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In this paper, we have identified RIPK1 deficiency as a novel monogenic cause of primary 
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cell lines (HCT116, HT-29, BLaER1, and Jurkat cell lines) overexpressing wildtype and mutant 
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2. Introductory summary 
Inflammatory bowel disease (IBD) is a chronic relapsing disorder in the gastrointestinal 
tract [1]. Children with very-early-onset inflammatory bowel disease (VEO-IBD) often show 
life-threatening conditions refractory to conventional treatment [2, 3]. IBD are complex 
multifactorial disorders and the exact disease mechanisms and triggers are not fully understood.  
In my PhD thesis, I evaluated genetic causes and risk factors of VEO-IBD identified through a 
whole exome sequencing screen on one of the largest international patient cohorts. 
First, I have reported receptor interacting serine/threonine-protein kinase 1 (RIPK1) deficiency 
as novel monogenic disorder presenting with IBD and/or primary immunodeficiency. Rare 
biallelic loss-of-function mutations in RIPK1 were detected in eight patients from six unrelated 
families [4]. These mutations led to reduced protein expression of RIPK1, impaired NF-kB 
activity, defective lymphocyte differentiation, altered activation of inflammasome, and 
impaired TNFR1-mediated cell death responses in intestinal epithelial cells [4]. Our study 
highlighted the crucial role of RIPK1 in controlling inflammation and immunity in humans, 
and provided critical insights into therapeutic strategies targeting RIPK1. 

Second, I have characterized a rare homozygous missense mutation in the first CARD domain 
of nucleotide binding oligomerization domain containing 2 (NOD2) in a patient with 
immunodeficiency and enteropathy [5]. The mutation was associated with impaired NOD2-
dependent signaling and subsequent production of proinflammatory cytokines in patient’s 
primary cells and cellular models [5]. Of note, our study also revealed that ATPase valosin-
containing protein (VCP) as a novel interaction partner of wildtype NOD2, while the interaction 
was abrogated with the mutated NOD2 [5]. Functional assays showed that knockdown of VCP 
lead to impaired inflammatory responses upon challenge with muramyl dipeptide (MDP) but 
enhanced tunicamycin-induced ER stress accompanied by increased cytokine and chemokine 
expression, which was abolished in the absence of NOD2 [5]. This study has broadened the 
IBD disease spectrum and complemented our understanding of NOD2-mediated inflammatory 
signaling pathway. 

My studies elucidating the pathomechanisms of RIPK1 and NOD2 deficiency on molecular and 
cellular level might help to develop novel treatment and diagnostic strategies for children with 
devastating VEO-IBD as well as other immune-related disorders. 
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Chapter 1. Inflammatory bowel disease - general introduction 
Inflammatory bowel disease (IBD) is a chronic and/or relapsing inflammatory condition of the 
gastrointestinal tract, which can be classified as Crohn’s disease (CD), ulcerative colitis (UC) 
or IBD unclassified [6]. The disorder typically manifests in early adulthood, but the incidence 
of pediatric onset IBD has been increasing worldwide [6]. 
Common symptoms of IBD usually involve abdominal pain, diarrhea, bloody stool, reduced 
appetite, unintended weight loss and fatigue [1]. Ulcerative colitis causes long-lasting, uniform 
and confined inflammation with ulcerations in the colon and rectum [7], whereas Crohn’s 
disease manifests as a non-continuous transmural inflammation that may affect the whole 
digestive tract from mouth to the anus [8]. 
Environmental factors have been implicated in triggering IBD as the disease was previously 
more frequently found in industrialized countries [9]. With an emerging incidence recorded in 
developing countries since the twenty-first century [10], the pathogenesis of IBD has been 
recognized as complex interplay of multiple factors, such as genetic composition, immune 
dysregulation, epithelial barrier dysfunction, disturbed intestinal microbiota, as well as 
environmental risks [11]. 
IBD is a chronic and progressive disease that needs early intervention to prevent complications. 
Conventional therapies for IBD rely on controlling the disease symptoms through enteral 
nutrition or pharmacological therapies such as immune modulators (e.g., thiopurines, 
methotrexate, calcineurin inhibitors), aminosalicylates, or surgical interventions. Since 
conventional treatment may cause severe side effects and a large fraction of patients show a 
refractory course [12], there has been increasing interest in developing new therapies focusing 
on biologics (e.g., anti-TNF, anti-IL-12/IL-23, and anti-integrin therapies) and small molecules 
(e.g. JAK inhibitors) [13]. There are also alternative approaches that modulate the microbial 
balance/symbiosis by antibiotics, probiotics, prebiotics, postbiotics, symbiotics, and fecal 
microbiota transplantation to improve the composite of the intestinal microbiota [13]. 

Chapter 1.1. Very early onset inflammatory bowel disease 
About 14 in 100,000 children have disease onset under the age of six years, which is defined as 
very early onset IBD (VEO-IBD) [14]. Notably, children with VEO-IBD more frequently 
present with predilection of colitis and higher incidence of severe fistulizing or perianal 
abscesses, resistance to immunosuppressive therapies, as well as increased lethality [2, 3]. It is 
difficult to precisely predict disease course and responses to therapies for VEO-IBD patients 
according to current classifications and researchers are seeking new avenues to treat the disease. 
Twin studies and the early onset of the disease suggested genetic predisposition as a critical 
factor for the development of VEO-IBD [15-17]. A paradigmatic study has identified IL-10R 
deficiency as the first truly monogenic cause of IBD [16] and allogeneic hematopoietic stem 
cell transplantation (HSCT) has been proven to be a novel therapeutic approach for VEO-IBD 
[17]. Since then, more than 100 monogenic entities have been attributed to IBD-causing genetic 
signatures [18]. These studies have highlighted the importance of genetic diagnosis to VEO-
IBD patients and suggested that monogenic IBD represent promising models to study the key 
factors controlling immunological homeostasis in the intestine. 

Chapter 1.2. Genetic contribution to inflammatory bowel disease 
The genetic contribution to IBD has been first studied through twin studies and family-based 
linkage analysis [19]. The offspring of two affected parents showed more than 30 % chance of 
developing IBD [20-22] and positive family history has been more commonly observed in CD 
than UC patients [20]. Familial studies support the contribution of genetic factors to prognosis 
since similar patterns of disease behaviors are often observed within families [23, 24]. The 
approximated risk of developing IBD is 1.6% for the first-degree relatives of an UC patient, 
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and 5% for that of a CD patient in North American and European white non-Jewish populations 
[21, 25, 26], whereas in Jewish patients these risk probabilities are 5.2% and 8%, respectively 
[26]. Of note, recent genome wide association studies (GWAS) have identified more than 230 
susceptibility loci for IBD, which have facilitated our understanding of genetic contributions to 
the diseases [27]. Furthermore, more rare genetic disorders could be detected benefiting from 
the advances of genomic sequencing technologies [28]. 

Chapter 1.2.1. GWAS studies in inflammatory bowel disease 
For two decades, GWASs that screen the whole genome region for associations between disease 
status and common variants in large case-control cohorts have provided unprecedented insights 
into the pathogenesis of IBD [29]. Notably, NOD2 has been first successfully identified as a 
susceptibility gene for CD in 2001 [30], followed by the description of other susceptible genes 
with more than 230 enriched risk loci, such as Autophagy Related 16-Like 1 (ATG16L1) [31], 
Interleukin (IL) 23R [32], Caspase Recruitment Domain Family Member 9 (CARD9) [33], 
Fucosyltransferase (FUT2) [34], and Tyrosine Kinase 2 (TY2) [35]. GWAS has highlighted 
multiple biological processes as crucial gatekeepers for intestinal homeostasis and disease 
development, such as autophagy, epithelial barrier function, reactive oxygen species (ROS) 
generation, epithelial restitution, microbial sensing and defense, endosplasmic reticulum stress, 
as well as regulation of innate and adaptive immunity [36, 37] (Figure 1). 

 
Figure 1. GWAS identified risk loci associated with UC and CD [38]. 

 

Chapter 1.2.2. Whole exome sequencing - a tool to identify monogenic causes for IBD 
Whole exome sequencing (WES) has arisen as a strategy to identify rare monogenic Mendelian 
disorders [39]. Since whole exome sequencing has become the gold standard for identifying 
novel pathogenic mutations, an emerging number of novel candidate genes responsible for 
monogenic IBD have been identified in VEO-IBD patients such as X-Linked Inhibitor of 
Apoptosis (XIAP) [40], Tetratricopeptide Repeat Domain 7A (TTC7A), [41], Spleen tyrosine 
kinase (SYK) [42], Syntaxin-Binding Protein 3 (STXBP3) [43], Transforming growth factor 
beta 1 (TGFB1) [43], caspase-8 [4], and Receptor-interacting serine/threonine-protein kinase 
1 (RIPK1) [4, 44]. To date, more than 80 monogenic entities have been characterized [45]. 
These monogenic disorders can be classified into different categories according to their 
biological mechanisms: immune dysregulation (e.g., IL-10 signaling defects), 
hyperinflammatory and autoinflammatory disorders, phagocytic defects, T- and B-cell defects, 
defects in the epithelial barrier, and others [46, 47] (Figure 2). 
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Figure 2. An integrated taxonomy of monogenic IBD [45] 

 

Chapter 2. Key pathways in innate immunity underlying IBD pathology 

Chapter 2.1. Innate microbe-sensing pathways 
The human colon is constitutively colonized by microbiota. Some intestinal bacteria provide 
beneficial effects and are thus referred to as symbiotic microorganisms, whereas others can be 
detrimental and disease triggering, known as pathogens [48]. Recognition and distinction 
between pathogenic and symbiotic microorganisms by the innate immune system are crucial in 
maintaining intestinal homeostasis, and a disturbed interaction can lead to intestinal 
inflammation [49]. 

Innate immune recognition relies on distinct molecular structures of microorganisms [50]. The 
innate immune cells (e.g., monocytes, macrophages, NK cells, neutrophils, and dendritic cells) 
are able to recognize a large variety of microorganisms by diverse pattern recognition receptors 
(PRR) that can sense and interact with pathogen-associated molecular patterns (PAMP) or 
danger-associated molecular patterns (DAMP) [50]. Classical PRRs include Toll-like receptors 
(TLRs), RIG-I-like receptors (RLRs), AIM2-like receptors (ALRs), and NOD-like receptors 
(NLRs) [50] (Figure 3).  
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Figure 3. A brief overview of sensors in the innate immune system including TLRs (Toll-like receptors, blue), RLRs 
(retinoid acid inducible gene-I-like receptors, orange), NLRs (nucleotide-binding and oligomerization domain-
like receptors, green), as well as the corresponding ligands (dark green) and downstream signaling pathways 
(pink). 
 

Chapter 2.2. Toll-like receptors 
TLRs are the first identified and best characterized group of PRRs [51]. These transmembrane 
receptors on innate immune cells are crucial in sensing PAMPs from various bacterial products 
[52]. Except for an ectodomain with leucine-rich repeats (LRRs) that recognize PAMPs, they 
usually also consist of a transmembrane domain and a signal-transducing Toll/IL-1 receptor 
(TIR) domain in the cytoplasm [52, 53]. Upon binding to PAMPs, TLRs recruit TIR domain-
containing adaptor proteins such as TIR-domain-containing adaptor-inducing interferon-
β (TRIF) and Myeloid differentiation primary response 88 (Myd88), and subsequently activate 
different downstream pathways [54]. While TLR1, TLR2, TLR4, TLR5, TLR6, and TLR10 are 
localized on the cell surface, TLR3, TLR7, TLR8, TLR9, TLR11, TLR12, and TLR13 are 
localized to intracellular compartments and can recognize nucleic acids derived from viruses 
and bacteria [53, 55]. For example, (i) TLR2 works together with TLR1 or TLR6 to recognize 
a vast variety of bacterial components such as lipoproteins, lipotechoic acids, zymosan, and 
peptidoglycans [56], (ii) TLR4 is crucial for recognizing the gram-negative bacterial cell wall 
component lipopolysaccharide (LPS) [54], and (iii) TLR5 recognizes flagellin [57].  
TLR signaling plays critical roles in multiple aspects. Notably, TLRs have been shown to be 
crucial sensors for mediating immune responses against microbes in the gut and their 
dysfunctions might trigger disease-associated inflammation. Emerging evidence has 
highlighted the TLR-mediated signaling as a critical player in the pathogenesis and a potential 
therapeutic target for several inflammatory diseases such as sepsis, rheumatoid arthritis, and 
systemic lupus erythematosus [58]. 

Chapter 2.3. NOD-like receptors 
NOD-like receptors (NLRs) are a large protein family of intracellular sensors. They usually 
share a common central nucleotide-binding oligomerization domain (NOD) and a LRR-repeat 
region, but each member has a distinct N-terminal effector domain [59, 60]. In humans, 22 
members of the NLR family have been described so far. According to their specific functions, 
NLRs are classified as adaptors (e.g., NLRP3, NLRC4, and NLRP6), regulators (e.g., NLRP1, 
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NLRC3, NLRC5 and NLRP4) and receptors (e.g., NOD1 and NOD2) [61]. Upon binding to 
microbial structures such as peptidoglycan or muramyl dipeptide (MDP), the auto-inhibitory 
LRR domain undergoes conformational changes resulting in the formation of large 
macromolecular scaffolds, which allow for the interaction with ASC. Upon subsequent 
recruitment of Caspase 1, multimeric complexes, called inflammasome, will be formed. While 
some NLRs can directly recruit caspases and form inflammasomes through scaffolding, other 
NLRs need to first activate transcription including  NF-kB-, interferon regulatory factor (IRF)-
, and mitogen-activated protein kinase (MAPK)-mediated signaling [62]. Mutations and 
polymorphisms in NLRs have been associated with various immune disorders such as IBD, 
multiple sclerosis, and asthma [63].  

Chapter 2.4. NLRP3 inflammasome 
The NLRP3 inflammasome is the best characterized inflammasome signaling complex. This 
multiprotein complex consists of the NLRP3 sensor protein, the adaptor, apoptosis-associated 
speck-like protein (ASC, also called PYCARD), and the effector protein, Caspase 1 [64]. Upon 
activation, NLRP3 forms oligomers through the central NACHT domains by homotypic 
interaction, followed by sequential recruitment of ASC and Caspase-1 to the macromolecular 
platform [64]. Upon self-cleavage and activation, the activated caspase-1 subsequently cleaves 
pro-IL-1β, pro-IL18, and Gasdermin D (GSDMD) into mature forms causing pore formation in 
the cell membrane and induction of pyroptosis [64] (Figure 4). 
The NLRP3 inflammasome is a critical component to maintain homeostasis in the host immune 
system. Gain-of-function mutations in NLPR3 result in dysregulated inflammasome activity 
and have been shown to cause a rare inherited autoinflammatory condition, called cryopyrin-
associated periodic syndrome (CAPS) [65]. In the context of IBD, a single nucleotide 
polymorphism (e.g., rs10754558) has been more frequently detected in UC patients than 
healthy controls [66]. Moreover, abnormal inflammasome activity has been observed in in vivo 
colitis models and IBD patients [67]. Of note, NLRP3-deficient mice showed defective 
epithelial integrity, leukocyte infiltration, as well as reduced anti-inflammatory cytokine 
production, causing severe colitis upon DSS challenge [68, 69]. 
 

 

Chapter 3. RIPK1 – A key molecule controlling immunity and intestinal homeostasis  
Receptor-interacting serine threonine kinase1 (RIPK1) was first discovered for its ability to 
interact with the apoptosis-inducing death receptor FAS [70]. The RIPK1 protein consists of a 
carboxy-terminal death domain (DD), a RIP homotypic interaction motif (RHIM), and a kinase 
domain (KD) (Figure 5). In addition to Fas, the death domain can also bind to intracellular DD 
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of other proteins (e.g., TNFR1, TNFRSF1A associated via death domain (TRADD), as well as 
Fas associated via death domain (FADD)) [70-73]. RHIM mediates the interaction with other 
RHIM-containing proteins like RIPK3 [74], TRIF [75, 76] and Z-DNA Binding Protein1 
(ZBP1) [77]. DD and RHIM have been both implicated in the cell death machinery [78]. On 
the other hand, the kinase domain is critical for its kinase activity and engages in signaling 
transduction [79-83]. 
 

 
 

 
 

 
 
 

Chapter 3.1. The central role of RIPK1 in TNF signaling 
RIPK1 mediates TNFR1 signaling in various cell types and context-dependent manners. 
Multimodal TNF signaling can induce NF-kB nuclear translocation and is critically implicated 
in promoting cell survival and inflammation, as reviewed in [84]. When TNF binds to trimeric 
TNFR1, they form a membrane-associated complex I containing the following proteins: 
TRADD, TRAF2, cIAP1/2, RIPK1, and Linear Ubiquitin Chain Assembly Complex (LUBAC) 
[78, 85, 86]. Posttranslational modification of RIPK1 (phosphorylation, Lys63-linked 
polyubiquitination and Met1-linked ubiquitination) and possibly other complex I components 
activates TGF-β-activated kinase 1 (TAK1) and IkB kinase (IKK) [78, 85, 87], which leads to 
translocation and activation of NF-kB signaling [85]. Alternatively, deubiquitylation of RIPK1 
and TRAF2 can disrupt proinflammatory NF-kB signaling. This is mediated by A20- and 
cylindromatosis (CYLD)-induced disassembly of complex I [78, 87, 88], which compromises 
the pro-survival signaling and in turn induces the formation of complex IIa or IIb. The complex 
IIa contains TRADD, FADD, RIPK1, and pro-caspase-8 [78] and mediates apoptosis through 
subsequent cleavage of caspase-3 and caspase-7 [85, 87]. When complex IIa is inhibited, 
necroptosis will be initiated by the formation of complex IIb. RIPK1 recruits and activates 
RIPK3 to form oligomers [89, 90]. The oligomerized and autophosphorylated RIPK3 recruits 
and phosphorylates MLKL [91], which then forms large oligomers that translocate to the cell 
membrane and induce cell rupture [92] (Figure 5).  

Chapter 3.2. RIPK1 in TLR signaling 
TLRs are transmembrane proteins that detect distinct PAMPs derived from pathogenic 
microorganisms [52]. It has been shown that RIPK1 can be recruited to TLR3 and TLR4 [78]. 
While TLR3 detects double-strand RNA in the endosomal compartment, TLR4 detects bacterial 
LPS at the cell surface and in the endosome [75]. Most TLRs use MyD88 and TRIF as adaptor 
proteins to initiate downstream signaling and proinflammatory responses [54]. Upon binding 
to TRIF, RIPK1 can initiate IFN-β signaling [93], or bind to the E3 ubiquitin ligase TRAF6 
resulting in TAK1- and LUBAC-dependent activation of IKK [75, 94-99] (Figure 6). 

Figure 5. Domain structure of human RIPK1 indicating the amino-terminal kinase domain (green), RIP 
homotypic interaction motif (RHIM; orange), and a carboxy-terminal death domain (DD; red). 
Autophosphorylation of S166 is crucial for the activation of the kinase domain, whereas ubiquitination on 
K377 and cleavage on D324 by caspase-8 could limit the activation of the kinase activity. In contrast, the 
function of ubiquitination on the death domain remains unclear.  
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Furthermore, Ripk1 could protect inflammasome hyperactivation as fetal liver-derived 
macrophages from Ripk1-deficient mice exhibited enhanced inflammasome activity when 
engaged with LPS [78, 100].  

 

Figure 6. Overview of RIPK1-mediated signaling. RIPK1 plays an important role in mediating the activation of 
TNF-induced NF-kB inflammatory pathway, apoptosis and necroptosis. TLR4 detects lipopolysaccharide (LPS) 
on the cell surface, undergoes endocytosis and recruits the adaptor TRIF. Subsequently, TRIF recruits RIPK1 and 
induces the activation of NF-kB and MAPK pathways. 

 
Chapter 3.3. The role of RIPK1 in immunity 
In RIPK1-deficient mice, perinatal lethality has been observed in association with multiorgan 
hyperinflammation due to aberrant apoptosis (Caspase-8-dependent) and necroptosis (MLKL-
dependent) [78, 93, 101-103]. In addition, loss of Ripk1 in mouse intestinal epithelial cells 
(IECs) resulted in severe inflammation in the gut due to increased apoptosis (FADD/Caspase-
8-dependent) [78, 104, 105], whereas keratinocyte-specific knockout (KO) of Ripk1 resulted in 
skin inflammation associated with ZBP1/RIPK3/MLKL-dependent necroptosis [78, 106]. 
Moreover, in immunodeficient recipient mice, Ripk1-deficient fetal liver cells showed less 
advantages to reconstitute the T-cell compartment, suggesting an essential role of RIPK1 in T 
cell development [78, 107, 108]. Accordingly, T cell-specific deletion of Ripk1 in mice caused 
severe lymphopenia and defective T-cell proliferation, possibly due to increased apoptosis [78, 
109]. Furthermore, RIPK1 also contributes to B cell development, as the number of peripheral 
B cells declined in immunodeficient recipient mice upon transfer of Ripk1-/- fetal liver cells 
[109]. In addition, proliferation responses of Ripk1-/- B cells were significantly reduced when 
stimulated with ligands for TLR-2, TLR-3, and TLR-4, possibly due to enhanced necroptosis 
[107].  

Chapter 3.4. RIPK1 - a potential therapeutic target for inflammatory diseases 
As TNFR1-mediated RIPK1 signaling is one of the most thoroughly studied inflammatory 
pathways, targeting of RIPK1 was considered to be a promising alternative treatment to anti-
TNF blockade in some autoimmune pathologies. RIPK1 kinase activity has been associated 
with autoimmune and neurodegenerative conditions in previous studies, and experiments with 
small molecules aiming to inhibit RIPK1 kinase activity showed high efficacy in various animal 
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disease models [110-114]. As RIPK1 has been proposed to have a wider range of pro-
inflammatory functions which are not only restricted to TNF signaling, RIPK1 blocking is 
expected to provide more benefits compared to anti-TNF treatment [114]. Moreover, RIPK1 
inhibitors were shown to be safe in treating central nervous system inflammation [114, 115]. 
The small-molecule inhibitor Necrostatin-1s (Nec-1s) was the first to be developed to target 
RIPK1 kinase activity [114]. So far Nec-1s has been widely used to study RIPK1 mechanisms 
in cell death and inflammation as well as a wide range of diseases in animal models such as 
sepsis and the systemic inflammatory response syndrome [114, 116-120]. In addition, other 
RIPK1 inhibitors are also being evaluated for the treatment of various human diseases in 
clinical trials. DNL747, a brain-penetrant RIPK1 inhibitor, is currently in clinical trial phase 
Ib/IIa for amyotrophic lateral sclerosis (ALS) [114]. Furthermore, GSK´772 is in clinical trials 
for treating peripheral autoimmune diseases including UC, psoriasis, and rheumatoid arthritis 
(RA) [10, 114]. However, in view of pleiotropic cell- and context-specific functions of human 
RIPK1, awareness should be raised regarding potential toxicities of targeting RIPK1 [121]. 

Chapter 3.5. Characterization of human RIPK1 deficiency 
By screening a large cohort of VEO-IBD patients, we have identified 8 patients with germline 
mutations in the RIPK1 death domain or intermediate domain, associated with reduced protein 
expression in immune cells and fibroblasts [4]. These patients suffered from VEO-IBD and/or 
immunodeficiency [4]. Immunophenotyping suggested impaired T-cell maturation and B-cell 
class switch [4]. In vitro cellular models showed that cells expressing mutant RIPK1 presented 
with reduced responses to TNF-mediated NF-κB activity and cell death responses, but 
hyperactivation in response to LPS-mediated inflammasome signaling [4]. Inhibition of MLKL 
by small molecule inhibitors could attenuate the increased secretion of proinflammatory IL-1β 
[4, 44]. In parallel studies, Cuchet-Lourenco et al. reported patients with loss-of-function 
mutations in RIPK1 who manifested life-threatening immunodeficiency defective lymphocyte 
differentiation, intestinal inflammation and/or arthritis [44]. Even though these authors 
suggested that the life-threatening disease could be curated by HSCT in a single patient [44], 
our study has rather argued for a non-redundant role of RIPK1 in controlling homeostasis in 
intestinal epithelial cells concluded by both HSCT and cellular assays [4]. Therefore, HSCT 
might rescue immune-related phenotypes, but not intrinsic intestinal defects of RIPK1 
deficiency [4]. More recent studies have further expanded the spectrum of human RIPK1 
deficiency by demonstrating that heterozygous mutations affecting the cleavage of RIPK1 by 
caspase-8 cause early-onset periodic fever syndromes and severe intermittent lymphadenopathy 
associated with hypersensitivity to cell death [122, 123]. Taken together, these studies have 
complemented the research on transgenic mouse models by documenting the crucial role of 
RIPK1 in controlling human immune and intestinal homeostasis. Furthermore, these data 
suggested a critical genotype-phenotype correlation for monogenic RIPK1 deficiencies and 
provided insights into the therapeutic efficacy and potential side effects of RIPK1 inhibitors. 
However, current studies could not yet provide a comprehensive view on the underlying disease 
mechanisms. Further studies are needed to elucidate whether IL-1 blockade or HSCT could be 
beneficial for patient management. 
 

Chapter 4. NOD2 - A key molecule in sensing bacterial peptidoglycans  
Nucleotide-binding and oligomerization domain containing protein 1 and 2 (NOD1 and NOD2) 
are NLRs that recognize gamma-D-glutamyl-meso-diaminopimelic acid (iE-DAP) and 
muramyl dipeptide (MDP) derived from bacteria, respectively [124]. 
NOD2 was the first gene to be firmly associated with IBD [33, 125-127]. NOD2 can sense 
MDP, a component from peptidoglycans derived from bacteria cell walls [128]. The NOD2 
protein has two tandem N-terminal CARD domains that interact with downstream CARD-
containing molecules, such as the receptor interacting protein kinase 2 (RIPK2) [129] (Figure 
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7). Activated RIPK2 subsequently facilitates the activation of NF-kB signaling, and initiates 
the transcription of inflammatory response genes [130, 131]. The IKK complex can also be 
activated by the transforming growth factor-b-activated kinase 1 (TAK1) followed by 
activation of MAP kinases and promotion of cell proliferation, differentiation and cell death 
[132, 133]. In addition, RIPK2 can also bind to TNF receptor-associated factor 3 (TRAF3) and 
activate TANK binding kinase 1 (TBK1) and IKKe, which further drives the phosphorylation 
and activation of Interferon response factor 3 (IRF3) for induction of IFN gene expression [134, 
135]. Besides, NOD2 can also promote NLRP1-dependent IL-1b production upon bacterial 
infection [136, 137]. Independent of RIPK2 function, NOD2 can also recruit the protein 
ATG16L1 to the cell membrane for the initiation of autophagy upon bacterial encounter [138] 
(Figure 8).  

 

 
 
 
 

 
Chapter 4.1. NOD2 and Endoplasmic Reticulum stress 
It has been suggested that endoplasmic reticulum (ER) stress-initiated unfolded protein 
responses (UPR) can induce inflammation [139]. The UPR can be initiated by receptors such 
as double-strand RNA-dependent protein kinase-like ER kinase (PERK), activating 
transcription factor 6 (ATF6), and inositol requiring 1α (IRE1α) [139]. The ER-luminal 
domains on these receptors sense the unfolded proteins and the cytosolic domains transmit 
signals causing transcriptional or translational attenuation [139]. At resting state, these 
receptors are sequestered by the ER chaperone protein immunoglobulin-heavy-chain-binding 
protein (BiP) [139]. Upon ER stress, BiP binds to unfolded proteins and releases these receptors 
resulting in activation of the UPR [139]. The activation process of PERK includes 
homodimerization and autophosphorylation, which then phosphorylates the eukaryotic 
translation-initiation factor 2a (eIF2a) and inhibits the assembly of the 80S ribosome; thereby 
halting the abundant protein synthesis [140]. Another arm activated under ER stress is 
autophosphorylation of IRE1a, which then executes its RNase function and removes a 26-base 
intron from the mRNA of X-box-binding protein 1 (XBP1), yielding a spliced active 
transcription factor [141]. Furthermore, ATF6 also dissociates from Bip and translocates to the 
Golgi apparatus, followed by cleavage by site-1 protease (S1P) and site-2 protease (S2P) and 
consequently enable it to migrate to the nucleus and start the transcription [141]. Downstream 
of the UPR, the C/EBP homologous protein (CHOP) will initiate apoptosis when homeostasis 
in the ER cannot be restored [141]. 
Apart from being a canonical cytosolic sensor for bacterial peptidoglycan ligands, NOD2 has 
also been associated to mediate ER-stress-induced inflammatory responses. For example, 
NOD2 activates the innate immune responses upon infection of influenza virus [135], which is 
known to trigger ER stress in host cells [142]. Furthermore, studies have shown that 
thapsigargin and dithiothreitol (DTT) can induce pro-inflammatory cytokine production (e.g., 
IL-6, TNF) in a NOD2-dependent way [143]. However, the specific mechanisms of how ER 
stress activates NOD1/2 remain elusive. It has also been proposed that NOD1 and NOD2 do 
not directly regulate ER stress-induced inflammatory responses, but possibly potentiate them 
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Figure 7. Structure of NOD2, including two caspase activation and recruitment domains (CARD; green), a 
nucleotide binding and oligomerization (NBD) domain (yellow), and leucine rich repeat (LRR) domain (red). 
Asteriks indicate three common IBD susceptibility loci identified by GWAS: R702W, G908R, and L1007fs.  
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through other pathways that are activated by ER stress, which remain unidentified [144]. 
Therefore, more studies are needed to help understand the molecular mechanisms linking ER 
stress and NOD1/NOD2 activation, as well as their role in host defense and inflammatory 
diseases. 
ER stress is associated with several inflammatory or autoinflammatory diseases such as 
diabetes [145], atherosclerosis [146], and CD [147]. Physiological UPR play an important role 
in intestinal homeostasis by regulating mucosal barrier function and modulating the microbiota 
[148, 149]. Several mouse studies have shown that abnormal UPR responses in intestinal 
epithelial cells are critically implicated in the pathogenesis of colitis. For example, knockout of 
IRE1 in mouse intestinal epithelial cells leads to increased ER stress and higher susceptibility 
to dextran sulfate sodium (DSS)-induced colitis [150]. Mice with conditional knockout of Xbp1 
in the intestinal epithelium have shown upregulated CHOP activity and developed spontaneous 
intestinal inflammation associated with loss of Paneth cells [147] [150]. Furthermore, Atf6a KO 
mice showed increased expression of CHOP in the colon epithelium associated with increased 
apoptosis [151]. XBP1 polymorphisms in human have also been associated with both CD and 
UC [152-154]. 
 

 

Figure 8. Overview of NOD2-mediated signaling. MDP-mediated activation of NOD2 signaling first involves a 
conformational change and oligomerization of NOD2. Subsequently, NOD2 binds to the adaptor RIPK2 and 
results in the activation of NF-kB and MAPK signaling. In addition, viral ssRNA triggers NOD2 signaling 
independent of RIPK2. Instead, NOD2 interacts with MAVS, an adaptor protein associated with mitochondria, 
and activates the IRF3 which leads to type I interferon production. Furthermore, NOD2 can also interact with 
ATG16L1 and induce autophagy pathways. Moreover, NOD2 has also been shown to be associated with ER stress. 

Chapter 4.2. New evidence of NOD2-dependent ER stress-mediated inflammation in IBD 
NOD2 is a crucial receptor in the innate immune system. Even though polymorphisms and 
mutations in NOD2 have been associated with IBD for decades, the underlying disease 
mechanisms regarding the functional spectrum of NOD2 have been continuously expanded. 
Previously reported NOD2 mutations in association with IBD are located near or in the LRR 
domain whose major function is ligand sensing and binding [5, 155]. In the second publication 
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of this thesis, we have identified a rare homozygous mutation in the NOD2 CARD domain in a 
patient with enteropathy, uncovering a genotype-specific phenotype in human intestinal 
epithelial cells [5].  
The patient with NOD2 p.E54K mutation showed reduced intracytoplasmic TNF production in 
PBMC-derived monocytes in response to MDP, while response to LPS was normal [5]. In 
addition, CD62L shedding was also reduced upon MDP stimulation in patient-derived 
neutrophils [5]. Correspondingly, patient PBMC showed impaired activation of NF-κB and 
MAPK signaling in response to MDP [5]. Further analysis in HEK293T and HCT116 cellular 
models suggested that the identified mutation p.E54K resulted in impaired expression of IL8 
upon stimulation of MDP and tunicamycin in contrast to the commonly reported mutation 
p.L1007fsX1008, [5]. Importantly, our studies on the p.E54K mutation have identified VCP as 
a novel interacting partner of NOD2 [5]. In heterologous cellular models, we could demonstrate 
that VCP represents a negative regulator of NOD2 activity during tunicamycin-induced ER 
stress, as silencing of VCP leads to increased NOD2-dependent expression of inflammatory 
cytokines and chemokines (e.g., IL8, CXCL1, CXCL2) [5]. 
Dysregulated UPR has been implicated in IBD [147, 150] and NOD2 was implicated in the 
regulation of ER stress [148]. However, the underlying mechanisms linking NOD2 function 
and ER stress remain largely unknown. Our findings provide a new mechanistic link between 
ER stress and altered NOD2-dependent proinflammatory cytokine responses in association with 
intestinal inflammation. Furthermore, we also uncovered a genotype-specific phenotype, as the 
p.E54K variant, but not the p.L1007fsX1008 variant in NOD2, showed altered IL8 expression 
compared to WT cells [5]. 
 

Chapter 5. Outlook 
Genetic studies on Mendelian disorders in IBD could provide rationale for available and new 
therapies such as the identification of targeted signaling and other biomarkers. Since the 
identification of IL-10R deficiency as the first truly monogenic cause of IBD, HSCT has 
become a standardized therapeutic approach for IBD patients with an underlying immune 
deficiency (e.g., XIAP deficiency, CGD, WAS) [156, 157]. However, the study of the disease 
mechanism is still challenging as the patient materials are not always accessible for 
multidisciplinary workups involving gastroenterology, immunology, and hematology, etc. In 
addition, the disease stages, medication, and confounding effects often interfere with the 
readouts. To overcome these difficulties, we have benefited from the development in the field 
of induced pluripotent stem cells (iPSC) and CRISPR/Cas 9 genomic editing. By using 
genetically engineered iPSC models, we have elucidated LY96 (encoding MD2) as a novel 
genetic cause in patients with VEO-IBD [158]. The iPSC-derived macrophages with MD2 
deficiency behaved physiologically identically with patient-derived macrophages as they both 
showed attenuated interaction with gram-negative bacteria [158]. This ground-breaking 
technology has unlimited potential for disease modeling as well as therapeutic screening.  
Since a large fraction of patients do not show monogenic forms of IBD, a definitive diagnosis 
is still difficult, as the multifactorial pathophysiological complexity is yet to be fully understood 
on the molecular level. In this case, multi-omics analysis could provide a broader view on the 
genetic, environmental, microbiome, and immunological network using high-throughput data. 
Omics studies comprehensively study the gene and protein abundance as well as composition 
under cell-specific and context-specific conditions [159]. In addition, omics data facilitate the 
validation of identified genetic defects and targets. In the context of IBD, omics studies have 
already successfully identified new candidate biomarkers such as CXCL1, which showed low 
expression in normal or noninflamed mucosa, but high expression in inflamed CD mucosa 
[160]. 
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Taken together, the described state-of-the-art techniques will enable depicting an integrative 
atlas of the disease mechanisms, predicting complications and progression, as well as guiding 
the therapeutic interventions to finally achieve personalized medicine. 
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Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is a critical
regulator of cell death and inflammation, but its relevance for human
disease pathogenesis remains elusive. Studies of monogenic disorders
might provide critical insights into disease mechanisms and therapeutic
targeting of RIPK1 for common diseases. Here, we report on eight
patients from six unrelated pedigrees with biallelic loss-of-function
mutations in RIPK1 presenting with primary immunodeficiency and/
or intestinal inflammation. Mutations in RIPK1 were associated
with reduced NF-κB activity, defective differentiation of T and B
cells, increased inflammasome activity, and impaired response to
TNFR1-mediated cell death in intestinal epithelial cells. The charac-
terization of RIPK1-deficient patients highlights the essential role of
RIPK1 in controlling human immune and intestinal homeostasis, and
might have critical implications for therapies targeting RIPK1.

primary immunodeficiency | inflammatory bowel diseases | rare diseases

Single-gene inborn errors of immunity underlie diverse pa-
thologies such as infection, allergy, autoimmunity, auto-

inflammation, and malignancy. Until now, the discovery of more
than 350 monogenic immune disorders has opened unprecedented
insights into genes and pathways orchestrating differentiation and
function of the human immune system (1). Very early onset in-
flammatory bowel diseases (VEO-IBDs) may also result from
inborn errors of immunity, as evidenced by IL-10R deficiency (2).
Although the spectrum of monogenic disorders affecting the in-
testinal immune homeostasis has recently expanded, most patients
with VEO-IBDs lack a genetic diagnosis. It is of great therapeutic
relevance to define underlying genetic defects: Whereas disorders of
the hematopoietic system can be cured by allogeneic hematopoietic
stem cell transplantation (HSCT), intrinsic defects in epithelial or
stromal cells require other therapeutic strategies. The discovery of
patients with monogenic diseases highlights the functional relevance
of genes and pathways, provides a basis for the development of tar-
geted therapies for both rare and common diseases, and may add to a
critical appraisal of anticipated effects or side effects of therapies (3).
The receptor-interacting serine/threonine-protein kinase 1

(RIPK1) is a key signaling molecule controlling inflammation and
cell death responses through both scaffolding- and kinase-specific
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functions. In particular, RIPK1 is known to mediate multimodal sig-
naling downstream of TNFR1 depending on cell type and biological
context (4). While TNF-α–induced NF-κB nuclear translocation
promotes cell survival and inflammatory signaling, modulation of in-
tracellular signaling cascades can also induce caspase-8 (CASP8)–
mediated apoptosis or RIPK3-dependent necroptosis in the

absence of CASP8 (4). The exact mechanisms controlling the
multimodal transition switches from RIPK1-mediated cell sur-
vival and inflammation to cell death remain largely unknown.
Mice with constitutive deletion of Ripk1 die perinatally due to

hyperinflammation and increased sensitivity to TNF-α–induced
cell death and RIPK3-mediated necroptosis (5, 6). Depending on

A

B

C

D E F

Fig. 1. Identification of biallelic RIPK1 mutations in patients with combined immunodeficiency and pediatric inflammatory bowel disease. (A) Colonoscopy
showing pancolitis with ulcers and granuloma in P1 (Left). Histology of colonic biopsies from P1 revealed chronic-active inflammation (asterisk) with erosions
of the mucosal surface (arrow) (second image from Left) and epithelial degeneration. Higher magnification displays epithelial regeneration with increased
mitotic activity (arrow) and apoptotic bodies (arrowhead) within the crypt epithelium (third and fourth images from the Left). Multiple myeloma oncogene 1
immunohistochemistry indicated subtotal depletion of plasma cells (Right, double arrowhead). (B) Pedigrees of six families (A to F) with patients (P1 to P8)
presenting with primary immunodeficiencies and/or VEO-IBDs. (C) Sanger sequencing confirmed segregation of the biallelic RIPK1mutations with the disease
phenotype in available first-degree relatives. (D) Schematic illustration of the RIPK1 protein domain architecture (NM_003804.3, NP_003795.2). Alignment of
the human RIPK1 protein sequence showed that the mutated amino acids are conserved in orthologs. RHIM, RIP homotypic interaction motif. (E) Immu-
noblotting of three independent experiments revealing reduced protein expression of RIPK1 in patient-derived EBV-transformed B cells (P1, P5, P6, P7, P8) or
fibroblast cell lines (P1, P3) in contrast to healthy donors (HDs) or patients’ relatives. Truncated RIPK1 protein expression in P3 is indicated by an asterisk. (F)
Representative confocal immunofluorescence microscopy images confirming reduced expression of RIPK1 in fibroblasts from P1, compared with HDs.
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the context, murine RIPK1 deficiency might be associated
with increased sensitivity to both RIPK3-dependent nec-
roptosis and TNF-α– and/or CASP8-dependent apoptosis (5–
7). Studies on conditional Ripk1 knockout (KO) mice have
demonstrated that RIPK1 plays a critical role in controlling
skin and intestinal inflammation, autoimmunity, and tissue
fibrosis (8–11). RIPK3–MLKL–dependent necroptosis has
been described as a common pathomechanism. However, the
triggers and ligands relevant for activation of the necroptotic
pathway in vivo remain poorly understood. Furthermore,
RIPK1 has also been implicated in murine hematopoiesis
(12), T and B cell homeostasis (13, 14), and inflammasome
activity (5).
A pathogenic role of RIPK1 has been previously linked to

multiple mouse models of disease, including colitis, skin in-
flammation, myocardial infarction, atherosclerosis, pancreatitis,
and viral infections, as well as liver, retinal, and renal injury (15).
Pharmacological inhibition of RIPK1 has been shown to block
necroptosis and protect from ischemic organ damage (16).
Small-molecule inhibitors of RIPK1 activity are currently being
evaluated for patients with psoriasis, rheumatoid arthritis, and
ulcerative colitis (17). Recently, RIPK1 has also been implicated
in tumorigenesis and proposed as a therapeutic target in mela-
noma (18), colon cancer (19), and leukemia (20). However, the
relevance of RIPK1 for human pathogenesis and the balance of
anticipated effects and side effects of targeting RIPK1 are still
discussed controversially.
Here, we report that biallelic loss-of-function mutations in

human RIPK1 cause impaired innate and adaptive immunity and
predispose to VEO-IBD.

Results
Identification of Patients with Biallelic Mutations in RIPK1.Our index
patient (P)1 (A.II-1) born to Caucasian parents from Poland
presented with VEO-IBD characterized by growth failure, ab-
dominal pain, chronic mucous and bloody diarrhea, oral aph-
thous lesions, and perianal lesions at the age of 6 mo. Endoscopy

confirmed the diagnosis of pancolitis with ulcers and granuloma
(Fig. 1A, Left), esophagitis, and gastric ulcers. Histology of gastric
and colonic biopsies revealed chronic-active inflammation with
erosions (Fig. 1A, second panel from Left), increased apoptotic
bodies within the cryptic bases (Fig. 1A, third and fourth panels from
Left), and subtotal depletion of lamina propria plasma cells (Fig. 1A,
Right). Extraintestinal manifestations included hepatosplenomegaly,
maculopapular skin and transient atopic skin lesions, recurrent fever,
and infections (pneumonia, conjunctivitis), including episodes of
deep-seated infections and sepsis in the neonatal phase. He showed
a refractory course despite amino acid-based formula, parenteral
nutrition, antibiotics, steroids, azathioprine, and ileostomy and suc-
cumbed to septicemia at the age of 4 y. To decipher the molecular
cause of disease in this patient, we have conducted whole-exome
sequencing and found a rare homozygous missense mutation in the
RIPK1 gene (NM_003804.3, c.1844T>C; NP_003795.2, p.I615T)
(Fig. 1 B and C). Further screening for biallelic RIPK1 mutations in
more than 1,942 patients with VEO-IBDs and/or primary immu-
nodeficiencies identified another seven patients from five unrelated
pedigrees with homozygous germ-line mutations in RIPK1 (Fig. 1 B
and C). The sequence variants in RIPK1 have been deposited in
the ClinVar database (21) (accession nos.: SCV000854770–
SCV000854774). While P3 (c.1278C>A, p.Y426*) and P4
(c.954delG, p.M318IfsTer194) primarily manifested with combined
immunodeficiency associated with lymphopenia, P2 (c.1934C>T,
p.T645M), P5 (c.1934C>T, p.T645M), P6 (c.1802G>A, p.C601Y),
P7 (c.1802G>A, p.C601Y), and P8 (c.1802G>A, p.C601Y) were
primarily referred for genetic testing due to signs of VEO-IBD. All
patients suffered from recurrent bacterial and/or viral infections and
had episodes of diarrhea. Perianal disease was reported in all pa-
tients except for P3. Further clinical details for the patients are
summarized in SI Appendix, Table S1. Segregation of the RIPK1
mutations with the disease phenotype could be confirmed by Sanger
sequencing of available first-degree family members (Fig. 1C). In
silico analysis using PolyPhen (22) and SIFT (23) predicted that the
identified missense mutants in RIPK1 are deleterious. These ho-
mozygous mutations have not been previously reported in the

A B

C D E

[min]

Fig. 2. Biallelic loss-of-function RIPK1 mutations lead to impaired NF-κB–mediated signaling. (A and B) Representative luciferase reporter assays showed
reduced NF-κB activation upon TNF-α stimulation in HCT-116 cells with RIPK1 KO or lentiviral-mediated overexpression of RIPK1 mutants, compared with WT
RIPK1. Data shown represent the mean ± SD. (C) Representative immunoblotting (n = 3) of serum-starved RIPK1−/− Jurkat cells with transgenic expression of
mutant RIPK1 variants revealed decreased phosphorylation of the NF-κB p65 subunit (Ser536) in response to TNF-α (50 ng/mL), whereas phosphorylation of
ERK1/2 was normal. (D and E) Representative EMSA (n = 3) showed reduced DNA-binding activity of the NF-κB p65 subunit in Jurkat cells overexpressing the
RIPK1 mutation Y426* (D) or fibroblasts derived from P3 (E) after TNF-α stimulation (50 ng/mL) for 30 min. n.s., nonspecific bands.
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Genome Aggregation Database (24). Sequence homology analysis
revealed that the mutated amino acids in the death domain of
RIPK1 are evolutionarily conserved (Fig. 1D). Immuno-
blotting of EBV-transformed lymphoblastoid cell lines (EBV-
LCLs) from pedigrees A (P1), E (P5), and F (P6, P7, P8) and
primary fibroblasts from pedigrees A (P1) and C (P3) (Fig. 1E),
as well as confocal immunofluorescence microscopy of fibroblasts
from pedigree A (P1) (Fig. 1F), demonstrated a reduced protein
expression of mutated RIPK1. P3 carrying a frameshift mutation
in RIPK1 showed reduced expression of a truncated protein.
P3 and P4 presented with lymphopenia affecting T and B cells

(SI Appendix, Table S2). Immunophenotyping of peripheral
blood mononuclear cells from P1, P6, P7, and P8 showed a de-
creased frequency of CD45RO+CCR7+ central memory and
CD45RO+CCR7− effector memory CD4+ and CD8+ T cells (SI
Appendix, Fig. S1 A and B), CD45RO+HLA-DR+ memory ac-
tivated regulatory T cells (SI Appendix, Fig. S1C), and CXCR3+
CCR6− T-helper 1 (Th1) and CXCR3−CCR6+ T-helper 17 (Th17)
populations (SI Appendix, Fig. S1D), as well as IgD−CD27+ class-
switched B cells (SI Appendix, Fig. S1E), whereas P5 exhibited
no measurable changes in these parameters (SI Appendix, Table
S3). These data suggest that RIPK1 deficiency may lead to com-
bined T and B cell dysfunction. However, T cell proliferation, ac-
tivation, and cell death in response to anti-CD3, anti-CD3/CD28, or
anti-PMA/ionomycin were normal. In addition, we could not ob-
serve a significant difference in cell death in RIPK1-deficient Jurkat
cells upon treatment with FAS ligand, TNF-α ± BV6 (the second
mitochondrial activator of apoptosis mimetic), or TNF-α ±
cycloheximide in comparison with RIPK1 wild-type (WT)
reconstituted cells (SI Appendix, Fig. S2).

Defective TNF-α–Mediated NF-κB Signaling in RIPK1-Deficient Cells.
RIPK1 regulates multimodal signaling downstream of TNFR1 in
a cell- and context-dependent manner (25). To assess the conse-
quences of identified mutations for RIPK1 downstream signaling,
we engineered colon carcinoma-derived HCT-116 cells with a
CRISPR/Cas9-mediated RIPK1 KO and subsequent lentiviral
overexpression of WT or mutant RIPK1 variants. NF-κB lucifer-
ase reporter assays showed that cells expressing the RIPK1 variant
I615T (identified in P1) exhibited impaired NF-κB activity in

response to TNF-α, compared with cells with WT RIPK1 (Fig.
2A). Similarly, we could detect reduced luciferase activity for all five
identified RIPK1 mutants after TNF-α stimulation (Fig. 2B). Cor-
respondingly, immunoblotting revealed reduced phosphorylation
of the NF-κB p65 subunit (Ser536) in Jurkat cells with RIPK1
KO or expression of mutant RIPK1 (Fig. 2C), whereas phosphor-
ylation of ERK1/2 (Thr202/Tyr204) was normal. Electrophoretic
mobility-shift assays confirmed reduced NF-κB DNA-binding ac-
tivity in Jurkat cells expressing the RIPK1 mutant Y426* (Fig. 2D)
and fibroblasts of P3 (Fig. 2E) in response to TNF-α, compared
with WT RIPK1 reconstituted Jurkat cells and healthy donor
fibroblasts, respectively. These data indicate that the identified
mutations in RIPK1 are associated with impaired TNF-α–induced
NF-κB signaling.

Altered Inflammasome Activity in RIPK1-Deficient Macrophages.
Previous studies have documented an altered inflammasome
activity in conditional Ripk1 KO mice (5, 26). To examine effects
of the identified RIPK1 mutations on inflammasome activity, we
have adapted a BLaER1 monocyte cell model with KO of
CASP4 and RIPK1 (27) and reconstituted the patients’mutations
by lentiviral gene transfer. In contrast to cells with reconstitution
of WT RIPK1, cells with KO of RIPK1 or overexpression of the
RIPK1 mutants (M318fs, Y426*, I615T, and T645M) showed
increased IL-1β secretion without the requirement of a second-
ary stimulus for the processing of mature IL-1β (Fig. 3A). In-
creased inflammasome activity in RIPK1-deficient macrophages
was not associated with increased cytotoxicity upon LPS priming
for 3 h, as indicated by the LDH assay (Fig. 3A). Of note, no
difference of IL-1β secretion could be observed upon addition of
nigericin between cells with overexpression of WT and RIPK1
mutants (Fig. 3A). Immunoblotting confirmed increased release
of mature IL-1β upon treatment with LPS in RIPK1-deficient
macrophages (Fig. 3B). To test whether the altered IL-1β release
is associated with increased NLPR3 activity and/or MLKL-
dependent necroptosis in human RIPK1 deficiency, we assessed
the inflammasome activation upon treatment with small-
molecule inhibitors of NLRP3 (MCC950) and MLKL (NSA)
(Fig. 3C). The inhibitors reduced IL-1β secretion in LPS-
stimulated RIPK1-deficient macrophages, suggesting that both

A

B C

cl. CASP1

CASP1

Fig. 3. RIPK1 deficiency is associated with increased
inflammasome activity upon LPS priming. (A) ELISA
showed increased release of IL-1β upon LPS priming
(20 ng/mL, 3 h) in conditioned media from heterologous
BLaER1 cells with RIPK1 KO or overexpression of RIPK1
mutant variants. P values are analyzed in comparison
with cells expressing WT RIPK1 (Left). No difference in
inflammasome activation of RIPK1-deficient macro-
phages has been observed upon LPS + nigericin in
contrast to WT RIPK1. Data are representative of four
independent experiments. LDH release assays of three
independent experiments showed no difference of
cytotoxicity between RIPK1 WT and mutant BLaER1
cells upon stimulation with LPS ± nigericin (Right). (B)
Representative immunoblotting (n = 4) of heterolo-
gous RIPK1-deficient BLaER1 cells confirmed increased
secretion of the mature IL-1β and cleavage of CASP1 in
comparison with unmodified or WT RIPK1-expressing
cells (LPS, 200 ng/mL, 14 h). (C) Analysis of IL-1β re-
lease in RIPK1−/− BLaER1 cells overexpressing RFP or
WT RIPK1 upon treatment with LPS ± small-molecule
inhibitors for NLPR3 (MCC950) or MLKL (NSA) (three
independent experiments). Data shown in A and C re-
present the means ± SD. cl., cleaved; SNT, supernatant.
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pathways might be implicated in dysregulation of proinflammatory
responses. Taken together, our results suggest that human
RIPK1 plays a critical role in regulating LPS-mediated inflam-
masome activation.

Impaired TNF-α–Mediated Cell Death Responses in RIPK1-Deficient
Epithelial Cells. RIPK1 and RIPK3 are critical regulators of cell
death (28). To study the effect of patients’ mutations on TNF-
α–mediated cell death responses in epithelial cells, we engi-
neered HT-29 colon carcinoma cells with KO of RIPK1 and
lentiviral reconstitution of WT or mutant RIPK1 variants. No
alteration of cell death could be observed upon treatment with
TNF-α in RIPK1-deficient HT-29 cells (Fig. 4 A and B).
However, cell death responses were impaired upon treatment
with TNF-α and BV6 ± the pan caspase inhibitor Z-VAD-FMK
in cells expressing mutated RIPK1 variants (M318fs, Y426*,
C601Y, and I615T) compared with cells overexpressing WT
RIPK1 (Fig. 4 A and B). Correspondingly, immunoblotting
showed reduced MLKL oligomerization in RIPK1-deficient
HT-29 cells in response to TNF-α, BV6, and Z-VAD-FMK,
suggesting impaired necroptosis under conditions of RIPK1
deficiency (Fig. 4C).

Discussion
The functional relevance of RIPK1 in human disease has been
controversially discussed. We report RIPK1 deficiency as a
Mendelian disorder predisposing to immunodeficiency and
severe colitis. Whereas it may appear counterintuitive at first
sight to associate immunodeficiency and hyperinflammatory

responses, several monogenic diseases have a poorly under-
stood Janus-faced appearance, for example autoimmune lym-
phoproliferative syndrome caused by TNFRSF6 (29) and CASP10
(30) deficiency or lymphoproliferation and autoimmunity caused by
IL2RA null mutations (31).
Constitutive Ripk1 KO mice appear to exhibit no develop-

mental defects but show perinatal mortality associated with sys-
temic multiorgan inflammation and apoptosis in lymphoid and
adipose tissues (32). A potential role of RIPK1 in pathogene-
sis has been documented in several models of inflammation
and tissue damage (16). In particular, conditional ablation of
Ripk1 has been reported to result in severe intestinal and skin
inflammation associated with FADD-CASP8–dependent apo-
ptosis of intestinal epithelial cells and ZBP1-RIPK3–MLKL–
dependent necroptosis of keratinocytes, respectively (8, 11).
Our patients with homozygous mutations in RIPK1 showed no
obvious developmental defects, and predominantly presented with
immunodeficiency and diarrhea or colitis. Whereas children with
complete loss of function of RIPK1 (P3, stop-gain mutation; P4,
frameshift mutation) primarily manifested with combined immu-
nodeficiency and diarrhea, patients with missense mutations in
the death domain of RIPK1 were referred for genetic testing due
to IBD-like conditions. Differences in clinical manifestation
might be reflective of genotype–phenotype correlations and in-
complete penetrance, or may be due to secondary factors such as
genetic modifiers, infections, and treatment. Emerging evidence
suggests that kinase-independent RIPK1 functions are critical
in controlling intestinal epithelial homeostasis (5, 6, 8, 11).
None of our identified patients had mutations directly affecting the

B

A C

Fig. 4. RIPK1-deficient intestinal epithelial cells show altered cell death responses. (A) Representative FACS analysis of Annexin V/DAPI staining (n = 4) in HT-
29 cells expressing mutant RIPK1 upon 24 h of treatment with TNF-α ± BV6 ± Z-VAD-FMK. (B) Graphical representation (n = 4) showing decreased frequencies
of Annexin V+ RIPK1-deficient cells compared with cells with WT RIPK1 after stimulation with TNF-α + BV6 ± Z-VAD-FMK. (C) Representative SDS/PAGE under
nonreducing conditions (n = 3) revealed reduced MLKL oligomerization upon treatment with TNF-α + BV6 + Z-VAD-FMK in RIPK1-deficient cells. Data shown
represent the means ± SD. ME, mercaptoethanol; TSZ, TNF-α + BV6 (SMAC mimetic) + Z-VAD-FMK.
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kinase domain of RIPK1, but the identified mutations perturbed
total protein expression. Therefore, our study cannot unequivocally
define whether the abrogated kinase activity is critical in mediating
intestinal inflammation in our patients.
Mice with Ripk1 KO in intestinal epithelial cells develop colitis

accompanied by disrupted tissue architecture and increased ap-
optosis (8, 11). In parallel investigations, Cuchet-Lourenço et al.
(33) identified four patients with loss-of-function mutations in
RIPK1 causing combined immunodeficiency and intestinal in-
flammation due to altered cytokine secretion and necroptosis of
immune cells. Whereas these authors concluded that allogeneic
HSCT may constitute a curative therapy, our studies suggest
that RIPK1 plays a critical role in controlling cell death of the
intestinal epithelium, and thus warrant awareness that HSCT
might dampen intestinal inflammation but not rescue intrinsic
intestinal phenotypes of human RIPK1 deficiency, similar to
NF-kappa-B essential modulator deficiency (34). The exact
triggers perturbing epithelial integrity in RIPK1 deficiency
could not be fully determined in our studies or mouse models
yet. Further studies are required to shed light on cell- and
context-dependent functions of RIPK1 in controlling intesti-
nal inflammation in vivo.
Necroptosis has been previously linked to the pathogenesis in

various disease models such as atherosclerosis, myocardial in-
farction, ischemic brain injury, systemic inflammation, liver in-
jury, and neurodegeneration (16). Targeting RIPK1 and RIPK3
represents an attractive therapeutic strategy for diseases with
increased necroptotic activity. Necrostatin-1 allosterically in-
hibits RIPK1 activity and has been shown to block necroptosis in
mouse models of ischemia (16). Recently, a small molecule
(GSK2982772) has been developed as an inhibitor of RIPK1
to treat plaque-type psoriasis, rheumatoid arthritis, and ulcerative
colitis in phase 2a clinical studies (17). The beneficial effects of
this therapeutic strategy in patients still remain unclear. Inhibition
of RIPK1 activity might be considered in patients with severe or
refractory inflammatory or autoinflammatory diseases. Our study
on RIPK1-deficient patients highlights that human RIPK1 has

pleiotropic cell- and context-specific functions and thus warrants
awareness about potential toxicities of targeting RIPK1.
Taken together, we report that patients with biallelic RIPK1

deficiency present with life-threatening combined immunodefi-
ciency and/or intestinal inflammation associated with impaired
lymphocyte functions, increased inflammasome activity, and al-
tered TNF-α–mediated epithelial cell death responses. Thus, our
study highlights the central role of RIPK1 in controlling human
immunity and intestinal homeostasis.

Materials and Methods
Patients. Peripheral blood and skin biopsies from patients, first-degree
family members, and healthy donors were acquired upon written con-
sent. The study was approved by the respective institutional review boards
of the University of Ulm, Necker Medical School, and University Hospital,
LMU Munich and conducted in accordance with current ethical and legal
frameworks.

Genetic, Immunologic, and Biochemical Analyses.Methods of genetic analyses,
immunological studies, and biochemical and cell biological assays as well as
statistics are described in SI Appendix.
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Valosin‑containing 
protein‑regulated endoplasmic 
reticulum stress causes 
NOD2‑dependent inflammatory 
responses
Maryam Ghalandary1,16, Yue Li1,16, Thomas Fröhlich2, Thomas Magg1, Yanshan Liu1, 
Meino Rohlfs1, Sebastian Hollizeck1, Raffaele Conca1, Tobias Schwerd1, Holm H. Uhlig3, 
Philip Bufler1,4, Sibylle Koletzko1,5, Aleixo M. Muise6,7,8,9,10, Scott B. Snapper8,11,12,13, 
Fabian Hauck1, Christoph Klein1,8,14,15 & Daniel Kotlarz1,8*

NOD2 polymorphisms may affect sensing of the bacterial muramyl dipeptide (MDP) and trigger 
perturbed inflammatory responses. Genetic screening of a patient with immunodeficiency and 
enteropathy revealed a rare homozygous missense mutation in the first CARD domain of NOD2 
(ENST00000300589; c.160G > A, p.E54K). Biochemical assays confirmed impaired NOD2‑dependent 
signaling and proinflammatory cytokine production in patient’s cells and heterologous cellular models 
with overexpression of the NOD2 mutant. Immunoprecipitation‑coupled mass spectrometry unveiled 
the ATPase valosin‑containing protein (VCP) as novel interaction partner of wildtype NOD2, while 
the binding to the NOD2 variant p.E54K was abrogated. Knockdown of VCP in coloncarcinoma cells 
led to impaired NF‑κB activity and IL8 expression upon MDP stimulation. In contrast, tunicamycin‑
induced ER stress resulted in increased IL8, CXCL1, and CXCL2 production in cells with knockdown of 
VCP, while enhanced expression of these proinflammatory molecules was abolished upon knockout of 
NOD2. Taken together, these data suggest that VCP‑mediated inflammatory responses upon ER stress 
are NOD2‑dependent.

!e innate immune system has crucial functions in detection and eradication of pathogens. !e recognition of 
microbial-associated molecular patterns (MAMPs) and induction of in"ammatory responses depends on spe-
ci#c pattern recognition receptors (PRRs)1. !e intracellular PRR nucleotide-binding oligomerization domain 
protein 2 (NOD2) senses muramyl dipeptide (MDP), an evolutionary conserved component of the bacterial 
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cell  walls2. Upon MDP challenge, intracellular NOD2 oligomerizes and recruits receptor-interacting serine/
threonine-protein kinase 2 (RIPK2) through CARD-CARD homotypic interaction leading to activation of down-
stream signaling pathways such as nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) 
 signaling3–7. Dysregulated NOD2 signaling has been implicated in several in"ammatory disorders such as Blau 
syndrome, sarcoidosis, allergy, asthma and  autoimmunity8–10. In particular, NOD2 has been recognized as the 
key susceptibility gene in Crohn’s disease (CD)8. NOD2 polymorphisms associated with CD are mainly located 
in the leucine-rich repeat domain which is responsible for ligand sensing and binding.

Here, we report a rare missense mutation a%ecting the #rst CARD domain of NOD2 that has been identi#ed 
in a child with enteropathy and was associated with defective MDP-dependent signaling, abrogated interac-
tion with RIPK2, as well as impaired cytokine responses. !e characterization of this rare mutation unveiled 
Valosin-containing protein (VCP) as novel interaction partner of NOD2. VCP is a ubiquitously expressed ATPase 
with pleiotropic functions in controlling Ubiquitin-proteasome system (UPS)-mediated protein degradation in 
endoplasmic reticulum (ER)-associated protein degradation (ERAD), apoptosis, and  autophagy11–13. Our study 
highlighted that VCP-mediated proin"ammatory responses during ER stress are NOD2-dependent.

Results
Defective NOD2 signaling caused by a biallelic germline mutation affecting the first CARD 
domain. Whole exome sequencing was conducted to elucidate the genetic etiology in a one-year-old female 
patient presenting with intractable diarrhea, recurrent perianal candida dermatitis, hemophagocytic lympho-
hystiocytosis (HLH), and prolonged Norovirus infection. Genetic screening revealed rare homozygous missense 
mutations in NOD2 (ENST00000300589; c.160G > A, p.E54K) and STXBP2 (ENST00000441779; c.949C > G, 
p.L317V). Even though the variant in STXBP2 was predicted to be benign, this mutation likely has caused HLH 
associated with impaired NK cell degranulation (Supplementary Fig. 1). By contrast, the NOD2 missense muta-
tion has been proposed as deleterious based on PolyPhen and SIFT and thus, may contribute to the gastrointes-
tinal phenotypes (intractable diarrhea, recurrent perianal dermatitis). Our study was not speci#cally designed to 
address whether the NOD2 variant was the causal or risk factor of disease in our patient, but the distinct location 
of the variant triggered assessment of NOD2-mediated signaling and interacting networks, since previously 
reported CD-associated NOD2 variants are mainly localized in or near the LRR domain (Fig. 1A)14–16.

To elucidate the e%ects of the identi#ed NOD2 mutation on the canonical NOD2-mediated signaling, we 
assessed intracytoplasmic TNF production in patient’s peripheral blood mononuclear cells (PBMC)-derived 
monocytes upon stimulation with the ligand L18-MDP. While patient-derived monocytes showed a normal 
response to lipopolysaccharide (LPS), TNF expression was reduced in L18-MDP-treated cells as compared with 
healthy donors (Fig. 1B). In addition, patient-derived neutrophils showed reduced CD62L shedding upon MDP 
stimulation (Fig. 1C), con#rming defective NOD2 signaling in patient innate immune cells. Correspondingly, 
patient’s PBMCs revealed reduced phosphorylation of NF-κB p65, ERK1/2, and/or p38 upon stimulation with 
L18-MDP (Fig. 1D). Furthermore, luciferase reporter assays on HEK293T cells ectopically expressing the NOD2 
variant p.E54K showed impaired NF-κB activity in response to L18-MDP comparable with the NOD2 variant 
p.L1007fsX1008 that has previously been associated with  CD15 (Fig. 2A).

To gain insights into the pathomechanisms of the mutation in the context of intestinal in"ammation, we 
engineered coloncarcinoma-derived HCT116 cells with a CRISPR/Cas9-mediated NOD2 knockout (KO) and 
subsequent lentiviral overexpression of wild-type (WT) or mutant (p.E54K and p.L1007fsX1008) NOD2 variants. 
In contrast to WT reconstitution, HCT116 cells with NOD2 mutants showed reduced expression and secretion 
of IL-8 upon treatment with L18-MDP (Fig. 2B).

Emerging evidence highlights that NOD2 has critical functions apart from peptidoglycan (PGN) sensing. 
Notably, NOD2 has been implicated in mediating proin"ammatory responses triggered by ER  stress17. To assess 
the PGN-independent functions of NOD2, we evaluated the expression of the proin"ammatory cytokine IL8 in 
engineered HCT116 cells upon ER stress. Treatment with tunicamycin resulted in impaired IL8 production in 
cells with expression of the NOD2 variant p.E54K as compared with WT NOD2 reconstituted cells. Interestingly, 
we could detect normal expression of IL8 for the NOD2 variant p.L1007fsX1008 suggesting genotype-speci#c 
mechanisms of ER stress-induced proin"ammation in the context of NOD2 de#ciency (Fig. 2C).

Impaired RIPK2 binding and ubiquitination by the NOD2 mutant p.E54K. NOD2 is critical in 
mediating in"ammatory signaling pathways in response to invading pathogens via the interaction of RIPK2 
with its CARD  domain6. Previously reported NOD2 polymorphisms associated with CD are mainly localized in 
the LRR  domain14,18–25, however two heterozygous variants (p.R38M and p.R138Q) a%ecting the #rst and sec-
ond CARD domain have been suggested to alter RIPK2 recruitment and NF-κB  signaling26. To assess whether 
the NOD2 variant p.E54K a%ects interaction with RIPK2, we conducted co-immunoprecipitation experiments 
using anti-FLAG beads in HEK293T cells ectopically expressing FLAG-tagged NOD2 WT or mutants along 
with WT RIPK2. While the NOD2 variant p.L1007fsX1008 showed normal binding to RIPK2, the interaction of 
the mutant p.E54K and RIPK2 was signi#cantly reduced (Fig. 2D).

Previous studies have demonstrated that polyubiquitination and autophosphorylation of RIPK2 is triggered 
upon NOD2  activation4,7,27,28. Despite the di%erent abilities of the NOD2 mutants p.E54K and p.L1007fsX1008 
to interact with RIPK2, we could detect reduced phosphorylation of RIPK2 at position S176 by immunoblotting 
as well as impaired ubiquitination of RIPK2 by employing tandem ubiquitin-binding entities upon MDP stimu-
lation in both NOD2 variants (Fig. 2E). !ese data suggest that defective polyubiquitination and/or autophos-
phorylation of RIPK2 may represent an underlying common mechanism for reduced MDP-dependent signaling 
associated with NOD2 polymorphisms.
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Identification of VCP as novel interaction partner of NOD2. To study the altered interactome of 
the NOD2 variant p.E54K, cell lysates from immunoprecipitation experiments on HEK293T cells with ectopic 
expression of WT or mutant NOD2 were subjected to SDS-PAGE. Silver staining revealed a band with a molecu-
lar weight of about 100 kDa only present in cells overexpressing WT NOD2 (Fig. 3A). Using co-immunoprecip-
itation and nano liquid chromatography tandem mass spectrometry (LC–MS/MS), we identi#ed VCP as novel 
NOD2 interacting protein enriched in cells reconstituted with WT NOD2. In contrast, cells with expression 
of the variants p.E54K or p.L1007fsX1008 showed abrogated interaction of VCP with NOD2 (Fig. 3B and C). 
Notably, we also identi#ed vimentin (VIM) and carbamoyl phosphate synthetase/aspartate transcarbamylase/
dihydroorotase (CAD) among the list of known NOD2 interacting proteins; thus increasing the con#de in our 
screening approach. While vimentin was enriched in both NOD2 WT and p.E54K expressing cells as compared 
with RFP controls, CAD was found to be enriched only in cells overexpressing WT NOD2 (Fig. 3B). Finally, the 
interaction of endogenous VCP/NOD2 proteins in HCT116 cells was con#rmed by immunoprecipitation with 
an antibody binding to VCP and co-precipitation of NOD2 (Supplementary Fig. 2).

VCP is an evolutionarily conserved AAA + ATPase governing diverse biological functions, in particular in 
the UPS and ER-associated degradation (ERAD)29. VCP mutations have been associated with several diseases 
such as myopathy, Paget’s disease, dementia, amyotrophic lateral sclerosis and Huntington’s  disease29,30. However, 
the exact role of VCP in health and disease remains elusive. Previously, VCP has been listed as potential NOD2 
interaction partner in one of three yeast two hybrid (Y2H)  screens31 and proteomic studies have revealed VCP 
in the group of proteins that are di%erentially expressed in HEK293T cells overexpressing the NOD2 variant 
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protein domains. !e mutation identi#ed in patient is depicted by an asterisk. (B) Representative FACS analysis 
of TNF staining (n = 3) on PBMC-derived monocytes  (CD14+) isolated from patient (Pat), mother and a healthy 
donor (HD) and stimulated with L18-MDP or LPS. (C) Representative FACS analysis of CD62L expression 
(n = 3) on neutrophils isolated from patient (Pat) and two healthy donors (HD) upon L18-MDP stimulation. 
(D) Representative immunoblotting of serum-starved PBMCs from patient (Pat) and two healthy donors (HD) 
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p.L1007fsX100832. !ese studies support our #ndings that VCP is an interaction partner of NOD2 but did not 
provide any functional links for the regulatory role of VCP in NOD2 signaling.

VCP controlled ER stress causes inflammatory responses in a NOD2‑dependent manner. To 
study VCP function in the context of NOD2 signaling, we engineered heterologous HCT116 cells with siRNA-
mediated knockdown of VCP and evaluated MDP-induced NF-κB activity and IL8 expression. Luciferase 
reporter assays showed impaired NF-κB activation in cells with knockdown of VCP in response to L18-MDP 
treatment (Fig. 4A). Correspondingly, we could detect decreased expression of IL8 in MDP-treated cells upon 
VCP knockdown, as compared with cells transfected with non-targeting siRNA (Fig. 4B). However, we could not 
observe a direct e%ect of VCP knockdown on phosphorylation of RIPK2 (S176) or binding of RIPK2 to NOD2 
(Supplementary Fig. 3).

VCP plays a critical role in controlling UPR and inhibition of VCP resulted in increased ER  stress33. Moreo-
ver, enhanced ER stress and activated UPR in intestinal epithelial cells have been reported in patients with CD 
and ulcerative colitis (UC)34. Recently, NOD1 and NOD2 have been proposed as molecular bridges linking ER 
stress to proin"ammatory  responses17. To examine the in"uence of NOD2 on VCP-mediated ER stress functions, 
we transfected HCT116 cells with NOD2 KO or lentiviral reconstitution of NOD2 WT with siRNAs targeting 
VCP. Knockdown e'ciency was assessed by qPCR measurement of VCP mRNA as well as immunoblotting of 
VCP protein (Supplementary Figs. 4 and 5). Using this heterologous cellular model, we could con#rm previ-
ous #ndings that VCP knockdown induces increased UPR, as demonstrated by enhanced expression of C/EBP 
homologous protein (CHOP) (Fig. 4C) as well as increased phosphorylation of PERK and eIF2α, while splicing 
of XBP1 appeared una%ected (Supplementary Fig. 5). Whereas additional knockout of NOD2 resulted in slight 
increase of the activated PERK-eIF2α axis (Supplementary Fig. 5), we could not observe a signi#cant upregu-
lation of the transcription of CHOP, which is a downstream target modulated by all three signaling branches 
of UPR (Fig. 4C). Moreover, treatment with tunicamcyin in NOD2 WT reconstituted cells induced enhanced 
IL8, CXCL1, and CXCL2 expression upon knockdown of VCP, while increased proin"ammatory cytokine and 
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chemokine expression could not be observed in NOD2 KO cells (Fig. 4D and E). Di%erences in IL8, CXCL1, 
and CXCL2 expression between NOD2 knockout and WT reconstituted cells were not associated with increased 
cell death (Supplementary Fig. 6). Taken together, these #ndings suggest that in"ammatory responses caused by 
VCP-regulated ER stress are NOD2-dependent.

Discussion
NOD2 is a key receptor of innate immunity and the #rst genetic locus that has been associated with in"am-
matory bowel disease (IBD)14,15. Since most CD-associated NOD2 variants are located in the LRR domain, the 
identi#cation of a biallelic missense mutation a%ecting the CARD domain of NOD2 in a patient with enteropa-
thy prompted us to investigate the signaling and interaction network of the mutant NOD2 protein in greater 
detail. Even though the HLH-associated phenotype in our patient is likely caused by the STXBP2 mutation, the 
NOD2 sequence variant may be a risk factor contributing to the gastrointestinal phenotypes (intractable diar-
rhea, recurrent perianal dermatitis). !e function of NOD2 in pathogen recognition or peptidoglycan sensing 
has been previously  acknowledged35,36, however the role of NOD2 during ER stress remains still elusive. Our 
biochemical study showed impaired NOD2-governed PGN-dependent and independent signaling in primary 
patient cells as well as cellular models and unveiled VCP as novel interaction partner of NOD2 that regulates ER 
stress-mediated in"ammatory responses.

Several studies have suggested the implication of dysregulated UPR in di%erent in"ammatory conditions 
such as neurodegenerative diseases and  IBD37–40. A growing body of evidence indicate reciprocal relationships 
between in"ammation and ER  stress41. While in"ammatory stimuli like pattern-recognition receptor (PRR) 
ligands or ROS can induce UPR, activation of the three main UPR pathways can trigger NF-κB- and MAPK-
dependent in"ammatory responses leading to the expression of proin"ammatory cytokines such as IL-6 and 
 TNF17,42–44. In the context of intestinal in"ammation, mice with KO of Ire1 and Xbp have been shown to have 
increased sensitivity to dextran sodium sulfate (DSS)-induced  colitis37,38.

NOD2 has been previously implicated in regulating ER  stress17. For example, Laccase domain containing-1 
(LACC1)-dependent induction of ER stress has been documented in macrophages upon MDP  stimulation45. 
Furthermore, previous studies have shown that NOD1/NOD2/RIPK2-dependent in"ammation can be trig-
gered by ER stress in mouse bone-marrow-derived macrophages (BMDMs) via the IRE1α/TRAF2  pathway17. 
Recently, Pham et al. showed that mice lacking NOD1 and NOD2 or RIPK2 exhibit increased systemic bacterial 
burdens a)er infection with Chlamydia suggesting a relevant NOD2-dependent link between ER stress and 
bacteria-speci#c in"ammatory  responses46. However, the exact mechanisms of NOD2 activation and function 
during ER stress still remain largely unknown. Our study on NOD2-de#cient epithelial cells suggested that 
the identi#ed NOD2 germline mutation a%ecting the CARD domain showed compromised pro-in"ammatory 
responses upon tunicamycin-induced ER stress. Interestingly, we could observe genotype-speci#c phenotypes, 
since overexpression of the NOD2 variant p.E54K in NOD2 knockout HCT116 cells resulted in altered IL8 
expression in comparison to cells expressing the NOD2 variant p.L1007fsX1008. Recently, Pei et at. have shown 
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Figure 3.  Identi#cation of VCP as novel interaction partner of NOD2. (A) Representative SDS-PAGE and 
silver staining (n = 3) of cell lysates from immunoprecipitation experiments on HEK293T cells that ectopically 
expressed Flag-NOD2 WT (WT) or mutant alone or along with WT RIPK2. While the asterisks indicate 
expression of Flag-tagged NOD2 proteins (* full length, ** truncated), the arrow points to an interaction protein 
of Flag-NOD2 WT (molecular weight about 100 kDa) that was not detectable in the NOD2 mutants p.E54K and 
p.L1007fsX1008. (B) Volcano plots of proteins enriched in NOD2 WT or the mutant (p.E54K) versus the RFP 
control. (C) Flag IP on HEK293T cells transiently transfected with Flag-NOD2 WT or mutants (n = 3). WCL, 
whole cell lysate. IP, Immunoprecipitates.
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that NOD2 mediates proin"ammatory responses upon di%erent types of UPR via interaction of its nucleotide 
binding domains with sphingosine-1-phosphate47. Corresponding to their #nding that ER stress activated NOD2 
independent of the LRR domain, we could observe comparable transcriptional level of IL8 in cells overexpress-
ing the NOD2 p.L1007fsX1008 variant and WT NOD2. !us, our investigation on a rare sequence indicated 
altered ER stress as possible mechanism how NOD2 polymorphisms may contribute to disease development 
and behavior.

!e CARD domain of NOD2 is known to be important for the interaction with the adaptor protein  RIPK248. 
Our study revealed impaired RIPK2 interaction for the identi#ed mutation p.E54K a%ecting the CARD domain 
but not the LRR domain variant p.L1007fsX1008. However, we could observe reduced phosphorylation and 
abrogated ubiquitination of RIPK2 as a potential common pathomechanism for the impaired MDP-triggered 
NF-κB activity in NOD2-de#cient cells. Consistently, X-linked Inhibitor of Apoptosis (XIAP) E3 ubiquitin ligase 
activity mediating ubiquitination of RIPK2 has been previously reported to be indispensable for NF-κB activation 
initiated by NOD2  stimulation49. !e relevance of this signaling axis for human disease has been demonstrated by 
loss-of-function XIAP mutations causing a severe immunode#ciency  disorder50,51. In routine diagnostics, analysis 
of defective MDP-dependent NOD2 signaling is used to determine XIAP  de#ciency52. Since both mutations 
exhibited abrogated RIPK2 ubiquitination, future studies investigating the recruitment of XIAP to the NOD2 
complex might provide further insights on the pathomechanisms of the NOD2 variants.

In view of the impaired RIPK2 interaction and posttranslational modi#cation, we sought to decipher the 
interaction network of the NOD2 variant p.E54K. Using an immunoprecipitation-coupled mass spectrometry 
screen, we identi#ed VCP as a novel NOD2 interaction partner that was associated with wild-type NOD2 protein 
but not with the NOD2 variants p.E54K and p.L1007fsX1008. VCP is an abundant ubiquitin-dependent ATPase 
that implicates in myriad of cellular processes such as ERAD, autophagy, DNA damage response, apoptosis and 
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Figure 4.  VCP-mediated ER-stress-induced proin"ammatory responses are NOD2-dependent. (A) NF-kB-
sensitive luciferase reporter activity (n = 5) and (B) quantitative RT–PCR analysis of IL8 production in L18-
MDP-treated HCT116 cells transfected with si-NT (non-targeting control) or si-VCP (see also Figure S4). (C 
and D) Quantitative RT–PCR analysis of CHOP (C) and IL8, CXCL1, CXCL2 and TNF (D) transcriptional 
level on HCT116 cells transfected with si-NT or si-VCP upon tunicamycin stimulation (see also Figure S6). 
(E) ELISA of IL-8 secretion upon tunicamycin treatment in WT and NOD2 KO cells. (B, C, D and E) Data 
represent mean ± SEM of three independent experiments. P values in each treatment group were calculated in 
comparison to non-targeting control.
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ubiquitin–proteasome-dependent protein  degradation11–13,53,54. Heterozygous germline mutations in VCP have 
been previously associated with Paget disease of bone and frontotemporal dementia, amyotrophic lateral sclerosis 
(ALS) and type 2 Charcot–Marie–Tooth  disease55–57. Furthermore, increased level of proin"ammatory cytokines 
have been observed in the plasma and myoblasts of patients with VCP  mutations58. !e function of VCP in the 
ERAD pathway has been reported to be regulated through interaction with the deubiquitinase  ATAXIN359. 
Interestingly phosphorylation of ATAXIN3 by NOD2 and TLR2 in myeloid cells has been recently shown to 
mediate mitochondrial reactive oxygen species production and bacterial  clearance60. To evaluate plausible func-
tions of VCP in NOD2 signaling, we used VCP-silenced cellular models that were stimulated with the NOD2 
canonical stimuli MDP. Consistent with previous studies demonstrating impaired TNF- and IL-1β-triggered 
NF-κB signaling in VCP-de#cient  cells61, we observed impaired NF-κB activity and proin"ammatory cytokine 
responses in cells with knockdown of VCP upon MDP treatment comparable to NOD2-de#cient cells. Strikingly, 
our data unveiled VCP as a negative regulator of NOD2 activity during tunicamycin-induced ER stress, as VCP 
silencing resulted in NOD2-dependent hyperin"ammatory responses. While VCP-dependent CHOP transcrip-
tion was not a%ected by knockout of NOD2, expression of the members of the CXC family of chemokines IL8 
(CXCL8), CXCL1, and CXCL2 was increased in a NOD2-dependent manner. !ese chemokines have been shown 
to be important in the regulation of neutrophil activation and migration as well as the induction of exaggerated 
angiogenesis at sites of  in"ammation62. Notably, the expression and activity of these molecules were positively 
correlated with the grade of in"ammation in IBD  patients63–66. !us, altered NOD2-dependent proin"ammatory 
cytokine responses upon ER stress may present a new link in the context of intestinal in"ammation, however 
the exact mechanisms how VCP acts on NOD2 signaling remains elusive. Our data suggested that knockdown 
of VCP alters UPR but does not directly a%ect phosphorylation of RIPK2 or binding of RIPK2 to NOD2. !ere-
fore, we propose that VCP-regulated UPR can be sensed by NOD2 and can trigger in"ammatory responses in a 
NOD2-dependent manner. Previous studies have suggested that activation of NF-κB signaling is mediating ER 
stress-derived in"ammation, however we could not observe substantial alteration of NF-κB p65 phosphorylation 
upon tunicamycin stimulation in VCP-silenced cells (data not shown). Further studies are required to pro#le ER 
stress-induced NOD2-dependent proin"ammatory responses in greater detail and to decipher the underlying 
molecular mechanisms.

Taken together, molecular characterization of a rare germline mutation a%ecting the #rst CARD domain of 
NOD2 unveils VCP as novel interaction partner. Functional studies show that VCP controlled ER stress induces 
in"ammatory responses in a NOD2-dependent fashion; thus, providing a new potential mechanistic link and 
therapeutic target in NOD2-related intestinal in"ammation.

Methods
Patient. Written informed consent was obtained from the patient, #rst-degree relatives, and healthy donors 
for the collection of peripheral blood. !e investigation was approved by the respective institutional review 
boards of the LMU Munich and conducted in accordance with current ethical and legal frameworks.

DNA sequencing. Next-generation sequencing was performed at the Dr. von Hauner Children’s Hospital 
NGS facility. Genomic DNA was isolated from whole blood (Qiagen) for the generation of whole-exome librar-
ies using the SureSelect XT Human All Exon V6 + UTR kit (Agilent Technologies). Barcoded libraries were 
sequenced with a NextSeq 500 platform (Illumina) to an average coverage depth of 90x. Bioinformatics analysis 
used Burrows-Wheeler Aligner (BWA 0.7.15), Genome Analysis ToolKit (GATK 3.6) and Variant E%ect Predic-
tor (VEP 89). !e frequency #ltering used allele frequencies from public (e.g. ExAC, GnomAD and GME) and 
in house databases. !e potentially causative variants were con#rmed by Sanger sequencing for the patient and 
informative family members.

Plasmids and retroviral‑mediated gene expression. Full-length human WT NOD2 was ampli#ed 
from healthy donor (HD) cDNA. Patient-speci#c mutations (encoding p.E54K and P.L1007fsX1008) were 
introduced by site-directed PCR mutagenesis. WT and mutated NOD2 cDNAs or fusion constructs with an 
N-terminal FLAG-tag were cloned into the IRES-EGFP or IRES-RFP bicistronic lentiviral pRRL vectors. Len-
tiviral particles were produced by transfection of HEK293T cells with viral packaging plasmids (psPAX2 and 
pMD2.G, kindly provided by Didier Trono, Geneva) together with lentiviral pRRL vectors enconding NOD2 
WT or mutants. Supernatants were collected every 24 h for 3 days and #ltratered prior to transduction of NOD2-
de#cient HCT116 cells in the presence of 8 µg/ml polybrene (Sigma-Aldrich). Sorting of transduced cells was 
conducted on a BD FACSAria cell sorter (BD Bioscience) based on RFP or EGFP mean "uorescence intensity. 
Human WT RIPK2 was ampli#ed from the veri#ed cDNA sequence clone (GE Dharmacon, cat.no. MHS6278-
202830678) and cloned into the pRRL-IRES-RFP plasmid.

Antibodies and reagents. Antibodies for phospho-NF-κB (p65) (Ser536) (3033, clone number 93H1), 
NF-κB (p65) (8242, clone number D14E12), phospho-p44/42 MAPK (Erk1/2) (!r202/Tyr204) (4370, clone 
number D13.14.4E), p44/42 MAPK (Erk1/2) (9102), phospho-p38 MAPK (!r180/Tyr182) (4511, clone num-
ber D3F9), p38 MAPK (9212), RIP2 (4142, clone number D10B11), phospho-RIP2 (Ser176) (14397S), VCP 
(2648), XBP-1S (12782 s), phospho-eIF2α (Ser51) (3597 s), and HRP-conjugated anti-rabbit IgG (7074) were 
purchased from Cell Signaling Technology. Phospho-PERK (T982) (ab192591) was purchased from Abcam. 
Beta-Actin-HRP (sc-47778, clone number c4) and GAPDH (sc-47724, clone number 0411) were purchased 
from Santa Cruz Biotechnology. Anti-Flag antibody (F1804, clone number M2), Anti-FLAG M2 A'nity Gel 
(A2220), lipopolysaccharide (LPS) (L2654) and tunicamycin Streptomyces sp. (T7765) were procured from 
Sigma-Aldrich. HRP-conjugated goat anti-mouse IgG (554002), PE mouse anti-human TNF (559321, clone 
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number MAb11) and anti-CD14-FITC (557153, clone M5E2), anti-CD14–BV786 (563698, clone M5E2), anti-
CD3-BUV395 (564000, clone SK7), anti-CD3-PerCP (345766, clone SK7), anti-CD56-APC (341027, clone 
NCAM16.2), and anti-CD107a-PE (555801, clone H4A3) were procured from BD Biosciences. anti-CD3-paci#c 
blue antibody (344823, clone SK7) was from Biolegend. L18-MDP (tlrl-lmdp) was from Invivogen. Agarose 
TUBE 2 (UM402) was purchased from Lifesensors. Lipofectamine™ 2000 (11668019) and Lipofectamine™ 3000 
(L3000015) Transfection Reagents were procured from !ermo Fisher Scienti#c. IL-2 cytokine (2238131) was 
procured from Novartis.

Cell culture and stimulation. Peripheral blood mononuclear cells (PBMC) were isolated using Ficoll 
gradient centrifugation. PBMCs were maintained for 2–3  h in serum free RPMI-1640 medium (Gibco, Life 
Technologies) and then stimulated with L18-MDP (10 µg/ml) or LPS (1 µg/ml). To enrich for human primary 
monocytes, PBMCs were cultured in Iscove’s Modi#ed Eagle’s Medium (IMDM) (Gibco, Life Technologies) sup-
plemented with 10% fetal bovine serum (FBS) and kept overnight at 37 °C. !e day a)er, non-adherent cells 
were washed o%. To measure intracytoplasmic TNF, PBMC-derived monocytes were stimulated by adding 
either 200 ng/ml L18-MDP or 200 ng/ml lipopolysaccharide (LPS) (Sigma-Aldrich) in the presence of Golgistop 
(BD Biosciences) for 2.5 h. K562 cells (ATCC; CCL-243) were cultured in RPMI-1640 medium supplemented 
with 1% L-glutamine, 10% v/v FBS, and 1% penicillin/streptomycin. Human embryonic kidney HEK293T cells 
(ATCC, CRL3216) and coloncacinoma HCT116 cells (ATCC, CCL247) were cultured in Dulbecco’s Modi#ed 
Eagle Medium (DMEM) medium (!ermo Fisher Scienti#c) supplemented with 1% L-glutamine, 10% v/v FBS, 
and 1% penicillin/streptomycin. For evaluating IL8 transcriptional level, HCT116 cells stimulated with 1 µg/ml 
L18-MDP for 2, 4 and 8 h or with 5 µg/ml tunicamycin (Sigma-Aldrich) for 8 and 24 h. To analyze transcrip-
tional level of IL8, CXCL1, CXCL2 or CHOP in HCT116 cells 72 h post siRNA transfection, stimulation was per-
formed with 1 µg/ml L18-MDP for 2, 4 and 8 h or with 5 µg/ml tunicamycin (Sigma-Aldrich) for 8 and 24 h.

NK cells Degranulation assay. PBMCs were either directly cultured in complete RPMI-1640 medium 
supplemented with anti-CD107a alone or together with K562 to induce NK cells degranulation. To investigate 
degranulation in activated NK cells, PBMCs were incubated for 2 days in complete RPMI medium containing 
600 U/ml IL-2 before co-culturing with K562 and anti-CD107a. Centrifugation was performed at 30 g, RT for 
3 min and cells were incubated for 3 h at 37 °C. Surface staining was performed with anti-CD107a, anti-CD3, 
and anti-CD56. Flow cytometry was conducted on the FACS Canto II (BD Biosciences) and CD107a surface 
expression was investigated in the  CD3−CD56+ cell population. Analysis was performed with Flowjo V9 so)-
ware (TreeStar).

Immunoblotting and silver staining. Cells were lysed in 1× cell lysis bu%er (Cell Signaling Technolo-
gies) supplemented with 1 mM phenylmethylsulfonyl "uoride and 1× protease inhibitors. Normalization of pro-
tein concentration was performed by Bradford assay and equal amount of proteins were subjected to 10–12% 
SDS–PAGE followed by immunoblotting using di%erent antibodies. Chemiluminescence signals were detected 
using the SuperSignal West Dura detection kit (!ermo Fisher Scienti#c) on the   ChemiDocTM XRS + System 
(Bio-Rad) and analyzed with  the  ImageLabTM so)ware (Bio-Rad). SDS–PAGE silver staining was performed 
using  silverQuestTM (Invitrogen) according to the manufacturer’s protocols.

Intracellular flow cytometry. Cells were washed with PBS and then #xed and permeabilized using the 
Cyto#x/Cytoperm Kit (BD Bioscience) and stained with CD14, CD3 and TNF antibodies. Flow cytometry was 
performed on the  LSRFortessaTM "ow cytometer (BD Biosciences) and analyzed with the Flowjo V9 so)ware 
(TreeStar)52.

Engineering of NOD2 knockout cell lines using CRISPR/Cas9 genome editing. !e  Alt-R® 
CRISPR-Cas9 (IDT technology) genome editing system was used according to the manufacturer’s instruc-
tions on HCT116 cells for the generation of knockouts. Electroporation was performed using the SE Cell Line 
4D-Nucleofector® X Kit and the 4DNucleofector™ System (Lonza). Single cells were sorted into 96-well plates on 
a BD FACSAria (BD Bioscience) 48 h post transfection. In expanded clones, NOD2 knockout was functionally 
con#rmed using NF-κB luciferase reporter gene assays.

Quantitative real‑time PCR analysis and ELISA. Total RNA was isolated using the RNeasy plus Kit 
(Qiagen) and reverse-transcribed to cDNA according to the manufacturer’s protocols (MultiScribe Reverse 
Transcriptase; Applied Biosystems). Relative transcriptional level were measured by SYBR Green dye-based 
quantitative real-time PCR (qRT–PCR) and analyzed using the ABI Prism 7500 Fast RT-PCR System (Applied 
Biosystems). GAPDH was used as a housekeeping marker. !e list of primers is given in Supplementary Table 1. 
IL-8 secretion in the supernatant was quati#ed using the Human IL-8/CXCL8 DuoSet ELISA kit (R&D) and 
measured using a Synergy H1 microplate reader (BioTek Instruments) according to the manufacturer’s protocol.

NF‑κB luciferase reporter gene assays. HEK293T cells were transfected with the p55-A2-Luc lucif-
erase reporter plasmid, internal control pTK-Green Renilla plasmid, NOD2 plasmids or control empty plas-
mids using Lipofectamine  2000TM (!ermo Fisher Scienti#c) according to manufacturer’s recommendations. 
L18-MDP stimulation (200 ng/ml, Invivogen) was performed for 7 h followed by measurement of luciferase 
activity using the Dual Luciferase Assay Kit (Biotium). To study NF-kB activity in VCP knockdown HCT116 
cells, cells were transfected with the p55-A2-Luc luciferase reporter plasmid and pTK-Green Renilla plasmid by 
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lipofectamine  3000TM (!ermo Fisher Scienti#c) 24 h a)er siRNA treatment. L18-MDP stimulation (200 ng/ml, 
Invivogen) was performed for 4 and 8 h a)er 72 h of siRNA transfection . To screen NOD2 KO HCT116, the 
NF-κB luciferase reporter assay was performed as described for HEK293T cells.

Co‑immunoprecipitation assays. HEK293T cells were transfected with 10  µg FLAG-NOD2 WT and 
mutants alone or together with RIPK2 using polyethyleneimine (PEI; Polysciences). A)er 72 h, the cells were 
washed in PBS and lysed in the RIPA bu%er (10 mM Tris–HCl, pH 7.5, 150 mM NaCl, 5 mM EDTA, 1% NP-40, 
10% glycerol) supplemented with 30 mM sodium pyrophosphate, 50 mM sodium "uoride, 1 mM phenylmethyl-
sulfonyl "uoride and 1 × protease inhibitors (Roche). Immunoprecipitation was performed by incubating the 
lysates with anti-FLAG M2 A'nity Gel (Sigma-Aldrich) for 7 h at 4 °C on the rocker platform. Beads were 
washed three times in 1 ml ice-cold RIPA bu%er and bound proteins were eluted by boiling the beads in gel load-
ing bu%er. HCT116 cells stably expressing NOD2 constructs were directly treated with L18-MDP for indicated 
time points and lysed in RIPA bu%er.

Purification of endogenous Ub conjugates. NOD2 KO HCT116 cells with WT or mutant NOD2 vari-
ants were stimulated with 200 ng/ml L18-MDP (Invivogen) for 1 and 2 h. Cells were washed in PBS and lysed 
in cell lysis bu%er (50 mM Tris–HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% NP-40, 10% glycerol) contain-
ing 1 mM phenylmethylsulfonyl "uorid, 1 × protease inhibitors (Roche) and 1 mM N-ethylmaleimide. Ubiqui-
tinated proteins were isolated using Tandem Ubiquitin Binding Entities (TUBEs, LifeSensors) according to the 
manufacturer’s instructions. Eluted samples were analyzed by western blotting on 10% SDS-PAGE.

siRNA transfection. Two siRNAs targeting human VCP and non-targeting (NT) siRNA oligonucleotides 
were designed and validated as described by Paola Magnaghi et al.67. HCT116 cells were transfected with 5 nM 
of siRNA oligonucleotides using  LipofectamineTM 3000 (!ermo Fisher Scienti#c) according to manufacturer’s 
recommendations and incubated for 72 h. Knockdown e'ciency was assessed by qPCR and western blotting. 
!e sequences of oligonucleotides are provided in Supplementary Table 1.

Analysis of cell death in HCT116 coloncarcinoma cell lines. NOD2 knockout and lentiviral recon-
stituted NOD2 WT HCT116 cells treated with siRNAs targeting human VCP and non-targeting (NT) siRNA 
oligonucleotides were stimulated with 5 µg/ml tunicamycin (Sigma-Aldrich) for 24 h. To measure cell death, 
HCT116 cells were stained with Annexin V and DAPI (!ermo Fisher Scienti#c) and analyzed by "ow cytom-
etry.

Nano‑LC MS/MS analysis. Samples were seperated by SDS-PAGE (SERVAGel TG PRiME 4–20%, Serva). 
Gels were Coomassie stained (Simply Blue, Expedeon) and the area containing proteins was excised. Gel slices 
were destained (50% acetonitril, 50 mM NH4HCO3) and subjected to in-gel digestion using the following steps: 
For protein reduction and alkylation, gel slices were #rst incubated in 45  mM DTE/50  mM NH4HCO3 for 
30 min at 55 °C and then incubated for 30 min in 100 mM iodoacaetamide/50 mM NH4HCO3. In-gel digestion 
was done using 0.7 µg Trypsin at 37 °C overnight. Samples were analyzed by nano-LC MS/MS using an Ultimate 
3000 nano liquid chromatography system (!ermoFisher Scienti#c) coupled to a TripleTOF 5600 + instrument 
(Sciex). As solvent A 0.1% formic acid and as solvent B acetonitrile with 0.1% formic acid was used. Peptides 
were separated at a "ow rate of 200 nL/min on an Acclaim PepMap RSLC C18 column (75 μm × 50 cm, !ermo 
Fisher Scienti#c) with the following gradient: from 2% B to 25% B in 120 min followed by 25% B to 50% B in 
10 min. For mass spectrometry, the ion source was operated at a needle voltage of 2.3 kV. Mass spectra were 
acquired in cycles of one MS scan from 400 m/z to 1250 m/z and up to 40 data dependent MS/MS scans of the 
most intensive peptide signals. For protein identi#cation (FDR < 1%) and label free quanti#cation, the Max-
Quant so)ware  platform68 was used in combination with the Human subset of the UniProt database. !e mass 
spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner 
repository with the dataset identi#er  PXD03153969.

Statistical analysis. Prism version 6 (GraphPad So)ware, USA) was used for statistical analysis of experi-
mental data. Probability (P) values were calculated using two-way repeated-measures ANOVA and P val-
ues < 0.05 were considered to be statistically signi#cant. Statistical details of experiments can be found in the 
#gures and #gure legends. Biologically independent experiments are referred to as n.

Data availability
!e data generated in this study is available upon request, please contact the corresponding author.
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Inflammation is a fundamental biological process mediating host defense and wound
healing during infections and tissue injury. Perpetuated and excessive inflammation may
cause autoinflammation, autoimmunity, degenerative disorders, allergies, andmalignancies.
Multimodal signaling by tumor necrosis factor receptor 1 (TNFR1) plays a crucial role in
determining the transition between inflammation, cell survival, and programmed cell
death. Targeting TNF signaling has been proven as an effective therapeutic in several
immune-related disorders. Mouse studies have provided critical mechanistic insights into
TNFR1 signaling and its potential role in a broad spectrum of diseases. The characterization
of patients with monogenic primary immunodeficiencies (PIDs) has highlighted the impor-
tance of TNFR1 signaling in human disease. In particular, patients with PIDs have revealed
paradoxical connections between immunodeficiency, chronic inflammation, and dysregu-
lated cell death. Importantly, studies on PIDs may help to predict beneficial effects and side-
effects of therapeutic targeting of TNFR1 signaling.

Inflammation is a protective mechanism in
host defense and wound healing during tissue

damage or infection (Medzhitov 2008). The de-
gree of inflammation depends on the infectious
or toxic triggers and on host susceptibility. In-
flammatory responses are complex processes
involving vascular permeability, inflammatory
mediators (e.g., chemokines, adhesion molecules,
cytokines, enzymes), detecting sensors, and extra-
cellularmatrix components, as well as recruitment
of circulating inflammatory cells, activation of
resident immune cells, and adaptive immunity.

Inflammatory mediators, danger-associated
molecular patterns (DAMPs), and hypoxia lead

to recruitment and degranulation of platelets
and resident mast cells as well as activation of
tissue-resident immune cells. The release of che-
moattractants orchestrates leucocyte migration
to the site of inflammation (Medzhitov 2008).
Neutrophils with phagocytotic andmicrobicidal
functions are recruited from the circulation as
well. Initially, neutrophils potentiate the proin-
flammatory environment to eliminate inflam-
matory agents, but apoptosis and clearance of
neutrophils are central processes in the resolu-
tion of inflammation (Mantovani et al. 2011).
Circulating monocytes enter the site of inflam-
mation and differentiate into tissue macro-
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phages that phagocytose foreign particles,
debris, and apoptotic cells. The clearance of
apoptotic neutrophils triggers a switch from a
pro- to an anti-inflammatory program in macro-
phages. In the late phase of inflammation, lym-
phocytes will be recruited and mediate adaptive
immunity (Serhan and Savill 2005). Coordinated
networks are required to resolve and control in-
flammatory processes. Excessive and uncon-
trolled inflammation caused by failure to remove
noxious materials and apoptotic inflammatory
cells may contribute to autoinflammation, auto-
immunity, degenerative diseases, allergy, andma-
lignancies (Silva et al. 2008).

Inflammation and cell death are inter-
twined biological processes sharing many re-
ceptors and effector molecules. The release of
proinflammatory factors by dying cells may
facilitate recovery or extension of inflammation,
but accumulating evidence suggests that per-
turbed cell-death responses may actively con-
tribute to inflammation (Rock and Kono
2008). Whereas necroptosis and pyroptosis re-
lease DAMPs (for example, ATP, DNA, and
uric acid) through permeabilized membranes
and are primarily considered to enhance in-
flammation, apoptosis contains cytoplasmic
content and is thought to be critical in the ter-
mination process (Rock and Kono 2008). While
different forms of cell death share morpholog-
ical and biochemical similarities, the molecular
characteristics and host responses can be dras-
tically different depending on the biological
context. The fate decision of cell death versus
inflammation is tightly controlled by multiple
pathways, including proinflammatory tumor
necrosis factor receptor 1 (TNFR1) signaling.
Mouse studies have unveiled mechanistic in-
sights on the regulation of TNFR1 signaling
and how it may contribute to disease (Fig. 1;
Silke et al. 2015). The characterization of pa-
tients with monogenic primary immunodefi-
ciencies (PIDs) has shown the critical role of
TNFR1 signaling in human disease and high-
lighted paradoxical links between immuno-
deficiency and dysregulation of cell death in
chronic inflammation (Table 1). Here, we review
recent insights with a focus on novel inherited
errors of human immunity.

MULTIMODAL TNFR1-DEPENDENT
SIGNALING DETERMINES INFLAMMATORY
AND CELL-DEATH FATES

TNF plays a critical role in regulating host
defense, but can also be pathogenic in several
inflammatory conditions (Monaco et al. 2015).
TNFR1 signaling intertwines inflammation
and cell death by engaging IKK/NF-κB and cas-
pase-8/receptor interacting protein kinase 1
(RIPK1)/RIPK3 signaling (Fig. 1; Kalliolias and
Ivashkiv 2016). TNF is produced by several im-
mune, epithelial, endothelial, and stromal cell
types (Grivennikov et al. 2005). Upon binding
of TNF to trimeric TNFR1, a membrane-associ-
ated complex I is formed by recruitment of the
adaptor protein TNFR1-associated death do-
main protein (TRADD), TNFR1-associated fac-
tor 2 (TRAF2), cellular inhibitor of apoptosis
proteins 1 and 2 (cIAP1/2), RIPK1, and linear
ubiquitin chain assembly complex (LUBAC)
(Micheau and Tschopp 2003; Kirisako et al.
2006). The latter is composed of heme-oxidized
IRP2ubiquitin ligase1(HOIL-1),HOIL-1-inter-
acting protein (HOIP), and SHANK-associated
RH domain-interacting protein (SHARPIN)
(Kirisako et al. 2006; Gerlach et al. 2011; Ikeda
et al. 2011;Tokunagaet al. 2011).Modificationof
RIPK1andpossiblyothercomplex I components
with Lys63-linked polyubiquitin assembled by
cIAP1/2, and Met1-linked ubiquitin assembled
byLUBAC,mediates activationofTGF-β-activat-
ed kinase 1 (TAK1) and IκB kinase (IKK) (Mi-
cheau and Tschopp 2003; Wang et al. 2008).
Activated TAK1 and IKK induce MAPK signal-
ing andubiquitin–protein system-mediateddeg-
radation of IκB leading to NF-κB activation.

Compromised prosurvival signaling ema-
nating from complex I results in the formation
of alternative cytosolic TNF-induced complexes
mediating apoptosis and necroptosis (Van Ant-
werp et al. 1996). Proinflammatory NF-κB sig-
naling can be terminated by disassembly of
complex I through A20- and cylindromatosis
(CYLD)-mediated deubiquitylation of RIPK1
and TRAF2 (Wertz et al. 2004; Wang et al.
2008). Formation of cytosolic complexes con-
taining TRADD, Fas-associated protein with
death domain (FADD), RIPK1, and procas-
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pase-8 (Micheau and Tschopp 2003;Wang et al.
2008) can lead to homodimerization and acti-
vation of caspase-8, with subsequent cleavage of
caspase-3 and -7 mediating extrinsic apoptosis
(Boatright et al. 2003; Micheau and Tschopp
2003). Apoptosis is the best-defined form of
programmed cell death with characteristic mor-
phological and biochemical changes such as

nuclear envelope disassembly, cytoplasmic
condensation and fragmentation, membrane
blebbing, and formation of membrane-bound
bodies (Green et al. 2009). Apoptosis plays a
pivotal role in controlling immune cell develop-
ment and homeostasis, by eliminating self-reac-
tive, overactivated, and infected immune cells
(Green et al. 2009). Apoptotic cells are ingested
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Figure 1. The tumor necrosis factor receptor 1 (TNFR1) signaling pathway as a master regulator of inflammation
and cell death. TNFR1 encountering TNF nucleates complex I, which includes TNFR1-associated death domain
protein (TRADD), receptor-interacting protein kinase 1 (RIPK1), TNFR1-associated factor 2 (TRAF2), cellular
inhibitor of apoptosis proteins 1 and 2 (cIAP1/2), and the linear ubiquitin chain assembly complex (LUBAC)
composed of heme-oxidized IRP2 ubiquitin ligase 1 (HOIL-1), HOIL1-interacting protein (HOIP), and
SHANK-associated RH domain-interacting protein (SHARPIN). Polyubiquitinated RIPK1 recruits the IκB
kinase (IKK) complex (composed of the NF-κB essential modulator [NEMO], IKKα, and IKKβ) and the
TAK1 complex, which mediate NF-κB and MAPK signaling. Degradation of phosphorylated IκB mediates
translocation of p50 and RelA to the nucleus and transcription of proinflammatory and prosurvival NF-κB
target genes. The stability of complex I is regulated by deubiquitinating enzymes such as A20, cylindromatosis
(CYLD), andOTUdeubiquitinasewith linear linkage specificity (OTULIN). Formation of complex II containing
Fas-associated protein with death domain (FADD), caspase-8, TRADD, and RIPK1 can trigger apoptosis. If the
activity of caspase-8 is compromised, RIPK3 interacts with RIPK1 via its RHIM domain. Autophosphorylated
RIPK3 leads to recruitment, phosphorylation, and oligomerization of the pseudokinase mixed lineage kinase
domain-like (MLKL). Translocation of activatedMLKL to the plasmamembrane results in necroptosis. Proteins
highlighted by red frames indicate that mutations in the corresponding genes have been reported as monogenic
causes for primary immunodeficiencies.
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by phagocytes before they can release immuno-
genic intracellular contents, and this prevents
activation of the innate immune system (Green
et al. 2016). Impaired apoptosis has been impli-
cated in the pathogenesis of immune-related
disease conditions, as exemplified by autoim-
mune lymphoproliferative syndrome (ALPS)
(Fisher et al. 1995; Rieux-Laucat et al. 1995;
Drappa et al. 1996).

When the activity of caspase-8 is com-
promised, necroptosis is initiated by heterodi-
merization of RIPK1 and RIPK3 via their RIP
homotypic interactionmotif (RHIM) (Cho et al.
2009; He et al. 2009). Oligomerization and au-
tophosphorylation of RIPK3 result in the recruit-
ment and phosphorylation of the pseudokinase
MLKL (Murphy et al. 2013). Subsequent oligo-
merization and translocation of MLKL to the
plasma membrane lead to cell rupture (Petrie
et al. 2019). The release of DAMPs from necro-
ptotic cells may be highly immunogenic (Oberst
et al. 2011). Altered necroptosis has been im-
plicated in malignancies as well as several path-
ological inflammatory conditions, including
infectious, cardiovascular, neurological, renal,
and hepatic diseases (Weinlich et al. 2017).
Moreover, several mouse studies have shown
that deletion of Mlkl can partially ameliorate
inflammation (Rickard et al. 2014a,b; Alvarez-
Diaz et al. 2016), indicating that necroptosismay
contribute to the pathogenesis of inflammatory
disorders. In contrast, necroptosis may benefit
host defense against viruses such as herpes sim-
plex virus 1 by eliminating infected cells (Huang
et al. 2015; Guo et al. 2018).

Multimodal TNFR1 signaling governs the
transition between inflammation, survival, and
programmed cell death. However, the exact
physiological mechanisms triggering the transi-
tion from prosurvival to prodeath responses are
still unclear. The complexity of TNFR1 signaling
will be further modulated by cross talk with
other signaling pathways that can engage with
inflammatory and cell-death modules. Dys-
regulation of components involved in TNFR1
signaling can lead to chronic inflammation. Cor-
respondingly, inhibition of TNF is an effective
treatment for several autoinflammatory and au-
toimmune disorders.

INFLAMMATION IN MONOGENIC
DISORDERS AFFECTING TNFR1-MEDIATED
SIGNALING

Caspase-8 Deficiency

Caspase-8 is an initiator cysteinyl aspartate-spe-
cific protease critical for receptor-mediated
apoptosis induced by TNF, TRAIL, and Fas li-
gand (FASL) (Boldin et al. 1996; Muzio et al.
1996; Ashkenazi and Dixit 1998). The zymogen
procaspase-8 consists of two amino-terminal
death effector domains (DEDs) and a carboxy-
terminal protease domain with two catalytic
subunits (p10 and p18) (Earnshaw et al. 1999).
Procaspase-8 dimerization via the DED pro-
motes proteolytic cleavage that generates
active caspase-8 heterotetramers (p102-p182)
(Earnshaw et al. 1999). Active caspase-8 then
cleaves and activates the executioner caspases-3
and -7 to induce apoptosis (Earnshaw et al.
1999).

The essential role of caspase-8 in death re-
ceptor-induced apoptosis was shown using cells
from Casp8 knockout (KO) mice (Varfolomeev
et al. 1998). These mice exhibited embryonic
lethality associated with cardiac deformations,
neural tube defects, and hematopoietic progen-
itor dysfunctions (Varfolomeev et al. 1998; Sa-
kamaki et al. 2002). Conditional KOs of Casp8
have revealed critical roles for caspase-8 in the
response to tissue damage or infection. For
example, caspase-8-deficient hepatocytes exhib-
ited impaired proliferation after injury to the
liver and this prompted chronic inflammation
of the liver (Ben Moshe et al. 2007). Loss of
Casp8 in the epidermis also caused inflamma-
tion with hyperactive responses to activators of
interferon regulatory factor (IRF)3 (Kovalenko et
al. 2009). Furthermore, mice lacking caspase-8
in IECs developed spontaneous ileitis that was
associated with TNF-induced necroptotic cell
death (Günther et al. 2011).

When the activity of caspase-8 is hampered,
RIPK1 initiates RIPK3/MLKL-dependent nec-
roptosis (Cho et al. 2009; He et al. 2009; Zhang
et al. 2009). Interestingly, most disease pheno-
types associated with caspase-8 deficiency in
mice were attributed to aberrant necroptosis be-
cause they were rescued by loss of Ripk3 orMlkl
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(Kaiser et al. 2011; Oberst et al. 2011; Alvarez-
Diaz et al. 2016). Mouse studies have also impli-
cated caspase-8 in lymphocyte differentiation
and function (Salmena et al. 2003; Kang et al.
2004; Beisner et al. 2005). T-cell-specific dele-
tion of Casp8 resulted in profound depletion of
peripheral T cells associated with defective acti-
vation and/or survival upon engagement of the
T-cell receptor (TCR) (Salmena et al. 2003).
These defects impaired CD8+ T-cell-mediated
antiviral immunity. Proliferation of caspase-8-
deficient T cells could be restored by inhibition
of RIPK1 or genetic ablation of Ripk3, implying
that caspase-8 suppresses necroptosis during
T-cell activation (Bell et al. 2008; Ch’en et al.
2011; Kaiser et al. 2011; Oberst et al. 2011).
B-cell-specific deletion of caspase-8 did not
impact B-cell development but compromised
B-cell activation by Toll-like receptor (TLR) ag-
onists (Lemmers et al. 2007).

The relevance of caspase-8 for human im-
munity was originally recognized by studies in-
volving two siblings with germline homozygous
missense mutations in CASP8 (Chun et al.
2002). Similar to ALPS patients with loss-of-
function mutations in genes encoding Fas,
FASL, and caspase-10, the patients with germ-
line mutation in CASP8 presented with lymph-
adenopathy and splenomegaly that was associ-
ated with defective Fas-mediated apoptosis in
T cells (Chun et al. 2002). The homozygousmu-
tation in CASP8 (Arg248Trp) was located in the
p18 protease subunit and it reduced protein
stability and enzymatic activity. Unlike typical
ALPS, the caspase-8-deficient patients also had
defects in the activation of their T-, B-, and
natural killer cells causing immunodeficiency
(Chun et al. 2002). T-cell dysfunction was asso-
ciated with impaired TCR-induced nuclear
translocation of NF-κB (Su et al. 2005), but giv-
en the later studies in mice (Bell et al. 2008;
Ch’en et al. 2011; Kaiser et al. 2011; Oberst
et al. 2011), the question became whether the
defects in NF-κB signaling were a consequence
of aberrant necroptosis.

Theclinical spectrumof caspase-8deficiency
was further broadened by the description of two
patients with the mutation Arg248Trp. These
patients presented with late-onset multiorgan

lymphocytic infiltrations with granulomas (Nie-
mela et al. 2015). By contrast, Lehle et al. recently
described patients with homozygous missense
mutations in CASP8 (Gln237Arg) that affect
the cleavage and activation of caspase-8 (Lehle
et al. 2019). These patients had life-threatening
very early-onset inflammatory bowel disease
(VEO-IBD) and immunodeficiency that was ac-
companied by increased susceptibility to viral
and bacterial infections, marked lymphadenop-
athy, reduced TCR-dependent T-cell prolifera-
tion and activation, and impaired B-cell matura-
tion (Lehle et al. 2019). Mouse studies have
previously shown that myeloid cells lacking
Casp8 exhibited increased NLRP3-dependent
inflammasome activity with enhanced secretion
of proinflammatory cytokines IL-1β and IL-18
(Kang et al. 2013). Correspondingly, caspase-8-
deficient patient monocytes secreted more
proinflammatory IL-1β than control monocytes
in response to lipopolysaccharide (LPS) (Lehle
et al. 2019). In caspase-8-deficient human
BLaER1 monocyte/macrophage models, block-
ade of either NLPR3-dependent inflammasome
activity or MLKL-dependent necroptosis atten-
uated IL-1β secretion (Gaidt et al. 2016; Lehle
et al. 2019). Thus, both pathways are implicated
in proinflammatory cytokine responses. These
findings are consistent with the notion that nec-
roptosis can activate the NLRP3 inflammasome
(Vince and Silke 2016). Targeting necroptosis
might present an attractive therapeutic approach
in caspase-8-deficient patients with VEO-IBD,
but more detailed mechanistic studies are re-
quired.

The identification of caspase-8-deficient pa-
tients with VEO-IBD underscores the critical
function of caspase-8 in maintaining human
intestinal epithelial homeostasis (Lehle et al.
2019). Whereas TRAIL triggered cell death in
healthy donor-derived intestinal organoids, cas-
pase-8-deficient cells were unresponsive to
TRAIL. In contrast to mouse organoids with
loss of Casp8 (Günther et al. 2011), patient-de-
rived caspase-8-deficient intestinal organoids
did not exhibit a marked increase in TNF-in-
duced cell death (Lehle et al. 2019). Further
studies are needed to determine genotype–phe-
notype correlations of the mutations in human
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CASP8. The physiological triggers of intestinal
inflammation in human caspase-8 deficiency
need to be further defined to identify targeted
therapies.

FADD Deficiency

FADD is an adaptor protein that recruits cas-
pase-8 to death receptors (Wilson et al. 2009).
Mice lacking Fadd show RIPK3- and MLKL-
dependent embryonic lethality similar to mice
lacking caspase-8 (Yeh et al. 1998; Alvarez-Diaz
et al. 2016). T-cell-specific loss of Fadd, similar
to caspase-8 deficiency, caused defective T-cell
proliferation that was rescued by inhibition of
RIPK1 (Osborn et al. 2010). In addition, Osborn
et al. observed enlarged lymph nodes and spleen
with increased B cells and red blood cells,
respectively. Mice lacking Fadd in epidermal
keratinocytes or intestinal epithelial cells
(IECs) developed severe inflammation (Bonnet
et al. 2011; Welz et al. 2011), indicating that
FADD is essential for homeostasis in the skin
and intestine. Skin inflammation was triggered
by RIPK3-dependent necroptosis, and was par-
tially dependent on the catalytic activity of the
deubiquitinating enzyme CYLD and/or TNFR1
signaling (Bonnet et al. 2011). Loss of Fadd in
IECs caused spontaneous RIPK3-dependent co-
litis with epithelial erosions and crypt abscesses
(Welz et al. 2011). Disease was prevented by
deletion of Cyld or Myd88, or by elimination
of themicrobiota. Thus, TLR signaling activated
by bacteria was a key driver of colitis (Welz et al.
2011).

In humans, a homozygous loss-of-function
mutation in the death domain of FADD
(Cys105Trp) was reported to impair Fas-in-
duced apoptosis, as in patients withALPS (Bolze
et al. 2010). However, the related patients
presented with immunodeficiency, bacterial
susceptibility, and developmental abnormalities
rather than autoimmunity (Bolze et al. 2010). In
contrast to KO mouse models, FADD-deficient
patients showed normal T-cell proliferation, but
impaired interferon-dependent antiviral immu-
nity, leading to increased susceptibility to viral
diseases (e.g., varicella zoster, parainfluenza vi-
rus, and Epstein–Barr virus).

RIPK1 Deficiency

RIPK1 is a key molecule controlling both
inflammation and cell-death responses via
scaffolding-dependent and kinase-specific func-
tions (Ofengeim and Yuan 2013). In particular,
RIPK1 mediates multimodal TNFR1 signaling
depending on the cell type and biological
context. While TNF-induced NF-κB nuclear
translocation promotes cell survival and in-
flammation, modulation of signaling cascades
can induce caspase-8-mediated apoptosis or
RIPK3-dependent necroptosis, as reviewed in
Pasparakis and Vandenabeele (2015). RIPK1-
deficient mice exhibited perinatal lethality be-
cause of multiorgan hyperinflammation that is
driven by aberrant caspase-8-dependent apo-
ptosis and MLKL-dependent necroptosis (Kel-
liher et al. 1998; Dillon et al. 2014; Kaiser et al.
2014; Rickard et al. 2014b). Conditional KO
mice have demonstrated the essential role of
RIPK1 in controlling immune and intestinal
homeostasis. Mice with loss of Ripk1 in IECs
developed severe inflammation in the gut be-
cause of FADD/caspase-8-dependent apoptosis
(Dannappel et al. 2014; Takahashi et al. 2014),
whereas keratinocyte-specific RIPK1 KOs devel-
oped skin inflammation associated with ZBP1/
RIPK3/MLKL-dependent necroptosis (Lin et al.
2016). T-cell-specific deletion of Ripk1 in mice
caused severe lymphopenia and defective T-cell
proliferation (Dowling et al. 2016). RIPK1 also
contributes to the maintenance of peripheral
B cells (Zhang et al. 2011). RIPK1-deficient fetal
liver-derived mouse macrophages exhibited en-
hanced inflammasome activity upon LPS prim-
ing (Lawlor et al. 2015).

In contrast to RIPK1-deficient mice, knock-
in mice expressing catalytically inactive RIPK1
D138N or K45A showed no signs of tissue pa-
thology and are protected from TNF-induced
acute shock (Berger et al. 2014; Newton et al.
2014; Polykratis et al. 2014). Thus, the kinase
activity of RIPK1 is dispensable for suppressing
cell death. Necrostatin-1, a small molecule in-
hibitor of the kinase activity of RIPK1, has been
shown to protect mice from retinal degeneration
(Murakami et al. 2014), retinitis pigmentosa
(Sato et al. 2013), ischemic brain injury (Deg-
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terev et al. 2005;Northington et al. 2011), neuro-
degeneration (Zhu et al. 2011), myocardial in-
farction, cardiac hypoxia (Smith et al. 2007;
Oerlemans et al. 2012), and renal ischemia-
reperfusion injury (Lau et al. 2013).

Recently, studies on patients withmonogen-
ic defects of RIPK1 have provided critical in-
sights into the role of RIPK1 in human disease.
The patients presented with early-onset, life-
threatening immunodeficiency and intestinal
inflammation (Cuchet-Lourenço et al. 2018; Li
et al. 2019; Uchiyama et al. 2019). Some patients
showed arthritis (Cuchet-Lourenço et al. 2018),
but skin inflammation was not observed, which
is in contrast to RIPK1-deficient mice. Human
RIPK1 deficiency was associated with impaired
T- and B-cell maturation, defective TNF-medi-
ated activation of the NF-κB pathway, and dys-
regulated cytokine signaling in immune cells.
Cuchet-Lourenço et al. (2018) suggested that
inflammation in RIPK1-deficient patients was
caused by altered cytokine secretion and nec-
roptosis of immune cells. In parallel and inde-
pendent experiments, Li et al. studied six pedi-
grees and demonstrated that RIPK1-deficient
macrophages exhibited increased inflamma-
some activity in response to LPS. Inhibition of
MLKL- and NLRP3-dependent pathways by
small molecule inhibitors attenuated secretion
of proinflammatory IL-1β (Li et al. 2019), but
the underlying mechanisms are not completely
understood. Blockade of IL-1 has not yet been
tested in RIPK1-deficient patients.

Since histological examination of gastroin-
testinal biopsies revealed only occasional
apoptotic morphology, Cuchet-Lourenço et al.
proposed that dysfunction of the immune system
was critical for disease development. The authors
concluded that allogeneic hematopoietic stem
cell transplantation (HSCT) may constitute a cu-
rative therapy and showed resolution of clinical
symptoms in one patient (Cuchet-Lourenço
et al. 2018). Li et al. (2019) studied RIPK1-defi-
cient IECs as well as hematopoietic cells. RIPK1-
deficient IECs were resistant to killing by TNF,
suggesting that RIPK1 also plays a critical intrin-
sic role in controlling epithelial homeostasis.
Differences in the observed phenotypes might
be because of the treatment of patients with

anti-inflammatory drugs and antibiotics, their
genetic background, or environmental factors.
HSCT might cure cytokine production defects
in immune cells, but not intrinsic epithelial de-
fects, similar to NEMO-deficient patients (Miot
et al. 2017). The in vivo triggers perturbing ep-
ithelial integrity in mice or humans lacking
RIPK1 have not been defined. Moreover, the
currently reported RIPK1-deficient patients
provided no insights into the role of the kinase
domain of RIPK1, because the patient-specific
mutations reduced expression of RIPK1 protein.
Further studies are needed to define genotype–
phenotype correlations, triggers, and molecular
consequences of human RIPK1 deficiency.

MONOGENIC DEFECTS OF THE NF-κB
SIGNALING PATHWAY

NF-κB is a master transcriptional regulator of
cell survival and proliferation, innate and adap-
tive immunity, and inflammation. Consequent-
ly, NF-κB signaling must be tightly regulated for
tissue and immune homeostasis (Hayden and
Ghosh 2011). Abnormal NF-κB signalingmight
cause defective immune activation, immunode-
ficiency, autoimmunity, or lymphoid malignan-
cies (Courtois and Gilmore 2006). Human
monogenic defects in NF-κB signaling compo-
nents have been shown to cause severe immune
disorders (Hayden and Ghosh 2008) that may
vary from phenotypes in mouse models.

The IKK complex is composed of catalytic
subunits (IKK1/IKKα, IKK2/IKKβ) and a regu-
latory subunit (NF-κB essential modulator
[NEMO]) (Chen et al. 1996; DiDonato et al.
1997; Yamaoka et al. 1998). Mice lacking IKKβ
were embryonic lethal (Li et al. 1999; Tanaka
et al. 1999), whereas impaired degradation of
IκBα and delayed NF-κB signaling in IKKβ-
deficient patients caused severe combined im-
munodeficiency (Pannicke et al. 2013). Mice
lacking IKKα died at birth because of multiple
severe malformations and skin defects (Hu et al.
1999; Takeda et al. 1999). Patients with IKKα
deficiency manifested with similar phenotypes,
but showed more severe craniofacial abnormal-
ities (Lahtela et al. 2010).
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Several mouse and human studies have doc-
umented that loss of NEMO, the regulatory sub-
unit of the IKK complex, causes defectiveNF-κB
activation. Loss of X-linked Nemo/Ikbkg caused
embryonic lethality in male mice, whereas se-
vere skin lesions were observed in heterozygous
females (Schmidt-Supprian et al. 2000). Mice
with IEC-specific KO of Nemo developed spon-
taneous colitis with enhanced apoptosis of
Paneth cells and impaired expression of antimi-
crobial factors, which was dependent on the ki-
nase activity of RIPK1 (Vlantis et al. 2016). Mu-
tations in humanX-linkedNEMO/IKBKG cause
varying phenotypes, in particular anhidrotic
ectodermal dysplasia with immunodeficiency
(EDA-ID) (Zonana et al. 2000; Döffinger et al.
2001) or incontinentia pigmenti (Smahi et al.
2000). Notably, about 25% of patients develop
colitis associated with poor HSCT outcome
(Hanson et al. 2008; Kawai et al. 2012).

Similar to NEMO deficiency, autosomal-
dominant gain-of-function mutations in
NFKBIA (encoding IκBα) caused sustained inhi-
bition of NF-κB signaling that leads to EDA-ID,
T- and B-cell deficiency, and increased suscept-
ibility to infections (Courtois et al. 2003; Boisson
et al. 2017). Knockin mice that are heterozygous
for the human NFKBIAmutation (Ser32Ile) de-
veloped EDA-ID and lacked lymph nodes,
Peyer’s patches, splenic marginal zones, and fol-
licular dendritic cells. They also failed to develop
contact hypersensitivity or form germinal cen-
ters, which are features characteristic of defec-
tive noncanonical NF-κB signaling throughNF-
κB2/RelB (Mooster et al. 2015).

Haploinsufficiency of NFKB1 (p105/p50)
or NFKB2 (p100/p52) can cause common vari-
able immunodeficiency with recurrent respira-
tory infections, hypogammaglobulinemia, and
autoimmunity (Chen et al. 2013; Fliegauf et
al. 2015). In addition, patients with loss-of-
function mutations in NFKB1 demonstrated
noninfective complications, including lymph-
adenopathy, splenomegaly, and autoimmunity
(Tuijnenburg et al. 2018). It remains to be shown
whether the phenotype of pyoderma gang-
renosum in patients with monoallelic NFKB1
mutations is caused by dominant-active effects,
loss-of-function, or haploinsufficiency. Of note,

all patients showed defective B-cell differentia-
tion. Similarly, Nfkb1-deficient mice developed
intestinal inflammation that was associated with
profound B-cell dysfunction, including defects
in proliferation, class-switch recombination,
maturation, humoral immunity, cytokine secre-
tion, and susceptibility to infection (Sha et al.
1995; Bendall et al. 1999).

MONOGENIC DISORDERS OF
UBIQUITINATION AND
DEUBIQUITINATION IN THE TNFR1
SIGNALING CASCADE

The ubiquitin system plays a crucial role in
balancing gene activation and cell death (Aksen-
tijevich and Zhou 2017). Perturbed ubiquitina-
tion or deubiquitination can result in dys-
regulation of the immune system (Aksentijevich
and Zhou 2017). LUBAC, the E3 ligase com-
posed of HOIL-1, HOIP, and SHARPIN, inhib-
its TNFR1-mediated cell death by generating
linear polyubiquitin chains onNEMOand other
complex I components (Peltzer et al. 2014, 2018;
Rickard et al. 2014a). Loss of Rnf31 (encoding
HOIP) caused embryonic lethality inmice (Pelt-
zer et al. 2014) as a result of aberrant cell death
(Peltzer et al. 2018), whereas excessive cell
death in Sharpin-deficient mice caused severe
eosinophilic skin inflammation and defective
lymphoid organogenesis (Kumari et al. 2014;
Rickard et al. 2014a). Mice with keratinocyte-
specific depletion of LUBAC components devel-
oped severe dermatitis caused by FASL-,
TRAIL-, and TNF-induced cell death (Tarabor-
relli et al. 2018).

No human loss-of-function mutations in
SHARPIN have been reported yet, but HOIP
or HOIL-1 deficiencies cause PID and au-
toinflammation with overlapping phenotypes
such as susceptibility to infections and amylo-
pectinosis (Boisson et al. 2012, 2015).Mutations
in RNF31 or RBCK1 (encoding HOIL-1) that
impaired the stability of LUBAC attenuated
NF-κB signaling in fibroblasts or B cells treated
with IL-1β or TNF. However, patient-derived
monocytes were hyperresponsive to IL-1β, lead-
ing to up-regulation of inflammatory cytokines
and chemokines. TNF-inhibitory treatment has
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been shown to ameliorate pathology temporar-
ily, but autoinflammation was controlled
by HSCT in one HOIL-1-deficient patient
(Boisson et al. 2012). It is unclear why HOIL-1
and HOIP are essential for embryogenesis in
mice, but not humans. Heterogeneity in the ge-
netic background of humans may be a factor, or
there may be physiological differences between
species.

The deubiquitinases A20, OTULIN, and
CYLD are negative regulators of NF-κB signal-
ing (Lork et al. 2017). However, emerging data
have also suggested unexpected roles of these
deubiquitinases in regulating cell death inde-
pendent of NF-κB signaling (Draber et al.
2015; Heger et al. 2018; Polykratis et al. 2019).
Defects in these genes lead to increased proin-
flammatory cytokine profiles (Lork et al. 2017).
A20 can cleave Lys63-linked polyubiquitin
chains on target proteins, such as RIPK1 and
NEMO, to inhibit NF-κB signaling, but it is
the binding of A20 to Met1-linked ubiquitin
chains that appears to limit the formation of
complexes that trigger proinflammatory cell
death. For example,mice lackingA20 inmyeloid
cells developed arthritis that was driven by nec-
roptosis and activation of the NLRP3 inflamma-
some. Analyses of A20 knockin mice indicated
that the ubiquitin-binding ZnF7 domain in A20
is critical for preventing arthritis, whereas the
deubiquitinating activity of A20 is dispensable
(Draber et al. 2015; Polykratis et al. 2019).

A20-deficient mice die shortly after birth
showing severe multiorgan inflammation (Lee
et al. 2000). Tissue-specific deletion of Tnfaip3
(encoding A20) in lymphocytes, enterocytes,
dendritic cells, keratinocytes, mast cells, hepato-
cytes, and microglial cells has further demon-
strated the crucial role of A20 in maintaining
immune homeostasis and inhibiting inflamma-
tion (Cox et al. 1992; Tavares et al. 2010; Ham-
mer et al. 2011; Wang et al. 2013; Vereecke et al.
2014; Drennan et al. 2016; Maelfait et al. 2016).
Genetic variants of human TNFAIP3 are asso-
ciated with a broad range of inflammatory and
autoimmune diseases such as systemic lupus
erythematosus, rheumatoid arthritis, psoriasis,
type I diabetes, celiac disease, Crohn’s disease,
coronary artery disease in type 2 diabetes, and

systemic sclerosis (Ma and Malynn 2012; Zhou
et al. 2016a). Mutations causing TNFAIP3 hap-
loinsufficiency led to early-onset systemic auto-
inflammatory syndrome, resembling Behcet’s
disease, because of increased NF-κB-mediated
proinflammatory cytokine production (Zhou
et al. 2016a). The authors did not specifically
study cell-death responses, but patient cells
treated with LPS showed enhanced cleavage of
caspase-1 and secretion of mature IL-1. These
findings are reminiscent of RIPK1 and CASP8
deficiencies, and thus it is tempting to speculate
that enhanced inflammasome activation is me-
diated by aberrant necroptosis.

OTULIN cleaves Met1-linked polyubiquitin
chains conjugated by LUBAC (Keusekotten et al.
2013). Recent studies have shown that OTULIN
promotes rather than counteracts LUBAC activ-
ity. Specifically, OTULIN limits autoubiquitina-
tion of LUBAC, which would otherwise lead to
RIPK1-dependent cell death (Heger et al. 2018).
Consequently, Otulin KO mice were embryonic
lethal (Rivkin et al. 2013) similar tomice lacking
HOIP or HOIL-1 (Peltzer et al. 2014, 2018).
Homozygous missense mutations in human
OTULIN caused cell-type-specific alterations
in NF-κB signaling, fatal autoinflammation
with recurrent nodular panniculitis, lipodystro-
phy, diarrhea, joint swelling, and failure to thrive
(Damgaard et al. 2016; Zhou et al. 2016b). Pa-
tient-derived monocytes and fibroblasts exhib-
ited increased sensitivity to TNF-induced cell
death (Damgaard et al. 2019). Moreover, treat-
ment with anti-TNF neutralizing antibodies
could ameliorate inflammation, whereas HSCT
induced sustained remission in OTULIN-defi-
cient patients (Damgaard et al. 2019).

CYLD has been extensively studied for its
role in removing Lys63- or Met1-linked polyu-
biquitin chains from proteins mediating NF-κB
signaling. For example, CYLD deubiquitinates
proteins in TNFR1 complex I, which limits
NF-κB signaling and promotes the assembly of
cell-death signaling complexes (Draber et al.
2015). It has been suggested that CYLD regu-
lates innate and adaptive immune responses via
its negative regulation of NF-κB signaling com-
ponents, but dysfunctional cell death might also
contribute to immune-related phenotypes.Mice
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lacking CYLD showed autoimmunity associated
with abnormal thymocyte development, lym-
phocyte activation, and B-cell hyperplasia (Rei-
ley et al. 2006, 2007; Zhang et al. 2006; Jin et al.
2007). CYLD deficiency in humans can lead to
distinct phenotypes with cylindromatosis and
skinmanifestations such as multiple familial tri-
choepithelioma, type I (Mathis et al. 2015; Far-
kas et al. 2016). The phenotypic heterogeneity of
human CYLD deficiency is likely the result of its
diverse roles in controlling other NF-κB-inde-
pendent pathways such as cell-death responses,
cell-cycle progression, and microtubule dynam-
ics (Sun 2010; Zhang et al. 2017a).

TNFR1 SIGNALING AS A THERAPEUTIC
TARGET—WHAT DOWE LEARN FROM
MONOGENIC DISEASES?

Several mouse and human studies indicate the
critical role of TNFR1 signaling in health and
disease, as reviewed in Brenner et al. (2015).
TNF inhibition has proven effective as treatment
for several autoinflammatory and autoimmune
conditions (Kalliolias and Ivashkiv 2016). How-
ever, many patients with inflammatory disor-
ders are refractory to anti-TNF therapy or de-
velop side-effects (Kalliolias and Ivashkiv 2016).
Thus, alternative strategies targeting the TNFR1
pathway are needed to expand the therapeutic
armamentarium.

RIPK1/RIPK3/MLKL-dependent necropto-
sis has been implicated in malignancies and
several pathological inflammatory conditions
(Weinlich et al. 2017). Small-molecule inhibi-
tors targeting RIPK1 kinase activity present at-
tractive therapeutic potential, because mice ex-
pressing catalytically inactive RIPK1 develop
normally without inflammatory phenotypes
(Berger et al. 2014; Newton et al. 2014; Polykra-
tis et al. 2014). The therapeutic potential of
RIPK1 inhibitors has been demonstrated in var-
ious mouse disease models (Silke et al. 2015).
Based on these studies RIPK1 inhibitor pro-
grams have successfully passed clinical phase I
trials for the treatment of chronic psoriasis,
rheumatoid arthritis, and ulcerative colitis
(GSK2982772, DNL747) (Harris et al. 2017;
Mullard 2018).

Targeting of RIPK3 is a new idea to treat
inflammatory diseases, particularly since mice
lacking Ripk3 are viable (Newton et al. 2004).
However, knockin mice expressing catalytically
inactive RIPK3 D161N exhibited caspase-8-de-
pendent embryonic lethality (Newton et al.
2014), raising concerns about the toxic effects
of targeting RIPK3. Indeed, inhibitors of RIPK3
(GSK’840, GSK’843, and GSK’872) trigger
RIPK3- and caspase-8-dependent apoptosis
reminiscent of that seen in RIPK3 D161N
mice (Kaiser et al. 2013; Mandal et al. 2014).
Thus, further refinement of RIPK3-based ther-
apies is needed.

Blockade of MLKL has been considered as a
means of selectively inhibiting necroptosis. For
example, necrosulfonamide (NSA), which is a
compound that modifies Cys86 of human
MLKL to block its oligomerization, has been
suggested as a potential therapeutic for neuro-
degenerative diseases (Zhang et al. 2017b), but it
has not been tested in clinical trials. The MLKL
inhibitor compound 1 caused cell toxicity at
high concentrations, and thus has not been
used in clinical applications (Hildebrand et al.
2014). Recently, a new inhibitor (TC13172) tar-
geting Cys86 of MLKL was demonstrated to
block the translocation of MLKL to cell mem-
branes in cell lines (Yan et al. 2017).

Inhibitors of caspase-8 have been proposed
for patients with dysregulated cell death and/or
inflammation. The pancaspase inhibitor Emri-
casan has antiapoptotic and anti-inflammatory
effects, and has been explored for the treatment
of liver disease (Frenette et al. 2019; Garcia-Tsao
et al. 2019), renal disease, and diabetes (Kude-
lova et al. 2015). However, inhibition of cas-
pase-8 might induce necroptosis in some cell
types and thereby promote inflammation.

As a master regulator of immunity, NF-κB
has been implicated in various autoimmune dis-
eases (Herrington et al. 2016). Selective target-
ing of NF-κB activity presents another line of
therapeutic modulation, but specificity is a
major challenge. Commonly used anti-inflam-
matory agents, such as antirheumatic drugs,
nonsteroidal anti-inflammatory drugs, and
glucocorticoids have been shown to partly mod-
ulate NF-κB signaling at various levels (Yama-
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moto and Gaynor 2001; Herrington et al. 2016).
Specific inhibitors of NF-κB, such as caffeic acid
phenethyl ester and carfilzomib, are now avail-
able for treatment of myeloma (Kane et al. 2003;
Herndon et al. 2013), but remain to be evaluated
for autoimmunity.

Mouse models have been exquisite tools for
studying the pathomechanisms of diseases and
for drug development. However, mice may re-
spond differently fromhumans to therapies, and
show distinct phenotypes from patients with
monogenic disorders in orthologous genes.
The characterization of PID provides critical
molecular insights into key factors mediating
TNFR1 signaling. Further studies on PID are
required to explore genotype–phenotype corre-
lations and the molecular mechanisms of dis-
ease in detail. These studies lay the groundwork
for the development of targeted therapies for
both rare and common immune and inflamma-
tory diseases. Furthermore, patients withmono-
genic disorders affecting the TNFR1 pathway
help to predict the therapeutic efficacy and
side-effects of available therapies targeting
TNFR1 signaling.

CONCLUDING REMARKS

TNFR1 signaling is a crucial “command center”
controlling immunity, inflammation, and cell
death. Dysregulation of these pathways may
cause immunodeficiency and/or autoinflamma-
tion. Advances in genomic technologies have
facilitated the identification of patients with
life-threatening PID. The characterization of
these patients has provided critical and unex-
pected insights into the essential role of human
TNFR1 signaling in controlling inflammation.
The identified candidate genes at the intersec-
tion of prosurvival and cell-death pathways have
shown that modulation of the TNFR1 pathway
can contribute to both severe immunodeficiency
and chronic inflammation. Further mechanistic
studies in mice and especially advanced human
preclinical models will provide critical under-
standing of imbalanced inflammation and cell
death in PID. This knowledge on raremonogen-
ic diseases will help to optimize personalized
treatments for children with devastating condi-

tions, but will also prioritize new targets for drug
development of common autoimmunity and
autoinflammation.
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