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Zusammenfassung

Der Einfluss von Künstlicher Intelligenz (KI) auf den Menschen beherrscht nicht nur die 
Medienwelt, sondern auch die Fachkreise. So verändert KI nicht nur die Art und Weise 
wie wir kommunizieren und miteinander arbeiten, sondern beeinflusst auch, wie wir die 
Welt um uns herum erfahren. Sprachmodelle wie ChatGPT können menschenähnlichen 
Text produzieren, Spiel-Engines wie AlphaZero schlagen jeden menschlichen Spieler in 
Schach oder Go und Fahrmodelle sind in der Lage, jedes beliebige Auto oder Drohne zu 
steuern. Viele essenzielle Fragen bleiben offen: Wer ist verantwortlich, wenn etwas außer 
Kontrolle gerät? Sind KI-Systeme handlungsfähig? Und viel weitreichender: Sind einige 
KI-Systeme möglicherweise empfindungsfähig? Das Forschungsgebiet KI umfasst viele 
verschiedene Ansätze. Sie reichen von psychologischen Studien zur Interaktion zwischen 
Menschen und KI, über technische Innovationen im maschinellen Lernen bis hin zu 
philosophischen Diskussionen über die geistigen und moralischen Fähigkeiten von KI.

Das Hauptaugenmerk in diesen Forschungsbereichen liegt vor allem auf (halb-)auto-
nomen KI-Systemen: Systemen, die in weiten Teilen ohne menschliche Anweisungen 
funktionieren. Was oft unerforscht bleibt, sind KI-Systeme, die eng mit ihren menschli-
chen Nutzern verbunden sind: Systeme, die den Menschen in die Entscheidungsfindung 
einbeziehen, indem sie ihn über Handlungen oder Entscheidungen informieren oder 
diese empfehlen. Die Untersuchung dieser Forschungslücke wird immer dringlicher, da 
diese Art KI-gestützte Entscheidungsfindung in immer größerem Maße eingesetzt wird. 
Es geht hierbei um Entscheidungen unter geringem Risiko, wie Einkaufsempfehlungen, 
oder Entscheidungen unter hohem Risiko, wie medizinische Diagnosen.

Die vorliegende Dissertation untersucht exakt diese beratenden KI-Systeme und 
untermauert die bestehende funktionale Unterscheidung (was tun KI-Systeme) mit 
einer ontologischen Betrachtung (was sind beratende KI-Systeme). Ein solcher onto-
logischer Betrachtungsmodus schließt eine kritische Forschungslücke und ist wegwei-
send dafür, wie beratende KI-Systeme in ethischen und sozialen Diskussionen betrach-
tet werden: als Werkzeug oder Partner.

Die ersten beiden Kapitel untersuchen Fälle, in denen KI-Berater scheinbar externe 
Empfehlungen geben, also lose mit ihrem menschlichen Nutzer gekoppelt sind. Die 
zentrale Frage ist, ob externe KI-Berater zu eigenen Handlungen fähig oder ob sie auf 
reine Werkzeuge zu reduzieren sind. Handlungsfähigkeit hat wesentliche Implikatio-
nen: Akteure besitzen nicht nur eine gewisse Handlungsautonomie, sondern werden 
auch als verantwortlich für ihre Handlungen angesehen.

Kapitel 2 diskutiert die Anwendungsmöglichkeit von klassischen Handlungsbegrif-
fen auf KI-Systeme. Es zeigt, dass die Handlungsfähigkeit von KI-Systemen nämlich 
weder durch ein enges, menschenähnliches Verständnis von Handlungsfähigkeit noch 
durch ein weit gefasstes, werkzeugähnliches Verständnis von Handlungsfähigkeit ange-
messen erfasst werden kann. Das menschenähnliche Konzept der Handlungsfähigkeit, 
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das auf Davidsons ereigniskausaler Handlungstheorie (Davidson 1963) oder Bratmans 
Konzept der intentionalen Handlung (M. E. Bratman 2007; M. Bratman and Bratman 
1987) basiert, geht davon aus, dass Handlungsfähigkeit intentionale mentale Zustände 
wie Überzeugungen und Wünsche voraussetzt, die ein beabsichtigtes Verhalten verur-
sachen können. Gezeigt wird, dass KI-Systeme jedoch nicht über intentionale mentale 
Zustände verfügen und daher nicht als menschenähnliche Agenten betrachtet wer-
den können. Nach dem weit gefassten Verständnis von Handlungsfähigkeit sind KI-
Systeme neben einfachen biologischen Organismen grundlegende Akteure, da sie die 
minimalen Kriterien für Handlungsfähigkeit erfüllen, darunter Individualität, interak-
tionelle Asymmetrie und Zielgerichtetheit. Das breite Spektrum der KI-Systeme und 
ihr unterschiedlicher Fähigkeitsgrad zur Interaktion zeigen jedoch, dass keiner der 
beiden Ansätze die agierenden Fähigkeiten von KI-Systemen in befriedigendem Maße 
zu differenzieren vermag. Beratende KI-Systeme fordern den Status-Quo des traditio-
nellen Handlungsverständnisses heraus. Statt Werkzeug oder Mensch gibt es nun etwas 
dazwischen. Damit ergibt sich, dass zumindest konzeptionell KI-Systeme einen onto-
logischen Verständniswandel in der Anwendung von Handlungsfähigkeit erfordern.

Nach der Unterscheidung zwischen beratenden KI-Systemen und menschlichen 
Akteuren wird in Kapitel 3 untersucht, wie sich KI-Berater von bloßen Werkzeugen 
unterscheiden. Während viele Studien erfolgreich aufgezeigt haben, wie die Wahrneh-
mung in Abhängigkeit von der Rolle der KI und anderen kulturellen oder moralischen 
Faktoren variiert (Bago 2022; Lim, Rooksby, and Cross 2021; Persson, Laaksoharju, and 
Koga 2021), stellt Kapitel 3 eine andere Frage: Verhält es sich so, dass jede Erwähnung 
von KI dazu führt, dass die Menschen die Technologie für mitverantwortlich halten 
und die Verantwortung vom menschlichen Nutzer abwälzen? Jüngste Studien deuten 
darauf hin, dass dies in einem hypothetischen Szenario mit moralisch beratender KI der 
Fall sein könnte (Constantinescu et al. 2022; Giubilini and Savulescu 2018; Malle, Magar, 
and Scheutz 2019). Relevanter ist jedoch die Frage, was passiert mit alltäglichen KI-
Systemen, die lediglich instrumentell genutzt werden? Werden sie ebenfalls als verant-
wortlich und damit handlungsfähig betrachtet? Um diese Fragen zu beantworten, habe 
ich mehrere experimentelle Studien durchgeführt – darunter acht Pilotstudien und ein 
Hauptexperiment. In diesen experimentellen Studien wurde verglichen, was mit den 
Verantwortungszuschreibungen geschieht, wenn ein menschlicher Fahrer in einer Not-
situation eine Warnung von einem KI-gestützten oder einem nicht KI-gestützten Warn-
system erhält. Um sicherzustellen, dass die Verantwortungszuschreibung nicht darauf 
zurückzuführen ist, dass die KI einige anthropomorphe Merkmale aufweist, habe ich 
zwei Erscheinungsmodelle der KI verglichen. Die Erscheinungsmodelle beinhalten ein 
verbales oder ein rein haptisches Warnsystem. Im Einklang mit der moralischen und 
psychologischen Literatur, die die Bedeutung von Ergebnisverzerrungen und Asymme-
trien zwischen Anerkennung und Schuldzuweisung betont, habe ich auch Fälle getestet, 
in denen die Notsituation erfolgreich bewältigt wurde oder auch nicht. Kapitel 3 zeigt, 
dass selbst das einfachste KI-System eine Teilung der Verantwortung mit dem mensch-
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lichen Nutzer begründet, was in starkem Kontrast zu nicht KI-gestützten Werkzeugen 
steht. Dieses Ergebnis ist umso überraschender, da die Befragten KI durchaus als Werk-
zeug betrachten. Die Zuschreibung von Verantwortung an die KI und die Verringerung 
der menschlichen Verantwortung hängt auch nicht davon ab, wie die KI-Technologie 
mit dem Benutzer kommuniziert – d. h. über Sprache oder haptische Signale. Darüber 
hinaus wird die KI eher für gute als für schlechte Ergebnisse verantwortlich gemacht. 
Sie erhält mehr Anerkennung, wenn der menschliche Fahrer die Situation nach dem 
Erhalt der KI-Warnung erfolgreich meistert, als dass sie die Schuld erhält, wenn der 
Fahrer versagt. Insgesamt unterstützt Kapitel 3 die theoretischen Erkenntnisse aus Kapi-
tel 2, indem es feststellt, dass KI-Berater ontologisch gesehen zwischen einem Werk-
zeug und einem menschlichen Akteur stehen. Mit anderen Worten: Die Arbeit zeigt 
in den ersten beiden Kapiteln, dass beratende KI-Systeme in ihrer Handlungsfähigkeit 
und der ihnen zugeschriebenen Verantwortung in einer losen Kopplung mit mensch-
lichen Nutzern tatsächlich eine eigene ontologische Stellung beanspruchen, die mehr 
ist als ein Werkzeug, aber weniger als ein Mensch.

Die anschließenden zwei Kapitel untersuchen jenen KI-Bereich, bei dem eine aus-
gesprochen enge Kopplung von KI-Beratern mit ihren menschlichen Nutzern vor-
liegt. Solche Fälle, in denen KI-Berater integraler Bestandteil der menschlichen Wahr-
nehmung und Entscheidungsfindung werden. Augmented Reality oder sensorische 
Augmentation sind hierfür Beispiele. Gegenstand der Untersuchung sind die Fragen, 
wie und in welchem Ausmaß beratende KI-Systeme die menschliche Wahrnehmung 
beeinflussen und in welcher Weise sich hochintegrierte KI-Systeme von ihren werk-
zeuggestützten oder menschlichen Äquivalenten unterscheiden.

Kapitel 4 demonstriert, wie KI die Kopplung von sensorischen Augmentationsgeräten 
mit dem menschlichen Nutzer verändert. Die Implementierung von KI in bestehende 
sensorische Augmentationsgeräte, wie z.B. sensorische Substitutionssysteme, verändert 
nicht nur die konzeptionelle Art der sensorischen Augmentation, sondern erweitert 
auch die Art der Wahrnehmungsvorverarbeitung vom menschlichen Nutzer auf das 
KI-System. Aufgrund ihrer umfangreichen Rechenkapazitäten erreichen sensorische 
KI-Systeme eine völlig neue Qualität bei der Verarbeitung von sensorischen Signalen. 
Dabei sind zwei Arten der Signalverarbeitung möglich: die Verbesserung von niedrigen 
sensorischen Signalen durch Herausfiltern von sensorischem Rauschen und die Extrak-
tion von hohen Wahrnehmungsmerkmalen durch die Einbeziehung von Datenverarbei-
tungswerkzeugen in den sensorischen Erweiterungsprozess. Nachdem gezeigt wurde, 
wie KI in sensorische Erweiterungsprozesse integriert werden kann, fragt Kapitel 4, ob 
sensorische KI-Systeme folglich als Wahrnehmungserweiterungen verstanden werden 
sollten. In Bezug auf die erweiterten Wahrnehmungssysteme von biologischen Systemen 
wie Fledermäusen und elektrischen Fischen kommt das Kapitel zu dem Schluss, dass 
sensorische KI-Beratungssysteme einzigartig sind und die menschliche Wahrnehmung 
in einer Weise erweitern, wie es kein nicht KI-gestütztes Gerät vermag.

Kapitel 5 stellt die sensorische Kopplung Mensch und KI der wahrnehmungsbezo-
genen Kopplung gegenüber, die die sozialen Interaktionen des Menschen bestimmt. 
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Kapitel 5 zeigt, wo eine Mensch-KI-Kopplung nicht ausreicht, um ein menschenähn-
liches Maß an sozialem und wahrnehmungsbezogenem Einfluss und Koordination 
zu erreichen. Zwei weithin untersuchte Formen sozialer Interaktion sind das gemein-
same Handeln und die gemeinsame Aufmerksamkeit. Bei beiden Formen der sozialen 
Interaktion geht es um mehr als die Koordinierung von Handlungen und Aufmerk-
samkeit. Stattdessen entwickeln menschliche Akteure ein gegenseitiges Bewusstsein 
für die Ziele, Absichten und Handlungen des anderen, was nicht nur die individuelle 
Erfahrung, sondern auch die kollektive Handlung verändert. In einem Orchester zu 
spielen, Handlungen im Team durchzuführen oder einfach nur einen Tisch gemeinsam 
zu bewegen sind dynamische, voneinander auf höchstem Niveau abhängige Handlun-
gen und Erfahrungen. Nach einer Darstellung der Forschung und der Mechanismen, 
die der gemeinsamen Aufmerksamkeit zugrunde liegen, geht Kapitel 5 darüber hinaus 
und liefert neue Erkenntnisse über die Mechanismen der gemeinsamen Wahrnehmung. 
Die gemeinsame Wahrnehmung unterscheidet sich eindeutig von der gemeinsamen 
Aufmerksamkeit, da die gegenseitige Wahrnehmung ohne die Verfolgung von körper-
lichen Hinweisen, wie z. B. den Blick, erfolgt, sondern vielmehr durch die gegensei-
tige Kenntnis eines gemeinsamen Wahrnehmungsbereichs. Dennoch bleiben ähnliche 
Leistungsvorteile – schnellere und genauere Wahrnehmungsverarbeitung – in einer 
gemeinsamen Wahrnehmung bestehen. Soziale Koordination und Sensibilität für sozi-
ale Hinweise sind – wenn überhaupt – noch rudimentäre Bausteine in KI-Beratungs-
systemen. Bei KI-Systemen wurde die Verbesserung der Zusammenarbeit zwischen 
Menschen und KI-gesteuerten Systemen bisher hauptsächlich aus einer technischen 
Perspektive betrachtet, bei der die Roboterbewegungen sicher sein und auf grundle-
gende Formen der menschlichen Interaktion reagieren müssen, um gegebene Befehle 
umzusetzen (siehe Liang et al. (2021) und Liu and Wang (2018) für einen Überblick). 
Die soziale Koordination bleibt eine eindeutige menschliche Eigenschaft.

Beide Kapitel bekräftigen somit, dass beratende KI-Systeme auch in einer engen 
Kopplung ihre eigene ontologische Kategorie als etwas fordern, das leistungsfähiger 
ist als ein Nicht-KI-Werkzeug, aber immer noch hinter den menschlichen Standards 
zurückbleibt.

Insgesamt trägt diese Arbeit zu einem umfassenderen konzeptionellen Verständnis 
bei, wie KI-Berater zu definieren und wie sie mit ihren menschlichen Nutzern gekop-
pelt sind. Die bestehende Literatur über KI-Systeme wird mit dieser Arbeit in entschei-
denden Punkten ergänzt. Die Erkenntnis, dass beratende KI-Systeme eine einzigartige 
ontologische Kategorie darstellen – etwas zwischen Nicht-KI-Werkzeugen und mensch-
lichen Akteuren – hat nicht nur Auswirkungen auf praktische Fragen, wie beratende KI-
Systeme behandelt werden sollten, sondern auch auf philosophische Debatten darüber, 
was es bedeutet, ein beratendes KI-System zu sein. Zukünftige Arbeiten sollten einer-
seits die Verantwortungsdynamik erforschen, die durch KI-Berater eingeführt wird und 
andererseits mehr soziale Sensibilität in KI-Wahrnehmungsunterstützungssysteme inte-
grieren, um die Voraussetzungen für menschenähnliche Formen der Zusammenarbeit 
zu schaffen.



Summary

Artificial intelligence (AI)’s successes are widely discussed and have changed how peo-
ple work and think about the world around them. OpenAI’s ChatGPT language model 
can produce human-like text, DeepMind’s AlphaZero can beat any human player in 
chess or Go, and Tesla’s driving AI can pilot cars and drones. Many open questions 
remain: Who is responsible if something goes wrong? Are AI systems capable of action? 
Moreover, are some AI systems possibly sentient? The research field of AI incorporates 
many different approaches ranging from psychological studies on human-AI inter-
action to technical innovations in AI learning and philosophical discussions on AI’s 
mental and moral capacities.

The main focus across these research fields has been on (semi-)autonomous AI 
systems – systems that operate in large parts without human instructions. Consider 
debates on driving cars and language models. What is often left unexplored are AI 
systems that are closely coupled with their human users – systems that keep humans 
in the decision-making loop by informing or recommending actions or decisions. 
Investigating this gap is becoming increasingly crucial as incidents of AI-assisted deci-
sion-making become more common – consider low-stakes decisions such as shopping 
recommendations and high-stakes decisions such as medical diagnosis. This PhD thesis 
examines AI advisers and substantiates the existing functional distinction – looking at 
what AI systems do and are used for – with a conceptual analysis – of what AI systems 
are. A conceptual analysis of AI advisers is novel and closes a critical gap in the litera-
ture. A conceptual analysis of AI advisers can tell us whether AI advisers are more than 
tools and what distinguishes them from human advisers.

This PhD thesis consists of two main parts. The first part examines the loose cou-
pling of AI advisers with their human users – cases where AI advisers provide seemingly 
external recommendations. The thesis asks whether external AI advisers have some 
agentivity or are mere tools. Being an agent has essential implications: not only are 
agents considered responsible for their actions, but also agents possess a certain degree 
of autonomy. Therefore, chapter 2 applies different theoretical notions of agency to AI 
advisory systems. Chapter 3 complements the theoretical analysis with an experimental 
evaluation of responsibility attribution in a human-AI advisory setting.

Chapter 2 of this PhD thesis discusses the possibilities for AI agency. It shows that 
AI systems necessitate an ontological shift in how agency is understood and applied. 
While AI advisers satisfy the requirements for minimal agency, the agentive capacity 
of AI systems can be adequately captured neither by a human-like nor by a minimal 
concept of agency. The human-like concept of agency, based on Davidson’s event-causal 
theory of action (Davidson 1963) or Bratman’s notion of intentional action (Bratman 
2007; Bratman 1987), holds that agency requires intentional mental states like beliefs 
and desires that can cause an intended behaviour. However, as argued in Chapter 2, AI 
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systems lack intentional mental states and cannot be seen as human-like agents. On the 
minimal understanding of agency, AI systems, alongside simple biological organisms, 
are basic agents as they fulfil the minimal criteria for agency, including individuality, 
interactional asymmetry, and goal-directedness. However, the wide range of existing AI 
systems and their varying degrees of agentive abilities demonstrates a mismatch with 
either approach – as neither approach can differentiate the agentive capacities of AI 
systems. I argue that, instead, AI advisers are something in between that only a gradual 
notion of agency can capture.

Having differentiated AI advisers from human agents, chapter 3 aims to confirm 
how AI advisers differ from mere tools. While many studies have successfully mapped 
how people’s opinion varies depending on the role of AI and other cultural or moral 
factors (Bago 2022; Lim, Rooksby, and Cross 2021; Persson, Laaksoharju, and Koga 
2021), chapter 3 asks a different question: is it the case that any mention of AI will lead 
people to see the technology as partly responsible and shift the responsibility away from 
the human user? Recent studies suggest this may be the case under the hypothetical 
scenario where AI provides moral guidance (Constantinescu et al. 2022; Giubilini and 
Savulescu 2018; Malle, Magar, and Scheutz 2019). However, it is more relevant to ask if 
this would happen under AI’s more prevalent day-to-day usage when it merely provides 
factual information and is used purely instrumentally. I conducted multiple experi-
mental studies to address these questions – including eight pilot studies and a main 
experiment. Across these experimental studies, chapter 3 compared what happened to 
responsibility attributions when a human driver, faced with an emergency, receives a 
warning from an AI-powered or non-AI-powered warning system. To ensure that the 
attribution of responsibility does not come from the AI sharing some anthropomorphic 
features, I compare situations in which the AI was a voice assistant or a haptic warning 
system. In line with the moral and psychological literature stressing the importance of 
outcome biases and asymmetries between credit and blame, I also tested cases where 
the emergency was successfully managed. Chapter 3 finds that even the most basic AI 
system introduces a sharing of responsibility with their human user, in sharp contrast 
to non-AI-powered tools. This finding is all the more surprising because, when asked, 
people did recognise AI as a tool. Attributing responsibility to AI and reducing human 
responsibility also does not depend on how the AI technology communicates with the 
user – i.e. via voice or haptic signals.

Furthermore, the AI is seen as more responsible for good rather than bad outcomes, 
as it gets more credit when the human driver successfully negotiates the situation after 
receiving the AI warning than it receives blame when the driver fails. Together, chap-
ter 3 supports the theoretical findings from Chapter 2, establishing that AI advisers are 
ontologically more than tools but less than human agents. In other words, the thesis 
finds that in their agentive capacity and attributed responsibility, AI advisers, in a loose 
coupling with human users, indeed demand their own ontological space as something 
more than tools but less than humans.
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The second part analyses a tighter coupling of AI advisers with their human users  
 – cases where AI advisers become integral to human perception and decision-mak-
ing. Consider cases of augmented reality or sensory augmentation. Here, the thesis 
asks how and to which extent AI advisers influence human perception and in which 
way highly integrated AI systems differ from their tool or human counterparts. Chap-
ter 4 discusses how non-AI and AI-powered sensory augmentation devices differ and 
addresses whether sensory AI systems represent perceptual extensions of their human 
users. Chapter 5 asks what tight coupling in a human-human context is capable of – 
consider cases of joint attention and shared perception – and points out future direc-
tions for a more socially attuned version of a human-AI coupling. The thesis finds 
that, also in a tight coupling, AI advisers demand their unique ontological category as 
something more capable than a non-AI tool but still falling short of human standards.

Chapter 4 demonstrates how AI changes the coupling of sensory augmentation 
devices with the human user. Implementing AI into existing sensory augmentation 
devices, such as sensory substitution systems, changes the conceptual kind of sensory 
augmentation and extends the kind of perceptual pre-processing from the human user 
to the AI system. Due to their extensive computational capacities, sensory AI systems 
can process sensory signals like no other sensory augmentation system before. Two 
ways of signal processing are possible: enhancing low-level sensory signals by filter-
ing out sensory noise and extracting high-level perceptual features by incorporating 
data-processing tools in the sensory augmentation process. After showing how AI can 
be incorporated into sensory augmentation processes, chapter 4 asks whether, conse-
quently, sensory AI systems should be understood as perceptual extenders. About the 
extended perceptual systems of biological systems like bats and electric fish, the chapter 
concludes that sensory AI advice systems are unique and extend human perception in 
ways no non-AI-powered device can.

Chapter 5 contrasts the sensory human-AI coupling with the perceptual coupling 
driving human social interactions. Chapter 5 shows where a human-AI coupling falls 
short of achieving human-like social and perceptual influence and coordination levels. 
Two widely studied forms of social interaction are joint action – doing things together 
 – and joint attention – attending to things together. Both forms of social interaction are 
more than coordinating actions and attention. Instead, human agents develop a mutual 
awareness of each other’s goals, intentions, and actions, transforming not only the indi-
vidual experience but also the collective action. Playing in an orchestra, performing team 
surgeries, or simply moving a table together are at their highest level, dynamic, mutu-
ally dependent actions and experiences. After outlining the research and mechanisms 
behind joint attention, chapter 5 goes even further and provides novel insights into the 
mechanisms of shared perception. Shared perception uniquely differs from joint atten-
tion as mutual awareness occurs without tracking bodily cues, such as gaze, but rather 
through mutual knowledge of a perceptual common. However, similar performance 
benefits – faster and more accurate perceptual processing – in a joint setting persist.



XX Summary  

 Social coordination and sensitivity to social cues are still – if at all – rudimentary build-
ing blocks in AI advisory systems. For AI systems, improving collaboration between 
humans and AI-powered systems has been mainly addressed from an engineering per-
spective, where robot movements must be safe and sensitive to basic forms of human 
interaction to realise given commands (see Liang et al. (2021) and Liu and Wang (2018) 
for review). Beyond that, social coordination remains a uniquely human trait.

Overall, this thesis contributes to a richer conceptual understanding of what AI 
advisers are and how they are coupled with their human users to the existing litera-
ture on AI systems. The finding that AI advisers represent a unique ontological cate-
gory – something between non-AI tools and human agents – impacts not only practical 
issues on how advisory systems should be treated but also philosophical debates on 
what it means to be an AI adviser. Future work should, on the one hand, explore the 
responsibility dynamics introduced by AI advisers – as they are uniquely praised but 
not blamed for an outcome – and, on the other hand, integrate more social sensitivity 
in AI perceptual support systems to set the stage for human-like forms of collaboration.
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1 Introduction

Digital technologies are reshaping everything, including customer behaviours and 
expectations, organisational and manufacturing systems, business models, markets, and 
ultimately society, for better or worse. Digitalisation – the implementation of digital 
technologies (Setia et al. 2013) – has provided both major opportunities and significant 
challenges to individuals, organisations, ecosystems, and entire societies. At the core of 
such transformative trends are digital technologies, broadly defined as combinations of 
 “information, computing, communication, and connectivity technologies” (Bharadwaj 
et al. 2013, 471). The concept of digital transformation has been widely used to describe 
the adoption of digital technologies and the replacement of non-digital processes with 
digital ones, leading to organisation-wide changes and the emergence of new business 
models (Verhoef et al. 2021) or the modification of existing ones (Dąbrowska et al. 2022). 
At its inception, digital transformation was predominantly discussed in the information 
systems literature (Nadkarni and Prügl 2021), focusing on its technological aspects, such 
as optimising organisational operational processes (Vial 2019). Nowadays, digital trans-
formation extends beyond informational tool use to capture the wide-reaching socio-
economic change across individuals, organisations, ecosystems, and societies shaped by 
adopting and utilising digital technologies (Dąbrowska et al. 2022).

Artificial intelligence (AI) has been one of the main drivers behind the surge of 
digital technologies and digital transformation. In fact, artificial intelligence (AI) is 
widely present in our everyday lives. Individual users now rely on AI support for daily 
decisions such as shopping and movie recommendations but also depend upon AI to 
facilitate perception and decision-making in high-stakes environments such as medi-
cal diagnostics and driving support. Regardless of the environment, AI systems signifi-
cantly shape how we think about and perceive the world.

Understanding AI’s degree and kind of influence on human perception and deci-
sion-making become paramount for guiding the critical and responsible use of digital 
technologies and digital transformation at large. So, how does AI influence human 
perception and decision-making?

Much research – within various fields – has examined the coupling of autonomous 
and embodied AI systems with their human user. Computer scientists have focused 
on improving algorithmic performance, as the transition from shallow to deep learn-
ing architectures shows (Schmidhuber 2015). By adopting deep learning techniques, 
computers can do things without being explicitly programmed, constructing algo-
rithms that adapt their functions from data and producing decisions or predictions. 
Several exciting results have stirred much attention to deep learning during this decade. 
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Game-playing systems like AlphaGo and AlphaZero have achieved super-human 
performance (Silver et al. 2018, 2018); language processing models can produce text 
indistinguishable from human prose; real-time image processing is the foundation for 
autonomous vehicles.

The field of AI ethics has focused on understanding the social impact AI systems 
have on their human users and the ethical consequences AI systems introduce to oth-
ers. Supporting hiring decisions by AI-powered algorithms, moral decisions in auton-
omous driving cars, and racist and sexist chatbots are just a few ethical challenges AI 
systems introduce. While some have focused on implementing moral decision-making 
capacities in AI systems in the sub-field of machine ethics (see, for example, M. Ander-
son and Anderson (2011); Wallach, Franklin, and Allen (2010)), others have debated 
the ethical use of autonomous systems – including, among others driving vehicles or 
weapon systems – and the ensuing consequences for how responsibility is allocated (see 
Purves, Jenkins, and Strawser (2015); Danaher (2018); Nyholm (2018)). The key chal-
lenge here is to develop a way of understanding moral responsibility in the context of 
autonomous systems that would allow us to secure the benefits of such systems and, at 
the same time, appropriately attribute responsibility for any undesirable consequences.

The field of philosophy of mind has debated whether and when AI systems would 
have minds or human-like mental states. The debates often go beyond a purely 
behavioural analysis and ascription of mental states based on observed behaviour (see 
Dennett’s intentional stance as one common behaviourism approach). Instead, they 
extend to whether AIs could become conscious and whether or under which condi-
tions they should be considered agents or even persons.

The psychological literature – especially in the domain of human-AI interaction – 
has explored what the use of AI systems means/changes for the human user. Which 
features improve human acceptability, and how can AI systems provide the most value 
for their human user – thinking about the timeliness of their recommendations and 
usable interface?

So far, I have argued that AI has been a primary driver for digital transformation 
and that studying AI is essential to mitigate any unwanted side effects – as different 
research fields have done -but I have not stated what AI is. The proposed definitions of 
AI are as numerous as divergent. AI systems can be embodied, non-embodied; learning; 
non-learning; self-centred, human-serving; static, or dynamic. Providing an adequate 
structured definition is, therefore, a challenge. The traditional approach in distinguish-
ing AI systems is teleological – highlighting the goals based on which AI systems are 
developed. Some seek to mimic human-like behaviour or decision processes in AI sys-
tems; others want to develop rational tools which reliably produce rational behaviour 
or reasoning.

Researchers advocated using human-like processes as inspiration for designing AI 
systems to implement human-like behaviour or thinking processes. Advocating for 
human-like behaving systems, Minsky, for example, argued that the field of AI is the  
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 “science of making machines capable of performing tasks that would require intel-
ligence if done by humans” (Minsky 1968). Similarly, Copeland and Shagrir (2020) 
argued that AI systems are digital computer or computer-controlled robots which can 
perform tasks commonly associated with intelligent beings – such as the ability to 
reason, discover meaning, generalise, or learn from past experience. Others go even 
further and want to reproduce the processes, representations, and results of human 
thinking on a machine. Neuro-inspired computing or computational architectures are 
just two examples where human-brain-inspired computational models are used to 
achieve higher computational performance and biological plausibility (Bolotta and 
Dumas 2022; Kotseruba and Tsotsos 2020; W. Zhang et al. 2020).

Other researchers have focused on developing AI systems as rational, rule-following 
systems – an approach popular in technical fields like computer science and robotics, 
where consistent and predictable behaviour is vital for system performance. There-
fore, AI systems are equipped with rational planning and decision-making capacities. 
Backed by a logicist tradition, AI systems as rational thinking agents allow for rigorous 
reasoning and, ideally, a comprehensive model of rational thought. Tracing decisions 
back to their logical origin greatly appeals to AI systems that demand high transparency 
in their decisions – as used in legal and moral decision-making. Russell and Norvig 
define AI as “the study of intelligent agents that receive precepts from the environment 
and take action. Each such agent is implemented by a function that maps percepts to 
actions, and we cover different ways to represent these functions, such as production 
systems, reactive agents, logical planners, neural networks, and decision-theoretic sys-
tems” (Russell and Norvig 2016, viii).

Besides a teleological distinction of AI systems, another approach for distinguish-
ing AI systems is to examine their function – how AI systems are used. For example, 
the type of interaction between the AI system and the human user distinguishes an AI 
advisor from an AI partner. An AI advisor merely influences others by making recom-
mendations or providing information, whereas an AI partner goes above and beyond. 
An AI partner participates in the action and works with the human user to achieve a 
goal (Köbis, Bonnefon, and Rahwan 2021). Consider driving a car: while the AI advi-
sor can only warn the human driver about an impending accident, the AI partner 
can take control and slam the brakes autonomously. Two primary use cases emerge: 
autonomous/automated and coupled/assistive systems. While autonomous AI systems 
can operate independently from human supervision – once a particular behaviour or 
computational process is learned – consider chess computers playing chess without any 
human directions – advisory systems are coupled to a human advisee.

Automated AI systems draw on growing amounts of digital data and advances in 
machine learning techniques to fulfil delegated decision-making tasks with relative 
autonomy. Automated AI systems can adapt online advertising based on individual 
online behaviour (Boerman, Kruikemeier, and Zuiderveen Borgesius 2017), generate 
music or art, and even drive cars. Often these systems are perceived as separate entities 
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with high degrees of decision autonomy. Although people are averse to autonomous 
agents making moral decisions, whether in the military, law, driving, or medical set-
tings (Bigman and Gray 2018; Gogoll and Uhl 2018), most people would consider auton-
omous agents morally responsible for unexpected outcomes because of their moral deci-
sions (Kahn et al. 2012; Malle, Magar, and Scheutz 2019; Shank, DeSanti, and Maninger 
2019). Judgments of moral responsibility hinge on autonomy (Bigman et al. 2019; Kahn 
et al. 2012; T. Kim and Hinds 2006) and mind perception, e.g., ascribing mental abilities 
to think and feel to automation (Bigman and Gray 2018; Bigman et al. 2019).

Next to automating decision-making, AI systems can also be closely coupled with 
the human user. Here, AI systems do not make decisions on their own but rather sup-
port the human user. Coupled AI systems can have two main usage modes: informing or 
recommending output (Gundersen and Bærøe 2022; Gundersen 2018). In an informing 
mode, AI provides additional information to facilitate human decision-making – pro-
viding analyses, estimating probabilities, or predicting events from past data. Well-stud-
ied and heavily debated ethical issues arise: lack of transparency, explainability and 
accountability of AI. In a recommending mode, AI is used to directly influence what 
people should do, like turning left when driving a car or assigning medical treatments 
based on a patient’s health record.

While the teleological distinction is widely applied to the field of AI, implemented 
AI systems – as they are used by human individuals – are discussed by virtue of their 
function. In fact, most social and scientific debates have focused on automated or 
autonomous AI systems. For example, researchers have developed a wide range of 
autonomous AI systems – driving cars and large language models – and found trends 
of human-like responsibility attribution – self-driving cars are held responsible for their 
behaviour. This PhD project does not seek to extend the literature on autonomous AI 
systems but instead focuses on a yet underdeveloped field of advisory AI systems. It 
examines theoretically and empirically the influence of advisory AI systems on human 
perception and decision-making. Human-coupled advisory AI systems, which are even 
more prevalent in the current field of AI decision support tools like risk assessment 
for financial lending (Green and Chen 2019) or visual object detection, have yet to be 
investigated (Bondi et al. 2021). While an autonomous AI partner’s agential and moral 
roles are easier to distinguish from those of its human counterpart, the influence of 
advisory AI systems is more difficult to discern but no less relevant to the overall out-
come. As an example, consider medical diagnostics. With super-human accuracy in 
image-based medical diagnostics, advisory AI systems can provide precious but often 
opaque medical advice to human clinicians. It is difficult to determine who is respon-
sible for the final medical diagnosis. For fully autonomous robotic surgery, on the other 
hand, the AI system shares responsibility with the supervising clinician (McManus and 
Rutchick 2019; O’Sullivan et al. 2019).

With a range of different capabilities and implementations, AI systems occupy a 
unique social role. They can do more than tools but less than humans. A basic tool does 
not possess any independent processing or goal-directed behaviour, whereas humans 
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are the pinnacle of independent processing and goal-directed behaviour. While basic 
tools entirely depend on their functioning on a human user, human agents function 
independently. Some AI systems are closer to tools – consider automated vacuum clean-
ers, whereas others are closer to human agents – consider super-human game-playing 
engines. Notably, the main driver for the difference in AI systems is the degree of inde-
pendent processing taken on by the AI system. While vacuum cleaners process only a 
limited number of gathered sensory information – in a way that the human develop-
ers entirely dictate – super-human game-playing engines learn to develop their own 
strategies to supersede human performance. Ultimately, a conceptual grey zone of AI 
systems emerges, where the perceived capabilities dictate the AI’s ontological status 
(See Figure 1.1.). So far, the boundaries between tools and humans for AI advisers are 
blurred. Some researchers have claimed that AI advisers are human-like (Y. Tian et al. 
2017; Pelau, Dabija, and Ene 2021), whereas others reduce AI advisers to mere tools 
(Gunkel 2012; Zheng and Wu 2019).

This PhD thesis examines AI advisers and substantiates the existing functional dis-
tinction – looking at what AI systems do and are used for – with a conceptual analysis 
 – of what AI systems are. Investigating this gap is becoming increasingly important as 
incidents of AI-assisted decision-making become more common – consider low-stakes 
decisions such as shopping recommendations and high-stakes decisions such as med-
ical diagnosis. A conceptual analysis of AI advisers is novel and closes a critical gap in 
the literature. A conceptual analysis of AI advisers can tell us whether AI advisers are 
more than tools and what distinguishes them from human advisers.

This thesis follows two main parts towards developing a rich conceptual understand-
ing of AI advisers. The first part examines the loose coupling of AI advisers with their 
human users – cases where AI advisers provide seemingly external recommendations. 
The thesis asks whether external AI advisers are agents, i.e., capable of action or mere 
tools. Being an agent has essential implications: not only are agents considered respon-
sible for their actions, but also agents possess a certain degree of autonomy/indepen-
dence. Therefore, Chapter 2 applies different theoretical notions of agency to AI advi-
sory systems. Chapter 3 complements the theoretical analysis with an experimental 
evaluation of responsibility attribution in a human-AI advisory setting.

Chapter 2 of this PhD thesis discusses the possibilities for AI agency. It shows that 
AI systems necessitate an ontological shift in how agency is understood and applied. 
While AI advisers satisfy the requirements for minimal agency, the agentive capacity 
of AI systems can be adequately captured neither by a human-like concept of agency 
nor by a minimal concept of agency. Instead, AI systems are something in between that 
only a gradual notion of agency can capture.

Having differentiated AI advisers from human agents, chapter 3 aims to confirm 
how AI advisers differ from mere tools. Do sensory AI systems share responsibility 
with their human user? Or are sensory AI systems perceived as tools, void of respon-
sibility attribution? Chapter 3 finds that even the most basic AI system introduces a 
sharing of responsibility with their human user, in sharp contrast to non-AI-powered 
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tools. This finding is even more surprising because, when asked, people did recognise 
AI as a tool. Attributing responsibility to AI and reducing human responsibility also 
does not depend on how the AI technology communicates with the user – i.e. via voice 
or haptic signals.

Furthermore, the AI is seen as more responsible for good rather than harmful out-
comes, as it gets more credit when the human driver successfully negotiates the situa-
tion after receiving the AI warning than it receives blame when the driver fails. Together, 
chapter 3 supports the theoretical findings from Chapter 2, establishing that AI advisers 
are ontologically more than tools but less than human agents. In other words, the thesis 
finds that in their agentive capacity and attributed responsibility, AI advisers, in a loose 
coupling with human users, indeed demand their own ontological space as something 
more than tools but less than humans.

The second part analyses a tighter coupling of AI advisers with their human users 
 – cases where AI advisers become integral to human perception and decision-mak-
ing. Consider cases of augmented reality or sensory augmentation. Here, the thesis 
asks how and to which extent AI advisers influence human perception and in which 
way highly integrated AI systems differ from their tool or human counterparts. Chap-
ter 4 discusses how non-AI and AI-powered sensory augmentation devices differ and 
addresses whether sensory AI systems represent perceptual extensions of their human 
users. What is the nature of the coupling? Does AI take on parts of the perceptual 
process, or is AI a mere sensory extension? Chapter 5 asks what tight coupling in a 
human-human context is capable of – consider cases of joint attention and shared 
perception – and points out future directions for a more socially attuned version of a 
human-AI coupling. The thesis finds that, also in a tight coupling, AI advisers demand 
their unique ontological category as something more capable than a non-AI tool but 
still falling short of human standards.
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Overall, this thesis contributes to a richer conceptual understanding of what AI advisers 
are and how they are coupled with their human users to the existing literature on AI 
systems. The finding that AI advisers represent a unique ontological category – some-
thing between non-AI tools and human agents – impacts not only practical issues on 
how advisory systems should be treated but also philosophical debates on what it means 
to be an AI adviser. Future work should, on the one hand, explore the responsibility 
dynamics introduced by AI advisers – as they are uniquely praised but not blamed for 
an outcome – and, on the other hand, integrate more social sensitivity in AI perceptual 
support systems to set the stage for human-like forms of collaboration.





Part 1

2 AI as co-agents

2.1 Introduction
The question of whether a machine could think and act like a human has accompanied 
the research of artificial intelligence (AI) ever since the development of Turing’s theory 
of computation and its associated computational architectures. With the resurgence of 
neurocomputational learning techniques and advances in computational power, this 
question has become more prominent than ever. Deep learning systems can now reach 
human-level performance in various domains such as image recognition, game playing 
and driving (Ghahramani 2015). The Go-playing system AlphaGo (Silver et al. 2017) 
and humanoid robot SOPHIA (Goertzel et al. 2017) can be seen as paradigm cases for 
the evolution of AI. While AlphaGo has beaten the world-leading human Go player 
Lee Sedol through self-learning without implemented human knowledge, SOPHIA has 
been granted Saudi-Arabian citizenship.

In AI research, the concept of agency as applied to technical artefacts has become a 
subject of intense discussion. Some have argued that agency is conceivably everywhere. 
Every entity which engages in causal relationships and interacts with its environment 
can plausibly be identified as an agent. This notion captures our general intuition of 
treating interactive entities as seemingly autonomous systems. This notion of agency is 
considered minimal because it extends to a class of possible agents to a wide range of 
entities ranging from animals to movie characters, legal personas or even the Go-play-
ing AlphaGo and the humanoid robot SOPHIA.

Others argued that agency is much more restrictive. Agency in the restricted sense 
is commonly identified with human agency and has been understood by Davidson 
(1963); Davidson (1982); Davidson (2001), M. Bratman and Bratman (1987); M. Brat-
man (1999) and Anscombe (2000) as the capacity to perform intentional actions, which 
represents the standard philosophical conception of agency. On this interpretation, the 
Go-playing AlphaGo or the humanoid robot SOPHIA do not classify as agents because 
they lack human-like intentionality and other internal mental states.

Even others have argued that neither of the previous accounts can adequately cap-
ture what it means to be an AI agent. As AI systems vary enormously in their capaci-
ties to learn, initiate, and perform an action, mapping agentive differences to different 
agency standards represents arguably the most plausible account of AI agency. For 
instance, Floridi and Sanders (2004) proposed a method of abstraction. The method 
of abstraction seeks to extend the class of possible agents by postulating different levels 
of abstraction under which an entity can be conceived as an agent. If all three criteria 
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of interactivity, autonomy and adaptability are fulfilled at some level of abstraction, an 
entity can be understood as an agent at this level of abstraction.

So, what are AI advisers? Agents in a minimal sense or even agents in a human 
sense? Or are AI advisers mere tools bare any agentive capacity? Answers to these 
questions not only determine the ontological role AI advisers have in behavioural inter-
actions but also influence legal and ethical debates where moral responsibility hinges 
on the capacity of being an agent – as only agents can be considered responsible for 
their actions. This chapter addresses these questions by applying minimal and human 
agency standards to AI advisers. After showing that AI advisers only satisfy minimal 
agency standards, I explore other concepts of agency which can better match the wide 
range of different AI systems. Terminologically, the rise of AI advisers challenges the 
traditional conceptions of agency in two ways. AI advisers invoke top-down pressure 
to open up restricted, human notion of agency to account for the behaviour (semi-)
autonomous AI systems. AI advisers also invoke a bottom-up pressure to restrict the 
minimal notion of agency further to distinguish the perceived differences in AI systems.

Human
Tool

AI

Action  independence 
(Agency)

top-down
pressure

bottom-up
pressure

Chapter 2

AI systems occupy a unique ontological agency 
status: more than a tool but less than a human

Loose CouplingI

Figure 2: Overview chapter 2

2.2 Top-down pressure: not quite human
The standard story of what it means to be an agent starts with Davidson. He defined 
an agent as a system capable of action, and something counts as an action if it is done 
intentionally, for reasons and is caused by the right mental states of beliefs and desires 
in the right way. Agency, in this sense. is reductive, and it reduces the agent’s role in the 
exercise of agency to the causal roles of agent-involving states and events, where actions 
can be reduced to pairs of agent-involving mental states and events. Intentional actions 
are events, which means that actions are particulars in space-time. Observed particular 
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in space-time (behaviour) can be interpreted differently, i.e., can be explained by differ-
ent descriptions. While grasping for a bottle of water might be part of getting a drink, 
it might also be part of stretching one’s arm. The distinguishing factor for those differ-
ent descriptions is the preceding mental states of action. Because I intended to grasp a 
bottle of water, this behaviour represents my intentional action, while stretching is only 
an unintentional action description. This agency model works well for understanding 
and explaining human action, allowing us to distinguish actions – like grasping water 
 – from mere behaviour – reaching out the arm.

According to the standard story of the agency told by Davidson, for an AI system 
to be considered a human-like agent, it must initiate something caused by intentions 
and represent the reasons for the possible action. The intentional mental states repre-
sent the reasons for an account such that an action can be explained by revealing one’s 
intentional states. Agents hence cause their actions by virtue of their intentional states. 
As argued by M. Bratman (1984), intentional action involves a specific kind of inten-
tional state called “intention.” The need to invoke intentions is two-fold. First, agents 
have limited mental or computational resources. They cannot constantly weigh their 
conflicting desires and beliefs when deciding what to do next. Instead, an agent must, 
at some point, commit to a particular state of affairs to pursue. Second, future action 
planning requires intentions. If an agent has selected a future action, he or she must 
form subsequent intentions to carry out the action at a specified time and in a specified 
manner. For example, the intention to clean the floor invokes more specific intentions 
about avoiding obstacles and checking the vacuum bag. The agent puts together these 
sequences of action to achieve one or more of its intentions. Practically, intentions 
should therefore be internally coherent and coherent with the agent’s other beliefs. Also, 
the agent should be able to monitor whether he/she completed the intentional action 
successfully. An intentional agent is not just able to control his or her behaviour but 
must also have a certain amount of control over his or her mental state.

As pointed out by Misselhorn (2015), higher-order intentionality entails intentional 
states with other intentional states as their object, such as beliefs about beliefs, desires, 
or desires about beliefs. Intentional states with other intentional states characterise 
higher-order intentionality as their objects, such as beliefs about beliefs, desires, or 
desires about beliefs. Higher-order intentionality permits an agent to form beliefs and 
desires based on his or her mental state and the mental states of other agents. High-
er-order intentionality creates a qualitative distinction in the agency, and it is widely 
regarded as a crucial component for understanding free will, which is a highly demand-
ing form of autonomy. According to Harry Frankfurt, human action differs from ani-
mal behaviour in that we can reflect on our beliefs and desires by forming desires and 
beliefs about them (Frankfurt 1971). I may have a first-order desire to consume a piece 
of cake but a second-order desire to abstain from eating the cake out of concern for my 
weight gain. The distinction between first- and higher-order international states can 
be used to explain freedom of will and freedom of action: An action is free when the 
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causally relevant desire is the one I want to be effective. Explaining freedom of the will 
is the capacity to choose which first-order desire to act on. Despite my initial desire 
for the cake, I could have chosen to eat an apple instead of maintaining my weight was 
more important to me. Higher-order desires are those with which an individual iden-
tifies; they reveal the individual’s true nature. People like drug addicts lack willpower 
because they cannot satisfy their second-order desire. Freedom of will is commonly 
regarded as a defining characteristic of a person.

Even though the demands for agency set out by the philosophical tradition are hard 
to fulfil by an artificial system, some AI researchers have taken up the challenge. If a 
robot were able to “replicate the human decision-making process” (Purves, Jenkins, 
and Strawser 2015, 855), “make life and death decisions” (Wallach and Allen 2009, 14), 
make “split-second decisions” (ibid) or “choose their own targets” (Sparrow 2007, 70), 
the robot would be an agent (Nyholm 2018). If an AI system was capable of intention-
ality, then we have good grounds on which it could have mental states and hence be 
conceived as a human-like agent.

The concept of intentional states can be understood both internally and externally 
(Powers 2013). External states represent intentional states expressed outside the artefact, 
whereas internal states are necessarily mental. According to an externalist interpreta-
tion, AI systems express external, intentional states due to their symbolic interaction 
with the environment. AI systems can utter meaningful content through speech acts 
or written expressions and express external, intentional states. Consequently, inten-
tionality is externally determined as the capacity to be about representational content. 
This also applies to deliberate actions since they depend on the capacity to have rep-
resentational states. Similarly, to a human agent who utters, “It is raining outside,” an 
AI-based voice assistant can utter the exact words and communicate the same or at least 
some external intentional states to us. In this sense, intentionality is ascribed to the 
system based on its interaction with the user. The human developer who implements 
the representational content of the AI system and presents it to the user determines the 
appearance of having intentional states. From an internalist view, sophisticated AI sys-
tems can be considered to have genuine internal mental states, such that they act based 
on their motivations and intentions. While it remains impossible to establish proof of 
such capabilities due to the inability to access the mental states of others beyond testi-
mony, Powers (2013) argues that it is unjustified to rule out the possibility of complex 
AI systems having incomprehensible mental states for humans. It is commonly argued 
that intentional states cannot exist in computational systems because they are neither 
hardware nor software based.

Nonetheless, Powers (2013) demonstrates that such an objection commits a funda-
mental ontological error by comparing mental states to physical states. Even for human 
moral agency, the origin and mechanism of moral agency are unknown. Motivation for 
action is always an abstraction, unlike any physical state. Reasons are non-reductive 
and comparable to other high-level mental states in humans, such as consciousness 
and conceptual comprehension. Therefore, accepting the possibility that computers 
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have their motives is contingent on the existence of intentional states that transcend 
physical implementation.

Personhood Besides human-like agency, AI systems have also conquered the news 
circle by being portrayed as legal persons (Yampolskiy 2021). Legal scholars who have 
opened this de-bate have, at large, advocated for accepting autonomous systems as 
legally recognised persons for agency law (Jaynes 2019). Philosophically, being a person 
is much more restricted and represents one of the most demanding forms of agency 
(Misselhorn 2015). The most influential account of personhood has been provided by 
Dennett (1976), who proposes six essential conditions for personhood:

1. Persons must be rational beings.
2. They must have intentionality.
3. One can take a particular stance or attitude towards persons.
4. They must be capable of reciprocating in some way.
5. They must be capable of verbal communication.
6. They must have self-awareness.

The initial three conditions are interdependent: Being rational merely entails possessing 
intentionality, and for Dennett, this is a matter of being the object of a particular posi-
tion, the intentional position. According to this perspective, an object is an intentional 
system if it makes sense to interpret its behaviour by ascriptions of intentional states 
such as beliefs and desires. These three conditions apply to more than personhood; they 
define the entire class of intentional systems. Persons must also meet the other three 
requirements. Dennett defines reciprocity as the capacity to take an intentional stance 
towards other systems, corresponding to a higher order of intentionality. In addition, 
individuals must be able to communicate with one another and possess self-awareness. 
Notably, the final condition applies only to human agents. Dennett defines self-con-
sciousness as the capacity to reflect on one’s beliefs and desires. Although higher-order 
intentionality may be sufficient for self-consciousness, Dennett believes this is untrue. 
The difference is that predetermined higher-order desires do not constrain a person 
but can choose which ones to adopt.

2.3 Bottom-up pressure: more than a tool
An alternative way to understand agency is to focus on something other than what 
agency requires from a human perspective but to look at the system’s connection with 
its environment. The broad conception of agency does not restrict agency to intentional 
action but instead uses a broad scope to capture the common intuition of attributing 
agency to other objects. In this broad sense, agency is everywhere and is roughly under-
stood as the manifestation of a capacity to initiate interaction with the environment 
in pursuit of some goal. Understanding agency broadly encompasses many different 



14 2 AI as co-agents

intuitions about ascribing a pre-critical concept of agency to non-human systems. This 
conception is in different variations widely used in the literature. Russell and Norvig 
(2016, 4) describe an agent as “just something that acts” and a rational agent as “one that 
acts so as to achieve the best outcome or, when there is uncertainty, the best expected 
outcome” (ibid). Beer (1995, 173) defines an autonomous agent as “any embodied sys-
tem designed to satisfy internal or external goals by its own actions while in continu-
ous long-term interaction with the environment in which it is situated.” Christensen 
and Hooker (2000, 133) understand agents as “entities which engage in normatively 
constrained, goal-directed, interaction with their environment.” Coeckelbergh is even 
more direct. He argues that when someone uses an automated car, it is plausible to 
assume that “all agency is entirely transferred to the machine.” (Coeckelbergh 2016, 754)

The motivation behind a widely applicable notion of agency is clear. A wider concep-
tual net for artificial agentive systems allows for connecting observed behaviour with 
internal processes that have caused the behaviour. While the underlying connecting 
processes might be different from human-like processes, AI systems possess rich inter-
nal structures that can react to and generate human-like observable behaviour – like 
ChatGPT or Boston Dynamics Atlas robots.

In a broad sense, capturing agency means consolidating the various intuitions 
within a general theory of agency applicable to natural and artificial agents. With the 
theory of minimal agency, such an approach has been provided by Misselhorn (2015) 
and Barandiaran, Di Paolo, and Rohde (2009). Bracketing the debate on whether their 
proposed version of agency is genuinely minimal – as it is more demanding than the 
basic definition proposed by Russell and Norvig (2016) – the minimal agency model by 
Misselhorn (2015) or Barandiaran, Di Paolo, and Rohde (2009) is nonetheless a plausi-
ble starting point for understanding agency in the broad sense.

Misselhorn (2015) defines two fundamental dimensions of agency: autonomy and 
intelligent behaviour. Minimally, an agent should be able to act without the direct inter-
vention of other agents. Floridi and Sanders (2004) elaborate that being autonomous 
means that an agent can change internal states through internal transitions and not 
only external stimulation. The modulation of internal states can include a modulation 
of updated reward values for reinforcement learning AI systems or internal mental 
representation for human-like agents. In both cases, an agent must have at least two 
representational states: one for the internal and one for the external stimulation. The 
criterion of autonomy, therefore, guarantees that an agent possesses a certain degree 
of complexity and independence from its environment.

Intelligent behaviour is interactive, flexible, and adaptive. Interactivity represents 
the demand of interacting with the environment, s.t. an interactive agent takes input 
from its environment and brings about changes in the environment. An interaction 
counts as intelligent if the agent’s reaction to the input is appropriate concerning the 
agent’s internal goal (Misselhorn 2015). Flexibility marks a more sophisticated form of 
intelligent behaviour, where the behaviour can be modulated depending on the given 
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situation. Intelligent behaviour is further characterised by adaptivity. An intelligent 
agent can modify its reaction to make the environmental interaction more appropriate.
Less demanding, Barandiaran, Di Paolo, and Rohde (2009) identify three necessary 
and sufficient conditions for a working concept of agency: individuality, interactional 
asymmetry, and normativity.

Individuality, as the first criterion of minimal agency, points out that to distinguish 
between an agent and the environment, an agent must be individually identifiable 
(Barandiaran, Di Paolo, and Rohde 2009). This allows for the development of any rela-
tionship between the agent and objects in the environment. Any agent possesses some 
form of identity which allows it to separate itself from and dynamically interact with 
the environment. This distinction can be conscious and unconscious but represents a 
prerequisite for any interaction (Barandiaran, Di Paolo, and Rohde 2009). Only this 
capacity allows a system to form relations with other environmental objects. This broad 
conception of individuality means that many simple biological and artificial systems 
satisfy the first condition of agency. Simple metabolic systems like cells engaging in pas-
sive osmosis can maintain their organisation through interaction with the environment 
through their membranes (Barandiaran, Di Paolo, and Rohde 2009), while inanimate 
objects cannot usually differentiate themselves from the environment.

While basic living organisms suffice this criterion by maintaining their functional 
organisation, AI systems lack the evolutionary urge to sustain their organisation. How-
ever, this does not mean that AI systems are not capable of maintaining their organi-
sation. AI systems can be externally aggregated in contrast to their environment based 
on the unity of their hardware and software implementation. Each AI system runs on a 
particular set of hardware based on a finite number of lines of code, which demarcates 
the system from its environment. Internally, also the system is aware of the environ-
ment in which it operates. Generally, through their perceptors, AI systems collect input 
from their surroundings, map these inputs to specific outputs via certain computational 
means and then execute these outputs by their available actuators.

Interactional asymmetry, the second criterion of minimal agency, formalises the 
necessary interaction between an agent and its surroundings (Barandiaran, Di Paolo, 
and Rohde 2009). An agent is always the source of an action and modulates the envi-
ronment to suit its needs. The relationship between an agent and the environment is 
asymmetric as the agent can assert itself on the environment by modulating some 
parametrical conditions of the structured relation between itself and the environment. 
It is further possible but unnecessary for an agent to act upon this capability (Barandi-
aran, Di Paolo, and Rohde 2009). Then an agent cannot only produce a change in some 
environmental parameters but also actively modulates them to achieve some particular 
outcome. While a simple cell can satisfy the criterion of individuality, it cannot assert 
itself beyond a symmetric relationship with the environment. The basic cell’s interac-
tion with the environment is limited to passive osmosis as ions pass through its mem-
brane based on ion gradients caused by the system-environment organisation. The cell 
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represents no active interaction source, contrary to basic cognitive organisms, which 
can actively modulate their environment with available actuators to suit their needs.
Barandiaran, Di Paolo, and Rohde (2009) propose two interpretations under which 
such an active modulation can be achieved. On the energetic interpretation, a system 
engages in an active modulation of its coupling with the environment if it can expand 
or constrain energy to sustain a coordinated process (Ruiz-Mirazo and Moreno 2000). 
On the statistical interpretation, a system actively modulates its coupling with the 
environment if it has a statistically measurable impact on the environmental course of 
events. Statistical measures in the form of temporal correlations can be used to quantify 
the influence of the system on the environment. Especially for a robotic AI system, this 
condition holds because it represents a clear source of energetic and dynamic source of 
interaction with its surroundings. Nevertheless, even for non-robotic AI systems, this 
condition is also satisfied since each system is actively pursuing fulfilling its given task 
and expends energy to do so.

Normativity, the third criterion of minimal agency, is necessary to rule out any 
random interaction with the environment and ensure that the action in question is 
in line with the endorsed goals and norms of the system (Barandiaran, Di Paolo, and 
Rohde 2009). Any interactive modulation of environmental conditions represents a 
modulation to satisfy a given norm or goal, and such norms are not given by the envi-
ronment but are rather generated by the system itself. Agents fundamentally regulate 
their interaction with the environment based on their perceived success or failure of 
fulfilling their internalised norms, which allows the system to distinguish between 
different outcomes of its actions (Barandiaran, Di Paolo, and Rohde 2009). Any met-
abolic system like an osmosis cell satisfies this condition of normativity because its 
interaction with the environment facilitates its fundamental goal of living. Seemingly 
random and uncontrolled tremor movements by Parkinson patients do not however 
follow any internally generated norm.

For living organisms, the most fundamental goal governing their functioning is the 
norm of self-maintenance and survival which guides the organism’s performance of 
environmental interactions. Having an action-guiding norm becomes evident if the 
outcome of an interaction can be evaluated according to its success. For AI systems, 
this condition also generally holds because the fulfilment of an overall goal or norm 
implicitly or explicitly guides their internal functioning. The respective interactive 
modulation of the environment represents a norm-guided regulation of the system’s 
coupling with the environment.

To determine whether a system can be considered an agent, it has to be examined 
whether the system is defined by itself (individuality condition), is capable of actively 
regulating its environmental interactions (interactional asymmetry condition) and does 
so according to some internal norms and goals (normativity condition). Such a general 
notion of agency allows applying the concept of agency beyond the traditional scope of 
intentional action due to the independency of any mental states or external ascription.



2.4 Middle-ground accounts: something in between 17

2.4 Middle-ground accounts: something in between

The literature has approached the challenge of developing a middle-ground concep-
tion of agency in various ways. The primary motivation for a middle-ground account 
of agency is that neither the narrow nor the broad conception of agency adequately 
captures the full spectrum of AI systems, ranging from AI-powered tools to socially 
assistive robots (Cross and Ramsey 2021) and competent human-like systems (J. Zhang, 
Conway, and Hidalgo 2022).

One way to make conceptual space for a middle ground of agency is to establish a 
gradual account of agency that can account for minimal but more demanding types 
of agents (Longin 2020).

The method of abstraction 
One prominent philosophical way to extend the class of possible agents has been pro-
vided by Floridi and Sanders (2004). They argue against the traditional narrow view of 
agency as distinctly human and instead advocate that agency does not require mental 
states (Floridi and Sanders 2004). This conception of mindless agency is motivated by 
the moral domain. While the concept of human agency applies to humans in a moral 
context sufficiently well, other entities such as artificial systems or animals, which are 
excluded from the narrow conception of agency, can still perform morally charged 
behaviour (C. Wilson 2004). Hence, in a moral context, we might attribute some kind 
of agency to human and artificial systems. This is supported by other findings in empir-
ical sciences, which state that animals also exhibit forms of intelligence and even social 
responsibilities (Steward 2009; Delon 2018; Jamieson 2018). Floridi and Sanders pro-
pose a conception of mindless morality and mindless agency designed to broaden the 
class of possible agents to artificial systems and humans based on the idea that artifi-
cial agents are legitimate sources of moral actions. Their idea is built on the classical 
dichotomy between moral agents and moral patients, which, in its core form, also is 
applied in other domains such as cognitive or computer science. A moral agent rep-
resents a source of action, whereas a moral patient counts as the entity which is acted 
upon (ibid.). This framework departs from the traditional narrow conception of agency 
by eliminating any reference to mental states in its proposed theory of action.

To extend the class of moral agents, Floridi and Sanders propose a method of 
abstraction which introduces different levels of descriptions to a singular system. This 
method is built on one central intuition: individuals observe objects according to their 
interests and based on their point of view (ibid.). This gives way to Floridi’s and Sanders’ 
idea, which grounds the method of abstraction, that an entity can be described under a 
range of different levels of abstraction. A level of abstraction, in turn, represents a par-
ticular collection of observables and their projected outcomes and perceived values. In 
other words, a level of abstraction offers a unique interpretation of observables which 
ground its analysis. The resulting method of abstraction relies on taking up different 
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levels of abstraction and understanding agency as a concept relative to a specific level 
of abstraction. This implies that if the level of abstraction changes, then the class of 
possible agents also changes.

What remains constant are Floridi’s and Sanders’ three conditions of agency which 
can be applied at each level of abstraction: interactivity, autonomy, and adaptability. The 
first criterion entails necessary interactivity with the environment such that a possible 
agent responds to new situations based on information at his disposal by changing its 
internal states. According to the second criterion of autonomy, a potential agent must 
be able to change its internal states without any external stimulus in a self-governed 
way such that the agent could act differently based on new information. The third cri-
terion of adaptability requires an entity to be capable of changing its heuristics and 
internal transition rules to improve its general behaviour according to the tasks and 
environment at hand.

In sum, for an entity to be an agent, first, it must be an active source of interaction; 
second, it has to be able to change its internal states autonomously; third, it has to adapt 
to its environment. According to this model, abstraction functions as a hidden param-
eter for the conception of agency. While the traditional narrow conception of agency 
takes one particular level of abstraction, which places the three criteria of agency in 
the context of human-like mental states, Floridi’s and Sanders’ proposed method of 
abstraction allows expanding the conception of agency to different levels of abstraction 
by examining different contexts of agency (Floridi and Sanders 2004).

For example, consider a chess-playing computer system at three different levels of 
abstraction. At a system level, we have access to its internal code and functioning. We 
can see that the system is interactive through its internalised separation between itself 
and the external world and its active influence on the environment. It is further auton-
omous because it possesses internally defined transition rules that can be updated by 
interacting with the environment. However, the system fails to be adaptive because 
what seems like an adaptation of transition rules is, in fact, only a deterministic update 
of a program state. This implies that the chess-playing system cannot be an agent on 
the system level of abstraction. A similar pattern applies to the second level of abstrac-
tion, which considers the chess playing system after playing a single game from the 
outside. Here, we do not have access to its internal functioning and can only assess 
the game’s state at each turn and its outcome. While the system remains interactive 
and autonomous, it again cannot fulfil the third criterion of adaptability and fails to 
be an agent. This is because we cannot observe any learning process and adaptability 
in one game-playing instance. However, when considering the third level of abstrac-
tion at a tournament level, the chess-playing system fulfils all three agency criteria. 
Now, through multiple game iterations, it is observable from the outside that the sys-
tem adapts its internal transition rules given its environmental cues and thus learns to 
adapt its playing rules. Therefore, the chess-playing system can be considered an agent 
if we examine it at a sufficiently high level of abstraction while failing to be an agent at 
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other levels. In the context of advances in machine learning systems which can reach a 
convincing human-level functioning in particular domains, it becomes clear that those 
systems under Floridi’s and Sanders’ model would count as an agent from the outside. 
However, once the level of abstraction is lowered to the level of internal functioning, 
they fall short of either being autonomous or interactive and hence cannot be consid-
ered an agent any longer.

Gradual agency by ability 
As pointed out by Nyholm (2018), for Pettit (1990); Pettit (2007), basic agency is cap-
tured by the pursuit of goals based on representation, which are regulated and con-
strained by some rules or principles within a limited domain. Here, Pettit imagines a 
relatively simple robot capable of moving around a room and searching for objects with 
a particular shape. If it detects these objects, the robot manipulates them in specific 
ways (e.g. putting them into a bucket). When it does not come across the appropriate 
types of objects in the room, it moves until it encounters one. This, according to Pet-
tit, exemplifies agency in its most basic form: following an objective in a way that is 
responsive to or sensitive to the environment. However, the robot does not possess any 
other kind of agency if placed in a different context.

More advanced agents – which might still be basic – could pursue various goals across 
domains based on their representations. Nevertheless, to achieve their domain-specific 
goals, more complex agents would be able to follow specific rules (Pettit 1990). Their 
agency is limited by rules that prevent agents from pursuing their goals in specific ways 
while enabling them to do so in others. This corresponds to what Fiebich, Nguyen, 
and Schwarzkopf (2015) call domain-specific principled agency: a system counts as a 
principled agent if it pursuits goals based on representations in a way that is regulated 
and constrained by specific rules and principles within the given limited domain. A 
principled agent is more than a basic agent as it can adapt its goal pursuit to the given 
environment. Adaptability requires a recognition of the environment and a self-other 
distinction which is not necessary for the basic agents.

AI systems that function only in their limited environment, such as smart ther-
mostats, are only basic agents, but AI systems that can adapt to their environment are 
something more. Boston Dynamic parkour robots, for example, can scale obstacles 
irrespective of their specific dimensions or environmental settings. Autonomous driv-
ing cars, similarly, can manoeuvre in a diverse set of weather and road conditions, all 
while avoiding obstacles and finding the most suitable route for the passengers.

An extension of the principled agent is the addition of social awareness and sensitiv-
ity to normative rules and principles (Dignum 2020; Fiebich, Nguyen, and Schwarzkopf 
2015). Socially aware agency is an even more demanding form of agency. Humans ful-
fil the additional social sensitivity criteria. When humans navigate traffic, they pursue 
their goal of arriving at a destination in a way that considers other traffic participants. 
Under normal circumstances, human drivers would give way to children and generally 
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follow acceptable normative rules. Artificial systems that are programmed to fulfil a 
specific goal, like reaching a destination for an autonomous car, fall short. Consider a 
hypothetical autonomous car capable of moral reasoning. While current models have 
certain moral maxims built in, individually weighing moral options due to social sen-
sitivity is something else.

Gradual agency in groups 
One popular way to establish such a gradual account of agency is through group or 
collective agency, as proposed by List and Pettit (2011). This is especially plausible if the 
AI system is viewed as an essential part of a human-AI collective.

Group agency differs from individual agency. Individual agency occurs when a sys-
tem interacts with the environment on its own initiative. When someone supervises 
the system, such that it acts on the supervisor’s behalf and in its intended way, the sys-
tem is no longer acting on its own but as part of a collective. This is what is known as 
collective or group agency.

One approach represents the conception of group or collective agency, which broad-
ens the conception of agency by holding a collection of individuals as an indepen-
dent group agent. This approach has been proposed by List (2018), who shows that 
the concept of agency can be successfully extended to group agents like commercial 
corporations, states and organisations while requiring mental states like phenomenal 
consciousness.

Group agency describes existing agents as distinct from human agents and capa-
ble of pursuing a specific goal and impacting the environment somehow (List 2019). 
A group agent is defined as “a collective that qualifies as an agent” (List 2018, 3). The 
phenomenon of group agency is different from that of joint agency. Joint agency occurs 
when multiple individuals engage in an activity together, such as playing instruments 
in a band. For joint agency, the agency of the individuals suffices. On the contrary, 
group agency analyses the agency of a collective itself, which goes beyond the agency 
of individuals. Group agents, in this sense, possess an independent centre of agency 
to which we can attribute our own beliefs, desires and responsibilities. List and Pettit 
(2011) break down agency into three main features for group agents: representational 
states, motivational states, and the capacity to process those states. Representational 
states or beliefs depict things in the environment, such as how the agent takes them to 
be. Motivational states describe certain environmental features as the agent would like 
them to be. The capacity to process representational and motivational states and inter-
vene when a possible mismatch between both states is perceived represents the final 
criterion of agency. List (2018) assumes a functionalist interpretation of agency and 
argues that agency can, in principle, be applied to a wide range of non-human entities 
in a fundamental sense. This functionalist stance is shared by Dennett and Haugeland 
(1987), who advocates the intentional stance of holding systems as agents based on the 
predictability of their behaviour. According to the intentional stance, an entity counts 
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as an intentional system if it behaves predictably when assumed to be a rational agent 
with human-like mental states. However, List also assumes a realist position on group 
agency which is non-redundant and promotes group agents as independent agents (List 
and Pettit 2011). Therefore, List relies on the three essential agency criteria and applies 
them to collective entities. List argues that whether a group can meet these criteria 
depends mostly on how it is organised (List 2018).

Suppose the non-human agent performs an action which impacts the lives of others. 
In that case, this agent should be subject to moral and regulatory questions, and we can 
question its mental and moral capacities. The concept of group agency ascribes goal-di-
rected agency to collectives over its members like universities and corporate firms (List 
and Pettit 2011; List 2019). Additionally, to attributing a legal status to such corporate 
entities, which often ensues in legal rights and responsibilities, we also tend to attribute 
certain mental states to such entities and thereby treat them as agents. Corporations 
are not individual human agents but represent abstract legal entities with specific legal 
rights and obligations. Holding corporations responsible for their social interactions 
through laws and lawsuits is possible. In this way, the assumption of realism about 
group agency allows us to make sense of collectives regarding their perceived behaviour. 
Similarly to Dennett’s intentional stance (Dennett 1971; Dennett and Haugeland 1987), 
List argues that our explanatory grounds of the system’s behaviour regarding specific 
properties give us reason to believe that the system possesses such properties.

Legal agency 
Another approach has been proposed by Asaro (2006), who advocates a legal frame-
work which assigns AI systems certain agency statuses depending on their internal 
capacities. In particular, Asaro suggests a continuous conception of AI moral agency 
which distinguishes between amoral and fully morally autonomous AI agents. In the 
following, both approaches are introduced, and it is shown that Asaro’s legal approach 
provides the most promising attempt to outline a possible middle-ground conception 
of agency. The second attempt towards formulating a middle-ground conception of 
agency draws inspiration from the current legislation, which imposes various practical 
agency distinctions. In particular, Asaro proposes a continuous conception of moral 
agency between amoral and fully autonomous moral agency. Asarao seeks to address 
various moral challenges emerging from interacting with socio-technical AI systems. 
In a basic sense, Asaro argues that robots and AI systems are causal agents because they 
are causes of environmental effects but are not considered moral agents because they 
are not held morally responsible for their actions (Asaro 2006). Between these extremes 
of being a causal and being a moral agent, Asaro sketches a continuous conception of 
moral agency, which can capture various other occurrences of agency depending on 
the internal capacities. Children, for example, are not conceived as full moral agents 
by law. However, given their level of maturity and development of cognitive capacities, 
they might be conceived as full moral agents (Asaro 2006). This differentiation helps 
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distinguish various cases of legal and moral responsibilities grounded on the basic con-
ception of agency. While an infant cannot perform intentional actions, they develop 
their agential capacities during childhood and adolescence. They are lastly understood 
as adults and thus full agents under the narrow conception of agency. The existing legal 
framework provides an excellent starting point and inspiration for developing a more 
fine-grained philosophical notion of agency by providing a practical perspective on 
the issue of AI agency.

However, Asaro’s suggested notion of continuous agency might be misleading 
because it suggests that being an agent hinges on the continuous development of agen-
tial capacities contrary to the agency defined in the legislation. One reason that Asaro 
has utilised continuity to denote his suggested approach for a middle-ground concep-
tion of continuous agency is the legal treatment of children who go through a contin-
uous development phase. However, while the legislation seeks to match the continu-
ous development of agential capacities of children with an adequate legal status and 
concept of agency, it suggests only a handful of different stages of child development 
which are treated differently. For example, under German juvenile law, children under 
14 bear no criminal liability. In contrast, adolescents between the ages of 14 and 17 are 
partially responsible, and adolescents from 18 are treated as fully responsible adults. 
This legal treatment promotes a gradual treatment of the agential capacity of children 
instead of what Asaro refers to as a continuum from amorality to fully autonomous 
morality based on the actual developed cognitive capacities (Asaro 2006). A continu-
ous account of agency would, in fact, directly map each change in agential capacity to a 
change in agency. Instead, a gradual account, which Asaro ultimately has in mind, can 
define a particular set of requirements and implications for different instances of agency.

While the legal framework represents a tremendous practical system for dealing 
with seemingly autonomous systems, it only provides one perspective on the underly-
ing conception of agency. Through defined legal cases, we might have a way of dealing 
with agents, but we still need to make progress in understanding what it means to be an 
agent in the first place. This is similar to the application of moral theory to legislation. 
While it is undecided which moral theory is correct or should be preferred, legislation 
has defined how to implement various moral intuitions into a coherent framework of 
laws and guidelines. This does not, however, reveal whether a particular moral theory 
is correct. Similarly, no legal regulation of agency can establish how the philosophical 
conception of agency should be defined. However, it can at least motivate a new phil-
osophical discussion of the conception of agency.

2.5 Conclusion
Can AI systems be considered basic or even human-like agents in contrast to mere 
tools? Some have argued that agency is conceivably everywhere. Every entity which 
engages in causal relationships and interacts with its environment can plausibly be 
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identified as an agent. This notion captures our general intuition of treating interactive 
entities as seemingly autonomous systems. This notion of agency is considered broad 
because it extends to a class of possible agents to a wide range of entities ranging from 
animals to movie characters, legal personas or even the Go-playing AlphaGo and the 
humanoid robot SOPHIA.

Others argued that agency is much more restrictive. Agency in the narrow sense is 
commonly identified with human agency and has been understood by Davidson (1963); 
Davidson (1982); Davidson (2001), M. Bratman and Bratman (1987); M. Bratman (1999) 
and Anscombe (2000) as the capacity to perform intentional actions, which represents 
the standard philosophical conception of agency. On this interpretation, the Go-play-
ing AlphaGo or the humanoid robot SOPHIA do not classify as agents because they 
lack any human-like intentionality and other internal mental states.

This chapter has shown that the agentive capacity of AI systems can be adequately 
captured neither by a narrow, human-like concept of agency nor by a minimal concept 
of agency. Then, this chapter reviewed alternative middle-ground approaches, includ-
ing Floridi and Sanders (2004)’s method of abstraction, List and Pettit (2011)’s group 
agency, Asaro (2006)’s legal framework, and an ability account. No account can provide 
a fully adequate way to distinguish tools and AI systems. While advisory AI systems sat-
isfy the criteria for minimal agency, the minimal account cannot distinguish between 
perceived differences in agentive capacity in AI systems. Conceptually, AI advisers are 
more than tools but not human-like. Therefore, AI systems necessitate an ontological 
shift in how agency is understood and applied.
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3.1 Introduction
In the previous chapter, I asked how AI advisers compare to agency standards for 
minimal and human agents. I provided a conceptual analysis of whether AI systems 
can meet either standard. I found that advisory AI systems fulfil minimal standards 
for agency and that the agentive capacity of AI systems cannot be adequately captured 
by either a narrow or broad concept of agency. In other words, AI systems necessitate 
an ontological shift in how AI agency is understood and applied – as something more 
than tools but also not human-like.

This chapter complements the conceptual analysis with empirical evidence. The 
conceptual analysis revealed substantial evidence that AI systems are not human-like 
agents, but the difference between AI systems and tools needs to be clarified. Empirical 
evidence, examining how people perceive human-AI couplings, can reveal the nuances 
of how AI systems differ from non-AI tools. Notably, cases of moral responsibility attri-
bution have been used to test the perceived agentive capacity of others – as only per-
ceived agents can bear moral responsibility for their actions.
So, what happens, however, when human agents use advisory AI systems? Are AI advis-
ers regarded as agents responsible for their actions? Or are they treated as mere tools 
bare any responsibility?

Consider the widely available intelligent car to build an intuition for the cases at 
hand. You are driving through the city when an older woman and her dog decide to 
cross the road directly in front of you. Fortunately, the artificial intelligence (AI) assis-
tant takes over, causing the car to swerve and avoiding pedestrian collisions. The dog, 
on the other hand, has been severely injured. Who is to blame? Is it the AI or the human 
driver who takes the wheel? Such situations with competing interests and moral con-
flict – saving the human but injuring the dog – are frequently used to demonstrate the 
advantages and disadvantages of allowing AI to act on our behalf. They are also receiv-
ing the most attention in the relatively new field of experimental AI ethics (Awad et al. 
2019; Franklin, Awad, and Lagnado 2021; Moglia et al. 2021; Nyholm and Smids 2016; 
Wischert-Zielke et al. 2020).

Experimenting with AI ethics on interactive AI systems has discovered strong evi-
dence that AI systems are judged as responsible as humans when they negotiate traffic 
decisions independently or with humans as co-actors. In the medical domain, fully 
autonomous medical AI systems have been shown to share responsibility with the 
supervising clinician (McManus and Rutchick 2019; O’Sullivan et al. 2019). Further-
more, AI is held accountable in medical and legal cases when it provides social or moral 
guidance on whether a defendant should be released (Lima, Grgić-Hlača, and Cha 
2021) or a risky medical procedure should be performed (Constantinescu et al. 2022).
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However, decisions about fully autonomous cars and drones or robotic medical assis-
tance are still on the ethical and, in many cases, technical horizon. While keeping 
humans in the decision-making loop is one of the critical recommendations of EU reg-
ulations (Middleton et al. 2022) and legal experts (Enarsson, Enqvist, and Naarttijärvi 
2022; Zanzotto 2019), I do not know much about what it entails for the moral evalua-
tion of the AI, or it turns out, the human. As incidents of AI-assisted decision-making 
become increasingly common, investigating this gap is becoming increasingly import-
ant. Human decision-makers now rely on AI for routine, low-stakes decisions such 
as shopping recommendations and high-stakes decisions such as medical diagnosis.

In other words, while most research has focused on the perception of interaction 
AI systems, i.e. AI partners and non-action-taking advisory AI systems, which are even 
more prevalent in the current field of AI decision support tools like risk assessment 
for financial lending (Green and Chen 2019) or visual object detection, have remained 
unexplored (Bondi et al. 2021). While an autonomous AI partner’s agential and moral 
roles are easier to distinguish from those of its human counterpart, the influence 
of advisory AI systems is more difficult to discern but no less detrimental/relevant/
impactful to the overall outcome. As an example, consider medical diagnostics. With 
superhuman accuracy in image-based medical diagnostics, advisory AI systems can 
provide precious but often opaque medical advice to human clinicians. It is difficult 
to determine who is responsible for the final medical diagnosis. For fully autonomous 
robotic surgery, on the other hand, the AI system shares responsibility with the super-
vising clinician (McManus and Rutchick 2019; O’Sullivan et al. 2019).

The type of interaction between the AI system and the human user distinguishes 
an AI advisor from an AI partner. An AI advisor merely influences others by making 
recommendations or providing information, whereas an AI partner goes above and 
beyond. An AI partner participates in the action and works with the human user to 
achieve a goal (Köbis, Bonnefon, and Rahwan 2021). Consider driving a car: while the 
AI advisor can only warn the human driver about an impending accident, the AI part-
ner can take control and slam the brakes autonomously.

So, what happens when AI is merely an improved detection device, more akin to a 
simple instrument or tool? Is the mere instrumental use of AI enough to absolve the 
technology of responsibility, or is the involvement of some form of intelligence suffi-
cient to introduce responsibility attributions?

The literature on responsibility proposes two hypotheses: AI is treated as an inde-
pendent agent and thus carries moral responsibility, or AI is not treated as an inde-
pendent agent and thus bears no moral responsibility. In this case, an instrumental AI 
only provides nudging recommendations or draws attention to a piece of information. 
This is not the same as an AI co-agent acting alongside or on behalf of the human user 
(Köbis, Bonnefon, and Rahwan 2021). The agential and moral roles of an autonomous 
AI co-agent can be distinguished from those of its human counterpart, but the influ-
ence of instrumental AI systems is more difficult to discern, even when such influence 
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is relevant to the overall outcome (Kaur et al. 2020; Schaekermann et al. 2020), as it 
occurs in both low-stakes decisions such as shopping recommendations and high-
stakes decisions such as medical diagnoses and driving support.

If AI is reduced to a mere tool rather than an independent agent (Cervantes et al. 
2020; Longin 2020), it is unclear whether it is worthy of sharing moral responsibility for 
the outcome of a human user’s action (Coeckelbergh 2020). The information provided 
by the AI system may be regarded as having increased the human agent’s knowledge 
or awareness (Fossa 2018). If a user has more information about a situation, they may 
be held more accountable for their decision’s outcome than someone with less infor-
mation (Irlenbusch and Saxler 2019). However, others have shown that AI advisers are 
perceived as agents and held responsible for their recommendations (H. H. Clark and 
Fischer 2022; Dodig-Crnkovic and Persson 2008; Stuart and Kneer 2021).

Intuitively, if I consider the AI advisor to be another agent whose recommendation 
influences the decision made by the human, I should expect a distribution of responsi-
bility between the two agents – though not necessarily a 50-50 split (Darley and Latane 
1968; Kirchkamp and Strobel 2019; Kneer 2021; Stuart and Kneer 2021; Teigen and Brun 
2011). A human driver should be blamed or praised less if they fail to avoid a collision 
after being advised to swerve by an AI assistant. This diminished responsibility should 
also imply that the AI bears some blame or credit for contributing to the decision 
(Chockler and Halpern 2004; Halpern and Kleiman-Weiner 2018).

However, it is unclear whether an AI advisory system will be treated as an indepen-
dent agent worthy of sharing moral responsibility for the outcome of a human action 
(Cervantes et al. 2020; Longin 2020; Coeckelbergh 2020). The AI recommendation 
advisor may have increased the human agent’s knowledge or awareness (Fossa 2018; 
Longin and Deroy 2022). Someone with more information about a situation should 
be held more accountable for the outcome of their decision than someone with less 
information (Irlenbusch and Saxler 2019). This hypothesis opposes the first and makes 
the exact opposite prediction in a driving scenario: a human driver should be blamed 
or praised more if they fail or succeed in avoiding a collision while being advised to 
swerve by an onboard AI assistant.

Much depends on whether the AI assistant is given the role of another agent or 
simply a source of information. The format in which the AI advice reaches the human 
will likely influence this judgement, with more anthropomorphized voice assistants 
more likely to appear as another agent. In contrast, a nonverbal signal emitted by the 
AI would more likely be treated as merely adding to the human’s knowledge and not 
entering the responsibility attribution.

The public’s perception of AI systems as responsible is at the root of many current 
legal and ethical issues. Many studies have successfully mapped how people’s opinions 
change depending on the role of artificial intelligence and other cultural or moral fac-
tors (Bago 2022; Persson, Laaksoharju, and Koga 2021).



28 3 AI Advisers

This chapter poses a different question: is it true that any mention of AI will cause peo-
ple to blame the technology and shift responsibility away from the human user? Recent 
research suggests this may be the case in the hypothetical scenario where AI provides 
moral guidance (Constantinescu et al. 2022; Giubilini and Savulescu 2018; Guglielmo 
and Malle 2019). However, the more pertinent question is whether this would occur in 
AI’s more common, day-to-day use when it merely provides factual information and is 
used purely instrumentally.

Finally, this chapter adds to the ongoing debate about how responsibility is divided 
between AI and human users. It fills existing but critical literature gaps by retaining 
AI’s role as an advisory system.

Therefore, the chapter is divided into two main parts. The first part goes through the 
development of an adequate experimental design, and eight pilots provide continuous 
improvements to the experimental design and the ultimate robustness of the results. 
The second part reveals the findings of the main experiment. Here, I conclude that

1. the human user also shares responsibility with an AI advisor,
2. the AI advisor is not blamed but praised for an accident, and
3. the way the AI advisor provides recommendations does not make a dif-

ference to any responsibility rating.

The implications are manifold: not only do I provide insights for researchers and devel-
opers into how AI advisors influence responsibility attribution, but also, I highlight a 
newly emerging inconsistency in how AI advisors are perceived. I show that although 
AI advisors are strongly perceived as tools, they share responsibility with the human 
user – something unheard of for traditional tools.

Human
Tool

AI advisers

AI partners 

Chapter 3

Fully responsible Praised but not BlamedNot responsible

Perceived responsibility and agency varies by kind of AI system: adviser or partner

Loose Coupling

Action  independence 
(Agency)

I

Figure 3: Overview chapter 3
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3.2 Experimental journey: pilots

3.2.1 Pilot 1

Introduction
As assistants in intelligent cars, gaming-playing companions or medical diagnostic sys-
tems, advisory AI systems are everywhere. They provide their human user with addi-
tional information, suggest their following action, or even act on their user’s behalf. 
With increasingly capable AI assistants – Google’s Alexa can now control your home, 
play a move, and do your shopping -questions of responsibility are bound to arise. Who 
is responsible when the human user turns into a one-way street or provides a misdi-
agnosis? Is it the AI for providing misleading or even false advice? Or the human user 
for following the advice and taking the final action?

The present pilot sought to provide some exploratory evidence on how responsibil-
ity attribution changes when an AI-powered tool is involved. Therefore, I prepared a 
preliminary 3x2 mixed experimental design. The design included a variation in the AI 
adviser (providing sensory advice; providing linguistic advice; absent) and a variation 
in outcome (positive; negative). The experiment thus compared human responsibility 
ratings in medical scenarios when the AI adviser was present with those when the AI 
adviser was absent. If the AI adviser was perceived as an agent, I expected to see higher 
responsibility ratings for the human surgeon when the AI was absent rather than when 
it was present. The expected effect aligns with the widely replicated effect of respon-
sibility sharing, where responsibility is distributed across the involved agents, and a 
singular agent bears more responsibility than two. If, on the other hand, the AI adviser 
was not perceived as an agent, I expected no such effect to occur. Instead, participants 
might even hold the human surgeon more responsible for a negative outcome when 
acting with an enhancing tool rather than acting alone – the human surgeon had all 
the tools available, but the negative outcome still occurred.

I included an outcome variation to control for any possible outcome effect, where 
traditionally, responsibility ratings are higher in case of a positive rather than negative 
outcome, which is known in the psychological literature as the self- or other-serv-
ing bias (Beyer et al. 2017; Palmeira, Spassova, and Keh 2015). The experiment also 
compared two kinds of AI advisers to test any appearance effects on responsibility 
attribution (Coeckelbergh 2009; Dignum 2020; Wheeler 2019). A linguistic AI adviser 
resembles a human agent more closely, whereas a sensory AI adviser is closer to an AI-
powered tool. If appearance played a role, I would have expected to see a difference in 
responsibility attribution across different AI adviser conditions. Otherwise, what drives 
the responsibility ratings is plausibly the presence of the AI itself.
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Methods

Experimental design
I conducted one online study (n = 17) to elicit judgments on moral responsibility in 
human-assisted medical scenarios. The study used hypothetical vignettes that describe 
a medical scenario with a human surgeon and an artificial assistant. The artificial assis-
tant was AI-powered and provided either sensory or linguistic advice. Sensory advice 
comprised tactile stimulation and auditory signals. Linguistic advice consisted of verbal 
sounds. For the study, I varied two conditions with two and three factors – resulting in 
a 3x2 mixed-subject experimental design. The first condition, with three factors, cap-
tures the modality of the AI advice. The AI advice could either be linguistic, sensory, 
or not present. The second condition, with two factors, captures the outcome of the 
action in question. The outcome was either positive – when the action was successful 

– or negative – when the action was unsuccessful. The threefold variation in AI advice 
modality enables a comparison between a control case, where no AI was present, with 
either kind of AI adviser. The outcome variation further controlled for any possible 
effect, as discussed above.

The mixed experimental design combined features of both a between-subject design 
and a within-subject design. The mixed design was chosen to examine not only the 
potential differences between conditions but also assess any differences emerging in 
the participants of the specific group over time. To form the most robust experimental 
design, I used two between-subject groups, which varied in both experimental condi-
tions. The mixed experimental design was designed to reveal any possible difference 
between the treatment condition (outcome x AI advice) and the control condition (out-
come x No AI advice). For example, only the first group would be given the negative 
outcome, sensory AI adviser condition; the second group would only receive the nega-
tive outcome with a linguistic AI adviser. Comparing participant responses to negative 
and positive control conditions would reveal any possible biases towards AI advisers; 
while reducing participant fatigue and any response bias.

Materials
One vignette for a medical scenario was adapted to match the six experimental condi-
tions (see Appendix A for details on vignettes). The vignettes presented brief accounts 
of the situation leading to a question about the responsibility of the human surgeon. 
The central vignette included a human surgeon who has to remove the malign tumour 
cells of a patient. The changes to the vignette included a variation in the presence of 
the AI’s advice (sensory advice, linguistic advice, no AI) and in the outcome of the pro-
cedure (positive, patient lives; negative, patient dies) (see supplementary methods for 
detailed vignettes). Each participant was randomly assigned one out of two groups – 
using counterbalanced block randomisation. The first group would receive one vignette 
with a linguistic AI adviser and a negative outcome and a vignette with a sensory AI 
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adviser and a positive outcome. Vice versa, the second group would receive on vignette 
with a sensory AI adviser and a negative outcome and a linguistic AI adviser and a pos-
itive outcome. Both groups would then receive both control vignettes in random order 
 – including no AI adviser with a negative and a positive outcome. After each presented 
vignette, the participant was asked to indicate how responsible the surgeon was for the 
outcome. Responses were recorded on a 100-point scale using sliders (from 0  % to 
100 % responsibility). Comparing the responses across vignettes revealed the effect of 
the experimental manipulations.

Data analysis
I analysed the data using a mixed linear model (lmer) from the lme4 library 
(Bates et al. 2015) in RStudio (Team 2021). The lmer models were defined by 
lmer(value ~ outcome  modality + (1ParticipantId)).

Participants
I recruited a total of 17 participants from the Prolific service. No participants were 
excluded. 41 % of the participants were male, 35 % were female, and 24 % preferred not 
to say or stated other. 53 % of the participants had a bachelor’s degree or higher. The 
mode and median age group was 25 to 34 years old.

Stimuli and procedures
After a language comprehension test, participants were familiarised with the structure 
of the main experiment and the measurement scales. Then, participants completed 
a practice trial and continued with the main experiment. Here, they were presented 
with a text vignette and then asked to rate the measured variable (responsibility) as 
accurately as possible. The vignette scenarios varied in outcome and AI advice within 
a 3x2 mixed design. After completing the main experiment, participants were asked 
demographic questions about their age, gender, and education.

The presented vignette was adapted to accommodate the changes in experimental 
design. Participants received a different pairing of scenarios based on a mixed experi-
mental design. While one block received the scenarios with linguistic AI advice paired 
with a negative outcome and sensory AI advice paired with a positive outcome, the 
other block received the scenarios with sensory AI advice paired with a negative out-
come and linguistic AI advice paired with a positive outcome. Both blocks subsequently 
presented the participant with two scenarios without an AI adviser, with a negative and 
a positive outcome. In all scenarios, I used the same set of vignettes with slight modifi-
cations to accommodate the changes in outcome and the type of AI assistant.

Results
In this pilot, I compared moral responsibility ratings of human users coupled with dif-
ferent kinds of AI advisers. The study used hypothetical vignettes that describe a med-
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ical scenario with a human surgeon and an artificial assistant. The artificial assistant 
was AI-powered and provided either linguistic or sensory advice. Linguistic advice was 
presented given to the human user in terms of verbal cues, whereas sensory advice was 
presented to the human surgeon in terms of tactile cues.

Main effects
I fitted a linear mixed model (estimated using REML and nloptwrap optimizer) to pre-
dict responsibility ratings with varying independent variables of AI adviser modality 
and outcome (formula: value ~ modality * outcome). The model included ParticipantId 
as a random effect (formula: ~1 ParticipantId). The model’s total explanatory power is 
substantial (conditional R2 = 0.40), and the part related to the fixed effects alone (mar-
ginal R2) is 0.13. The model’s intercept, corresponding to modality = No_AI and out-
come = neg, is at 70.22 (95 % CI [58.36, 82.08], t(64) = 11.83, p < .001). Within this model:

The effect of modality [Sensory_AI] is statistically non-significant and negative (beta =  
 -13.38, 95 % CI [-29.78, 3.01], t(64) = -1.63, p = 0.108; Std. beta = -0.52, 95 % CI [-1.15, 0.12])

The effect of modality [Linguistic_AI] is statistically non-significant and negative 
(beta = -10.83, 95 % CI [-30.33, 8.68], t(64) = -1.11, p = 0.272; Std. beta = -0.42, 95 % CI 
[-1.17, 0.33])

The effect of outcome [pos] is statistically non-significant and positive (beta = 13.56, 
95 % CI [-0.33, 27.44], t(64) = 1.95, p = 0.056; Std. beta = 0.52, 95 % CI [-0.01, 1.06])
The interaction effect of outcome [pos] on modality [Sensory_AI] is statistically 
non-significant and positive (beta = 1.29, 95 % CI [-25.08, 27.66], t(64) = 0.10, p = 0.923; 
Std. beta = 0.05, 95 % CI [-0.97, 1.06])

The interaction effect of outcome [pos] on modality [Linguistic_AI] is statistically 
non-significant and negative (beta = -9.39, 95 % CI [-35.76, 16.98], t(64) = -0.71, p = 
0.480; Std. beta = -0.36, 95 % CI [-1.38, 0.65])

Standardized parameters were obtained by fitting the model on a standardized ver-
sion of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using 
Kenward-Roger standard errors.

Overall, I found no significant difference between the responsibility ratings of the 
human surgeon across conditions. When the AI adviser was present, the human advisee 
was judged as responsible as when the advice was provided in a linguistic or a sensory 
format. When the outcome was negative, the human surgeon was judged responsi-
ble when AI was present or absent. This holds for both linguistic and sensory advice. 
When the outcome was positive, the same effect occurred: the human surgeon was 
judged as responsible when AI was present or when it was absent – both for linguistic 
or sensory advice.

Trends
However, simplifying the underlying regression models reveals some notable trends. 
First, I found a general outcome trend across experimental conditions.
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Therefore, I fitted a linear mixed model (estimated using REML and nloptwrap opti-
mizer) to predict responsibility ratings with only outcome as an independent variable 
(formula: value ~ outcome). The model included ParticipantId as a random effect (for-
mula: ~1 ParticipantId). The model’s total explanatory power is substantial (conditional 
R2 = 0.29), and the part related to the fixed effects alone (marginal R2) is 0.05. The 
model’s intercept, corresponding to outcome = neg, is at 64.03 (95 % CI [54.48, 73.57], 
t(68) = 13.39, p < .001). Within this model:

The effect of outcome [pos] is statistically significant and positive (beta = 11.22, 95 % 
CI [0.81, 21.64], t(68) = 2.15, p = 0.035; Std. beta = 0.43, 95 % CI [0.03, 0.83])

Standardized parameters were obtained by fitting the model on a standardized ver-
sion of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using 
Kenward-Roger standard errors.

Second, I found a general modality effect between the AI and non-AI cases. There-
fore, I fitted a linear mixed model (estimated using REML and nloptwrap optimizer) 
to predict responsibility ratings with the AI adviser’s modality as the only independent 
variable (formula: value ~ modality). The model included ParticipantId as a random 
effect (formula: ~1 ParticipantId). The model’s total explanatory power is substantial 
(conditional R2 = 0.33), and the part related to the fixed effects alone (marginal R2) is 
0.08. The model’s intercept, corresponding to modality = No_AI, is at 77.00 (95 % CI 
[67.52, 86.48], t(67) = 16.21, p < .001). Within this model:
The effect of modality [Sensory_AI] is statistically significant and negative (beta = 
 -14.39, 95 % CI [-26.86, -1.92], t(67) = -2.30, p = 0.024; Std. beta = -0.55, 95 % CI [-1.03, 
 -0.07])

The effect of modality [Linguistic_AI] is statistically significant and negative (beta 
= -15.06, 95 % CI [-27.52, -2.59], t(67) = -2.41, p = 0.019; Std. beta = -0.58, 95 % CI [-1.06, 
 -0.10])

Standardized parameters were obtained by fitting the model on a standardized ver-
sion of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using 
Kenward-Roger standard errors.

Discussion
Before running the pilot, I had two research questions: 1. Is responsibility attribution of 
the human advisee dependent on the presence of an AI adviser? 2. Does the appearance 
of an AI adviser matter? 3. Is there an outcome effect in human-AI advisory settings?

To answer the first research question, I tested the responsibility ratings of human 
agents in medical scenarios. I compared scenarios where no AI adviser was present with 
scenarios where an AI adviser was present and whether the modality of the AI advice 
was different. In fact, I compared scenarios where the AI advice was linguistic with sce-
narios where the AI advice was sensory. Only examining modality variation irrespective 
of the outcome revealed a significant difference between no-AI and each AI adviser.
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Asking participants to allocate responsibility to the human surgeon attempting a 
tumour operation revealed no significant tendencies. There is a general tendency for 
the human surgeon to receive more responsibility when he is alone than when he 
receives either linguistic or sensory AI advice. However, when considering outcome 
variation, the tendency no longer persists. When accounting for a possible difference 
in positive or negative outcome scenarios, human agents were judged responsible with 
or without an AI adviser.

Second, I tested whether AI advisers’ different appearances influenced the human 
user’s responsibility ratings: a more agent-like, linguistic AI adviser and a more tool-
like, sensory AI adviser. The goal was to identify the main driver behind responsibility 
attribution. Is AI the driver behind a shift in responsibility attribution, or is it how the 
advice is presented? I found neither an effect nor a general trend of the advice modality 
influencing responsibility ratings.

To answer the third research question, I compared the responsibility ratings of 
human agents in medical scenarios when the outcome was negative – the patient dies 
 – with scenarios where the outcome was positive – the patient recovers. I expected the 
possible emergence of an outcome bias from the literature, so I introduced a binary 
outcome variation to the experiment. The surgery could either go well, resulting in a 
positive outcome where the patient fully recovers or badly, resulting in a negative out-
come where the patient dies.
While I found a general outcome and a general modality effect, the outcome effect was 
not replicated in the complex model.

Even though the results discussed above are tangential evidence, given the small 
sample size and effect size, they highlight the relevance of the research questions. Some-
thing happens to the responsibility of the human user when an AI adviser is introduced, 
and the user’s responsibility is lower with an AI adviser than without.

Limitations
While I observed a general main effect of the outcome and a general difference between 
conditions where the AI adviser was present rather than absent, no significance was 
observed in the complex model. One likely explanation is the small sample size and 
small effect size. Moral judgments are inherently noisy as valid answers are spread 
across the full range of the measurement scale. The problem could be amplified given 
that not observing any interaction effects in the larger model.

Another problem, which could arise and be prevented even at a small sample size, is 
a possible misunderstanding in the measured, dependent variable. Responsibility rat-
ings for some might refer to causal responsibility, while for others, responsibility ratings 
might refer to moral responsibility ratings. Moral responsibility is a multifaceted concept 
comprising causal and moral components (Chockler and Halpern 2004) and, therefore, 
hard to measure with a single scale. Some researchers have argued that using blame as a 
proxy for moral responsibility can provide more accurate results than asking for moral 
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responsibility directly (Malle, Guglielmo, and Monroe 2014). Blame arguably provides 
a less confounded moral assessment than moral responsibility. Others have argued that 
blaming others is a confounded process (Cushman 2008). Therefore is no perfect solu-
tion to the problem of measuring responsibility judgments most accurately but moving 
to a more explicit moral component in the form of blame and praise might help.

Conclusion
In the first pilot, I explored the present AI adviser’s general effect on a human advi-
see’s responsibility ratings. I used an online study with a mixed experimental design to 
elicit responsibility judgements using vignettes in medical scenarios. I found no sig-
nificant effects when considering all experimental factors using a mixed linear model. 
I also found no notable difference in experimental conditions across experimental 
blocks. However, some notable trends emerged through simplified and more general 
mixed linear models. As expected from the literature, the outcome variation influenced 
responsibility ratings. The human surgeon was generally considered more responsible if 
the surgery went well and the patient fully recovered than when the surgery went badly 
and the patient died. Similarly, the general presence of an AI adviser influenced the 
responsibility ratings. Having no AI adviser present generally increased the attributed 
responsibility of the human surgeon compared to when the AI adviser was present. The 
modality of the AI adviser did not affect the responsibility ratings.

The overall experimental pattern – though still inconclusive given the lack of overall 
significant results – is promising, as observed general trends match the previous expec-
tations and findings of the literature. Having an adviser diminishes one’s credit, and 
people are held more responsible for positive rather than negative outcomes.

As a next step, it is essential to eliminate a possible confound from the experimen-
tal study. As discussed above, the measured variable could have been misunderstood, 
and participants might have taken responsibility ratings to refer to causal and not 
moral responsibility ratings. In order to test whether the measured, dependent vari-
able influenced the observed trends and effects, I ran a subsequent pilot examining 
the general effect of a present AI adviser on the blame and praise ratings of a human 
advisee – retaining the experimental design but replacing responsibility ratings with 
blame and praise ratings, depending on the outcome scenario.

3.2.2 Pilot 2

Introduction
The first pilot explored an AI adviser’s general effects on a human advisee’s responsibil-
ity ratings. I used medical scenarios as the most realistic and plausible use case for AI-
assisted decision-making scenarios. I tested vignette-based responsibility judgements  
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of human agents performing a medical surgery in a mixed experimental design. Pilot 
1 showed two things. First, the human surgeon was generally seen as more responsible 
for the outcome when the outcome was positive rather than negative, which aligns with 
the expected outcome bias. Second, the human surgeon was judged more responsible 
without an AI adviser than with one. This overall trend is also expected – demonstrating 
that the control condition of having no AI works. However, the pilot left some questions 
unanswered. Can the observed overall trends be simply explained by a misunderstand-
ing? Participants might have interpreted the measured responsibility ratings as refer-
ring to the intended moral responsibility or a more basic causal responsibility rating.

While causal responsibility refers to the causal link between the agent and the out-
come, moral responsibility is more extensive. Moral responsibility presupposes a causal 
link between the agent and the outcome – at least to a certain degree -the agent’s action’s 
role in bringing about the outcome and a moral evaluation of that action. The first 
pilot did not specify the moral nature of the responsibility judgment, and it was up to 
the participant to determine which responsibility was asked for. In order to eliminate 
the risk of a possible dependent variable confound, I ran a second pilot to back up the 
validity of the previously observed trends and the overall experimental design. The 
second pilot retained the experimental design, material, and participant recruitment 
but replaced the measured variables. Instead of measuring responsibility ratings, the 
second pilot measured blame and praise ratings – blame in case of a negative outcome 
and praise in case of a positive outcome. This change is due to the explicit moral nature 
of the measured variables. Blame and praise express explicit moral judgements and 
abstract away a causal link between the agent and the outcome. A negligent manager 
of an oil firm, for example, might be blamed for an oil leak in one of the new transport 
ships in the North Sea, even though he is not causally responsible for the oil leak. The 
observed overall trends of pilot 1 would hold and be even strengthened if the same 
trends were observed in the second pilot, as this would mean that the responsibility 
measurement tracked moral responsibility rather than mere causal responsibility. If the 
observed trends from the blame/praise ratings differed from the responsibility ratings 
in pilot 1, then the responsibility ratings of pilot 1 might more plausibly track some 
form of causal responsibility.

I acknowledge that the blame and praise judgments are not symmetrical expressions 
of blaming/praising given a variation in outcome (positive, negative) (Guglielmo and 
Malle 2019). Instead, blame and praise judgments can be explained by different psy-
chological tendencies. Judgments of blame typically track the willingness to punish the 
perpetrator (Cushman 2015, 2008). Judgments of praise signal a willingness to form 
cooperative alliances and an underlying prosocial motivation (R. A. Anderson, Crock-
ett, and Pizarro 2020). However, in both cases, blame and praise judgments indicate 
how the judged person’s moral character is perceived. Comparing the perception of 
moral character across experiments with a variation in outcome can provide insights 
into whether and how moral character is judged differently based on the variation of 
experimental conditions (AI status, AI modality).
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Methods

Experimental design
Same experimental design as Pilot 1.

Materials and Procedure
Same procedure as pilot 1.

Materials
Mostly similar materials as pilot 1.
The only change was a change in the measurement variables. Instead of recording par-
ticipant responses on a 100-point responsibility scale, participants were asked to judge 
the blame or praise of the human agent (from 0 % to 100 % blame/praise) – respective 
to the outcome condition. If the outcome condition was negative (patient dies), par-
ticipants were asked to assess the blame of the human agent. If the outcome condition 
was a positive outcome (patient survives), participants were asked to assess the praise 
of the human agent.

Data analysis
Same data analysis plan as pilot 1.

Participants
I recruited a total of 12 participants from Prolific. No participants were excluded. 58 % 
of the participants were male and 42 % were female. 75 % of the participants had a 
bachelor’s degree or higher. The mode and median age group was 18 to 24 years old.

Stimuli and procedures
After a language comprehension test, participants were familiarised with the structure 
of the main experiment and the measurement scales. Then, participants completed 
a practice trial and continued with the main experiment. Here, they were presented 
with a text vignette and then asked to rate the measured variable (blame/praise) as 
accurately as possible. The vignette scenarios varied in outcome and AI advice within 
a 3x2 mixed design.

Results

Main effects 
I fitted a linear mixed model (estimated using REML and nloptwrap optimizer) to pre-
dict blame and praise ratings with outcome and AI advise modality as the independent 
variables (formula: value ~ outcome * modality). The model included ParticipantId as a 
random effect (formula: ~1 ParticipantId). The model’s total explanatory power is sub-



40 3 AI Advisers

stantial (conditional R2 = 0.31), and the part related to the fixed effects alone (marginal 
R2) is 0.24. The model’s intercept, corresponding to outcome = neg and modality = Lin-
guistic_AI, is at 65.41 (95 % CI [47.05, 83.76], t(32) = 7.26, p < .001). Within this model:

The effect of outcome [pos] is statistically non-significant and positive (beta = 20.96, 
95 % CI [-19.79, 61.72], t(32) = 1.05, p = 0.303; Std. beta = 0.75, 95 % CI [-0.71, 2.22])

The effect of modality [No_AI] is statistically non-significant and negative (beta 
= -4.21, 95 % CI [-27.76, 19.34], t(32) = -0.36, p = 0.718; Std. beta = -0.15, 95 % CI [-1.00, 
0.70])

The effect of modality [Sensory_AI] is statistically non-significant and negative (beta 
= -0.04, 95 % CI [-40.79, 40.72], t(32) = -1.88e-03, p = 0.999; Std. beta = -1.35e-03, 95 % 
CI [-1.47, 1.47])

The effect of outcome [pos] × modality [No_AI] is statistically non-significant and 
positive (beta = 14.04, 95 % CI [-32.32, 60.40], t(32) = 0.62, p = 0.542; Std. beta = 0.51, 
95 % CI [-1.16, 2.17])

The effect of outcome [pos] × modality [Sensory_AI] is statistically non-significant 
and negative (beta = -18.30, 95 % CI [-78.24, 41.64], t(32) = -0.62, p = 0.538; Std. beta = 

-0.66, 95 % CI [-2.82, 1.50])
Standardized parameters were obtained by fitting the model on a standardized ver-

sion of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using 
a Wald t-distribution approximation.

Trends: outcome 
I fitted a linear mixed model (estimated using REML and nloptwrap optimizer) to pre-
dict value with outcome (formula: value ~ outcome). The model included ParticipantId 
as random effect (formula: ~1 ParticipantId). The model’s total explanatory power is 
moderate (conditional R2 = 0.20) and the part related to the fixed effects alone (mar-
ginal R2) is of 0.14. The model’s intercept, corresponding to outcome = neg, is at 63.30 
(95 % CI [51.01, 75.59], t(36) = 10.45, p < .001). Within this model:

The effect of outcome [pos] is statistically significant and positive (beta = 20.65, 95 % 
CI [4.52, 36.78], t(36) = 2.60, p = 0.014; Std. beta = 0.74, 95 % CI [0.16, 1.32])

Standardized parameters were obtained by fitting the model on a standardized ver-
sion of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using 
a Wald t-distribution approximation.

Trends: modality 
I fitted a linear mixed model (estimated using REML and nloptwrap optimizer) to pre-
dict value with modality (formula: value ~ modality). The model included ParticipantId 
as random effect (formula: ~1 ParticipantId). The model’s total explanatory power is 
weak (conditional R2 = 0.05) and the part related to the fixed effects alone (marginal 
R2) is of 0.03. The model’s intercept, corresponding to modality = No_AI, is at 78.70 
(95 % CI [65.84, 91.56], t(35) = 12.42, p < .001). Within this model:



3.2 Experimental journey: pilots 41

The effect of modality [Sensory_AI] is statistically non-significant and negative (beta 
= -11.20, 95 % CI [-33.01, 10.61], t(35) = -1.04, p = 0.304; Std. beta = -0.40, 95 % CI [-1.19, 
0.38])

The effect of modality [Linguistic_AI] is statistically non-significant and negative 
(beta = -9.10, 95 % CI [-30.91, 12.71], t(35) = -0.85, p = 0.403; Std. beta = -0.33, 95 % CI 
[-1.11, 0.46])

Standardized parameters were obtained by fitting the model on a standardized ver-
sion of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using 
a Wald t-distribution approximation.

Discussion
The goal of the second pilot was to verify whether the overall trends observed in pilot 1 
were due to a misunderstanding of the measured variable. The misunderstanding which 
could have guided the ratings was a possible confound between attributing moral and 
mere causal responsibility to the observed human agent. Replacing responsibility rat-
ings with a more morally explicit blame/praise rating in pilot 2 was designed to check 
whether the explicit moral judgements were in line with the observed trends of the 
responsibility ratings from pilot 1. If the trends of pilot 1 matched the observed trends 
from pilot 2, then the responsibility ratings from the pilot track moral responsibility 
and provide a strong indication of how the AI adviser is perceived. If the trends did not 
match, then the responsibility ratings from pilot 1 more plausibly track the causal link 
between agent and outcome, i.e. causal responsibility, and do not reveal much about 
how the AI adviser is perceived.

Similarly to the first pilot, the second pilot demonstrated no significant effects of 
blame/praise ratings of the human surgeon across conditions. When the AI adviser 
was present, the human advisee was judged as blame-/praiseworthy when the advice 
was provided in a linguistic or a sensory format. When the outcome was negative, the 
human surgeon was judged as blameworthy as when AI was present or when it was 
absent. This holds for both linguistic and sensory advice. The same effect occurred 
when the outcome was positive: the human surgeon was judged as praiseworthy when 
AI was present or absent – both for linguistic or sensory advice.

Comparing the overall trends from the first with the second pilot, some notable 
similarities and differences emerge. Similarly to pilot 1, blame/praise ratings followed a 
similar sensitivity to the outcome variable. When the outcome was positive, the human 
surgeon was praised for the outcome, and when the outcome was negative, the surgeon 
was blamed less. However, in contrast to pilot 1, the human surgeon was not blamed/
praised differently when the AI adviser was not present to when the AI adviser was 
present – in either linguistic or sensory AI conditions.

With conflicting results, aggregating the dataset from pilot 1 and pilot 2 should 
provide more clarity on the overall effects. If blame/praise judgements of pilot 2 are in 
line with the responsibility judgements of pilot 1, then a strengthening of the observed 
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pattered should emerge. However, this was not the case. The only apparent significant 
difference was the presence of an AI adviser when the outcome was positive. Here, the 
human surgeon is judged more responsible/praiseworthy without an AI adviser than 
with an AI adviser – either linguistic or sensory. Not observing this effect when the 
outcome is negative is at least head-scratching. The presence of an advisor did not 
influence the perceived responsibility/blame of the human surgeon.

Limitations
Overall, similar limitations occur in pilots 1 and 2. The overall data is very noisy, which 
might be due to a small effect and sample size – as discussed in the limitations of pilot 
1. Aggregating the datasets of pilots 1 and 2 even amplified the noise in the data sug-
gesting that the measured responsibility ratings from pilot 1 and blame/praise ratings 
from pilot 2 do not follow the same trends. The mismatch between the pilots is wor-
rying as blame/praise judgments conceptually should at least positively correlate with 
responsibility judgments. The worry about the suitability of the experimental design 
is heightened as the control condition in pilot 2 did not work: the human surgeon was 
as blame-/praiseworthy when the AI adviser was present than when the adviser was 
absent.

One possible explanation for the inconsistency could be the experimental design. I 
used medical high-stakes scenarios consistently across experimental conditions. Par-
ticipants were presented with only slight adaptations of the vignettes matching the 
experimental conditions. The presentation of the first medical vignettes could anchor 
the possible responses to the other treatments.

Conclusion
The second pilot extended the first pilot by replacing the measured responsibility vari-
ables with blame and praise measurements. Using the same experimental design, the 
second pilot, similarly to the first pilot, found no significant effects on the outcome 
 – whether the patient fully recovers or dies – or the kind of AI adviser present. While 
the first pilot showed some promising trends, s.a. a general outcome effect (responsi-
bility ratings were higher when the outcome was positive instead of when the outcome 
was negative) and an adviser-presence effect (responsibility ratings were higher when 
the AI adviser was absent instead of when it was present), the second pilot did only 
demonstrate an overall outcome effect. Pilot 2 did not replicate the findings from pilot 
1. This is surprising as moral judgments of blame and praise should correlate at least 
weakly with judgements of responsibility – and not behave independently, leading to 
less significant results when pooled together. The absence of an adviser effect points 
to a possible weakness of the experimental design. To confirm or disconfirm the effect 
of AI advisers on the perceived responsibility of the human agent, varying the experi-
mental design could help. The subsequent pilot did just that.
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3.2.3 Pilot 3

Introduction
In pursuit of understanding the influence of an AI adviser on the perceived moral 
responsibility of its human user, the first pilot tested the perceived user’s responsibil-
ity for either a positive or a negative outcome when advised by either none, a sensory 
or a linguistic AI adviser. The second pilot sought to deconfound a possible misun-
derstanding in the measured variable by replacing responsibility with blame/praise 
ratings. However, both pilots faced significant limitations. In addition to small effect 
and sample sizes, both pilots had opposing effect directions – even though at least con-
ceptually blame/praise and responsibility judgments should align conceptually. The 
experimental design of presenting participants with highly similar, high-stakes medi-
cal decisions might have been the confounding reason. Given the public discourse on 
AI in medical decision-making, participants might have had mixed reactions to med-
ical assisted scenarios. The first presented medical scenario also might have anchored 
participants’ responses.

In order to explore whether the difference in blame/praise and responsibility rat-
ings is genuine or due to an insufficient experimental design, pilot 3 used a diverse set 
of real-life examples in a 3x2 within-subject experimental design to test the perception 
of the human user.

To further qualify the perception of the human user and the AI adviser, the pilot 
expanded the measurements to the human user’s blame/praise and causal respon-
sibility and the AI’s level of informativity. The distinction between blame/praise 
and causal responsibility should reveal any moral or mere causal ambiguity in the 
previous two pilots. The level of informativity of the AI adviser introduced a pos-
sible tool-like dimension to the AI adviser. If the AI adviser’s appearance mat-
tered, I would expect to see a difference in how informative the AI advisers were.

Methods

Experimental design
I conducted one online study (n = 50) to elicit judgements on blame/praise, causal 
responsibility, and advice informativity in human-AI-assisted scenarios. The study 
used hypothetical vignettes that describe a scenario with a human agent and possibly 
an artificial assistant (see Appendix A for details on vignettes). The artificial assistant, 
if present, was AI-powered and provided either sensory or linguistic advice. Sensory 
advice comprised tactile stimulation and auditory signals. Linguistic advice consisted 
of verbal sounds. For the study, I varied two conditions with two and three factors – 
resulting in a 3x2 within-subject experimental design. The first condition, with three 
factors, captures the modality of the AI advice. The AI advice could either be linguistic, 
sensory, or not present. The second condition, with two factors, captures the outcome 
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of the action in question. The outcome was either positive – when the action was suc-
cessful – or negative – when the action was unsuccessful. The threefold variation in AI 
advice modality enables a comparison between a control case, where no AI was pre-
sent, with either kind of AI adviser. The outcome variation further controlled for any 
possible outcome bias.

The within-subject design was chosen to reduce the overall random noise from 
sampling many different participants. As each participant brings their background 
knowledge and assumptions to the experiment, having many different participants also 
means having many different background assumptions, possibly covering up an oth-
erwise real difference between experimental conditions. Sampling fewer participants 
with more data points reduce the experiment’s overall noise. Obvious challenges for 
within-subject designs are the increased likelihood of learning and a possible knowl-
edge transfer across conditions. The participant might become sensitive to the experi-
mental treatment and, coloured with an overall desire to provide consistent responses, 
adapt their responses based on previous ones. However, given that noise in the data 
has been a potential issue for both previous pilots, running a full within-subject exper-
imental design with the same experimental conditions should reveal the underlying 
trends of the experiment.

Materials
Six different vignettes/scenarios were used – each matching one out of six experimental 
conditions. The vignettes presented accounts of the situation, including the adaptation 
of the experimental conditions of an AI adviser and the outcome. After the vignette pre-
sentation, questions about the causal responsibility, blame/praise of the human agent, 
and the informativity of the AI’s advice were presented – respective of whether the out-
come was positive or negative and whether the AI was present or not. The changes in 
the vignette included a variation in the presence of the AI’s advice (sensory advice, lin-
guistic advice, no AI) and in the outcome of the procedure (positive, human lives; nega-
tive, human dies) (see supplementary methods for detailed vignettes). The order of the 
presented vignettes as well as the order of the accompanying dependent measurements 
were fully randomised. Responses were recorded on a 100-point scale using sliders (from 
0 to 100): blame/praise (‘X is’ – from 0 – not blameworthy/praiseworthy- to 100 – fully 
blameworthy/praiseworthy), causal responsibility (‘To what extent do you think X caused 
Y’s recovery/death?’ – from 0 – not at all- to 100 – completely), and AI informativity 
(’How informative do you think the AI advice was? – 0 – very little-, to 100 – very much).

Data analysis
I analysed our data using a mixed linear model (lmer) from the lme4 library (Bates 
et al. 2015) in RStudio (Team 2021) for each of the measured variables – blame/
praise, causal responsibility, AI informativity. These glm models were defined by 
lmer(value ~ outcome  modality + (1ParticipantId)).
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Participants
I recruited a total of 50 participants from Prolific service. No participants were excluded. 
54 % of the participants were male, 44 % were female, and 2 % stated other. 66 % of the 
participants had a bachelor’s degree or higher. The mode and median age group was 
18 to 24 years old.

Stimuli and procedures
After a language comprehension test, participants were familiarised with the structure 
of the main experiment and the measurement scales. Then, participants completed a 
practice trial and continued with the main experiment. Here, they were presented with 
a text vignette and then asked to rate the measured variables (responsibility, blame/
praise, AI informativity) as accurately as possible. The vignette scenarios varied in 
outcome and AI advice within a 3x2 mixed design. After completing all the presented 
vignettes, participants were asked basic demographic questions about their age, gender, 
and education. Subsequently, the participants were debriefed.

Results

Blame/Praise model
I fitted a linear mixed model (estimated using REML and nloptwrap optimizer) to 
predict blame/praise ratings with outcome and AI advice modality as the independent 
variables (formula: value ~ outcome * modality). The model included ParticipantId as 
random effect (formula: ~1 ParticipantId). The model’s total explanatory power is sub-
stantial (conditional R2 = 0.44) and the part related to the fixed effects alone (marginal 
R2) is of 0.21. The model’s intercept, corresponding to outcome = Negative, is at 56.22 
(95 % CI [48.25, 64.19], t(292) = 13.88, p < .001). Within this model:

The effect of outcome [Positive] is statistically significant and positive (beta = 32.90, 
95 % CI [23.41, 42.39], t(292) = 6.82, p < .001; Std. beta = 1.03, 95 % CI [0.73, 1.32])

The effect of modality [Linguistic] is statistically non-significant and negative (beta 
= -0.66, 95 % CI [-10.15, 8.83], t(292) = -0.14, p = 0.891; Std. beta = -0.02, 95 % CI [-0.32, 
0.28])

The effect of modality [Sensory] is statistically non-significant and negative (beta 
= -3.76, 95 % CI [-13.25, 5.73], t(292) = -0.78, p = 0.436; Std. beta = -0.12, 95 % CI [-0.41, 
0.18])

The effect of outcome [Positive] × modality [Linguistic] is statistically non-signifi-
cant and negative (beta = -8.52, 95 % CI [-21.94, 4.90], t(292) = -1.25, p = 0.213; Std. beta 
= -0.27, 95 % CI [-0.69, 0.15])

The effect of outcome [Positive] × modality [Sensory] is statistically non-significant 
and negative (beta = -3.54, 95 % CI [-16.96, 9.88], t(292) = -0.52, p = 0.604; Std. beta = 
 -0.11, 95 % CI [-0.53, 0.31])



3.2 Experimental journey: pilots 47

Standardized parameters were obtained by fitting the model on a standardized version 
of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using a 
Wald t-distribution approximation.

Causal responsibility model
I fitted a linear mixed model (estimated using REML and nloptwrap optimizer) to pre-
dict causal responsibility ratings with outcome and AI advice modality as the indepen-
dent variables (formula: value ~ outcome * modality). The model included Participan-
tId as random effect (formula: ~1 ParticipantId). The model’s total explanatory power 
is substantial (conditional R2 = 0.44) and the part related to the fixed effects alone 
(marginal R2) is of 0.25. The model’s intercept, corresponding to modality = Control, 
is at 58.80 (95 % CI [51.89, 65.71], t(292) = 16.75, p < .001). Within this model:

The effect of outcome [Positive] is statistically significant and positive (beta = 36.36, 
95 % CI [27.93, 44.79], t(292) = 8.49, p < .001; Std. beta = 1.28, 95 % CI [0.98, 1.57])

The effect of modality [Linguistic] is statistically non-significant and positive (beta 
= 3.63e-13, 95 % CI [-8.43, 8.43], t(292) = 8.47e-14, p > .999; Std. beta = 2.07e-15, 95 % 
CI [-0.30, 0.30])

The effect of modality [Sensory] is statistically non-significant and positive (beta = 
1.86, 95 % CI [-6.57, 10.29], t(292) = 0.43, p = 0.664; Std. beta = 0.07, 95 % CI [-0.23, 0.36])

The effect of outcome [Positive] × modality [Linguistic] is statistically significant 
and negative (beta = -15.44, 95 % CI [-27.36, -3.52], t(292) = -2.55, p = 0.011; Std. beta =  
 -0.54, 95 % CI [-0.96, -0.12])
The effect of outcome [Positive] × modality [Sensory] is statistically significant and 
negative (beta = -11.98, 95 % CI [-23.90, -0.06], t(292) = -1.98, p = 0.049; Std. beta = 
 -0.42, 95 % CI [-0.84, -2.06e-03])

Standardized parameters were obtained by fitting the model on a standardized ver-
sion of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using 
a Wald t-distribution approximation.

AI informativity model
I fitted a linear mixed model (estimated using REML and nloptwrap optimizer) to pre-
dict AI informativity ratings with outcome and AI advice modality as the independent 
variables (formula: value ~ outcome * modality). The model included ParticipantId as 
random effect (formula: ~1 ParticipantId). The model’s total explanatory power is sub-
stantial (conditional R2 = 0.46) and the part related to the fixed effects alone (marginal 
R2) is of 0.27. The model’s intercept, corresponding to modality = Linguistic, is at 52.30 
(95 % CI [45.15, 59.45], t(194) = 14.42, p < .001). Within this model:

The effect of outcome [Positive] is statistically significant and positive (beta = 30.32, 
95 % CI [21.63, 39.01], t(194) = 6.88, p < .001; Std. beta = 1.02, 95 % CI [0.73, 1.31])
The effect of modality [Sensory] is statistically non-significant and positive (beta = 0.40, 
95 % CI [-8.29, 9.09], t(194) = 0.09, p = 0.928; Std. beta = 0.01, 95 % CI [-0.28, 0.31])
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The effect of outcome [Positive] × modality [Sensory] is statistically non-significant 
and positive (beta = 0.92, 95 % CI [-11.37, 13.21], t(194) = 0.15, p = 0.883; Std. beta = 0.03, 
95 % CI [-0.38, 0.44])

Standardized parameters were obtained by fitting the model on a standardized ver-
sion of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using 
a Wald t-distribution approximation.

Discussion
The adaptation of a full within-subject design and an increase in sample size had its 
expected denoising effect. The previously observed overall trend, which was not signif-
icant in the mixed model accounting for all possible experimental variation, became 
significant in all three overall mixed models in pilot 3. For each dependent measure-
ment – blame/praise, causal responsibility, or even AI informativity – the rating was 
higher when the outcome was positive rather than negative – replicating the self-/
other-serving bias. In other words, the human agent was praised more than blamed  
 – matching the perceived heightened causal responsibility for a positive rather than 
negative outcome.

Surprisingly, the change in experimental design did not bring about other signifi-
cant effects. Ratings differed neither across AI modalities when the AI was present nor 
between cases of a present or absent AI adviser. In other words, participants blamed 
and praised the human agent as much for an outcome as when the agent had or lacked 
an AI adviser. The only notable exception was the significant difference between having 
no vs an AI adviser – irrespective of the advice modality – for the causal responsibility 
judgements. Participants held the human agent more causally responsible for bringing 
about a positive outcome when the human agent acted alone than when an AI system 
advised the human agent. Hence, while the human agent acting alone was not praised 
more, the human agent was seen as more causally connected to the outcome. Par-
ticipants demonstrated a nuanced understanding of responsibility attribution in the 
human-AI advisory setting.

When the AI adviser was present, there was no significant difference between the 
kinds of AI advisers for how informative their advice was.

Limitations
While participants demonstrated the ability to distinguish causal from moral judge-
ments – in the form of causal responsibility vs blame/praise judgements-it is less clear 
whether this understanding is reliable. Only observing the difference between causal 
and moral judgements in the positive but not the negative outcome condition raises 
warning signs about whether the observed effects could have an alternative explanation.
One possible reason could be the scenarios themselves, as some might be more plau-
sible or comparable to others. Six different scenarios were matched with six experimen-
tal conditions, where one scenario always matched with one experimental condition. 
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A possible scenario bias could explain the observed and non-observed effects. Negative 
scenarios might be seen as less plausible or dissimilar to positive ones, and this trend 
might confound the abovementioned observations. Different contexts presented in the 
scenarios might not have been enough to deter a possible scenario bias.

Another possible challenge might be the new experimental manipulation. A full 
within-subject design improved the overall participant noise and increased the risk for 
emerging knowledge effects such as scenario bias. Participants might either become 
highly sensitive or blind to the detailed experimental manipulation and only pick up on 
the most substantial difference across vignettes: the difference in outcome – presented 
as one of the last sentences in the vignette description.

Conclusion
The third pilot adapted a different experimental design – moving from a mixed to a 
full within-subject design -extended the measured variables – to include blame and 
praise as well as causal responsibility judgements-, and moved from a purely medical 
to a diverse, everyday set of scenarios. The third pilot sought to verify whether the 
failure to replicate the findings from pilot 1 in pilot 2 could be explained due to the 
inconsistency in the experimental design. As the pairing of experimental conditions 
of two between-subject groups revealed no difference in the measured responsibility 
ratings across pilots 1 and 2, adapting a full within-subject design was reasonable to 
enhance data quality.

I expected a replication of the outcome effect, where the responsibility ratings of 
the human agent were higher when the outcome was positive rather than negative. I 
found that blame, praise, causal responsibility, and AI informativity ratings were all 
subject to the outcome effect, meaning that when the outcome was positive, the rat-
ings were higher than when the outcome was negative. In other words, the human 
agent was praised more than blamed and held more responsible, and the AI was seen 
as more informative when the outcome was good rather than bad. The presence of the 
AI adviser vs its absence mattered only when the outcome was positive for the causal 
responsibility ratings. In other words, when the outcome was positive, the human 
agent was judged as more causally responsible but not praised more when the AI was 
absent rather than present. The modality of the AI adviser did not affect any measured 
variable in any condition.

To strengthen the findings, addressing the experimental limitations is critical. The 
first change should be testing the robustness of any emerging scenario bias. Therefore, 
the presented scenarios should be adapted to a common theme while retaining as lit-
tle change as possible and similar explanatory power/validity. This allows us to test 
whether the observed difference between the praise and causal responsibility ratings 
is due to a difference in scenarios. Therefore, the next step is a replication study using 
the same experimental design but different background vignettes.
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3.2.4 Pilot 4

Introduction
With increased sample size and a new, within-subject experimental design, the third 
pilot replicated the expected outcome effect across measured variables – observed as 
general trends in the first two pilots. The human user was praised more than he/she 
was blamed. Further, the third pilot showed. However, one crucial limitation emerged. 
All presented scenarios differed in their story, suggesting a possible scenario bias. The 
scenario bias means that the observed results could be caused by the varying scenar-
ios and not – as hoped – by the varying experimental conditions. To counteract this 
problem, the present pilot study tested the same within-subject experimental design 
from pilot 3 but with a similar scenario core instead of a diverse set of scenarios. The 
scenarios from pilot 4 were centred around a driving theme. They adopted minor story 
variations to eliminate possible demand characteristics or carry-over effects across sce-
narios where participants either cognise the experiment’s purpose and subconsciously 
change their behaviour to fit that interpretation or adapt their responses based on 
previously experienced scenarios. If the same effects as in pilot 3 emerged, then the 
observed results from pilot 3 are robust and not subject to a scenario bias. If, on the 
other hand, different effects emerged, then the observed results from pilot 4 might be 
strongly confounded by the presented scenarios.

Methods

Experimental design
Same experimental design as in pilot 3.

Materials
One vignette for an assisted driving scenario was adapted to match the six experimental 
conditions. Each vignette had a unique background story but a similar experimental 
core. The vignettes presented brief accounts of the situation leading to questions about 
individual aspects of moral responsibility for the human driver and the informativity 
of the AI adviser. The main vignette included a human driving within the speed limit 
while an upcoming pedestrian crosses the street out of sight of the human driver. The 
changes to the vignette included a slight variation in the initial background story, a vari-
ation in outcome, and a variation in the AI adviser (see methods for case descriptions 
and supplementary methods for detailed vignettes). The variation in outcome and the 
variation in the AI adviser were the same as in pilot 3. The slight variation in the back-
ground story was introduced to counteract any experimental learning effects. Overall 
the same theme of a car-driving scenario was retained. The dependent measurements 
were the same as in pilot 3.
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Data analysis
Same data analysis plan as in pilot 3.

Participants
I recruited a total of 25 participants from Prolific service. No participants were excluded. 
32 % of the participants were male, 68 % were female, and 4 % stated other. 36 % of the 
participants had a bachelor’s degree or higher. The mode age group was 18 to 24 years 
old. The median age group was 25 to 34 years old.

Stimuli and Procedure
Same stimuli and procedure as in pilot 3.

Results

Blame/Praise model
I fitted a linear mixed model (estimated using REML and nloptwrap optimizer) to predict 
blame/praise ratings with outcome and AI advice modality as the indepentend variables 
(formula: value ~ outcome * modality). The model included ParticipantId as random 
effect (formula: ~1 ParticipantId). The model’s total explanatory power is substantial 
(conditional R2 = 0.40) and the part related to the fixed effects alone (marginal R2)  
is of 0.25. The model’s intercept, corresponding to modality = Control and outcome = 
Negative, is at 58.64 (95 % CI [47.87, 69.41], t(142) = 10.77, p < .001). Within this model:

The effect of outcome [Positive] is statistically significant and positive (beta = 32.48, 
95 % CI [18.85, 46.11], t(142) = 4.71, p < .001; Std. beta = 1.05, 95 % CI [0.61, 1.49])

The effect of modality [Linguistic] is statistically non-significant and negative (beta 
= -11.92, 95 % CI [-25.55, 1.71], t(142) = -1.73, p = 0.086; Std. beta = -0.39, 95 % CI [-0.83, 
0.06])

The effect of modality [Sensory] is statistically non-significant and negative (beta 
= -11.12, 95 % CI [-24.75, 2.51], t(142) = -1.61, p = 0.109; Std. beta = -0.36, 95 % CI [-0.80, 
0.08])

The effect of outcome [Positive] × modality [Linguistic] is statistically non-signif-
icant and negative (beta = -6.96, 95 % CI [-26.24, 12.32], t(142) = -0.71, p = 0.477; Std. 
beta = -0.22, 95 % CI [-0.85, 0.40])

The effect of outcome [Positive] × modality [Sensory] is statistically non-significant 
and negative (beta = -9.68, 95 % CI [-28.96, 9.60], t(142) -0.99, p = 0.323; Std. beta =  
 -0.31, 95 % CI [-0.94, 0.31])

Standardized parameters were obtained by fitting the model on a standardized ver-
sion of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using 
a Wald t-distribution approximation.
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Causal responsibility model
I fitted a linear mixed model (estimated using REML and nloptwrap optimizer) to 
predict causal responsibility ratings with outcome and AI advice modality as the inde-
pentend variables (formula: value ~ outcome * modality). The model included Par-
ticipantId as random effect (formula: ~1 ParticipantId). The model’s total explanatory 
power is substantial (conditional R2 = 0.50) and the part related to the fixed effects 
alone (marginal R2) is of 0.22. The model’s intercept, corresponding to modality = 
Control and outcome = Negative, is at 55.12 (95 % CI [43.19, 67.05], t(142) = 9.13, p < 
 .001). Within this model:

The effect of outcome [Positive] is statistically significant and positive (beta = 37.04, 
95 % CI [23.51, 50.57], t(142) = 5.41, p < .001; Std. beta = 1.10, 95 % CI [0.70, 1.50])

The effect of modality [Linguistic] is statistically non-significant and negative (beta 
= -7.44, 95 % CI [-20.97, 6.09], t(142) = -1.09, p = 0.279; Std. beta = -0.22, 95 % CI [-0.62, 
0.18])

The effect of modality [Sensory] is statistically non-significant and negative (beta 
= -10.72, 95 % CI [-24.25, 2.81], t(142) = -1.57, p = 0.120; Std. beta = -0.32, 95 % CI [-0.72, 
0.08])

The effect of outcome [Positive] × modality [Linguistic] is statistically significant 
and negative (beta = -21.40, 95 % CI [-40.54, -2.26], t(142) = -2.21, p = 0.029; Std. beta 
= -0.64, 95 % CI [-1.20, -0.07])
The effect of outcome [Positive] × modality [Sensory] is statistically non-significant 
and negative (beta = -13.84, 95 % CI [-32.98, 5.30], t(142) = -1.43, p = 0.155; Std. beta =  
 -0.41, 95 % CI [-0.98, 0.16])

Standardized parameters were obtained by fitting the model on a standardized ver-
sion of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using 
a Wald t-distribution approximation.

AI informativity model
I fitted a linear mixed model (estimated using REML and nloptwrap optimizer) to pre-
dict AI informativity ratings with outcome and AI advice modality as the indepentend 
variables (formula: value ~ outcome * modality). The model included ParticipantId 
as random effect (formula: ~1 ParticipantId). The model’s total explanatory power is 
substantial (conditional R2 = 0.56) and the part related to the fixed effects alone (mar-
ginal R2) is of 0.24. The model’s intercept, corresponding to modality = Linguistic and 
outcome = Negative, is at 54.72 (95 % CI [43.07, 66.37], t(94) = 9.33, p < .001). Within 
this model:

The effect of outcome [Positive] is statistically significant and positive (beta = 33.96, 
95 % CI [21.44, 46.48], t(94) = 5.39, p < .001; Std. beta = 1.02, 95 % CI [0.65, 1.40])

The effect of modality [Sensory] is statistically non-significant and negative (beta = 
 -1.80, 95 % CI [-14.32, 10.72], t(94) = -0.29, p = 0.776; Std. beta = -0.05, 95 % CI [-0.43, 
0.32])
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The effect of outcome [Positive] × modality [Sensory] is statistically non-significant 
and negative (beta = -3.56, 95 % CI [-21.27, 14.15], t(94) = -0.40, p = 0.691; Std. beta =  
 -0.11, 95 % CI [-0.64, 0.43])

Standardized parameters were obtained by fitting the model on a standardized ver-
sion of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using 
a Wald t-distribution approximation.

Discussion
The experimental changes introduced by pilot 4 – namely the adaptation of similar 
instead of diverse vignettes – yielded better data quality. Pilot 4 replicated the findings 
of pilot 3 and demonstrated a more consistent difference between the cases where the 
AI adviser was and was not present.

When looking at the causal responsibility ratings, participants judged the human 
driver as more causally responsible when the outcome was positive than when the out-
come was negative. This outcome effect holds with or without an AI adviser – irrespec-
tive of the modality of the AI adviser. This matches the observed pattern from pilot 3: 
when the outcome was positive, the human driver without an AI adviser was rated as 
significantly more causally responsible for the outcome than when an AI adviser was 
present – irrespective of the modality of the AI adviser.
When examining blame and praise ratings, a similar pattern emerges. On the one side, 
the outcome effect is replicated, and the human driver was praised more than blamed 
 – with or without an AI adviser, irrespective of the AI adviser modality. On the other 
hand, unlike in the previous pilots, the difference between the control condition, where 
no AI adviser was present, and either AI adviser condition worked. The human driver 
was praised more for the outcome when acting alone rather than with advice.

Participants judged the sensory and linguistic AI adviser just as informative, and 
this effect holds for negative and positive outcomes. However, AI informativity is also 
subject to the outcome effect. For either the sensory or linguistic AI adviser, the AI 
adviser was judged as more informative when the outcome was positive than when 
the outcome was negative.

Limitations
In pilots 3 and pilot 4, responsibility ratings between cases where an AI adviser was 
present or absent different only when the outcome was positive and also only for causal 
responsibility. Where pilot 4 improves is by expanding the adviser-presence effect to 
moral judgements of praise, where participants judged the human driver more praise-
worthy when driving alone than with an AI adviser. In addition, there is weak evidence 
pointing at a similar difference in blame judgements.

Despite the improvements in data quality from pilot 3 to pilot 4, pilot 4 still has 
some substantial limitations. Since even with mostly consistent experimental vignettes, 
blame/praise and responsibility judgements fail to establish a consistent difference 
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between no and present AI adviser conditions. One reason participants’ responses 
failed to pick up consistently on a difference between vignettes might be the emergence 
of another form of response bias. Participants, presented with different variations of 
a driving scenario, could feel the pressure to remain consistent with their previous 
responses or become more knowledgeable about the experimental manipulations. They 
would evaluate the first presented scenario and then stick with their evaluation for the 
other scenario variations. Even though the novelty of each scenario was emphasised 
in the instructions, a consistency response bias, due to the within-subject design, is 
the most likely explanation for why ratings for human users are similar with or with-
out an AI adviser.

Conclusion
This pilot sought to replicate and improve on the findings of the previous pilot by intro-
ducing minor experimental changes over pilot 4. The changes addressed the potential 
experimental limitations of the previous pilot. The introduced experimental changes 
included adapting a more comparable set of experimental vignettes. The vignettes were 
no longer contextualised in diverse background stories but retained an overall theme of 
a car-driving situation, where the human driver does or does not avoid a fatal accident 
with or without the help of an AI adviser. I expected a replication of the outcome effect 
for all three measured variables: blame/praise, causal responsibility, and AI informa-
tivity. The introduced changes had the desired effect: all of the previous experimental 
effects were replicated, and even some more were found.

As expected, the outcome effect was present across measured variables and condi-
tions. The human driver was judged more causally responsible for avoiding the accident 
than causing it. Likewise, the human driver was praised more than blamed. Similarly, 
the AI adviser was judged as more informative when the accident was avoided rather 
than when the accident occurred. Also, consistent with previous findings, I did not 
observe any difference in the modality of the AI advice when the AI adviser was present.

Where experimental changes in pilot 4 played a role was the consistency of the AI-
presence effect. Previously, whether an AI adviser was present vs absent only affected 
the perceived causal responsibility of the human driver when the accident was avoided 
(positive outcome). In the previous pilot 3, the human driver was seen as more causally 
responsible but not praised for avoiding the accident. This indicated that the reliance 
of the human driver on an adviser dampened the deserved credit at least somewhat. 
In pilot 4, the AI-presence effect now also occurred for praise judgements. The human 
driver was now judged more causally responsible and praiseworthy for avoiding the 
accident. However, the lack of consistency for negative outcome cases raises questions 
about the validity of the experimental design. The supposed control condition where 
no AI adviser is present did not differ consistently from conditions where an AI adviser 
was present.
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3.2.5 Pilot 5

Introduction
Pilot 4 replicated the expected outcome effect across measured variables: the human 
user was praised more than he/she was blamed and more causally responsible for the 
positive than the negative outcome. Pilot 4 therein replicated the significant findings 
of pilot 3. The adaption of a coherent vignette theme – all of the presented scenarios 
were centred on an AI-driving-assistance background vs the diverse set of scenar-
ios from pilot 3 – further improved the experimental findings: as moral blame/praise 
judgments correlated positively with causal responsibility judgments – as the theory of 
moral responsibility suggests. However, some limitations remained. The responsibility 
ratings for the human driver driving alone differed from AI adviser conditions. The 
distinction between advisory and non-advisory conditions is, however, expected. As 
the broad literature on responsibility attribution suggests, responsibility ratings differ 
when the responsible agent is assisted by a human-like agent (Harvey and Fischer 1997; 
Gino 2008; Dalal and Bonaccio 2010; Meshi et al. 2012) or even a tool (Santoni de Sio 
and Mecacci 2021; Douer and Meyer 2020; Flemisch et al. 2012). One likely explanation 
for the lack of distinguishing ratings is a consistency response bias where participants 
tried to retain a consistent responsibility rating for the human user despite changes in 
the experimental conditions. The within-subject design was identified as one possible 
reason for a consistency response bias.

The present pilot sought to overcome the previous limitations by 1. adapting the 
experimental design and 2. broadening the measured variables to the AI adviser and a 
bystander. First, pilot 5 adopted a between-subject design instead of a within-subject 
design. The between-subject design was supposed to reduce response bias – namely 
consistency, carry-over, or desire characteristics effects. Second, to have a more well-
rounded control measurement, pilot 5 introduced additional measurements. Besides 
the human driver’s blame/praise and causal responsibility ratings, pilot 5 also added 
blame/praise and causal responsibility ratings for the AI adviser and an uninvolved 
third party. The extension of the measurements allows for tracking any emergent shift 
in responsibility from a human driver to an artificial agent – or vice versa. As a con-
trol measure, an uninvolved third party is introduced. In the case of the car-driving 
domain of pilot 5, the uninvolved third party is a pedestrian without his/her wrong-
doing, the subject of the driving outcome. A pattern of responsibility sharing would 
emerge if responsibility ratings for the human driver diminished when introduced with 
an AI adviser and the AI adviser retained some responsibility for the outcome. Further, 
the pedestrian is expected to retain little responsibility for the outcome – consistently 
across conditions. The worry that participants might become less accurate at represent-
ing their moral judgements due to having to answer multiple measurements per con-
dition – their concentration might fall off – is mitigated by the reduction of scenarios 
each participant has to face. In other words, while the number of measurements per 
condition increases, the number of scenarios each participant faces minimises to one.
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Pilot 5 retained the car-driving vignettes and focused on the negative outcome condition  
 – since the outcome effect already has been consistently replicated in the previous pilots.

Methods

Experimental design
I conducted an online study (n = 150) to elicit judgements on moral responsibility in 
human-assisted driving scenarios. The study used hypothetical vignettes that describe 
a driving scenario with a human driver and an artificial assistant resulting in a negative 
outcome – an accident (see case description for details on experimental conditions and 
supplementary methods for vignettes of studies 1 and 2). The artificial assistant was AI-
powered. I used a 3x1 between-subject experimental design. I varied one condition – AI 
advice modality – with three factors – no AI adviser, sensory AI adviser, linguistic AI 
adviser. The study compared the participants’ ratings of causal responsibility and blame 
for the AI adviser and human driver. I expected to see three main effects: an agent effect 
(increased involvement in action leads to higher attributed blame and responsibility – 
involvement here corresponds to closeness in bringing about the outcome, e.g. swerving,  
advising to swerve, uninvolved third-party), which could also apply to a difference in 
AI modalities s.t. linguistic advice closer to the external adviser (more removed from 
action) vs sensory advice (closer to agent performing the action).

Materials
One vignette for an assisted driving scenario was adapted to match the three experi-
mental conditions for the study. The vignettes presented brief accounts of the situation 
leading to questions about individual aspects of moral responsibility for the human 
driver, an endangered pedestrian, and the AI adviser. The main vignette included a 
human driver who faces a turn with bad visibility while a pedestrian is crossing the 
street behind the turn and out of sight of the human driver. The changes to the vignette 
included a variation in AI’s modality (see methods for case descriptions and supple-
mentary methods for detailed vignettes). There was no AI adviser in the control con-
dition, and the human was driving alone. In the other two conditions, there was an AI 
adviser who either provided linguistic or sensory advice. Each participant read one 
vignette assigned at random – using counterbalanced block randomisation – and was 
asked to rate the blame and causal responsibility of each agent involved (driver, pedes-
trian, AI adviser if applicable) alongside the level of informativity and effort for using 
the AI adviser (if applicable). Responses were recorded on a 100-point scale using slid-
ers. Comparing the responses across vignettes revealed the effect of the experimental 
manipulations.

Data analysis
I analysed the data using general linear models (glm) from the lme4 library (Bates et 
al. 2015) in RStudio (Team 2021). Every model assumed a binomial distribution for the 
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most accurate fit of the model to the data. In order to fit the model to the data, I nor-
malised the data using min-max normalisation ((xi – min(x)) / (max(x) – min(x))). I 
used two glms for each main measurement (blame, causal responsibility, AI effort, AI 
informativity). These glm models were defined by glm(value ~ modality  agent, fami-
ly=binomial()). For each of the main measurements, two glms were used. One model 
examined the differences between the human driver and pedestrian across all three 
experimental conditions: no AI adviser, sensory AI adviser, linguistic AI adviser. This 
model shows whether 1) the perception of the human driver is affected by the variation 
of the kind of AI adviser and 2) the blame is shifted to a third party – the pedestrian. 
Another model examined the differences between all three agents – driver, pedestrian, 
and AI adviser – when the AI adviser was present. This model explores 1) whether the 
modality of the AI advice influences any of the ratings and 2) whether the AI is blamed 
differently by the human driver and the pedestrian.

Participants
I recruited a total of 150 participants from Prolific service. No participants were 
excluded. 49 % of the participants were male, 50 % were female, and 1 % stated other. 
67 % of the participants had a bachelor’s degree or higher. The mode and median age 
group was 25 to 34 years old.

Stimuli and Procedure
After a language comprehension test, participants were familiarised with the structure 
of the main experiment and the measurement scales. Then, participants completed a 
practice trial and continued with the main experiment. Here, they were first presented 
with a text vignette and then asked to rate the measured variables as accurately as pos-
sible. The vignette scenarios varied in AI adviser modality within a 3x1 in-between sub-
ject design. After an attention check, participants were asked to complete some basic 
demographic questions (age, gender, education).

Results

Blame model
Given the asymmetries in the experimental design, I ran two separate models to test 
any difference in blame ratings across agents (human driver, AI adviser, and pedestrian) 
as accurately as possible. The asymmetry exists because the AI adviser is intentionally 
missing in the control condition as one of three agents. Therefore, the first model com-
pares human driver and pedestrian ratings across all three AI advice modalities (sen-
sory, linguistic, absent). In contrast, the second model compares human driver, pedes-
trian, and AI adviser ratings across two AI advice modalities (sensory and linguistic).

For the first model, I fitted a logistic model (estimated using ML) to predict blame 
ratings with the AI advice modality and the respective agent as fixed effects (formula: 
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value ~ modality * agent). The model’s intercept, corresponding to agent = Driver and 
modality = Control, is at -1.57e-03 (95 % CI [-0.55, 0.55], p = 0.996). Within this model:

The effect of modality [Ling] is statistically non-significant and positive (beta = 0.60, 
95 % CI [-0.19, 1.42], p = 0.140; Std. beta = 0.60, 95 % CI [-0.19, 1.42])

The effect of modality [Sens] is statistically non-significant and positive (beta = 0.47, 
95 % CI [-0.32, 1.27], p = 0.248; Std. beta = 0.47, 95 % CI [-0.32, 1.27])

The effect of agent [Pedestrian] is statistically significant and negative (beta = -1.78, 
95 % CI [-2.79, -0.86], p < .001; Std. beta = -1.78, 95 % CI [-2.79, -0.86])

The effect of modality [Ling] × agent [Pedestrian] is statistically non-significant 
and negative (beta = -0.86, 95 % CI [-2.32, 0.55], p = 0.234; Std. beta = -0.86, 95 % CI 
[-2.32, 0.55])

The effect of modality [Sens] × agent [Pedestrian] is statistically non-significant 
and negative (beta = -0.65, 95 % CI [-2.07, 0.74], p = 0.359; Std. beta = -0.65, 95 % CI 
[-2.07, 0.74])
Standardized parameters were obtained by fitting the model on a standardized version 
of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using a 
Wald z-distribution approximation.

For the second model, I fitted a logistic model (estimated using ML) to predict 
blame ratings with the AI advice modality and the respective agent as fixed effects (for-
mula: value ~ modality * agent). The model’s intercept, corresponding to agent = Driver 
and modality = Ling, is at 0.60 (95 % CI [0.03, 1.21], p = 0.044). Within this model:

The effect of modality [Sens] is statistically non-significant and negative (beta = 
 -0.14, 95 % CI [-0.96, 0.68], p = 0.741; Std. beta = -0.14, 95 % CI [-0.96, 0.68])

The effect of agent [AI] is statistically non-significant and negative (beta = -0.78, 95 % 
CI [-1.61, 0.02], p = 0.058; Std. beta = -0.78, 95 % CI [-1.61, 0.02])

The effect of agent [Pedestrian] is statistically significant and negative (beta = -2.64, 
95 % CI [-3.78, -1.65], p < .001; Std. beta = -2.64, 95 % CI [-3.78, -1.65])

The effect of modality [Sens] × agent [AI] is statistically non-significant and nega-
tive (beta = -0.51, 95 % CI [-1.67, 0.65], p = 0.394; Std. beta = -0.51, 95 % CI [-1.67, 0.65])

The effect of modality [Sens] × agent [Pedestrian] is statistically non-significant and 
positive (beta = 0.21, 95 % CI [-1.27, 1.70], p = 0.780; Std. beta = 0.21, 95 % CI [-1.27, 1.70])

Standardized parameters were obtained by fitting the model on a standardized ver-
sion of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using 
a Wald z-distribution approximation.

Causal Responsibility model
As for the blame models, I ran two different causal responsibility models to test any 
difference in blame ratings across agents (human driver, AI adviser, and pedestrian) as 
accurately as possible. Therefore, the first model compares human driver and pedes-
trian ratings across all three AI advice modalities (sensory, linguistic, absent). In  
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contrast, the second model compares human driver, pedestrian, and AI adviser ratings 
across two AI advice modalities (sensory, and linguistic).
For the first model, I fitted a logistic model (estimated using ML) to predict causal 
responsibility ratings with the AI advice modality and the respective agent as fixed 
effects (formula: value ~ modality * agent). The model’s intercept, corresponding to 
modality = Control and agent = Driver, is at 0.12 (95 % CI [-0.43, 0.67], p = 0.675). 
Within this model:

The effect of modality [Ling] is statistically non-significant and positive (beta = 0.45, 
95 % CI [-0.35, 1.26], p = 0.275; Std. beta = 0.45, 95 % CI [-0.35, 1.26])

The effect of modality [Sens] is statistically non-significant and positive (beta = 0.19, 
95 % CI [-0.60, 0.98], p = 0.636; Std. beta = 0.19, 95 % CI [-0.60, 0.98])

The effect of agent [Pedestrian] is statistically significant and negative (beta = -1.77, 
95 % CI [-2.75, -0.88], p < .001; Std. beta = -1.77, 95 % CI [-2.75, -0.88])

The effect of modality [Ling] × agent [Pedestrian] is statistically non-significant and 
negative (beta = -1.03, 95 % CI [-2.54, 0.39], p = 0.162; Std. beta = -1.03, 95 % CI [-2.54, 
0.39])

The effect of modality [Sens] × agent [Pedestrian] is statistically non-significant and 
negative (beta = -0.52, 95 % CI [-1.93, 0.85], p = 0.458; Std. beta = -0.52, 95 % CI [-1.93, 
0.85])

Standardized parameters were obtained by fitting the model on a standardized ver-
sion of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using 
a Wald z-distribution approximation.

For the second model, I fitted a logistic model (estimated using ML) to predict 
causal responsibility ratings with the AI advice modality and the respective agent as 
fixed effects (formula: value ~ modality * agent). The model’s intercept, corresponding 
to modality = Ling and agent = Driver, is at 0.56 (95 % CI [-7.09e-03, 1.17], p = 0.058). 
Within this model:

The effect of modality [Sens] is statistically non-significant and negative (beta = 
 -0.26, 95 % CI [-1.07, 0.55], p = 0.534; Std. beta = -0.26, 95 % CI [-1.07, 0.55])

The effect of agent [AI] is statistically significant and negative (beta = -0.96, 95 % CI 
[-1.79, -0.15], p = 0.021; Std. beta = -0.96, 95 % CI [-1.79, -0.15])

The effect of agent [Pedestrian] is statistically significant and negative (beta = -2.80, 
95 % CI [-4.03, -1.77], p < .001; Std. beta = -2.80, 95 % CI [-4.03, -1.77])

The effect of modality [Sens] × agent [AI] is statistically non-significant and negative 
(beta = -0.28, 95 % CI [-1.45, 0.89], p = 0.642; Std. beta = -0.28, 95 % CI [-1.45, 0.89])

The effect of modality [Sens] × agent [Pedestrian] is statistically non-significant and 
positive (beta = 0.51, 95 % CI [-1.00, 2.06], p = 0.506; Std. beta = 0.51, 95 % CI [-1.00, 
2.06])

Standardized parameters were obtained by fitting the model on a standardized ver-
sion of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using 
a Wald z-distribution approximation.
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AI informativity model
I fitted a logistic model (estimated using ML) to predict AI informativity ratings with 
the AI advice modality as a fixed effect (formula: value ~ modality). The model’s inter-
cept, corresponding to modality = Ling, is at -0.57 (95 % CI [-1.18, -4.53e-04], p = 0.055). 
Within this model:

The effect of modality [Sens] is statistically non-significant and positive (beta = 0.59, 
95 % CI [-0.20, 1.41], p = 0.148; Std. beta = 0.59, 95 % CI [-0.20, 1.41])

Standardized parameters were obtained by fitting the model on a standardized ver-
sion of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using 
a Wald z-distribution approximation.

AI effort model
I fitted a logistic model (estimated using ML) to predict AI effort ratings with the AI 
advice modality as a fixed effect (formula: value ~ modality). The model’s intercept, cor-
responding to modality = Ling, is at 0.49 (95 % CI [0.21, 0.78], p < .001). Within this model:
The effect of modality [Sens] is statistically non-significant and positive (beta = 0.13, 
95 % CI [-0.27, 0.54], p = 0.513; Std. beta = 0.13, 95 % CI [-0.27, 0.54])

Standardized parameters were obtained by fitting the model on a standardized ver-
sion of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using 
a Wald z-distribution approximation.

Discussion
As expected, the human driver was blamed significantly more for the accident than 
the pedestrian. This effect holds across experimental conditions: whether or not an AI 
adviser is present – irrespective of the modality of the AI adviser. Blame ratings for the 
human driver or the pedestrian did not differ across conditions. In other words, the 
human driver and the pedestrian were blamed as much for the accident when an AI 
was present – irrespective of its modality – or when the AI was absent.

Causal ratings underscore the same trend. The human driver was judged as more 
causally responsible than the pedestrian across experimental conditions and irrespec-
tive of whether an AI adviser was present or given an AI adviser how it delivered the 
advice.

When the AI adviser was present, comparing the blame and causality of all three 
agents revealed some additional nuances. Overall, the AI adviser was blamed less than 
the human driver and more than the pedestrian. Especially in the case of a sensory AI 
adviser, the human driver was blamed significantly more than the AI adviser. Causal 
responsibility ratings mirrored blame ratings, and the human was also seen as signifi-
cantly more causally responsible for the accident than the AI adviser or the pedestrian.

Examining the perceived ease of use and level of informativity, participants judged 
both to be similar for the linguistic and the sensory AI adviser.
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The consistently small amount of blame and causal responsibility attributed to the 
pedestrian demonstrates the robustness of the blame and responsibility attribution 
ratings for both the human driver and the AI adviser. No scapegoat exists, and most 
blame and responsibility are accounted for. Arguably, other parties could be seen as 
sharing responsibility for the accident – the developers of the AI adviser, the car man-
ufacturer, the road designers etc. – but given the lack of involvement in bringing about 
the particular accident, they are neglected as relevant parties. They mainly could not 
have brought about a different outcome – there is nothing they could have done.

Limitations
One great advantage of the newly adapted between-subject design is that the con-
trol condition works. The human driver is reliably judged differently when comparing 
scenarios with and without an AI adviser. In addition, no blame diffusion occurred 
towards the third-party pedestrian, whose involvement never changed. The pedestrian 
is held similarly not blameworthy for the outcome across experimental conditions. 
Any allocation of blame was, therefore, the result of a human-AI-adviser pairing. The 
human and the AI adviser are also significantly more responsible for the outcome than 
the pedestrian.

However, despite the desired effects, there are also systematic limitations. It is 
unclear whether and how blame and responsibility for the human driver differ across 
conditions. Though a non-significant trend exists, blame and responsibility ratings 
are lower in the control condition where no AI adviser was present than in the exper-
imental condition where a linguistic AI is present. This could be a problem of a small 
sample and effect size. If found significant, this would mean that AI is perceived as a 
tool more than an agent. While generally, a present AI adviser lowers the responsibility 
of a human user, a present sensory, tool-like AI adviser would simultaneously heighten 
the responsibility for the human user as the user is now more able to avoid the negative 
outcome. However, it would need an increase in sample size to conclude.

Conclusion
The experimental design changes introduced by pilot 5 – moving from a within to a 
between-subject design and expanding the measured variables – have substantially 
improved results. The pilot found that responsibility and blame are allocated across only 
the involved human user and the AI adviser. A third-party pedestrian, the target of the 
resulting accident, was consistently neither blameworthy nor causally responsible for 
the accident – in contrast to the human user and the AI adviser. The human user was 
seen as more blameworthy and causally responsible than the AI adviser when present. 
However, given the small sample and effect size, little can be said about the significance 
of the results. It remains, therefore, unclear whether results can be replicated and even 
extended to the other measured variables. This holds especially for AI informativity 
and effort ratings where no trend emerged.
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3.2.6 Pilot 6

Introduction
Pilot 6 builds on the motivation and findings from pilot 5 but addresses the limitations 
of pilot 5 by increasing the sample size. Pilot 6 asks how responsibility is allocated 
between multiple agents (human driver, AI adviser and pedestrian) in a between-sub-
ject design. As in pilot 5, pilot 6 expects that A pattern of responsibility sharing would 
emerge if responsibility ratings for the human driver diminished when introduced 
with an AI adviser and the AI adviser retained some responsibility for the outcome. 
The pedestrian is also expected to retain little responsibility for the outcome – consis-
tently across conditions.

 Methods

Experimental design
Same as in pilot 5.

Materials
Same as in pilot 5.

Data analysis 
Same as in pilot 5.

Participants
I recruited a total of 464 participants from Prolific service. No participants were 
excluded. 47  % of the participants were male, 52 % were female, and 1 % stated other 
or preferred not to say. 61 % of the participants had a bachelor’s degree or higher. The 
mode and median age group 25 to 34 years old.

Stimuli and Procedure
Same as in pilot 5.

Results

Blame model 
Given the asymmetries in the experimental design, I ran two separate models to test 
any difference in blame ratings across agents (human driver, AI adviser, and pedestrian) 
as accurately as possible. The asymmetry exists because the AI adviser is intentionally 
missing in the control condition as one of three agents. Therefore, the first model com-
pares human driver and pedestrian ratings across all three AI advice modalities (sen-
sory, linguistic, absent). In contrast, the second model compares human driver, pedes-
trian, and AI adviser ratings across two AI advice modalities (sensory and linguistic).
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For the first model, I fitted a logistic model (estimated using ML) to predict blame rat-
ings with the AI advice modality and the respective agent as fixed effects (formula: value  
 ~ modality * agent). The model’s intercept, corresponding to agent = Driver, modality 
= Control, is at 0.28 (95 % CI [-0.03, 0.61], p = 0.079). Within this model:

The effect of modality [Ling] is statistically significant and positive (beta = 0.49, 95 % 
CI [0.02, 0.96], p = 0.040; Std. beta = 0.49, 95 % CI [0.02, 0.96])

The effect of modality [Sens] is statistically non-significant and positive (beta = 0.32, 
95 % CI [-0.13, 0.78], p = 0.168; Std. beta = 0.32, 95 % CI [-0.13, 0.78])

The effect of agent [Pedestrian] is statistically significant and negative (beta = -1.85, 
95 % CI [-2.39, -1.34], p < .001; Std. beta = -1.85, 95 % CI [-2.39, -1.34])
The effect of modality [Ling] × agent [Pedestrian] is statistically significant and negative 
(beta = -1.18, 95 % CI [-2.02, -0.36], p = 0.005; Std. beta = -1.18, 95 % CI [-2.02, -0.36])

The effect of modality [Sens] × agent [Pedestrian] is statistically non-significant 
and negative (beta = -0.70, 95 % CI [-1.49, 0.07], p = 0.077; Std. beta = -0.70, 95 % CI 
[-1.49, 0.07])

For the second model, I fitted a logistic model (estimated using ML) to predict 
blame ratings with the AI advice modality and the respective agent as fixed effects 
(formula: value ~ modality * agent). The model’s intercept, corresponding to modal-
ity = Ling, agent = Driver, is at 0.77 (95 % CI [0.44, 1.12], p < .001). Within this model:

The effect of modality [Sens] is statistically non-significant and negative (beta =  
 -0.16, 95 % CI [-0.64, 0.31], p = 0.495; Std. beta = -0.16, 95 % CI [-0.64, 0.31])

The effect of agent [AI] is statistically significant and negative (beta = -1.20, 95 % CI 
[-1.68, -0.74], p < .001; Std. beta = -1.20, 95 % CI [-1.68, -0.74])

The effect of agent [Pedestrian] is statistically significant and negative (beta = -3.03, 
95 % CI [-3.70, -2.42], p < .001; Std. beta = -3.03, 95 % CI [-3.70, -2.42])

The effect of modality [Sens] × agent [AI] is statistically non-significant and posi-
tive (beta = 0.35, 95 % CI [-0.30, 1.01], p = 0.291; Std. beta = 0.35, 95 % CI [-0.30, 1.01])

The effect of modality [Sens] × agent [Pedestrian] is statistically non-significant and 
positive (beta = 0.47, 95 % CI [-0.38, 1.34], p = 0.282; Std. beta = 0.47, 95 % CI [-0.38, 1.34])

Responsibility model
As for the blame models, I ran two different causal responsibility models to test any 
difference in blame ratings across agents (human driver, AI adviser, and pedestrian) as 
accurately as possible. Therefore, the first model compares human driver and pedes-
trian ratings across all three AI advice modalities (sensory, linguistic, absent). In con-
trast, the second model compares human driver, pedestrian, and AI adviser ratings 
across two AI advice modalities (sensory and linguistic).

For the first model, I fitted a logistic model (estimated using ML) to predict causal 
responsibility ratings with the AI advice modality and the respective agent as fixed 
effects (formula: value ~ modality * agent). The model’s intercept, corresponding to 
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modality = Control & agent = Driver, is at 0.53 (95 % CI [0.20, 0.86], p = 0.002). Within 
this model:

The effect of modality [Ling] is statistically non-significant and positive (beta = 0.16, 
95 % CI [-0.31, 0.63], p = 0.509; Std. beta = 0.16, 95 % CI [-0.31, 0.63])

The effect of modality [Sens] is statistically non-significant and positive (beta = 0.04, 
95 % CI [-0.42, 0.51], p = 0.854; Std. beta = 0.04, 95 % CI [-0.42, 0.51])

The effect of agent [Pedestrian] is statistically significant and negative (beta = -2.19, 
95 % CI [-2.74, -1.66], p < .001; Std. beta = -2.19, 95 % CI [-2.74, -1.66])

The effect of modality [Ling] × agent [Pedestrian] is statistically non-significant 
and negative (beta = -0.72, 95 % CI [-1.56, 0.10], p = 0.088; Std. beta = -0.72, 95 % CI 
[-1.56, 0.10])
The effect of modality [Sens] × agent [Pedestrian] is statistically non-significant and nega-
tive (beta = -0.25, 95 % CI[-1.04, 0.53], p = 0.531; Std. beta = -0.25, 95 % CI [-1.04, 0.53])

Standardized parameters were obtained by fitting the model on a standardized ver-
sion of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using 
a Wald z-distribution approximation.

For the second model, I fitted a logistic model (estimated using ML) to predict 
causal responsibility ratings with the AI advice modality and the respective agent as 
fixed effects (formula: value ~ modality * agent). The model’s intercept, corresponding 
to modality = Ling & agent = Driver, is at 0.68 (95 % CI [0.35, 1.02], p < .001). Within 
this model:

The effect of modality [Sens] is statistically non-significant and negative (beta = -0.11, 
95 % CI [-0.58, 0.35], p = 0.634; Std. beta = -0.11, 95 % CI [-0.58, 0.35])

The effect of agent [AI] is statistically significant and negative (beta = -1.12, 95 % CI 
[-1.59, -0.66], p < .001; Std. beta = -1.12, 95 % CI [-1.59, -0.66])

The effect of agent [Pedestrian] is statistically significant and negative (beta = -2.91, 
95 % CI [-3.57, -2.31], p < .001; Std. beta = -2.91, 95 % CI [-3.57, -2.31])

The effect of modality [Sens] × agent [AI] is statistically non-significant and posi-
tive (beta = 0.23, 95 % CI [-0.42, 0.89], p = 0.482; Std. beta = 0.23, 95 % CI [-0.42, 0.89])

The effect of modality [Sens] × agent [Pedestrian] is statistically non-significant and 
positive (beta = 0.47, 95 % CI [-0.37, 1.33], p = 0.275; Std. beta = 0.47, 95 % CI [-0.37, 1.33])

Standardized parameters were obtained by fitting the model on a standardized ver-
sion of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using 
a Wald z-distribution approximation.

AI effort model
I fitted a logistic model (estimated using ML)to predict AI informativity ratings with the 
AI advice modality as a fixed effect (formula: value ~ modality). The model’s intercept, 
corresponding to modality = Ling, is at 0.51 (95 % CI [0.19, 0.84], p = 0.002). Within 
this model:
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The effect of modality [Sens] is statistically non-significant and positive (beta = 0.11, 
95 % CI [-0.35, 0.58], p = 0.630; Std. beta = 0.11, 95 % CI [-0.35, 0.58])

Standardized parameters were obtained by fitting the model on a standardized ver-
sion of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using 
a Wald z-distribution approximation.

AI informativity model
I fitted a logistic model (estimated using ML) to predict AI effort ratings with the AI 
advice modality as a fixed effect (formula: value ~ modality). The model’s intercept, 
corresponding to modality = Ling, is at -0.23 (95 % CI [-0.55, 0.09], p = 0.163). Within 
this model:
The effect of modality [Sens] is statistically non-significant and negative (beta = -0.09, 
95 % CI [-0.54, 0.36], p = 0.699; Std. beta = -0.09, 95 % CI [-0.54, 0.36])

Standardized parameters were obtained by fitting the model on a standardized ver-
sion of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using 
a Wald z-distribution approximation.

Discussion
The increased sample size has replicated and verified the observed effects from pilot 5. 
The human driver is blamed less without an AI than with a linguistic AI adviser. How-
ever, this did not apply to the sensory AI adviser suggesting either an invalid control 
condition – as the human driver was blamed with or without a sensory AI adviser, 
which conceptually should not occur – or a substantial difference in how the AI advis-
ers are perceived. Here, the sensory AI adviser might be perceived as a tool heightening 
the user’s responsibility – thereby equalising a possible responsibility decrease from 
having an AI adviser at his/her side. This compensating effect did not hold for the lin-
guistic AI adviser, which was seen as an agent resulting in a blame-sharing pattern – 
where blame is distributed across involved agents (human driver and the AI adviser). 
The latter hypothesis, however, lacks support as this asymmetric effect only holds for 
blame but not causal responsibility judgments. Here, despite the increase in sample 
size, the human driver is judged as causally responsible with or without an AI adviser.

The worry about the inadequacy of the control condition (AI present vs absent) is 
amplified as the follow-up measurements of AI informativity and effort did not reveal 
any differences between the two AI advisers – even though a difference in the blame 
of the human user is observed. The linguistic and the sensory AI advisers were judged 
just as informative and easy to perceive as each other. Thus, the advice modality cannot 
explain asymmetric blame judgments. The observed difference in blame rating for the 
human user in no vs linguistic AI adviser conditions is likely the product of an unbal-
anced experimental design.

Besides the blame judgments of the human driver, pilot 6 also replicated other crit-
ical findings from pilot 5: responsibility sharing is confined to the human driver and 



3.2 Experimental journey: pilots 69

the AI adviser. The pedestrian was rated consistently across experimental conditions 
as having neither blame nor causal responsibility for the outcome. This is encouraging 
since participants did not feel the need to assign a responsibility scapegoat for a pos-
sibly confusing and overwhelming responsibility dilemma.

Limitations
Despite an increase in sample size in pilot 6, the control condition (with no AI present) 
still was not sufficiently different from the experimental conditions (with AI present). 
Tweaking the experimental designs from mixed to within to between has not resolved this 
issue. The between-subject design appeared as the most promising, though, as it reduced 
response biases as best as possible – which had been in problem in the previous four pilots.

However, some other significant limitations are evident. First, the asymmetric 
experimental design limits the statistical analysis of the experimental data. While the 
human user was present across all six conditions, the AI adviser only appeared in four 
out of six conditions. It is hence only possible to compare the distribution of responsi-
bility across human and AI adviser when the AI adviser is present. An improved control 
condition would include an inactive AI adviser to strengthen the contrast between driv-
ing alone, where most of the responsibility is on the human driver and being assisted. 
Rendering the experimental design more symmetric would otherwise reduce the num-
ber of needed linear models from two to one, as one model could incorporate the 
changes in the measured variables across all experimental conditions, increasing the 
statistical analysis’s robustness.

An improved control condition would likewise address the inconsistent difference 
between the conditions with and without an AI adviser across measured variables. One 
reason for the inconsistency could be the ill-suited comparison between driving alone 
and having an active AI adviser present. The mere presence of an AI adviser – and not 
the advice itself – could explain the observed difference. An improved control could 
compare active vs inactive AI adviser conditions. The AI adviser would be present in 
all conditions, and only the given advice would be different.

Conclusion
Pilots 5 and 6 introduced some critical improvements over the previous pilots. Extend-
ing the measured variables to include the AI adviser alongside the human user to test 
how the AI adviser is perceived provides a more accurate picture of how responsibility 
is shifted between the human user and the AI adviser. Pilot 6 replicated the main trends 
and effects observed in pilot 5 with a larger sample size. Pilot 6 found that the human 
driver is blamed less without an AI than with a linguistic AI adviser.
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3.2.7 Pilot 7

Introduction
Pilots 5 and 6 provided significant improvements to testing human-AI-advice pairing 
scenarios. Extending the measured variables beyond the human user allowed examin-
ing the emergent pattern of responsibility sharing between the human user and the AI 
adviser. The between-subject design reduced response biases and promoted a leaner 
comparison of experimental conditions across participants.

Pilot 7 retained these fundamental improvements and addressed the limitations of 
their experimental design – notably the validity of the control condition. Previously 
the control condition included a human user without an AI adviser. Any difference in 
the human user’s attributed responsibility once an AI adviser is introduced should be 
due to the AI adviser. However, it remained to be seen whether the effect was due to 
the mere presence of an AI adviser or the given advice. Having no AI adviser present 
in the control condition further created problems for the statistical analysis because 
no singular model could capture all changes in available agents across all conditions 
for each dependent variable (the AI adviser was missing in the control condition).

Pilot 7 varied the experimental design by rethinking the control condition and 
extending the measured variables to address these limitations. To better compare the 
effect of being advised by an AI system and rule out that the observed effect is caused 
by the mere presence of the AI system, pilot 7 replaced the AI-absence condition with a 
two-level factor of AI status. The AI adviser could either be active (on) or inactive (off) 
but was always mentioned as part of the presented vignettes. I expected that adopting 
a 2x2x2 (AI advice modality, AI status, outcome) instead of a 3x2 (AI advice modality, 
outcome) would improve the comparability of the control conditions where the AI 
adviser was inactive in the experimental conditions where the AI adviser was active.

The additional measured variables included counterfactual capacity, as a measure-
ment of how much the human user or the AI adviser could have made a difference to 
the outcome, and moral responsibility. Counterfactual capacity is closely connected 
to moral responsibility (Chockler and Halpern 2004). Suppose there is nothing an 
agent can do to alter an outcome, i.e. the agent has no counterfactual capacity. In that 
case, the agent is also not morally responsible for the outcome: just like an aeroplane 
pilot is responsible for crashing a fully functional aeroplane into a mountain and is 
not responsible for crashing an aeroplane that has lost any control. I included counter-
factual measurement to pinpoint an additional potential differentiating dimension of 
moral responsibility attribution between the human user and the AI adviser. I expected 
that the human driver’s counterfactual capacity would be greater than the AI adviser’s 
and that the linguistic, more agent-like AI adviser possibly has more counterfactual 
capacity than the sensory, more tool-like AI adviser.
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To test the updated experimental design, pilot 7 focuses – similarly to pilots 5 and 6 – on 
the negative outcome scenarios. As the previous pilots showed a consistent attribution 
of responsibility to the human driver and the AI adviser, pilot 7 dropped the pedestrian 
to simplify the presented scenarios.

Methods

Material 
One vignette for an assisted driving scenario was adapted to match the four experi-
mental conditions for the study. The vignettes presented brief accounts of the situation 
leading to questions about individual aspects of moral responsibility for the human 
driver and the AI assistant. The main vignette included a human driver who faces a 
junction in bad visibility while another car is approaching with priority from the right. 
The changes to the vignette included a variation in outcome, a variation in AI’s status, 
and a variation in AI’s modality (see methods for case descriptions and supplementary 
methods for detailed vignettes). Each participant read one vignette assigned at ran-
dom – using counterbalanced block randomisation – and was asked to indicate his/
her agreement with statements like ‘The sensory AI assistant deserves blame for the 
accident.’ Responses were recorded on a 200-point scale using sliders (from -100 for  
 ‘Completely disagree’ to 100 for ‘Completely agree’). Comparing the responses across 
vignettes revealed the effect of the experimental manipulations.

Participants
I recruited a total of 50 participants from Amazon’s MTurk service. No participants 
were excluded. 74 % of the participants were male and 26 % were female. 52 % of the 
participants had a bachelor’s degree or higher. The mode age group was 25 to 34 years 
old. The median age group was 35 to 44 years old.

Data analysis
I analysed our data using general linear models (glm) from the lme4 library (Bates 
et al. 2015) in RStudio (Team 2021). Every model assumed a binomial distribution 
for the most accurate fit of the model to the data. In order to fit the model to the 
data, I normalised the data using min-max normalisation ((xi -- min(x)) / (max(x) - 
 - min(x))). I used one glm for each of the main measurements (responsibility, blame, 
causal responsibility, and counterfactual capacity). These glm models were defined by 
glm(value ~ modality  agent  status, family=binomial()). Each model evaluated the dif-
ference towards the measured variable based on changes of the experimental condi-
tion (linguistic vs sensory AI adviser and active vs inactive AI adviser) for each agent 
involved (human driver vs AI adviser).
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Stimuli and Procedure
After a language comprehension test, participants were familiarised with the structure 
of the main experiment and the measurement scales. Then, participants completed a 
practice trial and continued with the main experiment. Here, they were presented with 
a text vignette and then asked to rate the measured variables as accurately as possible. 
The vignette scenarios varied in status and modality within a 2x2 in-between subject 
design. After completing an attention check, participants were asked to complete some 
basic demographic questions (age, gender, education), their familiarity with artificial 
intelligence, and their experience with computer programming.

Results

Responsibility model 
I fitted a logistic model (estimated using ML) to predict responsibility ratings with the 
AI advice modality, AI status and agent as fixed effects (formula: value ~ value ~ modal-
ity  agent  status). The model’s intercept, corresponding to modality = linguistic, agent = 
Driver and status = active, is at 0.99 (95 % CI [-0.26, 2.51], p = 0.146). Within this model:

The effect of modality [sensory] is statistically non-significant and negative (beta = 
 -0.57, 95 % CI [-2.54, 1.32], p = 0.551; Std. beta = -0.57, 95 % CI [-2.54, 1.32])

The effect of agent [AI] is statistically significant and negative (beta = -2.55, 95 % CI 
[-4.89, -0.66], p = 0.015; Std. beta = -2.55, 95 % CI [-4.89, -0.66])

The effect of status [inactive] is statistically non-significant and positive (beta = 0.23, 
95 % CI [-1.78, 2.34], p = 0.824; Std. beta = 0.23, 95 % CI [-1.78, 2.34])

The effect of modality [sensory] × agent [AI] is statistically non-significant and pos-
itive (beta = 2.18, 95 % CI [-0.53, 5.11], p = 0.123; Std. beta = 2.18, 95 % CI [-0.53, 5.11])

The effect of modality [sensory] × status [inactive] is statistically non-significant and 
positive (beta = 0.67, 95 % CI [-2.19, 3.58], p = 0.645; Std. beta = 0.67, 95 % CI [-2.19, 3.58])

The effect of agent [AI] × status [inactive] is statistically non-significant and nega-
tive (beta = -1.55, 95 % CI [-6.65, 1.91], p = 0.418; Std. beta = -1.55, 95 % CI [-6.65, 1.91])

The effect of (modality [sensory] × agent [AI]) × status [inactive] is statistically 
non-significant and negative (beta = -0.55, 95 % CI [-5.09, 5.07], p = 0.817; Std. beta = 
 -0.55, 95 % CI [-5.09, 5.07])

Standardized parameters were obtained by fitting the model on a standardized ver-
sion of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using 
a Wald z-distribution approximation.

Blame model 
I fitted a logistic model (estimated using ML) to predict blame ratings with the AI advice 
modality, AI status and agent as fixed effects (formula: value ~ modality  agent  status). 
The model’s intercept, corresponding to modality = linguistic, agent = Driver and status 
= active, is at 0.69 (95 % CI [-0.52, 2.08], p = 0.281). Within this model:
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The effect of modality [sensory] is statistically non-significant and negative (beta = 
 -0.39, 95 % CI [-2.26, 1.45], p = 0.677; Std. beta = -0.39, 95 % CI [-2.26, 1.45])

The effect of agent [AI] is statistically significant and negative (beta = -2.12, 95 % CI 
[-4.31, -0.29], p = 0.033; Std. beta = -2.12, 95 % CI [-4.31, -0.29])

The effect of status [inactive] is statistically non-significant and positive (beta = 0.83, 
95 % CI [-1.15, 3.13], p = 0.426; Std. beta = 0.83, 95 % CI [-1.15, 3.13])

The effect of modality [sensory] × agent [AI] is statistically non-significant and pos-
itive (beta = 1.83, 95 % CI [-0.82, 4.65], p = 0.183; Std. beta = 1.83, 95 % CI [-0.82, 4.65])

The effect of modality [sensory] × status [inactive] is statistically non-significant 
and positive (beta = 0.25, 95 % CI [-2.73, 3.19], p = 0.866; Std. beta = 0.25, 95 % CI 
[-2.73, 3.19])

The effect of agent [AI] × status [inactive] is statistically non-significant and negative 
(beta = -2.06, 95 % CI [-6.54, 1.26], p = 0.258; Std. beta = -2.06, 95 % CI [-6.54, 1.26])

The effect of (modality [sensory] × agent [AI]) × status [inactive] is statistically 
non-significant and negative (beta = -0.10, 95 % CI [-4.53, 5.01], p = 0.965; Std. beta = 
 -0.10, 95 % CI [-4.53, 5.01])
Standardized parameters were obtained by fitting the model on a standardized version 
of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using a 
Wald z-distribution approximation.

Causal responsibility model 
I fitted a logistic model (estimated using ML) to predict causal responsibility ratings 
with the AI advice modality, AI status and agent as fixed effects (formula: value ~ modal-
ity  agent  status). The model’s intercept, corresponding to modality = linguistic, agent = 
Driver and status = active, is at 0.74 (95 % CI [-0.47, 2.15], p = 0.249). Within this model:

The effect of modality [sensory] is statistically non-significant and negative (beta =  
 -0.31, 95 % CI [-2.24, 1.60], p = 0.745; Std. beta = -0.31, 95 % CI [-2.24, 1.60])

The effect of agent [AI] is statistically significant and negative (beta = -2.82, 95 % CI 
[-5.47, -0.83], p = 0.012; Std. beta = -2.82, 95 % CI [-5.47, -0.83])

The effect of status [inactive] is statistically non-significant and positive (beta = 0.61, 
95 % CI [-1.41, 2.89], p = 0.559; Std. beta = 0.61, 95 % CI [-1.41, 2.89])

The effect of modality [sensory] × agent [AI] is statistically non-significant and pos-
itive (beta = 2.37, 95 % CI [-0.44, 5.54], p = 0.110; Std. beta = 2.37, 95 % CI [-0.44, 5.54])

The effect of modality [sensory] × status [inactive] is statistically non-significant 
and positive (beta = 0.46, 95 % CI [-2.57, 3.56], p = 0.760; Std. beta = 0.46, 95 % CI 
[-2.57, 3.56])

The effect of agent [AI] × status [inactive] is statistically non-significant and nega-
tive (beta = -1.61, 95 % CI [-6.98, 2.11], p = 0.423; Std. beta = -1.61, 95 % CI [-6.98,2.11])

The effect of (modality [sensory] × agent [AI]) × status [inactive] is statistically 
non-significant and negative (beta = -0.67, 95 % CI [-5.46, 5.21], p = 0.788; Std. beta =  
 -0.67, 95 % CI [-5.46, 5.21])
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Standardized parameters were obtained by fitting the model on a standardized version 
of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using a 
Wald z-distribution approximation.

Counterfactual capacity model 
I fitted a logistic model (estimated using ML) to predict counterfactual capacity ratings 
with the AI advice modality, AI status and agent as fixed effects (formula: value ~ modal-
ity  agent  status). The model’s intercept, corresponding to modality = linguistic, agent = 
Driver and status = active, is at 0.74 (95 % CI [-0.47, 2.15], p = 0.249). Within this model:

The effect of modality [sensory] is statistically non-significant and negative (beta = 
 -0.48, 95 % CI [-2.37, 1.36], p = 0.607; Std. beta = -0.48, 95 % CI [-2.37, 1.36])

The effect of agent [AI] is statistically non-significant and negative (beta = -1.20, 95 % 
CI [-3.06, 0.50], p = 0.178; Std. beta = -1.20, 95 % CI [-3.06, 0.50])

The effect of status [inactive] is statistically non-significant and negative (beta = 
 -0.18, 95 % CI [-2.03, 1.66], p = 0.848; Std. beta = -0.18, 95 % CI [-2.03, 1.66])
The effect of modality [sensory] × agent [AI] is statistically non-significant and posi-
tive (beta = 0.73, 95 % CI [-1.84, 3.33], p = 0.578; Std. beta = 0.73, 95 % CI [-1.84, 3.33])

The effect of modality [sensory] × status [inactive] is statistically non-significant 
and positive (beta = 0.99, 95 % CI [-1.65, 3.72], p = 0.464; Std. beta = 0.99, 95 % CI 
[-1.65, 3.72])

The effect of agent [AI] × status [inactive] is statistically non-significant and nega-
tive (beta = -0.86, 95 % CI [-3.70, 1.81], p = 0.535; Std. beta = -0.86, 95 % CI [-3.70, 1.81])

The effect of (modality [sensory] × agent [AI]) × status [inactive] is statistically 
non-significant and positive (beta = 0.12, 95 % CI [-3.67, 3.96], p = 0.951; Std. beta = 
0.12, 95 % CI [-3.67, 3.96])

Standardized parameters were obtained by fitting the model on a standardized ver-
sion of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using 
a Wald z-distribution approximation.

Discussion
Overall, pilot 7 introduced some significant experimental changes. Pilot 7 replaced the 
previous control condition of comparing a human driving alone with a human being 
assisted by an AI adviser with a two-level control condition. The new control condition 
introduced AI status (active/on vs inactive/off) to examine the influence of active AI 
advice on responsibility attribution more clearly. Previously, any observed effect could 
be explained due to the mere presence of an AI adviser. However, the new experimental 
addition eliminated this confound by having an AI adviser present across all experi-
mental conditions but retaining the comparison of advised vs non-advised driving by 
modulating the AI adviser’s status between active and inactive.

Pilot 7 found that the human driver is significantly more responsible, blameworthy, 
and causally connected to the outcome than the linguistic AI adviser. The observed 
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effect did not hold for the sensory AI adviser as the attributed responsibility of the 
human driver and AI adviser is close to identical when an active, sensory AI adviser 
accompanies the human driver. Some notable trends include that the sensory AI adviser 
is seen as more responsible for the outcome than the linguistic AI adviser – even though 
the observed trend could also be the artefact of small sample size and high variability 
in the measured variables.

Limitations
One challenge for pilot 7 is that the responsibility measures for the AI adviser and the 
human driver were similar for the active sensory and the inactive linguistic AI adviser 
conditions. Although, as expected, responsibility ratings for either the sensory or the 
linguistic AI advisers increased once the AI adviser was active rather than inactive. 
Responsibility ratings should not be lower in the case of an active, sensory AI adviser 
than in an inactive, linguistic AI adviser. While this subtle trend could result from the 
small sample size and high variability in participants’ responses, it would question the 
experimental validity if it persisted with an increase in sample size.

Conclusion
The experimental changes introduced by pilot 7 have provided notable improvement. 
Responsibility ratings were consistent across measured variables and conditions. The 
new design eliminated a possible AI-presence confound and established that the human 
driver is generally more responsible than the AI adviser. A trend for responsibility shar-
ing also emerged as blame, responsibility, and causal responsibility ratings for a human 
driver and AI adviser converge when the AI adviser is active rather than inactive. The 
next step is extending the experimental design for a positive outcome condition.

3.2.8 Pilot 8

Introduction
Pilot 7 introduced some critical changes to the experimental design – notably a change 
in the control condition. Instead of comparing cases of a human driving without to 
cases of a human driving with an AI adviser, pilot 7 compared cases of a human driving 
with either an active or an inactive AI adviser The goal was two-fold. First, the change 
increased the comparability of non-AI to AI adviser cases because any observed differ-
ence across conditions could no longer be explained by having an AI adviser present 
rather than receiving AI-generated advice. Second, the change simplified the statistical 
analysis by making the design symmetric. With the AI adviser present in all conditions, 
one model can capture any difference between the driver and the AI adviser across 
conditions for each measurement. However, pilot 7 only tested the new design in a 
negative outcome scenario. Whether the experimental improvements would carry 
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over to a positive outcome scenario remained. Pilot 8 sought to address this question. 
To simplify the experimental design, pilot 8 used the same experimental design as pilot 
7 but focused on active AI adviser conditions, as this is where any possible difference 
in the responsibility ratings is expected to occur. When the AI was inactive, responsi-
bility ratings for the AI adviser and the human driver were comparable in pilot 7.

Methods

Materials 
One vignette for an assisted driving scenario was adapted to match the two experi-
mental conditions for the study. The vignettes presented brief accounts of the situation 
leading to questions about individual aspects of moral responsibility for the human 
driver and the AI assistant. The main vignette included a human driver who faces a 
junction in bad visibility while another car is approaching with priority from the right. 
The changes to the vignette included a variation in AI’s modality (see methods for case 
descriptions and supplementary methods for detailed vignettes). Each participant read 
one vignette assigned at random – using counterbalanced block randomisation – and 
was asked to indicate his/her agreement with statements like ‘The sensory AI assistant 

The accident.’ Responses were recorded on a 200-point scale using sliders (from  
 -100 for ‘Completely disagree’ to 100 for ‘Completely agree’). Comparing the responses 
across vignettes revealed the effect of the experimental manipulations.

Stimuli and Procedure 
After a language comprehension test, participants were familiarised with the structure 
of the main experiment and the measurement scales. Then, participants completed a 
practice trial and continued with the main experiment. Here, they were presented with 
a text vignette and asked to rate the measured variables as accurately as possible. The 
vignette scenarios varied in modality within a 2x1 in-between-subject design. After 
completing an attention check, participants were asked to complete some basic demo-
graphic questions (age, gender, education), their familiarity with artificial intelligence, 
and their experience with computer programming.

Participants
I recruited a total of 20 participants from Amazon’s MTurk service. No participants 
were excluded. 50 % of the participants were male and 50 % were female. 50 % of the 
participants had a bachelor’s degree or higher. The mode age groups were 25 to 34 and 
35 to 44 years old. The median age group was 35 to 44 years old.

Data Analysis
I analysed the data using general linear models (glm) from the lme4 library (Bates 
et al. 2015) in RStudio (Team 2021). Every model assumed a binomial distribution 
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for the most accurate fit of the model to the data. In order to fit the model to the 
data, I normalised the data using min-max normalisation ((xi -- min(x)) / (max(x) - 
 - min(x))). I used one glm for each of the main measurements (responsibility, blame, 
causal responsibility, and counterfactual capacity). These glm models were defined by 
glm(value ~ modality  agent , family=binomial()). Each model evaluated the difference 
towards the measured variable based on changes of the experimental condition (lin-
guistic vs sensory AI adviser) for each agent involved (human driver vs AI adviser) – 
given a negative outcome and an active AI adviser.

Results

Responsibility model 
I fitted a logistic model (estimated using ML) to predict responsibility ratings with AI 
advice modality as the fixed effect (formula: value ~ modality * agent). The model’s 
intercept, corresponding to modality = linguistic and agent = Driver, is at -0.03 (95 % 
CI [-1.31, 1.25], p = 0.962). Within this model:
The effect of modality [sensory] is statistically non-significant and positive (beta = 0.24, 
95 % CI [-1.53, 2.05], p = 0.787; Std. beta = 0.24, 95 % CI [-1.53, 2.05])

The effect of agent [AI] is statistically non-significant and positive (beta = 1.73, 95 % 
CI [-0.24, 4.20], p = 0.109; Std. beta = 1.73, 95 % CI [-0.24, 4.20])

The effect of modality [sensory] × agent [AI] is statistically non-significant and neg-
ative (beta = -0.93, 95 % CI [-3.95, 1.87], p = 0.519; Std. beta = -0.93, 95 % CI [-3.95, 1.87])

Standardized parameters were obtained by fitting the model on a standardized ver-
sion of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using 
a Wald z-distribution approximation.

Praise model 
I fitted a logistic model (estimated using ML) to predict praise ratings with AI advice 
modality as the fixed effect (formula: value ~ modality * agent). The model’s intercept, 
corresponding to modality = linguistic and agent = Driver, is at 0.15 (95 % CI [-1.11, 1.45], 
p = 0.813). Within this model:

The effect of modality [sensory] is statistically non-significant and positive (beta = 
0.11, 95 % CI [-1.68, 1.90], p = 0.907; Std. beta = 0.11, 95 % CI [-1.68, 1.90])

The effect of agent [AI] is statistically non-significant and positive (beta = 2.00, 95 % 
CI [-0.13, 5.04], p = 0.099; Std. beta = 2.00, 95 % CI [-0.13, 5.04])

The effect of modality [sensory] × agent [AI] is statistically non-significant and neg-
ative (beta = -1.34, 95 % CI [-4.78, 1.56], p = 0.385; Std. beta = -1.34, 95 % CI [-4.78, 1.56])

Standardized parameters were obtained by fitting the model on a standardized ver-
sion of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using 
a Wald z-distribution approximation.
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Causal responsibility model 
I fitted a logistic model (estimated using ML) to predict causal responsibility ratings 
with AI advice modality as the fixed effect (formula: value ~ modality * agent). The 
model’s intercept, corresponding to modality = linguistic and agent = Driver, is at 0.34 
(95 % CI [-0.91, 1.69], p = 0.597). Within this model:

The effect of modality [sensory] is statistically non-significant and positive (beta = 
0.14, 95 % CI [-1.67, 1.98], p = 0.878; Std. beta = 0.14, 95 % CI [-1.67, 1.98])

The effect of agent [AI] is statistically non-significant and positive (beta = 1.30, 95 % 
CI [-0.69, 3.72], p = 0.224; Std. beta = 1.30, 95 % CI [-0.69, 3.72])

The effect of modality [sensory] × agent [AI] is statistically non-significant and neg-
ative (beta = -0.87, 95 % CI [-3.85, 1.92], p = 0.545; Std. beta = -0.87, 95 % CI [-3.85, 1.92])

Standardized parameters were obtained by fitting the model on a standardized ver-
sion of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using 
a Wald z-distribution approximation.

Counterfactual capacity model 
I fitted a logistic model (estimated using ML) to predict counterfactual ratings with 
AI advice modality as the fixed effect (formula: value ~ modality * agent). The model’s 
intercept, corresponding to modality = linguistic & agent = Driver, is at 1.98 (95 % CI 
[0.40, 4.55], p = 0.041). Within this model:

The effect of modality [sensory] is statistically non-significant and negative (beta = 
 -1.42, 95 % CI [-4.21, 0.72], p = 0.226; Std. beta = -1.42, 95 % CI [-4.21, 0.72])

The effect of agent [AI] is statistically significant and negative (beta = -2.31, 95 % CI 
[-5.10, -0.25], p = 0.047; Std. beta = -2.31, 95 % CI [-5.10, -0.25])

The effect of modality [sensory] × agent [AI] is statistically non-significant and pos-
itive (beta = 1.87, 95 % CI [-0.91, 5.10], p = 0.205; Std. beta = 1.87, 95 % CI [-0.91, 5.10])

Standardized parameters were obtained by fitting the model on a standardized ver-
sion of the dataset. 95 % Confidence Intervals (CIs) and p-values were computed using 
a Wald z-distribution approximation.

Discussion
Pilot 8, given the small effect and sample size, has found no significant effects across 
measures variables. However, some notable trends emerged. The AI adviser was rated 
as more praiseworthy, responsible, causally, and counterfactually connected to the out-
come than the human driver. This was surprising because the previous pilot data sug-
gested the opposite effect. In previous pilots, the AI adviser was consistently attributed 
lower responsibility than the human driver when the outcome was negative. In other 
words, the outcome variation from negative to positive strongly influenced the allo-
cation of responsibility across the AI adviser and the human driver. Furthermore, the 
overall rating pattern for the AI adviser and the human driver was consistent across all 
measured variables, including blame/praise, responsibility, causal responsibility, and 
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counterfactual capacity. The consistent response pattern suggests that the AI adviser 
and the human driver are judged in terms of their moral responsibility, which grounds 
all forms of the measured variables. Moral responsibility encompasses a moral dimen-
sion captured by blame/praise judgements and a causal dimension captured by causal 
responsibility and counterfactual capacity judgments.

Limitations
One limitation of pilot 8 is the low sample size. Given the small effect size and the high 
variability of the measured variables, it was difficult to conclude any meaningful results.

Conclusion
Pilot 8 expanded the finding from pilot 7 by testing the same experimental setting in 
a positive rather than a negative outcome, i.e. where a car accident was avoided rather 
than caused. To simplify the experimental design, pilot 8 only tested conditions where 
the AI adviser was active, as pilot 7 demonstrated that the comparison between active 
and inactive AI adviser conditions led to the desired effect where responsibility rat-
ings for either the AI adviser or the human driver differed satisfying as an adequate 
control condition.

Despite not finding any significant effects, pilot 8 revealed some notable trends. In 
contrast to the negative outcome scenarios before, participants attributed the AI adviser 
a higher responsibility, praise, causal responsibility, and counterfactual capacity than 
the human driver. In the context of the previous pilot 7, the AI adviser is praised but 
not blamed.

The following steps include a full-scale experiment by testing all of the experimen-
tal conditions explored in parts by pilots 7 and 8 to verify the observed trends with a 
sufficient sample size.

3.3 Main Experiment

3.3.1 Introduction
Who gets blamed when an accident happens? Is the AI system or the human relying on 
it? The nascent field of experimental AI ethics has found strong evidence that AI sys-
tems are judged as responsible as humans when they negotiate traffic decisions inde-
pendently or with humans as co-actors (Awad et al. 2019; Franklin, Awad, and Lagnado 
2021; Moglia et al. 2021; Nyholm and Smids 2016; Wischert-Zielke et al. 2020). Fully 
autonomous medical AI systems share responsibility with the clinician supervising 
them (McManus and Rutchick 2019; O’Sullivan et al. 2019). In medical and legal cases, 
AI is similarly held responsible when it provides social or moral guidance on whether 
a defendant can be released (Lima, Grgić-Hlača, and Cha 2021) or whether a risky 
medical procedure should be performed (Constantinescu et al. 2022). However, what 
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happens when AI is merely an enhanced detection device, most closely resembling a 
mere instrument or tool? Would the mere instrumental use of AI leave the technology 
off the responsibility hook, or is the involvement of some form of intelligence sufficient 
to introduce attributions of responsibility?

An instrumental AI, in this case, provides only nudging recommendations or attracts 
attention to a piece of information. This is very different from an AI co-agent acting 
with or on behalf of the human user (Köbis, Bonnefon, and Rahwan 2021). The agential 
and moral roles of an autonomous AI co-agent can be distinguished from those of the 
human counterpart, but the influence of instrumental AI systems is harder to discern, 
even when such influence is relevant to the overall outcome (Kaur et al. 2020; Schaeker-
mann et al. 2020), as it happens in low-stakes decisions such as shopping recommenda-
tions but also for high-stakes decisions such as medical diagnoses and driving support.

If strictly instrumental AI is assimilated to a mere tool and not as an independent 
agent (Cervantes et al. 2020; Longin 2020), it is not clear that it should be worthy of 
sharing the moral responsibility for the outcome of an action taken by a human user 
(Coeckelbergh 2020). The information provided by the AI system may be merely con-
sidered as having increased the knowledge or the awareness of the human agent (Fossa 
2018). If the user has better information about a situation, they could even be consid-
ered more responsible for the outcome of their decision than someone with less infor-
mation (Irlenbusch and Saxler 2019).

However, suppose the mere presence of AI induces the idea that an independent 
co-agent is involved or that the AI-powered tool could have done differently. In that 
case, I should expect that it will take a share of responsibility for the action carried 
out by its human user – though not necessarily a 50-50 split (Darley and Latane 1968; 
Kirchkamp and Strobel 2019; Kneer 2021; Stuart and Kneer 2021; Teigen and Brun 2011).

The two hypotheses make opposite predictions in a concrete scenario, for instance, 
when a driver relies on an AI-powered tool. If the instrumental role is what matters, 
then the driver should be held similarly responsible for their driving behaviour – if 
not more – when they use the AI-powered tool versus when not. If the involvement of 
an AI-technology is sufficient to prompt attributions of agency, then the human driver 
should be held less responsible when they use the AI. This diminished responsibility 
should entail that some share of responsibility goes to the AI system for contributing 
to the decision (Chockler and Halpern 2004; Halpern and Kleiman-Weiner 2018).

I conducted two preregistered vignette-based experiments using a between-subject 
experimental design to adjudicate between the above two hypotheses. I first established, 
in study 1, the conditions under which an AI-powered support system for driving 
would be held responsible along with the human driver. I examined (see Figure 1; n = 
746) three main factors of (1) status (AI-system ON or OFF), (2) outcome (positive or 
negative), and (3) modality (verbal vs tactile AI instructions). At the most basic level, 
responsibility sharing would entail the AI system being held more responsible when it 
is ON (vs OFF). Suppose the AI is considered as a mere tool. In that case, I expect the 
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AI to be judged similarly (not) responsible when ON or OFF, while the human should 
be as responsible in both cases or even more responsible when assisted by a tool. If 
the AI is seen as a co-agent or capable of doing otherwise, there should be a sharing of 
responsibility and the human user should be held less responsible when the AI system 
is ON (El Zein, Bahrami, and Hertwig 2019; Forsyth, Zyzniewski, and Giammanco 2002; 
Strasser 2021; Williams 2013).

Previous work has shown that responsibility and outcome interact in complex ways 
(Baron and Hershey 1988; Roese and Vohs 2012; Kneer and Skoczeń 2021). When collab-
orating with others in risky gambles, people give themselves a bigger share of the credit 
for positive outcomes than the blame they take for the negative ones (El Zein, Dolan, 
and Bahrami 2022). When judging other humans, however, people attribute more 
blame than praise to them (Joshua Knobe 2003; J. Knobe 2003; Kominsky et al. 2015) but 
do the opposite for highly anthropomorphised artificial systems (Bartneck, Reichen-
bach, and Carpenter 2006). To examine the role of outcome in sharing responsibility, I 
included negative (i.e., the crash occurred) and positive (crash averted) outcomes in our 
vignettes. This outcome variation could also reveal the underlying psychological treat-
ment of the presented AI system (R. A. Anderson, Crockett, and Pizarro 2020). While 
praise signals a willingness to cooperate given a good moral character (Gerstenberg et 
al. 2018), blame signals a willingness to inflict punishment and often co-occurs with 
perceived intentional wrongdoing (Cushman 2008, 2015; Lench et al. 2015).

The third factor examined the effect of the user interface on responsibility. Two 
kinds of AI systems were compared: a voice assistant delivering linguistic informa-
tion and another AI assistant delivering only tactile feedback. I hypothesised that the 
more anthropomorphised voice assistants are more likely to appear like another agent 
(Chérif and Lemoine 2019). The AI using haptic feedback (e.g., the wheel’s vibration) 
is, therefore, less likely to evoke responsibility attribution.

The results of this first experiment established that human participants attribute 
shared responsibility to the AI system even though, in debriefing, they predominantly 
described the AI system as a tool. In the follow-up, I conducted a critical control exper-
iment showing that when the AI label was removed from the vignettes, the same sce-
narios did not evoke any responsibility sharing between the mechanical tool and the 
human agent in charge.

Comparing these conditions shows that even the most basic AI system introduces 
a sharing of responsibility with their human user in stark contrast to non-AI-powered 
tools. This finding is all the more surprising because, when asked, people did recog-
nise AI as a tool. Attributing responsibility to AI and reducing human responsibility 
also does not depend on how the AI technology communicates with the user – i.e. via 
voice or haptic signals.



84 3 AI Advisers

3.3.2 Methods

Experimental design
I conducted two online studies to elicit judgements on moral responsibility in human-
assisted driving scenarios. Both studies used hypothetical vignettes describing a driving 
scenario with a human driver and an artificial assistant (see case description for details 
on experimental conditions and supplementary methods for studies 1 and 2). The arti-
ficial assistant was AI-powered in the main study (n = 746) and non-AI-powered in the 
follow-up study (n = 194). For the main study, I used a 2x2x2 between-subject experi-
mental design. I varied three conditions with two factors each. This includes a variation 
in status (active vs inactive) and modality (linguistic vs sensory) of the AI assistant, as 
well as a variation in outcome (crash vs no crash). I controlled for any effects caused 
by the mere presence of an AI assistant by having the AI assistant present in all expe-
rimental conditions. The variation in the AI assistant’s status enables the comparison 
between individual and AI-assisted decision-making cases. A follow-up study was con-
ducted to control for any confounding effect from an assisting system’s mere presence.

Main study 1 
Study 1 compared the participants’ ratings of responsibility, blame/praise, causality, 
and counterfactual capacity for the instrumental AI-assistant and human user across 
two experimental conditions (varying in status and modality of AI-assistant) and two 
experiments (varying in experimental outcome). The main study was conducted in two 
stages, exploring the manipulations of status and modality given a specific outcome. 
The first-stage experiment (n = 388) focused on manipulating status and modality in 
case of a negative outcome. In contrast, the second-stage experiment (n = 358) focused 
on manipulating status and modality in case of a positive outcome. I expected to see 
three main effects: an effect of the experimental outcome, an effect of the AI-assistant’s 
status, and an effect of the AI-assistant’s modality.

Follow-up study 2 
Study 2 (n = 194) compared participants’ ratings of responsibility, blame, causality, and 
counterfactual capacity for the non-AI-powered tool and human user across one expe-
rimental condition (varying in the status of the AI-assistant) in the case of a crash (nega-
tive outcome). I expected to see neither an effect of status for the tool nor the human user.

Materials
One vignette for an assisted driving scenario was adapted to match the eight experi-
mental conditions for the main study and two experimental conditions for the follow-
up study. The vignettes presented brief accounts of the situation leading to questions 
about individual aspects of moral responsibility for the human driver and the AI assis-
tant. The main vignette included a human driver who faces a junction in bad visibility 
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while another car is approaching with priority from the right. The changes to the vig-
nette included a variation in outcome, a variation in AI’s status, and a variation in AI’s 
modality (see methods for case descriptions and supplementary methods for detailed 
vignettes). Each participant read one vignette assigned at random – using counterba-
lanced block randomisation – and was asked to indicate his/her agreement with state-
ments like ‘The sensory AI assistant deserves blame for the accident.’ Responses were 
recorded on a 200-point scale using sliders (from -100 for ‘Completely disagree,’ to 100 
for ‘Completely agree’). Comparing the responses across vignettes revealed the effect 
of the experimental manipulations.

Data analysis
I analysed our data using general linear models (glm) from the lme4 library (Bates et 
al. 2015) in RStudio (Team 2021). Every model assumed a binomial distribution for the 
most accurate fit of the model to the data. In order to fit the model to the data, I nor-
malised the data using min-max normalisation ((xi – min(x)) / (max(x) – min(x))). 
After I established that there was no modality effect on any of the measurements across 
conditions using a general alongside individual glms (see supplementary results), I used 
one glm for each of the main measurements (responsibility, blame/praise, causality, 
and counterfactual capacity). These glm models were defined by glm(responses_norm 
 ~ status*outcome*agent, family=binomial()). I further confirmed that treating agent 
as an independent condition had no negative influence on the model’s results (see 
supplementary results).

Participants

Main study - experimental stage 1 
I preregistered and recruited a total of 440 participants from Amazon’s Mechanical 
Turk service. After excluding 52 participants for failing preregistered data quality mea-
sures, I kept 388 participants for data analysis. 61 % of the participants were male, 37 % 
were female, and 2 % preferred not to say or stated other. 68 % of the participants had 
a bachelor’s degree or higher. The mode age group was 24 to 34 years old. The median 
age group was 35 to 44 years old. 78 % were at least somewhat familiar with AI, while 
73 % reported having little to no experience with computer programming.

Main study - experimental stage 2 
I preregistered and recruited a total of 440 participants from Amazon’s Mechanical 
Turk service. After excluding 82 participants for failing preregistered data quality mea-
sures, I kept 358 participants for data analysis. 55 % of the participants were male, 44 % 
were female, and 1 % preferred not to say. The mode age group was 24 to 34 years old, 
and the median age group was 35 to 44. 69 % of the participants had a bachelor’s degree 
or higher. 77 % were at least somewhat familiar with AI, while 72 % reported having 
little to no experience with computer programming.
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Follow-up study 
I preregistered and recruited a total of 220 participants from Amazon’s Mechanical Turk 
service. After excluding 26 participants for failing preregistered data quality measures, I 
kept 194 participants for data analysis. 54 % of the participants were male, and 46 % were 
female. 63 % of the participants had a bachelor’s degree or higher. The mode age group 
was 24 to 34 years old, and the median age group was 35 to 44. 78 % were at least somew-
hat familiar with AI, while 70 % reported little to no computer programming experience.

Stimuli and procedures

Main Study 
After a language comprehension test, participants were familiarised with the structure 
of the main experiment and the measurement scales. Then, participants completed a 
practice trial and continued with the main experiment. Here, they were first presented 
with a text vignette and then were asked to rate the measured variables as accurately 
as possible. The vignette scenarios varied in status and modality within a 2x2 in-bet-
ween subject design. After completing an attention check, participants were asked to 
complete some basic demographic questions (age, gender, education), their familiarity 
with artificial intelligence, and their experience with computer programming.

Follow-up study 
This experiment replaced the AI-powered with a non-AI-powered tool. Further, the 
experiment has only two, not four, conditions, varying only in status.

3.3.3 Results
I conducted two online studies to elicit judgements on moral responsibility in human-
assisted driving scenarios. Both studies used hypothetical vignettes that describe a dri-
ving scenario with a human driver and an artificial assistant (see case description for 
details on experimental conditions and supplementary methods for vignettes of studies 
1 and 2). The artificial assistant was AI-powered in the main study (n = 746) and non-
AI-powered in the follow-up study (n = 194). For both studies, I used the same set of 
vignettes and between-subject design with slight modifications to accommodate the 
changes in outcome, status, modality, and the type of assistant.

Main study
Study 1 compared the participants’ ratings of responsibility, blame/praise, causality, 
and counterfactual capacity for the instrumental AI-assistant and human user across 
two experimental conditions (varying in status and modality of AI-assistant) and two 
experiments (varying in experimental outcome). The main study was conducted in two 
stages, exploring the manipulations of status and modality given a specific outcome. 
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The first-stage experiment (n = 388) focused on manipulating status and modality in 
case of a negative outcome. In contrast, the second-stage experiment (n = 358) focused 
on manipulating status and modality in case of a positive outcome. I expected to see 
three main effects: an effect of the experimental outcome, an effect of the AI-assistant’s 
status, and an effect of the AI-assistant’s modality.

AI advice modality does not affect responsibility ratings
I found no effect of the AI assistant’s modality. Different participants rated the AI assis-
tant and the human user as responsible when the AI assistant provided sensory compa-
red to linguistic advice. The sensory AI assistant used tactile steering wheel vibration 
for driving assistance, and the linguistic AI assistant issued verbal instructions. Using 
a general linear regression model (glm), I found no general effect of the AI-assistant’s 
modality across experimental conditions (beta = -0.00296, 95 % CI [-0.10, 0.09], p = 
0.952); for details of the model and pairwise comparisons of experimental conditi-
ons see supplementary results). To improve the explanatory power of the subsequent 
regression models, I decided to collapse the modal difference between AI assistants and 
treat them as a generic AI assistant for subsequent analyses. To analyse our remaining 
results, I used one glm for each of the primary measurements: responsibility, blame/
praise, causality, and counterfactual capacity (see methods for details).

AI’s status strongly affects responsibility ratings for the human driver and the AI 
assistant
I found that the AI assistant’s status had a strong impact on responsibility ratings. When 
the AI assistant was active and a crash occurred, participants rated the responsibility of 
the human driver lower (beta = -0.14, 95 % CI [-0.22, -0.05], p = 0.018) and the respon-
sibility of the AI assistant higher (beta = 0.24, 95 % CI [0.16, 0.32], p < 0.001) as their 
inactive AI-assistant baseline. When no crash occurred, the same pattern emerged. The 
participants rated the responsibility of the human driver lower (beta = -0.21, 95 % CI 
[-0.29, -0.13], p < 0.001) and the responsibility of the AI-assistant higher (beta = 0.69, 
95 % CI [0.61, 0.76], p < 0.001) compared to the inactive AI-assistant baseline.

The human driver and the AI assistant are rated differently across outcomes
I found that the human driver and the instrumental AI assistant were rated differently 
across conditions. When the AI assistant was inactive and a crash occurred, the AI 
assistant was seen as significantly less responsible than the human driver (beta = -0.71, 
95 % CI [-0.78, -0.65], p < 0.001). The effect persisted when no crash occurred (beta 
= -0.83, 95 % CI [-0.89, -0.77], p < 0.001). When the AI assistant is active, on the other 
hand, a new pattern emerges. While the AI assistant was also seen as significantly less 
responsible than the human driver when a crash occurred (beta = -0.34, 95 % CI [-0.44, 

-0.25], p < 0.001), both are seen as equally responsible when no crash occurred (beta = 
0.07, 95 % CI [-0.02, 0.16], p = 0.116).
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Responsibility ratings are strongly outcome-dependent
I found a strong outcome effect for the AI assistant. When the AI assistant was inactive, 
I discovered that the AI assistant was seen just as responsible when the outcome was 
negative rather than positive (beta = 0.02, 95 % CI [-0.04, 0.08], p = 0.476). In addition, 
the human driver was seen as slightly less responsible when the outcome was nega-
tive rather than positive (beta = -0.09, 95 % CI [-0.16, -0.02], p = 0.0097). However, 
when the AI assistant was active, I found that the AI assistant was seen as much more 
responsible for the positive than negative outcome (beta = 0.43, 95 % CI [0.34, 0.52], p 
< 0.001). This was not the case for the human driver, who was seen as responsible for 
the positive than the negative outcome (beta = -0.013, 95 % CI [-0.11, 0.08], p = 0.775).

AI-assistant is strongly perceived as a tool
I also tested the perception of the AI assistant as a tool. I found that participants vie-
wed the AI assistant as a tool consistent across experimental conditions. Fitting an 
additional glm, I found neither an effect of status (beta = -0.12, 95 % CI [-0.77, 0.52], p 
= 0.71) nor an effect of outcome (beta = 0.04, 95 % CI [-0.64, 0.72], p = 0.9) for the tool 
ratings of the AI-assistant.

Follow-up study
Study 2 (n = 194) compared participants’ ratings of responsibility, blame, causality, and 
counterfactual capacity for the non-AI-powered tool and human user across one expe-
rimental condition (varying in the status of the AI assistant) in case of a crash (negative 
outcome). I expected to see neither an effect of status for the tool nor the human user.

Tool status does not affect responsibility ratings
I found no status effect. Participants rated the human driver (beta = -0.08, 95 % CI [-0.2, 
0.03], p = 0.156) and the non-AI-powered tool (beta = -0.07, 95 % CI [-0.19, 0.05], p = 
0.245) as responsible for a crash when the tool was active rather than inactive.

Human driver and tool are rated differently across outcomes
I found that the human driver and the non-AI-powered tool were rated differently 
across conditions. In fact, the non-AI-powered tool was seen as significantly less 
responsible than the human user when the non-AI-powered tool was active (beta = 
 -0.55, 95 % CI [-0.67, -0.43], p < 0.001) and when it was inactive (beta = -0.56, 95 % CI 
[-0.68, -0.45], p < 0.001).

Tool is strongly perceived as a tool
I also tested the perception of the non-AI-powered tool as a tool. I found that partici-
pants viewed the non-AI-powered tool as a tool consistent across experimental condi-
tions. Fitting an additional glm, I found no effect of status (beta = -0.01, 95 % CI [-0.09, 
0.07], p = 0.79) for the tool ratings of the AI assistant.
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3.3.4 Discussion

The central finding is a strong dissonance between the participant’s behaviour and 
beliefs toward instrumental AI assistants. On the one side, participants attributed 
responsibility to the AI assistant as demonstrated by AI and human co-agents. Howe-
ver, on the other side, participants strongly believed that the AI assistant was a tool – 
traditionally dissociated with being held responsible.

On the behavioural side, I have shown that the presence of an active AI assistant 
strongly influences responsibility, blame, praise, and causality ratings for the human 
user of the AI system. The human user was seen as less responsible for an outcome 
when the AI assistant was active rather than inactive. Analogously the AI assistant 
was seen as more responsible when active. The same pattern of significance holds for 
blame, praise, and causal influence ratings suggesting a robust sharing effect of moral 
and causal responsibility.

In addition, I found that the perceived responsibility of the AI assistant was highly 
outcome dependent. In fact, the AI assistant was seen as much more responsible for 
the positive than the negative outcome condition. The AI assistant was praised more for 
avoiding an accident than it was blamed for causing it. This finding is contrasted with 
the human user, who showed no outcome effect. The human user was rated as respon-
sible in the positive and negative outcome conditions. These findings align with pre-
vious work on AI co-agents such as fully autonomous cars (Awad et al. 2019; Franklin, 
Awad, and Lagnado 2021) and collective human decisions (El Zein, Bahrami, and Her-
twig 2019). Both pieces of literature demonstrate responsibility sharing in human-AI 
or human-human settings. This supports our original hypothesis that instrumental AI 
assistants are perceived as agents capable of sharing responsibility with other agents 
(Darley and Latane 1968; Kirchkamp and Strobel 2019; Kneer 2021; Stuart and Kneer 
2021; Teigen and Brun 2011). The sharing of responsibility and the outcome depen-
dence are indicators of an agent-like perception of AI assistants. Both patterns have 
been demonstrated to hold for human agents (Baron and Hershey 1988; El Zein, Bah-
rami, and Hertwig 2019).

However, surprisingly, participants’ beliefs about AI assistants contradicted their 
behaviour. Consistently across experimental variation, participants rated the AI assis-
tant as a tool – which goes against it being seen as an agent and sharing responsibility 
with its human user (Fossa 2018). Replacing the AI-powered with a non-AI-powered 
tool in the follow-up study revealed that sharing responsibility only occurs when AI is 
involved, even though the resulting role and information are similar.

The way the AI’s advice is presented to the human user – either through tactile 
or linguistic advice – did not influence responsibility assessments, contrary to what 
could have been expected both from human-human interactions and the influence of 
anthropomorphic features in responsibility attributions to AI (Chérif and Lemoine 
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2019; Dalal and Bonaccio 2010; El Zein, Bahrami, and Hertwig 2019; Steffel, Williams, 
and Perrmann-Graham 2016; Strasser 2021).

The tension between general beliefs and responses in this study echoes other con-
flicts between the animate and inanimate characteristics attributed to AI (Kahn et al. 
2012). 4-year-olds rarely attribute biological properties or aliveness to a robot, yet still 
affirm it has perceptual and psychological capabilities, such as having cognition and 
emotions (Jipson and Gelman 2007; Nigam and Klahr 2000). People consider humans 
and AI as cooperative partners, yet feel guilty when they exploit humans but not when 
they exploit AI agents (Bartneck, Reichenbach, and Carpenter 2006; Karpus et al. 2021).

One aspect from the human advice-giving literature seems, however, to apply to AI, 
i.e. hindsight and other-serving biases (Palmeira, Spassova, and Keh 2015). The hind-
sight bias, i.e. the “I-knew-it-all-along” effect, describes people’s general tendency to 
view past events as predictable (Christensen-Szalanski and Willham 1991). The oth-
er-serving bias captures people’s tendency to see an advisor as more responsible for 
positive than negative outcomes. Driven by hindsight bias, participants tend to believe 
that the advisor was more in control of the positive than the negative outcome. If this is 
the case, participants’ attention may turn towards the human driver when the outcome 
is negative and decrease the AI assistant’s share of responsibility in the event.

Limitations
Beyond the other-serving bias, I acknowledge that other factors could be in play 
with similar explanatory power for the asymmetric evaluation of the AI assistant. For 
instance, alternative explanations for the asymmetric AI-assistants assessment include 
a lacking attribution of intentionality for AI-assistants, which has been suggested as at 
least a co-factor for praising but not blaming behaviour (Guglielmo and Malle 2019; 
Hindriks, Douven, and Singmann 2016; Joshua Knobe 2006; Malle, Guglielmo, and 
Monroe 2014). To further increase the robustness of our findings, it would be beneficial 
to replicate our findings in other high-stakes domains, such as healthcare and low-sta-
kes domains, such as everyday traffic navigation (Lai et al. 2021). Similarly, it would 
be further essential to test for any cultural variations, as cultural norms can strongly 
impact how AI is perceived and held responsible (Awad et al. 2018; Fast and Horvitz 
2017; J. H. Kim et al. 2022). 

Another question lies in exploring the contrast between instrumental and moral 
AI assistants. Suppose the mere involvement of AI suffices for holding the most basic 
instrumental assistant responsible. In that case, moral AI assistants may be held respon-
sible due to their explicit moral involvement, but also due to the mere presence of an 
AI. Separating these two remains a crucial question for future work.

Finally, the description of the AI technology as an “assistant” may play a role in 
people’s attribution of responsibility, and variations in the presentation of the AI sys-
tem could be varied. I note, however, that people here considered the AI-system tool-
like and did not treat a voice assistant as more agentive or responsible than a haptic  
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technology, suggesting that the term “assistant” and its possible human or agentive 
connotations were not the reason behind their responses.    

3.4 Conclusion
The main question which has motivated the project was to understand the perceived 
agentive role AI advisers play in human-AI interaction. Are AI advisers perceived more 
as complex tools or agents proper? Conceptually there is no obvious answer. Philoso-
phically, the human-like agency requires a wide range of cognitive and arguably moral 
processes, which AI systems – notably AI advisers — lack. To explore this question, I 
turned towards a reliable and measurable proxy for perceived levels of agency: the 
attribution of moral responsibility.
Notably, moral responsibility is only attributed to agents, and a hammer is hardly mor-
ally responsible for hitting your finger; the hammer user is. Similarly, two bank robbers 
share the responsibility for the bank robbery as both agentively performed the bank 
robbery. Understanding whether an AI adviser shares responsibility with its human 
user means understanding the perceived agentive role an AI adviser has.

The literature on responsibility attribution in advisory human-AI scenarios is ambiv-
alent. Some argue that AI advisers share responsibility with the human user (Constan-
tinescu et al. 2022; Malle, Magar, and Scheutz 2019), whereas others show the opposite 
(Coeckelbergh 2020).

While previous literature has focused on autonomous and interactive AI systems, I 
established how responsibility is attributed to more common instrumental AI systems. 
When AI is involved in an agentive role in bringing about an outcome, the attribution 
or sharing of responsibility is quite natural. In this chapter, I addressed a more fun-
damental question: whether sharing responsibility with humans could come from the 
mere involvement of another – artificial – intelligence. This work contributes not only 
to the growing literature on AI assistants but also provides critical insights into the 
asymmetric evaluation of AI assistants, which are praised more than blamed.

The experimental work of this chapter sought to develop a new experimental set-
ting in which the question of whether an AI adviser is perceived more as a complex 
tool or as an agent proper can be addressed. At the start of the experimental project, 
experimental hypotheses were still vague but developed over time. Overall, based on 
the vast literature on responsibility attribution in human-human scenarios, I expected 
an outcome bias to occur, where actions leading to a positive outcome were judged 
more favourably than those leading to a negative outcome (Baron and Hershey 1988). 
In addition, I expected a modality effect to occur — such that the way the AI advice 
was delivered to the human user influences the perceived responsibility of the user. 
The sensory AI adviser is expected to be perceived as less intrusive than the linguis-
tic AI adviser, thereby retaining the human user’s agentive autonomy to its fullest. In 
other words, the modality difference between AI advisers tests whether any observed 
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responsibility difference can be explained due to a difference in advisers (more tool-
like vs more agent/partner-like) or due to the presence of an AI itself. If no difference 
in AI advice modalities was observed, then the responsibility difference must stem 
from the implementation of the AI itself. If a difference in AI advice modalities was 
observed, on the other hand, then the responsibility difference should be reducible to 
a difference in advice modality.

The first two pilots mapped the unchartered ground with a mixed experimental 
design to balance experimental robustness and data quality. A medical scenario was 
adapted to fit six experimental conditions varying in the advisory setting (no AI, sen-
sory AI, linguistic AI) and the outcome (positive, negative). The pilots examined the 
human user’s responsibility (pilot 1) and blame/praise (pilot 2). They found an over-
all outcome trend where the human user was seen as more responsible and blame-/
praiseworthy for the positive than the negative outcome — replicating the expected 
outcome effect from the literature. In addition, the pilots found an overall AI-presence 
trend where the human user was seen as more responsible and blame-/praiseworthy 
when acting alone rather than with either AI adviser. Otherwise, the modality of the AI 
adviser did not affect the human user’s responsibility or blame/praise ratings.

To improve experimental robustness, pilots 3 and 4 tested the advisory human-AI 
setting in a within-subject design. Pilot 3 used six diverse scenarios, while Pilot 4 used 
a common car-driving scenario with varying background stories to explore the blame/
praise, causal responsibility of the human user and perceived informativity of the AI 
adviser. The extension of measured variables from only asking for responsibility was 
motivated by the possible confound of responsibility ratings – as responsibility can 
either refer to the mere causal connection of an agent to an outcome (causal respon-
sibility) or also include a moral judgment of the agent (moral judgment). Asking for a 
moral judgment (blame/praise) and a causal judgment (causal responsibility) allows us 
to pinpoint where the possible difference between the human user and the AI adviser 
emerges. Both pilots validated the previously observed trends. The human driver was 
praised more than blamed – with or without an AI adviser, irrespective of the AI adviser 
modality. Pilot 4 further demonstrated that the human driver was praised more when 
acting alone rather than with advice.

To increase consistency between no-AI vs AI conditions, pilots 5 and 6 presented a 
large-scale sampling of a new experimental paradigm – a full between-subject design. 
Within the new experimental setting, pilots 5 and 6 tested whether and how blame 
and causal responsibility judgments were distributed across the involved agents. They, 
therefore, expanded the measured variables to include blame/praise and causal respon-
sibility judgments for the human user, the AI adviser and an uninvolved third party. 
The uninvolved third party was introduced as a control and, as expected, received only 
a small fraction of responsibility consistently across conditions. Otherwise, the pilots 
revealed a strong agent effect: the human driver is across conditions seen consistently 
as most responsible for the outcome, followed by the AI adviser – irrespective of this 
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modality – and lastly, the third party. However, a confounding limitation became clear: 
the observed responsibility ratings when the AI adviser was present were also caused 
by the AI adviser’s mere presence instead of the given AI advice itself.

Pilots 7 and 8 eliminate a possible confounding limitation from pilots 5 and 6 by 
adapting the experimental design from a 3x2 to a 2x2x2. The new design contained a 
variation in outcome (positive, negative), AI advice modality (sensory, linguistic), and 
AI status (active, inactive). The new experimental design included the presence of the 
AI adviser across all conditions. However, it modulated the status of the AI adviser as 
either active, advice-giving, or inactive, not-advice-giving. The pilots found that, in case 
of a negative outcome, the human user is held more responsible and blameworthy than 
the AI adviser across conditions except when the sensory AI adviser is turned on. In 
case of a negative outcome, however, surprisingly, the AI adviser overall is held more 
responsible, praiseworthy, and causally responsible than the human driver.
The final experiment used the same experimental design as established in pilots 7 and 
8 and replicated their main findings. The final experiment showed that 1) the human 
user shares responsibility with an AI advisor, 2) the AI advisor is not blamed but praised 
for an accident, and 3) how the AI advisor makes recommendations has no bearing on 
any responsibility rating.

Overall, taking the experimental results together and putting them in context, advi-
sory AI systems in parts share responsibility with their human user, implying that they 
are more than tools. Even when AI systems were presented as most tool-like, they were 
still seen as mainly responsible for a positive outcome. However, AI advisers are also 
not human-like – as they are not nearly blamed as much as their human users. The 
experimental findings of this chapter validate the conceptual findings from Chapter 2 
and provide a lower bound for what AI advisers are. By demonstrating unique respon-
sibility patterns, AI advisers show that they are perceived as having some non-tool-like 
agentive capacity to bring about the outcome.

Both chapters in the first part of this thesis have examined the loose coupling of AI 
advisers with their human users – cases where AI advisers provide seemingly exter-
nal recommendations. Both chapters lay out the conceptual and empirical reasons to 
consider AI advisory systems that are external to the human user within their unique 
ontological status. However, what happens if AI advisors do not provide external advice 
and are tightly integrated with their human users? The upcoming second part analy-
ses a tighter coupling of AI advisers with their human users – cases where AI advisers 
become integral to human perception and decision-making. Consider cases of aug-
mented reality or sensory augmentation. Here, I ask how and to which extent AI advis-
ers influence human perception and in which way highly integrated AI systems differ 
from their tool or human counterparts.





Part 2

4 Augmented Perception

4.1 Introduction
Extending, or even augmenting, the senses has long been a human dream. This dream 
may now become a reality thanks to recent advances in sensory augmentation powe-
red by artificial intelligence (AI). Artificial noses can identify thousands of odours (D. 
Hu et al. 2019) and distinguish between infected and non-infected wounds (Haalboom, 
Gerritsen, and van der Palen 2019); driverless cars detect secluded objects with laser 
radar and infrared cameras (Pulikkaseril and Lam 2019); and robots can use photosen-
sors to recognise materials based on their sounds (Eppe et al. 2018). So, what happens 
if humans are outfitted with artificial sensors? Can these sensors be linked to humans 
in such a way that they expand our perception beyond the use of external tools?

These are fundamentally philosophical questions: many human-applied AI augmen-
tation systems are in their infancy but gaining momentum. While some (Fernández-
Caramés and Fraga-Lamas 2018; M. Chen et al. 2016) have created internet-connected 
textiles, others (Raisamo et al. 2019; McGreal 2018; T. D. Wright and Ward 2018) want 
to see AI-driven augmentation devices integrated more broadly into human perception. 
The extent to which AI-powered augmentation devices alter and potentially extend 
human sensory capacities to form a new type of hybrid, trans-human perception is 
unknown. On the one hand, AI-driven systems are relatively autonomous computa-
tional systems that can process and forward sensory signals to the human user, similar 
to how a self-driving car forwards identified road obstacles to the human driver. On 
the other hand, AI-powered systems have the potential to become deeply integrated/
entrenched in human perception and cognition. Hearing aids and noise-cancelling 
headphones, for example, use AI to amplify or filter sounds, compensating for hea-
ring loss and improving daily hearing. Other sensory tools, such as augmented reality 
systems, such as Google Glass, or medical technologies, such as magnetic resonance 
imaging (MRI) and computed tomography (CT) scanners, have gradually used AI to 
reduce perceptual or cognitive friction between the tool and the user. Google Glass 
displays real-time, task-relevant information; medical technologies provide diagnostic 
results next to the taken image.

The concept of improving human perception through wearable devices is not new: 
it can be traced back to popular culture (RoboCop, Ghost in the Shell, Inspector Gad-
get) and is now being realised through prosthetics, sensory substitution, and exten-
sion devices. These technologies are examples of sensory augmentation because they 
provide additional sensory cues to convey relevant information for a perceptual task. 
Depending on the augmentation target, human augmentation can be classified into 
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three types: sensation, cognition, and action (Raisamo et al. 2019). Action augmen-
tation enhances physical abilities beyond humans’ natural motor and sensory limits. 
This includes prosthetic limbs and exoskeletons, allowing users to regain control of 
paralysed limbs or remotely control robots via virtual reality (VR). The field of action 
augmentation has focused on exoskeletons that allow people to walk on robotic feet 
(Dollar and Herr 2008; Young and Ferris 2017) or remote-controlled robots like medical 
operating systems mimic user movement (Panesar et al. (2020); see Moglia et al. (2021) 
for review) are examples of prosthetic limbs that can reinstate or enhance movement.

Sensory augmentation uses recorded sensory signals to augment or extend the 
human user’s natural senses. Augmented vision, hearing, haptic sensations, smell, and 
taste are all examples. The field of sensory augmentation has used advanced sensors 
and signal computations to compensate for sensory impairments or enhance existing 
senses. Sensory substitution devices have shown remarkable progress in compensating 
for sensory impairments. Sensory substitution describes transferring sensory signals 
from one sensory modality to another. One common and successful application has 
been transferring visual information to sound to compensate for vision impairment, 
like ‘the vOICe’ (Auvray, Hanneton, and O’Regan 2007; Meijer 1992; Proulx et al. 2008). 
Other applications include vision-to-tactile sensory substitution devices like TVSS 
(Arnold and Auvray 2018; Bach-Y-Rita et al. 1969) and vestibular-to-tactile sensory 
substitution devices (Tyler, Danilov, and Bach-Y-Rita 2003). Findings on neural plas-
ticity, for instance, have demonstrated that sensory substitution devices can at least 
partially restore a lost sense through neural re-organisation and practice (Amedi et al. 
2007; Bach-y-Rita and W. Kercel 2003; L. G. Cohen et al. 1997; Collignon et al. 2008).

Cognitive augmentation detects and interprets human cognitive states to match and 
predict the human user’s expectations and extend the user’s cognitive abilities. This 
includes extended memory devices, which generate an accurate and coherent environ-
mental response to match the user’s expectations and needs. The field of cognitive aug-
mentation has used technology to enhance or augment human cognitive functions, such 
as memory, attention, and problem-solving. Examples include wearable devices that 
aid learning or decision-making (Dingler et al. 2016; Li and Ji 2005; Palmer and Kobus 
2007) or raise bodily awareness by analysing breathing, heart rate, and body temperature 
patterns to detect stress, anxiety, or potential medical emergencies (Reeder et al. 2017). 
Brain-computer interfaces, in addition to smart wearables, have been used to observe 
and influence brain activity to communicate memory, attention, situational awareness, 
and complex problem-solving (see Cinel, Valeriani, and Poli (2019) for a review).

With increasingly capable sensors and the computational capacity to exploit emer-
gent sensory information, it is becoming increasingly important to untangle the blurred 
boundary between AI-driven augmentation devices and their human users. There are 
pressing ethical and legal implications and philosophical questions about what consti-
tutes the human perceptual system. If AI-powered augmentation devices extend human 
perception, questions of responsibility may become impossible to answer: who or what 
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is to blame for any negative or positive outcome? Which comes first, the augmentation 
device or the human user? Much, therefore, hinges on whether AI-powered augmen-
tation devices count as external sensory tools – on which the human user relies – or 
whether they become part of the human perceptual system – thereby extending human 
perception.

Smart wearables exemplify the development of sensory tools. A smart wearable is 
a device worn on the body and capable of performing tasks beyond simple monitor-
ing or tracking. Artificial sensors and processors can even outperform human sensory 
capacities: artificial noses can identify thousands of odours (D. Hu et al. 2019) and 
distinguish between infected and non-infected wounds (Haalboom, Gerritsen, and 
van der Palen 2019); driverless cars detect secluded objects with laser radar and infra-
red cameras (Pulikkaseril and Lam 2019); and robots can use photosensors to recog-
nise materials based on their sounds (Eppe et al. 2018). What makes a smart wearable 
 “smart” is its ability to gather and process information and interact with other devices 
and systems. Smart wearables are often equipped with sensors, processors, and other 
technology that allow them to interact with the environment and perform various 
functions, such as receiving and sending messages, tracking physical activity, and mon-
itoring health. Some examples of smart wearables include smartwatches, fitness track-
ers, smart glasses, and smart clothing. These devices can be used for various purposes, 
including health and fitness tracking, communication, entertainment, and more. At 
their peak, sensory tools can become an integral part of human perception and at its 
peak are even barely noticed. They may even become transparent to the human user, 
i.e. integrated into perceptual processes (Auvray, Hanneton, and O’Regan 2007) – like 
a hammer to a blacksmith.

On the other hand, AI systems might be more than sensory tools and – through 
their sensory computation – may provide their human user with perceptual content 
or experiences. Extending the senses beyond sensory tools may sound odd initially, 
but a biological precedent for extended perceptual systems exists. Certain organisms 
use their sensory fields, generated beyond their bodily boundaries, to achieve specific 
goals such as mating or prey detection. Bats, electric fish and spiders are three com-
mon examples. Because their self-generated sensory fields – a soundscape for bats, an 
electric field for fish, and a web for spiders extend beyond their bodies, defining the 
boundary of their sensory systems is difficult. Examining how these creatures interact 
with their surroundings can provide insight into the mechanisms and computational 
processes involved in perception and call into question the notion that perception is 
solely an internal process. Similarly, AI-powered augmentation devices also plausibly 
extend the human sensory field. Sensory substitution devices like the feelSpace belt 
(Nagel et al. 2005), for example, can give the human user a sense of a magnetic field 
translating magnetic information into felt tactile vibrations (see also Hameed et al. 
(2010) and Kärcher et al. (2012)).
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Perceptual experiences include both bottom-up and top-down processing (Varga 2017). 
The former type of processing includes a) external energy stimulation of sensory recep-
tors and b) sensory information transmission into the central nervous system. The for-
mer type of processing entails interpreting what we perceive based on prior knowledge 
or context. While low-level theorists believe that perceptual experience is reducible to 
low-level property experiences, high-level theorists argue that perceptual experiences are 
primarily derived from high-level property experiences. According to high-level theo-
rists, cognitive states can penetrate perceptual experience and provide an interpretation 
of cognitive penetration that provides some support for the high-level view. While sen-
sory tools can only provide the human user with additional low-level signals, AI-powered 
augmentation devices may also externalise high-level processing. AI systems can manip-
ulate signals based on prior knowledge and context through advanced computational 
processing. The human user receives a sensory signal that has already been interpreted. 
Because AI-powered augmentation devices can manipulate the signal to such an extent, 
they present a novel and challenging case for extending perceptual experiences.
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By focusing on sensory augmentation, this chapter investigates the extent to which AI 
systems influence human perception. The first section will provide a systematic taxon-
omy of sensory augmentation and outline the changes AI brings to sensory augmen-
tation. The second section expands on our understanding of AI-powered sensory aug-
mentation and investigates whether and to what extent AI extends human perception.
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Given the breadth of the literature on human augmentation, this chapter will concen-
trate on non-invasive sensory augmentation devices. While prosthetics rely on invasive 
methods such as cochlear, vestibular, or corneal implants (Golub et al. 2014; Zeng et al. 
2008), sensory substitution and extension devices rely on non-invasive methods such 
as external wearable devices that can be put on and taken off (Zeng et al. 2008). These 
external devices have extensively used advanced artificial sensors and AI-based algo-
rithmic computation. Whether sensory augmentation devices extend human percep-
tion is much more pressing in the case of external devices than internal devices. Exter-
nal devices collect, process, and forward sensory signals to the human user as another 
sensory signal. In contrast, internal devices transmit the recorded signal to the human 
user as an internal neural signal rather than an external neural signal.

4.2 How AI systems augment the senses

4.2.1 Defining Sensory Augmentation
The idea of improving human perception through wearable devices is not new. Indeed, 
it can be traced back to popular culture, from characters like RoboCop and Ghost in the 
Shell to the classic Inspector Gadget. However, nowadays, this concept is being realised 
through prosthetics, sensory substitution, and extension devices. Under the umbrella 
term of ‘sensory augmentation,’ these technologies provide users with additional sen-
sory cues to assist them in completing various perceptual tasks. By taking advantage 
of these tools, individuals can gain a heightened level of awareness, allowing them to 
better understand their environment.

A sensory augmentation device comprises three main components: an artificial 
sensor, a coupling system, and a stimulator (Elli, Benetti, and Collignon 2014; T. D. 
Wright and Ward 2018). The artificial sensor receives incoming sensory information, 
the stimulator generates a sensory signal, and the coupling system connects the two. 
The artificial sensor records sensory information in the substituted sensory modality, 
and the stimulator outputs sensory information in the substituting modality, accord-
ing to sensory substitution terminology. In terms of technology, the artificial sensor 
and stimulator are implemented in hardware, while the coupling system connects both 
pieces of hardware with software.

As the coupling system, this sensory substitution and augmentation process more 
broadly entails implementing a conversion algorithm. The algorithm takes sensory 
input in one sensory modality, transforms it into another sensory signal, and outputs 
it in the desired sensory modality. Implementing the conversion algorithm creates a 
cross-modal, non-physical link between artificial sensors and stimulators. After exten-
sive training, the human user must learn how to interpret the output signal, which is 
the case for sensory substitution devices.
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Conceptually, as argued by Longin and Deroy (2022), sensory augmentation requires 
four elements:

1. that the input of a sensory augmentation device is a sensible property, set 
of properties or object,

2. that the output of a sensory augmentation device is causally related to 
the input and delivered as additional information to the user in a sensory 
format,

3. with the goal to provide or improve perceptual functions.
4. that the sensory augmentation device either forwards low-level sensory 

information through a linear relation between incoming and outgoing 
signals (for classical sensory augmentation) or extracts higher-level fea-
tures through a non-linear relation between incoming and outgoing sig-
nals (for intelligent sensory augmentation).

The first input requirement limits the inputs that result in sensory augmentation, but 
this should be qualified further. One critical question is whether virtual reality (VR) 
glasses should be considered ‘augmenting perception,’ as they also display additio-
nal information in a sensory format. It is important to note that VR objects are not 
generated from sensible properties or objects. VR glasses, for example, generate their 
displayed objects rather than gathering sensible properties from the user’s internal 
or external environment. As a result, in this case, VR glasses do not provide sensory 
augmentation. As a result, when considering the implications of VR glasses and other 
forms of sensory augmentation, it is critical to recognise this distinction.

Assume the first requirement concerns VR cases, and the second is about distin-
guishing sensory augmentation from cognitive augmentation and sensory tools. Cog-
nitive augmentation devices add symbolic or linguistic information to the perceiver’s 
environment, allowing them to better understand their surroundings and mental pro-
cesses. Extended-memory devices (Lee et al. 2016; Smart 2017), which can store and 
recall large amounts of information, and personal assistants (Canbek and Mutlu 2016; 
Hoy 2018), which can provide personalised advice, are examples of cognitive augmenta-
tion devices. Furthermore, many digital smart wearables, such as smartwatches (Fernán-
dez-Caramés and Fraga-Lamas 2018; Sun, Liu, and Zhang 2017), provide numerical 
values based on sensory inputs such as heart rate, whereas digital personal assistants or 
car-based navigation systems produce verbal outputs that aid cognitive tasks such as 
navigation. Text-to-speech devices, which take in sensory signals but produce linguis-
tic output, can also be classified as cognitive augmentation devices; however, because 
their output is not strictly sensory, they cannot be classified as sensory augmentation.

Sensory tools such as ordinary glasses or a cane, on the other hand, transfer infor-
mation in a sensory format but do not augment sensory capabilities (T. D. Wright and 
Ward 2018). The long cane is a typical example of this, as it allows the blind to detect 
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obstacles by extending their tactile field. This tactile information transfer is dependent 
on the user’s sensory abilities. Even though these tools mediate sensory information, 
they are not sensory augmentation because they do not improve the user’s sensory 
capabilities beyond their natural state. Instead, they enable users to interact with their 
surroundings more effectively. As a result, these tools are limited in their ability to truly 
augment the user’s sensory experience.

According to the third requirement, sensory augmentation devices must provide or 
improve a perceptual function. A perceptual function detects, locates, discriminates, 
or identifies properties and objects in its surroundings. These devices’ output must be 
linked to some environmental property, including the inner environment, i.e. the body. 
This excludes smart textiles, where the added sensory output is a source of additional 
sensations, such as vibration motors in jackets, which can provide new tactile sensa-
tions on the skin. However, these sensations are not typically constructed as the per-
ception of objects or serve a specific perceptual function (for a review and discussion, 
see Tajadura-Jiménez, Väljamäe, and Kuusk (2020)). Positive examples of sensory aug-
mentation devices include vOICe, which records and converts visual information into 
auditory frequencies. This improves spatial awareness perceptual function by linking 
changes in the visual field to changes in the produced auditory frequencies, allowing 
for a better understanding of the environment. Sensory augmentation devices can help 
people perceive their surroundings more meaningfully and accurately.

The fourth requirement is concerned with the processing of recorded sensory sig-
nals. A basic sensory pattern from the environment, such as light reflections or sound 
frequencies, is considered low-level sensory information. High-level sensory infor-
mation is a more refined sensory pattern that captures specific sensory characteristics.

The primary distinction between traditional and intelligent sensory augmentation 
devices is how the gathered information is translated into the output format. Non-lin-
ear mapping, which is only possible with intelligent sensory augmentation devices, 
foregoes preserving the original data’s structure to transform the data non-proportion-
ally. With the increasing integration of AI into sensory augmentation, the relationship 
between the input and output signal becomes a criterion with multiple values, allow-
ing two types of augmentation to be distinguished: intelligent and non-intelligent. AI-
powered sensory augmentation devices significantly improve sensory substitution and 
augmentation by pre-computing and only forwarding minimally noisy sensory signals 
to the human perceiver, which convey rich environmental cues.

4.2.2 AI in Sensory Augmentation
AI can be implemented in sensory augmentation devices in two ways: before and after the 
output is presented to the user. When AI is introduced before the output, it alters how 
sensory information is translated within or across sensory modalities. If AI is introdu-
ced after the output is presented to the user, AI facilitates the user’s encoding process.
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Intelligent sensory augmentation devices that implicitly use AI after the output have 
already been developed. In this case, AI methods are used to assess the quality of the 
final sensory signal and provide recommendations for improving signal quality. M. 
Kim et al. (2021), for example, use a cross-modal generative adversarial network-based 
evaluation method to find optimal auditory sensitivity in visual-auditory sensory sub-
stitution to reduce transmission latency. W. Hu et al. (2019) evaluate different encoding 
schemes for a visual-to-auditory sensory substitution device based on the user’s needs 
using machine learning. Given the differences in previous exposure to visual stimu-
lation between the late-blind and the congenitally blind, different encoding schemes 
are required to facilitate the recognition of ‘visual’ objects through sound. Late-blind 
users, unlike congenitally blind users, can use pre-existing visual experiences as a valu-
able reference for any cross-modal perception. While these modern technologies have 
demonstrated how AI can improve traditional sensory augmentation schemes after the 
output is presented to the user, there is still room for significant improvement by imple-
menting AI before the output.

An environmental navigation study by Kerdegari, Kim, and Prescott (2016), who 
developed an ultrasonic helmet that translates ultrasonic radar reflections into tactile 
feedback, exemplifies the fundamental idea of using AI before output and as part of 
processing incoming sensory signals. The conversion algorithm is implemented using a 
multilayer perceptron neural network. Participants in a series of experiments were asked 
to avoid obstacles and move in a specific direction. The helmet’s sensors collect environ-
mental data, which is then computed and forwarded to the human user in simplified 
and task-specific signals. Kerdegari, Kim, and Prescott (2016) discovered that when the 
AI-driven helmet forwards its computation as tactile signals rather than linguistic signals, 
participants perceive less cognitive load and achieve the goal more reliably.

This method is superior because additional processing steps are implemented in 
the sensory helmet, which provides task-specific directional cueing. Instead of trans-
mitting large amounts of quantitative data, the sensory helmet performs perceptual 
pre-processing tasks such as camera-based object detection and navigation. This hel-
met provides a first glimpse of how intelligent pre-processing could lead to sensory 
augmentation, at least if the forwarded output includes additional sensory cues about 
the environment that can serve a perceptual function like shape recognition or depth 
perception.

In addition to neural networks, T. Wright and Ward (2013) have used genetic algo-
rithms – a different machine learning method – to overcome traditional sensory sub-
stitution device challenges of cognitive overload and low usability. T. Wright and 
Ward (2013) have ‘evolved’ efficient signal encoding schemes using genetic algorithms. 
Genetic algorithms are a stochastic search method that employs evolutionary prin-
ciples to find the ‘fittest,’ i.e. best solution to a search problem (for more information, 
see Haupt and Haupt (2003)). Their interactive genetic algorithms broaden the fitness 
function, i.e. the optimisation function, to include human input. By incorporating user 
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input, these interactive genetic algorithms can incorporate aspects of the user expe-
rience, such as ease of use, into the evolutionary process. T. Wright and Ward (2013) 
reimplemented the conversion algorithm of the ‘vOICe’ in this early example of an AI-
powered sensory augmentation device called ‘Polyglot’ by mapping visual signals to 
sounds. While some conversion principles, such as using frequency to represent a verti-
cal position, are retained, the ‘Polyglot’ freely varies and evolves other parameters, such 
as frequency allocation, frequency range, and contrast enhancement. Subsequent tests 
validate the concept of tailoring the sensory substitution device to the human user. T. 
Wright and Ward (2013) report a relatively rapid convergence to an optimal balance of 
performance and usability. However, they also report that the optimal settings depend 
highly on the given task and the sensory capacity limits.

Subsequent tests validate the concept of tailoring the sensory substitution device 
to the human user. T. Wright and Ward (2013) report a relatively rapid convergence to 
an optimal balance of performance and usability. However, they also report that the 
optimal settings depend highly on the given task and the sensory capacity limits.

Despite their limitations, early and implicit AI-powered sensory augmentation cases 
demonstrate the wide range of AI methods that can be used to improve and transform 
the field of sensory augmentation technologies.

4.2.3 What makes Sensory Augmentation intelligent
The critical distinction between non-AI and AI sensory augmentation is a shift in the 
computational processing of sensory signals. AI-powered sensory augmentation devi-
ces can match input and output signals non-linearly rather than translating and forwar-
ding sensory signals through a linear relationship between input and output. Linearity 
in signal processing describes the relationship between incoming and outgoing signals 
and signals with a linear relationship that connects changes in the input signal to chan-
ges in the output signal. Non-linear signals, on the other hand, do not always match a 
change in the input signal with a change in the output signal. This computational shift 
enables AI-powered sensory augmentation devices to recognise complex, non-linear 
patterns, transforming them from mere sensory converters to sensory pre-processors.

Sensory substitution devices have traditionally used a linear mapping of recorded 
to output sensory information as an example of non-intelligent sensory augmentation. 
The vOICe, one of the first sensory substitution devices, uses linear mapping as a cou-
pling system to convert visual to auditory information. The original mapping algorithm 
developed by Meijer (1992) instantiates a linear mapping that is “as direct and simple as 
possible” (p. 113) to “reduce the risk of accidentally filtering out important clues” (ibid). 
The assumption was that “most, if not all, existing computer systems are far superior 
to the human brain in rapidly extracting relevant information from blurred and noisy, 
redundant images” (ibid.). Incoming visual signals are recorded as greyscale values by 
the vOICe and translated into auditory frequencies. The vOICe correlates the incoming  
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signal’s location with the output frequency (the higher the signal, the higher the fre-
quency) and the brightness of the incoming signal with the loudness of the input (the 
brighter the signal, the louder the output). Both relationships are linear and corre-
spond to incoming and outgoing signal changes. The user then learns to reconstruct 
the decoded image through the presented sound pattern.

In comparison, an AI-driven sensory augmentation device can do much more than 
a traditional sensory substitution device by extending sensory processing to non-linear 
models. An AI-powered sensory augmentation device, for example, can reduce sensory 
complexity to essential features like edges in images, perform sensory classification like 
navigation for collision avoidance, integrate a wide range of sensory signals simulta-
neously, and generate complex, novel sensory patterns from incoming signals using 
non-linear filtering algorithms from computer vision.

For example, the tactile helmet developed by Kerdegari and colleagues uses ultra-
sound sensors to sense the environment and issues haptic navigation commands to 
avoid collisions. The tactile helmet employs a multilayer perceptron neural network to 
classify incoming sensory data into navigation commands. This transformation denotes 
a non-linear relationship between sensory data and navigation commands. Changes in 
the incoming signal do not always result in changes in the outgoing signal. Instead, the 
neural network solves a non-linearly separable pattern classification problem by match-
ing changing ultrasound patterns with relatively stable tactile signals. This non-linear 
reduction in initial sensory complexity improves usability and reduces cognitive over-
load in the user.

The differences become apparent when comparing traditional non-intelligent sen-
sory augmentation devices like the vOICe to intelligent non-intelligent sensory aug-
mentation devices. AI-powered sensory augmentation devices play a more significant 
role in processing sensory signals as the underlying computational model shifts from 
linear to non-linear. While traditional non-intelligent sensory augmentation devices 
are designed to transfer the sensory signal to the human user as accurately as possible, 
AI-powered sensory augmentation devices can significantly alter the sensory signal. 
Instead of learning to make sense of the classic non-intelligent sensory augmentation 
device’s sensory signals, the human user receives a much more refined sensory signal 
with an AI-powered sensory augmentation device.

The main difference with intelligent sensory augmentation is not in the input or out-
put but in how the change in the mapping (from linear to non-linear) affects how we 
can and should think about sensory augmentation with such intelligent forms in mind. 
AI-powered sensory augmentation devices significantly improve sensory substitution 
and augmentation by pre-computing and only forwarding minimally noisy sensory 
signals to the human perceiver, which convey rich environmental cues.
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4.2.4 Use case: debunking illusions

Perceptual illusions generally arise from ambiguous stimulus information. As sensors 
gather sensory information and transmit them to subsequent perceptual processes, the 
perceptual experience is the final result of these perceptual processes. In other words, 
perception interprets gathered sensory information based on existing cognitive states. 
An illusion arises when interpreting the gathered sensory information does not match 
the sensory information. Commonly, illusions are noticed because different interpreta-
tions can arise from the same stimulus (for the same subject at different times). Recall 
the Necker cube or the duck-rabbit image, where the same object can be perceived dif-
ferently given a specific perceptual selection of the object. The brain then reconstructs 
a sensible object from the given perceptual selection. In contrast to a misperception of 
the whole, this illusion is commonly known as a negative hallucination. For a negative 
hallucination, some parts of the sensed object are left out, which makes the illusion 
occur (Reeves and Pinna 2017).

Illusions can tell us a lot about our theories of perception in general. If a theory of 
perception cannot account for an observed visual illusion like the McGurk effect, for 
instance, we have reasonable grounds to reject this theory. The McGurk effect demon-
strated that visual stimuli in the form of observed mouth movements influence and 
often supervene the auditory perception of spoken words (Mcgurk and Macdonald 
1976). Hence, theories of perception supporting strictly unimodal accounts of percep-
tion have much explaining to do. In sum, the study of illusions has advanced the field 
of perception and cognitive science as a valuable tool to study the interconnection 
between perception and cognition in a broader and more applicable sense. However, 
many questions concerning perceptual illusions remain unsolved. For example: does a 
way to reverse, i.e. counteract, a perceptual illusion exist? For negative hallucinations 
like the Necker cube or the duck-rabbit, it is possible to shift one’s attention to a differ-
ent perceptual selection which yields the perception of the previously ‘hidden’ object. 
However, the answer to possible disillusion mechanisms is still open for full mispercep-
tions like the Müller-Lyer illusion or the McGurk effect. However, AI-powered sensory 
augmentation might be able to fill that gap.

Recall that perceptual illusions arise from a mismatch or the ambiguity of stimulus 
information. Modifying the humanly perceived sensory stimulus information to resolve 
ambiguity or mismatch would debunk a perceptual illusion. However, such modulation 
requires processing the incoming sensory stimuli, which requires gathering sensory 
stimuli. Because debunking a perceptual illusion requires modulation without prior 
stimuli perception, debunking illusions is impossible for a single human perceiver.

However, AI-powered sensory augmentation devices offer the unique opportunity 
of pre-processing the humanly gathered sensory information through computational 
means. This pre-processing satisfies the required modulation for debunking illusions, as 
it occurs before the reception and perceptual processing of the human stimuli. For optical 
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illusions like the duck-rabbit or the Necker cube, this pre-processing of sense data can 
take on the task of perceptual selection by highlighting only the sensory information rele-
vant to one particular perceptual interpretation and muting the remaining sensory infor-
mation. What emerges is a for the human perceiver disambiguated sensory landscape.
For other multisensory illusions like the McGurk effect (Mcgurk and Macdonald 1976) 
or the flash-beep illusion (Keil 2020; Shams, Kamitani, and Shimojo 2000), the appli-
cation of AI-powered sensory augmentation devices is even more promising. Multi-
sensory illusions commonly rely on a temporal binding window during which sensory 
information from multiple sensory modalities are integrated and, subsequently, a com-
mon perceptual experience emerges (Stevenson, Zemtsov, and Wallace 2012). While 
the specific time frame of temporal binding varies across subjects, it generally holds 
that it is necessary for multisensory illusions. By pre-processing the sensory data, an 
AI-powered sensory augmentation device can debunk multisensory illusions by draw-
ing the different sensory signals apart in time, which releases the temporal binding of 
sensory information. Hence, the temporal binding condition for multisensory illusions 
is unmet, and the illusion does not occur.

The implications of having ways to debunk perceptual illusions with AI-powered 
sensory augmentation devices are manifold. On the one hand, it can result in a bet-
ter understanding of the integration of multisensory signals, and the pre-processing 
of sensory signals allows for a new combination of multisensory information. On the 
other hand, counteracting illusions has highly practical merits. By disambiguating and 
filtering sensory signals with sensory pre-processing, influenced perception through 
an AI-powered sensory augmentation device can overcome the attentional limitations 
associated with driving (Ho and Spence 2012).

4.3 Examining the nature of the coupling
Having analysed the way AI influences sensory augmentation devices, we can turn to 
what AI influence implies for the sensory coupling between AI-powered augmenta-
tion systems and the human user. By sensory coupling, I mean connecting the sensory 
capabilities of multiple entities. This means that having natural or artificial sensors is 
necessary for being part of a sensory coupling. This excludes entities like spectacles 
or canes, which do not have sensors and only forward sensory information through 
a direct, physical connection to the user. The ability to process the gathered sensory 
information remains an optional criterion for sensory coupling as cochlea implants 
already successfully establish a connection between artificial sensors and the human 
perceiver without additional processing. However, sensory processing remains inte-
gral to more advanced sensory couplings, as demonstrated by sensory substitution 
devices. Based on cross-modal transformation algorithms, sensory substitution devi-
ces can process gathered sensory information and enable the user to access additional 
sensory information.
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Basic cases of sensory coupling that extend perception are found in nature. The echo-
locating bat and electrically sensitive fish are paradigmatic extended sensory systems. 
Bats use self-generated sonic fields for navigation and prey detection, and electric 
fish use mild electric fields for the same purposes. The self-created sensory fields are 
extended phenotypes rather than mere bodily-bounded sensory systems like a phy-
sical antenna of an angler fish. In these cases, sensory systems and their perceptual 
processing are extended.

Going beyond biological systems and looking at AI systems, the same logic holds. 
The combination of sensory/perceptual systems with humans permits two kinds: cou-
pling of only the perceptual process (how sensory information is gathered) to change 
in perceptual content (what sensory information is about). AI-powered devices are 
different to non-AI-powered sensory augmentation devices because they introduce 
forms of sensory pre-computation to the perceptual process. This, in turn, shifts the 
part of learning to make sense of new sensory information from the human perceiver in 
parts to the non-AI-powered sensory augmentation devices. For one, sensory pre-com-
putation allows filtering and hence reduces noise from sensory information, enhancing 
the quality of sensory information presented to the human perceiver.

The importance of sensory pre-processing grows as signal transformation moves 
from linear to non-linear. The processing burden of making sense of the incoming sen-
sory signals is now shared by the human user and the AI-powered sensory augmenta-
tion device rather than solely by the human user. This shift denotes a possible extension 
of the human user’s sensory processing and even establishes the conceptual notion 
of an AI extender (Hernández-Orallo and Vold 2019) or forms of hybrid intelligence 
(Akata et al. 2020; Pescetelli 2021). An AI-powered sensory augmentation device can 
generate high-level perceptual features using machine-learning techniques based on 
sensory patterns collected without involving the human user. As a result, AI-powered 
sensory augmentation devices allow for the creation of an extended artificial sensor 
that outputs constructed high-level features in a sensory format. Finally, the human 
perceiver can obtain a direct sense of the constructed representation without having to 
construct it in the conventional sense herself. The only construction task the perceiver 
has to do is to decode the forwarded signals from an available sensory modality, where 
the AI-powered sensory augmentation information is received, into the constructed 
representation from AI-powered sensory augmentation devices.

For example, an image-to-sound AI-powered sensory augmentation device can 
incorporate a wide range of sensory data, such as a depth-sensing LIDAR scanner or 
a thermal camera. After using a neural network to reduce overall signal complexity, 
such as a variational autoencoder (Kingma and Welling 2019) or a convolutional neu-
ral network (Albawi, Mohammed, and Al-Zawi 2017), the device can either forward 
compressed, low-level sensory signals or further process them. Further processing can 
include detecting human faces nearby or mapping recorded two-dimensional image 
data into a three-dimensional soundscape (Rumsey 2012; Thuillier, Gamper, and Tashev 
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2018). A three-dimensional auditory soundscape adds spatiality to the sound environ-
ment without using additional sensory signals. This technique can be used to improve 
spatial awareness and, when combined with other sensory classification techniques, to 
improve awareness of fast-moving peripheral objects like cars on the road. When AI 
methods are incorporated into the classic vOICe architecture, the final auditory signal 
can now convey much richer and more accessible information, such as a three-dimen-
sional sense of depth.

For non-AI-powered sensory augmentation systems, the human perceiver tradi-
tionally pre-processes perceptual processes. Perceptual processing is the construction 
of high-level perceptual features from low-level sensory information under the influ-
ence of cognitive processes to form an overall perceptual experience. High-level per-
ceptual features describe perceptual features that require some form of computation 
on sensory information, such as the human extracting perceptual features like object 
classification from the sensory input. AI-powered sensory augmentation devices can 
be trained to produce certain perceptual features like overcoming visual occlusion 
(Chandel and Vatta 2015).

After data compression, additional task-specific neural networks can be inserted that 
take the compressed data, perform a specific perceptual processing task, and produce 
a sensory output suitable for the perceptual task. In the case of a spatial navigation 
AI-powered sensory augmentation device, sensors gather information about the envi-
ronment, which is then compressed to enhance data quality. Then, a neural network 
trained for spatial navigation takes the compressed data and forwards a simplified and 
task-specific signal to the human user. This output can be similar to the tactile feedback 
in the AI-driven helmet or other suitable sensory cues in a specific task environment.

4.3.1 AI really makes a difference
As previously discussed, AI-powered sensory augmentation devices can improve the 
performance of sensory substitution and extension devices by utilising a non-linear 
transfer of sensory information within the coupling system. This mere improvement, 
however, understates the difference intelligent sensory augmentation brings to sensory 
augmentation, and intelligent sensory augmentation calls into question the underlying 
principle underpinning sensory augmentation thus far. Intelligent sensory augmenta-
tion seeks to improve the quality of the provided sensory signal rather than the quan-
tity of sensory information provided to the user, as traditional, non-intelligent sensory 
augmentation approaches do.

The primary method for improving the usability of sensory substitution devices 
under the traditional framework of non-intelligent sensory augmentation has been 
relying on crossmodal perception features (Auvray et al. 2005). This includes, for exam-
ple, the relationship between pitch and vertical positioning (Ben-Artzi and Marks 1995) 
and the relationship between loudness and luminance (Marks et al. 1987). However, the 
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overall reliance on the human user to make sense of the underlying sensory patterns 
has remained. The cross-modal pattern is useful because it represents easily distin-
guishable patterns across the various sensory modalities. When spatial location and 
luminance are encoded using an image-to-sound sensory substitution device, the final 
output pitch and loudness typically vary. Adding more input features necessitates the 
addition of another output parameter to a traditional non-intelligent sensory augmen-
tation device. When multiple output parameters are added, the final conflated output 
signal becomes highly complex and difficult to encode.

AI-powered sensory augmentation devices, on the other hand, can build high-level 
perceptual features based on gathered sensory patterns using machine learning tech-
niques without involving the human user. As a result, AI-powered sensory augmen-
tation devices allow for the creation of an extended artificial sensor that outputs con-
structed high-level features in a sensory format. Finally, the human perceiver can obtain 
a direct sense of the constructed representation without having to construct it in the 
conventional sense herself. The only construction task the perceiver has to do is to 
decode the forwarded signals from an available sensory modality, where the AI-powe-
red sensory augmentation information is received, into the constructed representation 
from the AI-powered sensory augmentation device.

An AI-powered sensory augmentation device can extract higher-level features from 
incoming signals by connecting input and output via non-linear computational mod-
els. These higher-level features are higher-level because they contain more information 
than the low-level sensory signals ingested and produced by traditional non-intelli-
gent sensory augmentation devices. Consider a vision-to-tactile non-intelligent sensory 
augmentation device as an intuitive example. According to the traditional framework, 
this non-intelligent sensory augmentation device only relays low-level sensory infor-
mation to the human user. The non-intelligent sensory augmentation device converts 
images to tactile stimulations while relying on established cross-modal perception fea-
tures to aid information decoding. In contrast, an AI-powered sensory augmentation 
device modifies the incoming visual signal by filtering background noise or extracting 
higher-level features such as an object or feature classification. A high-quality tactile 
output signal may be sensitive only to contextually relevant information such as poten-
tial traffic hazards, targets during sports practice, or human faces in crowds.

According to philosophers and computer scientists (Illari and Floridi 2014; Xia-
odong Wang and Poor 1998), the concept of information quality is multidimensional 
and encompasses all dimensions of information that are not simply captured by looking 
at the quantity and accuracy of information. A good example is information believabil-
ity: two sets of data may be equal in size and accuracy, but users may find one more 
credible than the other due to trust and reputation. Another distinguishing feature is 
accessibility. However, such qualitative dimensions are not the most relevant for ISA, 
but they highlight the differences between quantitative and qualitative information 
approaches. Quantitative approaches are meant to improve the relationship between 
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encoded and decoded sets, or world and data: how can information be best encoded 
and transmitted to be accurately decoded? Qualitative approaches consider the rela-
tionship between the world and data about the users’ goals and constraints. Because 
other factors come into play, not all accuracy is equal, and sometimes less accuracy is 
better.

Connecting the notion of information quality to the distinction between low-level 
and higher-level sensory signals, as outlined above, it generally holds that higher-level 
sensory signals possess a higher information quality than low-level sensory signals. The 
higher information quality makes them higher-level compared to the low-level sensory 
signals. Contextual information quality and, more importantly, representational infor-
mation quality are the two qualitative considerations relevant to AI-powered sensory 
augmentation devices.

Contextual information quality denotes the quantity and accuracy of information 
provided that is relevant and timely, depending on the context of use (Xiaodong Wang 
and Poor 1998). Typically, traditional approaches to sensory substitution and exten-
sions provide the same amount of information across contexts. They have not consid-
ered contextual quality: the amount of information provided to the user is, in other 
words, unrelated to the user’s goals. Recently, some attempts have been made to use 
machine learning to segment and categorise 3D visual scenes (Caraiman et al. 2017; 
Morar et al. 2017): the user can not only choose the maximum number of objects to 
encode, but she can also decide the importance of the object in the final output. Each 
object is encoded as a weighted sum of its size, average depth, and deviation from the 
viewer’s direction, but the user determines the weights. As a result, she can choose 
whether to give more weight to the most significant objects, the closest ones, or the 
objects closest to the direction the user is looking. These weights could eventually be 
learned through repeated use and become a versatile source of task- and situation-spe-
cific sensory information.

Representational information quality denotes adjusting information quantity and 
accuracy to serve interpretability and ease of understanding (Xiaodong Wang and Poor 
1998). Classic sensory substitution devices care about representational quality, and the 
initial design adapts the codes to pre-existing sensory correspondences. In the vOICe, 
for example, it is easier to interpret a high pitch as bright and a low pitch as dark than 
the opposite. However, representational quality is only taken into account after the 
design stage. AI-powered sensory augmentation devices, on the other hand, ensure 
that only the necessary information is retained in the reconstructed data.

Integrating a generative deep learning model into signal conversion is an example of 
the shift in emphasis from quantity to quality. Consider a speech-to-vision AI-powered 
sensory augmentation device which produces visual images of lip movements based on 
audio speech (L. Chen et al. 2018; G. Tian, Yuan, and Liu 2019). The AI-powered sensory 
augmentation device captures incoming auditory frequencies, isolates speech frequen-
cies, matches speech frequencies with corresponding lip movements, and then projects 
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the lip movement onto a visual display. In this case, the AI-powered sensory augmen-
tation device augments the simple auditory reality with additional, high-quality visual 
sensations that would not have been possible to implement using traditional sensory 
augmentation. This AI-powered sensory augmentation device is beneficial when facial 
movements are obscured, or additional sensory cues are required to understand speech.
Another more forward-thinking application of AI-powered sensory augmentation 
devices is diagnostic devices. AI assistance for medical diagnoses, such as detecting 
tumours in mammograms (Rodríguez-Ruiz et al. 2018) or classifying liver tumours, 
can improve the accuracy and sensitivity of medical diagnoses. Patients prefer analy-
ses involving radiologists and AI over either alone (Dewey and Wilkens 2019). On the 
other hand, existing solutions choose to present the AI-generated diagnosis in a sym-
bolic format, such as a probability statement about the type and location of a tumour. 
AI-powered sensory augmentation device’s computational results could be presented 
in a sensory format. As a result, the human doctor gains access to a vast diagnostic 
system through her senses and forms a medical judgement based on all available data.

4.3.2 Perceptual offloading - computation
The role of computation in perception has revolved around describing the computa-
tional processes by which perception derives and represents its perceptual features (J. 
Cohen 2018). The perceptual process is classified as an inverse problem without suffi-
cient constraints and computationally nearly intractable because rich information is 
extracted from a relatively basic input (ibid). For example, modulating a three-dimen-
sional representation of an object can be done by simulating and computing an infi-
nite number of light rays being reflected from the target towards the perceiver, or it 
is limited to a certain number of inputs such as image pixels and from there extracts 
surface descriptions which ground a three-dimensional target model. Constraints for 
perceptual processing are henceforth essential to keep the representation of perceptual 
properties computationally tractable. This, however, does not mean that the constraints 
must be explicitly represented in the perceptual system (Pylyshyn 2003). Instead, the 
perceptual systems learn to act and perform according to these constraints by default 
and refine them during their continued exposure to their environment. The idea that 
morphological computation is offloaded from the brain to parts of the perceptual sys-
tem is debated (Müller and Hoffmann 2017). According to this view, parts of the per-
ceptual process are taken on outside the brain. The body often supports the organism’s 
cognitive calculations philosophically. MacIver (2009) even says morphological com-
putation uses the organism’s morphology as computational gear (see also Pfeifer and 
Bongard (2006)). Perceptual offloading is related to but different from “cognitive offloa-
ding” (Risko and Gilbert 2016), which refers to particular ways of aiding and impro-
ving cognition by gestures or manipulation. This can – on a weak notion of perceptual 
externalism – include a minor manipulation of the sensory data – like an aggregation 
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of sensory information from multiple sensors – but also extensive processing – like 
prey detection.

The basic computational difference is illustrated by T. D. Wright and Ward (2018). 
They argue that sensory tools, including sensory substitution devices, can be distin-
guished under the presence or absence of a conversion algorithm of processed sensory 
information. If the conversion algorithm is absent, the sensory tools are classified as 
simple because they establish a natural physical relationship between the environment 
and the final sense organ, as for the long cane (Bach-y-Rita and W. Kercel 2003) or 
spectacles. If the conversion algorithm is present, the sensory tools are classified as 
advanced because the algorithm establishes a non-physical connection between arti-
ficial sensors and artificial stimulators.

However, as offered by T. D. Wright and Ward (2018), this distinction between sim-
ple and advanced sensory tools is superficial and neglects the fundamental difference 
in algorithmic complexity. While sensory substitution devices can convert sensory 
information from one sensory modality to another, the resulting sensory output can 
differ substantially. Comparing the classical sensory substitution device vOICe with an 
AI-powered sensory augmentation device prototype from Kerdegari, Kim, and Prescott 
(2016) reveals that sensory substitution device users receive a much noisier sensory 
input than AI-powered sensory augmentation device users. Instead of receiving vary-
ing degrees of auditory frequencies in the case of vOICe, which the user has to learn 
to make sense of, AI-powered sensory augmentation device users receive only filtered 
tactile information which can be connected to an apparent meaning.

J. Cohen (2018) even challengees all bottom-up strategies which aim to integrate 
perceptual representations: even if it is possible to make constructed visual representa-
tions/properties like squarehood sensible, all other kinds of typically visually accessible 
properties like visual depth and motion which are essential for a comprehensive visual 
experience remain out of reach. However, this challenge is only successful against tra-
ditional sensory substitution devices, which aim to transfer the sensory information 
of a deficient sense to a healthy one. For sensory substitution devices, a decision has 
to be made about which kind of information is forwarded to the perceiver. By only 
focusing on a squarehood representation, the resulting perceptual experience seems 
to fall short of complete restoration. On the other hand, the application scope is not 
necessarily this limited with AI-powered sensory augmentation devices. By focusing, 
for instance, on the augmentation of healthy senses, all the ordinarily accessible prop-
erties are still available. What is introduced with AI-powered sensory augmentation 
devices is enhanced access to selective perceptual representations that are not as readily 
available to the human perceiver, such as enhanced depth perception for low-contrast 
environments or object identification for occluded objects. As informed by an AI-powe-
red sensory augmentation device, the substituting modality bundles the basic sensory 
information into object representation as the substituted modality would do, allowing 
for the successful preservation of representations based on this sensory information.
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4.3.3 Externalism – the conceptual backdrop

Stepping back and looking at the broader picture of whether sensory AI systems extend 
the human mind, we cannot avoid a brief detour into the “externalist theory of the 
mind” – also known as “active externalism,” “extended cognition” (both A. Clark and 
Chalmers (1998)), “environmentalism” (Rowlands 1999), and “cognitive integration” 
(Menary 2007). The main question is whether the mind itself can extend physically 
beyond the physical boundaries of the body. Those who respond positively (A. Clark 
and Chalmers 1998; Chalmers 2011; Hurley and Noë 2003) support the expanded mind 
theory. Those who respond adversely (Fred Adams and Aizawa 2001; Frederick Adams 
and Aizawa 2010; Rupert 2004; Prinz 2001) believe the theory is flawed. Externalism 
is the belief that what occurs within a person’s body does not always determine what 
is occurring within that person’s mind. In other words, according to externalism, an 
individual’s bodily states and processes do not always determine the mental states or 
processes experienced or undergone by that individual. The mind refers to the totality 
of mental occurrences an individual experiences at any given time.

In this context, the body delineates the biological boundaries of the individual, 
which coincide with the skin and the brain, which are traditionally regarded as the 
most critical determinant of mental life. Externalism has two primary forms: content 
and vehicle externalism. Content externalism argues that some mental content itself is 
external. The content of some mental states is determined by things outside of the indi-
vidual’s body, and it asserts that at least some mental states’ contents are not entirely dic-
tated by events occurring inside the person experiencing them in bodily bounds. This 
means that an individual’s mental states are not entirely defined by events occurring 
inside their biological limitations, as mental states with content are often individuated 
by that content. Vehicle externalism is the basis for the external mind thesis and applies 
to perceptual externalism. Vehicles of mental content – the physical or computational 
bearers of this content – are not always determined or exhausted by things occurring 
inside the individual’s biological boundaries (Rowlands, Lau, and Deutsch 2020).

According to the extended mind thesis, events outside of an individual’s biologi-
cal bounds do not necessarily decide or exhaust the vehicles of mental information or 
approximately this material’s physical or computational carriers. One of the primary 
arguments for the extended mind thesis is that the human mind is highly adaptable and 
flexible and can use external resources to facilitate cognitive processing. For example, 
when we use a calculator or a map to help us solve a math problem or find our way 
to a new location, we effectively outsource some of our cognitive processing to these 
external tools. One broad factor that lends credence to the extended vision theory is 
that cognitive systems developed through world-mind conflicts are strong candidates 
for extended cognition. Perceptual externalism is the view that the contents of our per-
ceptual experiences are determined not just by the intrinsic properties of the objects 
we perceive and the intrinsic nature of our sensory systems but also by the external 
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context in which we perceive those objects (R. A. Wilson 2010). According to this view, 
how we perceive an object can be affected by factors such as the other objects present 
in the environment, the lighting conditions, and even the cultural and social context 
in which we perceive the object. Perceptual externalism challenges the traditional view 
that our perceptions simply reflect the intrinsic properties of the objects we perceive 
and suggests a more complex relationship between our perception and the external 
world. One argument for perceptual externalism is based on the idea that our expecta-
tions and prior knowledge shape our perceptions. According to this view, the contents 
of our perceptions are not simply determined by the intrinsic properties of the objects 
we are perceiving but are also influenced by our expectations and the patterns we have 
learned from past experiences. For example, if we see a round object in a dimly lit room, 
we might perceive it as a ball because that is what we expect to see based on our prior 
knowledge and experience. Suppose we saw the same object in a well-lit room. In that 
case, we might perceive it as a coin because that is a more likely interpretation based 
on the additional information provided by the better lighting conditions.

4.3.4 Ways AI Can Extend Perception 
The critical aspect of AI extenders is that they implement various perceptual processes; 
they are not simply sensory tools. This makes perceptual extension far more powerful 
and complex than when the extended perception thesis was introduced – the standard 
example at the time being a notebook. Before assessing the future implications of AI 
extenders, we must first understand the types of extensions envisaged by current and 
future AI. We must not only understand the various areas of perception but also recog-
nise that perceptual extenders are designed to be tightly coupled. Machine learning can 
be used with AI extenders to model human perception, identify cognitive limitations, 
and fully exploit our capabilities.

Only through a highly coupled interaction between the human user and the AI sys-
tem can we talk about human perception being extended and consider the AI system 
part of human’s perceptual system. It is essential to note that in the context of extension, 
it is not the collective capabilities or the social aspect (the collective of a human user 
and AI system) that is interesting but how the human user operates as an individual, 
extended by the AI system.

Artificial intelligence (AI) can be used for perceptual externalisation, perceptual 
internalisation, and perceptual extension (Hernández-Orallo and Vold 2019). Let us 
look at each case in depth.

Externalisation is the traditional view of artificial intelligence. An AI system should 
be capable of completing tasks independently, with minimal or no human interven-
tion. The term “autonomous agent” was coined to represent this goal of AI, and those 
outside the field frequently use the related concept of automation to reinforce this per-
spective. When humans are still necessary, it is because artificial intelligence is insuffi-
ciently capable or because humans must control or supervise the actions of machines. 
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Humans and machines can work in synergy, where the sum of the whole is greater than 
the parts. Even in this human-AI scenario, AI is not intended to alter how the human 
individual (user) perceives. As machines can perform tasks such as calculation and 
memory better than humans, the externalisation narrative becomes more complex. 
Machines can perform computations faster than humans and manage vast data. How-
ever, we have recently observed machines exhibiting cognition that appears to be vastly 
distinct from human cognition, exploiting differences between biological and artificial 
neural networks, for example.

On the other hand, internalisation in the AI domain denotes the acquisition of pro-
cesses observed on a machine. A human, for example, can observe how an AI system 
solves a problem and internalise the procedure. This does not imply that the machine is 
necessarily redundant but that the human can approximate (at best) what the machine 
is doing. Internalisation in generative machine learning models means very different. 
For instance, Carter and Nielsen (2017) argue that “rather than outsourcing cognition, 
internalisation is about changing the operations and representations we use to think; it 
is about changing the substrate of thought itself. While cognitive outsourcing is import-
ant, this cognitive transformation perspective provides a much more comprehensive 
model of intelligence augmentation. It is a view in which computers are a means to 
change and expand human thought.” Here, AI generates new concepts and represen-
tations that we can use, and AI becomes a teacher or a discoverer, thereby adding to 
the conceptual baggage of human culture. Internalisation is more liberating than other 
cognitive enhancement techniques. Despite significant progress in the field of explain-
able AI, as AI becomes more powerful, humans may be unable to internalise many of 
the concepts generated by AI due to differences in their capacities and representations.

Because the perceptual extender is required for functionality, perceptual exten-
sion is neither fully externalised nor fully internalised. For AI, the design of a percep-
tual extender to enhance human perception differs from that of a fully autonomous 
system and cases of disjointed or internalised human-AI pairing. Because only the 
interface must be internalised, extensibility is significantly more flexible. Many other 
things, however, do not need to be understood by the user, just as one can drive a 
car without understanding its inner workings. AI extenders bridge the gap between 
human-computer interaction and AI. This perspective emphasises a less human-like 
but more human-centred AI. If AI systems were only designed to imitate or replace 
human behaviour or to be internalised by humans, the possibilities for perceptual 
extension would be limited to perceptual prosthetics, applicable when pathologies or 
ageing necessitate the recovery of “standard human perception”.

4.4 Conclusion
This chapter analysed a tight coupling of AI advisers with their human users. A cou-
pling where AI advisers are an integral part of human perception and decision-making, 
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as augmented reality or sensory augmentation cases demonstrate. This chapter asked 
how and to which extent AI advisers influence human perception. I have shown that 
implementing AI into existing sensory augmentation devices, such as sensory subs-
titution systems, changes not only the conceptual kind of sensory augmentation but 
also extends the kind of perceptual pre-processing from the human user to the AI sys-
tem. Due to their extensive computational capacities, sensory AI systems can process 
sensory signals like no other sensory augmentation system before. Two ways of signal 
processing are possible: enhancing low-level sensory signals by filtering out sensory 
noise and extracting high-level perceptual features by incorporating data-processing 
tools in the sensory augmentation process. Then, this chapter asked whether, as a con-
sequence, sensory AI systems should be understood as perceptual extenders. I con-
cluded that sensory AI systems are unique and extend human perception in ways no 
non-AI-powered device can. The next chapter’s topic shows why the tight coupling with 
sensory AI systems still falls short of coupling with other humans.
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5.1 Introduction
The previous chapter showed that sensory AI advisers, in a tight coupling with their 
human users, extend human perception in ways no non-AI-powered device can. In 
this chapter, I examine what a sensory coupling between humans looks like and ask 
whether AI advisers can reach a human-like social coupling.

One common challenge for employing and using AI systems, whether as interactive 
partners or nudging advisers, is achieving social awareness of others’ goals and inten-
tions. While humans have adapted and fine-tuned their social awareness and reciproc-
ity to others, robots and AI systems generally operate in their way. They seek to fulfil 
their goals given their initialised and subsequently developed learning parameters. AI 
systems learn to optimise their behaviour over many iterative trials until the learned 
behaviour solves the training task. This method of reinforcement learning has led in 
the past to human-like or even more than human-like performance: AlphaGo besting 
human’s best Go player, Lee Sedol, is just one example. AI systems can even develop 
their language (Bansal et al. 2018) or learn to move independently (Mordatch and 
Abbeel 2018). Notably, the learned behaviour is developed as the most efficient solution 
to the given problem – not the most human-like. The developed language, for instance, 
is incomprehensible to humans. One solution to the new social barrier is making AI 
systems more socially aware of their human users.

Much of human social interaction is based on mutual awareness – a two-way 
exchange of information that establishes a joint perceptual or cognitive common 
ground. What this jointness presupposes has been the topic of many debates. Tradition-
ally, it is believed to involve shared intentions (M. Bratman and Bratman 1987; M. Brat-
man 1999). Others have argued for shared knowledge states (Seemann 2011; Seemann 
2019) that ground shared attention and cooperative behaviour. Another possibility is 
that some collective goals can be represented motorically (della Gatta et al. 2017; Sacheli, 
Arcangeli, and Paulesu 2018). If so, it is possible that intentions and motor represen-
tations can link actions to collective goals (Butterfill and Sinigaglia 2022). Whichever 
side one endorses, perceiving things in common requires mutual awareness and, there-
fore, distinctly differs from mere coordinated behaviour, which can occur without it.

Talking about perceiving things in common cannot but evoke the topic of joint 
action and joint attention (Bruner (1974); Lewis (1969); Scaife and Bruner (1975); see 
also Mundy, Sullivan, and Mastergeorge (2009); Natalie Sebanz and Knoblich (2009); 
Tomasello (1995) for seminal papers). Though people still argue about what joint atten-
tion is (see Siposova and Carpenter (2019)), it is undeniably trivially connected to the 
idea of shared perception. If two people jointly attend to a painting, this painting is 
also jointly perceived – after all, perception is closely tied to attention (Rensink 2013).
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The coordination of joint attention plays a fundamental role in our social lives: it ensu-
res that we refer to the same object, develop a shared language, understand each other’s 
mental states, and coordinate our actions. The study of joint attention has revealed that 
social influence fundamentally changes how people perceive the world. When peo-
ple attend or perceive things together, people automatically track the other’s perspec-
tive leading to faster and more accurate perceptual judgments (Kampis and Southgate 
2020). Evidence also suggests that social influence does not stop at efficiency impro-
vements but extends to qualitative differences. In other words, when people attend 
or perceive together, their perceptual content might differ from when they perceive 
something alone.

By contrast, in basic tool scenarios, information exchange is one-dimensional. Infor-
mation is transmitted only in one way – from the system to the user. Google Maps, for 
example, provides traffic navigation recommendations to the user. The user can act on 
the provided information or neglect it entirely. Here no mutual information exchange, 
no two-way communication, and no cooperation is required. Other AI systems begin 
utilising a two-way information exchange to improve usability. Voice assistants like 
Amazon’s Alexa can ask to clarify ambiguous verbal prompts. Language models like 
OpenAI’s ChatGPT can refine language outputs by querying additional user inputs. 
AI-powered robotics has discovered the value in a socially oriented design. Using a 
human-centred approach, social robots improve task performance (Admoni and Scas-
sellati 2017) in human-robot interaction and confer higher social acceptability – as their 
application in human care homes shows. Social robots such as Paro (Šabanović et al. 
2013) equipped with fundamental interactive abilities have been shown to improve the 
social well-being of elders. However, behind the seeming social interaction is only coor-
dinated behaviour without mutual awareness. AI systems and their human users can 
align in their goals – often independently of each other. Drones and fighter pilots can 
have the same goal of intercepting an enemy aircraft but can do so independently of each 
other. Their behaviour of chasing the aircraft would appear indistinguishable from that 
of two human fighter pilots flying in formation – each other aware of the other’s goal.

The mutual development between robots and humans would represent a significant 
technical leap that has not been fully realised yet. AI would encode human expecta-
tions and goal-states reliably, and the human user would be able to rely on and predict 
the AI’s behaviour – leading up to a highly interactive and trustworthy relationship 
between AI systems and their human users. Imagine synergistic human-AI medical 
surgery teams where human surgeons would work in tandem with AI surgery robots  
 – each contributing with their unique skill set but relying on the other’s predictable, 
competent behaviour. A joint action and coordination that human surgeon teams have 
perfected over the years. In addition to physical joint action, there is also potential 
for humans and AI systems to engage in more abstract forms of joint action, such as 
working together on a research project or making a plan. In these cases, the AI system 
can support and assist humans by providing data analysis, information retrieval, or 
generating and testing hypotheses.
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This chapter goes beyond the physical interaction – as studied with embodied AI agents  
 – but explores how embodied and non-embodied AI systems can partake in social inter-
action with human agents. The ability to engage in joint attention and co-perception 
represents a primary driver for human social interaction. Focusing on joint attention 
and co-perception enables us to explore the social dimension of human-AI pairing in 
a broader context. AI advisers are not involved in the execution of action but can iden-
tify with the user’s commonly perceived objects to engage in social and joint interac-
tion. In other words, the study of joint attention and common perception broadens the 
scope of possible social interaction with all kinds of AI systems. This chapter outlines 
and explores the conceptual building blocks for joint attention and shared perceptual 
commons for human and AI systems. This chapter asks: what makes joint attention and 
shared perception between humans possible? Is it even possible for human and AI sys-
tems to partake in joint perceptual situations? A solid understanding of the underlying 
phenomenon of joint attention and co-perception is needed to address these questions. 
Therefore, this chapter is divided into two main parts exploring each phenomenon sep-
arately. Each part starts with analysing the underlying phenomenon to understand its 
fundamental mechanisms. Then, the connection to the human-AI interaction follows.

5.2 Attending together

5.2.1 Setting the stage
Imagine that you are visiting a museum. You might wander into a room filled with 
modern paintings. You begin to study one and become immersed after a few moments. 
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Suddenly you hear a noise behind you. Someone else is looking at the painting too. You 
pass over the distraction and return to your study. How is your perception of the painting 
now changed by the knowledge that someone else is looking at it? Does your attention 
increase? Do you look more critically or generously? The other person might be a famous 
art critic, scanning for artistic flaws, the artist herself, or even a close relative. Does your 
impression of other people change the influence of their presence on your perception? 
Moreover, is there a systematic effect of social context on perceptual processes?

Studying paintings is only one example where social surroundings fundamentally 
shape attention and perception. Similarly, going through a busy roundabout, playing 
hide-and-seek, hunting, or rowing with someone requires more than an accurate per-
ception of one’s environment. It also demands navigating the same spatial environment 
with others or acting on and referring to the same objects. To do so, we must be sen-
sitive to the difference between the spaces, objects or events that are only private to us 
and publicly available to others.

Asking about collective attention or perception may sound odd at first. If anything, 
perception is what most theories consider the most private, which would suggest it only 
makes sense at the individual level. Empiricist accounts of sensations, such as Locke’s 
or Hume’s, and current psychological and philosophical theories may disagree when 
it comes to the existence of unconscious perception, but all construe perception as an 
individual mental state. Sense data are also private so that they can be related to other 
sense data for one individual but not between individuals. Relational accounts of per-
ception generally define perception as the relation between an isolated perceiver and 
mind-independent objects.

The privacy claim is epistemic (nobody can know what your perception is like) 
and metaphysical (nobody can share your perception). As summarised by Thomas 
Raleigh, “It is commonly accepted that a token experience or sensation always neces-
sarily belongs to some specific subject—and hence that it is metaphysically or logically 
impossible for another subject to possess one of my experiences or my sensations.” 
(Raleigh 2017, 639). The claim is not specific to perception but to all experiences.

Privacy for the mental objects of experience here does not mean that  the real 
object perceived cannot be public. By contrast with sensations, where I can not feel 
the same tickle as you, I can certainly see the same object as you if I look at it. When 
museum visitor A points at a painting, she expects the accompanying museum visitor 
B sees the painting and understands that she sees it.

This type of situation is prevalent when two or more persons see the same public 
object and eventually realise that they both see the same object. Philosophers nonethe-
less see it as a source of problems. The first problem – in the history of philosophy at least 
 – comes from wondering how similar different people perceive the same object. Visitor 
A could see the painting as dark green; Visitor B could agree with that label. However, 
A’s qualitative experience of dark green may differ from what B qualitatively experiences 
when he looks at the same painting. His experience may be similar to the experience A 
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has when she sees a rose. Two or more individuals can converge on the same perceptual 
judgement yet not have the same perceptual experience. This problem, exemplified by 
the inverted spectrum thought experiment proposed by Locke, has inspired many sub-
sequent philosophical papers. The existence of individual differences in how an object 
is experienced does not threaten the fact that there is an object that we perceive in com-
mon. It challenges the fact that one can take one’s experience as similar or representative 
of other people’s experiences. However, nothing in this problem rests on the fact that the 
individuals share the same context or look at the object simultaneously.

The second problem discussed by philosophers targets more directly this sharing 
of perceptual context. When A sees the painting and points at it, B can observe the 
direction of her pointing and gaze and realise that A sees the painting and wishes him 
to notice it as well. They can eventually both know that they mutually saw the painting. 
However, how does this meeting of minds work? Following Schiffer (1988), if this is a 
case of mutual knowledge, A will ascribe to B the belief that he sees the candle, the belief 
that he believes that she sees the candle, the belief that he believes that she believes that 
he sees the candle, etc. The debate then turns to how one avoids the further iterations 
that many feel should follow to explain mutual knowledge.

The problem of joint attention explains how something in the perceptual situation 
and coordination and observation of attention can end this possible infinite iteration. 
By contrast with the previous problem of individual differences in perception, what 
matters here is not primarily that people experience the object in similar ways but how 
each individual can become aware of the other’s private mental state and mental states 
having the same mutual reference.

5.2.2 Defining joint attention
Joint attention occurs when two or more people overtly focus on the same object, per-
son, or event simultaneously, with each being aware of the other’s interest. Joint atten-
tion requires three types of information (Battich and Geurts 2020): (i) information 
about one’s attentional state, (ii) information about the other’s attentional state, and 
(iii) information about the target of joint attention. Joint attention builds on individual 
attention and captures the coordinated focus of attention between two or more indivi-
duals on a common object or event. Joint attention, therefore, captures at least a triadic 
relationship between each attendee and the respective object of attention.

What joint attention is not
Joint attention is neither the monitoring of someone’s attention nor the sharing of a 
common attentional focus. First, attention monitoring captures the phenomenon when 
individual A monitors another individual’s attention by taking a third-person obser-
ver’s perspective and attending to what B is attending to (Siposova and Carpenter 2019). 
When B closely examines an ancient vase with his back turned and A standing behind 
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B, A perceives and individually knows that a) there is an ancient vase, and b) B attends 
to the ancient vase. Importantly, B is unaware of A’s knowledge, experience, and atten-
tional focus. A’s and B’s attentional focus are independent of each other. A and B have 
independent perceptual experiences. Monitoring attention frequently leads to an obser-
vable shift in the monitor’s behaviour (e.g., turning one’s head and body orientation to 
look at what the other is looking at). However, it is also possible to monitor someone’s 
attention discreetly, with no immediately observable behaviours. The key to attention 
monitoring is that attention, experience, and knowledge of the other remain individual. 
Even when (i) and (ii) are fulfilled, (iii) still needs to be fulfilled.

Second, joint attention is also not reducible to a common attentional focus (Siposova 
and Carpenter 2019). A common attentional focus, i.e. common attention, builds on 
attention monitoring but adds a muted form of mutual awareness -. In this sense, A 
and B are in common attention when they each monitor each other’s attention, more or 
less simultaneously attend to what the other is attending to ((i) and (ii)), and conclude 
that they are both attending to the same object alongside each other’s attention to the 
object (muted (iii)).  Notably, here, both individuals feel they are in common attention 
and that this is being done from a third-person observer’s perspective (Siposova and 
Carpenter 2019).

Individuals can engage in common attention when, according to Siposova and Car-
penter (2019),

1. The object of attention is salient or public (so they can each assume that 
the other is attending to the same thing),

2. For each of them, the other’s attention is relevant to them (so they each 
have a reason to consider the other’s attention, for example, they are in 
close physical proximity, or they have a previously-established joint goal, 
or they want to predict the other’s actions), and

3. They each know that their focus of attention is shared.

Their focus is interdependent since, as seen above, they both need to pay attention to 
one another’s focus on the object and one another to reach this level. In other words, 
they are aware of one other’s dependence on the same attentional processes. However, 
from each person’s perspective, each determines if they are in the common focus, and 
each may be misinformed about it (e.g., one believes they are in common attention but 
later finds out that they were not).

What joint attention is
The critical distinguishing case of common attention from cases of joint attention is 
the question of jointness or mutuality (Siposova and Carpenter 2019). Joint attention 
requires two or more people to know together that they are attending to the same thing 
and to reach a perceptual common ground (Seemann 2011). This common ground is 
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out of reach for common attention. Each individual is only assessing the other’s atten-
tion and knowledge states. Each attendee is entirely self-contained. He has personal 
knowledge of the object of his attention and does not adopt someone else’s point of 
view or attentional state.

Two predominant theories have been proposed to explain what ‘being mutually 
aware’ entails (Seemann 2011): a cognitive account, according to which joint attention 
emerges through common knowledge, and a phenomenal account, according to which 
joint attention is a fundamental phenomenon that cannot be reduced to the level of 
the individual.

From the view of cognitive accounts, joint attention is understood in terms of com-
mon knowledge, awareness, and belief (Battich and Geurts 2020). Co-attenders need 
to know together that they are attending to the same thing: A and B are jointly attend-
ing to x if and only if there is common knowledge between A and B that each of them 
is attending to x. This “knowing together” distinguishes episodes of joint attention 
from the merely shared attention of both museum visitors (Carpenter and Liebal 2011).

The central feature of cognitive accounts is the iterative structure of common knowl-
edge s.t. p is common knowledge between A and B if and only if A knows that p, B 
knows that p, A knows that B knows that p, B knows that A knows that p, and so on 
ad infinitum.

The danger of an infinite regress of common knowledge and the ensuing cogni-
tive demands can arguably be overcome by appeal to communication (Seemann 2011). 
Through the sharing of looks, co-attenders can become immediately aware of how 
their attention to the common object of attention is coordinated (Seemann 2011). The 
advantage of a common-knowledge account is the ease at which background knowl-
edge can be considered when forming joint attention. While human participants are 
sensitive to processing the visual perspective of another agent automatically, the auto-
matic processing only happens if the observed agent has visual access to the common 
object (Freundlieb, Sebanz, and Kovács 2017) – just as if the background knowledge 
of the observed agent is assessed when potentially entering a state of joint attention.
From the view of phenomenal accounts, accessing another’s mental state is too deman-
ding. The automatic processing of perspectives and the emergence of joint attention 
in children suggests that a simpler, less demanding process underlies joint attention. 
Instead, ‘mutual awareness’ is a basic, non-representational relation between agents and 
the shared object of attention. This relation can be interpreted in a weak or a strong 
sense. In a weak sense, the relation captures a causal sensitivity s.t. A and B are jointly 
attending to C just in case A and B are both causally sensitive to C in their focus of 
attention and behaviour, as well as causally sensitive to each other’s focus of attention 
and behaviour (John Campbell 2011; Seemann 2011).

Joint attention occurs when the individuals taking part in common attention move 
from a third-person, observer perspective into a second-person relationship of mutual 
attention (Siposova and Carpenter 2019). Thus, two people attend to the same thing 
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more or less simultaneously, directly experiencing each other attending to that thing, 
their attention, and each other. The second-person relationship expresses that the indi-
viduals are concerned with the same issue. An example might be helpful here. Back 
in the museum, A and B do not know each other and simultaneously attend to the 
same painting. They notice that each other is attending to the painting. They acknowl-
edge each other’s perspective but ultimately remain in their individual experience and 
third-person, observer perspective – no mutual attention ground is established. Each 
assesses the attention and knowledge states of the other individually (Carpenter and 
Liebal 2011). In other words, they successfully engage in common but not joint attention.

In contrast, if A and B are acquainted, they may share communicative cues such as 
eye contact to engage in a social, second-person relationship. Through this relationship, 
they can gain reciprocal and reactive information about their attention to the common 
object, making the object of attention salient and relevant to both individuals. Engage-
ment in second-person relationships can allow for a different, more direct, and non-in-
ferential processing of the situation, which is impossible in other types of relationships 
(Gómez 2005; Siposova and Carpenter 2019). One is no longer an objective observer of 
the other and his or her attention in a second-person relationship; the other is no longer 
identified as ‘he’ or ’she’ (Reddy and Morris 2004). Instead, both parties communicate 
directly with one another and address each other as “you”; they are both information 
senders and receivers simultaneously (Argyle and Cook 1976; Zahavi 2015). Direct 
social contacts provide both partners with numerous indicators of what is meaningful 
and salient, as well as where each other’s attention is focused.

Most importantly, each partner becomes “integral to” the other’s experience (Zahavi 
2015). In other words, their perspectives and attention to the object of attention are 
influenced by their mutual awareness of one another’s attention, and the experience is 
qualitatively different from when individuals attend to the same thing but do not relate 
to one another as ‘you’ (as in the monitoring and common attention levels above) (see 
Siposova and Carpenter (2019)). In a nutshell, common attention is unidirectional and 
relational, whereas joint attention is bidirectional and relational.

5.2.3 Empirical evidence: why joint attention matters
Early psychological studies revealed that participants are sensitive to the gaze of others. 
The gaze-cueing paradigm is the most well-known and tested experimental paradigm 
(Posner 1980; Chevalier et al. 2020). Here, participants would view a schematic or rea-
listic picture of a face on a computer display. The participant would be tasked to indicate 
the location of the target stimulus, which would appear either to the left or the right 
of the face – congruent or incongruent with its gaze direction. Participants were sig-
nificantly faster in indicating the location of the target stimulus when the other’s gaze 
was aligned, i.e. congruent, with gaze direction than when they were not aligned, i.e. 
incongruent (gaze-cueing effect) (see Friesen and Kingstone (1998); Driver et al. (1999)). 
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Electrophysiological and neuropsychological evidence supports the relationship bet-
ween gaze direction and attention. Researchers have found that the gaze-cueing effect 
emerges as automatic processing very early in the visual process – occipital-parietal P1 
and N1 components are modulated by gaze-stimulus alignment (Perez-Osorio, Müller, 
and Wykowska 2017; Chevalier et al. 2020). Besides the evidence for joint attention 
anchored primarily as a bottom-up process, there is also evidence that joint attention 
is subject to top-down mechanisms. Top-down modulations of the gaze-cueing effect 
include the relevance of the task, the presence of other stimuli and distractors (Greene 
et al. 2009), or whether the other’s gaze towards the target is obstructed (Teufel, Flet-
cher, and Davis (2010); see Capozzi and Ristic (2018) for review).

Regardless of which theoretical account is endorsed, joint attention plays a cen-
tral role in grounding coordinating behaviour through adaptation in attention and 
bodily interaction. Joint attention makes it possible to determine the location of objects 
in social space by connecting fellow perceivers with the object of attention through 
social triangulation. Bodily communication through eye gaze and pointing gestures 
are essential for joint attention, establishing a social and visuospatial reference frame. 
The close link to embodied communication is the reason why Seemann (2019) refers 
to joint attention as a form of “enacted perception in which objects are presented in a 
social, spatial framework; and there is individuals’ conscious attention to these objects 
that underwrites demonstrative linguistic reference in communicative contexts” (p.158).

Joint attention nonetheless provides rich explanatory grounds for social perspective 
taking. Joint attention grounds intersubjective engagement in early infancy. Infants and 
caregivers use dyadic joint attention to share experiences and coordinate their bodies 
and emotional minds (See Mundy (2018) for review). This includes the ability to adopt 
a common frame of reference and then share information related to objects or events 
within that common frame of reference Azarian et al. (2017) compared to visual scenes 
where attention is not joint. Even in a minimal social context, differences between 
looking alone and looking jointly emerge. Human participants demonstrate distinct 
behavioural and cognitive effects, s.a., valence sensitivity towards the target only emerg-
ing in a shared perception paradigm (see Richardson et al. (2012) for discussion).
Joint attention relies on a social, spatial environment where attention can be coordi-
nated and communicated. However, social influence must not be limited to social and 
spatial environments, and social sensitivity can be demonstrated to apply to more than 
gaze cueing. For instance, Surtees, Apperly, and Samson (2016) show that automatic 
perspective-taking also holds for joint action of playing economic games. Human par-
ticipants were faster and performed better when playing with others than alone. Here, 
participants share a common perceptual object without necessarily being able to track 
each other’s attention.
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5.2.4 AI-human

Among the numerous modern ways to study human social cognition, utilising huma-
noid robotic agents in collaborative experiments is gaining popularity. Using attention-
based stimuli in more traditional paradigms in which robot faces are placed on the 
screen allows for an answer to the question of what function humanness and human 
agency play in eliciting joint attention mechanisms (Chevalier et al. 2020). 

The virtual agent community-led early research into communicative gaze in 
human-AI interaction, where virtual agents are endowed with communicative eye gaze 
 – designed to capture attention or increase human user engagement (Admoni and Scas-
sellati 2017). Examples involve Cog (Brooks et al. 1999) and Kismet (Breazeal and Scas-
sellati 1999) – robots with eye gaze features designed to communicate compelling gaze.

The majority of screen-based joint attention experiments that used robots as atten-
tional-orienting stimuli not only replicated classical findings of responding to and 
initiating joint attention but also significantly advanced our understanding of the role 
of human likeness in inducing joint attention mechanisms (see Chevalier et al. (2020) 
for review).

In the context of human-AI interaction, joint attention has been investigated in 
two ways. The first approach is to improve robotic capabilities to facilitate human-AI 
interaction by incorporating human attention awareness in AI systems to facilitate 
collaboration. This would foster trust and dependability, eventually leading to deeper 
human-AI interactions. (robot-side) The second approach is to investigate human 
responses/engagement in joint attention with robots and AI systems once AI systems 
can recognise and track human attention to facilitate joint attention and joint action 
between humans and AI systems. (human side).

Robot side 
Attention-tracking mechanisms in AI systems have been predominantly studied in 
social robotics. Robot sight has been shown in design studies to improve human-
robot interactions by improving the acceptability of robots by implementing increased 
responsiveness to human attentional cues in robotic systems. 

Biologically, empirically, and heuristic models that capture high-level gaze princi-
ples are all used to create social gaze in robots (Admoni and Scassellati 2017). These 
methods were successful in developing a gaze that improves usability, but they all have 
drawbacks. Which strategy to use for a technology-focused contribution is determined 
by the importance of having design control over the behaviours. Biological models fre-
quently concentrate on areas of the neural system that psychologists are familiar with, 
such as the visual attention system (Admoni and Scassellati 2017). Cognitive archi-
tectures are designed to generate more complex gaze behaviour. However, behaviour 
emerges from system structure and cannot be precisely designed (Admoni and Scas-
sellati 2017). Empirical systems necessitate a time-consuming data-collection step, pro-
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ducing gaze behaviours comparable to or better than hand-tuned systems (Admoni 
and Scassellati 2017). The benefit of gathering empirical data on gaze behaviours must 
be balanced against the cost of gathering and annotating this data. Designers can use 
heuristic systems to specify how gaze behaviours appear more precisely, but these 
behaviours may differ from how gaze is used in human interactions.

For AI systems, Harari, Tenenbaum, and Ullman (2018) have developed an extraction 
algorithm that identifies joint visual attention in single static images. It computes the 
gaze direction of each individual and identifies the common target of attention. There-
fore, they utilise a compositional, sequential approach:

1. The algorithm detects individuals’ faces and estimates their gaze direction 
in a static image with a 3-D gaze estimation model.

2. The estimated 3-D gaze direction is compared with a scene depth estima-
tion. Here possible gaze targets are identified and marked with their loca-
tion and depth relative to the 3-D direction of gaze.

3. After estimating the 3-D gaze direction for multiple individuals, the gaze 
direction of multiple individuals is compared to identify a common gaze 
target.

Finally, the model outputs a visual representation of the common target gaze and an 
image description capturing the joint activity. The plausibility of the generated descrip-
tions was validated through an online experiment with human participants, and the 
participants preferred the generated descriptions over a state-of-the-art image-caption-
generating deep convolutional neural network alternative. Hence, the ability to detect 
the target of joint activities can reveal very plausible insights into how humans view a 
human-human interaction scene. 

By combining mutual gaze and gaze aversions, robots can govern the pace and 
involvement in discussions, though the appropriate amount and direction of the gaze 
depend on the content of the conversation (Admoni and Scassellati 2017). A robot gaze 
can be used for overt references. It can combine verbal and gaze-based overt references 
to facilitate task performance than simply transmitting information through speech. 
Robots can communicate mental states through their gaze, increasing collaboration 
and learning. User rapport can be improved by using gaze to express personality and 
emotion (Admoni and Scassellati 2017). One consistent finding in these studies is that 
gaze activities that are socially and contextually relevant outperform gaze activities 
unrelated to the encounter (Admoni and Scassellati 2017). When the robot’s gaze is 
related to what is said or done, people respond more positively to them, remember 
discussion topics better, and complete tasks more quickly. People, for example, rate 
robots higher when their attention is drawn to the speakers in a conversation. A look 
at human partners improves knowledge memory and the efficiency with which those 
partners perform cooperative tasks like handovers.
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Human-side 
Concerning the second step of facilitating joint attention between human and AI sys-
tems from a human perspective, different approaches and use cases already exist. 

Zhao and Malle (2022) showed that spontaneous perspective-taking for humans 
towards robots – though not as robust as towards humans – is possible. Perspective-tak-
ing has been identified as the main driver behind human social mechanisms – such as 
joint attention. The type of eye gaze implemented in robotic systems depends on the 
context and goal of the interaction. Eye gaze can reveal the mental states of a social 
robot, including knowledge and goals (Fon and Parisi 2003). Social robots can use 
gaze to express their engagement with and attention to a user (Tapus, Mataric, and 
Scassellati 2007).

Human perception of robot gaze research has shown that people can successfully 
identify the target of a robot’s gaze, whether they are looking at them or other objects 
in the world. Human-centred studies have attempted to disentangle specific timings 
(Admoni and Scassellati 2017). Though more research could establish specific timings 
or patterns of gaze that convey attention and object references most effectively, the gaze 
patterns that make the robot gaze most effective. Though simply directing a robot’s gaze 
to a specific location is generally effective in communicating the intended target, per-
ceptions of the robot’s animacy modulate gaze effectiveness (Admoni and Scassellati 
2017). People prefer robots that exhibit a socially contingent gaze, such as by establish-
ing a mutual gaze with their partners (Admoni and Scassellati 2017). Infants’ interpre-
tation of robot gaze is determined by whether the robot is established as a social agent.

Furthermore, at shallow levels of analysis (e.g., millisecond-level saccades), there 
are distinct patterns of behaviour towards the robot and human gaze (Admoni and 
Scassellati 2017). More research can be done to investigate the magnifying effect of 
animacy on gaze. Infants’ interpretation of robot gaze determines whether the robot 
is considered a social agent.

Robot eye gazing can, for example, improve dialogue fluency (Mavridis 2015) or 
direct a user’s attention to relevant information in a tutoring setting. In contrast, a 
collaborative assembly-line robot may prioritise a task-focused gaze that enables joint 
attention and object reference. Zhao and Malle (2022) It was discovered that certain 
nonverbal behaviours displayed by a robot, such as referential gaze and goal-directed 
reaching, caused human viewers to adopt the robot’s visual perspective. People, like 
humans, adopt a robot’s visual perspective when it performs goal-directed actions. 
Furthermore, perspective-taking is absent when the agent lacks human appearance, 
increases when the agent appears highly human-like and persists even when the 
human-like agent is perceived as eerie or lacking a mind. These findings imply that 
visual perspective-taking towards robots follows a “mere appearance hypothesis”—a 
type of stimulus generalisation based on human-like appearance—rather than fol-
lowing an “uncanny valley” pattern or arising from mind perception. The superficial 



5.2 Attending together 129

human resemblance of robots may trigger and modulate social-cognitive responses in 
humans designed for human interaction.

How does a robotic compare to a human gaze? Several studies suggest that the gaze 
of robots is interpreted differently than the gaze of humans.

Early experiments with human reception of robotic gaze reveal that people perceive 
a robot’s gaze most frequently when it directly gazes at them. In other words, the robot’s 
gaze is perceived as egocentric. Nonetheless, other studies have also found that people 
are sensitive, although less frequently, to a robot’s or artificial agent’s gaze when the 
robot or artificial agent is looking at objects in the environment – a form of gaze called 
referential gaze. People use the observed referential gaze to inform predictions about 
the robot’s or artificial agent’s behaviour – which object will be selected. 

In general, however, comparing robot sight to the human gaze is problematic 
because, whereas the robot gaze can be infinitely regulated, the human gaze has minute, 
unpredictable changes. Several studies in this area used meticulous laboratory-based 
investigations to compare the robot gaze to the human gaze directly. One study, for 
example, used a trained actor who exhibited identical behaviours to a pre-programmed 
robot to make this comparison. While viewers’ gaze patterns in human and robot situ-
ations were identified, fine-grained research revealed differences in people’s responses 
to human and robot gazes (Admoni and Scassellati 2017). People spend significantly 
more time staring at a robot partner’s face than a human partner’s face when naming 
an object, demonstrating an apparent concern for ensuring that the robot is attending 
to the object in question (Yun, Watanabe, and Shimojo 2012).

Implication for human-AI cooperation
After reviewing the developmental aspects of robots and human responses to robotic 
gaze behaviour, we can combine both developmental trajectories and ask what this 
means for the collaboration of AI systems and human users. Collaboration necessita-
tes the exchange of objectives, information, and intentions. For example, a robot that 
assists a user in building furniture must communicate its current goals and intended 
action to interact seamlessly with a human partner (Admoni and Scassellati 2017). Gaze 
can be used discreetly to reveal these mental states to a partner. Because collaboration 
frequently involves the physical environment, such interactions require a gaze that 
refers to objects and geographical locations as well as a gaze that conveys mental states 
(Admoni and Scassellati 2017). Using nonverbal communication to reveal mental pro-
cesses (including eye gaze) speeds up cooperative task performance, with errors noticed 
and managed more quickly and effectively than task-based nonverbal communication 
(Breazeal et al. 2005). Subtle gaze patterns that indicate involvement and provide feed-
back boost the effectiveness of a human-robot partnership. Users also say that when 
the robot makes its mental models explicit, they understand it better during collabo-
ration (Breazeal et al. 2005). Expressive eye gaze is one of many animation-derived 
behaviours that can highlight intentions and desires, such as glancing at a door handle 
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when attempting to open a door (Takayama, Dooley, and Ju 2011). Even if users are 
unaware of the intended message, robots can “leak” their intentions through eye gaze, 
influencing human behaviour quantitatively (Mutlu et al. 2009). Referring to items in 
the environment is one aspect of collaboration. The joint focus of a companion robot 
efficiently draws the user’s attention to where the robot is looking (Yonezawa et al. 2007; 
Sauppé and Mutlu 2014). Eye gazing can also be used to reinforce pointing motions. A 
robot can use eye gazing to supplement its speech in a cooperative item selection chal-
lenge, in which a human user must select an object referred to by the robot as quickly 
as possible (Admoni and Scassellati 2017). People may be able to detect and respond 
to predicted eye gaze that conveys geographical references, allowing them to complete 
the task more quickly than if they relied solely on the robot’s words.

As argued by Admoni and Scassellati (2017), users can improve collaboration by 
teaching robots skills through demonstration (Argall et al. 2009). Robots can utilise 
gaze to facilitate cooperative attention scenarios and elicit feedback when observing 
such demonstrations (Lockerd and Breazeal 2004). When a robot responds to human 
attention by following the human’s gaze, the robot learns more efficiently with fewer 
errors, faster error recovery, and less repetition of learned information (Huang and 
Thomaz 2011). Likewise, people view the robot as more natural and competent when 
it engages in shared attention (Admoni and Scassellati 2017). When teaching, people 
even attribute mental states to robots (Admoni and Scassellati 2017). They will adjust 
their movements (pauses, tempo, and volume) to accommodate the robot’s visual atten-
tion (Pitsch, Vollmer, and Mühlig 2013). With multiple robots to teach, people take all 
robot’s gaze behaviour into account; gaze times and engagement is higher with robots 
that actively seek mutual gaze rather than robots that passively follow the human’s 
attention when it shifts somewhere else.

According to the findings presented here, adhering to specified design proper-
ties for embodied robots would benefit research and applications in the field of joint 
attention. Martini and colleagues discovered that robots with a complete robot- or 
human-likeness did not exhibit a reflexive gaze-cueing effect (Martini, Buzzell, and 
Wiese 2015). Moreover, despite the cost and complexity constraints of implementing 
biologically inspired robot eyes, mechanical human-like eyes capable of enabling a 
gaze-cueing technique are recommended (see Admoni and Scassellati (2017) and Che-
valier et al. (2020) for review and discussion). It would also be advantageous if robots 
were equipped with algorithms that allow them to make eye contact with participants, 
as it has been demonstrated that eye contact initiated by a humanoid robot improves 
perceived human-likeness and engagement with the robot (Siposova and Carpenter 
2019; Kompatsiari et al. 2021). It also improved collaborative focus. Furthermore, gaze 
contingency of robot behaviour implemented in a more naturalistic configuration 
(i.e., without an eye-tracker) would benefit from embedded algorithms in robots that 
allow for online detection of participant gaze and assessment of saccadic eye move-
ment parameters. Finally, writers should always report the controller used to generate 
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the robot’s motions, the required kinematic parameters (e.g., eye velocity), and the 
observed parameters to ensure the reproducibility of the results and research.

Limitations
Although embodied robots in interactive protocols can provide new insights into the 
joint attention process, it is critical to emphasise that robots cannot substitute a human 
interaction partner or elicit the same mechanisms as those involved in spontaneous 
human-human contact in real life (Chevalier et al. 2020). This constraint, however, is 
not entirely related to the use of robots. It also applies to controlled experimental set-
ups for studying social interactions (even between human agents) because the agent’s 
repetitive movements over a lengthy period, along with the rather uninteresting nature 
of the activity, cannot properly duplicate a spontaneous encounter (Chevalier et al. 
2020). Third, participants’ perceptions of being probed may influence their behaviour. 
Due to their artificial nature, robot stimuli may have a particular limitation. They are 
most likely not recognised as a social entity (and hence do not activate all conceivable 
mechanisms of social cognition), and they trigger negative responses from some peo-
ple (Chevalier et al. 2020). Notwithstanding these limitations, I propose that embodied 
robots incorporated in interactive protocols based on well-established paradigms tar-
geting specific systems of social cognition can be highly informative and serve as more 
ecologically accurate social “stimuli” than typical screen-based stimuli (Chevalier et al. 
2020). In addition, compared to human-human interaction protocols, they allow for a 
high level of experimental control.

Despite the technological advancements and initial phases, the question remains 
whether robots and AI systems participate in mutual awareness with their human user  
 – enabling joint attention – or whether they only work towards a common goal inde-
pendently of their human user. 

One common challenge in employing and using advanced robotic systems is the 
lack of genuine cooperation. While humans have adapted and fine-tuned their social 
awareness and reciprocity to others, robots, and AI systems, in general, often operate 
in their way. They seek to fulfil their goals given their initialised and subsequently 
developed learning parameters.
One major confound lies in the range of appearances of robots and AI systems. AI sys-
tems range from embodied robots with highly machine-like appearances to human-
oid robots and artificial agents – resembling human appearances. In other words, AI 
systems can vary highly in their behavioural realism, which is necessarily reflected in 
their ability to portray realistic eye gaze movements and initiate common or even joint 
attention. Virtual agents, for example, can more accurately mimic human eye move-
ment than physical robots and replicate biologically realistic features like pupil dilation, 
resulting in a highly realistic experience (Delaunay, de Greeff, and Belpaeme 2010).
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Individuals who observe a robot’s referential gaze have specific biases that influence 
how a robot’s gaze is perceived. When a) the robot’s head is observed from the side (Al 
Moubayed and Skantze 2012; Delaunay, de Greeff, and Belpaeme 2010), and b) only the 
robot’s head position but no eye movement is visible, referential gaze accuracy worsens.

5.3 Perceiving together

5.3.1 Setting the stage
The phenomenon of shared perception goes beyond joint attention. Shared percep-
tion fundamentally differs from individual perception, whereas joint attention claims 
no difference in how the participant attends. Joint attention mainly changes the gaze 
direction but stops short of saying that the object is seen differently in joint versus indi-
vidual attention. On a minimalist account, two agents can be said to share a perceptual 
state, P, if they both happen to be in that state. This is too minimal to warrant using 
a new concept of “co-representation,” as what is happening is a mere collection or set 
of individual perceptions. Hence, co-representation makes sense if there is a form of 
alignment or coordination across the two agents that goes beyond a mere aggregation 
of their perceptual states.

The goal is not to see precisely how sharing of attention emerges – which is a topic 
for the field of joint attention (see J. Campbell (2018); Battich and Geurts (2020) for dis-
cussion), but to understand what the jointness of attention presupposes. For joint atten-
tion, the target of attention is not just objectively the same but also part of what is usually 
known as “a mental common ground” – the perceptual common: both museum visitors 
can mutually and rationally expect the other to know what the other focuses on, and 
sees and refers to when they say “the painting,” or use the pronoun “it.” What is shared 
between visitors A and B is a perceptual common – the painting is publicly available 
to anyone. However, we have good evidence to show that the visible object of attention 
and the visible target of action is processed differently when an agent is engaged in an 
individual vs joint activity. This difference is what shared perception relies on.

Shared perception resembles shared attention or joint action because other agents 
constitute the shared-perception state. Shared perception does not exist without the 
perception that “we” perceive together. In shared perception, however, sharing also 
substantially influences the content of perception.

Except for particular cases, joint action and joint attention mainly occur when 
agents are explicitly aware or have voluntarily decided that they will attend or act 
together. In contrast, shared perception occurs as much with or without such explicit 
requirements – which explains why it represents, we argue, a fundamental trait in 
non-human animals. As we will argue in this chapter, the object shared in shared per-
ception is best understood as representational. Hence, a perceptual co-representation 
enables a perceptual world experience as perceptually available for a plurality of agents.
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The effect of shared perception becomes more pronounced when participants are asked 
to give visual scene descriptions. Without a joint performance of a motor task, the 
effect of social influence persists in the mere presence of another agent (Tosi, Picke-
ring, and Branigan 2020; Tversky and Hard 2009). Together with the previous studies, 
this shows that shared perception is more than a jointly attended or acted motor task 
but a unique social phenomenon.

5.3.2 Joint visibility - the precursor for shared perception
Current psychological and philosophical theories may disagree regarding the mecha-
nisms behind the social influence on perception and cognition, but most construe 
perception as an individual mental state. Traditional attempts utilise individual inter-
nal representations to explain the understanding of the other and the shared object of 
perception (Frith 2008). Shared perception is understood from an individual point of 
view. The individual perceiver interprets the observed environment and recognises it as 
social through the presence of another perceiver (Gallotti and Frith 2013). Others have 
strengthened an embodied account of perception. Here, the body provides the basis 
for an egocentric spatial frame of reference grounding any perceptual experience (Gal-
lagher 2006). The interaction of the body and environment organises perceptual space.

Social cognition, in both cases, remains relegated to a set of individual mechanisms, 
s.a., detecting another’s movement or eye gaze. Social influence is processed individu-
ally through some internal cognitive operations. Shared perception becomes a succes-
sion of individual, private mental states. Even the necessary sense data are private so 
that they can be related to other sense data for one individual but not between individ-
uals. Therefore, any room for a shared, public object of perception has to be located out-
side the individual – in the public space. The object of one’s perception can be private or 
shared and public through the dyadic or triadic constellation of the social environment.

Joint visibility, however, is more extensive: A museum visitor could be aware that 
the other visitor is seeing the painting while also being aware that he is looking at the 
vase beside the painting. In this case, there is no shared object of attention, but there 
is a shared object of perception. In the same respect, the other visitor could be aware 
that the visitor sees the painting, though he is staring more precisely at the vase. Joint 
visibility here can occur without the mutual entanglement of joint attention.
This sounds close to joint attention: When two or more people overtly focus on the same 
object at the same time, with each being aware of the other’s interest, something specific 
happens which is more than the juxtaposition of their attention (independent occur-
rence) but also more than one locus of attention taking the other attention into account.

It is also possible that joint visibility occurs not because of joint attention but 
because visitor B is behind visitor A and tells her that he sees the painting in front of 
her. Here, the visitor is aware that the other visitor sees the painting and knows that 
she sees it – and there is mutual knowledge in this case, but it does not occur because 
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of the coordination of attention (Figure 1). It could, in this respect, account for what 
happens online when two people read a shared document at the same time and see 
each other cursors: no coordination of gaze is involved, but both are aware that they 
see the same part of the document.

Co-occurrence of perception (A’s individual perception) 
Anna sees the painting (B’s individual perception) Ben sees the painting.

To count as a case of shared perception, the case must at least follow roughly the fol-
lowing lines:

Joint visibility   
Anna and Ben are mutually aware that they see the same painting.

This sounds close to joint attention: When two or more people overtly focus on the 
same object at the same time, with each being aware of the other’s interest, something 
specific happens which is more than the juxtaposition of their attention (independent 
occurrence) but also more than one locus of attention taking the other attention into 
account. What makes this a case of jointness is the mutual realisation by the characters 
that they are both attending to the same thing, which can be captured roughly along 
these lines (Siposova and Carpenter 2019):

Joint attention 
Anna and Ben are mutually aware that they are both looking at the painting.

The point is not here to exactly see how this mutual clause should be expressed – which 
is a topic for the field of joint attention (see J. Campbell (2018); Battich and Geurts 
(2020) for discussion), but understand what the jointness of attention presupposes. 
For joint attention, the target of attention is not just objectively the same but also part 
of what is usually known as “a common mental ground”: Anna and Ben can mutually 
and rationally expect the other to know what the other focuses on, and sees and refers 
to when they say “the painting,” or use the pronoun “it.”
Joint visibility, however, is more extensive: Anna could be aware that Ben sees the pain-
ting while also being aware that he is actually looking at the cup near the painting. In 
this case, there is no shared object of attention, but there is a shared object of percep-
tion. In the same respect, Ben could be aware that Anna sees the painting, though he 
is staring more precisely at the cup. Joint visibility here can occur without the mutual 
entanglement of joint attention.

It is also possible that joint visibility occurs not because of joint attention but because 
Ben is behind Anna and tells her that he sees the painting in front of her. Here, Anna 
is aware that Ben sees the painting and knows that she sees it – and there is mutual 
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knowledge in this case, but it does not occur because of the coordination of attention. 
It could account for what happens online when two people read a shared document 
simultaneously and see each other cursors: no coordination of gaze is involved, but 
both know that they see the same part of the document.

It could also be the case that Anna notices that Ben looks at the painting and rea-
lises that they see the same painting and that Ben notices that Anna looks at the paint-
ing and realises that they see the same painting. However, Anna does not expect Ben 
realises that they look at the same painting, and Ben does not expect Anna realises that 
they look at the same painting. In this case, however, the clause of joint visibility fails 
and reduces to the co-occurrence of perception plus some awareness of the object of the 
other’s seeing. So while joint visibility is not tied to joint attention to the same object, it 
is different from the mere realisation that the object is visible to someone else than one-
self – something which is a more general ‘public visibility.’ What matters is that the joint 
visibility is different from the public character of the visible object in that it is tied to spe-
cific viewers’ entanglement. In other words, there is more to it than the awareness that 
one’s object of perception is independent of one’s mind and that others can perceive it.

5.3.3 Shared perception beyond joint visibility:  
Empirical evidence

It is crucial to bring empirical evidence in because the differences that may occur when 
we perceive something alone or with others are not something we can easily become 
aware of subjectively. First, some differences are subtle. Second, the comparison bet-
ween seeing something alone or with others is not directly accessible in a first-person 
way because we are installed in one situation or another. If we want to compare the 
two, we need to start with one or the other, and this starting point will anchor our 
experience. We cannot, in other terms, conduct between-subjects randomised com-
parisons with ourselves. 

Below I turn and discuss different kinds of empirical evidence which are better 
equipped at performing such comparisons, and the surprising results they lead to that 
perception operates differently when the same perceiver sees the same object either 
alone or together with one or more perceivers. Before doing so, it is crucial here to 
remember two core differences between looking at vision from a philosophical and an 
experimental perspective. In experiments, what is measured is not perceptual expe-
rience but perceptual decisions. Decisions are recorded mainly by people pressing a 
button to indicate which of two alternatives corresponds to what they perceptually 
grasped. One needs to turn to other evidence to infer whether this means they were 
having a conscious perceptual experience and of what kind.
What is more, the alternatives and stimuli are often framed to measure not all the things 
common sense attributes to perception, like seeing a green painting on a table next to a 
cup, but one specific aspect of perception: how well people can visually detect whether 
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something is present or absent, find something in a scene, discriminate between two 
different cases, or categorise and identify something as being of a given kind. Keeping 
these differences in mind, we can look at what empirical studies show regarding how 
specific perceptual decisions occur when people jointly perceive an object.

5.3.4 Perceptual processing

Perceptual processing is faster during shared perception
The first kind of evidence shows up in the speed at which decisions are taken in the 
case of shared perception. People are significantly faster at detecting and recognising 
objects when objects appear in the location where someone else is looking, granting 
that they can observe where they are gazing (Friesen and Kingstone 1998; Driver et al. 
1999). Others have extended the evidence for the perceptual cueing of gaze direction 
to human body postures (Azarian et al. 2017). Body posture has a similar effect on 
perceptual decisions compared to gaze cueing compared to pure gaze direction expe-
riments. When the body posture is congruent with the identifiable target, participants 
were faster to detect the target than when the body posture of the presented agent is 
incongruent with the identifiable target. Most of these experiments rely on instructing 
the participant to look in a specific direction on a screen, for instance, the left side, and 
presenting an avatar on the same screen. The avatar could be looking in the same direc-
tion as the one the participant is in or in another direction, creating either a situation 
of shared perception or not. The situation of shared perception – let us note also – is 
not necessarily a situation of joint attention: the experiments are not telling the partici-
pants that the avatar is paying attention to the same targets as the participants. It rests 
on the mere orienting of the body and eyes of the avatar.  

The fact that people are faster at detecting and recognising visible targets when 
someone else is seeing them is shown to be highly automatic, akin to a reflex: it is fast 
and occurs without control. Observers continue to follow the gaze even when the gaze 
cue is entirely non-predictive of where the target will appear and thus is detrimental 
to performance (Friesen and Kingstone 1998). This is evidence that what happens is 
somewhat perceptual rather than cognitive – at least if cognitive means reflective and 
partly under control. 
Some debates and studies problematically seem to show, however, that this speeding 
up is not specific to shared perception: symbolic cues such as arrows and directional 
words also reliably orient attention across a similar time course (Taylor and Klein 2000; 
Hommel et al. 2001; Ristic, Friesen, and Kingstone 2002; Tipples 2002, 2008). However, 
the mechanisms underpinning the effects of gaze and arrows have also been shown to 
proceed differently: eye gaze cueing triggers focussed activation related to enhanced 
visual processing. In contrast, arrows activate a much broader network, including areas 
related explicitly to volitional orienting (Hietanen et al. 2006).
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Granting then that there is something special in the case of shared perception, another 
problem arises. What do speed changes tell us psychologically or philosophically about 
perception? What do a few hundred milliseconds change for the agent? Is this a direct 
perceptual effect, or rather an indirect effect whereby more aroused and motivated 
agents press the response button faster? In other words, is there a difference in how the 
target is perceived or how fast people respond to the perceived target?

We need here to be aware that a long tradition of experiments has demonstrated 
what is known as social facilitation of responses across many tasks: when participants 
are asked to perform a task with someone else present in the room, even more if that 
someone is known to perform or have performed the same task, they quickly feel under 
pressure to compete, meaning they respond faster (and often less well). The mere phys-
ical presence of someone in the room can also change their physiological arousal levels.

Two types of arguments suggest that at least some of the speed difference corre-
sponds to a difference in perceptual processing rather than a tendency to press response 
buttons faster because someone is around: first, as said above, the speed difference cor-
responds to enhanced visual processing during shared perception, which can be tested 
with neuro-imagery; second, it is sensitive to the gaze cues, and not to what someone 
else is doing: If the effect was all about responding as fast, for instance, because of 
social comparison and motivation to be quicker than, or as fast as, the other, then just 
seeing that someone moves to press the button should do it. However, Friesen, Ristic, 
and Kingstone (2004) have ruled out that this is the case and demonstrated that the 
reflexive orientation to another’s gaze direction is attributable to the observed gaze cue 
and not the mere onset of another agent.

Another argument, evidenced by Battich et al. (2021), is that faster responses in 
shared perception are as accurate as slower responses in individual perception. There, 
people were presented with brief flashes of light and asked to say how many were 
flashed. Following the famous’ flash illusions’ (Shams, Kamitani, and Shimojo 2000), 
the flashes were also accompanied by sounds: hearing one sound could sometimes 
make people see one single flash when two were presented (a ‘fusion’ illusion) while 
hearing two sounds could sometimes make people see two flashes when only one was 
presented (‘a fission illusion’). Depending on how often they counted one flash instead 
of two or two instead of one, people would then have a specific error rate in their 
visual perceptions. Crucially for our current argument, the same people were asked 
to perform the same task alone and jointly with someone else: they would look at the 
same screen, hear the same sounds, and be asked how many flashes they saw. People 
responded faster when perceiving with someone else, and their error rate was compa-
rable to the one they had when perceiving alone. If one responded faster because of 
social comparison, we would expect their responses to be less accurate because of a 
speed-accuracy trade-off. The fact that such a trade-off does not occur is a strong argu-
ment in favour of shared perception being different (and, in this case, more efficient) 
than individual perception.
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Perceptual detection is different during shared perception
Returning to situations where two people jointly see a target simultaneously, we can 
also find new evidence that what is seen differs in joint and single perception. Seow and 
Fleming (2019) recently showed that we are better at detecting the presence of a faint 
object when accompanied by another agent. The task consisted of presenting a Gabor 
patch (or no Gabor patch) close to the detection threshold, either on the right or left 
side of the room the participant was looking at. In some trials, the target was present; 
in others, the target was absent: The participant’s role was to say where the target was, 
if they saw something at all, or else say that no target was present. Crucially, in some 
conditions, a human avatar on the screen was looking either to the left or right side 
of the room. In the case where a target would be presented, say on the left, the ava-
tar’s gaze direction could be congruent if it were looking on the left, or incongruent, 
if it was looking on the right. Participants were better at detecting the target – that is, 
reporting where something appeared when the target was presented on the side that 
the avatar was also looking at. This means that the same faint evidence will lead to the 
representation “something appeared on the left” when someone else is also looking at it 
and “nothing was either on the left or the right” when no one is there. Importantly, this 
effect is not simply due to the facilitation introduced by someone’s head being turned 
to one side – as a control condition is run where a second perceiver is also present, but 
his eyes are masked – and no such facilitation is then observed. This type of evidence 
introduces a fundamental argument for the difference between joint and single per-
ception: an object can be seen in one situation, not another.

5.3.5 Perceptual content

Visual perspective is different during shared perception
The presence of someone else also influences other aspects of visual perception, more 
precisely, their viewpoint on a given scene. The seminal work by Samson et al. (2010) 
shows that participants can not easily ignore what someone else sees when they see the 
same object. This effect occurs not only when the spatial perspective is relevant to the 
task at hand but also when it does not make any difference (Böckler and Zwickel 2013). 
This suggests that the computation of what someone else perceives is done involuntarily 
and, more generally, automatically – something less compatible with the interference 
being a matter of judgement.

True, some later effect of re-calibration can occur at the level of judgements: After 
all, Tosi, Pickering, and Branigan (2020) found that participants can put themselves in 
the shoes of another potential actor and use a simulation of that actor’s perspective as 
the basis for formulating their descriptions. When asked to locate an object in space, 
the participant’s judgment aligned with the other’s perspective under certain conditions 
more than with their perspective.
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Perceptual categorisation is different during shared perception
Is there more evidence that the fact that two or more people jointly perceive the same 
object means they see the world differently? This question has been at the forefront of 
many experiments and discussions, at least since the famous experiment conducted 
by Solomon Asch in the 1930s. In this famous experiment, many participants reported 
seeing a line as shorter as they would report, if alone when placed in a group of peo-
ple stating that it was indeed shorter. There are good reasons to believe that the report 
shows an adjustment at the level of public expression and not even at the level of pri-
vate judgement – let alone at the level of perception. In brief, perceptual judgements 
involve social conformity or social influence, especially when they need to be expressed 
in public. The matter is more complicated, with additional evidence showing that sub-
jective certainty in what we see differs in a private or public setting (Bang et al. 2020).   

Still, saying that differences occur at the level of reports, judgements, or even sub-
jective certainty does not rule out that differences can also occur in perception. This 
was recently tested by Zanesco et al. (2019) have tested. Their experiment builds on an 
experiment constructed after Ash’s conformity experiments and performed by Mos-
covici and Zavalloni (1969). Instead of lines, people would see patches of colour, either 
blue, clearly green, or in between, and be asked to say which colour they saw – green 
or blue. The same patches of colour were then presented a second time, but this time 
along with information about the colour that other perceivers had seen. After receiv-
ing the social feedback, the participants were asked to say which colour it looked like.

Zanesco et al. (2019) found that social feedback influences perceptual categorisation 
when ambiguous and distinct colours are presented. Most importantly, electrophysi-
ological results could show that the social feedback influenced early perceptual brain 
processes and was not only a matter of later reporting. In other words, their results give 
us reasons to think that Anna sees the same blue-green painting differently when she 
sees it with Ben, knowing at least that he sees it as greener than she does on her own.

Of course, scenarios of this type require that one knows what colour other people 
perceive. In the experiment conducted by Zanesco and colleagues, this information is 
not given perceptually: It is provided linguistically, even with the delay. People are told 
about the perceptual judgement others form when exposed to the same patch of colour.
The setup should be substantially adjusted to make these results relevant to shared 
perception, but it seems highly plausible to do so. After all, judgements may be shared 
during a discussion while two or more persons look at the coloured object. The delay is 
unnecessary, and the object is also jointly visible. It is also possible for the social feed-
back to be already known when the two people silently watch the same-coloured object 
 – imagine, for instance, that Jim and Jules have disagreed in the past on the colour of a 
given logo – Jim seeing it as blue, Jules as green. One day, they happen to see the same 
logo on a billboard as they walk silently, and Jules knows that Jim considers it blue, 
while he considers it green alone. In this case, it is possible that Jules’ categorisation of 
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the colour would be different. It is also possible to perceive that someone disagrees with 
us by frowning, for instance, instead of saying they have reached a different judgement.

What matters here is the importance of empirically plausible cases where visual 
categorisation – how a specific colour looks perceptually – can differ when a viewer is 
alone or with others who have another categorical representation of it.

Higher-level properties also are different during shared perception
The studies reported above all look at low-level properties which are uncontroversially 
perceptual: objects and events in the experiments come with differences in location,  
orientation, shape, colour etc. Not everyone will recognise other higher-level properties, 
such as, for instance, aesthetic or evaluative properties (something being harmonious, 
balanced, appealing, disgusting, etc.) or action properties (something being graspable, 
liftable, climbable, etc.) as perceptual, but others will. Though a controversial ques-
tion, we can also see studies that speak to higher-level properties in shared perception.

Seeing an object together with someone is sufficient to make it more likeable (A. P. 
Bayliss et al. 2006), an effect which is modulated by the emotional expression of the 
observed face (A. Bayliss et al. 2007) or the fluency with which the object is reached 
(Hayes et al., 2008). What is more, the action properties of an object might be modi-
fied by another person’s gaze, as shown by kinematic studies using motor interference 
(Castiello 2003). Motor interference occurs when a target object is presented along 
with distractors, for instance, when an agent needs to grasp a large ball among smaller 
balls. Studies show that if someone sees either the entire body or even just the eyes of 
an agent performing a different task, this observer will, in turn, show motor interfer-
ence in grasping a ball, even when the distractors are not present. In other words, just 
perceiving an object jointly with someone with a different motor goal can influence 
one’s perception of affordances.

5.3.6 AI-human
Trafton et al. (2005) demonstrated the importance of implementing social responsive-
ness into robot collaborators in an early but essential experiment. Simple collaborative 
tasks such as ‘passing a wrench’ provide interactive challenges for a successful human-
AI collaborative challenge. The AI-powered robots need to establish a reference object, 
understand what to do with a reference object, and then act upon the said object and 
expected behaviour in such a way that signals reliability/consistency, trust and unders-
tanding. If the astronaut says, “Robot, give me the wrench,” the meaning of the phrase  
 “the wrench” is ambiguous for the robot because it knows of two wrenches. The phrase 
is unambiguous to the astronaut because he only sees one wrench. Intuitively, if the 
robot could take the astronaut’s perspective, it would seem that the first wrench is 
the only wrench in the astronaut’s field of view and could therefore surmise that “the 
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wrench” must refer to the first wrench. Even in this rudimentary scenario, perspective-
taking would immediately enhance the human–robot interaction (Trafton et al. 2005).

Implementing perspective-taking has been proposed as an initial means of establish-
ing a shared frame of reference and a shared perceptual foundation. Perspective-tak-
ing is the fundamental capacity for individuals to consider interactions and the world 
from the vantage point of a different viewpoint. It has been demonstrated that perspec-
tive-taking occurs in a vast array of situations and tasks, from social situations (Natalie 
Sebanz, Knoblich, and Prinz 2005; Wenke et al. 2011) to wayfinding and navigation 
tasks. Spatial perspective-taking appears in children as young as four years of age (Gal-
lese 2007) and develops relatively systematically (Gazzola et al. 2007).

The ability to distinguish between self and others is fundamental for social cogni-
tion. Existing robotics research has achieved a self-other distinction by using distinct 
models that can be co-activated during social interaction. A necessary prerequisite, 
therefore, is the achievement of a self-other distinction. Only when the robot or the 
AI system can a) distinguish between itself and its environment and b) distinguish 
between the human agent and their environment is it possible for the AI system to 
develop a sense for a perceptual common. A smooth human-AI interaction thus has 
two sides. On the one side, robots should become more socially aware and represent 
their partner’s actions and attentional states alongside their own. On the other side, 
humans should be able to predict and represent a robot’s behaviour successfully. Only 
when both sides are fulfilled is a smooth human-AI interaction and pursuit. Both par-
ties must display behaviours that align with the other’s expectations based on previous 
coordinated behaviour.

Another way to phrase the problem is to ask whether the AI system and the human 
can co-represent the common reference object and each other’s mutual awareness. Suc-
cess in human-robot interaction would be strongly facilitated if robots could act pre-
dictably and likewise predict human action. One way to implement a more accurate 
prediction of human behaviour is to represent human partners’ expectations based on a 
human’s mental model of independent action. Kirtay et al. (2020) propose that the robot 
is equipped with the ability to co-represent the partner alongside one’s actions. They pro-
pose predictive learning as a framework for modelling plausible human-AI interactions.

Co-representation of a robot as a co-agent has, in a fundamental sense, been 
addressed in the context of the joint Simon task. Simon (1969) has found that partici-
pants are faster and more accurate when responding to stimuli that occur in the exact 
relative location as the response, even though the location information is irrelevant 
to the actual task. This effect disappears when a participant responds to only one of 
the two stimuli and reappears when another person carries out the other response (N. 
Sebanz, Bekkering, and Knoblich 2006). Given the social influence of the motor task, 
this effect has been coined the Social Simon Effect (SSE).

Similarly, the Flanker task tests the participant’s ability to suppress irrelevant, i.e. 
noisy signals, when detecting a target stimulus (Eriksen and Eriksen 1974). Researchers 
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found that participants are slower to respond to the stimulus in a social setting where 
the participant’s distractors represent potential target stimuli for the other participant 
(Atmaca, Sebanz, and Knoblich 2011; Schuch and Tipper 2007).

In sum, the SSE and the Flanker task highlight the unconscious and involuntary 
social influence of others on performing individual motor actions. In other words, both 
experiments show that socially influenced perception is not about sharing perceptual 
judgments but refers to cases where perception is shared. The authors ascribe the effect 
to the fact that when participants complete a collaborative task with a partner, they 
automatically integrate the other’s activity into their motor map, implying that co-rep-
resentation of the partner’s action happens.

In recent years, there has been a surge of interest in whether the SSE extends to arti-
ficial agents and the extent and conditions under which humans successfully co-repre-
sent robotic behaviours. Tsai et al. (2008) measured participants performing a cooper-
ative Simon task while being induced to believe they were collaborating with another 
human or AI system outside the room. However, in reality, the AI system controls 
human and computer reactions. According to behavioural and neurophysiological find-
ings, the assumption of interacting with an intentional agent altered the SSE, imply-
ing that the mere notion that the co-actor is another human causes the SSE. Tsai et al. 
(2008) found that action co-representation is calibrated to other humans but not to 
artificial systems.

In contrast, in another study using fMRI instead of EEG measurements, action 
co-representations were found to occur with artificial agents. This study by Wen and 
Hsieh (2015) used a similar setting where participants were led to believe that they inter-
acted with another human or an artificial system (computer). In reality, they interacted 
only with a computer; participants demonstrated action co-representation with both 
human and artificial systems. In addition, the mere belief of interacting with another 
human agent activated the brain areas responsible for social cognition – the medial 
prefrontal cortex. When participants attribute human-like traits to the robot, they 
co-represent the humanoid robot’s action when they believe that the artificial agent is 
acting actively and intentionally.

Other studies explored the effect of co-representation with robots instead of virtual 
agents. Manipulation of presented robotic traits – robots was either described as active 
and intelligent (human-like) agent or as passive and deterministic (machine-like) – 
revealed that robots with human-like characteristics were significantly more likely to 
instil an SSE than robots with machine-like characteristics. This suggests that humans 
co-represent the activities of humanoid robots when they feel the robot is functional 
and acting actively and intentionally.

The emergence of we-agency is even stronger than the emergence of co-representa-
tion and perspective-taking in humanoid robots. We-agency refers to a sense of agency 
(being in control of) for actions and consequences created by a task partner when 
participating in collaborative action. In a study by Sahaï et al. (2019), participants con-
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ducted the Simon task with either a human partner sitting next to them on a chair or 
with a computer and an empty chair. In addition to the detection task, participants had 
to estimate and orally describe the time between the moment they responded to target 
detection and the commencement of a tone played after a configurable delay. When an 
intentional movement results in a sensory output, people perceive the delay between 
the action and the consequence as shorter. The study’s findings revealed an SSE when 
executing the job with another human but not a machine. Notably, mean estimations of 
temporal delay were similar when the task was completed alone or with another human 
agent. However, they were longer when it was completed jointly with the computer, 
implying that participants have a stronger sense of we-agency when completing the 
task with another human as opposed to a computer. As a result, the sense of we-agency 
may be an additional element supporting the co-representation of the agent’s co-task. 
Another study examining implicit intentional binding and explicit agency assessments 
yielded similar results (Grynszpan et al. 2019). Participants sat next to another human 
hidden behind a curtain. They were instructed to use a haptic device to move a cur-
sor on the screen towards a stopper (each partner-operated one handle to contribute 
cooperatively to the observed movement). After the movement, a tone was produced 
after a configurable delay that participants had to guess. The movement’s direction 
determined the pitch of the tone. Finally, participants rated how much they thought 
they contributed to the tone’s sound. Although participants thought they were perform-
ing the task with a human partner, the complementing movement was controlled by 
a computer in one of the experimental blocks. Even though none of the participants 
detected the change, they judged their contribution to the tone as more significant in 
the computer condition. Intentional binding, on the other hand, appeared exclusively 
when coordinating with the other human. These findings imply that both implicit and 
explicit agency measures are influenced by the kinesthetic features of feedback rather 
than the assumption that one is dealing with a human vs a computer (see Sahaï et al. 
(2017) for a review on we-agency in human-robot interaction).

Limitations for co-representation for AI systems and human perceivers are numer-
ous as the study of co-perception is still in its early stages. First, consider applying tra-
ditional methods such as reaction times to study co-perception between human and 
artificial agents. Measuring biophysical-dependent markers such as reaction times can 
reveal an underlying change in perceptual processing for human users, however, do 
not adequately capture a change in the processing of the artificial agents. Being sub-
ject to social influence does not influence reaction times like human agents are influ-
enced. Hence, measuring reaction times is not applicable when determining whether 
an artificial agent can co-represent a person. A new method must be developed. Sec-
ond, the set of confounding variables is different. For human-human co-perception, 
the appearance of agents is not seen as a confounding factor for the emergence of 
co-perception. For human-AI co-perception, the appearance of human likeness and 
the consequent intentionality attribution is fundamental for the possible emergence 
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of perceptual co-representation for robots. They loosely suggested that mirror neuron 
systems play an essential role in motor or even perceptual co-representation (Cross 
and Ramsey 2021; Kirtay et al. 2020).

5.4 Conclusion
Human social interaction is not restricted to forms of common or even joint action. 
Instead, social interaction extends to the joint coordination of attention and even per-
ception. When attending to or perceiving things jointly, human agents rely on a triadic 
mutual awareness of each other and the common target. In this chapter, I have con-
trasted the sensory human-AI coupling with the perceptual coupling driving human 
social interactions. I have shown where a human-AI coupling falls short of achieving 
human-like levels of social and perceptual influence and coordination. Shared percep-
tion uniquely differs from joint attention as mutual awareness occurs without tracking 
bodily cues, s.a. gaze, but rather through mutual knowledge of a perceptual common. 
Similar performance benefits – faster and more accurate perceptual processing – in a 
joint setting persist.

For AI systems, improving collaboration between humans and AI-powered systems 
has been mainly addressed from an engineering perspective, where robot movements 
must be safe and sensitive to basic forms of human interaction to realise given com-
mands (see Liang et al. (2021) and Liu and Wang (2018) for review). Beyond that, social 
coordination remains a uniquely human trait. I, therefore, conclude that, also in a tight 
coupling, AI advisers demand their unique ontological category as something more 
capable than a non-AI tool but still falling short of human standards.
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Artificial intelligence (AI) is widely present in our everyday lives. Individual users now 
rely on AI support for daily decisions such as shopping and movie recommendations 
but also depend upon AI to facilitate perception and decision-making in high-stakes 
environments such as medical diagnostics and driving support. Regardless of the envi-
ronment, AI systems significantly shape how we think about and perceive the world. 
Autonomous cars can drive us to work; home assistants can recommend the next move 
or shop for groceries. Understanding AI’s degree and kind of influence on human per-
ception and decision-making become paramount for guiding the critical and respon-
sible use of digital technologies and digital transformation at large.

The main focus of AI-related research fields has been on (semi-)autonomous AI 
systems – systems that operate in large parts without human instructions. Consider 
recent debates on driving cars and language models. What is often left unexplored 
are AI systems that are closely coupled with their human users – systems that keep 
humans in the decision-making loop by informing or recommending actions or deci-
sions. Investigating this gap is becoming increasingly crucial as incidents of AI-assisted 
decision-making become increasingly common – consider low-stakes decisions such 
as shopping recommendations and high-stakes decisions such as medical diagnosis.

With a range of different capabilities and implementations, AI systems occupy a 
unique social role. They can do more than tools but less than humans. A basic tool does 
not possess any independent processing or goal-directed behaviour, whereas humans 
are the pinnacle of independent processing and goal-directed behaviour. While basic 
tools depend entirely on a human user, human agents function independently. Some 
AI systems are closer to tools – consider automated vacuum cleaners, whereas others 
are closer to human agents – consider super-human game-playing engines. Notably, 
the main driver for the difference in AI systems is the degree of independent process-
ing taken on by the AI system. While vacuum cleaners process only a limited number 
of gathered sensory information – in a way entirely dictated by the human developers 
 -super-human game-playing engines learn to develop strategies to supersede human 
performance. Ultimately, a conceptual grey zone of AI systems emerges, where the per-
ceived capabilities dictate the AI’s ontological status. So far, the boundaries between 
tools and humans for AI advisers are blurred. Some researchers have claimed that AI 
advisers are human-like (Y. Tian et al. 2017; Pelau, Dabija, and Ene 2021), whereas oth-
ers reduce AI advisers to mere tools (Gunkel 2012; Zheng and Wu 2019).

This PhD thesis aims to clarify the conceptual boundaries between tools, AI advisers 
and humans and ask: what are AI advisers, and how do they differ from tools? I exam-
ined human-coupled advisory AI systems to substantiate an existing function definition 
with a conceptual analysis of what advisory AI systems are. A conceptual analysis of 
AI advisers is novel and closes a critical gap in the literature by providing conceptual  
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reasons for whether and how AI advisers are more than tools and what distinguishes 
them from human partners. The approach taken was two-fold. The first part – chapters 
two and three – examined the loose coupling of AI advisers with their human users – 
cases where AI advisers provide seemingly external recommendations. Here, I asked 
whether external AI advisers are agents, i.e. capable of action, or are mere tools. Being 
an agent has essential implications: not only are agents considered responsible for their 
actions, but also agents possess a certain degree of autonomy. The second part – chap-
ters four and five – analysed a tight coupling of AI advisers with their human users  
 – cases where AI advisers become integral to human perception and decision-making. 
Consider cases of augmented reality or sensory augmentation. Here, I asked how and 
to which extent AI advisers influence human perception and in which way highly inte-
grated AI systems differ from their tool or human counterparts.

In Chapter 2, I discussed whether loosely coupled AI advisers could be understood 
as independent agents. I have shown that AI advisers necessitate an ontological shift in 
how agency is understood and applied. The agentive capacity of AI systems can be ade-
quately captured neither by a human-like concept of agency nor by a tool-like concept 
of agency. The human-like concept of agency, based on Davidson’s event-causal theory 
of action (Davidson 1963) or Bratman’s notion of intentional action (M. E. Bratman 
2007; M. Bratman and Bratman 1987), holds that agency requires intentional mental 
states like beliefs and desires that can cause an intended behaviour. However, as argued 
in Chapter 2, AI systems lack intentional mental states and cannot be seen as human-
like agents. On the minimal understanding of agency, AI systems, alongside simple 
biological organisms, are basic agents as they fulfil the minimal criteria for agency, 
including individuality, interactional asymmetry, and goal-directedness. However, the 
wide range of existing AI systems and their varying degrees of agentive abilities demon-
strated a mismatch with either approach – as neither approach can differentiate the 
agentive capacities of AI systems. I argued that, instead, AI advisers are something in 
between that only a gradual notion of agency can capture.

Building on the findings from Chapter 2, in Chapter 3, I sought to confirm how AI 
advisers differ from mere tools. While many studies have successfully mapped how 
people’s opinion varies depending on the role of AI and other cultural or moral fac-
tors (Bago 2022; Lim, Rooksby, and Cross 2021; Persson, Laaksoharju, and Koga 2021), 
chapter 3 asked a different question: is it the case that any mention of AI will lead peo-
ple to see the technology as partly responsible and shift the responsibility away from 
the human user? Recent studies suggest this may be the case under the hypotheti-
cal scenario where AI provides moral guidance (Constantinescu et al. 2022; Giubilini 
and Savulescu 2018; Malle, Magar, and Scheutz 2019). However, it is more relevant to 
ask if this would happen under AI’s more prevalent day-to-day usage when it merely 
provides factual information and is used purely instrumentally. I conducted multiple 
experimental studies to address these questions – including eight pilot studies and a 
main experiment. Across these experimental studies, chapter 3 compared what hap-
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pened to responsibility attributions when a human driver, faced with an emergency, 
receives a warning from an AI-powered or non-AI-powered warning system. To ensure 
that the attribution of responsibility does not come from the AI sharing some anthro-
pomorphic features, I compared situations in which the AI was a voice assistant or a 
haptic warning system. In line with the moral and psychological literature stressing the 
importance of outcome biases and asymmetries between credit and blame, I also tested 
cases where the emergency was successfully managed. I found that even the most basic 
AI system introduces a sharing of responsibility with their human user, in sharp con-
trast to non-AI-powered tools. This finding was all the more surprising because, when 
asked, people did recognise AI as a tool. Attributing responsibility to AI and reducing 
human responsibility also does not depend on how the AI technology communicates 
with the user – i.e. via voice or haptic signals. Furthermore, the AI was seen as more 
responsible for good rather than harmful outcomes, as it gets more credit when the 
human driver successfully negotiates the situation after receiving the AI warning than 
it receives blame when the driver fails.

Taking the results from chapters two and three together, I have established in the 
first part of this thesis that AI advisers are ontologically more than tools but less than 
human agents. In other words, I found that in their agentive capacity and attributed 
responsibility, AI advisers, in a loose coupling with human users, indeed demand their 
own ontological space as something more than tools but less than humans.

The subsequent two chapters examined whether a tight instead of a loose coupling 
changes the AI adviser’s ontological role. In Chapter 4, I demonstrated how AI changes 
the coupling of sensory augmentation devices with the human user. Implementing 
AI into existing sensory augmentation devices, such as sensory substitution systems, 
changes the conceptual kind of sensory augmentation and extends the kind of per-
ceptual pre-processing from the human user to the AI system. Due to their exten-
sive computational capacities, sensory AI systems can process sensory signals like no 
other sensory augmentation system before. Two ways of signal processing are possible: 
enhancing low-level sensory signals by filtering out sensory noise and extracting high-
level perceptual features by incorporating data-processing tools in the sensory augmen-
tation process. After showing how AI can be incorporated into sensory augmentation 
processes, I asked whether, as a consequence, sensory AI systems should be understood 
as perceptual extenders. About the extended perceptual systems of biological systems 
like bats and electric fish, the chapter concludes that sensory AI advice systems are 
unique and extend human perception in ways no non-AI-powered device can.

Chapter 5 contrasts the sensory human-AI coupling with the perceptual coupling 
driving human social interactions. Chapter 5 showed where a human-AI coupling falls 
short of achieving human-like social and perceptual influence and coordination levels. 
Two widely studied forms of social interaction are joint action – doing things together 
 – and joint attention – attending to things together. Both forms of social interaction are 
more than coordinating actions and attention. Instead, human agents develop a mutual 



148 6 Discussion

awareness of each other’s goals, intentions, and actions, which transform not only the 
individual experience but also the collective action. Playing in an orchestra, perform-
ing team surgeries, or simply moving a table together are at their highest level, dynamic, 
mutually dependent actions and experiences. After outlining the research and mech-
anisms behind joint attention, chapter 5 goes even further and provides novel insights 
into the mechanisms of shared perception. Shared perception uniquely differs from joint 
attention as mutual awareness occurs without tracking bodily cues, s.a. gaze, but rather 
through mutual knowledge of a perceptual common. However, similar performance 
benefits – faster and more accurate perceptual processing – in a joint setting persist.

Social coordination and sensitivity to social cues are still – if at all – rudimentary 
building blocks in AI advisory systems. For AI systems, improving collaboration between 
humans and AI-powered systems has been mainly addressed from an engineering per-
spective, where robot movements must be safe and sensitive to basic forms of human 
interaction to realise given commands (see Liang et al. (2021) and Liu and Wang (2018) 
for review). Beyond that, social coordination remains a uniquely human trait.

Taking the results from chapters four and five together, I have shown that AI advisers, 
in a tight coupling with their human users, also demand their own ontological space – 
as something more than sensory tools but less than human partners.

While this PhD thesis provided rich and novel contributions to the understanding 
of coupling humans with AI advisory systems, the thesis also had its limitations which 
future work can address and build upon. From the experimental studies outlined in 
Chapter 3, I concluded that AI advisers are blamed but not praised and compared the 
most tool-like sensory AI adviser with a non-AI-powered tool. I found that only the 
AI-powered tool demonstrated the unique responsibility pattern, and the non-AI-pow-
ered tool was neither praised nor blamed. However, while collecting experimental data 
for AI advisers in positive and negative outcome conditions revealed an asymmetry 
in how AI advisers are seen, I compared and collected data for a non-AI-powered tool 
in a negative outcome condition. It remains unclear whether the difference between 
the AI-powered and the non-AI-powered tool replicates once the outcome is positive 
rather than negative. Because the outcome effect through an other-serving bias – rat-
ings were higher when the outcome was positive – was consistent across measurements 
and agents, I expect that the difference between AI and non-AI-powered tools also 
holds when the outcome is positive. However, only a future experiment could validate 
or refute the expectation.

Another limitation can be found in the theoretical work. In Chapter 2, I review 
possible middle-ground accounts for the agency of AI systems, which possibly can 
account more adequately for a wide range of different AI capacities. While I never had 
the ambition to make an exhaustive list of middle-ground accounts, I possibly left out 
an important parallel in animal agency. The research surrounding animal agency has 
long addressed the challenge of making sense of a wide range of agentive and cognitive 
abilities – as found in animals – and matching it with an account of agency that falls 
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short of human agency. Future work could discuss the connection between AI systems 
and animal agency – (Tomasello 2022)’s recent book on the evolution of psychological 
agency in animals could be a great starting point.

Despite its limitations, this thesis contributes to a richer conceptual understand-
ing of what AI advisers are and how they are coupled with their human users to the 
existing literature on AI systems. I have shown that AI advisers, either in a loose or in 
a tight coupling with human users, are more than tools. In fact, AI advisers represent 
a unique ontological category – something between non-AI tools and human agents – 
which impacts not only practical issues on how advisory systems should be treated but 
also philosophical debates on what it means to be an AI adviser.

Two prominent directions for the future are expected to emerge. On the one side, AI 
perceptual support systems are expected to increase in popularity – in their develop-
ment and usability. Augmented reality systems which already couple external comput-
ing with human perception, are one example. Instead of immersion in a semi-realistic, 
entirely virtual world through a collective of headsets, controllers and tactile stimuli, 
augmented reality devices use advanced artificial sensors and computational process-
ing to enrich the perceptual and cognitive experience of the real world. From emotion/
mood recognition of crowds during presentations to Early applications already exist: 
car head-up displays incorporate speed and navigation recommendations directly into 
the front display, placing warning cues directly at the point of origin and eliminating 
the necessary attention switching from the navigation system to the road ahead. Future 
AI perceptual support systems are only bound to enrich an already thriving field with 
new low-level sensory filtering or high-level feature extraction.
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Figure 14: Conclusion

The second prominent direction of AI advisers represents the increasing focus on AI 
advisory systems. Emerging ethical dilemmas of letting AI act on one’s behalf – an  
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inexplicable accident with autonomous cars is just one example – will create pressure 
on alternative ways of using AI systems – namely as advisers. Further exploration of 
the AI advisers’ perceived ontological status and responsibility remains paramount here. 
Experimental AI Ethics will therefore develop a fine-grained understanding of how AI 
advisers influence human user responsibility and reveal why AI advisers are praised 
but not blamed for their recommendations.

Both directions share a common thread: AI advisers are here to stay. This thesis has 
provided a starting point for present and future research on what AI advisers are and 
how they influence their human users.
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A.1 Supplementary for Pilot 1

Materials

Condition: negative outcome, sensory AI adviser 
Joe, a medical surgeon, performs a tumour operation on a patient. Joe has to remove 
the tumour cells around the liver. Therefore, he makes an incision on top of the liver 
and tries to find the tumour cells. To support his decision making, Joe uses an artificial 
intelligence (AI) during the operation. The AI has access to the patient’s medical records 
and all operation-relevant parameters. Based on this information, the AI provides Joe 
with vibrations and sounds to guide Joe’s procedure. As Joe moves his scalpel, Joe can 
feel vibrations on his wrist that indicate that the removable tissue is on the right of the 
incision and tells him when he has removed all the present tumour. The operation pro-
ceeds with major complications and the patient dies.

Condition: negative outcome, linguistic AI adviser 
Joe, a medical surgeon, performs a tumour operation on a patient. Joe has to remove 
the tumour cells around the liver. Therefore, he makes an incision on top of the liver 
and tries to find the tumour cells. To support his decision making, Joe uses an artificial 
intelligence (AI) during the operation. The AI has access to the patient’s medical records 
and all operation-relevant parameters. Based on these information, the AI provides 
Joe with verbal guidance on the location and the presence of any tumour tissue. This 
includes recommendations like ‘Move the scalpel to the right’ or ‘All tumour tissue has 
been removed.’ The operation proceeds with major complications and the patient dies.

Condition: negative outcome, no AI adviser 
Joe, a medical surgeon, performs a tumour operation on a patient. Joe has to remove the 
tumour cells around the liver. Therefore, he makes an insertion on top of the liver and 
tries to find the tumour cells. Joe relies on his experience and performs the operation 
without any help. The operation proceeds with major complications and the patient dies.

Condition: positive outcome, sensory AI adviser 
Joe, a medical surgeon, performs a tumour operation on a patient. Joe has to remove 
the tumour cells around the liver. Therefore, he makes an incision on top of the liver 
and tries to find the tumour cells. To support his decision making, Joe uses an artificial 
intelligence (AI) during the operation. The AI has access to the patient’s medical records 
and all operation-relevant parameters. Based on this information, the AI provides Joe 
with vibrations and sounds to guide Joe’s procedure. As Joe moves his scalpel, Joe can 
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feel vibrations on his wrist that indicate that the removable tissue is on the right of the 
incision and tells him when he has removed all the present tumour. The operation pro-
ceeds without any complications and the patient fully recovers.

Condition: positive outcome, linguistic AI adviser 
Joe, a medical surgeon, performs a tumour operation on a patient. Joe has to remove 
the tumour cells around the liver. Therefore, he makes an incision on top of the liver 
and tries to find the tumour cells. To support his decision making, Joe uses an artifi-
cial intelligence (AI) during the operation. The AI has access to the patient’s medical 
records and all operation-relevant parameters. Based on these information, the AI 
provides Joe with verbal guidance on the location and the presence of any tumour tis-
sue. This includes recommendations like ‘Move the scalpel to the right’ or ‘All tumour 
tissue has been removed.’ The operation proceeds without any complications and the 
patient fully recovers.

Condition: positive outcome, no AI adviser 
Joe, a medical surgeon, performs a tumour operation on a patient. Joe has to remove 
the tumour cells around the liver. Therefore, he makes an insertion on top of the liver 
and tries to find the tumour cells. Joe relies on his experience and performs the ope-
ration without any help. The operation proceeds without any complications and the 
patient fully recovers.

Measurements
Responsibility How much is Joe responsible for the [well-being death] of the patient?

A.2 Supplementary for Pilot 2

Material
Same as for Pilot 1.

Measurements
Blame How much is Joe to praise for the well-being of the patient?
Praise How much is Joe to blame for the death of the patient?
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A.3 Supplementary for Pilot 3

Material

Condition: negative outcome, sensory AI adviser 
Emma is a middle-aged woman who has no previous conditions. During a routine trip 
to the local supermarket, she suffers a heart attack. Although her heart fully recove-
red, her kidneys are severely damaged. The diagnosis at the local hospital reveals that 
Emma’s only chance to survive is a kidney transplant. At the hospital, organ transplants 
are done regularly and are generally considered safe. Amira, the responsible medical 
surgeon, performs the kidney transplantation. Amira uses a new artificial intelligence 
(AI) assistant with proven medical experience. The AI has access to the patient’s medical 
records and all operation-relevant parameters. Based on this information, the AI pro-
vides Amira with vibrations and sounds to guide Amira’s procedure. As Amira moves 
her scalpel, she can feel vibrations on her wrist, indicating that the kidney is on the 
right, and can hear patterns of sounds, highlighting that when she has found the tissue 
that can be removed. Amira follows the sensory advice of the AI. During the operation, 
Amira damages an artery with her scalpel leading to acute blood loss and Emma dies.

Condition: negative outcome, linguistic AI adviser 
During a skiing trip, Alex collides with another skier and suffers a severe head injury. 
The injury will be fatal if not treated. On the same day, Alex is admitted to a nearby 
hospital. Given Alex’s condition, some fluids need to be drained from his head. Joe, 
the responsible medical surgeon, performs the necessary procedure. At the hospital, 
winter sports accidents are treated regularly and the operation is generally considered 
safe. Joe uses a new artificial intelligence (AI) assistant with proven medical experience. 
The AI has access to the patient’s medical records and all operation-relevant parameters. 
Based on this information, the AI provides Joe with verbal guidance on the location 
and the presence of any fluids that need to be drained from his head. As Walter moves 
his scalpel, the AI issues recommendations like ‘The critical fluids are on the left’ or 
‘This fluid needs to be drained.’ Joe follows the advice of the AI. During the operation, 
Joe damages an artery with the inserted tube leading to acute blood loss and Alex dies.

Condition: negative outcome, no AI adviser 
David enjoys a drive on the motorway. While changing lanes, David collides with anot-
her vehicle. After spiralling out of control, David’s car comes to a stop on the side of the 
road. David suffers from internal bleeding and would die without any medical attention. 
After David is brought to the local hospital, Fiona, the responsible medical surgeon, 
tries to stop the bleeding. At the hospital, car accidents are treated frequently and the 
associated procedures are generally considered safe. Fiona relies on her experience and 
operates without any technical assistance. She makes an incision near the bleeding and 
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tries to seal off any of the leaking blood vessels. During the operation, Fiona damages 
another artery with her scalpel leading to acute blood loss and David dies.

Condition: positive outcome, sensory AI adviser 
Maria and Lukas go for a long hike around Maria’s favourite lake. Afterwards, Maria 
feels intense abdominal pain and collapses. At the local hospital, a quick diagnosis reve-
als that Maria is suffering from heavy internal bleeding due to a ruptured artery that 
if not sealed, will be fatal. Paula, the responsible medical surgeon, leads the operation. 
At the hospital, such internal surgery is performed routinely and is generally consi-
dered safe. Paula uses a new artificial intelligence (AI) assistant with proven medical 
experience. The AI has access to the patient’s medical records and all operation-rele-
vant parameters. Based on this information, the AI provides Paula with vibrations and 
sounds to guide Paula’s procedure. As Paula moves her scalpel, she can feel vibrations 
on her wrist, indicating that the ruptured artery is on the left, and can hear patterns 
of sounds, highlighting when she as found the ruptured artery that needs to be fixed. 
Paula follows the sensory advice of the AI. During the operation, Paula manages to stop 
the bleeding and Maria’s condition immediately improves.

Condition: positive outcome, linguistic AI adviser 
Mike is a famed jungle explorer. He is on a mission to find a new mushroom colony in 
the Amazon rainforest. During a trip into the jungle, Mike is bit by a venomous spider. 
The poisoning is fatal if not treated. Thus, Mike is brought into the nearest hospital. 
At the hospital, animal attacks are treated frequently and the associated procedures 
are generally considered safe. To neutralise the poison, Walter, the hospital’s medical 
surgeon, has to administer an antidote and remove the infected tissue. Walter uses a 
new artificial intelligence (AI) assistant with proven medical experience. The AI has 
access to the patient’s medical records and all operation-relevant parameters. Based on 
this information, the AI provides Walter with verbal guidance on the location and the 
presence of any infected tissue. As Walter moves his scalpel, the AI issues recommen-
dations like ‘The infected tissue is on the right’ or ‘This tissue can be removed.’ Walter 
follows the advice of the AI. During the operation, Walter manages to neutralise the 
poison and Mike’s condition immediately improves.

Condition: positive outcome, no AI adviser 
Marcus and Lena are regular fencing partners. During a heated match, Lena pierces 
through Marcus’ vest and punctures his lungs. The injury is fatal if it not treated. So, Mar-
cus is rushed to the nearest hospital. At the hospital, internal surgery is done routinely 
and is generally considered safe. Albert, the responsible medical surgeon, takes Mar-
cus in immediately and tries to fix the puncture by inserting a chest tube. Albert relies 
on his experience and operates without any technical assistance. During the operation, 
Albert manages to seal off the puncture and Marcus’ condition immediately improves.



A.4 Supplementary for Pilot 4 155

Measurements
Blame [X] is … (X blameworthy)
Causal Responsibility To what extent do you think [X] caused [Y]’s [death recovery]?
Informativity How informative do you think the AI’s advice was?

A.4 Supplementary for Pilot 4

Material

Condition: negative outcome, sensory AI adviser 
Justus enjoys surfing and drives to the beach every weekend. To transport his surf-
boards, Justus recently bought a new, state-of-the-art car equipped with an artificial 
intelligence (AI) for driving assistance. The AI can monitor all physical objects around 
the car, including hidden ones, thanks to a 360 degrees laser radar. When activated, 
the system produces a range of different alarm sounds to warn Justus of an imminent 
obstacle on the road and makes the wheel vibrate, on either the left or the right, to indi-
cate which side to swerve. On the way to the beach, Justus drives alone and respects 
the speed limit. As Justus enters an urban area, he decides to switch on the AI driving 
assistance. Further down the road and out of Justus’ sight, a pedestrian crosses the street. 
Driving around a corner, Justus suddenly hears an alarm, indicating a pedestrian a 
short distance ahead, and feels the vibrations of the steering wheel, recommending him 
to swerve to the left. Justus follows the advice of the AI but fatally hits the pedestrian.

Condition: negative outcome, linguistic AI adviser 
Sofia is a high-level executive, and after a long day of work drives back home. Her new 
car is equipped with an artificial intelligence (AI) for driving assistance. The AI can 
monitor all physical objects around the car, including hidden ones, thanks to a 360 
degrees laser radar. When activated, the system warns Sofia verbally about any pos-
sible imminent danger and recommends the ideal evasive manoeuvre such as ‘There 
is a car braking on the right. To avoid the crash, swerve to the left!’ On the way back 
home, Sofia drives alone and respects the speed limit. As Sofia enters an urban area, she 
decides to switch on the AI driving assistance. Further down the road and out of Sofia’s 
sight, a pedestrian crosses the street. Driving around a corner, Sofia suddenly hears the 
AI’s voice warning her of a pedestrian a short distance ahead and recommending her 
to swerve to the left. Sofia follows the advice of the AI but fatally hits the pedestrian.

Condition: negative outcome, no AI adviser 
Alex works as a craftsman and is currently on his way to his next job. To carry all of his 
tools, Alex uses a traditional pick-up truck without any additional driving assistance. 
On his way to his next client, Alex drives alone and respects the speed limit. Further 
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down the road and out of Alex’s sight, a pedestrian crosses the street. Driving around 
a corner, Alex suddenly sees that a pedestrian is crossing the street a short distance 
ahead. At the last moment, Alex swerves but fatally hits the pedestrian.

Condition: positive outcome, sensory AI adviser 
Anna, a young student, is on her way to see her family. She uses a car-sharing provider 
who offers access to the latest state-of-the-art car equipped with an artificial intelligence 
(AI) for driving assistance. The AI can monitor all physical objects around the car, inclu-
ding hidden ones, thanks to a 360 degrees laser radar. When activated, the system pro-
duces a range of different alarm sounds to warn Anna of an imminent obstacle on the 
road and makes the wheel vibrate, on either the left or the right, to indicate which side 
to swerve. On the way to her family, Anna drives alone and respects the speed limit. As 
Anna enters an urban area, she decides to switch on the AI driving assistance. Further 
down the road and out of Anna’s sight, a pedestrian crosses the street. Driving around 
a corner, Anna suddenly hears an alarm, indicating a pedestrian a short distance ahead, 
and feels the vibrations of the steering wheel, recommending her to swerve to the left. 
Anna follows the advice of the AI and avoids a fatal crash with the pedestrian.

Condition: positive outcome, linguistic AI adviser 
Marcus is on holiday, exploring the south of France. As a car enthusiast, he rented a 
state-of-the-art car equipped with an artificial intelligence (AI) for driving assistance. 
The AI can monitor all physical objects around the car, including hidden ones, thanks 
to a 360 degrees laser radar. When activated, the system warns Marcus verbally about 
any possible imminent danger and recommends the ideal evasive manoeuvre such as 
‘There is a car braking on the right. To avoid the crash, swerve to the left!’ On the way 
to the Montpellier, Marcus drives alone and respects the speed limit. As Marcus enters 
an urban area, he decides to switch on the AI driving assistance. Further down the road 
and out of Marcus’ sight, a pedestrian crosses the street. Driving around a corner, Mar-
cus suddenly hears the AI’s voice warning him of a pedestrian a short distance ahead 
and recommending him to swerve to the left. Marcus follows the advice of the AI and 
avoids a fatal crash with the pedestrian.

Condition: positive outcome, no AI adviser 
Zoe is on her way to meet her friends for a night out at the local theatre. Zoe drives 
a traditional sports-car without any additional driving assistance. On her way to the 
theatre, Zoe drives alone and respects the speed limit. Further down the road and out 
of Zoe’s sight, a pedestrian crosses the street. Driving around a corner, Zoe suddenly 
sees that a pedestrian is crossing the street a short distance ahead. At the last moment, 
Zoe swerves and avoids a fatal crash with the pedestrian.
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Measurements
See pilot 3.

A.5 Supplementary for Pilot 5

Material

Condition: negative outcome, linguistic AI adviser 
Marcus’ car is equipped with a verbal driving assistant powered by artificial intel-
ligence (AI). The verbal AI assistant monitors the space around the car with a 
360-degrees radar and identifies possible dangers. When it does, it gives verbal war-
nings and tells the driver what to do – saying things like ‘Obstacle ahead! Swerve LEFT!’  
One day, Marcus is driving alone within the speed limit when he reaches a turn (see 
roadmap). Out of Marcus’ sight, a pedestrian is crossing at a Zebra crossing. Driving 
around the corner, the verbal AI assistant warns Marcus and advises him to quickly 
swerve left with short verbal instructions. Marcus follows the advice of the verbal AI 
assistant. The pedestrian is nevertheless hit by the car and dies.

Condition: negative outcome, sensory AI adviser 
Marcus’ car is equipped with a sensory driving assistant powered by artifi-
cial intelligence (AI). The sensory AI assistant monitors the space around the 
car with a 360-degrees radar and identifies possible dangers. When it does, it 
gives sound warnings and tells the driver what to do by vibrating the steer-
ing wheel, on either the left or the right, to indicate which side to swerve.  
One day, Marcus is driving alone within the speed limit when he reaches a turn (see 
roadmap). Out of Marcus’ sight, a pedestrian is crossing at a Zebra crossing. Driving 
around the corner, the sensory AI assistant warns Marcus and advises him to quickly 
swerve left with short alarm sounds and steering wheel vibrations. Marcus follows the 
advice of the sensory AI assistant. The pedestrian is nevertheless hit by the car, and dies.

Condition: negative outcome, no AI adviser 
Marcus has a brand new car with all standard technologies. One day, Marcus is driving 
alone within the speed limit when he reaches a turn (see roadmap). Out of Marcus’ 
sight, a pedestrian is crossing at a Zebra crossing. Driving around the corner, Marcus 
suddenly sees the pedestrian a short distance ahead. Marcus follows his instincts and 
swerves left. The pedestrian is nevertheless hit by the car, and dies.
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Measurements
All responses were recorded on a 100-point scale using a slider. The scale was ancho-
red using labels.

Blame How much blame does Marcus deserve for the accident? How much blame 
does the [sensory  linguistic] AI assistant deserve for the accident? How much blame 
does the pedestrian deserve for the accident?
Causal Responsibility To what extent did Marcus cause the accident? To what extent 
did the sensory AI assistant cause the accident? To what extent did the pedestrian cause 
the accident?

Informativity The AI assistant provided [sensory  linguistic] advice to swerve left. 
How informative do you think this [sensory  linguistic] advice was?

Effort How easy do you think it was for Marcus to pick the AI assistant’s [sen-
sory  linguistic] advice?

A.6 Supplementary for Pilot 6

Material
See pilot 5.

A.7 Supplementary for Pilot 7

Material

Condition: active, sensory AI adviser, negative outcome 
Alex is driving a brand-new car. It is equipped with an expert-level sensory driving 
assistant powered by artificial intelligence (AI). The sensory AI assistant monitors 
the space around the car with a 360-degrees radar and identifies possible dangers. 
When it does, it gives tactile warnings and tells the driver what to do by vibrating 
the steering wheel, on either the left or the right, to indicate which side to swerve.  
One day, Alex is driving down a road. There is a STOP sign, but it is foggy, and the visi-
bility is very bad. The sensory AI assistant warns Alex of the danger ahead by vibrating 
the steering wheel. Alex decides to follow the advice of the AI and brakes. Nevertheless, 
Alex crashes into another car that had priority at that crossing.

Condition: inactive, sensory AI adviser, negative outcome 
Alex is driving a brand-new car. It is equipped with an expert-level sensory driving 
assistant powered by artificial intelligence (AI). The sensory AI assistant monitors the 
space around the car with a 360-degrees radar and identifies possible dangers. When 
it does, it gives tactile warnings and tells the driver what to do by vibrating the steer-
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ing wheel, on either the left or the right, to indicate which side to swerve. However, 
due to an electrical wiring problem, the AI assistant is not available for the next drive. 
The next day, Alex is driving down a road. Alex knows that he drives alone – without 
an AI assistant. There is a STOP sign, but it is foggy, and the visibility is very bad. Alex 
decides to follow his instincts and brakes. Nevertheless, Alex crashes into another car 
that had priority at that crossing.

Condition: active, linguistic AI adviser, negative outcome 
Alex is driving a brand-new car. It is equipped with an expert-level verbal driving assistant 
powered by artificial intelligence (AI). The verbal AI assistant monitors the space around 
the car with a 360-degrees radar and identifies possible dangers. When it does, it gives verbal 
warnings and tells the driver what to do – saying things like ‘Obstacle ahead! Swerve LEFT!’  
One day, Alex is driving down a road. There is a STOP sign, but it is foggy, and the 
visibility is very bad. The verbal AI assistant warns Alex of the danger ahead with short 
verbal instructions. Alex decides to follow the advice of the AI and brakes. Nevertheless, 
Alex crashes into another car that had priority at that crossing.

Condition: inactive, linguistic AI adviser, negative outcome 
Alex is driving a brand-new car. It is equipped with an expert-level verbal dri-
ving assistant powered by artificial intelligence (AI). The verbal AI assistant moni-
tors the space around the car with a 360-degrees radar and identifies possi-
ble dangers. When it does, it gives verbal warnings and tells the driver what 
to do – saying things like ‘Obstacle ahead! Swerve LEFT!’ However, due to an 
electrical wiring problem, the AI assistant is not available for the next drive. 
The next day, Alex is driving down a road. Alex knows that he drives alone – without 
an AI assistant. There is a STOP sign, but it is foggy, and the visibility is very bad. Alex 
decides to follow his instincts and brakes. Nevertheless, Alex crashes into another car 
that had priority at that crossing.

Measurements
All responses were recorded on a 200-point scale using a slider. The scale was anchored 
using labels ranging from ‘completely disagree’ to ‘completely agree.’

Blame Alex deserves blame for the accident. The [sensory linguistic] AI assistant 
deserves blame for the accident.

Responsibility Alex is responsible for the accident. The [sensory linguistic] AI assis-
tant is responsible for the accident.

Causal Responsibility Alex caused the accident. The [sensory linguistic] AI assistant 
caused the accident.

Counterfactual Capacity Alex had the capacity to avoid the accident. The [sensory 
linguistic] AI assistant had the capacity to avoid the accident.



160 Appendix 

A.8 Supplementary for Pilot 8

Material

Condition: active, sensory AI adviser, positive outcome 
Alex is driving a brand-new car. It is equipped with an expert-level sensory driving 
assistant powered by artificial intelligence (AI). The sensory AI assistant monitors 
the space around the car with a 360-degrees radar and identifies possible dangers. 
When it does, it gives tactile warnings and tells the driver what to do by vibrating 
the steering wheel, on either the left or the right, to indicate which side to swerve.  
One day, Alex is driving down a road. There is a STOP sign, but it is foggy, and the visi-
bility is very bad. The sensory AI assistant warns Alex of the danger ahead by vibrating 
the steering wheel. Alex decides to follow the advice of the AI and brakes. As a conse-
quence, Alex avoids a crash with another car that had priority at that crossing.

Condition: active, linguistic AI adviser, positive outcome 
Alex is driving a brand-new car. It is equipped with an expert-level verbal driving assistant 
powered by artificial intelligence (AI). The verbal AI assistant monitors the space around 
the car with a 360-degrees radar and identifies possible dangers. When it does, it gives verbal 
warnings and tells the driver what to do – saying things like ‘Obstacle ahead! Swerve LEFT!’  
One day, Alex is driving down a road. There is a STOP sign, but it is foggy, and the 
visibility is very bad. The verbal AI assistant warns Alex of the danger ahead with short 
verbal instructions. Alex decides to follow the advice of the AI and brakes. As a conse-
quence, Alex avoids a crash with another car that had priority at that crossing.

Measurements
All responses were recorded on a 200-point scale using a slider. The scale was anchored 
using labels ranging from ‘completely disagree’ to ‘completely agree.’

Praise Alex deserves praise for the accident. The [sensory linguistic] AI assistant 
deserves praise for the accident.

Responsibility Alex is responsible for the accident. The [sensory linguistic] AI assis-
tant is responsible for the accident.

Causal Responsibility Alex caused the accident. The [sensory linguistic]  AI assis-
tant caused the accident.

Counterfactual Capacity Alex had the capacity to avoid the accident. The [sensory 
linguistic] AI assistant had the capacity to avoid the accident.
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A.9 Supplementary for Main Experiment

Material

Condition: active, linguistic AI adviser, positive outcome 
Alex is driving a brand-new car. It is equipped with an expert-level verbal driving assistant 
powered by artificial intelligence (AI). The verbal AI assistant monitors the space around 
the car with a 360-degrees radar and identifies possible dangers. When it does, it gives verbal 
warnings and tells the driver what to do – saying things like ‘Obstacle ahead! Swerve LEFT!’  
One day, Alex is driving down a road. There is a STOP sign, but it is foggy, and the 
visibility is very bad. The verbal AI assistant warns Alex of the danger ahead with short 
verbal instructions. Alex decides to follow the advice of the AI and brakes. As a conse-
quence, Alex avoids a crash with another car that had priority at that crossing.

Condition: active, sensory AI adviser, positive outcome 
Alex is driving a brand-new car. It is equipped with an expert-level sensory driving 
assistant powered by artificial intelligence (AI). The sensory AI assistant monitors 
the space around the car with a 360-degrees radar and identifies possible dangers. 
When it does, it gives tactile warnings and tells the driver what to do by vibrating 
the steering wheel, on either the left or the right, to indicate which side to swerve.  
One day, Alex is driving down a road. There is a STOP sign, but it is foggy, and the visi-
bility is very bad. The sensory AI assistant warns Alex of the danger ahead by vibrating 
the steering wheel. Alex decides to follow the advice of the AI and brakes. As a conse-
quence, Alex avoids a crash with another car that had priority at that crossing.

Condition: active, linguistic AI adviser, negative outcome 
Alex is driving a brand-new car. It is equipped with an expert-level verbal driving assistant 
powered by artificial intelligence (AI). The verbal AI assistant monitors the space around 
the car with a 360-degrees radar and identifies possible dangers. When it does, it gives verbal 
warnings and tells the driver what to do – saying things like ‘Obstacle ahead! Swerve LEFT!’  
One day, Alex is driving down a road. There is a STOP sign, but it is foggy, and the 
visibility is very bad. The verbal AI assistant warns Alex of the danger ahead with short 
verbal instructions. Alex decides to follow the advice of the AI and brakes. Nevertheless, 
Alex crashes into another car that had priority at that crossing.

Condition: active, sensory AI adviser, negative outcome 
Alex is driving a brand-new car. It is equipped with an expert-level sensory driving 
assistant powered by artificial intelligence (AI). The sensory AI assistant monitors 
the space around the car with a 360-degrees radar and identifies possible dangers. 
When it does, it gives tactile warnings and tells the driver what to do by vibrating 
the steering wheel, on either the left or the right, to indicate which side to swerve.  
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One day, Alex is driving down a road. There is a STOP sign, but it is foggy, and the visi-
bility is very bad. The sensory AI assistant warns Alex of the danger ahead by vibrating 
the steering wheel. Alex decides to follow the advice of the AI and brakes. Nevertheless, 
Alex crashes into another car that had priority at that crossing.

Condition: inactive, linguistic AI adviser, positive outcome 
Alex is driving a brand-new car. It is equipped with an expert-level verbal dri-
ving assistant powered by artificial intelligence (AI). The verbal AI assistant moni-
tors the space around the car with a 360-degrees radar and identifies possi-
ble dangers. When it does, it gives verbal warnings and tells the driver what 
to do – saying things like ‘Obstacle ahead! Swerve LEFT!’ However, due to an 
electrical wiring problem, the AI assistant is not available for the next drive.  
The next day, Alex is driving down a road. Alex knows that he drives alone – without 
an AI assistant. There is a STOP sign, but it is foggy, and the visibility is very bad. Alex 
decides to follow his instincts and brakes. As a consequence, Alex avoids a crash with 
another car that had priority at that crossing.

Condition: inactive, sensory AI adviser, positive outcome 
Alex is driving a brand-new car. It is equipped with an expert-level sensory driving 
assistant powered by artificial intelligence (AI). The sensory AI assistant monitors the 
space around the car with a 360-degrees radar and identifies possible dangers. When 
it does, it gives tactile warnings and tells the driver what to do by vibrating the steer-
ing wheel, on either the left or the right, to indicate which side to swerve. However, 
due to an electrical wiring problem, the AI assistant is not available for the next drive.  
The next day, Alex is driving down a road. Alex knows that he drives alone – without 
an AI assistant. There is a STOP sign, but it is foggy, and the visibility is very bad. Alex 
decides to follow his instincts and brakes. As a consequence, Alex avoids a crash with 
another car that had priority at that crossing.

Condition: inactive, linguistic AI adviser, negative outcome 
Alex is driving a brand-new car. It is equipped with an expert-level verbal dri-
ving assistant powered by artificial intelligence (AI). The verbal AI assistant moni-
tors the space around the car with a 360-degrees radar and identifies possi-
ble dangers. When it does, it gives verbal warnings and tells the driver what 
to do – saying things like ‘Obstacle ahead! Swerve LEFT!’ However, due to an 
electrical wiring problem, the AI assistant is not available for the next drive. 
The next day, Alex is driving down a road. Alex knows that he drives alone – without 
an AI assistant. There is a STOP sign, but it is foggy, and the visibility is very bad. Alex 
decides to follow his instincts and brakes. Nevertheless, Alex crashes into another car 
that had priority at that crossing.
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Condition: inactive, sensory AI adviser, negative outcome 
Alex is driving a brand-new car. It is equipped with an expert-level sensory driving 
assistant powered by artificial intelligence (AI). The sensory AI assistant monitors the 
space around the car with a 360-degrees radar and identifies possible dangers. When 
it does, it gives tactile warnings and tells the driver what to do by vibrating the steer-
ing wheel, on either the left or the right, to indicate which side to swerve. However, 
due to an electrical wiring problem, the AI assistant is not available for the next drive. 
The next day, Alex is driving down a road. Alex knows that he drives alone – without 
an AI assistant. There is a STOP sign, but it is foggy, and the visibility is very bad. Alex 
decides to follow his instincts and brakes. Nevertheless, Alex crashes into another car 
that had priority at that crossing.

Measurements
Blame/Praise Alex deserves [blame for the praise for preventing an] accident. The [sen-
sory linguistic] AI assistant deserves [blame praise] for the accident.

Responsibility Alex is responsible for (avoiding an the) accident. The [sensory lin-
guistic] AI assistant is responsible for (avoiding an the) accident.

Causal Responsibility Alex [caused the prevented an] accident. The [sensory lin-
guistic]  AI assistant [caused the prevented an] accident.

Counterfactual Capacity Alex had the capacity to [cause an avoid the] accident. 
The [sensory linguistic] AI assistant had the capacity to [cause an avoid the] accident.

Toolness The [sensory linguistic] AI assistant is a tool.

A.10 Supplementary for Follow-up Experiment

Material

Condition: active tool, negative outcome 
Alex is driving a brand-new car. It is equipped with state-of-the-art fog 
lights. The fog lights are extremely bright and enable Alex to see through 
any potential fog. The lights are in great condition and work very well. 
One day, Alex is driving down a road. There is a STOP sign, but it is foggy, and the 
visibility is very bad. The fog lights highlight the outline of an approaching car. Alex 
sees the car’s outline and decides to brake. Nevertheless, Alex crashes into the car that 
had priority at that crossing.

Condition: inactive tool, negative outcome 
Alex is driving a brand-new car. It is equipped with state-of-the-art fog lights. The fog 
lights are extremely bright and enable Alex to see through any potential fog. However, 
due to an electrical wiring problem, the fog lights are not available for the next drive. 
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One day, Alex is driving down a road. Alex knows that he is driving without any fog 
lights. There is a STOP sign, but it is foggy, and the visibility is very bad. Alex decides 
to follow his instincts and brakes. Nevertheless, Alex crashes into another car that had 
priority at that crossing.

Measurements
Blame Alex deserves blame for the accident. The fog lights deserve blame for the 
accident.

Responsibility Alex is responsible for the accident. The fog lights are responsible 
for the accident.

Causal Responsibility Alex caused the accident. The fog lights caused the accident.
Toolness The fog lights are a tool.
Counterfactual Capacity Alex had the capacity to avoid the accident.
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lichen Nutzer, besonders in den Bereichen der sozialen Interaktion, Ethik 
und sensorischen Augmentation.

Artifi cial Intelligence (AI) profoundly affects how people communicate, work, 
and perceive the world. While autonomous AI systems are the focal point 
in societal and academic discussions, advisory AI systems, which infl uen-
ce human decisions but don‘t undertake independent actions, often remain 
unexplored. Examples range from automated purchase recommendations to 
medical diagnoses. This dissertation seeks to understand what advisory AI 
systems truly are. Are they capable of autonomous, human-like action? Or 
can they be reduced to inert tools? And what happens when advisory AI sys-
tems are closely linked with human perception, especially through Augmen-
ted Reality and sensory augmentation? Does their ontological status change? 
This dissertation concludes that, regardless of their implementation, advisory 
AI systems occupy an ontological status between tools and humans. They are 
more than just tools but less than humans.
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