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Summary

Due to the ability to model even complex dependencies, machine learning
(ML) can be used to tackle a broad range of (high-stakes) prediction problems.
The complexity of the resulting models comes at the cost of transparency,
meaning that it is difficult to understand the model by inspecting its paramet-
ers. This opacity is considered problematic since it hampers the transfer of
knowledge from the model, undermines the agency of individuals affected by
algorithmic decisions, and makes it more challenging to expose non-robust or
unethical behaviour.

To tackle the opacity of ML models, the field of interpretable machine
learning (IML) has emerged. The field is motivated by the idea that if we
could understand the model’s behaviour – either by making the model itself
interpretable or by inspecting post-hoc explanations – we could also expose
unethical and non-robust behaviour, learn about the data generating process,
and restore the agency of affected individuals. IML is not only a highly active
area of research, but the developed techniques are also widely applied in both
industry and the sciences.

Despite the popularity of IML, the field faces fundamental criticism, ques-
tioning whether IML actually helps in tackling the aforementioned problems
of ML and even whether it should be a field of research in the first place: First
and foremost, IML is criticised for lacking a clear goal and, thus, a clear defin-
ition of what it means for a model to be interpretable. On a similar note,
the meaning of existing methods is often unclear, and thus they may be mis-
understood or even misused to hide unethical behaviour. Moreover, estim-
ating conditional-sampling-based techniques poses a significant computa-
tional challenge.

With the contributions included in this thesis, we tackle these three
challenges for IML.
We join a range of work by arguing that the field struggles to define and
evaluate ”interpretability” because incoherent interpretation goals are con-
flated. However, the different goals can be disentangled such that coherent
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iv Summary

requirements can inform the derivation of the respective target estimands. We
demonstrate this with the examples of two interpretation contexts: recourse
and scientific inference.
To tackle the misinterpretation of IML methods, we suggest deriving formal
interpretation rules that link explanations to aspects of the model and data. In
our work, we specifically focus on interpreting feature importance. Further-
more, we collect interpretation pitfalls and communicate them to a broader
audience.
To efficiently estimate conditional-sampling-based interpretation techniques,
we propose two methods that leverage the dependence structure in the data
to simplify the estimation problems for Conditional Feature Importance (CFI)
and SAGE.

A causal perspective proved to be vital in tackling the challenges: First,
since IML problems such as algorithmic recourse are inherently causal;
Second, since causality helps to disentangle the different aspects of model
and data and, therefore, to distinguish the insights that different methods
provide; And third, algorithms developed for causal structure learning can
be leveraged for the efficient estimation of conditional-sampling based IML
methods.



Zusammenfassung

Aufgrund der Fähigkeit, selbst komplexe Abhängigkeiten zu modellieren,
kann maschinelles Lernen (ML) zur Lösung eines breiten Spektrums von
anspruchsvollen Vorhersageproblemen eingesetzt werden. Die Komplexität
der resultierenden Modelle geht auf Kosten der Interpretierbarkeit, d. h. es
ist schwierig, das Modell durch die Untersuchung seiner Parameter zu ver-
stehen. Diese Undurchsichtigkeit wird als problematisch angesehen, da sie
den Wissenstransfer aus dem Modell behindert, sie die Handlungsfähigkeit
von Personen, die von algorithmischen Entscheidungen betroffen sind,
untergräbt und sie es schwieriger macht, nicht robustes oder unethisches
Verhalten aufzudecken.

Um die Undurchsichtigkeit von ML-Modellen anzugehen, hat sich das
Feld des interpretierbaren maschinellen Lernens (IML) entwickelt. Dieses
Feld ist von der Idee motiviert, dass wir, wenn wir das Verhalten des Modells
verstehen könnten - entweder indem wir das Modell selbst interpretierbar
machen oder anhand von post-hoc Erklärungen - auch unethisches und
nicht robustes Verhalten aufdecken, über den datengenerierenden Prozess
lernen und die Handlungsfähigkeit betroffener Personen wiederherstellen
könnten. IML ist nicht nur ein sehr aktiver Forschungsbereich, sondern die
entwickelten Techniken werden auch weitgehend in der Industrie und den
Wissenschaften angewendet.

Trotz der Popularität von IML ist das Feld mit fundamentaler Kritik kon-
frontiert, die in Frage stellt, ob IML tatsächlich dabei hilft, die oben genannten
Probleme von ML anzugehen, und ob es überhaupt ein Forschungsgebiet sein
sollte: In erster Linie wird an IML kritisiert, dass es an einem klaren Ziel und
damit an einer klaren Definition dessen fehlt, was es für ein Modell bedeutet,
interpretierbar zu sein. Weiterhin ist die Bedeutung bestehender Methoden
oft unklar, so dass sie missverstanden oder sogar missbraucht werden können,
um unethisches Verhalten zu verbergen. Letztlich stellt die Schätzung von auf
bedingten Stichproben basierenden Verfahren eine erhebliche rechnerische
Herausforderung dar.
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In dieser Arbeit befassen wir uns mit diesen drei grundlegenden Heraus-
forderungen von IML.
Wir schließen uns der Argumentation an, dass es schwierig ist, ”Interpreti-
erbarkeit” zu definieren und zu bewerten, weil inkohärente Interpretation-
sziele miteinander vermengt werden. Die verschiedenen Ziele lassen sich je-
doch entflechten, sodass kohärente Anforderungen die Ableitung der jewei-
ligen Zielgrößen informieren. Wir demonstrieren dies am Beispiel von zwei
Interpretationskontexten: algorithmischer Regress und wissenschaftliche In-
ferenz.
Um der Fehlinterpretation von IML-Methoden zu begegnen, schlagen wir vor,
formale Interpretationsregeln abzuleiten, die Erklärungen mit Aspekten des
Modells und der Daten verknüpfen. In unserer Arbeit konzentrieren wir uns
speziell auf die Interpretation von sogenannten Feature Importance Meth-
oden. Darüber hinaus tragen wir wichtige Interpretationsfallen zusammen
und kommunizieren sie an ein breiteres Publikum.
Zur effizienten Schätzung auf bedingten Stichproben basierender Interpreta-
tionstechniken schlagen wir zwei Methoden vor, die die Abhängigkeitsstruk-
tur in den Daten nutzen, um die Schätzprobleme für Conditional Feature Im-
portance (CFI) und SAGE zu vereinfachen.

Eine kausale Perspektive erwies sich als entscheidend für die Bewältigung
der Herausforderungen: Erstens, weil IML-Probleme wie der algorithmische
Regress inhärent kausal sind; zweitens, weil Kausalität hilft, die verschiedenen
Aspekte von Modell und Daten zu entflechten und somit die Erkenntnisse,
die verschiedene Methoden liefern, zu unterscheiden; und drittens können
wir Algorithmen, die für das Lernen kausaler Struktur entwickelt wurden, für
die effiziente Schätzung von auf bindingten Verteilungen basierenden IML-
Methoden verwenden.
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Chapter 1

General Introduction

1.1 Overview

Due to the ability to model even complex dependencies, machine learning
(ML) can be used to tackle a broad range of (high-stakes) prediction problems
[Tarca et al., 2007, Kourou et al., 2015, Zeng et al., 2017, Wuest et al., 2016,
Liakos et al., 2018, Raghavan et al., 2020]. The complexity of the resulting mod-
els comes at the cost of transparency, meaning that it is difficult to understand
how the model works by inspecting its parameters.
This so-called opacity is considered problematic since our trust in ML models
is based on estimating the model’s risk, but there are requirements that loss
functions and test sets do not capture [Doshi-Velez and Kim, 2017]: For ex-
ample, models may rely on non-robust associations [Lapuschkin et al., 2019]
or may pick up unfair or unethical behaviour [Bender et al., 2021]. Further-
more, individuals affected by algorithmic decisions should be able to contest
and change them [Wachter et al., 2017a, Ustun et al., 2019, Freiesleben, 2021],
and practitioners are interested in using the model to gain insight into the data
[Doshi-Velez and Kim, 2017, Freiesleben et al., 2022].
To tackle the opacity of ML models, the field of interpretable machine learning
(IML) has emerged [Breiman, 2001, Friedman, 2001, Ribeiro et al., 2016, Lund-
berg and Lee, 2017, Wachter et al., 2017b, Ustun et al., 2019, Covert et al., 2020,
Karimi et al., 2020a, Molnar, 2020]. The field is motivated by the hope that if
we understood the model’s behaviour – either because the model itself was in-
terpretable or because we had access to post-hoc explanations – we could also
expose unethical and non-robust behaviour, learn about the data-generating
process and restore the agency of affected individuals.
Although IML is increasingly applied in research and practice [Fellous et al.,
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2 General Introduction

2019, Deeks, 2019, Gade et al., 2019, Gordon et al., 2019, Danilevsky et al., 2020,
Jiménez-Luna et al., 2020, Tosun et al., 2020, Das et al., 2021, Tantithamthav-
orn and Jiarpakdee, 2021, Sharma et al., 2022, Yang, 2022, Khosravi et al., 2022,
Gevaert, 2022, Machlev et al., 2022, Fiok et al., 2022], the field falls short of
expectations. IML is criticised for suffering from fundamental problems:

1. Often, the goal of IML is seen in making models ”interpretable”, but
there is no clear definition of what that means [Lipton, 2018, Páez, 2019,
Freiesleben and König, 2023];

2. IML methods themselves are subject to interpretation, but we lack clear
interpretation rules [Krishna et al., 2022, Freiesleben and König, 2023];
and

3. many theoretically appealing methods require knowledge about the
data-generating process that is usually not readily available [Hooker and
Mentch, 2019, Frye et al., 2020].

The contributions in this thesis are focused on tackling these three issues.

Contributions

Towards Clarification of Interpretation Goals and Target Estimands. IML is
criticized for lacking a definition of what it means for a model to be opaque
or interpretable [Lipton, 2018, Páez, 2019, Freiesleben and König, 2023] —
and therefore to lack the means to evaluate the proposed methods. Finding
a definition for “interpretability” is impossible because the term conflates
several incompatible goals [Lipton, 2018, Páez, 2019, Freiesleben and König,
2023]. To make progress, the different goals must be disentangled such that
coherent requirements can motivate the design and choice of IML methods.
Throughout the thesis, we investigate two interpretation contexts: recourse
[König et al., 2023, 2021] and scientific inference [Freiesleben et al., 2022]. We
demonstrate that by disentangling each context from other interpretation
scenarios, coherent requirements can be derived.
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Towards Preventing Misinterpretation of IML. The interpretation of explana-
tions is often unclear, and thus methods may be misunderstood or misused to
hide unethical behaviour [Rudin, 2019, Krishna et al., 2022, Bordt et al., 2022,
Freiesleben and König, 2023]. To tackle the misinterpretation of IML meth-
ods, we suggest deriving formal interpretation rules that link explanations to
aspects of the model and data; In our work, we specifically focus on the in-
terpretation of feature importance. Furthermore, we propose estimators to
quantify the uncertainties involved in their estimation [Molnar et al., 2021].
To raise awareness in a broader audience, we collect interpretation pitfalls and
illustrate them on examples [Molnar et al., 2022].

Towards efficient estimation of conditional-sampling-based methods. To
be useful, IML methods must often incorporate knowledge about the data-
generating process; however, this knowledge is usually not readily available
and difficult and expensive to obtain.
More specifically, a range of work argues that IML methods should not
evaluate the model in unseen and unrealistic regions [Hooker and Mentch,
2019, Frye et al., 2020, Chen et al., 2020, Freiesleben et al., 2022]; therefore
feature perturbations must be constructed such that dependencies with the
remaining features are preserved. More specifically the perturbations must be
sampled from the conditional distribution of the feature given its covariates.
Learning conditional samplers is a difficult and expensive task [Zhou et al.,
2022].
To tackle the issue, we propose two methods that enable a more efficient
estimation of conditional-sampling-based methods [Molnar et al., 2023,
Luther et al., 2023].

Importance of a Causal Perspective

A causal perspective proved particularly important in tackling the three afore-
mentioned challenges.
Firstly, many questions in IML are inherently causal and thus, causality is re-
quired to formalise and estimate the target estimands. For example, with re-
course explanations, we aim to guide individuals rejected by an algorithmic
system towards actions that allow them to revert the unfavourable decision;
Thus, recourse recommendations are concerned with causal effects.
Secondly, many IML methods are based on perturbations of the model inputs
– a form of intervention; Thus, we need causality to capture the meaning of
the methods’ outputs and to assess whether a link between the explanation
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goal and explanation technique can be established.1

On a more pragmatic stance, causal structure learning methods allowed us to
greedily identify conditional independencies in the data, which proved help-
ful in making the estimation of a conditional-sampling-based interpretation
technique (SAGE values) more efficient.

Structure of the Dissertation

The dissertation is structured in four parts. The first and current part is the
general introduction (§1). We started this chapter with a high-level overview
of the thesis contents. As follows, we introduce our notation and background
on supervised learning (§1.2.1), causality (§1.2.2), and interpretable machine
learning (§1.2.3). Then, we postulate the three challenges for IML that in our
view are most pressing, and that we tackled in our contributions (§1.3). As a
first contribution, using the introduced notation and causal formalism, we in-
troduce a taxonomy of nine different perspectives on model and data (§1.4),
which will help us to create an explanatory link between explanation and ex-
planandum.
After the general introduction (§1) we present the included articles (§2), sum-
marise how our contributions tackle the postulated challenge and discuss lim-
itations and open problems (§3), and conclude the thesis by returning to the
eponymous hook: If Interpretability is the Answer, What is the Question (§4)?

1.2 Notation and Background

In this section, we introduce notation and background relevant to this thesis.

• In §1.2.1, we introduce notation for the supervised learning paradigm.

• In §1.2.2, we recapitulate causal concepts relevant to our work, including
the do-operator, causal graphs, d-separation, observational identifiabil-
ity, the ladder of causation and structural causal models.

• In §1.2.3, we introduce important terminology in the field of IML as well
as the definitions of the IML methods most relevant to our work, i.e.,
Permutation Feature Importance (PFI), Conditional Feature Importance
(CFI), Partial Dependence Plots (PDPs), Individual Conditional Expect-
ation (ICE) curves, M-Plots, SHAP and SAGE values, as well as Counter-
factual Explanations (CEs) and Causal Recourse (CR).

1IML methods are typically based on assessing the effect of perturbations of the model
inputs. We will formalise such model-level interventions in §1.4.
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notation meaning

X, Y, Ŷ features, target, prediction
f̂ , h prediction model, raw prediction function
L,R,Remp loss, risk, empirical risk
X ⊥ Y |Z, X 6⊥ Y |Z conditional dependence, conditional independence
do(X = x) setting variable X to value x with an intervention
X ⊥d Y |Z, X 6⊥d Y |Z d-separation, no d -separation
Xpre pre-intervention state of X (factual)
Xpost post-intervention state (counterfactual)
−j all features except j, i.e., D\{j}
X̃S, X̃C

S perturbations∼ P (XS), P (XS|XC)
G causal graph (more graph notation in Table 1.2)

Table 1.1: Overview of our notation.

Readers familiar with the introduced concepts and methods may skip the
background sections and may refer to Table 1.1 for a summary of our notation,
and to §4 for a list of abbreviations.

1.2.1 Prediction Model and Statistical Notation

In our work, we focus on interpreting supervised machine learning (ML)
models. We denote the prediction target as Y , the covariates (variables,
features) as X, the estimated model as f̂ , and the corresponding prediction as
Ŷ := f̂(X). For discrete targets, the raw prediction function is denoted as h.
The loss function is denoted as L, the risk as R and the empirical risk as Remp.
We capitalise random variables and use the respective lowercase letter for
observations. For example, X = x means that the random variable X takes
value x. We write probability distributions as P (X) and event probabilities
as P (X = x) or p(x). To indicate that X and Y are conditionally independent
given Z, we write X ⊥ Y |Z and X 6⊥ Y |Z to indicate their dependence.
We also refer to dependence as association or co-occurrence and to linear
dependence as correlation.
Supervised ML models are designed to approximate aspects of the condi-
tional distribution of Y given the covariates X, i.e., P (Y |X). Which aspect
is modelled depends on the choice of the loss function. If the model is well
specified and optimal w.r.t. the mean squared error, it reflects the conditional
expectation E[Y |X]. Similarly, for categorical targets, if the model is optimal
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w.r.t. cross-entropy loss, it reflects P (Y |X) [Hastie et al., 2009].

1.2.2 A Brief Introduction to Causal Inference

Supervised ML models excel at modelling associations; They can be used to
predict within the distribution on which the model was trained. For example,
we can use supervised learning models to diagnose diseases based on obser-
vations of potential causes and symptoms.
However, in many scenarios, we are not only interested in association but also
in causality; and association does not imply causation.

• For example, in medicine, we do not only want to diagnose diseases
but also want to treat them. These are qualitatively different ques-
tions: While disease diagnosis is only concerned with association
(co-occurrence), treatment effect estimation is an inherently causal
task, that cannot be answered with association alone: Although symp-
toms are associated with the disease, only interventions on causes have
the potential to heal (while interventions on symptoms will leave the
disease unaffected).

• As teased in §1.1, the distinction between association and causation
matters for IML and thus for this thesis: First of all, interpretation goals
such as recourse are concerned with causal effects. Secondly, many
IML methods perform some form of intervention, such that a causal
formalism is required to express their meaning.

The field of causal inference is concerned with formalising and answering
causal questions. As follows, I introduce fundamental concepts and notation
that are necessary to follow this dissertation. The contents of this section only
scratch the surface of the rich body of work in causality. For a more in-depth
introduction, we refer to a range of textbooks on the matter [Spirtes et al.,
2000, Pearl, 2009, Peters et al., 2017, Miguel et al., 2023].
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Figure 1.1: Although mosquitoes M have a negative causal impact on tourism
income I, both are positively correlated. The reason is that the confounder
season S has a strong positive impact on both.

Simpson’s Paradox

It is well known that association does not imply causation. Simpson’s paradox
serves as a vivid illustration of this difference. It shows that even when two
variables exhibit a positive correlation, their underlying causal relationship
may be negative or non-existent. This paradox arises due to confounding
variables that influence both the dependent and independent variables,
inducing misleading associations. It highlights the necessity of careful causal
analysis and consideration of confounders to draw accurate conclusions
about causal effects.
Let us explain the paradox at an example (visualised in Figure 1.1). Sup-
pose the Swedish government wants to understand how the prevalence of
mosquitoes M impacts income from tourism I. Suppose furthermore that
season S affects both mosquito prevalence and tourism income: Both tourists
and mosquitoes generally prefer summertime. Because of this confounding,
tourism income and mosquito prevalence are positively associated. If the
Swedish government were to equate association with causation, they might
decide to grow the mosquito population to attract more tourists. However,
since tourists dislike mosquitoes, the real causal effect is the opposite.

The do-operator

In the preceding paragraphs, we illustrated that association and causation are
distinct concepts. While associative statements concern the distribution of
the variables in the environment in which they were observed (the observa-
tional distribution), causal statements involve interventions that change the
causal dependencies in the data. Thus, they concern distributions that are, in
general, different from the observational distribution. We refer to these distri-
butions as interventional distributions.
The standard statistical notation allows us to describe different aspects of the
observational distribution via conditioning and marginalisation but does not
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allow us to express changes in the distribution through interventions. For
example, P (Y |T = 1) does not describe the interventional distribution of Y
where all individuals were forcibly administered treatment but only describes
the subpopulation of individuals who happened to get treated in the observa-
tional distribution.
The so-called do-operator was introduced to describe interventions and inter-
ventional distribution formally. As such, with the do-operator, we address the
limitations of the standard statistical framework in capturing interventions
and expressing causal queries.
For example, it allows us to express that we force all population members to
receive treatment by writing do(T = 1). Using the do-operator we can also ex-
press the distribution of Y given the intervention as P (Y |do(T = 1)) and the
treatment effect, which compares the outcome probability under the inter-
vention with treatment one to the outcome probability under the intervention
with treatment zero, as P (Y |do(T = 1))− P (Y |do(T = 0)).
In order to estimate interventional quantities, i.e., expressions involving a do-
operator, we either need access to data from the respective interventional dis-
tribution or causal knowledge. Data from the interventional distribution can
be collected by performing experiments; for example, so-called randomised
controlled trials (RCTs) are the gold standard for inferring causal relationships
in medicine. However, such experiments are often infeasible or unethical.
Thus, in many scenarios, we have to resort to observational data and causal
knowledge. Over the course of this introduction to causal inference, we illus-
trate how causal knowledge can be used to estimate causal effects. However,
before we can do that, we need a way to express causal knowledge. One type
of causal model are so-called causal graphs.

Causal graphs and d-separation

In this thesis, we often use so-called causal graphs to visualise causal struc-
ture: We already encountered a causal graph in Figure 1.1 where I used it to
visualise Simpson’s paradox, in §1.4 I use a causal graph to visualise the model
and data ecosystem in IML, and in several of our contributions we use causal
graphs to illustrate what insight IML methods actually allow or to estimate
causal effects.
In the causal graph G, the nodes represent the modelled (endogenous)
variables with index set D, and directed edges (→) represent their causal re-
lationships: The direct causes of a variable j ∈ D – the endogenous variables
that causally affect variable j, even if all other covariates are held constant via
an intervention – are direct parents pa(j) in the causal graph; Vice versa, the
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direct effects of a variable are direct children ch(j) in the graph. This is also
called the Strict Causal Edge Assumption. As a consequence, all causes are
ascendants asc(j) and effects are descendants d(j).
Besides visualising the causal structure, causal graphs can be used to identify

causal effects from observational data. Therefore, the causal structure must
be linked to the dependence structure in the data. For such a link, further
assumptions are required (beyond edges correctly indicating causal relation-
ships):

• A (causal) graph is acyclic if no directed path starts and ends with the
same node; Acyclicity ensures a range of desirable properties, among
others that (given unchanged causal mechanisms) that the system
induces a unique joint distribution [Bongers et al., 2021]. Directed
acyclic graphs are also referred to as DAGs.

• The underlying probability distribution is Markov with respect to a DAG
if each node j is independent of all its non-descendants nd(j) := D\d(j)
given its parents, i.e., Xj ⊥ Xnd(j)|Xpa(j) [Koller and Friedman, 2009].

If the causal graph is acyclic and Markov, we can read off conditional inde-
pendencies in the data by inspecting the causal graph: Given the Markov prop-
erty, d-separation in the graph G implies conditional independence in the data
[Koller and Friedman, 2009], or more formally,

Xi ⊥d Xj|XK ⇒ Xi ⊥ Xj|XK .

To assess whether two nodes are d-separated by some setK, we check for each
(undirected) path between the nodes, whether it is open or blocked byK. If all
paths are blocked the nodes are d-separated, otherwise they are d-connected.

notation meaning

D index set for all endogenous variables
pa(j); ch(j) parents; children of node j
asc(S); nasc(S) descendants; complement
d(S); nd(S) descendants; nondescendants
Xpa(j); (X, Y )pa(j) parents excluding; including Y

Table 1.2: Overview of our graph notation.
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To assess whether a path is blocked, we regard each triplet on the path separ-
ately, if one triplet is blocked the whole path is blocked.
There are three possible types of triplets: chains (Xl → Xk → Xm), forks
(Xl ← Xk → Xm) and v-structures (Xl → Xk ← Xm). Chains and forks are
blocked if the middle node is in K, for v-structures it is the other way around
[Koller and Friedman, 2009].
The three structures and the respective flow of association are visualised in
Figure 1.3. Furthermore, we provide an overview of our graph notation in
Table 1.2 and a visualisation thereof in Figure 1.2.

Observational identifiability

Before introducing causal graphs, we learned that estimating causal effects
requires causal knowledge or experimentation. As follows, we briefly sketch
how assessing the flow of association in causal graphs can help us to estimate
causal effects from observational data. More specifically, we illustrate how
to translate a causal expression (i.e., one involving a do-operator) into a
statistical expression (i.e., one only involving the observational distribution).
Translating causal into statistical expressions is important in the context of
IML, since many questions in IML are inherently about real-world causal
effects, and access to interventional data is seldom available.
To illustrate the procedure, let us reconsider the mosquito example, illustrated
in Figure 1.4b. By inspecting the graph, we see that there is an unblocked
noncausal association path between mosquito prevalence M and tourism
income I via the confounder season S. In this setting, we can use the so-called
backdoor adjustment to estimate the effect anyway. The reason is that the
noncausal association can be blocked by conditioning on the confounder
season. More formally, the season variable satisfies the so-called backdoor
criterion.

Definition 1 (Backdoor criterion). A set of variables C satisfies the backdoor
criterion for treatment T and outcome Y , if

1. T blocks all backdoor paths, i.e. paths of association between T and Y
that go via an incoming edge to T

2. C contains no descendants of the treatment T .

Theorem 1 (Backdoor adjustment). If the backdoor criterion is fulfilled for the
adjustment set C, the probability of Y given the intervention do(T = t) can be
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Figure 1.2: Visualisation of our graph notation.
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Figure 1.3: Three possible structures of paths with three elementsX1, X2, X3: A
chain (left), a fork (centre), and a v-structure (right). The dotted lines visualise
the association between nodes; the red forbidden sign indicates that the path
of association is closed.
Top: IfX2 is not conditioned upon,X1 andX3 are not d-separated in the chain
and fork structure, but are d-separated in the v-structure.
Bottom: When conditioning on X2, the d-separations are flipped: In the chain
and the fork structure X1 and X3 are d-separated, whereas in the v-structure
X1 and X3 are not d-separated.
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M I

S

(a) Both causal and non-causal associ-
ation between M and I.

M I

S

(b) Only causal association between
M and I after conditioning on S.

Figure 1.4: In this example, the goal is to assess the effect of the number
of mosquitoes in Sweden M on the total income from tourism I. The size
of the mosquito population is associated with the income from tourism via
two paths: First, via the causal effect that mosquitoes have on tourist income
(causal association). Second, via the confounder seasonality S (noncausal as-
sociation), because seasonality affects both the size of the mosquito popula-
tion and the number of tourists.
The noncausal flow of association can be blocked by conditioning on S
(double lined). Thus, association and causation coincide within subgroups
where the same day of the year S = s was observed.

estimated using the adjustment formula

∑

c∈C
P (Y |T = t, C = c)P (C = c).

In the mosquito example, the backdoor criterion is fulfilled for the adjust-
ment set season S, since S blocks all backdoor paths betweenM and I. Thus –
although the association between M and I is established via both causal and
non-causal paths – in subgroups where all observations stem from the same
season, only causal association remains. With the backdoor adjustment, we
thus estimate the causal effects separately for each season and then aggregate
the season-specific effects to yield the overall effect of mosquitoes on tourism
income.
Of course, we cannot always find an adjustment set that satisfies the backdoor
criterion and, therefore, cannot always estimate causal effects using the back-
door adjustment. To identify more causal effects, the do-calculus can be used.
The do-calculus is a set of three implications that allow to translate interven-
tional into associative statements (and also imply Theorem 1). Curiously, the
do-calculus is complete, meaning that any causal effect that can be identified
(from observational data) can be identified using the do-calculus.
Introducing the do-calculus goes beyond the scope of this thesis; We refer the
interested reader to the literature [Pearl, 2009].
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Counterfactuals and Pearl’s ladder of causation

In the paragraphs on Simpson’s paradox, we distinguished between associ-
ation and causation. While associative questions concern dependencies in
a given observational distribution, causal questions concern interventions
and their effects. Furthermore, we introduced the do-operator to denote
interventions formally and illustrated how interventional distributions can be
identified with observational data.
As follows, we further differentiate between two distinct types of causal ques-
tions. In contrast to purely interventional queries, so-called counterfactual
queries involve both a factual observation and a counterfactual world in
which some intervention was performed. Such counterfactual questions
are ubiquitous in human reasoning. For example, in medicine, we are often
interested in understanding whether the outcome for a patient who received
treatment A (factual world) would have been different if the patient had
received treatment B (counterfactual world).
To express counterfactual queries, we need to introduce more notation.
The reason is that counterfactual statements involve two states of the same
variables, the factual pre-intervention state and the counterfactual post-
intervention state. For example, to express the counterfactual probability
of a favourable treatment outcome for a patient who had an unfavourable
outcome before treatment, we need to distinguish between the pre-treatment
and post-treatment outcomes. In this dissertation, we denote the pre-
intervention state as Y pre (the factual) and the post-intervention state
as Y post (the counterfactual). Counterfactual queries can be denoted as:
P (Y post|do(T post = t), Y pre = ypre, T pre = tpre).
In general, access to the interventional distribution is not sufficient to
answer counterfactual queries since the interventional distribution only
involves the post-intervention states of the variables. Conditioning on the
pre-intervention state is different from conditioning on the post-intervention
state. For example, P (Y |do(T = 1), Y = ypre) yields the post-intervention
outcome distribution for a subgroup of individuals for whom the post-
intervention outcome is ypre – which is not what we are interested in. Because
answering counterfactual queries requires access to distributions involving
both pre- and post-intervention states, they require stronger causal know-
ledge than purely interventional queries [Holland, 1986, Pearl, 2009].
Pearl categorises the different types of noncausal and causal queries on what
he calls the ladder of causation (Table 1.3). Queries that require stronger
causal knowledge are placed higher on the ladder: Associative queries are
placed on the first rung, interventional queries are placed on the second
rung, and counterfactual queries on the third rung [Pearl and Mackenzie,
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rung name concern

1 association the observational distribution,
e.g. prediction

2 intervention interventional distributions,
e.g. (conditional) treatment effects

3 counterfactuals distributions involving both
pre- and post-intervention states,
e.g. what if one had been treated differently?

Table 1.3: Pearl’s ladder of causation.

2018]. Higher-rung knowledge also allows answering lower-rung queries:
If we have access to all counterfactual distributions, we also have access to
all interventional distributions (e.g., by marginalising out pre-intervention
variables); The observational distribution is the distribution with an empty
intervention; as such access to all interventional distributions also gives
access to the observational distribution.
Assuming unchanged circumstances, counterfactual statements can also be
seen as individualised causal effect prediction, where the pre-intervention
state of an individual is used to make the post-intervention prediction more
accurate. For example, in our work on recourse (Paper I), we leverage the pre-
intervention observation to tailor the effect estimate to the specific individual.
Furthermore, we leverage both the pre- and post-intervention observation
to decide whether somebody is qualified when the person reapplies after
implementing recourse.

Structural Causal Models

In the preceding paragraphs, we distinguished between interventional and
counterfactual queries and learned that counterfactual queries require
stronger knowledge than interventional ones. To answer counterfactual
queries, we need some way to transfer pre-intervention evidence into the
post-intervention state. As we will demonstrate, so-called Structural Causal
Models (SCMs) allow such a transfer.
While causal graphs only encode structural knowledge, SCMs also model the
variables’ functional relationships. Specifically, in SCMs, each variable is a
function of its direct causes and its unobserved causal influences in the form
of noise terms U . Modelling each variable as a function of its direct causes
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captures the intuition of underlying (deterministic) causal mechanisms.
The unobserved noise terms capture all stochasticity; Given their state, the
observed variables are determined.
More formally, SCMs model the data generation process as a model
M = 〈X,U, f〉 that consists of the endogenous variables X ∈ X , the
mutually independent exogenous variables U ∈ U , and the structural
equations f : U → X .2 The structural equations are of the form:

Xj := fj(Xpa(j), Uj).

A model of the interventional distribution can be obtained by fixing the
intervened-upon values to θI (e.g. by replacing the structural equation
fI := θI).
The exogenous variables are the key to answering counterfactual queries. By
reconstructing the exogenous variables from the evidence, for instance, using
the inverse of the structural equations,3 we can adapt the SCM to represent the
specific individual and situation. The adapted SCM can then be used to reason
about interventions while taking the pre-intervention evidence into account.
More formally, counterfactuals are computed in three steps: First, the evid-
ence in the pre-intervention observation is used to reconstruct the exogenous
variables U (abduction, i.e., learning P (Uj|X = xpre)). Second, the structural
interventions corresponding to do(a) are performed (action). Finally, we can
sample from the counterfactual distribution P (Xpost|X = xpre, do(a)) using the
abducted noise and the intervened-upon structural equations (prediction).
To conclude, SCMs allow answering questions on all three levels of Pearl’s
ladder of causation [Pearl, 2009, Pearl and Mackenzie, 2018].

Summary

In the preceding paragraphs, we distinguished between association and
causation; Additionally, we differentiated between interventional and coun-
terfactual causal queries. To formally denote causal queries, we introduced
the do-operator and notation for factual and counterfactual states. Further-
more, we introduced two types of causal models that allow answering causal
queries, namely causal graphs and structural causal models.

2The mutual independence ensures that no dependencies between the variables are in-
duced by latent confounders

3If the structural equations are not invertible the distribution of possible states has to be
learned (see later in the text).
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Partial Dependence Plots

M-Plot

ICE curve
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Figure 1.5: Overview of the model-agnostic post-hoc IML techniques covered
in this introduction, structured according to commonly used attributes used
to classify model-agnostic post-hoc interpretation methods: on the left, we
see feature effect, on the right feature importance method. Local methods are
coloured blue, global methods are coloured green. We will revisit this overview
later in §1.5, where we categorise the methods in our own taxonomy.

1.2.3 Interpretable Machine Learning Methods

In this section, we introduce the interpretation techniques most relevant to
our work, as well as several attributes commonly used to categorise them. For
readers familiar with the IML literature, the section may be skipped. For a
comprehensive overview of interpretable machine learning (IML), we refer the
interested reader to the literature [Molnar, 2020, Holzinger et al., 2020].
Throughout this section, I will introduce the definitions of the following inter-
pretation techniques: Individual Conditional Expectation (ICE) curves, Par-
tial Dependence Plots (PDPs), Permutation Feature Importance (PFI), Condi-
tional Feature Importance (CFI), Counterfactual Explanations (CEs), Causal
Algorithmic Recourse (CR) and two Shapley-based methods called SHAP and
SAGE (see Figure 1.5).
In this section, we formally introduce the methods but do not discuss their in-
terpretation or usefulness. The interpretation of the methods is the concern
of several of our contributions (§2).
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Overview and Terminology

Albeit multiple works distinguish between terms such as interpretable, ex-
plainable, and transparent, all of these terms are overloaded with a range of
different meanings [Doshi-Velez and Kim, 2017, Lipton, 2018, Guidotti et al.,
2018, Weller, 2019, Krishnan, 2020]. In this dissertation, I use explainable AI
(xAI) and interpretable machine learning (IML) interchangeably in their most
abstract sense: as an umbrella term for methods that were associated with
interpretability, explainability or transparency. Similarly, I interchangeably
refer to the output of IML/xAI methods as interpretations or explanations.
Following the philosophy of science literature Woodward and Ross [2021], we
refer to ground truth estimand that is to be explained as the explanandum.
Furthermore, we will refer to the individual for whom the explanation is
designed as explainee.
The field of IML subsumes methods that aim to generate inherently inter-
pretable models, i.e. methods where the parameters can directly be made
sense of and so-called post-hoc interpretation methods that aim to explain
difficult-to-interpret models after the fact (i.e. without altering the model).
Post-hoc interpretation techniques are further split into model-specific
techniques, i.e., techniques that use model internals such as gradients, and
model-agnostic techniques, that only require access to the model’s prediction
for queried feature values [Molnar, 2020].
In this thesis, we focus on the most flexible class of tools: model-agnostic
post-hoc interpretation methods. Model-agnostic post-hoc methods can
be further categorised into local and global methods. Local methods aim
to explain only one specific prediction (i.e. one data point), whereas global
methods aim to describe the model’s behaviour over the whole domain
[Molnar, 2020].
Furthermore, methods are often classified as feature importance or feature
effect techniques. Although the terms are not used consistently, there is
a rough consensus on their respective meanings: Feature effect methods
typically refer to methods that explain the prediction Ŷ . In contrast, feature
importance methods typically explain the model’s performance, e.g. the risk
R. Sometimes methods are referred to as importance methods because of the
level of aggregation: For example, SHAP importance is not concerned with
the model’s performance but is also referred to as an importance measure,
presumably because it globally explains the relevance of the variables with
one value per feature.
Given the vagueness of existing terminology, I will later propose additional
attributes which should be used to describe interpretation techniques (§1.4).
For now, we use ”feature effect” to refer to methods that explain the prediction
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and ”feature importance” to refer to methods that explain the performance.

Running Examples

For illustration, I apply the introduced methods to a running example.
I apply the methods on a random forest that was fitted on the UCI bike-
sharing dataset [Fanaee-T, 2013]. The task is to predict bike rentals using
features such as weather and seasonality. 4 For most methods I use my own
implementation, for SHAP I rely on the homonymous python package.5

ICE curves and PDPs

Individual Conditional Expectation (ICE) curves. The ICE curve [Goldstein
et al., 2015] is a local feature effects technique that, given an observation x,
plots how the prediction f̂(x) changes if we replace the values for a set of fea-
tures xS. More formally, for an observation x, the ICE curve is defined as

ICE(x′S;x) = f̂(x′S, xC).

If the set S only contains one feature, the ICE curve can be plotted in a 2D
line plot, where the x-axis corresponds to the value of xS, and the y-axis to the
respective model prediction. An exemplary plot is given in Figure 1.6 (thin
grey lines). ICE plots only take one data point into account, and when we plot
multiple curves for the different plots, the plot can get messy. Furthermore, if
take more than one data point into account, a 2D visualisation is not possible.

4The random forest was fitted using sklearn and the default hyperparameter settings on
60% (n = 439) of the data. All methods are computed on the remaining 40% test data (n = 292).

5All code is available via GitHub (https://github.com/gcskoenig/diss-code.git). Whenever
conditional sampling is employed, we use a default random forest with cross-entropy loss for
categorical targets; For continuous targets, we assume that all dependencies between vari-
ables are captured in the conditional mean, and thus use a standard random forest regressor
to predict the mean of the conditional distribution and resample the unexplained variance
by permuting the residuals. For multivariate conditional distributions, we use a sequential
sampling scheme [Bates et al., 2021, Blesch et al., 2023].

https://github.com/gcskoenig/diss-code.git
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Partial Dependence Plots (PDPs). The partial dependence curve [Friedman,
2001] summarises the ICE curves over the whole domain by taking the expect-
ation. More formally, partial dependence curves are defined as

f̂S(xS) = EXC
[f̂(xS, XC))] =

∫
f̂(xS, XC)dP (XC).

Empirically the integral is estimated using Monte Carlo integration, i.e. by
taking the average over the observed data points:

f̂S(xS) =
1

n

n∑

i=1

f̂(xS, x
(i)
C ).

The partial dependence function can be plotted for different values of xS
to yield the partial dependence plot. To enable visualisation, xS is typically
chosen to be univariate (|S| = 1). However, a 2D visualisation is possible as
well. The thick black line in Figure 1.6 shows the PDP for the variable atemp in
the bike-sharing dataset.
Notably, the marginal distribution of the remaining features, i.e. P (XC), is
used when integrating out the remaining features. As such, dependencies
between the feature of interest and the remaining features may be broken,
and the model may be evaluated on unrealistic data points.
For example, suppose we have two temperature measurements from nearby
locations. If we resample the first temperature measurement without taking
its dependence on the second measurement into account, we create unreal-
istic feature combinations. E.g., it is implausible to have 20 degrees Celsius at
Brandenburger Tor and minus 20 degrees Celsius at Bundestag and the model
was not trained on such observations. Thus, it is debated whether the method
should be used given dependent features [Apley and Zhu, 2020].

M-Plots. The so-called M-Plot has been suggested as an alternative [Apley
and Zhu, 2020]. More specifically, M-plots resample the remaining variables
from the conditional distribution P (XC |XS = xs) instead of the marginal dis-
tribution P (XC). Thus M-plots only evaluate the model within the observa-
tional distribution. More formally, they are defined as

f̂S(xS) = EXC
[f̂(xS, XC))] =

∫
f̂(xS, XC)dP (XC |XS = xS).
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Permutation Feature Importance and Conditional Feature Importance

Permutation Feature Importance (PFI). Permutation Feature Importance,
[Breiman, 2001], sometimes called random forest feature importance, is one
of the oldest feature importance techniques. It is based on a simple idea:
To quantify the relevance of a variable for a machine learning model, PFI
measures how much worse the model’s performance is when we remove
the variable. Since we cannot simply remove a variable from the model, PFI
instead replaces the variable with a perturbed non-informative version.
More specifically, PFI for a dataset with n observations x(1), . . . , x(n) and some
permutation π is defined as

PFIj :=
1

n

n∑

i=1

L(f̂(x
π(i)
j , x

(i)
−j), y

(i))− 1

n

n∑

i=1

L(f̂(x(i)), y)

PFI is a Monte Carlo estimate of

PFIj := R(f(X̃j, X−j), Y )−R(f(X), Y )

with X̃j ∼ P (Xj). An exemplary PFI plot can be found in Figure 1.7a.
PFI suffers from the same problem as PDPs: Since the perturbation is sampled
from the marginal distribution, dependencies between features are ignored;
Thus PFI evaluates the model outside the observational distribution (extra-
polation).

Conditional Feature Importance (CFI). To avoid extrapolation, CFI was in-
troduced [Strobl et al., 2008]. CFI samples the perturbation from the con-
ditional distribution of the feature of interest given the remaining features
X̃−jj ∼ P (Xj|X−j), such that dependencies between the covariates are pre-
served. CFI allows insight into the dependence of variables conditional on all
remaining covariates [Strobl et al., 2008, Watson and Wright, 2021]. An exem-
plary plot can be found in Figure 1.7b.

Shapley-value-based methods

Shapley values are a game-theoretic concept that can be applied in inter-
pretable machine learning as well. Before we get into the application in IML,
let us quickly recapitulate what Shapley values are and what problem they
solve.
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Figure 1.6: ICE curves and PDP for variable atemp in the bike sharing dataset.
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Figure 1.7: Permutation Feature Importance and Conditional Feature Import-
ance for the bike sharing predictor. While atemp and temp are the most import-
ant features for PFI, for CFI hum and season are more important.



22 General Introduction

Fair payoff in collaborative games. Suppose you take part in a quiz night
and your group wins 100 coins. How should you fairly divide the payoff?
Equally dividing the money may be considered unfair, since players are not
rewarded based on their individual performance. However, rewarding based
on individual contributions is difficult, because the game is collaborative.
That means that the surplus payoff that a player contributes depends on
which players are already in the team, also referred to as the coalition. For
example, the player may know an answer that another player in the coalition
knows as well. Or the player may collaborate with another player to answer a
question that none of them could alone.
Simple strategies fail to account for the nature of the game: If we quantify
how much money each player would have won alone, we fail to account for
collaborations. If we ask how much less the team had if the player did not
join, we fail to attribute payoff for contributions that several team members
share.

Shapley values. To attribute the payoff in such collaborative games fairly,
Shapley values were proposed [Shapley et al., 1953]. Shapley values are the
only attribution strategy that satisfies a range of fairness axioms:

• Efficiency: The Shapley values for all players add up to the overall payoff.

• Symmetry: Players who contribute equally to all possible coalitions re-
ceive the same payoff.

• Dummy: A feature that does not contribute to any coalition receives at-
tribution zero.

• Additivity: For a game for which the total payoff is the sum of two sub-
games, the Shapley value of the overall game is the sum of the Shapley
values of the subgames.

Given a function v that evaluates the payoff for sets of players S, the Shapley
value is defined as

φj(v) =
∑

S⊆{1,...,d}\{j}

|S|!(p− |S| − 1)!

p!
(v(S ∪ {j})− v(S))

Intuitively, v(S∪{j})−v(S) can be seen as the surplus contribution of player j
over some coalition of teammatesS. The Shapley value is the expected surplus
contribution the player adds to randomly sampled coalitions.
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Feature relevance quantification is a cooperative game. Like pub quizzes, the
model’s prediction (performance) can be seen as a collaborative effort where
the features are the players, and the prediction (performance) is the payoff.
Like a player’s surplus contribution in a pub quiz, the surplus performance
that a feature brings to the table depends on the coalition of features that it
joins. Features may be dependent and thus may share information about the
target. Furthermore, features may complement each other and ML models
may thus rely on feature interactions.
A range of work argues that this collaborative nature should be considered
when quantifying feature relevance and proposes to leverage Shapley values to
do so [Datta et al., 2016, Lipovetsky and Conklin, 2001, Štrumbelj and Konon-
enko, 2014, Lundberg and Lee, 2017, Covert et al., 2020]. All aforementioned
methods apply Shapley values, but rely on different value functions v. As fol-
lows, we introduce the value functions for two methods: SHAP [Lundberg and
Lee, 2017] and SAGE [Covert et al., 2020].

SAGE. The goal of Shapley additive global importance (SAGE) values is to
quantify the global relevance of the variables for the model’s performance. As
such, the payoff is the prediction performance, and the players are the vari-
ables. To quantify the prediction performance for a coalition S, the remaining
features −S are removed from the model via marginalisation.6 This yields the
restricted model fS

fS(xS) = E[f(x)|XS = xS]. (1.1)

Based on the restricted function fS the value function v is defined as the im-
provement in performance that the set S enables over the empty set ∅

vf (S) = E[L(f∅, y)]− E[L(fS(xS), y)].

In practice, the value functions can be estimated using the respective empir-
ical risks. Furthermore, given the difficulty of sampling from conditional dis-
tributions, the conditional expectation is commonly approximated with mar-
ginal sampling. Since sampling from the marginal alters the properties of
the resulting SAGE values, we refer to the marginal-sampling-based variant as
marginal SAGE, and the conditional-sampling-based variant as SAGE or con-
ditional SAGE.
Exemplary plots for both marginal and conditional SAGE value functions and
the respective SAGE values can be found in Figures 1.8 and 1.9. For more de-
tails about the theoretical properties of SAGE, confer [Covert et al., 2020].

6In the original paper, the authors suggest using the conditional distribution P (X−S |XS)
for the marginalisation, but approximate the conditional using the marginal P (X−S).
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Figure 1.8: SAGE value functions.
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Figure 1.9: SAGE values for the bike sharing dataset.
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(a) Marginal-sampling-based SHAP val-
ues (estimated via permutation).
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Figure 1.10: SHAP values for the bike sharing dataset. The bars indicate the
SHAP values, which add up to the difference between the prediction for the
data point and the mean prediction on the data set.
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SHAP. Shapley additive explanations (SHAP) explain the prediction for a
user-specified data point x; thus the feature values are the players, and the
predicted value is the payoff. To quantify the payoff (the prediction) for a
coalition S the restricted function fS (Equation (1.1)) is used, i.e.,

vf (S;x) = fS(xS).

Again, the conditional expectation of yielding the restricted function is
commonly approximated with marginal sampling. We refer to the marginal-
sampling-based variant as marginal SHAP and the conditional-sampling-
based version as conditional SHAP. The output of both versions is visualised
in Figure 1.10. For more details about the properties of SHAP values and their
estimation, we refer to the literature [Lundberg and Lee, 2017, Janzing et al.,
2020, Chen et al., 2020].

Contrastive Explanations

So-called contrastive explanations explain outcomes relative to one or more
contrast cases [Lipton, 1990, Miller, 2019, 2021]. In interpretable machine
learning, contrastive explanations are used to explain the outcome for a given
data point by contrasting it with outcomes for alternative data points.

Counterfactual explanations (CEs). For counterfactual explanations
[Wachter et al., 2017a], the model’s prediction for a data point x is ex-
plained by contrasting it with data points that yield a different prediction.
More formally, counterfactual explanations search for data points that are
valid, meaning that they yield the desired prediction, and similar, meaning
that the change δ is small.:

argminδ d(δ + x, x) s.t. f̂(x+ δ) = y′.

Here d is some distance function, x is the original datapoint, δ some change
and y′ the prediction outcome that we want to contrast against.
For example, when applied to the southern German credit example, for a
randomly chosen rejected individual we get the following counterfactual
explanation: ”When changing the ‘duration‘ to be 12 months shorter and set
‘other debtors‘ to guarantor, then the model’s prediction is favourable.”
Wachter et al. [2017b] discuss three potential applications of counterfactual
explanations: Understanding decisions, contesting (unethical) decisions, and
altering future decisions (recourse).
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Causal Recourse. In this thesis, we are especially interested in recourse.
For recourse, the aim is to guide explainees to revert unfavourable decisions.
It has been argued that it is important that recourse recommendations are
actionable [Ustun et al., 2019], meaning that only changes that the user can
realise are proposed, and causal [Karimi et al., 2020a], meaning that causal
relationships between the features are taken into account.
Counterfactual explanations, as originally proposed, neither take actionabil-
ity nor causal relationships between the features into account. Karimi et al.
[2020a] thus modify the optimization problem to search for cost-minimal
causal interventions that change the model’s prediction. To estimate the
causal effects of actions, they rely on causal models such as causal graphs and
structural causal models [Karimi et al., 2021, 2020a,b]. For example, for SCMs
with invertible structural equations, the optimisation problem is given by:

a ∈ arg mina∈F cost(a;xpre) subject to h(xpost,do(a)) ≥ 0.5,

where cost(a, xpre) measures the cost of action a for an individual with pre-
recourse characteristics xpre, and where xpost,do(a) is the corresponding post-
recourse state for action a.

1.3 Challenges for Interpretable Machine Learning

IML is a vibrant research field, and the methods are widely applied in prac-
tice [Fellous et al., 2019, Deeks, 2019, Gade et al., 2019, Gordon et al., 2019,
Danilevsky et al., 2020, Jiménez-Luna et al., 2020, Tosun et al., 2020, Das et al.,
2021, Tantithamthavorn and Jiarpakdee, 2021, Sharma et al., 2022, Yang, 2022,
Khosravi et al., 2022, Gevaert, 2022, Machlev et al., 2022, Fiok et al., 2022]. At
the same time, the field faces fundamental criticism.
As follows, I summarise the criticisms of the field that, in my view, are the most
pressing: First, we argue that interpretability conflates several incompatible
goals that must be disentangled; Only given a fixed goal the target estimand
(explanandum) can be derived (§1.3.1). Second, to establish a link between
explanation and explanandum, we need interpretation rules that make clear
what aspects of model and data a method provides insight to (§1.3.2). Thirdly,
many IML methods are difficult to estimate (§1.3.3). The challenges are illus-
trated in Figure 1.11.
In §3.1 we discuss how our contributions help to tackle them.
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Figure 1.11: An illustration of the explanatory gap between interpretation goal
and method. In order to establish a link, we have to understand which aspects
of model and data are relevant for a given interpretation goal (explanandum),
and which aspects the IML method describes (explanation).

1.3.1 Challenge I: Unclear explanandum

A common criticism of IML is that the goal of the field is to make opaque
machine learning systems ”interpretable” but that there is no agreement on
what that is supposed to mean [Lipton, 2018, Krishnan, 2020, Freiesleben
and König, 2023]. As such, claims about “interpretability” are not meaningful
without further clarification, and aiming for “interpretability” is an ill-posed
problem.
To better understand the origin of the issue, we take a step back and recon-
sider why we care about “interpretability” in the first place: As Doshi-Velez
and Kim [2017] argue, we ask for explanations since there are important
requirements towards machine learning systems that cannot be evaluated
with test set performance. These requirements include (among others) the
compliance of the system’s mechanism with ethical standards (fairness),
the robustness of the system to domain shifts (robustness), the ability to
learn from the model about the data-generating mechanism (inference),
and the ability to explain algorithmic decisions in a way that allows affected
individuals to revert unfavourable decisions (recourse). The hope associated
with interpretability is that if we were to ”understand” the ML system, we
would be able to assess whether a system is fair and robust, learn about
the data-generating process or restore the agency of individuals affected by
unfavourable decisions.

Problematically, these requirements conflict. Let us illustrate this with an
example illustrated in Figure 1.12. The model relies on the two uninformative
features x2 and x3 that cancel out in the observational distribution (meaning
that within the observational distribution f̂(x) ≈ x1). If we interpret the
model to find which variables are most predictive of y (inference), then it is
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X1

X2

X3

Y

Ŷ

(a) DAG

X1 := ε1, X2 := ε2 ε1, ε2 ∼ N(0, 1)
X3 := X2 + ε3 ε3 ∼ N(0, 0.01)
Y := X1 + εY εY ∼ N(0, 0.1)

ŷ = f̂(x) := x1 + cx2 − cx3
(b) SCM

Figure 1.12: In this example, the model relies on two features x2, x3 that are
independent of Y and that cancel each other out in the observational distri-
bution.

irrelevant to know that the model relies on x2 and x3 because we only care
about the data, and the variables have no relation with y. More generally, if we
want to assess the model’s behaviour in the observational distribution, x2 and
x3 are irrelevant. However, if we interpret to model to assess its robustness
to distribution shifts, we want to know that the model’s mechanism includes
the term cx2 − cx3 and, thus, that its performance breaks down once the
correlation between the two variables is broken.
More generally, the questions that individuals may have when interpreting
machine learning models are so heterogeneous that no single method can
answer them all concisely. Instead, as Lipton [2018] puts it in his seminal
paper,

[...] interpretability is not a monolithic concept but several distinct
ideas that must be disentangled before any progress can be made.

1.3.2 Challenge II: Misinterpretation of IML Methods

Not only the ML model but also the IML methods are subject to interpretation:
Given the diversity of contexts and motivations to seek explanations, the IML
methods are diverse in their actual meanings. To choose an IML method that
suits the explanation context and goal, the explainee must be aware of what
insights the different method can and cannot provide.
In a recent study Krishna et al. [2022] demonstrate that practitioners from
research and industry lack orientation: When presented with the outputs of
several popular IML methods, they find that the methods commonly disagree;
For example, because the highest ranked features differ, the overall relative
ordering differs, or even the signs of the values differ. 7 When asked to choose

7This result is in agreement with Figures 1.6-1.10, where we plot several IML methods on
the bike sharing dataset and observe that they yield different results
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one of the methods to resolve the disagreement, participants predominantly
rely on superficial criteria such as publication year or on whether the method’s
output matches their prior intuition.
The study’s results are sobering: If explainees do not understand what the ex-
planations actually mean and instead base their choice on superficial criteria,
the conclusions they draw from the explanation may not be grounded in
reality. Even worse: If explanations are chosen based on whether they match
the explainee’s prior intuition, they degrade to (meaningless) justifications.
To prevent such misinterpretation, we need more formal work clarifying
what insight the different IML methods provide. Furthermore, the resulting
insights and misconceptions must be communicated to a wider audience.
Beyond unclarity about what aspect of model and data a method targets, the
IML estimate is subject to various uncertainties that can significantly alter the
explanations; These uncertainties must be quantified and communicated to
the explainee [Watson, 2022].

1.3.3 Challenge III: Estimation of Conditional-Sampling-
Based Methods

IML methods typically quantify the relevance or effect of features by quan-
tifying how perturbing the feature affects the object of interest (e.g. the
prediction). A range of methods thereby rely on marginal sampling, e.g. by
permuting the values for the variable; This has the disadvantage that the
dependencies with the remaining variables are ignored, such that observa-
tions in unseen or unrealistic regions are created. A range of work therefore
argues in favour of conditional-sampling-based perturbations that take the
dependencies between features into account [Strobl et al., 2008, Hooker and
Mentch, 2019, Frye et al., 2020, Chen et al., 2020, Freiesleben et al., 2022,
Freiesleben and König, 2023].
However, conditional sampling is difficult and computationally expensive;
for many methods, conditional-sampling-based implementations are not
available. Thus, the methods are less convenient, and methods are ”ap-
proximated” with marginal sampling instead (e.g. Lundberg and Lee [2017],
Covert et al. [2020]).
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1.4 Nine Perspectives on Model and Data

The limits of my language mean the limits of my world.
– Ludwig Wittgenstein

In the preceding section, we argued that IML faces fundamental chal-
lenges; the unclear terminology in the field compounds these problems. For
example, IML methods are often said to quantify a feature’s relevance but
without clarifying what it means to be relevant. If we fail to articulate the
meaning of the method, how should practitioners be able to make the right
conclusions?
Throughout this section, we will refine our terminology. More specifically,
we leverage a causal viewpoint to distinguish between nine different per-
spectives on model and data. To illustrate the different perspectives, we
look at exemplary questions relevant in IML and categorise them according
to what perspective they concern; Thereby, we demonstrate the usefulness
of the taxonomy to articulate the explanandum more clearly (Challenge I).
Furthermore, we categorise the IML methods introduced in §1.2.3 within the
taxonomy, thereby tackling the misinterpretation of IML methods (Challenge
II). In summary, the taxonomy serves as a connecting link between explana-
tion and explanandum.8

For now, let us understand what these nine different aspects are – with a focus
on understanding that they are indeed distinct. We structure the taxonomy
using two questions: First, what object is described? The prediction Ŷ , the
underlying target Y or their relationshipR (as captured by the risk)? Secondly,
on what level are we trying to understand the object? In terms of model-level
intervention, data-level interventions or in terms of association?
We illustrate the distinction at the example of disease diagnosis, where causes
C and symptoms S are used to diagnose the disease state Y (Figure 1.13).

1.4.1 What Object is Described?

Except for special cases where we can perfectly reconstruct Y from the
features, prediction and target take different values. Moreover, even if we
can predict perfectly on test data, Y and Ŷ may take different causal roles.
For example, disease diagnosis models (as visualised in Figure 1.13) may rely
on disease symptoms for their prediction, such that treating the symptoms

8It must be emphasised that connecting explanation and explanandum in the taxonomy is
necessary, but not sufficient to establish an explanatory link.



1.4 Nine Perspectives on Model and Data 31

causally affects the prediction Ŷ ; However, the symptoms are by definition
not causal for the disease, and thus treating them does not affect Y .
The relationship between Y and Ŷ , e.g. quantified as the risk R(Y, Ŷ ), differs
from both Y and Ŷ ; It takes different values and plays a different causal role.

1.4.2 On What Level is the Object Described?

In the preceding paragraph, we differentiated between the three objects of in-
terest: The prediction Ŷ , the underlying target Y and their relationship. In the
context of IML, we typically try to understand these objects in terms of their
relationship with the features.9

As follows, we differentiate between three levels on which the relationship
between features and the object of interest can be described. First, we dis-
tinguish between causation and association (using the do-operator); Secondly,
we distinguish between model-level causation and data-level causation.

data model

relationship

Y

C

S

C

S Ŷ

R(Y, Ŷ )

Figure 1.13: Visualisation of our distinction between different aspects of
model and data, at the example of a model that uses causes C and symp-
toms S to diagnose a disease state Y . On the left side, we see the real-world
variables and their causal relationships, and on the right side, the respective
model counterparts (the model inputs C and S and the model’s prediction Ŷ ).
The relationship between prediction and target is captured by the risk R.

9For example, feature effect methods describe the relationship between the feature and the
prediction, and feature importance methods quantify the relevance of features for the model’s
performance.
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Distinction between causation and association. Association does not imply
causation – this statement is also true in the context of IML. In the disease
diagnosis example (Figure 1.13), the symptom state S is associated with the
disease Y , but the symptoms S are not causal for the disease Y .
We use the do-operator (introduced in §1.2.2) to denote the difference
between intervention (causation) and observation (association): When we
observe symptom state s, we write S = S; if we intervene on the symptoms to
take value s, we write do(S = s).

Distinction between model-level and data-level causation. When referring
to causality in interpretable machine learning, we must further distinguish
between model-level interventions and data-level interventions. With data-
level interventions, we mean interventions in the real world. With model-level
interventions, I mean interventions on the model inputs (by plugging differ-
ent values into the predictor).
These two notions of causal effects are fundamentally different: For data-level
causation, the causal dependencies between variables in the real world must
be considered; for model-level causation, they are deliberately ignored: In
the disease diagnosis example (Figure 1.13), real-world interventions on
the causes C affect the prediction Ŷ via two paths: directly via the changed
model input, and indirectly via the effect on the symptoms S. In contrast,
intervening on the corresponding model input does not affect the symptoms
and thus yields a different effect.
To formally distinguish between model-level and data-level interventions,
we follow Janzing et al. [2020] and introduce a separate variable for the
model input, distinguished by an underline (e.g., C for the disease causes
model input). We regard the model input as a perfect copy of the respective
real-world state, i.e. define the respective structural equation as C := C. An
intervention on the model input is denoted as do(C = c).

So to conclude, we distinguished between three objects (the prediction Ŷ ,
the underlying target Y , and their relationship) and three levels of description
(association, model-level causation and data-level causation). In combina-
tion, we yield nine aspects of model and data.
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1.4.3 Heterogenous Explananda

To illustrate the different aspects of model and data, we collect exemplary
questions that may have when interpreting a disease diagnosis model and
categorise them in the taxonomy.
For example, in order to be able to simulate the model’s behaviour, we may
be interested in understanding the model’s mechanism, i.e., how model-
level interventions affect the prediction. In contrast, to identify predictive
biomarkers, we are interested in associations between the features and the
prediction target. Or, as someone being diagnosed with a disease, we may be
interested in understanding what we can do to get healthy, which requires
estimating the effect of data-level interventions on the underlying target.
More examples can be found in Table 1.4.10

Ŷ R Y

do(X = x′) Does the model’s
mechanism rely

on gender?

Do measurement errors
affect the performance?

-

X = x′ Is the diagnosis
correlated with

gender?

Is the diagnosis more
accurate for men?

Which biomarkers
are predictive of Y ?

do(X = x′) What can I do
to appear healthy?

Does the model
work in different hospitals?

What can I do
to get healthy?

Table 1.4: Exemplary queries for different aspects of model and data.

We observe that the questions concern distinct aspects of model and
data, implying that distinct methods are required to address them. Thus, the
categorisation confirms the argumentation in Section 1.3.1: Each question
corresponds to a different notion of what it means for a ML system to be “in-
terpretable” and any “one-fits-all” definition of interpretability must conflate
several incompatible requirements.

10I do not give an example for a question that concerns the effect of model-level interven-
tions on the underlying target, since in our simplified model the prediction does not affect the
real-world state. However, such feedback loops are conceivable [Perdomo et al., 2020].
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1.4.4 Heterogeneous Explanations

Furthermore, we categorise the IML methods that were introduced regarding
the aspect of model and data that they compute in Table 1.5.11

Marginal-sampling-based methods measure the effects of plugging perturbed
versions of the variables into the model while ignoring any dependencies
between the variables. As such, marginal-sampling-based methods measure
the effects of model-level interventions. While feature effect methods such
as PDPs concern the prediction, feature importance methods such as PFI
concern the model’s performance.
Conditional-sampling-based methods measure the objects of interest condi-
tional on observing (a subset) of the variables. For instance, M-Plots describe
the expected prediction conditional on observing the feature of interest,
and SAGE value functions describe the model’s performance conditional on
observing a set of features.
Only the Causal Recourse (CR) method is concerned with interventions on
the data level.

Ŷ R Y

do(X = x′) ICE plots and PDPs
marginal SHAP

CEs

PFI
marginal SAGE

-

X = x′ M-Plots
conditional SHAP

CFI
conditional SAGE

-

do(X = x′)
CR - -

Table 1.5: The interpretation techniques introduced in §1.2.3, categorised re-
garding what aspect of model and data they portray.

When confronted with a choice between different IML methods for a given
task, the taxonomy helps to narrow down the candidate pool significantly.

11Tables 1.4 and 1.5 illustrate that there is a gap between the aspects of the model and data
that may be of interest in IML and what the methods actually compute. With the contributions
in this thesis, we aim to close this explanatory gap in two ways: By clarifying target estimands
(understanding what aspect of model and data we care about), and by studying what insight
into model and data actually allow.
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However, it may be noted that the taxonomy has its limitations: First of all
the nine categories tell us from which perspective model and data are ap-
proached, but does not fully determine what we inspect. For instance, we are
agnostic to how interactions are handled or to whether local or global explan-
ations are generated. Thus clarifying the targeted perspective is necessary but
not sufficient for establishing an explanatory link. Second, the taxonomy is
explaining via the features and thus does not accommodate all IML methods.
For instance, models may be explained via model internals or via specific data
points as well. And Third, depending on the assumptions that we can make
about model and data, there may be significant overlap between the categor-
ies; Thus when method and goal concern different perspectives on model and
data, it depends on model and data whether an explanatory link can be estab-
lished anyway.

1.4.5 Overlap Between the Nine Perspectives

Although the nine aspects are distinct, there can be significant overlap. If pre-
diction models are Bayes optimal, they can be seen as models of properties of
P (Y |X), establishing a relation between Y and Ŷ (§1.2.1). And the do-calculus
relates (conditional) probability statements with causal statements (§1.2.2).
For instance, although the partial dependence plot (PDP) concerns the
effect of model-level interventions on the prediction Ŷ , it can also be used
to estimate the effects of data-level interventions on the underlying target
Y [Zhao and Hastie, 2021]. More specifically, the PDP and the adjustment
formula coincide, meaning that if the set of remaining variables satisfies the
backdoor criterion (and the model is accurate in the regions in which the PDP
evaluates it), the PDP visualises a real-world causal effect.

1.4.6 The Nine Perspectives and Our Contributions

The taxonomy will prove helpful over the course of this thesis and is the basis
of several of our contributions. It helped us to discuss the requirements and
the explanandum in the context of recourse (Paper I) and scientific inference
(Papers II and III) and served as a grid to assess what insight a general class of
feature importance method allows (Paper IV).
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1.5 Overview of Our Contributions

The thesis includes seven papers, which contribute to tackling the challenges
postulated in Section 1.3.

• To tackle unclear interpretation goals and target estimands (Challenge
I), we investigate two interpretation contexts in more detail: recourse
(Paper I) and scientific inference (Papers II-III). In each setting, starting
from the interpretation goal we motivate the target estimands and dis-
cuss which interpretation methods are suitable.

• Papers I-V are concerned with preventing misinterpretation (Challenge
II). In Paper I we clarify that existing recourse methods may fail to lead
to improvement, which we argue to be a vital requirement for recourse.
In Paper II we establish which methods can or cannot be used to gain in-
sight into the data-generating process, and in Paper III we propose meth-
ods to quantify the uncertainties involved when linking explanations to
properties of the DGP. In Paper IV we generalise PFI and CFI to a general
class of feature importance algorithms and derive interpretation rules for
each of its members. In Paper V, we communicate general interpretation
pitfalls, such as unjustified causal interpretation, to a broader audience.

• In Papers VI-VII we propose methods to estimate conditional-sampling-
based methods efficiently. In Paper VI, we use causal structure learning
(CSL) to greedily identify the dependence structure in the data which can
be exploited to make the estimation of SAGE values more efficient. In
Paper VII we rely on tree-based models to learn a partitioning of the fea-
ture space that renders the covariates independent (conditional on the
partitioning), which can be exploited to sample from conditional distri-
butions by permuting observations within the partitions.

As follows, I shortly summarise our contributions. A visual overview of the
articles and their relation to the three challenges is given in Figure 1.14.
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Goal-driven Derivation of Explanandum Preventing Misinterpretation Conditional-sampling Based Estimation

I: Improvement-focused Causal Recourse (ICR)

II: Scientific Inference With IML

III: Relating the PDP and PFI to the Data Generating Process

IV: Relative Feature Importance

V: General Pitfalls of IML

VI: SAGE Estimation via CSL

VII: IML & Dependent Features

Figure 1.14: Overview of the seven papers in this thesis and their relation to
the three challenges postulated in Section 1.3.

Paper I: Improvement-Focused Causal Recourse (Section 2.1). An import-
ant application of IML is providing so-called recourse recommendations:
Suppose you applied for a loan, and an ML model is used to assess your
qualification. Suppose, furthermore, that the model rejects you. You feel
powerless since you do not know how the decision was made or how you can
change it. So-called recourse recommendations aim to restore your agency by
telling you what you can do to revert this unfavourable decision. A recourse
recommendation could be of the form: ”If you reduce your credit card risk by
1000=C, you will get the loan.”
A range of recourse techniques have been proposed: counterfactual explan-
ations [Wachter et al., 2017b], counterfactuals with actionability constraint
[Ustun et al., 2019], and the causal recourse framework [Karimi et al., 2020a].
We demonstrate that all existing methods suffer from a fundamental problem:
the methods target acceptance, meaning that the prediction Ŷ is reverted but
may fail to guide towards improvement, meaning that they may fail to revert
the underlying target Y . In other words: Existing recourse techniques may
recommend to game the predictor.
In our paper on Improvement-focused Causal Recourse (ICR), we argue that
improvement is a fundamental requirement for recourse since it is desir-
able for model authority, explainee and society: Model authorities have no
incentive to recommend tricking their decision system. For the explainee,
gaming may have short-term benefits and be morally justified if the predictor
is unethical; However, gaming recommendations may mislead explainees
who are actually interested in improving, which in general, is a more robust
long-term strategy. Furthermore, explainees are members of society; For
society, it is important that recourse also leads to improvement since gaming
damages collective risk systems. For instance, if loans are given to individuals
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whose default rate is underestimated, the financial system may be seriously
damaged.
Thus, we propose an improvement-focused recourse technique. Depending
on the level of causal knowledge, more or less accurate recommendations
can be made. If a Structural Causal Model (SCM) is available, we can leverage
structural counterfactuals for individualised effect prediction. If only the
causal graph is available, we can estimate conditional average treatment
effects instead. We refer to the two settings as the individualised and the
subpopulation-based setting.
For both settings, we derive acceptance guarantees from improvement
guarantees. In the subpopulation-based setting, where the improvement
rate is estimated using a causal graph, we show acceptance bounds for
Bayes-optimal observational predictors. In the individualised setting, where
the effect estimate is individualised using the SCM, we propose to leverage
the SCM for individualised post-recourse prediction, for which we derive
acceptance bounds.
In various synthetic and semi-synthetic settings, we empirically demonstrate
that ICR reliably guides towards improvement and acceptance while being
more robust to refits of the model than counterfactual explanations or causal
recourse.

Ŷ R Y

do(X = x′) Counterfactual
Explanations (CEs)

- -

X = x′
- - -

do(X = x′)
Causal Recourse (CR) -

Improvement-focused
Causal Recourse (ICR)

Table 1.6: While both counterfactual explanations and causal recourse target
acceptance (reversing Ŷ ), we argue that recourse should lead to improvement
(reversing Y ).
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Papers II and III: Scientific Inference with Interpretable Machine Learning
(Sections 2.2 and 2.3). Machine learning models are increasingly deployed
in science. The reason for their adoption is their ability to model complex
dependencies, allowing for more accurate prediction than classical statistical
models.
Beyond accurate prediction [Luk, 2017, Douglas, 2009], science is concerned
with learning about the data-generating process (DGP) [Salmon, 1979, Long-
ino, 2018, Shmueli et al., 2010]. Problematically, machine learning models are
often too complex to understand, and it is unclear whether individual model
elements can be linked to properties of the DGP. Thus, scientists struggle to
learn about the DGP using ML models.
Interpretable Machine Learning (IML) is concerned with tackling the opacity
of ML models by describing elements of the models or properties of model
and data. Since model elements may not represent DGP properties, and since
IML methods are developed with a wide range of different contexts and goals
in mind, it is often unclear what insight the methods provide (Challenge II,
Figure 1.15), and therefore whether the methods enable scientific inference.
Nevertheless, IML methods are increasingly deployed to infer the ”relevance”
of features in scientific applications [Fellous et al., 2019, Gade et al., 2019,
Gordon et al., 2019, Danilevsky et al., 2020, Jiménez-Luna et al., 2020, Tosun
et al., 2020, Das et al., 2021, Tantithamthavorn and Jiarpakdee, 2021, Sharma
et al., 2022, Yang, 2022, Khosravi et al., 2022, Gevaert, 2022, Machlev et al.,
2022, Fiok et al., 2022], and it is often implied that the explanations actually
reflect properties of the DGP.
We tackle the challenge in Papers II and III.
In Paper II, Scientific Inference with Interpretable Machine Learning, we show
that IML methods can indeed describe interesting properties of the DGP, more
specifically, of the underlying joint probability distribution. The reason is that
– although individual model elements may not represent DGP properties –
the model as a whole represents aspects of the underlying distribution. For
example, regression models that minimize the mean squared error represent
the conditional expectation of the prediction target given the covariates. We
call this holistic representationality.
Nevertheless, since IML addresses several conflicting goals, many existing
methods do not enable insight into the DGP. We identify the properties that
IML methods must fulfil to be suitable for scientific inference about the joint
distribution of the variables. Based on these insights, we propose a guide for
scientific inference with IML that comprises 5 steps: 1) Formalising the sci-
entific question, 2) establishing identifiability, 3) designing an IML property
descriptor, 4) estimating the descriptor and 5) quantifying uncertainty.
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Quantifying uncertainty is the focus of Paper III, Relating the Partial Depend-
ence Plot and Permutation Feature Importance to the Data Generating Process.
More specifically, we formalize permutation feature importance and partial
dependence plots as statistical estimators of properties of the DGP and show
that the estimates deviate from the ground truth not only due to statistical
biases but also due to learner variance and Monte Carlo approximation
errors. To avoid misinterpretation, we propose learner versions of PD and PFI
that are based on model refits, as well as variance and confidence interval
estimators that account for the involved uncertainties.
In both papers, we focus on the supervised learning paradigm and inference
about associations in the data. We briefly discuss other forms of inference,
especially causal inference, but leave a more detailed assessment for future
work.

IML methods concern of interest for inference

ŶX = x′do(X = x′) R do(X = x′) X = x′ Y
link?

Figure 1.15: While IML methods are typically concerned with the effect of
model-level interventions on prediction and performance, inference is con-
cerned with associations and causal relationships in the data-generating pro-
cess.

Paper IV: Interpretation Rules for Feature Importance (Section 2.4). Feature
importance methods quantify the relevance of features by measuring the
impact of feature perturbations, i.e. interventions on the model level, on
the model performance. Although the effect of feature perturbations on the
model performance is easy to compute, it is unclear what conclusions can
be drawn. In our paper on Relative Feature Importance we thus investigate
the insight that nonzero feature importance provides about the model’s
mechanism and the dependencies in the data (Figure 1.16).
Depending on the concrete feature importance method, different model-level
interventions are performed. For example, for Permutation Feature Import-
ance (PFI), the feature is resampled from its marginal distribution, and for
Conditional Feature Importance (CFI), the feature importance is resampled
from the conditional distribution given all the remaining features. These
methods yield different results, requiring different interpretations.
For our assessment, we thus generalise PFI and CFI to a general class of
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feature importance methods, which we call Relative Feature Importance (RFI),
and derive general interpretation rules that can be applied to each class
member.

feature importancemodel data

do(X = x′) RŶdo(X = x′) X = x′ Y
insight insight

Figure 1.16: In Paper IV, we study what insight into model and data we can gain
by inspecting Relative Feature Importance (RFI), a class of feature importance
methods.

Paper V: Raising Awareness for Interpretation Pitfalls (Section 2.5). So far, we
have tackled the misinterpretation of IML (Challenge II) by establishing re-
lationships between feature importance algorithms and different aspects of
model and data (Paper IV) or by proposing a guide on how to choose the in-
terpretation technique (Paper II).
In Paper V, General Pitfalls of Model-Agnostic Interpretation Methods for Ma-
chine Learning Models, we approach the problem ex negativo, meaning that
we aid practitioners by exposing what not to do. More specifically, we identify
common mistakes that may be made when choosing and interpreting IML
methods. The pitfalls include: Assuming using interpretation methods for un-
suitable purposes, interpreting models that do not generalise well, ignoring
feature dependence and feature interactions, ignoring model and approxima-
tion uncertainty, as well as unjustified causal interpretation. We illustrate each
pitfall on an example, offer solution strategies and discuss open issues.

Paper VI: Efficient SAGE value estimation via Causal Structure Learning (
Section 2.6). SAGE values are a theoretically appealing feature importance
method: They can be linked to properties of the data-generating process,
such as conditional mutual information. Furthermore, they fairly attribute
importance according to the Shapley fairness axioms; That means that they
provide insight into the relevance of features beyond dependence on no or all
features.
One downside of SAGE values is their computational inefficiency. The exact
computation of SAGE values requires the evaluation of an exponential num-
ber of so-called surplus function evaluations. This is particularly expensive
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because the evaluation of the surplus functions requires sampling from
potentially multivariate conditional distributions.
In this work, we aim to reduce the computational burden of SAGE value
estimation by exploiting the observation that conditional independence in
the data implies that the respective surplus contribution evaluates to zero,
such that their computation can be skipped. More specifically, we leverage
causal structure learning – greedy algorithms that learn the (conditional)
independence structure in the data – to factorise the distribution.
As we demonstrate empirically, this is more efficient since the one-time
computation effort required to learn the dependence structure is negligible
in comparison to the expense of the many saved surplus contribution eval-
uations. Furthermore, since the false discovery rate for the employed CSL
algorithms is close to zero, we yield unbiased approximations.

Paper VII: Conditional Sampling Based Feature Importance and Feature Effects
(Section 2.7). Conditional Feature Importance (CFI) is theoretically appeal-
ing since it allows insight into the conditional (in)dependencies in the data;
At the same time, it requires sampling from the conditional distribution of the
feature of interest j given all remaining features−j. Thus, it is more difficult to
estimate than its marginal-sampling-based counterpart, Permutation Feature
Importance (PFI); Marginal sampling can be performed by randomly drawing
values from the feature of interest’s observation vector.
We propose a novel algorithm to estimate CFI. It is based on the assumption
that we can learn a partitioning of the feature space, such that in each sub-
group the feature of interest j is independent of the remaining variables. As
a consequence of the independence, in each subgroup, marginal and con-
ditional sampling coincide. Thus, the partitioning allows us to sample from
the conditional distribution by permuting observations within each group. To
learn the partitioning, we leverage tree-based algorithms such as CART and
transformation trees.
In settings where the learned partitioning is sparse, the subgroup-based ap-
proach has a further advantage (beyond good approximation to the true CFI
values). Shallow trees are easy to interpret, such that the partitioning itself is
interpretable. As such, we can generate subgroup-specific interpretations. For
instance, by applying PFI in each subgroup, we find that temperature is pre-
dictive of bike rentals in summer, but not in winter.
Similarly, we propose a subgroup-based variant of PDPs. PDPs rely on mar-
ginal sampling and therefore may evaluate the model on unrealistic observa-
tions and thus provides limited insight into the data. If applied within the
subgroups, where the feature of interest is independent of the remaining fea-
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tures, no dependencies between features are destroyed, and inference about
the DGP is possible. For instance, by inspecting the PDP in the subgroups we
may learn how the conditional expectation of the target varies with temperat-
ure given that we know that it’s winter.
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Chapter 2

Contributed Articles

2.1 Paper I: Improvement-focused Causal Re-
course (ICR)

König, Gunnar, Timo Freiesleben, and Moritz Grosse-Wentrup. Improvement-
Focused Causal Recourse (ICR). Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 37. No. 10. 2023.

Gunnar König contributed to the paper as first author. Gunnar König
had the initial idea, wrote large parts of the paper, developed the proofs
and wrote the code. Timo Freiesleben helped to develop the story and the
philosophical foundation, wrote large parts of Section 4, checked the proofs
and contributed to Sections 1, 2, 9 and 10. All authors helped to revise and
proofread the paper.

For legal reasons the arXiv preprint of the article is included in this document
(https://doi.org/10.48550/arXiv.2210.15709). The original version can be ac-
cessed via https://doi.org/10.1609/aaai.v37i10.26398.
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IMPROVEMENT-FOCUSED CAUSAL RECOURSE (ICR)

Gunnar König1,2,3, Timo Freiesleben4,5, and Moritz Grosse-Wentrup2
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2Research Group Neuroinformatics, University of Vienna

3Munich Center for Machine Leanring (MCML)
4Cluster of Excellence: Machine Learning for Science, University of Tübingen

5Munich Center for Mathematical Philosophy (MCMP), LMU Munich

ABSTRACT

Algorithmic recourse recommendations, such as Karimi et al.’s (2021) causal recourse (CR), inform
stakeholders of how to act to revert unfavorable decisions. However, there are actions that lead to
acceptance (i.e., revert the model’s decision) but do not lead to improvement (i.e., may not revert the
underlying real-world state). To recommend such actions is to recommend fooling the predictor. We
introduce a novel method, Improvement-Focused Causal Recourse (ICR), which involves a conceptual
shift: Firstly, we require ICR recommendations to guide towards improvement. Secondly, we do
not tailor the recommendations to be accepted by a specific predictor. Instead, we leverage causal
knowledge to design decision systems that predict accurately pre- and post-recourse. As a result,
improvement guarantees translate into acceptance guarantees. We demonstrate that given correct
causal knowledge ICRguides towards both acceptance and improvement.

Keywords algorithmic recourse · gaming · causal inference · interpretable machine learning · robustness

1 Introduction

Predictive systems are increasingly deployed for high-stakes decisions, for instance in hiring [Raghavan et al., 2020],
judicial systems [Zeng et al., 2017], or when distributing medical resources [Obermeyer and Mullainathan, 2019].
A range of work [Wachter et al., 2017, Ustun et al., 2019, Karimi et al., 2021] develops tools that offer individuals
possibilities for so-called algorithmic recourse (i.e. actions that revert unfavorable decisions). Joining previous work
in the field, we distinguish between reverting the model’s prediction Ŷ (acceptance) and reverting the underlying
real-world state Y (improvement) and argue that recourse should lead to acceptance and improvement [Ustun et al.,
2019, Barocas et al., 2020]. Existing methods, such as counterfactual explanations (CE; Wachter et al. [2017]) or causal
recourse (CR; Karimi et al. [2021]), ignore the underlying real-world state and only optimize for acceptance. Since ML
models are not designed to predict accurately in interventional environments (i.e. environments where actions have
changed the data distribution), acceptance does not necessarily imply improvement.
Let us consider a simple motivational example. The goal is to predict whether hospital visitors without recent test
certificate are infected with Covid in order to restrict access to tested and low-risk individuals. In the example, the
model’s prediction Ŷ represents whether someone is classified to be infected, whereas the prediction target Y represents
whether someone is actually infected. Target and prediction differ in how they are affected by actions. E.g., intervening
on the symptoms may change the diagnosis Ŷ , but will not affect whether someone is infected (Y ).
Both counterfactual explanations (CE) and causal recourse (CR) only target Ŷ (Figure 1). Therefore, CE and CR
may suggest to alter the symptoms (e.g., by taking cough drops) and thereby may recommend to game the predictor:
Although the intervention leads to acceptance the actual Covid risk Y is not improved.1
One may argue that this is an issue of the prediction model and may adapt the predictor strategically to make gaming
less lucrative than improvement [Miller et al., 2020]. In our example, the model’s reliance on the symptom state
would need to be reduced. However, such strategic adaptions may come at the cost of predictive performance since
gameable variables, like the symptom state, can be highly predictive [Shavit et al., 2020]. Thus, we tackle the problem
by adjusting the explanation.

1In E.1, the case is formally demonstrated.
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Improvement-Focused Causal Recourse (ICR)

vaccinated

Ŷ : diagnosis

asymptomatic

counterfactual explanation (CE)

vaccinated

Ŷ : diagnosis

asymptomatic

causal recourse (CR)

vaccinated

Y : Covid Ŷ : diagnosis

asymptomatic

improvement-focused CR (ICR)

Figure 1: Directed Acyclic Graph (DAG) illustrating the perspective on model and data taken by counterfactual
explanations (CE, left) and causal recourse (CR, center) in contrast to improvement-focused recourse (ICR, right). Blue
edges represent the causal links induced by the prediction model, green edges the real-world causal links, gray nodes
the covariates, and the red (yellow) node the primary (secondary) recourse target. CR respects the causal relationships
but only between input features. ICR is the only approach that takes the target Y into account. While CE and CR aim to
revert the prediction Ŷ , ICR aims to revert the target Y .

Contributions We present improvement-focused causal recourse (ICR), the first recourse method that targets improve-
ment instead of acceptance. Since estimating the effects of actions is a causal problem, causal knowledge is required.
More specifically, we show how to exploit either knowledge of the structural causal model (SCMs) or the causal graph
to guide towards improvement (Section 5). On a conceptual level we argue that the individual’s improvement options
should not be limited by an acceptance constraint (Section 4). In order to nevertheless yield acceptance, we show how
to exploit said causal knowledge to design post-recourse decision systems that in expectation recognize improvement
(Section 6), such that improvement guarantees translate into acceptance guarantees (Section 7). On synthetic and
semi-synthetic data, we demonstrate that ICR, in contrast to existing approaches, leads to improvement and acceptance
(Section 8).

2 Related Work

Constrastive Explanations Contrastive explanations explain decisions by contrasting them with alternative decision
scenarios [Karimi et al., 2020a, Stepin et al., 2021]; a well known example are counterfactual explanations (CE) that
highlight the minimal feature changes required to revert the decision of a predictor f̂(x) [Wachter et al., 2017, Dandl
et al., 2020]. However, CEs are ignorant of causal dependencies in the data and therefore in general fail to guide
action [Karimi et al., 2021]. In contrast, the causal recourse (CR) framework by Karimi et al. [2022] takes the causal
dependencies between covariates into account: More specifically, Karimi et al. [2022] use structural causal models or
causal graphs to guide individuals towards acceptance.2 The importance of improvement was discussed before [Ustun
et al., 2019, Barocas et al., 2020], but as of now no improvement-focused recourse method was proposed.

Strategic Classification The related field of strategic modeling investigates how the prediction mechanism incen-
tivizes rational agents [Hardt et al., 2016, Tsirtsis and Gomez Rodriguez, 2020]. A range of work [Bechavod et al.,
2020, Chen et al., 2020, Miller et al., 2020] thereby distinguishes models that incentivize gaming (i.e., interventions that
affect the prediction Ŷ but not the underlying target Y in the desired way) and improvement (i.e., actions that also yield
the desired change in Y ). Strategic modeling is concerned with adapting the model, where except for special cases the
following three goals are in conflict: incentivizing improvement, predictive accuracy, and retrieving the true underlying
mechanism [Shavit et al., 2020].

Robust algorithmic recourse The robustness of CEs and CR has been investigated before [Rawal et al., 2021,
Pawelczyk et al., 2020, Upadhyay et al., 2021, Dominguez-Olmedo et al., 2021, Pawelczyk et al., 2022], yet only with
respect to generic shifts of model and data. Only Pawelczyk et al. [2020] investigate the robustness regarding refits
on the same data. They find that on-the-manifold CEs are more robust than standard CEs. In contrast, we empirically
compare the robustness of CE, CR and ICR with respect to refits on the same data.

3 Background and Notation

Prediction model We assume binary probabilistic predictors and cross-entropy loss, such that the optimal score
function h∗(x) models the conditional probability P (Y = 1|X = x), which we abbreviate as p(y|x). We denote the

2For the interested reader, we formally introduce CR in our notation in A.4.
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estimated score function as ĥ(x), which can be transformed into the binary decision function f̂(x) := [ĥ(x) ≥ t] via
the decision threshold t.

Causal data model We model the data generating process using a structural causal model (SCM)M ∈ Π [Pearl,
2009, Peters et al., 2017]. The modelM = 〈X,U,F〉 consists of the endogenous variables X ∈ X , the mutually
independent exogenous variables U ∈ U , and structural equations F : U → X . Each structural equation fj specifies
how Xj is determined by its endogenous causes and the corresponding exogenous variable Uj . The SCM entails a
directed graph G, where variables are connected to their direct effects via a directed edge.
The index set of endogenous variables is denoted as D. The parent indexes of node j are referred to as pa(j) and
the children indexes as ch(j). We refer to the respective variables as Xpa(j). We write Xpa(j) to denote all parents
excluding Y and (X,Y )pa(j) to denote all parents including Y . All ascendant indexes of a set S are denoted as asc(S),
its complement as nasc(S), all descendant indexes as d(S), and its complement as nd(S).
SCMs allow to answer causal questions. This means that they cannot only be used to describe (conditional) distributions
(observation, rung 1 on Pearl’s ladder of causation [Pearl, 2009]), but can also be used to predict the (average) effect of
actions do(x) (intervention, rung 2) and imagine the results of alternative actions in light of factual observation (x, y)F

(counterfactuals, rung 3).
As such, we model actions as structural interventions a : Π → Π, which can be constructed as do(a) = do({Xi :=
θi}i∈I), where I is the index set of features to be intervened upon. A model of the interventional distribution can be
obtained by fixing the intervened upon values to θI (e.g. by replacing the structural equation fI := θI ). Counterfactuals
can be computed in three steps [Pearl, 2009]: First, the factual distribution of exogenous variables U given the
factual observation of the endogenous variables xF is inferred (abduction) (i.e., P (Uj |XF )). Second, the structural
interventions corresponding to do(a) are performed (action). Finally, we can sample from the counterfactual distribution
P (XSCF |X = xF , do(a)) using the abducted noise and the intervened-upon structural equations (prediction).

4 The Two Tales of Contrastive Explanations

In the introduction we have demonstrated that CE and CR may suggest to game the predictor (i.e. guide towards accep-
tance without improvement). To tackle the issue, we will introduce a new explanation technique called improvement-
focused causal recourse (ICR) in Section 5.
In this section we lay the conceptual justification for our method. More specifically, we argue that for recourse the
acceptance constraint of CR should be replaced by an improvement constraint. Therefore, we first recall that a multitude
of goals may be pursued with contrastive explanations [Wachter et al., 2017] and separate two purposes of contrastive
explanations: contestability of algorithmic decisions and actionable recourse. We then argue that improvement is an
essential requirement for recourse and that the individual’s options for improvement should not be limited by acceptance
constraints.

Contestability and recourse are distinct goals. Contestability is concerned with the question of whether the algorith-
mic decision is correct according to common sense, moral or legal standards. Explanations may help model authorities
to detect violations of such standards or enable explainees to contest unfavorable decisions [Wachter et al., 2017,
Freiesleben, 2021]. Explanations that aim to enable contestability must reflect the model’s rationale for an algorithmic
decision. Recourse recommendations on the other hand need to satisfy various constraints unrelated to the model,
such as causal links between variables [Karimi et al., 2021] or their actionability [Ustun et al., 2019]. Consequently,
explanations geared to contest are more complete and true to the model while recourse recommendations are more
selective and true to the underlying process.3 We believe that the selectivity and reliance of recourse recommendations
on factors besides the model itself is not a limitation but an indispensable condition for making explanations more
relevant to the explainee.

In the context of recourse, improvement is desirable for model authority and explainee. We consider improve-
ment to be an important normative requirement for recourse, both with respect to explainee and model authority.
Valuable recourse recommendations enable explainees to plan and act; thus, such recommendations must either provide
indefinite validity or a clear expiration date [Wachter et al., 2017, Barocas et al., 2020, Venkatasubramanian and Alfano,
2020]. Problematically, when model authorities give guarantees for non-improving recourse, this constitutes a binding
commitment to misclassification. However, if model authorities do not provide recourse guarantees over time, this
diminishes the value of recourse recommendations to explainees. They might invest effort into non-improving actions

3We do not claim that recourse and contestability always diverge, we only describe a difference in focus. If contesting is
successful it may even provide an alternative route towards recourse.
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that ultimately do not even lead to acceptance because the classifier changed.4 In contrast, improvement-focused
recourse is honored by any accurate classifier. We conclude that, given these advantages for both model authority and
explainee, recourse recommendations should help to improve the underlying target Y .5

Improvement should come first, acceptance second. Taken that we constrain the optimization on improvement,
how to guarantee acceptance remains an open question. One approach would be to constrain the optimization on both
improvement and acceptance. However, a restriction on acceptance is either redundant or, from our moral standpoint,
questionable: If improvement already implies acceptance, the constraint is redundant. In the remaining cases, we can
predict improvement with the available causal knowledge but would withhold these (potentially less costly) improvement
options because of the limitations of the observational predictor. To ensure that acceptance ensues improvement, we
instead suggest to exploit the assumed causal knowledge for accurate post-recourse prediction (Section 6), such that
acceptance guarantees can be made (Section 7).

5 Improvement-Focused Causal Recourse (ICR)

We continue with the formal introduction of ICR, an explanation technique that targets improvement (Y = 1) instead of
acceptance (Ŷ = 1). Therefore we first define the improvement confidence γ, which can be optimized to yield ICR.
Like previous work in the field [Karimi et al., 2020b], we distinguish two settings: In the first setting, knowledge of the
SCM can be assumed, such that we can leverage structural counterfactuals (rung 3 on Pearl’s ladder of causation) to
introduce the individualized improvement confidence γind. In the second setting only the causal graph is known, which
we exploit to propose the subpopulation-based improvement confidence γsub (rung 2).

Individualized improvement confidence For the individualized improvement confidence γind we exploit knowl-
edge of a SCM. SCMs can be used to answer counterfactual questions (rung 3). In contrast to rung-2-predictions,
counterfactuals are tailored to the individual and their situation [Pearl, 2009]: They ask what would have been if
one had acted differently and thereby exploit the individual’s factual observation. Given unchanged circumstances,
counterfactuals can be seen as individualized causal effect predictions.
In contrast to existing SCM-based recourse techniques [Karimi et al., 2022] we include both the prediction Ŷ and the
target variable Y as separate variables in the SCM. As a result, the SCM can be used not only to model the individualized
probability of acceptance, but also the individualized probability of improvement.
Definition 1 (Individualized improvement confidence). For pre-recourse observation xpre and action a we define the
individualized improvement confidence as

γind(a) = γ(a, xpre) := P (Y post = 1|do(a), xpre).

Since the pre-recourse (factual) target Y cannot be observed, standard counterfactual prediction cannot be applied
directly. However, we can regard the distribution as a mixture with two components, one for each possible state of Y .
We can estimate the mixing weights using h∗ and each component using standard counterfactual prediction. Details
including pseudocode are provided in B.1.

Subpopulation-based improvement confidence For the estimation of the individualized improvement confidence
γind knowledge of the SCM is required. If the SCM is not specified, but the causal graph is known instead and there
are no unobserved confounders (causal sufficiency), we can still estimate the effect of interventions (rung 2).
In contrast to counterfactual distributions (rung 3), interventional distributions describe the whole population and
therefore provide limited insight into the effects of actions on specific individuals. Building on Karimi et al. [2020b], we
thus narrow the population down to a subpopulation of similar individuals, for which we then estimate the subpopulation-
based causal effect. More specifically, we consider individuals to belong to the same subgroup if the variables that
are not affected by the intervention take the same values. For action a, we define the subgroup characteristics as
Ga := nd(Ia) (i.e., the non-descendants of the intervened-upon variables in the causal graph).6 More formally, we
define the subpopulation-based improvement confidence γsub as the probability of Y taking the favorable outcome in
the subgroup of similar individuals (Definition 2).

4For instance, in the introductory example, an intervention on the symptom state would only be honored by a refit of the model
on pre- and post-recourse data for the small percentage of individuals who were already vaccinated, as documented in more detail in
E.1. Also, gaming actions may not be robust concerning model multiplicity, as seen in the experiments (Section 8).

5We do not claim that gaming is necessarily bad; it may be justified when predictors perform morally questionable tasks.
6The estimand resembles the conditional treatment effect with Ga being effect modifiers [Hernán MA, 2020].
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Definition 2 (Subpopulation-based improvement confidence). Let a be an action that potentially affects Y , i.e.
Ia ∩ asc(Y ) 6= ∅.7 Then we define the subpopulation-based improvement confidence as

γsub(a) = γ(a, xpreGa
) := P (Y post = 1|do(a), xpreGa

).

The set Ga is chosen for practical reasons. In order to make the estimation more accurate, we would like to condition
on as many characteristics as possible. However, without access to the SCM, one can only identify interventional
distributions for subgroups of the population by conditioning on their (unobserved) post-intervention characteristics
(but not by conditioning on their pre-intervention characteristics) [Pearl, 2009, Glymour et al., 2016]. If we were to
select a subgroup from a post-recourse distribution by conditioning on pre-recourse characteristics that are affected by
a (e.g. strong pre-recourse symptoms), we yield a group that the individual may not be part of (e.g. people with strong
post-recourse symptoms). In contrast, for XGa pre- and post-intervention values coincide, such that we can estimate
γsub: Assuming causal sufficiency, the standard procedure to sample interventional distributions can be applied, only
that additionally Xpost

Ga
:= xpreGa

. Based on the sample γsub can be estimated (as detailed in B.3).
The estimation of γsub does not require knowledge of the SCM, but is less accurate than γind. In the introductory
example, for the action get vaccinated the set of subgroup-characteristics Ga is empty. As such, γsub is concerned with
the effect of a vaccination over the whole population. If we were to observe zip code, a variable that is not affected by
vaccination, γsub would indicate the effect of vaccination for subjects that share the explainee’s zip code. In contrast,
γind also takes the explainee’s symptom state into account.

Optimization problem To generate ICR recommendations, we can optimize Equation 1. We aim to find actions that
meet a user-specified improvement target confidence γ with minimal cost for the recourse seeking individual. The cost
function cost(a, xpre) captures the effort the individual requires to perform action a [Karimi et al., 2020b].
As for CE or CR, the optimization problem for ICR is computationally challenging (B.4). It can be seen as a two-level
problem, where on the first level the intervention targets Ia, and on the second level the corresponding intervention
values θa are optimized [Karimi et al., 2020b]. Since we target improvement, we can restrict Ia to causes of Y .
Following Dandl et al. [2020], we use the genetic algorithm NSGA-II [Deb et al., 2002] for optimization.

argmina=do(XI=θ) cost(a, xpre) s.t. γ(a) ≥ γ. (1)

6 Accurate Post-Recourse Prediction

Recourse recommendations should not only lead to improvement Y but also revert the decision Ŷ . Whether acceptance
guarantees naturally ensue from γ depends on the ability of the predictor to recognize improvements. As follows, we
demonstrate how the assumed causal knowledge can be exploited to design accurate post-recourse predictors. We find
that an individualized post-recourse predictor is required to translate γind into an individualized acceptance guarantee,
but curiously that the observational predictor is sufficient in supopulation-based settings.

Individualized post-recourse prediction If we were to use the optimal pre-recourse observational predictor h∗ for
post-recourse prediction, there would be an imbalance in predictive capability between ML model and individualized
ICR: ICR individualizes its predictions using xpre and the SCM. This knowledge is not accessible by the predictor
h∗, which only makes use of xpost. As such, improvement that was accurately predicted by ICR is not necessarily
recognized by h∗ and γind cannot be directly translated into an acceptance bound. We demonstrate the issue at an
Example in E.3.8
In order to settle the imbalance between ICR and the predictor, we suggest to leverage the SCM not only when
generating individualized ICR recommendations but also when predicting post-recourse, such that the predictor is
at least as accurate as γind. More formally, we suggest to estimate the post-recourse distribution of Y conditional
on xpre, do(a), and the post-recourse observation xpost,a (Definition 3). This post-recourse prediction resembles the
counterfactual distribution, except that we additionally take the factual post-recourse observation of the covariates into
account.

7If a cannot affect Y , we can predict P (Y |xpre, do(a)) = P (Y |xpre) using the optimal observational predictor h∗.
8One may also argue that standard predictive models are not suitable since optimality of the predictor in the pre-recourse

distribution does not necessarily imply optimality in interventional environments (as Example 1, E.1 demonstrates). We can refute
this criticism using Proposition 3, where we learn that ĥ∗ is stable with respect to ICR actions.
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Definition 3 (Individualized post-recourse predictor). We define the individualized post-recourse predictor as

h∗,ind(xpost) = P (Y post = 1|xpost, xpre, do(a))

For SCMs with invertible equations, h∗,ind can be estimated using a closed form solution. Otherwise we can sample
from the counterfactual post-recourse distribution p(ypost, xpost|xpre, do(a)) (as we did for the estimation of γind),
select the samples that conform with xpost and compute the proportion of favorable outcomes (details in B.2).
For the individualized post-recourse predictor, improvement probability and prediction are closely linked (Proposition 1).
More specifically, the expected post-recourse prediction h∗,ind is equal to the individualized improvement probability
γ(xpre, a). We will exploit Proposition 1 in Section 7, where we derive acceptance guarantees for ICR.
Proposition 1. The expected individualized post-recourse score is equal to the individualized improvement probability
γind(xpre, a) := P (Y post = 1|xpre, do(a)), i.e.

E[ĥ∗,ind(xpost)|xpre, do(a)] = γind(a).

Subpopulation-based post-recourse prediction Curiously we find that for ICR actions a the optimal observational
pre-recourse predictor h∗ remains accurate: in the subpopulation of similar individuals the expected post-recourse
prediction corresponds to the improvement probability γsub(a) (Proposition 3). This allows us to derive acceptance
guarantees for h∗ in Section 7.
This result is in contrast to the negative results for CR, where actions may not affect prediction and the underlying target
coherently, such that the predictive performance deteriorates (as demonstrated in the introduction, and more formally in
E.1). The key difference to CR is that ICR actions exclusively intervene on causes of Y : Interventions on non-causal
variables may lead to a shift in the conditional distribution P (Y |XS) (where S ⊆ D is any set of variables that allows
for optimal prediction). In contrast, given causal sufficiency, the conditional P (Y |XS) is stable to interventions on
causes of Y .
Proposition 2. Given nonzero cost for all interventions, ICR exclusively suggests actions on causes of Y . Assuming
causal sufficiency, for optimal models the conditional distribution of Y given the variables XS that the model uses
(i.e. P (Y |XS)) is stable w.r.t interventions on causes. Therefore, optimal predictors are intervention stable w.r.t. ICR
actions.
Proposition 3. Given causal sufficiency and positivity9, for interventions on causes the expected subgroup-wide optimal
score h∗ is equal to the subgroup-wide improvement probability γsub(a) := P (Y post = 1|do(a), xpreGa

), i.e.

E[ĥ∗(xpost)|xpreGa
, do(a)] = γsub(a).

Link between CR and ICR: Proposition 2 has further interesting consequences. For CR actions a that only intervene on
causes of Y and that are guaranteed to yield a predicted score ζ in the subpopulation, we can infer that γsub(a) ≥ ζ.
For instance, if acceptance with respect to a 0.5 decision threshold can be guaranteed, that implies improvement with at
least 50% probability. As such, in subpopulation-based settings (1) improvement guarantees can be made for CR if only
interventions on causes are lucrative, and (2) CR can be adapted to also guide towards improvement by a restricting
actions to intervene on causes.

7 Acceptance Guarantees

For the presented accurate post-recourse predictors, improvement guarantees translate into acceptance guarantees
(Proposition 4). The reason is that the post-recourse prediction is linked to γ (Propositions 1 and 3).
Proposition 4. Let g be a predictor with E[g(xpost)|xpreS , do(a)] = γ(xpreS , a). Then for a decision threshold t the
post-recourse acceptance probability η(t;xpreS , a) := P (g(xpost) > t|xpreS , do(a)) is lower bounded by the respective
improvement probability:

η(t;xpreS , a, g) ≥ γ(xpreS , a)− t
1− t .

Proof (sketch): We decompose the expected prediction (γ) into true positive rate (TPR), false negative rate (FNR) and
acceptance rate. By bounding TPR and FNR we yield the presented acceptance bound. The proof is provided in D.4.

9Positivity ensures that the post-recourse observation lies within the observational support [Neal, 2020], where the model was
trained (i.e., ppre(xpost) > 0)).
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Using Proposition 4, we can tune confidence γ and the model’s decision threshold to yield a desired acceptance rate.
For instance, we can guarantee acceptance with (subgroup-wide) probability η ≥ 0.9 given γ = 0.95 and a global
decision threshold t = 0.5 .
Furthermore we can leverage the sampling procedures that we use to compute γ to estimate the individualized or
subpopulation-based acceptance rate η(t;xpreS , a, g) (as detailed in B.1 and B.3). To guarantee acceptance with certainty,
the decision threshold can be set to t = 0.
For the explainee, it is vital that the acceptance guarantee is presented in a human-intelligible fashion. In contrast
to previous work in the field, we suggest to communicate the acceptance guarantee in terms of a probability.10

Furthermore, for subpopulation-based recourse, the set of subgroup characteristics should be transparent. In the hospital
admission example, the subpopulation-based acceptance guarantee could be communicated as follows: Within a group
of individuals that share your zip code, a vaccination leads to acceptance with at least probability η.

8 Experiments

In the experiments we evaluate the following questions, assuming correct causal knowledge and accurate models of the
conditional distributions in the data:

Q1: Do CE, CR and ICR lead to improvement?
Q2: Do CE, CR and ICR lead to acceptance (by pre- and post- post-recourse predictor)?
Q3: Do CE, CR and ICR lead to acceptance by other predictors with comparable test error?11

Q4: How costly are CE, CR and ICR recommendations?

Setup We evaluate CE, individualized and subpopulation-based CR and ICR with various confidence levels, over
multiple runs, and on multiple synthetic and semi-synthetic datasets with known ground-truth (listed below).12 Random
forests were used for prediction, except in the 3var settings where logistic regression models were used. Following
Dandl et al. [2020], we use NSGA-II [Deb et al., 2002] for optimization. For a full specification of the SCMs including
the linear cost functions we refer to C.2. Details on the implementation and access to the code are provided in C.1.

3var-causal: A linear gaussian SCM with binary target Y , where all features are causes of Y .
3var-noncausal: The same setup as 3var-causal, except that one of the features is an effect of Y .
5var-skill: A categorical semi-synthetic SCM where programming skill-level is predicted from causes (e.g. university
degree) and non-causal indicators extracted from GitHub (e.g. commit count).
7var-covid: A semi-synthetic dataset inspired by a real-world covid screening model [Jehi et al., 2020, Wynants et al.,
2020].13 The model includes typical causes like covid vaccination or population density and symptoms like fever and
fatigue. The variables are mixed categorical and continuous with various noise distributions. Their relationships include
nonlinear structural equations.

Results The results are visualized in Figure 2 and provided in tabular form in C.3.

Q1 (Figure 2a): In scenarios where gaming is possible and lucrative (3var-noncausal, 5var-skill and 7var-covid) ICR
reliably guides towards improvement, but CE and CR game the predictor and yield improvement rates close to zero.
For instance, on 5var-skill CE and CR exclusively suggest to tune the GitHub profile (e.g. by adding more commits).
Since the employer offered recourse it should be honored although the applicants remain unqualified. In contrast, ICR
suggests to get a degree or to gain experience, such that recourse implementing individuals are suited for the job.
On 3var-causal, where gaming is not possible, CR also achieves improvement. However, since acceptance w.r.t to a
decision treshold t = 0.5 is targeted, only improvement rates close to 50% are achieved (the expected predicted score
translates into γsub (Proposition 3)).
For subp. ICR, γobs is below γ, because the subpopulation may include individuals that were already accepted
pre-recourse, such that γsub and γobs may not coincide.

Q2 (Figure 2d): All methods yield the desired acceptance rates w.r.t. to the pre-recourse predictor.14 For CE and CR
ηobs is higher than for ICR, and for ind. recourse higher than for subp. recourse. Curiously, although no acceptance

10For CR, the acceptance confidence is encoded in a hyperparameter, as explained in E.2.
11The problem that refits on the same data with similar performance have different mechanism is known as the Rashomon problem

or model multiplicity [Breiman, 2001, Pawelczyk et al., 2020, Marx et al., 2020].
12For ground-truth counterfactuals, simulations are necessary [Holland, 1986].
13The real-world screening model is used to decide whether individuals need a test certificate to enter a hospital. It can be accessed

via https://riskcalc.org/COVID19/.
14ICR holds the acceptance rates from Proposition 4, as analyzed in more detail in C.3.
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(a) Observed improvement rates γobs (Q1). (b) causal graphs

method cost

CE 1.82 ± 1.09
ind. CR 1.34 ± 1.14

subp. CR 1.65 ± 1.02
ind. ICR 4.26 ± 3.34

subp. ICR 4.20 ± 3.33

(c) Recourse cost (Q4).
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(d) Observed acceptance rates ηobs w.r.t. h∗; for ind.
ICR additionally w.r.t. h∗,ind (Q2).
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(e) Observed acceptance rates for other fits with com-
parable test set performance ηobs,refit (Q3).
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Figure 2: Experimental results for CE, CR and ICR on four datasets over 10 runs on 200 individuals each. For the
probabilistic methods the confidences 0.75, 0.85, 0.9, 0.95 were targeted (for CR: η, for ICR: γ). For CE no slack is
allowed, such that the results correspond to a confidence level of 1.0. Values are reported on a quadratic scale.

guarantees could be derived for the pre-recourse predictor and ind. ICR, we find that both pre- and ind. post-recourse
predictor reliably lead to acceptance.15

Q3 (Figure 2e): We observe that CE and CR actions are unlikely to be honored by other model fits with similar
performance on the same data. This result is highly relevant to practitioners, since models deployed in real-world
scenarios are regularly refitted. As such, individuals that implemented acceptance-focused recourse may not be accepted
after all, since the decision model was refitted in the meantime. In contrast, ICR acceptance rates are nearly unaffected
by refits. The result confirms our argument that improvement-focused recourse may be more desirable for explainees
(Section 4).

Q4 (Table 2c): CR actions are cheaper than ICR actions, since improvement may require more effort than gaming. As
such, CR has benefits for the explainee: For instance, on 5var-skill, CR suggests to tune the GitHub profile (e.g. by
adding more commits), which requires less effort than earning a degree or gaining job experience. Detailed results on
cost are reported in C.3.

In conclusion, ICR actions require more effort than CR, but lead to improvement and acceptance while being more
robust to refits of the model.

9 Limitations and Discussion

Causal knowledge and assumptions Individualized ICR requires a fully specified SCM; Subpopulation-based ICR
is less demanding but still requires the causal graph and causal sufficiency. SCMs and causal graphs are rarely readily
available in practice [Peters et al., 2017] and causal sufficiency is difficult to test [Janzing et al., 2012]. Research on
causal inference gives reason for cautious optimism that the difficulties in constructing SCMs and causal graphs can
eventually be overcome [Spirtes and Zhang, 2016, Peters et al., 2017, Heinze-Deml et al., 2018, Malinsky and Danks,
2018, Glymour et al., 2019].
There are further foundational problems linked to causality that affect our approach: causal cycles, an ontologically
vague target Y (e.g. in hiring), disparities in our data, or causal model misspecification [Barocas and Selbst, 2016,

15Given that the ind. post-recourse predictor is much more difficult to estimate, the pre-recourse predictor in combination with
individualized acceptance guarantees (B.1) may cautiously be used as fallback.
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Barocas et al., 2017, Bongers et al., 2021]. All of these factors are considered difficult open problems and may have
detrimental impact on our, as well as on any other, recourse framework.
Guiding action without causal knowledge is impossible; when causal knowledge is available, our work provides
a normative framework for improvement-focused recourse recommendations. Thus, we join a range of work in
explainability [Frye et al., 2020, Heskes et al., 2020, Wang et al., 2021, Zhao and Hastie, 2021] and fairness [Kilbertus
et al., 2017, Kusner et al., 2017, Zhang and Bareinboim, 2018, Makhlouf et al., 2020] that highlights the importance of
causal knowledge.

Contestability Improvement-focused recourse guides individuals towards actions that help them to improve, e.g.,
it recommends a vaccination to lower the risk to get infected with Covid. If, however, a explainee is more interested
in contesting the algorithmic decision, (improvement-focused) recourse recommendations are not sufficient. Think
of an individual who is denied entrance to an event because of their high Covid risk prediction, which is based on a
non-causal, spurious association with their country of origin16. In such situations, we suggest to additionally show
explainees diverse explanations, which enable to contest the decision. For example, such an explanation could be: if
your country of origin would be different, your predicted Covid risk would have been lower.

10 Conclusion

In the present paper, we took a causal perspective and investigated the effect of recourse recommendations on the
underlying target variable. We demonstrated that acceptance-focused recourse recommendations like counterfactual
explanations or causal recourse may not improve the underlying prediction but game the predictor instead. The problem
stems from predictive, but non-causal relationships, which are abundant in machine learning applications.17

We tackled the problem in the explanation domain and introduced Improvement-Focused Causal Recourse (ICR),
an explanation technique that guides towards improvement of the prediction target and demonstrated how to design
post-recourse predictors such that improvement leads to acceptance. We confirm the theoretical results in experiments.
With ICR we hope to inspire a shift from acceptance- to improvement-focused recourse.

Acknowledgements
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16E.g., due to a spurious association with the causal variable type of vaccine.
17For instance, in hiring, certain keywords in the CV may be associated with qualification, but adding them to the CV does not

improve aptitude [Strong, 2022].
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Abstract

Interpretable machine learning (IML) is concerned with the behavior and the properties of machine

learning models. Scientists, however, are only interested in models as a gateway to understanding

phenomena. Our work aligns these two perspectives and shows how to design IML property descrip-

tors. These descriptors are IML methods that provide insight not just into the model, but also into

the properties of the phenomenon the model is designed to represent. We argue that IML is neces-

sary for scientific inference with ML models because their elements do not individually represent

phenomenon properties; instead, the model in its entirety does. However, current IML research often

conflates two goals of model analysis — model audit and scientific inference – making it unclear

which model interpretations can be used to learn about phenomena. Building on statistical decision

theory, we show that IML property descriptors applied on a model provide access to relevant aspects

of the joint probability distribution of the data. We identify what questions such descriptors can

address, provide a guide to building appropriate descriptors and quantify their epistemic uncertainty.

Keywords: Scientific Modeling, Interpretable Machine Learning, Scientific Representation, Inference, XAI
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1 Introduction

Scientists increasingly use machine learning (ML) in their daily work. This development is not limited to natural

sciences like the geosciences (Reichstein et al. 2019) or material science (Schmidt et al. 2019), but also extends to

social sciences such as education science (Luan and Tsai 2021) and archaeology (Bickler 2021).

When building predictive models for problems with complex data structures, ML outcompetes classical statistical

models in both performance and convenience. Impressive recent examples of successful prediction models in science

include the automated particle tracking at CERN (Farrell et al. 2018), or DeepMind’s AlphaFold, which has essentially

solved the protein structure prediction challenge CASP (Senior et al. 2020). In such examples, some see a paradigm

shift towards theory-free science that “lets the data speak” (Kitchin 2014, Anderson 2008, Mayer-Schönberger and

Cukier 2013, Spinney 2022). Indeed, prediction is one of the core aims of science (Luk 2017, Douglas 2009), but

so are, as philosophers of science and statisticians emphasize, explanation and knowledge generation (Salmon 1979,

Longino 2018, Shmueli et al. 2010). Focusing exclusively on prediction may therefore represent a historical step back

(Toulmin 1961, Pearl 2018).

What hinders scientists from using ML models to gain real-world insights is model complexity and an unclear con-

nection between model and phenomenon — the so-called opacity problem (Boge 2022, Sullivan 2020). Interpretable

machine learning (IML, also called XAI, for eXplainable artificial intelligence) aims to solve the opacity problem by

analyzing individual model elements or inspecting specific model properties (Molnar 2020). Different stakeholders

with different goals hold diverse expectations of IML (Zednik 2021), including scientists (Roscher et al. 2020), ML

engineers (Bhatt et al. 2020), regulatory bodies (Wachter et al. 2017), and laypeople (Arrieta et al. 2020). Due to this

plurality, IML has been criticized for lacking a proper definition (Lipton 2018).

Nevertheless, scientists increasingly use IML for inferring which features are predictive of e.g. crop yield (Shah-

hosseini et al. 2020, Zhang et al. 2019), personality traits (Stachl et al. 2020), or seasonal precipitation (Gibson et al.

2021). Although researchers are aware that their IML analyses remain just model descriptions, it is often implied

that the explanations, associations, or effects found also extend to the corresponding real-world properties. Unfortu-

nately, drawing inferences with IML can currently be epistemically problematic because the interpretation methods

are not designed for that purpose (Molnar et al. 2022). In particular, the difference between model-only versus phe-

nomenon explanations is often unclear (Chen et al. 2020, Hooker et al. 2021), and a theory to quantify the uncertainty

of interpretations is lacking (Molnar et al. 2020a, Watson 2022).

Contributions. In this paper, we present an account of scientific inference with IML inspired by ideas from phi-

losophy of science and statistical inference. While we focus on supervised learning on identically and independently

distributed (i.i.d.) data, we briefly discuss other learning scenarios in Section 5.3. Our key contributions are: 1.

We argue that ML cannot profit from the traditional approach to scientific inference via model elements because its

parameters do not represent phenomenon properties (Section 3). While current IML methods aim to restore represen-

tationality of the model as a whole, they conflate the model audit and scientific inference goals of interpretation. 2.
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We identify the properties that IML methods need to fulfill to provide access to aspects of the conditional probability

distribution P(Y | X), where X describes predictor variables and Y the target (Section 4). We call methods that are suit-

able for inference IML property descriptors. We provide a guide to build such descriptors starting with a phenomenon

question about X and Y and evaluating whether it can be addressed, followed by an answer to this question with ML

models and finite data, and conclude with the quantification of epistemic uncertainty. We illustrate our approach using

conditional partial dependence plots (cPDP) as an example IML descriptor.

Terminology. For the purposes of our discussion below, a phenomenon is a real-world process whose aspects of

interest can be described by random variables. Observations of the phenomenon are drawn from the unknown joint

distribution induced by the random variables and form the dataset or just data. A ML model is a mathematical model

optimized with the aid of a learning algorithm applied on the collected data in order to accurately predict unknown

or withheld phenomenon observations, i.e. to generalize beyond the initial data. Here we focus on the supervised

learning setting. Finally, scientific inference is the process of rationally deriving conclusions about a phenomenon

from data (via ML, or other types of models). We employ inference to imply investigating unobserved variables and

parameters similar to statistical inference, i.e. in a more general sense than is common in some of the ML literature,

where it is used exclusively as a synonym for prediction. The knowledge gained by scientific inference can build the

basis of scientific explanations. These brief conceptual remarks are meant to reduce ambiguity in our usage: we lay

no claim as to their universality.

2 Related Work

Whether and how ML models, and specifically IML, can help obtain knowledge about the world is a debated topic

among philosophers of science, statisticians, and also the IML community.

Philosophy of Science. It has been argued that ML models are only suitable for prediction because their parameters

are instrumental and lack meaning (Bailer-Jones and Bailer-Jones 2002, Bokulich 2011). On the other hand, Sullivan

(2020) argues that nothing prevents us from gaining real-world knowledge with ML models as long as the link uncer-

tainty — the connection between the phenomenon and the model — can be assessed. Cichy and Kaiser (2019) and

Zednik and Boelsen (2022) claim that IML can help in learning about the real world, but they remain vague about

how model and phenomenon are connected. Like Watson (2022), we explain that IML methods relying on conditional

sampling are faithful to the phenomenon. However, while he assigns IML inferences to the causal phenomenon level,

we clarify that, without additional assumptions, such inferences only reveal associational relationships (Räz 2022).

Our work makes precise that ML models can be described as epistemic representations of a certain phenomenon that

allow us to perform valid inferences (Contessa 2007) via interpretations.
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Statistical Modeling and Machine Learning. Breiman et al. (2001) describes ML (algorithmic modeling) and

statistics (data modeling) as two approaches for reaching conclusions from data. On a medical example he shows that

post-hoc analysis of ML models can allow more correct inferences about the underlying phenomenon than standard,

inherently interpretable data models. Our paper gives an epistemic foundation for such post-hoc analyses. Shmueli

et al. (2010) distinguishes statistics and ML by their goals — prediction (ML) and explanation (statistics). Like Hooker

and Mentch (2021), we argue against such a clear distinction and offer steps to integrate the two fields.

This paper builds on ideas from Molnar et al. (2021), where they introduce ground-truth and confidence intervals

for partial dependence plots (PDP) and permutation feature importance (PFI) of arbitrary ML models. Our work

generalizes these ideas to arbitrary IML methods and draws the connection to the underlying phenomenon.

Interpretable Machine Learning. IML as a field has been widely criticized for being ill-defined, mixing different

goals (e.g. transparency and causality), conflating several notions (e.g. simulatability and decomposability), and

lacking a proper measure of success (Doshi-Velez and Kim 2017, Lipton 2018). Some even argued against the central

IML leitmotif of analyzing trained ML models post hoc in order to explain them (Rudin 2019). In this paper, we show

that, if we focus on interpretations for scientific inference, a clear foundation including a proper theory of success can

be provided and these criticisms can be partially addressed.

3 Scientific Inference and Elementwise Representationality

The goal of this paper is to analyze and describe how we can conduct scientific inference on ML models using IML

methods. This section explains why inference with ML models cannot be done as in traditional scientific models and

why current IML methods do not generally address the problem. The next section describes our solution and illustrates

it with a complete example from question formulation to uncertainty quantification.

3.1 ML Models are not Elementwise Representational

In scientific modeling, there is a paradigm that many models implicitly follow — we call it the paradigm of elementwise

representationality.

Definition. A model is elementwise representational (ER) if all model elements (variables, relations, and parameters)

represent an element in the phenomenon (components, dependencies, properties).

Figure 1 depicts the relationship between ER models and the phenomenon:1 variables describe phenomenon com-

ponents; mathematical relations between variables describe structural, causal or associational dependencies between

components; parameters specify the mathematical relations and describe properties of the component dependencies.

The upward arrows describe encoding i.e. the translation of a phenomenon observation to a model configuration; The

1See Appendix A for the philosophical origins of our perspective.
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downward arrows describe decoding i.e. the translation of knowledge about the model into knowledge about the phe-

nomenon. ER is obtained through model construction; ER models are usually “hand-crafted” based on background

Phenomenon 

Parameters
☾

Properties

☾ ☾

Components 

Variables Relations
☾ ☾ ☾

ER Model

Dependencies

Earth ⊕  
Moon ☾

Acceleration by force
Gravitational attraction 

Newtonian gravitational  
dynamics of two point masses 

Celestial motion  
of Earth and Moon 

Masses,  
gravitational constant

☾ ☾ ☾ ☾

encoding decoding

Figure 1: Model and phenomenon sustain an encoding-decoding relationship. The main elements of a traditional,
ER model, are shown in encoding-decoding correspondence to the phenomenon elements they represent (Stachowiak
1973). Phenomenon and model elements are illustrated with a simple example of two bodies in gravitational interaction
and its classical, Newtonian mechanistic description.

knowledge and an underlying scientific theory. Variables are selected carefully and sparsely during model construc-

tion, and the relations are constrained to a relation class with few free parameters. When ER models need to account

for an additional phenomenon aspect, they are gradually extended so that large parts of the “old” model are preserved

in the more expressive “new” model. ER even eases this model extension process because model interventions are

intelligible on the level of model elements. Usually, ER is explicitly enforced in modeling: if there is a phenomenon

element devoid of meaning, researchers either try to interpret it or exclude it from the model.

ER is so remarkable because it gives models capabilities that go beyond prediction. ER simplifies the step of

decoding i.e. translating model knowledge into phenomenon knowledge. Scientists can analyze model elements and

draw immediate conclusions about the represented phenomenon element (Frigg and Nguyen 2021). However, only

those aspects of the phenomenon that have a model counterpart can be analyzed with this approach. Fortunately, as

described above, ER models can be extended to account for further relevant aspects identified by the scientist.

Running example:2 Linear Model. Suppose a researcher, we call her Laura, wants to study what attributes influence

students’ grades in mathematics. Specifically, she wants to research how language skills and math skills are associated.

She uses data from Cortez and Silva (2008), who collected a dataset3, encompassing 32 student attributes in Portuguese

schools including math/Portuguese grades, age, parents’ education, etc.

Laura starts with a classical ER model — a linear model with one predictor and one target variable. She selects

the student grade in Portuguese Xp and in mathematics Y as her proxy variables for students language and math

skills respectively.4 Based on her background knowledge, she assumes that the true relationship can be described as

Y = β0 + β1Xp + ε with β0, β1 ∈ R and an error ε ∼ N(µ, σ2). Laura centers Xp by the average student grade in

2Since the physical model from Figure 1 is a mechanistic causal model (Schölkopf et al. 2021), we switch henceforth to an
illustrative associational model from the social sciences that compares more fairly with current associational ML models. We
strongly simplify things in this example and do not claim that it reflects social science methodology or that ML is even required.

3see Appendix B for more details.
4In the Portuguese grading scheme, the range is 0-20, where 0 is the worst and 20 the best grade.
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Portuguese and obtains the prediction model that minimizes the mean-squared-error (MSE),

m̂LIN(xp) = 10.46 + 0.77xp.

Laura’s model is ER: she can interpret β̂0 = 10.46 as the predicted math grade for an average Portuguese student (if

xp = 12.55)5 and β̂1 = 0.77 as the strength of association between the Portuguese grade and the math grade.

Laura can analyze the model to draw scientific inferences about the underlying phenomenon, for example, with

95% confidence intervals6 for her estimates β̂0 and β̂1 with [10.05; 10.88] and [0.63; 0.91] respectively. The inference

she draws is on these parameters; Laura can only draw conclusions about the phenomenon if the model is ER and

highly predictive. Laura may conclude from β̂1 that language skills and math skills are strongly and positively related.

To reach a more expressive and predictively accurate model, Laura can also extend the model to include additional

features, relations, or interaction terms. As long as she preserves ER, she can directly draw scientific inferences

from analyzing model elements. Indeed, these inferences are only as valid as the modeling assumptions (e.g. target

normality, homoscedasticity, or linearity).

ML Models are generally not ER. ER makes model elements interpretable and allows to reason about the effects

of model or even real-world interventions; as such, ER models suit our image of science as an endeavor aimed at un-

derstanding. However, as mentioned above, for ER we usually require background knowledge on which components

are relevant, and we need to severely restrict the class of relations that can be considered for the given phenomenon.

These difficulties might lead scientists to either limit their investigations to phenomena that are already well studied or,

as Breiman et al. (2001) argued, to develop overly simple models for complex phenomena and possibly draw wrong

conclusions.

ML models excel for complex problems with an unbounded number of components that display ambiguous and

entangled relationships i.e. ML models are highly expressive (Gühring et al. 2020). ML models are subject-domain

independent (Bailer-Jones and Bailer-Jones 2002), this means that we do not necessarily need subject-domain back-

ground knowledge in modeling. Instead, ML modeling only requires specifying a broad model class and a set of

hyperparameters. The choice of these hyperparameters is data-domain specific i.e. they reflect inductive biases that

allow for efficient learning.

The gain in generality and convenience with ML comes at a price — ML models are generally not ER. As also

argued in Boge (2022), Bokulich (2011), Bailer-Jones and Bailer-Jones (2002), ML models (e.g. artificial neural net-

works) contain model elements such as weights, activation functions, or network structure that have no corresponding

phenomenon counterpart.

5Centering features is common in linear regression to make the intercept term interpretable.
6i.e., intervals [a, b] such that, if the model assumptions hold, a ‘true’ parameter β is found inside 95% of all observational

samples, P(a<β<b) = 0.95.
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Running example: Artificial Neural Network (ANN). Suppose Laura is dissatisfied with her linear model and fits a

dense three-layer neural network to predict math grades using all available features.7 She reduces the test-set MSE

from 16.0 in the linear-one-variable model case to 8.9. A formal description of the model is given by:

m̂ANN(x) = σ3(W3σ2(W2σ1(W1x + b1) + b2) + b3)

where model elements are the values of the weight matrices W1, W2, W3 and bias vectors b1, b2, b3, and the activation

functions σ1, σ2, σ3. Unlike in the linear model above, it is highly unclear what these parameters correspond to in

our data or phenomenon. While the input vector x is still representational, the weights, activation functions, or three-

layer architecture are very hard or even impossible to interpret: A high value of weight W (3,2)
1 might have a positive,

neutral, or negative effect on the target, dependent on all other model elements; the activation function only reflects the

currently popular heuristics in model training; and the particular three-layer architecture is a result of model selection

based on predictive performance and rules of thumb, but with little phenomenon-based rationale.

3.2 Scientific Inference in Light of Current IML

We have argued so far that:

i) If models are ER, they allow for scientific inference.

ii) ML models are generally not ER.

How can we still do scientific inference with ML models? We discuss two strategies to enable scientific inference

with ML: We argue that the first strategy, namely restoring ER, fails because ML models are designed to represent

in a distributed manner; the second strategy, embracing holistic representationality, is highly promising but current

attempts conflate different goals of model analysis. This discussion sets the stage for the next section, where we show

how a holistic account of representationality can enable scientific inference.

Restore ER. One strategy towards scientific inference with ML is to challenge Proposition ii) and show that ML

models are ER too. Researchers in this camp argue that individual elements in ML have a natural phenomenon

counterpart, but this counterpart only becomes evident when these model elements are extensively scrutinized.8 This

would be surprising: ER is not enforced in state-of-the-art techniques and, even worse, some methods such as training

with dropout purposefully discourage ER in order to gain robustness (Srivastava et al. 2014); ML models like ANNs

are designed for distributed representation (Buckner and Garson 2019, McClelland et al. 1987).

It has been claimed that model elements represent high-level constructs constituted from low-level phenomenon

7We chose a neural net to make our argument. For training the neural network, Laura splits data into training and test, uses
ReLu activation functions and minimizes the MSE loss via gradient descent with an adaptive learning rate.

8The underlying epistemological reasoning is that human representations are near-optimal and will be eventually rediscovered
by ML algorithms.
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components that are often called concepts (Buckner 2018, Olah et al. 2020).9 If this is the case, model elements or

aggregates of such elements can be reconnected to the phenomenon; ER would be restored by the representations

of coarse-grained phenomenon components. Research on neural networks supports that some model elements are

associated with concepts (Mu and Andreas 2020, Voss et al. 2021, Kim et al. 2018, Olah et al. 2017), however,

often these elements are neither the only associated elements nor exclusively associated with one concept as shown

in Figure 2 (Donnelly and Roegiest 2019, Bau et al. 2017, Olah et al. 2020). Problematically, intervening on these

model elements generally does not have the expected effect on the prediction — the elements do not share the causal

role of the “represented” concepts, even in prediction (Gale et al. 2020, Donnelly and Roegiest 2019). It is therefore

questionable in what sense they still represent.10 Moreover, this line of research predominantly focuses on images,

where nested concepts are arguably easier to identify for humans.

Figure 2: ML models are generally not ER. Three input images that independently trigger a single model element
(unit 55 in layer mixed4e, Olah et al. (2017; 2020)). A single unit in a neural net may respond to very different
“concepts”, e.g. heads of cats (left image), car bodies (center), or bees (right), suggesting that units generally do not
represent disentangled concepts (Mu and Andreas 2020, Nguyen et al. 2016).

Research on the representational correlates of model elements seems indeed fascinating. However, current ML models

that do not enforce ER will rely on distributed representations and cannot be reduced to logical concept machines.

The associative connection between model elements and phenomenon concepts should not be confused with their

equivalence. Analyzing single model elements will therefore be a hopeless enterprise.

Embrace Holistic Representationality. An alternative route to scientific inference is to accept that ER is well-

suited for scientific inference and that ML models are not ER but reject that ER is the only approach for scientific

inference. To choose this route, one must offer an alternative path for drawing scientific inference with ML models

that goes beyond the analysis of model elements.

Our approach is to regard the model as representational of phenomenon aspects only as a whole — we call this

holistic representationality (HR). HR implicitly underlies large parts of the current research program in IML: Model-

agnostic methods, in particular, analyze the entire ML model simply as an input-output mapping (Scholbeck et al.

9The idea is that similar to the hierarchical structure of components in nature, where lower level components such as atoms
combine to form higher level entities such as molecules, cells, and organisms; in deep nets, hierarchies evolve from pixels to shapes
to objects.

10Though note generative adversarial networks as an exception; here, interventions on model elements have been linked to
interventions on concepts in the generated images (Bau et al. 2018).
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2019); In the same spirit, many model-specific IML methods like gradient or path-based feature attribution treat ML

models as mappings with additional useful properties such as differentiability (Alqaraawi et al. 2020).

Model-agnostic and model-specific methods share the idea that relevant model properties such as the effects or

importances of variables can be derived by analyzing the model just as a functional mapping. Initial definitions

of, for example, global feature effects (Friedman et al. 1991) and feature importance (Breiman 2001) or local feature

contribution (Štrumbelj and Kononenko 2014) and model behavior (Ribeiro et al. 2016) have been presented. However,

many researchers have pointed out that these methods lead to counterintuitive results for dependent or interacting

features and offered alternative definitions (Apley and Zhu 2020, Strobl et al. 2008, Molnar et al. 2020b, Goldstein

et al. 2015, König et al. 2021b, Janzing et al. 2020, Slack et al. 2020, Alqaraawi et al. 2020).

We believe that these controversies stem from a lack of clarity about the goal of model analysis. Are we interested

in model properties to learn about the model (model audit) or do we want to use these model properties as a gateway

to learn about the underlying phenomenon (scientific inference)? These two goals must not be conflated.

The auditor examines model properties e.g. for debugging, to check if the model satisfies legal or ethical norms, or

to improve her understanding of the model by intervening on it (Raji et al. 2020). Auditors even take interest in model

properties that have no corresponding phenomenon counterpart such as single model elements or the model behavior

for unrealistic feature combinations. The scientist who wants to draw inferences, on the other hand, wants to learn

about model properties that can be interpreted in terms of the phenomenon.

Scientific inference and model audit should be viewed as two different but interacting goals. In each of them, we

take different stances toward the ML model: The auditor adopts a skeptical attitude of the model, she has ground-truth

information or normative standards to check the model against; the scientist adopts a trusting attitude, she wants to

learn from the model. Both cases describe a knowledge asymmetry (Gobet 2018, Rosser et al. 2008) but in opposite

directions. Auditing the model is an indispensable step for scientists to gain enough trust in it. Only after several

rounds of auditing and improvement should the researcher rely on the model to draw scientific conclusions.

4 Scientific Inference with IML Property Descriptors

We just argued that ML models are generally not ER and therefore do not allow for scientific inference in the standard

way. HR offers a viable alternative, but currently different goals of model analysis are conflated. In this section, we

show that a HR perspective enables scientific inference using IML methods. Particularly, we show that certain IML

methods — we call them IML property descriptors — can represent phenomenon properties. Figure 3 describes our

conceptual move: instead of matching phenomenon properties with model parameters as in ER models, we match

them with external descriptions of the whole model.

Idea. Instead of first thinking about the model and its properties (the model audit approach), we propose to start with

the phenomenon and a scientific question about it. IML methods for inference should answer, or at least help answer,

a scientific question concerning the phenomenon. The crucial step in our framework is to establish a link between

9
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Figure 3: IML property descriptions distill phenomenon properties from HR models. Instead of explicitly en-
coding phenomenon properties as parameters like for ER models, HR models (e.g. ML models) encode phenomenon
properties in the whole model. We propose that these encoded properties can be read out with IML property descrip-
tions external to the model. In this way, IML offers an indirect route to scientific inferences through model analysis.

the phenomenon and the model; we propose to draw this link using statistical decision theory, which shows what

optimal ML models can holistically represent. Clearly, an approximate ML model will not provide an answer if even

the optimal model cannot. However, if a question can in principle be answered with the optimal model, an ML model

trained on data can approximate the answer in practice. The problem then becomes to quantify the approximation

error.

4.1 ML Representationality and Optimal Predictors

Which aspects of a phenomenon ML models can represent even under ideal circumstances depends on the data, the

learning paradigm, and the loss function. For identically and independently distributed (i.i.d.) data used for supervised

learning, optimal predictors from statistical decision theory provide an answer (Hastie et al. 2009, p18-22). Besides the

advanced theory available in this setting, supervised learning on i.i.d. data is the most popular ML setup in practical

applications. We briefly discuss representationality and scientific inference in the case of unsupervised and causal

learning in Section 5.3.

Basic Notation. We assume that the random variables X1, . . . , Xn and Y fully characterize the phenomenon. We

write the joint feature vector as X B (X1, . . . , Xn) with X B Range(X) and Y B Range(Y). X and Y jointly describe

the phenomenon.

Optimal Predictors. An optimal predictor m can predict realizations of the target Y from realizations of X with

minimal expected prediction error i.e. m = arg min
m̂∈M

EPEY|X(m̂), with EPEY|X(m̂) B
∫

Y
L(Y, m̂(X)) PY|X(y|x) dy, where
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L describes a loss function L(Y,m(X)) : X × Y → R+ and m̂ a model in the setM of mappings from X to Y. Table 1

shows the optimal predictors for standard loss functions.

Problem Loss L(Y, m̂(X)) Optimal Predictor m

Regression Mean Squared Error (Y − m̂(X))2 EY|X[Y | X]

Mean Absolute Error |Y − m̂(X)| Median(Y | X)

Classification 0-1 Loss 0 if m̂(X) = Y, else 1 arg max
y∈Y

P(Y=y | X)

KL divergence
∑

r∈Y
PY(r) log

(
PY (r)
Pm̂(X)(r)

)
11 P(Y | X)

Table 1: The optimal predictors for standard loss functions can be derived from P(Y | X).

Supervised learning. Supervised learning seeks to find an optimal predictor m by using a learning algorithm12

I:∆→M that selects a a model m̂ from a setM with the aid of a datasetD B (
(x(1), y(1)), . . . , (x(k), y(k))

)
withD in the

set of datasets ∆ drawn i.i.d. from the joint distribution, i.e. (x(i), y(i)) ∼ (X,Y). Instead of the EPE itself, the learning

algorithm minimizes the empirical risk on the test data (i.e. on data not used to train m̂), which is a finite-data estimate

of the EPE.

4.2 IML Property Descriptors

We have just argued that ML models, when considered as a whole, approximate phenomenon aspects that can be

derived from the conditional distribution P(Y | X). IML property descriptors can help to investigate these aspects by

describing their relevant properties.

Five Steps Towards IML Methods for Inference. Our proposal consists of the five steps in Figure 4, which we

now discuss in detail. For each of the five steps, we provide an inference example based on the prediction of student

grades in mathematics. In what follows, we assume that we have a supervised learning ML model m̂ that approximates

a phenomenon aspect described by the optimal predictor m.

Step 1) Formalize Scientific Question. Science starts by formulating a question. To address it with ML, this

question has to be formalized. Exemplary questions that can already be addressed with IML methods following the

scheme below are discussed in Section 4.3. Note that IML for scientific inference only helps answer questions that

concern the association between X and Y.
11This describes the forward KL divergence KL(Y||m̂(X)) for discrete Y and m̂(X), which differs from the backward KL diver-

gence KL(m̂(X)||Y).
12The domain of I is only completely specified when the parameters that define the learning procedure and the search space of

the algorithm (called hyperparameters in the context of m̂) are fixed. For our discussion, the reader may assume hyperparameters
to have been set a priori by a human or an automated ML algorithm (Hutter et al. 2019).
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3.Design
IML Property
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IML Property

Descriptor 

5.Quantify
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can IML help? optimal model not
available? finite data uncertain results

Figure 4: An epistemic foundation for scientific inference with IML. Steps 1 and 2 clarify what kinds of scientific
inferences we can draw with IML. Steps 3, 4, and 5 show how to draw such inferences and provide estimates of their
precision.

Formally. We denote the formalized question by Q.

Example. Suppose Laura wants to find out how students’ language skills are related to their math skills. She approaches

this problem by asking how students’ expected math grades are related to their Portuguese grades. Laura formalizes

this question as the conditional expectation i.e. Q = EY|Xp [Y | Xp], where Y, Xp respectively stand for the math and

Portuguese grade variable.13

Step 2) Establish Question Identifiability. Many scientific questions cannot be addressed using an ML model.

ML models can only help answer questions that could theoretically be addressed with the optimal predictor. We call a

question that the optimal predictor can help answer together with additional probabilistic knowledge (e.g. aspects of

P(X,Y)) identifiable. A constructive strategy to establish identifiability relative to some probabilistic knowledge is to

think of the transformations, using solely the probabilistic knowledge, that take the optimal predictor into the question

Q. Of course, it is desirable to keep to a minimum the amount of probabilistic knowledge required to identify the

question.

Formally. The optimal predictor is denoted by m. We say that a question is identifiable relative to probabilistic

knowledge K if we can compute Q from m and K.

Example. Assume that Laura has trained her neural network, which, unlike the simple linear model presented

above, takes into account all available features X, to minimize the MSE loss, i.e. m(X) = EY|X[Y | X]. Is Laura’s

question identifiable? For specific values of X, the optimal predictor allows to compute the expected value of Y i.e.

m(x) = EY|X[Y | X=x]. The only difference to Q is that m takes into account features besides the Portuguese grade,

that we denote X−p. If we have access to the conditional distribution P(X−p | Xp) (required14 probabilistic knowledge

13This conditional expectation is the best possible point estimate of the math grade under the MSE loss, given just the Portuguese
grades.

14Usually we do not have access to probabilistic knowledge K. We discuss this in more detail in Step 4.
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K), we can integrate these other features out by taking the expected value

Q B EY|Xp [Y | Xp]

= EX−p |Xp [EY|X[Y | X] | Xp] (by the tower rule, see App. C)

= EX−p |Xp [m(X) | Xp].

Thus, Q is identifiable via m given K = P(Xp | X−p).

Step 3) Design IML Property Descriptor. It is not enough to identify a question. We need a way to estimate an

answer for ML models — we need IML property descriptors. An IML property descriptor describes a continuous

function that applies the transformation from the question identification step above to a given ML model and outputs

an element of the space Q. Thus, given the optimal predictor, an IML property descriptor outputs an answer to Q.

Continuity guarantees that if our ML model is close to the optimal model, our answer is approximately correct. We

call the application of a property descriptor to a specific ML model, gK(m̂), a model property description.

Formally. An IML property descriptor is a continuous function gK (w.r.t. metrics dM and dQ)15 that identifies Q using

probabilistic knowledge K:

gK :M→ Q with gK(m) = Q.

The output space Q remains unspecified to account for the variety of scientific questions; Q could denote a set of real

numbers, vectors, functions, probability distributions, etc.

Example. The property descriptor describes the transformations that identify Q, i.e.

gK(m̂)(xp) B EX−p |Xp [m̂(X) | Xp=xp]. (4.1)

This is indeed a property descriptor because conditional expectation is continuous onM, and Q is identifiable given

K = P(X−p | Xp). Note that Equation (4.1) describes the well-known conditional partial dependence plot, or cPDP,

also known as M-plot (Molnar 2020, Apley and Zhu 2020).

Step 4) Estimate IML Property Descriptor. Often we lack access to relevant probabilistic knowledge K. Instead,

we have a finite amount of data on which we can evaluate our ML mapping, which we call the evaluation data. It

may bundle up our training and test data D (see Section 4.1), as well as additionally available (unlabeled) data, and

artificially generated data. The IML property description estimator describes a way to estimate property descriptions

with access only to the ML model plus the evaluation data.

15The function dM is a metric on the function space M, dM(m1,m2) B
∫
X

L(m1(x),m2(x))PX(x) dx for m1,m2 ∈ M, while dQ

describes a metric appropriate for the space Q.

13



Formally. We denote the evaluation dataset by D∗ and the random process that generates it by D∗. We call ĝD∗ :

M→ Q the IML property description estimator if it is an unbiased estimator of gK i.e.

ED∗ [ĝD∗ (m̂)] = gK(m̂) for all m̂ ∈ M.

Example. Laura’s evaluation dataset D∗ is her initial training and test dataset D augmented by artificial instances

created by the following manipulation: Laura makes six copies of the data, and jitters the Portuguese grade by

1,−1, 2,−2, 3 or −3 respectively. This augmentation strategy reflects how Laura understands the Portuguese grade

as noisy based on her background knowledge of how much student performance varies daily and teachers grade in-

consistently. Let the students with (jittered) Portuguese grade i be D∗|xp=i B (x ∈ D∗ | xp = i), then, we can define the

IML property description estimator at i as the conditional mean (unbiased estimator of the conditional expectation):

ĝD∗ (m̂)(i) B
1

|D∗|xp=i|
∑

x∈D∗|xp=i

m̂(x) (4.2)

The estimated answer to Laura’s question is plotted in Figure 5. The plot on the left suggests that math grade is

only strongly dependent on Portuguese grades in the interval 8 − 17. However, as we show in the next step, we must

also take into account that we have very sparse data in some regions (e.g. very few students scored below 8) before

confirming this first impression.
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Figure 5: Left Plot: Estimate of EY|Xp [Y | Xp] via Equation (4.2). Right Plot: Histogram of grades in Portuguese.

Step 5) Quantify Uncertainty. We have shown how we can estimate Q using an approximate ML model paired

with a suitable evaluation dataset. But how good is our estimate? Two steps involve approximations:

1. Applying the IML property descriptor to the ML model m̂ instead of the optimal model m; we call the

resulting error model error

ME[m̂] = dQ
(
gK(m), gK(m̂)

)
.
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The model error depends on the ML model m̂ we obtained from the learning algorithm trained on the given

dataset.

2. Applying the IML property description estimator on our evaluation datasetD∗ instead of computing the true

model property description based on K directly; we call this error estimation error

EE[D∗] = dQ
(
gK(m̂), ĝD∗ (m̂)

)
.

The estimation error depends on the evaluation datasetD∗.

In theory, the model error and the estimation error can be separated. In practice, however, they are statistically de-

pendent because the training and the evaluation data overlap. Generally, neither the model error nor the estimation

error can be computed perfectly; this would require access to the optimal model m and infinitely many data instances.

Nevertheless, we can quantify in expectation how large the two errors are.

An intuitive approach to quantifying the expected errors is to decompose them into bias and variance contributions.

The two decompositions below quantify the range in which the true phenomenon property descriptions are most likely

to lie.

Formally. For the bias-variance decomposition, we assume the metric dQ to be the squared error.16 Considering the

dataset that we entered into the learning algorithm as a random variable D, we can decompose the expected ME[m̂]

error as follows

ED[ME[m̂]] = (gK(m) − ED[gK(m̂)])2
︸                       ︷︷                       ︸

Bias2

+ VD[gK(m̂)]︸       ︷︷       ︸
Variance

where m̂ B I(D) is the output of a machine learning algorithm I for datasetD (Section 4.1). Considering the evaluation

data as a random variable D∗, we can decompose the expected EED∗ error as follows

ED∗ [EE[D∗]] = (gK(m̂) − ED∗ [ĝD∗ (m̂)])2
︸                         ︷︷                         ︸

Bias2

+ VD∗ [ĝD∗ (m̂)]︸         ︷︷         ︸
Variance

= VD∗ [ĝD∗ (m̂)].

The bias term vanishes because the property description estimator is by definition unbiased w.r.t. the IML property

descriptor.

Example. Laura obtains different cPDPs (Figure 5) for different models with similar performance, as well as for

different selections of evaluation data, how much can she then rely on these cPDPs?

The estimates of the variances of the cPDP by Molnar et al. (2021) allow to calculate pointwise confidence intervals

(Figure 6). We can define a confidence interval that only incorporates the estimation uncertainty by

CIEE[D∗] B
[
ĝD∗ (m̂)(i) ± t1− α

2

√
V̂D∗ [ĝD∗ (m̂)(i)]

]

16A bias-variance decomposition is also possible for other loss functions, including the 0-1 loss (Domingos 2000).
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and a confidence interval that incorporates both model and estimation uncertainty by

CIME[m̂]∧EE[D∗] B
[
ĝD∗ (m̂)(i) ± t1− α

2

√
V̂D,D∗ [ĝD∗ (m̂)(i)]

]
.

For the combined confidence interval we require a strong and unfortunately not testable assumption to be satisfied —

unbiasedness of the ML algorithm. Unbiasedness implies that, in expectation over training sets, the ML algorithm

learns the optimal model, i.e. m = ED[m̂].17

Figure 6 shows that for students with Portuguese grades between 8 and 17, Laura can be very confident in her

model and the relationship it identifies between math and Portuguese grade.18 However, both for Portuguese grades

below 8 or above 17, the true value might be far off from our estimated value using a given model, as we can see from

the width of the confidence intervals. For these grade ranges, gathering more data may reduce Laura’s uncertainty.

0 2 4 6 8 10 12 14 16 18 20
Portuguese grade

0

2

4

6

8

10

12

14

16

18

20

M
at

h 
gr

ad
e

0 2 4 6 8 10 12 14 16 18 20
Portuguese grade

0

2

4

6

8

10

12

14

16

18

20

M
at

h 
gr

ad
e

Figure 6: Uncertainty evaluation of an IML property description. Left: cPDP and its estimation error due to
Monte-Carlo integration. Right: cPDP with both estimation and model error. Confidence bands in dashed lines cover
the true expected math grade in 95% of all cases. These plots jointly suggest that most of the uncertainty is due to the
model error.

Summary. Figure 7 gives an overview of all functions and spaces involved in IML for scientific inference. We

started from a phenomenon and formalized a scientific question Q about it. Using a learning algorithm I on dataset

D from the phenomenon, we learned an ML model m̂ that approximates the optimal model m. We then set out to

answer Q from m̂. We defined a property descriptor gK , that is, a function that allows to compute Q from m given

K, respectively approximates Q from m̂ given K. Because gK requires probabilistic knowledge about P(X,Y), we

introduced a property description estimator ĝD∗ , a function estimating Q solely from finite data, the evaluation setD∗.
Finally, we showed how the expected error of our estimation steps can be quantified with confidence intervals CIME[m̂]

and CIEE[D∗].

17Since unbiasedness is tied to a specific context, there is no conflict with the no-free-lunch theorems (Sterkenburg and Grünwald
2021).

18We used resampling techniques to estimate the two variances. In real-data settings it is generally not possible to always sample
new data for the model training and the evaluation. Although resampling may result in an underestimation of the variance, our goal
here is simply to illustrate the process of quantifying uncertainty for a concrete IML method.
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Descriptions

Figure 7: From datasets to inferences via ML models. Mappings are represented by arrows and sets are repre-
sented by filled circles, with confidence regions in green shades. Practical IML descriptions ĝD? (m̂) are approximate,
uncertainty-aware answers to a question Q that are built from a model m̂ fit onD and an evaluation datasetD∗.

4.3 Property Descriptors and Current IML Methods

Many questions that can be answered based on the conditional probability distribution P(Y | X) are widely relevant.

The goal of practical IML research for inference should be to define relevant descriptors and provide accessible im-

plementations of these descriptors, including quantification of uncertainty. To find out which specific questions are

relevant to scientists, and therefore what descriptors are necessary, IML researchers, statisticians and scientists must

closely interact.

In Table 2 we present a few examples of elementary inference questions that can in principle be addressed by ex-

isting IML methods i.e. these methods can operate as property descriptors already. We distinguish between global and

local phenomenon questions: global questions concern general associations, local questions concern associations for

a specific instance. The last column highlights current IML methods that provide approximate answers, albeit often

without uncertainty quantification. Note how we ultimately require conditional versions of existing marginal IML

methods, which suggests that marginal sampling, which generates unrealistic instances, is inadequate in scientific

inference.

5 Discussion

ER models enable straightforward scientific inference because their elements represent something about the underlying

phenomenon. While ML models are generally not ER, IML can offer an indirect route to scientific inference, provided

model properties have a corresponding phenomenon counterpart. We have shown how phenomenon representation can

be achieved through optimal predictors and described how to practically construct IML property descriptors following

five-steps: the first two steps clarify what questions we can address with IML, step three and four show how to answer

them with ML models and finite data, and step five allows to evaluate how certain the answers are. We pointed out

19Only defined on phenomenon if P(Xp = p, X−p = x−p) > 0.
20Only with the right similarity metric that accounts for the realistic constraint.
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Global
Question Formalization IML method

Effect: What is the best estimate of Y if we only know
Xp?

mXp (Xp) cPDP
(Apley and Zhu 2020)

Conditional Contribution: How much worse can Y
be predicted from X if we hadn’t known Xp?

EPEX,Y(mX(X)) − EPEX−p,Y(mX−p (X−p)) cPFI
(Fisher et al. 2019)

Fair Contribution: What is the fair share of feature
Xp in the prediction of Y?

1
n

∑
S⊆{1,...,n}\ j

(
n−1
|S |

)−1(
EPEXS∪{ j} ,Y(mXS∪{ j} (XS∪{ j}))

−EPEXS ,Y(mXS (XS ))
)

SAGE
(Covert et al. 2020)

Relevant Value: Under which realistic conditions can
we expect to observe relevant value yrel?

arg min
x∈X∧P(X=x)>0

dY(mX(x), yrel) no method yet

Local
Effect: How does the best estimate of Y change relative
to Xp, knowing that X−p = x−p?

mX(Xp, x−p) ICE-curve
(Goldstein et al. 2015)

19

Conditional Contribution: How much worse can Y
be predicted from X = x if we hadn’t known Xp?

L(y,mX(x)) − L(y,mX−p (x−p)) no method yet

Fair Contribution: What is the fair share of feature
Xp in the prediction of Y if X = x?

1
n

∑
S⊆{1,...,n}\ j

(
n−1
|S |

)−1(
mXS∪{ j} (xS , x j) − mXS (xS )

) conditional
Shapley Values

(Aas et al. 2021)

Relevant Value: Under which realistic conditions
similar to X = x can we expect to observe relevant value
yrel?

arg min
x′∈X∧P(X=x′)>0

dY(mX(x′), yrel) + λ dX(x, x′) Counterfactuals
(Dandl et al. 2020)

20

Table 2: Global and local formalized questions and matching IML property descriptors. Note that questions are
relative to a specific loss function L; for a set S ⊆ {1, . . . , n}, the term mXS describes the optimal predictor of Y w.r.t.
loss function L and random variable(s) Xi with i ∈ S . dX and dY describe suitable metrics on X and Y respectively.

that some current IML methods can already be seen as IML property descriptors.

Is the lack of elementwise representationality specific to ML models? No, ML shows only an extreme case. In fact,

there is a continuum between fully ER models and HR-only models: Some scientific models contain elements that

are difficult or impossible to interpret e.g. the wave function in physics (Callender 2015); complex classical statistical

models like generalized additive models also contain elements that are difficult to interpret. Our main message is: the

five-step approach can be used to extend inference to any non ER model (whether ML or not).

One could argue that science should only rely on ER models (Rudin 2019). Indeed, it would be great if we could

always build models from simple to complex and keep ER from beginning to end. However, more and more problems

seem to be very difficult to tackle with this approach (Nearing et al. 2021); Interpretable but inaccurate models (w.r.t.

to the phenomenon) are not a solution (Breiman et al. 2001). In situations where we cannot construct accurate ER

models because we lack background knowledge or the phenomenon is very complex, scientific inference with ML

models may thus be the only viable alternative.
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5.1 Implications

Adopting a phenomenon-centric perspective on IML allows us to answer a variety of questions that were puzzling

from a model-centric perspective:

Which questions can be addressed with IML property descriptors? IML property descriptors can help retrieve

relevant phenomenon properties i.e. properties derived from the conditional distribution P(Y | X). Which phenomenon

properties are relevant is context-specific and up to researchers to identify. While formulating questions, researchers

must be aware that supervised ML models are only representational of associative structure and not the underlying

causal mechanism (see Section 5.3).

Why use (I)ML for inference? Supervised ML can help draw scientific inference when sampling from X is easy but

sampling from Y is difficult, e.g. when Y is hard to measure or determined only in the future. In such situations,

analyzing both the model and the data with IML methods can allow for better conclusions than analyzing just the data

— the ML model fills the gaps by interpolation. Extrapolation to out-of-distribution data is generally not a strength

of ML and can lead to incorrect conclusions; such extrapolations should only be trusted if the learning algorithm

incorporated a powerful and suitable inductive bias.

When sampling from X is difficult or the property of interest can be computed more reliably by other means, we

advice against using IML for inference.

How important is model performance in inference? If the model is a poor approximation or representation of the

modeled phenomenon, the conclusions we draw from that model are unreliable (Cox 2006, Good and Hardin 2012).

Thus, a good fit is vital for gaining reliable knowledge.

Note that even for the optimal model, there remains the so-called Bayes error rate, an irreducible error arising from

the fact that X does not completely determine Y (Hastie et al. 2009). Thus, high error does not necessarily flag a

low-quality model, but rather may indicate that X provides insufficient information about Y.

What kind of data should be used for IML? Many IML methods (e.g. Shapley Values, LIME, etc.) rely on probing the

ML model on permuted data (Scholbeck et al. 2019). These artificial “data” may never occur in the real world. This

may be useful to audit the model, but if we want to learn about the world, artificial data is supposed to credibly sup-

plement observations. Our analysis therefore substantiates the criticism of Hooker and Mentch (2021), Hooker et al.

(2021), Mentch and Hooker (2016) concerning the permutation of features irrespective of the dependency structure in

the data.

5.2 Open Problems

There are several open issues that we have not addressed:

What about non-tabular data? For some data types, such as images, audio, or video data, it is extremely difficult to

formulate scientific questions only in terms of low-level features such as pixels or audio frequencies. To follow our
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approach, we need a translation of high-level concepts (e.g. objects in images or words in audio) that scientists can

use to formulate their questions into low-level features (e.g. pixels or audio frequencies) that the model works with.

Such translations are notoriously difficult to find; deep learning may help here (Jia et al. 2013, Zaeem and Komeili

2021, Zhou et al. 2018, Koh et al. 2020).

How to assess if data is realistic? In IML, we often need to augment our data. However, using unrealistic data

is highly problematic for scientific inference, as mentioned earlier. Reasonable permutations of features such as

Laura’s grade jitter strategy (see Section 4.2), can supply realistic data. However, this requires expert knowledge

about what permutations make sense. Conditional density estimation techniques or generative models (e.g. generative

adversarial networks, normalizing flows, variational autoencoders, etc.) may provide additional paths to obtain realistic

data. However, modeling the conditional density can be computationally intensive and more difficult than the original

prediction problem, or may even be epistemically problematic since it only approximates sampling real data.

To what extent does a property determine the true model? Sometimes, we know that the model answer to a scientific

question is correct. How strongly does this confirm the correctness of the model? Property descriptions narrow down

the potential models and sufficiently many property descriptions can even completely determine the model, e.g. for

the FANOVA decomposition (Apley and Zhu 2020, Hooker 2004). Model property descriptions may eventually be

used to incorporate background knowledge in training. Both directions, extracting knowledge from ML models, and

using background knowledge to build more adequate ML models, are elementary for scientific progress (Dwivedi et al.

2021, Nearing et al. 2021, Razavi 2021).

5.3 Other Forms of Scientific Inference With ML

In this paper, we focused exclusively on scientific inference with supervised learning ML models on i.i.d. data. For

this setting, there is sufficient theory in both statistical decision theory and IML research to provide secure epistemic

foundations for scientific inference. We have explained what we can learn about the conditional distribution of Y given

X. We can even learn that X contains little information about Y to predict it, which is scientifically interesting (Taleb

2005, Shmueli et al. 2010). However, many questions that scientists regularly face are of a different nature and go

beyond conditional distributions.

Unsupervised Learning. Unsupervised learning is concerned with estimating aspects of the joint distribution

P(X1, . . . , Xn). Unsupervised learning is hard as it typically targets a high-dimensional joint distribution and, often,

lacks a clear measure of success (Hastie et al. 2009, p486). In principle, our five-step guide is also applicable to

unsupervised learning, however, we lack a theoretical counterpart to optimal predictors.

Causal Learning. The observational joint probability distribution is interesting, but it remains on rung one of Judea

Pearl’s ladder of causation — the associational level (Pearl and Mackenzie 2018). What scientists are often much
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more interested in is answering causal questions such as average treatment effects (rung 2) or counterfactual questions

(rung 3) (Salmon 1998, Woodward and Ross 2021). Laura may be interested not only whether students’ language and

math skills are associated (rung 1), but also in whether the provision of tutoring in Portuguese affects students’ math

skills (rung 2) or whether a specific student (who is not a native Portuguese speaker) would have done better in math

if she had received Portuguese tutoring at a young age (rung 3).

Supervised ML models only represent aspects of the observational distribution (rung 1) and therefore generally

do not allow answering causal questions. As a consequence, the IML descriptors of the models also generally do not

allow causal insight into the data. Many IML papers that discuss causality (Schwab and Karlen 2019, Janzing et al.

2020, Wang et al. 2021, Heskes et al. 2020) are only concerned with causal effects on the model’s prediction, which

do not necessarily translate into a causal insight into the phenomenon.

In order to answer causal questions, causal models should be used instead.21 To learn a causal model, we must

gather interventional data and/or make strong, untestable assumptions. Causal inference constitutes thus a challenging

problem and remains an active area of research (Heinze-Deml et al. 2018, Kalisch and Bühlmann 2014, Constantinou

et al. 2021, Peters et al. 2017).

In certain situations, ML models can nevertheless be useful for causal inference. Firstly, if all predictor variables

are causally independent and the prediction target is caused by the features, the causal model interpretation implies

the causal data interpretation. Secondly, associative models in combination with IML can help estimate causal effects

even in the absence of causal independence if they are in principle identifiable by observation. For example, the partial

dependence plot coincides with the so-called adjustment formula and therefore identifies a causal effect if the backdoor

criterion is met (and the model optimally predicts the conditional expectation) (Zhao and Hastie 2021). Thirdly,

when there is access to observational and interventional data during training, training ML models with invariant risk

minimization yields models that predict accurately in interventional environments (Peters et al. 2016, Pfister et al.

2021, Arjovsky et al. 2019). For such intervention-stable models, IML methods that provide insight into the effect

of interventions on the prediction also describe causal effects on the underlying real-world components (König et al.

2021a).

Another way in which ML supports causal inference is by facilitating practical scientific inference relying on

complex mechanistical models, frequently implemented as numerical simulators. Indeed simulators can represent

complex, causal, dynamics in an ER fashion, but often at the price of an intractable likelihood and thus expensive

inference. A variety of new ML methods for likelihood-free inference on simulators (Cranmer et al. 2020) allows to

estimate a full posterior distribution over ER parameters for increasingly complex models.

While supervised learning learns from a fixed dataset, reinforcement learning (RL) systems are designed to act and

can therefore assess the effect of interventions. As such, RL models can be designed to provide causal interpretations

(Bareinboim et al. 2015, Zhang and Bareinboim 2017, Gasse et al. 2021).

21Given a causal graph, observational data can allow to identify average causal effects (rung 2), e.g. with the so-called backdoor
criterion (Pearl 2009). For estimating counterfactuals (rung 3), assumptions beyond a causal graph and observational data must be
met (Holland 1986, Peters et al. 2017).
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6 Conclusion

Traditional scientific models were designed to satisfy elementwise representationality. This allowed scientists to di-

rectly inspect model elements to learn about Nature. Although ML models do not satisfy elementwise representa-

tionality, we have showed that it is still possible to learn about the phenomenon using them. All we need to do is to

interrogate the model with suitable IML property descriptors. We have shown how such descriptors must be designed

to enable scientific inference.
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Abstract Scientists and practitioners increasingly rely on machine learn-
ing to model data and draw conclusions. Compared to statistical model-
ing approaches, machine learning makes fewer explicit assumptions about
data structures, such as linearity. Consequently, the parameters of ma-
chine learning models usually cannot be easily related to the data gener-
ating process. To learn about the modeled relationships, partial depen-
dence (PD) plots and permutation feature importance (PFI) are often
used as interpretation methods. However, PD and PFI lack a theory that
relates them to the data generating process. We formalize PD and PFI as
statistical estimators of ground truth estimands rooted in the data gen-
erating process. We show that PD and PFI estimates deviate from this
ground truth not only due to statistical biases, but also due to learner
variance and Monte Carlo approximation errors. To account for these
uncertainties in PD and PFI estimation, we propose the learner-PD and
the learner-PFI based on model refits and propose corrected variance
and confidence interval estimators.

Keywords: XAI, Interpretable Machine Learning, Permutation Feature
Importance, Partial Dependence Plot, Statistical Inference, Uncertainty
Quantification

1 Introduction

Statistical models such as linear or logistic regression models are frequently used
to learn about relationships in data. Assuming that a statistical model reflects

? equal contribution
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the data generating process (DGP) well, we may interpret the model coefficients
in place of the DGP and draw conclusions about the data. An important part of
interpreting the coefficients is the quantification of their uncertainty via standard
errors, which allows separation of random noise (non-significant coefficients) from
real effects.

Increasingly, machine learning (ML) approaches – such as gradient-boosted
trees, random forests or neural networks – are being used in science instead of
or in addition to statistical models as they are able to learn highly-non linear
relationships and interactions automatically. Applications range from modeling
volunteer labor supply [4], mapping fish biomass [17], analyzing urban reservoirs
[36], identifying disease-associated genetic variants [8], to inferring behavior from
smartphone use [43]. However, in contrast to statistical models, machine learning
approaches often lack a mapping between model parameters and properties of
the DGP. This is problematic, since in scientific applications the model is only
the means to an end: a better understanding of the DGP, in particular to learn
what features are predictive of the target variable.

Interpretation methods [41] are a (partial) remedy to the lack of interpretable
parameters of more complex models. Model-agnostic techniques, such as partial
dependence (PD) plots [20] and permutation feature importance (PFI) [9,18]
can be applied to any ML model and are popular methods for describing the
relationship between input features and model outcome on a global level. PD
plots visualize the average effect that features have on the prediction, and PFI
estimates how much each feature contributes to the model performance and
therefore how relevant a feature is.

Scientists who want to use PD and PFI to draw conclusions about the DGP
face a problem as these methods have been designed to describe the prediction
function, but lack a theory linking them to the DGP. In particular, the uncer-
tainty of PD and PFI with respect to the DGP is not quantified, making it hard
for scientists to assess the extent to which it is justified to draw conclusions
based on the PD and PFI.

Contributions We are the first to treat PD and PFI as statistical estimators of
ground truth properties in the DGP. We introduce two notions, model-PD/PFI
and learner-PD/PFI, which allow to analyze the uncertainty due to Monte-Carlo
integration and uncertainty due to the training data/process, respectively. We
perform bias-variance decompositions and propose theorems of unbiasedness,
standard estimators, and confidence intervals for both PD and PFI. In addition,
we leverage a variance correction approach from model performance estimation
[35] to adjust for variance underestimation due to sample dependency.

Structure We start with a motivating example (Section 1.1) and a discussion of
related work (Section 1.2). In the methods section (Section 2), we introduce PD
and PFI formally, relate them to the DGP, and provide bias-variance decompo-
sitions, variance estimators and confidence intervals. In the simulation study in
Section 3, we test our proposed methods in various settings and compare them
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to alternative approaches. In the application in Section 4, we revisit the moti-
vating example to demonstrate how our confidence intervals for PD/PFI may
help scientists to draw more justified conclusions about the DGP. Finally, we
discuss the limitations of our work in Section 5.

1.1 Motivating Example

Imagine a researcher who wants to use machine learning methods and the pub-
licly available UCI heart disease dataset [15] (n = 918) not only to predict heart
disease, but also to understand how the disease is associated with sociological
and medical indicators.
To select the model class, she compares the performance w.r.t. the predicted
probabilities of a logistic regression model, a decision tree (CART) [10], and a
random forest classifier [9] using 5-fold cross validation measured by the Brier
score on the dataset; the mean losses for the different models are 0.130 (logistic
regression), 0.258 (tree), and 0.125 (random forest). Since the random forest out-
performs the linear model and decision tree, she uses a random forest for further
analysis; she fits the model on 60 per cent of the data and uses the remaining
40 per cent as test set.8

To learn about the associations in the data, she applies the PD and PFI. To
get interpretations that are true to the data and that avoid extrapolation, she
employs conditional sampling based versions of PD and PFI (for a discussion of
marginal versus conditional sampling, we refer to the literature [13,19], Section
2.1, and Section 2.3). The conditional PD corresponds to the expected prediction
and therefore indicates how the probability of having heart disease varies with
the feature of interest [19]. Conditional feature importance quantifies the surplus
contribution of each feature over the remaining features (and can be linked to
conditional dependence with the prediction target [28,45]).9

The results (Figure 1) match the researcher’s intuition. Many conditional
PFI values are small, indicating that the features could be replaced with the
remaining features. The most important features are the slope of the ECG seg-
ment (STSlope), the type of chest pain (ChestPainType), and cholesterol level
(Cholesterol). Furthermore, the researcher is interested in the relationship be-
tween heart disease and age. Thus, she inspects the corresponding conditional
PD plot. She observes that the probability of having chronic heart disease in-
creases with age and that there is a small bump around the age of 55.

Although the researcher finds the results plausible, she is unsure whether
her conclusions extend to the data generating process (DGP). Are features

8 All code is publicly available as part of the supplementary material.
9 Conditional interpretation methods require sampling from conditional distributions.

She samples categorical variables using a log-loss optimal classifier, and samples
continuous variables by predicting the conditional mean and resampling residuals
(thereby assuming homoscedasticity). She fits a random forest once on the dataset
for all sampling tasks. To model multivariate mixed distributions, she employs a
sequential design [5,7].
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Figure 1: Left: Conditional Feature Importance. Right: Conditional Partial De-
pendence Plot for the feature Age. The values are difficult to interpret since it is
unclear how uncertainties in model fitting and IML method estimation influence
them.

with nonzero feature importance actually relevant, or are the values nonzero
by chance? Does the shape of the PDP really reflect the data? After all, various
uncertainties could influence her result: The feature importance and conditional
PD results vary when they are recomputed — even for the same model; and the
random forest fit itself is a random variable as well.

Throughout this paper, we propose confidence intervals for partial depen-
dence and feature importance values that take the uncertainties from the esti-
mation of the interpretability method and the model fitting into account. We
will return to this example in Section 4 and Figure 6, where we show how our
approach can help the researcher to evaluate the uncertainty in her estimates.

1.2 Related Work

PD: For models with inherent variance estimators (such as Bayesian additive
regression trees) it is possible to construct model-based confidence intervals [11].
Moosbauer et al. [34] introduced a variance estimator for PD which is applicable
to all probabilistic models that provide information on posterior (co)variance,
such as Gaussian Processes (GPs). Furthermore, various applied articles con-
tain computations of PD confidence bands [4,22,17,16,37,36]. These approaches
either quantify only the error due to Monte Carlo approximation or do not ac-
count for underestimation of the variance when covering learner variance. This
demonstrates the need for a theoretical underpinning of this inferential tool for
practical research.

PFI: Various proposals for confidence intervals and variance estimation exist.
Many of them are specific to the random forest PFI [26,3,27], for which Altmann
et al. [1] propose a test for null importance. There are also model-agnostic ac-
counts that are more similar to our work [45,46,47], however, unlike these other
proposals, we additionally correct for variance underestimation arising from re-
sampling [35] and relate the estimators to the proposed ground truth PFI. An
alternative approach for providing bounds on PFI is proposed by Fisher et al.
[18] via Rashomon sets, which are sets of models with similar near-optimal pre-
diction accuracy. Our approach differs since our bounds are relative to a fixed
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model or learning process, whereas Rashomon sets are defined exclusively by the
model performance. Furthermore, alternative approaches of “model-free” infer-
ence have been introduced [39,38,48], which aim to infer properties of the data
without an intermediary machine learning model.

2 Methods

In this section, we present our formal framework: We introduce notation and
background on PD and PFI (Section 2.1); formulate PD and PFI as estima-
tors of (proposed) ground truth estimands in the DGP (Section 2.3); apply
bias and variance decompositions and separate different sources of uncertainty
(Section 2.4); and propose variance estimators and confidence intervals for the
model-PD/PFI (which only takes the variance from Monte-Carlo integration
into account, see Section 2.5) and the learner-PD/PFI (which also takes learner
variance into account, see Section 2.6).

2.1 Notation

We denote the joint distribution induced by the data generating process as PXY ,
where X is a p-dimensional random variable and Y a 1-dimensional random
variable. We consider the case where we aim to describe the true mapping from
X to the target Y with f(X) = E[Y | X = x].10 We denote a single random
draw from the DGP with x(i) and y(i), and a dataset consisting of n draws Dn.

A machine learning model f̂ is a function (f̂ : X → Y) that maps a vector x
from the feature space X ⊆ Rp to a prediction ŷ (e.g. in Y = R for regression).

The model f̂ is induced based on a dataset Dn, using a loss function L : Y×Rp →
R+

0 . The model f̂ is induced by the learner algorithm I : ∆→ H that maps from
the space of datasets ∆ to the function hypothesis space H. The learning process
contains an essential source of randomness, namely the training data. Since the
model f̂ is induced by the learner fed with data, it can be seen as a realization
of a random variable F with distribution PF . We assume that the model is
evaluated with a risk function R(f̂) = EXY [L(Y, f̂(X))] =

∫
L(y, f̂(x))dPXY .

The dataset Dn is split into Dn1 for model training and Dn2 for evaluation. The

empirical risk is estimated with R̂(f̂Dn2
,λ) := 1

n2

∑n2

i=1 L
(
y(i), f̂Dn2

,λ(x(i))
)

.

Many interpretation techniques require perturbing variables by resampling
from marginal or conditional distributions. We use φ to denote a sampler, which
can formally be seen as a density function. A dataset drawn with a marginal
sampler (denoted φmarg) follows P (Xj), and a dataset drawn with a conditional
sampler (denoted φcond) follows P (Xj |XC). The choice of the sampler affects the
interpretation of PD and PFI [33,32,18,45,2] and should depend on the modeler’s
objective. Under certain conditions, the marginal sampler allows to estimate

10 This choice for f is motivated by the fact that the conditional expectation is the
Bayes-optimal predictor for the L2 loss and for the log-loss optimal predictor in
binary classification [24].
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causal effects [49], but for correlated input features, the marginal sampler may
create unrealistic data and the conditional sampler may be a better choice to
draw inference [19] (see online Appendix A [31] for details).

2.2 Interpretation Techniques

Partial Dependence Plot The PD of a feature set XS , S ⊆ {1, . . . , p} (usually

| S |= 1) for a given x ∈ XS , a model f̂ and a sampler φ : XS → {ψ | ψ density
on XC} is:

PDS,f̂ ,φ(x) := EX̃C∼φ(x)[f̂(x, X̃C)] =

∫

x̃c∈X̃C

φ(x)(x̃c)f̂(x, x̃c) dx̃c, (1)

where X̃C is a random variable distributed with density φ(x), and C denote the
indices of the remaining features so that S ∪ C = {1, . . . , p} and S ∩ C = ∅.
To estimate the PD for a specific function f̂ using Monte Carlo integration, we
draw r ∈ N samples for every x ∈ XS from φ(x) and denote the corresponding

dataset by Bφ(x) = (x̃
(i,x)
C )i=1,...,r. The estimation is given by:

P̂DS,f̂ ,φ(x) =
1

r

r∑

i=1

f̂(x, x̃
(i,x)
C ). (2)

By partial dependence plot (PDP) we denote the graph that visualizes the

PDP. The PDP consists of a line connecting the points {(x(g), P̂DS,f̂ ,φ(x(g))}Gg=1,
with G grid points that are usually equidistant or quantiles of PXS

. See Figure 1
for an example of a PDP.
For the marginal sampler, the PDP of a model f̂ visualizes the expected effect
of a feature after marginalizing out the effects of all other features [20]. For the
conditional sampler, the PDP is also called M-plot and visualizes the expected
prediction given the features of interest, taking into account its associative de-
pendencies with all other features [20,2].

Permutation Feature Importance The PFI of a feature set XS (usually just one

feature) for a model f̂ and a sampler φ : XC → {ψ | ψ density on XS} is defined
by:

PFIS,f̂ ,φ := EXC ,Y [EX̃S∼φ(XC)[L(Y, f̂(X̃S , XC))]]− EXY [L(Y, f̂(X))], (3)

where X̃S is a random variable distributed with density φ(XC) ∼ P (XS |XC),
and XC are the remaining features {1, . . . , p} \ S. To estimate the PFI for a

specific function f̂ and a sampler φ using Monte Carlo integration, we draw

r ∈ N samples for every datapoint x
(i)
C ∈ XC (x

(i)
C describes the feature values in

C of the i-th instance in the evaluation11 dataset Dn2) from φ(x
(i)
C ) and denote

11 The estimation of P̂F I requires unseen data, so that the loss estimates deliver un-
biased results [29,14].
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the corresponding datasets by B
φ(x

(i)
C )

= (x̃
(k,i)
S )k=1,...,r. The estimation is given

by:

P̂F IS,f̂ ,φ =
1

n2

n2∑

i=1

(
1

r

r∑

k=1

L(y(i), f̂(x̃
(k,i)
S , x

(i)
C ))− L(y(i), f̂(x(i)))

)
. (4)

We restrict PFI to losses that can be computed per instance.12 See Figure 1 for
a PFI example.
If we resample the perturbed variables from the marginal distribution, the PFI
of a model f̂ describes the change in loss if the feature values in XS are ran-
domly sampled from XS i.e. the possible dependence to XC and Y is broken
(extrapolation) [9,18]. If we sample XS conditional on the remaining variables
XC , PFI is also called the conditional PFI and may be interpreted as the ad-
ditional importance of a feature given that we already know the other feature
values [32,45,25,12].

Indices To avoid indices overhead and because PDP/PFI and their respective
estimations are always relative to a fixed feature set S and sampler φ, we will

abbreviate PDS,f̂ ,φ, P̂DS,f̂ ,φ, PFIS,f̂ ,φ, P̂F IS,f̂ ,φ with PDf̂ , P̂Df̂ , PFIf̂ , P̂F I f̂
respectively.

2.3 Relating the Model to the Data Generating Process

The goal of statistical inference is to gain knowledge about DGP properties
via investigating model properties. For example, under certain assumptions, the
coefficients of a generalized linear model (i.e. model properties) can be related to
parameters of the respective conditional distribution defined by the DGP, such as
conditional mean and covariance structure (i.e. DGP properties). Unfortunately,
machine learning models such as random forests or neural networks lack such a
mapping between learned model parameters and DGP properties. Interpretation
methods such as PD and PFI provide external descriptors of how features
affect the model predictions. However, PD and PFI are estimators that lack a
counterpart estimand in the DGP.

We define the ground truth version of PD and PFI, we call them DGP-PD
and the DGP-PFI, as the PD and PFI applied to the true function f instead of
the trained model f̂ :

Definition 1 (DGP-PD). The DGP-PD is the PD applied to function f :
X 7→ Y of the DGP with sampler φ : XS → {ψ | ψ density on XC}.

DGP-PD(x) := PDf (x)

Definition 2 (DGP-PFI). The DGP-PFI is the PFI applied to function f :
X 7→ Y of the DGP with sampler φ : XC → {ψ | ψ density on XS}.

DGP-PFI := PFIf
12 This excludes losses such as the area under the receiver operating characteristic curve

(AUC).
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Note that the DGP-PD and DGP-PFI may not be well-defined for all possible
samplers. The DGP f(x) = E[Y | X = x] for instance is undefined for x ∈ X
with zero density (ψX(x) = 0). For the marginal sampler, for instance, DGP-PD
and DGP-PFI might not be defined if the input features show strong correlations
[25]. Conditional samplers, on the other side, do not face this threat as they
preserve dependencies between features and therefore do not create unrealistic
inputs [32,18,45,2].13 However, under certain conditions, it can still be useful
to also use other samplers than the conditional samplers to gain insight into
the DGP. For example, under certain conditions, the marginal PDP allows to
estimate causal effects [49] or recover relevant properties of linear DGPs [23].

Clearly, the function f is unknown in most applications, which makes it
impossible to know the DGP-PD and DGP-PFI for these cases. However, Def-
initions 1 and 2 enable, at least in theory, to compare the PD/PFI of a model
with the PD/PFI of the DGP in simulation studies and to research statistical
biases. More importantly, the ground truth definitions of DGP-PD and DGP-
PFI allow us to treat PD and PFI as statistical estimators of properties of the
DGP.

In this work, we study PD and PFI as statistical estimators of the ground
truth DPG-PD and DGP-PFI – including bias and variance decompositions –
as well as confidence interval estimators. DGP-PD and DGP-PFI describe inter-
esting properties of the DGP concerning the associational dependencies between
the predictors and the target [19]; however, practitioners must decide whether
these properties are relevant to answer their question or if different tools of
model-analysis provide more interesting estimands.

2.4 Bias-Variance Decomposition

The definition of DGP-PD and DGP-PFI gives us a ground truth to which the
PD and PFI of a model can be compared – at least in theory and simulation. The
error of the estimation (mean squared error between estimator and estimand) can
be decomposed into the systematic deviation from the true estimand (statistical
bias) and the learner variance. PD and PFI are both expectations over the
(usually unknown) joint distribution of the data. The expectations are therefore
typically estimated from data using Monte Carlo integration, which adds another
source of variation to the PFI and PD estimates. Figure 2 visualizes the chain of
errors that stand between the estimand (DGP-PD, DGP-PFI) and the estimates

(P̂D, P̂F I).
For the PD, we compare the mean squared error (MSE) between the true

DGP-PD (PDf as defined in Equation 1) with the theoretical PD of a model

13 To illustrate the idea of unrealistic data points, think of two strongly correlated
features such as the weight and height of a person. Not every combination of feature
values is possible – a person with a weight of 4kg and a height of 2m is from a
biological perspective inconceivable.
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DGP-PD learner-PD model-PD P̂D

f E[f̂ ] f̂

DGP-PFI learner-PFI model-PFI P̂F I

Bias Variance MC

Learner Bias Learner Variance

Bias Variance MC

Figure 2: A model f̂ deviates from f due to learner bias and variance. Similarly,

P̂D and P̂F I estimates deviate from their ground truth versions DGP-PD and
DGP-PFI due to bias, variance, and Monte Carlo integration (MC).

instance f̂ (PDf̂ ) at position x.

EF [(PDf (x)− PDf̂ (x))2] = (PDf (x)− EF [PDf̂ (x)])2

︸ ︷︷ ︸
Bias2

+VF [PDf̂ (x)]
︸ ︷︷ ︸
V ariance

Here, F is the distribution of the trained models, which can be treated as a
random variable. The bias-variance decomposition of the MSE of estimators is
a well-known result [21]. For completeness, we provide a proof in online Ap-
pendix B [31]. Figure 3 visualizes bias and variance of a PD curve, and the
variance due to Monte Carlo integration.

Similarly, the MSE of the theoretical PFI of a model (Equation 3) can be
decomposed into squared bias and variance. The proof can be found in online Ap-
pendix C [31].

EF [(PFIf̂ − PFIf )2] = Bias2F [PFIf̂ ] + VF [PFIf̂ ]

The learner variance of PD/PFI stems from variance in the model fit, which
depends on the training sample. When constructing confidence intervals, we must
take into account the variance of PFI and PDP across model fits, and not just the
error due to Monte Carlo integration. As we show in an application (Section 4),
whether PD and PFI are based on a single model or are averaged across model
refits can impact both the interpretation and especially the certainty of the
interpretation. We therefore distinguish between model-PD/PFI and learner-
PD/PFI, which are averaged over refitted models. Variance estimators for model-
PD/PFI only account for variance due to Monte Carlo integration.

2.5 Model-PD and Model-PFI

Here, we study the model-PD and the model-PFI, and provide variance and con-
fidence interval estimators. With the terms model-PD and model-PFI, we refer
to the original proposals for PD [20] and PFI [9,18] for fixed models. Condition-

ing on a given model f̂ ignores the learner variance due to the learning process.
Only the variance due to Monte Carlo integration can be considered in this case.
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Figure 3: Illustration of bias, variance and Monte Carlo approximation for the PD
with marginal sampling. Left: Various PDPs using different data for the Monte
Carlo integration, but keeping the model fixed. Right: The green dashed line
shows the DGP-PDP of a toy example. Each thin line is the PDP for the model
fitted with a different sample, and the thick blue line is the average thereof. De-
viations of the DGP-PDP from the expected PDP are due to bias. Deviations of
the individual model-PDPs from the expected PDP are due to learner variance.

The model-PD estimator (Equation (2)) is unbiased regarding the theoretical
model-PD (Equation (1)). Similarly, the estimated model-PFI (Equation 4) is
unbiased with respect to the theoretical model-PFI (Equation 3). These findings
rely on general properties of Monte Carlo integration, which state that Monte
Carlo integration converges to the integral due to the law of large numbers.
Proofs can be found in online Appendix D and F [31]. Moreover, under certain
conditions, model-PD and model-PFI are unbiased estimators of the DGP-PD
(Theorem 1) and DGP-PFI (Theorem 2), respectively.

To quantify the variance due to Monte Carlo integration and to construct
confidence intervals, we calculate the variance across the sample. For the model-
PD, the variance can be estimated with:

V̂(P̂Df̂ (x)) =
1

r(r − 1)

r∑

i=1

(
f̂(x, x̃

(i,x)
C )− P̂Df̂ (x)

)2
. (5)

Similarly for the model-PFI, the variance can be estimated with:

V̂(P̂F I f̂ ) =
1

n2(n2 − 1)

n2∑

i=1

(
L(i) − P̂F I f̂

)2
, (6)

where L(i) = 1
r

∑r
k=1 L(y(i), f̂(x̃

(k,i)
S , x

(i)
C ))− L(y(i), f̂(x(i))).

The model-PD and model-PFI are mean estimates of independent samples
with estimated variance. As such, they can be modelled approximately with a
t-distribution with r− 1 and n2− 1 degrees of freedom, respectively. This allows
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us to construct point-wise confidence bands for the model-PD and confidence in-
tervals for the model-PFI that capture the Monte Carlo integration uncertainty.
We define point-wise 1− α-confidence bands around the estimated model-PD:

CI
P̂Df̂ (x)

=

[
P̂Df̂ (x)± t

1−α2

√
V̂(P̂Df̂ (x))

]
. (7)

where t
1−α2

is the 1 − α/2 quantile of the t-distribution with r − 1 degrees of

freedom. We proceed in the same manner for PFI but with n2 − 1 degrees of
freedom:

CI
P̂FI f̂

=

[
P̂F I f̂ ± t1−α2

√
V̂(P̂F I f̂ )

]
. (8)

Confidence intervals for model-PD and model-PFI ignore the learner vari-
ance. Therefore, the interpretation is limited to variance regarding the Monte
Carlo integration, and we cannot generalize results to the DGP. The model-
PD/PFI and their confidence bands/intervals are applicable when the focus is a
fixed model.

2.6 Learner-PD and Learner-PFI

To account for the learner variance, we propose the learner-PD and the learner-
PFI, which average the PD/PFI over m model fits f̂d with d ∈ {1, . . . ,m}. The
models are produced by the same learning algorithm, but trained on different
data samples, denoted by training sample indices Bd and the remaining test data
B−d so that Bd∩B−d = ∅ and Bd∪B−d = Dn. The learner-variants are averages
of the model-variants, where for each model-PD/PFI, the model is repeatedly
“sampled” from the distribution of models F .

The learner-PD is therefore the expected PD over the distribution of models
generated by the learning process, i.e. EF [PDf̂ (x)]. We estimate the learner-PD
with:

P̂D(x) =
1

m

m∑

d=1

1

r

r∑

i=1

f̂d

(
x, xi,x,dC

)
, (9)

where f̂d is trained on sample indices Bd and the PD estimated with data Bφ(x),d
using a sampler φ m-times.

Following the PD, the learner-PFI is the expected PFI over the distribution of
models produced by the learner: EF [PFIf̂ ,φ]. We propose the following estimator
for the learner-PFI:

P̂F I =
1

m

m∑

d=1

1

n2

n2∑

i=1

(
¯̃L
(i)
d − L

(i)
d

)
, (10)

where losses L
(i)
d = L(y(i), f̂d(x

(i))) and ¯̃L
(i)
d = 1

r

∑r
k=1 L(y(i), f̂d(x̃

(k,i,d)
S , x

(i)
C ))

are estimated with data B−d and m-times sampled data Bφ(x),d for a model
trained on data Bd. A similar estimator has been proposed by Janitza et al. [27]
for random forests.
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Bias of the Learner-PD The learner-PD is an unbiased estimator of the
expected PD over the distribution of models F , since

EF [P̂D(x)] = EF

[
1

m

m∑

d=1

P̂Df̂d
(x)

]
=
m

m
EF [PDf̂d

(x)] = EF [PDf̂d
(x)].

The bias of the learner-PD regarding the DGP-PD is linked to the bias of the
learner. If the learner is unbiased, the PDs are unbiased as well.

Theorem 1. Learner unbiasedness implies PD unbiasedness:
EF [f̂(x)] = f(x) =⇒ EF [PDf̂ (x)] = PDf (x)

Proof Sketch 1. Applying Fubini’s Theorem allows us to switch the order of
integrals. Further replacing EF [f̂(x)] with f proves the unbiasedness. A full proof
can be found in online Appendix E [31].

By learner bias, we refer to the expected deviation between the estimated f̂
and the true function f . Particularly interesting in this context is the inductive
bias (i.e. the preference of one generalization over another) that is needed for
learning ML models that generalize [30]. A wrong choice of inductive bias, such

as searching models f̂ in a linear hypotheses class when f is non-linear, leads
to deviations of the expected f̂ from f . But there are also other reasons why a
bias of f̂ from f may occur, for example if using an insufficiently large sample of
training data. We discuss the critical assumption of learner unbiasedness further
in Section 5.

Bias of the Learner-PFI The learner-PFI is unbiased regarding the expected
learner-PFI over the distribution of models F , since the learner-PFI is a simple
mean estimate. However, unlike the learner-PD, learner unbiasedness does not
generally imply unbiasedness of the learner-PFI regarding the DGP-PFI. This is
generally only the case, if we use the conditional sampler.

Theorem 2. If the learner is unbiased with EF [f̂ ] = f and the L2-loss is used,
then the conditional model-PFI and conditional learner-PFI are unbiased esti-
mators of the conditional DGP-PFI.

Proof Sketch 2. Both L and L̃ can be decomposed into bias, variance, and ir-
reducible error. Due to the subtraction, the irreducible error vanishes, and the
differences of biases and variances remain. Model unbiasedness sets the bias
terms to zero and variance becomes zero due to conditional sampling. The ex-
tended proof can be found in online Appendix G [31].

Intuitively, the model-PFI and learner-PFI should tend to have a negative
bias and therefore underestimate the DGP-PFI. A model cannot use more infor-
mation about the target than what is encoded in the DGP. However, as Theo-
rem 3 shows, under specific conditions, the PFI using conditional sampling can
be larger than the DGP-PFI.
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Theorem 3. The difference between the conditional model-PFI and the condi-
tional DGP-PFI is given by:

PFIf − PFIf̂ = 2EXC

[
VXS |XC

[f ]− CovXS |XC
[f, f̂ ]

]
.

Proof Sketch 3. For the L2 loss, the expected loss of a model f̂ can be de-
composed into the expected loss between f̂ and f and the expected variance of Y
given X. Due to the subtraction, the latter term vanishes. The remainder can
be simplified using that Y |= X̃S | XC and P (X̃S , XC) = P (XS , XC) due to the
conditonal sampling. The extended proof can be found in online Appendix H [31].

However, for an overestimation of the conditional PFI to occur, the expected
conditional variance of f̂ must be greater than the one of f . Moreover, f̂ and f
must have a large expected conditional covariance, meaning that f̂ has learned
something about f .

Variance Estimation The learner-PD and learner-PFI vary not only due to
learner variance (refitted models), but also due to using different samples each
time for the Monte Carlo integration. Therefore, their variance estimates cap-
ture the entire modeling process. Consequently, learner-PD/PFI along with their
variance estimators bring us closer to the DGP-PD/PFI, and only the systematic
bias remains unknown.

We can estimate this point-wise variance of the learner-PD with:

V̂(P̂D(x)) =

(
1

m
+ c

)
· 1

(m− 1)

m∑

d=1

(P̂Df̂d
(x)− P̂D(x))2

And equivalently for the learner-PFI:

V̂(P̂F I) =

(
1

m
+ c

)
· 1

(m− 1)

m∑

d=1

(P̂F I f̂d − P̂F I)2

The correction term c depends on the data setting. In simulation settings that
allow us to draw new training and test sets for each model, we can use c = 0,
yielding the standard variance estimators. In real world settings, we usually
have a fixed dataset of size n, and models are refitted using resampling tech-
niques. Consequently, data are shared by model refits, and variance estimators
will underestimate the true variance [35]. To correct the variance estimate of the
generalization error for bootstrapped or subsampled models, Nadeau and Bengio
[35] suggested the correction term c = n2

n1
(where n2 and n1 are sizes of test and

training data). However, the correction remains a rough correction, relying on
the strongly simplifying assumption that the correlation between model refits
depends only on the number of shared observations in the respective training
datasets and not on the specific observations that they share. While this assump-
tion is usually wrong, we show in Section 3.1 that the correction term offers a
vast improvement for variance estimation – compared to using no correction.
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Confidence Bands and Intervals Since the learner-PD and learner-PFI are
means with estimated variance, we can use the t-distribution with m−1 degrees
of freedom to construct confidence bands/intervals, where m is the number of
model fits. The point-wise confidence band for the learner-PD is:

CI
P̂D(x)

=

[
P̂D(x)± t

1−α2

√
V̂(P̂D(x))

]
,

where t
1−α2

is the respective 1−α/2 quantile of the t-distribution with m−1

degrees of freedom. Equivalently, we propose a confidence interval for the learner-
PFI:

CI
P̂FI

=

[
P̂F I ± t

1−α2

√
V̂(P̂F I)

]
.

Taking the learner variance into account can affect the interpretation, as we
show in the application in Section 4. An additional advantage of the learner-PD
and learner-PFI is that they make better use of the data, since a larger share of
the data is employed as test data compared to only using a small holdout set.

3 Simulation Studies

In this Section, we study the coverage of the confidence intervals for the learner-
PD/PFI on simulated examples (Section 3.1) and compare our proposed refitting-
based variance estimation with model-based variance estimators (Section 3.2).

3.1 Confidence Interval Coverage Simulation

In simulations, we compared confidence interval performance between bootstrap-
ping and subsampling, with and without variance correction. We simulated two
DGPs: a linear DGP was defined as y = f(x) = x1−x2+ε and a non-linear DGP
as y = f(x) = x1−

√
1− x2 + x3 · x4 + (x4/10)2 + ε. All features were uniformly

sampled from the unit interval [0; 1], and for both DGPs, we set ε ∼ N(0, 1).
We studied the two settings “simulation” and “real world” as described in Sec-
tion 2.1. In both settings, we trained linear models (lm), regression trees (tree)
and random forests (rf) each 15 times, and computed confidence intervals for the
learner-PD and learner-PFI across the 15 refitted models. In the “simulation”
setting, we sampled n ∈ {100, 1000} fresh data points for each model refit, where
63.2% of the data were used for training and the remaining 36.8% for PDP and
PFI estimation.14

In the “real world” setting, we sampled n ∈ {100, 1000} data points once per
experiment, and generated 15 training data sets using a bootstrap (sample size

14 We choose this training size (63.2%) to match the expected number of unique samples
when using bootstrapping, which allows to compare bootstrapping and subsampling.
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Table 1: Coverage Probability of the 95% Confidence Bands/Intervals for PDP
and PFI. boot = bootstrap, subs = subsampling, * = with adjustment.

PD PFI

dgp model n boot boot* subs subs* ideal boot boot* subs subs* ideal

linear lm 100 0.41 0.89 0.34 0.82 0.95 0.27 0.70 0.23 0.63 0.94
linear lm 1000 0.41 0.89 0.33 0.80 0.95 0.25 0.68 0.21 0.60 0.95
linear rf 100 0.39 0.86 0.36 0.83 0.95 0.44 0.92 0.39 0.88 0.95
linear rf 1000 0.38 0.87 0.35 0.83 0.95 0.42 0.90 0.38 0.86 0.95
linear tree 100 0.54 0.96 0.47 0.92 0.95 0.52 0.97 0.42 0.90 0.95
linear tree 1000 0.57 0.96 0.48 0.91 0.95 0.42 0.90 0.34 0.81 0.95
non-linear lm 100 0.43 0.90 0.36 0.84 0.95 0.31 0.81 0.25 0.72 0.94
non-linear lm 1000 0.41 0.89 0.33 0.81 0.95 0.25 0.67 0.21 0.59 0.95
non-linear rf 100 0.39 0.87 0.36 0.84 0.95 0.47 0.94 0.43 0.91 0.95
non-linear rf 1000 0.38 0.86 0.36 0.83 0.95 0.41 0.89 0.38 0.86 0.95
non-linear tree 100 0.58 0.98 0.51 0.95 0.95 0.68 0.99 0.56 0.96 0.94
non-linear tree 1000 0.59 0.97 0.51 0.94 0.95 0.58 0.97 0.46 0.92 0.95

n with replacement, which yields 0.632 ·n unique data points in expectation) or
subsampling (sample size 0.632 · n without replacement). In both settings, the
learner-PD and learner-PFI as well as their respective confidence intervals were
computed over the 15 retrained models. We repeated the experiment 10,000
times and counted how often the estimated confidence intervals covered the
expected PD or PFI (EF [PDf̂ ] and EF [PFIf̂ ]) over the distribution of models

F .15 These expected values were computed using 10,000 separate runs. The
coverage estimates were averaged across features per scenario and for PD also
across grid points ({0.1, 0.3, 0.5, 0.7, 0.9}) for all features.

Table 1 shows that in the “simulation” setting (“ideal”), we can recover confi-
dence intervals using the standard variance estimation with the desired coverage
probability. However, in the “real world” setting, the confidence intervals for
both the learner-PD and learner-PFI are too narrow across all scenarios and
both resampling strategies when the intervals are based on naive variance esti-
mates. Some coverage probabilities are especially low, such as for linear models
with 30%− 40%.

The coverage probabilities drastically improve when the correction term is
used (see Figure 4a). However, in the simulated scenarios, these probabilities are
still somewhat too narrow. For the linear model, the confidence intervals were
the narrowest, with coverage probabilities of around 80% − 90% for PD and
60% − 80% for PFI across DGPs and sample sizes. The PD confidence bands
were not heavily affected by increasing sample size n, but the PFI estimates
became slightly narrower in most cases. In the case of decision trees, the ad-

15 The coverage does not refer to the DGP-PD/PFI, but rather to the expected learner-
PD/PFI, as we studied the choices of resampling and correction for the learner
variance.
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(b) Bootstrapping- vs subsampling-based CIs (with variance correction).

Figure 4: Confidence interval width vs. coverage for bootstrapping (boot) and
subsampling (subs), segments connect identical scenarios.

justed confidence intervals were sometimes too large, especially for the adjusted
bootstrap.

Except for trees on the non-linear DGP, the bootstrap outperformed sub-
sampling in terms of coverage, i.e. the coverage was closer to the 95% level
and rather erred on the side of “caution” with wider confidence intervals (see
Figure 4b). As recommended by Nadeau and Bengio [35], we used 15 refits. We
additionally analyzed how the coverage and interval width changed by increasing
refits from 2 to 30 and noticed that the coverage worsened with more refits while
the width of the confidence intervals decreased. Increasing the number of refits
incurs an inherent trade-off between interval width and coverage: The more refits
are considered, the more accurate the learner-PFI and learner-PD become, and
also the more certain the variance estimates become, scaling with 1/m. However,
there is a limit to the information in the data, such that additional refits falsely
reduce the variance estimate and the confidence intervals become too narrow.
To refit the model 10 - 20 times seemed to be an acceptable trade-off between
coverage and interval width, as demonstrated in Figure 5. Below ∼ 10 refits,
the confidence intervals were large and the mean PD/PFI estimates have a high
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variance. Above ∼ 20 refits, the widths no longer decreased substantially. The
figures for the other scenarios can be found in online Appendix I [31].16 With our
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Figure 5: Average PD confidence band width (left) and coverage (right) as a
function of the number of refitted models for the random forest on the non-
linear DGP.

simulation results, we could show that employing confidence intervals using the
naive variance estimation (without correction) results in considerably too narrow
intervals. While the simple correction term by Nadeau and Bengio [35] does not
always provide the desired coverage probability, it is a vast improvement over
the naive approach. We therefore recommend using the correction when comput-
ing confidence intervals for learner-PD and learner-PFI, as this is currently the
best approach available. We also recommend refitting the model approximately
15 times. For more “cautious” confidence intervals, we recommend using confi-
dence intervals based on resampling with replacement (bootstrap) over sampling
without replacement (subsampling). However, besides wider confidence intervals,
the bootstrap also requires additional attention when model-tuning with inter-
nal resampling is used; otherwise, data points may inadvertently be used in both
training and validation datasets.

3.2 Comparison to Model-based Approaches

While our methods based on model-refits provide confidence intervals for PD
and PFI in a model-agnostic manner, it is also possible to exploit (co)variance
estimates of probabilistic models to construct confidence intervals. Here, we will,
for the case of PD17, compare our approach with the model-based approach of

16 The CI coverage and width: for PD with n=100 can be found in Figure I.1 and
Figure I.2; for PD with n=1000 can be found in Figure I.3 and Figure I.4; for PFI
with n=100 can be found in Figure I.5 and Figure I.6; for PFI with n=1000 can be
found in Figure I.7 and Figure I.8.

17 We do not know of any application of Moosbauer et al.’s [34] approach to PFI of
probabilistic models.
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Table 2: Coverage probabilities for 95% confidence bands of PD estimates for
model-based (mod) and subsampling-based (subs) approaches. Results are aver-
aged over all features and grid points for the GP and LM. The experiments were
conducted on two different sample sizes n. Furthermore, mean (standard devi-
ation) of confidence width are reported for both approaches. The last column
contains the standard deviation of the MC error for the model-based approach.

dgp model n coverage width (sd)

mod subs mod subs mod

1 gp 200 0.66 0.95 0.36 (0.19) 0.48 (0.11) 0.15
1 gp 1000 0.71 0.97 0.28 (0.31) 0.24 (0.07) 0.07
1 lm 200 0.34 0.95 0.15 (0.03) 0.41 (0.10) 0.15
1 lm 1000 0.35 0.95 0.06 (0.01) 0.19 (0.05) 0.07

Moosbauer et al. [34] applied to a Gaussian Process (GP) and a linear model
(LM).18 We find that our approach more reliably delivers better coverages that
are closer to the 1 − α confidence level; this can be explained by the fact that
the model-based approach ignores the variance in Monte Carlo integration.

We consider the following simulation setting:

DGP: Y = 4X1 − 2X2 + 2X3 −X4 +X5 + ε

with Xj
i.i.d.∼ U(0, 1) for all j ∈ {1, ..., 5}. Given a DGP of the form y = f(x) + ε

the distribution of ε is set to ε ∼ N(0, (0.2 σ(f(x)))2).
We calculate the DGP-PD analytically. The experiments are performed 1000

times for n = 200 and n = 1000, where a random sample of n1 = 0.632 · n is
used to fit the models and the remaining n2 = 0.368 ·n observations are used to
calculate the PD. Since model-based variance estimates for linear models can be
derived analytically based on the variance of their coefficients, we additionally
compare these estimates to our resampling-based approach (i.e. the learner-PD)
for a correctly specified linear model. The model-based variance estimates can
be calculated by one model fit per repetition. In contrast, we use 15 refits on
subsampled data sets per repetition to compute the variance estimate for the
resampling-based approach.1920 We choose the grid points {0.1, 0.3, 0.5, 0.7, 0.9}
and a confidence level of 0.95 to evaluate the mean and variance estimates of
the PDs. Table 2 shows the results for both the model-based (mod) and the
adjusted subsampling-based (subs) approach. While the subsampling-based ap-
proach shows almost perfect coverages for the different settings, the model-based

18 More details on the approach of Moosbauer et al. [34] are provided in online Ap-
pendix J [31].

19 We use a marginal sampler for perturbations (since we assume uncorrelated features
in all scenarios).

20 We did not consider the bootstrapping approach in our experiments as we encoun-
tered numerical issues in the invertability of the covariance matrix (due to duplicated
values introduced by bootstrap) [42].
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Figure 6: Top: Conditional Learner-PFI and model-PFI with point-wise 95%-
confidence intervals for the random forest. Bottom: Conditional Learner-PDP
and model-PDP with point-wise 95%-confidence bands for the random forest
and feature Age.

approach is far off the nominal level with values around 0.35 for the correctly
specified linear model. This gap can be explained by the MC integration variance
which is not incorporated in the model-based approaches. Hence, if the MC error
is relatively high compared to the model variance, coverages are bad. To illus-
trate this relationship, we calculated the average standard deviation of the MC
integration variance estimator (see Eq. (5)) for the model-based approaches (see
Table 2). Since the confidence bands of these approaches only cover the model
variance, the confidence width is directly proportional to the model variance. If
we compare the “MC se” column with the average widths of the model-based
approach, it is observable that coverages are rather low (e.g., 0.34 for LM with
n = 200) in the case where “MC se” divided by width is rather high (e.g.,
0.15/0.15 = 1) and vice versa.

Thus, if the main goal is to quantify both uncertainty sources inherent in
the PD estimation and thus to receive reasonable coverages, the model-based
approach cannot be recommended since only one of two sources of variability
are covered by the estimates. Even for the linear model, which is commonly used
for inferential purposes, the confidence bands for the PD estimates might be far
too conservative as shown in Table 2. The subsampling-based variance estimates
we proposed in this work however cover both the learner variance and the MC
error and provide satisfying coverage values.

4 Application

We apply our proposed estimators to the motivational example from Section
1.1. We supposed that a researcher predicted chronic heart disease [15] (n =
918) from sociological and medical indicators such as age, blood pressure and
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maximum heart rate. She fitted one random forest and estimated conditional
PFI and conditional PDPs to interpret the result.

Instead of only computing the conditional PFI and conditional PDP for one
model, we estimate the proposed conditional model-PFI and conditional learner-
PFI along with the proposed confidence intervals. For the learner-based insights,
we therefore refitted the model 15 times on resampled training sets.

Figure 6 shows model and learner based conditional PFI and conditional
PDP with the corresponding confidence intervals (α = 0.05).

Learner-PFI and model-PFI disagree on the ordering of the features: they
agree that slope of the ECG segment (STSlope) and the type of chest pain
(ChestPainType) are the most important features; but learner-PFI ranks sex
(Sex) and ST depression induced by exercise relative to rest (Oldpeak) next,
while model-PFI ranks cholesterol (Cholesterol) second and resting state ECG
(RestingECG) third. For both model-PFI and learner-PFI all except two confi-
dence intervals include zero, namely STSlope and ChestPainType. The confi-
dence intervals for model-PFI and learner-PFI indicate that both learner vari-
ance and the uncertainty stemming from the Monte Carlo integration are rel-
atively high. The model-PFI cannot tell us to what extent the estimate varies
due to learner variance; only the learner-PFI can quantify the learner variance.

Figure 6, bottom row, shows both the conditional model-PDP and the con-
ditional learner-PDP for age (Age). Model-PDP and learner-PDP agree that
individuals of higher age are more likely to have heart disease with a strong in-
crease in prevalence around the age of 55. However, the confidence bands of the
learner-PDP are wider than those of the model-PDP. Furthermore, the bump
that can be observed in the model-PDP around the age of 50 is smoother in the
learner PDP and should partly be attributed to uncertainties involved in model
fitting. Neglecting the learner variance would mean being overconfident about
the partial dependence curve. In particular, the Monte Carlo approximation er-
ror decreases with 1/n as the sample size n for PD and PFI estimation increases.
Wrongly interpreted, this can lead to a false sense of confidence in the estimated
effects and importance since only one model is considered and learner variance
is ignored.

5 Discussion

We related the PD and the PFI to the DGP, proposed variance and confidence
intervals, and discussed conditions for inference. Our derivations were motivated
by taking an external view of the statistical inference process and postulating
that there is a ground truth counterpart to PD/PFI in the DGP. To the best
of our knowledge, statistical inference via model-agnostic interpretable machine
learning is already used in practice, but under-explored in theory.

A critical assumption for inference of effects and importance using inter-
pretable machine learning is the unbiasedness of the learner. The learner bias
is difficult to test, and can be introduced by e.g. choice of model class, regu-
larization, and feature selection. For example, regularization techniques such as
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LASSO introduce a small bias on purpose [44] to decrease learner variance and
improve predictive performance. We must better understand how specific biases
affect the prediction function and consequently PD and PFI estimates.

Another crucial limitation for inference of PD and PFI is the underestimation
of variance due to data sharing between model refits. While we could show that
a simple correction of the variance [35] vastly improves the coverage, a proper es-
timation of the variance remains an open issue. A promising approach relying on
repeated nested cross validation to correctly estimate the variance was recently
proposed by Bates et al. [6]. However, this approach is more computationally
intensive by a factor of up to 1,000.

Furthermore, samplers are not readily available. Especially conditional sam-
pling is a complex problem, and samplers must be trained using data. Training
samplers even introduces another source of uncertainty to our estimates that we
neglected in our work. It is difficult to separate this source of uncertainty from
the uncertainty of the model learner, since trained samplers are correlated not
only with each other, but possibly also with the trained models. We see integrat-
ing sampler uncertainty as an important step in providing reliable uncertainty
estimates in practice, but we leave this to future work.
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Abstract—Interpretable Machine Learning (IML) methods
are used to gain insight into the relevance of a feature of
interest for the performance of a model. Commonly used
IML methods differ in whether they consider features of
interest in isolation, e.g., Permutation Feature Importance
(PFI), or in relation to all remaining feature variables, e.g.,
Conditional Feature Importance (CFI). As such, the perturba-
tion mechanisms inherent to PFI and CFI represent extreme
reference points. We introduce Relative Feature Importance
(RFI), a generalization of PFI and CFI that allows for a more
nuanced feature importance computation beyond the PFI
versus CFI dichotomy. With RFI, the importance of a feature
relative to any other subset of features can be assessed,
including variables that were not available at training time.
We derive general interpretation rules for RFI based on a
detailed theoretical analysis of the implications of relative
feature relevance, and demonstrate the method’s usefulness
on simulated examples.

Index Terms—feature importance, interpretable machine
learning, explainable artificial intelligence, causality

I. Introduction

Predictive modelling is increasingly deployed in high-
stakes environments, e.g., in the criminal justice system
[11], loan approval [32], recruiting [9] and medicine [27].
Due to legal regulations [10], [29] and ethical consid-
erations, ML methods need not only perform robustly
in such environments but also be able to justify their
recommendations in a human-intelligible fashion. This
development has given rise to the field of interpretable
machine learning (IML) that involves studying methods
that provide insight into the relevance of features for
model performance, referred to as feature importance.
Prominent feature importance techniques include per-
mutation feature importance (PFI) [5], [12] and condi-
tional feature importance (CFI) [12], [19], [25]. PFI is
based on replacing the feature of interest X j with a per-
turbed version sampled from the marginal distribution
P(X j) while CFI perturbs X j such that the conditional
distribution with respect to the set R of remaining
features P(X j|XR) is preserved. The sampling strategy
defines the method’s reference point and therefore affects
the method’s implicit notion of relevance. While PFI
quantifies the overall reliance of the model on the feature
of interest, CFI quantifies its unique contribution given

This work is funded by the German Federal Ministry of Education
and Research (BMBF) under Grant No. 01IS18036A and supported by
the Bavarian State Ministry of Science and the Arts in the framework
of the Centre Digitisation.Bavaria (ZD.B). The authors of this work take
full responsibility for its content.

all remaining features.
While both PFI and CFI are useful, they fail to answer
more nuanced questions of feature importance. For in-
stance, a stakeholder may be interested in the importance
of a feature relative to a subset of features. Also, the user
may want to know how important a feature is relative
to variables that had not been available at training time.
We suggest relative feature importance (RFI) as a gen-
eralization of PFI and CFI that moves beyond the di-
chotomy between PFI, which breaks all dependencies
with features, and CFI, which preserves all dependen-
cies with features. In contrast to PFI and CFI, RFI is
based on a perturbation that is restricted to preserve
the relationships with a set of variables G that can be
chosen arbitrarily. We show that RFI is (1) semantically
meaningful and (2) practically useful.
We demonstrate the semantical meaning of RFI in Sec-
tion IV. In particular, we derive general interpretation
rules that link nonzero RFI to (1) the conditional depen-
dence of the feature of interest with the target and non-
conditioned features XR given the conditioned variables
XG in the data and (2) the conditional dependence of
the input to the feature of interest X j with the model’s
prediction Ŷ given fixed inputs to the remaining features
XR (Theorem 1). Furthermore, we show that a nonzero
difference between RFIG

j and RFIG∪N
j , with N being an

arbitrary set disjunct with G, implies the conditional
dependence X j 6y XN |XG (Theorem 2).
In Section V, we provide an implementation of RFI
estimation that is based on recent results from the re-
lated knockoff research field [7], [23]. Furthermore, we
translate the testing framework developed for condi-
tional feature importance [30] to RFI. We support our
theoretical analysis and findings by various simulation
studies in Section VI. In particular, we show that RFI can
expose the indirect contribution of variables that are not
directly used by the model but provide information via
dependent variables (Section VI-A). Similarly, we show
how RFI can be used to assess feature importance with
respect to variables not included at training time (Section
VI-B).

A. Contributions and Related Work
While conditioning on subsets of variables has been

suggested before [12], [25], the implications of this gen-
eralized variant of CFI have not yet been rigorously
analyzed. Some IML methods perturb or hide subsets
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of features, e.g., in the context of multiple regression rel-
ative importance analysis is a model-specific technique
that averages over all importances of models trained on
feature subsets [6], [16]. Model-agnostic, local approx-
imations to the respective feature effect that avoid re-
training and instead perturb subsets of features have also
been proposed [17], [33]. A very recent global, model-
agnostic feature importance proposal called SAGE quan-
tifies feature importance by perturbing multiple features
[8].
While the aforementioned approaches are all based on
removing several features to provide more nuanced
insight into the model, our proposal only modifies
the feature of interest. Our approach is model-agnostic
and global, while most aforementioned approaches are
model-specific or local. The exception is the global,
model-agnostic SAGE [8], however the approaches are
not only computationally but also semantically differ-
ent. E.g. our method assigns an importance of zero
for features that are not used by the model1, which
is not the case for SAGE. While our approach aims
to provide nuanced insights into variable importance
relative to a specific set, SAGE aims to quantify the
overall importance of variables for the model.
Feature importance relative to variables that have not
been included in the training set has not been studied
before. The indirect influence of variables that the model
does not computationally rely but statistically depend on
has been studied e.g. in [1].

II. Background and Notation
A. Notation

{ j}
R

R

G

G∗G

Fig. 1. Overview of our notation.

We denote the target variable, i.e., the variable the
model predicts, as Y and feature variables by X(.). We
refer to the variables as features to emphasize when
they were used in model training. Their observations
are denoted by y and x(.). We use D := {1, . . . , p} for the
index set of all features included in model training and
j for the index of our feature of interest, X j. The index
set of the remaining variables is denoted as R := D\{ j}
(rest, remainder). The index set of features, relative to
which the importance of X j is considered, is denoted
as G. As G can refer to any index set of variables, we
denote its intersection with R as G = R ∩ G and its
complement as R = R\G. We denote the index set of

1A proof of this property is given in Lemma 2.

conditioning variables that were not made available to
the model during training as G∗ = G\R.
In case we add new elements to the conditioning set
G, we will denote this set as N. The set may include
variables within and outside D. The respective compo-
nents are denoted as N∗ = N\R and as N = R ∩ N.
The remainder of R without G and N is denoted as
R = R\N. We denote perturbed variables of interest
relative to G as X̃G

j . We refer to the original and perturbed
probability distribution of X j as the observational and
interventional distribution P(X j, . . . ) and P(X̃G

j , . . . ). The
inspected model is denoted as f , its prediction as Ŷ.
Independence of Y and X conditional on Z is denoted
using X y Y|Z, the respective conditional dependence as
X 6y Y|Z.

B. Feature Importance

Performance-based feature importance methods assess
the relevance of a feature of interest X j by assessing the
impact of a perturbation of X j on the model’s perfor-
mance. Local feature importance methods focus on the
importance of features for specific data points, whereas
global feature importance methods assess the impact
over the whole domain. In the following, we focus on
global methods.
Global feature importance is computed according to the
following general schemata:

FI j = R̃ j − R or FI j =
R̃ j

R
where we denote the original risk of the model and the
risk after perturbing X j as R and R̃ j, respectively. For
estimation, the true risk R is replaced with the empirical
risk Remp.
Feature importance methods furthermore differ in how
they perturb and whether they rely on retraining the
model. While some methods retrain the model after
the perturbation (e.g. LOCO, [15]), others evaluate the
impact of the perturbation on the same original model
(e.g. [5], [25]). In this work, we focus on methods that
avoid retraining.
For methods that avoid retraining, we observe
a dichotomy between two general perturbation
approaches: resampling that preserves the marginal and
resampling that preserves the conditional distribution.
Marginal resampling was originally proposed to
compute perturbed versions of X j by permuting the
observations x(i)

j within the sample [5]. The respective
sample breaks the dependence between X j and (Y,XR)
while preserving the marginal distribution P(X j). More
recently, Model Reliance was proposed [12], which
takes the expectation over all possible permutations.
Resampling from the marginal distribution has been
criticized to introduce bias, in particular because it
overestimates the importance of correlated variables



[25], resulting in incorrect feature rankings [26]. It also
leads to extrapolation under dependent features [14],
[19], i.e. conclusions about the model are being drawn
using unrealistic data points on which the model was
not trained. CFI, on the other hand, samples from the
conditional distribution P(X j|XR) [2], [7], [12], [14], [19],
[25], [28]. A large variety of model-specific methods exist
[13], [31]. Conditional variants quantify the importance
of a feature given the information that all remaining
features R contain about X j [20], thereby avoiding
evaluation of the model on unrealistic datapoints [19].

III. Relative Feature Importance

Relative Feature Importance is a general framework
that assesses feature importance relative to arbitrary
variable sets G. The frameworks subsumes PFI and CFI
as two extreme special cases.
In PFI, X j is replaced with a perturbed version that pre-
serves the marginal distribution P(X j) while breaking the
dependencies with Y and all features. In CFI, a perturbed
version of X j is used that preserves the conditional
distribution P(X j|XR), thereby only breaking conditional
dependence between X j and Y given all features. As
our analysis in Section IV establishes, the replacement
strategies of PFI and CFI define extreme reference points.
CFI quantifies the contribution relative to all remaining
features R, whereas PFI regards a feature in isolation.
We go beyond the PFI versus CFI dichotomy. We argue
that it is (1) meaningful (Section IV) and (2) practically
useful (Section VI) to replace X j with perturbed ver-
sions that preserve the conditional distribution P(X j|XG)
with respect to arbitrary sets G while requiring X̃G

j y
(XR,Y)|XG. G can be a subset of R, but can also in-
clude variables not available at training time such that
G\R , ∅. We term the resulting method Relative Feature
Importance (RFI):

Definition 1 (Relative Feature Importance – RFI): We
define Relative Feature Importance with respect to a
feature set G with Y < G and a fixed model f as

RFIG
j := R̃ j|G − R,

where R̃ j|G := R(Y, f (XR, X̃G
j )) is the risk w.r.t. to a

replacement variable X̃G
j and R = R(Y, f (X j,XR)) refers to

the original risk. The replacement variable has to satisfy

• X̃G
j ∼ P(X j|XG) and

• X̃G
j y (XR,Y)|XG.

In the following section, we discuss the semantic mean-
ing of RFI. The estimation of RFI is discussed in Sec-
tion V.

IV. Interpreting Relative Feature Importance
IML techniques aim to provide insight into the model

and, possibly, into the underlying data generating
mechanism. However, IML techniques themselves
are subject to interpretation. The characterization
of an IML method by its mathematical definition
is computationally precise, but has limited aid in
guiding users to make conclusions about the underlying
model and data. In this section we provide a (non-
comprehensive) list of interpretation rules for RFI, that
characterize the method by how it behaves in its context.
This context includes both the model and the underlying
data generating mechanism. More specifically, we link RFI
to (conditional) independence in the underlying data
set as well as to whether the model’s prediction Ŷ is
constant in the argument x j for a fixed xR. While RFI
can be used for quantification of feature importance,
we focus our analysis on relevance as a binary property
and characterize relative feature relevance (RFI , 0).
We show that the implicit notion of relevance of
RFI is defined by the choice of G. By modifying the
conditioning set G beyond the PFI versus CFI dichotomy,
we are able to gain insight into more nuanced aspects
of the model and the data generating mechanism. The
main results are given in Theorem 1 and Theorem 2.
Furthermore, we highlight limitations stemming from
the choice of the loss function L and the model fit for
the interpretation, which are, in our humble opinion,
underrepresented in the current discussion.
We structure our analysis by taking the user’s
perspective and asking ”What can we infer from
relative feature relevance?”.

A. Implications of Relative Feature Relevance
In the following, we analyze the implications of RFI

without further assumptions about model and data. We
thereby distinguish between two levels of explanation.
Relative feature relevance provides insight, both into
model and data.

Theorem 1: If RFIG
j , 0 then

• X j 6y (Y,XR)|XG in the underlying distribution (data
level)

• X̃ j 6y Ŷ|XR w.r.t. the interventional distribution
P(X j|XG)P(XG,XR) > 0 (model level)

We prove Theorem 1 in two steps. First, we assess
the implications of the respective independence for the
underlying data set (Lemma 1). Then, we assess the im-
plications of the respective independence for the model
(Lemma 2). The contrapositions yield Theorem 1.

Lemma 1: If X j y (Y,XR)|XG for any G with Y < G then
RFIG

j = 0.



We base the proof of Lemma 1 on the insight that
(because the model f is fixed) an equivalence in dis-
tribution implies an equivalence in risk (Proposition
1). Therefore conditions under which the interventional
distribution P(X̃G

j ,XR,Y) coincides with the original dis-
tribution P(X j,XR,Y) are sufficient for RFI = 0.

Proposition 1: If observational and interventional dis-
tribution coincide, then risks with and without pertur-
bation are equal:

P(Y,X j,XR) = P(Y, X̃G
j ,XR)⇒ R( f ) = R̃ j|G( f )

Proof of Proposition 1: Given that P(Y,X j,XR) =
P(Y, X̃ j,XR) we can write

R( f ) = EY,X j,XR [L(Y, f (X j,XR))]

= EY,X̃ j,XR
[L(Y, f (X̃ j,XR))] = R̃( f ).

We show next that the conditional independence
X j y (XR,Y)|XG is a sufficient condition for identity of
both distributions.

Proof of Lemma 1: It holds that

P(Y,X j,XR,XG) = P(X j|Y,XR,XG)P(Y,XR,XG)
Xj y (XR ,Y)|XG

= P(X j|XG)P(Y,XR,XG)
(def)
= P(X̃G

j |XG)P(Y,XR,XG)

= P(X̃G
j ,Y,XR,XG).

Using Proposition 1 we can infer that RFIG
j = 0.

So far, we have assessed implications for the un-
derlying data generating mechanism. Next, we assess
implications for the inspected model f .

Lemma 2: If X̃G
j y Ŷ|XR w.r.t. the interventional distri-

bution P(X̃G
j ,XG,XR) then RFIG

j = 0 for any G.

Proof of Lemma 2: If the prediction for an observation
(x1, . . . , xp) is independent of the value x′j w.r.t. the inter-
ventional distribution, the prediction is unaffected when
replacing x j with any value x′j with P(x′j|XG = xG)P(XG =

xG,XR = xR) > 0. Consequently, any sample from X̃G
j

yields the same prediction.
Furthermore values x′j with nonzero probability over the
interventional distribution also have nonzero probability
over the observational distribution. The interventional
distribution can be rewritten as

P(X̃G
j ,XG,XR) = P(X̃G

j |XG,XR)P(XG,XR)

= P(X̃G
j |XG)P(XG,XR)

= P(X j|XG)P(XG,XR).

Similarly, the observational distribution can be factor-
ized into P(X j|XG,XR)P(XG,XR). As P(X j|XG,XR) > 0 ⇒
P(X j|XG) > 0 (which can be derived from, e.g., the law
of total probability) it follows that P(X̃G

j ,XG,XR) > 0 ⇒
P(X j,XG,XR) > 0.
Consequently the prediction ŷ for any value x j with
positive probability P(X j = x j|XR = xR) is identical given
unchanged xR.
As the conditional distributions of X j and X̃G

j overlap
and the distribution of XR is unaffected, the prediction
Ŷ is identical with and without perturbation. Therefore
R = R̃ j|G and RFIG

j = 0.

To summarize, we have shown that independence on
the dataset and on the model level respectively imply
RFIG

j = 0 and can thereby prove Theorem 1.

Proof of Theorem 1: The result follows from contra-
position of Lemma 1 and contraposition of Lemma 2.

Theorem 1 shows that nonzero RFIG
j implies depen-

dencies between sets of variables on the model level
as well as on the data level. Which dependencies are
relevant for RFIG

j can be controlled with the conditioning
set G. Consequently, the conditioning set G determines
the method’s implicit definition of relevance. I.e., on
the data level, if X j y (XR,Y)|XG holds, RFIG

j is zero
irrespective of any other dependencies that may hold,
e.g. with XG (Lemma 1). Nonzero RFI, a difference in
performance on interventional and observational distri-
bution, can only be caused by dependencies that have
been destroyed in the interventional distribution, the
dependencies with and via XG are preserved by the
replacement X̃G

j and can therefore not be responsible for
RFIG

j , 0. Similarly, on the model level, X̃G
j y Ŷ|XR over

the interventional distribution P(X j|XG)P(XG,XR) yields
zero RFI (Lemma 2). The behavior of the model outside
the domain in which it is evaluated is irrelevant for RFIG

j .
What domain the model is evaluated over depends on
the choice of G.
Because we can control RFI’s implicit definition of rel-
evance with G, RFI allows more nuanced insights into
model and data than PFI or CFI alone. In Theorem 1, we
aim to make the implicit definition of relevance explicit.
On the data level, nonzero RFI implies the dependence
of X j with the tuple (Y,XR) given XG (X j 6y (Y,XR)|XG).
In order to understand the aforementioned dependence,
using the graphoid axioms contraction and weak union
[22], the equivalent formulation below can be adduced:

(X j 6y Y|XG) ∨ (X j 6y XR|XG,Y).

At least one of the two conditional dependencies has
to hold for nonzero RFIG

j . The first dependence can be
rephrased as: X j is informative of Y, even if we already
know XG. It is more difficult to make sense of the second



dependence. Under dependent features (X j 6y XR|XG,Y),
the distribution of X j with XR is not preserved un-
der perturbation X̃G

j . In the interventional distribution
P(X̃G

j ,XR) observations that are improbable or impossi-
ble w.r.t. the observational distribution P(X j,XR) can be
possible and probable (and vice versa). Consequently,
in the interventional distribution the feature distribution
differs from the observation feature distribution. Even if
X j y Y|XG holds, the model may perform suboptimally
due to this distribution shift and cause RFIG

j nonzero2. If
the conditioning set is a superset of R (G ⊇ R), such
that set of remaining variables XR is empty, it holds
that (X j y XR|XG,Y). Therefore nonzero RFI must be
attributed to (X j 6y Y|XG) for G ⊇ R.
On the model level, nonzero RFI implies that the model’s
predictions are conditionally dependent on X̃G

j given the
remaining features R are fixed. E.g. for a linear model
that has coefficient zero for all terms involving X j, this
dependence would not be fulfilled, and RFIG

j would
be zero (Lemma 2). The model is evaluated over the
interventional distribution P(X j|XG)P(XG,XR) > 0, which
varies depending on G. If G contains a nearly perfect
correlate of X j, X j can be reconstructed well. In contrast,
if G = ∅, for every possible xR the model is evaluated
over the whole marginal distribution of X j. Although
choosing a smaller set G ⊂ R leads to extrapolation
under dependent features, it allows more insight into
the model’s mechanism. For interpretation purposes like
safety, this is highly desirable.
In the preceding paragraphs we have highlighted the
importance of the conditioning set G for the method’s
implicit notion of relevance and illustrated the results
from Theorem 1. We have argued that the condition-
ing set controls which potential dependencies can be
responsible for nonzero RFIG

j . The insights lead to a
further, interesting application of RFI. By assessing the
difference ∆RFIG→G∪N

j = RFIG
j − RFIG∪N

j when modifying
the conditioning set G by adding new elements N, we are
able to assess the role of the dependencies with variables
in N relative to a baseline G. While for RFIG

j only depen-
dencies of X j with and via G are preserved, for RFIG∪N

j
also dependencies with and via N are maintained. If
∆RFIG→G∪N

j is nonzero, this change has to be due to
dependencies involving N, but not G. We substantiate
this claim with Theorem 2. In order for ∆RFIG→G∪N

j to
be positive, the dependence X j 6y XN |XG has to hold.

Theorem 2: If the difference ∆RFIG→G∪N
j = RFIG

j -
RFIG∪N

j , 0, then X j 6y XN |XG.

2Let e.g. X1,X2 be perfectly correlated and independent of Y. Then
adding X1 − X2 does not alter its prediction performance, unless
the dependence between the variables is broken. Also see [14] for a
discussion in PFI.

Proof of Theorem 2: Under independence X j y Xn|XG
it holds that

P(X̃G
j ,Y,XR,XG,XN) = P(X̃G

j |Y,XR,XG,XN)P(Y,XR,XG,XN)
(def X̃G

j )

= P(X j|XG)P(Y,XR,XG,XN)
Xj y Xn |XG

= P(X j|XG,XN)P(Y,XR,XG,XN)
(def X̃G∪N

j )

= P(X̃G∪N
j |XG,XN)P(Y,XR,XG,XN)

(def X̃G∪N
j )

= P(X̃G∪N
j |Y,XG,XN,XR)P(Y,XR,XG,XN)

= P(X̃G∪N
j ,Y,XR,XG,XN)

The equality P(X̃G
j ,Y,XR,XG,XN) = P(X̃G∪N

j ,Y,XR,XG,XN)
implies P(X̃G

j ,Y,XR) = (X̃G∪N
j ,Y,XR). Invoking Proposi-

tion 1 it holds that the corresponding risks R j|G and
R j|G∪N are equal. As RFIG

j − RFIG∪N
j = R j|G − R j|G∪N it

holds that X j 6y Xn|XG ⇒ ∆RFIG→G∪N
j = 0. Contraposition

proves Theorem 2.

While nonzero RFIG
j as well as nonzero ∆RFIG→G∪N

j

have clear implications, interpreting zero RFIG
j or zero

∆RFIG→G∪N
j is difficult. For example, we may be tempted

to interpret RFIG
j = 0 as conditional independence in

the data. However, the general principle that absence of
evidence is no evidence for absence also applies in the
context of RFI. A dependence in the data may not be
captured by the model when it has a poor fit and does
not rely on the respective variable. Similarly, although
f may be optimal, a dependence in higher moments
may simply not be modeled by f or captured by the
loss L. As all aforementioned causes of nonzero RFI
are potentially sufficient, but not necessary, it is unclear
which of the causes nonzero RFI can be attributed
to. Furthermore, the related problem of conditional
independence testing is provably hard [24].
The theoretical insights that we derive in this Section
(Theorem 1 and 2) are applied and illustrated in a
simulation study in Section VI.

V. Estimation and Testing

Estimating and sampling from the conditional dis-
tribution is in general difficult, especially in high-
dimensional continuous settings. Various approaches for
replacing X j with samples from its conditional distribu-
tion exist, e.g., knockoff approaches [2], [7], [23], imputa-
tion and weighting [12] or permutation within decision
tree leaves [18]. We used Model-X knockoffs [7] in this
work, but note that the RFI approach is agnostic to its
algorithmic implementation.



Using (standard) empirical risk estimates, our RFI esti-
mate is

ˆRFI
G
j =

1
n

n∑

i=1

L
(
y(i), f (x̃(i)

j , x
(i)
R )

)
− 1

n

n∑

i=1

L
(
y(i), f (x(i)

j , x
(i)
R )

)

where x̃(i)
j is a sample from X̃G

j . We can then test
for nonzero RFIG

j using procedures for conditional
independence tests, e.g., [30], thereby quantifying the
uncertainty coming from empirical risk minimization.
Because of the central limit theorem, the empirical risk
converges (in probability) to a Gaussian distribution
with increasing number of observations. Therefore,
one-sided, paired t-tests can be used to infer tests and
confidence intervals [30]. The test procedures proposed
in [30] are agnostic to the conditioning set for the
perturbation X̃G

j . For smaller samples, the Exact Test by
Fisher may be used.
The t-test and Fisher Exact Test ignore uncertainty
and bias of the estimation procedures, i.e. the ML
model and the knockoff-sampler are treated as “fixed”.
E.g. misspecified, suboptimal models may not capture
dependencies. Or dependencies are in higher moments
that are not captured by the loss. Consequently, without
further assumptions, the framework does not provide a
test for conditional independence in the dataset.
The popular testing procedures for knockoffs proposed
by [7] provide FDR over all features, but does not test
the significance of the importance of individual features.

VI. Simulation Studies
In the following, we demonstrate the usefulness of

RFI on two simulation studies. In the first example, we
use RFI to expose indirect influence of variables that are
not computationally used by the model. In the second
example, we assess feature importance relative to a
confounder that was unavailable at training time. In both
examples, we represent the underlying data generating
mechanism, that gives rise to the dependencies in the
data, with a causal directed acyclic graph (DAG). The
code for the examples is available online3.

A. Indirect Influence
A prominent application of interpretable machine

learning is auditing models regarding its reliance on
protected attributes A like age or sex. A reliance on
the respective attributes may result in unfair discrimi-
nation and requires further inspection. With approaches
like fairness through unawareness [3], the model does
not rely on protected attributes directly. However, by
implicitly reconstructing the sensitive attributes using
seemingly harmless correlates, the model can indirectly
make use of the protected attribute resulting in poten-
tially harmful, unfair discrimination [3].

3Link to Code: https://github.com/gcskoenig/icpr2020-rfi

PFI and CFI cannot expose such indirect influence. As
Lemma 2 proves, RFIG

A is zero for a model that does not
(directly) use the feature of interest A for the prediction
for any conditioning set G. Furthermore, from PFI and
CFI alone, we cannot infer whether the importance of
a variable can be attributed to its dependence with an
indirect influence. Using RFIG

j with G = A we preserve
the influence of A on the prediction and can thereby
restrict the attribution of importance to contributions
stemming from dependencies not involving A (Theo-
rem 1, Lemma 1). The difference to ∆RFIG→G∪N

j with
G = ∅ and N = A exposes the indirect influence.
Not every indirect influence from a sensitive attribute
is considered undesirable. Certain correlates of A may
indeed be valid criteria for a decision (e.g. [4]). Impor-
tance stemming from dependencies with A via such re-
solving variables Z would be considered acceptable. We
can assess the indirect influence beyond contributions
stemming from dependence via Z by comparing to a
baseline G = Z. In this baseline, contributions via Z are
preserved and therefore irrelevant for RFI. Consequently,
when setting N = A, the difference ∆RFIG→G∪N

j only
quantifies indirect influence that is not resolved by Z.
We demonstrate the usefulness of RFI to expose in-
direct influence in a simulation study. The dataset is
a sample drawn from the distribution induced by a
structural causal model (SCM) depicted in Figure 2. All
relationships are additive linear with coefficients 1 and
Gaussian noise terms (σ1 = σ2 = σ4 = 1, σ3 = 0.3 and
σy = 0.5). An ordinary least squares linear regression
model was fit to predict Y from X1, . . . ,X4 (MSE = 0.25,
f (x1, x2, x3, x4) = 0.00x1 − 0.01x2 + 1.01x3 + 1.00x4). We
trained model-X knockoffs [7] on the training data and
evaluated RFI on test data. Sample size is 105 with 10%
test data.
In order to quantify the direct influence of the features
we compute PFI. As we can see in Figure 3, X1 and
X2 are considered irrelevant. In order to expose their
indirect influence, we additionally compute RFI with
respect to G = {X1} and G = {X2} respectively. For both
variables we observe a drop in importance of X3 and X4.
Consequently both X1 and X2 have an indirect influence
on the target (Theorem 2).
Furthermore we are interested in whether the indirect
influence of X1 can be resolved by X2. We therefore
compute RFIG∪N

j with G = {X2} and N = {X1}. We see that
for X3 no change in importance can be observed. This is
due to the independence X1 y X3|X2

4 (Theorem 2). The
indirect influence is resolved. However, for X4 the impor-
tance decreases further and is therefore not resolved by
X2. This is in alignment with the dependence X1 6y X4|X2
implied by the graph (Figure 2).

4As faithfulness and causal markov condition hold, d-separation
in the graph and (conditional) independence coincide [21]. We can
therefore read the independence structures off Figures 2 and 4.
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Fig. 2. Variable X1 influences Y both via the chain X2 → X3 and via
X4. X1 may be some undesired influence, and X2 a variable resolving
the undesired influence. We find that the prediction can nevertheless
be influenced via X4 by comparing RFIX2

4 with RFIX2 ,X1
4 (Figure 3). All

relationships are additive linear Gaussian with all coefficients being
equal to 1 and σ1 = σ2 = σ4 = 1, σ3 = 0.3 and σy = 0.5.
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Fig. 3. RFI’s for a linear regression model fitted on the dataset
illustrated in Figure 2. Feature importance values are averaged over
30 runs and rounded. Feature importance values are averaged over
30 runs and rounded. We evaluated significance using a t-test for the
first run. All positive features were significant at α = 0.01, whereas for
all zero RFI values the null could not be rejected. For X1 and X2 all
RFIs are zero, whereas for X3 and X4 RFIs are positive. We see that X1
and X2 both have an indirect influence on X3 and X4, but that X2 can
resolve the influence of X1 on X3.

B. Variables Outside Training Set
When designing a model f , a practitioner may have

decided to exclude a variable from the feature set, e.g.,
because it was then considered irrelevant, it belongs
to a different modality or would have required further
preprocessing. Furthermore, when auditing a machine
learning model f , variables that have not been available
for the training of the model may be accessible.
In this example, we demonstrate that variables outside
the training set can be included in the conditioning set
for RFI. Consequently, importance of the features relative
to variables outside the training set and the indirect
influence of such variables can be assessed. More specif-
ically, we simulate a hypothetical situation where the
influence of a previously unknown confounder C shall
be evaluated. This variable C is available for the model
audit. In particular, we wonder whether the features
X1, X2 and X3 are only or partly important due to a
dependence via C.
The dataset was sampled from a structural causal model
(SCM) depicted in Figure 4. Assuming faithfulness and
the causal Markov condition, this DAG implies the
following (conditional) (in-)dependencies: X1 is indepen-
dent of C, X3 is independent of Y conditional on C, and

X2 is dependent on Y. Note that the dependence between
X2 and Y is due to the common cause C as well as
due to a direct effect of X2 on Y. All relationships are
additive linear with coefficients 1 and additive Gaussian
noise (σ1 = σ2 = σC = 1.0 and σ3 = σY = 0.5). We
fit an ordinary least squares linear regression model on
X1, X2 and X3 to predict Y (MSE = 0.40, f (x1, x2, x3) =
1.0x1 + 1.17x2 + 0.67x3). C was not available for model
training. We trained Model-X knockoffs [7] on training
data and sampled from X̃G

j on test data. Sample size is
105 with 10% test data.
When computing RFIC

j (G = {C}) for each variable,
the different relationships with C become apparent. The
respective results are depicted in Figure 5. For X1 the
feature importance relative to C remains unchanged as
the variables are pairwise independent (Theorem 2). For
X3, that is only dependent with Y via C, it completely
vanishes (Lemma 1). For X2 the feature importance
decreases but remains nonzero, as X2 is dependent with
Y directly and via C.
Consequently, using RFI, we can (1) identify variables
that are important due to a variable unavailable at
training time and (2) distinguish between variables that
only depend on Y via C from those that do not. With PFI
(G = ∅) or CFI (G = R) such a distinction is in general
not possible.

C

X1 X2 X3

Y C

X1 X2 X3

Y

Fig. 4. Left: We see the causal graph G corresponding to the Structural
Causal Model that was used to generate the dataset used in Figure
5. All relationships are additive linear Gaussian with all coefficients
equal to 1 and σ1 = σ2 = σC = 1.0 and σ3 = σY = 0.5. Right: Pairwise
dependencies after conditioning on C.

X1 X2 X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Im
p

or
ta

n
ce

1.98

4.12

1.46

1.98

2.72

0.88

1.98
1.79

0.01

RFIs Plot

PFI

CFI

RFICj
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For X3 RFI vanishes relative to C. For all except for RFIC

X3
the null can

be rejected at α = 0.01 in the first run.



VII. Discussion

We proposed relative feature importance (RFI), a gen-
eral conditional feature importance framework which
allows to condition on arbitrary sets of other features,
including features outside the training set. We underpin
the method with theoretical results allowing insight into
both model and underlying dataset. In a simulation
study, the usefulness of the method for the exposure of
indirect influence is demonstrated.
Relative feature importance requires sampling from (un-
known) conditional distributions. For continuous vari-
ables and in high-dimensional settings this task is chal-
lenging and an open area of research [7], [23]. Uncer-
tainty stemming from inaccurate sampling may affect the
interpretation. The quality of insight into the underlying
dataset strongly depends on the training and evaluation
of the model. Dependencies in higher moments are
usually not modeled and not captured by standard loss
functions and can therefore not be detected. Especially
the interpretation of zero RFI requires careful assessment
of the model specification. Further research is needed to
assess necessary assumptions for the interpretation of
RFI. These challenges are not unique to RFI, but apply
more generally in the field of interpretable machine
learning [20].
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Abstract. An increasing number of model-agnostic interpretation tech-
niques for machine learning (ML) models such as partial dependence
plots (PDP), permutation feature importance (PFI) and Shapley val-
ues provide insightful model interpretations, but can lead to wrong con-
clusions if applied incorrectly. We highlight many general pitfalls of
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feature dependencies, interactions, uncertainty estimates and issues in
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and illustrate them with examples. We focus on pitfalls for global meth-
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1 Introduction

In recent years, both industry and academia have increasingly shifted away
from parametric models, such as generalized linear models, and towards non-
parametric and non-linear machine learning (ML) models such as random forests,
gradient boosting, or neural networks. The major driving force behind this devel-
opment has been a considerable outperformance of ML over traditional models
on many prediction tasks [32]. In part, this is because most ML models han-
dle interactions and non-linear effects automatically. While classical statistical
models – such as generalized additive models (GAMs) – also support the inclu-
sion of interactions and non-linear effects, they come with the increased cost of
having to (manually) specify and evaluate these modeling options. The benefits
of many ML models are partly offset by their lack of interpretability, which is
of major importance in many applications. For certain model classes (e.g. lin-
ear models), feature effects or importance scores can be directly inferred from
the learned parameters and the model structure. In contrast, it is more diffi-
cult to extract such information from complex non-linear ML models that, for
instance, do not have intelligible parameters and are hence often considered
black boxes. However, model-agnostic interpretation methods allow us to har-
ness the predictive power of ML models while gaining insights into the black-box
model. These interpretation methods are already applied in many different fields.
Applications of interpretable machine learning (IML) include understanding pre-
evacuation decision-making [124] with partial dependence plots [36], inferring
behavior from smartphone usage [105,106] with the help of permutation feature
importance [107] and accumulated local effect plots [3], or understanding the
relation between critical illness and health records [70] using Shapley additive
explanations (SHAP) [78]. Given the widespread application of interpretable
machine learning, it is crucial to highlight potential pitfalls, that, in the worst
case, can produce incorrect conclusions.

This paper focuses on pitfalls for model-agnostic IML methods, i.e. meth-
ods that can be applied to any predictive model. Model-specific methods, in
contrast, are tied to a certain model class (e.g. saliency maps [57] for gradient-
based models, such as neural networks), and are mainly considered out-of-scope
for this work. We focus on pitfalls for global interpretation methods, which
describe the expected behavior of the entire model with respect to the whole
data distribution. However, many of the pitfalls also apply to local explanation
methods, which explain individual predictions or classifications. Global meth-
ods include the partial dependence plot (PDP) [36], partial importance (PI)
[19], accumulated local affects (ALE) [3], or the permutation feature impor-
tance (PFI) [12,19,33]. Local methods include the individual conditional expec-
tation (ICE) curves [38], individual conditional importance (ICI) [19], local
interpretable model-agnostic explanations (LIME) [94], Shapley values [108] and
SHapley Additive exPlanations (SHAP) [77,78] or counterfactual explanations
[26,115]. Furthermore, we distinguish between feature effect and feature impor-
tance methods. A feature effect indicates the direction and magnitude of a change
in predicted outcome due to changes in feature values. Effect methods include
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Fig. 1. Selection of popular model-agnostic interpretation techniques, classified as local
or global, and as effect or importance methods.

Shapley values, SHAP, LIME, ICE, PDP, or ALE. Feature importance meth-
ods quantify the contribution of a feature to the model performance (e.g. via a
loss function) or to the variance of the prediction function. Importance methods
include the PFI, ICI, PI, or SAGE. See Fig. 1 for a visual summary.

The interpretation of ML models can have subtle pitfalls. Since many of
the interpretation methods work by similar principles of manipulating data and
“probing” the model [100], they also share many pitfalls. The sources of these
pitfalls can be broadly divided into three categories: (1) application of an unsuit-
able ML model which does not reflect the underlying data generating process
very well, (2) inherent limitations of the applied IML method, and (3) wrong
application of an IML method. Typical pitfalls for (1) are bad model generaliza-
tion or the unnecessary use of complex ML models. Applying an IML method in
a wrong way (3) often results from the users’ lack of knowledge of the inherent
limitations of the chosen IML method (2). For example, if feature dependencies
and interactions are present, potential extrapolations might lead to mislead-
ing interpretations for perturbation-based IML methods (inherent limitation).
In such cases, methods like PFI might be a wrong choice to quantify feature
importance.

Table 1. Categorization of the pitfalls by source.

Sources of pitfall Sections

Unsuitable ML model 3, 4

Limitation of IML method 5.1, 6.1, 6.2, 9.1, 9.2

Wrong application of IML method 2, 5.2, 5.3, 7, 8, 9.3, 10

Contributions: We uncover and review general pitfalls of model-agnostic inter-
pretation techniques. The categorization of these pitfalls into different sources
is provided in Table 1. Each section describes and illustrates a pitfall, reviews
possible solutions for practitioners to circumvent the pitfall, and discusses open
issues that require further research. The pitfalls are accompanied by illustrative
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examples for which the code can be found in this repository: https://github.com/
compstat-lmu/code pitfalls iml.git. In addition to reproducing our examples, we
invite readers to use this code as a starting point for their own experiments and
explorations.

Related Work: Rudin et al. [96] present principles for interpretability and dis-
cuss challenges for model interpretation with a focus on inherently interpretable
models. Das et al. [27] survey methods for explainable AI and discuss challenges
with a focus on saliency maps for neural networks. A general warning about using
and explaining ML models for high stakes decisions has been brought forward
by Rudin [95], in which the author argues against model-agnostic techniques
in favor of inherently interpretable models. Krishnan [64] criticizes the general
conceptual foundation of interpretability, but does not dispute the usefulness of
available methods. Likewise, Lipton [73] criticizes interpretable ML for its lack
of causal conclusions, trust, and insights, but the author does not discuss any
pitfalls in detail. Specific pitfalls due to dependent features are discussed by
Hooker [54] for PDPs and functional ANOVA as well as by Hooker and Mentch
[55] for feature importance computations. Hall [47] discusses recommendations
for the application of particular interpretation methods but does not address
general pitfalls.

2 Assuming One-Fits-All Interpretability

Pitfall: Assuming that a single IML method fits in all interpretation contexts
can lead to dangerous misinterpretation. IML methods condense the complex-
ity of ML models into human-intelligible descriptions that only provide insight
into specific aspects of the model and data. The vast number of interpretation
methods make it difficult for practitioners to choose an interpretation method
that can answer their question. Due to the wide range of goals that are pursued
under the umbrella term “interpretability”, the methods differ in which aspects
of the model and data they describe.

For example, there are several ways to quantify or rank the features according
to their relevance. The relevance measured by PFI can be very different from
the relevance measured by the SHAP importance. If a practitioner aims to gain
insight into the relevance of a feature regarding the model’s generalization error,
a loss-based method (on unseen test data) such as PFI should be used. If we aim
to expose which features the model relies on for its prediction or classification –
irrespective of whether they aid the model’s generalization performance – PFI
on test data is misleading. In such scenarios, one should quantify the relevance
of a feature regarding the model’s prediction (and not the model’s generalization
error) using methods like the SHAP importance [76].

We illustrate the difference in Fig. 2. We simulated a data-generating process
where the target is completely independent of all features. Hence, the features
are just noise and should not contribute to the model’s generalization error.
Consequently, the features are not considered relevant by PFI on test data.
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However, the model mechanistically relies on a number of spuriously correlated
features. This reliance is exposed by marginal global SHAP importance.

As the example demonstrates, it would be misleading to view the PFI com-
puted on test data or global SHAP as one-fits-all feature importance techniques.
Like any IML method, they can only provide insight into certain aspects of model
and data.

Many pitfalls in this paper arise from situations where an IML method that
was designed for one purpose is applied in an unsuitable context. For example,
extrapolation (Sect. 5.1) can be problematic when we aim to study how the
model behaves under realistic data but simultaneously can be the correct choice
if we want to study the sensitivity to a feature outside the data distribution.

For some IML techniques – especially local methods – even the same method
can provide very different explanations, depending on the choice of hyperparam-
eters: For counterfactuals, explanation goals are encoded in their optimization
metrics [26,34] such as sparsity and data faithfulness; The scope and meaning
of LIME explanations depend on the kernel width and the notion of complexity
[8,37].

Solution: The suitability of an IML method cannot be evaluated with respect to
one-fits-all interpretability but must be motivated and assessed with respect to
well-defined interpretation goals. Similarly, practitioners must tailor the choice
of the IML method and its respective hyperparameters to the interpretation
context. This implies that these goals need to be clearly stated in a detailed
manner before any analysis – which is still often not the case.

Open Issues: Since IML methods themselves are subject to interpretation,
practitioners must be informed about which conclusions can or cannot be drawn
given different choices of IML technique. In general, there are three aspects to
be considered: (a) an intuitively understandable and plausible algorithmic con-
struction of the IML method to achieve an explanation; (b) a clear mathematical
axiomatization of interpretation goals and properties, which are linked by proofs
and theoretical considerations to IML methods, and properties of models and
data characteristics; (c) a practical translation for practitioners of the axioms
from (b) in terms of what an IML method provides and what not, ideally with
implementable guidelines and diagnostic checks for violated assumptions to guar-
antee correct interpretations. While (a) is nearly always given for any published
method, much work remains for (b) and (c).

3 Bad Model Generalization

Pitfall: Under- or overfitting models can result in misleading interpretations
with respect to the true feature effects and importance scores, as the model does
not match the underlying data-generating process well [39]. Formally, most IML
methods are designed to interpret the model instead of drawing inferences about
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Fig. 2. Assuming one-fits-all interpretability. A default xgboost regression model
that minimizes the mean squared error (MSE) was fitted on 20 independently and uni-
formly distributed features to predict another independent, uniformly sampled target.
In this setting, predicting the (unconditional) mean E[Y ] in a constant model is opti-
mal. The learner overfits due to a small training data size. Mean marginal SHAP (red,
error bars indicate 0.05 and 0.95 quantiles) exposes all mechanistically used features.
In contrast, PFI on test data (blue, error bars indicate 0.05 and 0.95 quantiles) con-
siders all features to be irrelevant, since no feature contributes to the generalization
performance.

the data-generating process. In practice, however, the latter is often the goal of
the analysis, and then an interpretation can only be as good as its underlying
model. If a model approximates the data-generating process well enough, its
interpretation should reveal insights into the underlying process.

Solution: In-sample evaluation (i.e. on training data) should not be used to
assess the performance of ML models due to the risk of overfitting on the train-
ing data, which will lead to overly optimistic performance estimates. We must
resort to out-of-sample validation based on resampling procedures such as hold-
out for larger datasets or cross-validation, or even repeated cross-validation for
small sample size scenarios. These resampling procedures are readily available
in software [67,89], and well-studied in theory as well as practice [4,11,104],
although rigorous analysis of cross-validation is still considered an open prob-
lem [103]. Nested resampling is necessary, when computational model selection
and hyperparameter tuning are involved [10]. This is important, as the Bayes
error for most practical situations is unknown, and we cannot make absolute
statements about whether a model already optimally fits the data.

Figure 3 shows the mean squared errors for a simulated example on both
training and test data for a support vector machine (SVM), a random forest,
and a linear model. Additionally, PDPs for all models are displayed, which show
to what extent each model’s effect estimates deviate from the ground truth. The
linear model is unable to represent the non-linear relationship, which is reflected
in a high error on both test and training data and the linear PDPs. In contrast,
the random forest has a low training error but a much higher test error, which
indicates overfitting. Also, the PDPs for the random forest display overfitting
behavior, as the curves are quite noisy, especially at the lower and upper value
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Fig. 3. Bad model generalization. Top: Performance estimates on training and test
data for a linear regression model (underfitting), a random forest (overfitting) and a
support vector machine with radial basis kernel (good fit). The three features are drawn
from a uniform distribution, and the target was generated as Y = X2

1 +X2−5X1X2+ε,
with ε ∼ N(0, 5).Bottom: PDPs for the data-generating process (DGP) – which is the
ground truth – and for the three models.

ranges of each feature. The SVM with both low training and test error comes
closest to the true PDPs.

4 Unnecessary Use of Complex Models

Pitfall: A common mistake is to use an opaque, complex ML model when an
interpretable model would have been sufficient, i.e. when the performance of
interpretable models is only negligibly worse – or maybe the same or even better
– than that of the ML model. Although model-agnostic methods can shed light
on the behavior of complex ML models, inherently interpretable models still
offer a higher degree of transparency [95] and considering them increases the
chance of discovering the true data-generating function [23]. What constitutes
an interpretable model is highly dependent on the situation and target audience,
as even a linear model might be difficult to interpret when many features and
interactions are involved.

It is commonly believed that complex ML models always outperform more
interpretable models in terms of accuracy and should thus be preferred. However,
there are several examples where interpretable models have proven to be serious
competitors: More than 15 years ago, Hand [49] demonstrated that simple models
often achieve more than 90% of the predictive power of potentially highly com-
plex models across the UCI benchmark data repository and concluded that such
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models often should be preferred due to their inherent interpretability; Makri-
dakis et al. [79] systematically compared various ML models (including long-
short-term-memory models and multi-layer neural networks) to statistical mod-
els (e.g. damped exponential smoothing and the Theta method) in time series
forecasting tasks and found that the latter consistently show greater predictive
accuracy; Kuhle et al. [65] found that random forests, gradient boosting and
neural networks did not outperform logistic regression in predicting fetal growth
abnormalities; Similarly, Wu et al. [120] have shown that a logistic regression
model performs as well as AdaBoost and even better than an SVM in predicting
heart disease from electronic health record data; Baesens et al. [7] showed that
simple interpretable classifiers perform competitively for credit scoring, and in
an update to the study the authors note that “the complexity and/or recency
of a classifier are misleading indicators of its prediction performance” [71].

Solution: We recommend starting with simple, interpretable models such as
linear regression models and decision trees. Generalized additive models (GAM)
[50] can serve as a gradual transition between simple linear models and more
complex machine learning models. GAMs have the desirable property that they
can additively model smooth, non-linear effects and provide PDPs out-of-the-
box, but without the potential pitfall of masking interactions (see Sect. 6). The
additive model structure of a GAM is specified before fitting the model so that
only the pre-specified feature or interaction effects are estimated. Interactions
between features can be added manually or algorithmically (e.g. via a forward
greedy search) [18]. GAMs can be fitted with component-wise boosting [99]. The
boosting approach allows to smoothly increase model complexity, from sparse
linear models to more complex GAMs with non-linear effects and interactions.
This smooth transition provides insight into the tradeoffs between model sim-
plicity and performance gains. Furthermore, component-wise boosting has an
in-built feature selection mechanism as the model is build incrementally, which
is especially useful in high-dimensional settings (see Sect. 9.1). The predictive
performance of models of different complexity should be carefully measured and
compared. Complex models should only be favored if the additional performance
gain is both significant and relevant – a judgment call that the practitioner must
ultimately make. Starting with simple models is considered best practice in data
science, independent of the question of interpretability [23]. The comparison of
predictive performance between model classes of different complexity can add
further insights for interpretation.

Open Issues: Measures of model complexity allow quantifying the trade-off
between complexity and performance and to automatically optimize for multiple
objectives beyond performance. Some steps have been made towards quantifying
model complexity, such as using functional decomposition and quantifying the
complexity of the components [82] or measuring the stability of predictions [92].
However, further research is required, as there is no single perfect definition of
interpretability, but rather multiple depending on the context [30,95].
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5 Ignoring Feature Dependence

5.1 Interpretation with Extrapolation

Pitfall: When features are dependent, perturbation-based IML methods such
as PFI, PDP, LIME, and Shapley values extrapolate in areas where the model
was trained with little or no training data, which can cause misleading interpre-
tations [55]. This is especially true if the ML model relies on feature interactions
[45] – which is often the case. Perturbations produce artificial data points that
are used for model predictions, which in turn are aggregated to produce global
or local interpretations [100]. Feature values can be perturbed by replacing orig-
inal values with values from an equidistant grid of that feature, with permuted
or randomly subsampled values [19], or with quantiles. We highlight two major
issues: First, if features are dependent, all three perturbation approaches pro-
duce unrealistic data points, i.e. the new data points are located outside of the
multivariate joint distribution of the data (see Fig. 4). Second, even if features
are independent, using an equidistant grid can produce unrealistic values for the
feature of interest. Consider a feature that follows a skewed distribution with
outliers. An equidistant grid would generate many values between outliers and
non-outliers. In contrast to the grid-based approach, the other two approaches
maintain the marginal distribution of the feature of interest.

Both issues can result in misleading interpretations (illustrative examples are
given in [55,84]), since the model is evaluated in areas of the feature space with
few or no observed real data points, where model uncertainty can be expected
to be very high. This issue is aggravated if interpretation methods integrate
over such points with the same weight and confidence as for much more realistic
samples with high model confidence.

Solution: Before applying interpretation methods, practitioners should check
for dependencies between features in the data, e.g. via descriptive statistics or
measures of dependence (see Sect. 5.2). When it is unavoidable to include depen-
dent features in the model (which is usually the case in ML scenarios), additional
information regarding the strength and shape of the dependence structure should
be provided. Sometimes, alternative interpretation methods can be used as a
workaround or to provide additional information. Accumulated local effect plots
(ALE) [3] can be applied when features are dependent, but can produce non-
intuitive effect plots for simple linear models with interactions [45]. For other
methods such as the PFI, conditional variants exist [17,84,107]. In the case
of LIME, it was suggested to focus in sampling on realistic (i.e. close to the
data manifold) [97] and relevant areas (e.g. close to the decision boundary) [69].
Note, however, that conditional interpretations are often different and should
not be used as a substitute for unconditional interpretations (see Sect. 5.3). Fur-
thermore, dependent features should not be interpreted separately but rather
jointly. This can be achieved by visualizing e.g. a 2-dimensional ALE plot of
two dependent features, which, admittedly, only works for very low-dimensional
combinations. Especially in high-dimensional settings where dependent features
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Fig. 4. Interpretation with extrapolation. Illustration of artificial data points gen-
erated by three different perturbation approaches. The black dots refer to observed data
points and the red crosses to the artificial data points.

can be grouped in a meaningful way, grouped interpretation methods might be
more reasonable (see Sect. 9.1).

We recommend using quantiles or randomly subsampled values over equidis-
tant grids. By default, many implementations of interpretability methods use an
equidistant grid to perturb feature values [41,81,89], although some also allow
using user-defined values.

Open Issues: A comprehensive comparison of strategies addressing extrapola-
tion and how they affect an interpretation method is currently missing. This also
includes studying interpretation methods and their conditional variants when
they are applied to data with different dependence structures.

5.2 Confusing Linear Correlation with General Dependence

Pitfall: Features with a Pearson correlation coefficient (PCC) close to zero can
still be dependent and cause misleading model interpretations (see Fig. 5). While
independence between two features implies that the PCC is zero, the converse is
generally false. The PCC, which is often used to analyze dependence, only tracks
linear correlations and has other shortcomings such as sensitivity to outliers
[113]. Any type of dependence between features can have a strong impact on the
interpretation of the results of IML methods (see Sect. 5.1). Thus, knowledge
about the (possibly non-linear) dependencies between features is crucial for an
informed use of IML methods.

Solution: Low-dimensional data can be visualized to detect dependence (e.g.
scatter plots) [80]. For high-dimensional data, several other measures of depen-
dence in addition to PCC can be used. If dependence is monotonic, Spearman’s
rank correlation coefficient [72] can be a simple, robust alternative to PCC.
For categorical or mixed features, separate dependence measures have been pro-
posed, such as Kendall’s rank correlation coefficient for ordinal features, or the
phi coefficient and Goodman & Kruskal’s lambda for nominal features [59].
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Fig. 5. Confusing linear correlation with dependence. Highly dependent fea-
tures X1 and X2 that have a correlation close to zero. A test (H0: Features are inde-
pendent) using Pearson correlation is not significant, but for HSIC, the H0-hypothesis
gets rejected. Data from [80].

Studying non-linear dependencies is more difficult since a vast variety of
possible associations have to be checked. Nevertheless, several non-linear asso-
ciation measures with sound statistical properties exist. Kernel-based measures,
such as kernel canonical correlation analysis (KCCA) [6] or the Hilbert-Schmidt
independence criterion (HSIC) [44], are commonly used. They have a solid the-
oretical foundation, are computationally feasible, and robust [113]. In addition,
there are information-theoretical measures, such as (conditional) mutual infor-
mation [24] or the maximal information coefficient (MIC) [93], that can however
be difficult to estimate [9,116]. Other important measures are e.g. the distance
correlation [111], the randomized dependence coefficient (RDC) [74], or the alter-
nating conditional expectations (ACE) algorithm [14]. In addition to using PCC,
we recommend using at least one measure that detects non-linear dependencies
(e.g. HSIC).

5.3 Misunderstanding Conditional Interpretation

Pitfall: Conditional variants of interpretation techniques avoid extrapolation
but require a different interpretation. Interpretation methods that perturb fea-
tures independently of others will extrapolate under dependent features but
provide insight into the model’s mechanism [56,61]. Therefore, these methods
are said to be true to the model but not true to the data [21].

For feature effect methods such as the PDP, the plot can be interpreted as
the isolated, average effect the feature has on the prediction. For the PFI, the
importance can be interpreted as the drop in performance when the feature’s
information is “destroyed” (by perturbing it). Marginal SHAP value functions
[78] quantify a feature’s contribution to a specific prediction, and marginal SAGE
value functions [25] quantify a feature’s contribution to the overall prediction
performance. All the aforementioned methods extrapolate under dependent fea-
tures (see also Sect. 5.1), but satisfy sensitivity, i.e. are zero if a feature is not
used by the model [25,56,61,110].
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Fig. 6. Misunderstanding conditional interpretation. A linear model was fit-
ted on the data-generating process modeled using a linear Gaussian structural causal
model. The entailed directed acyclic graph is depicted on the left. For illustrative pur-
poses, the original model coefficients were updated such that not only feature X3, but
also feature X2 is used by the model. PFI on test data considers both X3 and X2 to be
relevant. In contrast, conditional feature importance variants either only consider X3

to be relevant (CFI) or consider all features to be relevant (conditional SAGE value
function).

Conditional variants of these interpretation methods do not replace feature
values independently of other features, but in such a way that they conform to
the conditional distribution. This changes the interpretation as the effects of all
dependent features become entangled. Depending on the method, conditional
sampling leads to a more or less restrictive notion of relevance.

For example, for dependent features, the Conditional Feature Importance
(CFI) [17,84,107,117] answers the question: “How much does the model perfor-
mance drop if we permute a feature, but given that we know the values of the
other features?” [63,84,107].1 Two highly dependent features might be individu-
ally important (based on the unconditional PFI), but have a very low conditional
importance score because the information of one feature is contained in the other
and vice versa.

In contrast, the conditional variant of PDP, called marginal plot or M-plot
[3], violates sensitivity, i.e. may even show an effect for features that are not used
by the model. This is because for M-plots, the feature of interest is not sampled
conditionally on the remaining features, but rather the remaining features are
sampled conditionally on the feature of interest. As a consequence, the distri-
bution of dependent covariates varies with the value of the feature of interest.
Similarly, conditional SAGE and conditional SHAP value functions sample the
remaining features conditional on the feature of interest and therefore violate
sensitivity [25,56,61,109].

We demonstrate the difference between PFI, CFI, and conditional SAGE
value functions on a simulated example (Fig. 6) where the data-generating mech-

1 While for CFI the conditional independence of the feature of interest Xj with the
target Y given the remaining features X−j (Y ⊥ Xj |X−j) is already a sufficient
condition for zero importance, the corresponding PFI may still be nonzero [63].
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anism is known. While PFI only considers features to be relevant if they are
actually used by the model, SAGE value functions may also consider a feature
to be important that is not directly used by the model if it contains information
that the model exploits. CFI only considers a feature to be relevant if it is both
mechanistically used by the model and contributes unique information about Y .

Solution: When features are highly dependent and conditional effects and
importance scores are used, the practitioner must be aware of the distinct
interpretation. Recent work formalizes the implications of marginal and condi-
tional interpretation techniques [21,25,56,61,63]. While marginal methods pro-
vide insight into the model’s mechanism but are not true to the data, their
conditional variants are not true to the model but provide insight into the asso-
ciations in the data.

If joint insight into model and data is required, designated methods must be
used. ALE plots [3] provide interval-wise unconditional interpretations that are
true to the data. They have been criticized to produce non-intuitive results for
certain data-generating mechanisms [45]. Molnar et al. [84] propose a subgroup-
based conditional sampling technique that allows for group-wise marginal inter-
pretations that are true to model and data and that can be applied to fea-
ture importance and feature effects methods such as conditional PDPs and
CFI. For feature importance, the DEDACT framework [61] allows to decom-
pose conditional importance measures such as SAGE value functions into their
marginal contributions and vice versa, thereby allowing global insight into both:
the sources of prediction-relevant information in the data as well as into the
feature pathways by which the information enters the model.

Open Issues: The quality of conditional IML techniques depends on the good-
ness of the conditional sampler. Especially in continuous, high-dimensional set-
tings, conditional sampling is challenging. More research on the robustness of
interpretation techniques regarding the quality of the sample is required.

6 Misleading Interpretations Due to Feature Interactions

6.1 Misleading Feature Effects Due to Aggregation

Pitfall: Global interpretation methods, such as PDP or ALE plots, visualize
the average effect of a feature on a model’s prediction. However, they can pro-
duce misleading interpretations when features interact. Figure 7 A and B show
the marginal effect of features X1 and X2 of the below-stated simulation exam-
ple. While the PDP of the non-interacting feature X1 seems to capture the
true underlying effect of X1 on the target quite well (A), the global aggregated
effect of the interacting feature X2 (B) shows almost no influence on the target,
although an effect is clearly there by construction.
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Fig. 7. Misleading effect due to interactions. Simulation example with inter-

actions: Y = 3X1 − 6X2 + 12X21(X3≥0) + ε with X1, X2, X3
i.i.d.∼ U [−1, 1] and

ε
i.i.d.∼ N(0, 0.3). A random forest with 500 trees is fitted on 1000 observations. Effects

are calculated on 200 randomly sampled (training) observations. A, B: PDP (yellow)
and ICE curves of X1 and X2; C: Derivative ICE curves and their standard deviation
of X2; D: 2-dimensional PDP of X2 and X3.

Solution: For the PDP, we recommend to additionally consider the correspond-
ing ICE curves [38]. While PDP and ALE average out interaction effects, ICE
curves directly show the heterogeneity between individual predictions. Figure 7
A illustrates that the individual marginal effect curves all follow an upward trend
with only small variations. Hence, by aggregating these ICE curves to a global
marginal effect curve such as the PDP, we do not lose much information. How-
ever, when the regarded feature interacts with other features, such as feature X2

with feature X3 in this example, then marginal effect curves of different obser-
vations might not show similar effects on the target. Hence, ICE curves become
very heterogeneous, as shown in Fig. 7 B. In this case, the influence of feature
X2 is not well represented by the global average marginal effect. Particularly
for continuous interactions where ICE curves start at different intercepts, we
recommend the use of derivative or centered ICE curves, which eliminate differ-
ences in intercepts and leave only differences due to interactions [38]. Derivative
ICE curves also point out the regions of highest interaction with other features.
For example, Fig. 7 C indicates that predictions for X2 taking values close to 0
strongly depend on other features’ values. While these methods show that inter-
actions are present with regards to the feature of interest but do not reveal other
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features with which it interacts, the 2-dimensional PDP or ALE plot are options
to visualize 2-way interaction effects. The 2-dimensional PDP in Fig. 7 D shows
that predictions with regards to feature X2 highly depend on the feature values
of feature X3.

Other methods that aim to gain more insights into these visualizations are
based on clustering homogeneous ICE curves, such as visual interaction effects
(VINE) [16] or [122]. As an example, in Fig. 7 B, it would be more meaningful to
average over the upward and downward proceeding ICE curves separately and
hence show that the average influence of feature X2 on the target depends on
an interacting feature (here: X3). Work by Zon et al. [125] followed a similar
idea by proposing an interactive visualization tool to group Shapley values with
regards to interacting features that need to be defined by the user.

Open Issues: The introduced visualization methods are not able to illustrate
the type of the underlying interaction and most of them are also not applicable
to higher-order interactions.

6.2 Failing to Separate Main from Interaction Effects

Pitfall: Many interpretation methods that quantify a feature’s importance or
effect cannot separate an interaction from main effects. The PFI, for example,
includes both the importance of a feature and the importance of all its interac-
tions with other features [19]. Also local explanation methods such as LIME and
Shapley values only provide additive explanations without separation of main
effects and interactions [40].

Solution: Functional ANOVA introduced by [53] is probably the most popular
approach to decompose the joint distribution into main and interaction effects.
Using the same idea, the H-Statistic [35] quantifies the interaction strength
between two features or between one feature and all others by decomposing
the 2-dimensional PDP into its univariate components. The H-Statistic is based
on the fact that, in the case of non-interacting features, the 2-dimensional par-
tial dependence function equals the sum of the two underlying univariate par-
tial dependence functions. Another similar interaction score based on partial
dependencies is defined by [42]. Instead of decomposing the partial dependence
function, [87] uses the predictive performance to measure interaction strength.
Based on Shapley values, Lundberg et al. [77] proposed SHAP interaction val-
ues, and Casalicchio et al. [19] proposed a fair attribution of the importance of
interactions to the individual features.

Furthermore, Hooker [54] considers dependent features and decomposes the
predictions in main and interaction effects. A way to identify higher-order inter-
actions is shown in [53].

Open Issues: Most methods that quantify interactions are not able to identify
higher-order interactions and interactions of dependent features. Furthermore,



54 C. Molnar et al.

the presented solutions usually lack automatic detection and ranking of all inter-
actions of a model. Identifying a suitable shape or form of the modeled inter-
action is not straightforward as interactions can be very different and complex,
e.g., they can be a simple product of features (multiplicative interaction) or can
have a complex joint non-linear effect such as smooth spline surface.

7 Ignoring Model and Approximation Uncertainty

Pitfall: Many interpretation methods only provide a mean estimate but do not
quantify uncertainty. Both the model training and the computation of interpre-
tation are subject to uncertainty. The model is trained on (random) data, and
therefore should be regarded as a random variable. Similarly, LIME’s surrogate
model relies on perturbed and reweighted samples of the data to approximate the
prediction function locally [94]. Other interpretation methods are often defined
in terms of expectations over the data (PFI, PDP, Shapley values, ...), but are
approximated using Monte Carlo integration. Ignoring uncertainty can result in
the interpretation of noise and non-robust results. The true effect of a feature
may be flat, but – purely by chance, especially on smaller datasets – the Shap-
ley value might show an effect. This effect could cancel out once averaged over
multiple model fits.

Fig. 8. Ignoring model and approximation uncertainty. PDP for X1 with Y =
0 ·X1 +

∑10
j=2 Xj + εi with X1, . . . , X10 ∼ U [0, 1] and εi ∼ N(0, 0.9). Left: PDP for X1

of a random forest trained on 100 data points. Middle: Multiple PDPs (10x) for the
model from left plots, but with different samples (each n=100) for PDP estimation.
Right: Repeated (10x) data samples of n=100 and newly fitted random forest.

Figure 8 shows that a single PDP (first plot) can be misleading because it
does not show the variance due to PDP estimation (second plot) and model
fitting (third plot). If we are not interested in learning about a specific model,
but rather about the relationship between feature X1 and the target (in this
case), we should consider the model variance.
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Solution: By repeatedly computing PDP and PFI with a given model, but with
different permutations or bootstrap samples, the uncertainty of the estimate
can be quantified, for example in the form of confidence intervals. For PFI,
frameworks for confidence intervals and hypothesis tests exist [2,117], but they
assume a fixed model. If the practitioner wants to condition the analysis on the
modeling process and capture the process’ variance instead of conditioning on a
fixed model, PDP and PFI should be computed on multiple model fits [83].

Open Issues: While Moosbauer et al. [85] derived confidence bands for PDPs
for probabilistic ML models that cover the model’s uncertainty, a general model-
agnostic uncertainty measure for feature effect methods such as ALE [3] and PDP
[36] has (to the best of our knowledge) not been introduced yet.

8 Ignoring the Rashomon Effect

Pitfall: Sometimes different models explain the data-generating process equally
well, but contradict each other. This phenomenon is called the Rashomon effect,
named after the movie “Rashomon” from the year 1950. Breiman formalized it
for predictive models in 2001 [13]: Different prediction models might perform
equally well (Rashomon set), but construct the prediction function in a different
way (e.g. relying on different features). This can result in conflicting interpre-
tations and conclusions about the data. Even small differences in the training
data can cause one model to be preferred over another.

For example, Dong and Rudin [29] identified a Rashomon set of equally well
performing models for the COMPAS dataset. They showed that the models
differed greatly in the importance they put on certain features. Specifically, if
criminal history was identified as less important, race was more important and
vice versa. Cherry-picking one model and its underlying explanation might not
be sufficient to draw conclusions about the data-generating process. As Hancox-
Li [48] states “just because race happens to be an unimportant variable in that
one explanation does not mean that it is objectively an unimportant variable”.

The Rashomon effect can also occur at the level of the interpretation method
itself. Differing hyperparameters or interpretation goals can be one reason (see
Sect. 2). But even if the hyperparameters are fixed, we could still obtain contra-
dicting explanations by an interpretation method, e.g., due to a different data
sample or initial seed.

A concrete example of the Rashomon effect is counterfactual explanations.
Different counterfactuals may all alter the prediction in the desired way, but
point to different feature changes required for that change. If a person is deemed
uncreditworthy, one corresponding counterfactual explaining this decision may
point to a scenario in which the person had asked for a shorter loan duration
and amount, while another counterfactual may point to a scenario in which
the person had a higher income and more stable job. Focusing on only one
counterfactual explanation in such cases strongly limits the possible epistemic
access.
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Solution: If multiple, equally good models exist, their interpretations should
be compared. Variable importance clouds [29] is a method for exploring variable
importance scores for equally good models within one model class. If the interpre-
tations are in conflict, conclusions must be drawn carefully. Domain experts or
further constraints (e.g. fairness or sparsity) could help to pick a suitable model.
Semenova et al. [102] also hypothesized that a large Rashomon set could contain
simpler or more interpretable models, which should be preferred according to
Sect. 4.

In the case of counterfactual explanations, multiple, equally good explana-
tions exist. Here, methods that return a set of explanations rather than a single
one should be used – for example, the method by Dandl et al. [26] or Mothilal
et al. [86].

Open Issues: Numerous very different counterfactual explanations are over-
whelming for users. Methods for aggregating or combining explanations are still
a matter of future research.

9 Failure to Scale to High-Dimensional Settings

9.1 Human-Intelligibility of High-Dimensional IML Output

Pitfall: Applying IML methods naively to high-dimensional datasets (e.g. visu-
alizing feature effects or computing importance scores on feature level) leads to
an overwhelming and high-dimensional IML output, which impedes human anal-
ysis. Especially interpretation methods that are based on visualizations make
it difficult for practitioners in high-dimensional settings to focus on the most
important insights.

Solution: A natural approach is to reduce the dimensionality before applying
any IML methods. Whether this facilitates understanding or not depends on
the possible semantic interpretability of the resulting, reduced feature space –
as features can either be selected or dimensionality can be reduced by linear
or non-linear transformations. Assuming that users would like to interpret in
the original feature space, many feature selection techniques can be used [46],
resulting in much sparser and consequently easier to interpret models. Wrap-
per selection approaches are model-agnostic and algorithms like greedy forward
selection or subset selection procedures [5,60], which start from an empty model
and iteratively add relevant (subsets of) features if needed, even allow to measure
the relevance of features for predictive performance. An alternative is to directly
use models that implicitly perform feature selection such as LASSO [112] or
component-wise boosting [99] as they can produce sparse models with fewer fea-
tures. In the case of LIME or other interpretation methods based on surrogate
models, the aforementioned techniques could be applied to the surrogate model.

When features can be meaningfully grouped in a data-driven or knowledge-
driven way [51], applying IML methods directly to grouped features instead of



General Pitfalls of Model-Agnostic Interpretation 57

single features is usually more time-efficient to compute and often leads to more
appropriate interpretations. Examples where features can naturally be grouped
include the grouping of sensor data [20], time-lagged features [75], or one-hot-
encoded categorical features and interaction terms [43]. Before a model is fitted,
groupings could already be exploited for dimensionality reduction, for example
by selecting groups of features by the group LASSO [121].

For model interpretation, various papers extended feature importance meth-
ods from single features to groups of features [5,43,114,119]. In the case of
grouped PFI, this means that we perturb the entire group of features at once
and measure the performance drop compared to the unperturbed dataset. Com-
pared to standard PFI, the grouped PFI does not break the association to the
other features of the group, but to features of other groups and the target. This is
especially useful when features within the same group are highly correlated (e.g.
time-lagged features), but between-group dependencies are rather low. Hence,
this might also be a possible solution for the extrapolation pitfall described in
Sect. 5.1.

We consider the PhoneStudy in [106] as an illustration. The PhoneStudy
dataset contains 1821 features to analyze the link between human behavior based
on smartphone data and participants’ personalities. Interpreting the results in
this use case seems to be challenging since features were dependent and single
feature effects were either small or non-linear [106]. The features have been
grouped in behavior-specific categories such as app-usage, music consumption,
or overall phone usage. Au et al. [5] calculated various grouped importance
scores on the feature groups to measure their influence on a specific personality
trait (e.g. conscientiousness). Furthermore, the authors applied a greedy forward
subset selection procedure via repeated subsampling on the feature groups and
showed that combining app-usage features and overall phone usage features were
most of the times sufficient for the given prediction task.

Open Issues: The quality of a grouping-based interpretation strongly depends
on the human intelligibility and meaningfulness of the grouping. If the grouping
structure is not naturally given, then data-driven methods can be used. However,
if feature groups are not meaningful (e.g. if they cannot be described by a super-
feature such as app-usage), then subsequent interpretations of these groups are
purposeless. One solution could be to combine feature selection strategies with
interpretation methods. For example, LIME’s surrogate model could be a LASSO
model. However, beyond surrogate models, the integration of feature selection
strategies remains an open issue that requires further research.

Existing research on grouped interpretation methods mainly focused on quan-
tifying grouped feature importance, but the question of “how a group of fea-
tures influences a model’s prediction” remains almost unanswered. Only recently,
[5,15,101] attempted to answer this question by using dimension-reduction tech-
niques (such as PCA) before applying the interpretation method. However, this
is also a matter of further research.
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9.2 Computational Effort

Pitfall: Some interpretation methods do not scale linearly with the number of
features. For example, for the computation of exact Shapley values the number
of possible coalitions [25,78], or for a (full) functional ANOVA decomposition
the number of components (main effects plus all interactions) scales with O(2p)
[54].2

Solution: For the functional ANOVA, a common solution is to keep the analysis
to the main effects and selected 2-way interactions (similar for PDP and ALE).
Interesting 2-way interactions can be selected by another method such as the
H-statistic [35]. However, the selection of 2-way interactions requires additional
computational effort. Interaction strength usually decreases quickly with increas-
ing interaction size, and one should only consider d-way interactions when all
their (d−1)-way interactions were significant [53]. For Shapley-based methods, an
efficient approximation exists that is based on randomly sampling and evaluat-
ing feature orderings until the estimates converge. The variance of the estimates
reduces in O( 1

m ), where m is the number of evaluated orderings [25,78].

9.3 Ignoring Multiple Comparison Problem

Pitfall: Simultaneously testing the importance of multiple features will result
in false-positive interpretations if the multiple comparisons problem (MCP) is
ignored. The MCP is well known in significance tests for linear models and
exists similarly in testing for feature importance in ML. For example, suppose
we simultaneously test the importance of 50 features (with the H0-hypothesis
of zero importance) at the significance level α = 0.05. Even if all features are
unimportant, the probability of observing that at least one feature is significantly
important is 1 − P(‘no feature important’) = 1 − (1 − 0.05)50 ≈ 0.923. Multiple
comparisons become even more problematic the higher the dimension of the
dataset.

Solution: Methods such as Model-X knockoffs [17] directly control for the false
discovery rate (FDR). For all other methods that provide p-values or confidence
intervals, such as PIMP (Permutation IMPortance) [2], which is a testing app-
roach for PFI, MCP is often ignored in practice to the best of our knowledge,
with some exceptions[105,117]. One of the most popular MCP adjustment meth-
ods is the Bonferroni correction [31], which rejects a null hypothesis if its p-value
is smaller than α/p, with p as the number of tests. It has the disadvantage that
it increases the probability of false negatives [90]. Since MCP is well known
in statistics, we refer the practitioner to [28] for an overview and discussion of
alternative adjustment methods, such as the Bonferroni-Holm method [52].

2 Similar to the PDP or ALE plots, the functional ANOVA components describe
individual feature effects and interactions.
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Fig. 9. Failure to scale to high-dimensional settings. Comparison of the num-
ber of features with significant importance - once with and once without Bonferroni-
corrected significance levels for a varying number of added noise variables. Datasets
were sampled from Y = 2X1 + 2X2

2 + ε with X1, X2, ε ∼ N(0, 1). X3, X4, ..., Xp ∼
N(0, 1) are additional noise variables with p ranging between 2 and 1000. For each p,
we sampled two datasets from this data-generating process – one to train a random
forest with 500 trees on and one to test whether feature importances differed from 0
using PIMP. In all experiments, X1 and X2 were correctly identified as important.

As an example, in Fig. 9 we compare the number of features with significant
importance measured by PIMP once with and once without Bonferroni-adjusted
significance levels (α = 0.05 vs. α = 0.05/p). Without correcting for multi-
comparisons, the number of features mistakenly evaluated as important grows
considerably with increasing dimension, whereas Bonferroni correction results in
only a modest increase.

10 Unjustified Causal Interpretation

Pitfall: Practitioners are often interested in causal insights into the underly-
ing data-generating mechanisms, which IML methods do not generally provide.
Common causal questions include the identification of causes and effects, pre-
dicting the effects of interventions, and answering counterfactual questions [88].
For example, a medical researcher might want to identify risk factors or predict
average and individual treatment effects [66]. In search of answers, a researcher
can therefore be tempted to interpret the result of IML methods from a causal
perspective.

However, a causal interpretation of predictive models is often not possible.
Standard supervised ML models are not designed to model causal relationships
but to merely exploit associations. A model may therefore rely on causes and
effects of the target variable as well as on variables that help to reconstruct
unobserved influences on Y , e.g. causes of effects [118]. Consequently, the ques-
tion of whether a variable is relevant to a predictive model (indicated e.g. by
PFI > 0) does not directly indicate whether a variable is a cause, an effect,
or does not stand in any causal relation to the target variable. Furthermore,
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even if a model would rely solely on direct causes for the prediction, the causal
structure between features must be taken into account. Intervening on a variable
in the real world may affect not only Y but also other variables in the feature
set. Without assumptions about the underlying causal structure, IML methods
cannot account for these adaptions and guide action [58,62].

As an example, we constructed a dataset by sampling from a structural causal
model (SCM), for which the corresponding causal graph is depicted in Fig. 10. All
relationships are linear Gaussian with variance 1 and coefficients 1. For a linear
model fitted on the dataset, all features were considered to be relevant based
on the model coefficients (ŷ = 0.329x1 + 0.323x2 − 0.327x3 + 0.342x4 + 0.334x5,
R2 = 0.943), although x3, x4 and x5 do not cause Y .

Solution: The practitioner must carefully assess whether sufficient assumptions
can be made about the underlying data-generating process, the learned model,
and the interpretation technique. If these assumptions are met, a causal inter-
pretation may be possible. The PDP between a feature and the target can be
interpreted as the respective average causal effect if the model performs well and
the set of remaining variables is a valid adjustment set [123]. When it is known
whether a model is deployed in a causal or anti-causal setting – i.e. whether
the model attempts to predict an effect from its causes or the other way round
– a partial identification of the causal roles based on feature relevance is pos-
sible (under strong and non-testable assumptions) [118]. Designated tools and
approaches are available for causal discovery and inference [91].

Open Issues: The challenge of causal discovery and inference remains an open
key issue in the field of ML. Careful research is required to make explicit under
which assumptions what insight about the underlying data-generating mecha-
nism can be gained by interpreting an ML model.

Fig. 10. Causal graph

11 Discussion

In this paper, we have reviewed numerous pitfalls of local and global model-
agnostic interpretation techniques, e.g. in the case of bad model generalization,
dependent features, interactions between features, or causal interpretations. We
have not attempted to provide an exhaustive list of all potential pitfalls in ML
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model interpretation, but have instead focused on common pitfalls that apply
to various model-agnostic IML methods and pose a particularly high risk.

We have omitted pitfalls that are more specific to one IML method type:
For local methods, the vague notions of neighborhood and distance can lead to
misinterpretations [68,69], and common distance metrics (such as the Euclidean
distance) are prone to the curse of dimensionality [1]; Surrogate methods such
as LIME may not be entirely faithful to the original model they replace in
interpretation. Moreover, we have not addressed pitfalls associated with certain
data types (like the definition of superpixels in image data [98]), nor those related
to human cognitive biases (e.g. the illusion of model understanding [22]).

Many pitfalls in the paper are strongly linked with axioms that encode
desiderata of model interpretation. For example, pitfall Sect. 5.3 (misunderstand-
ing conditional interpretations) is related to violations of sensitivity [56,110]. As
such, axioms can help to make the strengths and limitations of methods explicit.
Therefore, we encourage an axiomatic evaluation of interpretation methods.

We hope to promote a more cautious approach when interpreting ML models
in practice, to point practitioners to already (partially) available solutions, and
to stimulate further research on these issues. The stakes are high: ML algorithms
are increasingly used for socially relevant decisions, and model interpretations
play an important role in every empirical science. Therefore, we believe that
users can benefit from concrete guidance on properties, dangers, and problems
of IML techniques – especially as the field is advancing at high speed. We need
to strive towards a recommended, well-understood set of tools, which will in turn
require much more careful research. This especially concerns the meta-issues of
comparisons of IML techniques, IML diagnostic tools to warn against mislead-
ing interpretations, and tools for analyzing multiple dependent or interacting
features.
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Abstract

The Shapley Additive Global Importance
(SAGE) value is a theoretically appealing inter-
pretability method that fairly attributes global
importance to a model’s features. However, its
exact calculation requires the computation of the
feature’s surplus performance contributions over
an exponential number of feature sets. This is
computationally expensive, particularly because
estimating the surplus contributions requires
sampling from conditional distributions. Thus,
SAGE approximation algorithms only take a
fraction of the feature sets into account. We
propose d-SAGE, a method that accelerates
SAGE approximation. d-SAGE is motivated by
the observation that conditional independencies
(CIs) between a feature and the model target
imply zero surplus contributions, such that their
computation can be skipped. To identify CIs,
we leverage causal structure learning (CSL)
to infer a graph that encodes (conditional)
independencies in the data as d-separations. This
is computationally more efficient because the
expense of the one-time graph inference and the
d-separation queries is negligible compared to
the expense of surplus contribution evaluations.
Empirically we demonstrate that d-SAGE en-
ables the efficient and accurate estimation of
SAGE values.

1 INTRODUCTION

Machine learning (ML) is increasingly deployed in various
fields, ranging from the sciences (Reichstein et al., 2019;
Schmidt et al., 2019; Luan and Tsai, 2021; Farrell et al.,

∗Equal contribution.
Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2023, Valencia, Spain.
PMLR: Volume 206. Copyright 2023 by the author(s).

2018) to high-stakes decisions about individuals (Ragha-
van et al., 2020; Zeng et al., 2017; Obermeyer and Mul-
lainathan, 2019). Despite impressive successes in predic-
tive performance (Senior et al., 2020; Bhatt et al., 2020),
the complexity of ML models makes it difficult to assess
their trustworthiness or to gain knowledge about the data
generating process. In recent years, the advent of inter-
pretable machine learning has brought about a plethora of
methods that provide insight into model and data (Molnar,
2020). Among those, interpretability methods based on
the Shapley value from game theory (Shapley, 1953) have
gained popularity as they satisfy desirable fairness proper-
ties (Štrumbelj and Kononenko, 2014; Datta et al., 2016;
Lundberg and Lee, 2017; Sundararajan and Najmi, 2020;
Covert et al., 2020).

SAGE values (Covert et al., 2020) apply Shapley values to
fairly attribute the model’s predictive performance to the
features, thereby providing valuable insight into dependen-
cies in the data. They are particularly appealing for scien-
tific inference since they can be linked to properties of the
data generating process (Covert et al., 2020; Freiesleben
et al., 2022). The building blocks for SAGE values are
so-called SAGE value functions ν(XS) that measure the
performance contribution of arbitrary subsets of features
XS . Based on these value functions, a feature’s importance
value ϕ is computed as the average surplus contribution
ν(XS∪j) − ν(XS) of the feature Xj over all possible sub-
sets XS of the remaining features. This is a computation-
ally demanding procedure due to the number of coalitions
XS that grows exponentially with the number of features
(Covert et al., 2020; Van den Broeck et al., 2022) and the
high expense of evaluating ν which stems from the condi-
tional sampling that is required for its estimation. In prac-
tice, (Covert et al., 2020) address the exponential number
of coalitions by only computing the respective surplus con-
tribution for a randomly sampled subset of the coalitions.1

1Furthermore, Covert et al. (2020) avoid conditional sampling
for the evaluation of ν by employing marginal sampling instead.
If features are dependent, this leads to extrapolation and does not
allow linking the SAGE values to properties of the data generating
process (Chen et al., 2020). In this work, we focus on estimating
conditional SAGE values.
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In this work, we suggest exploiting the dependence struc-
ture in the data to speed up the estimation of (conditional
sampling based) SAGE values in an approach we coin d-
SAGE. More specifically, we show that the surplus contri-
bution ν(XS∪j) − ν(XS) is zero for optimal predictors if
the variable of interest is conditionally independent of the
model’s target given the respective subset of remaining fea-
tures (i.e., ifXj ⊥ Y |XS , Theorem 1). As such, if we know
the conditional independencies (CIs) in the data, the re-
spective value function evaluations can be skipped. Since,
in general, the dependence structure is unknown, and con-
ditional independence testing is expensive, we leverage re-
search in causal structure learning (CSL) that allows us to
greedily learn graphical models which encode the depen-
dence structure in the data.

Overall, the approach is based on the following rationale:
The quality of SAGE approximation hinges on the number
of evaluations of ν that each require estimating conditional
expectations and thus are computationally expensive.2 d-
SAGE relies on the one-time estimation of a causal graph,
which in practice can be performed by greedy-search al-
gorithms in polynomial time (Scutari et al., 2019b). The
estimated graph then allows to identify CIs using linear-
time d-separation queries (Hagberg et al., 2008; Darwiche,
2009). Every found d-separation, in turn, warrants to spare
an expensive evaluation of ν(XS∪j)− ν(XS). Since graph
learning has to be performed only once and d-separation
queries are highly efficient, the runtime of SAGE estima-
tion can be reduced significantly by skipping the computa-
tion of ν(XS∪j) − ν(XS) whenever warranted. We show
empirically that the saved runtime is approximately equal
to the share of CIs.

1.1 Contributions

We propose d-SAGE, the first method that exploits the de-
pendence structure in the data to make SAGE estimation
more efficient. More specifically, we find that CIs in the
data imply that the respective (expensive) surplus evalua-
tions can be skipped and suggest leveraging greedy CSL
for their identification (Section 4). To select a suitable CSL
algorithm, we perform a benchmark that, in contrast to pre-
vious work, evaluates the algorithms’ ability to efficiently
identify CIs in the data (Section 5.1). On twelve synthetic
datasets, we demonstrate empirically that d-SAGE and the
approximation algorithm by Covert et al. (2020) converge
towards the same estimates but that d-SAGE is significantly
faster. We find that the computational overhead of learning
the causal structure is negligible compared to the compu-
tational cost of the surplus evaluations, such that the over-
all runtime reduction is approximately equal to the share

2The expense of the computation depends on the type of data
for which the conditional expectation shall be computed. Previous
work in the field assumes polynomial complexity for the operation
(Van den Broeck et al., 2022).

of CIs found in the data (Section 5.2). Consequently, d-
SAGE enables the application of SAGE for larger models,
especially in sparse settings.

2 RELATED WORK

While there are many attempts to tackle the complexity of
Shapley value based methods, most existing work targets
speeding up SHAP (Lundberg and Lee, 2017) estimation
(Jethani et al., 2021; Covert and Lee, 2021; Li et al., 2020)
or is limited to be applied with random forests (Bénard
et al., 2022). In contrast, our work is model-agnostic and
targets improving SAGE estimation. Moreover, none of the
existing work exploits the dependence structure in the data
to yield efficiency gains. As such, we see our work as com-
plementary to the approach of Mitchell et al. (2022), who
suggest to carefully select permutations.

In recent years, concepts from causality have also been
introduced to Shapley value based importance measures
to adapt them to answer specific questions or to improve
model interpretation. Frye et al. (2020b), for example, in-
troduce asymmetric Shapley values that can either shift the
explanatory power of all variables along a causal chain to-
wards the root cause (distal approach) or towards immedi-
ate causes (proximate approach). Moreover, Heskes et al.
(2020) use Pearl’s do-calculus to develop causal Shapley
values and Wang et al. (2021) propose to attach importance
to edges in a causal graph instead of explanatory variables,
i.e., nodes in the graph. In contrast to the literature, we seek
efficiency gains for feature attributions from causal infer-
ence research while retaining the principle of SAGE values
unaltered.

We do, however, make use of CSL. Scutari et al. (2019a)
and Constantinou et al. (2021) provide large-scale bench-
mark studies of structure learning algorithms. In short, both
studies agree on the superiority of score-based structure
learning based on greedy search algorithms over constraint-
based and hybrid methods. These findings motivate our
choice of CSL algorithms for d-separation inference. In
contrast to existing work, our benchmark does not focus on
recovering the causal structure but on detecting CIs in the
data.

3 BACKGROUND

This section serves to familiarise the reader with the basic
concepts required to understand this paper. First, we in-
troduce SAGE values for global feature importance. We
then explain CSL, which we later use to speed up SAGE
estimation.
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3.1 Shapley Additive Global Importance

The Shapley value, which was initially proposed in game
theory (Shapley, 1953), is commonly applied for feature
relevance quantification (Štrumbelj and Kononenko, 2014;
Datta et al., 2016; Lundberg and Lee, 2017; Sundararajan
and Najmi, 2020; Covert et al., 2020). In the study of co-
operative games, it serves to fairly attribute the outcome of
a game to all participating players. The principle can be
applied to assess the relevance of variables for a predictor
f , where the predictive performance is the outcome of the
game and the variables are the players. Covert et al. (2020)
leverage Shapley values to derive a global measure of fea-
ture importance, i.e. SAGE values. Global in this context
means that the importance of a feature across all instances
in a sample is assessed. For an arbitrary model f̂ using in-
puts x1, ..., xd, Covert et al. (2020) define the SAGE value
for the j-th feature as:

ϕj(ν) =
1

d!

∑

π∈Π(d)

(
ν({Xi : π(i) ≤ π(j)})

− ν({Xi : π(i) < π(j)})
)

(1)

where Xj is the random variable corresponding to feature
observation xj , Π(d) is the set of all permutations of in-
dices {1, ..., d}, π a specific permutation and π(j) the po-
sition of feature j in permutation π. For the sake of read-
ability, we use the more general notation XS instead of
{Xi : π(i) < π(j)} as input to the value function ν with
XS being any set of features and S the collection of indices
of the contained features, i.e. S ⊆ {1, ..., d} (S̄ is its com-
plementary set). ν(XS) is defined as

ν(XS) = EX,Y [ℓ(f̂∅(X∅), Y )]− EX,Y [ℓ(f̂S(XS), Y )],

where ℓ(·) is any admissible loss function and f̂S(xS) =

EXS̄ |XS
[f̂(X)|XS = xS ]. Thus, ν(XS) is the reduction in

risk induced by adding XS . Consequently, SAGE values
gauge a feature j’s importance using the average over the
additional reduction in risk of the feature compared to any
existing coalition.

SAGE values are particularly appealing as they satisfy six
desirable fairness axioms that set them apart from other
feature importance measures: efficiency, the dummy prop-
erty, symmetry, monotonicity, linearity3 and invariance to
monotone transformations. Despite a thorough mathemat-
ical foundation and the fulfilment of mentioned desider-
ata, SAGE values have a major drawback: They require
the evaluation of an exponential number of surplus evalua-
tions, which is computationally infeasible. In practice, only
a subset of possible coalitions is evaluated (cf. Section 3.2).

3For simplicity we employ the names of these Shapley value
properties for the SAGE properties that are described in Appendix
D.

To estimate SAGE values, access to the conditional fea-
ture distributions is required; More specifically, we need
to sample from P (XS̄ |XS) to estimate the marginalized
prediction f̂S(xS) = EXS̄ |XS

[f̂(X)|XS = xS ]. How-
ever, conditional samplers may not be readily available in
practice. Covert et al. (2020) suggest eluding the prob-
lem by sampling from P (XS̄) instead (marginal sampling).
Albeit easy to implement (and computationally efficient),
marginal sampling may generate unrealistic data points
(xS , xS̄) and thus marginal-sampling based SAGE values
are not suitable for inference about the data generating pro-
cess or to understand the model’s behaviour in the obser-
vational distribution (Frye et al., 2020a; Chen et al., 2020;
Aas et al., 2021; Molnar et al., 2022). Therefore, we focus
on conditional SAGE and estimate the conditional distribu-
tions if they are not known.

For conditional distribution estimation, a variety of
techniques can be employed. For categorical variables,
estimating the conditional reduces to standard supervised
learning with cross-entropy loss. For linear Gaussian data,
it can be estimated analytically from the covariance matrix
(Page Jr, 1984). A range of methods exist for continuous
settings with nonlinearities (Bishop, 1994; Bashtannyk
and Hyndman, 2001; Sohn et al., 2015; Trippe and Turner,
2018; Winkler et al., 2019; Hothorn and Zeileis, 2021). For
mixed data, a sequential design can be employed (Blesch
et al., 2022).

3.2 Intractability of SAGE and Approximation
Algorithm

For the Shapley based interpretability approach SHAP in-
tractability was proven (Van den Broeck et al., 2022). For
the exact computation, the surplus contribution for all pos-
sible subsets of the remaining features must be evaluated.
The number of possible subsets grows exponentially in the
number of features.

Exact SAGE estimation also suffers from the exponential
number of coalitions. To address the issue, Covert et al.
(2020) propose an approximation algorithm that does not
take all possible coalitions into account. More specifically,
the authors propose to repetitively sample permutations π
from the feature indices. Then, for every element of the
current permutation, starting with the first one, they suc-
cessively compute ∆j|S := ν(XS∪j)− ν(XS) with the set
XS being all features that come before the feature of in-
terest j in π. The mean of all ∆j|S values for Xj over
the number of repetitions then is its estimated importance
ϕ̂j(ν). The approximation algorithm is unbiased and the
variance of the estimate reduces in O( 1n ) (Covert et al.,
2020). However, considering the risk evaluation required
for estimating ν, the procedure based on conditional sam-
pling remains computationally demanding.
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3.3 Causal Structure Learning

This section deals with the introduction of CSL used to es-
timate graphs representing d-separations. d-separation is
the graphical equivalent to conditional independence in the
underlying distribution. Both concepts are indeed equiva-
lent under two standard assumptions: (1) that the Markov
property is fulfilled and (2) that the distribution is faith-
ful w.r.t. the graph. Since we merely use graphs to read
off d-separations, we leave out a holistic coverage and re-
fer the reader to Darwiche (2009) and Pearl (2009). Here, it
shall suffice that we refer to a directed acyclic graph (DAG)
whose nodes represent random variables from the underly-
ing distribution and whose edges reflect direct dependen-
cies in the data. Edge directions are further interpreted as
cause-effect relations. We now briefly summarise the infer-
ence of such graphs from data.

Generally, one distinguishes between constraint-based and
score-based methods. The former use CIs inferred from
data as constraints on where to draw edges. The latter ex-
plore the space of all possible DAGs over the given vari-
ables and assign scores to every visited graph. The out-
put of the algorithm is the highest scoring graph. Since the
space of DAGs over a set of variables or nodes grows super-
exponentially in the set’s cardinality, score-based methods
often rely on greedy search techniques. In addition, hy-
brid methods combine both CIs as constraints and scoring
of graphs to assess candidates.

In this work, we focus on greedy structure learning that
performed best in recent benchmarks (Scutari et al., 2019a;
Constantinou et al., 2021). More precisely, we rely on
structure inference based on hill-climbing (HC) and TABU
search (Russell and Norvig, 2009; Scutari et al., 2019b).
Crucially, both algorithms use the Bayesian information
criterion (Schwarz, 1978), which satisfies two key prop-
erties, consistency and local consistency4 (Gámez et al.,
2011; Chickering, 2003). Gámez et al. (2011) show that
for HC for a dataset of size n and iid data, the output graph
is a minimal I-Map of the underlying distribution if n→∞
and the scoring function satisfies consistency and local con-
sistency. By definition of a minimal I-Map, the set of CIs
represented by d-separation in the graph is a subset of the
CIs in the distribution. Hence, while there might be in-
dependencies in the underlying distribution of the data not
represented by d-separation, there are no instances of d-
separations that do not correspond to independencies. Note
that HC introduces a DAG structure of the output graph but
the assumption on the data is just being an iid sample. The
proof, however, hinges on the assumption of faithfulness.
For linear models, though, the probability of faithfulness
being violated is shown to be zero if model parameters are
randomly drawn from positive densities (cf. Peters et al.

4The Bayesian Dirichlet equivalent uniform (BDeu) score sat-
isfies the properties too and is a valid alternative.

(2017), Spirtes et al. (2000)). While there is no similar the-
oretical result for TABU, the latter is an extension of HC
and exhibits similar behaviour in practice (cf. Section 5.1).

4 CAUSAL STRUCTURE LEARNING
FOR EFFICIENT SAGE ESTIMATION

SAGE estimation is computationally challenging. For an
exact computation, the surplus contribution of the feature
of interest j with respect to every possible coalition XS
of the remaining features must be computed. The surplus
contribution is defined as in Section 3.2

∆j|S = ν(XS∪j)− ν(XS) (2)

The number of possible coalitions grows exponentially in
the number of features, making the exact computation in-
tractable in high-dimensional settings. SAGE values are
therefore estimated by randomly sampling coalitions until
the estimates converge (Section 3.2). Nevertheless, esti-
mation remains challenging since evaluating ∆j|S requires
sampling from conditional distributions, and therefore even
one evaluation is a significant computational challenge.
Thus, in practice, the approximation quality is limited by
the number of surplus contributions that can be computed.

We propose d-SAGE, an approach that can identify and
skip unnecessary surplus evaluations and thereby allows to
improve the approximation quality. The method is based
on the observation that ∆j|S evaluates to zero if Xj is con-
ditionally independent of Y given XS :

Theorem 1. For ℓ being cross-entropy loss or the mean-
squared error, f∗ the respective optimal predictor and νℓ,f∗

the corresponding SAGE value function, it holds that

Xj ⊥ Y |XS ⇒ νℓ,f∗(XS∪j)− νℓ,f∗(XS) = 0.

Proof (sketch, full proof in A): Covert et al. (2020) show
that for the cross entropy loss function with its respective
optimal model, the Bayes classifier, Equation 2 equals the
conditional mutual information of Xj and Y given XS , i.e.
I(Xj ;Y |XS). A similar result holds for optimal regression
models with the mean squared error (MSE) as loss function.
In this case, the surplus contribution is shown to be equal
to EXS

[V ar(E[Y |XS , Xj ]|XS)] (Covert et al., 2020). For
both expressions, one can easily see that they evaluate to
zero when Xj is conditionally independent of Y given XS ,
i.e. Xj ⊥ Y | XS .

As a consequence of Theorem 1, knowledge of the depen-
dence structure in the data allows speeding up the SAGE
estimation procedure: evaluations of ν(XS∪j)−ν(XS) can
be skipped if Xj ⊥ Y | XS .

To identify the CIs in the data, we suggest leveraging
greedy procedures that were originally developed to learn
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Algorithm 1: Sampling-based Approximation of d-
SAGE
Input: Data {xi, yi}ni=1 with xi ∈ Rd, model f̂ , loss

function ℓ, number of permutations nπ
Infer DAG G from data {xi, yi}ni=1 with structure

learning algorithm of choice.
for i in {1, ..., nπ} do

Sample a permutation π
S = ∅
for j in {1, ..., d} do

if Xπj
̸⊥G Y |XS then

Sample xS̄ from p(xS̄ |xS)
Sample xS∪πj

from p(xS∪πj
|xS), where

πj is the j-th element of π
∆̂j|S = ℓ(f̂(xS , xS̄))−ℓ(f̂(xS∪πj

, xS∪πj
))

else
∆̂j|S = 0

end
S = S ∪ πj

end
end
return ϕ̂j = 1

nπ

∑nπ

i=1 ∆̂j|S for j = 1, ..., d

Note that we dropped indices of ∆̂j|S for readability.

the causal structure in the data. CSL algorithms allow the
estimation of a causal graph in polynomial time (Scutari
et al., 2019b). Given that the Markov property and faithful-
ness are fulfilled, the graph allows reading off (conditional)
independencies in the data using linear time d-separation
queries (Hagberg et al., 2008; Darwiche, 2009). Our ratio-
nale is that the one-time effort of learning the causal graph,
as well as the additional linear time d-separation queries,
are negligible in comparison to the computational overhead
of computing the surplus contributions.5

To summarise, d-SAGE estimation introduces two key dif-
ferences to the original SAGE approximation algorithm.
First, a graph G is fitted over all random variables, the fea-
tures, and the target. Second, the estimation of ∆j|S is
skipped if the current feature Xj in permutation π is d-
separated from the target given the set XS = {Xi : π(i) <
π(j)}. The changes are highlighted in blue in Algorithm 1.

5 EXPERIMENTS

The experiment section is divided into three parts. In
the first two parts, we evaluate our method on synthetic
data with known ground truth: As we use d-separation

5In general, the complexity of conditional sampling depends
on the assumptions about the data generating process. In their
tractability analysis for SHAP, Van den Broeck et al. (2022) as-
sume polynomial complexity for computing the conditional ex-
pectations of the form EXS̄ |XS

[f̂(X)|XS = xS ].

queries in estimated graphs for d-SAGE approximation,
we first evaluate the accuracy of d-separations in learned
structures with regard to ground truth CIs in the data
(Section 5.1). Then we compare d-SAGE to ordinary
SAGE value approximation (Section 5.2). In the third
part, we demonstrate the usefulness of the method in a
real-world application (Section 5.3).6

5.1 Benchmark of Causal Structure Learning

Existing structure learning benchmarks evaluate the algo-
rithms regarding how well they can recover the true causal
structure (Constantinou et al., 2021; Scutari et al., 2019a).
For d-SAGE, however, we are only interested in learning
the dependence structure. As such, we assess how well CIs
are inferred as d-separations in the estimated graph.

5.1.1 Setup

We evaluate the greedy search algorithms HC and TABU
(Scutari et al., 2019b; Russell and Norvig, 2009). We se-
lected these methods based on their superior performance
in recent CSL benchmarks (Constantinou et al., 2021; Scu-
tari et al., 2019a). As performance metrics, we employ the
F1 score for the detection of d-separations w.r.t. a randomly
sampled target Y as well as the respective false discovery
rate. More precisely, for every potential d-separation of the
form Xj ⊥G Y |XS , we check whether it had the same sta-
tus in the ground truth and the estimated graph. To cope
with the exponentially large number of d-separations in the
higher dimensional graphs (DAGsm, DAGm and DAGl) we
randomly sampled a node of interest Xj and a condition-
ing set XS one million times instead of iterating over all
potential d-separation statements. For both algorithms, we
relied on their implementation in bnlearn (Scutari, 2010)
for R.7 We consider twelve different synthetic data settings
with known ground truth:

DAGs, DAGsm, DAGm and DAGl We sampled syn-
thetic graphs with a varying number of nodes (s = 10,
sm = 20, m = 50 and l = 100) and three different den-
sities (average adjacency degrees of 2, 3 and 4). Based on
the graphs, we sampled data from the corresponding lin-
ear Gaussian data model, where absolute values of edge
weights are bounded by 0.5 and 2. We standardised vari-
ances to be (approximately) one to avoid that they increase
with the topological ordering and counteract a potential
bias in the benchmark (Reisach et al., 2021). For the sam-
pling itself, we relied on the the pcalg package (Kalisch
et al., 2012) implemented in R (R Core Team, 2022).

6All code is publicly available https://github.
com/gcskoenig/csl-experiments/tree/
camera-ready.

7All graph learning experiments were run on an Intel Core i7-
8700K Desktop CPU.



Efficient SAGE Estimation via Causal Structure Learning

5.1.2 Results

First, we observe TABU, while approximately taking dou-
ble the time, either performs equally well as or better than
HC (cf. Figures 1, 2 and Appendix C). Hence, we restrict
this section to results for TABU search, which we also em-
ployed for d-SAGE estimation. Figure 1 shows the run-
time of graph learning depending on sample size and corre-
sponding F1 scores for d-separation inference for all twelve
graphs. The key takeaway is that for the sparsest graph (av-
erage adjacency degree 2) the F1 score is greater than 0.88
if n ≥ 10, 000. For the larger graphs, however, there is
a slight drop-off in performance, which is expected. Only
for the densest graph setting (average adjacency degree 4)
and for 50 and 100 nodes, though, a larger sample size, i.e.
n ≥ 100, 000, is required to infer d-separations at a rea-
sonable rate. As we will see in Section 5.2, the runtime
for graph learning is negligible in the context of d-SAGE
estimation.

Figure 1: F1 scores for d-separation (lines, left y-axes) and
runtime of graph learning (bars, right y-axes) using TABU
search depending on sample size.

We note that there is no well-defined threshold for the min-
imal F1 score that would be required for SAGE estimation
to benefit from causal structure learning because different
error types have distinct consequences. While incorrectly
inferred d-separations may lead to biased estimates, non-
detected d-separations only reduce the benefit of CSL in
terms of reduced runtime. Importantly, our simulation re-
sults in Figure 2 show virtually no false discoveries (cases
where there is no CI in the underlying distribution but a
d-separation is inferred) yet some false-negative instances,
which leads to fewer skipped evaluations of ∆j|S than war-
ranted. This result is in accordance with the reasoning pre-
sented in Section 3.3. As such, the use of CSL is a con-

Figure 2: Confusion matrix for true and predicted d-
connections (̸⊥G) and d-separations (⊥G) based on TABU
search with n = 10, 000 for all twelve graphs.

servative approach to the inference of CIs. Note that for
the data used in the benchmark, the ground-truth graph is
known and the Markov property and faithfulness hold, such
that d-separations indeed coincide with statistical indepen-
dence.

5.2 Evaluating Efficiency and Accuracy of d-SAGE

In the benchmark study in Section 5.1 we highlight the
capability of structure learning to efficiently yet conserva-
tively estimate d-separations as equivalents to CIs. We now
evaluate d-SAGE regarding its efficiency and its accuracy.

5.2.1 Setup

To evaluate d-SAGE in practice, a linear model (LM) and a
random forest (RF) are fitted to each of the twelve datasets
(using the scikit-learn implementation with default set-
tings (Pedregosa et al., 2011)). As loss function, the mean
squared error (MSE) is used for either of them. Hence,
the linear model (LM) falls into the category of optimal
models required for the theoretical justification. The RF
model serves as a sanity check for a high-performing, but
not optimal model (cf. Appendix D for the model perfor-
mances). For a fair comparison, we compare d-SAGE and
SAGE based on the exact same feature orderings. This also
allowed us to compare the skipped evaluations of ∆j|S , that
are set to zero, to their estimated counterparts that should
be very close to zero. Overall, we estimated SAGE and
d-SAGE values five times for each setup (graph + model).
We used the same synthetic datasets for the evaluation as
in Section 5.1.
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Figure 3: Runtime estimates for SAGE and d-SAGE for all twelve graphs and linear models (LM) as well as random forests
(RF) based on n = 10, 000.

(a) SAGE values and difference between SAGE and d-SAGE for the five largest
values.

(b) Boxplots showing the distribution of ∆j|S for
the skipped surplus evaluations.

Figure 4: Results on the approximation quality of d-SAGE based on DAGs with average degree 2 for optimal models (LM).
Based on five (d-)SAGE estimates.

5.2.2 Results

We find that d-SAGE indeed speeds up SAGE approxima-
tion as expected. More specifically, the estimated runtime8

decreases by a rate that is approximately equal to the share
of CIs w.r.t. the model target (cf. Appendix C) for both
model classes across all graphs (cf. Figure 3). Furthermore,
d-SAGE manages this speedup without distorting the esti-
mates. Note that we do not include graph learning runtime
in Figure 3 since it required between 0.06 seconds (DAGs
with average degree 2) and 39.86 seconds (DAGl with av-
erage degree 4) and hence is negligible in this context.

Linear Model Figure 4 (a) displays the five SAGE val-
ues with the largest absolute value for the four graphs with
an average degree of two along with the respective differ-

8The complete SAGE estimation was performed on multiple
different machines. For a fair evaluation of runtime, we relied
on estimates that were performed on the same CPU (Intel Core
i7-8700K Desktop CPU): Either approach was conducted using
100 permutations that were the same for SAGE and d-SAGE and
runtime multiplied by the factor nπ

100
, where nπ is the number of

permutations after which one SAGE run converged. For conver-
gence behaviour see Appendix E.

ence between the SAGE and d-SAGE estimates. Overall,
the differences are about three orders of magnitude smaller
than the original SAGE values, i.e. typically lie beneath
one per cent. Even the most pronounced difference for vari-
able 7 in DAGs only amounts to approximately 2.7 per cent
of the SAGE value of approximately 0.007. We find no
further striking differences in the remaining SAGE values
that identified important features, i.e. those with the largest
absolute SAGE values. Features deemed unimportant by
SAGE values are detected as such by d-SAGE. Notewor-
thy, some d-SAGE estimates are equal to zero if the feature
of interest is conditionally independent of the target given
all (sampled) coalitions. Here, we argue that we bias obser-
vational SAGE values towards zero, which for truly inde-
pendent features is closer (or equal) to the ’true-to-the-data’
measure that would be achieved for the optimal predictor
and infinite data.

Figure 4 (b) displays every ∆j|S value, which was derived
from a conditionally independent feature that was detected
as such and thus set equal to zero in d-SAGE approxima-
tion. We see clearly that most values are very close to zero,
as mirrored by the narrow boxes, which underlines the use-
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fulness of our approach.

Random Forest In order to test the sensitivity of the re-
sults, we replicated the exact same study using a high-
performing but not optimal RF regressor (instead of the
optimal LM). While the runtime savings are the same as
for the LM, deviations of d-SAGE values from the origi-
nal estimates are slightly more pronounced (cf. Appendix
D). The results indicate that our approach is also useful for
close to optimal models.

5.3 Real-world Application

To show the usefulness of d-SAGE in practice, we ap-
plied the approach to drug consumption data from the UCI
ML repository (Dua and Graff, 2017). The target ”Nico-
tine consumption” was predicted using logistic regression
relying on twelve explanatory variables in a dataset with
sample size n = 1885. Graph fitting was conducted
with the TABU search algorithm and took 0.035 seconds.
SAGE estimation for five different runs took approximately
12h14min9. To derive d-SAGE values, we did not rerun the
estimation relying on d-SAGE but simply replaced the re-
spective ∆j|S that pertained to a d-separation in the fitted
graph in the output (that included all such ∆j|S) with zero.
We found approximately 38 per cent such ∆j|S values that
can be skipped which warrants an (almost) equally large
relative speedup.

Figure 5: SAGE values, difference between SAGE and
d-SAGE and d-SAGE values for drug consumption data.
Based on five (d-)SAGE estimates.

Figure 5 shows that d-SAGE values are mostly in accor-
dance with the original SAGE estimate. From the impor-
tant variables, only ’Education’ has a markedly distinct d-
SAGE value as it is reduced by about a third compared to
the SAGE estimate. Yet, it is still assigned relatively high
importance. The efficacy of d-SAGE in practice is further
highlighted by the ∆j|S values that hover around zero, as
shown in Figure 6.

9All calculations were run on an Intel Core i7-8700K Desktop
CPU

Figure 6: Boxplots showing the distribution of ∆j|S for the
skipped surplus evaluations.

6 DISCUSSION

Model optimality and loss Conditional SAGE values
are particularly appealing for scientific inference, i.e. to
learn about the data (Chen et al., 2020; Covert et al.,
2020). Therefore, in general, accurate predictors are re-
quired (Molnar et al., 2022). However, the requirement is
of increased importance for d-SAGE since if the assump-
tion of model optimality is violated the interpretation may
be further biased by skipping the evaluation of non-zero
surplus contributions (Theorem 1).

Assumptions for CSL CSL is enabled by causal suffi-
ciency, the Markov property and faithfulness (Peters et al.,
2017). The assumptions ensure that all relevant variables
are observed, and that CIs in the data coincide with d-
separations in the true causal graph (which we assume to
be a DAG). We conjecture that violations of these assump-
tions are not vital for our approach since learning the true
causal graph is not the goal. Instead, we are only inter-
ested in learning the graph to encode (conditional) indepen-
dencies present in the observational distribution (irrespec-
tive of which causal mechanism they stem from). DAGs
learned by HC being a minimal I-Map of the underlying
distribution makes it suitable for probabilistic inference of
CIs without guarantees of a correct graph or the number of
CIs uncovered.

Nevertheless, practitioners should carefully assess the as-
sumptions before applying d-SAGE. In the presence of la-
tent confounders or cyclic assignment, for example, one
may consider other concepts, such as m-separation and σ-
separation (cf. Bongers et al. (2021)). Moreover, it is advis-
able to perform sanity checks on whether skipped surplus
contributions are actually evaluated to zero.

Use of Score-based CSL The analysis was restricted to
the use of score-based CSL because of its efficiency. HC
is particularly appealing since it infers a minimal I-Map
of the underlying distribution as explained in Section 3.3,
and TABU performed well empirically. However, inference
of CIs is not limited to those techniques. Graph learning
can be performed with an algorithm of choice and under
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consideration of the assumptions employed, as explained
above. Moreover, the rationale behind our approach is
to replace CI testing by CSL. Partial correlation tests, for
example, are considerably less efficient than d-separation
queries (cf. Appendix F) and thus would require a larger
number of CIs to achieve a speedup of SAGE.

7 CONCLUSION

We proposed d-SAGE, a method that exploits the depen-
dence structure in the data to speed up SAGE estimation.
More specifically, we observe that conditional indepen-
dence in the data implies that the corresponding surplus
contribution can be directly evaluated to zero. We modify
the ordering based SAGE approximation algorithm to first
learn the dependence structure in the data using CSL algo-
rithms and to then skip surplus contribution evaluations if
the graph encodes a CI. Errors in the learned graph may ei-
ther slow down convergence (if CIs are not discovered) or
bias the result towards zero (in case of false discoveries).
However, in our experiments, there were nearly no false
discoveries, such that the resulting estimates for features
that were not conditionally independent given every coali-
tion essentially converged to the same values as the origi-
nal SAGE approximation algorithm. Furthermore, the CSL
algorithms were able to uncover most CIs, such that we ob-
serve significant performance gains. As such, given a fixed
computational budget, the efficiency gains of d-SAGE can
enable a more accurate estimation of SAGE values than the
approximation algorithm proposed by Covert et al. (2020).
In future work, it would be interesting to combine d-SAGE
with the permutation sampling by Mitchell et al. (2022)
and to assess whether the results can be translated to other
Shapley based interpretability methods such as SHAP.
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Abstract
The interpretation of feature importance in machine learning models is challeng-
ing when features are dependent. Permutation feature importance (PFI) ignores such
dependencies, which can cause misleading interpretations due to extrapolation. A pos-
sible remedy is more advanced conditional PFI approaches that enable the assessment
of feature importance conditional on all other features. Due to this shift in perspective
and in order to enable correct interpretations, it is beneficial if the conditioning is
transparent and comprehensible. In this paper, we propose a new sampling mecha-
nism for the conditional distribution based on permutations in conditional subgroups.
As these subgroups are constructed using tree-based methods such as transformation
trees, the conditioning becomes inherently interpretable. This not only provides a sim-
ple and effective estimator of conditional PFI, but also local PFI estimates within the
subgroups. In addition, we apply the conditional subgroups approach to partial depen-
dence plots, a popular method for describing feature effects that can also suffer from
extrapolation when features are dependent and interactions are present in the model.
In simulations and a real-world application, we demonstrate the advantages of the con-
ditional subgroup approach over existing methods: It allows to compute conditional
PFI that is more true to the data than existing proposals and enables a fine-grained
interpretation of feature effects and importance within the conditional subgroups.
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1 Introduction

A promising avenue of research suggests to make inference about the data generating
process by analyzing machine learning models using Interpretable Machine Learning
(IML). The Partial Dependence Plot (PDP) (Friedman et al. 1991) and Permutation
Feature Importance (PFI) (Breiman 2001) are model-agnostic tools (working for all
kinds of machine learning models) that have been used for scientific discoveries.
Applications range from medicine (Boulesteix et al. 2020; Stiglic et al. 2020; Pintelas
et al. 2020) and the social sciences (Stachl et al. 2020; Zhao et al. 2020) to ecology
(Bair et al. 2013; Esselman et al. 2015; Obringer and Nateghi 2018). PDP and PFI are
used to study effect and importance of features: The PDP visualizes how a change in
a feature, on average, changes the predicted outcome; the PFI ranks the features based
on how much they contribute to the model performance.

Both PDP and PFI rely on marginal sampling of feature values. A range of work
argues thatmarginal-samplingbased interpretation techniques, includingPDPandPFI,
are not suitable for learning about the data generating process (Hooker and Mentch
2019; Frye et al. 2020; Chen et al. 2020; Freiesleben et al. 2022). The reason is that
marginal-sampling based techniques ignore dependencies between the features and
as a consequence may explain the model’s behaviour in unlikely or even unrealistic
regions of the feature space.

As a solution, conditional-sampling based techniques, such as conditional permuta-
tion feature importance (cPFI) and conditional partial dependence plots (cPDP) were
proposed which only evaluate the model within the joint distribution (Strobl et al.
2008; Apley and Zhu 2016; Hooker and Mentch 2019). Given loss-optimal models,
they allow insights into the data generating process. More specifically, cPFI allows to
quantify whether knowing a feature is required to achieve the same predictive perfor-
mance, such that nonzero cPFI can be linked with conditional dependence in the data
(König et al. 2020). cPDPs visualize the relationships in the data (through the model’s
perspective), i.e. they describe how the conditional expectation of the outcome varies
with the feature of interest (Freiesleben et al. 2022).

Although theoretically appealing, conditional-sampling based methods are more
difficult to apply than marginal-sampling based methods. Existing proposals for cPFI
require sampling from the conditional distribution of the feature of interest given
the remaining features, which is challenging. The estimation of cPDP is especially
challenging, since sampling from themultivariate conditional of the remaining features
given the feature of interest is required.

Contributions: Instead ofmodeling the conditional distribution,we suggest to learn
a tree-based partitionioning of the feature space into blocks within which the feature of
interest is not (or at least less) correlated with the remaining features. This partitioning
can be leveraged in several ways to derive interpretations that allow interesting insight.
First of all, we can compute the well-established global cPFI by computing the PFI
for each subgroup and aggregating the result. Leveraging the flexibility of tree-based
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learners, this approach allows the computation of cPFI for mixed continuous and
categorical data. Secondly, in situations where the partitioning requires only a few
splits, the partitioning itself is interpretable. We can then leverage the partitioning to
(a) get insight into the dependence structure in the data and (b) derive subgroup specific
versions of PFI and PDP, to also understand under which circumstances variables are
relevant or have a certain effect. For instance, by applying PFI in each subgroup, we
find that temperature is not predictive of bike rentals given that we know it’s summer,
but highly predictive if we know that it’s winter. Furthermore, by looking at the PDP
within each subgroup we can understand how the conditional expectation varies with
temperature given that we know that it’s winter.

The paper is structured as follows: We introduce our notation in Sect. 2 and discuss
related work in Sect. 3. We motivate and formally introduce the conditional subgroup
approach in Sect. 4. We demonstrate the usefulness of the method on benchmarks
with synthetic and real data (Sect. 5) and illustrate its interpretation in a real-world
application (Sect. 6).

2 Notation and background

We consider ML prediction functions f̂ : Rp �→ R, where f̂ (x) is a model prediction
and x ∈ Rp is a p-dimensional feature vector. We use x j ∈ Rn to refer to an observed
feature (vector) and X j to refer to the j-th feature as a random variable. With x− j we
refer to the complementary feature values x{1,...,p}\{ j} ∈ Rn×(p−1) and with X− j to
the corresponding random variables. We refer to the value of the j-th feature from the
i-th instance as x (i)

j and to the tuples D = {(x(i), y(i)
)}ni=1 as data.

The Permutation feature importance (PFI) (Breiman 2001; Fisher et al. 2019) is
defined as the increase in loss when feature X j is permuted:

PF I j = E[L(Y , f̂ (X̃ j , X− j ))] − E[L(Y , f̂ (X j , X− j ))] (1)

The theoretical PFI for a feature X j is the difference between the expected losswhen
the feature is permuted and the original loss. If the random variable X̃ j has the same
marginal distribution as X j (e.g., permutation), the estimate yields the marginal PFI.
If X̃ j follows the conditional distribution X̃ j ∼ X j |X− j , we speak of the conditional
PFI. The PFI is estimated with the following formula:

P̂ F I j = 1

n

n∑

i=1

(
1

M

M∑

m=1

(
L̃(i)
m − L(i)

))

(2)

where L(i) = L(y(i), f̂ (x(i))) is the loss for the i-th observation and L̃(i)
m =

L(y(i), f̂ (x̃ (i)
j , x(i)

− j )) is the loss where x (i)
j was replaced by the m-th sample of x̃ (i)

j .
The latter refers to the i-th feature value obtained by a sample of x j . The sample can
be repeated M-times for a more stable estimation of L̃(i). Numerous variations of
this formulation exist. Breiman (2001) proposed the PFI for random forests, which is
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computed from the out-of-bag samples of individual trees. Subsequently, Fisher et al.
(2019) introduced a model-agnostic PFI version.

The marginal partial dependence plot (PDP) (Friedman et al. 1991) describes the
average effect of the j-th feature on the prediction.

PDPj (x) = E[ f̂ (x, X− j )] (3)

The theoretical PDP is a marginalized version of the prediction function. All features
with the exception of X j are integrated out, and the p-dimensional prediction function
becomes a 1-dimensional function, the PDP. There are two options: Integrate with
respect to the marginal distribution ¶X− j or the conditional distribution ¶X− j |X j . If the

expectation is conditional on X j , E[ f̂ (x, X− j )|X j = x], we speak of the conditional
PDP. The marginal PDP evaluated at feature value x is estimated using Monte Carlo
integration.

P̂ DP j (x) = 1

n

n∑

i=1

f̂
(
x, x(i)

− j

)
(4)

In other words, at any given position x along the range of X j , the PDP can be estimated
by taking the data, setting X j = x for all observations and averaging the results.

3 Related work

In this section, we review conditional variants of PDP and PFI and other approaches
that try to avoid extrapolation.

3.1 Related work on conditional PDP

The conditional PDP (M-Plot) (Apley and Zhu 2016) averages the predictions locally
on the feature grid and mixes effects of dependent features. Apley and Zhu (2016)
also address the interpretation problem that conditional PDP is influenced by feature
effects of correlated features. The authors proposed accumulated local effect (ALE)
plots, which reduce extrapolation by accumulating the finite differences computed
within intervals of the feature of interest. By definition, interpretations of ALE plots
are thus only valid locallywithin the intervals. Furthermore, there is no straightforward
approach to derive ALE plots for categorical features, since ALE requires ordered
feature values. Our proposed approach can handle categorical features.

Hooker (2007) proposed a functional ANOVA decomposition with hierarchically
orthogonal components, based on integration using the joint distribution of the data,
which in practice is difficult to estimate.

Another PDP variant based on stratification was proposed by Parr and Wilson
(2019). However, this stratified PDP describes only the data and is independent of the
model.
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Individual conditional expectation (ICE) curves by Goldstein et al. (2015) can be
used to visualize the interactions underlying a PDP, but they also suffer from the
extrapolation problem. The “conditional” in ICE refers to conditioning on individual
observations and not on certain features. As a solution, Hooker and Mentch (2019)
suggested to visually highlight the areas of the ICE curves in which the feature com-
binations are more likely.

3.2 Related work on conditional PFI

We review approaches that modify the PFI (Breiman 2001; Fisher et al. 2019) in
presence of dependent features by using a conditional sampling strategy.

Strobl et al. (2008) proposed the conditional variable importance for random forests
(CVIRF), which is a conditional PFI variant of Breiman (2001). CVIRF was further
analyzed and extended by Debeer and Strobl (2020). Both CVIRF and our approach
rely on permutations based on partitions of decision trees. However, there are funda-
mental differences. CVIRF is specifically developed for random forests and relies on
the splits of the underlying individual trees of the random forest for the conditional
sampling. In contrast, our cs-PFI approach trains decision trees for each feature using
X− j as features and X j as the target. Therefore, the subgroups for each feature are
constructed from their conditional distributions (conditional on the other features) in a
separate step, which is decoupled from the machine learning model to be interpreted.
Our cs-PFI approach is model-agnostic, independent of the target to predict and not
specific to random forests.

Hooker and Mentch (2019) made a general suggestion to replace feature values by
estimates of E[X j |X− j ].

Fisher et al. (2019) suggested to usematching and imputation techniques to generate
samples from the conditional distribution. If X− j has few unique combinations, they

suggested to group x (i)
j by unique x(i)

− j combinations and permute them for these
fixed groups. For discrete and low-dimensional feature spaces, they suggest non-
parametric matching and weighting methods to replace X j values. For continuous
or high-dimensional data, they suggest imputing X j with E[X j |X− j ] and adding
residuals (under the assumption of homogeneous residuals). Our approach using per-
mutation in subgroups can be seen as a model-driven, binary weighting approach
extended to continuous features.

Knockoffs (Candes et al. 2018) are random variables which are “copies” of the
original features that preserve the joint distribution but are independent of the predic-
tion target conditional on the remaining features. Knockoffs can be used to replace
feature values for conditional feature importance computation. Watson and Wright
(2021) developed a testing framework for PFI based on knockoff samplers such as
Model-X knockoffs (Candes et al. 2018). Our approach is complementary since Wat-
son and Wright (2021) is agnostic to the sampling strategy that is used. Others have
proposed to use generative adversarial networks for generating knockoffs (Romano
et al. 2019). Knockoffs are not transparent with respect to how they condition on the
features, while our approach creates interpretable subgroups.
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Conditional importance approaches based on model retraining have been proposed
(Hooker andMentch 2019; Lei et al. 2018; Gregorutti et al. 2017). However, retraining
the model can be expensive, and answers a fundamentally different question, often
related to feature selection and not based on a fixed set of features. Hence, we focus
on approaches that compute conditional PFI for a fixed model without retraining.

None of the existing approaches makes the dependence structures between the
features explicit. It is unclear which of the features in X− j influenced the replacement
of X j the most and how. Furthermore, little attention has been paid on evaluating how
well different sampling strategies address the extrapolation problem. We address this
gap with an extensive data fidelity experiment on the OpenML-CC18 benchmarking
suite. To the best of our knowledge, our paper is also the first to conduct experiments
using ground truth for the conditional PFI. Our approach works with any type of
feature, be it categorical, numerical, ordinal and so on, since we rely on decision trees
to find the subgroups used for conditioning. Further we are the first to discuss the trade-
off between conditional and marginal PFI and PDP in depth. The differences between
the different (conditional) PDP and PFI approaches ultimately boil down to how they
sample from the conditional distribution. Table1 lists different sampling strategies of
model-agnostic interpretation methods and summarizes their assumptions to preserve
the joint distribution.

4 Conditional subgroups

In this section, we propose a subgroup-based approach that allows us to (1) estimate
the cPFI and to (2) introduce novel subgroup-specific versions of PDP and PFI that
allow novel insight into model and data.

More specifically, we suggest to leverage tree-based learners to partition the feature
space into groups G j within which X j is independent of the remaining features X− j

(Sect. 4.1). Permuting observations within such groups does not lead to extrapolation,
because in each group the marginal and the conditional distribution coincide. We
illustrate the idea in Fig. 1.

As a consequence, we can compute the cPFI by applying the PFI in each subgroup
and aggregating the results (Sect. 4.2). Furthermore, if the data allow for a human-
intelligible partitioning, we can also interpret the subgroup-wise PFI and PDP to gain
novel insight about the circumstances given which variables are relevant or have a
certain effect on the prediction (Sects. 4.2 and 4.3).

4.1 Learning conditional subgroups

In order to learn the grouping G j , any algorithm can be used that splits the data in
X− j so that the distribution of X j becomes more homogeneous within a group and
more heterogeneous between groups. We consider decision tree algorithms for this
task, which predict X j based on splits in X− j . Decision tree algorithms directly or
indirectly optimize splits for heterogeneity of some aspects of the distribution of X j in
the splits. The partitions in a decision tree can be described by decision rules that lead to
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Fig. 1 Features X2 ∼ U (0, 1) and X1 ∼ N (0, 1), if X2 < 0.5, else X1 ∼ N (4, 4) (black dots). Top left:
The crosses are permutations of X1. For X2 < 0.5, the permutation extrapolates. Bottom left: Marginal
density of X1. Top right: Permuting X1 within subgroups based on X2 (X2 < 0.5 and X2 ≥ 0.5) reduces
extrapolation. Bottom right: Densities of X1 conditional on the subgroups

that terminal leaf. We leverage this partitioning to construct groups G1
j , . . . ,GK

j based
on random variable G j for a specific feature X j . The new variable can be calculated
by assigning every observation the indicator of the partition that it lies in (meaning
for observation i with x (i)

− j ∈ Gk
j the group variable’s value is defined as g(i)

j := k).
Transformation trees (trtr) (Hothorn and Zeileis 2017) are able to model the con-

ditional distribution of a variable. This approach partitions the feature space so that
the distribution of the target (here X j ) within the resulting subgroups Gk

j is homoge-
neous, which means that the group-wise parameterization of the modeled distribution
is independent of X− j . Transformation trees directly model the target’s distribution
¶(X j ≤ x) = FZ (h(x)), where FZ is the chosen (cumulative) distribution function
and h a monotone increasing transformation function (hence the name transformation
trees). The transformation function is defined as a(y)T θ where a : R �→ Rk is a basis
function of polynomials or splines. The task of estimating the distribution is reduced
to estimating θ , and the trees are split based on hypothesis tests for differences in
θ given X− j , and therefore differences in the distribution of X j . For more detailed
explanations of transformation trees please refer to Hothorn and Zeileis (2017).

In contrast, a simpler approach would be to use classification and regression trees
(CART) (Breiman et al. 1984), which, for regression, minimizes the variance within
nodes, effectively finding partitions with different means in the distribution of X j .
However, CART’s split criterion only considers differences in the expectation of the
distribution of X j given X− j : E[X j |X− j ]. This means CART could only make X j

and X− j independent if the distribution of X j only depends in its expectation on X− j

(and if the dependence can be modeled by partitioning the data). Any differences in
higher moments of the distribution of X j such as the variance of X j |X− j cannot be
detected.

We evaluated both trtr, which are theoretically well equipped for splitting distri-
butions and CART, which are established and well-studied. For the remainder of this
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Fig. 2 Left: Simulation of features X1 ∼ N (0, 1) and X2 ∼ N (0, 1) with a covariance of 0.9. Middle:
Unconditional permutation extrapolates strongly. Right: Permuting on partitions found byCART (predicting
X2 from X1) has greatly reduced extrapolation, but cannot get rid of it completely. x1 and x2 remain
correlated in the partitions

paper, we have set the default minimum number of observations in a node to 30 for
both approaches. For the transformation trees, we used the Normal distribution as
target distribution and we used Bernstein polynomials of degree five for the transfor-
mation function. Higher-order polynomials do not seem to increase model fit further
(Hothorn 2018).

We denote the subgroups by Gk
j ⊂ Rp−1, where k ∈ {1, . . . , K j } is the k-th

subgroup for feature j , with K j groups in total for the j-th feature. The subgroups
per feature are disjoint: Gl

j ∩ Gk
j = ∅,∀l 
= k and

⋃K
k=1 Gk

j = Rp−1. Let (ykj , x
k
j ) be

a subset of (y, x) that refers to the data subset belonging to the subgroup Gk
j . Each

subgroup can be described by the decision path that leads to the respective terminal
node.

4.1.1 Remarks

Continuous dependencies For conditional independence X j ⊥ X− j |Gk
j to hold, the

chosen decision tree approach has to capture the (potentially complex) dependencies
between X j and X− j . CART can only capture differences in the expected value of
X j |X− j but are insensitive to changes in, for example, the variance. Transformation
trees are in principle agnostic to the specified distribution and the default transforma-
tion family of distributions is very general, as empirical results suggest (Hothorn and
Zeileis 2017). However, the approach is based on the assumption that the dependence
can be modeled with a discrete grouping. For example, in the case of linear Gaussian
dependencies, the corresponding optimal variable would be linear Gaussian itself,
and would be in conflict with our proposed interpretable grouping approach. Even in
these settings the approach allows an approximation of the conditional distribution.
In the case of simple linear Gaussian dependencies, partitioning the feature space will
still reduce extrapolation. But we never get rid of it completely, unless there are only
individual data points left in each partition, see Fig. 2.
Sparse subgroups Fewer subgroups are generally desirable for two reasons: (1) for
a good approximation of the marginal distribution within a subgroup, a sufficient
number of observations per group is required, which might lead to fewer subgroups,
and (2) a large number of subgroups leads to more complex groups, which reduces
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their human-intelligibility and therefore forfeits the added value of the local, subgroup-
wise interpretations. As we rely on decision trees, we can adjust the granularity of the
grouping using hyperparameters such as the maximum tree depth. By controlling the
maximum tree depth, we can control the trade-off between the depth of the tree (and
hence its interpretability) and the homogeneity of the distributionwithin the subgroups.

4.2 Conditional subgroup permutation feature importance (cs-PFI)

We estimate the cs-PFI of feature X j within a subgroup Gk
j as:

PF I kj = 1

nk

∑

i :x(i)∈Gk
j

(
1

M

M∑

m=1

L
(
y(i), f̂

(
x̃ (i)
j,m, x(i)

− j

))
− L

(
y(i), f̂

(
x(i)

)))

,

(5)

where x̃ (i)
j,m refers to a feature value obtained from them-th permutation of x j within the

subgroup k j . This estimation is exactly the same as the marginal PFI [Eq. (2)], except
that it only includes observations from the given subgroup. Algorithm 1 describes the
estimation of the cs-PFIs for a given feature on unseen data.

Algorithm 1: Estimate cs-PFI
Input: Model f ; data Dtrain , Dtest ; loss L; feature j ; no. permutations M

1 Train tree Tj with target X j and features X− j using Dtrain

2 Compute subgroups Gk
j for Dtest based on terminal nodes of Tj , k ∈ {1, . . . , K j }

3 for k ∈ {1, . . . , K j } do
4 Lorig := 1

nk

∑
i :x(i)∈Gk

j
L(y(i), f̂ (x(i)))

5 for m ∈ {1, . . . , M} do
6 Generate x̃mj by permuting feature values x j within subgroup Gk

j

7 Lmperm := 1
nk

∑
i :x(i)∈Gk

j
L(y(i), f̂ (x̃(i)

j ,m , x(i)
− j ))

8 cs-PFIkj = 1
M

∑M
m=1 L

m
perm − Lorig

9 cs-PFI j = 1
n

∑K j
k=1 nk PF I kj

The algorithm has two outcomes: We get local importance values for feature X j

for each subgroup (cs-PFIkj ; Algorithm 1, line 8) and a global conditional feature
importance (cs-PFI j ; Algorithm 1, line 9). The latter is equivalent to the weighted
average of subgroup importances regarding the number of observations within each
subgroup (see proof in “AppendixAppendix A)”.

cs-PFI j = 1

n

K j∑

k=1

nk PF I kj
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The cs-PFIs needs the same amount of model evaluations as the PFI (O(nM)).
On top of that comes the cost for training the respective decision trees and making
predictions to assign a subgroup to each observation.

Theorem 1 When feature X j is independent of features X− j for a given dataset D,
each cs-PFIkj has the same expectation as the marginal PFI, and an n/nk-times larger
variance, where n and nk are the number of observations in the data and the subgroup
Gk
j .

The proof of Theorem 1 is shown in “AppendixAppendix B”. Theorem 1 has the
practical implication that even in the case of applying cs-PFI to an independent feature,
we will retrieve the marginal PFI, and not introduce any problematic interpretations.
Equivalence in expectation and higher variance under the independence of X j and
X− j holds true even if the partitions Gk

j would be randomly chosen. Theorem 1 has
further consequences regarding overfitting: Assuming a node has already reached
independence between X j and X− j , then further splitting the tree based on noise will
not change the expected cs-PFIs.

4.3 Conditional subgroup partial dependence plots (cs-PDPs)

A range of work argues that PDPs are not suitable for inference if features are depen-
dent (Hooker and Mentch 2019; Freiesleben et al. 2022). Conditional PDPs have
been suggested as an alternative, but they are difficult to estimate, since they require
sampling from the multivariate conditional of the remaining feature P(X− j |X j ). For
settings where a human-intelligible partitioning can be learned, we suggest an alterna-
tive that does not require to sample from P(X− j |X j ): Instead of computing the global
cPDP, we suggest to compute the cs-PDPkj for each subgroup Gk

j using the marginal
PDP formula in Eq. (4).

cs-PDPkj (x) = 1

nk

∑

i :x(i)∈Gk
j

f̂
(
x, x(i)

− j

)

This results in multiple cs-PDPs per feature, which can be displayed together in the
same plot as in Fig. 9. The cs-PDPs allow interesting insight into data and model.
First of all, since they do not extrapolate, they allow interesting insight into the data:
They describe how prediction and feature of interest covary within specific groups.
Secondly, in contrast to the global cPDP, they allow interesting insight into the model:
For the global cPDP even features that are not used by the model can have nonzero
effects (as illustrated in Fig. 3). Our proposed cs-PDPs only show nonzero effects if
the respective variable is causal for the prediction.

4.3.1 Plotting the cs-PDP

The cs-PDP can be plotted in the same way as the PDP, with the exception that we
get mutiple effect curves instead of just one. For a more compact view, we propose to
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Fig. 3 We simulated a linear model of y = x1 + ε with ε ∼ N (0, 1) and an additional feature X2 which is
correlated with X1 (≈ 0.72). The conditional PDP (left) gives the false impression that X2 has an influence
on the target. The cs-PDPs help in this regard, as the effects due to X1 (changes in intercept) are clearly
separated from the effect that X2 has on the target (slope of the cs-PDPs), which is zero. Unlike the marginal
PDP, the cs-PDPs reveals that for increasing X2 we expect that the prediction increases due to the correlation
between X1 and X2

plot all cs-PDPs into the same plot. In addition, we suggest to plot the PDPs similar to
boxplots, where the dense center quartiles are indicated with a bold line (see Fig. 4).
By emphasizing the data density within the subgroups, the user can immediately see
where to trust the plot more and where less. We restrict each cs-PDPkj to the interval

[min(x j ),max(x j )], with x j = (x (1)
j , . . . , x

(nkj )

j ).
Equivalently to PFI, the subgroup PDPs approximate the true marginal PDP even

if the features are independent.

Theorem 2 When feature X j is independent of features X− j for a given dataset D,
each cs-PDPk

j has the same expectation as the marginal PDP, and an n/nk-times
larger variance, where n and nk are the number of observations in the data and the
subgroup Gk

j .

The proof of Theorem 2 is shown in “Appendix Appendix C”. Theorem 2 has the same
practical implications as Theorem 1: Even if the features are independent, we will, in
expectation, get the marginal PDPs. And when trees are grown deeper than needed, in
expectation the cs-PDPs will yield the same curve.

Both the PDP and the set of cs-PDPs need O(nM) evaluations, since
∑K j

k=1 nk = n

(and worst case O(n2) if evaluated at each x (i)
j value). Again, there is an additional

cost for training the respective decision trees and making predictions.

5 Experiments

Since for real data sets there are no ground truth values for cPFI and cPDP available,
we targeted a diverse set of metrics in our experiments:
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Fig. 4 Left: Marginal PDP. Bottom right: Boxplot showing the distribution of feature X . Top right: PDP
with boxplot-like emphasis. In the x-range, the PDP is drawn from ±1.58 · I QR/

√
n, where I QR is the

range between the 25% and 75% quantile. If this range exceeds [min(x j ),max(x j )], the PDP is capped.
Outliers are drawn as points. The PDP is bold between the 25% and 75% quantiles

– Conditional PFI Ground Truth Simulation: With this simulated experiment, we
compared various cPFImethods. Since the data were simulated, we could compute
the ground truth cPFI and benchmark all methods accordingly.

– Data fidelity evaluation: This experiment used real data sets to analyze howwell the
different perturbation methods that underpin the various cPDP/cPFI approaches
avoid extrapolation.

– Model fidelity: This experiment evaluates how close the cPDP curves are to the
real model predictions.

5.1 Training conditional sampling approaches

To ensure that sampling approaches are not overfitting, we suggest to separate training
and sampling, where training covers all estimation steps that involve data. For this
purpose, we refer to the training data with Dtrain and to the data for importance
computation with Dtest . This section both describes how we compared the sampling
approaches in the following chapters and serves as a general recommendation for how
to use the sampling approaches.

For our cs-permutation, we trained the CART / transformation trees on Dtrain and
permuted X j of Dtest within the terminal nodes of the tree. For CVIRF (Strobl et al.
2008; Debeer and Strobl 2020), which is specific to random forests, we trained the
random forest on Dtrain to predict the target y and permuted X j of Dtest within the
terminal nodes. ForModel-Xknockoffs (Candes et al. 2018),wefitted the second-order
knockoffs on Dtrain and replaced X j in Dtest with its knockoffs. For the imputation
approach (Fisher et al. 2019), we trained a random forest onDtrain to predict X j from
X− j , and replaced values of X j in Dtest with their random forest predictions plus a
random residual. For the interval-based sampling (Apley and Zhu 2016), we computed
quantiles of X j using Dtrain and perturbed X j in Dtest by moving each observation
once to the left and once to the right border of the respective intervals. The marginal
permutation (PFI, PDP) required no training, we permuted (i.e., shuffled) the feature
X j in Dtest .
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5.2 Conditional PFI ground truth simulation

We compared our cs-PFI approach using CART (tree cart) and transformation trees
(tree trtr), CVIRF (Strobl et al. 2008; Debeer and Strobl 2020), Model-X knockoffs
(ko) (Candes et al. 2018) and the imputation approach (impute rf) (Fisher et al. 2019)
in ground truth simulations. We simulated the following data generating process:
y(i) = f (x(i)) = x(i)

1 · x(i)
2 + ∑10

j=1 x
(i)
j + ε(i), where ε(i) ∼ N (0, σε). All features,

except feature X1 followed a Gaussian distribution: X j ∼ N (0, 1). Feature X1 was

simulated as a function of the other features plus noise: x (i)
1 = h(x (i)

−1) + εx . We
simulated the following scenarios by changing h and εx :

– In the independent scenario, X1 did not depend on any feature: h(x(i)
−1) = 0,

εx ∼ N (0, 1). This scenario served as a test how the different conditional PFI
approaches handle the edge case of independence.

– The linear scenario introduces a strong correlation of X1 with feature X2:
h(x(i)

−1) = x(i)
2 , εx ∼ N (0, 1).

– In the non-linear scenario, we simulated X1 as a non-linear function of multiple
features: h(x(i)

−1) = 3 · 1(x(i)
2 > 0) − 3 · 1(x(i)

2 ≤ 0) · 1(x(i)
3 > 0). Here also the

variance of εx ∼ N (0, σx ) is a function of x : σx (x(i)) = 1(x(i)
2 > 0)+2 ·1(x(i) ≤

0) · 1(x(i)
3 > 0) + 5 · 1(x(i)

2 ≤ 0) · 1(x(i)
3 ≤ 0).

– For the multiple linear dependencies scenario, we chose X1 to depend on many
features: h(x(i)

−1) = ∑10
j=2 x

(i)
j , εx ∼ N (0, 5).

For each scenario, we varied the number of sampled data points n ∈ {300, 3000}
and the number of features p ∈ {9, 90}. To “train” each of the cPFI methods, we used
2/3 · n (200 or 2000) data points and the rest (100/1000) to compute the cPFI. The
experiment was repeated 1000 times. We examined two settings.

– In setting (I), we assumed that the model recovered the true model f̂ = f .
– In setting (II), we trained a random forest with 100 trees (Breiman 2001).

In both settings, the true conditional distribution of X1 given the remaining features
is known (function h and error distribution is known). Therefore we can compute the
ground truth conditional PFI, as defined inEq. (2), by replacing f̂ with f .Wegenerated
the samples of X1 according to g to get the X̃1 values and compute the increase in
loss. The conditonal PFIs differed in settings (I) and (II) since in (I) we used the true
f , and in (II) the trained random forest f̂ .

5.2.1 Conditional PFI ground truth results

For setting (I), the mean squared errors between the estimated conditional PFIs and the
ground truth are displayed in Table 2, and the distributions of conditional PFI estimates
in Fig. 5. In the independent scenario, where conditional and marginal PFI are equal,
all methods performed equally well, except in the low n, high p scenario, where the
knockoffs sometimes failed. As expected, the variance was higher for all methods
when n = 300. In the linear scenario, the marginal PFI was clearly different from
the conditional PFI. There was no clear best performing conditional PFI approach, as
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the results differ depending on training size n and number of features p. For low n
and low p, knockoffs performed best. For high p, regardless of n, the cs-permutation
approaches worked best, which might be due to the feature selection mechanism
inherent to trees. The multiple linear dependencies scenario was the only scenario
in which the cs-PFI approach was consistently outperformed by the other methods.
Decision trees already need multiple splits for recovering linear relationships, and in
this scenario,multiple linear relationships had to be recovered. Imputationwith random
forest worked well when multiple linear dependencies are present. For knockoffs,
the results were mixed. As expected, the cs-PFI approach worked well in the non-
linear scenario, and outperformed all other approaches. Knockoffs and imputation
with random forests both overestimated the conditional PFI (except for knockoffs for
n = 300 and p = 90). In addition to this bias, they had a larger variance compared to
the cs-PFI approaches.

Generally, the transformation trees performed equal to or outperformed CART
across all scenarios, except for the multiple linear dependencies scenario. Our cs-PFI
approaches worked well in all scenarios, except when multiple (linear) dependencies
were present. Even for a single linear dependence, the cs-PFI approaches were on par
with knockoffs and imputation, and clearly outperformed both when the relationship
was more complex.

In setting (II), a random forest was analyzed, which allowed us to include
the conditional variable importance for random forests (CVIRF) by Strobl et al.
(2008) and Debeer and Strobl (2020) in the benchmark. The MSEs are displayed
in “Appendix Appendix D”, Table 6, and the distribution of conditional PFI estimates
in “Appendix Appendix D” in Fig. 11. The results for all other approaches are com-
parable to setting (I). For the low n settings, CVIRF worked as well as the other
approaches in the independent scenario. It outperformed the other approaches in the
linear scenario and the multiple linear scenario (when n was small). The CVIRF
approach consistently underestimated the conditional PFI in all scenarios with high
n, even in the independent scenario. Therefore, we would recommend to analyze the
conditional PFI for random forests using cs-PFI for lower dimensional dependence
structures, and imputation for multiple (linear) dependencies.

5.3 Trading interpretability for accuracy

In an additional experiment, we examined the trade-off between the depth of the trees
and the accuracy with which we recover the true conditional PFI. For scenario (I), we
trained decision trees with different maximal depths (from 1 to 10) and analyzed how
the resulting number of subgroups influenced the conditional PFI estimate. The exper-
iment was repeated 1000 times. The deeper the trees, the better the true conditional
PFI was approximated. Also no overfitting occured, which is in line with theoretical
considerations in Theorem 1. See “Appendix Appendix E” for detailed results.
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Table 2 MSE comparing estimated and true conditional PFI (scenario I)

Setting cs-PFI (cart) cs-PFI (trtr) impute rf ko mPFI

Independent

n=300, p=10 1.33 1.35 1.67 1.47 1.39

n=300, p=90 1.50 1.29 1.46 5.81 1.31

n=3000, p=10 0.14 0.15 0.16 0.13 0.15

n=3000, p=90 0.15 0.14 0.14 0.18 0.13

Linear

n=300, p=10 4.62 4.30 3.64 2.03 44.83

n=300, p=90 5.55 5.26 17.53 11.63 45.36

n=3000, p=10 0.40 0.26 0.26 0.63 37.40

n=3000, p=90 0.45 0.31 3.55 0.38 36.32

Multi. lin.

n=300, p=10 2443.67 2623.54 1276.41 1583.69 2739.83

n=300, p=90 2574.54 2896.47 2141.01 6607.73 2988.68

n=3000, p=10 1031.83 900.68 140.98 810.78 1548.37

n=3000, p=90 1075.95 1041.10 438.25 185.13 1599.59

Non-linear

n=300, p=10 22.00 17.76 265.73 668.34 1204.17

n=300, p=90 19.99 19.81 504.53 131.77 1248.74

n=3000, p=10 1.18 1.00 144.77 626.80 1156.32

n=3000, p=90 1.17 1.13 206.01 579.02 1136.83

Impute rf: Imputation with a random forest, ko: Model-X knockoffs, mPFI: (marginal) PFI, tree cart:
cs-permutation based on CART, tree trtr: cs-permutation based on transformation trees

5.4 Data fidelity evaluation

PDP and PFI work by data intervention, prediction, and subsequent aggregation
(Scholbeck et al. 2019). Based on data D, the intervention creates a new data set.
In order to compare different conditional sampling approaches, we define a measure
of data fidelity to quantify the ability to preserve the joint distribution under inter-
vention. Failing to preserve the joint distribution leads to extrapolation when features
are dependent. Model-X knockoffs, for example, are directly motivated by preserving
the joint distribution, while others, such as accumulated local effect plots do so more
implicitly.

Data fidelity is the degree to which a sample X̃ j of feature X j preserves the joint
distribution, that is, the degree to which (X̃ j , X− j ) ∼ (X j , X− j ) In theory, any
measure that compares two multivariate distributions can be used to compute the data
fidelity. In practice, however, the joint distribution is unknown, whichmakes measures
such as theKullback-Leibler divergence impractical.We are dealingwith two samples,
one data set without and one with intervention.

In this classic two-sample test-scenario, the maximum mean discrepancy (MMD)
can be used to compare whether two samples come from the same distribution (Fortet
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Fig. 5 Setting (I) comparing various conditional PFI approaches on the true model against the true condi-
tional PFI (horizontal line) based on the data generating process

andMourier 1953; Gretton et al. 2007, 2012; Smola et al. 2007). The empirical MMD
is defined as:

MMD(D, D̃) = 1

n2
∑

x,z∈D
k(x, z) − 2

nl

∑

x∈D,z∈D̃
k(x, z) + 1

l2
∑

x,z∈D̃
k(x, z) (6)

where D = {x (i)
j , x (i)

− j }ni=1 is the original data set and D̃ = {x̃ (i)
j , x (i)

− j }li=1 a data set

with perturbed x (i)
j . For both data sets, we scaled numerical features to a mean of zero

and a standard deviation of one. For the kernel k weused the radial basis function kernel
for all experiments. For parameter σ of the radial basis function kernel, we chose the
median L2-distance between data points which is a common heuristic (Gretton et al.
2012).Wemeasure data fidelity as the negative logarithm of theMMD (−log(MMD))
to obtain a more condensed scale where larger values are better.
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Definition 1 (MMD-based Data Fidelity) LetD be a dataset, and D̃ be another dataset
from the same distribution, but with an additional intervention. We define the data
fidelity as: Data Fidelity = −log(MMD(D, D̃)).

We evaluated how different sampling strategies (see Table 1) affect the data fidelity
measure for numerous data sets of the OpenML-CC18 benchmarking suite (Bischl
et al. 2019). We removed all data sets with 7 or fewer features and data sets with
more than 500 features. See “Appendix Appendix F” for an overview of the remaining
data sets. For each data set, we removed all categorical features from the analysis, as
the underlying sampling strategies of ALE plots and Model-X knockoffs are not well
equipped to handle them. We were foremost interested in two questions:

(A) How does cs-permutation compare with other sampling strategies w.r.t. data
fidelity?

(B) How do choices of tree algorithm (CART vs. transformation trees) and tree depth
parameter affect data fidelity?

In each experiment, we selected a data set, randomly sampled a feature and com-
puted the data fidelity of various sampling strategies as described in the pseudo-code
in Algorithm 2.

Algorithm 2: Data Fidelity Experiments
Input: OpenML-CC18 data sets, sampling strategies

1 for data set D in OpenML-CC18 do
2 Remove prediction target from D (only keep it for CVIRF)
3 Randomly order features in D
4 for features j ∈ {1, . . . , 10} do
5 for repetition ∈ {1, . . . , 30} do
6 Sample min(10.000, n) rows from D
7 Split sample into Dtrain (40%), Dtest (30%) and Dre f (30%)
8 for each sampling do
9 “Train” sampling approach using Dtrain (e.g., construct subgroups, fit

knockoff-generator, ...)

10 Generate conditional sample X̃ j for Dtest

11 Estimate data fidelity as −log(MMD(Dre f ,Dtest ))

12 return Set of data fidelity estimates

For an unbiased evaluation, we split the data into three pieces: Dtrain (40% of
rows), Dtest (30% of rows) and Dre f (30% of rows). We used Dtrain to “train” each
sampling method (e.g., train decision trees for cs-permutation, see Sect. 5.1). We used
Dre f , which we left unchanged and Dtest , for which the chosen feature was perturbed
to estimate the data fidelity. For each data set,we chose 10 features at random, forwhich
sampling was applied.Marginal permutation (which ignores the joint distribution) and
“no perturbation” served as lower and upper bounds for data fidelity. For CVIRF, we
only used one tree per random forest as we only compared the general perturbation
strategy which is the same for each tree.
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We repeated all experiments 30 times with different random seeds and therefore
different data splits. All in all this produced 12,210 results (42 data sets × (up to)
10 features × 30 repetitions) per sampling method. All results are shown in detail in
“Appendix Appendix F” (Figs. 13, 14, 15, and 16).

Since the experiments are repeated across the same data sets and the same fea-
tures, the data fidelity results are not independent. Therefore, we used a random
intercept model (Bryk and Raudenbush 1992) to analyze the differences in data
fidelity between different sampling approaches. The target variable of the random
intercept model was the MMD, the dependent variable was the perturbation method,
and we used a random intercept per data and per feature (nested). So, informally:
MMD ∼ perturbation method + (1| dataset/feature).

We chose “Marginal Permutation” as the reference category. We fitted two random
intercept models: One to compare cs-permutation with fully-grown trees (CART, trtr)
with other sampling methods and another one to compare different tree depths.

5.4.1 Results (A) state-of-the-art comparison

Figure6 shows the effect estimates of different sampling approaches modeled with a
random intercept model. The results show that cs-permutation performed better than
all other methods. Model-X knockoffs and the imputation approach (with random
forests) came in second place and outperformed ALE and CVIRF. Knockoffs were
proposed to preserve the joint distribution, but are based on multivariate Gaussian
distribution. This seems to be too restrictive for the data sets in our experiments.
CVIRF does not have much higher data fidelity than marginal permutation. However,
results for CVIRF must be viewed with caution, since data fidelity regards all features
equally – regardless of their impact on the model prediction. For example, a feature
can be highly correlated with the feature of interest, but might not be used in the
random forest. A more informative experiment for comparing CVIRF can be found
in Sect. 5.2. Figures13 and 14 in “Appendix Appendix F” show the individual data
fidelity results for the OpenML-CC18 data sets. Not perturbing the feature at all has
the highest data fidelity and serves as the upper bound. The marginal permutation
serves as a lower baseline. For most data sets, cs-permutation has a higher data fidelity
compared to all other sampling approaches. For all the other methods there is at least
one data set on which they reach a low data fidelity (e.g., “semeion”, “qsar-biodeg”
for ALE; “nodel-simulation”, “churn” for imputation; “jm1”, “pc1” for knockoffs).
In contrast, cs-permutation achieves a consistently high data fidelity on all these data
sets.

Additionally, we review the data fidelity rankings of the sampling methods in
Table 3. The table shows the average ranking of each method according to MMD.
First we computed the rank of each perturbation method per dataset, feature and rep-
etition, with rank 1 being the best (lowest MMD). This allows another view on the
performance of the perturbation methods. The rankings show a similar picture as
the random intercept model estimates, except that Model-X knockoffs have a bet-
ter average ranking than imputation. This could be the case since on a few data sets
(bank-marketing, electricity, see Fig. 13 in “Appendix Appendix F”) Model-X knock-
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Fig. 6 Linear regressionmodel coefficients and 95% confidence intervals for the effect of different sampling
approaches on data fidelity, with (nested) random effects per data set and feature. A Comparing different
sampling approaches. No perturbation (“none”) and permutation (“perm”) serve as upper and lower bounds.
BComparing cs-permutation using either CART or transformation trees and different tree depths (1, 2, 3, 4,
5 and 30).Marginal permutation is the reference category and therefore is at x = 0 and all other perturbation
method estimates are relative to this reference

Table 3 Mean ranks and their standard deviation based on data fidelity of various perturbation methods
over data sets, features and repetitions

None cs (trtr) ko cs (cart) imp ale perm cvirf

Mean ranks 2.50 3.51 3.70 3.76 4.25 4.61 6.82 6.84

SD 0.73 0.87 1.32 0.91 1.37 2.07 1.14 1.14

None: No intervention, which serves as upper benchmark. cart30: cs-permutation with CARTwith maximal
depth of 30. trtr30: cs-permutation with transformation trees with maximal depth of 30. imp: Imputation
approach. ko: Model-X knockoffs (Candes et al. 2018). ale: ALE perturbation (Apley and Zhu 2016). cvirf:
Conditional variable importance for random forests (Strobl et al. 2008). perm: Unconditional permutation

offs have a very low data fidelity but on most others a higher model fidelity than the
imputation method.

5.4.2 Results (B) tree configuration

We included shallow trees with maximum depth parameter from 1 to 5 to analyze
the trade-off between tree depth and data fidelity. We included trees with a maximum
depth parameter of 30 (“fully-grown” trees as this was the software’s limit) as an
upper bound for each decision tree algorithm. Figure6B) shows that the deeper the
trees (and the more subgroups), the higher the data fidelity. This is to be expected,
since deeper trees allow for a more fine-grained separation of distributions. More
importantly, we are interested in the trade-off between depth and data fidelity. Even
splitting with a maximum depth of only 1 (two subgroups) strongly improves data
fidelity over the simple marginal permutation for most data sets. A maximum depth
of two means another huge average improvement in data fidelity, and already puts
cs-permutation on par with knockoffs. A depth of three to four is almost as good as a
maximumdepth parameter of 30 and already outperforms all othermethods, while still
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Table 4 We selected data sets from OpenML Vanschoren et al. (2014) and Casalicchio et al. (2017) having
1000–8000 instances and a maximum of 50 numerical features

wine satellite wind space pollen quake

No. of rows 6497 6435 6574 3107 3848 2178

No. of features 12 37 15 7 6 4

We excluded data sets with categorical features, since ALE cannot handle them

being interpretable due to their shortness. CART slightly outperforms transformation
trees clearly when trees are shallow, which is surprising since transformation trees
are, in theory, better equipped to handle changes in the distribution. Deeply grown
transformation trees (max. depth of 30) slightly outperform CART. Figures15 and 16
in “Appendix Appendix F” show data fidelity aggregated by data set.

5.5 Model fidelity

Model fidelity has been defined as how well the predictions of an explanation method
approximate the ML model (Ribeiro et al. 2016). Similar to Szepannek (2019), we
define model fidelity for feature effects as the mean squared error between model
prediction and the prediction of the partial function f j (which depends only on feature
X j ) defined by the feature effect method, for example f j (x) = PDPj (x). For a given

data instance with observed feature value x (i)
j , the predicted outcome of, for example,

a PDP can be obtained by the value on the y-axis of the PDP at the observed x j value.

Model_Fidelity( f̂ , f j ) = 1

n

n∑

i=1

(
f̂
(
x (i)

)
− f j

(
x (i)
j

))2
, (7)

where f j is a feature effect function such as ALE or PDP. For this definition of model
fidelity, lower values are more desirable. The better the model fidelity, the closer the
effect curve is to the actual model predictions. In order to evaluate ALE plots, they
have to be adjusted such that they are on a comparable scale to a PDP (Apley and Zhu
2016): f ALE,ad j

j = f ALEj + 1
n

∑n
i=1 f̂ (x (i)).

We trained random forests (500 trees), linear models and k-nearest neighbours
models (k = 7) on various regression data sets (Table 4). 70% of the data were used
to train the ML models and the transformation trees/CARTs. This ensure that results
are not over-confident due to overfitting, see also Sect. 5.1. The remaining 30% of
the data were used to evaluate model fidelity. For each model and each data set, we
measured model fidelity between effect prediction and model prediction [Eq. (7)],
averaged across observations and features.

Table5 shows that the model fidelity of ALE and PDP is similar, while the cs-PDPs
have the best model fidelity (lower is better). This is an interesting result since the
decision trees for the cs-PDPs are neither based on the model nor on the real target, but
solely on the conditional dependence structure of the features. However, the cs-PDPs
have the advantage that we obtain multiple plots. We did not aggregate the plots to
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Table 5 Meanmodel fidelity averaged over features in a random forest for various data sets, and the variance
across features

Pollen Quake Satellite Space Wind Wine

PDP 10.83 (6.33) 0.03 (0.0) 4.78 (0.03) 0.04 (0.0) 43.98 (33.91) 0.75 (0.0)

ALE 12.33 (19.68) 0.04 (0.0) 4.82 (0.01) 0.04 (0.0) 43.38 (56.71) 0.75 (0.0)

trtr1 9.09 (3.18) 0.03 (0.0) 4.19 (0.59) 0.04 (0.0) 30.36 (41.02) 0.72 (0.0)

cart1 9.06 (3.24) 0.03 (0.0) 3.75 (0.77) 0.04 (0.0) 31.22 (59.23) 0.72 (0.0)

trtr2 8.29 (5.14) 0.03 (0.0) 3.36 (0.52) 0.04 (0.0) 26.47 (50.21) 0.71 (0.0)

cart2 8.12 (6.29) 0.03 (0.0) 3.23 (0.69) 0.04 (0.0) 27.29 (78.63) 0.71 (0.0)

The cPDPs (trtr,cart) always had a lower loss (i.e. higher model fidelity) than PDP and ALE. The loss
monotonically decreases with increasing maximum tree depth for subgroup construction

a single conditional PDP, but computed the model fidelity for the PDPs within the
subgroups (visualized in Fig. 9). Our cs-PDPs using trees with a maximum depth of 2
have a better model fidelity than using a maximum depth of 1. We limited the analysis
to interpretable conditioning and therefore allowed only trees with a maximum depth
of 2, since a tree depth of 3 already means up to 8 subgroups which is already an
impractical number of PDPs to have in one plot. CART sometimes beats trtr (e.g.,
on the “satellite” data set) but sometimes trtr has a lower loss (e.g., on the “wind”
data set). Using different models (knn or linear model) produced similar results, see
“Appendix Appendix G”.

6 Application

In the following application, we demonstrate that cs-PDPs and cs-PFI are valuable
tools to understand model and data beyond insights given by PFI, PDPs, or ALE plots.
We trained a random forest to predict daily bike rentals (Dua andGraff 2017)with given
weather and seasonal information. The data (n = 731, p = 9) was divided into 70%
training and 30% test data. The features are not independent (see “Appendix Appendix
H”)

6.1 cs-PDPs and cs-PFI

To construct the subgroups, we used transformation trees with a maximum tree depth
of 2 which limited the number of possible subgroups to 4. We chose transformation
trees because they are theoretically more sound and don’t require the assumption that
the conditional distributions only differ in the means of the other features.

Figure7 shows that formost features the biggest change in the estimated conditional
PFI happens when moving from a maximum depth of 0 (=marginal PFI) to a depth
of 2. This makes a maximum depth of 2 a reasonable trade-off between limiting the
number of subgroups and accurately approximating the conditional PFI.We compared
the marginal and conditional PFI for the bike rental predictions, see Fig. 8.
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Fig. 8 Left: Comparison of PFI and cs-PFI for a selection of features. For cs-PFI we also show the features
that constitute the subgroups. Right: Local cs-PFI of temperature within subgroups. The temperature feature
is important in spring, fall and winter, but neglectable on summer days, especially humid ones

The most important features, according to (marginal) PFI, were temperature and
year. For the year feature, the marginal and conditional PFI are the same. Temperature
is less important when we condition on season and humidity. The season already holds
a lot of information about the temperature, so this is not a surprise. When we know
that a day is in summer, it is not as important to know the temperature to make a good
prediction. On humid summer days, the PFI of temperature is zero. However, in all
other cases, it is important to know the temperature to predict how many bikes will be
rented on a given day. The disaggregated cs-PFI in a subgroup can be interpreted as
“How important is the temperature, given we know the season and the humidity”.

We compare PDP, ALE and cs-PDP in Fig. 9. Both ALE and PDP show amonotone
increase of predicted bike rentals up until a temperature of 25 ◦Cand a decrease beyond
that. The PDP shows a weaker negative effect of very high temperatures which might
be caused by extrapolation: High temperature days are combined with e.g. winter. A
limitation of theALE plot is that we should only interpret it locally within each interval
that was used to construct the ALE plot. In contrast, our cs-PDP is explicit about the
subgroup conditions in which the interpretation of the cs-PDP is valid and shows the
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Fig. 9 Effect of temperature on predicted bike rentals. Left: PDP and ALE plot. Right: cs-PDPs for 4
subgroups

distributions in which the feature effect may be interpreted. The local cs-PDPs in
subgroups reveal a more nuanced picture: For humid summer days, the temperature
has no effect on the bike rentals, and the average number of rentals are below that of
days with similar temperatures in spring, fall and drier summer days. The temperature
has a slightly negative effect on the predicted number of bike rentals for dry summer
days (humidity below 67.3). The change in intercepts of the local cs-PDP can be
interpreted as the effect of the grouping feature (season). The slope can be interpreted
as the temperature effect within a subgroup.

We also demonstrate the local cs-PDPs for the season, a categorical feature. Fig-
ure10 shows both the PDP and our local cs-PDPs. The normal PDP shows that on
average there is no difference between spring, summer and fall and only slightly less
bike rentals in winter. The PDPwith four subgroups conditional on temperature shows
that the marginal PDP is misleading. The PDP indicates that in spring, summer and
fall, around 4500 bikes are rented and in winter around 1000 fewer. The cs-PDPs in
contrast show that, conditional on temperature, the differences between the seasons
are much greater, especially for low temperatures. Only at high temperatures is the
number of rented bikes similar between seasons.

7 Discussion

We proposed the cs-PFIs and cs-PDPs, wich are variants of PFI and PDP that work
when features are dependent. Both cs-PFIs and cs-PDPs rely on permutations in sub-
groups based on decision trees. The approach is simple: Train a decision tree to predict
the feature of interest and compute the (marginal) PFI/PDP in each terminal node
defined by the decision tree.

Compared to other approaches, cs-PFIs and cs-PDPs enable a human comprehen-
sible grouping, which carries information how dependencies affect feature effects
and importance. As we showed in various experiments, our methods are on par or
outperform other methods in many dependence settings. We therefore recommend
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using cs-PDPs and cs-PFIs to analyze feature effects and importances when features
are dependent. However, due to their construction with decision trees, cs-PFIs and
cs-PDPs do not perform well when the feature of interest depends on many other
features, but only if it depends on a few features. Especially the interpretability suffers
if the tree has to rely on many features. We recommend analyzing the dependence
structure beforehand, using the imputation approach with random forests in the case
of multiple dependencies, and cs-PFIs in all other cases.

Our framework is flexible regarding the choice of partitioning and we leave the
evaluation of the rich selection of possible decision tree and decision rules approaches
to future research.
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Chapter 3

Discussion

3.1 Our Contributions and the Three Challenges

At the beginning of this thesis, we postulated three challenges: Unclear ex-
plananda (Challenge I), misinterpretation (Challenge II), and the estimation
of conditional-sampling-based techniques (Challenge III).
As follows, I summarise how our contributions helped in tackling the afore-
mentioned challenges. Furthermore, I discuss the limitations of our contribu-
tions and open problems.

3.1.1 Challenge I: Unclear Explananda

We argued that interpretations are consulted in various contexts and for
various goals. As a consequence, the requirements that we have towards in-
terpretation methods are conflicting, meaning that no interpretation method
can address them all.
Thus, to make progress, we have to disentangle the different goals and
contexts such that they inform coherent requirements. Then, given a fixed
goal with coherent requirements, the explanandum can be determined and
formalised.
Over the course of this thesis, we inspected two interpretation contexts in
more detail: recourse and inference.

• Recourse: In Paper I, we disentangled two goals that were previously
conflated. Wachter et al. [2017a] propose to use counterfactual ex-
planations for three purposes: To understand decisions, to contest
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decisions, and to change decisions via recourse. We argue that these
goals conflict: To understand and contest decisions, we have to take the
model’s prediction Ŷ into account. In contrast, recourse should focus
on improvement and thus concerns the underlying target Y . Only by
separating recourse from related goals such as contestability, we were
liberated to focus recourse recommendations on the underlying target
Y .
The distinction between nine perspectives on model and data helped us
to articulate the differences between the conflicting subgoals contest-
ability and recourse and to express the new target estimand.

• Scientific Inference: Papers II and III are concerned with scientific
inference. They are motivated by the observation that many methods
originally developed to describe the model’s mechanism are used to gain
insight into the DGP. These goals are in conflict, and thus we separate
scientific inference from other interpretation purposes.
Scientific inference itself is motivated by various contexts and goals.
Separating those in detail would require significant domain knowledge
and is thus beyond the scope of this thesis. However, we propose a
general procedure that scientific practitioners can follow to derive the
explanandum for a specific interpretation goal in the context of sci-
entific inference. Moreover, we provide several examples of explananda
that may be of interest when interpreting ML models to learn about the
associations in the DGP.

Open Problems and Outlook

Our contributions helped separate two interpretation goals from other con-
flicting goals: recourse and inference. Each of these interpretation goals can
be refined further, for instance, by assessing how the targeted improvement
confidence should be chosen, by disentangling subtasks in scientific inference
or by focusing on causal inference with IML.
Furthermore, there are common motivations for IML that our work did not
tackle and that require clarification:

• Robustness: A particularly prominent motivation for IML is to assess
robustness. But robustness to what? In principle, various shifts are
conceivable [Bühlmann, 2020, Mohus and Li, 2023, Lee et al., 2021,
Perdomo et al., 2020, Hancox-Li, 2020]. Even for the same shift, different
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explananda are conceivable: For example, we could explain the model’s
mechanism so accurately that the explainee can predict the model’s
behaviour outside the distribution, or we could directly simulate the
shift and quantify how that impacts the model’s performance.

• Contestability: Furthermore, IML is often motivated to help assess
whether a model’s decision-making aligns with moral, ethical and legal
standards. When the standards are violated, the explainee shall be en-
abled to contest the model’s reasoning and thereby revert the decision.
However, moral, ethical and legal standards are diverse, and thus they
must be treated separately. For example, a range of different fairness
definitions exist [Barocas et al., 2019].

3.1.2 Challenge II: Misinterpretation

In the general introduction we argued that practitioners are often confused
about the meaning of IML methods and base their choice of method on
superficial criteria such as publication year. We argued that the choice of
method should be determined by the interpretation goal such that an explan-
atory link between explanandum and explanation must be established. To
enable practitioners to establish such a link, we need interpretation rules that
clarify what insight methods can and cannot provide.
Furthermore, the estimation of the techniques involves uncertainties which
may result in misleading estimates. Thus, the involved uncertainties should
be quantified and communicated to the explainee.

Contributions

• In §3, we introduce a taxonomy of nine different perspectives on model
and data. The taxonomy has proven to help describe explananda and
understand the meaning of explanations. Thus, it can serve as one
connecting link between the interpretation goal and the interpretation
method.

• In Paper I, we provide interpretation rules for contrastive explanations,
clarifying under which circumstances acceptance and improvement
align. More specifically, we find that under interventions on non-causal
variables, targeting acceptance may not lead to improvement but to
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actions that game the predictor. This aligns with our distinction between
the effects of data-level causation on the prediction and the underlying
target (§3). However, given that there are no unobserved confounders,
interventions on causes of the prediction target leave the conditional
distribution of the target given the covariates intact, such that accept-
ance guarantees can be derived from improvement guarantees.
Furthermore, instead of only giving a recommendation, we suggest
communicating the recommendations along with the probabilities of
them leading to improvement or acceptance. As such, we make a first
step towards quantifying and communicating the uncertainties involved
in recourse.

• In Paper II, we clarify that many IML methods are unsuitable for learn-
ing about the data since they are concerned with understanding indi-
vidual model elements or the model’s mechanism within and outside the
distribution. In general, individual model elements and the model’s be-
haviour outside the training distribution cannot be linked to properties
DGP. In contrast, conditional-sampling-based methods can be used to
gain insight into the DGP since they leverage that models are holistic-
ally representational, meaning that the model as a whole represents an
aspect of the distribution.

• In Paper III, we show how various estimation uncertainties affect the in-
terpretation, especially when the interpretation is used to learn about
the DGP. Moreover, we propose variance estimands and confidence in-
tervals that practitioners can use to inform their conclusions.

• In Paper IV, we generalise PFI and CFI to a class of feature importance
algorithms called Relative Feature Importance (RFI). We derive inter-
pretation rules for each member, clarifying what conclusions about the
dependence structure in the data and the model’s mechanism can be
drawn from nonzero feature importance.

• In Paper V, we raise awareness for a broad range of interpretation pitfalls,
including assuming one-fits-all interpretability, interpreting models that
do not generalise well, ignoring feature dependence and feature inter-
actions, ignoring model and approximation uncertainty, and unjustified
causal interpretation.
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Open Problems and Outlook

There are a range of open challenges that we leave for future work:

• Robustness of Acceptance Guarantees: In Paper I, we quantify the uncer-
tainties stemming from our inability to perfectly predict Y or the effects
of interventions. However, further uncertainties influence whether
someone will improve or get accepted.
For example, we do not assess the long-term effects of recourse on the
decision model and how they affect the acceptance guarantees. It is
conceivable that the conditional distribution of the target given the cov-
ariates may be altered by including recourse-implementing individuals.
In preliminary work, we demonstrate that the model’s mechanism may
change significantly when refitted on mixed pre- and post-recourse
datasets [König et al., 2021].
If such uncertainties are not considered, acceptance guarantees may be
overly optimistic.

• Uncertainty stemming from conditional sampling: In Paper II, we argued
that for inference about the associations in the data, conditional-
sampling-based methods should be used. However, they require access
to a conditional sampler, which usually is not readily available, such that
the sampler must be learned.
In Paper III, we quantify various uncertainties involved in estimating
IML methods. However, we neglect uncertainty stemming from learning
the conditional sampler. Quantifying this uncertainty is difficult since
each fit may correlate not only with refits of the sampler but also with
refits of the model. Thus, simply refitting the sampler and measuring
the variance yields biased estimates.

• Interpreting the Magnitude of RFI: In Paper IV, we provide interpretation
rules for what implications can be drawn from nonzero feature import-
ance. The conclusions tell us whether we can conclude that dependence
is present. However, they do not allow us how to interpret the magnitude
of the importance scores. Interpretation rules that take the magnitude
into account are an interesting direction for future work.
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3.1.3 Challenge III: Estimation of Conditional-Sampling-
Based Techniques

Although easy to compute, interpretation techniques that are based on
marginal perturbations only allow limited insight into the DGP. For example,
we learned that nonzero PFI does not necessarily imply that the feature is in
any way related to the underlying target. Instead, the nonzero importance
could stem from dependencies between the feature and its covariates (Paper
IV). As an alternative, conditional-sampling-based techniques such as CFI
were proposed.
The problem with conditional-sampling-based techniques is that they are
more difficult to estimate. Conditional samplers are in general, not readily
available, and modelling conditional distributions is a challenging problem.
Throughout the thesis, we propose two techniques that help make the es-
timation of conditional-sampling-based techniques computationally more
efficient.

Contributions

• In Paper VI, we leverage causal structure learning to greedily identify
conditional independencies in the data, allowing us to make SAGE
estimation more efficient by skipping expensive to compute surplus
value function evaluations. We achieve significant runtime gains since
the one-time effort of learning a graph that encodes the independence
structure is negligible compared to the cost of the many saved value
function evaluations.

• In Paper VII, we propose to leverage tree-based learners to learn a par-
titioning of the feature space such that the features within each parti-
tion are (close to) independent. Thus, within partitions marginal and
conditional sampling coincide. We leverage the partitioning to sample
from conditional distributions and to estimate CFI. Furthermore, in set-
tings where the partitioning is sparse and thus interpretable, subgroup-
specific interpretations can be generated that provide novel insight into
model and data.
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Open Problems and Outlook

Although the papers help in making the estimation of conditional-sampling-
based techniques more efficient, they suffer from limitations:

• For the subgroup-specific versions of PFI and PDP in Paper VII, we as-
sume a sparse discrete structure in the data. Although the method per-
forms on par with competing approaches on continuous data, the par-
titioning trees become deeper, such that the subgroup-specific outputs
become challenging to interpret.

• In Paper VI, we exploit knowledge of the dependence structure in the
data to skip unnecessary evaluations. The final SAGE value estimates are
nearly unaffected. It would be interesting to assess whether knowledge
of the dependence structure in the data can be used to improve the qual-
ity of the approximation, for instance, by reducing conditioning sets and
partitioning multivariate distributions, thereby reducing the dimension-
alities of the estimation problems.

• For the computation of SAGE values, we have to estimate multivari-
ate conditional distributions, potentially with mixed continuous and
categorical variables. To the best of my knowledge, the only general-
purpose solution is to decompose the multivariate conditional into
a sequence of conditionals [Bates et al., 2021]. I conjecture that the
approximation quality deteriorates quickly in high-dimensional settings
since error accumulates.

• For many conditional-sampling-based methods, alternatives exist that
refit the model but do not need conditional samplers. More work is re-
quired to study under which circumstances refitting-based approaches
should be preferred over conditional-sampling-based approaches.
For example, both Leave-One-Covariate-Out Importance (LOCO) [Lei
et al., 2018], a refitting-based technique, and CFI provide similar insight
into the dependence structure of the data. One may argue that LOCO
does not explain the model and thus provides qualitatively different
insight than CFI; However, in many scenarios such as inference, we
do not care about explaining a specific model in the first place. In
these settings, using CFI only makes sense if refitting the model is more
difficult or expensive than learning a conditional sampler.
We leave a detailed comparison for future work.
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3.2 Further Challenges

Causal Explanations With Limited Causal Knowledge

In Paper I, we demonstrate how to generate Improvement-Focused Recourse
Recommendations (ICR) in settings where the causal graph or the Structural
Causal Model (SCM) is known. However, in practice, neither may be available
or the causal assumptions may be violated.
As a next step, it would be interesting to assess how partial knowledge of the
causal graph can be used to guide recourse. For instance, if we know that
variable x1 is a direct cause of y, we may be able to estimate the respective
treatment effects irrespective of whether some other variable x2 is a cause or
a confounded variable. More generally, given partial causal knowledge, effect
bounds may be derived [Maathuis et al., 2010].
Furthermore, when individuals implement recourse recommendations, the
resulting changes provide a valuable signal about the causal structure in the
data [Bechavod et al., 2020]. Using this signal, wrong causal assumptions may
be corrected in the long term.
Furthermore, recourse recommendations could be designed to provide in-
sight into the causal structure in the data, e.g., using methods from the active
learning literature [Sussex et al., 2021]. However, such an intervention must
be carefully assessed from an ethical perspective.

Feedback Loops

In IML it is often assumed that the explanation does not affect the DGP.
However, as feedback loops may invalidate the explanation. Let us illustrate
this at the example of recourse.
Suppose a decision-making system is used to distribute a limited good. For
instance, there are limits to how much money a bank can lend, or to how
many jobs a company can offer.
In such scenarios, the decision boundary must be calibrated to account for
the limited availability of the resource. For instance, the qualification level
required to land a job depends on who else applies.
Current research in recourse typically assumes binary decision problems
and a fixed 0.5 decision boundary. If many people implement recourse, the
decision boundary may be shifted, and a resource recommendation that
works for a 0.5 decision threshold may be outdated once the recourse action
is implemented.
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This can be seen as a further advantage of focusing on improvement; However,
it poses a significant challenge for communicating recourse recommenda-
tions. Should we simply freeze the decision boundary for individuals at the
point in time when they requested the recommendation to make accurate
guarantees? Under what circumstances do we reach an equilibrium state
where the decision boundary no longer shifts? Can we predict the change of
decision boundary over time?
We leave an investigation of those questions for future work.

Learning Human-Intelligible Concepts

In this thesis, we focused on model-agnostic interpretation techniques and
tabular data. In tabular data settings, the variables (usually) correspond to
meaningful concepts that the explainee can reason about. However, in many
relevant ML applications, they don’t. For example, in computer vision, the
model inputs are pixels; but humans don’t reason on the pixel level.
A range of work aims to explain models and data in terms of concepts. For
example, Koh et al. [2020] adapt the model architecture to predict human-
generated concept labels such that the model’s prediction can be explained
in terms of these concepts. [Bau et al., 2017] try to understand the meaning of
individual neurons by correlating their activations with concept labels. Kim
et al. [2018] use exemplary images with a concept to quantify the model’s
sensitivity to the concept. Goyal et al. [2019] estimate the causal effect of
labelled concepts on the prediction.
Problematically, the aforementioned methods require concept labels or
concept examples. However, such supervision may not be readily available in
practice. Furthermore, except for Koh et al. [2020], we do not know whether
the provided concepts reflect the model’s reasoning.
A promising avenue of research leverages work on causal abstraction [Ruben-
stein et al., 2017, Beckers and Halpern, 2019, Beckers et al., 2020, Markham
and Grosse-Wentrup, 2020] to learn abstract representations of the model’s
mechanism [Geiger et al., 2021, 2023a,b, Wu et al., 2021, 2023].
The problem with existing methods is that they focus on abstracting the
model, but many tasks in IML are not concerned with the model’s mechanism
per se (§1.4.3). Given that dependencies in the data are neglected, it is ques-
tionable whether the learned concepts are useful for goals such as inference
or recourse. We leave a detailed investigation for future work.
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Human Studies

In their seminal paper, Doshi-Velez and Kim [2017] discuss that IML methods
can be evaluated on three levels: Application-grounded evaluation assigns
real humans real tasks that they are supposed to solve using the explana-
tions. Human-grounded metrics also involve real humans but assess the
performance in simplified tasks. For functionally grounded evaluation, a
formal definition of “interpretability” is used to compute the quality of the
explanation.
Eventually, what we care about is whether explainees are enabled to draw the
correct conclusions by inspecting the explanations. In my view, experiments
with real humans are thus the gold standard for assessing the quality of
explanations.
However, human experiments are costly. Furthermore, human studies are not
required to narrow down the choice of method: Given a fixed interpretation
goal the explanandum can be determined and the explanations that do not
concern the explanandum can be ruled out (functional-grounded evaluation).
For instance, when using IML for inference, we can formally assess whether
an explanation actually describes the desired property of the DGP.
In my view, a functional grounded evaluation should precede an application-
grounded evaluation. To design an application-grounded evaluation, we
need to clarify the goal anyway. Furthermore, it is conceivable that to assess
whether the study participants draw the correct conclusions, the explanan-
dum must be defined as well.
Thus our work so far is only concerned with functionally grounded evalu-
ation. This is not to say that an application-grounded evaluation may provide
interesting new insights. For example, in recourse, it would be interesting to
assess how we should communicate recommendations and guarantees given
the involved uncertainties. We leave a detailed investigation for future work.



Chapter 4

Conclusion: If Interpretability Is the
Answer, What is the Question?

As we argued throughout this thesis, it is unclear what interpretability means.
Interpretability is associated with a range of conflicting goals, and interpreta-
tion techniques provide a range of conflicting answers. When provided with
an explanation, it can thus be difficult to pin down what question was asked
or what goal was pursued in the first place.
When interpreting ML systems, we should start with what we eventually
care about: the interpretation goal. The interpretation goal determines the
question and must thus inform the choice of IML methods. Throughout this
thesis, we demonstrated the importance of following this order. Only by fixing
the interpretation goal first, we could argue about how to design recourse
explanations and which methods to choose for scientific inference.
Unfortunately, in practice, IML methods are often not chosen based on their
suitability to answer a specific question but instead based on superficial
criteria such as publication year [Krishna et al., 2022]. I speculate that –
despite efforts to expose misconceptions in the field [Lipton, 2018, Páez,
2019, Freiesleben and König, 2023] – the assumption that “interpretability” is
a monolithic goal persists. As a result of this faulty reasoning, the generated
explanations may not match the question and thus degrade to mere justific-
ations. I hope that with our work, we contribute a step towards a responsible
application of IML.
Given that interpretability is more of an umbrella term for several goals
than a goal in itself, I am optimistic that in the long run, “interpretability”
will be gradually replaced with more precise terminology and that the IML
community will regroup along the goals and questions that motivated the
field in the first place.
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Improvement-Focused Causal Recourse (ICR)

A Extended Background

As follows, we recapitulate well-known definitions in our notation, provide more detailed background on related work
and recapitulate results that we use in the proofs. Readers who are already familiar with recourse terminology and
d-separation (A.1 and A.2), and who are not interested in more detailed introductions of intervention stability (A.3,
only required for the proof of Proposition 2) or causal recourse (A.4), may skip this section.

A.1 Overview of important terms

An overview of important terms is provided in Table 1.

A.2 d-separation

Two variable sets X,Y are called d-separated [Geiger et al., 1990, Spirtes et al., 2000] by the variable set Z in a graph G
(denoted as X ⊥G Y |Z), if, and only if, for every path p it either holds that (i) p contains a chain i→ m→ j or a fork
i← m→ j where m ∈ Z or (ii) p contains a collider i→ m← j such that m and for all of its descendants n it holds
that m,n 6∈ Z. Given the causal Markov property, d-separation in a causal graph implies (conditional) independence in
the data [Peters et al., 2017].

A.3 Generalizability and intervention stability

For Proposition 2, we leverage necessary conditions for invariant conditional distributions as derived in [Pfister et al.,
2021]. The authors introduce a d-separation based intervention stability criterion that is applied to a modified version of
G. For every intervened upon variable Xl an auxiliary intervention variable, denoted as Il, is added as direct cause of
Xl, yielding G∗. The intervention variable can be seen as a switch between different mechanisms. A set S ⊆ {1, . . . , d}
is called intervention stable regarding a set of actions if for all intervened upon variables Xl (where l ∈ I total) the
d-separation I l ⊥G∗ Y |XS holds in G∗. The authors show that intervention stability implies an invariant conditional
distribution, i.e., for all actions a, b ∈ A with Ia, Ib ⊆ I total it holds that p(ya|xS) = p(yb|xS) (Pfister et al. [2021],
Appendix A).

A.4 Causal recourse

ICR is closely related to the CR framework [Karimi et al., 2020b, 2021], but differs substantially in its motivation and
target. In order to allow for a direct comparison we briefly sketch the main ideas and the central CR definitions in our
notation. Like ICR, CR aims to guide individuals to revert unfavorable algorithmic decisions (recourse). Therefore,
they suggest to search for cost-efficient actions that lead to acceptance by the prediction model. Actions are modeled as
structural interventions a : Π→ Π, which can be constructed as a = do({Xi := θi}i∈I), where I is the index set of
features to be intervened upon [Karimi et al., 2021]. The conservativeness of the suggested actions can be adjusted
using the hyperparameter γLCB , that determines the adaptive threshold thresh(a) and thereby how many standard
deviations the expected prediction shall be away from the model’s decision threshold t. In order to accommodate
different levels of causal knowledge, two probabilistic versions of CR were introduced [Karimi et al., 2020b]: While
individualized recourse assumes knowledge of the SCM, subpopulation-based CR only assumes knowledge of the
causal graph.

Table 1: Overview of important terms and their meanings.

term meaning

explainee individual for whom the explanation is generated, e.g. loan applicant
model authority decision-making entity, e.g. credit institute
recourse action of the explainee that reverts unfavorable decision
acceptance desirable model prediction (Ŷ = 1)
improvement (yield) desirable state of the underlying target (Y = 1)
gaming yield acceptance without improvement, e.g. treating the symptoms
pre-/post-recourse before/after implementing recourse recommendation
contestability the explainee’s ability to contest an algorithmic decision
robustness of recourse probability that recourse is accepted despite model/data shifts
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Improvement-Focused Causal Recourse (ICR)

Individualized recourse Individualized recourse predicts the effect of actions using structural counterfactuals [Karimi
et al., 2021], which require a full specification of the SCM.

Given a function that evaluates the cost of actions (cost(a, xpre)), the optimization goal for individualized causal
recourse is given below. The adaptive threshold thresh bounds the prediction away from the decision threshold.18

a∗ ∈ argmin
a∈A

cost(a, xpre) s.t. E[ĥ(xpost)|do(a), xpre] ≥ thresh(a)

with thresh(a) := 0.5 + γLCB

√
Var[ĥ(xpost,a)]

Subpopulation-based recourse: If no knowledge of the SCM is given, counterfactual distributions cannot be
estimated and consequently individualized recourse recommendations cannot be computed. Subpopulation-based CR is
based on the average treatment effect within a subgroup of similar individuals [Karimi et al., 2020b]. More specifically
individuals belong to the same group if the non-descendants nd(I) of intervention variables (which ceteris paribus
remain constant despite the intervention) take the same value. The subpopulation-based objective is given below.

a∗ ∈ argmin
a∈A

cost(a, xpre) s.t. EXd(I)|do(XI=θ),xpre
nd(I)

[ĥ(xprend(I), θ,Xd(I))] ≥ thresh(a).

18Further constraints have been suggested, e.g., xpost,a ∈ Plausible or a ∈ Feasible [Laugel et al., 2019, Ustun et al., 2019,
Mahajan et al., 2020, Dandl et al., 2020, Karimi et al., 2021].
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B Estimation and Optimization

As follows we provide detailed explanations of the proposed estimation procedures. First, we explain how to sample
from the individualized post-recourse distribution, which allows us to estimate the individualized improvement and
acceptance rates (γind and ηind, B.1). Based on the same sampling mechanism we can also estimate the individualized
post-recourse prediction h∗,ind (B.2). Then we explain how to sample from the subpopulation-based post-recourse
distribution, which allows us to estimate the subpopulation-based improvement and acceptance rates (γsub and ηsub,
B.3). Furthermore, we provide details on optimization (B.4) and demonstrate that the optimal observational predictor
h∗ can also be estimated using the SCM (B.5).

B.1 Estimation of the individualized improvement confidence γind and individualized acceptance rate ηind

We recall that γind is the counterfactual probability of the underlying target Y taking the favorable outcome, and ηind

the counterfactual probability of the prediction Ŷ taking the favorable outcome. In order to estimate γind and ηind we
first sample covariates and target from the counterfactual post-recourse distribution and then compute the proportion of
favorable outcomes for Y and Ŷ in the sample.
In general, sampling from counterfactual distributions based on a SCM is performed in three steps (Section 3, [Pearl,
2009]).

1. Abduction: The exogenous noise variables are reconstructed from the observations, i.e., p(uY,D|xpre) is
estimated.

2. Intervention: The intervention do(a) on the SCM M is performed by replacing the respective structural
equations fIa := θIa , yieldingMdo(a).

3. Prediction: The abducted noise variables are sampled from p(uY,D|xpre) and passed through the model
Mdo(a) to sample from the counterfactual distribution P (Y post, Xpost|xpre, do(a)).

Given knowledge of the SCM, the challenge is to sample the exogeneous variables from p(uY,D|xpre) (abduction). As
follows we explain the abduction in two steps. First, we explain how we can abduct uj for variables for which both the
node xj and all parents (x, y)pa(j) are observed, which we refer to as the standard abduction case. Then we factorize
the abduction of the joint p(uY,D|xpre) into several components which can be reduced to said standard abduction case.
The sampling procedure is summarized in Algorithm 1.

B.1.1 Recap: Standard abduction

If for a node uj both the node (x, y)j and the parents (x, y)pa(j) are observed, we can apply standard abduction. The
standard abduction procedure depends on the type of structural equation and exogenous noise distribution.
Given invertible structural equations, observation of xj , xpa(j) determines uj . More specifically, uj can be reconstructed
using

uj = f−1(xj ;xpa(j)).

For instance, for additive structural equations fj(uj ;xpa(j)) = g(xpa(j)) + uj , the inversion is given by
f−1
j (xj ;xpa(j)) = xj − g(xpa(j)).

In our experiments we also included binomial variables with a sigmoidal (non-invertible) structural equation. More
specifically, the structural equations are defined as xj = [σ(l(xpa(j))) ≤ uj ] with Uj ∼ Unif(0, 1). Here σ refers to
the sigmoid function and l to some linear combination. [cond] evaluates to 1 when the condition is true and otherwise
to 0. Intuitively, σ(l(xpa(j))) can be seen as a nonlinear activation function which determines the probability of the
node being activated (xj = 1). uj acts as a dice, where values ≤ σ(l(xpa(j))) imply xj = 1 and vice versa.
For those variables, if xj = 1, we know that uj ≤ σ(l(xpa(j))) and vice versa, such that we can abduct Uj as follows
(and can therefore sample uj):

P (Uj |xj ;xpa(j)) =

{
Unif(0, σ(l(xpa(j)))), for xj = 1
Unif(σ(l(xpa(j))), 1), for xj = 0

As we will see in the next section, our estimation procedure can be flexibly extended to SCMs with different types of
structural equations, as long as a procedure to sample from the abducted exogneous noise variable for the standard case
(where parents and the node itself are observed) is available.
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Algorithm 1: Sampling from the individualized post-recourse distribution
Data: pre-recourse observation xpre, action a (where do(a) := do(XIa := θ)), sample size M , structural causal

modelM with structural equations fj , observational predictor h
Result: sample from p(ypost, xpost|xpre, do(a))
getMdo(a) by updating fi(xpa(i);ui) := θi for i ∈ Ia ;
for m in (0, ...,M − 1) do

sample y′ from Binomial(h(xpre)) ;
for j in D do

sample u(m)
j from p(uj |(x, y′)j , (x, y′)pa(j)) . comment: leveraging standard abduction;

end
sample u(m)

Y from p(uY |y′, xpa(Y )) ;
compute (xpost, ypost)(m) = fMdo(a)

(u(m)) ;
end

B.1.2 Factorization of p(u|x)

We have demonstrated how to abduct individual nodes in the standard setting where the corresponding endogenous
variable and its parents are observed.
As follows we demonstrate how to sample from the joint distribution of the exogenous variables given an observation of
X (and without observing Y ). Therefore, we show that p(u|x) can be seen as a mixture of two distributions, one for
each possible state y′ of Y . In order to sample from it, we (1) need to sample y′ from the mixing distribution p(y|x)
and (2) given y′, sample from the respective abducted noise variable p(u|y′, x).

p(u|x)
law tot. prob.

=
∑

y′∈{0,1}
p(u, y′|x)

cond. prob.
=

∑

y′∈{0,1}
p(u|y′, x)p(y′|x) (2)

The binomial mixing distribution p(y|x) can be obtained and sampled from by leveraging the cross-entropy optimal
predictor h∗ (which can for instance be derived from the SCM, see B.5). In order to sample from p(u|y′, x) we leverage
the Markov factorization, which allows us to sample each component independently using the standard abduction
procedure described above.

p(u|x, y′) d-sep.
= P (uY |xpa(Y ), y

′)
∏

k∈ch(Y )

P (uk|xk, xpa(k), y
′)

∏

k 6∈ch(Y )

P (uk|xk, xpa(k)). (3)

The overall procedure is summarized in Algorithm 1.

B.1.3 Estimation of γind and ηind

Given the procedure to sample from the individualized post-recourse distribution we can estimate γind by taking the
mean over the samples taken for Y post. Similarly, for each sample for Xpost we can compute the prediction ŷpost
using either h ≥ t or hind ≥ t. By taking the mean over all sampled predictions ŷpost we can estimate the respective
acceptance probability η(t;xpre, a, h) or η(t;xpre, a, hind).

B.2 Estimation of the individualized post-recourse prediction

We continue to show how the individualized post-recourse prediction can be estimated. We recall that h∗,ind is

h∗,ind(xpost;xpre, a) = P (Y post = 1|xpost, xpre, do(a)).

We can estimate h∗,ind by leveraging the procedure to sample from the post-recourse covariate distribution (Algorithm
1). More specifically, we draw samples (y′, x′) from P (Y post, Xpost|do(a), xpre) and keep those that conform with
xpost (i.e., x′ = xpost). Within the subsample, we compute the proportion of samples for which y′ = 1 to estimate
p(ypost|xpre, xpost, do(a)). In more formal terms, we approximate Eq. 4 using rejection sampling and Monte Carlo
integration [Koller and Friedman, 2009].
If the structural equations are invertible19 or the nodes are categorical the procedure is tractable, since many or all

19Meaning that the abducted joint distribution has point mass probability for two configurations, one for each possible state of Y .

17



Improvement-Focused Causal Recourse (ICR)

Algorithm 2: Estimating h∗,ind

Data: pre-recourse observation xpre, action a, sample size M , structural causal modelM, observational predictor
h, m = 0

Result: ĥind(xpost;xpre, do(a))
while m < M do

sample (x′, y′) using Alg. 1 and xpre, a,M, h;
if x′ = xpost then

m = m+ 1; store y′ as y′(m) ;
end

end
ĥind(xpost) = 1

M

∑M
m=1 y

′(m)

samples conform with xpost. Otherwise the estimation may become intractable. We see the application of likelihood
weighting or MCMC as promising directions and refer interested readers to Koller and Friedman [2009].
In addition to the sampling-based procedure we also derive a closed-form solution for settings with invertible structural
equations, which is provided in Proposition 5, Eq. 5.

Proposition 5. In general, the individualized post-recourse predictor can be estimated as

p(ypost|xpre, xpost, do(a))

=

∫
U p(y

post, xpost|u, do(a))p(u|xpre)du∑
y′∈{0,1}

(∫
U p(y

′, xpost|u, do(a))p(u|xpre)du
) (4)

Given invertible structural equations, the individualized post-recourse prediction function reduces to

p(ypost|xpost, xpre, do(a))

=
p(U−I = f−1

do(a)(y
post, xpost)|xpre, do(a))

∑
y′∈{0,1} p(U−I = f−1

do(a)(y
′, xpost)|xpre, do(a))

.
(5)

B.3 Estimation of the subpopulation-based improvement confidence γsub and the subpopulation-based
acceptance rate ηsub

As follows we detail how to estimate γsub and ηsub. We focus on actions a that potentially affect Y , meaning that they
intervene on causes of Y .20

In order to estimate γsub and ηsub we sample (x′, y′) from the subpopulation-based post-recourse distribution. Given a
sample from the subpopulation-based post-recourse distribution we can estimate γsub and ηsub by taking the respective
sample means.
We explain the sampling procedure in two steps: We first recall how causal graphs can be leveraged to sample
interventional distributions, and then explain why we can apply the procedure to sample from the subpopulation-based
post-recourse distribution.

Recap: Sampling interventional distributions leveraging a causally sufficient causal graph G Given a causal
graph G (that fulfills the global Markov property), the joint distribution P (X,Y ) can be reformulated using the Markov
factorization, which makes use of the d-separations in the graph.

p(x, y) = p(y|xpa(y))
∏

j∈D
p(xj |(x, y)pa(j))

As a consequence, we can sample from the joint distribution by sampling each component given its respective parents.
In order to ensure that the parents for each node have been sampled already, the graph is traversed in topological order,
starting with the root node and ending with the sink nodes [Koller and Friedman, 2009].
Given that causal sufficiency (no unobserved confounders) and the principle of independent mechanisms hold, the same

20Actions that do not affect Y trivially do not lead to improvement. The respective probability of Y = 1 can be estimated using
the optimal observational predictor.
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Y Y

Figure 3: Causal graph GIa visualizing the subpopulation-based post-recourse setting, including the prediction target Y
(light blue), intervened-upon variables Ia (red), the subgroup characteristics Ga (cyan) and the descendants Γ that shall
be resampled (dark blue). Ia indicates that incoming edges to Ia were removed. Right: Causal graph GIaGa

where
incoming edges to Ia and outgoing edges from Ga were removed. We observe that in this manipulated graph Ga is
d-separated from Γ. Thus, according to the second rule of do-calculus, for Ga intervention and conditioning coincide.

Algorithm 3: Sampling from the subpopulation-based post-recourse distribution
Data: pre-recourse observation xpre, action a with Ia ∩ asc(Y ) 6= ∅ (do(a) := do(XIa := θ)), sample size M ,

causal graph G, conditional distributions P (Xj |Xpa(j)) for j ∈ Γ with Γ := {r : r ∈ asc(Y ) ∧ r ∈ d(I)}
Result: sample from p(y, xΓ|do(a), xGa)
for m← 0 to M do

Γsorted ← topologicalsort( Γ;Gdo(a)) . sort such that causes precede effects ;
for j in Γsorted do

sample (x, y)
post,(m)
j ∼ P ((X,Y )j |(X,Y )pa(j) = (x, y)postpa(j)) ;

end
end

procedure can also be applied when sampling from interventional distributions of the form p(x, y|do(a)) by leveraging
the so-called truncated factorization. The intervened upon nodes are not sampled from their parents, but fixed to the
values θa. The remaining nodes Γ are sampled as before:

p((x, y)Γ|do(a)) =
∏

j∈Γ

p((x, y)j |(x, y)pa(j)∩Γ, θpa(j)∩Ia)

with Γ := D\Ia

Sampling from the subpopulation-based post-recourse distribution using G We recall that for actions a that
potentially affect Y the subpopulation-based post-recourse distribution is defined as

P (Y post, Xpost|do(a), Xpost
Ga

= xpreGa
). (6)

As we will see, the previously described sampling procedure can be applied. Therefore we apply the second rule of do-
calculus to show that in Equation 6 conditioning on xGa is equal to intervening do(XGa = xGa). More specifically, if
we remove all outgoing edges fromXGa

and all incoming edges to Ia, thenXGa
andXΓ with Γ := D\Ia∩Ga = d(Ia)

are d-separated, meaning that conditioning and intervention are equivalent (Figure 3).

P ((Y,X)postΓ |do(a), Xpost
Ga

= xpreGa
)

= P ((Y,X)postΓ |do(a), do(Xpost
Ga

= xpreGa
))

As follows we can leverage the procedure to sample interventional distributions to sample from the subpopulation-based
post-recourse distribution. The procedure is illustrated in Algorithm 3.

B.3.1 Learning the conditional distributions P (Xj |xpa(j))

In this work we assume that we have prior knowledge that allows us to sample from the components of the factorization
(P (Xj |xpa(j)), e.g. available if we know the SCM).
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If the conditional distributions are not known, they can be learned from observational data; depending on
which assumptions about distribution and functional can be made, different techniques may be employed. For
categorical variables the problem reduces to standard supervised learning with cross-entropy loss. For linear
Gaussian data, the conditional distribution can be estimated analytically from the covariance matrix [Page Jr,
1984]. A variety of estimation techniques exist for continuous settings with nonlinearities [Bishop, 1994, Bash-
tannyk and Hyndman, 2001, Sohn et al., 2015, Trippe and Turner, 2018, Winkler et al., 2019, Hothorn and Zeileis, 2021].

B.4 Optimization

Like the optimization problems for CE [Wachter et al., 2017, Tsirtsis and Gomez Rodriguez, 2020] or CR [Karimi
et al., 2020b], the optimization problem for ICR is computationally challenging. It can be seen as a two-stage problem,
where in the first stage the intervention targets Ia, and in the second stage the corresponding intervention values θa
are optimized [Karimi et al., 2020b]. For the selection of intervention targets Ia alone 2d

′
combinations exist, with

d′ ≤ d being the number of causes of Y . We jointly optimize the intervention targets and the intervention values using
a genetic algorithm called NSGA-II [Deb et al., 2002]. For mixed categorical and continuous data, previous work in the
field [Dandl et al., 2020] suggests to use NSGA-II in combination with mixed integer evaluation strategies [Li et al.,
2013]. The exact hyperparameter configurations are reported in C.3.

B.5 Estimation of the optimal observational predictor h∗ using the SCM

Instead of leveraging supervised learning with cross-entropy loss, we can factorize the optimal observational predictor
as shown in Proposition 6 and then leverage the SCM for the estimation.
Proposition 6. The optimal observational predictor can be factorized into conditional distributions of nodes given
their parents (using the Markov factorization). More specifically, we yield

p(y|x) =
p(x, y)

p(x)
=

p(x, y)∑
y′∈{0,1} p(x, y)

(7)

M.f.
=

p(y|xpa(j))
∏
j∈D p(xj |(x, y)pa(j))∑

y′∈{0,1} p(y
′|xpa(j))

∏
j∈D p(xj |(x, y′)pa(j))

(8)

=
p(y|xpa(j))

∏
j∈ch(y) p(xj |xpa(j), y)

∑
y′∈{0,1} p(y

′|xpa(j))
∏
j∈ch(y) p(xj |xpa(j), y′)

. (9)

It remains to show how the conditional distribution p(xj |xpa(j)) of a node given its parents can be estimated. Generally
it holds that

p(xj |xpa(j)) (10)

law tot. prob.
=

∫

Uj
p(xj |xpa(j), uj)p(uj |xpa(j))du (11)

SCM, uj ⊥ xpa(j)
=

∫

Uj
[f(xpa(j), uj) = xj ]p(uj)du. (12)

The integral can be approximated using Monte Carlo integration: we can sample from p(uj), compute the respective
x̃j = fj(xpa(j), ũj) and compute the proportion of cases where xj = x̃j . If Xj and Uj are continuous, this may require
huge sample sizes to converge.
Furthermore, we may be able to leverage assumptions about fj to derive a closed form solution. If fj is invertible, the
integral reduces to p(xj |xpa(j)) = p(Uj = f−1

j (xj , xpa(j))). For binary nodes with xj := [σ(l(xpa(j))) ≤ uj ] and
Uj ∼ Unif(0, 1), we directly see that p(xj |xpa(j)) = σ(l(xpa(j))).
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C Details on Experiments

In this section we provide additional details on the experiments. More specifically, we explain which open-source
libraries we use, how to access our code and how to reproduce the results in C.1. We formally introduce the synthetic and
semi-synthetic datasets that we used in our experiments in C.2 and the corresponding figures. Details on hyperparameters,
models as well as detailed results are reported in C.3 and the corresponding tables.

C.1 Implementation

The code relies of efficient tensor calculations with numpy [Harris et al., 2020], pytorch [Paszke et al., 2019] and
jax [Bradbury et al., 2018]. For named dataframes we use pandas [pandas development team, 2020]. For plotting
we rely on matplotlib [Hunter, 2007] and seaborn [Waskom, 2021]. We use the evolutionary optimization library
deap [Fortin et al., 2012] and NSGA-II [Deb et al., 2002] to solve the combinatorial optimization problem.21 In order
to speed up the computation, we cache queries and results for the improvement confidence using functools.cache.
For continuous variables the intervention can be rounded to a specified number of digits to increase the probability of
reusing a cached result (with neglectable loss of precision).22

All code is publicly available via https://github.com/gcskoenig/icr. The repository contains the user-friendly
python package icr, which we use in our experiments to generate and evaluate recourse. Furthermore, the scripts
for the experiments, the scripts for the visualization of the results as well as a README.md with instructions for the
installation of all dependencies are contained in the repository, such that the experiments are reproducible.

C.2 Synthetic and Semi-Synthetic Datasets

3var-causal and 3var-noncausal are abstract, synthetic settings. 5var-skill is inspired by Montandon et al. [2021], who
use GitHub profiles to detect the role of a developer. In our SCM we model senior-level skill as a binary variable which
is caused by programming experience and the education degree. The skill is causal for GitHub metrics such as the
number of commits, the number of programming languages and the number of stars. The 7var-covid dataset is inspired
by Jehi et al. [2020]. The following variables are introduced: population density D, flu vaccination VI , number of
covid vaccination shots VC , deviation from average BMI B, whether someone is free of covid disease C, whether
the individual has influence I , appetite loss SA, fever SFe and fatigue SFa. The corresponding structural equations,
noise distributions and causal graphs are provided in Figure 4 (3var-causal), 5 (3var-noncausal), 6 (5var-skill) and
7 (7var-covid). A pairplot for each dataset is presented in Figure 8. In our notation σ is the sigmoid function, N the
Gaussian distribution, Cat a categorical distribution, Unif the uniform distribution, Bern a Bernoulli distribution and
GaP a Gamma-Poisson mixture. [cond] is 1 when the condition is met and 0 if not. As a consequence variables with
[Z ≤ U ] and U ∼ Unif(0, 1) are bernoulli distributed with Bern(Z).

C.3 Detailed Results

In this section we report all experimental results in tabular form. More specifically, the results for 3var-causal are
reported in Table 2, for 3var-noncausal in Table 3, for 5var-skill in Table 4 and for 7var-covid in Table 5. For each
experiment we report the specified confidence γ (or η for CR), as well as the observed improvement rate γobs, the
observed acceptance rate ηobs, the observed acceptance rate by the individualized post-recourse predictor ηindiv.

obs , the
observed acceptance rate on refits ηrefit

obs and the average recourse cost for individuals who were rejected and whom were
provided with a recourse recommendation. A visual summary of the results is provided in Section 8.

In order to enable a more direct comparison of the CR and ICR targets, we equalize the optimization thresholds for ICR
and CR. More specifically, for CR we require the (individualized or subpopulation-based) acceptance probability to be
≥ η, and for ICR we require the (individualized or subpopulation-based) improvement probability to be ≥ γ, where
γ = η.23 Furthermore, in order to be able to estimate the effects of recourse actions, CR assumes causal sufficiency,
meaning that there are no two endogeneous variables that share an unobserved cause. If the target variable Y is
exogeneous then any causal model with more than one endogeneous direct effect of Y violates the assumptions. In
order to enable an application of CR on datasets with more than one effect variable we assume knowledge of the SCM

21We also implemented abduction based on probabilistic inference. Thereby we rely on on pyro [Bingham et al., 2018] for
discrete inference and numpyro [Phan et al., 2019] for MCMC inference of continuous variables. For our experiments we used the
analytical formulas presented in B

22All packages are open source. For detailed license information we refer to the respective package websites.
23A short comment on the choice of a non-adaptive threshold can be found in E.2.
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X1 X2

X3

Y

(a) Causal graph

X1 := U1, U1 ∼ N(0, 1)

X2 := X1 + U2, U2 ∼ N(0, 1)

X3 := X1 +X2 + U3, U3 ∼ N(0, 1)

Y ∼ [σ(X1 +X2 +X3) ≤ UY ] , UY ∼ Unif(0, 1)

(b) Structural Equations

Figure 4: SCM for 3var-causal. The cost function is given as cost(a) = δ1 + δ2 + δ3, where δ is the vector of absolute
changes to the intervened upon variables. E.g., for do(a) = do(X1 = x′1), δ1 = |x′1 − x1| and δ2 = δ3 = 0

X1X2

Y

X3

(a) Causal graph

X1 := U1, U1 ∼ N(0, 1)

X2 := X1 + U1, U1 ∼ N(0, 1)

Y := [σ(X1 +X2) ≤ UY ] , UY ∼ Unif(0, 1)

X3 := X1 +X2 + Y + U3, U3 ∼ N(0, 0.1)

(b) Structural Equations

Figure 5: SCM for 3var-noncausal with cost(a) = δ1 + δ2 + δ3.

experience E degree D

senior-level skill S

nr commits GC nr languages GL nr stars GS

(a) Causal graph

E := UE ;UE ∼ GaP (8, 8/3)

D := UD;UD ∼ Cat(0.4, 0.2, 0.3, 0.1)

S := [σ(−10 + 3E + 4D)) ≤ US ] ;US ∼ Unif(0, 1)

GC := 10E(11 + 100D) + UGC
;UGC

∼ GaP (40, 40/4)

GL := σ(10S) + UGL
;UGL

∼ GaP (2, 2/4)

GS := 10S + UGS
;UGS

∼ GaP (5, 5/4)

(b) Structural Equations

Figure 6: SCM for 5var-skill with cost(a) = 5δE + 5δD + 0.0001δGC
+ 0.01δGL

+ 0.1δGS .

density Dflu vacc VIcovid shots VCBMI B

covid-free C

appetite SAfever SFefatigue SFa

(a) Causal graph

D := UD;UD ∼ Γ(4, 4/3)

VI := UVI
;UVI

∼ Bern(0.39)

VC := UVC
;UVC

∼ Cat(0.24, 0.02, 0.15, 0.59)

B := UB ;UB ∼ N(0, 1)

C :=
[
σ(−(D − 3− VI − 2.5VC + 0.2B2)) ≤ UC

]
;

UC ∼ Unif(0, 1)

SA := [σ(−2C) ≤ USA
] ;USA

∼ Unif(0, 1)

SFe := [σ(5− 9C) ≤ USFe
] ;USFe

∼ Unif(0, 1)

SFa :=
[
σ(−1 +B2 − 2C) ≤ USFa

]
;

USFa
∼ Unif(0, 1)

(b) Structural Equations

Figure 7: SCM for 7var-covid with cost function cost(a) = δD + δVI
+ δVC

+ δB + δSA
+ δSFe

+ δSFa
.
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(a) Pairplot for 3var-causal.
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(b) Pairplot for 3var-noncausal.
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(c) Pairplot for 5var-skill.
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Figure 8: Pairplots for the SCMs.
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Table 2: Results for 3var-causal.

3var-causal γ / η γobs. ± ηobs. ± ηindivid.obs. ± ηrefit
obs. ± ∅ cost ±

CE - 0.41 0.09 1.00 0.00 - - 0.60 0.20 3.08 0.41

ind. CR 0.75 0.47 0.10 1.00 0.00 - - 0.70 0.10 2.46 0.37
ind. CR 0.85 0.44 0.08 1.00 0.00 - - 0.72 0.12 2.39 0.25
ind. CR 0.90 0.47 0.09 1.00 0.00 - - 0.72 0.14 2.36 0.35
ind. CR 0.95 0.49 0.07 1.00 0.00 - - 0.67 0.10 2.44 0.31

subp. CR 0.75 0.46 0.11 0.86 0.04 - - 0.64 0.14 2.66 0.41
subp. CR 0.85 0.43 0.08 0.93 0.02 - - 0.69 0.14 2.64 0.32
subp. CR 0.90 0.45 0.09 0.96 0.02 - - 0.70 0.15 2.73 0.42
subp. CR 0.95 0.48 0.09 0.98 0.01 - - 0.64 0.14 2.86 0.41

ind. ICR 0.75 0.79 0.06 0.98 0.02 1.0 0.0 0.96 0.03 3.27 0.50
ind. ICR 0.85 0.86 0.03 1.00 0.01 1.0 0.0 0.97 0.02 3.82 0.30
ind. ICR 0.90 0.90 0.02 1.00 0.01 1.0 0.0 0.98 0.03 3.70 0.31
ind. ICR 0.95 0.95 0.01 1.00 0.00 1.0 0.0 0.99 0.01 4.08 0.24

subp. ICR 0.75 0.75 0.04 0.93 0.04 - - 0.90 0.04 3.34 0.49
subp. ICR 0.85 0.87 0.03 0.98 0.01 - - 0.96 0.02 4.05 0.29
subp. ICR 0.90 0.89 0.02 0.99 0.01 - - 0.97 0.02 3.87 0.25
subp. ICR 0.95 0.94 0.02 1.00 0.00 - - 0.99 0.01 4.22 0.28

Table 3: Results for 3var-noncausal

3var-noncausal γ / η γobs. ± ηobs. ± ηindivid.obs. ± ηrefit
obs. ± ∅ cost ±

CE - 0.17 0.03 0.98 0.04 - - 0.67 0.15 2.28 0.26

ind. CR 0.75 0.25 0.03 1.00 0.00 - - 0.70 0.13 2.28 0.21
ind. CR 0.85 0.24 0.02 1.00 0.00 - - 0.73 0.13 2.29 0.17
ind. CR 0.90 0.24 0.04 1.00 0.00 - - 0.71 0.11 2.24 0.16
ind. CR 0.95 0.23 0.04 1.00 0.00 - - 0.73 0.12 2.18 0.32

subp. CR 0.75 0.22 0.03 0.91 0.03 - - 0.63 0.15 2.18 0.12
subp. CR 0.85 0.19 0.03 0.95 0.02 - - 0.67 0.15 2.33 0.21
subp. CR 0.90 0.19 0.03 0.97 0.01 - - 0.65 0.14 2.42 0.19
subp. CR 0.95 0.19 0.03 0.99 0.01 - - 0.69 0.14 2.26 0.32

ind. ICR 0.75 0.77 0.03 0.93 0.02 0.79 0.03 0.93 0.02 2.16 0.11
ind. ICR 0.85 0.86 0.02 0.99 0.01 0.90 0.02 0.99 0.01 2.51 0.08
ind. ICR 0.90 0.91 0.03 1.00 0.00 0.94 0.01 1.00 0.00 3.00 0.08
ind. ICR 0.95 0.96 0.02 0.98 0.07 0.98 0.01 0.98 0.08 3.32 0.16

subp. ICR 0.75 0.69 0.03 0.77 0.05 - - 0.76 0.05 2.11 0.20
subp. ICR 0.85 0.82 0.03 0.93 0.02 - - 0.92 0.02 2.42 0.11
subp. ICR 0.90 0.89 0.03 0.98 0.01 - - 0.97 0.01 2.86 0.13
subp. ICR 0.95 0.94 0.02 0.97 0.10 - - 0.96 0.12 3.19 0.15
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Table 4: Results for 5var-skill

5var-skill γ / η γobs. ± ηobs. ± ηindivid.obs. ± ηrefit
obs. ± ∅ cost ±

CE - 0.00 0.00 1.00 0.00 - - 0.76 0.14 1.34 1.28

ind. CR 0.75 0.00 0.00 1.00 0.00 - - 0.86 0.11 0.27 0.28
ind. CR 0.85 0.00 0.00 1.00 0.00 - - 0.81 0.14 0.24 0.20
ind. CR 0.90 0.00 0.01 1.00 0.00 - - 0.70 0.15 0.10 0.00
ind. CR 0.95 0.00 0.00 1.00 0.00 - - 0.66 0.16 0.11 0.03

subp. CR 0.75 0.00 0.00 1.00 0.00 - - 0.85 0.11 4.06 4.97
subp. CR 0.85 0.00 0.00 1.00 0.00 - - 0.80 0.15 0.24 0.19
subp. CR 0.90 0.00 0.01 1.00 0.00 - - 0.70 0.15 0.10 0.01
subp. CR 0.95 0.00 0.00 1.00 0.00 - - 0.66 0.15 0.12 0.04

ind. ICR 0.75 0.94 0.02 0.94 0.02 0.94 0.02 0.94 0.02 4.95 5.32
ind. ICR 0.85 0.94 0.01 0.93 0.02 0.94 0.01 0.93 0.02 9.80 0.27
ind. ICR 0.90 0.96 0.02 0.96 0.02 0.96 0.02 0.96 0.02 10.38 0.23
ind. ICR 0.95 0.98 0.01 0.98 0.01 0.98 0.01 0.98 0.01 11.23 0.21

subp. ICR 0.75 0.93 0.01 0.93 0.02 - - 0.93 0.01 4.72 5.08
subp. ICR 0.85 0.94 0.01 0.94 0.01 - - 0.94 0.02 9.74 0.17
subp. ICR 0.90 0.96 0.01 0.96 0.01 - - 0.96 0.01 10.46 0.53
subp. ICR 0.95 0.97 0.01 0.97 0.01 - - 0.97 0.01 10.88 0.21

Table 5: Results for 7var-covid

7var-covid γ / η γobs. ± ηobs. ± ηindivid.obs. ± ηrefit
obs. ± ∅ cost ±

CE - 0.00 0.00 1.00 0.00 - - 1.00 0.00 0.60 0.12

ind. CR 0.75 0.01 0.00 1.00 0.00 - - 0.99 0.01 0.56 0.02
ind. CR 0.85 0.00 0.00 1.00 0.00 - - 0.99 0.00 0.55 0.02
ind. CR 0.90 0.00 0.00 1.00 0.00 - - 1.00 0.00 0.55 0.03
ind. CR 0.95 0.00 0.00 1.00 0.00 - - 0.99 0.01 0.54 0.07

subp. CR 0.75 0.01 0.01 0.92 0.02 - - 0.91 0.02 0.52 0.03
subp. CR 0.85 0.00 0.01 0.97 0.01 - - 0.96 0.01 0.75 0.40
subp. CR 0.90 0.00 0.00 0.98 0.01 - - 0.98 0.01 0.55 0.03
subp. CR 0.95 0.00 0.00 0.99 0.01 - - 0.98 0.01 0.51 0.07

ind. ICR 0.75 0.81 0.03 0.81 0.03 0.82 0.04 0.81 0.03 1.26 0.02
ind. ICR 0.85 0.85 0.03 0.85 0.03 0.86 0.03 0.85 0.03 1.14 0.44
ind. ICR 0.90 0.89 0.03 0.89 0.03 0.90 0.02 0.89 0.03 1.61 0.02
ind. ICR 0.95 0.95 0.01 0.95 0.01 0.95 0.01 0.95 0.01 1.97 0.06

subp. ICR 0.75 0.61 0.04 0.61 0.04 - - 0.61 0.04 1.06 0.03
subp. ICR 0.85 0.73 0.03 0.73 0.03 - - 0.73 0.03 1.09 0.34
subp. ICR 0.90 0.81 0.04 0.81 0.04 - - 0.81 0.04 1.42 0.05
subp. ICR 0.95 0.90 0.03 0.90 0.03 - - 0.90 0.03 1.73 0.06

25



Improvement-Focused Causal Recourse (ICR)

including Y for CR as well and draw ground-truth interventional samples from the SCM instead of identifying the
interventional distribution from observational data.

For 3var-causal and 3var-noncausal we configured NSGA-II to optimize over 600 generations with a population size of
300, for 5var-skill and 7var-covid 1000 generations with 500 individuals were used. For all experiments the crossover
probability was 0.3 and the mutation probability 0.05. For all settings continuous variables were rounded to 1 decimal
point. For the 3 variable settings a standard sklearn LogisticRegression was used, for the refits without penality.
For the nonlinear dataset a RandomForestClassifier with max depth 30, 50 estimators and balanced subsampling
was applied. The experimental results were computed on a Quad core Intel Core i7-7700 Kaby Lake processor. For
each setting, the experiments took between 24 to 48 hours.
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D Proofs

As follows we provide the full proofs for Propositions 1 - 5.

D.1 Linking individualized prediction with γind, Proof of Proposition 1

Proposition 1. The expected individualized post-recourse score is equal to the individualized improvement probability
γind(xpre, a) := P (Y post = 1|xpre, do(a)), i.e.

E[ĥ∗,ind(xpost)|xpre, do(a)] = γind(a).

Proof: It holds that
E[h∗,ind(xpost)|xpre, do(a)]

= E[E[Y |xpre, xpost]|xpre, do(a)]

total exp.
= E[Y |xpre, do(a)]

= γind(a).

D.2 Intervention stability w.r.t. ICR actions, Proposition 2

Proposition 2. Given nonzero cost for all interventions, ICR exclusively suggests actions on causes of Y . Assuming
causal sufficiency, for any optimal predictor the conditional distribution of Y given the variables that the model uses
XS (i.e. P (Y |XS)) is stable w.r.t interventions on causes. Therefore, optimal predictors are intervention stable w.r.t.
ICR actions.

Proof: We prove the statement in six steps.

ICR only intervenes on causes: The goal of meaningful recourse is to improve Y with minimal cost. Only interventions
on causes alter Y . Consequently, actions on non-causes of Y would not be suggested by meaningful recourse.

Given causal sufficiency, a graph G and an endogenous Y , the set of endogeneous direct parents, direct effects and
direct parents of effects are the minimal d-separating set SG: Standard result, see e.g. Peters et al. [2017], Proposition
6.27.

The set SG∗ in the augmented graph G∗ coincides with SG: The minimal d-separating set contains direct causes, direct
effects and direct parents of direct effects. Il is never a direct cause of Xl. Also, since Il has no endogenous causes, it
cannot be a direct effect. Furthermore, since we restrict interventions to be performed on causes, Il cannot be a direct
parent of a direct effect.

SG is intervention stable: As follows, all intervention variables are d-separated from Y in G∗ by SG . Therefore SG is
intervention stable. An example is given in Figure 9.

Then also the markov blanket is intervention stable: Since d-separation implies independenceMB(Y ) ⊆ SG . Therefore,
if XT ⊥ Y |XMB(Y ) then also XT ⊥ Y |SG . If any element s ∈ SG it holds that s 6∈MB(Y ), then it must hold that
Xs ⊥ Y |XMB(Y ). Therefore, if XT ⊥ Y |XMB(Y ), Xs then also XT ⊥ Y |XMB(Y ) and therefore any independence
entailed by SG also holds for MB(Y ). Since Pfister et al. [2021] only require the independence that is implied by d-
separation in their invariant conditional proof, the same implication holds for the MB(Y ). As follows, P (Y |XMB(Y ))
is invariant with respect to interventions on any set of endogenous causes.

Then any superset of the markov blanket is intervention stable: We prove the statement by contradiction. The markov
blanket d-separates the target variable Y from any other set of variables. If adding a set of variables S1 to the markov
blanket would open a path to any other set of variables S2, then it would hold that S := S1 ∪ S2 is not d-separated from
Y (P (Y |MB(Y )) = P (Y |MB(Y ), S1, S2) 6= P (Y |MB(Y ), S1) = P (Y |MB(Y )))

D.3 Linking observational prediction and γsub, Proposition 3

Proposition 3. Given causal sufficiency and positivity24, for interventions on causes the expected subgroup-wide
optimal score h∗ is equal to the subgroup-wide improvement probability γsub(a) := P (Y post = 1|do(a), xpreGa

), i.e.

E[ĥ∗(xpost)|xpreGa
, do(a)] = γsub(a).

24Positivity ensures that the post-recourse observation lies within the observational support , where the model was trained (i.e.,
ppre(xpost) > 0), [Neal, 2020]).
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Figure 9: A schematic drawing illustrating under which interventions I1, . . . , I8 the Markov blanket (double circle) is
intervention stable. In this setting, we consider the intervention variables to be independent treatment variables: We
would like to know how the different actions influence the conditional distribution, irrespective of how likely they are to
be applied. Therefore, they are modeled as parent-less variables. Green indicates intervention stability, red indicates no
intervention stability. Orange indicates intervention stability of non-causal variables. Dotted variables are not observed.
Left: Since all endogenous variables are observed, MBO(Y ) is stable w.r.t. interventions on every endogenous cause of
Y (Proposition 3). Right: Unobserved variables (X2, X8) open paths between interventions on causes and Y .

Proof: The proposition follows from Proposition 2. More specifically

E[h∗(xpost,a)|xpreG , a] = E[E[Y |xpost,a]|xpreG , a]
total exp.

= E[Y |xpreG , a]
def. γsub

= γsub(a). (13)

D.4 Acceptance Bound, Proof of Proposition 4

Proposition 4. Let g be a predictor with E[g(xpost)|xpreS , do(a)] = γ(xpreS , a). Then for a decision threshold t the
post-recourse acceptance probability η(t;xpreS , a) := P (g(xpost) > t|xpreS , do(a)) is lower bounded:

η(t;xpreS , a) ≥ γ(xpreS , a)− t
1− t .

Proof: Positivity (ppre(xpost) > 0) is necessary for subpopulation-based ICR since only then we can assume that the
model is actually optimal for any input that it receives. The problem is discussed in more detail in Hernán MA [2020],
Neal [2020].

As follows we denote ĥ∗ as the random variable indicating the predictions of the post-recourse predictors described in
Section 5.
From Propositions 1 and 3, for both individualized and subpopulation-based post-recourse predictors we know that

E[ĥ(xpost,a)∗|xpreS , do(a)] = γ(xpreS , a).

We decompose the expected prediction

γ(xpreS , a) = E[ĥ∗|xpreS , a] (14)

= E[ĥ∗|ĥ∗ > t]P (ĥ∗ > t) + E[ĥ∗|ĥ∗ ≤ t]P (ĥ∗ ≤ t)
∣∣∣
xpre
S ,a

(15)

= E[ĥ∗|ĥ∗ > t]P (ĥ∗ > t) + E[ĥ∗|ĥ∗ ≤ t](1− P (ĥ∗ > t))
∣∣∣
xpre
S ,a

(16)

= E[ĥ∗|ĥ∗ > t]P (ĥ∗ > t) + E[ĥ∗|ĥ∗ ≤ t]− P (ĥ∗ > t)E[ĥ∗|ĥ∗ ≤ t]
∣∣∣
xpre
S ,a

(17)

= E[ĥ∗|ĥ∗ ≤ t] + P (ĥ∗ > t)
(
E[ĥ∗|ĥ∗ > t]− E[ĥ∗|ĥ∗ ≤ t]

)∣∣∣
xpre
S ,a

(18)

which can be reformulated to yield the acceptance rate η:

γ − E[ĥ∗|ĥ∗ ≤ t]
E[ĥ∗|ĥ∗ > t]− E[ĥ∗|ĥ∗ ≤ t]

∣∣∣∣∣
xpre
S ,a

= P (ĥ∗ > t|xpreS , a) = η(xpreS , a). (19)
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It holds that E[ĥ∗,ind|ĥ∗ ≤ t] = FNR(t) and E[ĥ∗|ĥ∗ > t] = TPR(t).

We can show that E[ĥ∗|ĥ∗ ≤ t] ≤ t:
0 ≤ FNR(t|xpreS , a) (20)

= P (Y a,post = 1|h∗ ≤ t, xpreS , a) (21)

= E[Y a,post|h∗ ≤ t, xpreS , a] (22)

= E[E[Y a,post|xpost,a]|h∗ ≤ t, xpreS , a] (23)

= E[h∗|h∗ ≤ t, xpreS , a] (24)
≤ t (25)

and analog that 1 ≥ TPR(t) ≥ t. Therefore

η(t, xpreS , a) =
γ − FNR(t)

TPR(t)− FNR(t)

∣∣∣∣
xpre
S ,a

≥ γ(xpreS , a)− FNR(t)

1− FNR(t)
≥ γ(xpreS , a)− t

1− t . (26)

D.5 Individualized post-recourse prediction, proof of Proposition 5

Proposition 5. In general, the individualized post-recourse predictor can be estimated as

p(ypost|xpre, xpost, do(a)) (27)

=

∫
U p(y

post, xpost|u, do(a))p(u|xpre)du∑
y′∈{0,1}

(∫
U p(y

′, xpost|u, do(a))p(u|xpre)du
) (28)

Given binary decision problems with invertible structural equations, the individualized post-recourse prediction function
reduces to

p(ypost|xpost, xpre, do(a)) (29)

=
p(U−I = f−1

do(a)(y
post, xpost)|xpre, do(a))

∑
y′∈{0,1} p(U−I = f−1

do(a)(y
′, xpost)|xpre, do(a))

. (30)

Proof: It holds that

p(ypost|xpre, xpost, do(a))
def. cond.

=
p(ypost, xpost|xpre, do(a))

p(xpost|xpre, do(a))
(31)

(32)

We can reformulate the conditional distribution p(ypost, xpost|xpre, do(a)) as two parts, one that describes the probabil-
ity of a state of the context given xpre, and one that describes the probability of a post-recourse state xpost, ypost given
a certain noise state u and do(a).

p(ypost, xpost|xpre, do(a)) (33)

marginal.
=

∫

U
p(ypost, xpost, u|xpre, do(a))du (34)

chain rule
=

∫

U
p(ypost, xpost|u, xpre, do(a))p(u|xpre)du (35)

(y, x)post ⊥ xpre|u
=

∫

U
p(ypost, xpost|u, do(a))p(u|xpre)du. (36)

In combination we yield

p(ypost|xpre, xpost, do(a)) (37)

=

∫
U p(y

post, xpost|u, do(a))p(u|xpre)du∫
Y
(∫
U p(y

′, xpost|u, do(a))p(u|xpre)du
)
dy′

(38)

=

∫
U p(y

post, xpost|u, do(a))p(u|xpre)du∑
y′∈0,1

(∫
U p(y

′, xpost|u, do(a))p(u|xpre)du
) (39)
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For a setting with invertible structural equations this reduces to

p(ypost|xpost, xpre, do(a)) (40)

=
p(ypost, xpost|xpre, do(a))

p(xpost|xpre, do(a))
(41)

=
p(U−I = f−1(ypost, xpost)|xpre, do(a))∑

y′∈{0,1} p(U−I = f−1(ypost, xpost)|xpre, do(a))
. (42)

where −I is the index set for variables that have not been intervened on (since the noise terms for the intervened upon
variables are isolated variables in the interventional graph).
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E Misc

E.1 Negative Result: Algorithmic recourse is neither meaningful nor robust

In the introduction we claimed that CR recommendations [Karimi et al., 2020b, 2021] may not lead to improvement.
Now, we formally demonstrate the case on the Covid hospital admission example (Figure 1) which we extend with the
full structural causal model (Example 1). Furthermore, we show that CR is not robust to refits of the model on mixed
pre- and post-recourse data. All code is publicly available via https://anonymous.4open.science/r/icr-aaai/
README.md.

Example 1. Let V indicate whether someone is fully vaccinated, Y indicate whether someone is free of Covid and S
whether someone is asymptomatic. The data is generated by the following structural causal model (SCM) entailing the
causal graph depicted in Figure 1:

V := UV , UV ∼ Bern(0.5) (43)
Y := V + UY mod 2, UY ∼ Bern(0.09) (44)
S := Y + US mod 2, US ∼ Bern(0.05) (45)

For prediction, a sklearn logistic regression model is fit on 2000 samples, yielding ĥ with βv ≈ 3.7, βs ≈ 5.1,
β0 ≈ −4.3. Visitors are allowed to enter the hospital if ĥ < 0.5. Intervening on (flipping) V and S costs 0.5 and 0.1
respectively.

Lack of improvement: Given a decision threshold of 0.5, the model admits everyone without symptoms (S = 1),
irrespective of their vaccination status V . Therefore, in order to revert rejections (S = 0), both individualized and
subpopulation-based CR suggest removing the symptoms S (do(S = 1), for instance by taking cough drops). However,
since they only treat the symptoms S, the actual Covid risk Y is unaffected: none of the recourse-implementing
individuals actually improve. We say the predictor is gamed.

Lack of robustness: For individuals who implement recourse the association between symptom state S and Covid
risk Y is broken. Thus, the predictive power of the model for recourse-seeking individual drops from ≈ 95 percent
pre-recourse to ≈ 5 percent post-recourse.25 A refit of the model on a mix pre- and post-recourse data (2000 samples
each) yields ĥ with βV ≈ 4.1, βS ≈ 3.3, β0 ≈ −4.8. Since the association between symptom state and disease status is
broken post-recourse, the new model rejects individuals if they are not vaccinated, irrespective of their symptom state.
For that reason, recourse recommendations that were designed for the original model only lead to acceptance by the
refitted model for those individuals who happened to be vaccinated anyway.
The example demonstrates that CR recommendations are prone to gaming the predictor and therefore may neither lead
to improvement nor be robust to model refits.

E.2 Interpretability of improvement confidence γ

Counterfactuals are concerned with changing the inputs to the model such that the model prediction changes in the
desired way. Since the prediction function is deterministic and accessible, the post-recourse prediction can be determined
exactly.
In contrast CR and ICR deal with the effects of real-world interventions on real-world variables. As such, the effects of
recourse actions on the covariates (and the underlying prediction target) cannot be determined exactly. Therefore both
CR and ICR have to deal with uncertainty.
CR deals with this uncertainty by phrasing the optimization objective for CR in terms of an expectation over the
prediction distribution and by using an action-adaptive confidence threshold. This threshold thresh bounds the
expected prediction away from the model’s decision threshold (e.g. t = 0.5). Using the conservativeness parameters,
the user can roughly steer how far the expected prediction shall be away from the decision boundary.
In contrast, ICR deals with the uncertainty by letting the user specify the confidence γ, which can be intuitively
interpreted as improvement probability (whereas the expected prediction cannot be interpreted as acceptance probability).
A lower-bound on the acceptance probability for a combination of γ and t is given in Proposition 4. Furthermore, we
can estimate the individualized and subpopulation-based acceptance rates for a specific situation (a, xpre) as detailed in
B.1 and B.3. The human-interpretable improvement and acceptance confidences are vital for the explainee to make an
informed decision.
In order to allow a direct comparison of the methods, we rephrase the CR objective to optimize the acceptance
probability η in our experiments.

25The previously wrongly-rejected individuals are correctly classified after implementing recourse.
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E.3 Imbalance between standard predictors and individualized ICR recommendations

In Section 6 we argued that there is an imbalance in predictive capability between (optimal) observational predictors
and the pre-recourse SCM (which used to predict γind). We illustrate the problem on a simple example.
Example 2. Let there be a three variable chain X1 → Y → X2 where at every step the value is incremented by
one with 50% chance and the maximum value is set to 2 (X1 := U1, Y := X1 + UY , X2 := min(2, Y + U2) where
U1, U2, UY ∼ Bern(0.5)). Let us assume a factual observation xpre = (0, 2) and action a = do(X1 = 1) yielding
xpost = (1, 2). For the observation xpre = (0, 2) we can infer that UY must have been 1, since two increments are
needed to get from 0 to 2. However, from the post-intervention observation xpost = (1, 2) we cannot infer where the
increment happened (UY or U2). As a consequence, an optimal predictive model that only has access to xpost would
predict that ypost for xpost = (1, 2) could be 1 or 2 with equal likelihood. In contrast, with access to xpre and the
SCM we can infer that ypost = 2 since UY = 1.

In the above example, given knowledge of the SCM, the pre-intervention observation xpre and the performed action a
we can already abduct UY perfectly and therefore correctly determine the post-intervention state of Y (even without
access to the post-intervention observation xpost). In contrast, with the post-recourse observation alone it is impossible
to reconstruct UY and therefore impossible to determine the post-intervention state of Y .26 In the context of ICR this
means that the observational predictor’s post-recourse predictions are not directly linked with γ: they may not honor the
implementation of actions with γind = 1. As a consequence, we suggested to use the SCM for post-recourse prediction
in Section 6.

26The optimal pre-recourse predictor ĥ∗(xpost) predicts 0.5 for both y = 1 and y = 2.
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Appendix A Background on Models and Phenomena

We follow Bailer-Jones ([2003b], p61) and others (Achinstein 1974, Levy 2012, Contessa 2007) in seeing models

as “an interpretative description of a phenomenon that facilitates perceptual as well as intellectual access to that

phenomenon”, where a phenomenon describes a fact or event in nature that is subject to be researched (Bailer-Jones

2003a). Phenomenon and scientific models have been described as a continuous hierarchy with data living close to

the phenomenon and the model close to theory (Suppes 1966). Models represent only some phenomenon aspects but

not others (Ritchey 2012, Bailer-Jones 2003b, Frigg and Nguyen 2021); a good model is true to the aspects that are

relevant to the model user (Bailer-Jones 2003b, Stachowiak 1973).
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Appendix B Dataset

Figure 8 gives a descriptions of the different features and is copied from Cortez and Silva (2008). In our trained

models, we only used the final G3 student grades. The data was collected during 2005 and 2006 from two public

schools, from the Alentejo region in Portugal. The database is collected from a variety of sources from both school

reports and questionnaires. Cortez and Silva (2008) integrated the information into a mathematics dataset (with 395

examples) and a Portuguese language dataset (649 records).

Figure 8: Attributes in the Cortez and Silva (2008) dataset.
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Appendix C Tower Rule for Expectations

For arbitrary random variables X,Y, Z holds that

EY|X[Y | X] = EZ|X
[
EY|X,Z[Y | X, Z] | X

]
.

This is also known as the rule of total expectation. Intuitively it says that it doesn’t matter if we directly take the

expectation of Y on X or if we first take the expectation of Y conditioned on a set of random variables X, Z that

includes X and then, “integrate Z out”.
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A Background on Samplers

This is the more formal definition of a sampler: Let V and W be two random
variables, we define a sampler as a function ϕ that maps an input v ∈ V to a
density function on a space W i.e. ϕ : V → {ψ | ψ density on W}. The two
most common samplers in the context of PD and PFI are the marginal and the
conditional sampler: the marginal sampler ϕmarg maps every input v ∈ V to the
density of W i.e. for all v ∈ V : ϕmarg(v) = ψW ; the conditional sampler ϕcond
maps every input v ∈ V with ψV (v) > 0 to the conditional density of W i.e.

for all v ∈ V : ϕcond(v) = ψW |V=v =
ψW,V =v

ψV =v
. As such, samples from ϕmarg(v)

follow P (W ), and samples from ϕcond(v) follow P (W | V = v).
Like all model-agnostic interpretation techniques, both PD and PFI are based

on sampling data and evaluating the model on these data [10]. Dependent on
how we sample, we obtain different versions of PD and PFI and their results
must be interpreted in a different way [8,7,4,13,1]. The two most common the-
oretical samplers in PD and PFI research are the marginal and the conditional
sampler. The choice of the sampler should depend on the modeler’s objective
and the structure of the data. Under certain conditions, the marginal sampler
allows to estimate causal effects [15]. However, for correlated input features the
marginal sampler may create unrealistic data outside the training distribution,
which is problematic if the goal is to draw inference about the DGP; under
such conditions, the conditional sampler may be a better choice [5]. Samplers,
especially conditional samplers, are generally not readily available, but must be

⋆ equal contribution
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learned with techniques such as conditional subgroups [7] or conditional density
estimators [3,2,11,12,14,6]. The learning process of the sampler may introduce
another source of uncertainty that we do not consider in this work; we discuss
this limitation in the discussion section of the main paper.

B Bias and Variance of PD

The expected squared difference between model-PD and DGP-PD can be de-
composed into bias and variance.

Proof.

EF [(PDf̂ (x)− PDf (x))
2] = EF [PDf̂ (x)

2] + EF [PDf (x)
2]

− 2EF [PDf̂ (x)PDf (x)]

= VF [PDf̂ (x)] + EF [PDf̂ (x)]
2

+ PDf (x)
2 − 2EF [PDf̂ (x)PDf (x)]

= (PDf (x)− EF [PDf̂ (x)])︸ ︷︷ ︸
Bias

2
+ VF [PDf̂ (x)]︸ ︷︷ ︸

Variance

C Bias and Variance of PFI

The expected squared difference between model-PFI and DGP-PFI can be de-
composed into bias and variance.

Proof.

EF [(PFIf̂ − PFIf )2] = EF [PFI2f̂ ] + EF [PFI
2
f ]

− 2EF [PFIf̂PFIf ]

= VF [PFIf̂ ] + EF [PFIf̂ ]
2

+ PFI2f − 2EF [PFIf̂PFIf ]

= (PFIf − EF [PFIf̂ ])2 + VF [PFIf̂ ]

= Bias2F [PFIf̂ ] + VF [PFIf̂ ]

D Model-PD Unbiasedness Regarding Theoretical PD

Proof. By the law of large numbers, the Monte Carlo integration converges with
r →∞ to the true integral. Assuming we have a fixed x, r identically distributed
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random draws X̃
(1,x)
C , . . . , X̃

(r,x)
C ∼ ϕ(x) and a model f̂ , the estimate is:

EX̃C
[P̂Df̂ (x)] = EX̃(1,x)

C ,...,X̃
(r,x)
C

[
1

r

r∑

i=1

f̂(x, X̃
(i,x)
C )

]

=
1

r
rEX̃C

[f̂(x, X̃C)]

= PDf̂ (x)

and therefore unbiased for the interval, i.e. the theoretical PD of the model.

E Model-PD Unbiasedness Regarding DGP-PD

Proof. Unbiasedness of the model f̂ implies unbiasedness of the model-PD.

EF [PDf̂ (x)]
Def
=

∫

F

∫

x̃c∈X̃C

ϕ(x)(x̃c)f̂(x, x̃c) dx̃c dP (F )

Fub
=

∫

x̃c∈X̃C

∫

F

ϕ(x)(x̃c)f̂(x, x̃c) dP (F ) dx̃c

const.
=

∫

x̃c∈X̃C

ϕ(x)(x̃c)

∫

F

f̂(x, x̃c) dP (F ) dx̃c

unbiased
=

∫

x̃c∈X̃C

ϕ(x)(x̃c)f(x, x̃c) dx̃c

def
= PDf (x)

Fubini’s theorem requires that
∫
F,X̃C

| ϕ(x)(X̃c)f̂(X̃c) | dPF,XC
< ∞. One

sufficient condition for this is when the model predictions have an upper bound
c :| f̂(x) |< c <∞.

F Model-PFI Regarding theoretical PFI

Proof. As a function of random variables, the loss L itself is a random vari-
able. We assume that the loss L(i) of observation i is a sample from the dis-
tribution of losses: L(i) ∼ L and, similarly for the loss: L̃(k,i) ∼ L̃, where

L(i) = L(y(i), f̂(x(i))) and L̃(k,i) = L(y(i), f̂(x̃
(k,i)
S , x

(i)
C )).

The expectation of our estimator is:

EX̃SXSXCY
[P̂F I f̂ ] = EX̃SXSXCY

[
1

n2

n2∑

i=1

(
1

r

r∑

k=1

(L̃(k,i) − L(i)))

]

=
1

n2
n2EX̃SXSXCY

[((
1

r
rL̃)− L)]

= EX̃SXCY
[L̃]− EXSXCY [L]

= PFIf̂

In expectation, we retrieve the theoretical PFI of the model.
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G PFI Biases for L2

In this proof, we use the conditional sampler ϕcond for both, the DGP-PFI
and the model-PFI. Moreover, we assume that L is the squared loss L(y, f̂) =

(y − f̂(x))2 and that E[Y | X] can be described by f with some additive, ir-
reducible, error ϵ with E(ϵ) = 0 and V(ϵ) = σ2. To further examine the bias
for the PFI, we apply the Bias-Variance Decomposition additionally on the
loss itself: In addition, we use that EXY [Y ] = EX [f(X)], VY [Y ] = σ2 and
E[A2] = V[A] + E[A]2. We first derive the bias-variance decomposition of (i)
permuted loss and (ii) original loss and therefrom derive the expected PFI.

For the permuted loss (i):

EFX̃SXY
[L̃] = EFX̃SXY

[(Y − ˜̂
f)2]

= EX̃SXY
[Y 2 − 2Y EF [

˜̂
f ] + EF [

˜̂
f2]]

= EX̃SXY
[Y 2 − 2Y EF [

˜̂
f ] + EF [

˜̂
f ]2 + VF [

˜̂
f ]]

= VY [Y ] + EX̃SX
[f2 − 2fEF [

˜̂
f ] + EF [

˜̃
f̂ ]2 + VF [

˜̂
f ]]

= σ2
︸︷︷︸

Data Var

+EX̃SX

[
(f − EF [ ˜̂f ])2

]

︸ ︷︷ ︸
Bias2

+EX̃SX
[VF [

˜̂
f ]]︸ ︷︷ ︸

Variance

For the original loss (ii):

EFXY [L] = EFXY [(Y − f̂)2]
= EXY [Y

2 − 2Y EF [f̂ ] + EF [f̂
2]]

= EXY [Y
2 − 2Y EF [f̂ ] + EF [f̂ ]

2 + VF [f̂ ]]

= VY [Y ] + EX [f2 − 2fEF [f̂ ] + EF [f̂ ]
2 + VF [f̂ ]]

= σ2
︸︷︷︸

Data Var

+EX

[
(f − EF [f̂ ])2

]

︸ ︷︷ ︸
Bias2

+EX [VF (f̂)]︸ ︷︷ ︸
Variance

The expected PFI for feature XS then is:

EF [PFIf̂ ] = EFX̃SXY
[L̃]− EFXY [L]

(i)+(ii)
= σ2 + EX̃SX

[
(f − EF [ ˜̂f ])2

]
+ EX̃SX

[VF (
˜̂
f)]

− (σ2 + EX

[
(f − EF [f̂ ])2

]
+ EX [VF (f̂)])

= EX̃SX

[
(f − EF [ ˜̂f ])2

]
− EX

[
(f − EF [f̂ ])2

]

+ EX̃SX
[VF [

˜̂
f ]]− EX [VF [f̂ ]]
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We can derive the same L2 decomposition for the DGP-PFI by replacing f̂
with f in the equation above. This yields PFIf = EX̃SX

[(f(X)−f(X̃S , XC))
2],

since VF [f ] = VF [f̃ ] = 0 and EF [f ] = f and EF [f̃ ] = f̃ .
The bias of the model-PFI compared to the DGP-PFI is:

EF [PFIf̂ ]− PFIf = EX̃SX
[(f − EF [ ˜̂f ])2 − (f − f̃)2]

︸ ︷︷ ︸
Permutation Loss Bias

(1)

− EX
[
(f − EF [f̂ ])2]

]

︸ ︷︷ ︸
(Learner Bias)2

+EX̃SX
[VF [f̂ ]]− EX [VF [f̂ ]]︸ ︷︷ ︸
Variance Inflation

(2)

unbiased
= EX̃SX

[VF [f̂ ]]− EX [VF [f̂ ]]︸ ︷︷ ︸
Variance Inflation

(3)

X̃S∼XS |XC
= 0 (4)

The permutation loss bias and the squared learner bias are zero due to the
unbiasedness assumption, i.e. EF [f̂ ] = f . The variance inflation term is zero if
X̃S ∼ XS | XC , which is here the case due to conditional sampling.

H conditional DGP-PFI minus model-PFI for L2

In this proof, we use the conditional sampler ϕcond for both, the DGP-PFI and
the model-PFI.

PFIf − PFIf̂ = EX̃SXCY
[(Y − f)2]− EXSXCY [(Y − f)2]

−
(
EX̃SXCY

[(Y − f̂)2]− EXSXCY [(Y − f̂)2]
)

=
(
EXSXCY [(Y − f̂)2]− EXSXCY [(Y − f)2]

)

︸ ︷︷ ︸
T1:=

+
(
EX̃SXCY

[(Y − f))2]− EX̃SXCY
[(Y − f̂)2]

)

︸ ︷︷ ︸
T2:=

We know that for any g : X → Y holds:

EX,Y [(Y − g)2] = EX [VY |X [Y ]] + EX [(EY |X [Y ]− g)2]

Since f = EY |XS ,XC
[Y ] we can conclude for our first term T1 that:

T1 = EXSXC
[VY |XS ,XC

[Y ]] + EXSXC
[(f − f̂)2]

−
(
EXSXC

[VY |XS ,XC
[Y ]] + EXSXC

[(f − f)2]︸ ︷︷ ︸
=0

)

= EXSXC
[(f − f̂)2]
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We apply the same strategy to T2. Moreover, Y |= X̃S | XC .

T2 = EX̃SXC
[VY |X̃S ,XC

[Y ]] + EX̃SXC
[(EY |X̃S ,XC

[Y ]− f)2]

−
(
EX̃SXC

[VY |X̃S ,XC
[Y ]] + EX̃SXC

[(EY |X̃S ,XC
[Y ]− f̂)2]

)

= EX̃SXC
[(EY |XC

[Y ]− f)2]− EX̃SXC
[(EY |XC

[Y ]− f̂)2]

If we now set together the two terms again and use in the first step that
P (XS , XC) = P (X̃S , XC), we obtain:

T1+T2 = EXSXC
[(f − f̂)2] + EXSXC

[(EY |XC
[Y ]− f)2]

− EXSXC
[(EY |XC

[Y ]− f̂)2]
= EXSXC

[
f2 − 2ff̂ + f̂2 + EY |XC

[Y ]2 − 2EY |XC
[Y ]f + f2

− EY |XC
[Y ]2 + 2EY |XC

[Y ]f̂ − f̂2
]

= 2EXSXC

[
(f2 − EY |XC

[Y ]f)− (ff̂ − EY |XC
[Y ]f̂)

]

= 2EXC

[
EXS |XC

[
(f2 − EY |XC

[Y ]f)− (ff̂ − EY |XC
[Y ]f̂)

]]

∗
= 2EXC

[
(EXS |XC

[f2]− EY |XC
[Y ]EXS |XC

[f ])

− (EXS |XC
[ff̂ ]− EY |XC

[Y ]EXS |XC
[f̂ ])
]

∗∗
= 2EXC

[
(EXS |XC

[f2]− EXS |XC
[f ]2)

− (EXS |XC
[ff̂ ]− EXS |XC

[f̂ ]EXS |XC
[f ])
]

= 2EXC

[
VXS |XC

[f ]− CovXS |XC
[f, f̂ ]

]

At *, we use the fact that the random variable EY |XC
[Y ] is measurable by the σ-

Algebra generated from XC , and we are inclined to pull it out of the expectation.
In **, we use that from f = EY |XS ,XC

[Y ] follows EXS |XC
[f ] = EY |XC

[Y ].

I CI simulation results
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Figure I.1: CI coverage for PD with n=100.
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Figure I.2: CI width for PD with n=100.
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Figure I.3: CI coverage for PD with n=1,000.
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Figure I.4: CI width for PD with n=1,000.
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Figure I.5: CI coverage for PFI with n=100.
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Figure I.6: CI width for PFI with n=100.
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Figure I.7: CI coverage for PFI with n=1,000.
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Figure I.8: CI width for PFI with n=1,000.
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J Theoretical background of model-based uncertainty

[9] leverage the kernel of GPs to analytically calculate the model-based uncer-

tainty contained in the PD function. Let f̂ be a GP and m̂(x) =
(
m̂(x, x

(i)
C )
)
i=1,...,n2

its estimated posterior mean and K̂(x) =
(
k̂
(
(x, x

(i)
C ), (x, x

(j)
C )
))
i,j=1,...,n2

its es-

timated posterior covariance on the test set Dn2 for fixed feature values x ∈ XS .

The PD estimate P̂D of f̂ can be seen as a random variable. Thus, the PD for
the posterior mean function is given by the expected value of P̂D:

Ef̂
[
P̂D(x)

]
= Ef̂

[
1

n2

n2∑

i=1

f̂(x, x
(i)
C )

]
=

1

n2

n2∑

i=1

m̂(x, x
(i)
C ). (5)

The variance of the PD is estimated accordingly and can be calculated straight-
forwardly by leveraging the posterior covariance of the GP:

Vf̂
[
P̂D(x)

]
= Vf̂

[
1

n2

n2∑

i=1

f̂(x, x
(i)
C )

]
=

1

n22
1⊤K̂(x)1. (6)

Since the n2 predictors f̂(x, x
(i)
C ) of the GP follow a Gaussian distribution, their

sum is also normally distributed. Hence, we can construct confidence bands for
the mean estimate in Eq. (5) by using the variance estimate in Eq. (6) together
with the respective 1−α/2 quantiles of the Gaussian distribution. This approach
is applicable to any models (including non-GPs) that provide a fully specified
covariance matrix between the predictions.

As Eq. (6) solely quantifies the variance w.r.t. the model given the observed
data, the resulting confidence bands only capture model variance but not the
variance induced by MC integration.
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A PROOF OF THEOREM 1

Theorem 1. For ℓ being cross-entropy loss or the mean-squared error, f∗ the respective optimal predictor and νℓ,f∗ the
corresponding SAGE value function, it holds that

Xj ⊥ Y |XS ⇒ νℓ,f∗(XS∪j)− νℓ,f∗(XS) = 0.

Proof. Mean Squared Error: Covert et al. (2020) show that for ℓ being the mean squared error and f∗ the corresponding
optimal predictor it holds that:

ν(XS∪j)− ν(XS) = E[Var(Y |XS)]− E[Var(Y |XS∪j)]

Under conditional independence Y ⊥ Xj |XS it follows that

E[Var(Y |XS∪j)] = E[E[Var(Y |XS∪j)|XS ]]
= E[Var(Y |XS)]

and consequently Y ⊥ Xj |XS ⇒ ν(XS∪j)− ν(XS) = 0.

Cross Entropy: Covert et al. (2020) show that given cross entropy as loss and the corresponding loss optimal predictor f∗

it holds that:
ν(XS∪j)− ν(XS) = I(Y ;Xj |XS)

Mutual information I(Y ;Xj |XS) is zero if and only if Y ⊥ Xj |XS . Consequently ν(XS∪j)−ν(XS) = 0⇔ Xj ⊥ Y |XS .

B SAGE VALUE PROPERTIES

As mentioned in Section 3, SAGE values satisfy certain fairness properties that are deduced from those valid for Shapley
values (Covert et al., 2020). While not explicitly named after the Shapley value properties (efficiency, the dummy property,
symmetry, monotonicity, linearity) we employ these terms for the SAGE properties for simplicity:

1. Efficiency:
∑d
j=1 ϕj(ν) = ν(X), where X is the set of all features.

2. Dummy property: ϕj(ν) = 0 if Xj ⊥ f̂(X)|XS for all S ⊆ {1, ..., d} \ j.

3. Symmetry: ν(XS∪j) = ν(XS∪i) for two variables Xj and Xi with a deterministic relationship.

4. Monotonicity: For two target variables Y , Y ′ and corresponding models f̂ , f̂ ′: ϕj(νf̂ ) ≥ ϕj(νf̂ ′) if νf̂ (XS∪j) −
νf̂ (XS) ≥ νf̂ ′(XS∪j)− νf̂ ′(XS) for all S ⊆ {1, ..., d} \ j.

5. From Linearity: ϕj(ν) = EX,Y [ϕj(νf̂ ,x,y)], where ϕj(νf̂ ,x,y) is the Shapley value of the game νf̂ ,x,y(XS) =

ℓ(f̂∅(X∅), y)− ℓ(f̂S(XS), y)

6. SAGE values are invariant to invertible mappings applied to the input, e.g. they are the same for original input data
and and their log values.
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C GRAPH BENCHMARK

In this section, we provide detailed information about the graphs employed in Section 5, the graph learning algorithms and
the graph benchmark. Additionally, we present results derived from the HC algorithm for CSL.

C.1 Overview of Graphs

In Table 1 we provide an overview of all twelve graphs used in Section 5, the randomly sampled target, the adjacency
degree of the target and the share of d-separations w.r.t. the target. This gives further insight into the relation of graph
sparsity, degree of target and share of d-separations. The latter can be regarded as the potential relative runtime decrease
for SAGE approximation.

Table 1: Overview of all twelve graphs used in Section 5, the randomly sampled target, the adjacency degree of the target
and the share of d-separations w.r.t. the target.

GRAPH (AVG. DEGREE) TARGET DEGREE OF TARGET SHARE OF ⊥G

DAGs(2) 8 2 0.556
DAGs(3) 1 2 0.357
DAGs(4) 1 4 0.283
DAGsm(2) 17 1 0.765
DAGsm(3) 2 1 0.623
DAGsm(4) 16 4 0.185
DAGm(2) 4 1 0.961
DAGm(3) 32 5 0.556
DAGm(4) 2 3 0.274
DAGl(2) 4 3 0.632
DAGl(3) 66 3 0.552
DAGl(4) 66 7 0.151

Table 2 shows the hyperparameter settings used for CSL relying on the bnlearn package (Scutari, 2010) for R (R Core
Team, 2022).

Table 2: Hyperparameters Used for Graph Learning

ALGORITHM HYPERPARAMETERS

HC Max. iterations∞, max. in-degree: ∞; score: BIC
TABU Size of list: 10; Max. iterations∞, max. in-degree: ∞; score: BIC

C.2 MC Sampling for d-separation Inference

In Algorithm 2 we explicate how we inferred the number of true positive, false positive, true negative and false negative
d-separations within an estimated graph and especially how we dealt with the exponential number of potential conditioning
sets for the larger graphs.
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Algorithm 2: Monte Carlo Sampling for d-separation Inference
Input: True graph G∗ and estimated graph G over node set {X1, X2, ...Xd, Y } with target node Y ; Number of MC samples nmc

Output: True positives, true negatives, false positives and false negatives for inferred d-separations in G: TP, TN, FP, FN
Set TP = TN = FP = FN = 0
for m = 1, ..., nmc do

Randomly draw a node Xj from {X1, X2, ...Xd}
Randomly draw size ns of conditioning set XS from discrete probability distribution P (ns = i) =

(d−1
i )

2d−1 , i ∈ {0, ..., d− 1}
Randomly draw elements Xi, i = 1, ...ns, from {X1, X2, ...Xd} \Xj without replacement and set XS = {Xi}i=1,...,ns

if Xj ⊥G∗ Y |XS then
if Xj ⊥G Y |XS then

TP = TP+1
else

FN = FN+1
end

else
if Xj ̸⊥G Y |XS then

TN = TN+1
else

FP = FP+1
end

end
end
Return: TP, TN, FP, FN

C.3 Results - HC

In Figure 7 we show the results of the graph learning benchmark for HC in contrast to those from Section 5. As HC never
performed better but for some experiments worse than TABU, we chose the latter for the use in d-SAGE.

(a) F1 scores for d-separation (lines, left y-axes) and runtime
of graph learning (bars, right y-axes) using HC depending
on sample size.

(b) Confusion matrix for true and predicted d-connections ( ̸⊥G) and d-
separations (⊥G) based on HC with n = 10, 000 for all twelve graphs.

Figure 7: Results from graph learning benchmark for HC algorithm.
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D SAGE - EXPERIMENTS

In this section, we briefly explain the experiment setup and afterwards present missing results. For our analysis, we fitted
two models, LM and RF, for every dataset relying on the same targets that were sampled randomly for the analysis of
d-separations in a graph. We relied on ntrain = 8000 for model fitting and ntest = 2000 for model evaluation (the same
n = 10000 data points as used for graph fitting and SAGE inference). We then used the data to estimate SAGE and
d-SAGE five times, i.e. we were provided five approximations of (d-)SAGE for every graph and model, which were then
used to provide error bounds. The ∆j|S plots rely on skipped evaluations of each of these runs.

In Table 3 we provide performance measures of the models and in Appendix D.1 the plots pertaining to experiments not
shown in Section 5 are displayed. Note that Table 3 highlights that RF performs slightly worse than the optimal LM
throughout all settings and with regard to the MSE and R2.

Table 3: Details of Linear Models (LMs) and Random Forests (RF); Random Forests based on 100 Tree Estimators.

DATA (AVERAGE DEGREE) ntrain; ntest MSELM R2
LM MSERF R2

RF

DAGs(2) 8000; 2000 0.541 0.495 0.572 0.466
DAGsm(2) 8000; 2000 0.035 0.963 0.038 0.960
DAGm(2) 8000; 2000 0.474 0.522 0.498 0.498
DAGl(2) 8000; 2000 0.070 0.930 0.103 0.897
DAGs(3) 8000; 2000 0.382 0.616 0.480 0.517
DAGsm(3) 8000; 2000 0.072 0.926 0.078 0.921
DAGm(3) 8000; 2000 0.089 0.914 0.174 0.832
DAGl(3) 8000; 2000 0.065 0.938 0.082 0.922
DAGs(4) 8000; 2000 0.101 0.902 0.161 0.843
DAGsm(4) 8000; 2000 0.075 0.925 0.086 0.914
DAGm(4) 8000; 2000 0.163 0.840 0.194 0.810
DAGl(4) 8000; 2000 0.004 0.996 0.059 0.943

D.1 Results - SAGE and d-SAGE

In this section we provide the same results as in Section 5 for all missing setups and both models, LM and RF as well as
the top fifteen values for the setup presented in Section 5. Overall, we can confirm our findings in the different settings.

Figure 8: SAGE values and difference between SAGE and d-SAGE for the fifteen (all for DAGs) largest values for optimal
models for DAGs with average degree two.
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(a) SAGE values and difference between SAGE and d-SAGE for the
fifteen (all for DAGs) largest values for optimal models.

(b) Boxplots showing the distribution of ∆j|S for the skipped sur-
plus evaluations.

Figure 9: Results on the estimation quality for d-SAGE based on each DAG with average degree three and the LM.

(a) SAGE values and difference between SAGE and d-SAGE for the
fifteen largest (all for DAGs) values for optimal models

(b) Boxplots showing the distribution of ∆j|S for the skipped sur-
plus evaluations.

Figure 10: Results on the estimation quality for d-SAGE based on each DAG with average degree four and the LM.

(a) SAGE values and difference between SAGE and d-SAGE for the
fifteen (all for DAGs) largest values for optimal models.

(b) Boxplots showing the distribution of ∆j|S for the skipped sur-
plus evaluations.

Figure 11: Results on the estimation quality for d-SAGE based on each DAGs with average degree two and the RF.
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(a) SAGE values and difference between SAGE and d-SAGE for the
fifteen (all for DAGs) largest values for optimal models.

(b) Boxplots showing the distribution of ∆j|S for the skipped sur-
plus evaluations.

Figure 12: Results on the estimation quality for d-SAGE based on each DAG with average degree three and the RF.

(a) SAGE values and difference between SAGE and d-SAGE for the
fifteen (all for DAGs) largest values for optimal models.

(b) Boxplots showing the distribution of ∆j|S for the skipped sur-
plus evaluations.

Figure 13: Results on the estimation quality for d-SAGE based on each DAG with average degree four and the RF.
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E CONVERGENCE PLOTS

Figure 14: Convergence of largest fifteen SAGE and d-SAGE values for optimal models (LM) for every DAG (average
adjacency degree). Each colour represents the same feature in SAGE and d-SAGE plots for a given graph (if present in
both). Legend omitted for readability.
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Figure 15: Convergence of largest fifteen SAGE and d-SAGE values for random forest models (RF) for every DAG (average
adjacency degree). Each colour represents the same feature in SAGE and d-SAGE plots for a given graph (if present in
both). Legend omitted for readability.
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Figure 16: Convergence of bottom fifteen SAGE and d-SAGE values for optimal models (LM) and random forest models
(RF) for DAGm and DAGl (average adjacency degree). Each colour represents the same feature in SAGE and d-SAGE
plots for a given graph (if present in both). Legend omitted for readability.
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E.1 Convergence of SAGE Values

The approximation algorithm is designed such that convergence for all values is required to stop. Hence, some values
are converged but still computed. However, the benefit of d-SAGE depends on the share of CIs and not the number of
permutations required for convergence, and hence, even a fewer number of permutations would lead to a similar speedup.
Missing lines in the convergence plots belong to conditionally independent features (given every sampled coalition), which
highlights the ability of (d-)SAGE for post-hoc feature selection. An example of faster converging d-SAGE values is
displayed by the comparison of SAGE and d-SAGE for DAGm(2) in Figure 14, where the small values (slightly above
zero) converge faster for d-SAGE.

F PARTIAL CORRELATION TESTS v d-SEPARATION QUERIES

To highlight the benefit of CSL over statistical independence tests, we compared the runtime of linear time d-separation
queries (in graphs inferred by TABU) from the NetworkX package for Python (Hagberg et al., 2008) to that of partial
correlation tests for linear Gaussian data from the Pingouin package (Vallat, 2018). Results are based on 100 permutations.
Table 4 clearly shows that partial correlation tests are typically more accurate at the cost of much higher runtime in
comparison to d-separation queries (+ graph learning).

Table 4: Partial correlation tests v d-separation queries based on n = 10, 000 and 100 permutations; Graph learning based
on TABU; ACC = Accuracy.

DATA TIME (d-separation) TIME (TABU) TIME (CIs) ACC (d-separation) ACC (CIs)

DAGs (2) 0.13s 0.06s 46.82s 1.000 1.000
DAGsm (2) 0.39s 0.22s 166.75s 0.996 0.999
DAGm (2) 1.95s 1.11s 1058.80s 1.000 1.000
DAGl (2) 15.48s 12.02s 4344.81s 0.863 0.934
DAGs (3) 0.13s 0.18s 47.15s 1.0 1.0
DAGsm (3) 0.41s 0.71s 166.28s 0.996 0.992
DAGm (3) 2.12s 2.51s 1089.00s 0.908 0.983
DAGl (3) 16.85s 18.22s 4299.47s 0.857 0.941
DAGs (4) 0.14s 0.09s 47.18s 1.0 0.998
DAGsm (4) 0.42s 1.37s 163.48s 1.0 0.988
DAGm (4) 2.33s 5.65s 1093.50s 0.845 0.940
DAGl (4) 20.74s 39.86s 4312.16s 0.902 0.916
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Appendix A Decompose conditional PFI into cs-PFIs

Assuming a perfect construction of G j , it holds that X j ⊥ X− j |G j and also that
X j ⊥ G j |X− j (as G j is a compression of X− j ). Therefore

P(X j |X− j ) = P(X j |X− j ,G j ) = P(X j |G j ). (8)

When we sample the replacement x̃ (i)
j for an x (i)

j from the marginal within a group

(P(X j |G j = g(i)
j ), e.g., via permutation) we also sample from the conditional

P(X j |X− j = x (i)
− j ). Every data point from the global sample can therefore equiv-

alently be seen as a sample from the marginal within the group, or as a sample from
the global conditional distribution.
As follows, theweighted sumofmarginal subgroupPFIs coincideswith the conditional
PFI (cPFI).

cPF I =
n∑

i=1

1

n

(
L

(
f
(
x̃ (i)
j , x (i)

− j

)
, y(i)

)
− L

(
f̂
(
x (i)
j , x (i)

− j

)
, y(i)

))
(9)

=
K∑

k=1

nk
n

∑

i∈Gk

1

nk
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(
f
(
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j , x (i)

− j
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)
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(
f̂
(
x (i)
j , x (i)

− j

)
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=
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nk
n
PFIk (11)

Appendix B Expectation and variance of the PFI in a subgroup

We show that under feature independence the PFI and a PFI in an arbitrary subgroup
have the same expected value and the subgroup k PFI has a higher variance. Let
L̃(i) = 1

M

∑M
m=1 L(y(i), f̂ (x̃ (i)

j,m, x (i)
− j ) and L(i) = L(y(i), f̂ (x (i)

j,m, x (i)
− j ).

Proof

EX− j [PF I j ] = EX− j

[
1

n

n∑

i=1

(L̃(i) − L(i))

]

= EX− j [L̃(i) − L(i)]
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nk
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Appendix C Expectation and variance of the PDP in a subgroup

We show that under feature independence the PDP and a PDP in an arbitrary subgroup
have the same expected value and the subgroup k PDP has a higher variance.
Proof

EX− j [PDPj (x)] = EX− j
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Appendix D cPFI ground truth scenario II

This chapter contains the results for the conditional PFI ground truth simulation,
scenario II with an intermediate random forest (Table6 and Fig. 11).
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Fig. 11 Experiment (II) comparing various conditional PFI approaches with an intermediary a random
forest against the true conditional PFI based on the data generating process
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Appendix E cPFI ground truth tree depth

See Fig. 12.
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Fig. 12 Conditional PFI estimate using cs-PFI (cart/transformation tree) with increasing number of sub-
groups (simulation scenario I). Displayed is the median PFI over 1000 repetitions along with the 5% and
95% quartiles

Appendix F Data fidelity on OpenML-CC18 data sets

An overview of data sets from the OpenML-CC18 benchmarking suit. We used a
subset of 42 out of 72 data sets with 7 to 500 continuous features (Table7).
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Table 7 Overview of OpenML CC18 data sets used for the data fidelity experiment

OpenML ID Name No. Obs. No. numerical feat. No. feat.

1049 pc4 1458 38 38

1050 pc3 1563 38 38

1053 jm1 10,880 22 22

1063 kc2 522 22 22

1067 kc1 2109 22 22

1068 pc1 1109 22 22

12 mfeat-factors 2000 217 217

14 mfeat-fourier 2000 77 77

1461 bank-marketing 45,211 8 17

1475 first-order-theorem-proving 6118 52 52

1480 ilpd 583 10 11

1486 nomao 34,465 90 119

1487 ozone-level-8hr 2534 73 73

1494 qsar-biodeg 1055 42 42

1497 wall-robot-navigation 5456 25 25

15 breast-w 683 10 10

1501 semeion 1593 257 257

151 electricity 45,312 8 9

1510 wdbc 569 31 31

16 mfeat-karhunen 2000 65 65

182 satimage 6430 37 37

188 eucalyptus 641 15 20

22 mfeat-zernike 2000 48 48

23517 numerai28.6 96,320 22 22

28 optdigits 5620 63 65

307 vowel 990 11 13

31 credit-g 1000 8 21

32 pendigits 10,992 17 17

37 diabetes 768 9 9

40499 texture 5500 41 41

40701 churn 5000 17 21

40966 MiceProtein 552 78 82

40979 mfeat-pixel 2000 241 241

40982 steel-plates-fault 1941 28 28

40984 segment 2310 19 20

40994 climate-model-simulation-crashes 540 21 21

44 spambase 4601 58 58

4538 GesturePhaseSegmentationProcessed 9873 33 33

458 analcatdata_authorship 841 71 71

54 vehicle 846 19 19

6 letter 20,000 17 17

6332 cylinder-bands 378 19 40
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Appendix F.1 Data fidelity results

See Figs. 13, 14, 15 and 16.

vowel wall−robot−navigation wdbc

numerai28.6 optdigits pendigits satimage segment vehicle

letter mfeat−factors mfeat−fourier mfeat−pixel mfeat−zernike MiceProtein

bank−marketing climate−model−
simulation−crashes cylinder−bands diabetes electricity kc1

pe
rm

cv
irf

ca
rt3

0
trt

r3
0

al
e ko im
p

no
ne

pe
rm

cv
irf

ca
rt3

0
trt

r3
0

al
e ko im
p

no
ne

pe
rm

cv
irf

ca
rt3

0
trt

r3
0

al
e ko im
p

no
ne

pe
rm

cv
irf

ca
rt3

0
trt

r3
0

al
e ko im
p

no
ne

pe
rm

cv
irf

ca
rt3

0
trt

r3
0

al
e ko im
p

no
ne

pe
rm

cv
irf

ca
rt3

0
trt

r3
0

al
e ko im
p

no
ne

4

5

6

7

4.95

4.98

5.01

4.8

5.1

5.4

5.7

6

7

8

6.5

6.6

6.7

6.8

6.9

3

4

5

6

7

5.4

5.6

5.8

6.0

6.2

6.70

6.72

6.74

6.76

6.0

6.5

7.0

7.5

8.0

4.8

4.9

5.0

6.60

6.64

6.68

6.0

6.5

7.0

7.5

8.0

4.7

4.8

4.9

5.0

5.20

5.25

5.30

5.35

5.40

6.61

6.63

6.65

6.67

6.69

2

4

6

8

7.00

7.25

7.50

7.75

5

6

7

8

6.0

6.5

7.0

7.5

8.0

7.0

7.5

8.0

5.8

6.0

6.2

D
at

a 
Fi

de
lit

y 
(−

lo
g(

M
M

D
)

Fig. 13 Data Fidelity experiment with OpenML-CC18 data sets (1/2). Different sampling types are com-
pared: unconditional permutation (perm), cs-permutation (maximal tree depth) with CART (cart30) or
transformation trees (trtr30), Model-X knockoffs (ko), data imputation with a random forest (imp), ALE
(ale), conditional variable importance for random forests (cvirf) and no permutation (none). Each data
point in the boxplot represents one feature and one data set. Results from repeated experiments have been
averaged (mean) before using them in the boxplots
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Fig. 14 Data Fidelity experiment with OpenML-CC18 data sets (1/2). Different sampling types are com-
pared: unconditional permutation (perm), cs-permutation (maximal tree depth) with CART (cart30) or
transformation trees (trtr30), Model-X knockoffs (ko), data imputation with a random forest (imp), ALE
(ale), conditional variable importance for random forests (cvirf) and no permutation (none). Each data
point in the boxplot represents one feature and one data set. Results from repeated experiments have been
averaged (mean) before using them in the boxplots
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Fig. 15 Data Fidelity experiment with OpenML-CC18 data sets (1/2). Different tree depths and tree types
(CART and Transformation Trees) are compared. Unconditional permutation and lack of permutation serve
as lower and upper bound for data fidelity and their median data fidelity is plotted as dotted lines. Each data
point in the boxplot represents one feature and one data set. Results from repeated experiments have been
averaged (mean) before using them in the boxplots
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Fig. 16 Data Fidelity experiment with OpenML-CC18 data sets (1/2). Different tree depths and tree types
(CART and Transformation Trees) are compared. Unconditional permutation and lack of permutation serve
as lower and upper bound for data fidelity and their median data fidelity is plotted as dotted lines. Each data
point in the boxplot represents one feature and one data set. Results from repeated experiments have been
averaged (mean) before using them in the boxplots
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Appendix G Model fidelity plots

See Fig. 17.
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Fig. 17 Comparing the loss between model f and various feature effect methods. Each instance in the
boxplot is MSE for one feature, summed over the test data

Appendix H Application: feature dependence analysis

The features in the bike data are dependent. For example, the correlation between
temperature and humidity is 0.13. The data contains both categorical and numerical
features and we are interested in the multivariate, non-linear dependencies. Thus, cor-
relation is an inadequate measure of dependence. We therefore indicate the degree of
dependence by showing the extent to which we can predict each feature from all other
features in Table8. This idea is based on the proportional reduction in loss (Cooil and
Rust 1994). Per feature, we trained a random forest to predict that feature from all other
features. We measured the proportion of loss explained by each random forest, com-
pared to a constant model to quantify the dependence of the respective feature on all
other features. For numerical features, thismeant using theR-squaredmeasure. For cat-
egorical features, we computed 1− MMCE(yclass, r f (X))/MMCE(yclass, xmode),
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whereMMCE is themeanmisclassification error, yclass the true class, r f () the classi-
fication function of the random forest and xmode the most frequent class in the training
data. We divided the training data into two folds and trained the random forest on
one half. Then, we computed the proportion of explained loss on the other half and
vice versa. Finally, we averaged the results. The feature “work” can be fully predicted
by weekday and holiday. Season, temperature, humidity and weather can be partially
predicted and are therefore not independent.

Table 8 Percentage of loss explained by predicting a feature from the remaining features with a random
forest

Season Holiday Weekday Temp Hum Work Weather Year Wind

46% 25% 12% 66% 42% 100% 44% 10% 11%
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Hiermit erkläre ich an Eidesstatt, dass die Dissertation “If Interpretability is
the Answer, What is the Question?” von mir selbstständig, ohne unerlaubte
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