assumed that the parameter δ is

complex; C ∋ δ = δr + iδi, but with a positive real part δr > 0. As we will see below,
considering a complex width for the rods peaking function, enables us at the perturba-
tive level to obtain equations that are dependent on a derivative kernel endowed with an
emergent Lorentzian signature.

4.4.2 Dynamics of relational GFT

The first step in deriving the dynamics of the theory (after having implemented the rela-
tional reference frame), is to impose the same field symmetries of the classical action for
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the scalar fields (playing the role of rods and clocks) since it should be preserved at the
quantum level as well (assumption QL.4). Hence, the set of symmetries the GFT action
should preserve is invariance under Lorentz transformations or Euclidean rotations, shifts,
and reflections. This assumption produces a simpler form for the interaction V and kinetic
terms K, which read for the EPRL model

K =
∫

dgI dg′
I

∫
ddχddχ′dϕdϕ′φ̄ (gI , χ) K

(
gI , hI ; (χ− χ′)2

λ , (ϕ− ϕ′)2)
φ
(
hI , (χ′)µ

, ϕ′
)
,

(4.4.15)

V =
∫

ddχdϕ
∫ ( 5∏

a=1
dga

I

)
U
(
g1

I , . . . , g
5
I

) 5∏
ℓ=1

φ
(
gℓ

I , χ
µ, ϕ

)
, (4.4.16)

where (χ− χ′)2
λ ≡ sgn(λ)M (λ)

µν (χ− χ′)µ (χ− χ′)ν and where K and V are respectively the
kinetic and interaction kernels encoding information about the EPRL-like model and, in
particular, about the specific Lorentzian embedding of the theory. Moreover, recall that
for the purpose of this thesis, we are in the case where we are neglecting interactions and
hence, we work only with the dynamics attained from K.
The extraction of effective mean-field dynamical equations from the full quantum equa-
tions of motion has been derived in [77]. By effective mean field dynamics, we mean the
imposition of the quantum equations of motion averaged on the states that we consider to
be relevant for an effective relational description of the cosmological system (assumption
EL.1). In line with what we mentioned so far, these states would be the coherent states
|σϵµ ;xµ, πµ⟩ and the dynamical equations of the GFT field are obtained as follows

〈
σϵµ ;xµ, πµ

∣∣∣∣∣∣
δSGFT

[
φ̂, φ̂†

]
δφ̂† (gI , xµ)

∣∣∣∣∣∣σϵµ ;xµ, πµ

〉
= 0 . (4.4.17)

Here, SGFT is the classical GFT action, whose specific form is given in [156]. Notice
when assuming that the effective dynamics are only captured by an averaged form of the
equations of motion is rather a strong truncation of the microscopic quantum dynamics.
This further implies that the quantum fluctuations are in fact neglected, which can affect
the treatment of small perturbations3.

These are the kinematical and dynamical ingredients we are considering in this thesis.
Let us mention that the physical predictions thereof will be carried out for the case of small
background densities (early time cosmology) as well as large ones (late time cosmology).
The prescribed inhomogeneities are implemented at the level of the GFT condensate, as
we will shortly present below, where we solve the extracted effective dynamics of the GFT
condensate at the level of the background along with the inhomogeneous one.

3In fact, the Landau-Ginzburg analysis in the other case of the extended BC model (instead of the
EPRL one) restricted to spacelike tetrahedron and various non-local interactions such as the simplicial
one suggests that the quantum fluctuations are largely suppressed and that thus the tree-level theory is
sufficient to capture large scale continuum physics in GFT [41].
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Effective evolution equations. The evolution equation in (4.4.17) of the GFT conden-
sate can be computed as was done in [164] and one can also perform scalar perturbations
which we will present shortly. Considering the lowest order in the parameters4 |δ| and
ϵ contributions in the evolution equation (4.4.17), the effective dynamics for the GFT
reduced wave function are encoded in the equation

∂2
0 σ̃j (x, πϕ) − iγ∂0σ̃j (x, πϕ) − Ej (πϕ) σ̃j (x, πϕ) + α2∇2σ̃j (x, πϕ) = 0 , (4.4.18)

where we have dropped the superscript µ for the argument of the reduced wave function
σ̃j, x ≡ xµ and where ∂2

0 and ∇2 ≡ ∑
i ∂

2
i represent derivatives with respect to rods and

clock values, respectively. This evolution equation is represented in the momentum space
of the scalar matter field ϕ0 and after considering both assumptions EL.3 and EL.4. The
quantum gravity parameters appearing in the above equation where z0 ≡ ϵπ2

0/2, and
z ≡ δπ2

x/2 are functions of the clock and rods momenta, read as

γ ≡
√

2ϵz0

ϵz2
0

, r(λ)
s ≡ K̃

(s)
λ

K̃
(0)
λ

, E2
j ≡ 1

ϵz2
0

− r
(λ)
j;2 (πϕ)

(
1 + 3λα2

)
, (4.4.19)

α2 ≡ 1
3
δz2

ϵz2
0
, αr = π2

x

6
δ2

r − δ2
i

ϵz2
0

, αi = π2
x

3
δrδi

ϵz2
0
, (4.4.20)

where αr and αi are the real and imaginary part of α2. The obtained evolution equation
(4.4.18) is the fundamental equation determining the form of the reduced condensate wave
function σ̃, which consequently affects the matter content of the theory. The separation
into real and imaginary parts of the evolution equation in (4.4.18) following the steps
in [164] and after applying the Madelung representation for σ̃j yields

ρ̈j + αr∇2ρj −
[(
θ′

j

)2
+ η − γθ′

j − αr (∇θj)2 − αi∇2θj

]
ρj − 2∇ρj · ∇θj = 0 ,

(4.4.21)
θ′′

j ρj + 2θ′
jρ

′
j − γρ′

j + αr

[
2∇ρj · ∇θj + ∇2θjρj

]
− βjρj + αi

[
∇2ρj − (∇θj)2 ρj

]
= 0 ,
(4.4.22)

where we have dropped the arguments of the condensate parameters for notation simplicity.
The additional parameters appearing in the above equations read as

ηj ≡ 1
ϵz2

0
− rj;2 (πϕ) (1 + 3λαr) , βj = 3λαirj;2 . (4.4.23)

For the perturbation treatment, we consider the perturbative framework with respect to the
spatial gradient encoding slightly inhomogeneous relational quantities. This is implemented
at the level of the mean field expression for the density and phase factor

ρj = ρ0 + δρ , θj = θ0 + δθ , (4.4.24)
4|δ| and ϵ are the expansion parameters that enter the expansion of the dynamical equation of the

reduced wave function and they characterize the peaking properties of the condensate (4.4.14).
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with ρ0 = ρ0 (x0, πϕ) and θ0 = θ0 (x0, πϕ) being background (zeroth-order) quantities and
with ρ and θ being small corrections to them. We dropped the spin index j for notation
simplicity. The remainder of this section will revolve around studying the zeroth- and the
first-order (in δρ , δθ) form of equations (4.4.21) and explicitly solving them.

Zeroth order: background equations. At the zeroth-order, the above set of equation
(4.4.21) becomes

ρ̈0
(
x0, πϕ

)
−
[(
θ̇0
(
x0, πϕ

))2
+ ηj (πϕ) − γθ̇0

(
x0, πϕ

)]
ρ0
(
x0, πϕ

)
= 0, (4.4.25)

θ̈0
(
x0, πϕ

)
ρ0 + 2θ̇0

(
x0, πϕ

)
ρ̇0
(
x0, πϕ

)
− γρ̇0

(
x0, πϕ

)
− βρ0

(
x0, πϕ

)
= 0 . (4.4.26)

This can be written as

θ̈0
(
x0, πϕ

)
+
(
θ̇0
(
x0, πϕ

)
− γ

2

)
∂0(ρ2

0) (x0, πϕ)
ρ2

0 (x0, πϕ) − β = 0 , (4.4.27)

ρ̈0 (x0, πϕ)
ρ0 (x0, πϕ) =

(
θ̇0
(
x0, πϕ

))2
+ ηj (πϕ) − γθ̇0

(
x0, πϕ

)
. (4.4.28)

In fact, the GFT condensate degrees of freedom can be associated with conserved charges
due to several symmetry-invariance, as was already studied in [166]. These properties
enable us to express the above equations in terms of constants of motion, denoted with Qj

and Ej, and this yields

θ̇0
(
x0, πϕ

)
= γ

2 + Qj (πϕ)
ρ2

0 (x0, πϕ) , (4.4.29)

(ρ̇0)2
(
x0, πϕ

)
= Ej (πϕ) −

Q2
j (πϕ)

ρ2
0 (x0, πϕ) + µ2

j (πϕ) ρ2
0

(
x0, πϕ

)
, (4.4.30)

where Qj = ρ2
j θ̇j is the constant of motion resulting from the U(1) symmetry of the GFT

condensate, Ej is usually interpreted as the energy associated with the condensate and
finally µ2

j = ηj(πϕ) − γ2/4 is a parameter carrying rods and matter information contents.
When we proceed with solving the dynamical equations for the background condensate,
we will rely on the different forms in (4.4.29) and (4.4.27) upon convenience.

First order: perturbation equations. The perturbations equation of first order de-
rived in [164] is given by the set of coupled evolution equations

δρ̈ (x, πϕ) + αr∇2δρ (x, πϕ) − η (πϕ) δρ (x, πϕ) (4.4.31)
−
[
δθ̇ (x, πϕ)

(
2θ̇0

(
x0, πϕ

)
− γ

)
− αi∇2δθ (x, πϕ)

]
ρ0
(
x0, πϕ

)
= 0 ,

δθ̈ (x, πϕ) ρ0
(
x0, πϕ

)
+ θ̈0

(
x0, πϕ

)
δρ (x, πϕ) + 2δθ̇ (x, πϕ) ρ̇0

(
x0, πϕ

)
+ 2θ̇0

(
x0, πϕ

)
δρ̇ (x, πϕ)
(4.4.32)

− γρ̇+ αr

[
∇2θ (x, πϕ)

]
ρ0 − βρ (x, πϕ) + αi∇2ρ (x, πϕ) = 0 .
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In chapter 7 we briefly discuss the regime in which the above set of dynamical equations
decouple and how they can affect the perturbed matter content at the background level
(section 7.2), as well the perturbed one (section7.3). We will present the explicit solution
of the background density and phase satisfying the dynamical equations in (4.4.29) and
the perturbed ones obeying those in (4.4.31) and how to use this technology to express the
GFT prediction about the early and late time universe as field theory on curved spacetimes,
recovering, therefore, the standard notions of physics in the cosmological sector.



Chapter 5

A new spin foam model of quantum
geometry based on edge vectors

As we encountered in chapter 3, one of the various background independent approaches
to the problem of finding a complete theory of quantum gravity is the formalism of the
so-called spin foams [16, 95, 98, 169, 170]. In the broad spectrum of quantum gravity the-
ories [14, 91, 171], SF is considered a successful approach to put in motion the dynamics
of the quantum geometry of spacetime. In fact, one of the interesting crossed-roads be-
tween the different approaches to QG is when state sum model [172] for gravity was intro-
duced [173, 174] (initially inspired from statistical mechanics [175]) which then converged
to SF. In fact, the latter implements, in a precise way, the idea of a sum over geometries,
exploiting the duality between simplicial complexes and spin network states [95, 101]. It
was demonstrated by Barrett and Crane that, one can think of this model, once applied
to the 4d simplicial geometries, as a discretization of a constraint BF model as we saw
in section 3.1 (introduced by Plebanski [114]), where it was also shown that its partition
function can be linked to the gravity one (through the Plebanski action). Of course, this
was possible upon the identification of the B field with the bivector specifying the face of
the tetrahedron. However, this success comes with a price as we argued when we listed the
subtleties with this model in Box 3.1. The first problem that they face is the well-known
obstacle of providing a classical limit, where their asymptotics [176] is not dominated by
the Regge action. The second misfortune is that they contain an abundant contribution
from degenerate geometries [116]. One of the possible way-out to such issues was pointed
out by Barrett and Crane and a proposal to surpass them was first formulated by Barrett
and Yetter in [115] as well as [176]. One way to address such issues is to make sense of
such degenerate contributions. More precisely, this can be traced back to the lack of a
quantum operator exploiting the geometrical content of edge vectors in 4d since the classi-
cal description of such geometries is built from constraining bivectors (the wedge product
of two vectors) with an indirect assumption that edge lengths exist, except in degenerate
configurations. However, the studies of the degenerate configurations led to the conclusion
that the geometry of the length is absent and hence is at the core of such degeneracies [176].
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It is Yetter and Crane that emphasized in [115] one possibility to remove the degen-
eracy would be to use decorations on the edge vectors of the triangulation instead of the
bivectors. Therefore, they proposed a model based on infinite dimensional unitary irre-
ducible representations of the Lorentz group acting on vectors in Minkowski space studied
by Dirac [177]. Here, the quantization of Minkowski space is realized as the Hilbert space
associated with the translation group. Crane and Yetter proposed to combine these Hilbert
spaces to construct the quantization of a bivector, or analogous that of a triangle.

The goal of this chapter is to exploit the proposal of Barrett and Crane and this in
turn constitutes our new proposal for the SF which aims at removing such conceptual and
technical problems with the main objective to provide a more natural classical limit. In
this chapter, we then tackle the main issue

• How can we define a quantum geometry based on the edge length data entering the
discretized picture of 4d Lorentzian geometry?

• What are the corresponding transition amplitude and its explicit relation to the BC
and the GFT framework?

Therefore we can list the following steps to be clarified in this chapter to address the
above questions

1. Identify the classical of Lorentzian geometry where the fundamental variable is the
edge vector instead of the bivector. This is carried out at the level of the triangle
and tetrahedron which are then used to compute the 4-simplex amplitude.

2. Provide a quantization procedure for this formulation in terms of edge vectors using
the expansors introduced by Dirac, exploiting them as unitary irreducible represen-
tations of SL(2,C).

3. We then compute the edge-based amplitude and point out the relation of this new
SF model to the BC one and GFT formalism.

This chapter is organized as follows. In section 5.1 we start by a mathematical warm-
up on the theory of infinite dimensional representation of the Lorentz group that will
eventually be associated with the edge vectors as well as the bivectors on the 2-simplex of
the new model. Following the motivation highlighted above, we identify the displacement
vector on the edge as a function of the translation group on the Minkowski space, and
hence we sketch the mathematics behind it. In this case, we relate the Lorentzian harmonic
oscillators via their coherent states to the representations of the group of translations. We
are then equipped with the necessary tools to identify the quantum description of a classical
triangle based on the geometric entity of an edge vector (and its unitary representation),
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as we argued below. This will be the main result in section 5.2. We further explore the
difference between a quantum triangle whose wave function (and Fourier transform) is
based on the quantum edge vectors and that whose geometry is captured by the bivector.
We previously mentioned the construction of Crane and Yetter provided in [115], where
they realized the construction of the quantum bivector as it will be described in section
5.2 and then explain that a general four dimensional triangulation can be obtained as the
proper merge of the representations. This will be implemented in section 5.3. The gluing
is realized by taking the tensor product of bivector Hilbert spaces and identifying the
representation labels associated with edges and faces. As we will argue through this part
of the thesis, starting from such construction based on edge vectors and the introduction
of the translation group representations, one ends up with additional terms stemming from
these degrees of freedom in the final amplitude in comparison with the BC amplitude. This
will be the main discussion of the results of section 5.4. In section 5.4.3 we provide the
GFT counterpart of such amplitudes.

5.1 Relevant representation theory of translation and
Lorentz groups

The group theoretic quantization of edge vectors and their combinations to define simplicial
geometry is a central point of our construction. The possibility to quantize simplicial geom-
etry in group theoretic terms, thus obtaining a purely algebraic state sum model associated
with simplicial lattices is, more generally, the key fact at the core of the spin foam formal-
ism for quantum gravity [16,98] and of the group field theory formalism as well [145,149].
This group-theoretic quantization is based, as we will show, on the translation group. The
precise relation between the representation theory of the translation group and that of the
Lorentz group, on the other hand, is the basis for relating our description of quantum ge-
ometry, as well as the amplitudes of the new model, to that of the known spin foam models.
The latter, in fact, is based on a description of simplicial geometry in terms of bivectors
associated with triangles and a quantization of the same in terms of the representation
theory of the Lorentz group. The tools from the representation theory of the translation
group and the way they relate to the Lorentz group are interesting in themselves, from a
mathematical point of view. Therefore, we illustrate them in some detail in this section,
before proceeding to the construction of the new spin foam model. Specifically, the rele-
vant representations are the unitary infinite dimensional representations of both groups.
We start from those of the Lorentz group [105,177,178], the mathematical basis of known
spin foam models for Lorentzian 4d gravity. We first present the representations of the
principal series [114,144] derived for the SL(2,C) group (which is the covering group of the
Lorentz group) then we recall how Dirac initially introduced the infinite dimensional rep-
resentations for a non-compact group. Dirac’s construction in terms of expansors [177,179]
is then presented; it is particularly relevant to our discussion since it leads to the infinite
dimensional representations of the translation group. The underlying relation between the
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representations in the principle series for the Lorentz group and those of the translation
group becomes evident once we exploit properties of the harmonic oscillator basis, which
we deal with in detail in the last part of this section. We remark that one can work in
the spinor basis as well, in order to realize the irreducible representations of the Lorentz
group, as studied in [179].

5.1.1 Infinite dimensional unitary representations of the Lorentz
group

A short summary of the realization of the infinite dimensional unitary representations
of the Lorentz group and its algebra in the space of homogeneous functions as well the
Plancharel decomposition of the various classes of such representations are listed in the
Appendix A.1. In the following we present the alternative representation of the Lorentz
group in terms of expansors, first introduced by Dirac in [177,179] that we will rely on in to
describe a quantum edge vector. Finite dimensional representations of the SL(2,C) group,
i.e. tensor and spinor representations, are the ones mostly used in theoretical physics, and
specifically in particle physics. However, these are not unitary and the problem of iden-
tifying finite unitary representations remains unsolved [141, 178]. On the other hand, the
case of the infinite dimensional representations of the Lorentz group has been extensively
studied in [105,144,179], and unitary irreducible representations were first derived in [177].

Expansors. Let us now introduce an alternative realization of the representations of the
Lorentz group. Historically, these were introduced by Dirac in [177] and further studied
in [179] in terms of so-called expansors. They are tensors-like objects in a manifold with
an infinite enumerable number of components. They also possess an invariant positive
definite quadratic form for their squared length. Such representations are realized on the
space of homogeneous polynomials on Minkowski space M4. The notions introduced in
what follows will help to establish the relation between the representations of the Lorentz
group and that of the translation group (geometrically, between the quantum bivectors
and the quantum edge vectors). We focus on homogeneous polynomials (of degree n) of
the real vector ξµ built from monomials ξi

xξ
j
yξ

k
xξ

−1−h
t , with i, j, k, h ∈ N. Notice that, due to

the negative power of the time coordinate ξt, the combination of such monomials is infinite
dimensional. The homogeneous polynomial can be written in the form of a power series as

P (ξµ) =
∑
ijkh

Ai j k h ξ
i
xξ

j
yξ

k
z ξ

−1−h
t , (5.1.1)

where the coefficient A is called expansor. These coefficients are regarded as the coordinates
of vectors in an infinite dimensional space. On this space of homogeneous functions, one can
define the unitary representations of the Lorentz group, with unitarity condition enforced
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by the scalar product:
P1 · P2 =

∑
ijkh

Ai j k hBi j k h , (5.1.2)

that also provides a notion of norm given by the square length of the polynomial |P |2 =∑
ijkh A

2
i j k h. In order to derive the representation of the Lorentz group on such expansors,

one first considers the infinitesimal Lorentz transformations on the basis coordinates ξ.
Demanding that the square length ξ2

0 − ξ2
1 − ξ2

2 − ξ2
3 remains invariant under these trans-

formations, one obtains the corresponding transformation for the expansors. It is precisely
these induced linear transformations on the expansors that identifies them as the unitary
representation of the Lorentz group. We present now their relation to the representation
of the translation group.

5.1.2 The Harmonic oscillator representation of the translation
group

Dirac emphasized that the expansors can be interpreted as a tensor product of four har-
monic oscillators. This is crucial in the case of integral n-values, where one can make a
variable transformation that is familiar in quantum mechanics, relating the expansors in
(5.1.1) with harmonic functions [177]. This can be seen explicitly considering the transfor-
mation map:

xa = 1√
2
(
ξa + ∂

∂ξa

)
,

xt = 1√
2
(
ξt − ∂

∂ξt

)
,

∂

∂xa

= 1√
2
( ∂

∂ξa

− ξa

)
,

∂

∂xt

= 1√
2
( ∂

∂ξt

+ ξt

)
,

(5.1.3)

for a = x, y, z. It is important to stress that this map underlines the correct commutation
relations between all the above-introduced operators. In the new x−variables, the homo-
geneous polynomial on Minkowski space (5.1.1) can be represented as a combination of
polynomials in (5.1.3) which are basically a general composition of four Hermite functions:

P (xµ) =
∑
ijkh

Ai j k h Ψi j k h(xµ) , (5.1.4)

where the expansors are the coefficient of such combination (expansion):

Ψijkh(t, x, y, z) = 1
πn!

√
2i+j+k+h

(
xi − ∂xi

)i(
xj − ∂xj

)j(
xk − ∂xk

)k(
xh − ∂xh

)h
e− 1

2 (x2
t +xaxa)

= ψh(t)ψi(x)ψj(y)ψk(z) .
(5.1.5)

In these terms, the scalar product (5.1.2) simplifies thanks to the orthogonality of the
Hermite functions and it takes the integral form:

P1 · P2 =
∫

dx4 ψh1(t)ψi1(x)ψj1(y)ψk1(z) ψh2(t)ψi2(x)ψj2(y)ψk2(z) (5.1.6)

= i1!j1!k1!
h1!

δi1i2 δj1j2 δk1k2 δh1h2 . (5.1.7)
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The alternative representation of the ξ variables that Dirac introduced is related to the
theory of the four dimensional harmonic oscillator. Indeed, the four x-parameters can be
treated as the coordinates of a four-dimensional harmonic oscillator, whereas the respective
four operators ∂xµ are the conjugate momenta pxµ . To illustrate further the duality be-
tween the expansors and the harmonic oscillator, a state of the oscillator with components
0, 1, 2, 3 occupying the ith, jth, kth, hth quantum states respectively, is represented by
Ψijkh given in (5.1.5). Following the map (5.1.3) one can get back the ξ-representation and
the function Ψi j k h(xµ) goes over to ξi

xξ
j
yξ

k
z ξ

−1−h
t . In this sense, the state of the oscillator

with components sitting in a quantum state (5.1.4) is naturally identified with an expansor
with one non-vanishing component, whereas a stationary state corresponds to a homoge-
neous expansor. Note that the degree of the expansor corresponds to the the energy of the
state of the harmonic oscillator, not including the zero-point energy.
Recalling the expressions of the ladder operators (the annihilation and creation operators)
associated with a four dimensional harmonic oscillator, we recognize that they can be
written as the inverse relation of (5.1.3):

a†
i = ξi = 1√

2
(xi − ∂i) ,

ai = ∂ξi
= 1√

2
(xi + ∂i) ,

a†
0 = −∂ξt = 1√

2
(t− ∂t) ,

a0 = ξt = 1√
2

(t+ ∂t) ,
(5.1.8)

where i = 1, 2, 3 are the space-like indices and the 0 index stands for the time like one.
Notice how the Lorentzian signature is reflected in the relation between the creation and
annihilation operators and the coordinates on Minkowski space. For completeness, the
ladder operators always satisfy the canonical commutators

[aµ , a
†
ν ] = δµν , (5.1.9)

where the space-like creation operators a†
i are represented by the space coordinates of

Minkowski space ξi, but the time-like creation operator a†
0 is represented by its momentum

(up to a sign), and vice-versa for the annihilation operators. Following this line of reason-
ing, the momenta pµ can be perceived as the generators of the group of translations on
Minkowski space. A basis of infinite dimensional representations for the translation group
is thus given by eigenvectors of the harmonic oscillator ladder operators. In QM it is well
known that such a set of eigenvectors is those that mostly resemble the classical behavior
of the oscillator, i.e. coherent states [180]. In particular, there exists a coherent ket for the
annihilation operator and a coherent bra for the creation operator, given by:

a |α⟩ = α |α⟩ , ⟨α | a† = ⟨α |α∗ , with α ∈ C . (5.1.10)

The action of the creation operator on the coherent ket or that of the annihilation operator
on the coherent bra can be derived by expanding the coherent state as a combination of
the eigenstates of the harmonic oscillator, captured by the expression:

|α⟩ = e− 1
2 |α|2

∞∑
n=0

αn

√
n!

|n⟩ . (5.1.11)
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As we previously emphasized, we are interested in describing bivectors in terms of four
dimensional edge vectors and their representations. Such edge vectors are elements of
M4 and thus upon quantization can be regarded as a tensor product of coherent states
|αµ⟩ = |αt, αx, αy, αx⟩. This is in return an eigenvector simultaneously of the three dimen-
sional translation group, with generators pi = −i∂ξi

= −iai, and for the time-like position
operator ξt = a0. We refer to [180] for more details on the coherent states of the harmonic
oscillator. The key point for our later construction is that they provide an eigenbasis for
the translation group on Minkowski space, whose generators are identified as ladder oper-
ators of the harmonic oscillator (5.1.8). However, such representations are not unitary, as
the coherent states are not orthogonal

⟨α | β⟩ = e− 1
2 (|α|2+|β|2−2α∗β) . (5.1.12)

On the other hand, since generic states of the harmonic oscillator can be decomposed as
a combination of coherent states, they form an overcomplete basis and satisfy the closure
relation (resolution of the identity): ∫

dα |α⟩⟨α | = π . (5.1.13)

The homogeneous polynomials in (5.1.1) or (5.1.4) are thus functions on Minkowski space
or equivalently functions on the translation group. In practice, we consider a vector e =
(λt, λx, λy, λz) in Minkowski space parametrized by the coordinates λν ∈ M4. The Hilbert
space associated with such a vector is the space of square integrable functions on four
copies of R, L2[e] := L2[λ]. In this picture, the coordinates λν ∈ F (R4) are identified with
the generators of the functions on Minkowski space, i.e. of the Hilbert space L2[λ]. We
thus refer to the vector wave function (or alternatively to the quantization of the vector
e), as the general function:

f(λν) ∈ L2[λ] ∼= F (M4) . (5.1.14)

A basis for the four dimensional harmonic oscillator is realized as a tensor product of
independent oscillators. Therefore, we define the four dimensional ladder operators as a
linear combination of creation and annihilation operators such that

a†(λ) = a0λt + a†
1λx + a†

2λy + a†
3λz ,

a(λ) = a†
0λt + a1λx + a2λy + a3λz .

(5.1.15)

The first operator appearing in the above equations is the operator associated with the
position on Minkowski space identified by the vector e, which will be assigned the coherent
bra ⟨αν | as eigenvector, with eigenvalue α∗

ν ; the second one is the operator associated to the
momentum (or equivalently to translations) on Minkowski space identified by the vector
e, that has the coherent ket |αν⟩ as eigenvector, with corresponding eigenvalue αν .
The wave function (5.1.14) of the quantum vector can thus be expanded in Fourier modes
of the translation group (‘momentum space’) or likewise in the harmonic decomposition of
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the position group (‘configuration space’):

Translation: f(λ) :=
∫

dα′dα ⟨αν |a(λ)|α′
ν⟩ fαν ,α′

ν
,

Position: f ′(λ) :=
∫

dαdα′ ⟨αν |a†(λ)|α′
ν⟩ f ′

αν ,α′
ν
,

(5.1.16)

where the terms ⟨αν |a(λ)|α′
ν⟩ and ⟨αν |a†(λ)|α′

ν⟩ are matrix elements that play the role of
plane waves in the operation relating the Fourier transform of functions belonging to the
Hilbert space L2[λ] to the spaces of Fourier modes on the translation (or position) group.
Furthermore, note that the two decompositions are related to each other since the two
plane waves ⟨αν |a(λ)|α′

ν⟩ and ⟨αν |a†(λ)|α′
ν⟩ are the complex conjugate of each other1.

This is, in the end, a reformulation of standard Fourier analysis on Minkowski space in
group-theoretic terms that will turn out to be useful in the following.
As we will exploit in section 5.2.2, an explicit realization of the plane waves ⟨αν |a(λ)|α′

ν⟩
and ⟨αν |a†(λ)|α′

ν⟩ can be provided in terms of solutions of the harmonic oscillator.

The four dimensional Lorentzian harmonic oscillator As was shown in [180–182],
an infinite dimensional realization for the balanced representations R0 µ of the Lorentz
group can be obtained as the space of solutions of the Laplace equation. Again, this is
accomplished by taking the Laplacian to be the Casimir C1 of the Lorentz algebra, with
eigenvalue −(1 + µ2). This relation is particularly interesting for us, because it provides
the quantization of a simple bivector, as we encountered in the BC model and EPRL one
(section 3.2), and its underlying connection to the quantum vector.
By a simple change of variables (see Appendix A.2), the remaining Casimir C1 in (A.1.6)
for balanced representations can be expressed in terms of hyperbolic parameters as:

C1 = J2 −N2 = 1
sinh2 η

∂η(sinh2 η∂η) + 1
sinh2 η

( 1
sin θ∂θ(sin θ∂θ) + 1

sin2 θ
∂2

φ

)
, (5.1.17)

which is the Laplacian on the hyperboloid Q1 introduced in section 5.1.1 for the Plancherel
decomposition of the Lorentz representations. In section 5.1.2 we explained that the ladder
operators of the harmonic oscillator can be used as generators of the translation (and
position) group. Therefore, we can use the coordinates on Minkowski space ξµ and their
momenta, recast as the ladder operators of the harmonic oscillator coordinates (5.1.8), to
realize the Lorentz generators (rotations and boosts)

Ja := −iεabc ξb∂ξc = −iεabc a
†
bac , Na := −i(ξt∂ξa + ξa∂ξt) = −i(a0aa − a†

0a
†
a) . (5.1.18)

One can check that the above operators satisfy the usual so(1, 3) commutation relations

[Ja , Jb] = iεabc Jc , [Ja , Nb] = iεabc Nc , [Na , Nb] = −iεabc Jc . (5.1.19)
1By making further assumptions on the wave functions, one can derive the relation between the Fourier

modes fαν ,α′
ν
, f ′

αν ,α′
ν
. For instance, requiring the wave function to be real, f̄(λ) = f(λ), one would obtain

the condition f̄αν ,α′
ν

= f ′
αν ,α′

ν
.
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Since we would like, in the following, to express the balanced representations of the Lorentz
group in terms of representations of the translation group (and vice-versa), we would like to
derive the eigenstates of (5.1.17) (representations of the Lorentz group) as a combination
of the eigenstates of the harmonic oscillator (representations of the translation group). In
particular, we show in this subsection that the eigenfunctions of (5.1.17) are the non-radial
contribution of the eigenfunctions of the four dimensional harmonic oscillator.
To proceed, we recall that the target space used by Dirac [177] (the space of homogeneous
polynomials) to construct the infinite dimensional representations of the Lorentz group, can
be re-expressed as the Hilbert space of four dimensional Lorentzian harmonic oscillators.
Here the polynomials (5.1.1) take the form (5.1.4). Therefore, the set of homogeneous
polynomials on Minkowski space can be derived as the general solution of the Schrödinger
equation

H Ψ = EΨ , (5.1.20)
where the Hamiltonian operator

H = −1
2∆ + 1

2(t2 − x2 − y2 − z2) , (5.1.21)

is the Hamiltonian of the four dimensional Lorentzian harmonic oscillator and ∆ is the
four dimensional flat D’Alambertian operator ∆ = ∂2

t − ∂2
x − ∂2

y − ∂2
z . In the appendix

A.2 we show how to solve such Schrödinger equation in different coordinate basis, inspired
by [180], and derive the eigenbasis in terms of the variables of the hyperbolic basis:

Ψnr,µ,ℓ,m(r, η, θ, ϕ) = (−1)nr

√
nr!

Γ(nr + µ+ 1/2)r
µ−1e− 1

2 r2
L(iµ)

nr
(r2) 1

sinh ηQ
iµ
ℓ (coth η)Y m

ℓ (θ, ϕ),

(5.1.22)

associated to the energy E = 2nr + iµ + 1, where L(α)
n are the Laguerre polynomials, Qα

λ

are the Legendre functions of the second kind and Y ℓ
m are the spherical harmonics. In

the appendix A.2, we also show how this wave function is related to the homogeneous
polynomials proposed by Dirac, expressed in terms of the harmonic functions:

Ψnr,µ,ℓ,m(r, η, θ, ϕ) =
∑

nt,nx,ny ,nz

Cnt, nx, ny , nz

nr, µ, ℓ, m Ψnt,nx,ny ,nz(t, x, y, z) , (5.1.23)

where the coefficients are given by

Cnt, nx, ny , nz

nr, µ, ℓ, m = ⟨nt, nx, ny, nz|nr, µ; ℓ,m⟩

=
∑

nR,nρ

im+|m|(−1)ñx+nξ(σmi)ny

2(1−δm,0)/2 eiφ C
1+|m|

2 , 1
4 + qz

2 , ℓ
2 + 3

4
nρ,ñz ,nR

C
1
4 + qx

2 , 1
4 + qy

2 ,
1+|m|

2
ñx,ñy ,nρ

(5.1.24)

× C1/4+qt/2, ℓ/2+3/4, (1+iµ)/2
ñt+n̄t/2, nR, nr

, (5.1.25)

which are a combination of the su(1, 1) Clebsh-Gordan coefficients (A.2.14). As we had
anticipated, the non-radial part of the solution, yielding the equation (A.2.5), reads

Ψµ,ℓ,m(η, θ, ϕ) = 1
sinh η Q

iµ
ℓ (coth η)Y m

ℓ (θ, ϕ) , (5.1.26)
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and it is the solution to the Laplace equation with Laplacian (5.1.17) and eigenvalue
−(1 + µ2). Therefore, it is the infinite dimensional representation of the Lorentz group
associated with a time-like bivector (normal to a spacelike triangle). These solutions can
indeed be used to construct the (time-like) balanced D-matrices (A.1.3):

D0,µ
ℓ,m;ℓ′,m′(g) = ⟨0, µ; ℓ,m |U(g)| 0, µ; ℓ′,m′⟩ (5.1.27)

=
∫

drdηdΩr3 sin2(η) Ψµ,ℓ,m(η, θ, ϕ)Ψµ,ℓ′,m′(η′, θ′, ϕ′) , (5.1.28)

where the primed coordinates {η′, θ′, ϕ′} encode the action of the Lorentz transformation
g.
We further note that, the wave function Ψnt,nx,ny ,nz(t, x, y, z) is an infinite dimensional
realization of the harmonic oscillator eigenstate |nt, nx, ny, nz⟩. We recall that the coher-
ent states of the harmonic oscillator, which are a linear combination of the eigenstates
|nt, nx, ny, nz⟩, were identified as the eigenbasis of the translation group (5.1.10). We can
thus extend the relation (5.1.11) to the wave functions

Ψαt,αx,αy ,αz(t, x, y, z) = e− 1
2
∑

ν
|αν |2 ∑

{nν}

αnt
t α

nx
x αny

y αnz
z√

nt!nx!ny!nz!
Ψnt,nx,ny ,nz(t, x, y, z) , (5.1.29)

which, together with (5.1.23), provides the relation between the wave functions associated
with the infinite dimensional representations of the Lorentz group and the wave functions
associated with the infinite dimensional representations of the translation group, given by

Ψnr,µ,ℓ,m(r, η, θ, ϕ) =
∑

nt,nx,ny ,nz

∫
d4αν e

− 1
2
∑

ν
|αν |2Cnt, nx, ny , nz

nr, µ, ℓ, m

×
α∗ nt

t α∗ nx
x α∗ ny

y α∗ nz
z

π4
√
nt!nx!ny!nz!

Ψαt,αx,αy ,αz(t, x, y, z) . (5.1.30)

These relations will be crucial for relating the new spin foam model based on edge vectors,
quantized in terms of representations of the translation group, and the Barrett-Crane spin
foam model in section 3.2.1 based on a description of simplicial geometry in terms of
bivectors, quantized in terms of representations of the Lorentz group.

5.2 Quantum triangle

We now start our new spin foam construction for quantum simplicial geometry with the
analysis of a single triangle embedded in Minkowski space, first at the classical, then at
the quantum level. We recall how to combine geometric edge vector data on a triangle and
their classical constraints as in the spirit of section 3.1.2 and section 3.2.1. We then build
the corresponding quantum version of the constraints, using the group-theoretic tools of
section 5.1 that define a quantum edge vector. Since both edge vectors and bivectors can
be used to describe a geometric triangle, we illustrate the construction based on both of
them and point out the differences between the two at the quantum level.
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5.2.1 Classical triangle

Classical triangle. The geometry of a classical triangle in Minkowski space is completely
determined by using only two among its constituent three edge vectors e1, e2, e3 ∈ M4, as
illustrated in figure 5.1, with the latter set satisfying the closure condition, namely the
relation: e1 + e2 + e3 = 0. Working with the larger, constrained set of variables ensures
that the description is not affected by any specific choice of a pair of edge vectors. To spell
out, for later use, these obvious facts, consider three edge vectors in Minkowski space given
by:

e1 = (ζt, ζx, ζy, ζz) , e2 = (λt, λx, λy, λz) , e3 = (ωt, ωx, ωy, ωz) , (5.2.1)
parametrized by the coordinates ζµ, λµ, ωµ ∈ F (M4). All the geometric properties of the
corresponding triangle are determined by any pair of these edge vectors, plus the closure
condition:

e1 + e2 + e3 = 0 ⇒ ζµ + λµ + ωµ . (5.2.2)

Classical bivector. A classical bivector, associated with the same triangle in Minkowski
space, is obtained by taking the wedge product of two edge vectors. A bivector contains
less information than the one required to specify the geometry of the associated triangle.
In fact, if we consider again three edge vectors e1, e2, e3 ∈ M4, the bivector geometry is
determined by the two conditions:

1. closure relation: every edge vector of the three vectors of the triangle is given by the
sum of the other two e1 + e2 = e3;

2. skew-symmetry: the normal to the plane spanned by the constrained three vectors, in
which the triangle lies, is given by the restriction to the wedge (or external) product
of any two edge vectors (up to a change of orientation).

The first condition alone would reduce the information contained in the three (edge) vectors
to that characterizing a classical triangle, while the second restricts it further (again, in a
way that remains independent of any specific choice of two edge vectors). Given the three
edge vectors (5.2.1), the bivector represented in Fig.(5.1) is thus constructed as:

b := e1 ∧ e2 = e1 ∧ e3 = e3 ∧ e2 . (5.2.3)

We can now present the quantization prescription to the above-described classical ge-
ometric entities.

5.2.2 Quantization

We now proceed to the quantization of a triangle and a bivector, following the suggestions
in [115], and relying on the relations we obtained in section 5.1.2. Recall that, we identified
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e1

e2

e3

B12 = e1 ∧ e2
e1 + e2 + e3 = 0

Figure 5.1: Triangle with edge vectors e1, e2, e3 ∈ M4 and closure relation (5.2.2). In blue is
the bivector part.

in (5.1.14) the quantum states of an edge vector in Minkowski space with the (square
integrable) functions of the translation group. This was then realized as the Hilbert space
of the four dimensional harmonic oscillator. Now, let us consider a triangle t with edge
vectors that satisfy the closure condition (5.2.2). The space of states associated with the
quantum triangle is therefore the tensor product of the Hilbert spaces associated with any
two of its edge vectors, for instance; e1, e2 ⊂ t:

L2[e1, e2] := L2[e1] ⊗ L2[e2] , e1 + e2 + e3 = 0 . (5.2.4)

subject to the closure condition. To ensure proper geometric interpretation, our construc-
tion should not be affected by the choice of the pair of vectors e1, e2. To ensure this, we
introduce the operator that maps the quantum space of a triangle in terms of the edge
vectors e1, e2 into the quantum space of the exact same triangle in terms of the edge vectors
e1, e3. Let such switching operator be defined as the map:

σ : L2[e1, e2] → L2[e1, e3] . (5.2.5)

Thus, the proper quantum space of a triangle is thus the space L2[e1, e2] equipped with the
closure condition and invariant under the action of the switching operator σ. This makes
certain that we properly encode the full geometric data of the triangle in our states.

The quantum bivector. As we have seen, one can restrict the classical configuration
space of a triangle to its anti-symmetric part, to obtain the geometry of the associated
bivector. At the quantum level, this procedure is realized by taking the skew-symmetric
part of the tensor product (5.2.4), which is invariant under the σ operator. This subspace,
denoted by TA[e1, e2], is therefore naturally identified as the Hilbert space of a bivector.
Moreover, as discussed in section 5.1, by constructing bivectors (at both classical and
quantum levels) directly from wedging edge vectors, we restrict our attention only to the
simple bivectors2. At the quantum level, this can be equivalently translated into associating

2Geometrically, this simplicity condition on the bivectors ensures that the two edge vectors and the
normal vector are not planar, and, purely as a condition on bivectors:

⟨b , ∗b⟩ = 0 . (5.2.6)

These are indeed the well-known simplicity constraints on which the usual spin foam construction in terms
of bivectors is based.
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the bivectors with duals of Lie algebra elements b = ∗L ∈ so(3, 1)∗ and quantizing them
by replacing the (dual) Lie algebra with a sum over their representation category. The
simplicity constraint amounts to restricting to the balanced representations R0 ρ or Rj 0 of
the principle series, whose Plancherel decomposition is given in the set of equations (A.1.4);
the choice of one or the other of the two classes of balanced representations corresponds
to considering spacelike or timelike triangles, respectively (see [114, 125]). We can then
establish that, once we associate an element of the dual Lorentz Lie algebra so∗(1, 3) to
each wedge product of a pair of translations on Minkowski space M4 ∧ M4, we identify an
isomorphism between the Hilbert space of a wedged vectors (bivector) with the space of
functions on such Lie algebra. This isomorphism reads:

TA[e1, e2] := L2[e1] ∧ L2[e2] ∼= F (so∗(1, 3)) . (5.2.7)

Using this Hilbert space of a quantum bivector, we can construct explicitly the operator
corresponding to it, along the lines suggested in [115], and provide different representations
for the same Hilbert space. This is relevant in what follows since we are interested in de-
riving the Fourier expansion of the wave functions associated with the quantum bivector.
Let us recall that in section 5.1.2 we identified the set of representations of the transla-
tion group on Minkowski space as the space of solutions of the 4-d Lorentzian harmonic
oscillator. In this case, the position and momentum operators in the Minkowski coordi-
nates ξµ are interpreted as generators of translations and the respective momenta. Once
expressed in the harmonic oscillator basis via the map (5.1.15), such generators are the
familiar creation and annihilation operators. In this formulation, (5.1.8), expressed as a
combination of the ladder operators, provides an explicit infinite dimensional realization of
the isomorphism M4 ∧M4 ∼= so∗(1, 3). The elements of the dual Lorentz algebra (bivectors)
are then given by the wedge product of creation and annihilation operators (translations).
One can extend such a scheme to a general simple bivector. To this end, consider a pair
of edge vectors:

e1 = (ζt, ζ1, ζ2, ζ3) , e2 = (λt, λ1, λ2, λ3) . (5.2.8)
One can associate to such edges the position and momentum (or translation) operators;
these are realized as functional operators on the Hilbert space L2[ζ] , L2[λ] of the edge
vectors. Similarly to (5.1.15) when represented in the harmonic basis, elements living
on these Hilbert spaces are expressed as a combination of the creation and annihilation
operators of the harmonic oscillator:

a†
1 := atζt + a†

xζx + a†
yζy + a†

zζz ,

a1 := a†
tζt + axζx + ayζy + azζz ,

a†
2 := atλt + a†

xλx + a†
yλy + a†

zλz ,

a2 := a†
tλt + axλx + ayλy + azλz .

(5.2.9)

According to the map (5.1.8), the annihilation operators a are then associated with the
generators of translations on Minkowski space, while the creation operators a† can be seen
as the quantization of their dual momenta (position operators ξ on Minkowski space). In
a similar manner, the wedge product of the two edge vectors e1 ∧ e2 can be assigned an
operator that acts on the Hilbert space L2[ζ, λ]

be1∧e2 := −ia†
1 ∧ a2 = −i(a†

1a2 − a†
2a1) . (5.2.10)
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The operator be1∧e2 is understood as the quantization of the simple bivector e1 ∧ e2. Note
that for ζµ = δµ,0 and λµ = δµ,i we have be1∧e2 = Ni, while for ζµ = δµ,i and λµ = δµ,j

we instead obtain be1∧e2 = εijk Lk. Moreover, we can alternatively express the bivector
operator (5.2.10) in the so(1, 3) basis, namely in terms of rotations and boosts as:

be1∧e2 =
∑

a

(
αaNa + iβaLa

)
, (5.2.11)

where
αa = (ζtλa − ζaλt) , βa = −iεabc ζaλb . (5.2.12)

According to [115], the Hilbert space L2[ζ, λ] associated with the quantum bivector (5.2.10)
has to be invariant under the switching operator. We prove this fact for the bivector
operator (5.2.11).
Proposition 1 (Invariance under the switching operator). Consider a triplet of vectors
e1, e2, e3 on Minkowski space parametrized by the coordinates ζ, λ, ω, such that they form
the boundary of a triangle: ζ + λ = ω. The Hilbert space of the bivector (5.2.10) does
not depend on which pair of edge vectors that are used to construct the bivector (5.2.10).
Therefore, it is invariant under the switching operator

σ : L2[ζ, λ] → L2[ζ, ω] for ζ + λ = ω , (5.2.13)
up to a sign that reflects the orientation of the vector normal to the triangle.

Proof. We show that the quantum bivector in (5.2.11) is invariant under such switching
operator and thus agrees with [115]. According to the closure condition ζ + λ = ω, the
third edge of the triangle is given by

e3 = (ωt, ω1, ω2, ω3) = (ζt + λt, ζ1 + λ1, ζ2 + λ2, ζ3 + λ3) , (5.2.14)
and a basis for the associated position and momentum operators is given by

a†
3 = atωt + a†

xωx + a†
yωy + a†

zωz ,

a3 = a†
tωt + axωx + ayωy + azωz ,

→ a†
3 = a†

1 + a†
2 , a3 = a1 + a2 . (5.2.15)

A direct computation shows that the quantization of the bivector e1 ∧ e3 is equivalent to
that of e1 ∧ e2 since they obey the condition e1 + e2 + e3. Thus, the associated Hilbert
spaces are isomorphic (invariant under the switching operator).

be1∧e3 := −i(a†
1a3 − a†

3a1) = −i
(
a†

1(a1 + a2) − (a†
1 + a†

2)a1
)

= −i(a†
1a2 − a†

2a1) := be1∧e2 .

(5.2.16)

Notice that such realization provides the quantization of a triangle on Minkowski space
with edges parametrized by the coordinates ζ, λ, ω. It also confirms that, once we restrict
the Hilbert space of the quantum triangle to the skew-symmetric part, we establish the
proper quantization of a bivector, which is given as the wedge product of any two of the
triangle edge vectors.
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Wave function. Following the above construction of a quantum triangle and a quantum
bivector, we can now derive the associated wave functions, i.e. give a more explicit real-
ization of their quantum states. Let us then consider a pair of vectors e1, e2, parametrized
respectively by the coordinates ζ, λ ∈ F (M4). We refer to the triangle wave function (or
the quantization of the triangle t), as the function:

f(ζ, λ) ∈ L2[ζ, λ] . (5.2.17)

According to the construction above, the proper quantization is realized if the two co-
ordinates of the edge vectors satisfy the closure relation ζ + λ + ω for a given edge e3
parametrized by ω, such that the wave function (5.2.17) is invariant under the switch-
ing operator (5.2.5). On the other hand, we refer to the bivector wave function (or the
quantization of a bivector b), as the function:

g(ζ, λ) ∈ TA[ζ, λ] = F (M4 ∧ M4) , (5.2.18)

that are the sub-class of the functions (5.2.17). Note that they are elements of the skew-
symmetric part of the Hilbert space L2[ζ, λ]. By the same token, a more standard formula-
tion of the Hilbert space of bivector can be characterized in terms of the (Lorentzian) Euler
angles (5.2.11), rather than in terms of the coordinates on the two vectors. The Hilbert
space, in this case, takes the form L2[b] := L2[α, β] = F (so∗(1, 3)), where the generators
(the coordinates functions) are now the Euler angles {αa, βa} ∈ F (so∗(1, 3)) ∼= F (R6

⋆) (here,
the subscript ⋆ stands for a non-trivial (star) product for the functions on R6, given by the
non-trivial product of the algebra so(1, 3)). Obviously, the Hilbert space is not affected by
the choice of coordinates and the two formulations are isomorphic, as M4 ∧M4 ∼= so∗(1, 3)
and related by the map (5.2.12). Notice that as we identify bivectors as non-commutative
geometric entities, whose quantization is provided by assigning them Lie algebra elements
is actually obtained, starting from commutative functions of commutative edge vectors
(which as we have seen are elements of the translation group). This can be already de-
picted from the antisymmetric combination of the ladder operators that define the bivector
in terms of edge vectors.
We can use the operator associated with the bivector constructed above, to expand the
wave function in the Fourier modes. This can be realized both in terms of the edge vectors
(λ1 , λ2) or in the Euler angle parametrizations (α , β):

f(λ1, λ2) := −i
∫

dαdα′ ⟨αν |a†(λ1)a(λ2) − a†(λ2)a(λ1)|α′
ν⟩ fαν ,α′

ν
,

f(α, β) :=
∞∑

nr=0

∫
dµµ2 ∑

ℓ,ℓ′,m,m′
⟨nr, µ; ℓ,m |

∑
a

(
αa Na + iβa La

)
|nr, µ; ℓ′,m′⟩fnr,µ;ℓ,m

nr,µ;ℓ′,m′ ,

(5.2.19)
with ℓ, ℓ′ ∈ [0,∞), ℓ ≤ m ≤ ℓ and ℓ′ ≤ m′ ≤ ℓ′. It is important to notice that, in contrast to
the bivector, a Fourier expansion for the triangle wave function (5.2.17) is simply achieved
by taking the tensor product of two vector wave functions (5.1.14), provided they satisfy
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the triangle closure condition.
Let us introduce the compact notations for some terms appearing in (5.2.19)

b(λ1, λ2) = −i(a†(λ1)a(λ2) − a†(λ2)a(λ1)) , b(α, β) =
∑

a

(
αa Na + iβa La

)
, (5.2.20)

where the expectation value of these operators appearing in (5.2.19) (with respect to the
coherent states) plays the role of a plane wave in the Fourier transform. An explicit
expression for the bivector wave function (5.2.18) is obtained by the infinite dimensional
representations of such plane waves. This allows us to write the following expression for
the bivector operator:

⟨αν |b(λ1, λ2)|α′
ν⟩ =

∫
dx4 Ψαν (t, x, y, z) Ψα′

ν
(t′, x′, y′, z′) ,

⟨nr, µ; ℓ,m|b(α, β)|nr, µ; ℓ′,m′⟩ =
∫

drdηdΩr3 sinh2(η)Ψnr,µ;ℓ,m(r, η, θ, ϕ)Ψnr,µ;ℓ′,m′(r′, η′, θ′, ϕ′),
(5.2.21)

where the primed coordinates encode the action of the operator b, in the basis (5.2.10)
or (5.2.11). We further emphasize that the plane waves appearing in the above Fourier
decomposition can simultaneously be recast in terms of the eigenfunctions of the harmonic
oscillator expressed in the Minkowski basis (A.2.2) (as well as in the hyperbolic basis
(A.2.5)), and likewise in terms of the eigenfunctions of the coherent states. This can be
made evident using the relations (5.1.29), (5.1.30) or their inverses.
For what will come later, it is important to stress that the bivector wave functions, as
elements of the algebra R6 ∼= so∗(1, 3), are equipped with a sum:

f(b+ b′) =
{
f(λ1 + λ′

1, λ2 + λ′
2) ,

f(α1 + α′
1, β2 + β′

2) .
(5.2.22)

It is also interesting to recall that the Lie algebra so∗(1, 3) is endowed with a nontrivial
Poisson structure; indeed, as a quantum group, it is isomorphic to R6

⋆, which is endowed
with the star ⋆ product. In the Fourier decomposition, this product appears as a non-trivial
combination of plane waves (5.2.21) as we presented in section 4.1. This is equivalently
reflected in the canonical commutators of the creation and annihilation operators (a†, a)
as well in the Lorentz commutation relations (5.1.19).

5.3 Quantum tetrahedron

At this level, we are well equipped with the essential material to provide a quantum de-
scription of a tetrahedron, both in terms of edge vectors and bivectors. This is the building
block of quantum geometry in spin foam models and group field theories, as well as in the
simplicial sector of canonical LQG. It is also the starting point for the quantum geometric
construction of spin foam amplitudes. In the following we first recall the classical descrip-
tion; then, we provide the quantum version of the same description and the definition of
quantum states.
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(a) Combination of four triangles into a tetrahe-
dron. The four triangles are labeled by ti and the
six edges (shared pairwise by triangles) by ej .

e2

e4 e6

e1

e3

e5

(b) Tetrahedron from three edge vectors, e1, e3, e5.

Figure 5.2: Combinatorics of τ and its closure constraints from edge vectors.

5.3.1 Classical tetrahedron

Classical tetrahedron via edge vectors. Let us consider six edge vectors ea ∈ M4,
for a = 1, . . . , 6, that satisfy the four closure conditions:

e1 + e2 + e3 = 0 , e4 + e5 + e3 = 0 , e1 + e5 + e6 = 0 , e2 + e4 + e6 = 0 . (5.3.1)

Obviously, they specify the full geometric information about the tetrahedron. The four
closure conditions are not independent of each other: any one of them can be written as
a linear combination of the other three relations. It is then clear that the geometry of
a tetrahedron is completely determined by three of these six edge vectors, attached to a
common vertex, such that, taken in pairs, they enter three of the four closure conditions
(5.3.1) [102], as we encountered in section 3.1.1. For instance, using figure (5.2a), the
geometry of a tetrahedron τe in Minkowski space is encoded in the vector triplet e1, e3, e5 ⊂
τe with the three conditions (as in figure (5.2b)):

e1 + e2 + e3 = 0 , e4 + e5 + e3 = 0 , e1 + e5 + e6 = 0 , (5.3.2)

Note that the normal vector to the tetrahedron in its 4d embedding can be obtained easily
in this edge-based formulation. Indeed, we can express it as the Hodge dual of the wedge
product of any triplet of independent edge vectors, and this yields:

nτe = ∗(ei ∧ ej ∧ ek) , for ei + ej + ek ̸= 0 . (5.3.3)

The existence of the normal nτe is ensured by the fact that, in three dimensions, there
exists always a triplet of independent edge vectors, thus the wedge product (5.3.3) does
not vanish.
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Classical tetrahedron: bivectors. Alternatively to the above description based on the
edge vectors, one can characterize a classical tetrahedron τb in Minkowski space in terms
of the four bivectors b. This description is obtained from the skew-symmetric geometry of
the four triangles specified by the closure conditions in (5.3.1). In order to properly encode
the geometric data in the tetrahedron τb, the four bivectors have to satisfy the following
two constraints:

1. Dependence relation: the wedge product of each pair of bivectors bi, bj ⊂ {b1, b2, b3, b4}
vanishes: bi ∧ bj = 0;

2. Closure relation: each of the four bivectors is given by the sum of the other three:
b1 + b2 + b3 + b4 = 0.

The first condition ensures that each bivector shares one and only one vector with each
of the others (thus it is indeed a simple bivector constructed from the edge vectors of a
geometric tetrahedron), while the second property is a direct consequence of the fact that
the tetrahedron geometry is encoded in the closure of the four triangles (5.3.1).
We point out the crucial difference between the geometric construction exploiting the full
data of the triangle, and that based solely on bivectors. One can observe that the bivector-
based tetrahedron τb encodes less geometric information with respect to the edge-based
one τe. Specifically, one cannot reconstruct the normal vector from the bivectors alone,
the knowledge of which on the other hand is relevant for understanding how the intrinsic
geometric data transform under 4d Lorentz transformations in the embedding Minkowski
space. This becomes evident when we start with the edge vectors formulation and recover
the condition on the bivectors. Let us see this explicitly. Given the four triangles specified
by the closure conditions (5.3.1), one can define the four bivectors:

b1 = e2 ∧ e3 , b2 = e3 ∧ e5 , b3 = e6 ∧ e5 , b4 = e2 ∧ e6 . (5.3.4)

The first relation (the dependence relation) for the construction of τb is easily established
from edge vectors, once we rely on the fact that at most a triplet of the six edge vectors
ea are linearly independent in four dimensions, namely:

bi ∧ bj = (ea ∧ eb) ∧ (eb ∧ ec) = ea ∧ (eb ∧ eb) ∧ ec = 0 , (5.3.5)

for a ̸= b, a ̸= c and b ̸= c. As for the closure relation, the closure of the four triangles
(5.3.1) implies the gluing of the boundary of the tetrahedron. This is translated into the
fact that the four bivectors (5.3.4) sum up to zero:

b1 + b2 + b3 + b4 = e2 ∧ e3 + e3 ∧ e5 + e6 ∧ e5 + e2 ∧ e6

= (e2 − e5) ∧ e3 + (e2 − e5) ∧ e6 = (e2 − e5) ∧ (e3 + e6)
= (e2 − e5) ∧ (e2 − e5) = 0 . (5.3.6)

We thus recover the bivector picture of the tetrahedron τb. This is obtained by imposing
further restrictions on the edge vectors in order to access the skew symmetric sector of the
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geometry described by the bivectors. However, the converse clearly does not work. There
is no notion of the normal vector (5.3.3) in terms of such entities. In turn, this is needed
to ensure 4d covariance of the bivector description (including the constraints ensuring that
they come from edge vectors). A similar point was raised in [114], where an extended
formulation of the Barrett-Crane model was realized to encode the normal vector.

5.3.2 Edge-based quantization of the tetrahedron

Quantum tetrahedron from edge vectors. The new SF model is based on the quan-
tum states for quantum tetrahedra. Therefore, our next step is to construct the corre-
sponding Hilbert space of wavefunctions.
As we discussed, the geometry of a tetrahedron is completely determined by three of its
edge vectors meeting at one of the four vertices, where the closure conditions (5.3.2) must
hold. Identifying the quantum space of a single edge vector with the space of (square
integrable) functions on the translations group, we naturally define the quantum space of
a tetrahedron τe in Minkowski space as the tensor product of three of them, equipped with
the proper closure conditions:

L2[e1, e3, e5] := L2[e1] ⊗ L2[e3] ⊗ L2[e5] ,


e1 + e2 + e3 = 0 ,
e4 + e5 + e3 = 0 ,
e1 + e5 + e6 = 0 .

(5.3.7)

Here the tensor product of each pair of spaces L2[ei, ej] for i ̸= j = 1, 3, 5 is the quantum
space of a triangle (see section 5.2), and it is automatically invariant under the switching
operator (5.2.5). Moreover, one can reconstruct τb in terms of the three bivectors by
reducing the degrees of freedom of each triangle to its skew symmetric part. At the level
of Hilbert spaces, this translates into

TA[e1, e2, e3] := TA[e1, e3] ⊗ TA[e1, e5] ⊗ TA[e3, e5] ∼= F (so∗(1, 3))×3 . (5.3.8)

However, as we already observed at the classical level, some geometric information, namely
the data of the normal vector to τb, is not encoded in the skew symmetric part of the Hilbert
space given in (5.3.8). It is instead included in the sub-space of (5.3.7) obtained by the
triple antisymmetric product:

L2[nτ ] = L2[e1] ∧ L2[e3] ∧ L2[e5] ⊂ L2[e1, e3, e5] , L2[nτ ] ⊈ TA[e1, e2, e3] , (5.3.9)

i.e. it can be reconstructed from quantum edge vector data.

Tetrahedron wave function. We can now provide the construction of the wave func-
tions associated to the tetrahedron τe (as well as τb). These functions are the elements
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of the Hilbert space (5.3.7), and therefore are defined as functions on three copies of the
translation group on Minkowski space:

f(λa, λb, λc) ∈ F (M4)×3 , (5.3.10)

where the coordinates of three edges of the tetrahedron meeting at one of its four vertices
satisfy the closure conditions for three different triangles, e.g. a = 1, b = 3 and c = 5 in
the notation of Fig.(5.2a) and Fig.(5.2b).
One more symmetric way to construct these functions is to extend the Hilbert space (5.3.7)
and consider as a first step a set of six edges ei, for i = 1, . . . , 6. This set of vectors should
close to form four triangles according to the constraints (5.3.1). Therefore, the elements
of this extended Hilbert space would be functions of the form f(λ1, λ2, λ3, λ4, λ5, λ6) ∈
F (M4)×6 subject to the quantum closure constraint:

Ĉt(λ1, . . . , λ6) = δ(λ1 + λ2 + λ3) δ(−λ3 + λ4 + λ5) δ(−λ5 + λ6 − λ1) , (5.3.11)

where the subscript t stands for the closure of three of the four triangles t of τe. Obviously,
the closure of the fourth triangle is automatically obtained. The closure condition (5.3.11)
ensures that the quantum tetrahedron expressed in terms of the edge vectors encodes all
the properties of the tetrahedron wave function (5.3.10).
As in the classical prescription, by reducing the Hilbert space (5.3.7) to its skew-symmetric
part (5.3.8), we obtain the standard formulation of a quantum tetrahedron in terms of
bivectors, which are however automatically simple, i.e. functions of the (quantum) edge
vectors. Notice that, similarly to the case of triangles, the wave function of the tetrahedron
can be written as a function of the (commutative) quantum edge vectors (elements of the
translation group).
In this case, one can consider a set of three bivectors. We then write down the wave
function for τb as an element of the quantum space (5.3.8):

f(x1, x2, x3) ∈ F (so∗(1, 3))×3 , (5.3.12)

where the three bivectors coordinates obey the closure condition x1 + x2 + x3 + x4 = 0 for
some x4 ∈ F (so∗(1, 3)). The coordinates (the variables x) of the bivectors can be identified,
for instance using (5.2.11), as the Euler angles of the Lorentz group:

xi := {αa
i , β

a
i } ∈ F (R6

⋆) ∼= F (so∗(1, 3)) . (5.3.13)

Once again, the same expression for the tetrahedron wave function can be achieved by ex-
tending the Hilbert space and considering a constrained sub-space implementing the skew-
symmetry condition. In this scenario, we work on four copies of the space of functions in the
dual Lorentz algebra, whose elements are the functions f(x1, x2, x3, x4) ∈ F (so∗(1, 3))×4

constrained by the condition (Ĉτ ∗ f) = f . This imposes the following closure constraint
on the bivector coordinates:

Ĉτb
(x1, x2, x3, x4) = δ(x1 + x2 + x3 + x4) . (5.3.14)
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Recall that the subscript τb stresses that this constraint enforces the closure of the boundary
of the tetrahedron τb. As we already indicated in the discussion of the classical tetrahedron,
the constraint on the bivector coordinates in (5.3.14) is inherited by the closure of the
triangles in (5.3.11). Similarly, we can identify the sub-space of F (so∗(1, 3))×4, constrained
by the condition in (5.3.14), as a sub-space of the tetrahedron extended Hilbert space
L2[e1, e2, e3, e4, e5, e6] obeying the condition (5.3.11):

(Ĉt ∗ f)(λ1, . . . , λ6) ⇒ (Ĉτb
∗ f)(x1, x2, x3, x4) . (5.3.15)

As already pointed out, the above relation is not an equivalence, since it is clear that a
part of the tetrahedron geometry τe can not be recovered from the bivector description.
One can expand the tetrahedron τb wave function (5.3.12) in the Fourier decomposition as
we did for the bivector wave function given in (5.2.19). Let us introduce the compact nota-
tion Tα′

ν
αν

(λ1, λ2) for the translation group plane waves ⟨αν |a†(λ1)a(λ2) − a†(λ2)a(λ1)|α′
ν⟩.

The decomposition of (5.2.19) then reads:

f(λ1, λ2) = −i
∫

dαdα′ Tα′
ν

αν
(λ1, λ2) fαν

α′
ν
, (5.3.16)

Hence, the tetrahedron τe wave function (5.3.12) decomposes in the Fourier modes as:

f(λ1, . . . , λ6) =
∫

dα6dα′6 T
α′

1;ν
α1;ν (λ2, λ3)T

α′
2;ν

α2;ν (λ3, λ5)T
α′

3;ν
α3;ν (λ6, λ5) (5.3.17)

× T
α′

4;ν
α4;ν (λ2, λ6) fα1;ν , α2;ν , α3;ν , α4;ν

α′
1;ν α′

2;ν α′
3;ν α′

4;ν
.

where the different labels appearing in Tα′
ν

αν
(λi, λj) are those that decorate the quantum

vectors obeying a certain combinatorial relation (this is dictated by the constraint (5.3.11)).
This of course encoded in the combinations of the ladder operators and can be exactly
extracted by evaluating the matrix elements appearing in (5.2.21) (relying as well on the
material in the appendix (A.2)). In section 5.4 we will see how this is realized for the
example of a timelike bivector.

5.4 A new spin foam model based on edge vectors

At this point, we could finally propose an explicit description of a new SF model for four
dimensional geometries based on the coordinates of the edge vectors. We discussed the
main steps and tools to compute the SF amplitude in section 3.2. The main difference
in our case is then, that our tetrahedron Hilbert space and quantum states are associated
to several copies of the translation group associated with the set of edges defining the
four triangles of the tetrahedron. To this end, in section 5.4.1 we use the quantum space
of the tetrahedron τe provided in section 5.3 given in terms of the edge vectors, as the
quantum state of the new model. We refer to figure 5.3 for an example of the construction
of the boundary geometry. We then present the explicit calculation starting from the new
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model, explaining how we are able to recover a rather combinatorial (noncommutative)
combination of the BC vertex in section 5.4.2. This is basically done only in the case of a
spacelike tetrahedron. We finally produce the GFT model in section 5.4.3 that is associated
with this edge-based SF model, where now the field theory is defined over three copies of
the translation group with the proper closure conditions imposed on three triangles.

5.4.1 A new spin foam amplitude

Properly combining states of the fundamental building blocks (tetrahedron) of the dis-
cretized geometry would then allow the amplitude computation of the new spin foam
model. The basic idea behind it is very simple. We use functions on the group of trans-
lation on Minkowski space as quantum states such that, the gluing of quantum states is
explicitly realized by identifying the coordinates of these functions (degrees of freedom
associated to edge vectors). In particular, we define the amplitude of a general four di-
mensional triangulation Γ as a combination of the amplitudes of 4-simplices s ⊂ Γ, along
with identifying their boundary tetrahedra τ ⊂ Γ:

AΓ =
∏
s

As
∏
τ

Aτ . (5.4.1)

Here, the amplitude of a single 4-simplex is expressed as:

As =
∫

[dλ]10
( 3∏

α=1

4−α∏
a=1

Ĉtα;a({λα;i})
)
⋆
(
δ(λ1;1 − λ2;4) ⋆ δ(λ1;1 − λ4;5)

)
(
δ(λ1;2 − λ2;6) ⋆ δ(λ1;2 − λ5;3)

) (
δ(λ1;3 − λ2;2) ⋆ δ(λ1;3 − λ3;6)

)
(
δ(λ1;4 − λ3;5) ⋆ δ(λ1;4 − λ5;1)

) (
δ(λ1;5 − λ3;1) ⋆ δ(λ1;5 − λ4;4)

)
(
δ(λ1;6 − λ4;3) ⋆ δ(λ1;6 − λ5;2)

) (
δ(λ2;1 − λ3;4) ⋆ δ(λ2;1 − λ5;5)

)
(
δ(λ2;3 − λ3;2) ⋆ δ(λ2;3 − λ4;6)

) (
δ(λ2;5 − λ4;1) ⋆ δ(λ2;5 − λ5;4)

)
(
δ(λ3;3 − λ4;2) ⋆ δ(λ3;3 − λ5;6)

)
, (5.4.2)

where λα;i is the coordinate of the ith edge of the tetrahedron α, for α = 1, . . . , 5 and
i = 1, . . . , 6, and tα;a stands for the triangle a of the tetrahedron α, for a = 1, 2, 3, 4.
The ⋆ symbol refers to the non-commutative product of the functions on M4, inherited
from the noncommutativity of the ladder operators. Note that in the expression above
we have decorations on all of the ten edges of the 4-simplex. Indeed, for simplicity, we
constructed the 4-simplex amplitude (5.4.2) starting by the extended Hilbert spaces of the
five tetrahedra, each of them is given as a constrained version of the functions on its six
edge vectors. As we pointed out in section 5.3, it is enough to impose three triangle-closure
conditions for each tetrahedron. Hence, in this formulation, the full geometry of the 4-
simplex is recovered by providing the closure of only six of the ten triangles in it (we refer
to Fig.(5.3) for the edges and triangles combinatorics of a 4-simplex). According to this
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figure, the expression of the amplitude appearing in (5.4.2) is achieved once we require the
closure of the set of triangles a = 1, 2, 3 of the tetrahedron α = 1, of the triangles a = 1, 2
of the tetrahedron α = 2 and the last triangle a = 1 of tetrahedron α = 3. This is just
an example of how one can fix the combinatorics. The 4-simplex amplitudes are combined
together by identifying the edge decorations. To realize the gluing we use the amplitude
Aτ given by;

Aτ =
∫

[dλ]6
6∏

i=1
δ(λα;i − λβ;i) . (5.4.3)

The presence of the closure condition for the six triangles implies that the amplitude (5.4.2)
reproduces the expression of the 4-simplex amplitude in the standard formulation (in terms
of bivectors) as we already emphasized for a single tetrahedron in (5.3.15). The 4-simplex
amplitude (5.4.2) thus reduces to the following form:

As =
∫

[dx]10
( 4∏

α=1
Ĉτα({xα;a})

)
⋆

4∏
α=1

4∏
a=1

δ(xα;a − xα+a;5−a) , (5.4.4)

where this time xα;a is the coordinate of the ath triangle of the tetrahedron α, with
α = 1, . . . , 5 and a = 1, . . . , 4, and we used again the symbol ⋆ to implement the non-
trivial product between the delta functions. As for the amplitude (5.4.2), the sub-leading
geometry is obtained by the closure of four out of the five tetrahedra τb. The four clo-
sures are encoded in the functions Ĉτb

. Similarly, the tetrahedron amplitude (5.4.3) simply
provides the identification of the triangle decorations of two tetrahedra:

Aτ =
∫

[dx]4
4∏

a=1
δ(xα;a − xβ;a) . (5.4.5)

5.4.2 Recovering the Barrett-Crane model

In the following, we show explicitly how the new model reduces to a nontrivial combination
of BC amplitudes. We carry out this computation since it is the only available well-studied
amplitude in such a model. We show this for the case of timelike bivectors (spacelike edge
vectors). Therefore, we start with the usual description of the quantum bivector and work
our way through using the tools in section 5.1 to explicitly express it in terms of spacelike
edge vector coordinates.

The quantum minkowskian timelike bivector Let us recall that, the quantization
of bivectors in Minkowski space M4 is based on considering the elements of the dual
Lorentz Lie algebra so∗(1, 3). Since upon exponentiation (integration), the Lorentz al-
gebra is mapped into the Lorentz group, one can wonder how our construction based on
quantum vectors is explicitly related to the usual Lorentz representation we introduced in
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Figure 5.3: 4-simplex boundary construction: five tetrahedra share five vertices. Each of the
four faces of each tetrahedron is identified with one of the faces of the other four tetrahedra. We
use the same color and a double dotted line for the identified faces.



5.4 A new spin foam model based on edge vectors 105

section 5.1. To make this connection clear, let us start with a unitary representation for a
general Lorentz group element:

U(g) = e
∑

a
(αaNa+iβaLa) . (5.4.6)

Following the scheme outlined in section 5.2 to construct the bivector wave function,
one can define the Hilbert space of the square integrable functions on the Lorentz group
L2[SO(1, 3)] ∼= F (SO(1, 3)) ∋ f(g). Similarly to the bivector (Fourier decomposed) wave
functions we derived in (5.2.19), the unitary operator (5.4.6) can be used to expand the
wave functions in the Fourier decomposition according to the expression:

f(g) :=
∞∑

nr=0

∫
dµµ2 ∑

ℓ,ℓ′

∑
m,m′

⟨nr, µ; ℓ,m |U(g)|nr, µ; ℓ′,m′⟩ fnr,µ;ℓ,m
nr,µ;ℓ′,m′ . (5.4.7)

However, this time let us stress that the plane waves used for the above harmonic expan-
sion are more familiar since their non-radial contribution coincides with the irreducible
representations of the Lorentz group (the standard D-matrices), namely that they satisfy
the following equality

D0,µ
ℓ,m;ℓ′,m′(g) := ⟨µ; ℓ,m |U(g)|µ; ℓ′,m′⟩ , (5.4.8)

for j = 0, as we consider only the balanced timelike representations. According to the
representation theory of the Lorentz group, the wave function and its harmonic expansion
(5.4.7) encodes the proper gravitational degrees of freedom for a timelike region, provided
that the function is invariant under rotations. This condition is implemented as:∫

du f(gu) = f(g) , (5.4.9)

for all the rotations u ∈ SO(3). This condition correctly restricts the Hilbert space of the
Lorentz group to the space of functions on the upper hyperboloid Q1, introduced in the
Plancharel decomposition in section 5.1. In this case, the Fourier decomposition (5.4.7) re-
duces to the expansion in terms of timelike infinite dimensional irreducible representations
of the group, namely by setting the angular momentum quantum numbers (l,m) equal to
0:

f(g) :=
∞∑

nr=0

∫
dµµ2 ⟨nr, µ; 0, 0 |U(g)|nr, µ; 0, 0⟩ fnr,µ

nr,µ , (5.4.10)

where we identify the non-radial part of the kernel as3:

D0,µ
0,0;0,0(g) := ⟨µ; 0, 0 |U(g)|µ; 0, 0⟩ . (5.4.11)

Furthermore, let us recall that the explicit expression for these plane waves in the hyperbolic
basis given by (A.2.5) and since we are interested in the timelike sector and restricting the

3The extension to the full harmonic oscillator basis | nr, µ; ℓ′, m′⟩ is trivial, as the plane wave given by
⟨nr, µ; ℓ, m |U(g)| nr, µ; ℓ′, m′⟩ is diagonal in the radial contribution.
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plane wave to the case where nr = 0 (for simplicity), we obtain the explicit expression for
the D− matrix in the hyperbolic basis:

D0,µ
0,0;0,0(g) = ⟨0, µ; 0, 0 |U(g)| 0, µ; 0, 0⟩ =

∫
dη Q1−µ2

0 (coth η)Q1−µ2

0 (coth η′) , (5.4.12)

where η′ is obtained by the action of the transformation g on the Legendre function Q
with the coordinates η. Notice that this is the canonical D matrix encoding the quantum
geometry of a timelike bivector in the hyperbolic basis, which we will express in what
follows in the harmonic oscillator basis.
Let us now translate these results for quantum bivectors, expressed in terms of the canonical
D-matrices (in different parametrizations), to the Minkowskian one, which is basically that
of the translation group. This is indeed achieved since we can expand the function on the
Lorentz group and also in the Fourier modes of translations using the coherent states of
the harmonic oscillator. This yields the harmonic decomposition

f(g) :=
∫

dαdα′ ⟨αν |U(g)|α′
ν⟩ fαν , α′

ν
. (5.4.13)

In this case, the plane wave that appears in the decomposition is:

⟨αν |U(g)|α′
ν⟩ =

∫
dx4 Ψαν (t, x, y, z)

(
U(g) Ψα′

ν

)
(t, x, y, z) , (5.4.14)

which is related to the standard Lorentz representations obtained through the Plancharel
decomposition (5.4.7), by the change of basis (5.1.29), (5.1.30):

⟨αν |U(g)|α′
ν⟩ = e− 1

2 (|α|2+|α′|2) ∑
{nν ,n′

ν}

∞∑
nr=0

∑
ℓ,ℓ′

∑
m,m′

αnt
t α

nx
x αny

y αnz
z (α′

t)∗n′
t(α′

x)∗n′
x(α′

y)∗n′
y(α′

z)∗n′
z

π8
√
nt!nx!ny!nz!n′

t!n′
x!n′

y!n′
z!

D0,µ
ℓ,m;ℓ′,m′(g) . (5.4.15)

Once again we restrict the Fourier expansion to the timelike sector on Q1. In terms of edge
vector coordinates, the upper hyperboloid is obtained by the intersection of a pair of co-
linear light cones centered at the timelike points parametrized by Pi = (0, xi, yi, zi) ∈ M4

of Minkowski space:
t2 = A

(
(x− x1)2 + (y − y1)2 + (z − z1)2

)
,

t2 = A
(
(x− x2)2 + (y − y2)2 + (z − z2)2

)
,

⇒ t2 − x2 − y2 − z2 = R2 , (5.4.16)

with R2 = 2A
(
(x1 − x2)2 + (y1 − y2)2(z1 − z2)2

)
being the hyperbolic distance between

two points. We can therefore restrict the space of the translation group to the null edge
vectors with unitary time coordinate

e = (1, λx, λy, λz) , |e|2 := 1 − λ2
x + λ2

y + λ2
z = 0 . (5.4.17)
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Note that, this can be regarded as the gauge condition4 on the edge vectors that allows
recovering the timelike simple bivectors spanning the tangent space of the hyperboloid Q1,
for more details on hyperbolic geometry we refer to [183]. It is easy to check that this
condition correctly implies that the bivector in such parametrization is timelike: |b|2 > 0.
With this condition, the constrained Lorentz wave function in (5.4.10) is automatically
decomposed as a combination of timelike edge vectors (or equivalently, generators of trans-
lations).
Now we arrive to the last map we need to implement in our construction. Note that
(5.4.6) provides the relation between the bivector wave function (5.2.18) and the one on
the Lorentz group. This type of relation between functions on the Lorentz group and
functions on the dual Lorentz algebra is encoded in the non-commutative (NC) Fourier
transform. This is basically an intertwining map between the group and algebra represen-
tation (and vice-versa), ensuring their unitary equivalence. Recall that it is given by the
integral transform:

f̂(x) =
∫

dg e⋆(g , x) f(g) , (5.4.18)

where e⋆(g , x) is the star NC exponential for the Lorentz group, it is also referred to as
the noncommutative plane waves. Its representative equations can be derived by requiring
that, the intertwined function spaces define a representation of the same underlying quan-
tum algebra, and applying the action of unitary operators on the various representations.
Moreover, it is important to note that deriving an explicit expression of this NC plane
wave depends on the choice of a quantization map. For more details see [100,148].
Since we are restricting the Lorentz wave functions to those that are invariant under rota-
tions given in (5.4.10), the non-commutative Fourier transform allows to express the bivec-
tor functions in (5.2.18) in terms of timelike canonical D-matrices (derived in (5.4.11)) and
it yields:

f̂(x) =
∫

dgdµµ2 e⋆(g , x)D0,µ
0,0;0,0(g) fµ

µ . (5.4.19)

More importantly, a similar expansion can be obtained for the bivector wave function in
terms of the edge vector coordinates. Here, the group element g ∈ SO(1, 3) is parametrized
as in (5.4.6), whereas the exponent is the bivector operator given by (5.2.10) i.e. as a linear
combination of the ladder operators, expressed in terms of the coordinates (λ1, λ2) ∈ M4:

f̂(λ1, λ2) =
∫

dgdµµ2 e⋆(g , x (λ1, λ2))D0,µ
0,0;0,0(g) fµ

µ , (5.4.20)

with U(g) = e−i(a†(λ1) a(λ2)−a†(λ2) a(λ1) and ℓ, ℓ′ = 0 for timelike bivectors |b|2, that are ob-
tained by the skew symmetric product of the translation-generators (the ladder operators)
and must satisfy the condition (5.4.17). Thus, the NC edge vector-based construction of
a quantum triangle and then a tetrahedron proceeds naturally, once we follow the step
defined in section 5.2.-5.3.

4Furthermore, we note that the condition (5.4.17) can be written in terms of the Euler coordinates of
a bivector (5.2.11), whose coordinates are explicitly given in (5.2.12).
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=
∫

dµ′
x y

µ1

µ3µ3

µ4 µ1

µ2 µ3

µ4

Kµ′(η(x,y))

Figure 5.4: The tetrahedron amplitude of the Barrett-Crane model [2]
.

Recovering Barrett-Crane results. Maybe one of the most important relations we
derived so far is expressed in the expansion (5.4.20). In fact, we show that now, we relate
the new SF amplitude (5.4.1) to the one proposed by Barrett and Crane [114] for the case
of timelike bivector-based geometry.
Using the expansion above in terms of NC Fourier transform based on edge coordinates,
the new amplitude of a single 4-simplex yields:

As =
∫

[dλ]10 [dh]5d5µ
5∏

α=1

4∏
a=1

6∏
i=1

µ2
α e⋆(hα , xα;a(λα;i, λα;i))D0,µα

0,0;0,0

(
g(xα;i)g−1(xα+i;5−i)

)
,

(5.4.21)
and it is given in terms of the bivector coordinates x (in the Euler angle parametrization),
expressed as a combination of the coordinates of the edge vectors λ. Recall that λα;i stands
for the coordinate of the ith edge of the tetrahedron α, for α = 1, . . . , 5 and i = 1, . . . , 6.
The ⋆ symbol refers to the non-commutative product of the functions on M4.
In this picture, the timelike canonical D matrices given in (5.4.11), associated with the
timelike irreducible representations of the Lorentz group, can be computed explicitly as in
(5.4.12) and expressed as the term

D0 µ
0,0;0,0(g1g

−1
2 ) = Kµ(dη(xg1 , xg2)) = sin(µdη)

µ sinh dη

, (5.4.22)

where dη is the hyperbolic distance between two points xgi
on the hyperboloidQ1 associated

to the Lorentz transformations gi. It is obvious now that based on (5.4.21), the amplitudes
associated with a tetrahedron and to a 4-simplex can be expressed as a combination of
the terms (5.4.22). This construction is realized by representing the terms (5.4.22) as the
graph dual to tetrahedra. In particular, we associate a set of coordinates x ∈ Q1 on the
hyperboloid Q1 to a given vertex of the graph, one parameter µ is attached to each edge
of the graph, and the term (5.4.22) is associated to each internal edge of the graph. We
refer to Fig.(5.4). By merging together several of these graphs dual to tetrahedra, one
can construct the relativistic spin networks, which are graphs with no boundary dual to 4-
dimensional triangulations. The relativistic spin networks were first introduced by Barrett
and Crane in [114], further studied in [2, 184], and were also derived as the Feynman
diagrams of a group field theory in [91,117].
Notice that in our case, the amplitude obtained in (5.4.21) presents itself as a highly
nontrivial combination of such terms, i.e. BC amplitude-like terms, for the case of time
like bivectors. The main difference is that, once we reformulate the model using the
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edge vectors and exploiting their relation to the translation group, we get a rather more
sophisticated transition amplitude for the quantum geometries. Indeed, this is implicitly
encoded in the NC plane waves appearing in (5.4.21).
We thus have proved that, our new spin foam amplitude (5.4.1) reduces to the one proposed
by Barrett and Crane when we restrict the space of quantum states (quantum tetrahedra) to
the anti-symmetric part. However, as pointed out already, that our construction, inspired
from [115], provides the complete information on the full geometry of timelike tetrahedra,
including the information of spacelike normal vector. This is clear once we instead of
inserting the data of a timelike bivector, we consider that of a spacelike one. This can
be made evident when we follow the same steps presented in the beginning of this section
when we take into account the matrix elements in (5.4.8) for the case of time like edge
vectors. Indeed, the outlined quantization procedure in this paper explicitly demands that
matching edges have the same lengths, all the triangles of the 4-simplex to close as well
as, the bivectors on faces to correspond to the edges.

5.4.3 Group field theoretic formulation based on edge vectors

In this last part, we emphasize that the new SF amplitude (5.4.1) can be obtained as the
Feynman graph of GFT [19,84] as we discussed in chapter 4. In this case, the fundamental
field of the theory is the tetrahedron wave function given by (5.3.10) expressed as a function
on three copies of the translation group F (M4)×3 with the proper closure conditions for
the three triangles. More explicitly, it is given as a function on six copies of the translation
group constrained by the closure condition in (5.3.11).
The action that governs the GFT model, SGF T = SK + SV is given by an interaction
term, that encodes the combinatorics of a 4-simplex, and a propagator, playing the role
of identifying such terms. This is explicitly given by (4.0.3). Therefore, the interaction
term is expressed exactly as a combination of five fields with the kernel given by the 4-
simplex amplitude in (5.4.2), and similarly, the amplitude of the quadratic term of the
action, the propagator, is given by (5.4.3). The Feynman diagrams of the model are thus
obtained as a combination of such amplitudes and are naturally represented as graphs dual
to 4-geometries (see section 4.2). In this sense, the Feynman amplitude associated with a
general complex is therefore equivalent to the SF amplitude (5.4.1). In the following, we
present briefly a formulation of the theory.

Four dimensional group field theory with edge vectors

Let us construct a GFT based on the edge vectors of a 4d triangulation. We provide first
the general setting and then derive the amplitude associated with a triangulation, showing
the equivalence between this result and that obtained in ordinary GFT’s.



110 5. A new spin foam model of quantum geometry based on edge vectors

Kinematics. Consider a four dimensional group field theory, whose fundamental degrees
of freedom are encoded in some functions Φ̂ on six copies of the group R4; these are
associated with the tetrahedra that compose the triangulation of a 4d manifold. We would
like to express these tetrahedra in terms of the edge vectors.
As we did for the vector and bivector wave function in section 5.2-5.3, we associate to
each edge vector ei of the tetrahedron τ a set of (four) coordinates λi ∈ F (R4). Therefore,
the fundamental field of our GFT (which we also called a tetrahedron wave function) is
expressed as:

Φ̂(λ1, λ2, λ3, λ4, λ5, λ6) ∈ L2[λ1, λ2, λ3, λ4, λ5, λ6] ∼= F (R4)×6 . (5.4.23)

We recall that according to the construction in [115], the bivector wave function is well
defined only if the two vectors are part of a triplet that satisfies the closure condition of
a triangle boundary. Accordingly, also the tetrahedron wave function (5.4.23), given as
a combination of four bivectors, is well-defined only for a six-tuple of vectors that satisfy
the proper closure conditions. Relying on the combinatorics depicted in Fig.5.2a, we also
obtain the closure constraint that must be satisfied by the fields

Φ̂ = (Ĉt ⋆ Φ̂) , (5.4.24)

where we used the symbol ⋆ to recall that the functions satisfy a nontrivial star product
and recall that Ĉt is the closure constraint given by (5.3.11). We note that among the six
edges of the tetrahedron, four of them are sufficient to encode the tetrahedron combina-
torics. Indeed, one can describe the tetrahedron just by using the four bivectors as we
already established in (5.3.15). This yields

(Ĉt Φ̂)(λ1, . . . , λ6) ≡ (Ĉτ Φ̂)(x1, x2, x3, x4) = δ(x1 + x2 + x3 + x4) ⋆ Φ̂(x1, x2, x3, x4) ,
(5.4.25)

In (5.4.6) we emphasized the relation between the bivector wave function (5.2.18) and
the function on the Lorentz group. Usually, this connection is realized by the Plan-
charel expansion for the functions on the Lorentz group. For instance, the function
Φ(g1, g2, g3, g4) ∈ F (SO(1, 3)×4) is the fundamental field of a 4d GFT based on the Lorentz
group, and it is related to (5.3.15) by the standard non-commutative Fourier transform on
the Lorentz group. Following this line of reasoning, the tetrahedron closure (5.3.6), implied
by the closure of the four triangles (5.3.11), is implemented by a gauge projector on the
field such that ∀h ∈ SO(1, 3) we have

(P Φ)(g1, g2, g3, g4) =
∫

dhϕ(hg1, hg2, hg3, hg4) ⋆F ourier−→ b1 + b2 + b3 + b4 = 0 . (5.4.26)

Therefore, one can relate the ordinary group field theory to our formulation through the
chain of maps

Φ ∈ F (SO(1, 3)×4) ⋆F ourier−→ Φ̂ ∈ F (R6
⋆) ∼= F (so∗(1, 3)) eq.(5.3.15)−→ eq.(5.3.15)−→

C: (5.1.25)
Φ̂ ∈ F (R4 ∧ R4).

(5.4.27)
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Following the construction of the bivector wave function (5.2.18), one can expand also
the tetrahedron wave function (5.4.23) in the Fourier decomposition. Let us write the
decomposition (5.2.19) as

Φ̂(λ1, λ2) = −i
∫

dαdα′ Tα′
ν

αν
(λ1, λ2) Φ̂αν

α′
ν
, (5.4.28)

Then, the tetrahedron wave function (5.4.23) decomposes in the Fourier modes as

Φ̂(λ1, . . . , λ6) =
∫

dα6dα′6 T
α′

1;ν
α1;ν (λ2, λ3)T

α′
2;ν

α2;ν (λ3, λ5)T
α′

3;ν
α3;ν (λ6, λ5) (5.4.29)

× T
α′

4;ν
α4;ν (λ2, λ6) Φ̂α1;ν , α2;ν , α3;ν , α4;ν

α′
1;ν α′

2;ν α′
3;ν α′

4;ν
. (5.4.30)

Again, up to the closure condition (5.3.11), this expansion is equivalent to the Fourier
decomposition of the tetrahedron wave function expressed in terms of the four bivectors,
which, upon non-commutative Fourier transform, is related to the Plancharel decomposi-
tion of the function on the Lorentz group, see (5.4.27).

Dynamics. Once we have determined the fundamental field and its symmetry, let us
introduce the action that governs the group field theory model

SGF T = SK + SV , (5.4.31)

with the coupling constant set to 1 for simplicity. The action expressed in terms of the
star product then yields:

SGF T =
∫

dλ6 (Φ̂ ⋆ Φ̂)({λi}) +
∫

dλ12 (K̂ ⋆ (Φ̂ · Φ̂))({λi;λj}) (5.4.32)

The kinetic term whose amplitude is given by the propagator

K̂ =
6∏

i=1
δ(λiλ

−1
i+6) , (5.4.33)

enforces the identification of the edges of a pair of tetrahedra (fields). While

SV =
∫

dλ10 (Ĉ Φ̂)(λ1, λ2, λ3, λ4, λ5, λ6) ⋆ (Ĉ Φ̂)(λ7, λ3, λ8, λ1, λ9, λ2)

⋆ (Ĉ Φ̂)(λ5, λ8, λ10, λ7, λ4, λ3) ⋆ (Ĉ Φ̂)(λ9, λ10, λ6, λ5, λ1, λ8)
⋆ (Ĉ Φ̂)(λ4, λ6, λ2, λ9, λ7, λ10)

=
∫

dλ30
(

V̂({λα;i}) ⋆
(
(Ĉ Φ̂)(λ1;1, λ1;2, λ1;3, λ1;4, λ1;5, λ1;6) (Ĉ Φ̂)(λ2;1, λ2;2, λ2;3, λ2;4, λ2;5, λ2;6)

(Ĉ Φ̂)(λ3;1, λ3;2, λ3;3, λ3;4, λ3;5, λ3;6) (Ĉ Φ̂)(λ4;1, λ4;2, λ4;3, λ4;4, λ4;5, λ4;6)

(Ĉ Φ̂)(λ5;1, λ5;2, λ5;3, λ5;4, λ5;5, λ5;6)
))

,
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is the interaction term whose amplitude is given by

V̂ =
(
δ(λ1;1λ

−1
2;4) δ(λ1;1λ

−1
4;5)

) (
δ(λ1;2λ

−1
2;6) δ(λ1;2λ

−1
5;3)

) (
δ(λ1;3λ

−1
2;2) δ(λ1;3λ

−1
3;6)

)
(
δ(λ1;4λ

−1
3;5) δ(λ1;4λ

−1
5;1)

) (
δ(λ1;5λ

−1
3;1) δ(λ1;5λ

−1
4;4)

) (
δ(λ1;6λ

−1
4;3) δ(λ1;6λ

−1
5;2)

)
(
δ(λ2;1λ

−1
3;4) δ(λ2;1λ

−1
5;5)

) (
δ(λ2;3λ

−1
3;2) δ(λ2;3λ

−1
4;6)

) (
δ(λ2;5λ

−1
4;1) δ(λ2;5λ

−1
5;4)

)
(
δ(λ3;3λ

−1
4;2) δ(λ3;3λ

−1
5;6)

)
, (5.4.34)

that is associated with a combination of five tetrahedra (expressed in terms of their edge
vectors) with the combinatorics of a 4-simplex5.

As we explained, the tetrahedron wave function is related to the functions on the
Lorentz group by a non-commutative Fourier transform, which in turn can be decomposed
in the Fourier modes using the Plancharel decomposition or in the modes of the transla-
tion group. Therefore, using appropriately such decomposition with the non-commutative
Fourier transform, it should not be hard to convince ourselves that also the propagator
(5.4.33) and 4-simplex (5.4.34) amplitudes can be related to the usual GFT amplitudes.
As in standard group field theory, the Feynman amplitudes of our GFT model are given by
an arbitrary combination of 4-simplex amplitudes merged through propagator amplitudes.
The partition function can thus be expanded as a sum over the Feynman amplitudes as-
sociated with four dimensional triangulations. A given triangulation Γ, is thus associated
to the amplitude

AΓ =
∫

dαdα′ ∏
τ⊂Γ

Aτ (α, α′)
∏
s⊂Γ

As(α, α′) . (5.4.35)

The amplitude Aτ associated to each tetrahedron of the triangulation is given by the
propagator amplitude

Aτ (α, α′) =
∫

dλ6 T
α′

1;ν
α1;ν (λ2, λ3)T

α′
2;ν

α2;ν (λ3, λ5)T
α′

3;ν
α3;ν (λ6, λ5)T

α′
4;ν

α4;ν (λ2, λ6) , (5.4.36)

while the amplitude As, given by the interaction term, is associated to each 4-simplex of
the triangulation

As(α, α′) =
∫

dλ10 T
α′

1;ν
α1;ν (λ2, λ3)T

α′
2;ν

α2;ν (λ3, λ5)T
α′

3;ν
α3;ν (λ6, λ5)T

α′
4;ν

α4;ν (λ2, λ6)

T
α′

5;ν
α1;ν (λ3, λ8)T

α′
6;ν

α2;ν (λ8, λ9)T
α′

7;ν
α3;ν (λ2, λ9)T

α′
1;ν

α4;ν (λ3, λ2)

T
α′

8;ν
α1;ν (λ8, λ10)T

α′
9;ν

α2;ν (λ10, λ4)T
α′

2;ν
α3;ν (λ3, λ4)T

α′
5;ν

α4;ν (λ8, λ3)

T
α′

10;ν
α1;ν (λ10, λ6)T

α′
3;ν

α2;ν (λ6, λ1)T
α′

6;ν
α3;ν (λ8, λ1)T

α′
8;ν

α4;ν (λ10, λ8)

T
α′

4;ν
α1;ν (λ6, λ2)T

α′
7;ν

α2;ν (λ2, λ7)T
α′

9;ν
α3;ν (λ10, λ7)T

α′
10;ν

α4;ν (λ6, λ10) . (5.4.37)
5Recall that in the above expressions we used the symbol ⋆ to emphasize that the field are non-

commutative functions on R4 ∧ R4 with the noncommutativity arising by the canonical commutators
between the creation and annihilation operators (5.1.15) of the harmonic oscillator.
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As we hinted in (5.4.27), using a combination (5.3.15) with coefficients (5.1.25) for each
field, plus a (non-commutative) Fourier transform, one can make contact between the
amplitudes above and those of ordinary group field theory based on the Lorentz group. ,
realizes an explicit GFT duality between SF models and simplicial gravity path integrals.
It also makes explicit how simplicial geometry is encoded in the GFT formalism.

5.5 Conclusion

We outlined the main steps and concepts towards the construction of a new SF model
based on the quantization of edge vectors as the fundamental degrees of freedom. We first
identified the relation between the infinite dimensional unitary irreducible representations
of the Lorentz group with that of the translation group that becomes manifest in the
harmonic oscillator basis. Using these tools, we sketched the classical picture of a triangle
and that of a tetrahedron, where we identified the necessary constraints to be imposed
on the set of edge vectors characterizing such geometric entities. We emphasized that the
subspace of states identifying the bivector-tetrahedra is obtained by projecting on the skew-
symmetric sector of the full space of the edge-tetrahedron, where the explicit expression of
the change of variables is obtained via the same transformation defined (via expansors) at
the level of single triangles. The obtained amplitude expression is in terms of edge vectors
and we showed that we recover the BC model as a sector of this more general one. This is
realized once we identify the skew symmetric part of the model and express it in terms of
bivectors, as well in terms of unitary irreducible representations of the Lorentz group (at
the quantum level). Let us stress that, the new model is not equivalent to the BC model,
it is equivalent, as it is made clear in (5.4.2) to a combination of BC amplitudes with
additional combinatorial relations. These can be viewed as gluing constraints. Finally,
we showed that one can obtain the full amplitude also via GFT formulation based on
the translation group. The obvious advantage in this construction is that the simplicial
geometry is certainly fully encoded and manifest thanks to the edge length degrees of
freedom.
The work outlined above is merely the first step towards tackling the problems plaguing
the standard SF models. We list a few of them now. As we emphasized throughout this
chapter, the formulation of the quantum geometry in terms of bivectors is lacking some
geometrical input due to the restriction of the Hilbert space of states to the skew symmetric
part. Whereas if we consider the construction of the triangle based on the edge vectors
instead, we see there is no need to make any drastic restrictions and we have access to
the full geometric content of the theory. In fact, this prescription brings a new element to
the game, namely that of the normal vector to the tetrahedron. This additional degree of
freedom should really be understood as encoding the extrinsic geometric information of the
simplicial geometry and more importantly, relevant information to ensure 4d covariance of
the intrinsic geometry. We will point out further research directions in chapter 8.
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Chapter 6

Entanglement in superpositions of
spin network states with different
graph structures

The notion of spin networks popped up several times throughout this thesis. In chapter 3
as well in chapter 4 (section 4.3) we discussed how these quantum states of geometry enter
the kinematical Hilbert space of the theory and explored several aspects they exhibit. In
fact, in those chapters, we explored only their relevance to QG theories, but the scope of
spin network states goes beyond that. As a matter of fact, they arise naturally in many
fields of physics since they form a basis of gauge invariant functionals in Yang-Mills-like
theories [185]. The cases we focused on so far handled only spin network states associated
with a single graph structure. In this chapter, we study a generalization thereof, namely
that of a superposition of spin networks with different graph structures. In fact, a striking
feature of most QG approaches is that spacetime can be in a superposition of geome-
tries [22, 186]. This is a genuine quantum gravitational sequel. As a matter of fact, it is
also present at non-relativistic speeds and with gravity in the Newtonian regime [187–189].
Moreover, superpositions of graphs are naturally produced by the quantum dynamics of
QG theories and thus we should expect these generic states to encode the full content of
the quantum geometry at the microscopic kinematical level.
In this chapter and based on section 4.3, we explore further the quantum information
content of such QG states for a bipartite system. In particular, we are interested in study-
ing states involving superpositions of spin networks with various combinatorial structures,
defining therefore the connectivities of the underlying graphs. These states represent the
most general ones that live in the Hilbert space of GFT (and in some sense that of LQG).
We start in section 6.1 by providing the general construction of a bipartite entanglement
graph states that are in superposition. In particular, we focus on the GFT pre-Fock space,
where the vertices of the graph, characterizing the spin network states, are labeled and thus
distinguishable. In section 6.2, we investigate the quantification of the induced entangle-
ment within such a superposition of quantum gravity states which is provided by the von
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Neumann entropy (entanglement entropy). More precisely, we started by studying a simple
example of the superposition of a pair of spin network entanglement graphs describing a
bipartite system in section 6.2.1. We then generalized the discussion to include an arbi-
trary number of superpositions in section 6.2.2 and how they are related to those in LQG.
Furthermore, we explore the quantum information characterization of the corresponding
correlations. Up to this point, the language in which we construct the bipartite entan-
glement graph states is the pre-Fock one, therefore to take into consideration the Hilbert
space of the full theory, we perform the second quantization of the derived superposed
states in section 6.3 under certain assumptions.

6.1 Construction of bipartite quantum gravity states

The general approach to studying the entanglement entropy of states in bipartite quantum
systems [190–192] and similarly in quantum gravity models relies on studying the tensor
product structure of Hilbert spaces [28, 193–195]. However, particularly in a quantum
gravity setting, one can distinguish two different approaches to studying the entanglement
entropy of quantum states of geometry within a bipartite system [27, 196]. The first one
relies on the standard tensor product of the Hilbert space of each region without including
in the picture their respective boundary regions as well the associated degrees of freedom.
Whereas the second route is more involved and does take such boundary- considerations
into account. Hereby the Hilbert space of the bipartite system is different, which naturally
results in contrasting entanglement entropies. In what follows, we briefly describe the two
different decompositions of the bipartite Hilbert space and why we are more inclined to
work with the tensor product one. Before delving into this comparison, we set the notation
straight to describe a bipartite setting.
The quantum degrees of freedom of a system composed of two subsystems A and B live
on a Hilbert space, that is given by the tensor product:

H = HA ⊗ HB . (6.1.1)

For a state |ψ⟩ in H given by the tensor product |ψA⟩ ⊗ |ψB⟩ , the reduced density matrix
of the subsystem A is defined by the partial trace over the subsystem B:

ρA = TrB |ψ⟩⟨ψ| , (6.1.2)

and the entanglement entropy of the subsystem A is defined as the von Neumann entropy
of the reduced density matrix in (6.1.2):

SA = − Tr (ρA log ρA) . (6.1.3)

Now, there are several reasons why we chose for the purposes of this work the tensor product
structure of a given bipartite Hilbert space. To explore this point, let us first discuss the
second common approach which is the edge modes decomposition [197, 198]. The basic
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idea behind it is to consider bipartition of the vertices, where the degrees of freedom live
on the latter; the Hilbert space associated with any set of vertices is, therefore, the tensor
product of the Hilbert spaces of each individual one that reproduces the tensor product
given in (6.1.1). In a lattice gauge theory, the degrees of freedom live on the links, so there
is not such a simple tensor product decomposition. However, we can define a Hilbert space
HA first introduced in [199] where one can split the links that cross the boundary.

Through this cutting of the links, we end up with one endpoint in region A and another
in region B and we are able to insert a new vertex on the boundary separating the two
regions. This splitting of, what we will call the boundary-crossing links, induces a change
on the level of the Hilbert spaces HA; the nodes in the interior are the only ones that
reflect gauge invariance, whereas the boundary nodes are not. In restricting the gauge
symmetry, degrees of freedom that were previously pure gauge are promoted to physical
degrees of freedom. The Hilbert space H is not equal to HA ⊗ HB, since the former is
invariant under all gauge transformations, and the latter is invariant under only those
gauge transformations that act trivially on the boundary. Thus instead of an isomorphism
of Hilbert spaces, we have the embedding:

H → HA ⊗ HB . (6.1.4)

The entanglement entropy of any state in H can be defined by embedding the state into
HA ⊗ HB. In this case, there is a local boundary contribution due to these edge modes
and a non-local contribution due to intertwiner entanglement [196,200].

In our setting, as we highlighted in section 4.3 and section 3.3, the ordering of the spin
network states in the GFT Hilbert space is different than that in the LQG one, this is
summarized in Box 3.2 and the above inclusion of the boundary degrees of freedom in the
structure of the Hilbert is still poorly understood in GFT. Therefore, as a first step towards
understanding the properties of the general states of the theory, being in a superposition,
their characteristics, and their versatility in computing expectation values of observables,
we consider the conceptually simplest case of a tensor product of Hilbert space given by
(6.1.1). Of course, this implies we are neglecting the contribution of the local degrees of
freedom at the boundaries, however, we postpone such investigations to future work.

6.1.1 Bipartite Hilbert space and quantum states

In this section we start by presenting the construction of a GFT bipartite Hilbert space
for the simplest set of states containing NA/B vertices, then we move on to studying the
more general case of a superposition of graph states starting from the simplest case of a
single entanglement graph state presented in section 4.3. For simplicity, we will work only
with finite graphs having a finite number of nodes. We are interested in quantifying the
entanglement between two regions, a region A defined by the set of graphs {γ} and region
B with a set of graph {δ}, through their respective set of combinatorial structures. We
denote the set of vertices that belong to the region A by VA = {x1 · · ·xNA

} and those
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that belong to B by WB = {y1 · · · yNB
}, where NA and NB denote the total number of

vertices (particles) in the respective regions (Hilbert spaces). The Hilbert spaces of the
spin network graph state for these two regions yield:

HA = L2
(
Gd×NA/GNA

)
=

NA⊗
x=1

Hx , HB = L2
(
Gd×NB/GNB

)
=

NB⊗
y=1

Hy , (6.1.5)

where Hx and Hy are given by the single-vertex Hilbert space as in (4.3.4). Elements of
these two Hilbert spaces (HA and HB) can be represented in the spin basis by the following
states:

|ψA⟩ =
⊗
NA

|fx⟩ =
⊗
NA

⊕
j⃗

∑
n⃗ι

f j⃗
n⃗ι |⃗jn⃗ι⟩

 , |ψB⟩ =
⊗
NB

|fy⟩ =
⊗
NB

⊕
j⃗′

∑
n⃗′ι′

f j⃗′

n⃗′ι′ |⃗j′n⃗′ι′⟩

 .

(6.1.6)

The Hilbert space of the bipartite system is then given by the tensor product:

HAB = HA ⊗ HB . (6.1.7)

Consequently, a state that lives on HAB is then constructed by the following operation:

|ψA⟩ ⊗ |ψB⟩ =
⊗
NA

|fx⟩ ⊗
⊗
NB

|fy⟩ . (6.1.8)

We can also express the above state in the group representation and this reads:

|ψA⟩ ⊗ |ψB⟩ =
∫ ∏

x

dgx
∏
y

dkxψ
(
g1, . . . ,gNA

)
ψ
(
k1, . . . ,kNB

)
⊗x |gx⟩

⊗
⊗y |ky⟩ .

(6.1.9)

where gx = gx
1 , . . . , gx

d , and |gx⟩ provide a basis for the single-vertex Hilbert space Hx and
ky = ky

1, . . . , ky
d, and |ky⟩ provide a basis for the single-vertex Hilbert space Hy.

Separability and entanglement. We emphasize here the notion of separability and
entanglement in the constructed states. The N -particle wave function appearing in (6.1.8)
cannot be written in a factorized form (as a product of single-vertex states), hence it is not
separable and by definition it is entangled. This can be traced back to the fact that entan-
glement in our framework is translated into correlating the degrees of freedom living on the
different vertices. Now, if for instance, we take the case of several nodes interconnecting
through a superposition of spin states, the form of the resulting intertwiners wave function
is in general not factorizable [35, 201]. However, it is possible to consider special cases
where it is possible. This is the case when we consider fixed spins (not in superposition)
attached to the vertices. In the spin representation, the vertices wavefunction takes the
simplified form [36]:

φj⃗1...⃗jN

n⃗1...n⃗NA
ι1...ιNA

=
NA∏
x=1

(fx)j⃗x

n⃗xιx
, (6.1.10)
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where (fx)j⃗x

n⃗xιx
is the wave function representing the vertex x as in (4.3.1). In our analysis,

we will focus on graph states constructed out of this type of many-body wave function.
This factorization plays an important role when we perform the explicit computations of
the entanglement entropy captured by the reduced density matrix of the subsystems. Even
though it simplifies the entropic calculation we present in the next sections, this simple
case we are considering will not have any direct impact on the following more general
conceptual point that we will raise.

Superposition and biadjacency matrix. The tensor product in (6.1.8) is the basis for
constructing a class of states in which the set of vertices in the two graphs are connected
according to a combination of patterns. Note that for each set of graphs, we consider
certain patterns, where the connectivity for the graphs {γ} is dictated by the respective
adjacency matrices), that orchestrate the gluing of links with colors i. For the graphs {δ},
it is encoded in the combinatorial set gluing links with colors j. This gluing mechanism
naturally induces two types of connectivity, namely one that takes place between edges
that belong only to the graphs {γ, δ} and another one that entangles links belonging to γ
and links in δ. They have of course to share the same combinatorics, in the sense that there
is an overlap in the respective patterns (γ, δ) or equivalently, they belong to the same class
(or category) of combinatorics. This way, the set of bi-connecting links belongs to the two
graphs. We denote such overlapping connectivity by a bracket of the respective patterns,
where the reference graph comes always in first position. This bracket will appear as an
index for the respective parameters1.
After assigning an orientation to the set of edges where the group elements {gi, kj} are
associated with the outgoing direction of the spins, the operation of gluing vertices is made
evident through forming three categories of entangled links:

1. For vertices (xa and xb)∈ {VNA
} that are connected through a link of color i; they

then form an internal link between the two vertices lx = (xa, xb; i), carrying the group
element glx = g

xax−1
b

i .

2. For vertices (ya and yb)∈ {VNB
} that are connected through a link of color j; they

then form an internal link between the two vertices ly = (ya, yb; j), carrying the group
element kly = k

yay−1
b

j .

3. For vertices (xa and yb)∈ {VNA
, VNB

} that are connected through a link of color [i, j];
they then form an internal link between the two vertices lz = (xa, yb; [i, j]), carrying
the group element qlz = g

xay−1
b

c .

The construction of a superposition of graph states for a bipartite system is now presented.
It is very important to understand the superposition of this class of states in terms of

1For instance if we take the graph γA for the region A as the reference graph governed by the pattern
γ, then the bracket reads [γ, δ].
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combinatorial structures. Each region is assigned a Hilbert space, where it is allowed to
have a superposition of graph states endowed with different connectivity patterns. Then,
the bipartite class of combinatorial states can be constructed using techniques borrowed
from graph theory based on the notion of an adjacency- along with a biadjacency matrices
for graphs, underlying the three types of entanglement governing the total system. The
information about the connectivity of the graph is then implemented at the level of the
gluing map as we will see shortly.

Biadjacency matrix. Let us consider a region A given by a graph defined through its
combinatorial pattern γ and a regionB and its graph δ. Then the combined total graph ΓAB

is specified by a matrix MAB, called the biadjanceny matrix. Formally, let G = (A,B,E)
be a bipartite graph with distinct sub-graph A = {a1, . . . , ar} , B = {b1, . . . , bs} and edges
E. The biadjacency matrix is the r × s (0 − 1) matrix MAB such that the block matrix C
has entries ci,j = 1 if and only if (ui, vj) ∈ E. This is given by the following matrix:

MAB =
(

0r,r C
C⊤ 0s,s

)
, (6.1.11)

where here C is an r× s matrix, and 0r,r and 0s,s represent the off diagonal r× r and s× s
zero matrices. In this case, the block matrix C uniquely represents the bipartite graph.
The total graph matrix including the internal connectivity between the set of vertices in
the subgraphs γ and γ is then given by

GAB =
(
Ar,r C
C⊤ Bs,s

)
, (6.1.12)

where Ar,r and Br,r are the r × r and s× s adjacency matrices for the graphs ΓA and ΓB

respectively and they are given by

Axa+i,xb+j =
ai

xaxb
i = j

0 i ̸= j
, Byc+i,yd+j =

bi
ycyd

i = j

0 i ̸= j
(6.1.13)

where the indices (a, b) and (c, d) label the vertices in the graphs γ and γ and they run
from (a, b) ∈ {1 · · ·NA} and (c, d) ∈ {1 · · ·NB}.
In order to establish a bipartite entanglement within such graph structures, we rely on
a gluing procedure (section 4.3) performed between links of the two subgraphs γ and
γ manifesting the same combinatorial pattern. In this case, we introduce the bipartite
gluing map which acts on the links belonging to the Hilbert spaces HA and HB that
connect two vertices by gluing their open links of color i is equivalent to the projection
map Px⊗y

i : Hxi
A ⊗ Hyi

B → InvR (Hxi
A ⊗ Hyi

B ) defined as follows:

Px⊗y
i :=

∫
dhxy

i dg
x
i dg

y
i |gx

i ⟩ ⟨gx
i h

xy
i | ⊗ |gy

i ⟩ ⟨gy
i h

xy
i | , (6.1.14)
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where hxy
i = hyx

i . Allowing internal gluing (connectivity) is translated into applying this
gluing map on the bipartite wavefunction in (6.1.8) which will act on the internal links in
each Hilbert space HA or HB through the specific implementation of the adjacency matrix,
where the map then reads

PB =
∏

xa<xb

∏
yc<yd

∏
i:axaxb=1

∏
j:bycyd=1

Pxa⊗xb
i Pyc⊗yd

j . (6.1.15)

For those links that are shared between the two sets of graphs, we consider the data encoded
in the biadjacency matrix MAB in (6.1.11) and refer to it as the boundary gluing map

P∂ =
∏

p:czezf =1

∏
ze<zf

Pze⊗zf
c . (6.1.16)

where the set of vertices {ze, zf} belong either to γ or δ. Here we also introduce the new
pattern notation pc ∈ [γi, δj]. The connected bipartite state is obtained after successfully
having operated with the maps (6.1.16) and (6.1.15) yields:

|Ψ⟩ = PBP∂ |ψ⟩ . (6.1.17)

6.1.2 Superposition of entangled bipartite graph states

Now that we are well equipped with the appropriate Hilbert space and quantum states,
we can address the case of an arbitrary superposition of states containing a fixed number
of quanta of space and then proceed to derive its entanglement entropy. As we described
in section 4.3, each individual state entering the superposition corresponds, generically, to
an inhomogeneous discrete (simplicial) geometry2 which is also evident at the level of the
total Hilbert space of the theory. In this section, we present the construction of entangled
bipartite quantum states of geometry that are in superposition. We illustrate roughly the
procedure in figure 6.1.
As we argued in section 4.3, we realize the calculations in the case where the corresponding

bipartite Hilbert space is a tensor product and the states take the following form:

|Ψ⟩ = |ψA⟩ ⊗ |ψB⟩ ∈ HAB . (6.1.18)

Let us denote by NA the total number of combinatorial patterns γi governing the set of
graphs of the region A and by NB the total number of the ones governing region B3.
We will refer to these numbers as the degrees of combinatorial structure of the graphs,
which should not be confused with the total number of the graph vertices. Since we are

2This is considered true with some exceptions. In fact, the superposed graph states may also include
states associated with triangulations of regular combinatorial structure as well as homogeneous assignment
of discrete data [22,131].

3We can also understand the combinatorial degree as the cardinality of the set of the superposed graphs.
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Figure 6.1: Bipartite system consisting of region A and region B. Each region entails a super-
position of different connectivity patterns, that can be internally correlated along common edges.
The bipartite boundary ∂C is defined as the overlapping sector of the correlations such that it
does not coincide with the internal gluing data.

considering a superposition of states in each subsystem and their connectivity properties,
we can write |ψA⟩ and |ψB⟩ with arbitrary combinatorial degrees living on HA and HB as

|ψA⟩ =
∑

γ

αγi
|ψi⟩ , |ψB⟩ =

∑
δ

βδj
|ψj⟩ , (6.1.19)

where αγi
are the coefficients encoding the information of the wave function of each graph

γi entering the superposition. Note that states entering such superpositions are not a
priory entangled. This can be implemented by performing the link-entangling procedure
discussed in section 6.1.1 that we will perform shortly. First, let us write down the most
generic state that describes the total bipartite system, which is given by the tensor product
of the subregion’s superposition

|Ψ⟩ =
NA+NB∑

k=0

k∑
s=0

αγsβδk−s
|ψs⟩ |ψk−s⟩ ≡

NA+NB∑
k=0

ξ̃k |Γ̃k⟩ , (6.1.20)

where k and s are Cauchy product indices keeping track of the different summation over
the products and the state |Γ̃k⟩ is an element of the total Hilbert space HAB. Now, before
proceeding to the entangling procedure, let us mention that there are two ways to establish
it in such a class of states:

1. The first possibility we encounter is, we could entangle pair of states entering the
superposition in the respective Hilbert space HA/B by applying the gluing map in
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(6.1.15) according to the connectivity pattern characterized by the adjacency matrix,
and do that for each degree of combinatorial structure. Once this step of internal
gluing in each subsystem is achieved, we proceed in a similar manner to entangling
the bipartite total state given by the tensor product in (6.1.18) of the system by
gluing common links in the two subsystems. This is of course obtained by acting
with the map (6.1.16) encoding the biadjacency matrix entries (MAB).

2. As for the second option, we could take the entire graph states (6.1.20) living in HAB

and entangle them directly and randomly (using the maps (6.1.15) and (6.1.16)).
However, this procedure does not allow us to keep track of the gluing operation.
Hence, the complexity level of the task rises for no apparent useful reason.

The two methods should theoretically keep the same degrees of freedom intact and we
assume that no information is lost in both processes. Therefore, we follow the first propo-
sition (1) of connecting the graphs in the two subsystems and then proceed to entangle the
entire bipartite system.
To be more precise and concrete, let us consider for instance the superposition of NA

states in the A−system and proceed to entangle these. This amounts to working with
states |ψA⟩ ∈ HA, where we use the gluing operation (6.1.14). Consequently, in the group
basis, the connectivity is mirrored in the group averaging procedure and the entangled
state reads:

|ψA⟩ =
∑
γi

PB (αγi
|ψγi

⟩) =
∑
γi

∫ ∏
x

dgx
∫ ∏

x<tγi

dhxtγiψi

({
gx

γi
h

xtγi
tγi

})
⊗x |gx

γi
⟩ ,

where the sum is over the different combinatorial patterns {γi} (i is the index running
from 1, · · · ,NA), dhytγ(x) := dhxt1

γi
1 · · · dhxtd

γi
dA

, and the gluing map acts according to the
adjacency matrix characterizing the entanglement on the vertices {xa, xb} ∈ {1, · · · , VNA

}:
consequently encoded in the tensor4 tγi

(x). In the spin network basis the resulting state is
given by:

|ψA⟩ =
∑
γi

∑
n⃗∂γi

∑
ι⃗

(ψγi
)ι⃗

n⃗∂γi

⊗
l∈∂γi

|⃗jln⃗l⟩ ⊗
⊗

x

|⃗jxι⃗x⟩ , (6.1.21)

where n⃗∂γi
are the magnetic indices associated with the open semi-links defining the bound-

ary of the graphs associated with the combinatorial degree γi, ι⃗ = {ι1, · · · , ιNA
} are the

intertwiners identified with the vertices, whereas the internal connectivity is encoded in the
coefficients (ψγi

)ι⃗
m⃗∂γi

which entail the gluing formula encoded in the product of the delta
functions:

(ψγi
)ι⃗

n⃗∂γi
=

∑
{ne∈LA}

∑
{p}

NA∏
x=1

(
ϕj⃗

n⃗ι

)x ∏
lγi ∈LA

δni
xpxx′

i
δni

x′ p
xx′
i
. (6.1.22)

4Recall that this is the tensor encoding the combinatorial pattern of the graph such that tγi
(xa) = xb if

ai
xaxb

= 1, and tγi(x) = 0 if ai
xaxb

= 0; the gluing elements h
xtγi
i are such that hxaxb

i = hxab
i , and hx0

i = e.



124
6. Entanglement in superpositions of spin network states with different graph

structures

The resulting wavefunction of the state |ψA⟩ is then associated to graphs with

Internal links: LA =
∑

ℓγi
= (x, tγi

(x); {γi}) , (6.1.23)
Boundary open links: L∂A =

∑
ℓ∂γi

= (x, tγi
(x); {γi}) . (6.1.24)

Note that these boundary links (yet open) carry the quantum data to realize the boundary
gluing with region B later on. In the same manner, the entangled NB superposition of
states |ψB⟩ ∈ HB is constructed according to all the combinatorial patterns {δj} encoded
in the adjacency matrix in Br,r given in (6.1.13) and it yields

|ψB⟩ =
∑
δj

∑
m⃗∂δj

∑
ι⃗′

(
ψδj

)ι⃗

m⃗∂δj

⊗
l∈∂δj

|⃗jlm⃗l⟩ ⊗
⊗

y

|⃗jy ι⃗′y⟩ , (6.1.25)

where similarly, the wavefunction of the resulting state |ψB⟩ is then identified with the
graph having internal links LB = ∑

ℓδj
=
(
y, tδj

(y); {δj}
)
. Notice once again, the coeffi-

cients encode the internally correlated vertices of the graphs and they are given by:

(
ψδj

)ι⃗

m⃗∂δj

=
∑

{me∈LB }

∑
{r}

NB∏
y=1

(
ϕj⃗

m⃗ι

)y ∏
lδj

∈LB

δ
mj

yryy′
j

δ
mj

yryy′
j

. (6.1.26)

The bipartite (unentangled) state is given by the tensor product of the states (6.1.21) and
(6.1.25). Now, by applying the map (6.1.16) to the state (6.1.18), namely that |ΨΓ⟩ =
P∂ |Ψ⟩, we obtain the final bipartite entangled state:

|ΨΓ⟩ =
N A+N B∑

s=0

s∑
k=0

∑
m⃗∂γi

∑
ι⃗γs

∑
m⃗∂[sk]

∑
ι⃗[sk]

(
ψι⃗

m∂[sk]

)
[sk]

⊗
l∈∂γi

|⃗jlγs
m⃗lγs

⟩
⊗

l∈∂[sk]

|⃗jl[sk]m⃗l[sk]⟩ ⊗
⊗

x

|⃗jxι⃗x⟩


×

∑
m⃗∂δk

∑
ι⃗′

(
ψι⃗

m⃗∂δk

)
δk

⊗
l∈∂δk

|⃗jlδk
m⃗lδk

⟩ ⊗
⊗

y

|⃗jy ι⃗′y⟩

 , (6.1.27)

where we considered the graphs in region A as the reference ones with which we connect
the vertices to those in the region B, hence the compact notation in the wavefunction’s
coefficients is given by(
ψι⃗

m∂[sk]

)
[sk]

=
∑

{nl∈LA}

∑
{nl∈LA∪LB }

∑
{p}

∑
{r}

∏
x

(ϕ)j⃗x

n⃗xιx

∏
lγi ∈LA

δni
xpxx′

i
δni

x′ p
xx
i

∏
lγi ∈LA∪LB

δni
xrxy

i
δnj

yrxy
j
,

(6.1.28)

and the numbers s, k are running indices. s runs from γ1 till γNA
, whereas k takes values

from δ1 till δNB
. We recall that [i, j] denotes the set of overlapping connected edges

belonging simultaneously to both graphs constructed out of the respective entanglement
pattern (biadjacency matrix).
Let us define by ∂C[γi,δj ] the outer boundary of the bipartite graph, that contains the open
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links resulting from the gluing according to the patterns (γi, δj, [γi, δj]). The bipartite
superposition of entangled states in (6.1.27) can be expressed as:

|ΨΓ⟩ =
N A+N B∑

k=0

k∑
s=0

∑
ml∈∂C[γiδj ]

∑
J⃗

(
ψι⃗

ml∈∂C[γiδj ]

)
s,k

⊗
l∈∂C[γiδj ]

|∂γiδj
⟩ ⊗

⊗
x,y

|⃗jx,yJ⃗x,y⟩

=
NA+NB∑

k=0
ξk |Γk⟩ , (6.1.29)

where we denoted by J⃗x,y the set of all intertwiners living on the bipartite Hilbert space.
The index k is equivalent to the one running in the second sum representing the graph
data in the region B with the combinatorial degrees {δ}. For completeness, we identify
the bipartite spin basis:

|Γk⟩ =
⊗

l∈∂γi

|jlγi
nlγi

⟩
⊗

l∈∂[ik]

|jl[ik]nl[ik]⟩
⊗

l∈∂δk

|jlδk
mlδk

⟩ ⊗
⊗

x

|⃗jxι⃗x⟩ ⊗
⊗

y

|⃗jy ι⃗
′
y⟩

=
⊗

l∈∂C[γiδj ]

|∂γiδj
⟩ ⊗

⊗
y,x

|⃗jx,yJx,y⟩ , (6.1.30)

and the coefficients functions are given by (6.1.27). In the last step, one should keep track
of the summation over the different labeling of the graph wavefunction, since we are dealing
with polynomial indexing.
Now, let us briefly comment on the constructed states underlying the internal and bipartite
connectivity of the graphs in (6.1.21), (6.1.25), and (6.1.27). Notice that there are different
patterns braiding the boundary-crossing edges. One can distinguish the subset that carries
{γi}, an other one is associated to the combinatorics of {δj} and obviously another subset
with [γi, δj]. This distinguishability on the level of boundary degrees of freedom induces
further subtleties on the level of the respective intertwiners. Indeed, the wavefunction of N -
vertices might bear a mixture of intertwiners that simultaneously encode the entanglement
of one subset of the above-mentioned links or a combination of them. This in return
is still in accordance with the non-separability criteria, any entangled state should obey.
However, as we already mentioned in section 6.1, we will focus on vertices-factorized form
for the sake of computational simplicity. It is then worth emphasizing that the usual
criteria of non-separability, in this case, is automatically insured in the very definition of
the gluing procedure. This is also clearly manifest in the gluing formula that results from
such an entangling step. Moreover, it is important to mention for later use, that at the
level of the graph matrices depicting the entangled superposition of the bipartite states,
the matrix in (6.1.11) is also to be considered in superposition. The class of superposed
states constructed above depicts spin network states with open ends that live on the GFT
Hilbert space (4.3.6). The same construction can also be discussed for the case of LQG
square integrable functions. The kinematical Hilbert space of the latter is built out of these
graph-based Hilbert spaces, for all possible graphs and modulo some equivalence relations
by imposing cylindrical consistency conditions [157] (see section 4.3), where the Hilbert
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space of a single graph is given by HLQG = L2(GL/GV ). As we mentioned in chapter 4
and also in section 3.3.2, it is possible to embed such structures in the GFT Hilbert space
by means of the group averaging technique. For the bipartite state derived above, this will
then reads for the internal glued version

Ψγ

({
gℓγ = gxa

i g
x−1

b
i , kℓδ

= ky
j k

y−1
b

j

})
=
∑

γ

∑
δ

∫ ∏
ℓx∈γ

dhℓγ

∏
ℓy∈δ

dh′
ℓδ


ψ
(
. . . , gxa

i hℓ, . . . , g
xb
i hℓ, . . . , k

ya
j h

′
ℓ, . . . , k

yb
i h

′
ℓ, . . .

)
,

(6.1.31)

where the gluing is performed over the set of links ly and lx belonging in the set graphs
{γ} and {δ} respectively. The bipartite boundary gluing can also be carried out for the
superposition. Recall that we denoted for simplify pc the gluing pattern taking place at
the boundary, this us be then implemented,

ΨLQG

(
{gℓγ }, {kℓδ

}, {zpc}
)

=
∑

γ

∑
δ

∑
pc

∫ ∏
ℓx∈γ

dhℓγ

∏
ℓy∈δ

dh′
ℓδ

d
∏
pc

h′′
ℓpc

ψ
(
. . . , gxa

i hℓ, . . . , g
xb
i hℓ, . . . , k

ya
j h

′
ℓ, . . . , k

yb
i h

′
ℓ, . . . , q

zb
c h

′′
ℓ , . . . , q

zb
c h

′′
ℓ , . . .

)
, (6.1.32)

This form of the wave function is then the embedding of the LQG bipartite superposed
spin network state in the GFT Hilbert space 4.3.6. It is merely the generalization of the
case of a single entanglement graph studied in [36]. Now that we constructed superposed
spin network states that can be interpreted as a superposition of entanglement graphs, let
us investigate the quantification of the correlations in such a case.

6.2 Interference of quantum geometries

In this section, we derive the entanglement entropy associated with the above-described
bipartite system, where each subsystem A and B is considered to be in a superposed
quantum state of geometries. The superposition of quantum gravity state characterized
by the total number of combinatorial N = NA + NB is given by (6.1.29). Due to the
peculiar properties of quantum superposition, we will see in this section how the von
Neumann entropy is affected by it and the advantages we end up with when we consider
the GFT entanglement graph states. We start by deriving from the density matrix of the
state (6.1.29) the corresponding entropy, whereby we distinguish two cases, namely that
of equal graph size in the bipartition and that of different size one.
In order to clearly grasp the combinaotrial nature of this class of states characterizing the
GFT theory, we start by a toy model where step by step build a superposition of two states
in each region of the bipartite system, keeping track of the different kinds of connectivities
defining the entangled bigrahs.
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6.2.1 Toy model for a superposition of bipartite states

Bipartite entanglement entropy. Let us consider the simplest case where we have a
single vertex in the region A and another one in the region B and study the entanglement
measure induced by gluing a single shared link between them. For now, we focus on the case
of four valent vertices and comment on its generalization to d valent ones. The procedure
of connecting the two vertices amounts to gluing one of the four links associated with them
as illustrated in figure 4.3. In the spin network basis, this reads∫

dhψ(g1, . . . , g4h, k1, . . . , k4h) =
∑
j⃗j⃗′

∑
n⃗n⃗′ιι′

ψj⃗j⃗′

n⃗n⃗′,ιι′

∫
dhS j⃗

n⃗,ι(g1, . . . , g4h)S j⃗′

n⃗′,ι′(k1, . . . , k4h) ,

(6.2.1)
where gi and kj for (i, j) = (0, · · · 4) are the group elements decorating the links in each re-
gion and the wavefunction of the r.h.s is the bipartite wavefunction. In the above equation,
the integration is performed over the gluing element h and after having explicitly exploited
the expression for the spin network basis given by (6.1.30). As we already mentioned in
section 4.3, this is equivalent to the operation of group averaging at the level of the GFT
bipartite wavefunction, which is, in turn, equivalent to projecting the associated state onto
a maximally entangled link-states given by (4.3.12).
Now, in this simple case, it is easy to show that on this basis, entangling degrees of freedom
living on the vertices is equivalent to gluing links that share the same color. If we consider
for instance gluing the spin j = 4 we get∫

dhψ(g1, . . . , g4h, q1, . . . , k4h) =
∑
j⃗j⃗′

∑
n⃗n⃗′ιι′

∑
pp′

(
ψj⃗j⃗′

n⃗n⃗′,ιι′δjj′Inn′

)
S

jj
n123p,ι(g⃗)S

j′j

n′
123p′,ι′(k⃗)Ipp′

(6.2.2)
and after integration over the system B degrees of freedom, it is easy to show that the
entanglement entropy of the reduced density matrix reads

S(ρA) = S(ρB) = logDj , (6.2.3)

where Dj is the dimension of the representation space V j of the glued link. Let us push this
further, and glue another link in this bipartite graph, the entropy increases with another
factor associated with the dimension of the representation space of the second glued link.
Therefore we can detect a systematic increment for a generic d-valent vertex contribution
to the entropy which can be formally described in terms of the links ℓ carrying a color i
and connecting a vertex x (in A) and y (in B) through

ℓ : (x, y : i) → log (Dji
) , (6.2.4)

∀i ∈ {0 · · · d} , ℓi : (x, y : {i}) → log
(∏

i

Dji

)
=
∑

i

log (Dji
) . (6.2.5)

Now that was for the case of a single vertex. The situation changes drastically if we consider
an arbitrary number of them, since the dimension of the intertwiner space, labeling the



128
6. Entanglement in superpositions of spin network states with different graph

structures

vertices, will also play an important role in the entangling procedure. If we have for
instance NA vertices in the region A, we get a contribution in the entropy coming from
each vertex of the form

D[Ix] ≡ Dj⃗ × dj1 × · · · × djd
, → log (D[Ix]) , (6.2.6)

This can be further generalized a the level of each graph by means of the adjacency matrix.
The entries of such a matrix as binary ones of the nature (0, 1) and they are sort of the
manual that encodes all the information we need to know about the connectivity of a
graph, let’s say γ. Using these tools we can right (6.2.6) in the more general way for each
graph localized in the system A (and similarly also for the B)

D[γ] ≡
∏

ai
xa,xb

D[Ix] =
∏

ai
xa,xb

Dj⃗

d∏
dji
,→ log (D[γ]) , (6.2.7)

where now we denote the dimension of intertwiners space underlying the graph by D[γ].
Notice that it is only because we are considering the case of factorized graph wavefunctions
over the single vertex one that we are able to write the above implications. It can be
generalized to the case the vertex wavefunctions are not factorized, however, this is very
poorly understood for the case of a superposition. Moreover, it is clear that in the above
case, and through the operation of group averaging the resulting entanglement entropy for
an entanglement graph in GFT and LQG coincide. This is not always the case as we will
see below.

Superposing entanglement graph states. Let us consider the more complicated case
of superposing two entanglement graph states in each region A and B. As we discussed
in the above section, we start by constructing the bipartite entangled state. The first
step is to entangle each state in each region separately. Therefore we let the gluing map
(6.1.14) act on the graphs γ1 and γ2 in the system A. This amounts to working with states
|ψA⟩ ∈ HA of the form:

|ψA⟩ = PB (αγ1 |ψ1⟩ + αγ2 |ψ2⟩) (6.2.8)
=

∑
{nl∈∂γ1}

∑
ι⃗

(ψγ1){ml∈∂γ1}⃗ι

⊗
l∈∂γ1

|jlnl⟩ ⊗
⊗

x

|⃗jxι⃗x⟩ +

∑{
m′

l∈∂γ2

}∑
ι⃗

(ψγ2){ml∈∂γ2}⃗ι

⊗
l∈∂γ2

|jlml⟩ ⊗
⊗
x′

|⃗jx′ ι⃗x′⟩ (6.2.9)

where the tensor product defined above ⊗l∈∂γi
defines the projection onto the maximally

entangling link state of the edge specifying the combinatorial pattern of the graph γi. The
set of magnetic indices associated with the internal links are denoted by ml∈γi

and the open
ones living (basically defining) the boundary are labeled by ml∈∂γi

. In the same manner,
the entangled superposition of graphs in B is obtained from the graphs δ1 and δ2. The
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wavefunction of the resulting state |ψδ1⟩ is then identified with the graph having internal
links ℓδ1 = (y, tδ1(y); j) and the same applies for δ2. The bipartite state is given by the
tensor product of the above states and we can then proceed to performing the boundary
gluing procedure.

This can be realized by applying the gluing map again according to the biadjacency
matrix encoded in C:

|ΨΓ⟩ =
∏

c:mzezf =1

∏
{ze<zf }

Pze⊗zf
c |Ψ⟩ = P∂ |Ψ⟩ . (6.2.10)

Note that we introduced pc the class of patterns that overlap or belong to the same class
of connectivity. In the case of a simple superposition of two states for each Hilbert
space, we can write all possible combinations of such patterns as pc = [P [γi], P [δj]] =
[γ1δ1, γ1δ2, γ2δ1, γ2δ2]. This is translated in the wave function of the bipartite graph imple-
menting the boundary gluing, we obtain the more general entangled bipartite state

|ΨΓ⟩ =
∑

{ml∈∂γ1}

∑
ι⃗γ1

∑{
ml∈∂[11]

}∑
ι⃗[11]

((
ψ[11]

)ι⃗[11]

{ml∈∂}

) ⊗
l∈∂γ1

|jlγ1
mlγ1

⟩
⊗

l∈∂[11]

|jl[11]ml[11]⟩ ⊗
⊗

x

|⃗jvιx⟩

×

 ∑
{ml∈∂δ1}

∑
ι⃗δ1

(ψδ1)ι⃗δ1
{ml∈∂γ}

⊗
l∈∂δ1

|jlδ1
mlδ1

⟩ ⊗
⊗

y

|⃗jyιy⟩



+

 ∑
{ml∈∂γ2}

∑
ι⃗γ2

((
ψ[21]

)ι⃗[21]

{ml∈∂}

) ⊗
l∈∂γ2

|jlγ2
mlγ2

⟩
⊗

l∈∂[21]

|jl[21]ml[21]⟩ ⊗
⊗
x′

|⃗jx′ιx′⟩


 ∑

{ml∈∂δ1}

∑
ι⃗δ1

(ψδ1)ι⃗δ2
{ml∈∂δ1}

⊗
l∈∂δ1

|jlδ1
mlδ1

⟩ ⊗
⊗
y′

|⃗jy′ιy′⟩

+ (δ1 → δ2)

where we have(
ψ[ij]

)ι⃗[ij]

{ml∈∂}
=

∑
{ml∈LA}

∑
{ml∈LA∪LB }

∑
{p}

∑
{q}

∏
x

(fx)j⃗x

n⃗xιx

∏
lγi ∈LA

δmi
xpxy

i
δmi

ypxy
i

∏
lγi ∈LA∪LB

δmi
xqxy

i
δmj

yqxy
j

(6.2.11)

and [ij] denote the bracket i-th pattern belonging to γ class of connectivity and j-th pattern
of the δ one and denoting the set of overlapping connected edges belong simultaneously to
both graphs constructed out of the respective entanglement pattern (adjacency matrix).
Notice that we considered the graphs in region A as the reference ones with we connect
the vertices to those in the region B, hence the compact notation above.
Let us denote by ∂C[γδ] the inner boundary of the bipartite graph that contains the open
links that resulted from the gluing according to the patterns pc ∈ [γ1δ1, γ1δ2, γ2δ1, γ2δ2].
We can construct the density matrix of the above bipartite system and in order to do this
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in a compact manner and transparent to the combinatorial nature of the states, let us
introduce the notation with the implicit sum of the representation labels

∑
{ml∈∂γ1}

∑
ι⃗γ1

∑{
ml∈∂[11]

}∑
ι⃗[11]

((
ψ[11]

)ι⃗[11]

{ml∈∂}

) ∑
{ml∈∂δ1}

∑
ι⃗δ1

(ψδ1)ι⃗δ2
{ml∈∂δ1} ≡

∑
ψ (γ1, δ1, [γ1δ1])

(6.2.12)⊗
l∈∂γ1

|jlγ1
mlγ1

⟩
⊗

l∈∂[11]

|jl[11]ml[11]⟩ ⊗
⊗

x

|⃗jvιx⟩
⊗

l∈∂δ1

|jlδ1
mlδ1

⟩ ⊗
⊗
y′

|⃗jy′ιy′⟩ ≡ |γi , δj , [γi , δj]⟩ .

(6.2.13)

Assuming that the pairs of graphs in each “layer” of the superposed bipartite state we are
considering are of equal size but have different combinatorial patterns, the density matrix
entails terms of the form∑

|ψ (γ1, δ1, [γ1δ1]) |2 |γ1 , δ1 , [γ1 , δ1]⟩ ⟨γ1 , δ1 , [γ1 , δ1]| , (6.2.14)

applied to the set of the four connectivity patterns of the bigraph. Hence, we can write it
as

ρI =
4∑

i=j=1
|ψ (γi, δj, [γiδj]) |2 |γi , δj , [γi , δj]⟩ ⟨γi , δj , [γi , δj]| . (6.2.15)

Bear in mind the above expressions still do encode the data labeling the open links and
connected ones. As in the simple case we encountered above (with no superposition) we
can define the dimension of the intertwiners that contain the links connecting vertices in
the region A and B by means of the biadjacency matrix, namely

D[γ, δ] ≡
∏

ci
ze,ze

D[Iz] =
∏

ci
ze,ze

Dj⃗

d∏
dji
,→ log (D[γ, δ]) , (6.2.16)

One can then trace over the region B degrees of freedom, namely the internally connected
vertices to obtain the reduced density matrix ρA

I . The entanglement entropy for the above
state can be computed

SA =
4∑

i=1
log

∑
i

∏
j

D[γi]D[γi, δj]
 . (6.2.17)

Let us see in the next section how can we generalize this to any number of superpositions
and not only a pair of them in the bipartite system.

6.2.2 Generalization to an arbitrary number of superposition

We are now interested in generalizing the above case of graph superposition to include
an arbitrary number of superpositions. To this scope, we rely on the broad construction
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in section 6.1.2 In order to make the notation more compact, we work in the spin basis
following the labeling defined in (6.1.30). In the spin graph basis, the density matrix is
given by:

ρAB = |ΨΓ⟩ ⟨ΨΓ| =
( N∑

k=0
ξk |Γk⟩

)( N∑
k=0

ξ∗
k ⟨Γk|

)
,

where the explicit form of the states are given in (6.1.29). Recall that the open links
decorated with the combinatorial patterns live on the boundary ∂C of the regions A and
B (see figure 6.1). Furthermore, the sum over the spin basis degrees of freedom is implicit
and defined in section 6.1. This is again a Cauchy product including complex wavefunction
coefficients. The bipartite density takes the form:

ρAB =
2N∑

q′=0

 2N∑
q′=1

(
ψι⃗

ml∈∂C[γiδj ]

)
q′

q′∑
s=0

(
ψι⃗

ml∈∂C[γiδj ]

)
q′−s

 (6.2.18)
∑

pc

⊗
l∈∂C[γiδj ]

|∂γiδj
⟩ ⊗

⊗
y,x

|⃗jx,y , J⃗x,y⟩


q′

∑
pc

⊗
l∈∂C[γiδj ]

⟨∂γiδj
| ⊗

⊗
y,x

⟨⃗jx,y , J⃗x,y|


q′−s

,

where the bar notation refers to considering the complex conjugate. Notice that the coef-
ficients appearing in the above state can be stored in the following matrix

DAB =


d11 d12 . . .
... . . .

dN 1 dN N

 =


ξ1ξ

∗
1 ξ1ξ

∗
2 . . .

... . . .
ξN ξ

∗
1 ξN ξ

∗
N

 (6.2.19)

The above product reflects the peculiar property that a quantum superposition of states
puts on the table, which is that of interference. Indeed, the expression of the state in
(6.2.18) is nothing but an entity that encodes the interference of all possible superposition of
the quantum states of geometry. In fact, it decomposes into two types of series of products,
namely that of coherent and incoherent superposition that we will denote respectively by
C and I. The terms that will contribute to C are the off-diagonal ones, whereas those
entering I appear in the diagonal of the matrix D. This distinct separation can be traced
back to the structure of the GFT Hilbert space we working with. As we emphasized earlier
in section 6.1, entanglement states with different combinatorial patterns are not necessarily
orthogonal as in the case of the LQG ones, where in the latter, the incoherent term will not
appear due to such orthogonality. In particular, only terms that carry the index 2q′ = s
enter the incoherent contribution C and it reads:

I =
2N∑

2q′=s

∣∣∣∣∣
(
ψι⃗

ml∈∂C[γiδj ]

)
q′

∣∣∣∣∣
2
∑

pc

⊗
l∈∂C[γiδj ]

|∂γiδj
⟩ ⊗

⊗
y,x

|⃗jx,y⟩


q′

 q′∑
p=0

⊗
l∈∂C[γiδj ]

⟨∂γiδj
| ⊗

⊗
y,x

⟨⃗jx,y|


q′−s

(6.2.20)
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where we end up with a generic sum over the square modules of all possible wavefunctions
entering the superposition. On the other hand, in the case 2q′ ̸= s, we come across the
case of incoherent states. This additional cross-term is rather more involved. Notice that
for the above-constructed state (6.2.18), we encounter a very interesting critical crossroad
where we have to distinguish between two situations:

1. We are dealing with different numbers of vertices and hence the mixed terms including
the graph coefficients with different patterns and sizes will vanish and we end up with
all terms for the coherent possible combination of states.

2. We are dealing with a graph of equal size since graph states with different combina-
torial patterns and equal size are not orthogonal.

Furthermore, notice that the state ρ of the bipartite system already has a form that will
facilitate the computation of the von Neumann entropy.

Incoherent interference

Let us start by investigating the entanglement entropy we could extract from the first case
mentioned above. The crucial part to not be ignored in this case is the size of the graph
in consideration. It has been extensively studied in [36, 131]. Since we are dealing with
different numbers of vertices, the coherent term C governs the quantum geometries and
in this case, it is simply a sum over the modulus square of the linear combination of the
graphs states in (6.2.20). To proceed to the computation of the von Neumann entropy for
so far studied bipartite system, we explicitly define the operation of the trace, since we
have an overcounting of degrees of freedom, namely that of the shared links between the
two graphs. Let us consider a set of basis states in HB and we trace out the system B
degrees of freedom. The resulting reduced density matrix then reads ρ reads:

ρA =
2N∑
s

∣∣∣∣(ψι⃗
ml∈∂C[γiδj ]

)
s

∣∣∣∣2
 ⊗

l∈∂C[γiδj ]

|∂γiδj
⟩ ⊗

⊗
x

|⃗jxι⃗x⟩


s

 ⊗
l∈∂C[γiδj ]

⟨∂γiδj
| ⊗

⊗
x

⟨⃗jxι⃗x|


s

.

(6.2.21)
We can write the above-reduced density matrix in a simpler form, where we make a dis-
tinction between the state describing the boundary and that of the bulk

ρA =
2N∑
s

∣∣∣∣(ψι⃗
ml∈∂C[γiδj ]

)
s

∣∣∣∣2
 ⊗

l∈∂C[γiδj ]

ρA
∂


s

(⊗
x

ρbulk
A

)
s

. (6.2.22)

Notice that the above decomposition is only possible since we are considering the case
of fixed spins, allowing the factorization of the vertex wavefunctions. Before proceeding to
derive the entanglement measure for the above states, let us set the dimensional notation
straight.
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• We denote the dimension of the representation space Vj associated to a link carrying
the color i with Dji

and it reads Dji
= 2ji + 1 (we replace i with j for the system B).

• We denote the dimension or representation of a connected graph by D[γi] and D[δj],
for the subsystems A and B respectively, this is basically the intertwiner dimensions,
since the after applying the gluing procedure, we end up with a maximally entangled
state. The exact expression thereof can be extracted only in special cases, such as
4-valent vertices.

Furthermore, let us recall that in the special case of the factorized wave function over the
single-vertex, we are dealing with frozen boundary spin for each graph entering the super-
position. Now, let us introduce what we will call the weight of a graph with characterizing
combinatorial pattern γi with respect to the total set of graphs

qγi
=

∣∣∣∣ψι⃗
ml∈∂C[γiδj ]

∣∣∣∣2∑
γi

∣∣∣∣ψι⃗
ml∈∂C[γiδj ]

∣∣∣∣2 , (6.2.23)

which can be interpreted as the weight of a state associated with the wave function in the
numerator. We define the dimension functions:

ω(D[γi]D[γi, δj]) ≡ ω(D[γi])ω(D[γi, δj]) =
∑
γi

∑
[γi,δj ]

D[γi]
∏
j

D[γi, δj] , (6.2.24)

Computing the von Neumann entropy amounts to:

SI (ρA) = S

( N∑
s

qγi

)
+

N∑
s

qγi

ω(D[γi]D[γi, δj])
log

[ N∑
s

qγi

ω(D[γi]D[γi, δj])

]
(6.2.25)

= S (Qγi
) +Qγi

ω (Dx) log
[
Qγi

ω
(
ω(djγi

dj[ij])
)]
, (6.2.26)

where we introduced Qγi
= ∑N

s qγi
. Spin network states have probability interpretation as

well. The first term appearing in the entropy can be interpreted as the probability of find-
ing a state with the weight qγi

. The above entanglement entropy contains the correlation of
the bulk degrees of freedom, including those that reflect the internal connectivity and that
which threads the bipartite system. In the more generic case, when one considers states
that are not factorized over the single vertex wave functions, one can observe that one
can distinguish between spin- and vertices-correlations since the intertwiner entanglement
would depend on the special form of the vertices wave function. Recall that we made the
assumption of separating boundary-crossing vertices with those who undertook the role of
internal connectivity. Now, if we ignore this restriction, one can expect a further compli-
cated expression for the intertwiners entanglement entropy. In the sense that, we would
have correlations between the intertwiner in the bulk of region A with those in the region
B.



134
6. Entanglement in superpositions of spin network states with different graph

structures

The expression in (6.2.25) is very similar to the LQG calculations for a superposition of
graph states [193]. The entropy depends on the bulk degrees of freedom since they reflect
those of glued links and hence the degrees of freedom responsible for the correlations. As
we will see in the following the situation is different when we are dealing with the same
number of vertices entering each superposition.

Coherent superposition

Let us define some entropic notions that we will use to formally write down an expression
for the off-diagonal terms contributing to the entropy of ρAB in (6.2.18) borrowed from
QIT [37–39]. The coherent term appearing in the density reflects the interdependence and
interconnectivity within each subsystem as well as the total system. In the following, we
define first the joint entropy and marginal entropy in order to facilitate the computation
of the entanglement entropy within the superposition of the graphs in the case of coherent
interference.

Entropic notions from Quantum information theory. We exploit the definition
of the multivariate entropy also called the interaction information. This is basically the
generalization of the mutual information in QIT. To facilitate the comprehension of this
entropy, we can consider the states that are elements of the coherent term of the density
as an ensemble that reflects their interconnectivity despite the fact of being characterized
by different combinatorial patterns.

Definition 10. The joint overlapping connectivity over the gluing elements described by
two entanglement graphs characterized by the pair of quantum combinatorial patterns is
given by

S [γ1 , δ1] = −
∑

γ1 ,δ1

P (ψγ1 , ψδ1) logP (ψγ1 , ψδ1) , (6.2.27)

where

P (ψγ1 , ψδ1) =
∑

γ1 ,δ1

∫ ∏
x

dg
∏
y

dk Ψι⃗
ml∈∂C[γ1δ1]

Ψι⃗
ml∈∂C[γ1δ1]

|ψγ1⟩ ⟨ψδ1| . (6.2.28)

The generalization to an arbitrary NA and NB is straightforward and it is given by

S [{γi}, {δj}] = −
∑

{γi},{δj}
P
(
ψγ1 , · · · , ψγi

;ψδ1 , · · · , ψδj

)
logP

(
ψγ1 , · · · , ψγi

;ψδ1 , · · · , ψδj

)
.

(6.2.29)

The marginal entropy associated with a set of superposition of states is nothing but
the entropy S[δj], S[γi] and all possible combinations of i, j given in S[{γi} , {δj}]. Now
the interaction information is defined as:
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Definition 11. Given a collection of combinatorial patterns {γi}, {δj} and {[γi, δj]}, the
wavefunction whose quantum parameters are labeled by such a collection defines a proba-
bility distribution. The multivariate mutual information is equal to an alternating signed
sum of all the marginal entropies and is called in this case the interaction information:

I (γ1 : γ1 : · · · : γNA
) := −

∑
z∈P(NA)

(−1)|z|S
[
γ1, γ1, · · · , γ|z|

z

]
(6.2.30)

where P(NA) is the power set of the set of connectivity patterns {γi}. We drop the explicit
reference to the state and content of the notation solely to the pattern of the underlying
graph.

Notice that this is already expressed in the superposition of spin network graph states
due to the Cauchy product. The single pattern case (where a bipartite system is absent)
is equal to the entropy, I(γ) = S(γ), and the binary case is equal to the standard mutual
information between two systems with different classes of combinatorial structures, and
the ternary case is for example

I(γ1 : γ2 : γ3) :=
∑

P (γ1, γ2, γ3) log P (γ1, γ2)P (γ1, γ3)P (γ2, γ3)
P (γ1, γ2, γ3)P (γ1)P (γ2)P (γ3)

. (6.2.31)

It is still unclear if the mutual information can be negative as in the case of sets in quantum
information theory. Now, let us take a closer look on the coherent contribution in the
density ρAB. As we already emphasized, the terms defining coherent interference are of the
shape

∫ ∏
x

dg
∏
x

dk
(

· · · Ψι⃗
ml∈∂C[γiδj ]

Ψι⃗
ml∈∂Cγi

|ψγi
⟩ ⟨ψ[γiδj ]| + · · · Ψι⃗

ml∈∂Cγi
Ψι⃗

ml∈∂Cγk
|ψγi

⟩ ⟨ψγk
| +

(6.2.32)

· · · Ψι⃗
ml∈∂Cγi

Ψι⃗
ml∈∂Cδk

|ψγi
⟩ ⟨ψδk

| + · · ·
)
,

For the case of the same number of vertices we are dealing with the coherent terms
that appear in the density matrix are the ones corresponding to the off-diagonal entries.
This is a direct manifestation of the superposition of the states we are working with and
more importantly, the GFT Hilbert space which allows it. Indeed, in the LQG case, this
term appearing at the level of the density is prohibited due to the orthogonality of states
with different connectivity. The von Neumann entropy in this case will have additional
contributions coming from it. The degrees of freedom from region B can be traced out
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from the state in (6.2.18) and we can write the density matrix as

ρA =
∏

γi,p[ij]

|ψ (γi, [γiδj]) |2 |γi , [γi , δj]⟩ ⟨γi , [γi , δj]| (6.2.33)
∑γi,p[ij]

|ψ (γi, [γiδj]) |2 |γi , [γi , δj]⟩ ⟨γi , [γi , δj]|∏
γi,p[ij]

|ψ (γi, [γiδj]) |2 |γi , [γi , δj]⟩ ⟨γi , [γi , δj]|

+
∑

γi,p[ij],i ̸=j ψ (γi, [γi, δj])ψ∗
(
γi, p[ij]

)
|γi , [γi , δj]⟩ ⟨γi , [γi , δj]|∏

γi,p[ij]
|ψ (γi, [γiδj]) |2 |γi , [γi , δj]⟩ ⟨γi , [γi , δj]|

 . (6.2.34)

Rearranging the above expression of the entropy and using the notation defined in (6.2.29)
along with the definition of interaction information entropy defined in (6.2.30)) we can
compute the correlations between the regions A and B and the internal ones as well. This
yields

SC(ρA) = S (Qγi
) +Qγi

ω (Dx) log
[
Qγi

ω
(
ω(djγi

dj[ij])
)]

+ I (γ1 : γ2 : · · · : γNA
) (6.2.35)

= SI
A + I (γ1 : γ2 : · · · : γNA

) . (6.2.36)

The interaction information obtained above specifically quantifies the amount of informa-
tion depicting the entanglement entropy of the degrees of freedom inside region A and the
overlap with region B, hence the product appearing in the log function. The additional
third term arises due to the entanglement of the superposition of states we considered.
Notice that this disappears the more the connectivity patterns in the overlapping regions
are similar, till the coherent contribution “collapses” and we return to the incoherent en-
tanglement density. Such a process can be dynamical or kept track by introducing an
operator that can count the closeness of graph connectivities. In this sense, one can also
regard the above entanglement entropy as a tool to measure how close the states are in our
superposition, hinting at the description of a pre-metric. We leave this inquiry for future
work and how we can compute observables based on such superposed states.

6.2.3 Observables in bipartite regions

The superposition of entanglement graph states we constructed in section 6.1 are the most
generic state that are elements of the full Hilbert space of the theory. In a bipartition
of Hilbert space, we encountered in section 6.2 that density state ρAB is controlled by
two contributions, namely that of coherent and incoherent states. This was also detected
at the level of the entanglement entropy of the reduced density states, containing all the
information needed about the correlation between the subregions A and B and within
each one. Now, using this prescription provided by the superposed density states and the
powerful information reduced densities provide, we can derive the expectation value of an
operator OA in the region A and its action on the entangled bipartite state.
Due to the tensor product structure of the bipartite Hilbert space HAB, we can write the
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operator OA acting on the degrees of freedom in HA as

OA = OA ⊗ 1B , (6.2.37)

where 1B is the identity operator acting in the Hilbert space HB. The expectation value
of this observable in the superposed state ψAB then reads

⟨OA⟩ = ⟨ψAB| OA ⊗ 1B |ψAB⟩ = Tr (OAρA) = Tr
(
OI

A + OC
A

)
, (6.2.38)

where introduced the coherent thanks to (6.2.33) and incoherent (6.2.21) decomposition of
the expectation value of the observable in the reduced state ρA

OI
A = OAI , OC

A = OAC . (6.2.39)

The consideration of a superposition of spin network states with different combinatorial
structures allows us to introduce the notion of ensemble. The expectation value of an
operator is then perceived as being averaged over this ensemble. Then quantum effects
are expected to be present due to the coherent contribution, underlying the interference
phenomena.

6.3 Second quantization of superposition of entangled
graph states

Labeling vertices is merely a tool that allowed us to some extent to keep track of the
entanglement calculations we presented and physically it is void of any meaning. This is
the reason why up to this point, we considered graphs with vertices that are distinguishable
to keep in some sense control of the connectivity and complexity of the graph. As was
already mentioned in section 4.3, in the context of group field theories, working with graph
states and in particular their superposition is equivalent to dealing with a labeled fixed
number of vertices in the pre-Fock space of the theory (4.3.6). In such quantum gravity
models, considering the full theory is translated to studying an arbitrary number of vertices
of a graph instead of a fixed one and symmetrizing over them at the level of the respective
wavefunctions. This transitions the states living in the pre-Fock space of the theory to
a first-quantized one, which is the needed step towards introducing the GFT Fock space
whose elements are characterized by wavefunctions that are symmetric under permutations
of the vertex set.
We are interested in translating the so-far developed tools of bipartite wavefunctions to a
second quantized one since the full theory is endowed with a Fock-structure for the Hilbert
space. Therefore, in section 6.3.1 we render our labeled superposed graph states unlabeled
by symmetrizing over the set of vertex labels. In section 6.3.2, we present a proposal for
describing the superposition within the GFT Fock space. More importantly, we focus on
the trails of the superposition within the expression of the density operator.
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6.3.1 Bipartite wavefunction symmetrization

In the following, we present the main results of the symmetrization procedure that we are
implementing in the bipartite system considered so far. Let us recall that the Hilbert space
of multi-particle states for two regions is given by (6.1.5), where the N -particle states that
constitute these spaces are depicted in the expression (6.1.6). The pre-Fock space of the
theory is given by pre-F(H) = ⊕∞

N=1HN , within which the superposition of graph states
(6.1.27) live. In the group representation, the corresponding wave functions read

Ψ
(
{glx}, {kly}

)
=

N A+N B∑
i=0

i∑
k=0

∫ ∏
x<tγi

dhxtγi

∏
y<tδjl

dhytδjψi

({
gx

γi
h

xtγi
tγi

})
ψjl

({
kk

δjl
h

ytδj

tδjl

})
.

(6.3.1)
Clearly, we are dealing with two different sets of vertices, namely that belonging to the
graphs {ΓA} and {ΓB} which pose two ways of performing the symmetrization. One can
proceed by symmetrizing over each set of vertices separably and then gluing the super-
position of states living on the two Hilbert spaces, underlying therefore the entanglement
between the two regions. However, this operation should commute with the one where
we entangle the two graphs as discussed in section 6.1 to obtain the set of the bipartite
states and then symmetrize the wavefunction of the bipartite system. In the following,
we proceed with the latter. There are many reasons why this is more convenient for the
purposes of this thesis, maybe the most important one is, in some way, to make evident
which degrees of freedom are entangled and according to which combinatorial pattern.
This is reasonable since we are symmetrizing only after having implemented the gluing
procedure. Moreover, following this approach underlines the importance of the quantum
information-combinatorial feature that governs the graph structure in promoting some de-
grees of freedom over others.
Let us now consider the symmetrization map acting on the two sets of vertices (NA , NB)
that reads

Pπ : {x, y} → π(x, y) , (6.3.2)

where the permutation operator Pπ acts on {x, y} ∈ (NA , NB) vertices. Notice that the
unlabeling operation once it acts on every single graph, transforms the superposition-
notion of the graph states we studied so far. Indeed, once we symmetrize over the vertices
of each graph with certain combinatorial patterns {γi}, the induced indistinguishably will
collect all those graphs that belong to the same class [Aγ], that are characterized by the
invariance of the adjacency matrix (see section 4.3). Thus the superposition is not over all
possible connectivity patterns, but rather over a selected set of adjacency classes. Under
the symmetrization operation, the graph wave function (6.3.1) reads

PπΨ
(
{glx}, {kly}

)
=

∑
π∈SN

[N ]∑
i=0

i∑
k=0

∫ ∏
x<tγi

dhxtγi

∏
y<tδjl

dhytδjlψ
({
gπ(x)

γi
h

xtγi
tγi

}
,
{
k

π(y)
δj

h
ytδj

tδj

})
,

(6.3.3)
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where the map Pπ is responsible for the projection of the labeled graphs onto an invariant
subspace under N vertex relabeling SN and [N ] is the sum of the various graph classes
present in the subsystems A and B. The above symmetrization defines the GFT Fock space
in the case of a bipartite system. More precisely, symmetrizing the above-superposed graph
states leads to the indistinguishability of particles, and true entanglement can no longer
be separated from fake one.
It is in fact possible to express the symmetrized bipartite state in terms of the permanent
of graph matrix entailing the connectivity. The permanent of an n × n matrix A = (ai,j)
is defined as

P = perm(A) =
∑

σ∈Sn

n∏
i=1

ai,σ(i). (6.3.4)

The sum above is extended over all elements σ of the symmetric group Sn; i.e. over all
permutations of the numbers 1, . . . , n. For the case of the superposition of the graph states
of interest, this generalizes to a sum over the permanent of all graph matrices encoding
the connectivity of each superposition. In particular, the permanent will keep track of the
internal (off-diagonal) and boundary-crossing connectivity. The above-symmetrized states
become

|Ψ⟩ =
[Nk]∑
k=0

Pπ

∑
σ∈Sn

n∏
i=1

ai,σ(i)[N ] |ψAB⟩ . (6.3.5)

6.3.2 Superposition of graph states in the GFT Fock space

Several assumptions are needed in order to second quantize the bipartite pre-Fock Hilbert
space. We assume that we can introduce two families of creation and annihilation operators.
This should correspond to a tower-like decomposition of the creation/ annihilation operator
constituting the GFT field. Each family is a superposition of operators that create a
number x of particles that carry certain combinatorial structures belonging to either {γ, δ}.
The symmetrization over the set of vertices can be discarded in this case, since it is insured
by the commutation relation of the operators. This way we could to some extent and
in some sense survey the combinatorial pattern. However, we need to assume that the
creation/annihilation operators can be decomposed in a set of combinatorial modes and
that in order to create/annihilate a vertex (with a set of d links, that indirectly in this
picture carry the connectivity patterns) the superposition of these modes act on the vacuum
state |0⟩. Practically, this amounts to writing the

ĉ†
a =

∑
i

ĉ†
aγi , d̂†

a =
∑

j

d̂†
aδj
. (6.3.6)

To each set of creation/annihilation operators, we can introduce the corresponding pseudo
number operator

N̂ĉ =
∑

i

ĉ†
aγi ĉaγi , N̂d̂ =

∑
i

d̂†
aδi
d̂aδi . (6.3.7)



140
6. Entanglement in superpositions of spin network states with different graph

structures

Entangling the respective particles amounts to considering the set of operators:
t† =

∑
i

ĉ†
aγi

∑
j

d̂†
aδj
, (6.3.8)

such that ĉ†
a and d̂†

a commute, acting on the vacuum state. If we were to consider the other
scenario where we perform the gluing at the very end of the symmetrization which leads
to introduce a single set of creation and annihilation operators, it should be in principle
equivalent to the above product in (6.3.8). However, this is only valid once we take seriously
the above assumptions. An entangled bipartite state in the second quantized language then
read:

|Ψ⟩ = t† |0⟩ =
∑

i

ĉ†
aγi

∑
j

d̂†
aδj

 |0⟩ . (6.3.9)

From this construction, one can write also work in the particles number basis, where we
have now (6.3.7) by

|Ψ⟩ =
∑

n

Cn |n1 · · · , nT ⟩ , (6.3.10)

where Cn is the wavefunction encoding the information coming from the first quantiza-
tion procedure and T is the total number in the bipartite system. From the tower-like
decomposition of the creation and annihilation operators, one can define the bosonic field
operators:

φ̂ (g1, · · · , gd; k1, · · · , kd′) ≡ φ̂({gi}, {kj}) =
∑
Sij

t̂ ψSij ({gi}, {kj}) , (6.3.11)

φ̂† (g1, · · · , gd; k1, · · · , kd′) ≡ φ̂†({gi}, {kj}) =
∑
Sij

t̂† ψ∗
Sij ({gi}, {kj}) , (6.3.12)

where Sij denotes the set of all graphs and their respective quantum numbers characterizing
the field modes. They satisfy the commutation relations:[

φ̂(g⃗, k), φ̂† (g⃗′, k′)
]

= IG (gi, g
′
i, ) IG

(
kj, k

′
j,
)
, (6.3.13)

[φ̂(g⃗, k), φ̂ (g⃗′, k′)] =
[
φ̂†(g⃗, k), φ̂† (g⃗′, k′)

]
= 0 (6.3.14)

where IG (gi, g
′
i) ≡

∫
G dh

∏d
1 δ
(
gih (g′

i)
−1
)

is the identity operator on the space of gauge
invariant fields, that is encoding the gauge invariance condition at the spin network vertices.
Note that we are dealing with a second quantized version of the already entangled labeled
graph states, which is made clear once we examine the resulting group element obtained
after the group averaging operation that appears as an argument in the field operators.
This can be made evident when we write down the second quantized bipartite state:

|Ψ⟩ =
∑
Sij

∫ ∏
δj

dhytδj

∏
γi

dhxtδi φ̂†
(
gxhxtγi , kyhytδj

)
|0⟩ . (6.3.15)

The density matrix ρ = |Ψ⟩ ⟨Ψ| in second quantization reads

ρAB =
∑
Sij

∫ ∏
δj

dhytδj

∏
γi

dhxtδi φ̂†
(
gxhxtγi , kyhytδj

)
φ̂
(
gxhxtγi , kyhytδj

)
|0⟩ ⟨0| . (6.3.16)
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Bipartite density matrix in the number-basis Let us denote the bipartite number
basis of the Fock space by

Cn |n1 · · · , nT ⟩ = |nab⟩ = |n1
a⟩ |n1

b⟩ · · · |nN
a ⟩ |nN

b ⟩ ,

and write the density state in this basis:

ρ =
∑
Sij

C
(
n1

ab, · · ·nt
ab

)
C∗
(
n1

ab, · · ·nt
ab

)
|nab⟩ ⟨nab| . (6.3.17)

where the same information content of the wave function is stored in different coefficients
C
(
ni

1, . . . , n
i
f , . . .

)
that will keep track only of the occupation numbers of a certain combi-

natorial pattern, i.e. the number of times each single-vertex with a certain combinatorial
degree of labels appears. To compute the partial trace we have to define a product op-
eration between bra and ket of different numbers of particles. The degrees of freedom of
the bipartite system in the Fock picture are encoded in the occupation number states. On
the level of the operation performed entering the entropy calculations, this means the in-
formation we are interested in is stored in this type of state, which simultaneously depicts
the same information formulated in the first quantized language of the states but with a
peculiar reordering and classification. Following this line of reasoning, the partial trace
operation that is conducted in order to map out the degrees of freedom that defines states
living on HB can be understood as tracing out all the number of particles endowed with
the same degrees of freedom (with possibly very different storage of that information) over
the bipartite density states5.
In order to properly define this step, it is necessary to underline the combinatorial aspect
of the theory. In fact, the different ways in which the quanta can fill the modes in the
states of (6.3.17) can be expressed in terms of the combinatorial pattern that governs the
bipartite graph. For instance, we can examine the kth particle state that admits k building
blocks and where we are ignorant which particle carries one of the entanglement patterns
{γi, δj} depicting, therefore, an element of the adjacency matrices set. In this context, a
k-permutation of {γi} is an ordered arrangement of k elements of {γi}, where different
orderings of elements of this type are not distinguished. This is an ordered multiset and
repetition numbers s1, . . . , s|{γi}| such that si ≤ ri, 1 ≤ i ≤ |{γi}| = Nγ, and ∑Nγ

i=1 si = k.
Recall that ∑a=1 na = NA and ∑

b=1 nb = NB such that the total number of particles is
T = NA +NB. We can express each particle state in a different, more convenient way mak-
ing evident the combinatorial pattern present in each state. This is equivalent to relabeling
the occupation number basis with the set of permutations over the possible connectivity:

|n1, · · · , na ,Pγ⟩ =
(
na

Nγ

)
1√
na!

(
c†
)a

|0⟩ , Pγ = 1, 2, . . . ,
(
na

Nγ

)
, (6.3.18)

|n1, · · · , nb ,Pδ⟩ =
(
nb

Nδ

)
1√
nb!

(
d†
)b

|0⟩ , Pδ = 1, 2, . . . ,
(
nb

Nδ

)
. (6.3.19)

5As long as not mentioned otherwise, we work in the case of fixed spin at the shared boundary between
the two regions.
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The bipartite basis states then read:

|n1, · · · , nt⟩ = |n1, · · · , na ,Pγ⟩ ⊗ |n1, · · · , nb ,Pδ⟩ (6.3.20)
= |{na,Pγ}, {nb,Pδ} ,PT ⟩ , (6.3.21)

where PT =
(

T
k

)
. We can now rewrite the density state in a more explicit way

ρ =
∑
Sij

∑
Pγ ,Pδ

C (n1, · · ·nt) C∗ (n1, · · ·nt) |{na,Pγ}, {nb,Pδ} ,PT ⟩ ⟨{na,Pγ}, {nb,Pδ} ,PT | .

(6.3.22)
This in fact allows us to introduce the assumption the number basis wavefunction can
be decomposed into a purely combinatorial factor (that can also explain the Shannon-
term present in the entropic calculations) and a reduced one that encodes the rest of the
information each particle in that basis pertains.
Now, let us define the tracing out operation in this case. If we are interested in the
quantum entanglement in the region A expressed by the von Neumann entropy, we should
be able to remove the B-particle degrees of freedom. These are encoded in the occupation
basis- states exhibiting the combinatorial feature spanning the Hilbert space HB given by
(6.3.19):

Tr ρAB =
∑
Nb

∑
NPδ

(
⟨{nb} ,Pδ|

∑
nij

∑
Pγ ,Pδ

C (n1, · · ·nt) C∗ (n1, · · ·nt) (6.3.23)

|{na,Pγ}, {nb,Pδ} ,PT ⟩ ⟨{na,Pγ}, {nb,Pδ} ,PT |
)

|{nb} ,Pδ⟩ .

This tracing operation can be understood as follows:

• The case where each vertex has at least one link. This is only possible if there are at
least as many vertices as links (N > k). This is the same as the number of partitions
of [N ] into k non-empty parts which we also call Stirling Numbers of the second kind
and write as sII

k (N).

• The Arbitrary number of patterns per particle. The case of an arbitrary number of
patterns per vertex is allowed. To count all arrangements, we first choose the number
i of vertices that should be non-empty (0 ≤ i ≤ k), then we can count the number of
arrangements of n patterns into the i vertex such that non of them are empty. This
gives a total of:

k∑
i=0

sII
i (N) .

• Noncrossing partitioning and counting of vertices Imagine the elements of [NT ] to
be laid out in a circular way. Two disjoint sets A,B ⊆ [n] are crossing if there are
numbers i < j < k < l ∈ [n] such that {i, k} ⊆ A, {j, l} ⊆ B. A non-crossing
partition is a partition in which the parts are pairwise noncrossing. We denote the
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number of non-crossing partitions of [n] by NCn.. This number NCn is equal to Cn,
the n -th Catalan number given by

NCn = Cn = 1
n+ 1

(
2n
n

)
. (6.3.24)

One can apply the above counting techniques for graph states carrying a set of different
patterns in the number basis, by assigning with each operation such as tracing out the B
degrees of freedom or the entanglement entropy calculation by the appropriate combinato-
rial counting coefficient (as the ones introduced above). As it is clear from the above cases,
this is rather more involved if we were to compare with the labeled graph and postpone it
to future work.

6.4 Conclusion

In this chapter, we considered for the first time the generic case of a superposition of spin
network states with different combinatorial structures. More precisely, we studied their
characteristics and the prescription to construct such states within a bipartite system in
section 6.1. The superposition is carried out in each region of the bipartition and then
works with the tensor product of the respective states. Our agenda of entangling these
states were carried out on two levels; first, we achieved internal gluing within each subsys-
tem of the bipartition and then performed the same operation on the level of the boundary
degrees of freedom. To accomplish this we relied on the notion of biadjacency matrix
borrowed from graph theory. We also discussed how these bipartite graph states enter the
LQG Hilbert space. We then illustrated the elementary steps to quantify such correlations
in section 6.2.1, where we emphasized that correlating two vertices in a bipartition pro-
duces an increase in the entanglement entropy proportional to the representation space of
the connecting link between the vertices. This is then generalized in section 6.2.2 to extract
the entanglement measure (von Neumann entropy) for the generic case of superpositions
of spin network graph states. The main result of this step is the appearance of coherent
and incoherent terms in the bipartite density state that led to an interference of quantum
geometries. The coherent contribution appeared only in the GFT Hilbert space since it
allows spin network states with different combinatorial structures not-be orthogonal, as
opposed to the LQG Hilbert space. This gave rise to an additional term in the entangle-
ment entropy that is called interaction information. This is interesting since this quantity
characterizes the interconnectivity of the entire superposition of the quantum states. This
term vanishes the more the connectivities patterns get closer to each other, which hints
towards a definition of pre-metric in this context. After these entropic reflections, we ex-
posed how we can use these states to compute observables and associated it with the idea
of averaging over an ensemble of quantum geometries. Finally, we presented a proposal
for a second quantization program for this class of states in section 6.3. In particular, we
stumbled upon the same issues raised in condensed matter physics [202]. Therefore, several
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assumptions were needed to be introduced in order to be able to formulate the idea of a
bipartition, bipartite density, and the operation of tracing out degrees of freedom. In turn,
this highlighted the complexity of the unlabeling operation of the superposition of graphs.
A last, let us mention that summing over graph structure is most likely an ingredient of
any coarse-graining procedure for the quantum gravity states and the asymptotic behavior
of it should be investigated. The work presented in this chapter is only the first step in a
broader research direction that we will explore in chapter 8.



Chapter 7

Cosmological group field theories as a
field theory on curved spacetime

Only a fundamental theory of QG, that has survived some consistency checks can de-
liver answers to the open physical problems concerning the physics of early cosmology.
A viable model should depict the transition from the fundamental building blocks of the
theory up to the emergence of continuum structures and therefore it is necessary to ex-
tract effective macroscopic dynamics of geometry and matter. This is precisely what we
explore in this chapter. In chapter 5 and 6 we discussed two approaches to addressing
the microscopic quantum geometry from the GFT point of view, where we pursued the
covariant approach of SF and provided a new model encoding the full geometric content
of 4d geometry, whereas in chapter 6 we initiated the investigation of the kinematical as-
pects of the GFT full theory quantum states, namely the entanglement graph states with
different combinatorial structures that are superposed. Despite their intriguing and ap-
pealing features from a mathematical and QG point of view, it is so far unclear how to
extract from them continuum geometries and physical predictions, which would usually
imply some process of coarse-graining of the relevant degrees of freedom. However, a more
successful route to tackle such issues is the mean field theory approach. In particular, to
reproduce cosmological scenarios, the mean field approach was successfully implemented
within the dynamics of the GFT condensate [203–205], which are a class of coherent states
characterized by the collective behavior of the fundamental GFT quanta as we discussed
in section 4.4 [206,207]. The dynamics are then defined in this setting in a relational man-
ner [77,167], namely with respect to massless scalar fields that play the role of a relational
reference frame [162, 163, 165], where the evolution of observables is taken with respect to
such fields (see section 4.4.2). Such notion of dynamical relationalism [208] is then defined
only for emergent quantities.

In this chapter we study in detail the resulting dynamics and the coupling of matter
to the GFT condensate entering two levels of the theory; when the background data is
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homogeneous and then when scalar perturbations are introduced.
In fact, the line of reasoning in this chapter is very simple and we lay it out in the

following. Since we know that the program of any background independent theory of QG
is a top-down approach [80], it is then widely believed to identify it at the semi-classical
level with some Extended Theories of Gravity (ETG) or Modified Gravity Theories (MGT)
[209,210]. Indeed, in the absence of a full well-tested theory of QG, several research fields
initiated frameworks departing from the GR construction by adding corrections and further
degrees of freedom to the EH action [211–213]. The logic behind it consists in studying
the additional information coming from considering higher order curvature invariants as
well minimally- or non-minimally- coupled scalar fields within the GR dynamics. This is
in turn perceived to be the extracted physics from an effective QG action that still needs
to be identified.

More importantly, a category of ETG that has had remarkable success in semi-classical
gravity and especially inflationary cosmology are modified theories of gravity that rely
on higher order corrections in curvature invariants and non-minimal couplings. In fact,
this turned out to be extremely related to the formalism of a QFT propagating on a
curved spacetime. Such description of matter exhibits its powerful predictions when faced
with small-scale physics, while, unlike the case of describing matter as the universe in the
language of a fluid [86, 214], we associate matter with quantum field theories instead of
living on a fixed gravitational curved background.

We show in this chapter how GFT predictions are indeed at the crossroads of QG
theories (see chapter 3), phenomenology of QG and MGT. The main objective of this
chapter is then to bridge the effective description of the GFT framework, with MGT (and
QFT) in the cosmological sector. Therefore, we will investigate the following problematic

1. Can we provide a formulation of a field theory propagating on a curved background
starting from the background independent GFT model? and what kind of field theory
does it describe?

2. How does this field theory behave at early- and late- times of the universe? In a
second stage, how does it affect the scalar perturbation?

To answer these questions we make use of the key elements provided by GFT incorpo-
rating pre-matter degrees of freedom, their kinematical aspects as well the dynamics that
were presented in section 4.4. In section 7.1.1 we go through the following points

∗ We provide solutions to the condensate dynamics at the level of the background
variables in terms of the scale factor. In particular, we focus on early time and late
time cosmologies.

∗ We then proceed with the same program to treat the dynamics of the inhomogeneities
in section 7.1.2 relying on several Analog Gravity (AG) techniques after having em-
bedded them within the GFT setting.
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In section 7.2, we proceed with the scheme of formulating a quantum field theory on
a curved background starting from the GFT model. To this end, we derive a relation
connecting the dynamics of the scalar field to the GFT condensate parameters. We do this
again for early time cosmologies and late times. In section 7.3, we analyze the treatment
of the scalar perturbation from a field theory living on a curved background point of view
and show how it is affecting the relational dynamics of the perturbed scalar field, where
we derive its dispersion relation. We close the chapter by summarizing the main results of
this work and we discuss its outlook in chapter 8.

7.1 Solving GFT effective dynamics

In this section, we show the demarche of solving the effective dynamics of the GFT con-
densate at the background level as well the perturbed one pointed out in section 4.4.2.
As already emphasized earlier, we are interested in extracting an effective formulation of
a quantum field theory on an emergent curved background for homogeneous geometries
and investigating how this affects the treatment of inhomogeneities. This is carried out
in a homogeneous isotropic cosmological setting, where we will formulate all the extracted
physical equations encoding the geometric- and matter-content of the universe in terms of
the scale factor. In order to dive into this, we work at the mean-field level of the extracted
dynamics of the GFT condensate by rewriting the evolution equations in terms of the
scale factor that can be identified with a = ⟨V̂ ⟩

1/3, where the volume operator is given by
(4.4.4) and the expectation value, as mentioned in section 4.4.2, is taken with respect to
the coherent states (4.4.14). We perform this step for the background as well the perturbed
condensate evolution equations. To this aim, we rely on the extracted dynamics presented
in section 4.4.2 where we illustrate the solutions depicting the background and perturbed
dynamics encoded in the GFT condensate quantum gravity parameters.

7.1.1 The dynamics of homogeneous GFT

As already emphasized, the first step towards a formulation of a QFT on cosmological
curved background from a quantum gravitational origin is to express the GFT condensate
parameters in terms of the scale factor a(x0, πϕ), that stems from the expectation value of
the volume operator. Hence, in the following, we present the formulation of the background
dynamics in terms of the scale factor. Moreover, we focus mainly on the simplest case of
a dominant spin value denoted by jv, since several studies indicated that this is the most
relevant case to reproduce results compatible with the predictions of general relativity and
cosmology, leaving the more involved case of including all possible values of spins for future
work. The explicit expression of the expectation value of the GFT volume operator was
already derived using the CPS in [77, 168] and it reads for the general case of a sum over
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different spin values:
⟨V̂ ⟩ ≃

∑
j

Vjρ
2
j (x,, πϕ) . (7.1.1)

One way of interpreting the above expression for the volume operator is the following;
the total volume is given by the sum over j of the average number of isotropic atoms
associated to spin j at a certain time χ0, and that are weighted by their particular volume
contribution Vj. Since we are focusing on the case where the volume expectation value is
dominated by a single jv contribution, (7.1.1) simplifies to ⟨V̂ ⟩ = Vjvρ

2
jv

. This is the case
in which all the spins are identically zero except for a non-zero jv. One justification for this
assumption is the fact that the background evolution is exponential for each spin value j
hence, the evolution of macroscopic observables such as the volume will be dominated by
jv. Several studies also support this assumption [76, 161, 215]. Taking into account these
considerations, the scale factor then reads

⟨V ⟩ = a3(x0, πϕ) , a(x0, πϕ) = Ṽjv

(
ρjv(x0, πϕ)

)(2/3)
, (7.1.2)

here we defined Ṽjv = V
1/3

jv
. For notation simplicity, we drop the spin label v from now on,

as well as the function’s dependence and refer to background quantities by the subscript 0.
In the first part of this section, we will be dealing with data of a homogeneous cosmological
background that our quantum gravity model provides at mean field level. Therefore, the
arguments of most of the functions we will encounter are always in terms of the relational
clock and/or the momentum πϕ of the coupled scalar field. We first reformulate the back-
ground evolution equation of the GFT condensate variables ρ0 and θ0 in terms of the scale
factor a and solve the associated dynamical equations. As we will see when we study the
matter content of the model (section 7.2 and 7.3), depending on such solutions and their
behavior in different regimes (early- and late- time cosmology), we can extract information
about the behavior of the matter scalar field and its coupling to the gravitational degrees of
freedom. Furthermore, such a perspective generates several insights about the parameters
characterizing the relational clock and rods.

Small GFT background density. Let us start with the density ρ0 as a function of the
scale factor (7.1.2) and derive it twice with respect to the relational clock χ0 to deliver the
ratio ρ̈0/ρ0. We are then able to recast the background equations appearing in (4.4.25) in
terms of a(x0) as the fundamental evolution equations for the background GFT condensate
phase θ0 namely;

D[θ0] ≡ (θ̇0)2 − γθ̇0 + η = 3
4

(
2ä
a

+ ȧ2

a2

)
, (7.1.3)

θ̈0 + 3ȧ
a

(
θ̇0 − γ

2

)
− βj = 0 . (7.1.4)

In the following we work in the case where β = 0 , αi = 0 (assumption EL.5 (hence
negligible) and EL.6). The motivation behind this approximation was studied in [164],
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where it was found that the regime for small βj is compatible with the decoupling regime
for first order perturbations and that is equivalent to setting αi = 0 since βj ∝ αi. The
roots for the above quadratic equation D[θ0] are given by

(
θ̇01,2 − γ

2

)
= ±

√√√√γ2

4 −
(
η − 3

4

(
2ä
a

+ ȧ2

a2

))
. (7.1.5)

The evolution equation for the background phase θ0 in (7.1.3) can be solved exactly. This
can be obtained once we render the second order differential equation appearing in (7.1.3)
to a first order one. More precisely, let us consider the change of variable Θ0 = θ̇0, then
the second equation in (7.1.3) becomes

Θ̇0 + 3ȧ
a

Θ0 − 3γ
2
ȧ

a
= 0 . (7.1.6)

Notice that the coefficients appearing in this differential equation are time dependent. The
general solution for such first order differential equation is given in terms of an integrating
factor ν(x0, πϕ) by

Θ0 =
(∫

ν(x0)3γ
2
ȧ

a
dx0 + c2

)
ν−1(x0) , ν = e

∫
3ȧ
a

dx0
. (7.1.7)

In our case the integrating factor is computed to be ν = e
∫

p(x0)dx0 = ec1a3 and the solution
for Θ0 is simply given by Θ0 = γ

2 + c2(e−c1a−3) with (c1 , c2) being integration constants.
Once we go back to the initial variable θ0, we find that the general solution of the back-
ground phase reads

θ0(x0 , πϕ) = γ

2x
0 + c2e

−c1

(∫ dx0

a3(x0, πϕ)

)
+ c3 , (7.1.8)

where c3 is an integration factor and it is important to mention that a priori, all introduced
constants can have a dependence on the scalar field momentum πϕ. The solution for the
background condensate density was derived in [168]. The differential equation for the
density (once we write it in terms of conserved quantities of the GFT condensate [77,156],
namely Qj and energy Ej) is given in (4.4.30) whose roots yield

ρ̇0 = ±

√√√√Ej −
Q2

j

ρ2
0

+ µ2
jρ

2
0 .

The general solution1 for such a differential equation is given by

ρ2
0 = − Ej

2µ2
j

+ Aje
2µjx0 +Bje

−2µjx0
, (7.1.9)

1Notice that late time solution (large volume values), depends on the sign we attribute to µj . In this
case, the solution for ρ0 simplifies further as we will discuss later on.
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where Aj and Bj are integration constants. By defining x0
m as the point at which the density

parameter reaches a minimum ∂0 (ρ2
0) (x0

m) = 0, we see that we are able to parametrize the
above expression for the squared density and it takes the form

ρ2
0 = −αj

2 +

√
α2

j + 4β2
j

2 cosh
(
2µj

(
x0 − x0

m

))
, αj ≡ Ej/µ

2
j , , β2

j ≡ Q2
j/µ

2
j . (7.1.10)

Recall that we are working in the case of a dominant spin value jv and hence the conserved
quantities are associated with this value only. Previous studies of the volume operator and
the derived modified Friedman equations from it showed that if at least one of the conserved
charges Qj’s is different from zero, or at least one of the conserved condensate energies Ej

is strictly negative, then the expectation value of the volume operator never vanishes.
Obviously, this case leads to a bouncing scenario replacing therefore the cosmological big
bang singularity in the very early universe [204]. We will further discuss this point once we
explore the matter content near the bounce within the GFT framework. Using the relation
between the scale factor a and ρ0 we can write down the explicit expression for the scale
factor in terms of the solution for the background density, namely

a(x0, πϕ) = Vj

(
− Ej

2µ2
j

+ Aje
2µj(x0−x0

m) +Bje
−2µj(x0−x0

m)
)1/3

. (7.1.11)

In order to avoid ambiguities that can be associated with the above expression of the
GFT scale factor, it is important to recall that we are considering early times effective
cosmologies and hence the variable x0, in this case, is always the clock value near the
bouncing event, i.e. x0 − x0

m. Now, we can compute the exact form of the phase in (7.1.8)
using the expression above for the scale factor. This explicitly reads

θ0 = γ

2x
0+c2e

−c1

Vj

1

2µj

√(
Ej

2µj

)2
− 4AjBj

(7.1.12)

×

i log


√(

Ej

2µj

)2
− 4AjBj − i(2Aje

2µj(x0−x0
m) + Ej

2µ2
j
)√(

Ej

2µj

)2
− 4AjBj + i(2Aje2µj(x0−x0

m) + Ej

2µ2
j
)

+ c4

 .
where c4 is an integration constant. This is the general solution for θ0 for a dominant spin
j ≡ jv, for small densities ρ0, characterizing, therefore, the background phase dynamics
at early times. Before proceeding to the case of large-density-solution of θ0, which indi-
cates late time cosmological predictions, let us define the following functions for notation
simplicity

∆1(πϕ) =

√√√√( Ej

2µj

)2

− 4AjBj , n(πϕ) = c2e
−c1

Vj

, b(πϕ) = Ej

2µ2
j

, (7.1.13)

X(πϕ , (x0 − x0
m)) = i log

[
∆1 − 2iAje

2µj(x0−x0
m) − ib(πϕ)

∆1 + 2iAje2µj(x0−x0
m) + ib(πϕ)

]
. (7.1.14)
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Note that, a priori there is no physical reason for the constant n(πϕ) not to depend on
the scalar field momentum πϕ, and this also applies to all integration constants. The
background phase takes then a simpler form:

θ0(x0 , (πϕ)) = γ

2x
0 + n(πϕ)

2µj∆1(πϕ)
(
X(πϕ , (x0 − x0

m) + c4
)
. (7.1.15)

As we will see in the next section, the behavior of the background phase encoded in (7.1.12)
and the form of the scale factor (7.1.11) will allow us to study the dynamical evolution of
the matter content of the scalar field ϕ0. They play a crucial role since they will enable
the interpretation of the GFT matter content in the relational setting as an effective field
theory propagating on curved spacetimes, stemming from the full QG theory.

Large GFT background density. Let us briefly discuss how the above solution for
the background phase changes once we consider the case of large density ρ0 [164,166,215].
The differential equation satisfied by ρ0 for the large volume limit can be precisely derived
once we neglect the first term including the conserved quantities Ej and Qj appearing in
(4.4.30). More concretely, the simplified evolution equation for the density reads

(ρ̇0)2 ≈ µ2
j (πϕ) ρ2

0 , (7.1.16)

whose solution is given by ρ0 = Aje
±2µjx0 . A precise solution thereof demands that we

choose an appropriate sign for the parameter µj as well a specific root for (7.1.16). Such
a choice can be made depending on the classical (or semi-classical) physical theory we are
interested in reproducing.
Now, after having solved the differential equation for the background phase in (4.4.25), we
end up with the general solution of θ0 for large densities

θ0 = γ

2x
0 − QjVj

2µj

e±2µjx0 + c5 , (7.1.17)

where c5 is an integration constant that in principle can depend on the scalar field momen-
tum πϕ.

Reintroducing βj and αi. In the following we perform the same analysis presented
above without neglecting the contribution of the parameters βj and αi for the general
solution of the background scale factor (density ρ0) and then comment on how the solution
changes the case of large volume. The first modification that surfaces is at the level of the
solution for the background phase. In fact, if we consider the change of variables Θ0 =
θ̇0−γ/2 we can derive the solution for the homogeneous differential equation Θ̇0+3HΘ = 0,
where we define H = ȧ/a as the Hubble parameter. The solution in this case yields
Θ0 = c̃1a

−3. Since the inhomogeneous part of the differential equation is a constant,
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namely βj, the final Ansatz in this case for the variable Θ0 = c̃1a
−3 + βj. Going back to

the initial variable θ0, we end up with the solution

θ0 =
(
γ

2 + βj

)
x0 + c1

∫ 1
a3dx

0 . (7.1.18)

The integration over the scale factor can be carried out once we use the usual solution for
the background density. The only change at this level is the appearance of the constant
βj in front of the clock. Moreover, for large densities, matching the volume background
dynamics (expressed in terms of the scalar field clock) requires an exponential expression
for it, since such dynamics are mainly dictated by ρ2

0. In this case, if we consider an
exponential Ansatz for ρ2

0 and we derive the equation of motion for the phase we obtain,
for large densities (and thus for large values of the clock, given our exponential Ansatz),
θ0 = (γµj + βj) / (2µj). To see if this solution is viable, we plug it in the evolution equation
for the density in (4.4.25), where we can clearly see that it is not consistent, exactly because
of the presence of βj. This naturally supports our choice of restricting to small values of
βj.

7.1.2 The dynamics of inhomogeneities in GFT

The treatment of inhomogeneity conducted with the GFT condensate framework is rather
involved since the dynamics of the perturbation are coupled and are dependent on the
data entering the background. However, we are able to inspect several solutions to δθ
and δρ once we explore inversion relations intertwining the respective dynamics. This
procedure is commonly used in AG models based on Bose Einstein Condensate (BEC)-
systems [11,12,216,217]. We proceed analogous to such employed schemes and present the
detailed derivation of GFT perturbed phase dynamics, where the coupled perturbation of
δρ and δθ are investigated. Once we do this, we devote the remaining of this section to
analyzing the simpler case of the decoupling regime, namely by neglecting the contributions
coming from βj and αi (assumption EL.6 and EL.5). Analogously to what we did for the
background dynamics, we study the scale factor dependence of the perturbed geometry,
provided we make the distinction between small and large background densities.

The AG treatment to the GFT perturbations In this section, we derive the in-
version equation of the perturbed density that leads to the dynamical equation for the
phase δθ inspired by the treatment of AG to BEC. We present the general case without
neglecting the contribution of the parameter αi. Let us then consider the equations of first
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order perturbations given by the equations

δρ̈ (x, πϕ) + αr∇2δρ (x, πϕ) − ηj (πϕ) δρ (x, πϕ) (7.1.19)
−
[
δθ̇ (x, πϕ)

(
2θ̇0

(
x0, πϕ

)
− γ

)
− αi∇2δθ (x, πϕ)

]
ρ0
(
x0, πϕ

)
= 0 ,

δθ̈ (x, πϕ) ρ0
(
x0, πϕ

)
+ θ̈0

(
x0, πϕ

)
δρ (x, πϕ) + 2δθ̇ (x, πϕ) ρ̇0

(
x0, πϕ

)
+ 2θ̇0

(
x0, πϕ

)
δρ̇ (x, πϕ)

− γδρ̇+ αr

[
∇2δθ (x, πϕ)

]
ρ0 − βδρ (x, πϕ) + αi∇2δρ (x, πϕ) = 0 . (7.1.20)

Notice that we can write the first equation above (7.1.19) in a simpler form once we use
the modified d’Alembert operator

□̃ = ∂2
0 + αr∇2 . (7.1.21)

and this yields explicitly (
□̃ − δη

)
ρ (x, πϕ) = D [δθ (x, πϕ)] , (7.1.22)

where we define the differential operator acting of the perturbed phase θ (x, πϕ)

D [δθ (x, πϕ)] = ρ0
(
x0, πϕ

)( (
2θ̇0

(
x0, πϕ

)
− γ

)
∂0 − αi∇2

)
δθ (x, πϕ) . (7.1.23)

Let us drop the argument of functions for the sake of notation simplicity. If we assume
that the defined modified d’Alembert operator in (7.1.21) admits an inverse, one can invert
the above equation for δρ and this reads

δρ =
(
□̃ − ηj

)−1
D[δθ] . (7.1.24)

We then proceed to the second equation in the perturbations. Once we set β = 0 this
equation yields

0 =ρ0

[
δθ̈ + 2δθ̇ ρ̇0

ρ0
+ αr∇2δθ

]
+ δρ

[
θ̈0 +

[
2θ̇0 − γ

] δρ̇
δρ

]
+ αi∇2δρ . (7.1.25)

Again using the defined d’Alembert operator and (7.1.24), the above evolution equation
for the perturbation is recast in the following form

□̃δθ + 2δθ̇ ρ̇0

ρ0
+ L[δρ] = 0 , (7.1.26)

where we defined the operator acting on the GFT perturbed density (after having multi-
plied (7.1.25) by ρ−1

0 )

L = 2θ̇0 − γ

ρ0
∂0 + αiρ

−1
0 ∇2 + θ̈0

ρ0
. (7.1.27)
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This operator depends only on the background data. The equation of motion of the
perturbed phase in (7.1.26) can be written solely in terms of the background data without
the perturbed density appearing in it by plugging (7.1.24) and this reads

□̃δθ + 2δ̇θ ρ̇0

ρ0
+ L

[ (
□̃ − η

)−1
D[δθ]

]
= αr∇2δθ . (7.1.28)

This is the evolution equation of the perturbed phase of the GFT condensate on the (sort
of) background encoded in (ρ0, θ0) whose equations of motion are dictated by (4.4.27). One
can write down explicitly the relational dynamics provided by the background data of the
condensate given in section 7.1.1. The explicit equation of motion for the perturbation
yields

∂2
0δθ + αr∇2δθ + 2 ρ̇0

ρ0
∂0δθ +

D−1
[
ρ0(2θ̇0 − γ)(2θ̈0 − γ)

]
ρ0

∂0δθ − D−1αi(2θ̇0 − γ)
ρ0

∂0∇2δθ

+D−1αi(2θ̈0 − γ)∇2δθ − α2
iD

−1∇2.∇2δθ + D−1θ̈0(ρ0(2θ0 − γ))
ρ0

δθ − D−1θ̈0αi

ρ0
∇2δθ = 0 ,

(7.1.29)

where we defined D−1 =
(
□̃ − η

)−1
as the compact notation for the inverse operator

associated with the perturbed density. Let us stress that there are two terms that are still
there without any obvious association, therefore, we assume they cancel each other

D−1α2
i ∇2.∇2δθ = D−1θ′′

0(2θ0 − γ)δθ . (7.1.30)

This provides an equation that probably can fix the coefficient αi and hence deliver more
insight into its physical interpretation. Let us work out the solutions of the perturbation
in the assumption EL.6 of αi set to zero. In this case (7.1.29) reads

∂2
0δθ + αr∇2δθ + ρ̇0

ρ0
∂0δθ +

D−1
[
ρ0(2θ0 − γ)(2θ̈0 − γ)

]
ρ0

∂0δθ + D−1θ̈0(ρ0(2θ0 − γ))
ρ0

δθ = 0 .

(7.1.31)

Denoting time derivative by dots, spatial ones by ′, and defining the clock dependent
functions

λ1 = 2 ρ̇0

ρ0
+D−1

[
(2θ0 − γ)(2θ̈0 − γ)

]
, (7.1.32)

λ2 = D−1θ̈0((2θ0 − γ)) , (7.1.33)

we can then write (7.1.31) in a simpler form

δθ̈ + λ1δθ̇ + λ2δθ = −αrδθ
′′ . (7.1.34)

Solutions to the above equation can be obtained using the variable separation techniques
(the spatial translation symmetry allows the spatial dependence to be separated from the
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time dependence). Notice also that the time dependent part of the evolution equation
is similar to that of a damped harmonic oscillator whose solution we denote by C(t). A
general solution for a single mode momentum kθ is then given by

δθ = C(t, πi, πϕ)eiπi.xi
. (7.1.35)

This is the general procedure to extract relational dynamics of the perturbed phase without
any direct reference of δρ. We now focus on the regime where these perturbations decouple
for the case of small and large perturbed GFT densities.

Small background density. The strategy we are adapting in what follows is simple;
from the two equations in (7.1.19) we derive an inversion relation to express the perturbed
density δρ in terms of the phase δθ for small- and later on for large- background density
ρ0. This requires, as we saw above, an assumption to be made on the differential operator
that acts on the perturbed density δρ, namely that it has to be invertible. Then one can
reformulate the perturbation equations solely in terms of the phase δθ, where now, the
background data appearing in the coefficients are a function of the scale factor. Let us
proceed with this approach.Noticing that the second evolution equation for the background
phase θ0 can be written as

θ̈0 = −3H
(
θ̇0 − γ

2

)
, (7.1.36)

and using the general solution for the background GFT condensate phase (7.1.8), this can
be further simplified to

θ̈0 = −3cHa−3 . (7.1.37)

The inversion equation for the perturbed density in (7.1.24) yields(
□̃ − ηj

)
δρ (x, πϕ) = D [δθ (x, πϕ)] , (7.1.38)

δρ =
(
□̃ − ηj

)−1
D[δθ] , (7.1.39)

where □̃ is the modified d’Alembert operator (7.1.21) and the differential operator D[θ]
acting of the perturbed phase as in (7.1.23) reads

Da [δθ (x, πϕ)] =
2

(
a

Ṽj

)3/2

(θ̇0 − γ/2)
 ∂0δθ (x, πϕ) . (7.1.40)

It is important to notice that (7.1.38) is a second order inhomogeneous wave equation.
The usual treatment in this case is to derive the solution to the homogeneous differential
equation

(
□̃ − ηj

)
δρ (x, πϕ) = δ(x0 − y0)δ3(xi − yi) by means of a Green function [218].

Once this is obtained, we can derive the general solution to the inhomogeneous evolution
equation. It is worth emphasizing that in order to specify a unique Green function or



156 7. Cosmological group field theories as a field theory on curved spacetime

fundamental solution for the wave equation, one must pose some boundary and initial
conditions. This involves considering the different types of boundary conditions, namely
Dirichlet, Neumann, and Cauchy’s initial boundary conditions. For the purpose of this
work, we will suppress the implications of such a detail, and solve the inhomogeneous wave
equation for a general Green function (assumption EL.7). In fact, the well-posedness of
the problem comes from imposing boundary- and initial- conditions. Local solutions can
always be found and this is indeed our case since we are not specifying any boundary
conditions. The fundamental solution to the homogeneous PDE can be exactly solved
once we work in momentum space by means of the Fourier transform. The Green function
associated with the homogeneous evolution equation of the perturbed density must then
satisfy a Klein-Gordan-like equation with a mass-like term (the constant ηj appearing in
(7.1.38)), namely(

∂2
0 + αr∇2 − ηj

)
G(x0 − y0)(xi − yi) = δ(x0 − y0)δ3(xi − yi) , (7.1.41)

where δ(x0 − y0)δ3(x− y) is the Dirac function. Recall that π0 and πi are the momenta of
the clock and rods scalar fields. The Green function in momentum space then yields

G = 1
π2

0 + αrπ2
i − ηj

. (7.1.42)

Thus the perturbed density takes the following form in field (coordinate) and momentum
space respectively

δρ̂h(π0, πi) =
∫
R

∫
R3
δρ(xi, x0)e−2πi(xi·πi+x0·π0)dxidx0 , (7.1.43)

δρh(x0, xi) =
∫
R

∫
R3
δρ̂(πi, π0)e2πi(xi·πi+x0·π0)dπidπ0 , (7.1.44)

where we denote the inverse transform with the hat, the index h stands for the homogeneous
wave equation and the bold letters refer to vector notation of the spatial directions. To
solve the inhomogeneous wave equation δρ̈+αr∇2δρ− ηjδρ = Da[δθ], we simply apply the
Fourier transform to the equation to obtain

π2
0 ρ̂+ αr|πi|2ρ̂− ηj ρ̂ = D̂a[θ] , (7.1.45)

δρ̂ = D̂a[δθ]
π2

0 + αr|πi|2 − ηj

. (7.1.46)

We would then recover δρ via the inverse Fourier transform. The Fourier transform of the
operator Da can be derived after recalling that ρ0

(
2θ̇0 − γ

)
= 2c2e

−c1a−3/2/V 2
j and after

performing an integration by part

D̂a[δθ(π0, πi)] =
∫
R

∫
R3

(
ρ0(x0)

(
2θ̇0(x0) − γ

))
δθ̇(xi, x0)e−2πi(xi·πi+x0·π0)dxidx0

= c2e
−c1

V 2
j

∫
R

∫
R3

3Ha−3/2δθ(x0, xi)e−2πi(xi·πi+x0·π0)dxidx0 , (7.1.47)
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which is basically a convolution of two functions. Now let us study the second equation
encoding the perturbation (7.1.25) and write the counterpart of the operator L defined in
(7.1.27) in terms of the scale factor. To this aim, we use the evolution equation of the
background phase given in (7.1.36), this yields

La =
(
a

Vj

)−3/2 ((
θ̇0 − γ

2

)
(2∂0 − 3H)

)
, (7.1.48)

and (7.1.28) in the decoupling regime describing the dynamics of the perturbed GFT phase
is then given by

□̃δθ + 3Hδθ̇ + La

[ (
□̃j − ηj

)−1
Da[δθ]

]
= 0 , (7.1.49)

The effective dynamical equation for the perturbed phase can be derived using the relation
(7.1.37) and expressed in terms of the effective Hubble parameter H and scale factor a,
this reads

δθ̈ + λ1(x0, πϕ0)δθ̇ + λ2(x0, πϕ0)δθ = −αr∇2δθ . (7.1.50)

where we introduced the time dependent functions appearing in the differential equation
for the perturbation in terms of the scale factor:

λ1(x0, πϕ0) = 3H + 3Hc2a−6 , (7.1.51)
λ2(x0, πϕ0) = 6Ḣc2a−6 − 18c2H2a−6 , (7.1.52)

where for notation simplicity, we defined the constant c = c2ec1
Vj

. In the case where we
neglect the contribution coming from the density propagator given by the Green function
G in (7.1.42) (assumption(EL.9)). One could write down an Ansatz for the perturbed δθ
and it reads

δθ = C(x0, πϕ)eiπj.xj
, (7.1.53)

where C(x0, πϕ) is the solution to the damped harmonic oscillator-type equation for the
perturbed phase. The dynamics encoded in (7.1.50) are thus the fundamental evolution
equations of the phase δθ encapsulating inhomogeneities for small background densities.
It is in principle possible to solve the above equation if we assume that λ1(x0, πϕ0) obeys
the following approximation (assumption EL.8)

3Hc2a−6 ≫ 1
2 − 3H , (7.1.54)

we can then replace λ1(x0, πϕ0) simply with 6Hc2a−6. In this case, the solution to the
damped harmonic oscillations reads

C(x0, πϕ0) = c2A(πϕ) exp
(
−a−6(x0 , πϕ)

)
, (7.1.55)

where A(πϕ) is an integration constant, that can depend on the scalar field momentum.
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Large background density. The decoupling regime of the perturbations for which a
sufficient condition is established by setting βj = 0 corresponds to the limit in which the
parameter

|αi| = 2
3
π2

xδr |δi|
ϵ2π2

0
≪ 1, , (7.1.56)

where the background density ρ0 is taken to be very large. Indeed, using the background
equation, The differential operator acting on δρ can be written as

(
□̃ − ηj

)
δρ ≃ 2Qj

ρ0
δθ̇ , (7.1.57)

For large enough background densities ρ0, the above equations simplify and we end the
following decoupled evolution equations for the perturbations2

δρ̈ (x, πϕ) + αr∇2δρ (x, πϕ) − η2
j (πϕ) δρ (x, πϕ) ≃ 0 , (7.1.58)

δθ̈ (x, πϕ) + 3H
(
x0, πϕ

)
δθ̇ (x, πϕ) + αr∇2δθ (x, πϕ) ≃ 0 , (7.1.59)

which are clearly decoupled. Obviously, the perturbed density obeys a modified wave equa-
tion as we encountered in the previous case, however, homogeneous. Its explicit solution
can then be derived by means of the Green function. In momentum space, this is simply
given by

δρ̂ = 1
π2

0 + αr|πi|2 − ηj

. (7.1.60)

If we set αr = −1 we end up with a Klein Gordan equation for δρ with a mass-like term
given by ηj. An interesting feature of the above equations is that any Lorentz property of
the second order differential operator in the perturbed equations is in fact only a result of
the features of the peaking functions, rather than the fundamental symmetries imposed on
the GFT action SGFT in section 4.4.2. Indeed, we can observe the parameter λ appearing in
(4.4.19) that is in principle responsible whether the matter variables enter the fundamental
GFT action in a Lorentz (λ = 1) or Euclidean (λ = −1) invariant form, only enters in
ηj. The above dynamical equations are clearly not affected by this. This insinuates that
only a certain class of states is able to effectively reproduce local Lorentz signature as was
discussed in [164].
The solution for the perturbed phase in (7.1.59) can be formally derived using the integra-
tion factor method and it reads

δθ (x, πϕ) =
(
c6x

0 +
∫
dx0(a−3)

)
eπix

i

. (7.1.61)

2One can see that ρ ∼ θ/ρ0, and for large enough ρ0, the right-hand-side can be neglected. Similarly,
using that θ̈0 = −2Qjρ−2

0 (ρ̇0/ρ0) ∼ −2Qjµjρ−2
0 , we deduce that the first term at the second line of

equation (4.4.31) is of order δρ/ρ2
0, while the first term at the first line of equation (4.4.31)is of order ρ0θ,

so for large enough ρ0, only he latter is important.
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In the above solution, for simplicity, we considered the case where the parameter αr co-
incides with −1 to reproduce the standard d’Alembert operator. The relational clock
dependence in this solution for δθ is of the same type as the background θ0 once we iden-
tify the integration constant c6 with γ/2. This case will play an important role, when we
study the scalar perturbation affecting the matter field δϕ for large background densities
in section 7.3.

7.2 Background scalar field dynamics

Previous studies showed that the big-bang singularities of classical FLRW spacetimes that
occur generically in GR are resolved within the GFT condensate framework presented
here [166]. The solution for ρ2

0 in (7.1.10) clearly shows that it will reach a minimal value at
which point they will bounce (and it is clear that there is only a single bounce has only one
turning point), and thus the cosmological spacetime that emerges from the GFT condensate
state is that of what we call a bouncing FLRW spacetime at late times. It is important to
recall that such a bounce occurs when the density is relatively small. Bearing this in mind,
enriching the model with matter degrees of freedom and perturbation-treatment (section
4.4.2 and 7.1.2) raises more questions about the additional physical predictions we could
extract from it. In this section, we study the matter content of a scalar field near the
bounce and then later on for a sufficiently large density to reproduce GR physics at the
background level. Therefore, we examine the evolution equations of such a field from the
very dynamics of the GFT phase, given such a condition on the density.
The evolution equation for the background matter field can be derived from the expectation
value of the corresponding GFT field operator (4.4.5) with respect to the CPS state, as
was done for the volume operator. Using the tools we developed in section 7.1.1, we
then derive the dynamical equation of the scalar field by getting rid of the condensate
parameters dependence (ρ0 and θ0). More concretely, we highlight the relation between
the phase of the GFT condensate θ0 and ϕ0, which allows us to obtain a closed relational
dynamical equation for the scalar field starting from that of θ0. We will compare it to the
results concerning alternative theories of gravity for ϕ0 given in [219,220]. We then analyze
the behavior of the background scalar field in the regime where the GFT density is large,
following the same line of reasoning to extract its evolution equation. This is important for
the perturbed case since ϕ0 also enters the equations of motion for the perturbed matter
content (section 7.3) in δϕ.

7.2.1 Early times scalar field dynamics

In section 7.1.1, we were able to determine the explicit form of the background quantity θ0
depending on large or small values of ρ2

0. We now study the matter content of the scalar
field ϕ0 and its evolution through the different cosmological regimes. The expression for
the background scalar field ϕ0 and its momentum were already derived in [164] and they
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read

⟨Φ̂⟩ = ϕ0 = N0∂πϕ
θ0 , (7.2.1)

⟨Π̂ϕ⟩ ≃ π̃ϕρ
2
0 (x, π̃ϕ) = π̃ϕN0 (x, π̃ϕ) . (7.2.2)

where the exact solution for θ0 is given3 by (7.1.12). The matter content of the theory is
encoded in the above equations and its relational dynamics with respect to the clock are
determined through the evolution equation of the GFT phase. On the other hand, the
geometry content is given by the expectation value of the GFT volume operator (4.4.4).
Using the expression for ϕ0 and the dynamics dictated by the evolution equation of the
condensate phase θ0, we are able to write down the evolution equations for the background
scalar field, that is inasmuch interpreted as an effective quantum field theory propagating
on a curved background, after taking into consideration all the assumptions made so far.
This has also to accommodate the geometric prediction that the effective volume delivers,
which is encoded in the scale factor.
Before proceeding with this scheme, it is important to mention that even though the
effective evolution equation will be describing a matter field living on a minisuperspace,
parametrized by a clock and rods, we need to keep in mind that classically [164,219], the set
of the four scalar fields is governed by the action in (B.1.1), where the adapted coordinates
to such a set are given by

χµ ≡ κµxµ , (7.2.3)

where κµ is an arbitrary constant and these coordinates also satisfy ∇a∇ax
µ = 0. This

clearly leads to the relation ∂µχµ

∂µxµ = κµ. Hence, we can write the parametrized equation of
the scalar field in a deparametrized form where the sole change that will appear overall is
a constant. It is only thanks to the properties and settings we assigned to peaking states
and the relational frame, we are then able to discuss the possibility of deriving an effective
metric in a familiar manner. Indeed, (7.2.3) and (4.4.14) is the direct proof of the indirect
assumption that our clock and rods are ideal, which is the simplest case one could take
into consideration for its direct relation to classical theories of spacetimes.
Let us now proceed with the derivation of the dynamics of ϕ0 on a homogeneous back-
ground. The key idea behind such a program is to establish a relation between ∂πϕ

θ0 (hence
the scalar field ϕ0) and the initial expression of θ0. In fact, in our case, one can show that
the following holds

∂πϕ
θ0 =

(
θ0 − γx0

2

)(
−
n∂πϕ

(µj∆1)
2µj∆1

+
n∂πϕ

X(πϕ , x
0)

X(πϕ, x0)

)
. (7.2.4)

3Notice that in the expression for (7.1.12) only the parameters Vj and γ do not depend on the scalar
field momentum πϕ.
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Using (7.2.1) we could express the GFT condensate phase θ0 in terms of the scalar field ϕ0
as follows

θ0 =

 Vj

a3
(

−n∂πϕ
(µj∆1)

2µj∆1
+ n∂πϕ

X(πϕ ,x0)
X(πϕ ,x0)

)
ϕ0 + γx0

2 ≡
(
a3f(πϕ , x

0)
)−1

ϕ0 + γx0

2 . (7.2.5)

We then compute θ̇0 and θ̈0, recalling that they obey the dynamical equation, θ̈0 +
3ȧ
a

(
θ̇0 − γ

2

)
= 0. The above relation between the background phase and scalar field can

be considered as an inversion formula that translates the condensate parametrization and
dynamical content to field one. It is then clear that following this line of reasoning, we
obtain a closed evolution equation for the matter field on a minisuperspace4. The effective
field equation of the background scalar field

(
a3f

)−1
ϕ̈0 −

(
3 ȧ

a4f
+ 2 ḟ

a3f 2

)
ϕ̇0 −

(
−3 ȧ2

a5f
+ 3 ä

a4f
− 3 ȧḟ

a4f 2 − 2 ḟ 2

a3f 3 + f̈

f 2a3

)
ϕ0 = 0 .

(7.2.6)

In order to provide a consistent interpretation of the above field equation within our frame-
work, we need to consider two different types of assumptions that are necessary to exploit
the physical predictions of (7.2.6). To be more precise about the assumptions and predic-
tions that we will present shortly, we first write down the d’Alembertian operator □ acting
on a scalar field

□ = 1√
−g

∂µ (√ggµν∂νϕ0) , (7.2.7)

where gµν is the inverse metric of the curved spacetime. Looking at (7.2.6) it seems only
natural to consider it as a classical field theory on a homogeneous curved background
and therefore extract an effective metric describing spacetime time on top of which it is
propagating. However, choosing this path insinuates the assumption that the spacetime
metric (after deparameterizing the relational frame in the minisuperspace) is fixed, meaning
that the latter does not react to the state of the field theory. On the other hand, if we
discard such an assumption and consider instead, that the background geometry reacts to
the matter fields, we are faced with the program of modified theories of gravity such as
the scalar-tensor theories or f(R) theories [220]. Let us investigate the differences and the
consistency of the assumptions we are making for each path.

Classical field theory on curved spacetime. The formalism of a field theory on
curved spacetimes assumes by construction a fixed classical background, where the evo-
lution equation in the simplest case of a scalar field is given by the d’Alembert operator
(7.2.7) in addition to some mass or potential terms, i.e. the Klein Gordon equation. The

4It is important to bear in mind for what follows that the above-introduced function f contains an
imaginary part. This is evident since it bears the derivative of the function X(πϕ, t) defined in (7.1.13).
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field equation is obtained after varying the action (for instance (B.1.5)) with respect to the
field. Furthermore, in strong gravitational fields, the field theory could be non-minimally
coupled to the Ricci scalar, which hints to the dominance of the gravitational effects over
the matter ones. In the beforehand situation, we can extract what we will call effective
metric, once we convert (7.2.6) from vector notation to index one, where in this case we
encounter only the time indexed part of the metric, namely ∂0 since we are working on a
homogeneous universe. This explicitly yields

(
a3f

)−1
∂0
(
a3f 2∂0ϕ0

)
+
(
a3f

)−1
(

3 ȧ
2

a2 − 3 ä
a

+ 3 ȧḟ
af

+ 2 ḟ
2

f 2 − f̈

f

)
ϕ0 = 0 . (7.2.8)

It is important to mention that in order to identify an effective metric5 for the above field
theory, we need to assume that there is a relation between the power of the scale factor
entering the spatial metric component and that of the time one. The key term that en-
codes all the metric entries we are seeking is given by ∂0 (a3f 2ϕ0), since formally it should
entail ∂0 (√−gg00ϕ0). The g00 component can be read off from whatever function mul-
tiplying ∂2

0ϕ0 which in our case should be of the form (a3f)−1. Now that we know the
time component of the metric, the only option we are left with for the homogeneous space
contribution is gij = a(x0)2f(x0, πϕ) that conforms the power counting of the scale factor
and the function f in the term √

−gg00 appearing in the above evolution equation. Notice
the space components of the metric enter the determinant, even though the space is homo-
geneous. However, this consideration does not lead to the same volume element stemming
from the GFT volume operator in (7.1.2), which was our starting point. Therefore, to stay
consistent with the contribution coming from the geometric content of the theory, the time
component g00 should contain all the powers of the function f . Hence, we can consider the
effective metric instead

gµν =


a3f 2 0 0 0

0 a2 0 0
0 0 a2 0
0 0 0 a2

 . (7.2.9)

Now, the Ricci scalar R associated with such a homogeneous isotropic metric and the
additional term appearing in the above field equation (after having multiplied with the g00
component6) takes the form

a3f 2R = 6H ḟ

f
+ 9H2 − 6Ḣ , (7.2.10)

a3f 2M2 =
(

3
2H2 + 2 ḟ

2

f 2 + f̈

f

)
, (7.2.11)

5As we already emphasized, going from the relational fields minisuperspace to manifold one is a linear
map, due to the properties of the quantum states we used to derive the effective dynamics of the theory.

6It might seem clear how the metric and inverse metric transform, namely that way which is similar to
the standard case. However, in our setting which is that of an effective theory originating from a specific
quantum gravity model, such a fact should be assumed.
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which we can identify in the closed evolution equation (7.2.8). The latter then can be
written as

ϕ̈0 −
(

3H + 2 ḟ
f

)
ϕ̇0 + a3f 2

(
R

2

)
ϕ0 +

(
3
2H2 − 2 ḟ

2

f 2 − f̈

f

)
ϕ0 = 0 . (7.2.12)

We mention that the signature of the effective metric can be extracted from the sign of
function f since it enters only the time component g00 and is the only function that depends
on the quantum gravity parameter ηj responsible for the emergence of such a signature
at early times. Furthermore, the effective Ricci scalar will pick up a different sign only in
terms coming from the g00-contributions. In our case and for the present being, we avoided
specifying any signature. This dynamical equation is obviously the result of varying an
effective action with respect to the scalar field, where such an action is given by

δS

δϕ0
= 0 , S = 1

2

∫
d4x

√
g
(
∂µϕ0∂νϕ0 − R

2 ϕ
2
0 +M2ϕ2

0

)
. (7.2.13)

The solution of the scalar field satisfying the above evolution equation is extracted from
the expectation value of the underlying GFT operator7. For completeness, we write down
the explicit form of ϕ0

ϕ0 = ia3

(2µj)2∆2
1

2µj∆1
(
2x0µ̃j(∆1 − ib) + ib̃− ∆̃1

)
2iAje2µjx0 + ib− ∆1

+
2µj∆1

(
2µ̃jx

0(ib+ ∆1) − ib̃− ∆̃1
)

2iAje2µjx0 + ib+ ∆1

(7.2.14)

−
(
∆1µ̃j + 2µj∆̃1

)
log

(
2∆1

2iAje2µjx0 + ib+ ∆1 − 1

) ,
where the˜notation refers to the derivatives with respect to the field momentum ∂πϕ

and
the parameters appearing above were introduced in (7.1.13). The dynamics of the scalar
field derived above (7.2.6) at early times can be used to write down the associated Friedman
equations. Recall that we can write the stress energy tensor

Tµν ≡ − 2√
−g

δS

δgµν
, (7.2.15)

Using the field equation (7.2.8) and the GFT phase differential equation (7.1.4) along with
the effective metric in (7.2.9), the first Friedmann equation reads

3H2 = ϕ̇2
0 + 3

2H2ϕ2
0 + a3f 2

2 ϕ2
0 − a3f 2M2 , (7.2.16)

The second Friedman equation is then

2H2 − Ḣ − 2H ḟ

f
= a3f 2 M2

1 − ϕ̇2
0/2

, (7.2.17)

7Bear in mind that even when we make the transition from the minisuperspace to the manifold picture,
the field expression will pick up the entries in the constant κµ.
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where the left-hand side of this set of equations is encoding the geometric part of the
universe, and they rely on the expectation value of the GFT volume operator and the
relation (7.1.2).
There are several remarks that we can make at this stage. The field equation of the matter
field, ϕ0 at early times reinforces the claim that it is only natural to expect different
emergent quantities than those predicted by GR. The QG modifications to the geometry
and matter in the universe at early times are precisely captured by the modified scale
factor (stemming from the GFT volume operator) and the dynamics of the scalar field ϕ0,
which allow us to interpret it as a non-minimally coupled effective theory in a cosmological
setting. The first deviation from GR is the quantum bounce that occurs at the condensate
level [156, 160, 166, 206, 215, 221], underlying the quantum gravity origin for the extracted
effective physics. Moreover, this claim is further underpinned by the modified Friedmann
equations that can take a familiar form as in the studies of modified gravity theories [211],
once we fix the GFT quantum gravity parameters listed in (4.4.19). Before proceeding
to examine the behavior of the matter content at late times, let us make some conclusive
remarks for the matter content near the bounce. Under the assumption EL.10, we are faced
with some kind of a field theory propagating on a fixed background and we can reflect from
the dynamics in (7.2.6) on several issues and remarks

1. Gauge: it is clear from section (B.1.1) that we do not obtain a line element for the
geometry at hand that should be in harmonic gauge, meaning that the powers of
the scale factor and the additional modification coming from the function f are in
discrepancy with the one described in QFT on curved background in harmonic gauge.
It is in fact natural since we are still at the action level of the theory and did not
perform a Hamiltonian analysis of it. In fact, this is the key difference between the
derived metric in (7.2.9) and that of (B.1.1), since it is obtained only after having
specified a lapse function that is equal to a3 that we can recover the line element in
the Harmonic gauge.

2. Emergent mass: The above emergent parameter that we denote by M2 is not present
at the level of the GFT action which was our starting point. We suggest to interpreted
as an effective mass that the field theory acquires at early times, or equivalently an
effective potential. In the latter case, we are led to believe that our model naturally
incorporates inflation driving the expansion of the universe. This is also related
to the Starobinsky model and Higgs inflation, also due to their relevance to f(R)
theories [222, 223]. To shed more light on which case our framework reproduces,
we need to further constrain the QG parameters of the underlying relational GFT
formalism. Despite this and for the sake of simplicity we will refer to this emergent
quantity as the effective mass. This is further backed up by the so-called “chameleon
mechanism”, which was introduced as a mere concept in gravitational physics. The
basic idea behind it is that, for theories with a non-minimally coupled scalar field,
then in the presence of other matter fields these scalars can acquire an effective mass
parameter that is environmentally dependent. This is exactly the case at hand since
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one can deduce such a feature from the expression (7.2.11), which is basically a
function relating the momenta of the scalar field to the underlying relational frame.

3. Non-Minimal coupling: the fact that we end up with non-minimal coupling to grav-
ity through the presence of the Ricci scalar, standard field theory on curved space-
time [47,224] [46,225] tells us that such coupling to gravity occurs due to the natural
presence of strong gravitational interaction between the geometrical degrees of free-
dom and those of matter. This claim is further enhanced once we observe the field
expression, actually manifesting such a relation between the dynamics of geometry
and matter. In fact, this is expected to be the case at early times, when the energy
scale is high. Moreover, it is of great importance to have obtained such a coupling to
gravity, since if we were to interpret the additional terms as an interacting potential
for the scalar field, usually the appearance of the term Rϕ0 is necessary for the good
definition of the QFT and its renormalization. This direction of investigation will be
left for future work.

4. Effective metric: notice that the function f(x0, πϕ) seems to depend on the scale of the
extracted physics, since at early times, it presents itself as a clock-dependent function
that runs to become a constant at late time (as we will see later on, this function
becomes constant at late times and can be matched to the scalar field momentum).
This function can be the starting point to present the EFT treatment to the extracted
QFT from our GFT model, since the power of Effective Field Theory (EFT) lies in
principle on the scaling of operators and coupling constants. We will discuss this
further once we explore the direction of alternative theories of gravity.

5. Scalar field: The exact expression of the scalar field (7.2.14) originating from the
effective treatment of the associated GFT operator (7.2.1) along with inversion rela-
tions derived above, show explicitly the interplay between the matter- and geometric
degrees of freedom. In fact, (7.2.5) not only proves itself useful to derive the dynamics
of the scalar field, but it also pinpoints the exchange between the two sets of degrees
of freedom. Moreover, the natural presence of the Ricci scalar tells us that the matter
degrees of freedom are non minimally coupled to the gravitational ones and that as
we will discuss below, this model can be regarded as a mimetic gravity [226,227] one.

Modified theories of gravity. The main motivation behind such an approach, is the
argument that there is no reason to think the field equations of gravity should not contain
other fields. Hence, we are in general free to speculate on the existence of such additional
fields8. Such a modification is usually affecting the geometry sector of the Einstein equa-
tions, leaving the matter one intact, or assuming that the metric is conformally invariant
under transformations that contain the additional field degrees of freedom. The simplest

8This approach is valid in the regime of high energies only and the effects of such additional fields hast
to be suppressed at the validity scales of GR.
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case is to consider a scalar field coupled to the Ricci scalar on the gravity side of the equa-
tion. A priori there is no apparent reason to not think of the scalar field ϕ0 in our setting
as a field modifying the Einstein equations at high energy scales, rather than a matter field
contributing to the stress-energy tensor in the picture. The function f in this case will
similarly to the QFT one, play the role of the effective gravitational coupling parameter.

Mimetic gravity: If we were to compare the obtained result for the matter field ϕ0 with
the derived in [227], the effective potential vanishes and the mimetic field χ = □ψ (ψ in
this context is the preferred foliation and the scalar field minimally coupled to gravity) and
indeed be identified without matter field ϕ0. Furthermore, we have the presence of the term
M2, and modification to the classical effective metric, endorsed by the quantum parameters
stemming from the relational frame. Thus the resulting action differs from the results of
mimetic gravity. This can be traced back to the assumption usually made of dominating
energy density of the relational clock at early times considered in the calculation. In
our framework, we see such dominance at late times, where the dynamics reduce to the
predictions of GR. In any case, the formulation of the derived matter content either in a
MGT frame or that of a QFT one does not change the fact, that the fundamental dynamical
information of the scalar field are encoded in (7.2.8).

7.2.2 Late times scalar field dynamics

In the mesoscopic regime where the scalar field evolution equation (7.2.6) holds, the expec-
tation value of the volume operator and hence the scale factor never reaches zero, as long
as at least one of the conserved charges Qj is non-zero. In [164], it was argued that in order
to get both meaningful relational dynamics and a proper FLRW spacetime (rather than a
Minkowski spacetime), the energy density of the massless scalar field has to be non-zero,
in turn implying that the expectation value of the massless scalar field momentum has to
be non-zero as well.

We study now the dynamics of the background scalar field ϕ0 for large GFT densities.
For simplicity, we will choose the path of formulating the results in the language of a QFT
on a curved background. This option is most appealing since, previous studies showed that
in such a regime and under certain sufficient as well as necessary conditions, the obtained
dynamics of the matter field produce the results predicted by GR with minimal coupling.
We follow the same line of reasoning as in the early time case and proceed by deriving an
inversion relation for ϕ0 and θ0. Using the relations derived in section 7.1.1 for the density
(assumed to be large), namely that it obeys the differential equation; (ρ̇0)2 (x0, πϕ) =
µ2

j (πϕ) ρ2
0 (x0, πϕ) whose solution is given by ρ2

0 = Aje
−2µjx0 , where we assumed, for now, a

negative value for the parameter µj. The associated solution for the phase and the simple
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inversion expression for the background scalar field read

θ0
(
x0, πϕ

)
= γ

2x
0 + AjQj (πϕ)

2µj

e2µjx0
, (7.2.18)

ϕ0
(
x0, πϕ

)
= a3

Vj

(
∂πϕ

log
(
AjQj (πϕ)

2µj

)
+ 2∂πϕ

µj

)(
θ0 − γ

2x
0
)
. (7.2.19)

Notice that the corresponding dynamical equation will be of the shape (7.2.6) where the
defined function f in this case takes the simpler form

(
∂πϕ

log
(

AjQj(πϕ)
2µj

)
+ 2∂πϕ

µj

)
and

the background field equation yields

ϕ̈0 − 3Hϕ̇0 −
(2

3R +M2
)
ϕ0 = 0 , (7.2.20)

where we identified the respective entries of the background metric, namely that

g00 = a3 , gij = a2 , (7.2.21)

and the Ricci scalar and effective mass term appearing in (7.2.20) reads respectively

R = 9H2 − 6Ḣ , M2 = Ḣ . (7.2.22)

Furthermore, if we follow the same steps as in section 7.2.1 to derive a corresponding
effective metric in this case, we are faced with the same subtlety concerning the function
f and the matching with the expectation value of the volume operator. Since we already
know that according to [164],GR predictions can be matched to the GFT ones at late
times, we will shortly show that what we claimed to be an effective gravitational coupling
at early times turns out to be the gravitational constant at late times. We can see this once
we consider the term f and assume the same approximations made in [164] to successfully
reproduce GR, namely

f =
(
∂πϕ

log
(
AjQj (πϕ)

2µj

)
+ 2∂πϕ

µj

)
≈ −∂πϕ

µj + 2∂πϕ
µj ≡ G , (7.2.23)

where we identify 2Qj as the inverse of the constant Aj and we implemented the classical
matching condition 2∂πϕ

µj ≈ π̃ϕ ≡ G. The gravitational constant enters the action of a
quantum field theory and the variation of the latter with respect to the field, there is no
surprise that G enters the field equations as well. Thus, the corresponding action reads

δS

δϕ0
= 0 , S = 1

2f

∫
d4x

√
g
(
∂µϕ0∂νϕ0 + 2R

3 ϕ2
0 +M2ϕ2

0

)
(7.2.24)

For completeness, the background matter field takes a simpler form, which also allows a
plane wave decomposition

ϕ0 = N0

(
∂πϕ

(
AjQj

2µj

)
+ AjQj

4µj∂πϕ
µj

)
e2µjx0

. (7.2.25)
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This is the most general solution for the scalar field ϕ0 propagating on a homogeneous
isotropic background. The field equations for this field are clearly not those of a massless
scalar field minimally coupled to gravity, which is the starting assumption implemented
at the level of the GFT action. It is then worth noting that unless we don’t specify the
classical matching of the quantum gravity parameters and identify the necessary conditions
for it to happen, the extracted effective physical results are clearly those of an alternative
theory of gravity (QFT on a curved background, modified gravity), to which we have a
non-minimal coupling of the matter field ϕ0. This becomes more obvious once we write
down the Friedmann equations, and in this case, they read

3H2 = ϕ̇2
0

2 − a2

2
(
ϕ̇2

0 +M2
)

+ 2H2 2
3a

2ϕ̇2 , (7.2.26)

−2Ḣ + 3H2 = ϕ̇2
0

2 − a3

2
(
M2

)
+ 2

3
(
−2Ḣ + 3H2

)
ϕ2

0 . (7.2.27)

In what follows, we focus on the matching conditions that will present necessary and/or
sufficient conditions constraining the effective model at hand to produce the physics of an
FLRW universe. With this in mind, it is then important to mention that the classical
expression for the scalar field in this case is a linear function in the relational clock. This
is essential since in the classical theory, the matter field ϕ0 is minimally coupled and hence
there is no Ricci scalar appearing in (7.2.20). This requires imposing further constraints on
the scalar field momentum ad integration constants and was derived in [164]. In particular,
in order for the effective theory to match the classical one, the scalar field momentum had to
be identified with µj in deriving the Friedmann equations. The above dynamical equation
for ϕ0 then becomes

ϕ0 = −c+ π̃ϕx
0 , (7.2.28)

where c is a constant that should be different from zero to distinguish the dynamics of the
scalar field from that of the clock.
Before proceeding, let us reflect on the role the constant f plays in our theory. If we relax
the assumption that 2Qj = A−1

j , we claim that we can extract the QG counterpart of
the Planck constant in a QFT setting. In fact, in 4d the Newton constant is equal to the
Planck length; G = l2p which can justify such a claim.

7.3 Scalar perturbations in GFT

The theory of cosmological perturbations is based on expanding Einstein equations to
linear order about the background metric [228, 229]. This type of perturbation induces
similar expansion of the same order in the stress-energy tensor, mirroring the geometrical
counterpart of the Einstein tensor. Clearly, this consequently induces several changes at
the level of the action describing the dynamics of the matter content in the universe [230],
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where the explicit form of such action is gauge dependent. This picture changes consid-
erably when we enter the quantum gravity sector. As we will shortly see in this section,
identifying an action for the extracted perturbed scalar field and an effective metric is not
as straightforward as in the semi-classical case. We will discuss why this is not an easy
task in our case and derive the dispersion relation for the perturbed scalar field.
In what follows we study the evolution equation of the perturbed scalar field δϕ at early
times and then at late times. The derivation for the perturbed metric component can
be obtained in a similar manner as in the case of the background under several drastic
assumptions. We will assume that the metric takes a similar shape to the classical one
in (B.1.11), i.e. we can factor out the background metric from the Bardeen potentials.
Furthermore, we deliver the dispersion relation for δϕ and reflect on it before proceeding
to section 7.4. In this section, we will work in the case where the inverse of the differential
operator acting on the density can be neglected. We start by discussing the general case,
where the GFT perturbations are still coupled which implies αi ̸= 0, are derived in the
section 7.1.2. The implications of this more general consideration will be discussed when
we derive the dispersion relation for the scalar field δϕ at early times.

The expression of the second quantized scalar field operator is obtained from δϕ = δ⟨Φ̂⟩σ

and it yields

δϕ = δ⟨Φ̂⟩σ =
[
δN

N0
ϕ0 +N0∂πϕ

δθ

]
πϕ=π̃ϕ

. (7.3.1)

The dynamical equation satisfied by δϕ can be easily determined by noticing that δN/N0 =
2δρ/ρ0, which allows us to derive the following function, using the inversion relation (7.1.38)
for the perturbed density. The above expression then becomes

δϕ(x0, πϕ) = 2D−1

ρ0(x0, πϕ)ϕ0(x0, πϕ)δθ(xµ, πϕ) + ρ2
0(x0, πϕ)

(
C̃πϕ

(x0, πϕ)
C(x0, πϕ) + π̃i(πϕ)

)
δθ(xµ, πϕ)

(7.3.2)
where the˜notation refers to the logarithmic derivative with respect to the scalar field

momentum πϕ. Notice that, we also did not make any assumptions on the dependence of
the rods momenta to not be dependent on πϕ. We further define the following functions

Ψ ≡ 2D−1

ρ0
ϕ0 , Φ = ρ2

0

(
C̃πϕ

C
+ π̃i(πϕ)

)
, (7.3.3)

where for notation simplicity we drop the argument of the function Φ and Ψ. Now, taking
as solution for the perturbed GFT phase (7.1.35), the inversion relation relating δϕ to δθ
yields

δθ ≡
(
Ψ
(
x0, πϕ

)
+ Φ(x, πϕ)

)−1
δϕ . (7.3.4)
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where the expression for δθ is given by (7.3.13). The derivatives of the perturbed phase
till the second order yields

δθ̇ = δϕ̇

(Ψ + Φ) − δϕ

(
Ψ̇ + Φ̇

)
(Ψ + Φ)2 , (7.3.5)

δθ̈ = δϕ̈

(Ψ + Φ) − 2δϕ̇

(
Ψ̇ + Φ̇

)
(Ψ + Φ)2 − δϕ

(
Ψ̈ + Φ̈

)
(Ψ + Φ)2 + 2δϕ

(
Ψ̇ + Φ̇

)2

(Ψ + Φ)3 . (7.3.6)

Plugging these equations in the dynamical equation of δθ in (7.1.50), we obtain the evolu-
tion equation for the perturbed scalar field

δϕ̈−
(

2Ψ̇ + Φ̇
Ψ + Φ − λ1

)
δϕ̇−

(
Ψ̈ + Φ̈
Ψ + Φ − 2(Ψ̇ + Φ̇)2

(Ψ + Φ)2 + λ1
Ψ̇ + Φ̇
Ψ + Φ − λ2

)
δϕ = −αr

Φ + Ψ∇2δϕ .

Bear in mind that in the above equations, the λi are functions of the background scale
factor and hence time dependent. This is the full evolution equation for the perturbed
scalar field. It describes an effective field theory propagating on a curved background. It is
important to notice that the obtained evolution equation predicts a diagonal stress energy
tensor for the scalar field and even more probably a diagonal Einstein tensor since the
perturbations we introduced are performed on top of a homogeneous background. In what

follows we study the emergent effective metric and the behavior of the scalar perturbation
formally in this general setting. The basis for deriving the perturbed metric component
can be performed in a similar manner as in the case of the background metric in section
7.2. In fact, it is clear that in terms of the defined functions Ψ and Φ and neglecting the
function λ1 the simplest perturbed metric (including the background one) reads

g̃00 = (Ψ + Φ)2 , g̃ij = αr (Ψ + Φ) (7.3.7)

where the Ricci scalar for such a metric takes the following form

R = 3
2

(
−2Ψ̈ + Φ̈

Ψ + Φ + (Ψ̇ + Φ̇)2

(Ψ + Φ)2 − 2αr
∇2Φ

Φ + Ψ + αr
(∇Ψ)2

(Ψ + Φ)2 + αr
∇2Ψ

(Ψ + Φ)2

)
, (7.3.8)

and an additional term that can be written as

M = 3Ψ̈ + Φ̈
Ψ + Φ − 3(Ψ̇ + Φ̇)2

(Ψ + Φ)2 + λ1
Ψ̇ + Φ̇
Ψ + Φ − λ2 − 3αr

(∇Ψ)2

(Ψ + Φ)2 + 3αr
∇2Φ

Φ + Ψ . (7.3.9)

The dynamical evolution equation of the perturbed scalar field can then be recast as

δϕ̈−
(

2Ψ̇ + Φ̇
Ψ + Φ − λ1

)
δϕ̇−

(2
3R +M

)
δϕ = −αr

Φ + Ψ∇2δϕ . (7.3.10)
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7.3.1 Perturbed scalar field at early times

The matter content of the perturbed scalar field at early times is analyzed in the following.
We derive the respective evolution equation by inverting the relation between the perturbed
GFT phase δθ and the perturbed scalar field δϕ. The general derivation of the evolution
equations for the perturbed scalar field was derived above. We now analyze it for small
and large perturbed GFT densities. We fix the background data by entering what we will
call a perturbed effective metric to that of the background scalar field propagating on the
homogeneous background derived in the previous section. We then study the behavior of
the perturbed matter at late times for large volume values (hence large densities).
The expression of the second quantized scalar field operator is obtained from δϕ = δ⟨Φ̂⟩σ

in (7.3.1). As already mentioned since the dynamical equation satisfied by δϕ can be
easily determined through δN/N0 = 2δρ/ρ0, we can derive the following function, using
the inversion relation (7.1.38) for the perturbed density, namely

2δρ
ρ0

=6Ha−3δθ , (7.3.11)

where the formal solution for ρ is given by (7.1.45). The expression of the perturbed matter
field then yields

δϕ(x, πϕ) = a−3
(

6cHϕ0 + Ã
A

+ 6 ã
a

)
δθ(x, πϕ) ≡

(
Ψ
(
a, ϕ0, x

0
)

+ Φ(πϕ, x
0)
)
δθ(x, πϕ) ,

(7.3.12)

where the ˜ notation refers to the derivatives with respect to the field momentum and
Ψ (a, ϕ0, x

0) = a−36cHϕ0. Since we are interested in obtaining the evolution equation for
the perturbed scalar field, we proceed analogously to the case of the background scalar field,
by computing the first and second order derivatives of the perturbed phase δθ in (7.3.12)
and then plugging it in (7.1.50). Let us then write down the equation of the perturbed
phase as a function of the scalar field δϕ. We start with the simplest case, where we assume
the content of the scale factor and the constant A depending on the scalar field momentum
are negligible, namely that

δθ(x, πϕ) ≈ Ψ
(
x0, πϕ

)−1
δϕ(x, πϕ) , Ã(x, πϕ)

A(x, πϕ) ≪ 1 , 6 ã(x, πϕ)
a(x, πϕ) ≪ 1 . (7.3.13)

where now the above inversion relation depends only on the background matter content ϕ0
and the scale factor a. The evolution equation for the perturbed scalar field using (7.1.50)
yields

δϕ̈−
(

2Ψ̇
Ψ − λ1

)
δϕ̇−

(
Ψ̈
Ψ − 2 Ψ̇2

(Ψ)2 + λ1
Ψ̇
Ψ − λ2

)
δϕ = Ψ∇2δϕ , (7.3.14)

where for simplicity we work in the approximation where αr = −1. Bear in mind that in
the above equations, the λi are functions of the background scale factor and hence time
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dependent. This is the full evolution equation for the perturbed scalar field.
The derivation of a perturbed metric, in this case, is more involved than in comparison
with the background case. This can be traced back to the fact that the obtained dynam-
ical equation contains the final further-simplified metric which itself contains the terms
entering the background metric and the perturbations affecting them. Moreover, we have
no knowledge of the shape of the perturbed action, as well as the raising and lowering of
the perturbed metric indices [230]. However, we can proceed as follows; from the above
equation, we assume as usual that the perturbed field obeys as in the background case in
(B.1.6) an evolution described by a Klein-Gordon-like equation, and after formulating it
in index notation, we derive the terms entering the δg00 and

√
δg. To reproduce the above

time dependent coefficients entering the standard □ operator acting on δϕ, we then obtain

δg00 = Ψ = a3f 2 (6cH/f) , δgii = Ψe−a−6/3 = a2
(
6cH∆1ϕ0X

−1 exp
(
−c2a−6/3

)
a−5

)
.

(7.3.15)
Notice that it is only natural to end up with a diagonal metric since the background is a
homogeneous one. These functions harbor the background components of gµν in (7.2.9),
and this is evident in (7.3.15). The Ricci scalar for such a metric takes the following form

δR = −9cHa−6 Ψ̇
Ψ + 3

2
Ψ̇2

Ψ2 − 3
(

Ψ̈
Ψ + 12c2a−6H2 + 2c2a−6Ḣ

)
, (7.3.16)

The above perturbed Ricci scalar and metric is only viable once we assume that δϕ satisfies
the same action principle as the background, namely a field theory that is propagating on a
curved background, non-minimally coupled to gravity. Notice that the standard treatment
to the cosmological perturbation conducted at the level of geometry and matter can also be
associated with a perturbed action capturing such perturbation. This is usually carried out
by expanding the action incorporating matter and gravity to second order [230,231]. The
standard treatment then relies on considering the second order in the linearized equation
of the perturbed action. This is itself interesting, let alone when the considered action is
stemming from a quantum gravity origin.

7.3.2 Perturbed scalar field at late times

In this section, we study the general solution for the perturbed scalar field in light of large
values of the background density ρ0. The expression for δϕ is given by the same expec-
tation value in (7.3.1). The dynamical equation satisfied by δϕ can be easily determined
by noticing that δθ satisfies the differential equation (7.1.59) whose solution is given by
(7.1.61)9. As we already observed, the solution for the perturbed GFT phase coincides

9Already from this equation, in particular from the behavior of the spatial derivative term (scaling as
V 4/3) we can conclude that the evolution equation for the scalar field perturbations does not match, in
general, with the GR one.
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with the background one once we identify the integration constants with each other. In
this case, the perturbations at the level of the scalar field can be recast as

δϕ

ϕ0
=
(

2δρ
ρ0

)
. (7.3.17)

Defining δN/N0 = 2δρ/ρ0 ≡ 2δρ as the density contrast, obeying the equation

δ′′
ρ + 2µjδ

′
ρ + αr∇2δρ = 0 , (7.3.18)

we can highlight two facts; first the above equation points to the possibility that the per-
turbed scalar field admits a plane-wave solution since δρ is a solution to the wave equation
(7.1.60) and ρ0 admits an exponential solution. Secondly, according to the above equation,
δϕ satisfied the same evolution equations as the GFT density-contrast perturbation namely
(7.1.58) and we obtain

δϕ̈+ δϕ̇

(
2 ϕ̇0

ϕ0
+ 2µj

)
+ δϕ

(
2 ϕ̇

2
0
ϕ2

0
− 2µj

ϕ̇0

ϕ0
− ϕ̈0

ϕ0

)
= ∇2δϕ , (7.3.19)

Now let us recall the plane-wave solution of the averaged background scalar field in (7.2.25),
the coefficients in the above equation for δϕ are then constant and the term multiplying
δϕ is identically zero. To proceed with deriving a dispersion relation for the perturbed
field, we consider the Ansatz of the form δϕ(x0, xi) = C exp (±i(ωx0 + πϕx

i) − (2µjx
0)),

where we used the explicit solution of the densities appearing in the contrast density. The
dispersion relation for δϕ yields

ω = i

2 (4µj − 1) ± 1
2

√(
π2

ϕ + 4µj

)
− (4µj − 1)2 . (7.3.20)

This is clearly a modified dispersion relation for the perturbed scalar field.Due to the
damped-like dynamical equation, the dispersion relation picks up the modification which
is precisely an imaginary term. In case we are interested in matching the above field
equation (7.3.19) to the specific case of a scalar field minimally coupled, the above solution
reduces to the results of [164] after imposing the corresponding assumptions to satisfy the
Friedman equations in such a regime. In this case, we do not identify the background
phase and perturbed one to belong to the same class of solutions and make the distinction
between the respective integration constants.
It appears that a modification in the dispersion relation for the scalar field in this context
is very natural and is mainly due to the quantum gravity perturbed density dynamics.

In fact, the presence of an imaginary term contributing to the dispersion relation of
the scalar field is merely an indicator of the effective approach we are considering for the
dynamics. This is a feature of effective field theories [232] originating from quantum gravity
as was discussed in several works [233,234]. Moreover, this feature is also present in analog
gravity treatments of BEC [12] and the field of thermodynamics of spacetime [225, 235].
Since effective theories are commonly viewed as the low-energy, long-wavelength limit of a
more complete and established theory, the dissipative effects are usually attributed to the
integrating-out of the high energy parameters.
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7.4 Conclusion

Summary: In this chapter, we presented the steps to extract a formulation of a field
theory on a curved background within the framework of GFT that incorporates scalar
perturbations at the effective level. Effective relational dynamics can be extracted af-
ter successfully incorporating relational formalism to reintroduce the notion of reference
frames in the context of quantum gravity. The inhomogeneities were already introduced
in [164] and were conducted at the level of the matter scalar field distinguished from the
set of clock and rods. This can be effectively done with the tools deployed by the coherent
states sharply peaked on the values associated with the four massless scalar fields, playing
the role of the relational reference matter frame. After having assumed that the GFT
condensate wave function can be decomposed into such a peaking part and reduced one,
we briefly sketched how the dynamics of the condensate in the mesoscopic regime can be
effectively extracted, namely by imposing an averaged form of the quantum many body
microscopic GFT dynamics. Relying on the Madelung representation for the GFT conden-
sate, we studied the dynamical equations entering the homogeneous background as well
the perturbed one. These steps laid the ground to derive an equivalent formulation of the
GFT dynamics in the language of an effective field theory on curved spacetime.
The first part of the chapter was devoted to deriving the solution for the GFT condensate
quantum gravity parameters, namely the phase and density. We performed this step for
the background as well as the perturbed ones (which itself splits for the case of small/large
background densities). This was the fundamental step toward the investigation of the mat-
ter content within our framework.
We explore first the main interpretation of the results obtained at the level of the back-
ground perturbation and postpone the outlook on possible research direction to chapter 8.
Based on the information encoded in the GFT phase, an inversion relation, allowing the
parametrization of the effective dynamical equations in terms of the background scalar field
ϕ0, was obtained. Thanks to this relation, we were able to extract an effective background
metric at early times as well late times in our cosmological setting. More precisely, for
the case of early time cosmologies, we obtained the field equations of the scalar field, from
which we extracted an effective spacetime metric on top of which it is propagating. This
was possible under the necessary assumption that the kinematical evolution of the scalar
field is dictated by the standard d’Alembert differential operator after having employed
the variational principle to action. What is intriguing about this result is, the dynamics of
the scalar field in this case incorporates also non-minimal coupling to gravity, which was
not present at the level of the GFT action. Along with the coupling to the Ricci scalar,
we obtained an emergent mass term (or equivalently potential term) that is clearly depen-
dent on the quantum gravity parameters related to the underlying geometry and reference
frame. From this point on, there are several options we are faced with. One of them is
to consider it as a potential term and study the inflationary implications it bears behind.
Another option would be to investigate further its relation to the chameleon mechanism
that appears in modified theories of gravity.
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At late Late times, we took into consideration large background densities and derived
the inversion relation between the scalar field and the background phase. However, also, in
this case, we spotted the behavior of a field theory on a curved background, non minimally
coupled to gravity. In the case where, we are aiming to match the obtained physical results
to GR ones (with minimal coupling), necessary and sufficient conditions constraining the
several quantum gravity parameters can be fixed. This was already done in [164]. One of
the main observations that we can make at this level is that the dynamical equation of the
scalar field and the effective metric expression do not match in any case the GR ones (in
harmonic gauge). This can be further discussed, affecting mainly the semi-classical CPS
states we are working with, the non-matching between the expectation value of the GFT
volume operator and the extracted metric (the power of the scale factor appearing in the
results is in discrepancy with what GR predicts). Another explanation for the observed
properties of such results is; there is a preferred gauge (not the harmonic one) that is
naturally selected at the effective level.

At the level of the scalar perturbation introduced in the scalar field and the GFT con-
densate parameters, we followed the same line of reasoning as in the background case,
where now we took into consideration the contribution coming from the background ge-
ometry and matter content. One can distinguish two cases, the first one is when the
background GFT condensate is small (predicting the presence of the quantum bounce,
replacing, therefore, the classical singularity). The second case is when we studied the
behavior of the perturbed scalar field for large GFT background densities, that predicts
an FLRW universe. After having assumed that the perturbed matter content obeys the
same type-of evolution equation encoded in the d’Alembert operator, we find that in both
cases, the perturbed field depicts the behavior of a field theory on a perturbed background.
We extracted the respective metric encoding such perturbations. We emphasize that this
assumption is rather radical and rigid, hence requiring further investigations. Indeed, as
we argued in section 7.3, in cosmological perturbation theory, the action from which the
evolution equations are derived for the perturbed scalar field, is usually obtained after im-
posing a 3 + 1 decomposition of the action and expanding it to second order. This further
implies the selection of a preferred foliation (and the perturbed one as well), which should
be consistent with perturbations induced at the level of the Einstein (as well the energy
momentum) tensor. Implementing such a program to our formalism is rather involved and
we leave it to future work. However, we reserve the possibility that it would probably
incorporate or reproduce the case we considered for the perturbed matter content at early
times, provided we impose the appropriate constraints.
Moreover, since we have at hand the exact expression for the perturbed scalar field at
early- and late- times, we were able to derive the explicit expression of the dispersion re-
lation. This exhibits a modified behavior, where imaginary contributions appeared. This
is rather intriguing and interesting since it predicts a dissipative effect that is very well
predicted in the field of the phenomenology of quantum gravity. Not only, do we have
an explicit effective relation between the microscopic degrees of freedom and the emergent
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ones (thanks to the GFT scalar field operator and volume), but we also spot such relation
(and hence interaction) between these two sets of degrees of freedom at the effective level,
formulated in a language we are familiar with, namely that of a field theory on a curved
background. This naturally bridges the two fields of research to provide concrete and direct
observational constraints.

7.5 Approximations and assumptions

We can distinguish three different levels, where several kinds of assumptions and approxi-
mations enter our derivations and physical predictions. These are the fundamental QG level
of the underlying model, the effective level, and the classical matching one. Of course, at
each level, the approximations are of different kinds, i.e. kinematical, dynamical, or struc-
tural, where for instance at the QG level, kinematical approximations are directly related
to the properties of the states we are considering.

The assumptions made at the fundamental level

QL.1 The QG states (4.4.7) are considered to be the condensate states [22, 166]. There
are several reasons why we promote this class of states over others, probably the
most important one is that GFT condensate states are one of the promising coarse
grained states that can be associated with emergent continuum geometries under the
appropriate approximations.

QL.2 CPS states: for the sake of implementing the relational formalism at the fundamental
level of the model, we assumed that the GFT condensate wavefunction can be decom-
posed into a reduced part and a peaking part which depends solely on the reference
frame degrees of freedom. The use of coherent peaked states allows for concretely
implementing a notion of relational evolution with respect to the frame scalar field
variables so that their wavefunction represents a distribution of spatial geometries
for each point of the physical manifold labeled by the reference frame fields.

QL.3 Isotropy: this condition implemented at the fundamental level can be considered as
the counterpart of the classical part of the emergent physics we are seeking.

QL.4 GFT action and symmetries: the relation between the GFT action and the classical
symmetries we are considering are related through the discrete gravity path integral
associated with the classical system we are interested in reproducing from a quantum
gravity origin.

QL.5 Single-spin dominance: this assumption drastically simplifies the calculations in any
QG model. In fact, assuming that only one quantum label (jv ≡ j) dominates the
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evolution can be traced back to the observation that the macroscopic evolution of
the volume is dominated by a single spin (valid at late times).

The assumptions made at the effective level

EL.1 We assume that the extracted dynamics can be derived using mean-field techniques.
More precisely, we use the QG states obeying all the assumptions made and we
derive the expectation value of the quantum evolution equations derived from the
GFT action.

EL.2 Neglecting interactions: interaction terms in the effective dynamics are assumed to be
negligible with respect to kinetic terms. At the mean-field level, this approximation
can only be satisfied for the condensate densities which are not arbitrarily large.

EL.3 Classical actions for the scalar field: the contribution of the frame fields is classically
assumed to have negligible impact on the energy-momentum budget of the universe.
Besides making these fields behave as frame-like as possible i.e. as ideal clock and
rods, this condition allows us to define unambiguously perturbative inhomogeneities
with respect to the rods fields.

EL.4 Mesoscopic regime: we take the averaged number of particles of the system to be large
enough to allow for both a continuum interpretation of the expectation values of the
considered operators. However, it shouldn’t be too large to avoid the dominance of
the interactions. Moreover, in this regime it was possible to decouple the equations
for the linear perturbation.

EL.5 βj = 0: this assumption facilitates the computations for the background phase and
allows matching the obtained physical predictions to the GR ones.

EL.6 αi = 0 : assuming that the imaginary term of α to be smaller than the identity
imposes further constraints on the CPS parameters, allows the matching process
with GR and facilitated the decoupling of the linear perturbation at the level of the
perturbed GFT parameters.

EL.7 Initial boundary conditions: To specify a unique Green function for a homogeneous
as well inhomogeneous second order differential equation, initial boundary conditions
need to be specified for the solution to be unique. Furthermore, this issue touches
upon various programs in quantum cosmologies [236,237]. In this paper, we discard
this for computational simplicity and leave its involvement in the derived physical
prediction for future work.

EL.8 The assumption that Hc2a−6 ≫ 1
2 − 3H drastically simplifies the process of solving

the dynamics for δθ. In fact, this condition also constrains the background scale
factor at early times for the perturbation to be meaningful. Of course, a proper sign
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for the Hubble parameters should be chosen, and in this case, for it to be consistent
with the dynamical solution it has to be positive. This further implies that Hc2a−6

has to be considerably larger than the Hubble scale.

EL.9 GFT perturbed density Green function: In this paper and analogously to the works
carried in analog gravity in [11], we discard the contribution of the inverse operator
appearing in the inversion relations relating the perturbed density to the perturbed
phase. The main reason behind this assumption is to facilitate the computations.
Moreover, at early times, the contribution of the perturbed densities is naturally
assumed to be small similar to the background case.

EL.10 Field theory on curved background: in this paper, we assume that the matter fields
obey a kinetic term encoded in □ in (7.2.7), which is the one deployed in the standard
QFT on a curved background. This enables us to derive the fixed background on
top of which matter propagates, and hence the emergent spacetime within such a
quantum gravity model. Moreover, there is no reason to expect that the shape of the
□ operator from a QG origin (at an effective level) to be different from the standard
one. The only possible modification we detected was regarding the inhomogeneities
at the level of spatial derivatives, where we have the additional factor αr and αi at
the coupled regime.

Assumptions for classical matching

This is the main assumption we mentioned in this paper, for the full set of assumptions
that one can implement in order to recover GR results, we refer to [164].

CL.1 Effective coupling constant: in this paper, for the case of large GFT background
densities, we assumed that µv (πϕ) ∝ πϕ. This is a necessary condition to match the
obtained results from our model to GR ones.



Chapter 8

Conclusion and outlook

Summary

In recent years, the field of QG experienced promising and compelling progress touching its
various facets, bringing it one step further to extracting continuum physics. In this thesis,
we targeted three questions tackled with the technology furnished by GFT and we can list
them according to their level of emergence. The first two questions concern the “how” to
solve the prominent problem with the current BC model listed in Box 3.1, and the “how”
to exploit the entanglement within the generic superposition of spin network states with
different graph structures. This is relevant at the microscopic (pre-geometric) level of the
theory. The third question was more concerned with extracting continuum gravitational
predictions in a cosmological setting and with perturbation treatment included, that can
be put in contact with the current standard formulation. Let us then summarize the main
results obtained after the investigation of these problems.

After having exposed the essential ingredients that ought to be present in every theory
of QG in chapter 2, such as background independence and relationalism, the fundamental-
ity of discreteness and how they can be combined to give rise to the standard continuum
geometry, we presented several approaches in chapter 3. They are based on different ways of
implementing these ingredients and we focused on the BC model in quantizing Lorentzian
geometries formulated as a constrained BF theory. As we emphasized in Box 3.1, this is
due to encoding the geometric in the bivectors instead of the edge vectors of the tetrahe-
dron (the elementary building block in 4d from which the SF is computed). This was the
main motivation behind deriving the new SF model in chapter 5 and its equivalent GFT
dynamics. The steps that made this possible are very simple; starting from the prescription
initially proposed by Barret and Yetter, we identified the edge vector as the entity that
fully defines the geometry in 4d, where triangles, tetrahedra, and simplices are constructed
out of it, provided we implement correctly constraints (at the classical and quantum level).
Quantizing such geometric quantities amounted to exploiting the SL(2,C) representation
theory and its possible expression in terms of Lorentzian harmonic oscillators, which are
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in turn representations of the translation group. Consequently, we were able to derive a
prescription for the quantum analog of the triangle, tetrahedron, and finally the evaluation
of the SF amplitude. This new SF amplitude bears the full causal structure of the geom-
etry. Moreover, the obtained SF reduced to a non-trivial combination of BC amplitude
as explained in section 5.4.2. We then translated all the derived tools in the language of
GFT in section 5.4.3 at the kinematical and dynamical levels of the theory. This is merely
the first step towards curing the issues present in SF and we will mention several future
research directions below.
In chapter 6 we explored the entanglement property of the generic superposition of spin
networks. As we mentioned several times throughout the thesis and in section 3.3. Spin
network states arise in the kinematical sector of the GFT setting as entanglement graphs,
where this entangled state of the quantum geometry is equivalent to gluing d− 1 simplices
along their common faces. The common approach to studying such states and their coarse-
graining is to work with a single graph underlying the spin network. However, it is in fact
a very strong truncation of the degrees of freedom of the quantum geometry. Therefore,
in that part of the thesis we provided the prescription for constructing a generic super-
position of spin network states with different connectivity patterns proliferating the tower
of the quantum geometric states. Furthermore, we investigated the induced correlation
within a bipartite system described by such a class of states. This produced remarkable
results at the level of entanglement entropy, where we can explore coherent and incoherent
contributions in the interference of the correlations of the quanta of spacetime. Pushing
the analysis further to study observables we are then led to think of these superpositions
as a quantum ensemble that allows the averaging of QG observables. Finally, we derived
the second quantization expression for these states.
Working at the effective relational level of the framework of the GFT condensate, con-
tinuum gravitational physics was successfully extracted. In particular, this covered the
reproduction of an FLRW homogeneous universe with the resolution of the singularity by
a quantum bounce. The results derived in chapter 7 aim to contribute to bringing the
GFT condensate model closer to cosmological observations. In particular, we were able
to provide an inversion relation allowing the bi-directional transitioning between the GFT
condensate parameters and the matter scalar field. This in turn allows us to study matter
content as well as the geometric content of the theory. Indeed, we successfully extracted
a formulation of the GFT matter field as field theory propagating on a curved spacetime,
exhibiting peculiar features at the dynamical level. This was performed for a matter scalar
field living on a homogeneous background and also for the case of a perturbed one, where
scalar perturbations are present.

Outlook

New SF model based on edge vectors. As we already spoiled in chapter 5, a thorough
study of the infinities and the adequate normalization scheme should be carried out for
the proposed model. In the standard BC models, this is usually done by considering the
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corresponding deformed quantum group [2]. In particular, this should accommodate the
following points

∗ As was conjectured in [115], it is possible that degenerate states of the old model will
carry now measure 0 since they do not correspond to any assignment of edge lengths.
Indeed, this seems as a robust presumption and hints towards the possible existence
of a more global constraint that must be satisfied by the quantum edge data on a
4-simplex. This has to be addressed for this new SF model and see how it can be
avoided or formulated within a GFT setting.

∗ A further observation concerns the geometrical operators. Let us stress that we can
associate the length variables in our model with discrete quantum numbers which
is a result of the quantization of the Minkowski space in terms of the translation
group, whereas the area operator will possess a continuous spectrum because the
decomposition of the tensor product of the irreducible unitary representations is a
direct integral.

∗ Among the shared features, we mention the fact that the new SF model can be of the
form of noncommutative simplicial gravity path integrals when expressed in the Lie
algebra representation. It would be interesting to study how this enters their semi-
classical analysis and explore the non-commutative feature and when it breaks down
to restore commutativity. Along the same line, it could be interesting to compare
the extracted results from the Ginzburg-Landau (GL) approach and renormalization
group analyses of the area variable models with those with edge vector variables
to see if they fall in the same/or different universality classes from the continuum
gravitational physics point of view.

Indeed, concerning the last point mentioned above, we saw in chapter 5 that the non-
commutative plane waves encode the correct non-trivial combinations of the edge vector
representation. Despite being phrased in terms of simplicial geometry and in seemingly
classical terms, as appropriate for a path integral quantization, also this method of quan-
tization necessarily relies on a certain choice of quantization map (which dictates, for
example, choices of operator orderings. The one that seems to be at the root of the non-
commutative Fourier transform and star product on which these results rely is the Duflo
quantization map [100]. It is then interesting to compare and study the relation between
the resulting quantum geometry that is produced from the geometric quantization pre-
scription and that resulting from the Duflo map. We also found out that, once we rely
on a quantization scheme of the simplicial geometry based on edge lengths, one is able a
priori, to define a quantum reference frame as was suggested by Crane and Yetter in their
original paper [115]. This can be implemented once a labeling (or equivalently an ordering)
of vertices of a 4-simplex is introduced (decorated by the appropriate group elements and
representations). This vertex is naturally associated with a set of six triangles in such a
simplex, which in turn is associated (as we saw in section 5.2) is isomorphic to the space
of a pair of edges. Consequently, a vertex can be equivalently perceived as the meeting



182 8. Conclusion and outlook

point of a set of four edge vectors. The rest of the four triangles (and their representations)
can be directly obtained by means of the switching map (5.2.5). This in turn requires a
thorough investigation of the explicit expression for such an operator, which in some sense
ensures the notion of diffeomorphism of the theory on the quantum level. In fact, the
action of the switching operator from the GFT perspective is equivalent to a first quanti-
zation program of the model, where the wave function of the fundamental building blocks
(tetrahedron) is invariant under relabeling. Moreover, there is an indirect relation to the
categorial 2-groups point and their relation to the Poincaré group, this then would be a
further advancement in pointing out the quantization procedure relying on the symmetries
of spacetime.

Another research direction is to attempt to extract physical consequences (e.g. as in
GFT cosmology). The standard path followed in this direction usually relies on working
with a GFT whose perturbative expansion reproduces the EPRL model. On this account,
it is possible to proceed similarly with our new SF model and compare the resulting pre-
dictions. Moreover, one would have to think of writing the volume operator starting from
edge vectors instead of what is usually done, in terms of fluxes.

Superposition of spin network states with different combinatorial structures.
The construction presented in chapter 6 is just the first step to accomplish the proposal of
the emergence of continuum physics from the quantum entanglement of the fundamental
building block of quantum geometry by utilizing the tools supplied by QIT. The main result
of section 6.2 is the purely quantum phenomena of quantum interference that arise due to
the superposition of the spin network states. Indeed we were only able to point out the
correlation in such a case only for a very simple and special class of states where the labeling
spins are fixed allowing the associated wave function to factorize. The next step would
be to generalize the construction and go beyond the wavefunction of the entanglement
graphs factorized over the single vertices ones. This requires a better understanding of
the intertwiner dimensional space and how it enters the definition of entangled states in a
superposition context. Along the same lines, it would be of great interest to converge to
other QG approaches by extending the superposition of the spin network states to express
them as Tensor Networks (TN) and eventually explore the possibility of relating them to
the AdS/CFT formalism. We expect this to generate a GFT-TN-AdS/CFT dictionary.
Moreover, as we emphasized in section 6.1.2, the structure of the considered bipartite
Hilbert space is of a tensor product nature. It is indeed a simple setting that enabled
the derivation of the entanglement measure for the superposed states. However, it does
not take into account the boundary degrees of freedom between the bipartite regions. We
know that these degrees of freedom are valuable, and this is usually formulated with the
techniques of an edge-modes decomposition promoting the boundary symmetries degrees
of freedom over others since that is all that is needed to glue local regions of quantum
spacetime. These are a few points that can be pursued further at the kinematical level of
the theory. At the dynamical level, we list the following open questions:
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∗ How can we derive a unitary operator that implements the connectivity in a system-
atic way at the dynamical level with the tools borrowed from QIT, graph theory?

∗ What are the techniques needed to be developed to control the divergence of the sum
over graphs and its scaling/renormalizability?

∗ Define a coarse-graining procedure through the introduction of an entanglement wit-
ness to this class of states. This calls for defining an entanglement witness for them
first. Explore the ensemble idea as coarse graining and its results in computing the
effective expectation value of the observables.

∗ Study the approximation or regime where this class of states coincides with the
condensate one (superfluidity?) to bridge the gap between effective (mean-field) and
coarse graining.

The bipartite idea can be used to mimic the situation of the interior and exterior regions
of a black hole. We can use this setup to study such cases and if we want to be ambitious,
we could derive an attempt to derive the Hawking radiation from a QG origin.

GFT as a field theory on a curved background. The main focus for the future
research direction of the extracted results in chapter 7 is prioritizing bringing in contact
with the GFT predictions to sensitive observational tests in cosmology. This falls into two
topical units:

∗ Background scalar field physics: From this point on, there are several options we are
faced with. One of them is to consider it as a potential term and study the inflationary
implications it bears behind. Another option would be to investigate further its
relation to the chameleon mechanism that appears in modified theories of gravity.
Study the symmetry of the field at early time, since that is the regime where we expect
deviations from classical GR. Furthermore, we could with scrutiny investigate the
relation of the derived formalism to MGT theories and in which regime what theory
our model produces. This is in fact important to make contact with observations.
With the same token, since we now are endowed with the usual machinery of field
theories, we could program it in a way to explain the CMB spectrum from the
QG point of view, even at this effective level. We can even perform the canonical
quantization of the background scalar field and study all phenomena that a standard
QFT theory faces in this QG context. Construct a tentative quantum operator for
the curvature/ metric by tracing back the QG nature of the extracted effective one.

∗ Perturbed scalar field physics: Quantization of the theory and performing the stan-
dard analysis of modern cosmology in this regard is required at this stage and with
the technology derived in chapter 7. This could also naturally enable us to study the
phenomena of particle creation. Furthermore, quantum gravitational extrapolation
between early times cosmology and late times one must be further investigated. The
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very presence of the Ricci scalar near the bounce and then its vanishing when we are
in the regime of recovering GR is indeed puzzling and hints at a mysterious mecha-
nism that takes place in between. It is also of great interest to study the behavior of
cosmological GFT once we reintroduce the interaction of the fundamental building
block of the quantum space. Would we be able to extract effectively in a systematic
way? How will this contribution affect gravitational physics? The interaction term
is present to include more and more degrees of freedom at the microscopic level of
the theory, but from an effective point of view, will they play an important role in
comparison with the kinematics of the theory or not?

Generally, effective GFT cosmologies are promising QG models that are at the forefront of
extracting continuum physics that allows a possible dialog with the field of cosmological
observations. In fact, if we pursue the goal of including the tensorial perturbation treatment
in this framework we have, we could possibly bridge a connection with the other branch of
observational physics, namely that of gravitational waves.



Appendix A

Representation theory of the Lorentz
group

A.1 Infinite dimensional unitary representations of
the Lorentz group

We first recall the realization of the infinite dimensional unitary representations of the
Lorentz group and its algebra in the space of homogeneous functions, and finally, ex-
plore the Plancharel decomposition of the various classes of such representations. We then
present the alternative representation of the Lorentz group in terms of expansors, first
introduced by Dirac in [177,179].
Finite dimensional representations of the SL(2,C) (double cover of the Lorentz group),
i.e. tensor, spinor representations [238–241], are not unitary and the problem of identi-
fying finite unitary representations remains unsolved [141, 178]. However, as we already
mentioned in chapter 5 the case of the infinite dimensional representations of the Lorentz
group has been extensively studied in [105, 179], and unitary irreducible representations
were first derived in [177]. An element g ∈ SL(2,C) can be described by the matrix:

g =
(
α β
γ δ

)
, (A.1.1)

with α, β, γ, δ ∈ C satisfying the relation αδ − βγ = 1. A representation of the group
denoted Rχ(g), can then be given by its action on the set of homogeneous polynomial
functions ϕ of two complex variables z1, z2 ∈ C of order n1 − 1 in z1 and n2 − 1 in z2. We
denote by χ the pair of numbers χ = (n1, n2). Such action takes the form:

Rχ(g)ϕ(z1, z2) = ϕ(αz1 + γz2, βz1 + δz2) . (A.1.2)

Among the SL(2,C) infinite dimensional representations, we can distinguish the unitary
ones, which are the so-called principal series. Such representations are denoted by Rj µ(g),
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labelled by the half integer j and the real number µ ∈ R, and again the SL(2,C) transfor-
mations are specified by the action of Ri µ̄ on the polynomials of degree (1

2(µ+j), 1
2(µ−j)).

The only isomorphism between such representations is the one depicted by Rj µ = R−j −µ.
The representations in the principal series are further classified according to the value of
j: the representations labeled by j integer are called bosonic, whereas those with j being
half-integer are referred to as the fermionic ones. The bosonic irreducible representations
are unitary infinite dimensional representations of the Lorentz group. Throughout this pa-
per, when discussing the unitary infinite dimensional representations of the Lorentz group,
we will thus refer to the bosonic representations in the principal series of SL(2,C).
We also note that the irreducible representations of the principal series Rj µ correspond
to the canonical D-matrices Dj µ

ℓ,m;ℓ′,m′ . These can be realized as the expectation value of
a general unitary operator U(g) associated with the transformation g ∈ SO(1, 3), in the
(canonical) orthogonal basis | j, µ; ℓ′,m′⟩ of the Lorentz group

Dj µ
ℓ,m;ℓ′,m′(g) = ⟨j, µ; ℓ,m |U(g)| j, µ; ℓ′,m′⟩ . (A.1.3)

where (j , µ) are the representation labels, whereas (l ,m) are the angular momentum- and
magnetic quantum numbers.
In the following, the so-called balanced representations among the principal series of the
Lorentz representations will play a central role. As we will see in section 5.2.2, we are
interested in triangles whose geometry is encoded by a simple bivector [114, 184]. On the
level of the associated representation, it is obtained by setting the representation labels
j = 0 or µ = 0. According to [105, 114, 124], a natural expression for such representations
is given by the Gelfand-Graev transformations on the hyperboloid in Minkowski space.
Let xµ ∈ R4 be the embedding coordinates for such hyperboloid, with scalar product
x · x = x2

0 − x2, with x2 = x2
1 + x2

2 + x2
3. Let us consider the three hyperboloids; Q1 given

by x · x = 1 and x0 > 0, the null positive cone Q0 given by x · x = 0 and x0 > 0, and
the de-Sitter space Q−1 given by x · x = −1. The Fourier decomposition for the square
integrable functions on the three hyperboloids is given by the Plancherel theorem:

L2[Q1] =
⊕

µ

R0 µ dµµ2 ,

L2[Q0] = 2
⊕

µ

R0 µ dµµ2 ,

L2[Q−1] =
(

2
⊕

µ

R0 µ dµµ2
)⊕(⊕

j

Rj 0

)
,

(A.1.4)

where dµµ2 is the Plancherel measure for j = 0. The Plancherel theorem thus provides
a definition of the Hilbert spaces of the three hyperboloids based on a combination of the
Lorentz balanced representations.
For completeness, looking at the Lorentz algebra, we can notice that it is isomorphic to
sl(2,C) or so(3,C), both considered as real algebras. Hence, the Lorentz algebra generators
can be written as a combination of a rotation J and a boost N . In components, this
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translates to writing a general element of the algebra as Lab = Jab + iNab. Furthermore,
there exist two invariant inner scalar products on this Lie algebra given by:

⟨L , L⟩ = J2 −N2 , ⟨L , ∗L⟩ = 2 J ·N , (A.1.5)

where the symbol ∗ denotes the Hodge dual: ∗Lab = 1
2εab

cdLcd. They lead to the Casimir
elements with eigenvalues:

C1 = j2 − µ2 − 1 , C2 = 2j µ , (A.1.6)

which can be recast as the real and imaginary parts of the complex quantity ω2 − 1 =
C1 + iC2, with ω = j + iµ. This implies that the eigenvalue of the Casimir C2 for a simple
bi-vector vanishes. The eigenvalue associated instead to the Casimir C1 + 1, |b| = ρ2 − n2,
gives instead its length (note a change of sign respect to (A.1.6) due to the Hodge operator
∗). In particular, the sign of such eigenvalue leads to the notion of time-like, null, and
space-like surfaces spanned by the bi-vector: for n = 0 and ρ ̸= 0 the bi-vector b spans a
space-like wedge and is labeled by a balanced representation R0 ρ, for n ̸= 0 and ρ = 0 the
bi-vector b spans a time-like wedge and is labeled by a balanced representation Rn 0, and if
both the quantum numbers vanish, n = ρ = 0, the bi-vector b spans a null surface and is
labeled by a trivial representation R0 0. We summarize these results in the table A.1. We

C2 = 2nρ = 0 C1 + 1 = ρ2 − n2 Representation
n = 0 , ρ ̸= 0 |b| > 0: space-like wedge R0 ρ

n ̸= 0 , ρ = 0 |b| < 0: time-like wedge Rn 0

n = 0 , ρ = 0 |b| = 0: null wedge R0 0

Table A.1: The simplicity condition for the bi-vector b = ∗L is given by the vanishing of the
Casimir C2. The sign of the Casimir C1 gives its length. The two conditions together lead to the
notion of time-like, space-like, and null surfaces spanned by the bi-vector b. This is reflected by
the representations used to decorate the bi-vector.

derived that simple bi-vectors (given as the wedge product of edges) are only labeled by
the balanced irreducible representation of the Lorentz group.

A.2 Four dimensional Lorentzian harmonic oscillators

We present here the solutions of the four dimensional Lorentzian harmonic oscillator in
different basis formulations that we used for deriving the results in chapter 5. The isotropic
four dimensional harmonic oscillator is described by the Hamiltonian

H = −1
2∆ + 1

2(t2 − x2 − y2 − z2) , (A.2.1)
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with associated Schrödinger equation H Ψ = EΨ, where ∆ is the four dimensional Lorentzian
Laplacian operator ∆ = ∂2

t −∂2
x −∂2

y −∂2
z . Following [180,182], we solve such wave equation

in the Minkowskian, cylindrical, spherical, and hyperbolic coordinates.

(i) Minkowskian coordinates. The Minkowskian basis is |nt, nx, ny, nz⟩, with nx, ny, nz ∈
N and nt ∈ R. It is associated to the eigenvalue E = (nt +1/2)− (nx +ny +nz +3/2)
with eigenbasis

Ψnt,nx,ny ,nz(t, x, y, z) = ψnt(t)ψnx(x)ψny(y)ψnz(z) , (A.2.2)

where ψn are the Hermite functions.

(ii) Cylindrical coordinates. The cylindrical basis is |nt, nρ,m, nz⟩, with nt, nρ, nz ∈ N,
nt ∈ R and m ∈ Z. It is associated to the eigenvalue E = (nt + 1/2) − (2nρ + |m| +
nz + 3/2) with eigenbasis

Ψnt,nρ,m,nz(t, ρ, ϕ, z) = ψnt(t)
(−1)nρ

√
π

√√√√ nρ!
Γ(nρ + |m| + 1)e

− 1
2 ρ2
ρ|m|L(|m|)

nρ
(ρ2)eimϕψnz(z) ,

(A.2.3)
where L(α)

n are the Laguerre polynomials with the proper renormalization.

(iii) Spherical coordinates. The spherical basis is |nt, nR, ℓ,m⟩, with nt, nR, ℓ ∈ N, nt ∈ R
and m ∈ −ℓ, . . . , ℓ. It is associated to the eigenvalue E = (nt +1/2)− (2nR +ℓ+3/2)
with eigenbasis

Ψnt,nR,ℓ,m(t, R, θ, ϕ) = ψnt(t)(−1)nR

√
nR!

Γ(nR + ℓ+ 3/2) e
− 1

2 R2
RℓL(ℓ+1/2)

nR
(R2)Y m

ℓ (θ, ϕ) ,

(A.2.4)
where Y m

ℓ are the spherical harmonics.

(iv) Hyperbolic coordinates. The hyperbolic basis is |nr, µ, ℓ,m⟩, with nr, ℓ ∈ N, m ∈
−ℓ, . . . , ℓ and nt, µ ∈ R. It is associated to the eigenvalue E = 2nr + iµ + 1 with
eigenbasis

Ψnr,µ,ℓ,m(r, η, θ, ϕ) = (−1)nr

√
nr!

Γ(nr + µ+ 1/2) r
µ−1e− 1

2 r2
L(µ)

nr
(r2)

× 1
sinh η Q

iµ
ℓ (coth η)Y m

ℓ (θ, ϕ) ,

(A.2.5)

where Qα
λ are the Legendre function with the proper normalization constant

Note that by our choice of hyperbolic coordinates, we assumed the energy to be positive.
This amounts to requiring that the solutions Ψ are time-like.
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For completeness, we show the details of the derivation of the eigenbasis in the hyperbolic
coordinates. Let us consider the change of coordinates:

t = r cosh η
x = r sinh η sin θ cosϕ
y = r sinh η sin θ sinϕ
z = r sinh η cos θ

with


η ∈ R
θ ∈ [0, π]
ϕ ∈ [0, 2π]

(A.2.6)

In these coordinates the Laplacian writes

∆ = ∂2
t − ∂2

x − ∂2
y − ∂2

z

= ∂r

r3

(
r3∂r

)
− 1
r2 sinh2 η

∂η

(
sinh2 η∂η

)
− 1
r2 sinh2 η sin θ

∂θ(sin θ∂θ) − 1
r2 sinh2 η sin2 θ

∂2
ϕ.

(A.2.7)
We are looking for a separable solution for the above differential equation, namely of

the type Ψ(r, η, θ, ϕ) = ur(r)uη(η)uθ(θ)uϕ(ϕ). First, we note that the non-radial part of
the differential equation is exactly the Laplacian equation for the Casimir C1 (5.1.17). The
time-like solutions are the eigenfunctions with eigenvalue −1 − µ2:(

C1 − (1 + µ2)
)

(uη(η)uθ(θ)uϕ(ϕ)) = 0 . (A.2.8)

Therefore, the rotational part gives the usual spherical harmonics uθ(θ)uϕ(ϕ) = Y m
ℓ (θ, ϕ).

While the radial and the hyperbolic contribution instead satisfy the equations

∂2
η uη + 2 coth η ∂η uη − ℓ(ℓ+ 1)

sinh2 η
uη = −(1 + µ2)uη ,

∂2
r ur + 3

r
∂r ur + 1

r2 (1 + µ2)ur − r2 ur = −2E ur .

(A.2.9)

Two solutions for the hyperbolic part are given by the Legendre functions of the first or
second kind. According to [180], we take the solution of the second kind, given by:

uη(η) = 1
sinh η Q

iµ
ℓ (coth η) . (A.2.10)

A solution for the radial part is instead given in terms of the generalized Laguerre polyno-
mials:

ur(r) = riµ−1e− 1
2 r2

L(iµ)
nr

(r2) , (A.2.11)

with E = 2nr + iµ+1. The general (non-normalized) eigenfunction of the four dimensional
isotropic Lorentzian harmonic oscillators in the hyperbolic basis is thus given by

Ψnr,µ,ℓ,m(r, η, θ, ϕ) = riµ−1e− 1
2 r2

L(iµ)
nr

(r2) 1
sinh η Q

iµ
ℓ (coth η)Y m

ℓ (θ, ϕ) . (A.2.12)
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The eigenfunction in the spherical coordinates in terms of the eigenfunction in the Minkowskian
coordinates [181] writes

Ψnt,nR,ℓ,m(t, R, θ, ϕ) =
∑

nρ,nx,ny ,nz

im+|m|(−1)ñx+nξ(σmi)ny

2(1−δm,0)/2

× C
1+|m|

2 , 1
4 + qz

2 , ℓ
2 + 3

4
nρ,ñz ,nR

C
1
4 + qx

2 , 1
4 + qy

2 ,
1+|m|

2
ñx,ñy ,nρ

Ψnt,nx,ny ,nz(t, x, y, z) .
(A.2.13)

Here σm = sign(m) and Cν1,ν2,ν12
n1,n2,n12 is the su(1, 1) Clebsh-Gordan coefficient defined as

Cν1,ν2,ν12
n1,n2,n12 =

( (2ν1)n1(2ν2)n2(2ν1)n1+n2−n12

n1!n2!n12!(n1 + n2 − n12)!(2ν2)n1+n2−n12(2ν12)n12(ν1 + ν2 + ν12 − 1)n1+n2−n12

)1/2

× (n1 + n2)! 3F2

(
−n1, −n1 − n2 + n12, ν1 + ν2 + ν12 − 1

2ν1, −n1 − n2
; 1
)

(A.2.14)
where mFn is the generalized hypergeometric function.

Realization of su(1, 1) and so(1, 3) algebras. Let us first remind the su(1, 1) structure.
Let J0, J± be the su(1, 1) generators obeying the commutation relations:

[J0 , J±] = ±J± , [J+ , J−] = −2J0 , (A.2.15)

with Casimir operator Q = J2
0 − J+J− − J0. The su(1, 1) irreducible representations are

labelled by an integer n ∈ N and a real number ν ∈ R, where the action of the generators
on it yields

J0 |ν;n⟩ = (ν + n) |ν;n⟩ ,

J+ |ν;n⟩ =
√

(n+ 1)(n+ ν) |ν;n+ 1⟩ ,

J− |ν;n⟩ =
√
n(n+ ν − 1) |ν;n− 1⟩ ,

Q |ν;n⟩ = ν(ν − 1) |ν;n⟩ .

(A.2.16)

In [180] it was pointed that each one dimensional harmonic oscillator can be mapped
into an su(1, 1) sub-algebra. For the space-like oscillators in the {x, y, z} directions, the
map between each of them and the su(1, 1) basis is provided by |na⟩ ∼= |1/4 + qa/2 ; ña⟩,
with a = x, y, z and na = 2ña + qa. We show below how to derive such map for the
harmonic oscillator in the t direction. To this scope we use Dirac’s work [177]; from this,
we know that infinite dimensional representations of the Lorentz group are realized on
homogeneous polynomials on Minkowski space with coordinates ξµ, where the Lorentzian
signature is implemented as a negative power of the time coordinate. Such polynomials can
be recast as a four dimensional Lorentzian harmonic oscillator with constant energy1. From
Dirac’s construction, we have the relation (5.1.8) between the harmonic oscillator ladder

1The request of constant energy for the harmonic oscillator is equivalent to the homogeneity condition
of the polynomials.
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operators, the coordinates on Minkowski space ξµ and the harmonic oscillator coordinates
xµ. In order to derive the map between the quantum oscillator and the su(1, 1) irreducible
representations, we first consider the realization of the su(1, 1) generators in the harmonic
oscillator basis

J0 = 1
2(a†

0a0 + 1/2) , J+ = 1
2(a†

0)2 , J− = 1
2(a0)2 . (A.2.17)

The su(1, 1) irreducible representation basis is diagonal with respect the operators J0, Q,
whose action is

J0 |ν;n⟩ = (ν + n) |ν;n⟩ := 1
2(a†

0a0 + 1/2) |nt⟩ = 1
2(nt + 1/2) |nt⟩

Q |ν;n⟩ = ν(ν − 1) |ν;n⟩ :=
(1

4(a†
0a0 + 1/2)2 − 1

4(a†
0)2(a0)2 − 1

2(a†
0a0 + 1/2)

)
|nt⟩

= − 3
16 |nt⟩ .

Solving the system of equations n+ ν = nt/2 + 1/4 and ν(ν − 1) = −3/16, one derives the
map

|ν;n⟩ ∼= |1/4 + qt/2 ; ñt⟩ . (A.2.18)

Notice that this map relates the su(1, 1) sub-algebra characterized by ν = {1/4, 3/4} to
the time-oriented harmonic oscillator whose real contribution n̄t is restricted to the set of
even numbers.

Hyperbolic vs Minkowskian basis. We would like now to obtain the basis of the
four dimensional harmonic oscillator in the hyperbolic coordinates, as the tensor product
between the three dimensional harmonic oscillator (in the spherical basis |nR, ℓ,m⟩ ∼=
|ℓ/2 + 3/4 ; nR⟩) and the time oriented harmonic oscillator |nt⟩ ∼= |1/4 + qt/2 ; ñt⟩. Both
can be mapped to an su(1, 1) basis, thus, following again [180], we use the su(1, 1) Clebsh-
Gordan coefficients to derive their tensor product. Concretely, we aim to obtain the relation

|nr, µ; ℓ,m⟩ =
∑

nt,nR

⟨nt, nR, ℓ,m|nr, µ; ℓ,m⟩ |nt, nR, ℓ,m⟩ , (A.2.19)

for states with the same energy given by:

2nr + iµ+ 1 = (nt + 1/2) − (2nR + ℓ+ 3/2) , (A.2.20)

along with the ℓ,m parameters which label the three dimensional rotational part that
remains unchanged from the spherical to the hyperbolic basis. We thus have to express
the basis in the hyperbolic coordinates (written as an su(1, 1) basis |ν;n⟩) as a combination
of the tensor product

|nt⟩ ⊗ |nR, ℓ,m⟩ ∼= |1/4 + qt/2 ; ñt⟩ ⊗ |ℓ/2 + 3/4 ; nR⟩ . (A.2.21)
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To this aim, we write the generators of the tensor product basis as the difference2 of the
generators of the two initial basis

J0 = J t
0 ⊗ 1 − 1 ⊗ Jxyz

0 , J± = J t
± ⊗ 1 − 1 ⊗ Jxyz

∓ . (A.2.22)

It is straightforward to check that each set of generators {J0, J±}, {J t
0, J

t
±} and {Jxyz

0 , Jxyz
± }

satisfy the commutation relations (A.2.15) with respective Casimir operators Q,Qt, Qxyz

and actions (A.2.16) on the respective basis. The tensor product basis |n; ν⟩ = |nr, µ; ℓ,m⟩
is completely determined by requiring it to be diagonal with respect to the tensor product
operators J0 and Q. Using (A.2.20), the first gives the condition

n+ ν = 1
2(nt + 1/2) − 1

2(2nR + ℓ+ 3/2) = nr + 1
2(iµ+ 1) . (A.2.23)

Moreover, we demand the solutions |nr, µ; ℓ,m⟩ to be a basis for the principal series of the
irreducible representation of the Lorentz group. We recall that the Lorentz algebra with
generators La, Na has two Casimir operators [2]:

C1 = J2 −N2 , C2 = 2J ·N , (A.2.24)

with respective eigenvalues of the principal series of the irreducible representation C1 =
j2 −µ2 − 1 and C2 = 2jµ. Using (5.1.18), one can directly check that the Casimir C2 auto-
matically vanishes. According to [113], the vanishing of C2 = 2jµ means that |nr, µ; ℓ,m⟩
is a basis for the balanced representations of the Lorentz group. In particular, since we
assumed the energy of the harmonic oscillator to be positive, the Casimir C1 has to be neg-
ative, and thus k = 0 which implies C1 = −1 − µ2. Hence, the basis |nr, µ; ℓ,m⟩ provides
a quantization for the space-like bivectors. Using (5.1.18), from a direct computation one
can check that

Q = 1
4C1 . (A.2.25)

By enforcing this equation on the basis |nr, µ; ℓ,m⟩ together with (A.2.23), we end up with
the system of equations

n+ ν = nr + 1
2(iµ+ 1) ,

ν(ν − 1) = −1
4(1 + µ2) ,

⇒ n = nr , ν = 1
2(1 + iµ) . (A.2.26)

This gives the Clebsh-Gordan coefficients in (A.2.19) for the harmonic oscillator from the
spherical coordinates to the hyperbolic coordinates (the time-like principal series of the
irreducible representations of the Lorentz group):

⟨nt, nR, ℓ,m |nr, µ; ℓ,m⟩ = eiφ C1/4+qt/2, ℓ/2+3/4, (1+iµ)/2
ñt+n̄t/2, nR, nr

, (A.2.27)

2The minus sign of the linear combination reflects the Lorentzian signature.
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where eiφ is a phase factor that can be fixed by requiring that the expansion (A.2.19) holds
also for the solutions (A.2.5). The overall map of the four dimensional oscillator, between
the Minkowskian basis and the hyperbolic basis is thus

Ψnr,µ,ℓ,m(r, η, θ, ϕ) =
∑

nt,nx,ny ,nz

Cnt, nx, ny , nz

nr, µ, ℓ, m Ψnt,nx,ny ,nz(t, x, y, z) , (A.2.28)

with

Cnt, nx, ny , nz

nr, µ, ℓ, m := ⟨nt, nx, ny, nz|nr, µ; ℓ,m⟩

=
∑

nR,nρ

im+|m|(−1)ñx+nξ(σmi)ny

2(1−δm,0)/2 eiφ C
1+|m|

2 , 1
4 + qz

2 , ℓ
2 + 3

4
nρ,ñz ,nR

C
1
4 + qx

2 , 1
4 + qy

2 ,
1+|m|

2
ñx,ñy ,nρ

× C1/4+qt/2, ℓ/2+3/4, (1+iµ)/2
ñt+n̄t/2, nR, nr

. (A.2.29)

A.3 Algebra of representation functions

In this section, we present some notions from the representation theory that we used
throughout the thesis. We work with a finite group or a compact Lie group G. The
representation ρ of G on a finite-dimensional complex vector space V ρ is defined as being
a group homomorphism such that

ρ : G → Aut [V ρ] , (A.3.1)

where Aut [V ρ] is the automorphism group of the space V ρ. An invariant subspace for the
representation ρ is a vector subspace U such that, for all u ∈ U , ρ(g)u ∈ U for all g ∈ G.
A representation is called irreducible if its only closed invariant subspaces are ∅ and V ρ.
Whereas, a representation is unitary if, for every g ∈ G, ρ(g) is unitary. Moreover, two
representations ρ and ρ′ are equivalent if there exist an isomorphism Iso : V ρ → V ρ′ such
that Iso ρ(g) = ρ′(g) Iso for all g ∈ G. We set ρ = 0 as the trivial representation which
maps every element of G to 1 (hence V 0 ∼= C).

•Unitary representations. One can show that Every finite-dimensional representation is
equivalent to a unitary representation. This enables us to restrict the attention to a set Ũ of
unitary representations, one for each equivalence class of finite-dimensional representations
of G [105]. Now, every finite-dimensional representation ρ of G can be decomposed into a
direct sum of irreducible representations ρ1, . . . , ρk [141,240]:

V ρ = V ρ1 ⊕ · · · ⊕ V ρk (A.3.2)

and we can make use of the notion of the unitary representations here as follows; we
denote by U ⊂ Ũ the subset of irreducible representations and we can perceive it as the
elementary not dividable unit of generic representations. We explore now the notion of a
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dual representation. Let V ρ∗ be the vector space dual to V ρ, given a subspace of unitary
irreducible representations ρ ∈ Ũ , the dual representation we define the dual representation

ρ∗ : G → Aut [V ρ∗] , (A.3.3)

is such that, for each element in this space η ∈ V ρ∗ we have

(ρ∗(g)η) (v) = η
(
ρ(g−1)v

)
, ∀v ∈ V ρ . (A.3.4)

•Scalar product and representation function. There is a natural scalar product ⟨·|·⟩
induced in the representation spaces V ρ, where ρ ∈ Ũ , and the duality between two or-
thonormal basis {ai} (not to be confused with the ladder operator discussed in chapter 5)
of V ρ and {αi} of V ρ∗ is given by

⟨ai|aj⟩ = βi(aj) = δij , ⟨αi|αj⟩ = αj(bi) = δji . (A.3.5)

We can now introduce the notion of representation function. For ρ ∈ Ũ , v ∈ V ∗ and
η ∈ V ρ∗, the functions

fρ
η,v : G → C ,

g → fρ
η,v(g) := ⟨η|ρ(g)v⟩ ,

(A.3.6)

are called representation functions of G and form a commutative and associative unital
algebra over C, denoted by Calg(G). We can perform the following operations(

fρ
η,v + fρ′

η′,v′

)
(g) := fρ⊕ρ′

η+η′,v+v′(g), (A.3.7)(
fρ

η,v · fρ′

η′,v′

)
(g) := fρ⊗ρ′

η⊗η′,v⊗v′(g) . (A.3.8)

The null elements are given by f (0)
0,0 satisfying f (0)

0,0 (g) = 0 ∀g ∈ G) whereas the unit element
by f (0)

η,v , such that f (0)
η,v (g) = 1 ∀g ∈ G). Considering the orthonormal basis, one can obtain

their representation functions, and this yields

fρ
mn(g) := fρ

αm,an
(g) = ⟨αm|ρ(g)an⟩ , (A.3.9)

We can present the Fourier analysis of these decompositions for their usefulness for our
discussions in almost every chapter of the thesis.

•The Peter-Weyl decomposition The Peter-Weyl theorem implements a Fourier analysis
for compact groups, where the matrix coefficients fρ

mn(g) of all irreducible unitary repre-
sentations ρ ∈ U of G form an orthogonal basis of L2(G), where the following equality
holds

⟨fρ
mn|fρ′

m′n′⟩ =
∫

G
dg fρ

mn(g)fρ′

m′n′(g) = 1
dimV ρ

δρρ′δmm′δnn′ . (A.3.10)

where dg is the Haar measure on G. Any function φ ∈ L2(G) can therefore be written as

φ(g) =
∑
ρ∈U

∑
mn

bρ
mnf

ρ
mn(g) . (A.3.11)
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where
bρ

mn = dimV ρ
∫

G
dgφ(g)fρ

mn(g) . (A.3.12)

On the level of the space of square integrable functions this yields

L2(G) ∼=
⊕
ρ∈U

(V ρ∗ ⊗ V ρ) . (A.3.13)

•Intertwiner map We now introduce the intertwiner map, one the most important ingre-
dients to spin network states as we encounter in section 3.3. Given a representation σ ∈ Ũ
endowed with the orthogonal decomposition

V σ ∼=
q⊕

i=1
V τk τk ∈ U , q ∈ N , (A.3.14)

where the first p components τ1, . . . , τp, with 0 ≤ p ≤ q, are equivalent to the trivial
representation, and considering the projector P σ;k such that P σ;k : V σ → V τk and P σ;k

m :=
P σ;k |am⟩; we can write ∫

G
dgfσ

mn(g) =
p∑

k=1
P σ;k

m P σ;k
n , (A.3.15)

where the right-hand side is the orthogonal decomposition of the identity in the subspace
of V σ of invariant vectors. Let us generalize this equation to include the tensor product of
N representations given by

V ρ1 ⊗ · · · ⊗ V ρN ∼=
q⊕

i=1
V τk τk ∈ U , q ∈ N , (A.3.16)

and, if τ1, . . . , τp (with 0 ≤ p ≤ q) are equivalent to the trivial representation, then∫
G

dg fρ1
m1n1(g) . . . fρN

mN nN
(g) =

p∑
k=1

P ρ1...ρN ;k
m1...mN P

ρ1...ρN ;k
n1...nN

, (A.3.17)

where P ρ1...ρN ;k is the projector from V ρ1 ⊗ · · · ⊗ V ρN onto InvG [V ρ1 ⊗ · · · ⊗ V ρN ], i.e.
the subspace of G-invariant tensors, also called intertwiner space. Equivalently the above
operation can be written as∫

G
dg fρ1

m1n1(g) . . . fρN
mN nN

(g) = I ∈ InvG [V ρ1 ⊗ · · · ⊗ V ρN ] . (A.3.18)

As already mentioned, the intertwining operation and the decomposition into a direct sum
at the level of representations is at the core of the spin network state definition. Let us
then go a bit further and explore the notion of intertwiners. Given two representations ρ
and σ, a linear map I : V ρ → V σ such that

Iρ(g) = σ(g)I (A.3.19)

is called intertwiner. We also say that I intertwines the two representations. We can make
several comment on these quantities:
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• If the map I is bijective, then (A.3.19) provides the definition of equivalence of the
representations ρ and σ.

• Relying on V ρ∗ ∼= V ρ, the intertwiner can be regarded as a map I : V ρ ⊗V σ → V 0 ∼=
C, i.e. as an invariant tensor on V ρ ⊗ V σ.

• the projector P ρ1...ρN ;k defined in (A.3.17) is an intertwiner.

A.4 Representation and recoupling theory of SU(2)

We can study the above notion in the case of the SU(2) group, since we make use of them
extensively in several chapters. SU(2) is a 3-dimensional compact Lie group corresponding
to the group of 2 × 2 unitary matrices with a

h =
(
a −b
b a

)
|a|2 + |b|2 = 1 a, b ∈ C . (A.4.1)

The Lie algebra of this group is su(2) and its generators are τi := iσi

2 , where σi being the
Pauli matrices. They satisfy the following commutation relations

[τi, τj] = −εijkτk . (A.4.2)

The representations of SU(2) are labeled by a half-integer j ∈ N
2 called spin. The repre-

sentation space V j is a Hilbert space of dimension dj := 2j + 1.
The angular momentum Ĵi := σi

2 satisfy the following commutations

[Ĵi, Ĵj] = iεijkĴk . (A.4.3)

The standard basis of V j is composed of the eigenstates of both the su(2) Casimir Ĵ2 := ĴiĴ
i

and the generator Ĵ3, labeled by the spin j and the magnetic momentum m and this yields

Ĵ2 |jm⟩ = j(j + 1) |jm⟩ , (A.4.4)
Ĵ3 |jm⟩ = m |jm⟩ , (A.4.5)

with the magnetic numbers running from m = −j, . . . , j. By means of (A.3.9) the repre-
sentation matrices Dj(g) are called Wigner matrices Tand they are the j-representation
matrix of g ∈ SU(2) is denoted by Dj(g), and has coefficients

Dj
mn(g) := ⟨jm|g|jn⟩ . (A.4.6)

On the other hand exploiting (A.3.17) we end up with∫
G
dg Dj1

m1n1(g)Dj2
m2n2(g)Dj3

m3n3(g)Dj4
m4n4(g) =

∑
ι

Ij1j2j3j4;ι
m1m2m3m4I

j1j2j3j4;ι
n1n2n3n4 , (A.4.7)

where Ij1j2j3j4;ι is the intertwiner recoupling fours representations j1, . . . , j4. This naturally
defines its as an element of the space InvG [V j1 ⊗ · · · ⊗ V j4 ].



A.4 Representation and recoupling theory of SU(2) 197

Holonomies Here we present several properties of the holonomy that enters the deriva-
tion in section 3.3:

E Under a local gauge transformation generated by the Gauss constraint the connection
Aa transforms as

A′
a = gAag

−1 + g∂ag
−1 (A.4.8)

✥ Under a gauge transformation the holonomy he[A] becomes

h′
e[A] = g(se)he[A]g−1(te) (A.4.9)

✥ The densitized triad Ea
i transforms, under the action of the local gauge group, as

follows:
Ea′ = gEag−1 (A.4.10)

Since Ea
i encodes the spatial geometry of Σ, any geometrical quantity on Σ can thus

be written in terms of it. Important examples are the area of a two-dimensional
surface S ⊂ Σ,

AS[E] :=
∫

S
dσ1dσ2

√
Ea

i E
b
jδ

ijnanb , (A.4.11)

✥ The volume of a three-dimensional region R ⊂ Σ:

VR[E] =
∫

R
d3x

√∣∣∣∣ 13!εabcEa
i E

b
jE

c
kε

ijk

∣∣∣∣ . (A.4.12)
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Appendix B

Field theories in cosmology and
scalar perturbations

B.1 Scalar field in QFT and scalar perturbation

Classically, the coupled reference matter fields playing the role of the clock and rods in our
framework are governed by the action

Sm [χµ, ϕ] = − 1
2

∫
d4x

√
−ggab∂aχ

0∂bχ
0 + λ

2

d∑
i=1

∫
d4x

√
−ggab∂aχ

i∂bχ
i (B.1.1)

− αϕ

2

∫
d4x

√
−ggab∂aϕ∂bϕ (B.1.2)

=1
2

∫
d4x

√
−gM (λ)

µν g
ab∂aχ

µ∂bχ
ν − αϕ

2

∫
d4x

√
−ggab∂aϕ∂bϕ (B.1.3)

However, as we encountered in section 7.2, this is not the action we recover for small
background densities ρ0 but rather that of a non minimally coupled QFT. Therefore in
the following, we present the field equations of a QFT on a curved background, minimally
coupled to gravity. We work in the harmonic gauge.

B.1.1 Quantum field theory on curved spacetime in the harmonic
gauge

The line element for a homogeneous isotropic universe in the harmonic gauge reads

ds2 = −a6(t)dt2 + a2(t)δij dxi dxj. (B.1.4)

The action of a non minimally coupled QFT on a classical fixed background yields

S[φ] =
∫
d4x

√
|g|12

(
gµν∂µφ∂νφ−

(
m2 + ξR

)
φ2
)
, (B.1.5)
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where gµν of the spacetime metric, g its determined, R is the Ricci scalar, ξ is a constant
and m2 the mass associated to the field φ. The equation of motion of the scalar field is
obtained by varying the action with respect to the field φ and it is given by(

□ +m2 + ξR
)
φ = 0, □ = |g|−1/2∂µ|g|1/2gµν∂ν , (B.1.6)

where for the above line element this takes the simpler form

−a−6φ̈+ a−2∇2φ+ a−6ξ

(
−12 ȧ

2

a2 + 6 ä
a

)
φ+m2φ = 0 , (B.1.7)

The stress energy tensor can be obtained by varying the action (B.1.5) and its general
expression reads

Tµν = ∇µφ∇νφ− 1
2gµν

[
∇δφ∇δφ+ V (φ)

]
+ξφ2Gµν +ξ (gµν∇δ∇c − ∇a∇δ)

(
φ2
)
, (B.1.8)

where Gµν is the Einstein tensor. The Friedmann equations then read

3H2 = φ̇2 + a6

2
(
∇2φ+m2

)
+ 3ξH2φ2 + ξ

(
a6∇2 − ∂2

0

)
φ2 , (B.1.9)

−2Ḣ + 3H2 = ∇2φ2 − a2

2
(
φ̇2 +m2

)
+ ξ(−2Ḣ + 3H2)φ2 + ξ

(
a2∂2

0 − ∇2
)
φ2 . (B.1.10)

Scalar perturbation. In the following we are considering the scalar perturbation at the
level of the metric that is diagonal, since this is the only relevant form that we could com-
pare our results with from section 7.3. The line element that includes scalar perturbations
in the harmonic gauge reads

ds2 = −a6(1 + 2A)dt2 + a2(t) [(1 − 2ψ)δij] dxi dxj, (B.1.11)
ϕ = ϕ(t)0 + δϕ(t, x) (B.1.12)

At the linear order, the scalar perturbations present at the level of Einstein- and the scalar
field equations can be reduced to the following set of equations in Fourier space:

0 = 1
2 ϕ̄

′δϕ′ + 3Hψ′ + k2a4ψ , 0 = HA+ ψ′ − 1
2 ϕ̄

′δϕ (B.1.13)

Perturbed volume equations. It is useful to recast the above equations for the metric per-
turbations in terms of quantities that we have access to from the fundamental quantum
gravity theory. The most important one in this context is the local volume element as-
sociated to an infinitesimally small patch of spacetime. At the classical level, this can be
compared to the local volume element

Vc ≡
√

det3 g =
√

det a2 [(1 − 2ψ)δij] = a3
√

det [δij − 2ψδij].
The perturbed part, at first order in ψ and E, is therefore given, in Fourier transform, by

δVc = V̄c

(
k2E − 3ψ

)
, V̄c ≡ a3

Using that, by definition, H = V̄ ′/(3V̄ ), we find
δV ′′

c − 6HδV ′
c + 9H2δVc − a4∇2δVc = 0.
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