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Zusammenfassung

Die Kosmologie befindet sich derzeit im Wandel von Experimenten, die das kosmologis-
che Standardmodell etabliert haben, zu einer neuen Generation von Experimenten, die
etwaige Abweichungen von diesem Modell aufzudecken versuchen, sofern diese existieren.
Die aktuellen Daten bestätigen weitgehend, dass wir in einem flachen Universum leben,
dominiert von dunkler Energie, die die beschleunigte Ausdehnung antreibt, und von dun-
kler Materie, der wichtigsten Gravitationskomponente, die eine netzartige großräumige
Struktur bildet. Dennoch gibt es Hinweise darauf, dass die von verschiedenen kosmol-
ogischen Sonden präzise gemessenen Werte der Modellparameter dieses ΛCDM-Modells
Diskrepanzen aufweisen. Um die Ursache dieser Diskrepanzen zu untersuchen, müssen
größere Datensätze gesammelt werden und Daten von verschiedenen kosmologischen Son-
den in einheitlichen Analysen kombiniert werden. Beide Wege erfordern neue Werkzeuge,
die es ermöglichen größere und komplexere Datensätze zu verarbeiten, wobei beachtet wer-
den muss, dass die Verwendung von Methoden und Annahmen, die ursprünglich für viel
einfachere Analysen entwickelt wurden, zu Einschränkungen und systematischen Fehlern
führen können.

In dieser Dissertation wird eine Verbesserung der Vollformanalyse von anisotropen
Zweipunkt-Galaxien-Clusterstatistiken vorgestellt. Wir stützen uns dabei stark auf das
Konzept des Evolution Mappings und konzentrieren uns auf zwei Aspekte der Analyse:
die Modellierungswerkzeuge und die Interpretation der Ergebnisse. Das Ziel der Analy-
sen ist eine Einschränkung des Raumes der physikalischen Parameter, anhand deren die
Ergebnisse interpretiert werden. Unter anderem sind wir an kosmologischen Parametern
interessiert, die nicht durch den dimensionslosen Hubble-Parameter h definiert sind: wir
definieren den Parameter für die Cluster-Amplitude, der die lineare Dichtefeldvarianz auf
der Skala 8 h−1Mpc misst, σ8, neu und verwenden stattdessen sein Äquivalent, das auf der
Skala von 12 Mpc gemessen wird, σ12. Außerdem verwenden wir die physikalischen Dichten
ωi der kosmologischen Energiespezies i, die sich auf die relativen Dichten als ωi = Ωih

2

beziehen. Im Hinblick auf die Entwicklung von Modellierungswerkzeugen bieten wir einen
schnellen Weg, um Vorhersagen über die Vollform-Galaxienhäufung zu erhalten, indem
wir die Beziehungen zwischen den kosmologischen Parametern in physikalischen Parame-
terraum nutzen, die einen Einfluss auf das Galaxien-Leistungsspektrum haben. Die hier
vorgestellten Analysen nutzen die Messungen der BOSS- und eBOSS-Galaxiendurchmusterungen,
die beide Teil des größten öffentlich zugänglichen spektroskopischen Datensatzes sind - des
Sloan Digital Sky Survey (SDSS).



xii Zusammenfassung

Im ersten Teil der Arbeit betrachten wir das ΛCDM-Modell und führen die erste Voll-
formanalyse der eBOSS-Quasar-Clustermessungen durch, welche wir mit neu analysierten
Galaxien-Clusterkeilen aus BOSS kombinieren. Wir vergleichen und kombinieren die re-
sultierenden Ergebnisse mit denen aus 3 × 2pt Messungen von DES Y1 und Temperatur-
und Polarisationsleistungsspektren des kosmischen Mikrowellenhintergrundes (CMB) von
Planck. Wir zeigen, dass alle betrachteten Datensätze eine konsistente Clustering-Amplitude
σ12 ergeben. Ferner zeigen wir, dass der physikalische Parameterraum es ermöglicht, die
enge Beziehung zwischen den anfänglichen und endgültigen Amplituden des Leistungsspek-
trums wiederherzustellen, und stellen mithilfe dieses Ergebnisses fest, dass die DES Y1-
Messungen allein oder in Kombination mit der Galaxienhäufung eine Präferenz für ein
geringeres Wachstum der Gesamtstruktur zeigen als von Planck vorhergesagt. Wir weisen
nach, dass dieser Unterschied mit dem Diskrepanzniveau des Lensing-Amplitudenparameters
übereinstimmt und mit den unterschiedlichen Werten der dunklen Energiedichte von Mes-
sungen bei niedriger und hoher Rotverschiebung zusammenhängt.

Im zweiten Teil der Arbeit dehnen wir unsere Analyse auf Modelle jenseits des ΛCDM-
Modells aus, mit besonderem Fokus auf Modellen mit variierenden Zustandsgleichungspa-
rametern der dunklen Energie w, und zeigen, dass alle durch Galaxienhäufung bestimmte
Parameterintervalle mit den Werten des Standardmodells konsistent sind. Darüber hinaus
demonstrieren wir, dass der CMB in der Lage ist, die Amplitude der Galaxienhäufung auch
in Modellen mit variierendem w einzuschränken, wenn sie auf einer physikalischen Skala,
definiert in Mpc, gemessen wird. Wir liefern das erste CMB-Konfidenzintervall für σ12 in
solchen Kosmologien, welches mit dem äquivalenten Intervall im ΛCDM-Modell überein-
stimmt, wenn auch etwas höher als dieses liegt. Weiter bestätigen wir Plancks Präferenz
für ein geschlossenes Universum mit der bisher größten Signifikanz von 4σ.

Der letzte Teil der Arbeit ist der Konstruktion eines auf Evolution Mapping basieren-
den Zweipunkt-Korrelationsfunktionsemulators gewidmet. Dieser wird als Erweiterung
des bestehenden Fourierraum-Emulators COMET implementiert und basiert auf dem EFT-
Modell für das nichtlineare Leistungsspektrum. Wir demonstrieren, dass die Idee des Evo-
lution Mappings auch auf Vorhersagen im Konfigurationsraum angewandt werden kann,
wobei der resultierende Emulator eine große Flexibilität bezüglich der Vielfalt der kos-
mologischen Modelle und der gewählten Referenzkosmologie für einen Bereich von Rotver-
schiebungen im realen und Rotverschiebungsraum aufweist. Wir bestätigen, dass der Em-
ulator theoretische Vorhersagen für Galaxienhäufungsmultipole auf Skalen von 20 Mpc <
s < 250 Mpc frei von systematischen Fehlern liefert. Unsere COMET-Erweiterung bietet eine
große Beschleunigung für aktuelle und zukünftige kosmologische Analysen und wird es er-
möglichen, verschiedene Modellannahmen in Vorbereitung auf die kommenden Galaxien-
Rotverschiebungsdurchmusterungen einfacher zu testen.



Abstract

Cosmology is currently in the transitional period between the observations that established
the standard cosmological model and the new generation of experiments that aim to un-
cover any deviations from it, should they exist. Current data largely confirms that we
live in a flat Universe, dominated by dark energy, which fuels the accelerated expansion,
and dark matter, which is the major gravitating component that makes up the web-like
large-scale structure. Nevertheless, the exact values of the model parameters measured by
different cosmological probes appear to be in tension. The most immediate way forward
for investigating the origins of the emerging tensions relies on obtaining larger datasets as
well as combining the cosmological probes in unified analyses. Both of these routes require
that we develop new tools capable of processing larger and more complex data while being
careful about the biases and the limitations that may be introduced by using the methods
and the assumptions first developed for much simpler analyses.

This thesis presents work done towards updating the full-shape analysis of anisotropic
two-point galaxy clustering statistics. We rely heavily on the evolution mapping concept
and focus on two aspects of the analysis: the modelling tools and the result interpretation.
On the side of the result interpretation, all of our analyses focus on obtaining constraints
on the physical parameter space - i.e., we are interested in cosmological parameters that
are not defined through the dimensionless Hubble parameter h: we redefine the clustering
amplitude parameter that measures linear density field variance on the scale of 8 h−1Mpc,
σ8, and use its equivalent measured on the scale of 12 Mpc instead, σ12. Additionally, we
use physical densities ωi of cosmological energy species i, which relate to relative densities
as ωi = Ωih

2. In terms of developing modelling tools, we provide a quick way to obtain
full-shape galaxy clustering predictions by making use of the degeneracies that are followed
by the cosmological parameters that affect the amplitude of the power spectrum, as long
as the physical parameter space is used. The analyses presented here make use of the
measurements obtained from BOSS and eBOSS galaxy surveys which are both part of the
largest publicly available spectroscopic dataset - the Sloan Digital Sky Survey (SDSS).

In the first part of the thesis, we consider ΛCDM and perform the first full shape anal-
ysis of eBOSS quasar clustering measurements, combining them with re-analysed galaxy
clustering wedges from BOSS. We compare and combine the resulting constraints with
those from 3 × 2pt measurements of DES Y1 and CMB temperature and polarisation
power spectra measurements by Planck. We show that all datasets considered recover con-
sistent clustering amplitude σ12. We also demonstrate that physical parameter space allows



xiv Abstract

us to recover the tight degeneracy between the initial and final power spectrum amplitudes
and use this result to determine that DES Y1 measurements alone or in combination with
galaxy clustering show a preference for less total structure growth than predicted by Planck.
We show that this difference is consistent with the level of tension in the lensing amplitude
parameter and is related to different values of dark energy density preferred by the low-
and high-redshift measurements.

In the second part of the thesis, we extend our analysis to beyond ΛCDM models, with
a particular interest in models with varying dark energy equation of state parameter w,
and show that all extended parameter space constraints obtained by galaxy clustering are
consistent with the standard model values. We additionally demonstrate that CMB is able
to constrain the clustering amplitude today even in models with varying w, as long as it
is measured on a physical scale, defined in Mpc. We provide the first CMB constraint on
σ12 in such cosmologies and show that it is consistent with, albeit slightly higher than,
the equivalent constraint within ΛCDM. We additionally confirm Planck’s preference for
a closed Universe at the greatest significance yet - 4σ.

The last part of the thesis is dedicated to the construction of an evolution-mapping-
based two-point correlation function emulator. This is built as an extension to an existing
Fourier space emulator COMET and is based on the EFT model for the nonlinear power
spectrum. We show that the evolution mapping ideas can also be applied to obtain predic-
tions in configuration space and that the resulting emulator demonstrates great flexibility
in terms of the variety of cosmological models covered as well as its ability to obtain pre-
dictions for an arbitrary fiducial cosmology for a continuous range of redshifts in real and
redshift spaces. We validate that the emulator is able to provide unbiased theory pre-
dictions for galaxy clustering multipoles at scales of 20 Mpc < s < 250 Mpc. Our COMET
extension provides great speedup for current and future cosmological analyses and will
subsequently allow us to more easily test different model assumptions in preparation for
the upcoming galaxy redshift surveys.



Chapter 1

Introduction

During the last hundred or so years, cosmologists have managed to build the theories
and design the observations required to conduct scientific, quantitative experiments on
the most ambitious of targets - the Universe itself. It is truly remarkable that in such a
short period of time, the community has progressed from disputing whether the Universe
extends beyond the Milky Way, to being able to probe the constituent energy species
through the analyses of three-dimensional galaxy maps, the observations of the earliest
light in the Universe or the measurements of the slight distortion of galaxy shapes, as their
light passes through the gravitational potential of all the structure in its way. By detecting
excess galaxy clustering, we have adopted as a standard ruler the signatures of physics of the
Universe in its infancy, long before the existence of any galaxy or a star. Cosmology today,
nonetheless, finds itself in a rather curious situation: the standard cosmological model, the
crowning result of the increasingly ambitious and precise observational campaigns, can fit
a number of vastly different data sets incredibly well. However, the physical nature of some
of its key components remains unexplained. Moreover, modern observations have become
so powerful that the small mismatches in the best-fit parameters of the model yielded
by different analyses are emerging as increasingly more significant, pointing towards our
ignorance of the systematics associated with the data or, potentially more intriguingly, the
incompleteness of the standard model itself.

The standard cosmological model, ΛCDM, has come to be closely associated with the
cosmic microwave background (CMB) experiments. The Cosmic Background Explorer
(COBE) was the first one to confirm that the CMB spectrum matched that of a blackbody,
confirming Big Bang as the origin theory of the Universe (Mather et al., 1994). This early
observation already contained evidence of many of the main ingredients of the ΛCDM
model. According to ΛCDM, shortly after the Big Bang takes place, the Universe starts
out with a phase of rapid expansion, called inflation, during which the initial quantum
fluctuations get stretched out to produce small-scale inhomogeneities in the density field.
These inhomogeneities will continue to grow as the Universe expands and cools. Once
inflation ends and particles form, baryons and photons are coupled to form a baryon-
photon plasma that undergoes pressure oscillations (baryon acoustic oscillations, BAO).
CMB itself originates when the Universe cools down enough that photons can decouple
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Figure 1.1: Sloan Great Wall compared to CfA2 Great Wall at the same scale in comoving
coordinates. Both slices are approximately the same physical width at the two walls. The
figure illustrates some of the first superstructures observed by galaxy redshift surveys.
Image credit: Gott et al. (2005).
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from baryons and travel freely to reach us today. However, the signature of their shared
past with baryons remains imprinted in CMB as an oscillatory feature in the temperature
power spectrum. The amplitude of this feature furthermore provides confirmation for a
component that interacts through gravitational force only - dark matter. While COBE’s
resolution was not high enough to resolve the acoustic peaks, it was the first experiment
to detect that the CMB temperature spectrum did display the small-scale anisotropies
expected. COBE’s successors were able to not only provide high-resolution measurements
of the temperature power spectrum but also observe CMB polarization (first detected by
the Degree Angular Scale Interferometer, DASI, Kovac et al., 2002) with one of the latest
CMB experiments by the Planck satellite performing the state-of-the-art observations that
resulted in the most precise complete set of cosmological parameter constraints that are
available today (Planck Collaboration et al., 2020).

Despite the great success of CMB observations, cosmology has always relied on multiple
probes to complete and confirm the full picture. According to ΛCDM, the cold dark matter
and baryons are believed to make up around a third of the total energy budget with the
rest of the contribution provided by another mysterious component which is responsible for
the accelerated expansion of the Universe - dark energy (represented by the cosmological
constant Λ). Here, the crucial observations were those of individual distant stars and
galaxies: the first indication that distant objects were receding from us was obtained by
Slipher in 1917 who measured the spectra of a sample of galaxies to find that the majority
of them were redshifted (Slipher, 1917). It took until the end of the century until the Type
Ia supernovae observations showed that the Universe was not only expanding, but was, in
fact, doing so in an accelerated manner (Perlmutter et al., 1999; Riess et al., 1998).

When Slipher first observed the redshifted galaxy spectra, his sample consisted of just
fifteen galaxies. Starting in 1977, the first systematic galaxy redshift survey - The Center
for Astrophysics Redshift Survey (CfA, Huchra et al., 1983), obtained the redshifts of
around 2,200 galaxies in its first phase and 18,000 galaxies in the second phase. These
observations unravelled a complex pattern of galaxy clustering, demonstrating that galaxies
are distributed inhomogeneously (an artefact of quantum fluctuations stretched out during
inflation), forming such massive structures as, for example, ‘The Great Wall’ - one of the
galaxy filaments observed by CfA2 which stretches for hundreds of millions of lightyears,
making it one of the largest known superstructures (see Figure 1.1). Subsequent galaxy
redshift surveys have been providing key evidence in support of the ΛCDM model ever
since. In Tadros et al. (1999) one of the first measurements of the anisotropic distortion in
galaxy clustering pattern due to galaxy peculiar velocities (an effect known as the redshift
space distortions or RSD) was carried out on the Point Source Catalogue (PSCz, Saunders
et al., 1999). This work already includes an attempt to distinguish between different
cosmological models. While this early analysis remained inconclusive, it was already noted
that the recovered value of the distortion parameter (which is proportional to the relative
matter density) was low, in line with the supernovae observations, supporting the idea
of the presence of an additional energy species. The spectroscopic galaxy surveys that
followed allowed for cosmological analyses that more closely resemble the ones carried
out today: The Two-degree-Field-Galaxy Redshift Survey (2dF-GRS Colless et al., 2001)
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already contained redshifts for ∼ 250, 000 galaxies and provided many important results.
By fitting the power spectra of the data Cole et al. (2005) obtained a measurement of the
matter content of the Universe, while Efstathiou et al. (2002) carried out a joint analysis
with the CMB observations to confirm the non-zero cosmological constant, independently of
the Type Ia supernovae. Lahav et al. (2002) combined galaxy clustering measurements with
CMB data to provide a measurement of galaxy bias and further cosmological constraints
were obtained by Sánchez et al. (2006).

The Sloan Digital Sky Survey (SDSS, York et al., 2000), began at the start of the
millenium to become the largest galaxy redshift survey at that time. During its first two
phases in the first eight years, SDSS imaged over a million galaxies and 100,000 quasars,
of which 260,490 were spectroscopically confirmed. Figure 1.1 shows a slice from the
early SDSS data, displaying a massive filament: building on the developments by the
early galaxy redshift surveys, SDSS was able to produce bigger and more detailed maps of
the large-scale structure. These observations led to the first detection of the BAO signal
in the configuration space by Eisenstein et al. (2005). Almost simultaneously, the BAO
signal was also confirmed in the power spectrum of galaxy clustering in 2dF-GRS (Cole
et al., 2005). The final two stages of SDSS included the carrying out and completion
of Baryon Oscillation Spectroscopic Survey (BOSS, Dawson et al., 2013) and extended
Baryon Oscillation Spectroscopic Survey (eBOSS, Dawson et al., 2016). In addition to
providing spectroscopy for more than 1.5 million galaxies up to the redshift of z = 0.6,
BOSS also measured the distribution of quasar absorption lines for more than 150,000
quasars. Impressively, BOSS was able to obtain 1% measurements of angular diameter
distance from its galaxy sample. eBOSS was designed as an extension of BOSS. It consists
of spectroscopic measurements of just under half a million galaxies spanning the redshift
range of 0.6 < z < 1.1 and almost 350,000 quasars in the redshift range of 0.8 < z < 2.2.
The latter sample led to the first detection of BAO using quasars as tracers (Ata et al.,
2018). The complete SDSS reveals an impressive three-dimensional galaxy map, such that
the full spectroscopic sample provides precise measurements of the expansion history of
the Universe throughout eighty percent of cosmic history.

The improvement in the constraining power of all cosmological probes has directed
cosmologists’ attention towards verifying the consistency in the recovered cosmological pa-
rameter constraints. It was soon revealed that, while no probe showed a preference for an
alternative to the ΛCDM model, some tensions emerged between the model parameters as
measured by different probes. The most significant discrepancy concerns the measurement
of the expansion rate of the Universe today and is referred to as the ‘H0 tension’. The ten-
sion can be summarised as a mismatch between the local direct and indirect measurements
of H0, with direct probes preferring higher values (although the full picture is somewhat
more complex than this, see Figure 1.2), with the greatest discrepancy reaching 5σ between
the H0 value predicted from CMB measurements by Planck and the one measured from
Cepheid calibrated Supernovae Ia observations (Riess et al., 2021).

In addition to the H0 tension, the advent of another large-scale structure probe - weak
lensing, has brought another tension, this time in the parameter describing the amplitude
of the weak lensing signal, S8 (a combination of the relative matter density parameter
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Figure 1.2: Hubble constant values over time, based on Cepheid variables (blue), the tip
of the red giant branch (TRGB, red) and CMB (black). The CMB constraints represent
a model prediction of H0 assuming flat ΛCDM cosmology. Cepheids and TRGB refer
to two different methods used to calibrate the Supernovae Ia observations to produce a
direct measurement of H0. The TRGB-based result shows agreement with both CMB and
Cepheids values of H0, indicating that the level of tension between Supernovae Ia and CMB
constraints can depend on the chosen calibration method. The figure also demonstrates the
significant improvement in the constraining power achieved by all probes. Image credit:
Freedman (2021).

Ωm and a parameter describing linear density field variance at the scale of 8h−1Mpc, σ8).
Weak lensing analyses measure the distortion in the observed galaxy shape induced by the
gravitational potential of the structure in between the source galaxies and the observer.
The resulting effect is so small that weak lensing surveys require an order of magnitude
greater number of galaxies than available in typical spectroscopic samples in order to
obtain a statistically significant signal. As a result, weak lensing surveys rely on cheaper
photometric redshifts. The great advantage of weak lensing measurements is that the
observed effect is sensitive to the total matter distribution: i.e., weak lensing probes the
full matter density field in an unbiased manner. Already the early weak lensing surveys
displayed inconsistencies with Planck predictions with the first evidence of tension in the
lensing signal amplitude observed in Canada–France–Hawaii Telescope Lensing Survey
(CFHTLenS, Heymans et al., 2012), as described in MacCrann et al. (2015). While a
number of subsequent weak lensing surveys did not report significant discrepancies (see,
for example, the most recent result by The Dark Energy Survey Collaboration et al.,
2021), all of the lensing amplitude constraints so far have yielded lower measurements than
predicted by Planck. Meanwhile, the most significant tension was reported by Heymans
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et al. (2021) who found a mismatch at the level of 3σ.
In light of these tensions, galaxy clustering stands out as a probe distinctly placed

to provide more insight: in addition to displaying complimentary constraining properties
to both weak lensing and CMB data, it is also unique among the low redshift probes in
terms of its constraining power on a number of cosmological parameters. Galaxy clustering
and weak lensing complement each other in a number of ways. Thanks to their accurate
redshifts, spectroscopic galaxy samples can be used for redshift calibration of the weak
lensing photometry or even as lenses themselves in the measurements of shear, induced in
the source galaxies behind them (as done in, for example, Heymans et al., 2021). More-
over, weak lensing, being a probe of the total density field, can help break the degeneracy
between the matter clustering amplitude and galaxy bias. Galaxy clustering measurements
have, furthermore, traditionally been analysed in combination with CMB data due to the
complimentary constraining properties, with CMB providing a constraint on the spectral
index as well as the sound horizon distance, necessary to calibrate the size of the BAO fea-
ture, and galaxy clustering angular diameter distance measurements providing information
on the late time background evolution (see, for example, Planck Collaboration et al., 2020;
Alam et al., 2021). The majority of work involving galaxy clustering has, nonetheless,
focused solely on the constraints obtained from BAO and RSD imprints on the two-point
correlation function, rather than fitting the full measurement. While analyses based solely
on RSD and BAO summary statistics allow excellent internal consistency tests and may
help constrain beyond - ΛCDM scenarios, it has been shown that they do not preserve all
the information of the full measurement, in particular, losing the additional constraining
power available from its shape (Brieden et al., 2021).

Other analyses, therefore, make use of the information recovered from fitting the full
shape of two-point clustering measurements, either in Fourier or configuration space, di-
rectly comparing models against data (Tröster et al., 2020; d’Amico et al., 2020; Ivanov
et al., 2020b; Chen et al., 2021; Sánchez et al., 2017; Grieb et al., 2017). These analyses
tend to lose some of the immediate interpretability of the summary statistics but instead,
allow us to directly obtain constraints of cosmological parameters independently of exter-
nal data sets. This type of analyses have, therefore, recently received attention as a way
to test the consistency between large-scale structure (LSS) and CMB measurements.

Tröster et al. (2020) showed that the full shape analysis of galaxy clustering on its
own produces cosmological constraints that are comparable to those of other low-redshift
probes. This work followed the analysis of correlation function wedges of Baryon Oscil-
lation Spectroscopic Survey (BOSS) galaxies by Sánchez et al. (2017) in order to derive
constraints on flat ΛCDM cosmologies from galaxy clustering alone (i.e. without combining
it with CMB measurements, as was done in the BOSS Data Release 12 consensus analysis,
Alam et al., 2017). Furthermore, the work also presented joint low-redshift constraints by
combining galaxy clustering with weak lensing measurements from the Kilo-Degree Survey
(KV450). The σ8 value recovered from the full shape analysis of the correlation function
wedges by Tröster et al. (2020) is 2.1σ low compared to Planck’s prediction, with the
difference increasing to 3.4σ when weak lensing measurements from KV450, are added,
indicating that there may be some consistent discrepancy between CMB predictions and
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low redshift observations. This is also consistent with the already mentioned more recent
analysis by Heymans et al. (2021) where BOSS galaxies are used as lenses in the so-called
‘3 × 2pt’ analysis (a set of three correlation functions consisting of autocorrelation of the
lens galaxy positions, source galaxy shapes and the cross-correlation of the two), which
finds a ∼ 3σ discrepancy with Planck’s value of S8.

A crucial point not addressed in the discussion above is that the parameters used to
assess the tension between the different probes might not be defined appropriately for this
purpose. The issue with σ8 and, therefore, also S8, is the fact that both of them are
defined through the Hubble parameter proxy h = H0/100 km s−1Mpc−1, which introduces
additional dependence of non-cosmological origin on the particular value of h recovered
by the specific probe (as first pointed out by Sánchez, 2020). The use of h−1Mpc units
dates back to the first redshift surveys we discussed at the start of this introduction:
at low redshifts expressing distances in terms of h−1Mpc could yield a measurement of
the comoving distance that did not depend on the cosmology assumed to perform the
conversion from redshifts. As pointed out by (Sánchez, 2020), due to the fact that σ8
is measured on a scale defined in h−1Mpc, the resulting value is averaged over all of the
scales, in Mpc, that correspond to the posterior of h recovered by that particular data set.
As a result, the measurements of σ8, as obtained by different probes will not describe the
clustering amplitude consistently. A similar issue is furthermore experienced by any other
parameter defined through h as well. The confusion associated with the use of h−1Mpc
units can be avoided by simply redefining the parameter space in such a way that none of
the cosmological parameters is defined through h. This change has implications both on
the power spectrum modelling and the cosmological parameter constraints obtained in the
updated parameter space (or, the physical parameter space, which is the term we will use
to refer to the set of cosmological parameters not defined through h).

While great progress has been made in a number of aspects of the redshift space survey
science both on the side of instrumentation, which allows us to obtain spectroscopy of
increasingly larger galaxy samples, and the side of the modelling, where sophisticated
theory methods have proved to be able to describe clustering to greater accuracy and at
smaller scales than ever before, many analyses still often focus on the summary statistics
only and express their measurements in the h−1Mpc units, following the tradition of the
early galaxy clustering analyses. The aim of the work presented in this thesis is then to
update the analysis framework used for the two-point galaxy clustering and bring it closer
to the demands and the power offered by the modern data sets. In this work, we present
the full shape analysis of galaxy clustering in configuration space with an updated power
spectrum model which offers an alternative to the currently more commonly used Effective
Field Theory based prescriptions. Furthermore, we present the first analysis carried out
in the physical parameter space: we discuss the resulting constraints and compare them
to the results obtained in the usual parametrisation, demonstrating the advantages of our
approach. Finally, we introduce a two-point correlation function theory emulator, which
provides a significant speedup to the galaxy clustering analyses and which, owing to the
physical parameter space-based modelling approach, is characterised by great flexibility and
an outstanding validity range in terms of cosmologies and redshifts covered. Throughout
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this thesis, we both demonstrate the power of galaxy clustering as a solo probe as well as
explore its compatibility with weak lensing and CMB data. The analyses presented here
are performed on galaxy clustering measurements from BOSS galaxy and eBOSS quasar
samples (Dawson et al., 2013, 2016), which constitute the most powerful publicly available
galaxy clustering data set at the moment.

We start the thesis by recapping the main theory concepts related to two-point galaxy
clustering modelling in Chapter 2, where we also describe, in greater detail, the physical
parameter space and the motivation behind its use. Chapter 3 presents the full shape
cosmological analysis of the anisotropic galaxy two-point correlation function from BOSS
and eBOSS within ΛCDM and is based on the work published in Semenaite et al. (2022). In
this chapter, we demonstrate the observational implications of the physical parameter space
constraints and discuss the consequences it has on assessing consistency and the σ8 tension.
Chapter 4 presents the material first published as Semenaite et al. (2023) and deals with
constraints on the beyond-ΛCDM models and further demonstrates the particular issues
associated with using h−1Mpc units in cosmologies with evolving dark energy density.
Finally, Chapter 5 presents the design and validation of the configuration space emulator,
describing the theoretical model that it is based on, as well as the particular concepts that
allow us to extend the number of cosmological parameters and redshifts supported. We
provide a summary of the thesis and discuss the outlook for future work in Chapter 6.



Chapter 2

Theory of structure growth

This chapter provides a summary of the theoretical background relevant to the work pre-
sented in this thesis. As such, the focus of the material presented here is on structure
formation and the statistical analysis of galaxy clustering. Crucially, the analysis presented
in this thesis relies heavily on the insights allowed by the concepts collectively described
as the ‘evolution mapping’ approach, which is described in a separate section with some
relevant parts of the cosmology background (in particular, the discussion on dynamics of
the Universe) already introduced in a compatible form.

We open the chapter with a description of the homogeneous Universe, starting with the
introduction of the metric in Section 2.1 and then proceeding to discuss the dynamics of the
Universe in Section 2.2. The concepts of redshifts and distances are furthermore defined in
Section 2.3. Section 2.4 describes the seeding of the cosmic structure and the evolution of
the density perturbations. This section also covers some of the main approaches for matter
power spectrum modelling. The additional effects that need to be considered to model the
observed galaxy clustering are presented in Section 2.5, which summarises the modelling of
galaxy bias, redshift-space distortions and Alcock-Paczynski distortions. Finally, we end
with Section 2.6 which describes the issues related to the usage of h−1Mpc units from the
perspective of power spectrum modelling and introduces a way to obtain accurate power
spectrum predictions in a reduced parameter space.

The material presented in this chapter follows a similar discussion presented in the
textbook by Dodelson & Schmidt (2020) as well as the lecture notes on “The Formation
and Evolution of Cosmic Structures” by Sánchez.

2.1 The Cosmological Principle
The cosmological principle states that the Universe we live in is spatially homogeneous
(uniform) and isotropic (it has no preferred direction or orientation). Importantly, the
principle only holds on average and on large scales, indeed, the very existence of structure
relies on the presence of density fluctuations. Nonetheless, the assumptions of homogeneity
and anisotropy allow us to set up a framework for describing the very basics of the Universe
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upon which we can build the required deviations.
In order to be able to accurately characterise the Universe it is, first of all, useful to

define a coordinate system. We may use the equivalence principle to establish that in
any free-falling frame of reference, the laws of physics will follow special relativity, which
allows us to write down a metric - a quantity that naturally incorporates gravity through
space-time distortions. The most general metric that obeys the cosmological principle
is the Friedmann-Lemaître-Robertson-Walker (FLRW) metric, which can be expressed in
spherical coordinates as:

ds2 = c2dt2 − a2(t)
[

dr2

1 − Kr2 + r2dΩ2
]

. (2.1)

Here, the left-hand side defines the spacetime interval ds in terms of the speed of light c,
the time coordinate t and the comoving space interval, expressed in terms of the comoving
radius r and the angle Ω. The spatial part of the metric allows for a constant spatial
curvature, characterised by K, which may take values K < 0 (open Universe) as well as
K > 0 (closed Universe), with K = 0 corresponding to the flat (Euclidean) case. Finally,
the factor a(t) in front of the spatial part of the metric allows for a uniform spatial expansion
or contraction, rescaling the distances between any two points in the Universe.

We can also rewrite the FLRW metric by defining the radial coordinate:

dχ = dr√
1 − Kr2

, (2.2)

such that equation 2.1 is now expressed (after also expanding dΩ) as:

ds2 = c2dt2 − a2(t)[dχ2 + S2
K(χ)(dθ2 + sin2θdϕ2)], (2.3)

where

SK(χ) =


1√
K

sin(
√

Kχ) if K > 0
χ if K = 0

1√
K

sinh(
√

|K|χ) if K > 0.
(2.4)

This expression is equivalent to the one in equation (2.1) and will be useful in Section 2.3
when discussing distances.

2.2 Dynamics of the Universe
In the FLRW metric, the factor a(t) is a relative quantity and, for convenience, it is
normalised such that it is equal to unity today, i.e., a0 = 1.0 (here and in the rest of this
thesis the subscript ‘0’ indicates quantities evaluated at present time). The time evolution
of a(t) depends on the contents of the Universe and may be derived by proceeding with
our picture of an idealised Universe and modelling these contents as a perfect fluid (i.e.
assuming that they have no shear, no viscosity and no heat conduction).
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Einstein’s field equations allow us to explicitly relate the metric to the constituents of
the Universe:

Rµν − 1
2Rgµν − Λgµν = 8πG

c4 Tµν . (2.5)

Here gµν represents the metric tensor which contains the information required to define the
distance between two points on the manifold with its intrinsic curvature described by the
Ricci tensor Rµν and Ricci scalar R (which is a contraction of the Ricci tensor R = gµνRµν)
with Λ as the cosmological constant. The curvature is sourced by the matter and energy
distribution described by the stress-energy tensor Tµν . Finally, G is Newton’s gravitational
constant.

For an ideal fluid, described by its pressure p, density ρ and four-velocity uµ, the stress-
energy tensor is:

T µν = (ρ + p

c2 )uµuν + pgµν . (2.6)

In order to obtain the time evolution of a(t), we can take this expression for the energy-
momentum tensor (equation (2.6)) and the FLRW metric (equation (2.1)) and plug them
into the Einstein’s field equations (equation (2.5)), which results in the two Friedmann
equations: (

ȧ

a

)2
= 8πG

3
∑

i

ρi + Λ
3 − Kc2

a2 (2.7)

ä

a
= −4

3πG
(

ρ + 3p

c2

)
, (2.8)

which describe the dynamics of cosmic expansion. Here the sum ∑
i ρi is over the densities

of all the cosmic species i that make up the total energy budget of the Universe (except
for the contribution from Λ, which is written out explicitly). Equation 2.8 illustrates that
the acceleration is sourced by the active mass density ρ + 3p/c2, i.e., in addition to the
mass density ρ, the pressure also provides a contribution to the resulting dynamics. We
can furthermore simplify our notation by defining the Hubble parameter:

H = ȧ

a
. (2.9)

Finally, in order to be able to solve the Friedman equations, we need to be able to
describe how densities of different constituents evolve with time - i.e. we need an expression
for ρ(t). Making use of the conservation of energy ∇νTµν = 0, the continuity equation can
be derived as:

ρ̇ = −3
(

ρ + p

c2

)
ȧ

a
. (2.10)

If we furthermore assume that the fluid has an equation of state p = wρc2 and substitute
this in the equation (2.10), we find the solution:

ρ(t) = ρ0a
−3(1+w)(t). (2.11)
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We now have a description of how the density of different constituents (characterised by
their equation of state parameter w) will change with evolving a(t). For pressureless non-
relativistic matter, wm = 0 and the density changes with volume as a−3, whereas radiation,
which does have significant pressure, has wγ = 1/3 and, therefore, responds to changes in
a(t) more strongly, as a−4.

We may, on the other hand, also consider how components with different values of w
influence the dynamics of the Universe. In order to do so, we need to plug in the expression
for pressure from the equation of state into the Friedmann equation for the acceleration of
the expansion (equation (2.8)):

ä

a
= −4

3πGρ (1 + 3w) . (2.12)

It is then clear that both matter and radiation produce ä < 0, which makes it necessary to
introduce an additional component to achieve solutions where ȧ is constant or increases.
This can be done through a contribution from a constituent with w < −1/3 and, in the
simplest case, we may take w = −1, which results in constant energy density ρ(t) =
ρ0. From the equation of state, this will also exhibit negative pressure and, therefore,
corresponds to the cosmological constant term Λ in Einstein’s field equations.

While a component with negative pressure does not correspond to any classical physical
system, it is a key ingredient needed to describe the dynamics of the Universe that we
actually observe. The first indication that the Universe may not be static was obtained
by Slipher (Slipher, 1917) who measured the spectra of dozens of galaxies to find that
they were all redshifted (we will describe what this means in greater detail shortly). In
1929 Hubble’s measurement of Cepheid distances to 24 galaxies confirmed that they were
receding with velocities linearly proportional to their distances which indicated that the
Universe is expanding. Half a century later, the Supernovae Ia distance measurements
further determined that this expansion was accelerating (Perlmutter et al., 1999; Riess
et al., 1998). Nonetheless, little is known about the physical nature of the component
responsible for this acceleration, accordingly named dark energy. While quantum systems
are able to produce predictions consistent with w = −1, so far no such solution has been
confirmed observationally (and the calculation attributing dark energy to the zero-point
energy in quantum field theory produces an estimate for the amount of dark energy today
that is, famously, tens of orders of magnitude too large).

We have now seen that each energy component will contribute to the expansion rate
of the Universe. This connection can be written down straightforwardly by expressing
the dimensionless Hubble parameter as a sum of redefined energy density parameters. In
order to do so, we start from the Friedmann equation (2.7), which we evaluate today (so
a = 1). We, furthermore, rewrite the contribution from the cosmological constant Λ as an
additional energy component ρi and replace the left-hand side with the Hubble parameter
to obtain:

H2
0 = 8πG

3
∑

i

ρi,0 − Kc2. (2.13)
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The Hubble parameter has units of km s−1Mpc−1, but often a dimensionless definition of
H is used:

h = H0/(100 km s−1Mpc−1). (2.14)
For convenience, we will define the constant H100 = 100 km s−1Mpc−1, which we will use
to rewrite equation (2.7) in dimensionless quantities:

h2 = 8πG

3H2
100

∑
i

ρi,0 − Kc2

H2
100

. (2.15)

The pre-factor in the first term has units of volume over mass, which allows us to define a
reference density:

ρ100 ≡ 3H2
100

8πG
. (2.16)

We may then rewrite the first term as a sum of dimensionless physical densities, defined
as:

ωi ≡ ρi,0

ρ100
= 8πG

3H2
100

ρi,0. (2.17)

Equivalently, we can define the physical curvature density as:

ωK = − Kc2

H2
100

. (2.18)

Equation (2.15) then finally looks like:

h2 =
∑

i

ωi + ωK, (2.19)

making it explicit that the value of the expansion rate at any given time is determined by
the sum of the physical densities of the relevant constituents of the Universe at that time.
We may also rewrite the Friedmann equation (2.7) in terms of the sum of the physical
densities of all energy species i, such that:

ȧ2 = H2
100

[ N∑
i=0

ωia
−(1+3wi) + ωK

]
. (2.20)

Here equation (2.11) combined with the appropriate value of w allows us to obtain the
time evolution of each density contribution.

Alternatively to the physical densities, it is common to define another dimensionless
density quantity usually referred to as the fractional or relative density, Ωi, which relates
to the physical densities as

Ωi = ωi

h2 (2.21)

and, therefore, signifies the relative contribution of a constituent to the total energy budget
(and ∑

i Ωi = 1). Relative densities are usually formally defined as

Ωi ≡ ρi,0

ρc
. (2.22)
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Here ρc is the critical density - the solution to equation (2.7) for a flat Universe (K = 0):

ρc = 3H2
0

8πG
= ρ100h

2. (2.23)

We note that, since Ωi is defined through the critical density, it does depend on the value of
H0, unlike the physical density ωi (this can be seen more clearly in equation (2.21)). This
point will become crucial in the following chapters where we will illustrate the associated
issues when attempting to measure these parameters. Finally, we may also use this notation
to (yet again) rewrite the Friedmann equation (2.7) as:

H2 = H2
0

[
Ωma−3 + Ωra

−4 + ΩKa−2 + ΩDE
]

. (2.24)

This is equivalent to the equation (2.20) and we can use this to consider the dominant
constituents at different times: currently, we live in a dark energy-dominated epoch with
ΩDE = 0.68 and matter contributing the remaining part of energy budget: Ωm = 0.32
(Planck Collaboration et al., 2020). The contribution from radiation is negligible at low
redshifts and, ΩK is consistent with 0. This composition leads to the expansion rate of
H0 = 67 km s−1Mpc−1.

We now have a recipe for describing the time evolution of the expansion rate H(t),
which is determined entirely by the relative contributions of different constituents at the
corresponding time. With this in mind, let us now focus on one of the h-dependent quan-
tities and discuss distance.

2.3 Redshifts and Distances
In the previous section, we already noted that the expansion of the Universe was first
detected by measuring the redshifts of distant galaxies - this refers to the effect where
the observed galaxy spectral lines are shifted in frequency with respect to what we would
expect in the emitted spectrum. This is a direct consequence of the expanding Universe
and is a key tool for determining distances in a galaxy survey.

In order to see these two points and obtain a definition for redshift, we first make use
of the fact that light follows null geodesics, i.e. ds = 0 in FLRW metric in equation (2.1).
We may orient the path of the photon in question such that dΩ = 0 and we are left with:

∫ to

te

c dt

a(t) =
∫ ro

re

dr√
1 − Kr2

, (2.25)

where the integral limits are from the time and position of emission, te and re, to the time
and position of observation, to and ro. We can consider another such photon emitted a
small time interval dte later, which will be observed at time to + dto. The right-hand side
of the equation corresponds to an integral over the radial metric coordinate (as defined in
equation (2.2)) and, therefore, is the same for both photons (re and ro do not change).
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This means that the left-hand sides of the equation that correspond to each photon will
be equal and we can subtract them to obtain:∫ te+dte

te

c dt

a(t) =
∫ to+dto

to

c dt

a(t) . (2.26)

For a small time interval, we are left with

dte/dto = a(te)/a(to). (2.27)

Due to the expansion of the Universe, we have a(to) > a(te) and, therefore, dte < dto.
This will also result in an equivalent change in frequencies and wavelengths of the light,
such that: λe/λo = a(te)/a(to). Therefore, λ(to) > λ(te), i.e., the wavelength increases
as the photon is travelling towards the observer - the light is redshifted. If we define this
difference as:

z ≡ λo − λe

λe
, (2.28)

where λo describes the photon that is observed today, we get:

1 + z = 1
a(t) . (2.29)

The redshift experienced by the light also explains why the energy density of radiation
evolves as a−4: as the Universe expands, the number density (and, therefore, also rest-
mass energy density) of photons gets diluted with the increase in volume, however, unlike
matter, photons also suffer additional energy loss as their wavelength is stretched as a−1.

As stated in equation (2.29), redshift allows us to assign a relative distance to observed
galaxies by relating the shift of their spectra lines to the scale factor ratio, but, on its own,
it still does not provide us with an actual measure of a physical distance. As we are about
to see, in order to directly relate these two quantities, we need to assume a cosmology.

In order to obtain the distance to an object, let us go back to the path of the photon
emitted at time te and travelling radially along the null geodesic to be observed by us
today (to = t0). Once again, we can get an expression for the radial coordinate dχ from
the FLRW metric (equation (2.3)):

χ(te) =
∫ t0

te

cdt

a(t) . (2.30)

In order to re-express this integral in terms of redshift, we need to obtain an expression
for dz/dt, which makes use of definitions in equation (2.9) and equation (2.29):

dz

dt
= dz

da

da

dt
= −(1 + z)2H(z)a = −(1 + z)H(z). (2.31)

Plugging this into the expression for dχ we get:

χ =
∫ z

0

cdz′

H(z′) , (2.32)
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where the integral is from today (z = 0) to the redshift of emission (z). The quantity χ
is referred to as comoving distance, χ, constant with expansion. In order to obtain the
physical (or proper) distance to the point at the time of the emission, taking the expansion
into account, we simply need to multiply the comoving distance by the scale factor:

s(z) = a(z)χ(z). (2.33)

When defining distances, we may rewrite these expressions in terms of the value of
Hubble constant today and the sum of the relative densities E(z) = Ωma−3 + Ωra

−4 +
ΩKa−2 + ΩΛ, so that for χ we now have:

χ = 1
H0

∫ z

0

cdz′

E(z′) . (2.34)

This expression is helpful to illustrate the reasoning behind the fact that distance in cos-
mology is commonly presented in h−1Mpc units. At low redshift, we may approximate
equation (2.34) as χ ≈ (cz)/H0, so distances expressed in the units of h−1Mpc should yield
a measurement that is approximately independent of the h value used.

The relation above is useful for converting redshifts into distances, however, in order to
more directly relate to observational scenarios we should furthermore consider the notion
of distance in terms of the more readily available angular position of an object or feature
of interest. A useful quantity to define in this case is the angular diameter distance, DA,
which describes the relationship between the physical size of an object δl and its angular
extent δϕ. DA is defined to make this mapping Euclidean-like through the ratio δl/δϕ.
Using our second expression for FLRW metric 2.3 and setting dχ = dθ = 0 we can write
down

DA(z) ≡ δl

δϕ
= (1 + z)−1SK(χ(z)). (2.35)

Equivalently to the radial distance, we can also define a comoving angular diameter dis-
tance:

DM(z) = DA(z)/a(z) = DA(z)(1 + z) = SK(χ(z)), (2.36)
such that for a flat Universe DM(z) = χ(z).

Generally, we can measure the angular extent, δϕ of an object, however, its physical
size δl is not necessarily known. A type of object whose δl can be determined is referred
to as a standard ruler and it allows us to probe the redshift evolution of DA(z) by taking
the measurements of the standard ruler at different redshifts. Similarly, if this object is
instead situated along the line of sight, we can probe the redshift evolution of H(z), as,
following the definition of the comoving distance in equation (2.32) and multiplying by a
to convert this into the proper distance, we find:

δl = cδz

(1 + z)H(z) . (2.37)

As will be further discussed in Section 2.4.4, the standard ruler in galaxy clustering mea-
surements is the baryon acoustic oscillation imprint, which can be measured both along
and perpendicularly to the line of sight to probe H(z) and DA(z).
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Looking at the expressions for distances derived in this section, it is clear that the
most relevant quantity when creating a physical map from the observed redshifts and
angles is the Hubble parameter H(z), which, in turn, is defined by the sum of the physical
densities of the constituents (and in a flat Universe with negligible radiation density, will
be determined by ωm and ωDE). Measuring distances, therefore, allows us to explore the
background evolution of the Universe. However, this does not fully define a cosmological
model - in particular, as we are about to see in the next section, in order to describe the
observed distribution of galaxies, we need a recipe for the structure growth, which will
require additional parameters.

2.4 Structure Formation

2.4.1 Two point functions
The Universe we observe is clearly not homogeneous and isotropic on small scales, the very
existence of galaxies and galaxy clusters is a result of fluctuations in the matter density
field, i.e., the cosmological principle only holds on average and on large scales. However, in
order to further discuss the inhomogeneities, we need to first define some quantities that
will allow us to describe them.

Density fluctuations are related to fluctuations in the gravitational potential Φ via the
Poisson-like weak-field form of Einstein’s gravitational field equations (in comoving units):

∇2Φ/a2 = 4πG(1 + 3w)ρ̄δ, (2.38)

where we defined the dimensionless fluctuation amplitude in terms of mean density ρ̄:

δ ≡ ρ − ρ̄

ρ̄
, (2.39)

and the factor (1+3w) accounts for the relativistic active mass density. It is often instruc-
tive to inspect the scale dependence of δ(xxx), in which case it is convenient to consider the
fluctuation amplitude in Fourier space δ(kkk), where the different modes k evolve indepen-
dently for small values of |δ| << 1. The Fourier space fluctuation amplitude δ(kkk) is related
to its configuration space equivalent δ(xxx) through the Fourier transform:

δ(xxx) = 1
(2π)3

∫
δ(kkk)eikkk·xxxd3k. (2.40)

The mean of δ is zero by construction, whereas the variance is obtained from the volume
average of δ2, which is ⟨δ2⟩ = ⟨δδ∗⟩ for a real field, with the cross terms integrating to zero.
This variance is also what defines the power spectrum, P (k):

⟨δ(kkk)δ(k′k′k′)⟩ = (2π)3δD(kkk + k′k′k′)P (k), (2.41)

where δD is the Dirac delta function.
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The configuration space equivalent of the power spectrum is the two-point correlation
function, ξ(r):

ξ(rrr) ≡ ⟨δ(xxx)δ(x + rx + rx + r)⟩ = 1
(2π3)

∫
P (kkk)e(ikkk·rrr)d3k. (2.42)

For an isotropic density field, we may replace all the vector quantities with their scalar
amplitudes. We furthermore impose the homogeneity requirement, so that the two-point
correlation function does not depend on a particular location xxx, but rather only the sepa-
ration between two points r = |rrr|. For a discrete set of points, the two-point correlation
function can be interpreted as the excess probability of finding two tracers separated by
some distance r compared to a homogeneous distribution.

We can also re-express the relation between ξ(r) and P (k) as:

ξ(r) = 1
2π2

∫
P (k)j0(kr)k2dk, (2.43)

where j0 = sin(x)/x is the spherical Bessel function of the first kind. If the density field in
consideration is Gaussian, all even higher-order moments of the density fluctuations can
be obtained from the variance, ⟨δ2n⟩ ∝ ⟨δ2⟩n, and all odd higher-order moments for a field
with zero mean will also be zero, ⟨δ2n+1⟩ ∝ ⟨δ⟩. Therefore, in the Gaussian density field
case, the power spectrum or, equivalently, the two-point correlation function will carry the
full description of the field.

2.4.2 Seeding the structure: some words on inflation
The fact that any density fluctuations should exist in the first place is not obvious. It turns
out that, in order to uncover the early Universe origins of the structures that we observe
today, we need to look at scales so small that quantum effects apply and invoke a process
that allows us to grow these effects to observable scales.

Inflation, in addition to solving a number of other cosmological problems, provides us
with exactly such a recipe through a brief period of rapid, accelerated growth of the very
early Universe. In the simplest inflationary scenario, this growth is driven by a single
scalar field - the inflaton, which naturally undergoes quantum fluctuations. However, as
the Universe expands, the wavelength of these fluctuations eventually exceeds the distance
of the causal connection.

The rate of expansion during inflation is nearly exponential and we can define the
comoving Hubble radius (aH)−1 - the approximate distance that the light can travel during
the time in which the scale factor increases by a factor of e. This also determines the
scale for causal contact and any Fourier modes of the inflaton with wavelengths exceeding
(aH)−1 can no longer evolve. The time evolution of (aH)−1 is determined by:

d

dt
(aH−1) = d

dt

(1
ȧ

)
= − ä

ȧ2 . (2.44)

This implies that in a Universe undergoing accelerated growth, as is the case during the
inflationary epoch, the comoving Hubble radius decreases (as per equation (2.12), this
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requires a dark-energy like component with w < −1/3). As a result, more and more modes
exceed this scale and are “frozen out” at a nearly constant amplitude. Inflation ends once
the inflaton reaches a determined field value, which will happen at slightly different times
in different regions due to the fluctuations in the inflaton field. These fluctuations will, in
turn, be reflected in the resulting density field, whose value at any position will depend on
the amount of growth that patch of space experienced.

In the simplest scenario, the seeded fluctuations are predicted to be Gaussian (due to the
quantum nature of the initial fluctuations the final field will be a superposition of Fourier
modes with independent random phases leading to Gaussian distribution) and adiabatic
(i.e. the perturbations in the energy species are such that the ratios in their number
densities remain unchanged) with a nearly scale-invariant power spectrum. The latter
property means that each decade of potential fluctuations of each wavelength provides
equal levels of distortion to the spacetime, resulting in a fractal structure: each level
of spacetime resolution exhibits the same level of deviation from the unperturbed metric.
This subsequently results in an approximately scale-invariant density field power spectrum,
when considered per log-length scale, characterised by a power law with the spectral index
ns:

ns ≡ d ln P (k)
d ln k

, (2.45)

where ns is expected to be close to unity.

2.4.3 Evolution in linear regime
In order to predict how the inflation-seeded density fluctuations will evolve over time, we
need to obtain the equations of motion for the density field. Here, again, the scale of the
perturbation plays an important role in determining the subsequent evolution. At the end
of inflation, the density perturbations are characterised by modes with k ≪ aH: i.e., they
are outside of the Hubble scale and the potential Φ is almost constant. Nonetheless, during
the radiation and matter domination epochs that follow, the comoving Hubble radius grows
and density fluctuations with k ≫ aH can re-enter the horizon. The subsequent growth
of the modes, however, depends on the dominant background component and we can
distinguish between evolution in the radiation-dominated and the matter-dominated era.

In order to derive the equations of motion of Φ for the sub-horizon scales during the
matter-dominated era it is sufficient to consider the Newtonian gravity case for the pres-
sureless non-relativistic cold dark matter, taking into account the background expansion.
We can work in comoving units and define the conformal time τ as dt = a(τ)dτ . The Pois-
son equation can then be written down in the following form (this is just the Newtonian
case of equation (2.38) with explicit dependencies on τ and xxx):

∇2Φ(xxx, τ) = a2(τ)4πGρ(τ)δm(xxx, τ). (2.46)

Furthermore, mass conservation implies the continuity equation:
∂δ(xxx, τ)

∂τ
+ ∇ ·

[(
1 + δ(xxx, τ)

)
vvv(xxx, τ)

]
= 0, (2.47)
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where vvv(xxx, τ) is the comoving peculiar velocity field. Finally, from the conservation of
momentum, we obtain the Euler equation:

∂vvv(xxx, τ)
∂τ

+ a(τ)H(τ)vvv(xxx, τ) + vvv(xxx, τ) · ∇vvv(xxx, τ) = −∇Φ(xxx, τ). (2.48)

In the linear regime |δ| ≪ 1 and |vvv| ≪ 1, so we can rewrite equations (2.47) and (2.48)
as:

∂δ(xxx, τ)
∂τ

+ θ(xxx, τ) = 0, (2.49)

∂vvv(xxx, τ)
∂τ

+ a(τ)H(τ)vvv(xxx, τ) = −∇Φ(xxx, τ), (2.50)

where we defined the velocity divergence θ(xxx, τ) ≡ ∇ · vvv(xxx, τ). Combining the linearised
Euler and continuity equations and inserting the expression for ∇Φ from Poisson equation,
we can obtain the following second-order differential equation for δ(xxx, τ):

∂2δ(xxx, τ)
∂τ

+ a(τ)H(τ)∂δ(xxx, τ)
∂τ

− 4πGa2(τ)ρ(τ)δm(xxx, τ) = 0. (2.51)

For a matter-dominated Universe, we can take a ∼ t2/3 1, which gives the growing power
law solution δ(t) ∝ t2/3 and so the density contrast grows proportionally to the scale
factor δ(t) ∝ a. Subsequently, as the dark energy contribution grows and is eventually
no longer negligible, deviations from the matter domination behaviour appear. In general,
the growing mode solution to equation (2.51) can be simply written down as:

δ(xxx, τ) = D1(τ)δ(xxx), (2.52)

where D1(τ) is the linear growth factor and its full form is given by:

D1(a) = 5Ωm

2
H(a)
H0

∫ a

0

da′

(a′H(a′)/H0)3 . (2.53)

The value of the linear growth factor is, therefore, determined by H(a) and Ωm, i.e., the
composition of the Universe. It is customary to normalise D1 such that D1 = 1 today.

Assuming Newtonian physics is, however, no longer valid for the radiation-dominated
epoch or for perturbations outside of the Hubble radius, which both require a full general
relativity perturbation theory treatment. The full derivation for this case is beyond the
scope of this thesis and we will simply quote the results. During radiation domination
the potential Φ decays inside the horizon while the matter perturbation δ experiences
logarithmic growth as δ ∝ ln t ∝ ln a. For perturbations with wavelengths exceeding
(aH)−1 the constant potential results in δ ∝ a2 during the radiation era and δ ∝ a during
matter domination 2.

1This can be obtained from equation (2.24) by integrating d ln(a)/dt ≈ H0
√

Ωia
− 3

2 (1+wi) with Ωm = 1.
2This is a simplified picture and the quoted results additionally depend on the choice of coordinates

(gauge). The full description goes beyond the scope of this chapter.
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Figure 2.1: Comparison of linear matter power spectra for redshifts z = 0, 1, 2. As stated
in equation (2.54), time evolution corresponds to simple rescaling in amplitude.

The latter result means that the evolution of the density contrast is scale-independent
during the matter domination - the growth of δ is proportional to the scale factor both
inside and outside the Hubble radius. On the other hand, during the radiation domination,
the growth is suppressed inside the Hubble radius with respect to the evolution outside of
it (δ ∝ ln a versus δ ∝ a2). These differences lead to overall scale-dependent growth and
are reflected in the resulting matter power spectrum.

2.4.4 The Linear Power Spectrum
As discussed in the previous subsection, at the end of the inflation the resulting power
spectrum is predicted to have the form of P (k) ∝ kns . During the radiation domination
epoch, the Hubble radius increases, which means that the fluctuations can gradually re-
enter, starting with the ones with the smallest wavelengths (largest k). As soon as a mode
enters the Hubble radius, its growth will be suppressed - the smallest scale (largest k)
modes will spend the longest time in this regime and will experience the most suppression,
whereas the large scale (small k) modes will be unaffected and continue to grow as δ ∝ a2.
After the matter-radiation equality, all modes, regardless of their wavelength, will grow at
the same rate as δ ∝ a.

The suppressed small-scale growth during radiation domination introduces a turnover
scale in the power spectrum which corresponds to the size of the Hubble radius at matter-
radiation equality. In general, the resulting k-dependent growth is described by the transfer
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function T (k). The transfer function, together with the linear growth factor, allows us
to obtain an expression for the linear power spectrum in terms of Fourier mode k and
scale factor a. The initial shape of the power spectrum is set by the primordial power
spectrum and is characterised by the spectral index ns. The shape is subsequently altered
during radiation domination, as encoded in T (k) while the growth of the amplitude is fully
described by the squared growth factor D1(a)2. Putting it all together the final expression
for the linear power spectrum is:

Plin(k, a) = A
[

D1(a)
D1(a0)

]2
T 2(k)

(
k

k0

)ns

. (2.54)

Here the time evolution of the power spectrum is obtained by scaling the global amplitude
of the fluctuations A as measured at z = 0 (or a0 = 1.0) at an arbitrary pivot scale k0,
which is conventionally chosen to be k0 = 0.05Mpc−1. This effect is illustrated in Figure
2.1, which displays linear power spectra at different redshifts: we can see that all of the
predictions differ in the amplitude only, with the power spectrum with the largest amplitude
corresponding to the lowest redshift, where density fluctuations will have experienced the
most growth. Equation (2.54) also highlights how the amplitude evolution of the power
spectrum is expressed relative to some reference value at a set scale and redshift or scale
factor. The choice of appropriate normalisation is, however, not as straightforward as it
might seem and will be further discussed in Section 2.6.

Baryon Acoustic Oscillations

In addition to the imprint of the horizon length at matter-radiation equality, the linear
power spectrum is characterised by the sound horizon - another important scale, which is
an imprint of the baryon acoustic oscillations (BAO) in the early Universe. During the
radiation domination epoch, before the atoms are formed, baryons and photons are coupled
together through Compton scattering. During this epoch, the matter perturbations inside
the Hubble radius can grow at a logarithmic rate, however, unlike dark matter, baryons are
subject to the radiation pressure from photons, which prevents the growth. The interplay
between gravity and pressure instead produces sound waves in the photon-baryon fluid -
it undergoes acoustic oscillations. This process lasts until the Universe expands enough
to cool down and the atoms are formed during recombination. During this epoch, at the
redshift of z∗ ≈ 1090, the mean free path of photons increases and they can decouple
from baryons forming the cosmic microwave background radiation (CMB). The baryons
decouple from photons somewhat later, at the redshift of zd ≈ 1060, which marks the so-
called drag epoch. After this point, baryons, no longer supported by radiation pressure, fall
into the dark matter potential wells and the two species grow together as a single matter
component.

The acoustic oscillations leave an imprint both in the power spectrum of the CMB
and the matter power spectrum. This is because baryons constitute a significant enough
fraction of the total matter that the dark matter component is affected by the gravitational
force exerted by the baryons as well. This means that the BAO signal is present in the total
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matter distribution with an amplitude determined by the fraction of baryons, fb = Ωb/Ωm.
In Fourier space the oscillations show up as a series of wiggles, modulating the amplitude of
the power spectrum with the extrema at kn = nπ/rs, where rs is the sound horizon which
marks the maximum distance that the acoustic waves could travel before decoupling. In
configuration space, the two-point correlation function exhibits a broad peak at a scale of
∼ 155 Mpc. This is an important feature that can be used as a standard ruler, a concept
that we already discussed in Section 2.3: by fitting the angular and redshift extent of
the BAO peak in galaxy clustering measurements and comparing it with a known rd =
rs(zd) (determined accurately from the CMB observations), we can probe the background
expansion of the Universe, i.e., we can constrain H(z)rd and DM(z)/rd.

2.4.5 Non-linear evolution
The linear power spectrum, as described above, neglects the non-linear contributions to
density and velocity fields and can, therefore, only provide reliable predictions for large
scales and the very early Universe where |δ| ≪ 1. As structure continues to form and
overdensities grow, it is crucial to model the resulting non-linearities in order to obtain
accurate fits of the galaxy clustering measurements. In Figure 2.2 we show the linear theory
prediction (black dotted line) for the matter power spectrum at redshifts z = 0, 1, 2 and
compare this result with two different non-linear matter power spectrum predictions (solid
and dot-dashed lines). It is clear that, while all models agree on large scales, where the
linear theory is accurate, the three predictions diverge on small scales with linear theory
underpredicting the power, as it does not take into account the contribution from mode
coupling, which is significant and large k. The efforts to model the non-linear regime can be
broadly categorised into three different types of approaches: predictions based on N-body
simulations, perturbative methods, and the halo model-based theories.

The N-body simulations, while the most computationally expensive of the three, also
provide us with the most accurate theory predictions (as also demonstrated in Figure 2.2,
where at z = 0 the solid line marking the power spectrum measured on simulations has
more power at small scales than the perturbative prediction shown in dot-dashed line).
This is because, instead of trying to obtain an analytical or phenomenological description
of the matter distribution, N-body simulations allow us to directly model the evolution
of the structure by following the evolution of particles in a cubic volume with periodic
boundary conditions, updating their positions and velocities at a set of timesteps. The
initial conditions at the start of the simulation are determined by the cosmological model
and the equations of motion for each particle are calculated based on the resulting gravi-
tational potential, which is also updated, as the simulation evolves. The power spectrum
predictions can then be obtained by simply performing measurements based on the particle
positions at the simulation snapshots at the desired redshift. While extremely accurate,
the simulations are limited by the computational power available, which sets the number
of particles (which defines the resolution of the simulation) and the size of the box (which
determines the number of modes simulated). In addition to this, one must also run sepa-
rate simulations for each cosmology of interest, which further adds to computational costs.
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Figure 2.2: Comparison of the non-linear matter power spectra for redshifts z = 0, 1, 2, as
obtained from N-body simulation (solid line) and the gRPT prediction (dot-dashed line).
The black dotted line marks the linear power spectrum displayed for reference.

Finally, the final power spectrum prediction, while accurate, does not contain insights into
the physical processes that contributed to its different features.

Both perturbative and halo-model-based methods incorporate these physical processes
more explicitly, however, the two approaches are valid at different scales. Perturbative
theory predictions are based on modelling the evolution of a fluid by considering small
displacements around the linear case and performing an expansion where each higher-order
term includes more non-linear physics. The halo model, on the other hand, assumes that
all matter in the Universe is contained within dark matter haloes and the power spectrum
is obtained by considering the contributions from halos of different masses. The former
method is valid in the mildly non-linear regime where |δ| ∼ 1, but it fails to describe much
smaller scales. The halo model, on the other hand, provides a good description of the
power spectrum on fully non-linear scales but it is difficult to build for general cosmologies
and requires the knowledge of a number of halo properties, such as the halo mass function,
halo density profile, and the mass-concentration relation.

The methods used in the analysis performed in this thesis rely on perturbative and
N-body simulation approaches. We will, therefore, proceed to introduce the basics of the
perturbation theory while leaving out further details of the halo model.
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Standard Perturbation Theory

Standard perturbation theory (SPT) refers to Eulerian perturbation theory, where the fluid
is described in terms of density and velocity field on a fixed comoving coordinate system
of time and position. In this approach, the perturbative variable is the density contrast,
δ. We start back from the non-linear form of the continuity and Euler equations (equation
(2.47) and (2.48)). We already noted that the continuity equation is expressed in terms of
the velocity divergence rather than the velocity field itself and it is, therefore, common to
also take the divergence of the Euler equation to re-express it in terms of θ. The Euler and
continuity equations can then be Fourier transformed to obtain the coupled equations:

∂δ(kkk, τ)
∂τ

+ θ(kkk, τ) = −
∫ d3k1

(2π)3

∫ d3k2

(2π)3 (2π)3δD(kkk − kkk12)α(kkk1, kkk2)θ(kkk1, τ)δ(kkk2, τ), (2.55)

∂θ(kkk, τ)
∂τ

+ a(τ)H(τ)θ(kkk, τ) + 3
2Ωm(τ)(a(τ)H(τ))2δ(kkk, τ) = −

∫ d3k1

(2π)3

∫ d3k2

(2π)3

(2π)3δD(kkk − kkk12)β(kkk1, kkk2)θ(kkk1, τ)θ(kkk2, τ).
(2.56)

Here kkk12 = kkk1 + kkk2 and α and β are kernels describing the coupling between all pairs of
modes k1k1k1 and k2k2k2:

α(kkk1, kkk2) = kkk12 · kkk1

k2
1

, β(kkk1, kkk2) = k2
12(kkk1 · kkk2)

2k2
1k2

2
. (2.57)

The resulting non-linear evolution equations (2.55) and (2.56) can be contrasted with the
linear case where the terms on the right-hand side are zero and each mode kkk evolves
independently. In equation (2.56) we also made use of the Poisson equation (2.46) to
eliminate ∇2Φ.

The non-linear evolution equations do not have a general analytical solution, so we
proceed to expand the non-linear density and velocity fields in terms of higher order terms
δ(n) ∝ (δlin)n:

δ(kkk, τ) =
∞∑

n=1
δ(n)(kkk, τ), θ(kkk, τ) =

∞∑
n=1

θ(n)(kkk, τ). (2.58)

A separable solution for density and velocity fields of a given order, δ(n)(kkk) and θ(n)(kkk), is
only available in cosmologies where Ωm = 1. In this case, a general solution can be written
down in terms of wavevectors {qqq1, ...qqqn}, such that kkk1 ≡ qqq1 + ... + qqqm, kkk2 ≡ qqqm+1 + ... + qqqn

and kkk ≡ kkk1 + kkk2:

δn(kkk) =
∫

d3qqq1...
∫

d3qqqnδD(kkk − qqq1...n)Fn(q1q1q1, ...qnqnqn)δ(1)(qqq1)...δ(1)(qqqn), (2.59)

θn(kkk) =
∫

d3qqq1...
∫

d3qqqnδD(kkk − qqq1...n)Gn(q1q1q1, ...qnqnqn)δ(1)(qqq1)...δ(1)(qqqn). (2.60)
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The perturbation theory kernels Fn and Gn are homogeneous functions of {qqq1, ...qqqn} and
obey recursion relations, allowing us to recover the linear theory solution without mode-
coupling at first order: F1 = G1 = 1. At quadratic order, the kernels have the form
of:

F2(qqq1, qqq2) = 5
7 + 1

2
qqq1 · qqq2

q1q2

(q1

q2
+ q2

q1

)
+ 2

7
(qqq1 · qqq2)2

q2
1q2

2
, (2.61)

G2(qqq1, qqq2) = 3
7 + 1

2
qqq1 · qqq2

q1q2

(q1

q2
+ q2

q1

)
+ 4

7
(qqq1 · qqq2)2

q2
1q2

2
. (2.62)

The first term in both cases is the monopole (isotropic) contribution, which is directly pro-
portional to ∝ δ2 and which describes spherical collapse (although, for the sake of brevity,
in the equations above the monopole also absorbs the isotropic part of the quadrupole
contribution). The second term - the dipole, describes the bulk flow and is generated by
the vvv · ∇ term in the equation of motion. Finally, the third - quadrupole term, represents
the effect of the tidal forces. While the solution presented above is only exact in the Uni-
verse made completely of matter, it has been shown that the perturbation theory kernel
form presented in equations (2.61) and (2.62) is a good approximation for the ΛCDM
cosmological model as well as a number of its extensions.

Following our approach with the density field, we can similarly perform an expansion
of the power spectrum itself:

⟨δ(kkk, τ)δ(k′k′k′, τ)⟩ = ⟨δ(1)(kkk, τ)δ(1)(k′k′k′, τ)⟩ + ⟨δ(1)(kkk, τ)δ(3)(k′k′k′, τ)⟩+
⟨δ(3)(kkk, τ)δ(1)(k′k′k′, τ)⟩ + ⟨δ(1)(kkk, τ)δ(3)(k′k′k′, τ)⟩ + ⟨δ(2)(kkk, τ)δ(2)(k′k′k′, τ)⟩ + ...

(2.63)

Here all the odd moments are zero due to the Gaussian initial conditions and the sum is
over the even moments only. Alternatively, we can rewrite this equation as a sum of the
linear power spectrum Plin = P (11) = ⟨δ(1)δ(1)⟩ and non-linear corrections:

P (k, a) = Plin(k, a) + P (22)(k, a) + 2P (13)(k, a) + ... (2.64)

The linear order contribution Plin is referred to as ‘tree-level’, whereas the corrections P (22),
P (13), ... are called ‘loop’ corrections and the second-order (or one-loop, so called because
only a single integral over the wavenumber is involved) contributions are given by:

P (22)(k, a) = 2
∫ d3q

(2π)3 [F s
2 (qqq,kkk − qqq)]2Plin(q, a)Plin(|kkk − qqq|, a), (2.65)

P (13)(k, a) = 3Plin(k, a)
∫ d3q

(2π)3 [F3(qqq, −qqq,kkk)]Plin(q, a), (2.66)

where F s
2 is the symmetrical form of the kernel given in equation (2.61) and F3 is another

perturbation theory kernel whose full expression will be omitted here. In order to obtain a
more precise non-linear power spectrum one can proceed in a similar manner by including
higher-order corrections through higher loop terms.
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Renormalised Perturbation Theory

The limiting feature of the SPT approach is the difficulty in achieving convergence on
small scales. This is due to the fact that the loop corrections can vary both in sign and
magnitude, with higher loop terms potentially carrying comparable contributions to the
lower loop terms, making it difficult to truncate the series. As a result, SPT cannot model
nonlinearities with sufficient accuracy for modern galaxy surveys.

The convergence can, however, be improved by grouping the loop corrections into the
propagator and mode-coupling terms, as first suggested by Crocce & Scoccimarro (2006).
In the renormalised perturbation theory (RPT) approach the non-linear power spectrum
can then be rewritten as the sum:

P (k, a) = Plin(k)G(k, a)2 + PMC(k, a). (2.67)

The renormalised propagator term, G(k, a), is obtained by grouping the loop corrections
proportional to Plin (such as P (13)). The propagator measures how much power is directly
linked to the initial conditions as a function of scale and redshift and it can be well described
by a Gaussian damping of the linear growth factor (D1, equation (2.53)). As the propagator
is more damped at high k, the memory of the initial conditions is lost and the mode coupling
contributions, PMC, become more important. This second term has a loop expansion which
resembles that of the SPT power spectrum with its terms ordered based on the number of
initial modes coupled. The one-loop contribution to PMC at low-k can be approximated
as P (22) (Crocce et al., 2012), given in equation (2.65). Crucially, all of the loop terms
in the expansion are positive and their amplitudes become successively smaller - each of
the higher loop corrections, therefore, only dominates at increasingly smaller scales, which
allows for a non-ambiguous determination of the appropriate point of truncation for a
particular analysis.

The series convergence can be improved even further by finding a way to resum not
only the propagator but also the mode-coupling term. The Galilean-invariant renormalised
perturbation theory (gRPT) approach imposes Galilean-invariance on the equations of
motion in order to obtain a resummed mode-coupling term that is consistent with the
propagator. The resulting convergence improvement allows us to obtain accurate power
spectrum predictions at the one-loop level (see the power spectra in the dot-dashed line
in Figure 2.2). Indeed, the gRPT modelling has been used in a number of modern galaxy
clustering analyses, such as Grieb et al. (2017), Sánchez et al. (2017), reaching scales as
small as kmax ∼ 0.25 h−1Mpc in Fourier space and smin = 20 h−1Mpc in configuration
space.

RESPRESSO

In addition to purely perturbative or purely simulated methods, it is possible to obtain
non-linear power spectrum predictions using a hybrid approach. The theory model used
for the full-shape galaxy clustering analysis presented in this thesis also falls within this
category.
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We compute model predictions of the non-linear matter power spectrum, Pmm(k), us-
ing the Rapid and Efficient SPectrum calculation based on RESponSe functiOn approach
(respresso, Nishimichi et al., 2017). The key ingredient of respresso is the response
function, K(k, q), which quantifies the variation of the non-linear matter power spectrum
at scale k induced by a change of the linear power at scale q as

K(k, q) ≡ q
∂Pmm(k)
∂Plin(q) . (2.68)

Nishimichi et al. (2016) presented a phenomenological model for K(k, q) based on reg-
ularised perturbation theory (Taruya et al., 2012), which gives a good agreement with
simulation results over a wide range of scales for k and q. The response function allows
to obtain Pmm(k) for arbitrary cosmological parameters θθθ based on a measurement from
N-body simulations of a fiducial cosmology θθθfid as

Pmm(k|θθθ) = Pmm(k|θθθfid)
∫

d ln q K(k, q)

× [Plin(q|θθθ) − Plin(q|θθθfid)].
(2.69)

The choice of θθθfid in respresso corresponds to the best-fitting ΛCDM model to the Planck
2015 data (Planck Collaboration et al., 2016). Equation (2.69) is most accurate for cos-
mologies that are close to θθθfid. For cosmologies further away from the fiducial, its accuracy
can be improved by performing a multi-step reconstruction.

As respresso is partially based on numerical simulation measurements, it automat-
ically incorporates higher-order corrections beyond the one-loop gRPT expansion and is,
therefore, able to provide more accurate results. This was also confirmed by Eggemeier
et al. (2020), who showed that respresso outperforms other perturbation theory-based
models in terms of the range of validity and accurate recovery of the mean cosmological pa-
rameter posterior values. This approach was also used in the final eBOSS quasar clustering
multipoles analysis by Hou et al. (2021).

2.5 Modelling Observed Galaxy Clustering
So far we described the methods required for predicting the matter power spectrum, how-
ever, the dark matter field cannot be observed directly but only through the galaxies that
trace it. In this section, we, therefore, discuss the theoretical ingredients required to pre-
dict the observed galaxy power spectrum. A number of relevant effects that need to be
taken into account can be well described by more than one recipe (for example, there are
several galaxy bias parameterizations and different descriptions of the small-scale redshift-
space distortions used in modern galaxy clustering analyses), however, all of the modelling
choices presented here largely follow the original BOSS and eBOSS clustering analyses of
Sánchez et al. (2017), Grieb et al. (2017) and Hou et al. (2021). The majority of this section
describes the modelling of the power spectrum, the prediction for the observed two-point
correlation function can then be obtained by performing a Fourier transform.



2.5 Modelling Observed Galaxy Clustering 29

2.5.1 Galaxy Bias
Bias describes the relation between the luminous tracers that we observe and the total
matter field. Here, perturbative approaches are used to describe the galaxy overdensity
δg in terms of a series of operators, such that, in the most general form δg can be written
down as the sum:

δg(xxx, τ) =
∑
O

bO(τ)O(xxx, τ). (2.70)

Here bO are the bias parameters and O(xxx, τ) are the operators, which include the relevant
quantities that affect galaxy formation, such as matter fluctuation at a given point in space
or spatial derivatives of the gravitational and velocity potentials.

Following the notation of Eggemeier et al. (2019), The one-loop bias expansion can be
written down as:

δg = b1δm + b2

2 δ2
m + γ2G2(Φv) + γ21G2(φ1, φ2). (2.71)

At the linear order, the relationship between galaxy and matter fields is simply δg = b1δ
and the bias parameter b1 is referred to as the linear bias. Including the second order,
or quadratic, bias, b2, provides a further correction to the spherical collapse description of
galaxy bias (which assumes that galaxies form from the gravitational collapse of spherically
symmetric perturbations).

The first two terms of the bias expansion in equation (2.71) describe galaxy bias as a
function of the local matter density contrast only, however, anisotropies in gravitational
collapse lead to additional tidal effects that affect the local distribution of galaxies (Sheth
et al., 2013; Baldauf et al., 2012). These non-local effects are described by the terms that
involve the Galilean invariant operator G2. The first of these terms represents the tidal
stress tensor generated by the velocity potential Φν and is given by:

G2(Φν) = (∇ijΦν)2 − (∇2Φν)2. (2.72)

The second of the tidal bias terms is a higher-order correction:

G2(φ1, φ2) = ∇ijφ2∇ijφ1 − ∇2φ2∇2φ1, (2.73)

where φ1 and φ2 are obtained by expressing the non-linear velocity potential up to the
second order (Φν = Φ(1)

ν + Φ(2)
ν and φ1 = −Φ(1)

ν , φ2 = −Φ(2)
ν ), such that ∇2φ1 = −θ is the

linear velocity divergence field and ∇2φ2 = −G2(φ1) is the next-to-leading order correction.
The one-loop galaxy bias expansion, as presented in equation (2.71), therefore, includes

four free bias parameters: b1, b2, γ2 and γ21. This is a large number of free parameters for
real-world applications, especially if the focus of the analysis is the information contained
in two-point clustering measurements alone (in particular, the tidal bias parameters γ2
and γ21 are degenerate with each-other). It is, therefore, common to make use of relations
which set the values of tidal bias parameters in terms of linear bias.

One class of such relations is the local Lagrangian relations, which are obtained under
the assumption that galaxy formation is driven exclusively by the local matter density
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field and that all tracers are formed instantaneously at the infinite past time and their
number remains conserved from that point on. This approach was used in, for example,
BOSS galaxy clustering analyses of Sánchez et al. (2017) and Grieb et al. (2017). One can,
however, take a step further, relaxing the requirement that galaxy formation is determined
by the local matter density field and only assuming the tracer number conservation (Fry,
1996; Catelan et al., 1998, 2000; Chan et al., 2012). We can then obtain the following
relation for γ21:

γ21 = − 2
21(b1 − 1) + 6

7γ2. (2.74)

This relation was thoroughly tested against constraints derived from a combination of
power spectrum and bispectrum data in Eggemeier et al. (2021), and found to be in
excellent agreement with a synthetic sample of BOSS-like galaxies. A similar expression
can also be derived for γ2, however, in the analyses performed in this thesis we instead use
the following quadratic relation:

γ2(b1) = 0.524 − 0.547b1 + 0.046b2
1, (2.75)

which describes the results of Sheth et al. (2013) using excursion set theory. Eggemeier
et al. (2020) showed that the relation in equation (2.75) is more accurate for tracers with
b1 ≳ 1.3 than the equivalent co-evolution relation and is, therefore, more appropriate for
our set of tracers.

In Sec. 3.2, we confirm that the use of these relations gives an accurate description of
the results of N-body simulations and we therefore implement them in our analysis of the
BOSS and eBOSS data. In this way, the only required free bias parameters in our one-loop
galaxy bias model are b1 and b2, while the non-local bias terms can be fully expressed in
terms of the linear bias through equations (2.75) and (2.74).

Finally, the resulting galaxy power spectrum Pgg can be written down as:

Pgg(k) = b2
1Pmm(k) + b1b2Pb1b2(k) + b1γ2Pb1γ2(k)

+ b2
2Pb2b2(k) + b2γ2Pb2γ2(k) + γ2

2Pγ2γ2(k)
+ b1γ21Pb1γ21(k)

(2.76)

and the one-loop bias corrections are:

Pb1b2(k) = 2
∫

qqq
F2(kkk − qqq, qqq)Plin(|kkk − qqq|)Plin(q), (2.77)

Pb1γ2 = 4
∫

qqq
F2(kkk − qqq, qqq)S(kkk − qqq, qqq)Plin(|kkk − qqq|)Plin(q)

+ 8Plin(k)
∫

qqq
G2(kkk,qqq)S(kkk − qqq, qqq)Plin(q),

(2.78)

Pb2b2(k) = 1
2

∫
qqq
[Plin(|kkk − qqq|)Plin(q) − P 2

lin(q)], (2.79)
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Pb2γ2 = 2
∫

qqq
S(kkk − qqq, qqq)Plin(|kkk − qqq|)Plin(q), (2.80)

Pb2γ2 = 2
∫

qqq
S2(kkk − qqq, qqq)Plin(|kkk − qqq|)Plin(q), (2.81)

Pb1γ21 = 4Plin

∫
qqq

S(kkk − qqq, qqq)S(kkk,qqq)Plin(q). (2.82)

Here, F2 and G2 are the symmetrised mode-coupling kernels and S(kkk1, kkk2) = (k̂kk1 · k̂kk2)2 − 1
is the Fourier transform of the kernel that describes G(Φν).

The galaxy bias expression in equation (2.71) does not include the so-called higher
derivative bias, which involves operators higher than the second derivative of the gravi-
tational and velocity potentials and whose leading order scales as ∇2δ (Desjacques, 2008;
Desjacques et al., 2010). This is the contribution from the regions where galaxy forma-
tion occurs and which are, therefore, influenced by short-range gravitational effects as
well as baryonic effects. For halos, such scales are determined by the Lagrangian radius
(McDonald & Roy, 2009; Lazeyras & Schmidt, 2019), defined for a halo of mass M as
R(M) = (3M/4πρ̄m)1/3 and below which galaxy formation can no longer be considered
to be a local process. The minimum fitting scales s = 20h−1Mpc used in the analyses
presented in Chapters 3 and 4 are large enough that this contribution is unlikely to be im-
portant (as also confirmed in the model validation, where we are able to recover the input
cosmology of galaxy mocks). Nonetheless, this contribution is accounted for in the theory
emulator which we describe in Chapter 5, ensuring that its predictions can potentially be
used down to small scales.

2.5.2 Redshift-Space Distortions
In addition to tracer bias, another effect to consider when modelling observed galaxy
clustering is the redshift-space distortions (RSD), which arise due to the fact that the
measured galaxy redshift is not due to the cosmic expansion alone.

Even in comoving coordinates galaxies are not static tracers but possess a velocity
induced by the gravitational potential of their environment - a peculiar velocity. In general,
on large scales galaxies tend to exhibit a coherent motion from underdense areas towards
overdensities, as the large-scale structure continues to grow. In addition to this, on small
scales, highly overdense virialized regions like galaxy clusters are characterised by large
velocity dispersions.

The observed galaxy redshift, zobs, will then, in addition to the redshift due to the
cosmic expansion, zcos, receive a contribution from the parallel component of the galaxy
peculiar velocity, v∥, such that:

1 + zobs = (1 + zcos)
(
1 + v∥

c

)
. (2.83)
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Equivalently, the galaxy position inferred from the redshift (or “in redshift space”), s, will
be modified as:

s = χ(zobs) = χ(zcos) + dχ

dz
(z)∆z = χ(zcos) + (1 + z)

H(z) v∥. (2.84)

The galaxy will, therefore, seem displaced along the line of sight, while its angular position
in the sky remains the same. As a result, the overall observed clustering pattern will
become direction-dependent (or anisotropic) and the amount of the anisotropy will depend
on the peculiar velocities that sourced it. Measuring the distortions in the galaxy clustering
pattern is, therefore, a powerful tool to probe the growth of structure.

RSD in linear regime

To see how the galaxy power spectrum is modified due to the RSD in linear regime (i.e.
due to the galaxy bulk flow peculiar velocity), we can start by relating the real and redshift
spaces through the fact that the total number of galaxies and, therefore also the total mass
enclosed in a volume element is conserved:

(1 + δs(sss))d3s = (1 + δ(rrr))d3r, (2.85)

where δs(s) marks density fluctuations in redshift and δ(r) in real space (we have also
assumed that the mean number density remains the same in real and redshift space). The
transformation of the volume element from real to redshift space is encoded in the Jacobian
J = |∂ri/∂sj|, which can be obtained from the transformation of equation (2.84):

J =
(

1 + 1
aH(a)

∂v∥

∂r∥

)−1
≃

(
1 − 1

aH(a)
∂v∥

∂r∥

)
, (2.86)

Plugging this expression for J in the equation (2.85) and keeping only linear terms in
perturbations we obtain:

δs(sss) = δ(rrr) − 1
aH(a)

∂v∥

∂r∥
. (2.87)

Furthermore, in order to be able to describe the changes that the RSD induce in the
power spectrum, we need to Fourier transform the above relation to obtain:

δs(kkk) = δ(kkk) −
ik∥

aH(a)v∥. (2.88)

We can additionally make use of the Fourier transformed linearised continuity equation
(2.49) to get the expression for velocity in terms of the density fluctuations:

∂δ(k, τ)
∂τ

+ k2v(k, τ) = 0. (2.89)
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Plugging in the growing mode solution δ ∝ D1(a) from equation (2.52) we get:

v = 1
k2

∂

∂τ

(
δ(k, τ)

D1
D1

)
= δ(k, τ)

k2D1

dD1

dτ
. (2.90)

It is then convenient to define the dimensionless linear growth factor f and re-express
everything in terms of the scale factor a 3:

f ≡ a

D1

dD1

da
= d ln D1

d ln a
. (2.91)

The relation between the density fluctuations and the velocity potential is then:

v(k, a) = f(a)aH(a)
k2 δ(k, a), (2.92)

which we can take the gradient of to obtain the relation for the velocity field:

vj(k, a) = i
kj

k2 aHf(a)δ(k, a). (2.93)

This can now be plugged back into equation (2.88) to obtain:

δs(kkk) = δ(kkk)
(
1 + f(a)µ2

k

)
(2.94)

with µk = k∥/k as the cosine of the angle between the wavevector kkk and the line of sight
direction. The relation above, therefore, tells us that density fluctuations when observed in
the redshift space are enhanced by the angle-dependent factor fµk, such that the maximum
enhancement is present along the line of sight (where µk = 1) and the real space density
fluctuation amplitude is recovered in the direction perpendicular to the line of sight (where
µk = 0). The result of the RSD in the linear regime is then a clustering pattern which is
squished along the line of sight.

The relation we just derived is applicable for the matter fluctuations - in order to obtain
an equivalent expression for galaxies we need to take bias into account. In the simplest
case, considering only linear bias for the density fluctuations δg = b1δm and assuming no
velocity bias (so that vvvg = vvvm), equation (2.94) becomes:

δs
g(kkk) = δg(kkk)

(
1 + β(z)µ2

k

)
(2.95)

with
β(z) = f(z)

b
. (2.96)

The resulting galaxy power spectrum will then simply be given by:

P s
g(k, µk) = b2

1(1 + βµ2
k)2P (k). (2.97)

3By making use of d/dτ = a2Hd/da.
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The prefactor (1 + βµ2
k)2 is also referred to as the Kaiser factor. It is furthermore common

to rewrite the relation for the power spectrum as:

P s
g(k, µk) =

(
b1σ8(z) + fσ8(z)µ2

k

)2
(

P (k, z)
σ2

8(z)

)
, (2.98)

where σ8 is the linear density field variance as measured on a scale of 8h−1Mpc. Tradition-
ally, σ8 is taken to represent the amplitude of the power spectrum, such that P (k, z)/σ2

8(z)
is supposed to depend on the shape of P (k, z) only, and the RSD-induced anisotropies
are described by the parameter combinations bσ8(z) and fσ8(z). Nonetheless, as argued
by Sánchez (2020), due to the fact that σ8 is defined on a scale that depends on h, this
parameter does not actually represent the power spectrum amplitude, as will be discussed
in Section 2.6.1. Presently, we will simply note that for a correct version of equation (2.98),
one should replace σ8 with an equivalent parameter measured on a scale defined in Mpc.

RSD in the non-linear regime

The derivation presented in the previous sections is only valid in the linear regime, i.e.,
where densities and peculiar velocities can be assumed to be small. Nonetheless, we al-
ready hinted at the fact that galaxy peculiar velocities are expected to be large around
high-density regions, such as galaxy clusters. As a result, the linear RSD description is
not sufficient in order to accurately describe the results from modern galaxy surveys. In
particular, the linear theory fails to capture not only the galaxy motion within virialized
structures, but it also fails to take into account the non-linear coupling between density
and velocity fields that is induced by non-linear evolution. In this section, we, therefore,
present a description of non-linear redshift space power spectrum which follows Sánchez
et al. (2017), Scoccimarro (2004) and Taruya et al. (2010).

One of the ways to describe the non-linear redshift space power spectrum follows a
simple ansatz:

Pg(k, µk) = FFoG(ifkµk)Pnovir(k, µk). (2.99)

Here, Pnovir is the redshift-space power spectrum that includes the effect of the non-linear
bulk flow of matter on larger scales and FFoG(ifkµ) is the fingers-of-god factor, which
accounts for the small-scale RSD.

The non-linear anisotropic power spectrum Pnovir can be written down as a sum:

Pnovir(k, µk) = P
(1)
novir(k, µk) + P

(2)
novir(k, µk) + P

(3)
novir(k, µk). (2.100)

The first term here is the non-linear version of the Kaiser formula presented in equation
(2.97):

P
(1)
novir(k, µk) = Pgg(k) + 2fµ2

kPgθ(k) + f 2µ4
kPθθ(k). (2.101)

Here, the term is made up of contributions from the galaxy-galaxy power spectrum Pgg(k) =
⟨δg(kkk), δg(k′k′k′)⟩, the galaxy-velocity power spectrum Pgθ(k) = ⟨δg(kkk), θ(k′k′k′)⟩ and the velocity-
velocity power spectrum Pθθ(k) = ⟨θ(kkk), θ(k′k′k′)⟩. We have already discussed how we may
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obtain a prediction for Pgg by taking a Pmm prediction and a recipe for galaxy bias, however,
our chosen theory model respresso does not provide recipes for computing Pgθ or Pθθ.
We, therefore, model these power spectra using empirical relations proposed by Bel et al.
(2019) from the Dark Energy and Massive Neutrinos Universe (DEMNUni) set of N-body
simulations (Carbone et al., 2016).

The second term of Pnovir(k, µk) is given as:

P
(2)
novir(k, µk) =

∫
d3q

q∥

q2 [Bσ(qqq,kkk − qqq, −kkk) − Bσ(qqq, −kkk,kkk − qqq)], (2.102)

where Bσ is the cross bispectrum between the density and velocity field with σ(kkk) =
δg(kkk) + f(k∥/k2)θ(kkk) such that:

⟨θ(kkk1)σ(kkk2)σ(kkk3)⟩ = (2π)3δD(kkk1 + kkk2 + kkk3)Bσ(kkk1, kkk2, kkk3) (2.103)

and the cross bispectra are calculated from the tree-level PT for the density and velocity
including bias up to γ2. The final term required to obtain Pnovir is given by:

P
(3)
novir(k, µk) =

∫
d3q

q∥(k∥ − q∥)
q2(kkk − qqq)2 (b1 + fµ2

q)(b1 + fµ2
k−q)Pδθ(k − q)Pδθ(q). (2.104)

The non-virial power spectrum is additionally corrected by the factor FFoG, which
accounts for the contribution from random motions on small scales (however, it enters
the redshift-space power spectrum model as a multiplicative factor, since the small scale
velocities also affect the observed galaxy distribution on large scales). The FoG effect shows
up as an elongation of the clustering pattern along the line of sight and is often modelled
using a Gaussian function. However, as pointed out in Scoccimarro (2004), the effect of
the non-linear corrections is that the large-scale limit of the pairwise velocity distribution
function is non-Gaussian. Therefore, following the analysis of Sánchez et al. (2017), we
adopt the FoG correction of the form:

FFoG(ifkµk) = 1√
1 − (ifkµk)2a2

vir

exp
( (ifkµk)2σ2

v

1 − (ifkµk)2a2
vir

)
, (2.105)

where avir is a free parameter characterizing the kurtosis of the small-scale velocity dis-
tribution, and σv is the one-dimensional linear velocity dispersion defined in terms of the
linear matter power spectrum as

σ2
v ≡ 1

6π2

∫
dk PL(k). (2.106)

2.5.3 Anisotropic two-point correlation function
In order to make use of the structure growth information imprinted by the RSD, we need
to be able to measure how the two-point functions depend on µ (i.e., the angle averaged
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measurements ξ(s) and P (k) do not carry the full constraining power available). Nonethe-
less, direct measurements of ξ(s, µ) and P (s, µ) do not have a high enough signal-to-noise
ratio for cosmological analyses. An alternative method that preserves the anisotropic in-
formation present in the original two-point function is to express the measurements as a
reduced set of one-dimensional projections. The two commonly used types of projections
that we will briefly describe here are Legendre multipoles and galaxy clustering wedges.

Legendre multipoles, Pℓ(k), of the power spectrum are given by:

Pℓ(k) = (2ℓ + 1)
2

∫ 1

−1
P (k, µk)Lℓ(µk)dµk, (2.107)

where Lℓ(µk) are Legendre polynomials and the full anisotropic redshift space galaxy power
spectrum P s

g (k, µk) can then be expressed as the series:

P s
g (k, µk) =

∑
ℓ,even

Pℓ(k)Lℓ(µk). (2.108)

The sum is performed over even ℓ multipoles only, because all of the odd ℓ multipoles are
zero (since P s

g (k, µk) is an even function of µk). The terms with ℓ = 0, 2, 4 are referred to as
monopole, quadrupole and hexadecapole and l indicates the maximum power of µk appear-
ing in Lℓ(µk), such that the monopole corresponds to the angle-averaged power spectrum
P (k) and the subsequent multipoles carry the information encoded in the anisotropies.
Relations equivalent to those presented in equations (2.107) and (2.108) also hold for the
two-point correlation function.

Alternatively, we can perform the measurements of the average of ξ(s, µ) over a given
interval ∆µ = µmax − µmin, as proposed by Kazin et al. (2012). This statistic is referred to
as galaxy clustering wedges and is given by:

ξ∆µ(s) ≡ 1
∆µ

∫ µmax

µmin
ξ(µ, s)dµ (2.109)

Galaxy clustering wedges and Legendre multipoles carry equivalent information and the
two statistics are related by:

ξ∆µ(s) =
∑

ℓ

ξℓ(s)L̄ℓ, (2.110)

where L̄ℓ is the average of the Legendre polynomial of order ℓ over the µ-bin of the clustering
wedge. Regardless of the same information content, clustering wedges and multipoles have
different noise properties and Hou et al. (2018) showed that for eBOSS quasar clustering
analysis the multipoles provide tighter cosmological constraints. For this reason, the work
presented in this thesis (Chapters 3 and 4) follows the original analyses for BOSS galaxies
by Sánchez et al. (2017) and eBOSS quasars by Hou et al. (2021) and uses clustering
wedges for the former and Legendre multipoles for the latter data set.
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2.5.4 Alcock-Paczynski distortions
The final effect to take into account when modelling the observed two-point statistics
arises due to the mismatch between the true cosmology and the one that is used to convert
the observed redshifts into distances. This is referred to as the Alcock-Paczynski (AP)
distortions (Alcock & Paczyński, 1979) and can be written down as a rescaling of the
distance components parallel and perpendicular to the line of sight s∥ and s⊥:

s∥ = q∥s
′
∥, s⊥ = q⊥s′

⊥, (2.111)

where the primes denote the distances in the fiducial cosmology and the scaling factors q∥
and q⊥ are the geometric distortion parameters evaluated at the effective redshift of the
sample zeff :

q∥ = H ′(zeff)
H(zeff) , q⊥ = DM(zeff)

D′
M(zeff) . (2.112)

As a result, when modelling the anisotropic two-point correlation function ξ(s, µ), we need
to rescale the total separation s =

√
s2

∥ + s2
⊥ and the cosine of the angle between the

separation vector sss and the line of sight µ as:

s = s′
(
q2

∥µ′2 + q2
⊥(1 − µ′2)

)
, (2.113)

µ = µ′ q∥√
q2

∥µ′2 + q2
⊥(1 − µ′2)

. (2.114)

2.6 Evolution Mapping
Throughout this chapter, we have shown how the matter power spectrum, the main ingre-
dient required to model the large-scale-structure observations, encodes the information on
the cosmological parameters which describe the physics of our Universe. Nevertheless, the
choice of a set of parameters that should characterise the cosmology and, therefore, the
resulting structure is not unique. Given a number of different possible parameterizations,
one may, therefore, ask if there is a parameter space that is particularly suited to clearly
describe the effect that each cosmological parameter has on the power spectrum. Sánchez
(2020) and Sánchez et al. (2022) proposed exactly such a parametrization and showed that
it not only allows for a clearer interpretation of cosmological observations results but also
greatly facilitates the modelling of the matter power spectrum through a technique re-
ferred to as evolution mapping. The observational implications of these results are mainly
discussed in Chapters 3 and 4, whereas the evolution mapping approach itself is a key
ingredient in building the emulator described in Chapter 5. In this section, we summarise
the main ideas behind evolution mapping.
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Figure 2.3: Top: Linear matter power spectra at z = 0 for three ΛCDM cosmologies with
the same values of ωb, ωc, ων , As and ns but different values of h, expressed in h−1Mpc units
(left) and in Mpc units (right). It is clear that h−1Mpc units introduce unphysical shifts
in the power spectrum features. Bottom: Matter power spectra at z = 0 for the same
cosmologies as the ones shown in the top panels, except here As is chosen so that all three
cosmologies have the same value of σ12. The comparison is shown both for linear (left) and
non-linear (right) matter power spectra.
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2.6.1 Characterising the amplitude of the power spectrum
In Section 2.4 we described the power spectrum as a volume-averaged measurement, which
means that it will inherit whatever distance units we use to define this volume. We fur-
thermore already noted, in Section 2.3, that it is very common to express cosmological
distances in h−1Mpc units, which is also true when characterising the power spectrum: it
is common to see P (k) expressed in h−3Mpc on k scales defined in hMpc−1. This choice of
the unit system, however, results in shifts of the features of the power spectrum, which are
related not to any changes in physics, but simply a changing value of h, as first pointed
out in Sánchez (2020).

This point is illustrated in the top panels of Figure 2.3, which shows the linear power
spectrum computed for different cosmologies that share the same initial amplitude As
as well as the same values of ωb, ωc, ων and ns expressed in Mpc (right) and h−1Mpc
(left) units. In these two cases, the only difference in the two cosmologies is the dark
energy density, which has no effect on the BAO signal. This is reflected in the power
spectra expressed in Mpc units: the three power spectra differ in amplitude only, with the
highest h cosmology showing the smallest amplitude, as faster expansion results in a more
significant clustering suppression. In contrast, the power spectra expressed in h−1Mpc
units not only show shifts in the BAO features, but additionally are in the reverse order in
terms of their amplitudes: the power spectrum corresponding to the cosmology with the
highest dark energy density and, therefore, the least clustering, has the greatest amplitude.
The consequence of using h−1Mpc units is then the obscurity of the true effect that h has
on the power spectrum.

This issue translates more directly into the cosmological parameter space as well. The
power spectrum amplitude is one of the parameters required to specify a cosmology. A pos-
sible choice is the initial amplitude of the fluctuation spectrum, As, however, alternatively,
one might want to use the amplitude of the power spectrum today. Traditionally, this is
characterised by the parameter σ8, which represents the linear power spectrum amplitude
as measured on a scale of R = 8 h−1Mpc. In practice, σR represents the amplitude of a
smoothed density field, or the average of density fluctuations within a sphere of radius R
and can be defined as a convolution of the power spectrum and a window function Wk:

σ2(R) =
∫

∆2
lin(k)|Wk|2d ln k. (2.115)

Here ∆2
lin(k) is the dimensionless linear power spectrum, such that:

∆2
lin(k) ≡ 1

(2π)3 4πk3Plin(k) (2.116)

and the window function takes the form of:

Wk = 3
(kR)3

(
sin(kR) − kRcos(kR)

)
. (2.117)

The fact that σR is defined in terms of the dimensionless power spectrum, means that the
issue of units is only introduced when defining the smoothing scale R. The problem with
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σ8 is then simply the fact that it is measured on a scale that is defined in terms of h−1Mpc,
which means that this parameter does not capture the amplitude of the power spectrum
in a consistent way.

An alternative to σ8 was proposed by Sánchez (2020) who suggested to replace this
parameter with σ12 - an equivalent σR measurement with R = 12 Mpc. Here the value of
R is defined in Mpc units and the value of 12 Mpc is chosen such that σ12 is of a similar
magnitude as σ8 for the standard value of h = 0.67. We can demonstrate that σ12 correctly
describes the power spectrum amplitude, as shown in the bottom panels of Figure 2.3. Here
the power spectra from the top panels of the same figure are computed for values of As
that are adjusted to give the same σ12. We can see that, indeed, the power spectra for all
cosmologies show an excellent agreement both for linear and non-linear cases. Although
not seen by eye, it is important to note that the agreement is perfect in the linear case
and with only a few percent difference at high k for the non-linear case. We can, therefore,
conclude that σ12 captures the degenerate effect that As and h have on the power spectrum
when it is expressed in Mpc units.

The use of particular units does not alter the information content of the power spectrum,
however, the cosmological constraints on σ8 and σ12 differ in important ways, as discussed in
Chapters 3 and 4. In addition to this, being able to correctly describe the power spectrum
amplitude allows us to easily map between cosmologies that are characterised by the power
spectra with identical shapes as we will discuss in the next section.

2.6.2 Evolution and shape parameters
In the previous section, we saw that, when Mpc units are used and the rest of the cosmo-
logical parameters are held fixed, As and h follow a degeneracy that accurately describes
the amplitude of the matter power spectrum. In order to be able to perform evolution
mapping we must proceed to similarly define a cosmological parameter space where each
parameter’s impact on the power spectrum can be clearly characterised.

Once again, in order to be able to do so, it is crucial that none of the quantities used
are expressed through h. In addition to substituting σ8 with σ12, it is then also necessary
to use the correct parameterization for the homogeneous background evolution. In Section
2.2 we introduced the concept of physical densities ωi which in evolution mapping replace
the relative densities Ωi and are related to them through h: ωi = Ωih

2.
Using this parametrisation and considering the dimensionless linear matter power spec-

trum (or, equivalently, the linear power spectrum expressed in Mpc units), we can proceed
to classify the cosmological parameters into shape and evolution, based on the effect that
they have on ∆2

lin(k), as proposed by Sánchez et al. (2022). The shape parameters (Θs)
characterise the shape of the primordial power spectrum and the transfer function. They
are:

Θs = (ωγ, ωb, ωc, ns, ...). (2.118)

At the linear level, the rest of the parameters then only affect the amplitude of ∆2
lin(k).
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These are referred to as evolution parameters (Θe) and include:

Θe = (As, ωK, ωDE,wDE(a), ...). (2.119)

Here, wDE(a) includes all possible parametrizations of the dark energy equation of state
parameter wDE. It is important to note that the physical neutrino density ων cannot be
characterised as either shape or evolution parameter because, already at the linear level,
it introduces scale dependence of the growth factor. As a result, an additional correction
needs to be applied in order to use evolution mapping to model cosmologies with massive
neutrinos. For this reason, for the rest of this section, we will proceed to only consider
cosmologies with ων = 0. In Section 2.6.1, we showed how varying h only changed the
amplitude of the power spectrum, however, this illustrated a special case where we fixed
ωm and, therefore, effectively only varied the evolution parameter ωDE. In general, h
represents a mixture of shape and evolution parameters because it is obtained by summing
the physical densities of all energy species. As a result, any parameter defined through h
will represent a mixture of shape and evolution parameters as well.

The most precise constraints on shape parameters are provided by the CMB measure-
ments. Nevertheless, the probe has little constraining power on the evolution parame-
ters in general cosmologies. The large-scale structure data, on the other hand, exhibits
complimentary constraining properties: it provides only weak constraints on the shape
parameters but, when additional information on these parameters is included (either by
adding a constraining data set or by imposing an informative prior), it can provide precise
measurements of the evolution parameters.

This parameter classification can be furthermore used to perform an accurate mapping
between cosmologies that share the same shape parameters. This procedure is based on the
fact that, for a given set of shape parameters, any combination of evolution parameters that
correspond to the same clustering amplitude, results in an identical linear power spectrum.
As discussed in the previous section, a convenient way to characterise the power spectrum
amplitude and, therefore, the degeneracy between the evolution parameters, is to use σ12,
so that:

∆2
lin(k|z, Θs, Θe) = ∆2

lin(k|Θs, σ12(z, Θs, Θe)), (2.120)

which we will refer to as the evolution mapping relation. One can, therefore, obtain a
prediction for the linear power spectrum for any combination of evolution parameters
at any redshift by simply taking a ∆2

lin prediction for a cosmology with matching shape
parameters and the appropriate value of σ12.

The evolution mapping relation also applies for the non-linear matter power spectrum
obtained from perturbation theory calculations, assuming that the perturbation kernels
are independent of cosmology, which has been shown to be a good approximation for a
wide variety of cosmologies (Garny & Taule, 2021; Takahashi, 2008; Taruya, 2016). This
is because, following the SPT approach, the non-linear P (k) is a function of the linear
power spectrum (Scoccimarro et al., 1998). As an example, we can consider one of the
perturbative recipes, RPT, which we introduced in Section 2.4.5. As stated in equation
(2.67), following this approach, the non-linear matter power spectrum is written as a sum
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of the mode coupling term PMC(k, a) and the product of the linear power spectrum and the
propagator term PlinG2(k, a). The product term simply represents the contribution from
the linearly-evolved power from each individual k, while the mode-coupling term accounts
for the contribution from all other scales in the linear power. Both of these terms can
be expressed in terms of contributions that are functions of Plin, which means that any
model with identical Plin will also lead to the same RPT prediction for the non-linear
matter power spectrum. The same is true for any other recipe, in general, where P (k) is
defined as a function of the linear power spectrum only. The evolution mapping relation
can, furthermore, be adapted to obtain predictions in redshift space and for tracer power
spectra, as we will explicitly describe in Section 5.1.

Given a power spectrum for a single cosmological model, evolution mapping, therefore,
provides a simple recipe to explore a range of different cosmologies that share the same
Θs. This is extremely convenient when building an emulator - a sophisticated interpolation
scheme that, once trained on theory models calculated for sample points in a parameter
space, allows the user to obtain a theory prediction for any point within it at a fraction
of the time it would take to evaluate the full model. The accuracy of the emulation, how-
ever, generally decreases when increasing the parameter space, which is why the evolution
mapping approach is so useful when designing an emulator: it reduces the number of pa-
rameters required to fully specify the power spectrum as well as providing a recipe to easily
map a power spectrum prediction to any desired redshift. In Chapter 5 we discuss the use
of evolution mapping for emulation in greater detail and present the work on building an
evolution mapping-based emulator of the two-point correlation function.



Chapter 3

Full shape analysis of BOSS and
eBOSS QSO

The material in this chapter concerns the full shape analysis of the anisotropic clustering
in BOSS galaxy and eBOSS quasar samples and was first presented in Semenaite et al.
(2022).

In the work presented in this chapter, we are interested in building upon Tröster et al.
(2020), who performed a full-shape analysis of BOSS galaxy clustering wedges on its own
and in combination with weak lensing measurements from KiDS-450 (see also Chapter 1
for a summary of the main results). We wish to explore, whether the discrepancy between
the low-redshift probes and Planck within the ΛCDM model holds when extending the
redshift range probed by the clustering measurements with the addition of eBOSS quasar
clustering. We provide the joint constraints from the full shape analysis of BOSS galaxy
and eBOSS quasar clustering on their own, as well as in combination with weak lensing
information. For our weak lensing data set we use the 3×2pt measurements from the Dark
Energy Survey Year 1 (DES Y1, Abbott et al., 2018) release, which both cover a larger
area than KV450 and include galaxy clustering and galaxy-galaxy lensing as well as the
shear-only measurements. If the tension seen between the low-redshift probes and Planck
is purely statistical, adding more data should not only tighten the posterior contours but
be able to bring the constraints to a better agreement. The results from an equivalent
analysis with KiDS-450 shear measurements are available in the Appendix A.

In addition to expanding our data sets we also aim to re-define the parameter space
following Sanchez et al. (2021), who distinguish ‘shape’ and ‘evolution’ cosmological param-
eters. This classification is introduced to describe the degenerate way in which evolution
parameters affect the linear matter power spectrum when expressed in Mpc units, as dis-
cussed in Section 2.6. While in Sanchez et al. (2021) the h-independent parameter space
is presented to create a framework which allows them to reduce the number of parameters
required to model the cosmology dependence of the matter power spectrum, the advan-
tage of such parameter choice for this work is two-fold. First, the derived constraints do
not depend on the posterior of h of the particular analysis and can, therefore, be directly
compared with constraints from other data sets and, second, the effect that each of the
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parameters has on the power spectrum is clear, with evolution parameters affecting its
amplitude and shape parameters determining the shape.

This work largely follows the same structure and methods as Tröster et al. (2020) -
we assume flat ΛCDM cosmology and obtain the joint low-redshift parameter constraints
by combining the likelihoods for each data set considered independently. Our model for
anisotropic galaxy and quasar clustering measurements follows that described in Sánchez
et al. (2017) for the so-called ‘full shape’ analysis with some exceptions. First, the non-
linear matter power spectrum is obtained using predictions by respresso (see Section
2.4.5), instead of the gRPT approach used by Sánchez et al. (2017). Second, our description
of galaxy bias (provided in Section 2.5.1) includes a slightly different treatment of the tidal
bias parameters. Our modelling of RSD effect and the AP distortions matches that of
Sánchez et al. (2017) and is as described in Sections 2.5.2 and 2.5.4. For the ‘3 × 2pt’
analysis (galaxy shear, galaxy-galaxy lensing, and galaxy clustering) we use the model
described in Abbott et al. (2018).

The structure of this chapter is as follows. We provide a more detailed description of
the parameter space we use (including the prior choices) in Section 3.1, with the validation
of the model used in this work presented in Section 3.2. A summary of our data is given
in Section 3.3.1. We illustrate how our parameter space compares with its h-dependent
equivalent in Section 3.4.1, where we also present our cosmological constraints from BOSS
and eBOSS. The results obtained when adding DES are further displayed in Section 3.4.3
We finish with a discussion of our results in Section 3.5 and a summary in Section 3.6.

3.1 Parameter spaces and prior ranges
Our goal is to obtain constraints on the parameters of the standard ΛCDM model, which
corresponds to a flat universe, where dark energy is characterized by a constant equation
of state parameter wDE = −1. Following Sanchez et al. (2021), we focus on cosmological
parameters that can be classified as either “shape” or “evolution”. The former are param-
eters that control the shape of the linear-theory power spectrum expressed in Mpc units.
The latter only affect the amplitude of PL(k) at any given redshift. Assuming a fixed total
neutrino mass of ∑

mν = 0.06 eV, the ΛCDM model can be described by the parameters

θθθ = (ωb, ωc, ωDE, As, ns) . (3.1)

These are the present-day physical energy densities of baryons, cold dark matter, and dark
energy, and the amplitude and spectral index of the primordial power spectrum of scalar
perturbations at the pivot wavenumber of k0 = 0.05 Mpc−1.

Additional parameters can be derived from the set of equation (3.1). The dimensionless
Hubble parameter, h, is defined by the sum of all energy contributions. For a ΛCDM model,
this is

h2 = ωb + ωc + ων + ωDE. (3.2)

It is also common to express the contributions of the various energy components in terms
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Table 3.1: Priors used in our analysis. U indicates a flat uniform prior within the specified
range. The priors on the cosmological and clustering nuisance parameters match those of
Tröster et al. (2020) with the exception of ns, for which the allowed range is widened. The
priors on the nuisance parameters of weak lensing data sets match those of Abbott et al.
(2018).

Parameter Prior
Cosmological parameters

Ωbh2 U(0.019, 0.026)
Ωch

2 U(0.01, 0.2)
100θMC U(0.5, 10.0)

τ U(0.01, 0.8)
ln(1010As) U(1.5, 4.0)

ns U(0.5, 1.5)
Clustering nuisance parameters

b1 U(0.5, 9.0)
b2 U(−4.0, 8.0)

avir U(0.0, 12.0)
σerr (eBOSS only) U(0.01, 6.0)

of the density parameters
Ωi = ωi/h2, (3.3)

which represent the fraction of the total energy density of the Universe corresponding
to a given component i. The overall amplitude of matter density fluctuations is often
characterized in terms of σ8, the linear-theory RMS mass fluctuations in spheres of radius
R = 8 h−1Mpc. A common property of these parameters is their dependence on the value
of h. The issues associated with this dependence are discussed in detail by Sánchez (2020)
and can be summarised as follows.

The main consequence of using quantities that depend on h in cosmological analyses
is that this complicates the comparison of constraints derived from probes that lead to
different posterior distributions on h. This can be illustrated the most straightforwardly
when considering σ8, which is defined in terms of a scale in h−1Mpc units. As done by
Sánchez (2020), the one-dimensional marginalised posterior distribution for h can be used
to obtain the corresponding posterior for (8/h) Mpc to explore what physical distances this
radius corresponds to. Fig. 3.1 repeats this simple exercise for the data sets considered in
this work - as expected, the range of scales recovered in each case heavily depends on the
type of probe considered (Planck displaying an extremely narrow posterior at the physical
scale of approximately 12 Mpc, while the remaining probes cover varying ranges), especially
in the case where the posterior of h is simply limited by the prior imposed, as is the case
for weak lensing data sets.

The solid line in Fig. 3.2 shows the density field variance σR as a function of the scale
R in a Planck ΛCDM Universe. The shaded areas indicate the range of physical scales
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Figure 3.1: Upper panel one-dimensional marginalised posteriors for h for the different
data sets considered in this work (with the priors used in this analysis). Lower panel: the
corresponding posteriors of the physical value of (8/h) Mpc - the scale used to define σ8.
Any distance defined in h−1Mpc units will correspond to a range of physical scales, as
determined by the posterior of h. If the posterior is prior limited, as is the case with weak
lensing, the choice of prior will also influence the range of physical scales that contribute
to σ8. On the other hand, the effect is much smaller for the case of narrow Gaussian
h-posterior - for Planck σ8 will correspond to a scale of 12 Mpc.

covered by the the posterior distributions of (8/h) Mpc for DES, BOSS, and Planck shown
in Fig. 3.1. The issue with σ8 is then that its marginalized value corresponds to a weighted
average of σR on a range of scales that is different for each data set. A further complication
is that the value of h also has an impact on the amplitude of σR. As discussed in Sánchez
(2020), these issues can be avoided by considering the variance of the density field on a
reference scale in Mpc such as σ12, which is equivalent to σ8 but is defined on a physical
scale of 12 Mpc. We, therefore, opt to focus on σ12 and quantities that carry no explicit
dependence on the Hubble constant h in order to enable us to appropriately combine and
compare the constraints from our data sets.

We obtain the posterior distribution of all these parameters by performing Monte Carlo
Markov chain (MCMC) sampling with CosmoMC (Lewis & Bridle, 2002), which uses
CAMB to calculate the linear-theory matter power spectra (Lewis et al., 2000), adapted
to compute the theoretical model of our anisotropic clustering measurements. CosmoMC
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Figure 3.2: The change of the value of standard deviation of linear matter fluctuations σR

measured in a sphere of physical radius R in Mpc in Planck ΛCDM Universe. The shaded
areas indicate the ranges that (8/h) Mpc correspond to for BOSS, DES and Planck based
on the posteriors in Fig. 3.1. When R is defined in h−1Mpc, as is the case for σ8, the value
measured is, in fact, a weighted average of σR over a range of R.

uses as basis parameters the set

θθθbase = (ωb, ωc, ΘMC, As, ns) , (3.4)

where ΘMC is defined by a factor 100 times the approximate angular size of the sound
horizon at recombination. With the exception of the physical baryon density, we assign
flat uninformative priors to all the parameters of equation (4.3) as was done in Tröster
et al. (2020). Our prior for ωb has to be restrictive, as our clustering measurements cannot
constrain this parameter by themselves. Nevertheless, it is chosen to be approximately 25
times wider than the constraints on this parameter derived from Planck data alone (Planck
Collaboration et al., 2020). Even though we do not sample the Hubble parameter h, we
still need to specify the values allowed - our chosen range 0.5 < h < 0.9 is wider than that
of the KiDS-450 analysis of Hildebrandt et al. (2016) and comparable to the one used in
the DES-YR1 fiducial analysis of Abbott et al. (2018). Joudaki et al. (2016) showed that
the prior on h has no impact on the significance of the σ8 tension. We list all the priors
used in this analysis in Table 3.1.

As discussed by Sanchez et al. (2021), the effect of all evolution parameters on the
linear matter power spectrum is degenerate: for a given set of shape parameters, the linear
power spectra of all possible combinations of evolution parameters that lead to the same
value of σ12(z) are identical. This behaviour is inherited by the non-linear matter power
spectrum predicted by respresso, which depends exclusively on PL(k). However, the full
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model of P (k, µ) does not follow this simple degeneracy due to the effect of bias, RSD
and AP distortions. Of the parameters listed in equation (3.1), ωb, ωc, and ns are shape
parameters, while ωDE and As are purely evolution parameters. Other quantities such as
h or Ωi represent a mixture of both shape and evolution parameters.

Present-day CMB measurements can constrain the values of most shape parameters
with high accuracy, with posterior distributions that are well described by a multivariate
Gaussian, independently of the evolution parameters being explored. On the other hand,
clustering measurements on their own provide only weak constraints on the values of the
shape parameters. However, if the shape parameters are fixed, clustering data can provide
precise measurements of the evolution parameters. To test the impact of the additional
information on the shape of the linear power spectrum, along with the priors described
above, we use another set of priors to explore the constraints on the evolution parameters.
For these runs, we impose Gaussian priors on the cosmological parameters that control the
shape of the linear power spectrum - ωb, ωc, and ns. We derived the covariance matrix
and mean values for these priors from our Planck-only posterior distributions. We refer to
these constraints as the ‘Planck shape’ case.

3.2 Model validation
As we are using an updated prescription for the modelling of both the non-linear matter
power spectrum and galaxy bias compared to the previous work of Tröster et al. (2020),
we want to assess if it can recover unbiased cosmological parameter estimates, using mock
data based on numerical simulations as a testing ground. We do so by applying our model
to the mocks that were used for model validation in the original analyses: the Minerva
simulations (Grieb et al., 2016; Lippich et al., 2019) for a BOSS-like sample and OuterRim
(Heitmann et al., 2019) for an eBOSS-like data set.

Minerva mocks are produced from a set of 300 N-body simulations with 10003 particles
and a box size of L = 1.5 h−1Gpc. The snapshots at z = 0.31 and z = 0.57 were used to
create halo catalogues with a minimum halo mass of Mmin = 2.67×1012h−1M⊙, which were
populated with synthetic galaxies using the halo occupation distribution (HOD) model by
Zheng et al. (2007) with parameters designed to reproduce the clustering properties of the
LOWZ and CMASS galaxy samples from BOSS.

The OuterRim (Heitmann et al., 2019) simulation uses 10 2403 dark matter particles
to trace the dark matter density field in a L = 3 h−1Gpc size box. We use a set of 100
mock catalogues constructed from the snapshot at z = 1.433, which was populated using
an HOD model matching the clustering of the eBOSS QSO sample and tested extensively
in the mock challenge (labeled as HOD0 in Smith et al., 2020). These realizations include
catastrophic redshift failures at a rate of 1.5%, which corresponds to that of the eBOSS
quasars.

We measured the mean clustering wedges of the samples from Minerva and the Legen-
dre multipoles from OuterRim with the same binning and range of scales as those of the
real data from BOSS and eBOSS and computed their corresponding theoretical covariance
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Figure 3.3: Flat ΛCDM constraints derived from mean measurements of Minerva (left)
and OuterRim (right) HOD samples while freely varying the non-local bias parameter γ21
(grey contours) and when its value is fixed using the co-evolution relation of equation (2.74)
(red). The dashed lines mark the true input parameter values. Both cases recover the
input cosmology well but the co-evolution relations yield slightly more accurate and precise
constraints.

matrices using the Gaussian recipe of Grieb et al. (2016). We analysed these measure-
ments using identical nuisance and cosmological parameter priors as for our final results
and tested the validity of our model with and without the assumption of the co-evolution
relation for γ21 of equation (2.74). We performed a joint fit of the two BOSS-like sam-
ples from Minerva while the OuterRim measurements, which correspond to a different
cosmology, were analysed separately. Fig. 3.3 shows the posterior distributions recovered
from these measurements, which are in excellent agreement with the true input cosmology
for all cases (shown by the dashed lines). Nevertheless, we find that setting the value of
γ21 according to equation (2.74) recovers the true parameter values more accurately for
both samples and results in tighter constraints than when it is freely varied. We, therefore,
adopt this approach in the analysis of the clustering measurements from BOSS and eBOSS.

3.3 Data

3.3.1 Galaxy and QSO clustering measurements
The Sloan Digital Sky Survey (SDSS) has mapped the large-scale structure of the Universe
thanks to the accurate measurements by the double-armed spectrographs (Smee et al.,
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Figure 3.4: BOSS galaxy wedges measurements used in this analysis. The data set consists
of two sets of three galaxy wedges measured by splitting the µ range from 0 to 1 into three
equal intervals. The low redshift bin (top figure) corresponds to the effective redshift
zeff = 0.38, whereas the high redshift bin (bottom figure), corresponds to zeff = 0.61. The
shaded area represents the scales not used in this analysis.
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Figure 3.5: eBOSS quasar multipoles measurements used in this analysis. The data set-
consists of the measurements of monopole (ξ0), quadrupole (ξ2) and hexadecapole (ξ4) in
a single redshift bin, corresponding to the effective redshift of zeff = 1.48. The shaded area
represents the scales not used in this analysis.

2013) at the Sloan Foundation Telescope at Apache Point Observatory (Gunn et al., 2006).
Throughout its different stages (York et al., 2000; Eisenstein et al., 2011; Blanton et al.,
2017) the SDSS has provided redshift information on millions of galaxies and quasars.

We consider clustering measurements in configuration space from two data sets: the
galaxy samples of BOSS (Dawson et al., 2013), corresponding to SDSS DR12 (Alam et al.,
2015; Reid et al., 2016), and the QSO catalogue (Lyke et al., 2020) from eBOSS (Dawson
et al., 2016), contained in SDSS DR16 (Ahumada et al., 2020; Ross et al., 2020). In
each case, the information from the full anisotropic correlation function ξ(s, µ), where s
denotes the comoving pair separation and µ represents the cosine of the angle between the
separation vector and the line of sight, was compressed into different but closely related
statistics.

We analyse the clustering properties of the combined BOSS galaxy sample using the
measurements of Sánchez et al. (2017), who employs the clustering wedges statistic (Kazin
et al., 2012), ξ∆µ(s), which corresponds to the average of ξ(s, µ), over the interval ∆µ = µ2−
µ1 as given in equation (2.109). Sánchez et al. (2017) measured three wedges by splitting
the µ range from 0 to 1 into three equal-width intervals. We consider their measurements
in two redshift bins, with 0.2 < z < 0.5 (the LOWZ sample) and 0.5 < z < 0.75 (CMASS),
corresponding to the effective redshifts zeff = 0.38 and 0.61, respectively (see Figure 3.4).
The covariance matrices, C, of these data were estimated using the set of 2045 MD-Patchy
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mock catalogues described in Kitaura et al. (2016). These measurements were also used in
the analysis of Tröster et al. (2020) and the recent studies of the cosmological implications
of the KiDS 1000 data set (Heymans et al., 2021; Tröster et al., 2021a).

For the eBOSS QSO catalogue we use the measurements of Hou et al. (2021), who
considered the Legendre multipoles given by

ξℓ(s) = 2ℓ + 1
2

∫ 1

−1
ξ(µ, s)Lℓ(µ) dµ, (3.5)

where Lℓ(µ) denotes the ℓ-th order Legendre polynomial (this is equivalent to the equation
we had for the power spectrum multipoles, equation (2.107)). We consider the multipoles
ℓ = 0, 2, 4 obtained using the redshift range 0.8 < z < 2.2, with an effective redshift
zeff = 1.48 (see Figure 3.5). The covariance matrix of these measurements were obtained
using the set of 1000 mock catalogues described in Zhao et al. (2021). Besides the QSO
sample used here, the full eBOSS data set contains two additional tracers, the luminous
red galaxies (LRG) and emission line galaxies (ELG) samples (for the corresponding BAO
and RSD analyses, see Bautista et al., 2021; Gil-Marín et al., 2020; de Mattia et al., 2021;
Tamone et al., 2020). These samples overlap in redshift among them and with the galaxies
from BOSS. We, therefore, restrict our analysis of eBOSS data to the QSO sample to, in
combination with BOSS, cover the maximum possible redshift range while ensuring that
the clustering measurements can be treated as independent in our likelihood analysis.

We treat the measurements from BOSS and eBOSS as in the original analyses of Sánchez
et al. (2017) and Hou et al. (2021). We restrict our analysis to pair separations within
the range 20 h−1Mpc < s < 160 h−1Mpc. We assume a Gaussian likelihood for each set of
measurements, in which the covariance matrices are kept fixed. We account for the impact
of the finite number of mock catalogues used to derive C (Kaufman, 1967; Hartlap et al.,
2007; Percival et al., 2014). The large number of mock catalogues used ensures that the
effect of the noise in C on the obtained cosmological constraints corresponds to a modest
correction factor of less than 2 per cent.

3.3.2 Additional data sets
We complement the information from our clustering measurements with the 3 × 2pt mea-
surements from DES Y1 (Abbott et al., 2018). We also use the shear measurements from
the Kilo-Degree Survey (KiDS-450, Hildebrandt et al., 2016) and present the results in
Appendix A.

The source galaxy samples from DES are split into four redshift bins, spanning the
redshift range of 0.2 < z ≤ 1.3. In addition to shear measurements from the source
galaxies, the DES Y1 data set also includes galaxy clustering and galaxy-galaxy lensing
two-point correlation function measurements, as well as the lens redshift distributions for
five redshift bins in the range of 0.15 < z < 0.9. Our scale cuts for these measurements
match those of Abbott et al. (2018).

For our 3 × 2pt analysis, we use the DES likelihood as implemented in CosmoMC
(Lewis & Bridle, 2002), which corresponds to the model described in Abbott et al. (2018).
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The likelihood includes models for the two-point correlation functions describing galaxy-
galaxy lensing, galaxy clustering, and cosmic shear. The correlation functions are modelled
making use of Limber and flat-sky approximations (Limber, 1954; Kaiser, 1992; LoVerde &
Afshordi, 2008; Kilbinger et al., 2017) with the non-linear power spectrum obtained using
HMCode (Mead et al., 2015) as implemented in camb (Lewis et al., 2000). The smallest
angular separations considered correspond to a comoving scale of 8 h−1Mpc. The intrinsic
alignment is modelled using a ‘non-linear linear’ alignment recipe (Hirata & Seljak, 2004;
Bridle & King, 2007). The model also includes a treatment for multiplicative shear bias and
photometric redshift uncertainty. The former is accounted for by introducing multiplicative
bias terms of the form (1 + mi) for each bin i for shear and galaxy-galaxy lensing. The
latter is modelled by the shift parameters δzi assigned to each bin for both source and
lens galaxies. Finally, baryonic effects are not included as they are expected to be below
the measurement errors for the range of scales considered in the analysis. For all the weak
lensing nuisance parameters we impose the same priors as the ones listed in Abbott et al.
(2018).

Additionally, we test the consistency of the low-redshift LSS measurements with the
latest CMB temperature and polarization power spectra from the Planck satellite (Planck
Collaboration et al., 2020), to which we refer simply as ‘Planck’. We do not include
CMB lensing information. We use the public nuisance parameter-marginalised likelihood
plik_lite_TTTEEE+lowl+lowE for all Planck constraints (Planck Collaboration et al.,
2020).

3.4 Results
Our main results come from the combination of the full shape analyses of the BOSS
galaxy clustering wedges and eBOSS QSO Legendre multipoles described in Sec. 3.3.1.
We also present combined late-Universe constraints obtained from the joint analysis of
these clustering measurements with the 3 × 2pt data setfrom DES Y1. For comparison, in
Appendix A we present the constraints obtained using instead the cosmic shear measure-
ments from KiDS-450, which lead to similar results. As we find a good agreement between
BOSS + eBOSS + DES and Planck, we also present the parameter constraints obtained
from the combination of all four data sets. These constraints are summarized in Table 4.2
and are discussed in Sects. 3.4.1 – 3.4.3.

3.4.1 Clustering constraints
Here we present the main result of our work - the combined flat ΛCDM constraints from the
anisotropic clustering measurements from BOSS and eBOSS. Fig. 3.6 shows the posterior
distributions for BOSS and eBOSS separately (light blue and orange contours, respectively)
as well as their combined constraints (green contours) for two sub-sets of cosmological
parameters. For comparison, we also show the Planck-only constraints in dark blue. The
panels on the left show the results on the more traditional parameter set of σ8, Ωm, and
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Table 3.2: Marginalised posterior constraints (mean values with 68 per-cent confidence
interval) derived from the full shape analysis of BOSS + eBOSS clustering measurements
on their own, as well as in combination with the 3 × 2pt measurements from DES Y1 and
the CMB data from Planck. We present two sets of constraints: our main results derived
with wide priors, as listed in Table 3.1, and the ‘Planck shape’ constraints obtained by
imposing narrow Gaussian priors on the cosmological parameters controlling the shape of
the linear power spectrum: the physical baryon density ωb, the physical cold dark matter
density ωc and the spectral index ns, as discussed in Section 3.1.

Wide priors

Parameter BOSS + eBOSS BOSS + eBOSS
+ DES

BOSS + eBOSS
+ DES + Planck

σ12 0.805 ± 0.049 0.795+0.032
−0.037 0.7890 ± 0.0078

ωm 0.134 ± 0.011 0.131 ± 0.011 0.14090± 0.00085
ωDE 0.328 ± 0.020 0.327 ± 0.020 0.3268 ± 0.0064

ln1010As 3.13 ± 0.15 3.14 ± 0.13 3.041 ± 0.016
ns 1.009 ± 0.048 1.001 ± 0.047 0.9700 ± 0.0038
σ8 0.815 ± 0.044 0.803 ± 0.028 0.8029 ± 0.0066
Ωm 0.290+0.012

−0.014 0.286+0.011
−0.013 0.3014 ± 0.0053

h 0.679 ± 0.021 0.677 ± 0.021 0.6838 ± 0.0041
S8 0.801 ± 0.043 0.783 ± 0.020 0.805 ± 0.011

Narrow priors

Parameter BOSS + eBOSS BOSS + eBOSS
+ DES

σ12 0.785 ± 0.039 0.766 ± 0.019
ωm 0.1426 ± 0.0013 0.1423 ± 0.0012
ωDE 0.327+0.011

−0.013 0.335 ± 0.011
ln1010As 3.011 ± 0.099 2.976 ± 0.054

ns 0.9660 ± 0.0044 0.9665 ± 0.0043
σ8 0.800 ± 0.039 0.785 ± 0.021
Ωm 0.3037 ± 0.0081 0.2985 ± 0.0072
h 0.6855+0.0084

−0.0094 0.6905 ± 0.0083
S8 0.805 ± 0.042 0.783 ± 0.019
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Figure 3.6: Marginalised posterior contours in the ‘traditional’ and h-independent parame-
ter spaces from the Legendre multipoles of eBOSS QSO sample (orange) and the clustering
wedges of BOSS DR12 galaxies (light blue) for a flat ΛCDM model. The joint constraints
are shown in green, with Planck in dark blue for comparison.

H0 whereas the ones on the right correspond to the alternative basis discussed in Sec. 3.1
of σ12, ωm, and ωDE.

Regardless of the parameter space considered, we find all of our data sets to be in
good agreement with each other. The largest deviation between the joint BOSS + eBOSS
constraints and those recovered from Planck can be observed in the matter density Ωm,
which displays a difference at the 1.7σ level. Nevertheless, this deviation does not indicate a
similarly significant disagreement in the physical matter density preferred by these probes,
as the value of ωm recovered by our clustering constraints matches that of Planck within
0.8σ. This suggests that the differences seen in Ωm are related to the posterior distributions
on h recovered from these data sets. Indeed, looking at our h-independent parameter space,
we see that the marginalised constraint of the physical dark energy density also differs from
the value preferred by Planck by 0.8σ, with clustering measurements preferring slightly
higher ωDE, which translates into a higher value for H0 and a lower Ωm.

Tröster et al. (2020) found that the clustering measurements from BOSS wedges prefer
a 2.1σ lower value of σ8 as compared to Planck. Here we confirm the low preference, albeit
with much lower significance due to the differences in the modelling of the power spectrum,
for both σ8 and σ12 (consistent with Planck at the 1.1σ and 1.3σ level, respectively). The
increased consistency between these results is mainly due to the tighter constraints enabled
by the use of the co-evolution relation of equation (2.74), which restricts the allowed region
of the parameter space to higher values of σ8 and σ12, as can be seen in Fig. 3.3. The
constraints on σ8 and σ12 recovered from eBOSS are at similar levels of agreement with
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Figure 3.7: When an informative prior is imposed on BOSS + eBOSS for the shape pa-
rameters ωb, ωc, and ns so as to match the power spectrum shape obtained by Planck, the
recovered constraints (in green) on the evolution parameters are in a good agreement with
Planck (dark blue) with a slightly more significant deviation in ωDE only: BOSS + eBOSS
prefer a ∼1.2σ higher value of ωDE than Planck.

Planck, however, the values recovered are 1.3σ and 1.2σ higher than the CMB results.
This is also consistent with the most recent analysis by Hou et al. (2021) and Neveux et al.
(2020), who found the inferred growth rate fσ8 to be ∼2σ higher than the ΛCDM model
with the best-fitting Planck parameters. The combination of the clustering measurements
from BOSS and eBOSS is, therefore, in an overall excellent agreement with Planck - with
differences at the level of 0.05σ for σ8 and 0.04σ for σ12.

As discussed in Sec. 3.1, the shape parameters ωb, ωc, and ns are all tightly constrained
by Planck with posterior distributions that are in complete agreement with those inferred
from the other cosmological probes considered here. We can, therefore, study the improve-
ment in the constraints on the evolution parameters ωDE and As that are obtained from the
LSS probes when the shape of the power spectrum is constrained to match that of Planck’s
cosmology. As described in Sec. 3.1, we achieve this by adding an informative Gaussian
prior on the shape parameters based on our Planck runs and repeating our analysis with
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an otherwise identical set up.
The results of this exercise are shown in Fig. 3.7. As the two data sets were already in

a good agreement across the parameter space, including the shape parameters, imposing
additional priors simply adds constraining power on the degenerate evolution parameters,
most notably ωDE (degenerate with ωm), which is recovered to be slightly higher than the
Planck value to compensate the slight shifts in σ12 and ln(1010As) to lower values.

3.4.2 Consistency with Planck
When looking at marginalised posteriors we are limited by our selection of the parameter
space as well as the associated projection effects and, while we can use the standard devi-
ation to quantify agreement on a particular parameter value, this becomes inappropriate
when larger parameter spaces are considered. We, therefore, wish to further explicitly
quantify the agreement between eBOSS + BOSS and Planck using a tension metric, as
has become standard in cosmological analyses.

First, we want to establish agreement over the whole parameter space considered. In
order to do this, we use the suspiciousness tension metric, S, introduced by (Handley
& Lemos, 2019). The main advantages of using suspiciousness include the fact that it
measures the agreement between two data sets across the entire parameter space, similarly
to the Bayes factor R. However, unlike R, the suspiciousness is by construction insensitive
to prior widths, as long as the posterior is not prior-limited. Given two data sets, A and B,
the suspiciousness quantifies the mismatch between them by comparing the relative gain in
confidence in data setA when data setB is added (as measured by R) with the unlikeliness
of the two data sets ever matching as measured by the information ratio I, that is

ln S = ln R − ln I. (3.6)

Following the method described in Heymans et al. (2021), we redefine ln R and ln I in terms
of the expectation values of the log-likelihoods ⟨ln L⟩ and evidences Z. The evidences,
however, cancel out and we are able to calculate S from the expectation values only:

ln S = ⟨ln LA+B⟩PA+B
− ⟨ln LA⟩PA

− ⟨ln LB⟩PB
. (3.7)

The value of S can then be interpreted using the fact that, for Gaussian posteriors, the
difference d − 2 ln S, where d is the Bayesian model dimensionality, is χ2

d distributed. We
calculate d for each of the data sets separately, dA and dB, and their combination, dA+B,
as described in Handley & Lemos (2019) and combine the results as d = dA + dB − dA+B.

Applying this procedure to eBOSS + BOSS and Planck, we find ln S = 0.41 ± 0.07
with a Bayesian dimensionality of d=4.5 ± 0.4, which correctly indicates that there are
approximately 5 cosmological parameters shared between the two data sets. This can then
be related to a p-value of p = 0.52 ± 0.02 or a tension of 0.64 ± 0.03σ, which is consistent
with the 0.76 ± 0.05σ tension between Planck and BOSS alone found by Tröster et al.
(2020) and indicates a good agreement between these data sets.
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In addition to the suspiciousness, we want to use a tension metric that allows for a
greater control to focus only on a selected subset of parameters. For this purpose, we use
the update difference-in-mean statistic, QUDM, as described in Raveri & Hu (2019) and
implemented in tensiometer1 (Lemos et al., 2021). This statistic extends the simple
difference in means, where the difference in mean parameter values θ̂θθ measured by two
data sets is weighted by their covariance C. The ‘update’ in UDM refers to the fact that
instead of comparing data setA with data setB, we consider the updated information in
the combination A + B with respect to A by means of

QUDM =
(
θ̂θθA+B − θ̂θθA

)t
(CA − CA+B)−1

(
θ̂θθA+B − θ̂θθA

)
. (3.8)

This has the advantage of the posterior of A + B being more Gaussian than that of B
alone. For Gaussian distributed parameters, QUDM is chi-square distributed with a number
of degrees of freedom given by the rank of (CA − CA+B). The calculation of QUDM may be
performed by finding the Karhunen–Loéve (KL) modes of the covariances and re-expressing
the cosmological parameters in this basis. This transformation allows us to reduce the
sampling noise by imposing a limit to the eigenvalues of the modes that are considered and
in this way cutting out those that are dominated by noise (which represent the directions
in which adding B does not improve the constraints with respect to A). The number of
remaining modes corresponds to the degrees of freedom with which QUDM is distributed.
For our tension calculations we, therefore, only select the modes α whose eigenvalues λα

satisfy :
0.05 < λα − 1 < 100. (3.9)

This corresponds to requiring that a mode of the base data set is updated by at least 5
per-cent. We subsequently find that there are 2 modes being constrained when Planck
is updated by both probe combinations considered in this work (BOSS + eBOSS and
BOSS + eBOSS + DES).

For BOSS + eBOSS we get QUDM = 2.0 for the full parameter space, resulting in a
‘tension’ with Planck of 0.90σ - only slightly higher than what S suggests.

3.4.3 Joint analysis with DES data
Following Tröster et al. (2020), we want to further investigate the constraints from multiple
low-redshift probes together by adding a weak lensing data set - in this case, the 3 × 2pt
measurements from DES Y1. Tröster et al. (2020) used the suspiciousness statistic and
showed that the combination of BOSS clustering and KiDS-450 shear measurements are in
∼ 2σ tension with Planck. The most recent KiDS-1000 3 × 2pt analysis (Heymans et al.,
2021), where the BOSS galaxy sample was used for galaxy clustering and galaxy-galaxy
lensing measurements, also found a similar level of tension when the entire parameter space
is considered. As DES Y1 measurements have no overlap with either BOSS or eBOSS, we

1https://github.com/mraveri/tensiometer
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Figure 3.8: In orange - ‘low-redshift’ constraints for flat ΛCDM obtained from combining
BOSS + eBOSS clustering (green) with DES 3×2pt (light blue) and compared with Planck
(dark blue). While we obtain a good consistency overall, we note the slight discrepancy
between the low redshift probes and Planck contours in log(1010As) − σ12 and ωm–σ12
projections, reminiscent of the tension seen in σ8–Ωm plane.

can treat these data sets as independent and easily combine them to test whether we also
find a similar trend.

The resulting constraints are presented in Fig. 3.8. We confirm that DES is in good
agreement with eBOSS + BOSS (with ln S = −1.08 ± 0.05, which corresponds to a 1.3 ±
0.08σ tension) and it is, therefore, safe to combine them. The addition of DES data to the
analysis provides only slightly tighter constraints with respect to eBOSS + BOSS, with
the greatest improvement in σ12, and an overall good agreement with Planck.

Nevertheless, it is worth noting that, when considering the two dimensional posterior
projections, there are two parameter combinations in particular for which the 1σ contours
of DES + BOSS + eBOSS and Planck do not overlap. The slight discrepancy we observe
in the ωm – σ12 plane is reminiscent of the ‘σ8 tension’ seen in Ωm – σ8 and is larger than
the discrepancy displayed by either of the probes individually. In addition to that, we
also see a similarly slight disagreement in the ln(1010As) – σ12 plane. The projection of
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Figure 3.9: Constraints on flat ΛCDM models from the full combination of low-redshift
probes (DES + BOSS + eBOSS) obtained after imposing a Planck prior on shape parame-
ters ns, ωb and ωc (orange contours). The constraints from the original uninformative prior
analysis (grey contours) and Planck (dark blue contours) are shown for comparison. The
results show similar trends as in the case of BOSS + eBOSS. There is a shift to higher
values of ωDE that leads to a lower power spectrum amplitude today, σ12, and, to a lesser
extent, a lower log(1010As).
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As with σ12 (as opposed to σ8) allows us to recover the tight degeneracy between the two
parameters which exposes how, for a given present-day clustering amplitude, low-redshift
probes prefer a higher initial power spectrum amplitude.

We find that adding the DES Y1 3 × 2pt measurements worsens the agreement with
Planck with respect to the results obtained from the combination of BOSS and eBOSS
alone. We obtain a suspiciousness of ln S = −1.86 ± 0.04, corresponding to a tension of
1.54 ± 0.08σ. When considering the UDM statistic across the entire shared parameter
space, we find QUDM = 6.3 distributed with 2 degrees of freedom, which translates into a
tension at the 1.9σ level. As for the case of the clustering-only constraints, QUDM indicates
a greater level of tension than S.

Lemos et al. (2021) found that the DES Y1 3 × 2pt measurements alone are in a 2.3σ
tension with Planck, as measured by QUDM. This increases to 2.4 ± 0.02σ when using the
suspiciousness statistic. These levels of tension are comparable with what we find from
the full combination of low-redshift probes. The tension between Planck and weak lensing
data sets is usually interpreted as a reflection of tension in the parameter combination
S8 = σ8(Ωm/0.3)0.5, that is taken to describe the ‘lensing strength’. The S8 value that we
recover from the joint low redshift probes is also about 2σ lower than the Planck constraint
(see Table 4.2). Nevertheless, as we see in Fig. 3.8, there is a comparable discrepancy in
log(1010As) – σ12 plane. We can use QUDM in order to quantify and compare the level
of tension present in these two-dimensional projections by calculating it for a subset of
shared parameter space. We find that the amount of tension in both Ωm – σ8 and its
h-independent equivalent is ∼ 2.0σ, whereas log(1010As) − σ12 displays a slightly higher
tension of 2.5σ.

We also repeated our fitting procedure with an additional Gaussian prior on the pa-
rameters controlling the shape of the power spectrum to be consistent with Planck, as
described in Sec. 3.1. The resulting posteriors are shown in Fig. 3.9. We observe the same
general trends as from the analysis of our clustering data alone discussed in Sec. 3.4.1.
However, the prior on the shape parameters leads to larger shifts in the evolution param-
eters. This is expected, as DES data on their own cannot constrain the shape parameters
well. Adding the informative priors breaks the denegeracies between shape and evolution
parameters and increases the constraining power significantly. This, in turn, exposes any
discrepancies in the evolution parameters. The values of σ12 and ln(1010As) preferred by
our low-redshift probes when an informative prior is imposed are, respectively, 1.89σ and
1.22σ lower than the corresponding Planck values. Meanwhile, the recovered value for ωDE
is 1.73σ higher.

3.5 Discussion
The flat ΛCDM constraints from the low-redshift probes presented in Sec. 3.4 show a
consistent picture. Updating the power spectrum model and supplementing the clustering
measurements with eBOSS data brings the joint BOSS + eBOSS constraints to a better
agreement with Planck than the BOSS-only results from Tröster et al. (2020). These
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constraints are not significantly modified when these data are combined with DES, resulting
in a good overall consistency with Plank across the entire parameter space, as indicated
by both S and QUDM.

Nevertheless, when considering specific two-dimensional projections we still see intrigu-
ing differences, mainly driven by the lensing data. Although the constraints in the σ12
– ωm plane obtained using BOSS + eBOSS and DES data separately do not show the
discrepancy with Planck that characterizes the results in their h-dependent counterparts
of σ8 and Ωm, the full combination of low-redshift probes tightens the degeneracy between
these parameters and leads to constraints that are just outside the region of the parameter
space preferred by Planck.

We also see differences in the log(1010As) – σ12 plane between DES and Planck, which
are inherited by the full combination of low-redshift data sets. The tight relation between
these parameters, which is not seen when using σ8, illustrates the closer link between σ12
and the overall amplitude of density fluctuations obtained by eliminating the ambiguity
caused by the dependency on h. For a given value of σ12, Planck measurements prefer a
lower initial amplitude of density fluctuations than DES, suggesting a discrepancy in the
total growth of structures predicted by these two data sets.

Within the context of a ΛCDM model, the key parameter controlling the growth of
structure at low redshift is the physical dark energy density. Indeed, as can be seen in
Fig. 3.8 the posterior distribution of ωDE recovered from DES extends to significantly
higher values than the one obtained using Planck CMB measurements. The tendency of
the low-redshift data to prefer a higher value of ωDE than that of Planck can be seen more
clearly in the results obtained after imposing a prior on the shape parameters shown in
Fig. 3.9. In this case, we find ωDE = 0.335 ± 0.011 using BOSS + eBOSS + DES while
Planck data lead to ωDE = 0.3093 ± 0.0093. A higher value of ωDE corresponds also to a
higher value of h. Therefore, this difference is also interesting in the context of the Hubble
tension, as many of the proposed solutions to this issue focus on modifying the dark energy
component.

The analysis of the consistency between low- and high-redshift data has been focused
on the comparison of constraints on S8, which depends on the present-day value of σ8.
Fig. 3.10 shows the redshift evolution of S8(z) predicted by Planck and the combination
of all low-redshift data sets. These curves are consistent at high redshift during matter
domination and start to diverge at z < 1 to reach a difference at the 2σ level at z = 0.
However, as this redshift is not probed by any LSS data set, the value of S8(z = 0) is an
extrapolation based on the assumption of a ΛCDM background evolution. Extending this
extrapolation to a > 1, the difference between the two cosmologies continues to increase
and becomes even more significant. Therefore, quoting the statistical significance of any
discrepancy in the recovered values of S8(z = 0) might not be the best characterization of
the difference in the cosmological information content of these measurements.

As discussed before, DES and Planck data appear to prefer different evolutions for
the growth of cosmic structure, which in a ΛCDM universe depends on ωm and ωDE. As
the former is exquisitely constrained by Planck for general parameter spaces, the latter is
perhaps the most interesting parameter to consider. As ωDE is constant in redshift for a
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Figure 3.10: Comparison of the inferred mean value for S8(z) (solid lines) and their corre-
sponding 68 per-cent confidence level (shaded area) corresponding to the combination of
BOSS + eBOSS + DES (orange) and Planck (blue).

ΛCDM universe, the deviations in the value of this parameter recovered from different data
sets could be used as an indication of their consistency within the standard cosmological
model.

3.6 Summary
In the work presented in this chapter, we obtained constraints on the parameters of the
standard ΛCDM model from the joint analysis of anisotropic clustering measurements in
configuration space from BOSS and eBOSS. In particular, we used the information of the
full shape of the clustering wedges of the final BOSS galaxy samples obtained by Sánchez
et al. (2017) and the legendre multipoles of the eBOSS DR16 QSO catalogue of Hou et al.
(2021). We updated the recipes to describe the non-linear matter power spectrum and the
non-local bias parameters with respect to those used in the BOSS-only analyses of Sánchez
et al. (2017) and Tröster et al. (2020). We directly compared our theoretical predictions for
different cosmologies against the BOSS and eBOSS clustering measurements, without the
commonly used RSD and BAO summary statistics. We focus on cosmological parameters
that can be classified either as shape or evolution parameters (Sanchez et al., 2021), such as
the physical matter and dark energy densities, instead of other commonly used quantities
such as Ωm and ΩDE that depend on the value of h. Our constraints from the combination
of BOSS + eBOSS represent improvements ranging from 20 to 25 per-cent with respect
to those of Tröster et al. (2020) and are in excellent agreement with Planck, with the
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suspiciousness and updated difference in means tension metrics indicating agreement at
the level of 0.64σ and 0.90σ, respectively.

We combined the clustering data from BOSS and eBOSS with the 3 × 2pt correlation
function measurements from DES Y1 to obtain joint low-redshift cosmological constraints
that are also consistent with the ΛCDM Planck results, albeit with larger deviations (1.54σ
and 2.00σ differences as inferred from S and QUDM, respectively). We do see interesting
discrepancies in certain parameter combinations at the level of 2σ or more, such as the Ωm
– σ8 and ωm – σ12 planes, and, more significantly, in the log(1010As) – σ12 projection. For
a given value of σ12, low-redshift probes (mostly driven by DES) prefer a higher amplitude
of primordial density fluctuations than Planck, indicating differences in the total growth
of structure predicted by these data sets.

We further tested the impact of imposing a Gaussian prior on ωb, ωc, and ns representing
the constraints on these shape parameters recovered from Planck data. Such prior leads
to a significant improvement in the constraints on the evolution parameters, such as ωDE
and As. In this case, we find that the full combination of low-redshift data sets prefers a
value of the physical dark energy density ωDE that is 1.7σ higher than that preferred by
Planck. This discrepancy, which is also related to the amount of structure growth preferred
by these data sets, offers and interesting link with the H0 tension, as it points to a higher
value of h being preferred by the low-redshift data.



Chapter 4

Beyond-ΛCDM Constraints

In the previous chapter, we explored the consistency between the combined galaxy cluster-
ing measurements from BOSS galaxies eBOSS quasars and weak lensing ‘3×2pt’ measure-
ments from DES Y1 within the flat ΛCDM model. We showed that, when the data sets
are compared in the physical parameter space, Planck prefers slightly more total struc-
ture growth than the low redshift cosmological probes. By imposing informative priors on
the cosmological parameters that define the shape of the power spectrum, we furthermore
demonstrated that this discrepancy could be linked to the differences in the values of the
physical dark energy density ωDE preferred by the two sets of probes.

In light of the inconsistencies within ΛCDM among the different probes, a number of
extensions to the base ΛCDM model may be considered, as has already become standard
in many major surveys (Spergel et al., 2003; Campbell et al., 2013; Kitching et al., 2014;
Abbott et al., 2019; Alam et al., 2021; Tröster et al., 2021b; Planck Collaboration et al.,
2020; DES Collaboration et al., 2022). While the constraints derived from BAO and RSD
summary statistics have mostly focused on combining clustering with CMB or supernovae
data, full-shape galaxy clustering analyses have been shown to provide competitive results
beyond ΛCDM without requiring combination with any additional probes (Chudaykin
et al., 2021). Importantly, unlike when using these summary statistics, full shape analyses
are not susceptible to the bias due to the h−1Mpc units (RSD effects are usually summarised
as a combination of linear growth rate f and σ8, leading to underestimation of the true
error, as shown in Sánchez, 2020).

With this motivation in mind, the analysis presented in this chapter extends the full
shape BOSS galaxy and eBOSS quasar clustering analysis described in Chapter 3 and
presents the current physical parameter space constraints for extensions to ΛCDM. In
particular, we are interested in models where w is allowed to take values other than w = −1,
and in the resulting constraints for curvature, neutrino mass, and time-varying equation
of state parameter in such cosmologies.

Our data and modelling choices remain largely the same as in Chapter 3 (however,
we do not explore combinations with weak lensing, but rather make use of supernovae
measurements, as they provide significant additional constraining power at low redshifts,
important for evolving dark energy models). We review the model extensions considered in
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Table 4.1: Priors used in our analysis. U indicates a flat uniform prior within the specified
range, the nuisance parameter priors are listed in the bottom section of the table. Unless
stated otherwise, the priors on the cosmological and clustering nuisance parameters match
those presented in Chapter 3.

Parameter Prior
Ωbh2 U(0.019, 0.026)
Ωch

2 U(0.01, 0.2)
100θMC U(0.5, 10.0)

τ U(0.01, 0.8)
ln(1010As) U(1.5, 4.0)

ns U(0.5, 1.5)
w U(−3, −0.3)
wa U(−2, 2)
ΩK U(−0.3, 0.3)∑
mν U(0.0, 2.0)

b1 U(0.5, 9.0)
b2 U(−4, 8.0)

avir U(0.0, 12.0)
σerr (eBOSS only) U(0.01, 6.0)

this analysis in Section 4.1. The results for each of the cosmologies considered are presented
in Section 4.2, together with constraints on selected parameters in Table 4.2 (additional
parameter constraints are presented in Appendix B). We make use of the simplest exten-
sion considered, wCDM, to illustrate the advantages of physical parameter space in such
extended models and discuss this in Section 4.2.1. Our conclusions are presented in Section
4.3.

4.1 Extended model overview
When considering extended cosmologies, we expect our chosen parameter space to be most
relevant for the cases where the ΛCDM assumptions about dark energy are relaxed, as the
physical dark energy density ωDE is not well constrained by the CMB or large scale structure
probes and depends on the assumed dark energy model. This statement is especially true
for Planck, which probes the Universe at the redshift of recombination. The dimensionless
Hubble parameter, h, is defined by the sum of all energy contributions from baryons (ωb),
cold dark matter (ωc), neutrinos (ων), dark energy, and curvature (ωK) :

h2 = ωb + ωc + ων + ωDE + ωK , (4.1)

with dark energy comprising the majority of the total energy budget today. Therefore,
when we introduce additional freedom to dark energy modelling, this is also reflected in
the constraints on h and any parameter that is defined through it. In this analysis, we,
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therefore, allow the dark energy equation of state parameter w = pDE/ρDE to deviate from
its ΛCDM value of w = −1 and treat it as a free parameter for all extensions considered
in order to explore the effects on the physical parameter space constraints 1.

In addition to the basic wCDM model with constant w, we also consider a more general
parametrization where w is allowed to evolve with the scale factor a (Chevallier & Polarski,
2001; Linder, 2003):

w = w0 + wa(1 − a). (4.2)

Here w0 and wa are free parameters; we refer to this case as waCDM model. We also
explore wKCDM - non-flat models with ωk ̸= 0. Here, as with the other energy budget
components, we are interested in physical curvature density ωk = Ωkh2. Finally, we inves-
tigate the constraints on the neutrino mass sum ∑

mν , by allowing it to vary freely instead
of fixing it to the fiducial value of ∑

mν = 0.06eV, corresponding to the minimum value
allowed by neutrino oscillation experiments under normal hierarchy (Otten & Weinheimer,
2008). We refer to this model as wνCDM.

As in Chapter 3, we use CosmoMC (Lewis & Bridle, 2002) to perform Monte Carlo
Markov chain (MCMC) sampling. For the linear-theory matter power spectrum prediction,
CosmoMC uses CAMB (Lewis et al., 2000), adapted to compute the theoretical model
for anisotropic clustering measurements. In addition to the nuisance parameters, listed in
Table 3.1, we sample over the basis cosmological parameters used by CosmoMC:

θθθbase =
(
ωb, ωc, ΘMC, As, ns,w0,wa, Ωk,

∑
mν

)
, (4.3)

where ΘMC is 100 times the approximate angular size of the sound horizon at recombina-
tion. For each of the models described in this section, we only vary the relevant extended
parameters, fixing the rest to their fiducial values, as described above. We impose flat
and uninformative priors, except for ωb, with the priors for ΛCDM parameters matching
those used in the analysis carried out in Chapter 3. Our flat prior for ωb informs clustering
measurements, as they do not constrain this parameter on their own, and is 25 times wider
than the corresponding Planck constraint. We also need to specify the allowed values of
the Hubble parameter, h. In order to be consistent with our ΛCDM constraints, we choose
the same range of 0.5 < h < 0.9. While this range is somewhat restrictive for Planck on
its own for varying dark energy cosmologies, these limits have little effect on the physical
parameter space that we consider, and are mostly uninformative once Planck is combined
with clustering or when considering clustering alone. Finally, these limits are motivated
by the direct measurements of H0, which fall well within this range (Riess et al., 2021;
Kourkchi et al., 2020; Birrer et al., 2020; Reid et al., 2013; Hagstotz et al., 2022). A
summary of all cosmological priors used in this analysis is presented in Table 4.1.
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Table 4.2: Marginalised posterior constraints (mean values with 68 per-cent confidence
interval, for ∑

mν - 95 per-cent confidence interval) derived from Planck CMB and the
full shape analysis of BOSS + eBOSS clustering measurements on their own, as well as in
combination with each other and with Pantheon supernovae Ia measurements (SN). All of
the models considered here vary the dark energy equation of state parameter w. In addition
to this, waCDM also varies wa, allowing for the equation of state parameter that evolves
with redshift, wKCDM varies curvature, and wνCDM varies neutrino mass sum ∑

mν .
Note that for wKCDM the joint BOSS+eBOSS+Planck constraints should be interpreted
bearing in mind that BOSS+eBOSS and Planck are discrepant in this parameter space
(Figure 4.4, top). Further constraints, including those on parameters defined through h
(relative densities, σ8), are available in Appendix B.

Planck BOSS+eBOSS

wCDM
σ12 0.816 ± 0.011 0.775+0.055

−0.066

ωDE 0.509+0.15
−0.054 0.352+0.033

−0.044

w −1.41+0.11
−0.27 −1.10 ± 0.13

waCDM

σ12 0.816 ± 0.012 0.768+0.053
−0.061

ωDE 0.494+0.17
−0.062 0.356+0.042

−0.059
w0 −1.22+0.33

−0.39 −1.09 ± 0.30
wa < −0.330 −0.13+1.1

−0.94

wKCDM

σ12 0.896 ± 0.029 0.754+0.056
−0.062

ωDE 0.323+0.073
−0.20 0.394+0.046

−0.053
w −1.57+0.67

−0.38 −0.921+0.15
−0.093

ωK −0.0116+0.0029
−0.0036 −0.057 ± 0.037

wνCDM

σ12 0.810+0.019
−0.012 0.767+0.053

−0.064
ωDE 0.508+0.15

−0.061 0.353+0.036
−0.046

w −1.43+0.16
−0.26 −1.16+0.16

−0.13∑
mν (eV) < 0.321 < 1.34

BOSS+eBOSS+Planck BOSS+eBOSS+Planck+SN

wCDM
σ12 0.804 ± 0.010 0.8023 ± 0.0097
ωDE 0.341+0.020

−0.023 0.329 ± 0.012
w −1.066+0.057

−0.052 −1.033 ± 0.031

waCDM

σ12 0.807 ± 0.011 0.805 ± 0.010
ωDE 0.322+0.026

−0.039 0.330 ± 0.012
w0 −0.87+0.27

−0.22 −0.955 ± 0.086
wa −0.60 ± 0.68 −0.34+0.36

−0.30

wKCDM

σ12 0.809 ± 0.011 0.804 ± 0.010
ωDE 0.346+0.020

−0.024 0.327 ± 0.012
w −1.108+0.078

−0.067 −1.044 ± 0.036
ωK −0.0012 ± 0.0013 −0.0006 ± 0.0011

wνCDM

σ12 0.796+0.016
−0.012 0.799+0.014

−0.011
ωDE 0.346+0.020

−0.025 0.329 ± 0.012
w −1.102+0.086

−0.058 −1.040+0.038
−0.033∑

mν (eV) < 0.300 < 0.211
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4.2 Cosmology constraints
We are mainly interested in clustering constraints from BOSS+eBOSS as well as their com-
bination with Planck. Where found informative, we supplement the clustering constraints
with those from SNe Ia. The summary of our results on the main parameters of interest
is shown in Table 4.2 with further constraints available in Appendix B. We present our
parameter constraints in terms of marginalised posterior mean values with corresponding
68 per-cent confidence intervals (95 per-cent for ∑

mν). As we perform MCMC sampling
to obtain our constraints, we only have a noisy estimate of the true best-fit values, which,
however, are all within an order of a standard deviation from the corresponding means.
Because of this, and due to the fact that we find our likelihood surface to be fairly flat,
with all fits within 1σ of mean cosmological parameter values providing excellent fits, we
choose to not present the best-fit values among our results.

4.2.1 Evolving dark energy - wCDM
ΛCDM assumes a cosmological constant-like behaviour for dark energy with a fixed w =
−1. Nevertheless, w may be allowed to deviate from this value and be treated as a free
parameter. As the simplest of the models considered here, we will use our results for
wCDM to illustrate the behaviour of our data in the physical parameter space for this
class of cosmologies. Figure 4.1 presents our constraints from BOSS+eBOSS and Planck
on their own (light and dark blue respectively) as well as their combination (in red) with
constraints on the standard parameter space shown in the left panel for comparison.

Comparing the two sets of panels in Figure 4.1, it is clear that the posterior degeneracy
directions for H0 (whose value is determined by the sum of the physical densities of all the
components) are set by the ωDE component. For Planck, the constraint on ωDE is set by
the prior - as discussed before, Planck does not probe the redshfits at which dark energy
becomes dominant directly, but rather is able to provide model-dependent constraints
based on DA(z⋆). The CMB observations, therefore, do not constrain dark energy density
once the evolution of this component is not well defined.

In contrast, ωm is set by the scale dependence on the amplitude of the CMB power
spectra (for a fixed acoustic angular scale) and is not sensitive to the assumptions on dark
energy. Following H0, any parameter defined through it also exhibits similar degeneracies,
as they are effectively averaged over the posterior of H0 - as a result, σ8 and Ωm are not
well constrained by Planck either.

Nonetheless, importantly, that does not mean that Planck is unable to measure the
clustering amplitude today - the wCDM constraint on σ12 has the same precision as in
ΛCDM model, as illustrated in Figure 4.2. The lack in constraining power on σ8 is,
therefore, an artefact of using h−1Mpc units. To understand why Planck does not lose
constraining power on σ12 even in extended cosmologies, one can first note that w and σ12

1While our wide uninformative w prior is in line with the commonly adopted range, it may be noted
that extremely negative values for this parameter violate the Null Energy Condition, as noted in, for
example, Colgáin & Sheikh-Jabbari (2021)
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Figure 4.1: Marginalised posterior contours in the ‘traditional’ and h-independent param-
eter spaces derived from the full shape of anisotropic clustering measurements of BOSS
DR12 galaxies in combination with eBOSS quasars (light blue) and CMB measurements
by Planck (dark blue) for a wCDM model. The joint constraints are shown in red. In
physical parameter space, Planck is able to constrain the clustering amplitude today σ12
even in models with free w.

show almost no correlation for this probe. This behaviour arises because the change in w

is compensated by a change in ωDE, as is evident from Planck’s constraints in the w− ωDE
plane: only certain combinations of these parameters, set by DA(z⋆), are allowed, with the
resulting degeneracy corresponding to a constant σ12. This result means that a preference
for more negative w closely corresponds to an increase in ωDE.

Our analysis is, therefore, the first one to quote a CMB constraint on clustering ampli-
tude today in cosmologies with varying w. The Planck best-fit value of σ12 = 0.816±0.011
that we find for the wCDM model is slightly higher than that for ΛCDM (0.807 ± 0.011) -
this increase is because the higher values of ωDE allowed in wCDM correspond to a more
negative w, thus the dark energy content is lower at the start of the epoch when this
component becomes relevant, which results in slightly more total structure growth. Nev-
ertheless, as σ12 is mostly determined by the physical matter density, as discussed above,
this shift in the clustering amplitude value is minimal.

The advantage of our physical parameter space is most evident for Planck due to its
lack of constraining power on H0; nonetheless, even for clustering probes, the precision on
physical parameter constraints degrades less, compared to their h-dependent counterparts,
once dark energy model assumptions are relaxed.

While clustering on its own prefers a mean equation of state parameter value that is
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Figure 4.2: Upper panel: one-dimensional marginalised Planck posteriors for σ8 for ΛCDM
(blue) and wCDM (orange) cosmologies . Lower panel: the corresponding posteriors of
σ12. The difference between the two panels is due to h−1Mpc units used to define the scale
at which the linear density field variance is measured for σ8. As Planck does not constrain
H0 well once w is allowed to freely vary, the resulting posterior, over which the clustering
amplitude is effectively averaged, is extremely wide and results in degraded constraint on
σ8. The parameter σ12 is not affected by this issue, as it is defined on a Mpc scale - the
precision of the measurement for Planck is the same in both cosmologies shown.

compatible with w = −1 (w = −1.10±0.13), for the combination BOSS+eBOSS+Planck,
the fiducial value is just outside of the 68% confidence limit. This result appears because
of the significant volume of Planck’s posterior corresponding to models with high dark
energy content, which shifts the mean w. The addition of low redshift information from
clustering rules out such models and brings the joint constraints closer to ΛCDM.

Comparing our BOSS+eBOSS+Planck constraints with previously published full shape
analysis of BOSS clustering wedges by Sánchez et al. (2017), who obtain w = −0.991+0.062

−0.047
for BOSS+Planck (2015), reveals that our updated analysis shifts the mean w by ∼ 1σ
towards more negative values. This result may be attributable to a number of differences
between the analyses, most notably the updated CMB measurements from Planck.

In addition to this approach, Brieden et al. (2022) performed a reconstructed power
spectrum multipole analysis of BOSS DR12 LRG and eBOSS QSO samples. In this analy-
sis, the information from BAO and RSD summary statistics is complemented by additional
summary statistic derived from the shape of the power spectrum (ShapeFit, Brieden et al.,
2021). Our BOSS+eBOSS(+Planck) constraint w = −1.10 ± 0.13 (w = −1.066+0.057

−0.052)
agrees well with that of Brieden et al. (2022): w = −0.998+0.085

−0.073 (w = −1.093+0.048
−0.044),

showing the robustness of these results.
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4.2.2 Evolving dark energy equation of state - waCDM

Figure 4.3: Marginalised posterior contours for dark energy parameters in waCDM, where
the dark energy equation of state parameter w is allowed to evolve in time, as defined
in equation (4.2). We show constraints from the full-shape clustering analysis of BOSS
DR12 galaxies in combination with eBOSS quasars (light blue), their combination with
Pantheon SN Ia measurements (green), CMB constraints by Planck (in dark blue), and
the combination of all four data sets (in orange).

We further generalise the dark energy description allowing its equation of state param-
eter to vary with time, as defined in equation (4.2). Figure 4.3 shows our constraints for
the dark energy parameters: w,wa, ωDE. Here, we combine our clustering constraints with
SNe Ia, which provide background constraints for the lowest redshifts and are, therefore,
extremely useful for probing the evolution of dark energy.

The additional freedom in the equation of state model has minimal impact on the
constraints on σ12 and ωDE. However, the addition of SNe Ia data halves the error on dark
energy density with the resulting constraint of ωDE = 0.330 ± 0.012. All of the data set
combinations considered recover a value of w0 that is consistent with -1, although with
significantly larger uncertainty than in wCDM. Planck does not constrain wa on its own,
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Figure 4.4: Marginalised posterior contours for dark energy parameters and physical mat-
ter and curvature densities in wKCDM (top) and the neutrino mass sum ∑

mν in wνCDM
(bottom). Top, wKCDM: The constraints from the full-shape clustering analysis of BOSS
DR12 galaxies in combination with eBOSS quasars are shown in light blue, CMB con-
straints by Planck are displayed in dark blue and the combination of the two sets of probes
is shown in red. Note the discrepancy between Planck and BOSS+eBOSS in σ12 as well as
w-ωDE plane. Bottom, wνCDM: Here, we explore varying w together with ∑

mν . We show
constraints from the full-shape clustering analysis of BOSS DR12 galaxies in combination
with eBOSS quasars (light blue), their combination with Pantheon SN Ia measurements
(green), CMB constraints by Planck (in dark blue) and the combination of all four data
sets (in orange).
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but combining it with the clustering and supernovae data yields a value compatible with
no evolution (for BOSS+eBOSS+Planck+SN wa = −0.34+0.36

−0.30).
We may compare our constraints with those from the completed SDSS consensus anal-

ysis by Alam et al. (2021), although note that they use additional data sets, including
eBOSS luminous red galaxy and emission line galaxy samples as well as BAO from the
Lyα forest, and use summary statistics for BAO and RSD to obtain the joint constraints.
The consensus analysis also uses reconstructed BAO, while we perform no reconstruction in
this work. The quoted constraints for combined Planck+Pantheon SNe, SDSS BAO+RSD
and DES 3 × 2pt data are w0 = −0.939 ± 0.073 and wa = −0.31+0.28

−0.24, which are in
excellent agreement with our BOSS+eBOSS+Planck+SN result.

Chudaykin et al. (2021) also performed a full shape analysis using a model based on
the Effective Field Theory of Large Scale Structure (EFT, Baumann et al., 2012). They
analysed the BOSS DR12 luminous red galaxy redshift space power spectrum multipoles
in combination with BAO measurements from post-reconstructed power spectra of BOSS
DR12 supplemented with a number of additional BAO measurements from SDSS, including
those from the eBOSS QSO sample and additionally augmented by adding supernovae Ia
measurements from Pantheon (as also done in this work). Their final constraints of w0 =
−0.98+0.10

−0.11 and wa = −0.32+0.63
−0.48 are tighter than ours (most likely due to the additional

BAO data) but in an excellent agreement with our BOSS+eBOSS+SN results: w0 =
−0.94+0.20

−0.19 and wa = −0.40+1.0
−1.2. It is additionally important to note that EFT-based

constraints have been shown to depend on the counterterm prior choices (Carrilho et al.,
2023; Simon et al., 2022).

4.2.3 Non-zero curvature - wKCDM
We explore what occurs when, in addition to varying w (but with wa = 0), we also allow
for non-flat models. The resulting constraints are shown in Figure 4.4 (top). Here, together
with the dark energy parameter constraints, we also display the physical curvature density
ωK = ΩKh2.

It is interesting that the Planck data constrain the physical curvature well, with the
mean value of ωK = −0.0116+0.0029

−0.0036, indicating a strong preference for non-zero curva-
ture. We compare this result with the constraint on the h-dependent equivalent, ΩK =
−0.030+0.018

−0.010; note how physical units allow us to detect the deviation from flatness at a
higher significance (4σ for ωK versus 1.6σ for ΩK). This preference for a closed Universe is
a known feature of Planck data and believed to be related to the lensing anomaly (Planck
Collaboration et al., 2020). Nonetheless, our physical curvature constraint indicates the
most significant deviation from flat Universe yet, which is especially interesting bearing in
mind that, in addition to curvature, we are also varying w and would, therefore, expect a
somewhat more significant preference for a closed Universe in fixed w = −1 case (however,
as seen in Figure 4.4, dark energy parameters are almost independent of ωK for Planck;
therefore, we expect the change in the result to be minimal).

Recently, Glanville et al. (2022) reported that clustering data alone may show a 2σ
preference for a closed universe. There, a full shape analysis based on EFT is performed on
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Figure 4.5: Marginalised posterior contours for σ12 and ωK from Planck and its combination
with BOSS+eBOSS in wKCDM. We compare two cases - one with varying Alens (light blue
and pink) and a fiducial one, with Alens fixed to 1 (dark blue and red).

the power spectra multipoles from the full combined 6dFGS, BOSS, and eBOSS catalogues.
The analysis by Chudaykin et al. (2021), however, finds a less significant deviation of ∼ 1σ.
Neither of these analyses vary w, which allows for somewhat tighter constraints than what
we expect for wKCDM (as seen in Figure 4.4, clustering exhibits some degeneracy between
the two parameters). The mean value of ωK preferred by BOSS+eBOSS in our analysis,
ωK = −0.057±0.037, also deviates from 0, but is consistent with flatness at 95% confidence
level, indicating no significant preference for a closed universe. In terms of dark energy
constraints, the effect of allowing a free varied curvature for clustering is to allow for larger
values of ωDE.

CMB and clustering data sets are highly complementary in wKCDM, with Planck
providing a measurement on curvature and BOSS+eBOSS constraining dark energy pa-
rameters. Nevertheless, the two data sets are discrepant within this cosmology. This
behaviour is most clear from the w − ωDE projection in which the 2σ regions of the two
sets of contours show little overlap. As discussed before, this particular degeneracy is
defined by the clustering amplitude today, so this discrepancy is also reflected in the σ12
constraints, with Planck preferring a 2.4σ higher value. This model displays the greatest
shift in Planck’s σ12 out of all of the cosmologies considered in this work.

A discrepancy between Planck and BAO measurements and Planck and full shape
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analysis of clustering measurements was also found in previous work that varied curvature
but kept w fixed (Di Valentino et al., 2020; Handley, 2021; Vagnozzi et al., 2021; Glanville
et al., 2022). Our analysis, therefore, demonstrates that the degradation of constraining
power when varying w does not provide a solution to this tension (although see also Bel
et al., 2022, for “clustering ratio” based analysis which shows agreement between clustering
and CMB even in curved models).

Planck’s lensing anomaly, which is related to the preference for non-zero curvature,
can be characterised by the phenomenological parameter Alens, which scales the ampli-
tude of the lensing power relative to the physical value. In the absence of systematics
or non-standard physics, Alens = 1 and is highly degenerate with the measured cosmo-
logical parameters that set the amplitude of the power spectrum at late times - σ12 and
ωK. Figure 4.5, illustrates how allowing Alens to freely vary extends Planck’s posterior
contours to include ωK = 0 within 2σ and, therefore, recovers flat ΛCDM. The extension
of Planck’s posterior distribution of σ12 to lower values allows for a reconciliation with
the constraints from BOSS+eBOSS and reduces the mean σ12 inferred from the combined
BOSS+eBOSS+Planck analysis. Varying Alens allows to compensate for the excess lensing
and brings Planck in line with clustering measurements in wKCDM. This behaviour is
expected and is consistent with existing analyses (for example, Di Valentino et al. (2021)
demonstrated how varying Alens allows Planck to be more consistent with flatness and
brings it to a better agreement with the BAO measurements for cosmological models with
varying curvature, w, and neutrino mass sum). Here we additionally note that the inclusion
of Alens does significantly degrade Planck’s ability to constrain σ12.

4.2.4 Massive neutrinos - wνCDM
Finally, we vary the neutrino mass sum, ∑

mν : here, once again, we supplement our clus-
tering and CMB data sets with Pantheon supernovae. As ∑

mν exhibits a degeneracy with
the dark energy equation of state (for a more detailed discussion see Hannestad, 2005),
varying w is expected to degrade the resulting constraints. The addition of SNe Ia, there-
fore, allows to improve the precision of our constraint through providing a measurement
of w.

While clustering alone does not provide a tight upper limit for the neutrino mass
(∑

mν < 1.34 eV from BOSS+eBOSS at 95% confidence), its combination with Planck
does allow for some improvement as compared with Planck alone (∑

mν < 0.300 eV for
joint constraints versus ∑

mν < 0.321 eV for Planck). It might, nevertheless, initially seem
surprising that the improvement is rather minimal (especially, compared to the constraints
obtained from combined Planck full shape clustering analyses in ΛCDM, such as Ivanov
et al., 2020a; Tanseri et al., 2022). This result can be understood by noting that, due to
the degeneracy between the physical matter density, ωm, and ∑

mν , a precise measurement
of ωm is required to shrink the upper limit on ∑

mν . While clustering constraints on either
of these parameters are much looser than those of Planck, it may, nonetheless, be able to
improve on Planck’s measurement of ωm by excluding some of the cosmologies in ωm −ωDE
space allowed by Planck. This effect happens to be more significant in a ΛCDM cosmology,
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where the full shape BOSS+eBOSS analysis yields a lower mean value of ωm, as compared
to Planck, resulting in a lower ωm from a combined measurement and, therefore, reducing
the maximum limit of ∑

mν . As shown in Figure 4.4, in the cosmology with varying w the
BOSS+eBOSS contour is perpendicular to Planck in ωm − ωDE, resulting in minimal effect
on the constraint on ωm and, consequently, little improvement on the upper mass limit for∑

mν .
Our tightest constraint then arises from the combination of BOSS+eBOSS+Planck+SN,

which places the upper limit of ∑
mν < 0.211 eV at 95% confidence. This improvement is

due to the fact that the supernovae constraint on ωDE does result in a tighter constraint
on ωm, which, in turn, shrinks the ωm, and ∑

mν degeneracy.
The SDSS consensus analysis (Alam et al., 2021) provides a lower neutrino mass sum

limit for wνCDM of ∑
mν < 0.139 eV (Planck+BAO+RSD+SN+DES, 95% upper limit);

nevertheless, these constraints do include additional data (reconstructed BAO and RSD
measurements from full SDSS data as well as measurements from the Dark Energy Survey,
DES) and are, therefore, not directly comparable. As described above, the final limit is
extremely sensitive to ωm and, therefore, not only the statistical power of a particular
combination of measurements but also the position and orientation of the contours (which
may differ for full shape and BAO-only analyses). Here we only vary neutrino mass and,
while there are additional non-standard neutrino properties that could be explored, given
our limited constraining power in varying dark energy cosmologies, it is unlikely we might
be able to obtain meaningful constraints. It has additionally been shown that in the
cosmological constant scenarios, full shape analysis of BOSS and eBOSS galaxy clustering
recovers no deviations from standard neutrino properties (Kumar et al., 2022).

4.2.5 Discussion
In this work we performed a full shape analysis of the anisotropic two-point clustering
measurements from BOSS galaxy and eBOSS QSO samples together with Planck CMB
and Pantheon SNe Ia measurements and explored extensions to the ΛCDM cosmological
model. In particular, we were interested in models with free dark energy equation of state
parameter w and the resulting constraints in physical parameter space.

We demonstrated that CMB recovers a tight degeneracy in the w − ωDE parameter
space and is able to constrain the linear density field variance, σ12, as well as the physical
curvature density ωK, to high precision. The apparent lack of constraining power when
using σ8 is, therefore, only an artifact of using h−1Mpc units when defining the scale on
which the density field variance is measured. This approach results in averaging over
the posterior of h that Planck does not constrain in evolving dark energy models. We
subsequently presented the first CMB measurements of the clustering amplitude today in
cosmologies with varying w and found that the clustering amplitude tends to increase for
such models. This behaviour is because a more negative w requires a lower initial ωDE value
to reach the same constraint at redshift zero. This observation also rules out the evolving
dark energy models considered here as a potential way to bring Planck’s predicted amount
of structure growth closer to weak lensing observations on their own, as such extensions do
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not affect the initial amplitude of matter fluctuations and the clustering amplitude today
σ12 is set by the w − ωDE degeneracy and is well measured even in the extended models.

When, in addition to w, the curvature is also allowed to vary, BOSS+eBOSS and
Planck become discrepant, most significantly in the w − ωDE plane and, subsequently, in
the resulting values of σ12, with Planck preferring a 2.4σ higher value than BOSS+eBOSS.
Varying dark energy models are, therefore, not able to bring the two probes in a better
agreement for curved cosmologies. In addition to this result, our physical curvature density
constraint for Planck ωK = −0.0116+0.0029

−0.0036 prefers a curved Universe at 4σ significance,
which is 2.4σ higher than what is found using ΩK.

It is encouraging that the extended model constraints that we derive from our full
shape analysis are compatible with a ΛCDM cosmology (with the greatest deviation seen
for ωK but still within ωK = 0 at 95% confidence) as well as with previous clustering
analyses. We derive the 95% upper limit for the neutrino mass sum of ∑

mν < 0.211 eV
(BOSS+eBOSS+Planck+SN), which is a higher value than that of the SDSS consensus
analysis (though the two constraints are not directly comparable, as the consensus analysis
makes use of a more extensive data set). When w is varied freely, clustering alone only
allows for a modest improvement in the upper limit of ∑

mν .
Our analysis demonstrates the strength of the physical parameter space in constraining

extended cosmologies. While we are currently still unable to place tight constraints on the
dark energy parameters directly, we were able to show how even the high-redshift obser-
vations place limits on the allowed behaviours. We were also able to provide a consistent
picture of the current state of full-shape clustering constraints, which were shown to be
highly complementary to the CMB measurements. With CMB providing information on
physical matter and curvature densities, as well as setting a strict limit on the allowed
clustering amplitude values and clustering offering a way to measure dark energy, we may
hope that the Stage-IV surveys will be able to confidently exclude large regions of the
extended parameter space.

4.3 Summary
In this work, we performed a full shape analysis of the anisotropic two-point clustering
measurements from BOSS galaxy and eBOSS QSO samples together with Planck CMB
and Pantheon SNe Ia measurements and explored extensions to the ΛCDM cosmological
model. In particular, we were interested in models with free dark energy equation of state
parameter w and the resulting constraints in physical parameter space.

We demonstrated that CMB recovers a tight degeneracy in the w − ωDE parameter
space and is able to constrain the linear density field variance, σ12, as well as the physical
curvature density ωK, to high precision. The apparent lack of constraining power when
using σ8 is, therefore, only an artifact of using h−1Mpc units when defining the scale on
which the density field variance is measured. This approach results in averaging over
the posterior of h that Planck does not constrain in evolving dark energy models. We
subsequently presented the first CMB measurements of the clustering amplitude today in
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cosmologies with varying w and found that the clustering amplitude tends to increase for
such models. This behaviour is because a more negative w requires a lower initial ωDE value
to reach the same constraint at redshift zero. This observation also rules out the evolving
dark energy models considered here as a potential way to bring Planck’s predicted amount
of structure growth closer to weak lensing observations on their own, as such extensions do
not affect the initial amplitude of matter fluctuations and the clustering amplitude today
σ12 is set by the w − ωDE degeneracy and is well measured even in the extended models.

When, in addition to w, the curvature is also allowed to vary, BOSS+eBOSS and
Planck become discrepant, most significantly in the w − ωDE plane and, subsequently, in
the resulting values of σ12, with Planck preferring a 2.4σ higher value than BOSS+eBOSS.
Varying dark energy models are, therefore, not able to bring the two probes in a better
agreement for curved cosmologies. In addition to this result, our physical curvature density
constraint for Planck ωK = −0.0116+0.0029

−0.0036 prefers a curved Universe at 4σ significance,
which is 2.4σ higher than what is found using ΩK.

It is encouraging that the extended model constraints that we derive from our full
shape analysis are compatible with a ΛCDM cosmology (with the greatest deviation seen
for ωK but still within ωK = 0 at 95% confidence) as well as with previous clustering
analyses. We derive the 95% upper limit for the neutrino mass sum of ∑

mν < 0.211 eV
(BOSS+eBOSS+Planck+SN), which is a higher value than that of the SDSS consensus
analysis (though the two constraints are not directly comparable, as the consensus analysis
makes use of a more extensive data set). When w is varied freely, clustering alone only
allows for a modest improvement in the upper limit of ∑

mν .
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Chapter 5

Emulating the two-point correlation
function with evolution mapping

The analyses performed in the previous chapters rely on evaluating the full-shape galaxy
two-point correlation function at every point of the sampled parameter space. This is a
computationally expensive process, in particular, when considering extended cosmologies
with additional free parameters. When performing Bayesian inference, a converged MCMC
chain typically requires the order of O(105 − 106) likelihood evaluations, which means that
a small improvement in a single model calculation can amount to a significant difference in
total computing time. This significance further increases if we take into account the fact
that, in addition to the final cosmological analysis, a number of sampling runs are required
for model tuning and validation purposes. This constitutes a relevant bottleneck in the
process of extracting cosmological constraints from the full shape of the galaxy clustering
measurement. Emulators present a solution to this problem: given a sample of predictions
within the parameter space of interest, one can use machine learning techniques to train an
emulator that can then provide a theory model for any parameter combination within the
training range at a fraction of the time it takes to perform a full calculation. This chapter
presents the details of the development of the full-shape two-point correlation function
emulator based on the evolution-mapping approach.

The idea of using emulation for theory modelling in cosmological analyses was first
introduced by Heitmann et al. (2006) and Habib et al. (2007) as a way to replace costly
numerical simulations and has been gaining popularity since. A number of emulators have
been developed to aid the predictions in cases where the physics is not well understood and
the theory prediction must be obtained from simulations, for instance, when modelling the
power spectrum enhancement in modified gravity scenarios (for example, Ramachandra
et al., 2021; Arnold et al., 2022), its suppression due to baryonic effects (Schneider et al.,
2020) or modelling small scale clustering (Zhai et al., 2023; Yuan et al., 2022; Nishimichi
et al., 2019; Heitmann et al., 2014; Angulo et al., 2021; Euclid Collaboration et al., 2019,
2021).

Alternatively, the emulation approach can also be used to speed up the calculation of
analytically known theory predictions: this is particularly advantageous in cases where the



82 5. Emulating the two-point correlation function with evolution mapping

evaluation of theoretical models is particularly expensive. This is typically the case for
perturbative approaches, such as the ones used in this work, which involve a number of
integrals over a range of wavevectors (see Section 2.4.5 for the expressions for loop cor-
rections for the matter power spectrum in equations (2.65) and (2.66) as well as the bias
corrections described in Section 2.5.1). As a result, there has been a considerable effort
put into developing emulators for perturbative model theory predictions for large-scale
structure analyses (see DeRose et al., 2022; Donald-McCann et al., 2023). Additionally,
significant progress has been made in developing a hybrid approach, making use of per-
turbative recipes to obtain biased tracer power spectra from the component cross-spectra
measured from N-body simulations (for example, Zennaro et al., 2023; Aricò et al., 2021;
Kokron et al., 2021; Pellejero Ibañez et al., 2022).

The challenge in building an emulator lies in balancing the coverage for the range of
theory predictions required for a particular analysis with the prediction accuracy. For a
theory emulator, matching the high accuracy of perturbation theory models is a particu-
larly stringent demand and the ability to meet this requirement is inevitably affected by
the parameter space used in the emulator training process. This includes both the number
of free parameters of the model as well as the size of their respective prior range. This
often means that the emulators only cover narrow parameter ranges and a limited number
of cosmological models (for example, the vast majority of existing emulators only consider
flat models). Adopting the already mentioned hybrid approach of combining simulated
cross-spectra and perturbative expansions is one of the ways to reduce the emulated pa-
rameter space, because only the component power spectra need to be emulated, while
the corresponding bias prefactors are incorporated exactly using the analytical expression.
The pure-theory emulators by Donald-McCann et al. (2023) and Aricò et al. (2021) employ
an equivalent approach and factorise all model parameters related to galaxy bias as well.
However, that still leaves a large parameter space of cosmological parameters and redshifts
that we might be interested in.

A key insight that allows us to significantly reduce the dimension of the cosmological
parameter space is provided by the evolution mapping idea. As already described in
Section 2.6, when cosmological parameters are expressed in physical units (i.e. not through
h), their effect on the power spectrum can be clearly identified as either describing its
shape or amplitude. In the linear case, the parameters that describe the amplitude of the
power spectrum (evolution parameters and redshift) follow an exact degeneracy (as long
as the power spectrum is also expressed in the units of Mpc). This degeneracy can be
exploited to reduce the required parameter space by, instead of considering each of the
evolution parameters separately, performing a mapping from a model with matching shape
parameters. This can be done by relabeling the redshifts that correspond to the required
value of σ12 (which correctly describes the amplitude of the linear power spectrum) for the
desired evolution parameter combination.

The first emulator based on the evolution mapping approach, COMET, was introduced by
Eggemeier et al. (2023). The emulator employs Gaussian Processes (GP) to predict galaxy
clustering power spectrum multipoles in real and redshift spaces. COMET emulates the
perturbative models’ terms, making use of a similar approach as in Donald-McCann et al.
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(2023) and Aricò et al. (2021) where the bias dependence is factorised out. The emulator is
built to provide predictions for two theory models that differ in their treatment of the RSD:
in the effective field theory (EFT) approach the real-to-redshift space mapping is performed
through a full perturbative expansion, in contrast, the velocity-generating function (VDG)
model retains the non-perturbative nature of this mapping. In both cases, Eggemeier
et al. (2023) demonstrate that the power spectrum predictions follow the degeneracy for
evolution parameters and COMET is trained in terms of σ12 and f (to perform the redshift
space mapping) in combination with the shape parameters. The AP parameters are further
applied in a separate step, in this way further reducing the emulation parameter space.

The clear improvements in the emulator validity range allowed by the inclusion of
evolution mapping can be seen when comparing COMET to similar theory emulators EFTEMU
by Donald-McCann et al. (2023) and EmulateLSS DeRose et al. (2022) which implement the
EFT model and the Lagrangian perturbation theory respectively. While EFTEMU supports
five cosmological parameters ωb, ωc, h, As and ns, COMET additionally allows for the most
common extensions: varied ΩK, w0, wa. It is crucial to note that the extensions are
available without having to explicitly train the emulator on these evolution parameters,
retaining high accuracy of emulation (in contrast, see, for example, Euclid Collaboration
et al., 2021, who find that including w0 increases complexity and expense of creating the
emulator significantly). In addition to a more limited parameter space support, the ranges
allowed for the base ΛCDM parameters by both EmulateLSS and EFTEMU are, with the
exception of ns, smaller than what is supported by COMET. EmulateLSS is furthermore more
restrictive than EFTEMU: it fixes ns and does not cover the full galaxy bias and counterterm
parameter space. Moreover, these emulators make predictions for a fixed background
cosmology and fixed redshifts. COMET is able to cover the extensive parameter space without
compromising emulation accuracy which reaches around ∼ 0.1% for the synthetic data that
covers 10 times the Euclid volume and with BOSS-like galaxy bias parameters. This is
slightly better than the performance of EmulateLSS and about an order of magnitude more
accurate than EFTEMU.

While the performance of COMET is extremely promising, its predictions are currently
limited to the Fourier space. Similarly to the analyses carried out in Chapters 3 and 4,
we can still use COMET for modelling the two-point correlation function by simply Fourier
transforming the emulator output. Nonetheless, this action adds additional computational
time to each theory evaluation. In addition to this, if not performed carefully, the Fourier
transform can introduce additional errors, due to the fact that the function transformed
is only defined over a limited range of k, while the Fourier transform integral should be
performed over the full k-space. This limited k-range creates a step-like feature in Fourier
space that may show up as wiggles in the transformed function in the configuration space.

In order to avoid these issues we set out to extend COMET for the two-point correlation
function analyses by implementing direct emulation in the configuration space. This is
achieved by Fourier transforming the original COMET training set (which, however, is re-
calculated to extend to higher k values) and training the emulator on these configuration
space theory predictions. In this chapter, we begin by presenting the theoretical model
that we wish to emulate (EFT), as it is implemented in COMET, and describe how evolution
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mapping guides the emulator design. We proceed with a description of the training data
set and, finally, test the configuration space COMET on the validation data set as well as by
using it as the theory model to analyse galaxy clustering wedges measured on Minerva -
the galaxy mocks that were used in Section 3.2.

5.1 Theory modelling
In this section we describe the modelling of the redshift-space galaxy power spectrum,
highlighting any instances where our approach does not exactly follow Eggemeier et al.
(2023), with the configuration space predictions simply obtained by performing a Fourier
transform, as described in Section 5.2.4.

5.1.1 Perturbation theory models
COMET emulates the galaxy power spectrum multipole predictions for two different pertur-
bative models, which mainly differ in their treatment of the RSD. In the EFT (Baumann
et al., 2012) approach, the finger-of-god effect due to the small-scale virialised galaxy ve-
locities is captured by a set of so-called counterterms (for analyses using EFT see Ivanov
et al., 2020b; d’Amico et al., 2020). Alternatively, the FoG can be accounted for by a
damping factor that represents the velocity difference generating (VDG) function: this is
the approach (albeit with some minor differences from the version implemented in COMET)
that was used in the analysis presented in Chapters 3 and 4 as well as in the BOSS and
eBOSS full shape analyses by Sánchez et al. (2017), Grieb et al. (2017) and Hou et al.
(2021) (for a more detailed description of the model and the explicit expression for the
damping function FFoG see equation (2.105) and the accompanying discussion in Section
2.5.2). The two models are related by:

Pgg,VDG(kkk) = FFoG(kkk)[Pgg,EFT(kkk) − ∆P (kkk)], (5.1)

where ∆P (kkk) accounts for the fact that in the VDG model the mapping from real to
redshift space does not contain the full perturbative expansion, as it does in the EFT. The
two models are, therefore, closely related, however, the VDG option in configuration space
requires an additional emulated parameter - the small-scale velocity distribution kurtosis
parameter avir. For this reason, we develop the first configuration space version of COMET
for the EFT model only, leaving the VDG implementation for future work.

The EFT galaxy-galaxy power spectrum model, Pgg,EFT(kkk), can be generally written
down as:

Pgg,EFT(kkk) = P tree
gg,SPT(kkk) + P 1−loop

gg,SPT (kkk) + P stoch
gg (kkk) + P ctr

gg (kkk), (5.2)

with the first two terms corresponding to the leading and next-to-leading contributions
from SPT (see Section 2.4.5 for a more in-depth description of SPT in the context of the
real space matter power spectrum). This expression is obtained by performing an ex-
pansion of real-to-redshift space mapping, taking into account the non-linear evolution of
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the matter and velocity fields and galaxy bias. The third term, P stoch
gg (kkk), represents the

stochastic contribution from highly non-linear scales that is not captured by the perturba-
tive expansion. This term essentially acts as a constant noise term and accounts for highly
local effects, which in configuration space would contribute to separations close to zero.
We, therefore, do not model P stoch

gg (kkk) for the two-point correlation function emulator. Fi-
nally, the last contribution, P ctr

gg (kkk), is given by a series of counterterms and, as mentioned
before, captures the FoG effect, as well as any further effects on the one-loop terms exerted
by the modes not modelled by the perturbation theory.

In the following subsections, we provide a brief overview of the non-vanishing com-
ponents listed in equation (5.2). We omit the description of the galaxy bias model, as
it matches the modelling presented in Section 2.5.1 (although with an additional term
accounting for the higher derivative bias which will be absorbed into one of the coun-
terterms), but discuss the redshift-space mapping, the counterterm contribution, and the
infrared resummation.

5.1.2 Redshift-space power spectra
In this section, we will recap the mapping to redshift space, as described in the EFT model.

The relationship between the density fields in real and redshift space in the non-linear
case (and assuming the plane-parallel approximation as well as the approximation for the
Jacobian J = |1−f∇∥u∥| ≃ 1−f∇∥u∥) can be written down as (Scoccimarro et al., 1999):

δs(kkk, z) =
∫

xxx
eikkk·xxxe−ifk∥u∥(xxx)Ds(xxx), (5.3)

where Ds(xxx) ≡ δg(xxx) + f∇∥u∥(xxx). The expression for δs(kkk, z) can be expanded (following
the same logic as in the real space SPT case, as described in Section 2.4.5) to obtain the
perturbation theory kernels in redshift-space, Zn, such that the resulting SPT expressions
for the power spectrum in redshift space at leading and next-to-leading order are:

P tree
gg,SPT(kkk) = Z1(kkk)2Plin(k), (5.4)

P 1−loop
gg,SPT =2

∫
qqq
[Z2(qqq,kkk − qqq)]2Plin(q)Plin(|kkk − qqq|)

+ 6Plin(k)
∫

qqq
[Z3(qqq, −qqq,kkk)]Plin(q).

(5.5)

This is equivalent to the real space SPT expressions in equations (2.64)-(2.66) but with
redshift space perturbation kernels:

Z1(kkk) = b1 + fµ2
k, (5.6)

Z2(kkk1, kkk2) = K2(kkk1, kkk2) + fµ2
kG2(kkk1, kkk2)

+ 1
2fkµk

[
µ1

k1
(b1 + fµ2

2) + µ2

k2
(b1 + fµ2

1)
] (5.7)
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Z3(kkk1, kkk2, kkk3) = K3(kkk1, kkk2, kkk3) + fµ2
kG3(kkk1, kkk2, kkk3)

+ 1
2f 2k2µ2

k

µ2µ3

k2k3
(b1 + fµ2

1)

+ fkµk
µ3

k3

[
b1F2(kkk1, kkk2) + fµ2

12G2(kkk1, kkk2)
]

+ fkµk
µ23

k23

(
b1 + fµ2

1

)
G2(kkk2, kkk3)

+ fkµk
µ1

k1

[
b2

2 + γ2K(kkk2, kkk3)
]
,

(5.8)

with K(k1k1k1, k2k2k2) = (kkk1·kkk2)2/(k2
1k2

1)−1 (equivalent to S(k1k1k1, k2k2k2) in the real space bias expansion
described in Section 2.5.1). The mapping of the tree-level contribution, described by Z1,
therefore, simply corresponds to the Kaiser factor, whereas the one-loop cross-spectra and
bispectra kernels Z2 and Z3 account for the non-linear corrections due to mode coupling.
For the sake of conciseness, we omit the full form of the real-space kernels Kn, these
expressions can be found in the Appendix A of Eggemeier et al. (2023).

5.1.3 Counterterms
The 1-loop integral in equation (5.5) is performed over all scales qqq, including the deeply
non-linear regime where perturbation theory breaks down. In this regime, the assumption
of perfectly pressureless fluid no longer applies, as dark matter undergoes shell-crossing and
the baryonic pressure is present and impacts the clustering of dark matter on larger scales.
The usual way to correct for the small-scale physics effects in the large-scale limit is to
introduce a series of counterterms with freely varied amplitude pre-factors which in redshift
space scale as ∼ µ2n

k k2Plin(k) with n = 0, 1, 2 (Senatore & Zaldarriaga, 2014; Desjacques
et al., 2018).

The first counterterm accounts for the leading effect from a breakdown of the perfect
fluid approximation for the matter field (Pueblas & Scoccimarro, 2009; Baumann et al.,
2012; Carrasco et al., 2012). Additionally, this counterterm also absorbs the effect of the
higher derivative bias, as it has the same scaling as that of the relevant leading order bias
contribution ∇2δ 1. The second and third counterterms account for the relevant velocity
bias effects.

The leading order (LO) counterterm contribution is, therefore, introduced as a set of
three free parameters c0, c2 and c4:

P ctr,LO
gg (k, µk) = −2

2∑
n=0

c2nL2n(µk)k2Plin(k). (5.9)

1The next-to-leading order higher-derivative bias terms can be neglected, assuming that the scale at
which these contributions become important is of similar order as the non-linearity scale of the matter
field.
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As seen here, each counterterm c2n mainly contributes to a single multipole of the same
order. This is because, in this approach, each Legendre polynomial of order 2n replaces
the scaling with µ2n

k , which corresponds to a linear transformation of the counterterm
parameters.

The one-loop perturbation theory model, as described in the previous section neglects
the fact that the mapping from real to redshift space can produce non-negligible corrections
coming from the contributions from short-scale velocities (FoG) whose characteristic scale
can be significantly lower than the scale controlling gravitational non-linearities. In order to
correct for this effect Ivanov et al. (2020b) introduce an additional counterterm to capture
the redshift-space non-linearities at next-to-leading order (NLO):

P ctr,NLO
gg (k, µk) = cnlo(µkkf)4P tree

gg,SPT(kkk). (5.10)

This term is also included in the Fourier space version of COMET. Nonetheless, as P ctr,NLO
gg (k, µk)

scales as k4, the term diverges with k, meaning that it is not possible to perform its Fourier
transform and that its most significant contribution in configuration space will be at zero
separation, s = 0. For these reasons, we choose to omit this term when constructing the
configuration space emulator. While this omission will inevitably limit the range of scales
to which our theory is applicable, in Section 5.3.2 we show that, even without including this
contribution, our emulator can recover the true cosmology of our validation mock galaxy
catalogues. In principle, the most appropriate method to account for this small-scale ve-
locity contribution in a way that is also compatible with configuration space modelling
would be to use a damping function as in the VDG approach. However, as mentioned
earlier, this would require expanding the emulator parameter space by an additional free
parameter, which is why we leave the implementation of the VDG model in configuration
space emulator for future work.

5.1.4 Infrared resummation
So far the model as described here does not account for the large-scale bulk flows that
smear the BAO signal via the large-scale relative displacement field. This means that,
while we are able to provide a fairly accurate description of the broadband, the modelling
of the BAO shows a non-negligible amplitude error (see, for example Baldauf et al., 2015).

The effect from the fluctuations at larger scales q < k can be taken into account at
each k by performing a resummation of corrections. At leading order this results in a
damping factor that only acts on the BAO wiggles. It is, therefore, standard to separate
the linear matter power spectrum into smooth (broadband) and wiggly components Pnw
and Pw (Baldauf et al., 2015; Blas et al., 2016):

Plin = Pnw(k) + Pw(k). (5.11)

The split is carried out (following Vlah et al., 2016; Osato et al., 2019) by rescaling the
originally proposed expression for the featureless power spectrum PEH by Eisenstein & Hu
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(1998), adjusted to match the broadband amplitude for the linear power spectrum:

Pnw(k) = PEH(k)F
[

Plin(k)
PEH(k)

]
. (5.12)

Here F is a Gaussian bandfilter of the form:

F [f(k)] = 1√
(2π) log10(λ)

∫
d

(
log10(q)

)
f(q) × exp

[
−

(
log10(k) − log10(q)

)2

2
(

log10(λ)
)2

]
, (5.13)

where log10

(
λ/(h−1Mpc)

)
= 0.25.

At the leading order, we can explicitly rewrite equation (5.11) so that the infrared-
resummed power spectrum is defined as the sum of the no-wiggle component and a damped
wiggly part with the damping factor calculated assuming Zel’dovich approximation:

P IR−LO
mm (k) = Pnw(k) + e−k2Σ2

Pw(k), (5.14)

with Σ as the two-point function of the relative displacement field evaluated at the BAO
scale, such that:

Σ2 = 1
6π2

∫ ks

0
Pnw(q)

[
1 − j0

(
q

kosc

)
+ 2j2

(
q

kosc

)]
dq. (5.15)

The n-th order spherical Bessel function jn here is evaluated at wavelengths scaled with
respect to the wavemode kosc = 1/losc which corresponds to the reference BAO scale losc =
110 h−1Mpc and ks is the ultraviolet integration limit. This limit is traditionally set at an
intermediate scale to avoid performing integration over the full q < k (as the perturbative
IR expansion breaks at large k). When calculating the predictions for COMET training set
this limit is set to ks = 0.14 Mpc−1.

At next-to-leading order, the IR-resummed matter power spectrum is a sum of the
standard contributions from one-loop corrections sourced by higher powers of the density
field, however, it also receives additional contributions:

P IR−NLO
mm (k) = Pnw(k) +

(
1 + k2Σ2

)
e−k2Σ2

Pw(k) + P 1−loop
[
P IR−LO

mm

]
(k). (5.16)

Here the square brackets mark the fact that the one-loop integrals are evaluated using the
leading order IR-resummed power spectrum, as given in equation (5.14), instead of Plin.

The mapping of IR-resummed power spectrum from real to redshift space is similar
to the non-resummed case described in Section 5.1.2, but here the damping factor also
acquires a dependence on the angle to the line-of-sight µk. The leading order term then
can be written down as (Ivanov & Sibiryakov, 2018):

P s,IR−LO
gg (k, µk) =

(
b1 + fµ2

k

)2
[
Pnw(k) + e−k2Σ2

tot(µk)Pw(k)
]

(5.17)
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with
Σ2

tot(µk) =
[
1 + fµ2

k(2 + f)
]
Σ2 + f 2µ2

k(µ2
k − 1)dΣ2 (5.18)

and
dΣ2 = 1

2π2

∫ ks

0
Pnw(q)j2

(
q

kosc

)
dq. (5.19)

The next-to-leading order contribution can be written as:

P s,IR−NLO
gg (k, µk) =

(
b1 + fµ2

k

)2[
Pnw(k) +

(
1 + k2Σ2

tot(µk)
)

e−k2Σ2
tot(µk)Pw(k)

]
+ P s,1−loop

gg [Pnw](k)
+ e−k2Σ2

tot(µk)
(
P s,1−loop

gg [Pnw + Pw](k) − P s,1−loop
gg [Pnw](k)

) (5.20)

with the square brackets once again indicating that the loop terms are evaluated by plug-
ging in either the sum of smooth and wiggled contributions or at the smooth contribution
only, instead of Plin.

5.2 Emulator design
The design of the configuration-space extension to COMET mimics that of the Fourier space
original. There are three main features that allow COMET to achieve superior performance
compared to similar emulators. First of all, the use of evolution mapping provides a
straightforward recipe for calculating any prediction that corresponds to a rescaling of
power spectrum amplitude at fixed shape parameters, i.e., COMET is able to provide predic-
tions at any redshift or ΛCDM extensions with evolving dark energy or curvature without
expanding the training parameter space. Second, the exact treatment of Alcock-Paczynski
distortions allows the user to choose an arbitrary fiducial cosmology, as this effect does not
need to be emulated. Finally, while this feature is not unique to COMET, the contributions
proportional to all possible galaxy bias parameter combinations are emulated separately,
which further limits the training parameter space to cosmology parameters only. In the
following sections, we describe each of these features and how they apply in configuration
space in greater detail.

5.2.1 Evolution mapping
The idea behind evolution mapping in the context of the linear power spectrum has already
been introduced in Section 2.6. This approach can also be extended to perturbation theory
models as follows. The redshift-space tracer power spectrum model, as discussed in Section
5.1, can be written down as a sum of tree-level and one-loop terms which can be further
grouped to make up a series of terms PB(kkk|z) that are proportional to unique combinations
of galaxy bias (or counterterm) parameters B. Each of these terms is a functional of the
linear power spectrum and depends on the growth rate of structures f(z) through the



90 5. Emulating the two-point correlation function with evolution mapping

damping term in the IR resummation step (as shown in equation (5.18)). The same is also
true for the two-point correlation function so that its components: ξB(sss|z) satisfy:

ξB(sss|z, Θs, Θe) = ξB{sss|f(z, Θs, Θe), ξlin(r|Θs, σ12(z, Θs, Θe))}, (5.21)

where ξlin is just the Fourier transform of Plin. As a result, the cosmology and redshift de-
pendence of a perturbation theory prediction is fully determined by the shape parameters,
the growth rate f , and σ12. This means that redshifts or evolution parameters need not
be explicitly emulated, but rather we simply need to perform a scaling to the correct σ12.

5.2.2 Alcock-Paczynski distortions in COMET
As described in Section 2.5.4, in order to convert from observed galaxy redshifts and angular
positions into distances, we need to assume a fiducial cosmology. Any mismatch between
the assumed and the true cosmologies will show up as a distortion of the observed two-
point correlation function, which needs to be modelled. The amplitude of this distortion
is a function of both shape and evolution parameters, such that (with primed quantities
evaluated at the fiducial cosmology):

q∥ = H ′(zeff |Θ′
s, Θ′

e)
H(zeff |Θs, Θe)

, q⊥ = DM(zeff |Θs, Θe)
D′

M(zeff |Θ′
s, Θ′

e)
. (5.22)

Due to the mixing of both shape and evolution parameters and in order to be able to
correct for any choice of fiducial cosmology, the effect of the AP distortions is modelled
analytically. The two-point correlation function components ξB(sss|z) are emulated without
including the AP effect and the separations and the angles are subsequently rescaled, as
described in Section 2.5.4, equations (2.113) and (2.114).

5.2.3 Emulated quantities
Following Eggemeier et al. (2023), we emulate the two-point correlation function contri-
butions ξB(sss|z). The emulated terms correspond to the Fourier transforms of the terms
in the original COMET with the exception of the terms involving the cNLO counterterm: as
described in Section 5.1.3, these are omitted from the configuration space model. There
are, therefore, a total of 14 different contributions, listed in Table 5.1, with linear and one-
loop terms for B = b1 and B = 1 emulated together and for B = b2

1 emulated separately to
retain the option of calculating the IR resummed linear two-point correlation function.

Multipoles and anisotropic two-point correlation function reconstruction

Equivalently to the Fourier space emulator, in configuration space, we also project the full
two-dimensional two-point correlation function ξ(s, µ) into three multipoles and emulate
these compressed quantities instead: i.e., we emulate three sets of the components listed
in Table 5.1, each corresponding to the contributions to a different multipole.
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B b2
1 b1 1 b2

1 b1b2 b1γ21 b1γ21 b2
2 b2γ2 γ2

2 b2 γ2 γ21 c0 c2 c4
linear ✓ ✓ ✓ ✓ ✓ ✓
1-loop ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 5.1: Bias contributions to the two-point correlation function at linear and one loop
order. Each of the terms corresponds to a Fourier transform of the equivalent power
spectrum term from Eggemeier et al. (2023).

We project the 2D correlation function components such that:

ξB,ℓ(s) = 2ℓ + 1
2

∫ 1

−1
dµLℓ(µ)ξB(s, µ) (5.23)

and emulate the components for the monopole, quadrupole and hexadecapole, which are
then used to reconstruct ξ(s, µ) using the Legendre expansion. The two-dimensional two-
point correlation function reconstructed from the three multipoles is, nevertheless, not
exact because, first, the redshift-space ξ(µ, s) contains terms up to µ8 and, second, the
IR damping factor (as given in equation (5.18)) depends on µ2, which leads to non-zero
multipoles for all even l. The error that arises due to neglecting higher-order multipoles
is more significant for quadrupole and hexadecapole and for the VDG model (as shown
in Eggemeier et al., 2023), nonetheless, following the design of the Fourier space COMET,
we also apply an approximate correction by additionally including the ℓ = 6 multipole
ξB,6 evaluated at a fixed redshift z = 1 and for a fixed set of ΛCDM parameters matching
the cosmology from Planck TT,TE,EE+lowE+lensing constraints (Planck Collaboration
et al., 2020):

ξB(sss|z, Θs, Θe) ≈
2∑

ℓ=0
ξB,2ℓ(s|z, Θs, Θe)L2ℓ(µ)+

ξB,6

{
s|f(z, Θs, Θe), ξlin

(
s|ΘPlanck

s , σ12(z, Θs, Θe)
)}

L6(µ).
(5.24)

As stated in the above expression, the ℓ = 6 multipole depends on f(z, Θs, Θe) and
σ12(z, Θs, Θe), whose variation with shape and evolution parameters is correctly accounted
for. In order to reduce the error in our approximation, we can factor out this dependence
by splitting up each of the ξB,6 terms into contributions with different powers of f and
scaling their amplitude such that:

ξB,6 =
(

σ12(z, Θs, Θe)
σ12(z = 1, ΘPlanck

s , ΘPlanck
e )

)2L

ξB,6|Planck, (5.25)

with L = 1 for the linear terms and L = 2 for all of the one-loop terms (as listed in Table
5.1). The remaining effect of our approximation is that when calculating ξB,6, ξlin is always
evaluated at fixed shape parameters and that the IR damping term dependence on f and
σ12 is computed at z = 1 and Planck cosmology shape parameters.
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Parameter Min. emulator range Max. emulator range
ωb 0.0205 0.02415
ωc 0.085 0.155
ns 0.92 1.01
σ12 0.2 1.0
f 0.5 1.05

Table 5.2: The ranges of validity for the configuration space COMET extension

Summary

Following the evolution mapping expression in equation (5.21), our COMET extension con-
sists of two emulators. First, we emulate the components for each of the three two-point
correlation function multipoles at different combinations of shape parameters, f , and σ12
and, second, we emulate σ12 for combinations of shape parameters with fixed evolution
parameter values 2:

1. ξB,l(s|Θs, σ12, f) for l = 0, 2, 4 and for all B in Table 5.1

2. σ12(z = 1, Θs, Θfixed
e )

This is two fewer emulators than in the Fourier space COMET, which also includes em-
ulators for the VDG model parameter σv and the linear power spectrum Plin. The latter
is needed because in the Fourier space COMET, the quantity emulated by emulator 1 is the
ratio of the multipoles with the linear power spectrum Plin, which is done in order to reduce
the dynamical range (and, therefore, improve the accuracy) of the emulated quantity. This
approach is, however, not appropriate for the two-point correlation function, because its
amplitude spans both positive and negative values across the range of s and so taking a
ratio with ξlin would result in a function that diverges at the points where it crosses zero.
We, nonetheless, find that even without the step of taking the multipole ratio our emula-
tor is able to successfully recover the validation data set, as discussed in Section 5.3. The
multipole contributions ξB,l are emulated on a range of scales spanning separations from
10 Mpc to 250 Mpc (to account for a range of fiducial cosmologies with AP distortions).

5.2.4 Parameter space and training
Parameter space

The configuration space extension to COMET is constructed over a total of five cosmological
parameters: the growth rate f , required to obtain predictions in redshift space, σ12, which
defines the amplitude of the power spectrum (and, therefore, also the two-point correlation

2The particular choice of Θfixed
e is not significant but the σ12 emulator here matches that of the Fourier

space COMET and is therefore constructed at z = 1, h = 0.695, As = 2.2078559 with all other possible
evolution parameters set to zero
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function) at a given cosmology and for a given redshift, and the three shape parameters
ωb, ωc, and ns. The parameter ranges covered by the training set match those of the Fourier
space COMET and are given in Table 5.2. For the shape parameters, ωb, ωc and ns the ranges
were chosen to span approximately 12, 30 and 11σ interval around the Planck 2018 best-fit
values respectively, whereas the choice for the minimum and maximum values of f and
σ12 is determined by the need to capture the evolution across a range of redshifts and
combinations of evolution parameters.

In terms of the growth rate, the chosen range supports any redshift for ωc ≳ 0.107 and
the most extreme values of shape parameters put the lower boundary limitation z ≳ 0.1.
However, the limiting factor that determines the redshift range of validity for COMET is the
allowed values of σ12. As shown in Figure 1 in Eggemeier et al. (2023), the chosen σ12
range puts the upper redshift boundary at around z ∼ 3.

In addition to the emulator’s native parameter space, COMET supports cosmology inputs
in terms of As, h,w0,wa, ΩK.

Training data

The training data for the configuration space COMET extension is obtained by Fourier trans-
forming a modified set of the training data for the original power spectrum emulator.

The Fourier space training set is built on a Latin Hypercube and consists of 1500
samples covering the parameter space listed in Table 5.2. The sampling step was repeated
10,000 times to find an optimal set that maximises the minimum Euclidean distances
between any two of its points. All of the model ingredients were evaluated using a numerical
integrator and starting from CAMB-generated linear input power spectra.

In order to obtain noiseless configuration space predictions, two additional steps had to
be taken before performing a Fourier transform of the original training data. The relation
between Fourier space multipoles and their configuration space equivalents is given by:

ξB,ℓ(r) = 1
2π2

∫
PB,ℓ(k)jℓ(kr)k2dk, (5.26)

where the integration is assumed to be over the full range of k. Nevertheless, in practice,
the theory predictions only span a limited k range and, in particular, the truncation of
the prediction at the maximum k limit shows up as a feature in Fourier space. This will
subsequently result in an additional short-wavelength mode imposed over the configuration
space theory prediction and show up as wiggles. In order to reduce this effect, we extend
the Fourier-space measurements from kmax = 0.35 Mpc−1 to kmax = 15 Mpc−1 and apply
an additional suppression factor, such that:

P ′
B,ℓ(k) = exp

[
− k

kcut

]2
PB,ℓ(k), (5.27)

where kcut is a parameter that sets the scale of suppression. Our choice of kcut is based on
testing our ξℓ(r) predictions obtained using different values of kcut against the result ob-
tained when Fourier transforming the full multipoles (in which we expect to have a smaller
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Fourier transform error, as their calculation involves fewer transforms and the functions
themselves are generally smoother than the individual power spectrum components). The
test is performed by assuming a reference set of bias parameter values which match those
listed in Section 5.3.1. We find that the resulting difference is the greatest on the monopole
and on small scales and increases with increasing kcut until converging to a constant value
at kcut ≈ 2.0. Based on these tests we choose a conservative value of kcut = 2.5. We cal-
culate our training set for the separations s covering the range of 10 Mpc < s < 250 Mpc
with 180 bins spaced linearly in the range of 10 Mpc < s < 200 Mpc and 20 more linearly
spaced bins in the range of 200 Mpc < s < 250 Mpc.

Finally, following the same approach as when building the Fourier space emulator, in
order to reduce the dynamical range of the theory predictions the emulator is trained on,
we pre-process each component by subtracting their mean training set value and dividing
by the variance. For the σ12 emulator we additionally take the logarithm of each point in
the training set before performing the normalisation as described above. For the ξB,l(s)
emulator we instead multiply the components by s2 before the normalisation.

Gaussian process emulation

The emulator is built using Gaussian Processes (GP), as described in Rasmussen & Williams
(2006). A key ingredient in GP emulation is the kernel function K(xxx,x′x′x′) - a description
of the covariance between point xxx and point x′x′x′ in the training set. For our configuration
space emulator, we opt for the same kernel function as the one used to build the Fourier
space COMET (which was itself chosen by comparing the performance of a number of typical
functional forms found in the literature):

K(xxx,x′x′x′) = exp
(

− r2

2

)
+ (1 +

√
3r)exp(−

√
3r) (5.28)

with r2 = ∑d
i=1(xi −x′

i)/l2
i . Here d is the dimension of the parameter space and lll represents

the hyperparameters that characterise the length scales of typical features in the training
data. The first term of the kernel function is the squared exponential kernel, whereas the
second term is the Matérn kernel of degree ν = 3/2. The hyperparameters may differ
for the two kernel function components and their values are optimised by maximising the
log-likelihood of the GP models with respect to the training data. We repeat this step ten
times, each with a different random initialisation. The GP emulation is implemented using
the publicly available package GPy 3.

5.3 Validation
This section presents the results of the validation tests performed on the configuration
space extension to the COMET emulator. In the first part of the section, we perform tests
on the synthetic validation data set at a single redshift and with statistical uncertainties

3https://gpy.readthedocs.io/en/deploy/
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Parameter Minimum Maximum
ωb 0.02100 0.02365
ωc 0.095 0.145
ns 0.93 1.00
h 0.55 0.85
As 0.8 3.0

Table 5.3: The parameter space used to generate the validation sample.

that correspond to a volume 10 times larger than expected for the Euclid galaxy survey.
In the second part of the section, we use our emulator for a cosmological MCMC analysis
of galaxy clustering wedges measured on the Minerva mocks and demonstrate that we
can recover the input cosmology.

5.3.1 Recovering validation theory models
The validation sample consists of PB,ℓ components calculated for a set of 1500 flat ΛCDM
cosmologies defined by the parameters ωb, ωc, ns, h and As. The parameter combinations
were obtained by drawing random points within the minimum and maximum values as
defined in Table 5.3. The validation set is generated for the redshift of z = 0.904588119
and a fiducial flat ΛCDM cosmology with h = 0.67, ωb = 0.0219961 and ωc = 0.1212029.
When generating the validation set, the AP distortions are incorporated exactly (i.e., the
approximation described in Section 5.2.3 is not used), however, just like in the training
sample, we neglect the contribution from any terms involving the counterterm cNLO (see
Section 5.1.3).

In order to compare the validation set with the emulator predictions, the validation set
PB,ℓ components are used to construct the full multipoles in configuration space. We first
calculate the power spectra multipoles by assuming the bias parameter values following the
same assumptions as in the validation procedure performed by Eggemeier et al. (2023): the
linear bias parameter is set by the relation b1 =

√
1 + z, which represents the expected bias

of Hα galaxies selected by Euclid (Rassat et al., 2008; di Porto et al., 2012) and which is
then used to determine the rest of the bias parameters through the following relations. For
the tidal bias parameters γ2 and γ21, we use the excursion set and the coevolution relations
by Sheth et al. (2013) and Eggemeier et al. (2019), respectively (which also mimics the
modelling choices for BOSS and eBOSS cosmological analyses presented in this thesis).
The value for the quadratic bias parameter b2 is set based on the peak-background-split
relation from Lazeyras et al. (2016) and all of the counterterm parameters are set to zero.
Once the power spectrum multipoles are constructed, we apply the same damping factor
as in equation (5.27) and perform a Fourier transform to obtain the configuration space
prediction.

The statistical error for the validation set multipoles is computed assuming Gaussian
errors and Euclid survey characteristics. In order to provide a conservative estimate of the
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emulation accuracy, we scale the errors to represent 10 times the survey volume. To have
a more representative error estimate, we furthermore perform a scaling with As, which is
meant to correct for the fact that the initial variance is computed for a fixed cosmology and
redshift, i.e., a fixed expected signal amplitude. The final error σi assigned to the validation
multipoles at each cosmology i, therefore, follows σi = (Ai

s/Afid
s )σEuc/

√
10, where Afid

s is
the value of As used to calculate the Euclid error σEuc and Ai

s is the value of As of the
validation cosmology i.

In Figure 5.1 we present the mean error (solid line) and the standard deviation (vertical
bars) for the multipole recovery. We calculate these quantities over the full validation
sample and display them in terms of the scaled Euclid error σ, as described above. As
illustrated in the plots, the greatest error appears on small scales, where the variance of
the error across the validation cosmologies is also larger. At the minimum scales that
the emulator is trained on (s = 10 Mpc), the error reaches −1 ± 4σ for ξ0, 2 ± 5σ for
ξ2 and −4 ± 6σ for ξ4 - as a result, we do not recommend using the emulator at such
small scales. The situation improves considerably at the minimum scales of s = 20 Mpc
(marked by the vertical dashed line): here the validation set is accurately recovered with
the error of approximately −0.2 ± 0.2σ for ξ0, 0.2 ± 0.3σ for ξ2 and −0.2 ± 0.2σ for ξ4. The
mean emulation error and the standard deviation subsequently swiftly decrease further
with increasing s until around s = 230 Mpc after which there is another slight increase,
mostly affecting the monopole.

In order to get a better idea in terms of the rate of failure to recover the validation
cosmology within 1σ, we plot a cumulative histogram of the fraction of samples versus
the maximum difference between the emulated multipole and the validation set theory
prediction, as shown in Figure 5.2. Here we consider the maximum error over, first, the
full emulator range (starting with s = 10 Mpc, dashed lines) and, second, the reduced
range, starting with s = 20 Mpc (solid lines). We see that, even for the full range of scales,
68% of the samples (indicated by the first dashed vertical line) recover the validation
set at an accuracy of 1σ or better. Nonetheless, the rest of the samples show larger
errors. As expected from the mean error results in Figure 5.1, the rate of failure decreases
significantly, once the smallest scales are removed and we consider the minimum separation
of s = 20 Mpc. In this case, all of the hexadecapole predictions as well as all but one
prediction of monopole and quadrupole are recovered to better than 1σ accuracy, with
68% of samples showing a maximum error of ∼ 0.3σ or less and 98% samples showing
a maximum error of ∼ 0.6σ or less. In general, all multipoles are recovered with similar
accuracy, although the hexadecapole shows a somewhat better emulation performance,
mainly due to the fact that the Euclid error used to assess the accuracy for ξ4 is the
greatest and the emulation errors for this multipole are highly localised at the smallest
scales below s = 20 Mpc, as also seen in 5.1.

Based on the results presented in this section, we conclude that our emulator can
accurately recover theory predictions for all three multipoles in the cosmologies covered by
the validation set on scales 20 Mpc < s < 250 Mpc.
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Figure 5.1: The mean difference between validation set and emulated multipole for the
monopole (ξ0, top), quadrupole (ξ2, middle) and hexadecapole (ξ4, bottom). The coloured
vertical lines indicate the standard deviation of the difference which is calculated over all
cosmologies in the validation set and is expressed in units of the standard deviation σ,
corresponding to a measurement in 10 times the Euclid volume. The dashed line marks
the scale of s = 20 Mpc. The multipoles are calculated using the fiducial cosmology and
bias parameter values described in Section 5.3.
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Figure 5.2: Cumulative histogram of the fraction of samples with a given maximum abso-
lute difference from the validation set multipole ξ0 (blue), ξ2 (orange) and ξ4 (green). The
dashed coloured lines show the result when the minimum scale taken into account matches
the minimum scale the emulator is trained on s = 10 Mpc, whereas the solid lines show
the results with the recommended minimum scale s = 20 Mpc. The vertical dashed lines
mark 68% and 95% of the validation samples.

5.3.2 Mock cosmological analysis
While the emulator showed an excellent performance predicting the multipoles of the val-
idation set, it is important to bear in mind that the validation theory predictions were
produced neglecting the short-scale velocity contribution characterised by cNLO. In order
to further confirm that the emulated theory model is sufficient to recover unbiased cosmo-
logical constraints, we use our emulator to analyse galaxy clustering wedges measured on
Minerva mocks, which were used to validate the theory model for BOSS galaxy clustering
and which are described in Section 3.2. We perform the MCMC sampling using the pub-
licly available COBAYA package (Torrado & Lewis, 2021). Our priors are listed in Table 5.4
and are chosen to match the ranges of the cosmological parameters of the training set or
the cosmological analyses carried out in Chapters 3 and 4 (though note that the resulting
priors are narrower than the ones used in the cosmological analyses due to the more limited
shape parameter range that the emulator is valid for). We use the co-evolution relations
for tidal bias parameters γ2 and γ21 (as described in Section 2.5.1).

We present the resulting parameter constraints in Figure 5.3. For comparison, we also
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Parameter Prior
ωb U(0.0205, 0.02415)
ωc U(0.085, 0.155)
ns U(0.92, 1.01)
h U(0.50, 0.90)

ln1010As U(1.5, 4.0)
b1 U(0.5, 9.0)
b2 U(-4, 8.0)
c0 N (0, 30)
c2 N (0, 30)
c4 N (0, 30)

Table 5.4: The priors used for the cosmological analysis of the Minerva wedges with the
configuration-space extension of COMET. Here U marks the uniform prior with the minimum
and maximum limits presented in the brackets. N (x, y) indicates the normal distribution
with mean (x) and standard deviation (y). The priors for the shape parameters were
chosen to match the training sample ranges listed in Table 5.2, whereas the ranges for h,
ln1010As, b1 and b2 were taken from the cosmological analyses in Chapters 3 and 4, as
listed in Table 3.1.

display the constraints obtained from the model validation performed in Section 3.2 (Figure
3.3). Note that the constraints taken from Figure 3.3 are not only obtained with different
modelling of both the non-linear power spectrum (respresso for the exact model, versus
EFT for the emulator-based predictions) and the small scale RSD (the EFT-based model
differs from the VDG prescription as stated in equation (5.1) and we additionally neglect
the cNLO term.), but also wider priors. As a result, we do not expect the two sets of
contours to match.

The cosmological constraints obtained using emulator-based modelling recover the input
cosmology within 1σ. The resulting contours are, generally, tighter than those in the
original validation analysis because of the narrower priors, however, the input cosmology
recovery is somewhat more biased. This is particularly evident in the constraints for σ12
and As, indicating that the amplitude of the power spectrum is modelled to be somewhat
high. This might be the result of a number of effects: as mentioned before, EFT-based
analyses have been shown to depend on the priors used (Carrilho et al., 2023; Simon et al.,
2022). Our choice of priors for the counterterms is somewhat more narrow than in many
cosmological analyses. Indeed, Carrilho et al. (2023) in particular show that using wider
priors on nuisance parameters (including the counterterms) shifts the As constraints to
lower values. Furthermore, our incomplete modelling of the FoG effect may also influence
the final constraints. This test suggests that in order to improve the accuracy with which
the input cosmology is recovered, further investigation on the analysis setup is needed.
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Figure 5.3: Flat ΛCDM constraints from galaxy clustering wedges as measured on Min-
erva mocks. We show the constraints obtained using our configuration space extension of
COMET - COMETxi. For the reference we also provide the constraints obtained when validat-
ing the respresso based power spectrum model, used for analyses in Chapters 3 and 4.
The fiducial cosmology values are indicated by the dotted lines.



5.4 Summary 101

5.4 Summary
In this chapter, we presented the development of a configuration space extension of the
evolution-mapping-based emulator COMET. We use gaussian processes to train an emulator
on the Fourier-transformed EFT predictions for the power spectrum components (as listed
in Table 5.1 and throughout Section 5.1). Our emulator produces predictions for the
redshift-space galaxy two-point correlation function multipoles ξ0, ξ2, ξ4, and, following
the original design, our extension is built to support arbitrary fiducial cosmologies as well
as a continuous range of redshifts up to approximately z < 3. This is done by training
an emulator on the theory predictions as a function of shape parameters, σ12 and f and
then scaling the resulting multipole components to the target amplitude, which is itself
obtained from a σ12 emulator trained on different combinations of shape parameters.

We validate our emulator for the cosmological parameter ranges that match those of the
Fourier space COMET (and as listed in Table 5.3) and for the scales of 20 Mpc < s < 250 Mpc.
We show that for these ranges the emulated multipoles are consistent with the validation
theory predictions at the level of below 1σ, where σ stands for an error of a survey with the
volume of 10 times that of Euclid. We note that 98% of validation samples are recovered
at an accuracy of 0.6σ or better.

Our emulator validation on cosmological analysis of galaxy clustering in the Minerva
mocks confirms that the emulator is able to recover the input cosmology, however, we note
that the constraints obtained for both As and σ12 are rather high with the fiducial values
falling within the lower limit of the one standard deviation interval of the respective poste-
riors. However, this result is expected to depend on the priors on the nuisance parameters
used and requires further investigation. We also note that in the current implementation,
the configuration space modelling lacks a complete treatment of the FoG effect which can
also have an effect on the final constraints. The VDG treatment of the RSD from small-
scale velocity contributions is more appropriate for the analyses in configuration space (as
we saw, in perturbation theory the terms that are used to correct for this effect diverge and,
therefore, cannot be accurately Fourier transformed) and the results from the mock analy-
ses further confirm the importance of such modelling choices in the final constraints. The
speedup that our emulator provides will allow us to test the effect of any such modelling
assumptions more easily, leading to more robust analyses.

The configuration space extension allows for a speedup in theory predictions not only
with respect to the traditional exact computation but also compared to the analysis using
the Fourier space emulation and performing the transform to configuration space. Our
training set is pre-processed to ensure an accurate Fourier transform which further in-
creases the robustness of configuration-space analyses with COMET. The average time for
one evaluation of all three multipoles for 300 separation bins is around 5ms.

The other available two-point correlation function emulators in the literature mostly
focus on small-scale clustering and are, therefore, trained on simulations and halo model-
based statistics (for example, Zhai et al., 2019). Perhaps the closest to our work in terms
of the range of scales emulated is the Dark Emulator (Nishimichi et al., 2019; Cuesta-
Lazaro et al., 2023), which covers the separations of 0.01h−1Mpc < r < 150h−1Mpc. The
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emulator is based on the DarkQuest simulation suite and employs the halo model to be
able to provide predictions at significantly smaller scales than our COMET extension. Never-
theless, it is currently only available for fixed redshifts and does not include redshift-space
predictions. Dark Emulator is also considerably slower (the quoted single evaluation
time is 300ms compared to ours 5ms) and, while it also allows for sampling of the halo
model parameters, it covers a more limited cosmological parameter space (which includes
the ΛCDM parameters and w but does not allow for its time evolution or curvature).
For the ΛCDM parameters, Dark Emulator supports narrower ranges for all cases but
ns. Our configuration space emulator is, therefore, uniquely suitable for full-shape galaxy
clustering analyses up to mildly-non-linear scales. It could additionally be used in tandem
with Dark Emulator to cover a wider range of scales and test the consistency between
the halo model and perturbation theory-based predictions on the scales on which the two
emulators overlap.



Chapter 6

Summary and outlook

Galaxy clustering is a well-established cosmological probe, offering some of the most precise
low-redshift cosmological parameter constraints. However, in order to extract and correctly
interpret the full information from increasingly richer data sets, it is important to reassess
the traditional methods and assumptions used and be ready to incorporate new approaches
into our analyses. This thesis offers the insights gained from one such new approach
- evolution mapping, and presents its applications to the anisotropic galaxy clustering
analyses.

In Chapter 3 we presented the full-shape analysis of BOSS galaxy and eBOSS quasar
clustering within ΛCDM cosmologies. We analysed the galaxy clustering wedges from
Sánchez et al. (2017) and quasar clustering multipoles from Hou et al. (2021). Together
the two sets of measurements allowed us to trace the background evolution of the Universe
as well as the structure growth through an extensive redshift range of 0.2 < z < 2.2. Our
full-shape model contained several important updates from the original analyses. First, the
more accurate non-linear power spectrum predictions were obtained using RESPRESSO,
matching the analysis of Hou et al. (2021) but unlike in Sánchez et al. (2017) who used
gRPT-based modelling. Second, we used co-evolution relations from Eggemeier et al.
(2019) to set the values of the tidal bias parameters - this allowed us to reduce the sampled
parameter space and, therefore, improve the precision of the resulting constraints. We
validated this model on Minerva and OuterRim mocks and confirmed that it recovers
unbiased input cosmology.

We were interested in how the recovered galaxy clustering constraints compare with
and complement the constraints from weak lensing two-point statistics (the 3 × 2pt mea-
surements) from DES Y1 and CMB power spectra measurements by Planck. We further-
more performed our analysis in the physical parameter space - i.e., we were interested
in cosmological parameters not defined through the dimensionless Hubble parameter, h.
We illustrated, by focusing on the posteriors of σ8, the clustering amplitude defined on
h−1Mpc scale, how the constraints on this parameter obtained from different probes can-
not be meaningfully compared, as they each measure a weighted clustering amplitude over
different ranges of scales, defined by the corresponding h posterior. We furthermore demon-
strated that, when using the physical parameter space instead, we are able to correctly
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recover the tight degeneracy between the initial and final amplitudes of density fluctuations
log(1010As) and σ12. This subsequently allowed us to demonstrate that, first, the clustering
amplitude, σ12 recovered by all probes is consistent with each other and, second, in the
physical parameter space the σ8 tension instead shows up as tension in the amount of total
structure growth preferred by the combined low redshift probes and Planck, with Planck
preferring a greater amount. We found that the tension in the log(1010As)−σ12 parameter
subspace between the combined BOSS+eBOSS+DES measurements and Planck is 2.5σ,
which is similar to the level of tension in S8 for these data sets.

Finally, we carried out an additional consistency test by repeating our base analysis with
narrow priors, taken from Planck posterior constraints, on the shape parameters ωb, ωc, ns.
The additional information from Planck allowed us to obtain tighter constraints on the
parameters that determine the power spectrum amplitude. The increased constraining
power resulted in low redshift probes showing a preference for 1.89σ and 1.22σ lower σ12
and log(1010As) values than those obtained by Planck. Additionally, the low redshift probes
recovered a 1.73σ higher value of ωDE. While these differences are not significant, they are
consistent with the tension in the amount of total growth observed in the base analysis
with greater dark energy density suppressing the structure growth. However, as none of
our probes provides tight constraints on ωDE, any disagreements in the inferred value could
not be measured directly.

Motivated by these findings, in Chapter 4, we repeated our analysis for ΛCDM ex-
tensions with varying dark energy equation of state parameter w. In addition to this,
we explored models with the time evolution of the equation of state parameter (varying
wa), curvature (ΩK) and the neutrino mass sum (∑

mν). Once again, we performed the
analysis in the physical parameter space and demonstrated its clear advantages for these
cosmologies, as they represent a case where constraints on H0 are particularly degraded.
This is especially true for Planck and we illustrated that by showing that clustering ampli-
tude is constrained by the CMB probes even in the cosmologies with varying dark energy
density, as long as it is measured on a physical scale defined in Mpc. In this work, we,
therefore, presented the first-ever CMB constraints on the linear density field variance, as
measured by σ12, in cosmologies with varying w. We showed that this value is defined by
the w − ωDE degeneracy, which corresponds to the constant angular diameter distance to
the last scattering surface. We obtained Planck wCDM constraint of σ12 = 0.816 ± 0.011,
which is only slightly higher than the ΛCDM value and which degrades little even when
wa is allowed to vary as well.

In addition to this, we demonstrated that CMB can also constrain the physical curvature
density of the Universe, ωK, even when w is allowed to vary. We confirmed that Planck
prefers negative curvature of ωK = −0.0116+0.0029

−0.0036, as reported in previous work, however,
the physical curvature result carries the higher significance of 4σ. Nevertheless, we also
confirmed that BOSS+eBOSS, which constrain ωK to be consistent with 0, is discrepant
with Planck when the curvature is allowed to vary, even in the evolving dark energy density
scenarios. As reported in previous work, the closed Universe result by Planck can be linked
back to its preference for excess lensing of the temperature power spectrum (characterised
by Alens > 1).
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Overall, with the exception of Planck’s curvature constraint, we found no significant
preference for any of the extended parameters taking non-ΛCDM values. For the neutrino
mass sum, we found that the combination of Planck+BOSS+eBOSS only offers a modest
improvement in comparison to Planck’s constraints alone. Our best upper mass limit,
therefore, comes from the combination Planck+BOSS+eBOSS+SN and is ∑

mν < 0.211,
which is less constraining than the SDSS consensus analysis, which, however, makes use of
a more extensive data set.

In the final Chapter 5, we proceeded to make use of the evolution mapping approach,
which we now applied to the power spectrum modelling with the goal of building an emu-
lator for the redshift-space galaxy two-point correlation function multipoles. We followed
the design of COMET, the evolution-mapping-based Gaussian process emulator for the power
spectrum multipoles, and built its extension. The configuration-space emulator provides
predictions for the two-point correlation function monopole, quadrupole, and hexadecapole,
based on the EFT recipe for the non-linear power spectrum. The use of evolution mapping
allowed us to reduce the parameter space on which the emulator needed to be trained.
This was reflected both by its performance and flexibility in terms of the number of cos-
mological models and redshifts emulated. Our configuration space emulator, just like the
original COMET, allows for the varied standard ΛCDM parameters ωb as well as the common
extensions ΩK,w0,wa. In addition to the extensive cosmological parameter coverage, the
emulator also supports arbitrary fiducial cosmologies and a wide redshift range, stretching
up to the redshift of z ∼ 3.

We validated our emulator on a synthetic data set which was assigned the errors cor-
responding to 10 times the volume of Euclid. We confirmed that the validation multipoles
were recovered within 1σ for all but one case in the quadrupole and hexadecapole for the
scales of 20 Mpc < s < 250 Mpc. Moreover, 98% of the validation samples were recovered
with an accuracy of ∼ 0.6σ or better and 68% of samples were recovered with an accu-
racy of ∼ 0.3σ or better. We furthermore used our emulator to perform the cosmological
analysis of galaxy clustering wedges measured on the Minerva mocks. We found that
the resulting constraints recovered the input cosmology within 1σ, albeit with somewhat
high values for the power spectrum amplitude parameters As and σ12. This suggests that
further work is needed to determine the influence of the priors as well as the modelling of
the virialised small-scale galaxy velocity contribution.

First and foremost our future work will, therefore, include the development of an em-
ulator for the configuration space VDG model to further investigate the influence that
the modelling of the small-scale velocity contribution has on the cosmological parameter
constraints. Our emulator currently exhibits substantial errors on the small-scale theory
predictions for 10 Mpc < s < 20 Mpc. We would like to further investigate how this can be
improved to extend the validity range of the emulator. One of the possible avenues to ex-
plore is implementing additional weights on the different scales emulated such that, ideally,
we can obtain an emulation accuracy that scales with the measurement errors expected.

We are interested in making use of COMET as well as the ideas behind evolution map-
ping to further explore how the full-shape clustering information can be appropriately
summarised. In addition to the fact that the summary parameters do not contain the
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information from the shape of the two-point correlation function (Brieden et al., 2022),
another issue is related to the use of fσ8 parameter combination to characterise the RSD
effect on the two-point correlation function. As described throughout this thesis and as
pointed out in Sánchez (2020), the use of h−1Mpc units introduces an additional depen-
dence on the choice of h. This is particularly an issue when the value of fσ8 is obtained
from the so-called “fixed template” analysis where the parameters describing the shape
and the amplitude of the matter power spectrum are kept fixed. There has been some ev-
idence that there is a mismatch between the constraints obtained from the fixed template
approach as compared to the equivalent results obtained from fitting the measurements
directly while varying the cosmological parameters (see, for example, Maus et al., 2023).
This mismatch can be traced back to the fact that in the fixed template analysis, fσ8 is
measured at a fixed h, which reduces the resulting error as compared to the case where h
is varied and marginalised over. An interesting avenue for future work is then to update
the RSD constraints from SDSS galaxy clustering measurements by re-expressing them in
terms of fσ12 and explore how these evolve with redshift and compare with the full shape
constraints.

It would also be interesting to repeat our cosmological analysis presented in Chapter
3 updated with the most recent weak lensing measurements from KiDS-1000 (Heymans
et al., 2021) and DES Y3 (Collaboration et al., 2021) as well as the additional growth of
structure constraints from the SDSS fσ12 measurements.

Nevertheless, ultimately, it is the upcoming galaxy surveys that promise the constrain-
ing power required to more decisively confirm whether any discrepancy between the high
and low redshift data sets exists and whether it points towards models beyond the standard
ΛCDM. The advent of new large, high-quality data sets (the so-called Stage-IV surveys)
such as the ones obtained by the Dark Energy Spectroscopic Instrument (DESI, DESI
Collaboration et al., 2016), the ESA space mission Euclid (Laureijs et al., 2011), and the
Legacy Survey of Space and Time (LSST) at the Rubin Observatory (Ivezić et al., 2019),
will allow us to combine multiple probes and significantly tighten our cosmological con-
straints. An impressive example of the unprecedented size of these data sets is the recently
started DESI, which has already obtained spectra of more galaxies than available in the
full BOSS sample. At the end of its five-year operation, DESI is expected to have collected
a total of 30 million galaxy and quasar redshifts. The space-based Euclid mission that was
launched in July 2023 and has already obtained its very first images is expected to observe
around 10 billion sources with 30 million of them expected to be used for galaxy clustering
studies. Finally, the photometric LSST survey will offer complimentary observations of the
immense sample of 20 billion galaxies over the period of 10 years.

The discussion of the consistency between different data sets has so far been limited
to the best-constrained parameters with cosmological analyses employing the methods
developed when the constraining power available was a fraction of what is expected from
future observations. The use of h−1 Mpc units and the parameters defined through them
is one example of such a tradition. As we move on to the analysis of Stage IV data
sets, it would be beneficial to shift our focus towards the quantities that more closely
represent the cosmological information content of those data, or that have a more direct
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physical interpretation. The future surveys described here will be used to complement
each other and it is, therefore, more important than ever that this is done in a consistent
and robust manner, bearing in mind the assumptions that have gone in when developing
the frameworks used to analyse each separate probe. The work presented in this thesis
has demonstrated that tighter constraints on ΛCDM extensions are available even with
the current data - we may hope that by making use of the future observations we will be
able to increase the precision of these measurements and reduce the extended parameter
space. In order to perform these analyses we will need efficient and accurate pipelines
and emulation will be a key ingredient in developing them as well as testing the various
model assumptions. While the first Stage IV data is already being collected, the validity
of the currently available emulators is still very limited - we hope that our work represents
a significant step towards fulfilling the demands of these near-future analyses. Cosmology
has come a long way since the very first observations. In order to make the most of the
potential offered by the incredible data sets that are about to be available, we must be
ready to question our methods and meet the challenges offered by the new generation of
surveys.
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Appendix A

Joint analysis with KiDS-450 data

In this section, we present the joint analysis of the anisotropic clustering measurements
from BOSS and eBOSS together with cosmic shear measurements from KiDS-450, Hilde-
brandt et al., 2016.

We use cosmic shear measurements from the Kilo-Degree Survey, (Kuijken et al., 2015;
Hildebrandt et al., 2016; Fenech Conti et al., 2017), hereafter referred to as KiDS. The
KiDS data are processed by THELI (Erben et al., 2013) and Astro-WISE (Begeman et al.,
2012; de Jong et al., 2017). Shears are measured using lensfit (Miller et al., 2013), and
photometric redshifts are obtained from PSF-matched photometry and calibrated using
external overlapping spectroscopic surveys (see Hildebrandt et al. (2016)).

The KiDS-450 weak lensing data set consists of tomographic shear measurements from
four redshift bins spanning the total range of 0.1 < z ≤ 0.9 and the corresponding source
redshift distributions estimated from the weighted direct calibration (‘DIR’) for each bin
(Lima et al., 2008). We use the recommended scale cuts and use the angular bins with
θ < 72 arcmin for ξ+(θ) and θ > 6 arcmin for ξ−(θ).

It is important to note that here we are using the same DES shear model as in the
main analysis. This means that the treatment of the nuisance parameters (namely, the
baryonic effects, the photometric redshift uncertainty and the additive and multiplicative
bias parameters) differs from the original analysis of KiDS-450. We do not include baryonic
effects and our priors for photometric redshift uncertainty match those of Hildebrandt, H.
et al. (2020). We impose flat priors for multiplicative bias U(−0.1, 0.1) with the additive
bias parameter taken to be zero, mimicking the DES set up. Finally, we also follow the
DES intrinsic alignment model, imposing a flat prior on redshift evolution of intrinsic
alignment parameter. We compare our final posteriors with the ones obtained from the
publicly available KV450 chains (Hildebrandt, H. et al., 2020) and find a good agreement
between the two, as shown in Fig. A.1. Moreover, there is a weak tendency for our analysis
to prefer lower RMS variance values, which leads to a more conservative assessment of any
potential tensions with Planck.

Fig. A.2 shows the combined constraints from the combination of KiDS-450 + BOSS +eBOSS
(orange contours), which are in near-perfect agreement with the equivalent combination us-
ing DES (grey contours). The suspiciousness statistic shows an agreement between Planck
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Figure A.1: Comparison of the marginalised posterior distributions between the fiducial
KV450 analysis and this work. For this comparison, we adapted the cosmological parameter
priors to match those of the fiducial analysis.
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and this set of low-redshift measurements of 1.5 ± 0.5σ, which is also consistent with our
results from BOSS + eBOSS + DES.
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Appendix B

Additional beyond-ΛCDM constraints

In this section, we present the constraints on parameters omitted in Table 4.2, including
constraints in the “traditional” parameter space (Table B.1). The physical parameters (i.e.,
not defined through h units) constrained by our data include the physical matter density
ωm, the spectral index ns and the (log) amplitude of initial density fluctuations ln1010As.
For completeness, we include the traditional parameters σ8 (linear density field variance
as measured on the scale of 8h−1 Mpc whose physical equivalent is σ12), Hubble parameter
H0 and the relative densities of matter (Ωm), dark energy (ΩDE) and curvature (ΩK).

In general, we expect that the constraints on these parameters are degraded in compar-
ison to their physical equivalents due to averaging over the posterior of H0, which tends to
be less well constrained in these extended cosmologies (this is most evident when comparing
σ12 with σ8).
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Table B.1: Marginalised posterior constraints (mean values with 68 per-cent confidence
interval, for ∑

mν - 95 per-cent confidence interval) derived from Planck CMB and the
full shape analysis of BOSS + eBOSS clustering measurements on their own, as well as
in combination with each other and with Pantheon supernovae Ia measurements (SN). All
of the models considered here vary dark energy equation of state parameter w, waCDM
additionally allows a redshift evolution for w, wKCDM varies curvature and wνCDM
varies neutrino mass sum ∑

mν . Note that for wKCDM the joint BOSS+eBOSS+Planck
constraints should be interpreted bearing in mind that BOSS+eBOSS and Planck are
discrepant in this parameter space.

BOSS+eBOSS BOSS+eBOSS+Planck BOSS+eBOSS+Planck+SN

wCDM

σ8 0.798 ± 0.047 0.828 ± 0.017 0.818 ± 0.012
H0 69.8+3.1

−3.6 69.6+1.4
−1.6 68.62 ± 0.84

Ωm 0.280+0.017
−0.021 0.295 ± 0.013 0.3026 ± 0.0080

ΩΛ 0.720+0.021
−0.017 0.705 ± 0.013 0.6974 ± 0.0080

ωm 0.137+0.011
−0.013 0.1426 ± 0.0011 0.1424 ± 0.0011

ns 0.990 ± 0.055 0.9661 ± 0.0042 0.9665 ± 0.0041
ln1010As 3.02 ± 0.21 3.043 ± 0.016 3.044 ± 0.016

waCDM

σ8 0.793 ± 0.045 0.818+0.019
−0.022 0.822 ± 0.012

H0 70.1+3.7
−4.4 68.1+2.0

−2.8 68.72 ± 0.86
Ωm 0.281+0.026

−0.030 0.309+0.024
−0.021 0.3025 ± 0.0081

ΩΛ 0.719+0.030
−0.026 0.691+0.021

−0.024 0.6975 ± 0.0081
ωm 0.138 ± 0.012 0.1428 ± 0.0012 0.1427 ± 0.0011
ns 0.983 ± 0.054 0.9656 ± 0.0042 0.9658 ± 0.0041

ln1010As 3.00 ± 0.20 3.042 ± 0.016 3.042 ± 0.016

wKCDM

σ8 0.770 ± 0.049 0.834 ± 0.019 0.819 ± 0.012
H0 68.9+2.9

−3.4 69.7+1.4
−1.6 68.46 ± 0.91

Ωm 0.292 ± 0.019 0.292 ± 0.014 0.3032+0.0077
−0.0086

ΩΛ 0.829 ± 0.073 0.710 ± 0.015 0.6982+0.0085
−0.0076

ΩK −0.121 ± 0.078 −0.0025 ± 0.0026 −0.0014 ± 0.0024
ωm 0.139+0.011

−0.013 0.1419 ± 0.0013 0.1420 ± 0.0013
ns 0.975+0.060

−0.053 0.9679 ± 0.0046 0.9676 ± 0.0045
ln1010As 2.80 ± 0.26 3.041 ± 0.016 3.043 ± 0.016

wνCDM

σ8 0.795+0.041
−0.048 0.822 ± 0.018 0.816+0.016

−0.013
H0 70.3 ± 3.5 70.0+1.5

−1.8 68.66 ± 0.85
Ωm 0.288+0.019

−0.022 0.293 ± 0.013 0.3028 ± 0.0083
ΩΛ 0.712+0.022

−0.019 0.707 ± 0.013 0.6972 ± 0.0083
ωm 0.143+0.012

−0.014 0.1433+0.0013
−0.0016 0.1427 ± 0.0013

ns 1.066+0.070
−0.11 0.9659 ± 0.0039 0.9665 ± 0.0041

ln1010As 3.18+0.23
−0.26 3.043 ± 0.016 3.045 ± 0.016
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