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II. Introduction 
 

1. Childhood obesity 

1.1  Background and prevalence  

Childhood overweight or obesity has increased drastically (1, 2). Childhood obesity affects nearly 108 

million children (<20 years) worldwide (3). Between 1975 and 2016, there was a global rise in age adjusted 

mean body mass index (BMI) of 0.32 kg/m² per decade for girls and 0.40 kg/m² per decade for boys, leading 

to an increased prevalence of obesity in childhood (5 to 19 years) in both sexes (girls: 5.6%; boys: 7.8%) 

(4). At present, up to 46% of children between 5 and 17 years of age are overweight or obese in the USA 

(defined as BMI ≥85th percentile) during the coronavirus disease pandemic in year 2020 (5). In Germany, 

results from the German Health Interview and Examination Survey for Children and Adolescents (KiGGS 

Wave 2, 2014 to 2017) indicated that 15.4% of children between ages 3 and 17 years are overweight or 

obese (defined as BMI >90th percentile) (2). Although there are no representative data relating to BMI 

changes in German children after coronavirus disease pandemic, a regional study has shown an increase 

in BMI gain in children aged 1 to 18 years (6).  

There is now clear evidence showing that many of these children with obesity are likely to become obese 

adults (7). A simulation study on 41,567 American children aged 2 to 19 years found that at 2 years of age, 

children with severe obesity (defined as BMI ≥120% of the 95th percentile by the Center for Disease Control 

and Prevention  (8)) have a 4-in-5 chance of being obese by the age of 35 years (7). This study 

demonstrated that obesity in the initial years of life was related to a persistent persistent risk of adult obesity 

and highlights the importance of promoting a healthy weight development throughout childhood (7). 

Evidence from Germany, which is based on more than 51,000 children aged 0 to 14 years, has also shown 

that rapid versus stable BMI gains between 2 and 6 years was associated with a 40% higher risk of 

overweight or obesity in adolescence (9). Even prior to age 2 years, accelerated BMI growth in the first 

years has been found to quadruple the risk of childhood obesity, as recently shown in a meta-analysis of 

17 studies (10). Therefore, higher deviations in BMI growth in the early postnatal life could have long-term 

influence on the development of adiposity later. 

1.2 Physiological weight development in early life  

Growth is a multifaceted physiological process which includes modifications in body proportions and 

composition encompassing both (i) an increase in cell number and size and (ii) programmed cell death (11). 

Growth patterns in early life including fetal life and infancy (birth to age 2 years) is linked to later health in 

both children and young adults (12, 13).  

Birth weight can be used to classify fetal growth according to gestational age into small-for-gestational-age 

birth weight (SGA, <10th percentile), average-for-gestational-age birth weight (AGA, ≥10th to ≤90th 

percentile), and large-for-gestational-age birth weight (LGA, >90th percentile) (14). Data from the German 

perinatal survey of 2007–2011 on more than 3.1 million children from all 16 states of Germany resulted in 

updated percentile values to classify birth weight adjusted for gestational age and sex in German children 

(15).  



10 
 

The first 2 years after birth is a phase of rapid BMI growth (16) and is critical for the development of obesity 

later (10). Typically, rapid BMI growth in infants is a change of more than 0.67 standard deviation (SD) in 

weight-for-age z-scores (WAZ) from birth to age 2 years (17) and may be clinically interpreted as upward 

centile crossing through at least one of the centile bands (18, 19). Infants with a high rapid weight gain 

(WAZ >0.67 SD) during this period have an almost 4-fold higher odds of later overweight (10).  

After the physiological increases in BMI growth (presumed to represent an increase in cell size) during 

infancy (birth to age 2 years), there is a decline in growth (presumed to represent a decrease in cell size) 

until the BMI of the child reaches the lowest point in the BMI growth curve, known as “nadir” (20). The age 

corresponding to the nadir can be considered as a critical point for developing adiposity (20). Adiposity 

rebound, which is a typical physiological process, is the second rise in BMI curve (21). This second rise 

after the “nadir” is postulated to correspond to an increase in the number of fat cells (21). Data from the 

KiGGS study, which comprised 17,641 German children and adolescents between  0 and 17 years of age, 

have shown that adiposity rebound occurs at approximately age 6 years among German boys and girls 

(22). In children at risk of overweight, such as those of mothers with pre-conception obesity, adiposity 

rebound was observed at an earlier age of around 5 years (23).  

1.3 Classification of weight status in young children 

Since BMI varies by age, BMI values for children are compared with age- and sex-specific reference values. 

A child’s BMI is frequently transformed into a z-score or categorized by percentiles based on the underlying 

population distribution of BMI-for-age (24). 

A z-score is the distance from the median in units of SD. It can be used to indicate where a child’s 

anthropometric measurement such as BMI falls in the reference population relative to other children of the 

same age and sex. For an individual, a z-score is calculated as the difference between the specific child’s 

value and the reference population’s median value for the same age and sex, divided by the SD of the 

reference population (25). A positive z-score value indicates that the value is greater than the median, 

whereas a negative z-score indicates that the value is less than the median (26). In a normal distribution, 

z-scores and percentiles are equivalent indicating that a percentile can be converted to a z-score and vice 

versa (24). However, the use of cut-points based on rounded percentiles as an alternative to exact z-scores 

may misclassify children’s BMI growth status (27). Therefore, it is recommended to use z-scores to evaluate 

a child’s growth status (27).   

The assessment of overweight in children relies on plotting BMI on a standard BMI growth chart and using 

a cut-off point for increased age and sex-specific BMI (26). The World Health Organization (WHO) 

recommends that particularly all infants and young children aged ≤5 years should have both weight and 

length/height measured, in order to evaluate their growth status (28). Therefore, the WHO conducted a 

population-based study (The Multicentre Growth Reference Study [MGRS] Study) from July 1997 to 

December 2003 of 8,440 healthy, fully breastfed children from USA, Oman, Norway, Brazil, Ghana, and 

India (29). The study objective was to develop a ‘novel approach’ of classifying the nutritional status of 

children from birth to age 5 years based on the degrees of deviation from normality (30). Figure 1 shows 

the WHO cut-offs of BMI-for-age z-score cut-offs on a normally distributed population of children to define 

the growth status based on age- and sex-standardized data provided by the WHO (31, 32).  
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While the WHO Child Growth Standards are widely used as international standards to classify the nutritional 

status of children, other criteria - both international (33) and country-specific (22, 34, 35) - are also available 

(36). In Germany, the KiGGS study provides BMI percentiles for weight assessment in children (22) and 

defines overweight as BMI >90th percentile and obesity as BMI >97th percentile for children aged between 

3 and 18 years (2).  

 

Figure 1: The WHO cut-offs for BMI z-scores in children between birth and 19 years. 
BMI, body mass index. WHO, World Health Organization. Population-based age- and sex-specific BMI 
tables to calculate BMI z-scores for an individual child are provided on the WHO website and can be 
assessed using the link in the references (31, 32). Source: Figure adapted and modified from Ward 1999 
(37), and shown BMI z-scores categories are based on cut-offs provided by the WHO (38).  

 

Plotting of consecutive BMI values on a BMI growth chart provides a visual display vital for clinical use and 

depicts a track of BMI growth up to a particular age (33). When expressed as centiles on BMI growth charts, 

average centile indicates average velocity, while upper or lower centile crossing indicates faster or slower 

than average velocity (33). Given the increasing prevalence of childhood overweight, it is becoming more 

important to characterize trajectories of BMI development for surveillance, etiology, and clinical practice 

(39). The evaluation of BMI growth trajectories in young children could provide a more precise identification 

of those at risk and could help to predict future health outcomes (39). 
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1.4 Long-term consequences of high weight status in infants and young children 

A high birth weight and childhood overweight can have several implications on health later (40, 41). An 

overview is provided in Figure 2. 

 
 
Figure 2: Consequences of prenatal and postnatal excessive BMI growth on later health.  
Yellow boxes indicate exposures and red boxes indicate health outcomes in childhood or adulthood. AGA, 
average-for-gestational-age; CVD, cardiovascular disease; LGA, large-for-gestational-age; SES, 
socioeconomic status; SGA, small-for-gestational-age; T1D, type 1 diabetes; T2D, type 2 diabetes. Source: 
The figure presented here is self-made and based on data from meta-analyses from Umer et al, 2017 (42), 
Sharma et al, 2019 (43), Bellou et al, 2018 (44), Belbasis et al, 2016 (45), and Llewellyn et al, 2015 (46).  
 

1.4.1 Consequences of LGA birth weight 

A recent “umbrella” review of 39 systematic reviews and meta-analyses exploring the association of birth 

weight with 78 diverse outcomes showed that a high birth weight was suggestive of wheezing disorders 

and acute lower respiratory tract infections in childhood (45). The authors of this review also indicated that 

a high weight at birth was related to overweight or obesity and impaired glucose metabolism (type 1 

diabetes [T1D], type 2 diabetes [T2D]) in adulthood (45). Evidence from other meta-analyses also shows 

that a high birth weight is strongly related to coronary heart disease and cancer in adulthood (43-45). 

1.4.2 Consequences of rapid infancy weight gain 

A recent systematic review which included 17 studies highlighted that rapid weight gain during infancy (birth 

until age 2 years) was related to a 3.7-fold increased odds of overweight at later ages (2 to 47 years) (10). 

Supporting the results of this systematic review, evidence from the Taiwan Birth Cohort study of 24,200 

children demonstrated that regardless of the timing of weight gain between birth and two years of age, rapid 

weight gain increased the odds of overweight and obesity at ages 3, 5, and 8 years (47). Particularly, during 

the first 6 months after birth, rapid weight gain may predispose the young child to become obese and 

experience unfavorable cardiometabolic health in adolescence and early adulthood (18, 48, 49). Evidence 

from studies evaluating longitudinal BMI development across the first 18 years of life showed that the 
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“change in path” of BMI development occurred within the first 4 years and that the highest BMI growth 

trajectory was associated with adverse cardiometabolic outcomes at age 18 years (50). However, results 

of studies that closely investigated BMI development between birth and age 4 years found that distinct 

deviations from the physiological BMI growth trajectories become evident by 6 months of age (51-53). One 

study showed that rapid growth from birth to age 3 months was related to BMI increments until age 4 years 

(52). However, how patterns of BMI growth in early life periods contribute to preschool overweight in 

offspring of mothers with pre-conception obesity has not been evaluated. Such data could provide a starting 

point for predictive analyses of longitudinal BMI growth trajectories toward overweight manifestation, 

particularly in high-risk offspring exposed to gestational obesity.  

1.4.3 Consequences of childhood overweight 

Obesity in childhood has been shown to be linked with depression, anxiety, and low self-esteem (54). Data 

from a recent study of more than 12,000 American adults demonstrated that those who were overweight or 

obese as children were less likely of having a more advanced degree than those who had healthy weight 

in childhood (55). Academic achievements are very important because of the relation between educational 

accomplishment and employment prospects (55), subsequent socioeconomic status (56), and later health 

(56). A recent study on nearly 40,000 American youths aged 11 to 17 years showed that being obese and 

severely obese was related to 92% and 151% higher medical costs relative to being normal weight, 

respectively (57). This study also highlighted that medical expenses increase substantially with BMI and 

that obesity leads to high costs in all key categories of medical care such as costs of doctor visits, hospital 

care, and medication (57).  

In addition, children with overweight or obesity are more susceptible to later diseases in adulthood including 

obesity (58), insulin resistance, and cardiovascular disease (46, 58). Evidence from a large population study 

of 2.3 million Israeli youth (16 and 19 years of age) showed that obesity during adolescent life contributed 

substantially to an increased risk of cardiovascular mortality in adulthood (hazards ratio [HR] 4.89, 95% 

confidence interval [CI] 3.91–6.12) (59). A dose-response relationship was also evident between increasing 

BMI percentile during adolescence and all-cause mortality in adulthood (59). 

1.5 Risk factors of childhood overweight  

The causes of obesity in children are multifactorial (60). A comprehensive review which included 282 

prospective studies identified several prenatal and postnatal factors associated with childhood obesity (61). 

For instance, maternal obesity (62, 63), excessive gestational weight gain (GWG) (62, 64), GDM (65), early-

life feeding (66, 67), and early BMI growth trajectories (7) may have implications on weight status 

throughout childhood. Figure 3 presents relevant factors associated with childhood overweight that are 

potentially modifiable. Only factors that are both in the focus of current scientific research related to 

childhood overweight and can be potentially modified were selected. Evidence of associations in Figure 3 

is broad, and several studies have used either continuous or categorical outcomes. In the footnote of Figure 

3, examples of associations are listed. 
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Figure 3: Relevant prenatal and postnatal potentially modifiable factors associated with childhood 
overweight and obesity.  
Selected relevant factors that are in the focus of current scientific research on childhood overweight and 
can be potentially modified are shown. Orange boxes indicate pre- or perinatal factors, green boxes indicate 
postnatal factors, red boxes indicate main exposure or outcome, red lines indicate direct associations 
between maternal obesity and the relevant factor, black lines indicate indirect associations between 
maternal obesity and the relevant factor, and dashed line indicates increased prevalence/proportion of 
factor among mothers with obesity. Source: Figure adapted and modified from Josey et al. 2019 (68). The 
original figure from Josey et al published in BMC Public Health is licensed under the Creative Commons 
Attribution 4.0 International License (69) which “permits unrestricted use, distribution, modification, and 
reproduction in any medium”. Associations from literature: 
1. Maternal preconception obesity  childhood overweight and obesity (62, 63) 
2. Maternal preconception obesity  increased prevalence of smoking during pregnancy (70) 
3. Maternal preconception obesity  excessive gestational weight gain (71) 
4. Maternal preconception obesity  gestational diabetes (72) 
5. Maternal preconception obesity  high offspring birth weight (73) 
6. Maternal preconception obesity  lack of breastfeeding (74) 
7. Gestational diabetes  childhood overweight and obesity (65) 
8. Gestational diabetes  lower gestational weight gain (75, 76) 
9. Excessive gestational weight gain  childhood overweight and obesity (62) 
10. High gestational weight gain  high offspring birth weight (77) 
11. Low socioeconomic status  low quality of maternal diet (78) and low level of physical activity (79) 
12. Low socioeconomic status: low maternal/parental education  low quality of diet (80) and low level of 

physical activity (81) 
13. Low socioeconomic status  maternal preconception obesity (70) 
14. Low socioeconomic status  smoking during pregnancy (82) 
15. Low socioeconomic status  childhood obesity (83) 
16. Low socioeconomic status  lack of breastfeeding (84) 
17. Low quality of maternal diet  maternal preconception obesity (85) 
18. Low quality of maternal diet: high fat content in maternal diet  excessive gestational weight gain (86) 
19. Smoking during pregnancy  childhood overweight (87) 
20. Smoking during pregnancy  low offspring birth weight (88) 
21. High maternal age  multiparity (89) 
22. High maternal age  maternal preconception obesity (90)  
23. Multiparity  maternal preconception obesity (91)  
24. Low/high birth weight  childhood obesity (92) 
25. Lack of breastfeeding  childhood overweight and obesity (66, 93) 
26. Low quality of child diet and low level of physical activity  childhood obesity (94) 
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2. Developmental programming  

Over the past 3 decades, emerging emphasis has been given to the effect of alterations in the in-utero 

environment on the origins of non-communicable diseases (NCD) in adulthood (95-97). Initially termed as 

the “fetal origins hypothesis” or “fetal programming”, this concept was renamed to “developmental origins 

of health and disease” (DOHAD) to better reflect periods of both prenatal and postnatal life (97). Following 

the original work of Barker and Osmond more than 30 years ago who showed that an exposure to poor 

living standards in early childhood was related to heart diseases during adulthood (98), a number of studies 

were conducted to link early conditioning mechanisms and NCD in adulthood (95, 97). Intrauterine insults 

during the crucial periods of BMI growth and development could have long-lasting effects on the function 

and structure of organs and increase the susceptibility to cardiometabolic diseases in the future (99). 

Furthermore, there is evidence that the adverse impact of such functional and structural changes can be 

transmitted to future generations suggesting that there is a risk of intergenerational transmission of disease 

(100).  

Based on the identified correlations between low birth weight and T2D development (101, 102), it was 

speculated that intrauterine exposure to low-quality maternal nutrition could lead to permanent 

glucometabolic alterations, which increases the risk of cardiometabolic disease later (101). More recent 

studies have also shown that fetuses who receive excessive nutrient supply during pregnancy are likely to 

have high birth weight (103), thereby contributing to a long-term risk of NCD (104). During the postnatal 

life, offspring experiencing an affluent postnatal environment may have a high BMI growth velocity leading 

to an increased susceptibility to obesity and metabolic syndrome (105). Figure 4 shows the effect of 

gestational programming on the origins and longitudinal development of cardiometabolic disease in 

offspring.  

 

 

Figure 4: Gestational programming and longitudinal development of cardiometabolic diseases in 
offspring.  
Source: Figure adapted and modified from Desai et al. 2015 (105). Permission for the reproduction of this 
figure was given by Springer Nature (Macmillan Publishers Limited). 
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3. Maternal pre-conception obesity 

3.1 Background and prevalence 

The definition of obesity refers to “abnormal or excessive fat accumulation that may impair health” (106). 

Obesity is measured using BMI, which is currently the best available anthropometric estimate of fatness 

(107) and is expressed as weight-for-height by applying the following formula: 

𝐵𝑀𝐼 (𝑘𝑔/𝑚 ) =
𝑤𝑒𝑖𝑔ℎ𝑡 (𝑘𝑔)

ℎ𝑒𝑖𝑔ℎ𝑡 (𝑚)
  

 

The WHO provides BMI categories to measure weight status in adults (108) (Table 1): 

Table 1: Body mass index categories for adults 
BMI (kg/m2) Weight Status 
<18.5  Underweight 
18.5-24.9  Normal weight 
25.0-29.9 Overweight 
30.0-34.9  Obesity Class I 
35.0-39.9 Obesity Class II 
≥40.0 Obesity Class III 

 

Obesity in pregnancy is of substantial importance to public health since it affects a vast majority of women 

today. In 2014, the NCD Risk Factor Collaboration which included an international population of 9.3 million 

women (≥18 years) reported an incidence of 14.9% for obesity in this population (109). In the US alone, 

overweight and obesity affects 2-in-3 women of fertile age (110) and nearly 40% of these are obese (110). 

The Euro-Peristat Network which examines health data of pregnant women and their newborn offspring 

from 29 European countries demonstrated that the prevalence of maternal obesity is up to 25% in Europe 

(111). Results from the nationally representative German Health Interview and Examination Survey for 

Adults (DEGS) indicate that 38.1% of German women of reproductive age are overweight or obese (obese: 

15.4%) (112). Further, the “Institut für Qualitätssicherung und Transparenz im Gesundheitswesen (IQTiG)” 

which conducts analysis of hospital data in Germany reported that in 2020, 39.4% of pregnant women were 

overweight or obese (obesity: 15.5%) (113).  

Recent demographic forecasts suggest that given the current trends in obesity, nearly 1 in 2 women aged 

18 to 39 years will be obese by the year 2030 in the United States (114). Similar projections have been 

made for European women predicting that almost 1 in 5 women in Germany will be obese by the year 2025 

(115).  

3.2 Effect of maternal obesity on childhood overweight and obesity 

A large number of studies have concluded that maternal pre-conception obesity is a strong trigger factor of 

childhood obesity (63, 73, 116). An individual participant data (IPD) meta-analysis of 162,129 mothers and 

their children demonstrated that pre-gestational obesity increased the risk of overweight or obesity 

throughout childhood by 2.43 to 4.47-folds (62). This IPD found that the risks of childhood overweight or 
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obesity increased progressively with higher grades of maternal obesity (class I, class II, and class III 

obesity) (62). The authors suggested that maternal obesity may have a long-lasting impact on offspring fat 

development (62). Evidence from cohort studies has also found a 4.25-fold (95% CI 2.86 to 6.32) to 5.02-

fold (95% CI 2.97 to 8.45) increase in risk of obesity in the 4-year-old (117) and of overweight or obesity in 

the 7-year-old (118) offspring of mothers with pre-conception obesity, respectively.  

Another study evaluated the effect of the distinct and combined exposure of maternal and paternal pre-

gravid BMI on weight status of 4,871 6-year-old offspring (119). This study found that offspring exposed to 

mothers with versus without pre-conception obesity were at a high risk of overweight (OR 3.84; 95% CI 

3.01 to 4.90) and of having an unfavorable cardiometabolic risk score comprising an increased fat mass, 

high blood pressure, and high concentrations of triglycerides and insulin (OR 3.00; 95% CI 2.09 to 4.34). 

By identifying a stronger influence of maternal pre-conception obesity than paternal obesity, this study 

further reinforces the intrauterine origins of unfavorable health later in life (119), similar to other studies 

(120). Particularly, data from an extensive meta-analysis which included 20 randomised controlled trials 

and cohort studies showed that offspring of mothers with pre-pregnancy overweight and obesity had a 31% 

increased body fat percentage between birth and age 11 years in comparison to offspring born of mothers 

who were normal weight at conception (121). 

3.3 Additional prenatal and postnatal risk factors in pregnancies with obesity 

Additional factors emerging from prenatal and postnatal periods in women with preconception obesity could 

further predispose offspring to overweight and might be important targets for developing preventive 

interventions. Figure 5 depicts examples of such associated factors likely to influence long-term BMI growth 

in offspring of mothers with obesity. Potentially modifiable factors that are considered as scientifically 

particularly relevant and have been studied in our research group were extracted from Figure 3 mostly and 

are shown in Figure 5. 

3.3.1 Gestational diabetes  

Diabetes that was not evident prior to pregnancy and is diagnosed only in the second or third trimester of 

gestation is called gestational diabetes (GDM) (122). A recent meta-analysis which included more than 5 

million pregnant women enrolled in 51 studies showed that, irrespective of screening classification 

thresholds, the global prevalence of GDM was 4.4% (95% CI 4.3–4.4%) (123). With regards to the widely 

used diagnostic thresholds of International Association of Diabetes in Pregnancy Study Groups (IADPSG) 

criteria, the pooled GDM prevalence was 10.6% (95% CI 10.5–10.6%) (123). 

Obesity in pregnancy is an independent factor influencing the development of GDM since mothers with 

obesity are up to 6-fold more likely to develop GDM (72). According to the diagnostic definitions used, GDM 

affects up to 30% of women with obesity (124, 125). While pregnancy is a phase of a 40% to 50% reduction 

in insulin sensitivity (126), women with obesity have decreased insulin sensitivity even before pregnancy 

(127) and are therefore more prone to develop GDM.  
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3.3.2 Gestational weight gain  

Despite the availability of GWG recommendations specific to mother’s BMI at conception (128), mothers 

with obesity have an up to 6-fold higher risk of gaining excessive GWG during pregnancy (129). A large 

cohort study of German mothers also found that nearly 2-in-3 women with obesity in pregnancy had 

excessive GWG (130). Numerous studies have reported that excessive GWG is linked to unfavourable birth 

outcomes such as preterm birth, LGA birth weight, SGA birth weight, macrosomia, and caesarean section 

delivery (131, 132). A large IPD meta-analysis of mothers with obesity at conception (n = 162,129 mother-

child pairs) evaluated the additional influence of excessive GWG on offspring overweight and obesity during 

childhood (62). The study showed that the odds of overweight and obesity in offspring were up to 6-fold 

higher when offspring experience a combined exposure to maternal pre-conception obesity and excessive 

GWG. Interestingly, 21.7% to 41.7% of the prevalence of overweight and obesity in children was attributed 

to maternal overweight and obesity, whereas 11.4% to 19.2% could be ascribed to excessive GWG alone. 

In support of this large meta-analysis, previous studies have also recommended that interventions to reduce 

the adverse effects of maternal overnutrition factors including both pre-conception BMI and excessive GWG 

should be initiated even before conception (133, 134).  Pregnant women with obesity have increased levels 

of circulating glucose, lipids, inflammatory cytokines, and insulin resistance which potentially result in 

increased nutrient transport to the fetus (135). This seems to result in steady alterations in metabolism, 

behavior, and appetite regulation in offspring subsequently contributing to overweight, and metabolic and 

behavioral issues in adulthood (135). 

3.3.3 Smoking during pregnancy  

Smoking of women during pregnancy increases the offsprings’ risk of obesity (136, 137). A large IPD meta-

analysis consisting of 238,340 mother–child-pairs has shown that the risk of offspring overweight or obesity 

increases linearly by the number of cigarettes smoked by the mother during gestation, with the highest risk 

between ages 5 and 8 years (87). Even though the proportion of mothers who smoke during gestation rises 

with an increasing maternal pre-conception BMI (72), this meta-analysis aimed at assessing smoking 

effects regardless of maternal BMI at conception (87). Previous studies have also shown that prenatal 

smoking is related to a higher chance of developing a rapid-growth trajectory during preschool ages in 

offspring (138) and that infants of mothers who smoked during gestation showed higher BMI growth velocity 

until age 2 years in comparison to offspring of non-smoking mothers (139). 

An intrauterine exposure to nicotine could result in an unphysiological proliferation of adipocytes and 

persistent alterations in central autonomic pathways which lead to stable and negative consequences for 

the control of food intake and energy expenditure in the hypothalamus (140). Interestingly, only one recent 

study assessed the impact of smoking behavior of pregnant women with obesity on offspring birth weight 

but lacked long-term BMI growth assessment (141). Nevertheless, this study, which included 3,241 infants 

born at term from the PIAMA birth cohort, showed that the simultaneous effects of prenatal smoking and 

maternal pre-gravid obesity on birth weight in offspring seemed to be nullified (141). It could be speculated 

that the effect of smoking during pregnancy on later offspring overweight may take time to emerge since 

women who smoked during gestation are likely to restart smoking in the postpartum phase and hence 
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abstain from breastfeeding more often (142, 143), which might contribute to offspring overweight 

development (66). Further, not only are the nicotine levels 3 times higher in breast milk of smoking mothers 

than those in plasma, but there are also reductions in breast milk volumes, the duration of lactation periods, 

nutritional properties of breast milk, and infants’ response to breast feeding and to breast milk (142). 

Together, these postnatal effects of maternal smoking might additionally impact offspring long-term weight 

development.  

 

Figure 5: Relevant prenatal and postnatal risk factors of childhood overweight in mothers with 
obesity from conception to early postpartum life.  
Factors shown are extracted from Figure 3, considered as scientifically particularly relevant and in the 
focus of our research group and can be potentially modified. CI, confidence interval; RR, relative risk; OR, 
odds ratio. Source: The figure presented here is self- made based on literature and shows relative risks, 
odds ratios, or prevalences of the relevant factors in mothers exposed to obesity in pregnancy:  

1. Maternal preconception obesity  gestational diabetes (72) 
2. Maternal preconception obesity  excessive gestational weight gain (129) 
3. Maternal preconception obesity  increased prevalence of smoking during pregnancy (70) 
4. Maternal preconception obesity  late-pregnancy dysglycemia (144) 
5. Maternal preconception obesity offspring LGA birth weight (73) 
6. Maternal preconception obesity lack of any breastfeeding (74) 

 

3.3.4 Late-pregnancy dysglycemia  

Data from our longitudinal Programming of Enhanced Adiposity Risk in CHildhood - Early Screening 

(PEACHES) mother-child cohort have shown that despite negative GDM testing at the end of the second 

trimenon, approximately one-third of women with obesity developed late-pregnancy dysglycemia (maternal 

glycated hemoglobin [HbA1c] ≥5.7% at delivery) (144, 145). The high HbA1c levels measured at delivery 

indicate development of hyperglycemia in the third trimenon, hypothesized to be due to the lack of close 

monitoring of women with obesity previously tested negative for GDM at the end of the second trimenon. 

In previous work of our research group, late-pregnancy dysglycemia in women with obesity and without 

GDM contributed to a higher chance of having an LGA birth weight, a higher concentration of cord-blood 

C-peptide, and increased maternal fasting glucose levels 3 years postpartum. Nonetheless, whether late-
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pregnancy dysglycemia is related to adverse longitudinal BMI growth in offspring of mothers with obesity 

and without GDM remained unclear. 

3.3.5 High birth weight  

Birth weight is an indicator of prenatal developmental conditions and is linked with type 2 diabetes, 

hypertension, brain tumors, and breast cancer (146, 147). Children with an increased birth weight (>4000g) 

or those with an LGA birth weight are at a 66% (147) and 51% (148) higher risk of overweight and obesity 

in adulthood, respectively. Similarly, children born with an SGA birth weight may experience very rapid 

catch-up growth leading to a persistent risk of overweight until age 5 years (149). However, LGA birth 

weight occurs more frequently than SGA birth weight in children of mothers with obesity (LGA birth weight: 

27.3% versus SGA birth weight: 4%) (150). Depending on the grade of maternal pre-gravid obesity, the risk 

of LGA birth weight ranges from 1.74 to 2.32-fold (72). Insulin resistance in pregnant women with obesity 

leads to higher transplacental transfer of glucose (hyperinsulinemia) stimulating an increase in fetal growth 

(151). Pregnant women with obesity also show a high concentration of blood triglycerides which are 

transported to the fetus, thus delivering higher amounts of energy to the fetus (152, 153). These 

disturbances are potential mechanisms underlying the manifestation of macrosomia and LGA birth weight 

(151). Animal studies have shown that there is an increase in the protein expression of specific placental 

nutrient transporter isoforms, including glucose transporter 1 and 3 (GLUT1 and GLUT3), sodium-coupled 

neutral amino acid transporter 2 (SNAT2), and large neutral amino acid transporter 1 (LAT1) which may 

influence fetal overgrowth in mothers with obesity (154). 

3.3.6 Lack of full breastfeeding  

Full breastfeeding comprises of both exclusive and predominant breastfeeding (155). An infant is 

exclusively breastfed when he/she is fed exclusively with breastmilk (156, 157). On the other hand, 

predominant breastfeeding means that the infant's key source of nourishment is breast milk and that the 

infant may also get water, water-based drinks, fruit juice, drops, or syrups (157). The major source of 

nourishment for a formula-fed infant is any type of commercially-produced infant formula but not breastmilk 

(156). 

Breastfed and formula-fed infants have varying BMI growth trajectories which may modulate the risk of 

obesity in the future (66, 138, 158). Offspring of women with obesity are at a much greater risk of overweight 

development throughout the life course due to several unfavourable factors which include lower initiation 

rates and breastfeeding duration in mothers with obesity compared to women who are normal weight at 

conception (159). 

Analysis of data from 4 prospective cohort studies/trials revealed that, following prenatal programming of 

adipose tissue, the first months of life (first 3 months of full breastfeeding) constitute an important growth 

phase for the postnatal development of adipose tissue (138, 160). Supporting this finding, a recent study 

showed that compared to infants who were not breastfed at all, a longer duration of any breastfeeding (6 

to 12 months or >12 months) in infants was related to a better lipid profile throughout childhood (161). It is 

speculated that the beneficial composition of breast milk (162) may support healthy adipose tissue 

development (163). In contrast, the high protein intake from formula milk could promote rapid BMI growth 
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acceleration leading to an earlier adiposity rebound in children (164). On the other hand, infants with lower 

BMI growth have lower energy requirements (165) and might be satisfied with breastfeeding for a longer 

period (166, 167).  

Further, a longer duration of breastfeeding during infancy is also crucial for later weight status in offspring. 

A recent meta-analysis confirmed results of previous systematic reviews (168, 169) by showing a dose-

response relationship between ever breastfeeding (versus never breastfeeding) and risk of childhood 

obesity (ages 6 months to 14 years) (93). Interestingly, each additional month of any breastfeeding reduces 

the risk of childhood obesity by 4% (170).  
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4. Research gap and aims  

Research gaps and aims are published in my research papers (Gomes 2018 and Gomes 2022) and are 

here summarized. For details, please see papers included in Section V and Section VI in this thesis 

document.  

Maternal pre-conception obesity is one of the strongest factors of overweight and obesity in the offspring 

(171). However, data are lacking on (i) patterns of early BMI growth of offspring from pregnancies of 

mothers with obesity and how these patterns differ compared to those of offspring from pregnancies of 

mothers without obesity and on (ii) underlying factors which trigger these differences. Elucidating the 

earliest deviation in BMI growth patterns eventually leading to preschool overweight could help to identify 

crucial time points for early intervention after birth. Furthermore, pinpointing risk factors that influence 

“higher-than-normal BMI growth” could aid in developing a risk score and prediction system for children 

who are at high risk after exposure to gestational obesity.  

Regarding exposures and potential risk factors relating to prenatal life, previous data of our research group 

have shown that dysglycemia towards the end of gestation (maternal HbA1c ≥5.7% at delivery) in 

pregnancies of mothers with obesity, particularly in those women who had a negative GDM test at the end 

of the second trimester, could induce adverse birth outcomes (144, 145). These adverse birth outcomes 

included an increased risk of a high birth weight (LGA) and higher concentrations of cord blood C-peptide 

compared to newborns of women with obesity who also were tested negative for GDM and did not have  

dysglycemia at the end of gestation (144). Given its adverse influence on outcomes at birth in babies of 

mothers with obesity and a negative GDM test, we hypothesized that the presence of late-pregnancy 

dysglycemia might also pose a long-term risk for children of women with obesity to become overweight in 

the future. Specifically, we hypothesized that late-pregnancy dysglycemia could be a previously unidentified 

but important exposure factor of excessive BMI growth emerging from the prenatal phase in offspring of 

mothers with obesity.  

Besides prenatal factors, exposures emerging from the first postnatal years in life could also be crucial for 

future weight status. The importance of postnatal life is magnified because mothers with obesity are likely 

to experience more adverse risk factors compared to their normal weight counterparts. Furthermore, since 

one or more risk factors already exist during pregnancy and in the first months after birth in mothers with 

obesity (such as excessive GWG and/or lack of breastfeeding), recognition of such risks could help to 

identify “high-risk” offspring as soon as possible. However, current tools to identify manifest overweight in 

offspring are inadequate as they have not focused on children exposed to gestational obesity and have not 

addressed the very early deviations in BMI gain in the track leading to overweight. Therefore, we aimed to 

develop a systematic approach for quantifying risk early in life and segregation of offspring who are 

particularly susceptible to gaining more weight than expected. A prevention strategy comprising sequential 

risk assessments was hypothesized as being helpful to enable monitoring of BMI growth, particularly in 

“high-risk” children, from age 3 months onwards.  
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Overall aim 

To understand the role and predictive capability of both prenatal and postnatal influences for the 

development of concepts to prevent early excessive weight gain patterns in “high-risk” children, particularly 

those exposed to gestational obesity. 

Specific aims 

1. To study the role of late-pregnancy dysglycemia (HbA1c ≥5.7% at delivery) as a prenatal risk factor on 

longitudinal weight development in children of women with obesity who were tested negative for GDM, 

aiming at improving third-trimester care of pregnant mothers with obesity (172). 

2. To evaluate and compare “higher-than-normal” patterns of BMI growth in children of women with obesity 

compared to those of women without pre-conception obesity and the contribution of underlying prenatal 

and postnatal risk factors (173).  

3. To assess the potential of such early-life risk factors as predictors of excessive weight gain in children of 

women with obesity compared to those of women without pre-conception obesity (173). 

4. To develop a sequential risk prediction system for utilization in the well-child care setting to implement 

prevention measures in early life (173). 
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5. Methods 

This section contains an overview of the methods. For details, please see my published papers and relevant 

supplements (Gomes 2018 and Gomes 2022) included in Section V and Section VI in this thesis document.  

For work included in the present thesis, we used data from the PEACHES cohort study. This unique 

prospective PEACHES study is a cohort comprising a large number of mothers with obesity at conception 

(and normal weight controls) and their children (n = 1,707) and contains comprehensive data on prenatal 

and postnatal risk factors and various offspring and maternal outcomes including repeated BMI data in 

offspring.  

For analysis of data in the present thesis, a total of 1,671 mother-child pairs were used following exclusion 

of mothers who gave birth in the year 2016/2017 (n = 20), had a second child enrolled in the PEACHES 

study (n = 15), and had a GDM test in late pregnancy (>32 weeks 6 days of gestation) (n = 1). Prenatal and 

postnatal risk factors included e.g. maternal pre-pregnancy BMI, smoking in pregnancy, GDM, total GWG, 

late-pregnancy dysglycemia (maternal HbA1c ≥5.7% at delivery), SES at birth, and birth weight categories 

for gestational age and sex (172, 173). Offspring’s measurements of height and weight at several ages 

including at birth, 1, 3, 6, 12, 24, 36, 48, and 60 months were used to calculate BMI which were compared 

to the WHO Growth Standards using BMI z-scores. 

Robust statistical procedures were used to achieve the aims of this thesis. Offspring BMI growth outcomes 

included weight status at birth, BMI z-score change per year from birth until age 4 years, BMI growth clusters 

from birth to 5 years of age, “higher-than-normal BMI growth” in early (between age 6 months and 2 years) 

and late (between age 3 and 5 years) phases of growth, and manifest overweight at age 4 and/or 5 years 

(173). We compared prenatal and postnatal characteristics between maternal or offspring groups by use of 

Student’s t test or 1-way analysis of variance and χ2 test as suitable (172, 173). We conducted multivariable 

linear, log-binomial regression, and/or logistic regressions to evaluate the associations between various 

pre- and/or postnatal influences and offspring outcomes related to BMI growth. In order to authenticate that 

maternal weight data collected at the first antenatal visit could approximate the mother’s weight data at 

conception, we evaluated the agreement between measured weight and self-reported pre-conception 

weight collected at the first antenatal visit using the Bland-Altman method and the Pearson product-moment 

correlation (173). In the analyses, results were compared to the group of glucometabolically healthy women 

with obesity and/or to the group of mothers with normal weight. Mediation analysis was performed to 

evaluate the role of dysglycemia at the end of  gestation for its contribution to the effect of maternal pre-

pregnancy obesity on BMI z-scores in the 4-year-old offspring (172).  

The capability of prenatal and postnatal influences to predict a “higher-than-normal BMI growth” pattern in 

young children at three pediatric visits (ages 3 months, 1 year, and 2 years) was studied with the help of 

penalized logistic regression in cooperation with Prof. Mansmann, IBE, LMU München. Models for 

prediction were validated in an independent cohort of large size (n = 11,730), the PErinatal Prevention of 

Obesity (PEPO) cohort (64). Detailed information on the statistical procedures are mentioned in the 

respective publications (172, 173).
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6. Results  

A summary of the results is presented here. For detailed results, please see my published papers (Gomes 

2018 and Gomes 2022) included in Section V and Section VI in this thesis document.  

Using the large longitudinal dataset of the PEACHES cohort study, we found that children of women with 

obesity are at risk to develop a “higher-than-normal” pattern of BMI growth already in the first years of life. 

In order to define early-life strategies to prevent the development of such a “higher-than-normal” pattern of 

BMI growth, we pursued research relating to two sensitive phases in life, including (i) the third trimester of 

gestation and (ii) the early months and years of a child’s life. 

In Paper 1 (172), we show that among mothers with preconception obesity and without GDM (n = 448), 

nearly 1-in-3 women developed dysglycemia in late pregnancy as defined by their HbA1c ≥5.7% at delivery 

(n = 135, 30.1%). In children of women with obesity who tested negative for GDM at the end of the second 

trimester, the presence of dysglycemia in late pregnancy was related to adverse birth and long-term 

outcomes. These birth outcomes included in average a higher weight at birth (mean increment 192 g, 95% 

CI 100 to 284) and a higher C-peptide concentration in cord blood (mean increment 0.10 ng/ml, 95% CI 

0.02 to 0.17). Further, long-term outcomes included a higher gain in weight in young children (BMI change 

per year between ages 2 and 4 years: 0.18, 95% CI 0.06 to 0.30) and a higher 4-year BMI z-score (mean 

increment 0.58, 95% CI 0.18 to 0.99). Our results showed that 29% of the effect of pre-gravid obesity in 

mothers who tested negative for GDM on BMI z-score in the 4-year-old offspring was contributed by late-

pregnancy dysglycemia (172).  

In these children’s mothers, dysglycemia in late pregnancy was associated with higher postpartum 

concentrations of HbA1c as well as glucose (both fasting and 1-h post-load) resulting in a 4-fold elevated 

risk of T2DM or prediabetes a few years later. Interestingly, in contrast to offspring of mothers with obesity 

who had received a diagnosis of GDM and were subsequently treated, newborns of women with obesity 

who had a GDM-negative test but developed dysglycemia in late pregnancy (untreated) had an increased 

weight status at birth (mean increment 134 g, 95% CI 28 to 239) and at age 4 years (mean increment 0.52, 

95% CI 0.07 to 0.97) and a marginally increased BMI z-score change per year (mean annual increment 

0.13, 95% CI −0.02 to 0.27) (172).   

The identification of late-pregnancy dysglycemia as a previously undervalued risk factor for a high childhood 

weight status led us to proceed with evaluating the contribution of additional risk factors occurring early in 

life to “higher-than-normal” longitudinal BMI gain in offspring (Paper 2). For this purpose, we conducted 

comprehensive analyses in several steps which resulted in the development of a sequential strategy to 

predict early deviations in BMI gain in the track leading to manifest overweight. First, we identified different 

BMI growth curves in children after exposure to obesity in pregnancy versus those of offspring from 

pregnancies of mothers without obesity. By comparing the uppermost offspring BMI growth curves by the 

presence or absence of maternal preconception obesity, we found that in children of women with pre-

gestational obesity, the pattern of “higher-than-normal BMI growth” was more severe than that in children 

of women without obesity. This pattern in children exposed to obesity in pregnancy was characterized by 

multiple crossings of the upper cut-off value of the BMI z-score for “risk of overweight” of >1 SD (≥5 times) 
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from the age of 6 months until age 5 years. Indeed, in this group of offspring, the presence of maternal 

obesity (versus absence) was related to overweight at ages 4 years (Odds ratio [OR] 7.38; 95% confidence 

interval [CI] 3.68 to 14.81) and 5 years (OR 4.90, 95% CI 2.80 to 8.59) (173).  

After identifying such a sub-population of children at risk who are vulnerable to deviate from healthy BMI 

gain patterns, we evaluated the contribution of well-documented risk associations from prenatal and early-

postnatal life phases. Offspring of women with pre-gravid obesity experienced several obesity-related risk 

factors which contributed to excess BMI growth outcomes compared to only a limited number of factors in 

children not exposed to obesity in pregnancy. Such extra exposures in children of women with obesity 

included e.g. excessive GWG, as defined by the Institute of Medicine (now known as the National Academy 

of Medicine)/National Research Council (128), and smoking during pregnancy. Interestingly, we also found 

that exposures emerging from life phases spanning from pre-gestation to the perinatal phase contributed 

differently during consecutive early-life stages following birth.  

Next, we used those prenatal and postnatal influences to develop a novel risk quantification strategy to 

evaluate the possibilities of identifying offspring with the greatest odds of excess BMI gain way before 

overweight development at preschool age. The novel models of prediction at age 1 and 2 years were 

externally validated using available data from the PEPO cohort. The PEPO cohort comprises extensive 

prenatal and postnatal data of 11,730 German mother-child pairs recruited just before the mandatory school 

entry health examinations. Our prediction-guided prevention strategy allowed assessments as early as at 

3 months of age and opportunities to re-evaluate at 1 and 2 years of age in children of both women with 

obesity and those without obesity separately. The sequential prediction times at ages 3 months, 1 year, 

and 2 years allows integration in the current system of well-child care in Germany. The well-child visits are 

performed by qualified pediatricians of the pediatric health care system in order to detect developmental 

delays or health issues at an early stage. 
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7. Conclusions  

Overall, our data show that the third trimester appears to be a crucial window of opportunity for maintaining 

glucometabolic control in mothers with obesity and thus for developing improved obstetrics care concepts 

for certain populations of women. Close third-trimester follow-up of pregnant women with obesity is likely 

to be beneficial for both long-term weight outcomes in offspring and glucometabolic outcomes in the mother 

years after delivery. After birth, the first months of life are critical as offspring exposed to obesity in 

pregnancy should be stratified before the onset of upper deviations in weight development in the course 

towards overweight. Such close risk assessments in offspring could be embedded in the already existing 

infrastructure of the health system of the well-child visits. A graphical scheme showing an overview of the 

results of our work is provided in Figure 6. 

To summarize, within the field of overweight prevention, pregnancy and the early months and years of life 

are most critical for developing and implementing concepts to avoid early excessive BMI growth patterns 

in offspring at risk, particularly those exposed to gestational obesity.  

 

 
Figure 6: Early-life growth leading to preschool overweight or obesity in offspring of mothers with 
pre-conception obesity and underlying risk factors. Orange box indicates development of late-
pregnancy dysglycemia in the third trimester (Paper 1) and green boxes indicate time points of risk 
prediction and re-assessments at the pediatricians’ well-child visits (Paper 2). 
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III. Summary 

I present here a summary of my work. For details, please see my published papers (Gomes 2018 and 

Gomes 2022) included in Section V and Section VI in this thesis document.  

The prevalence of childhood overweight has increased drastically, and weight development in preschool 

years is linked to future obesity. A greater risk of overweight at preschool age is conferred by a higher 

maternal preconception body mass index (BMI), an urgent public health issue, since overweight or obesity 

occurs in up to two-thirds of child-bearing women today, frequently developing metabolic complications. In 

fact, our research group previously found that women with obesity may develop dysglycemia towards the 

end of  pregnancy, despite a negative test for gestational diabetes (GDM). Therefore, we hypothesized that 

late-pregnancy dysglycemia could also contribute to adverse longitudinal BMI development in their 

offspring. For prevention, such offspring should be identified at a time prior to the first upper divergence in 

BMI gain in the trajectory towards overweight manifestation. However, prediction of early deviations in 

weight gain has not been achieved on an individual level as a prerequisite for implementation in the public 

health setting, because data on weight trajectories in children who had exposure to gestational overnutrition 

and the contribution of “obesogenic influences” are lacking.  

Using comprehensive and longitudinal data from different gestational and postnatal phases of the large 

Programming of Enhanced Adiposity Risk in CHildhood - Early Screening (PEACHES) cohort study of 

women with obesity and their children (n = 1,707), we performed linear mixed-effects models and mediation 

analysis to evaluate the long-term (from age 2 to 4 years) effect and contribution of obesity-related 

dysglycemia at the end of gestation (women’s HbA1c [glycated hemoglobin] at delivery ≥5.7%) on preschool 

BMI (at 4 years of age), respectively. We also identified specific patterns of BMI growth from birth until 5 

years of age following exposure to obesity in pregnancy, assessed various BMI outcomes, and evaluated 

their underlying contributors in offspring using k-means cluster analysis and a series of multivariable 

regression models. Subsequently, a serial approach of individual risk score assessment, prediction, and 

re-assessments was developed using penalized logistic regressions. Data from an independent mother-

child cohort (PErinatal Prevention of Obesity [PEPO], n = 11,730) were available for data validation. 

In the analysis of children exposed to gestational obesity, a diagnosis of GDM did not influence offspring 

BMI at age 4 years. However, within the group of mothers with obesity who tested negative for GDM towards 

the end of the second trimester, dysglycemia in late pregnancy was associated with high BMI gains between 

ages 2 and 4 years in offspring (mean annual increment Δ 0.18, 95% confidence interval [CI] 0.06–0.30). 

Overall, it accounted for almost one-quarter of the contribution of gestational obesity on offspring BMI z-

score at age 4 years. In these mothers, the presence of late-pregnancy dysglycemia was related to a risk 

of prediabetes or type 2 diabetes (T2D) a few years later that was four times higher than in mothers with 

normal HbA1c at delivery (relative risk [RR] 4.01, 95% CI 1.97–8.17). Excessive third-trimester weight gain 

was related to a mean increase in the risk of dysglycemia in late pregnancy by 72% (RR 1.72, 95% CI 

1.12–2.65) in mothers with obesity who had a negative GDM test. Next, we focused on a “pre-symptomatic” 

offspring BMI outcome and identified a “high-risk” subgroup of children (21%) likely to undergo early upper 
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divergence from a healthy BMI growth track after exposure to gestational overnutrition. Belonging to this 

upper BMI cluster was associated with a high risk of preschool overweight/obesity (odds ratio [OR] 16.13; 

95% CI 9.98–26.05). Underlying pre- and perinatal influences such as high maternal weight gain (OR 2.08, 

95% CI 1.25–3.45) and smoking in pregnancy (OR 1.94, 95% CI 1.27–2.95) were essential to predict a 

subsequent “higher-than-normal BMI growth” pattern in the 3-month-old, 1-year-old, and 2-year-old 

offspring. Sequential prediction models showed adequate predictive performances (area under the receiver 

operating characteristic [AUROC] 0.69–0.79, specificity 64.7–78.1%, sensitivity 70.7–76.0%), and findings 

were confirmed in the cohort PEPO.  

In conclusion, in order to achieve healthy weight development at the beginning of life, efforts should be 

made to optimize maternal weight gain and glucose metabolism as well as fetal growth also in the 3rd 

trimester of pregnancy, particularly if the mother with obesity had a prior GDM-negative test result. After 

birth, children of women with obesity should be closely sequentially assessed for risk quantification and 

individual detection of an increased risk of “higher-than-normal” BMI growth at the established well-child 

care visits for intensified prevention measures. A “continuum” of targeted management strategies in the 

very early stages of life could help reduce intergenerational transmission of obesity.  
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IV. Zusammenfassung 

Die Prävalenz von Übergewicht im Kindes- bzw. Vorschulalter ist in den vergangenen Dekaden stark 

angestiegen und geht häufig mit Adipositas im späteren Leben einher. Ein höherer mütterlicher body mass 

index (BMI) bei Konzeption ist mit einem höheren Risiko für Übergewicht der Nachkommen im Vorschulalter 

assoziiert. Da weltweit inzwischen bis zu zwei Drittel der Frauen im gebärfähigen Alter an Übergewicht 

oder Adipositas leiden und häufig Stoffwechselkomplikationen in der Schwangerschaft entwickeln, stellt 

dies ein Problem für zwei Generationen mit immensen Auswirkungen für das Gesundheitssystem dar. 

Unsere Arbeitsgruppe konnte in Vorarbeiten zeigen, dass auch Schwangere mit Adipositas, die 

ursprünglich negativ auf Gestationsdiabetes (GDM) getestet wurden, im 3. Trimenon der Schwangerschaft 

Dysglykämien entwickeln können. Daher stellten wir die Hypothese auf, dass auch Dysglykämien in der 

Spätschwangerschaft zu einer ungünstigen longitudinalen BMI-Entwicklung bei den Nachkommen 

beitragen könnte. Aus präventivmedizinischer Sicht sollten diese Kinder zum Zeitpunkt der frühesten 

Abweichung vom physiologischen Wachstum und Gewichtszuwachs und vor der Manifestation von 

Übergewicht identifiziert werden. Die Vorhersage einer abweichenden Gewichtsentwicklung ist derzeit auf 

individueller Ebene noch nicht möglich, was jedoch eine Voraussetzung für die Umsetzung in 

entsprechenden Kinder-Vorsorgemaßnahmen im Gesundheitswesen (Public Health Sektor) wäre. Auch 

fehlen bisher Daten zu den BMI-Wachstumsverläufen der Nachkommen, die während der Schwangerschaft 

gegenüber einer mütterlichen Adipositas exponiert waren, sowie zum Beitrag dieser "adipogenen“ 

Einflüsse für das frühkindliche Wachstum.   

Unter Verwendung von umfassenden, longitudinalen Daten aus verschiedenen Schwangerschafts- und 

Nachgeburtsphasen von Müttern mit Adipositas und ihren Kindern aus der Programming of Enhanced 

Adiposity Risk in CHildhood - Early Screening (PEACHES)-Kohorte (n = 1.707) haben wir Analysen mittels 

linearer gemischter Modelle vorgenommen. Wir führten zudem eine Mediationsanalyse durch, um den 

longitudinalen Effekt (zwischen 2 und 4 Jahren) und den Beitrag von Adipositas-assoziierten Dysglykämien 

in der Spätschwangerschaft (mütterlicher HbA1c [glykiertes Hämoglobin]-Wert bei Geburt ≥5,7%) auf den 

BMI der Nachkommen (mit 4 Jahren) zu bewerten. Neben der Identifizierung unterschiedlicher kindlicher 

BMI-Wachstumsmuster ab dem Zeitpunkt Geburt bis hin zum Alter von 5 Jahren nach Exposition 

gegenüber Adipositas in der Schwangerschaft mithilfe von „K-Means“-Clusteranalysen, bewerteten wir 

verschiedene BMI-abhängige Endpunkte und evaluierten die ihnen zugrundeliegenden Faktoren bei den 

Nachkommen mit einer Reihe von multivariablen Regressionsmodellen. Anschließend wurde eine 

sequenzielle Strategie bestehend aus individueller Risikobewertung, -vorhersage und -neueinschätzung 

unter Verwendung eines speziellen „penalized“ logistischen Regressionsmodells entwickelt. Zur 

Validierung standen Daten aus einer weiteren unabhängigen Mutter-Kind-Kohorte (PErinatal Prevention of 

Obesity [PEPO], n = 11.730) zur Verfügung. 

Die Analyse der Nachkommen von Müttern mit Adipositas ergab, dass die Diagnose eines GDM keinen 

Einfluss auf deren BMI im Alter von 4 Jahren hatte. Jedoch waren in der Gruppe der Mütter mit Adipositas, 

die im 2. Trimenon zunächst negativ auf GDM getestet worden waren, Dysglykämien in der 

Spätschwangerschaft mit einem hohen BMI-Zuwachs zwischen dem 2. und 4. Lebensjahr der 

Nachkommen verbunden (mittlerer jährlicher Zuwachs: Δ 0,18; 95%- Konfidenzintervall [KI] 0,06-0,30). Das 
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Auftreten von Dysglykämien am Ende der Schwangerschaft war für fast ein Viertel des Effekts der 

mütterlichen Adipositas auf den 4-Jahres-BMI-Z-Score der Nachkommen verantwortlich. Bei den Müttern 

selbst war das Auftreten von Dysglykämien in der Spätschwangerschaft mit einem 4-fach höheren Risiko 

(relatives Risiko [RR] 4,01; 95%-KI 1,97-8,17) für Prädiabetes oder Typ-2-Diabetes (T1D) einige Jahre 

später verbunden. Bei Müttern mit Adipositas, die negativ auf GDM getestet wurden, war eine übermäßige 

Gewichtszunahme im 3. Trimenon mit einem mittleren Anstieg des Risikos von Dysglykämien in der 

Spätschwangerschaft um 72% verbunden (RR 1,72; 95%-KI 1,12-2,65).  

Weiterhin konzentrierten wir uns auf die Definition eines „präsymptomatischen“ Endpunkts bei den 

Nachkommen vor der Manifestation von Übergewicht und identifizierten eine "Hochrisiko"-Population von 

Nachkommen (21%), die nach der Exposition gegenüber Adipositas in der Schwangerschaft ein höheres 

Risiko hatten, vom normalen BMI-Wachstumsverlauf nach oben abzuweichen. Die Zugehörigkeit zu 

diesem oberen „BMI-Wachstumscluster“ war mit einem hohen Risiko für Übergewicht/Adipositas im 

Vorschulalter verbunden (Odds Ratio [OR] 16,13; 95%-KI 9,98-26,05). Zugrundeliegende prä- und 

perinatale Faktoren wie eine exzessive Gewichtszunahme in der Schwangerschaft (OR 2,08; 95%-KI 1,25-

3,45) und Rauchen in der Schwangerschaft (OR 1,94; 95%-KI 1,27-2,95) waren entscheidend für die 

Vorhersage für einen überdurchschnittlich hohen BMI-Wachstumsverlauf („higher-than-normal BMI growth 

pattern“) im Alter von 3 Monaten, 1 Jahr und 2 Jahren. Die sequenziellen Prädiktionsmodelle zeigten eine 

adäquate Vorhersage (Fläche unter ROC-Kurve [AUROC] 0,69-0,79, Sensitivität 70,7-76,0%, Spezifität 

64,7-78,1%) und wurden anhand der PEPO-Kohorte extern validiert.  

Um eine gesunde Gewichtsentwicklung zu Beginn des Lebens zu erreichen, sollten Anstrengungen 

unternommen werden, die Gewichtszunahme und den Glukosestoffwechsel der Schwangeren sowie das 

fetale Wachstum auch im 3. Trimenon der Schwangerschaft zu optimieren, insbesondere wenn die 

Schwangere mit Adipositas zuvor ein negatives Testergebnis auf Gestationsdiabetes hatte. Nach der 

Entbindung sollten die Nachkommen, die während der Schwangerschaft einem adipogenen Milieu 

ausgesetzt waren, engmaschig nachuntersucht werden, um mittels Risikoquantifizierung ein hohes Risiko 

für eine überdurchschnittliche Gewichtszunahme im Rahmen der Kindervorsorgeuntersuchungen (U-

Untersuchungen) zu identifizieren. Ein „Kontinuum“ an „gezielten“ Managementstrategien in den ersten 

Phasen des Lebens könnte dazu beitragen, die intergenerationelle Übertragung bzw. Prägung von 

Adipositas zu verringern. 
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Abstract

Background

Maternal pre-conception obesity is a strong risk factor for childhood overweight. However,

prenatal mechanisms and their effects in susceptible gestational periods that contribute to

this risk are not well understood. We aimed to assess the impact of late-pregnancy dysgly-

cemia in obese pregnancies with negative testing for gestational diabetes mellitus (GDM)

on long-term mother–child outcomes.

Methods and findings

The prospective cohort study Programming of Enhanced Adiposity Risk in Childhood–Early

Screening (PEACHES) (n = 1,671) enrolled obese and normal weight mothers from August

2010 to December 2015 with trimester-specific data on glucose metabolism including GDM

status at the end of the second trimester and maternal glycated hemoglobin (HbA1c) at deliv-

ery as a marker for late-pregnancy dysglycemia (HbA1c� 5.7% [39 mmol/mol]). We

assessed offspring short- and long-term outcomes up to 4 years, and maternal glucose

metabolism 3.5 years postpartum. Multivariable linear and log-binomial regression with

effects presented as mean increments (Δ) or relative risks (RRs) with 95% confidence
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intervals (CIs) were used to examine the association between late-pregnancy dysglycemia

and outcomes. Linear mixed-effects models were used to study the longitudinal develop-

ment of offspring body mass index (BMI) z-scores. The contribution of late-pregnancy dys-

glycemia to the association between maternal pre-conception obesity and offspring BMI

was estimated using mediation analysis. In all, 898 mother–child pairs were included in this

unplanned interim analysis. Among obese mothers with negative testing for GDM (n = 448),

those with late-pregnancy dysglycemia (n = 135, 30.1%) had higher proportions of exces-

sive total gestational weight gain (GWG), excessive third-trimester GWG, and offspring with

large-for-gestational-age birth weight than those without. Besides higher birth weight (Δ 192

g, 95% CI 100–284) and cord-blood C-peptide concentration (Δ 0.10 ng/ml, 95% CI 0.02–

0.17), offspring of these women had greater weight gain during early childhood (Δ BMI z-

score per year 0.18, 95% CI 0.06–0.30, n = 262) and higher BMI z-score at 4 years (Δ 0.58,

95% CI 0.18–0.99, n = 43) than offspring of the obese, GDM-negative mothers with normal

HbA1c values at delivery. Late-pregnancy dysglycemia in GDM-negative mothers accounted

for about one-quarter of the association of maternal obesity with offspring BMI at age 4

years (n = 151). In contrast, childhood BMI z-scores were not affected by a diagnosis of

GDM in obese pregnancies (GDM-positive: 0.58, 95% CI 0.36–0.79, versus GDM-negative:

0.62, 95% CI 0.44–0.79). One mechanism triggering late-pregnancy dysglycemia in obese,

GDM-negative mothers was related to excessive third-trimester weight gain (RR 1.72, 95%

CI 1.12–2.65). Furthermore, in the maternal population, we found a 4-fold (RR 4.01, 95% CI

1.97–8.17) increased risk of future prediabetes or diabetes if obese, GDM-negative women

had a high versus normal HbA1c at delivery (absolute risk: 43.2% versus 10.5%). There is a

potential for misclassification bias as the predominantly used GDM test procedure changed

over the enrollment period. Further studies are required to validate the findings and eluci-

date the possible third-trimester factors contributing to future mother–child health status.

Conclusions

Findings from this interim analysis suggest that offspring of obese mothers treated because

of a diagnosis of GDM appeared to have a better BMI outcome in childhood than those of

obese mothers who—following negative GDM testing—remained untreated in the last tri-

mester and developed dysglycemia. Late-pregnancy dysglycemia related to uncontrolled

weight gain may contribute to the development of child overweight and maternal diabetes.

Our data suggest that negative GDM testing in obese pregnancies is not an “all-clear signal”

and should not lead to reduced attention and risk awareness of physicians and obese

women. Effective strategies are needed to maintain third-trimester glycemic and weight gain

control among otherwise healthy obese pregnant women.

Author summary

Why was this study done?

• Pre-conception obesity is associated with an increased risk of pregnancy complications

and adverse long-term health outcomes for the mother and her child.
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• Obese pregnant women can develop impairments in glucose metabolism in late preg-

nancy despite prior negative testing for gestational diabetes mellitus (GDM).

• Yet, to date, guidelines on obesity in pregnancy and GDM have focused only on early

glucose screening rather than targeting factors relevant to the last trimester of

pregnancy.

• To evaluate whether recommendations on management of obese pregnancies require

optimization, additional evidence is needed on the consequences of late-pregnancy dys-

glycemia for long-term childhood and maternal outcomes.

What did the researchers do and find?

• We performed an interim analysis of 898 obese and normal weight mothers and their

offspring from the Programming of Enhanced Adiposity Risk in Childhood–Early

Screening (PEACHES) cohort study (total n = 1,671) that recruited pregnant women in

Germany from 2010 to 2015.

• Late-pregnancy dysglycemia predisposed the offspring of obese, GDM-negative mothers

to higher weight gain in early childhood and a higher body mass index at age 4 years.

• Children of obese mothers treated because of a diagnosis of GDM appeared to have a

better weight outcome than those of obese mothers who remained untreated following a

negative GDM test and developed late-pregnancy dysglycemia.

• Obese, GDM-negative women with late-pregnancy dysglycemia also had a 4-fold higher

risk of prediabetes or diabetes several years after delivery compared to those with nor-

mal glucometabolic status in late pregnancy.

What do these findings mean?

• We suggest that a negative GDM test at the end of the second trimester should not be

understood as an “all-clear signal” and should not result in reduced attention of caregiv-

ers and a false sense of security in the mothers.

• Guidelines to manage and maintain third-trimester glycemic and weight gain control

are needed for “high risk” obese women.

• Further analyses and studies should validate the findings and investigate the possible

role of third-trimester factors for future mother–child health.

Introduction

Since up to two-thirds of women of reproductive age are now overweight or obese in European

countries and the US [1,2], obesity in pregnancy and its consequences represent a major public

health challenge [3]. In Germany, the prevalence of overweight and obesity is 38.1% (obesity:

15.4%) among women of childbearing age [4] and 35.8% (obesity: 14.2%) among pregnant

women [5]. Obese women are 3 to 5.5 times more likely to develop gestational diabetes melli-

tus (GDM) than normal weight women [6], leading to an approximately 3- to 10-fold
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increased risk of developing type 2 diabetes mellitus (T2DM) later in life [7,8]. In addition, in

offspring of obese women, the risk of adverse health outcomes such as the development of adi-

posity, T2DM, cardiovascular disease, and asthma is higher [9,10].

Despite maternal oral glucose tolerance test (OGTT) values within the reference range dur-

ing pregnancy, children of mothers with pre-conception obesity are reported to have a higher

rate of overweight [11]. Evidence from recent systematic reviews and meta-analyses even sug-

gests a greater contribution to child overweight from maternal pre-conception obesity than

from GDM [12,13]. Apart from genetic background and lifestyle factors related to maternal

obesity, prenatal metabolic influences of an adipogenic intrauterine milieu seem to play a rele-

vant role, as evident from higher rates of increased offspring body fat at birth [14,15]. Poten-

tially modifiable factors in the relationship between maternal gestational obesity and offspring

childhood overweight may be linked to mechanisms of intrauterine lipotoxicity, including

inflammatory changes and oxidative stress, and/or glucometabolic alterations that could exert

effects during sensitive gestational periods.

We previously found high glycated hemoglobin (HbA1c) levels (�5.7% [39 mmol/mol]) at

delivery in about one-third of obese pregnant women [16,17], despite negative testing for

GDM according to the International Association of Diabetes and Pregnancy Study Groups

(IADPSG) criteria at the end of the second trimester [18]. This finding suggested the presence

of relevant dysglycemia in late pregnancy, which was in turn associated with persistently

abnormal glucose metabolism in the obese women postpartum and a higher rate of macroso-

mia in their offspring at birth [17]. However, assessing dysglycemia in the last trimester of

pregnancy is not part of routine healthcare for obese women to date, and available guidelines

on obesity in pregnancy have focused only on early glucose screening rather than addressing

factors pertinent to the last third of pregnancy [19,20].

Therefore, in order to evaluate whether recommendations on gestational management of

otherwise healthy obese women need to be optimized, further evidence is required as to

whether such dysglycemia in late pregnancy could represent a long-term risk for offspring

developing overweight later in childhood. In the prospective Programming of Enhanced Adi-

posity Risk in Childhood–Early Screening (PEACHES) cohort study, we had a unique set of

longitudinal data on “high risk” obese mothers and their children including trimester-specific

data on glucose metabolism that allowed us to address this question. Such clarification is of

particular relevance to designing efficacious intervention and prevention strategies in the sus-

ceptible time window of late pregnancy.

Methods

Study design and participants

PEACHES is an ongoing prospective mother–child cohort study (n = 1,671) on pregnant

women recruited between August 2010 and December 2015 during their first contact at mater-

nity clinics (4–6 weeks before due date) in 23 departments of obstetrics and gynecology in the

Munich area, Bavaria (southern Germany); the University Hospital of Düsseldorf (western

Germany); and parts of northern Germany. In brief, the long-term effect of pre-conception

maternal obesity on the development of overweight and associated metabolic diseases in both

mothers and their offspring is being assessed, as described elsewhere [16,17]. The entire cohort

comprises pre-conceptionally obese (body mass index [BMI]� 30 kg/m2) or normal weight

(BMI 18.5–24.9 kg/m2) women without preexisting diseases including type 1 diabetes mellitus

(T1DM) or T2DM. The study was approved by the local ethics committee of the Ludwig-Maxi-

milians-Universität München, Germany (protocol no. 165–10). Written informed consent was

obtained from all participants. The study protocol is provided as S1 Study Protocol. This study
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is reported as per the Strengthening the Reporting of Observational Studies in Epidemiology

(STROBE) guidelines (S1 STROBE Checklist). Data for this unplanned interim analysis were

retrieved from the PEACHES database in August 2017.

Procedures

Inclusion criteria for analysis. We included women in the data analysis if they were pre-

conceptionally obese, were white, had a singleton live birth, and had not been diagnosed with

T1DM or T2DM. Normal weight women who tested negative for GDM and had normal levels

of HbA1c at delivery were also eligible to be included in the analysis. Women with incomplete

data on pre-conception BMI, GDM status, maternal HbA1c at delivery, or confounding vari-

ables were excluded from the analysis.

Exposure variables. Obese and normal weight women who met the inclusion criteria for

the analysis had GDM testing (50-g glucose challenge test [GCT] or 75-g OGTT) between 12

weeks and 1 day and 32 weeks and 6 days of gestation (median 25 weeks and 3 days, interquar-

tile range [IQR] 3 weeks and 4 days). We included women with a negative GDM test per-

formed before 23 weeks and 1 day [21] if absence of GDM was confirmed later in pregnancy

(according to the IADPSG recommendation [18]). Blood glucose concentrations were

obtained either from the pregnancy record booklet (“Mutterpass”) issued to every pregnant

woman at her first antenatal visit in Germany or requested directly from the gynecologist. The

pregnancy record booklet contains comprehensive information on ultrasound checkups, labo-

ratory assessments, and weight measurements at multiple times collected by the gynecologist

during antenatal care visits. GDM testing was defined as negative when none, and positive

when 1 or more, of the 3 glucose concentrations of a 75-g OGTT met or exceeded the reference

values according to the IADPSG criteria (1-step procedure): fasting glucose� 5.1 mmol/l, 1-h

post-load glucose� 10 mmol/l, or 2-h post-load glucose� 8.5 mmol/l [18]. In the 2-step pro-

cedure, a positive 50-g GCT, defined as 1-h post-load glucose concentration� 7.8 mmol/l

[22], was followed by a 75-g OGTT according to IADPSG diagnostic criteria [18]. In contrast

to women with a negative test result (GDM-negative), those diagnosed with GDM (GDM-pos-

itive) received recommendations on treatment with insulin and/or diet, obtained advice on

weight gain goals, and were monitored until the end of pregnancy.

Maternal HbA1c concentration at delivery was measured in venous blood, following

prompt transportation to a central laboratory, using high performance liquid chromatography

(HPLC) via cation-exchange chromatography with a Tosoh G8 HPLC Analyzer (Tosoh Biosci-

ence, Stuttgart, Germany) (interassay coefficient of variation� 2.0%, analytic bias� 0.05%

HbA1c at a target value of 5.33% [35 mmol/mol]). We used the term “late-pregnancy dysglyce-

mia” when the maternal HbA1c value at delivery was greater than or equal to the cut-off 5.7%

(39 mmol/mol), as defined previously [17]. Information on the women’s iron supplementation

and their red blood cell indices were used to exclude iron deficiency anemia as a potential

cause of HbA1c elevation [23].

Outcome variables: Offspring weight and metabolic outcomes. Short-term offspring

outcomes included both absolute birth weight and large-for-gestational-age (LGA) birth

weight, defined as>90th percentile [24], and were extracted from birth records. Cord blood

was centrifuged (2,500g, 22˚C) and sent to a central laboratory for analysis of C-peptide by a

chemiluminescence immunoassay (Architect i2000, Abbott Wiesbaden, Germany). C-peptide

values were dichotomized based on the 90th-percentile cutoff of the distribution among off-

spring from the normal weight, healthy (GDM-negative and HbA1c < 5.7% at delivery) moth-

ers in the PEACHES cohort (�0.94 ng/ml [0.31 nmol/l]). Long-term outcomes in children

included offspring’s BMI z-scores at 2, 3, and 4 years. Anthropometric data were obtained
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from records of the regular well-child care visits conducted by trained professionals of the pre-

ventive health program offered to all children in Germany. Age- and sex-specific BMI z-scores

were calculated according to World Health Organization (WHO) Child Growth Standards

[25].

Outcome variables: Maternal postpartum follow-up. At a follow-up visit several years

postpartum, to which women were consecutively invited for evaluation of their metabolic

health and body composition [17], maternal HbA1c and glucose concentrations of an OGTT

were measured. Postpartum maternal body weight and height were determined using a digital

scale (Clara 803, Seca, Hamburg, Germany) with an accuracy of 0.1 kg and a stadiometer

(model 213, Seca) with an accuracy of 0.1 cm. Body fat mass was determined by bioelectrical

impedance analysis (BIA) (body composition analyzer BC-420 MA, Tanita, Sindelfingen, Ger-

many). Waist and hip circumferences were measured to the nearest 0.1 cm using standardized

protocols as recommended by WHO [26], and waist-to-hip ratio was calculated. Each anthro-

pometric measurement was carried out 3 times consecutively by the same trained investigator

and averaged for analysis.

Follow-up maternal HbA1c was measured in EDTA plasma by HPLC via cation-exchange

chromatography with a Variant II Turbo (BioRad, Hercules, California, US). Analysis of

serum glucose concentrations was performed using the hexokinase method on an AU 5800

analyzer (Beckman Coulter, Krefeld, Germany). The presence of T2DM (fasting glucose� 7.0

mmol/l or 2-h post-load glucose of a 75-g OGTT� 11.1 mmol/l or HbA1c� 6.5% [48 mmol/

mol]) and prediabetes (fasting glucose 5.6 mmol/l to 6.9 mmol/l or 2-h post-load glucose of a

75-g OGTT 7.8 mmol/l to 11.0 mmol/l or HbA1c 5.7% to 6.4% [39 to 47 mmol/mol]) was

determined [22].

Confounders. We extracted information on maternal age at conception and weight mea-

surements from the mothers’ pregnancy record booklets. Pre-conception BMI was based on

data measured at the first antenatal visit if the visit was before 12 weeks and 6 days of gestation

(92.5% of participants). When the first antenatal visit was later than the 13th week of gestation

(7.5% of participants), pre-conception weight was used as reported by the woman at this first

visit and documented in the pregnancy record booklet. Pre-conception BMI groups were

defined according to WHO categories [27].

Total gestational weight gain (GWG) in pregnancy was defined as the difference between

the last measured weight before delivery and pre-conception weight and classified as inade-

quate, adequate, or excessive according to the BMI-specific recommendations of the Institute

of Medicine [28]. Third-trimester GWG (i.e., between 27 weeks of gestation and delivery) was

calculated using the difference between the first (mean 28 weeks and 3 days [standard devia-

tion (SD) 1 week and 2 days]) and last (mean 38 weeks and 4 days [SD 2 weeks and 2 days])

documented weight in the third trimester. To categorize third-trimester GWG as excessive or

non-excessive for each woman, we calculated the average third-trimester weight gain per week

(third-trimester GWG divided by weeks between the 2 weight measurements) [29] and com-

pared it to the respective BMI-specific recommendations for weight gain per week of the Insti-

tute of Medicine [28].

Offspring sex and gestational age were extracted from birth records. Information on breast-

feeding and treatment for GDM was collected using a questionnaire sent to each participant.

Breastfeeding data were dichotomized as “�1 month exclusively without interruption” or

“never or<1 month exclusively.” Data on smoking and iron supplementation during preg-

nancy were obtained twice, via the questionnaire and via a standardized telephone interview

shortly after delivery. Reported smoking at either assessment was categorized as maternal

smoking at “any time during pregnancy” (versus “no time during pregnancy”).

Obese pregnancy, last-trimester dysglycemia, and child long-term outcome

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002681 October 29, 2018 6 / 21

https://doi.org/10.1371/journal.pmed.1002681


Statistical analysis

Aspects of the analysis plan were written prior to the analysis (S1 Study Protocol). However, there

was no detailed prospective plan for the current interim analysis. The confounder adjustment and

modeling strategy were modified in response to reviewers’ suggestions. This unplanned analysis

was triggered to present interim results that could potentially provide guidance on how to proceed

with the future research of the cohort.

We compared gestational, offspring, and maternal characteristics by GDM status (negative

or positive) and maternal HbA1c level at delivery (high or normal) using Student’s t test or

1-way analysis of variance (ANOVA) and χ2 test as appropriate. After confirmation of a linear

relationship between maternal HbA1c at delivery and offspring BMI z-score at 4 years using B-

splines [30], we performed linear regression to estimate the association between maternal

HbA1c at delivery (continuous) and offspring BMI z-score at 4 years.

The association of late-pregnancy dysglycemia with short- and long-term offspring and mater-

nal outcomes among obese, GDM-negative mothers was examined using linear (continuous out-

comes) and log-binomial (binary outcomes) regression; comparisons were relative to (i) obese,

GDM-negative mothers with normal HbA1c levels and (ii) obese, GDM-positive mothers. Effects

are expressed as mean increments (Δ, linear regression) and relative risks (RRs, log-binomial

regression) with 95% confidence intervals (CIs). In addition, the risk of developing late-pregnancy

dysglycemia due to excessive third-trimester GWG was assessed in the group of obese, GDM-neg-

ative mothers using log-binomial regression. Models were adjusted for potential confounders

including maternal pre-conception BMI, total GWG, maternal smoking at any time during preg-

nancy, and sex of the child; models for long-term childhood outcomes were additionally adjusted

for exclusive breastfeeding�1 month. Potential confounders were chosen based on their demon-

strated relationship to offspring childhood overweight [31]. The model for the maternal outcome

prediabetes/T2DM was adjusted for maternal body fat percentage at 3.5 years postpartum.

To assess the longitudinal association of late-pregnancy dysglycemia (relative to the absence

of late-pregnancy dysglycemia) with offspring BMI z-scores at ages 2, 3, and 4 years, we con-

structed linear mixed-effects models with random effects for intercept and time. Polynomial

contrasts and interaction with group were tested to examine differential nonlinear time

courses between both groups; the corresponding likelihood ratio test did not give strong evi-

dence for a nonlinear time effect. Models were fitted using the R package “lme4” [32]. Missing

data relate to the timing of recruitment into our cohort (i.e., offspring of mothers recruited

after 2013 were too young to have their 4-year follow-up by August 2017) rather than loss to

follow-up or withdrawal from participation. Thus, we assumed missingness at random for the

follow-up data, which does not bias results of linear mixed-effects models.

Mediation analysis was conducted to assess whether late-pregnancy dysglycemia (as indicated by

a high maternal HbA1c at delivery) contributed to the association of maternal obesity with offspring

BMI z-score in GDM-negative women [33]. First, we assessed the total effect of maternal pre-con-

ceptional obesity on 4-year BMI z-score by comparing offspring of obese, GDM-negative women

versus offspring of normal weight, GDM-negative women and adjusting for confounders as above.

Subsequently, we adjusted for maternal HbA1c at delivery (high versus normal) to estimate the

direct effect of maternal pre-conceptional obesity on offspring 4-year BMI z-score. The difference

between the total and direct effect provides a quantification of the potential contribution of late-

pregnancy dysglycemia to increased 4-year BMI z-score. These analyses were conducted in all obese

and normal weight women for whom information on offspring 4-year BMI z-score was available.

The sample size for the analysis is compatible with the sample size calculation provided in

the original protocol as presented in S1 Study Protocol. Therefore, the data analyzed provide

sufficient power to detect relevant effects.
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We formally considered a p-value < 0.05 to be statistically significant, ignoring possible

alpha inflation. The statistical analysis was carried out with the statistical software package R

version 3.3.1 [34].

Results

Study population

A total of 898 women (749 obese and 149 normal weight) of the PEACHES cohort were eligible to

be included in our analyses (Fig 1). Compared with women excluded from analysis due to missing

data (n = 259), the included women were more likely to have a negative GDM test and had higher

total GWG (S1 Table). Table 1 summarizes maternal and offspring characteristics of the study

sample by GDM status and the presence or absence of late-pregnancy dysglycemia as indicated by

a high or normal maternal HbA1c level at delivery, respectively. More than one-third of obese

women had a high HbA1c value at delivery. In the subgroup of obese, GDM-negative women,

30% had a high HbA1c value at delivery, whereas this proportion was 45% in the group of obese,

GDM-positive women, who received various treatment regimens for their condition.

Testing for GDM was done using the 1-step procedure in 64% (n = 571) of obese and

normal weight mothers, while 36% (n = 327) underwent the 2-step procedure. In the latter

group, 66 had a positive GCT (1-h post-load glucose, median 10.2 mmol/l [IQR 2.5]), and

261 had a negative GCT (1-h post-load glucose, median 6.0 mmol/l [IQR 1.7]). A higher

proportion of obese mothers diagnosed as GDM-negative underwent a 1-step compared

to a 2-step GDM procedure (55.4%, 95% CI 50.8%–60.0%, versus 44.6%, 95% CI 40.0%–

49.2%). However, despite the differences in the GDM test procedure used among these

women, the proportion of obese, GDM-negative women who developed dysglycemia in

late pregnancy was similar (1-step versus 2-step: 29.8%, 95% CI 24.1%–35.6%, versus

30.5%, 95% CI 24.1%–36.9%).

There was no noticeable difference in hemoglobin levels and red blood cell indices between

obese, GDM-negative women with high compared to normal levels of HbA1c at delivery (mean

hemoglobin: 12.0 g/dl, 95% CI 11.8–12.2, versus 12.2 g/dl, 95% CI 12.0–12.4, and mean corpuscu-

lar hemoglobin: 28.6 pg, 95% CI 27.9–29.2, versus 28.9 pg, 95% CI 28.7–29.2). Those with high

HbA1c values at delivery had higher 75-g OGTT glucose concentrations, albeit below diagnostic

cutoffs, at the time of GDM testing in pregnancy than those with normal HbA1c values at delivery

(S2 Table). Further, obese, GDM-negative women with a high HbA1c at delivery had higher mean

total and third-trimester GWG (Table 1). They were also more likely to have newborns with LGA

birth weights, comparable to the proportion seen in obese, GDM-positive women with high

HbA1c values at delivery, and higher cord-blood C-peptide concentrations. In contrast to these

women, obese, GDM-positive women had lower mean total and third-trimester GWG, irrespec-

tive of their HbA1c level at delivery (Table 1), potentially due to risk awareness, treatment of GDM

with insulin and/or diet, and tight supervised control.

Prenatal risk factors for increased childhood weight status

Offspring weight status was studied in children of obese and normal weight mothers until age

4 years (Fig 1). The follow-up rate in children was 88% at 4 years (S3 Table) without relevant

differences in characteristics between those with and those without follow-up (S4 Table). Fig 2

shows the relation of prenatal risk factors with offspring BMI z-score at age 4 years. As

expected, children of women with pre-conception obesity had a higher mean 4-year BMI z-
score (0.60, 95% CI 0.46–0.74, versus 0.02, 95% CI −0.14 to 0.18) than children of normal

weight women (Fig 2A). Surprisingly, further stratification by GDM status among obese moth-

ers did not show any noticeable differences in offspring mean 4-year BMI z-score between the
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2 strata (0.62, 95% CI 0.44–0.79, versus 0.58, 95% CI 0.36–0.79) (Fig 2B). However, offspring

of obese, GDM-negative women with high HbA1c at delivery had a higher mean 4-year BMI z-
score than offspring of obese, GDM-negative women with normal HbA1c at delivery (1.01,

95% CI 0.68–1.35, versus 0.46, 95% CI 0.24–0.67) (Fig 2C). An analysis using HbA1c as a con-

tinuous variable showed that among offspring of obese, GDM-negative mothers, the child’s

BMI z-score at 4 years increased by 0.07 (95% CI 0.01–0.12) for every 0.1% increase in mater-

nal HbA1c at delivery (S1 Fig).

Late-pregnancy dysglycemia and longitudinal offspring outcomes in early

childhood

Offspring of obese, GDM-negative mothers with late-pregnancy dysglycemia had higher mean

birth weight and cord-blood C-peptide concentration than newborns of the respective mothers

with normal HbA1c at delivery (Table 2). High (�0.94 ng/ml [0.31 nmol/l]) cord-blood C-peptide

Fig 1. PEACHES study population and follow-up investigations of children. aDid not meet inclusion criteria for

analysis including pre-conception obesity or normal weight, singleton live birth, and absence of type 1 diabetes and

type 2 diabetes. bMissing information for at least 1 of the following variables: pre-conception body mass index group

(normal weight or obese), GDM status (GDM-negative or GDM-positive), maternal HbA1c at delivery (<5.7% [39

mmol/mol] or�5.7%), or confounding variables. c“Healthy” defined as GDM-negative and HbA1c < 5.7% at delivery.
dOffspring too young at the time of data retrieval from the PEACHES database. eLoss to follow-up or withdrawal from

participation. GDM, gestational diabetes mellitus; HbA1c, glycated hemoglobin; PEACHES, Programming of

Enhanced Adiposity Risk in Childhood–Early Screening.

https://doi.org/10.1371/journal.pmed.1002681.g001
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concentrations were associated with a 2-fold (RR 2.01, 95% CI 1.07–3.78) increase in the risk of

LGA birth weight in these babies. At age 4 years, these children had higher mean BMI z-score

than all other groups except for obese, GDM-positive women with high HbA1c levels at delivery

(S2 Fig). The slope of the BMI z-score curve between the ages of 2 and 4 years among children of

Table 1. Characteristics of the PEACHES study population: data on main exposure, maternal and offspring outcomes, and potential confounders.

Maternal/child characteristic Normal weight mothers, GDM−, normal

HbA1c

Obese mothers stratified by glucometabolic status during pregnancy (GDM testing) and at

delivery (HbA1c)

GDM−, normal HbA1c GDM−, high HbA1c GDM+, normal HbA1c GDM+, high HbA1c

Maternal characteristics during pregnancy

N 149 313 135 165 136

Age at conception, years 32.9 (4.8) 30.8 (5.1) 31.2 (5.9) 32.6 (4.9) 32.8 (5.0)

Pre-conception BMI, kg/m2 21.9 (1.6) 36.2 (5.1) 36.8 (5.4) 36.3 (5.2) 38.5 (5.5)

Fasting glucose at GDM testing, mmol/la 4.36 (0.44) 4.41 (0.40) 4.52 (0.33) 5.30 (0.71) 5.65 (0.89)

Smoking at any time during pregnancy 20 (13.4%) 84 (26.8%) 34 (25.2%) 42 (25.5%) 47 (34.6%)

GDM treatment

Diet only 0 (0.0%) 0 (0.0%) 0 (0.0%) 90 (54.6%) 63 (46.3%)

Insulin and diet 0 (0.0%) 0 (0.0%) 0 (0.0%) 54 (32.7%) 38 (27.9%)

Insulin only 0 (0.0%) 0 (0.0%) 0 (0.0%) 21 (12.7%) 35 (25.8%)

Maternal characteristics at delivery

Excessive total GWG 51 (34.2%) 209 (66.8%) 104 (77.0%) 93 (56.4%) 75 (55.1%)

Total GWG, kg 14.8 (4.9) 12.7 (7.5) 14.9 (7.6) 9.8 (7.7) 10.8 (7.8)

Excessive third-trimester GWG 75 (50.3%) 233 (74.4%) 115 (85.8%) 78 (47.3%) 90 (66.7%)

Third-trimester GWG, kg 5.0 (2.5) 5.2 (3.4) 6.0 (3.5) 2.8 (3.6) 4.2 (3.8)

HbA1c at delivery, percentb 5.3 (0.2) 5.3 (0.2) 5.9 (0.2) 5.3 (0.3) 6.0 (0.4)

Child characteristics at birth

Sex: female 77 (51.7%) 148 (47.3%) 60 (44.4%) 85 (51.5%) 65 (47.8%)

Gestational age, weeks 40.4 (1.2) 39.9 (1.5) 40.0 (1.4) 39.7 (1.3) 39.5 (1.4)

Birth weight, g 3,456 (438) 3,454 (450) 3,676 (480) 3,440 (468) 3,569 (484)

Birth weight: LGA 8 (5.4%) 21 (6.7%) 23 (17.0%) 15 (9.1%) 24 (17.7%)

Cord-blood C-peptide, ng/mlc 0.48 (0.36) 0.51 (0.34) 0.60 (0.40) 0.57 (0.41) 0.63 (0.49)

Breastfeeding (exclusive), �1 month 117 (78.5%) 166 (53.0%) 67 (49.6%) 83 (50.3%) 59 (43.4%)

Maternal characteristics postpartum

N 47 86 37 52 46

Time after index pregnancy, years 4.4 (0.7) 3.9 (0.9) 3.1 (0.9) 3.6 (0.9) 3.4 (0.8)

BMI, kg/m2 22.8 (1.9) 38.8 (6.7) 39.4 (6.8) 38.1 (5.6) 40.5 (7.3)

Waist-to-hip ratio 0.80 (0.05) 0.84 (0.06) 0.87 (0.06) 0.87 (0.05) 0.88 (0.07)

Percentage body fat by BIA, percent 29.5 (5.3) 46.3 (4.8) 46.4 (4.6) 45.4 (3.9) 46.6 (5.2)

Child age (months) at follow-up

At 2-year follow-up 24.5 (1.3) 24.2 (1.1) 24.3 (1.2) 24.1 (1.3) 24.3 (1.2)

At 3-year follow-up 36.9 (1.1) 36.6 (1.0) 36.6 (1.0) 36.6 (1.3) 36.8 (1.3)

At 4-year follow-up 48.7 (1.5) 48.8 (1.0) 49.0 (1.3) 49.0 (1.0) 48.7 (0.9)

Data are mean (SD) or n (%) and tested with regard to the obese, GDM−, normal HbA1c group using Student’s t test for continuous and χ2 test for categorical variables.

High HbA1c is HbA1c� 5.7% (39 mmol/mol)]; normal HbA1c is HbA1c < 5.7%. Bold font indicates p< 0.05. Participants with any missing information for baseline

characteristics were excluded.
aGDM testing was performed at median 25 weeks and 3 days of gestation (interquartile range 3 weeks and 4 days). To convert glucose mmol/l to mg/dl, multiply by

18.018.
bTo convert HbA1c percent to mmol/mol: IFCC HbA1c unit (mmol/mol) = [10.93 × DCCT/NGSP unit (%)] − 23.50.
cTo convert C-peptide ng/ml to nmol/l, multiply by 0.331.

BIA, bioelectrical impedance analysis; BMI, body mass index; DCCT/NGSP, Diabetes Control and Complications Trial/National Glycohemoglobin Standardization

Program; GDM, gestational diabetes mellitus; GWG, gestational weight gain; HbA1c, glycated hemoglobin; IFCC, International Federation of Clinical Chemistry and

Laboratory Medicine; LGA, large-for-gestational-age; PEACHES, Programming of Enhanced Adiposity Risk in Childhood–Early Screening; SD, standard deviation.

https://doi.org/10.1371/journal.pmed.1002681.t001
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obese, GDM-negative mothers with high HbA1c at delivery was positive (0.08), while it was nega-

tive (−0.10) among offspring of the respective mothers with normal HbA1c at delivery, for a net

difference in slope of 0.18 (95% CI 0.06–0.30) (Table 2). In contrast, birth outcomes, offspring

BMI z-score slope, and 4-year BMI z-score were not different between obese, GDM-positive

mothers with high versus normal maternal HbA1c levels at delivery (S5 Table).

To quantify the contribution of late-pregnancy dysglycemia to increased BMI z-scores in

children of obese, GDM-negative women, we conducted mediation analysis (Fig 3). Compared

to offspring of normal weight women (n = 106), offspring of mothers with pre-conception obe-

sity (n = 151) had 0.59 (95% CI 0.31–0.86) units higher BMI z-scores at age 4 years; following

adjustment for HbA1c at delivery (high versus normal), offspring of mothers with pre-concep-

tion obesity had 0.42 (95% CI 0.13–0.70) units higher BMI z-scores at 4 years. Consequently,

the proportion of the effect of maternal obesity on offspring BMI z-score that is contributed by

late-pregnancy dysglycemia was (0.59 − 0.42)/0.59 = 29%.

Excessive weight gain and deterioration of glucometabolic control in the

last trimester following negative GDM testing

Next, we investigated whether weight gain has a role in triggering dysglycemia in the last tri-

mester. Children of obese mothers with GDM who received treatment and weight monitoring

Fig 2. Offspring 4-year BMI z-score by maternal pre-conception weight status and glucometabolic status in

pregnancy and at delivery. Stratification of maternal groups was performed in enrolled mother–child pairs with

offspring 4-year BMI z-scores according to the (A) pre-conception BMI group of 352 mothers, (B) positive or negative

testing for GDM in 246 obese women, and (C) HbA1c at delivery in 151 obese, GDM-negative women. Data are shown

as median (horizontal lines within the boxes), 25th and 75th centile (lower and upper boundaries of the boxes), 1.5

times the interquartile range (whisker ends), and outliers (circles). Numerical values and dots within the boxes

represent unadjusted mean 4-year BMI z-score of offspring. Differences between groups were tested using Student’s t
test. aAccording to the International Association of Diabetes and Pregnancy Study Groups criteria [18].
bDichotomized based on a predefined cutoff value of�5.7% (39 mmol/mol) [17]. BMI, body mass index; GDM,

gestational diabetes mellitus; HbA1c, glycated hemoglobin.

https://doi.org/10.1371/journal.pmed.1002681.g002
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because of their diagnosis appeared to have better short- and long-term BMI outcomes than

children of obese mothers who remained untreated following negative GDM testing and devel-

oped dysglycemia later on (Tables 2, S5 and 3). In offspring of obese, GDM-negative mothers

(untreated) with late-pregnancy dysglycemia, the BMI z-score slope during the early childhood

years was marginally increased (0.13, 95% CI −0.02 to 0.27) compared to that in offspring of

obese, GDM-positive mothers (treated) (Table 3). We further found that obese, GDM-negative

Table 2. Late-pregnancy dysglycemia in obese, GDM-negative mothers and offspring outcomes.

Child outcome Control group (obese, GDM−, normal

HbA1c)

Maternal late-pregnancy dysglycemia (obese, GDM−, high HbA1c)

N Mean (95% CI) N Mean increment Δ (95% CI) with respect to control group

At deliverya

Birth weight, g 313 3,454 (3,404 to 3,504) 135 192 (100 to 284)

Cord-blood C-peptide, ng/mlb 296 0.51 (0.47 to 0.55) 130 0.10 (0.02 to 0.17)

Long-term follow-upc

BMI z-score change per yeard 595 −0.10 (−0.17 to −0.03) 262 0.18 (0.06 to 0.30)

BMI z-score at 4 yearse 108 0.46 (0.24 to 0.68) 43 0.58 (0.18 to 0.99)

Mean increments in offspring outcomes by high maternal HbA1c (�5.7% [39 mmol/mol]) at delivery are shown relative to the obese, GDM−, normal HbA1c group.

Bold font indicates p< 0.05.
aBased on linear regression models, adjusted for maternal pre-conception BMI, total gestational weight gain, maternal smoking at any time during pregnancy, and sex of

the child.
bTo convert C-peptide ng/ml to nmol/l, multiply by 0.331.
cAdjusted for maternal pre-conception BMI, total gestational weight gain, maternal smoking at any time during pregnancy, and exclusive breastfeeding�1 month.
dBased on linear mixed-effects model.
eBased on linear regression model.

BMI, body mass index; CI, confidence interval; GDM, gestational diabetes mellitus; HbA1c, glycated hemoglobin.

https://doi.org/10.1371/journal.pmed.1002681.t002

Fig 3. Contribution of late-pregnancy dysglycemia to the effect of maternal obesity on increased weight status in

4-year-old children. Mediation analysis was performed to study the total effect of pre-conception obesity in GDM-negative

mothers on offspring BMI z-score at age 4 years, comprising the direct effect of maternal obesity and the indirect effect of

late-pregnancy dysglycemia (as indicated by a high maternal HbA1c [�5.7%] at delivery). Data are coefficients derived

from linear regression models, adjusted for maternal smoking at any time during pregnancy, total GWG, and exclusive

breastfeeding�1 month. aEstimated as β1 from: BMIz4 years = β0 + β1
� maternal obesityyes/no + β2

� maternal smokingyes/no +

β3
� total GWG + β4

� breastfeedingyes/no
bEstimated as γ1 from: BMIz4 years = γ0 + γ1

� maternal obesityyes/no + γ2
� maternal

smokingyes/no + γ3
� total GWG + γ4

� breastfeedingyes/no + γ5
� HbA1c�5.7% or <5.7%. cCalculated as β1−γ1 BMI, body mass

index; GDM, gestational diabetes mellitus; GWG, gestational weight gain; HbA1c, glycated hemoglobin.

https://doi.org/10.1371/journal.pmed.1002681.g003
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women with excessive GWG in the third trimester were more likely to have a high HbA1c at

delivery compared to those without excessive third-trimester GWG (RR 1.72, 95% CI 1.12–

2.65).

Late-pregnancy dysglycemia in obese, GDM-negative women and their

future diabetes risk

The relevance of late-pregnancy glucometabolic control in obese, GDM-negative women for

their own metabolic health years after delivery (median 3.5 years [IQR 1.2]) was substantiated

by follow-up data of the maternal PEACHES population (Tables 4 and S6; n = 123). At 3.5

years postpartum, HbA1c and fasting and 1-h post-load glucose concentrations in obese,

GDM-negative women with late-pregnancy dysglycemia were elevated, contributing to a

4-fold (RR 4.01, 95% CI 1.97–8.17) increased risk of developing T2DM or prediabetes, as com-

pared to those with normal HbA1c levels at delivery (absolute risk: 43.2% versus 10.5%).

Discussion

Identifying crucial periods of developmental programming is important for designing effective

interventions [14], considering that obesity and diabetes in pregnancy are the major transge-

nerational health burden to date [35,36]. As yet, to our knowledge, the occurrence of dysglyce-

mia in the last trimester of pregnancy despite prior negative testing for GDM has not been

considered a problem for long-term health outcomes of obese pregnancies and thus has not

been included in respective clinical care guidelines as part of routine monitoring [19]. Our

data suggest that late-pregnancy dysglycemia predisposes the offspring of obese, GDM-nega-

tive mothers to alterations in weight development during early childhood. Moreover, offspring

of obese mothers treated and monitored because of a diagnosis of GDM appeared to have a

better BMI outcome in childhood than those of obese mothers who—following negative GDM

testing—remained untreated in the last trimester and developed an abnormal glucose

metabolism.

Table 3. GDM status and late-pregnancy dysglycemia in obese mothers and offspring outcomes.

Child outcome Control group (obese, GDM+, treated) Obese, GDM−, high HbA1c (untreated)

N Mean (95% CI) N Mean increment Δ (95% CI) with respect to control group

At deliverya

Birth weight, g 301 3,498 (3,444 to 3,552) 135 134 (28 to 239)

Cord-blood C-peptide, ng/mlb 286 0.60 (0.54 to 0.66) 130 −0.04 (−0.14 to 0.07)

Long-term follow-upc

BMI z-score change per yeard 576 −0.05 (−0.11 to 0.03) 262 0.13 (−0.02 to 0.27)

BMI z-score at 4 yearse 95 0.58 (0.36 to 0.79) 43 0.52 (0.07 to 0.97)

Mean increments in offspring outcomes in obese, GDM−, high HbA1c mothers are shown relative to the entire obese, GDM-positive group (regardless of HbA1c level at

delivery). Bold font indicates p< 0.05.
aBased on linear regression models, adjusted for maternal pre-conception BMI, total gestational weight gain, maternal smoking at any time during pregnancy, and sex of

the child.
bTo convert C-peptide ng/ml to nmol/l, multiply by 0.331.
cAdjusted for maternal pre-conception BMI, total gestational weight gain, maternal smoking at any time during pregnancy, and exclusive breastfeeding�1 month.
dBased on linear mixed-effects model.
eBased on linear regression model.

BMI, body mass index; CI, confidence interval; GDM, gestational diabetes mellitus; HbA1c, glycated hemoglobin.

https://doi.org/10.1371/journal.pmed.1002681.t003
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Our hypothesis of a possible relevance of dysglycemia in the last trimester for longitudinal

offspring outcomes was based on data from mothers with pregestational diabetes. Several stud-

ies in non-obese women with T1DM or T2DM have shown an association of elevated third-tri-

mester HbA1c with a 2- to 5-fold increased risk of LGA birth weight [37,38]. Even among the

offspring of GDM-negative mothers in our obese cohort, a high HbA1c at delivery was associ-

ated with a similarly increased risk of LGA birth weight (RR 2.03, 95% CI 1.17–3.53). The

apparent “vulnerability” during this time window goes along with intense differentiation of

the fetal pancreatic islet cells that are adaptive to glucose supply. The resulting hyperinsuline-

mia and increased offspring growth may lead to an insulin secretory defect, contributing to a

lifelong higher risk of developing overweight and T2DM, as shown in animal studies [39].

However, information on the possible long-term impact of a dysglycemic intrauterine milieu

in the last trimester on the next generation’s health in humans is scarce. Adult offspring of nor-

mal weight Danish mothers with T1DM and elevated blood glucose during late gestation pre-

sented with an increased risk of T2DM or prediabetes at age 22 years [40]. Earlier data from

Pima Indians, among whom the prevalence of T2DM is extremely high, further suggest that

offspring, as a result of their mothers’ third-trimester glucose tolerance, may develop adverse

outcomes over time [41]: their risk of obesity was most pronounced by the age of 10 to 14

years, in addition to abnormal glucose metabolism emerging several years later. However,

maternal pre-conception BMI was not considered. Our data from obese pregnancies with neg-

ative GDM testing suggest that disturbances in maternal glucose homeostasis in the last gesta-

tional weeks play a role in faster weight gain and early manifestation of an increased weight

status in offspring at preschool age. Glucometabolic control in the last trimester seems critical

for future BMI development, considering that children of obese mothers diagnosed with GDM

and treated in the last trimester appear to have more favorable outcomes.

We found that an increased HbA1c at delivery indeed reflects late-pregnancy dysglycemia

based on our finding of higher glucose concentrations in the 75-g OGTT at GDM testing dur-

ing pregnancy, albeit below diagnostic cutoffs, in obese, GDM-negative women with high ver-

sus normal HbA1c values at delivery, similar to our previous findings [17]. The increased cord-

blood C-peptide concentrations in the offspring of obese women with high HbA1c values at

Table 4. Late-pregnancy dysglycemia in obese, GDM-negative mothers and glucose metabolism and T2DM/prediabetes risk 3.5 years postpartuma.

Maternal outcome 3.5 years postpartum Control group (obese, GDM−,

normal HbA1c)

Maternal late-pregnancy dysglycemia (obese, GDM−, high HbA1c)

N Mean (95% CI) N Mean increment Δ (95% CI) with respect to control group

HbA1c, percent 86 5.19 (5.13 to 5.25) 37 0.36 (0.25 to 0.46)

Fasting glucose, mmol/l 86 4.77 (4.69 to 4.85) 37 0.19 (0.05 to 0.33)

1-h post-load glucose, mmol/l 84 7.06 (6.73 to 7.39) 37 0.76 (0.13 to 1.38)

2-h post-load glucose, mmol/l 84 5.68 (5.43 to 5.93) 37 0.21 (−0.28 to 0.69)

RR for T2DM/prediabetesb 86 1.00 (Ref.) 37 4.01 (1.97 to 8.17)

Mean increments in maternal postpartum parameters by high maternal HbA1c (�5.7% [39 mmol/mol]) at delivery are shown relative to the obese, GDM−, normal

HbA1c group. Data are based on linear regression models, adjusted for maternal body fat percentage 3.5 years postpartum. Bold font indicates p< 0.05.
aMaternal postpartum follow-up data not available in 325 obese, GDM-negative mothers due to loss to follow-up or withdrawal from participation (8.9%), consecutive

pregnancy (10.8%), follow-up period too short (31.1%), or being currently in the time window for the follow-up visit (49.2%).
bLog-binomial regression model, adjusted for maternal body fat percentage 3.5 years postpartum. Presence of T2DM (fasting glucose� 7.0 mmol/l or 2-h post-load

glucose in 75-g OGTT� 11.1 mmol/l or HbA1c � 6.5% [48 mmol/mol]) or prediabetes (fasting glucose 5.6 mmol/l to 6.9 mmol/l or 2-h post-load glucose in 75-g OGTT

7.8 mmol/l to 11.0 mmol/l or HbA1c 5.7% to 6.4% [39 to 47 mmol/mol]) [22].

CI, confidence interval; GDM, gestational diabetes mellitus; HbA1c, glycated hemoglobin; OGTT, oral glucose tolerance test; Ref., reference; RR, relative risk; T2DM,

type 2 diabetes mellitus.

https://doi.org/10.1371/journal.pmed.1002681.t004
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delivery further suggest an exaggerated fetal response initiated by dysglycemic states in late

pregnancy leading to macrosomia. These data are in keeping with the results of the Hypergly-

cemia and Adverse Pregnancy Outcome (HAPO) study showing associations between mater-

nal glucose concentrations in a 75-g OGTT, even below diagnostic thresholds, and adverse

pregnancy outcomes [21].

We hypothesized that dysglycemia at the end of such pregnancies might be among the fac-

tors that contribute to the association between maternal obesity at conception and later child-

hood overweight. The results of the mediation analysis suggested that reduction of

dysglycemia by efficacious interventions in the third trimester could possibly ameliorate the

weight gain of preschool children that is related to maternal pre-conception obesity by 29%.

Modifying this and other early-life metabolic risks appears to be a promising target in the

development of concepts for the prevention of offspring overweight.

A higher BMI in offspring of mothers with abnormal glucose regulation in pregnancy

appears to take time to emerge. Follow-up studies in children up to age 2.5 years did not find a

substantial impact of impaired maternal glucose metabolism in pregnancy on offspring obesity

[42], and several studies have reported higher BMI z-scores beyond preschool age [43,44]. The

emergence of an upward shift in BMI z-score slope and a higher weight status at a somewhat

earlier age (4 years) in the offspring of obese, GDM-negative mothers with high HbA1c in our

study might be due to fetal exposure to an additionally obesogenic milieu in utero and an

altered “glycemic threshold” in the last trimester. By contrast, the negative slope for BMI z-
score in offspring of obese, GDM-negative mothers with normal HbA1c at delivery is compara-

ble to the BMI decline that precedes the adiposity rebound at 6 years in the general population

[45] and at around 5 years in children of mothers with pre-conception obesity [46].

Since mechanisms underlying the decompensation of glucose homeostasis in late preg-

nancy in obese women are largely unknown, we speculated that influences associated with

excessive GWG in the third trimester could play a role. Indeed, we found that obese, GDM-

negative women with excessive GWG in the third trimester were at a considerably higher risk

of developing dysglycemia in late pregnancy than those without excessive third-trimester

GWG. Interestingly, the proportion of obese women with excessive GWG was higher in the

GDM-negative than in the GDM-positive group (77.9%, 95% CI 74.0%–81.7%, versus 56.0%,

95% CI 50.3%–61.5%). Prior negative testing for GDM in obese women might have lowered

their risk awareness relating to weight gain control, subsequently leading to excessive GWG in

late pregnancy. In contrast to recent data suggesting that intervening at 28 weeks may be too

late to improve short- and long-term outcomes [47], our findings suggest that monitoring late

gestation in obese women may play a relevant role for childhood outcomes.

In extension of our previous findings on the relevance of late-pregnancy dysglycemia for

later maternal health [17], we analyzed the risk of developing T2DM or prediabetes in obese

women with a high HbA1c at delivery despite negative GDM testing earlier in pregnancy.

Based on cumulative prospective 3.5-year follow-up data from our maternal population, their

prediabetes/T2DM risk was increased by 4-fold compared to those with normal glucose

homeostasis throughout pregnancy. Interestingly, this risk was even higher than that reported

in a meta-analysis of more than 4,000 obese, GDM-positive women (RR 2.85, 95% CI 2.21–

3.69) [7]. Whether GDM treatment may have led to a lowered risk in these women is yet to be

established, since evidence on the benefits of treatment for long-term maternal health is still

limited to date [48].

The strengths of our study relate to the large contemporary mother–child PEACHES

cohort, which is unique in the size of the population of obese mothers and the availability of

trimester-specific data including HbA1c at delivery as a marker of glycemic control in late

pregnancy. Results are based on prospectively collected data, thus avoiding recall bias, and
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included a variety of confounding and exposure data from medical documents, in particular

on GCTs and OGTTs during pregnancy. Outcome data were ascertained by trained medical

staff. There were no relevant differences between offspring and mothers with available and

missing follow-up data, suggesting negligible selection bias. A follow-up time of 4 years in off-

spring appeared to be sufficient to identify relevant BMI increments for prediction of over-

weight later on, since an increased preschool BMI is known to be highly predictive for

overweight and obesity in adolescence [49]. Besides the impact of late-pregnancy dysglycemia

on childhood outcomes, we were also able to demonstrate the relevance of late pregnancy as a

susceptible time window for later glucometabolic health in the maternal population.

A limitation could be that high maternal HbA1c at delivery only reflects late-pregnancy dys-

glycemia: obese, GDM-negative mothers with a high HbA1c at delivery also had higher glucose

concentrations—although below diagnostic cutoffs—at the time of GDM testing in the second

trimester than those with a normal HbA1c. Therefore, we cannot rule out earlier priming

effects on high offspring BMI z-scores at age 4 years, which might have already occurred in the

second trimester. Additionally, a false-negative rate for detecting GDM of approximately one-

third (18% to 40%) might be expected using the 50-g GCT (2-step procedure), due to its lim-

ited sensitivity [50–52]. However, among the obese, GDM-negative mothers, the proportion of

high HbA1c was similar irrespective of whether the 1-step or 2-step procedure was used, indi-

cating that exposure group membership was not affected by the GDM test type. An analysis

that excluded obese, GDM-negative mothers who underwent the 50-g GCT and developed

late-pregnancy dysglycemia showed only a slightly lower difference in BMI z-score at age 4

years compared to the original analysis. Even though the rate of 1-step procedures across the

participating recruitment departments ranged from 53% to 90%, this did not have an influence

on the late-pregnancy dysglycemia in our study. There was also a change in the proportion of

1-step procedures performed over time (from initially more than 80% to about 30% at the end

of recruitment) as a result of a change in coverage by the public health insurance system from

the 1-step to the 2-step procedure in 2013 [53], which may have introduced misclassification

bias. However, since maternal and child characteristics such as pre-conception BMI, total

excessive GWG, and birth weight were not statistically noticeably different before and after the

policy change, we do not anticipate that this change in practice influenced the associations

found in the current study. Further, besides indicating glycemic status, HbA1c variation may

be prone to influences by non-glycemic factors such as ethnicity, age, and some diseases that

may result in states of high or low glycation [23]. However, we obtained detailed information

on factors that account for the biological variation in HbA1c, in particular iron deficiency ane-

mia [54], and analytical and pre-analytical variation in HbA1c measurements was low. The

PEACHES cohort is a convenience sample, and we excluded women due to missing data, both

of which factors may limit the generalizability of our findings. The overarching study hypothe-

ses are outlined in the study protocol, and our results confirm these hypotheses in general.

However, the specific modeling is hypothesis-generating, and its adequacy needs to be vali-

dated with more data from the PEACHES cohort. The effect found in the current study is the

result of an unplanned interim analysis, and, therefore, alpha error inflation may have resulted

in a higher type I error compared to the standard of 5%. However, this issue will be settled

after analysis of the full dataset. The results of the interim analysis will have no influence on

the further conduct of the study (such as changing follow-up or procedures); recruitment of

pregnant women was completed before starting to work on this paper. Also, validation of our

findings in other studies and settings is required to improve our understanding of late-preg-

nancy dysglycemia and its potential implications for the long-term health of the obese mother

and her child.
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Together, our data point to the necessity of guidelines for identifying and managing late-

pregnancy complications in obese pregnancies with negative GDM testing. Screening and

diagnosis of GDM is highly valuable, but dysglycemia may still arise in the last trimester, par-

ticularly in obese women. Our findings suggest that negative GDM testing at the end of the

second trimester in obese pregnancies cannot be considered an “all-clear signal” and should

not lead to reduced physician attention, care, and advice. Further, a false sense of security in

obese, GDM-negative mothers who consider themselves unexposed to late-pregnancy dysgly-

cemia may result in uncontrolled excessive weight gain due to unfavorable lifestyle behaviors

in the last trimester. Therefore, obese women, specifically those with a negative GDM test

result, require counseling on their persisting late-pregnancy risks. Tailored BMI-dependent

advice including dietary therapy for late-pregnancy glycemic and weight gain control appears

to be a suitable intervention. In addition, we suggest monitoring fasting glucose and HbA1c at

least once during the third trimester in obese women who were negative for GDM. Retesting

these markers at delivery might help to identify “at risk” mother–child pairs for closer preven-

tive health follow-ups.
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Validation: Rüdiger von Kries, Regina Ensenauer.
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 Title and abstract 1 

(a) Indicate the study’s design with a 
commonly used term in the title or the 
abstract 

Title and Abstract, “Methods and 
findings”. 

(b) Provide in the abstract an 
informative and balanced summary of 
what was done and what was found 

Abstract, “Background” and 
“Methods and findings”. 

Introduction  

Background/rationale 2 
Explain the scientific background and 
rationale for the investigation being 
reported 

Introduction, paragraphs 1 to 4. 

Objectives 3 
State specific objectives, including any 
prespecified hypotheses 

Introduction, paragraph 4. 

Methods  

Study design 4 
Present key elements of study design 
early in the paper 

Methods, “Study design and 
participants”. 

Setting 5 

Describe the setting, locations, and 
relevant dates, including periods of 
recruitment, exposure, follow-up, and 
data collection 

Methods, “Study design and 
participants”, “Procedures”. 

Fig 1. S3 Table. 

Participants 6 

(a) Give the eligibility criteria, and the 
sources and methods of selection of 
participants. Describe methods of 
follow-up 

Methods, “Study design and 
participants”, “Inclusion criteria for 
analysis”, “Outcome variables”. 

S1 Table. 

(b) For matched studies, give 
matching criteria and number of 
exposed and unexposed 

Not available 

Variables 7 

Clearly define all outcomes, 
exposures, predictors, potential 
confounders, and effect modifiers. 
Give diagnostic criteria, if applicable 

Methods, “Procedures”. 

Data sources/ 
measurement 
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 For each variable of interest, give 
sources of data and details of methods 
of assessment (measurement). 
Describe comparability of assessment 
methods if there is more than one 
group 

Methods, “Procedures”. 

Bias 9 
Describe any efforts to address 
potential sources of bias 

Methods, “Exposure variables” 
and “Statistical analysis”. 
Discussion, paragraph 8-9.  

S1 Table, S4 Table, S6 Table. 
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Study size 10 
Explain how the study size was arrived 
at 

Results, “Study population”. Fig 1, 
Table 1, S1 Table, S3 Table,  

S4 Table, S6 Table. 

Quantitative 
variables 

11 

Explain how quantitative variables 
were handled in the analyses. If 
applicable, describe which groupings 
were chosen and why 

Methods, “Procedures”.  

Results, “Study population”. Table 
1. 

Statistical methods 12 

(a) Describe all statistical methods, 
including those used to control for 
confounding 

Methods, “Statistical analysis”. 

(b) Describe any methods used to 
examine subgroups and interactions 

Methods, “Statistical analysis”. 

(c) Explain how missing data were 
addressed 

Methods, “Inclusion criteria for 
analysis”, “Statistical analysis”. 
Results, “Study population”. 

Discussion, paragraph 8/9. 

Table 1, footnote. Table 4, 
footnote. 

Fig 1, S1 Table, S3 Table, S4 
Table, S6 Table.  

(d) If applicable, explain how loss to 
follow-up was addressed 

Any losses to follow-up were 
excluded from analysis.  

Methods, “Statistical analysis”. 

Figure 1, footnote. Table 4, 
footnote. 

S3 Table, S4 Table, S6 Table. 

(e) Describe any sensitivity analyses 

We conducted different subgroup 
analyses to study the robustness 
of our results. 

Confirmatory analysis: Results, 
“Late-pregnancy dysglycemia in 
obese, GDM-negative women and 
their future diabetes risk”. Table 4. 
Discussion, paragraph 7 and 9.  

Results  

Participants 13* 

(a) Report numbers of individuals at 
each stage of study—eg numbers 
potentially eligible, examined for 
eligibility, confirmed eligible, included 
in the study, completing follow-up, and 
analysed 

Results, “Study population” and 
“Late-pregnancy dysglycemia and 
longitudinal offspring outcomes in 
early childhood”.  

Fig 1, Fig 2. Tables 1 to 4. S1 to 
S6 Tables. S2 Fig. 

(b) Give reasons for non-participation 
at each stage 

Fig 1, Table 4, footnote.  
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S1 Table, S3 Table, S4 Table, S6 
Table.  

(c) Consider use of a flow diagram Fig 1. 

Descriptive data 14* 

(a) Give characteristics of study 
participants (eg demographic, clinical, 
social) and information on exposures 
and potential confounders 

Results, “Study population”,  

Table 1, S1 Table, S4 Table,  

S6 Table. 

(b) Indicate number of participants 
with missing data for each variable of 
interest 

Number of participants with 
complete data are given in the 
following figures and tables:  

Fig 1, Fig 2. Tables 1 to 4. S2 Fig. 

S1 to S6 Tables. 

Participants with any missing data 
were excluded from analysis.  

(c) Summarise follow-up time (eg, 
average and total amount) 

Methods, “Offspring weight and 
metabolic outcomes”.  

Results, “Prenatal risk factors for 
increased childhood weight 
status”, “Late-pregnancy 
dysglycemia in obese, GDM-
negative women and their future 
diabetes risk”.  

Tables 1 to 4, Fig 1, S3 Table. 

S5 Table. 

Outcome data 15* 
Report numbers of outcome events or 
summary measures over time 

Results, “Prenatal risk factors for 
increased childhood weight 
status”.  

Tables 2 to 4. Fig 2 and Fig 3. 

S1 and S5 Table. S2 Fig. 

Main results 16 

(a) Give unadjusted estimates and, if 
applicable, confounder-adjusted 
estimates and their precision (eg, 95% 
confidence interval). Make clear which 
confounders were adjusted for and 
why they were included 

Methods, “Statistical analysis”. 

Results, “Prenatal risk factors for 
increased childhood weight 
status”,  

“Late-pregnancy dysglycemia and 
longitudinal offspring outcomes in 
early childhood”,  

“Excessive weight gain and 
deterioration of glucometabolic 
control in the last trimester 
following negative GDM testing”, 
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 “Late-pregnancy dysglycemia in 
obese, GDM-negative women and 
their future diabetes risk”. 

Table 2 (footnote), Table 3 
(footnote), Table 4 (footnote), Fig 
3 (footnote),  

S1 Fig (footnote), S5 Table 
(footnote).  

(b) Report category boundaries when 
continuous variables were categorized 

Methods, “Exposure variables” 
and “Offspring weight and 
metabolic outcomes”.  

(c) If relevant, consider translating 
estimates of relative risk into absolute 
risk for a meaningful time period 

Results, “Late-pregnancy 
dysglycemia in obese, GDM-
negative women and their future 
diabetes risk” 

Other analyses 17 
Report other analyses done—eg 
analyses of subgroups and 
interactions, and sensitivity analyses 

We conducted different subgroup 
analyses to study the robustness 
of our results. 

Mediation analysis: Results,  

“Late-pregnancy dysglycemia and 
longitudinal offspring outcomes in 
early childhood”, Fig 3. 

Confirmatory analysis: Results, 
“Late-pregnancy dysglycemia in 
obese, GDM-negative women and 
their future diabetes risk”, Table 4. 

Discussion, paragraph 7 and 9.  

Discussion  

Key results 18 
Summarise key results with reference 
to study objectives 

Discussion, paragraph 1. 

Limitations 19 

Discuss limitations of the study, taking 
into account sources of potential bias 
or imprecision. Discuss both direction 
and magnitude of any potential bias 

Discussion, paragraph 9. 

Interpretation 20 

Give a cautious overall interpretation 
of results considering objectives, 
limitations, multiplicity of analyses, 
results from similar studies, and other 
relevant evidence 

Discussion, paragraphs 2 to 3, 5 to 
7, 9. 

Generalisability 21 
Discuss the generalisability (external 
validity) of the study results 

Discussion, paragraph 9. 

Other information  

Funding 22 
Give the source of funding and the 
role of the funders for the present 
study and, if applicable, for the original 

Submission form, information in 
“Financial Disclosure” field. 
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study on which the present article is 
based 

 

*Give information separately for exposed and unexposed groups. 

 

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological 

background and published examples of transparent reporting. The STROBE checklist is best used in 

conjunction with this article (freely available on the Web sites of PLoS Medicine at 

http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at 

http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-

statement.org.  
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S1 Fig. Graph showing linear relationship between maternal HbA1c at delivery and BMI z-score in 4-
year-old offspring of obese, GDM-negative mothers. Adjusted for maternal pre-conception BMI, total 
gestational weight gain, maternal smoking at any time during pregnancy, and exclusive breastfeeding ≥1 
month. BMI, body mass index; GDM, gestational diabetes mellitus; HbA1c, glycated hemoglobin. 
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S2 Fig. Offspring 4-year BMI z-score according to maternal groups defined by pre-conception BMI, 
GDM status, and HbA1c value at delivery. The group of GDM−, HbA1c+ mothers was compared with all 
other maternal groups using 1-way analysis of variance (ANOVA) and post hoc testing. Data are shown as 
median (horizontal lines within the boxes), 25th and 75th centile (lower and upper boundaries of the boxes), 
1.5 times the interquartile range (whisker ends), and outliers (circles). Numerical values and dots within the 
boxes represent unadjusted mean 4-year BMI z-score of offspring. GDM status is according to the 
International Association of Diabetes and Pregnancy Study Groups criteria [18]. HbA1c dichotomized based 
on a predefined cutoff value of ≥5.7% (39 mmol/mol) [17]. BMI, body mass index; GDM, gestational 
diabetes mellitus; HbA1c, glycated hemoglobin; HbA1c −, HbA1c < 5.7% (39 mmol/mol); HbA1c +, HbA1c ≥ 
5.7%. 
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S1 Study Protocol. 

Study protocol: Does childhood overweight start in utero?  
Prospective study on “at risk” children of obese mothers to evaluate candidate markers for adiposity risk  

PEACHES: Programming of Enhanced Adiposity Risk in CHildhood – Early Screening 

Project lead: Regina Ensenauer   

Background  

The prevalence of overweight and obesity among children and adolescents has increased over the last two 
decades and has become a major public health problem (174, 175)]. According to the results of the German 
Health Interview and Examination Survey for Children and Adolescents (KiGGS), 15% of children and 
adolescents in Germany are overweight and 6.3% are obese (176)]. Current treatment methods to reduce 
obesity and to mitigate complications such as insulin resistance and dyslipidemia are not considered to be 
successful (177)], which emphasizes the importance of the development of obesity prevention concepts. 
 
Evidence for new approaches for primary prevention has emerged from epidemiological and animal studies, 
suggesting that certain environmental factors during early childhood and the maternal milieu in utero during 
fetal development may have long-term consequences for human health throughout the life span. A 
multitude of studies have found relationships between fetal development and later risk for diseases such 
as diabetes or cardiovascular problems in adulthood (178-183)]. In addition, there is evidence for an 
association between the development of overweight/obesity and metabolic influences on fetal development 
via poorly defined mechanisms called "fetal programming" (184, 185)]. Scientific data suggest that an 
increased pre-pregnancy maternal body mass index (BMI) is a risk factor for later childhood overweight. 
Additionally, gestational diabetes mellitus (GDM), which occurs more often in obese pregnant women, 
increases the child’s risk of becoming overweight and developing diabetes later in life. Recent data also 
suggest a potential “programming” effect of maternal weight gain during pregnancy on the fetal metabolic 
environment. Moreover, maternal obesity and GDM place the mother at a higher risk for adverse health 
outcomes such as type 2 diabetes or metabolic syndrome (abdominal obesity, elevated triglyceride levels, 
decreased HDL cholesterol levels, increased blood pressure, elevated fasting glucose levels) (186)]. 
 
A number of biomarkers are already established for the biochemical characterization of overt obesity (187)]. 
However, these do not permit any or only very limited conclusions regarding obesity risk. Such new "risk" 
biomarkers (e.g. metabolites) are currently not available but are essential for the safe management of early-
onset nutritional prevention strategies in future clinical trials. In the prospective mother-child cohort study 
PEACHES, biomarker candidates for the early detection of obesity risk will be evaluated in "high-risk" 
newborns of obese mothers, who will have longitudinal follow-up throughout early childhood until the age 
of 5 years. Further, as a subproject of the PEACHES study, mothers with an increased “gestational risk 
profile” such as obesity will be evaluated for cardiometabolic dysfunction several years postpartum.   

Hypotheses and Aims 
 
Hypotheses: 

1. Overt obesity is defined by systemic-metabolic dysregulation in the intermediary metabolism. 
 

2. The effects of metabolic dysregulation before and/or during pregnancy are associated with the risk of 
subsequent overweight/obesity in the child. 
 

3. The metabolic dysregulation that is associated with the risk of offspring overweight/obesity cannot be 
detected clinically at birth or in early life.  
 

4. Changes in biomarker profiles in the child’s cells represent this systemic dysregulation of the intermediary 
metabolism at birth or in early life as an indicator for the risk of obesity. 
Aim: 
The aim is to derive early prognostic biomarker(s) for childhood obesity risk. 
 
 



62 
 

Study population 
 
PEACHES is a prospective cohort study with two different study groups and two control groups. Study 
group 1 consists of obese women (pre-pregnancy BMI ≥ 30 kg/m²) without GDM and study group 2 consists 
of obese women with GDM. Accordingly, control group 1 consists of normal weight women (pre-pregnancy 
BMI ≥ 18.5 ≤ 24.9 kg/m²) without GDM, while control group 2 consists of normal weight women with GDM. 
 
Sample size 
 
The sample size for the PEACHES study was calculated by Prof. Dr. Ulrich Mansmann, Institute for Medical 
Information Processing, Biometry, and Epidemiology (IBE), Faculty of Medicine, Ludwig-Maximilians-
Universität München, Munich, Germany.  
 
Assumptions for the calculation: 

• The prevalence of obesity in pre-school children of obese mothers (BMI at conception ≥ 30 kg/m2) is 23% 
(117, 188)]. 

• The odds ratio for the offspring to be obese (versus not obese) is 3. This strong effect was based on 
previous findings from various studies. 

• The significance level was set at 5% and the power at 80%. 
 
Assuming that 20% of children of obese mothers with a dysregulated biomarker profile and 20% of children 
of obese mothers with a non-dysregulated biomarker profile are at risk of developing obesity, n=184 obese 
pregnant women should be included in the study. Assuming that 40% of children of obese mothers with a 
dysregulated biomarker profile and 15% of children of obese mothers with a non-dysregulated biomarker 
profile are at risk of developing obesity, n=157 obese women should be included in the study. Assuming a 
30 to 40% drop-out rate up to the examination time point at age 5 years, 300 obese pregnant women (study 
group 1) should be recruited. In addition, 30 normal weight healthy controls (control group 1) will also be 
recruited. This will facilitate the assessment of the prenatal influence of maternal obesity on a possible 
dysregulation of the biomarker panel at birth. 
 
For the calculation of the study group of obese mothers with GDM, the same assumptions are made. It is 
therefore necessary to recruit an additional 300 obese mothers with GDM (study group 2) and 30 normal 
weight women with GDM (control group 2). 
 
Examination schedule 
 
Children will be examined at birth, at 3 to 4 months and 5 years of age. A study questionnaire will be mailed 
to the families 6 to 8 weeks after birth and then annually thereafter until age 5 years. Mothers will be 
examined 3 years postpartum. 
 
Variables  

Exposure variables. Maternal pre-pregnancy obesity, GDM status, and metabolic risk markers such as 
maternal HbA1c at delivery and offspring metabolites in cord blood.  

Outcome variables. Offspring outcomes at birth: Birth weight, large-for-gestational-age (LGA) birth weight, 
cord-blood C-peptide concentration.  

Offspring longitudinal weight status: Offspring age- and sex-specific BMI z-score at follow-up visits and 
well-child visits, as well as waist circumference at 5 years.  

Maternal postpartum follow-up: Development of prediabetic/diabetic conditions based on maternal HbA1c 
and glucose concentrations following an oral glucose tolerance test, body weight, height, fat mass, waist 
and hip circumferences, blood pressure, intima media thickness, pulse wave analysis, and genetic markers. 

Other variables. Other maternal and child information that is collected includes socioeconomic status, 
maternal health and risk factors during pregnancy (such as smoking, pregnancy weight gain, hypertension), 
maternal health behaviors postpartum, breastfeeding, and the child’s health behaviors including nutritional 
status. 
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Statistical analysis 

- Descriptive analysis of baseline characteristics relating to maternal and offspring factors will be 
conducted using Student’s t test for continuous and chi-square test for categorical variables.  
 

- Univariable and multivariable linear and logistic regression models will be used to estimate the 
associations between risk markers and continuous and categorical outcomes such as BMI, LGA birth 
weights, childhood overweight, and maternal prediabetic/diabetic conditions postpartum. 
 

- Multivariable logistic regression models will be used to predict the categorical outcomes from 
candidate markers such as maternal HbA1c at delivery; variable selection will be done using shrinkage 
methods. Diagnostic properties of the models for the prediction of the outcomes from candidate 
markers and other variables will be assessed using receiver operating characteristic (ROC) analysis 
with k-fold cross validation. 

 

All analyses will be conducted in the statistical software package R. 

Sources of funding  

The study is supported by the German Federal Ministry of Education and Research grant 01EA1307 to 
Regina Ensenauer and the Foundation for Cardiovascular Prevention in Childhood, Ludwig-Maximilians-
Universität München, Munich, Germany.  
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S1 Table: Comparison of relevant characteristics of the study participants included and excluded 
from analysis due to missing data. 

 
Included (n=898) 

Excluded due to 
missing dataa 
(n=259) 

p-value 

 N   N   
Maternal characteristics during pregnancy  
Pre-conception BMI, kg/m2 b 896 34.3 (7.4) 244 34.3 (7.6) 1 
Fasting glucose at GDM testing, mmol/lc 630 4.88 (0.80) 117 5.03 (0.83) 0.080 
GDM diagnosis: negative 898 597 (66.5%) 148 82 (55.4%) 0.012 
Smoking at any time during pregnancy 898 227 (25.3%) 254 63 (24.8%) 0.94 
Maternal characteristics at delivery  
Total GWG, kg 898 12.6 (7.5) 239 11.4 (7.1) 0.022 
Excessive third-trimester GWG 896 591 (66.0%) 241 153 (63.5%) 0.52 
Third-trimester GWG, kg 896 4.7 (3.5) 248 4.7 (3.9) 0.84 
HbA1c at delivery, percentd 898 5.50 (0.39) 176 5.53 (0.36) 0.41 
HbA1c ≥5.7% at delivery 898 271 (30.2%) 176 56 (31.8%) 0.73 
Child characteristics at birth      
Sex: female 898 435 (48.4%) 259 125 (48.3%) 1 
Birth weight, g 898 3,502 (468) 259 3,499 (505) 0.92 
Birth weight: LGA 898 91 (10.1%) 259 22 (8.5%) 0.68 
Breastfeeding (exclusive), ≥1 month 898 492 (54.8%) 242 124 (51.2%) 0.36 
     BMI z-score at 4 years 352 0.43 (1.08) 144 0.49 (1.05) 0.53 

Data are mean (SD) or n (%), Student’s t test for continuous and 2 test for categorical variables. 
Bold font indicates p < 0.05. Participants with any missing information for baseline characteristics 
were excluded. 
aMissing data in at least one of the following variables including pre-conception BMI group (normal 
weight or obese), GDM status (GDM-negative or GDM-positive), maternal HbA1c at delivery (<5.7% 
[39 mmol/mol] or ≥5.7%), or confounding variables. 
bTwo women with missing pre-conception BMI (kg/m2) but available pre-conception BMI group 
(normal weight or obese) were included in the analyses. 
cGDM testing was performed at median 25 weeks and 3 days of gestation (interquartile range 3 
weeks and 4 days). To convert glucose mmol/l to mg/dl, multiply by 18.018.  
dTo convert HbA1c percent to mmol/mol: IFCC HbA1c unit (mmol/mol) = [10.93 × DCCT/NGSP unit 
(%)] − 23.50.  
BMI, body mass index; DCCT/NGSP, Diabetes Control and Complications Trial/National 
Glycohemoglobin Standardization Program; GDM, gestational diabetes mellitus; GWG, gestational 
weight gain; HbA1c, glycated hemoglobin; IFCC, International Federation of Clinical Chemistry and 
Laboratory Medicine; LGA, large-for-gestational-age; SD, standard deviation. 
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S2 Table: Glucose concentrations of a 75-g OGTT at GDM testing among obese, GDM-
negative mothers stratified according to their HbA1c at delivery. 

Maternal glucose 
concentrations  

N Obese, GDM−, N Obese, GDM−,  

(mmol/l)a normal HbA1c high HbA1c 

Fasting  186 4.41 (4.35 to 4.47) 80 4.52 (4.44 to 4.60) 
1-h post-load 185 7.15 (6.95 to 7.35) 81 7.66 (7.39 to 7.93) 
2-h post-load 177 5.68 (5.52 to 5.84) 75 6.14 (5.92 to 6.36) 

Data are mean (95% CI), and p-values are from Student’s t test. High HbA1c is HbA1c ≥ 5.7% (39 
mmol/mol)]; normal HbA1c is HbA1c < 5.7%. Bold font indicates p < 0.05. 
aGDM testing was performed at median 25 weeks and 3 days of gestation (interquartile range 3 
weeks and 4 days). To convert glucose mmol/l to mg/dl, multiply by 18.018.  
CI, confidence interval; GDM, gestational diabetes mellitus; HbA1c, glycated hemoglobin; OGTT, 
oral glucose tolerance test. 
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S3 Table: Offspring follow-up rates at different ages in women included in the present analysis. 

Offspring 
age 

  Follow-up Normal weight 
mothers, GDM−, 
normal HbA1c 

Obese mothers stratified by glucometabolic status during pregnancy (GDM 
testing) and at delivery (HbA1c) 

Total 

GDM−, normal 
HbA1c 

GDM−, high HbA1c GDM+, normal 
HbA1c 

GDM+, high HbA1c

2 years Missinga 5 (3.5%) 13 (4.7%) 2 (1.7%) 5 (3.4%) 9 (7.1%) 34 (4.2%) 

Available 138 (96.5%) 262 (95.3%) 116 (98.3%) 143 (96.6%) 117 (92.9%) 776 (95.8%) 

Total 143 (100%) 275 (100%) 118 (100%) 148 (100%) 126 (100%) 810 (100%) 

3 years Missinga 9 (6.5%) 17 (7.0%) 7 (6.4%) 10 (7.6%) 9 (8.0%) 52 (7.1%) 

Available 130 (93.5%) 225 (93.0%) 103 (93.6%) 122 (92.4%) 104 (92.0%) 684 (92.9%) 

Total 139 (100%) 242 (100%) 110 (100%) 132 (100%) 113 (100%) 736 (100%) 

4 years Missinga 10 (8.6%) 17 (13.6%) 3 (6.5%) 5 (7.9%) 12 (24.5%) 47 (11.8%) 

Available 106 (91.4%) 108 (86.4%) 43 (93.5%) 58 (92.1%) 37 (75.5%) 352 (88.2%) 

Total 116 (100%) 125 (100%) 46 (100%) 63 (100%) 49 (100%) 399 (100%) 

Data are n (%). High HbA1c is HbA1c ≥ 5.7% (39 mmol/mol)]; normal HbA1c is HbA1c < 5.7%. 
aLoss to follow-up or withdrawal from participation.  
GDM, gestational diabetes mellitus; HbA1c, glycated hemoglobin. 
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S4 Table: Comparison of relevant characteristics in normal weight and obese mothers with available and missing offspring follow-up at 4 years of age. 
Offspring follow-up at 4 years Normal weight mothers,  

GDM−, normal HbA1c 
Obese mothers stratified by glucometabolic status during pregnancy (GDM testing) and at delivery 
(HbA1c) 

 GDM−, normal HbA1c GDM−, high HbA1c GDM+, normal HbA1c GDM+, high HbA1c 

Available Missinga p-
value 

Available Missinga p-
value 

Available Missinga p- 
value 

Available Missinga p- 
value 

Available Missinga p-
value 

Maternal characteristics during pregnancy  
N 106 10  108 17  43 3  58 5  37 12  

Pre-conception BMI, kg/m2 21.9 (1.6) 
21.5 
(1.4) 

0.43 36.7 (4.9) 36.0 (3.3) 0.48 36.7 (5.3) 40.5 (7.6) 0.48 36.7 (4.5) 
36.3 
(4.1) 

0.89 39.1 (5.3) 
36.7 
(5.2) 

0.18 

Fasting glucose at GDM testing, 
mmol/lb 

4.36  
(0.44) 

4.29 
(0.60) 

0.78 
4.37  

(0.43) 
4.58 

(0.33) 
0.06 

4.51 
(0.33) 

4.66 
(0.07) 

0.10 
5.21  

(0.81) 
5.07 

(0.50) 
0.59 

5.67  
(0.82) 

5.77 
(1.51) 

0.84 

Smoking at any time during 
pregnancy 

17 
(16.0%) 

1 
(10.0%) 

0.96 
22  

(20.4%) 
9 

(52.9%) 
0.010 

8  
(18.6%) 

1 
(33.3%) 

1 
17  

(29.3%) 
3 

 (60.0%) 
0.36 

11  
(29.7%) 

4 
 (33.3%) 

1 

Maternal characteristics at delivery  

Total GWG, kg 14.8 (4.4) 
15.8 
(5.0) 

0.55 13.3 (7.5) 14.9 (5.4) 0.29 15.7 (6.2) 11.8 (2.5) 0.09 11.3 (8.6) 
12.3 
(5.1) 

0.70 10.9 (5.7) 
10.3 
(8.3) 

0.83 

Excessive third-trimester GWG 
55  

(51.9%) 
7 

(70.0%) 
0.44 

83 
(76.9%) 

14  
(82.4%) 

0.85 
39 

(90.7%) 
2  

(66.7%) 
0.74 

33  
(57.9%) 

4 
(80.0%) 

0.62 
22  

(61.1%) 
9 

(75.0%) 
0.60 

Third-trimester GWG, kg 
5.06  

(2.21) 
5.55 

(2.80) 
0.60 

5.32  
(3.39) 

7.29 
(4.71) 

0.11 
6.00 

(2.92) 
6.37 

(4.01) 
0.89 

3.82  
(3.64) 

5.24 
(2.87) 

0.35 
3.77  

(2.94) 
3.52  

(4.12) 
0.85 

HbA1c at delivery, percentc 
5.25  

(0.25) 
5.31 

(0.25) 
0.52 

5.32  
(0.23) 

5.31  
(0.22) 

0.76 
5.89 

(0.21) 
6.03 

(0.35) 
0.56 

5.32  
(0.21) 

5.40 
(0.17) 

0.38 
5.96  

(0.31) 
6.23 

(0.96) 
0.35 
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S4 Table (continued): Comparison of relevant characteristics in normal weight and obese mothers with available and missing offspring follow-up at 4 years of age. 

Offspring follow-up at 4 
years 

Normal weight,  
GDM−, normal HbA1c 

Obese mothers stratified by glucometabolic status during pregnancy (GDM testing) and at delivery 
(HbA1c) 

 GDM−, normal HbA1c GDM−, high HbA1c GDM+, normal HbA1c GDM+, high HbA1c 

Available Missinga p-
value 

Available Missinga p-
value 

Availabl
e 

Missinga p- 
value 

Available Missinga p- 
value 

Available Missinga p-
value 

Child characteristics at birth 

Sex: female 
55  

(51.9%) 
5  

(50.0%) 
0.58 

51  
(47.2%) 

9 
(52.9%) 

0.86 
16  

(37.2%) 
3  

(100.0%) 
0.17 

32  
(55.2%) 

3 
(60.0%) 

1 
16  

(43.2%) 
5  

(41.7%) 
1 

Birth weight, g 
3,465 
(421) 

3,608 
(524) 

0.42 
3,481 
(465) 

3,454 
(328) 

0.77 
3,599 
(487) 

3,620 
(334) 

0.93 
3,450 
(486) 

3,782 
(455) 

0.18 
3,696 
(540) 

3,719 
(432) 

0.88 

Birth weight: LGA 
4  

(3.8%) 
2  

(9.5%) 
0.09 

6  
(5.6%) 

0 
(0.0%) 

0.56 
6  

(14.0%) 
1 

(33.3%) 
0.62 

5  
(8.6%) 

2 
(40.0%) 

0.08 
10  

(27.0%) 
3 

(25.0%) 
0.69 

Cord-blood C-peptide, ng/mld 
0.47  

(0.31) 
0.52 

(0.27) 
0.61 

0.49  
(0.29) 

0.62  
(0.31) 

0.13 
0.53  

(0.33) 
0.64 

(0.76) 
0.82 

0.52 
(0.33) 

0.70  
(0.52) 

0.47 
0.69 

(0.42) 
0.75 

(0.63) 
0.78 

Breastfeeding (exclusive), ≥1 
month 

86  
(81.1%) 

7 
(70.0%) 

0.65 
61  

(56.5%) 
6  

(35.3%) 
0.26 

20 
(46.5%) 

1 
(33.3%) 

0.49 
32  

(55.2%) 
2 

(40.0%) 
0.38 

16  
(43.2%) 

5 
(41.7%) 

0.97 

Data are mean (SD) or n (%), Student’s t test for continuous and 2 test for categorical variables. High HbA1c is HbA1c ≥ 5.7% (39 mmol/mol)]; normal HbA1c is HbA1c < 5.7%. 
Bold font indicates p < 0.05. Participants with any missing information for baseline characteristics were excluded. 
aLoss to follow-up or withdrawal from participation. 
bGDM testing was performed at median 25 weeks and 3 days of gestation (interquartile range 3 weeks and 4 days). To convert glucose mmol/l to mg/dl, multiply by 18.018.  
  cTo convert HbA1c percent to mmol/mol: IFCC HbA1c unit (mmol/mol) = [10.93 × DCCT/NGSP unit (%)] − 23.50.  
dTo convert C-peptide ng/ml to nmol/l, multiply by 0.331. 
BMI, body mass index; DCCT/NGSP, Diabetes Control and Complications Trial/National Glycohemoglobin Standardization Program; GDM, gestational diabetes mellitus; 
GWG, gestational weight gain; HbA1c, glycated hemoglobin; IFCC, International Federation of Clinical Chemistry and Laboratory Medicine; LGA, large-for-gestational-age; 
SD, standard deviation. 
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S5 Table: Late-pregnancy dysglycemia in obese, GDM-positive mothers and offspring outcomes. 

Child outcome Control group (obese, 
GDM+, normal HbA1c) 

Maternal late-pregnancy 
dysglycemia (obese, GDM+, 
high HbA1c) 

N Mean (95% CI) N Mean increment Δ (95% 
CI) with respect to 
control group 

At deliverya     
Birth weight, g 165 3,440 (3,368 to 3,511) 136 103 (−4 to 211) 
Cord-blood C-peptide, ng/mlb 158 0.57 (0.51 to 0.63) 128 0.04 (−0.07 to 0.14) 
Long-term follow-upc:  
BMI z-score change per yeard 321 −0.04 (−0.15 to 0.05) 255 −0.003 (−0.14 to 0.15) 
BMI z-score at 4 yearse 58 0.55 (0.24 to 0.86) 37 0.07 (−0.38 to 0.51) 

Mean increments in offspring outcomes by high maternal HbA1c (≥5.7% [39 mmol/mol]) at delivery are 
shown relative to the obese, GDM+, normal HbA1c group.  
aBased on linear regression models, adjusted for maternal pre-conception BMI, total gestational weight 
gain, maternal smoking at any time during pregnancy, and sex of the child.  
bTo convert C-peptide ng/ml to nmol/l, multiply by 0.331. 
cAdjusted for maternal pre-conception BMI, total gestational weight gain, maternal smoking at any time 
during pregnancy, and exclusive breastfeeding ≥1 month. 
dBased on linear mixed-effects model. 
eBased on linear regression model. 
BMI, body mass index; CI, confidence interval; GDM, gestational diabetes mellitus; HbA1c, glycated 
hemoglobin. 
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S6 Table: Comparison of relevant characteristics in obese, GDM-negative women with available and missing 
maternal follow-up visit 3.5 years postpartum.  
Maternal follow-up visit  Obese, GDM−, normal HbA1c Obese, GDM−, high HbA1c 
3.5 years postpartum Available Missinga p-value Available Missinga p-value 
Maternal characteristics during pregnancy  
N 86 17  37 12  
Pre-conception BMI, kg/m2 36.6 (4.7) 34.8 (3.7) 0.083 36.4 (5.1) 37.9 (5.5) 0.41 

Fasting glucose at GDM testing, mmol/lb 4.42 (0.41) 4.48 (0.46) 0.69 4.54 (0.36) 
4.47 

(0.18) 
0.45 

Smoking at any time during pregnancy 16 (18.6%) 6 (35.3%) 0.23 11 (29.7%) 4 (33.3%) 1 
Maternal characteristics at delivery  
Total GWG, kg 12.1 (7.2) 13.8 (6.4) 0.35 13.6 (6.8) 12.8 (8.3) 0.76 

Excessive third-trimester GWG 65 (75.6%) 13 (7.5%) 0.34 32 (86.5%) 
10 

(83.3%) 
0.24 

Third-trimester GWG, kg 4.9 (3.1) 6.4 (4.8) 0.24 4.9 (2.3) 6.8 (4.4) 0.18 
HbA1c at delivery, percentc 5.3 (0.3) 5.3 (0.2) 0.72 5.9 (0.2) 6.0 (0.2) 0.10 
Child characteristics at birth 
Sex: female 36 (41.9%) 8 (47.1%) 0.90 15 (40.5%) 7 (58.3%) 0.46 

Birth weight, g 3,481 (448) 3,263 (570) 0.15 3,536 (501) 
3,678 
(440) 

0.41 

Birth weight: LGA 7 (8.1%) 0 (0%) 0.17 4 (10.8%) 2 (16.7%) 0.54 

Cord-blood C-peptide, ng/mld 0.51 (0.32) 0.64 (0.38) 0.22 0.52 (0.36) 
0.79 

(0.49) 
0.10 

Breastfeeding (exclusive), ≥1 month 51 (59.3%) 7 (41.2%) 0.35 13 (35.1%) 6 (50.0%) 0.55 

Data are mean (SD) or n (%), Student’s t test for continuous and 2 test for categorical variables. High HbA1c is HbA1c 
≥ 5.7% (39 mmol/mol)]; normal HbA1c is HbA1c < 5.7%. Participants with any missing values for baseline 
characteristics were excluded. 
aLoss to follow-up or withdrawal from participation. 
bGDM testing was performed at median 25 weeks and 3 days of gestation (interquartile range 3 weeks and 4 days). 
To convert glucose mmol/l to mg/dl, multiply by 18.018.  
cTo convert HbA1c percent to mmol/mol: IFCC HbA1c unit (mmol/mol) = [10.93 × DCCT/NGSP unit (%)] − 23.50. 
dTo convert C-peptide ng/ml to nmol/l, multiply by 0.331. 
BMI, body mass index; DCCT/NGSP, Diabetes Control and Complications Trial/National Glycohemoglobin 
Standardization Program; GDM, gestational diabetes mellitus; GWG, gestational weight gain; HbA1c, glycated 
hemoglobin; IFCC, International Federation of Clinical Chemistry and Laboratory Medicine; LGA, large-for-
gestational-age; SD, standard deviation.  
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Predicting the earliest deviation in weight 
gain in the course towards manifest overweight 
in offspring exposed to obesity in pregnancy: 
a longitudinal cohort study
Delphina Gomes1†, Lien Le1†, Sarah Perschbacher1, Nikolaus A. Haas2, Heinrich Netz2, Uwe Hasbargen3, 
Maria Delius3, Kristin Lange4, Uta Nennstiel5, Adelbert A. Roscher6, Ulrich Mansmann1† and 
Regina Ensenauer1,7*†  

Abstract 

Background: Obesity in pregnancy and related early-life factors place the offspring at the highest risk of being over-
weight. Despite convincing evidence on these associations, there is an unmet public health need to identify “high-
risk” offspring by predicting very early deviations in weight gain patterns as a subclinical stage towards overweight. 
However, data and methods for individual risk prediction are lacking. We aimed to identify those infants exposed to 
obesity in pregnancy at ages 3 months, 1 year, and 2 years who likely will follow a higher-than-normal body mass 
index (BMI) growth trajectory towards manifest overweight by developing an early-risk quantification system.

Methods: This study uses data from the prospective mother-child cohort study Programming of Enhanced Adipos-
ity Risk in CHildhood–Early Screening (PEACHES) comprising 1671 mothers with pre-conception obesity and without 
(controls) and their offspring. Exposures were pre- and postnatal risks documented in patient-held maternal and child 
health records. The main outcome was a “higher-than-normal BMI growth pattern” preceding overweight, defined as 
BMI z-score >1 SD (i.e., World Health Organization [WHO] cut-off “at risk of overweight”) at least twice during consecu-
tive offspring growth periods between age 6 months and 5 years. The independent cohort PErinatal Prevention of 
Obesity (PEPO) comprising 11,730 mother-child pairs recruited close to school entry (around age 6 years) was avail-
able for data validation. Cluster analysis and sequential prediction modelling were performed.

Results: Data of 1557 PEACHES mother-child pairs and the validation cohort were analyzed comprising more than 
50,000 offspring BMI measurements. More than 1-in-5 offspring exposed to obesity in pregnancy belonged to an 
upper BMI z-score cluster as a distinct pattern of BMI development (above the cut-off of 1 SD) from the first months of 
life onwards resulting in preschool overweight/obesity (age 5 years: odds ratio [OR] 16.13; 95% confidence interval [CI] 
9.98–26.05). Contributing early-life factors including excessive weight gain (OR 2.08; 95% CI 1.25–3.45) and smoking 
(OR 1.94; 95% CI 1.27–2.95) in pregnancy were instrumental in predicting a “higher-than-normal BMI growth pattern” 
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Background
Global rates of childhood obesity have increased dra-
matically [1]. Children with overweight or obesity are at 
high risk of maintaining overweight or obesity in adult-
hood and developing morbidities including type 2 dia-
betes (T2D), hypertension, and cardiovascular disease 
[2]. Recent evidence supports that the greatest accel-
eration in the child’s body mass index (BMI) growth 
related to sustained obesity occurs between the age of 
2 and 6 years [3], suggesting that this period is critical 
for establishing long-term growth patterns. Before this 
period, in the “developmentally plastic” first 2 years of 
life [4], rapid postnatal weight gain has been shown to 
be associated with later overweight and obesity [5].

As one of the most important risk factors [6, 7], pre-
conceptional maternal overweight and obesity, which 
affect up to 70% of pregnant women worldwide [8] and 
about 40% in Germany (obesity 16.4%) [9], contrib-
ute to an average 2- to 6-fold increased risk of over-
weight or obesity in the offspring. This effect depends 
on the severity of maternal obesity and the age of the 
child (ranging from odds ratio [OR] 2.35, 95% confi-
dence interval [CI] 2.14–2.59 at age 2–5 years to OR 
5.98, 95% CI 4.50–7.94 at age 10–18 years) [10]. Dur-
ing pregnancy, women with obesity are 2.5 times 
more likely to experience excessive gestational weight 
gain (GWG) [11, 12] and have a 3- to 5.5-fold higher 
chance of developing gestational diabetes (GDM) [13] 
than women with normal weight. After delivery, more 
than one third of mothers with overweight/obesity do 
not initiate breastfeeding [14], all representing specific 
single risk factors for childhood overweight. Circum-
stantial observations showed that maternal obesity and 
the presence of additional prenatal and/or postnatal 
factors, such as excessive GWG, no or short duration 
of breastfeeding, and unfavorable childhood eating 
habits, confer a substantially higher risk of overweight 
in offspring than maternal obesity alone [15–17]. This 
suggests that consideration of multiple and cumulative 
modifiable risk factors emerging across the very early-
life span [18, 19] may help to design overweight preven-
tion strategies for offspring of mothers with obesity.

Despite overwhelming evidence for associations of 
such risk factors with childhood overweight and obe-
sity [20, 21], there is an unmet public health need to 
identify vulnerable infants who are at highest risk of 
gaining more weight than expected prior to the mani-
festation of overweight. Previous studies have focused 
on the prediction of manifest overweight/obesity in 
preschool and school-age children, mainly for use at a 
given age [22]. However, sequential prediction of the 
earliest deviations in weight gain patterns that precede 
the manifestation of overweight is not yet achieved on 
an individual level because of the lack of underpin-
ning data on longitudinal BMI development and con-
tributing predictors to develop such an approach. This 
would require a dynamic prediction-guided prevention 
strategy with serial risk assessments for “high-risk” off-
spring, such as those exposed to obesity in pregnancy.

In this study, we first evaluated longitudinal BMI 
growth patterns in offspring of mothers with obesity 
versus those of mothers without obesity. Secondly, a 
“higher-than-normal BMI growth pattern” was uti-
lized as the endpoint, in order to define a still pre-
symptomatic at-risk status for taking a course towards 
“manifest overweight.” Furthermore, we used well-
documented risk associations to analyze potential 
contributions to the risk of developing this endpoint. 
The identified contributors were then condensed into 
a novel risk quantification system to identify those 
offspring from pregnancies with obesity who are at 
increased risk of higher-than-normal BMI growth. 
Finally, we embedded this prediction system into a pub-
lic health approach utilizing the setting of well-child 
visits for early preventive interventions. We used a 
unique and comprehensive set of longitudinal data from 
the high-risk cohort Programming of Enhanced Adi-
posity Risk in CHildhood–Early Screening (PEACHES) 
of mothers with obesity and their offspring and exter-
nally validated our findings in the population-based 
mother-child cohort PErinatal Prevention of Obesity 
(PEPO).

at age 3 months and re-evaluating the risk at ages 1 year and 2 years (area under the receiver operating characteristic 
[AUROC] 0.69–0.79, sensitivity 70.7–76.0%, specificity 64.7–78.1%). External validation of prediction models demon-
strated adequate predictive performances.

Conclusions: We devised a novel sequential strategy of individual prediction and re-evaluation of a higher-than-nor-
mal weight gain in “high-risk” infants well before developing overweight to guide decision-making. The strategy holds 
promise to elaborate interventions in an early preventive manner for integration in systems of well-child care.

Keywords: Maternal pre-conception obesity, Early weight gain, BMI growth, Infancy, Sequential prediction, Repeated 
risk assessment, Subclinical stage, Early prevention
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Methods
Study design and populations
PEACHES is an ongoing prospective mother-child 
cohort study of 1671 pregnant women, mainly with 
obesity (n = 949, 56.8%), designed to investigate the 
long-term consequences of maternal pre-conception 
obesity on the development of overweight and related 
metabolic diseases in mothers and their offspring [23, 
24]. Pregnant women were prospectively recruited 
during their first visit to maternity clinics (4–6 weeks 
before due date) in 23 hospitals mainly in the Munich 
area, Bavaria (southern Germany), and also in the Uni-
versity Hospital of Düsseldorf (western Germany) and 
parts of northern Germany between 2010 and 2015 
[24]. Inclusion criteria in the PEACHES cohort were 
maternal age ≥18 years, singleton pregnancy, gesta-
tional age at birth ≥37 weeks, pre-conception BMI 
≥30 kg/m2, and absence of preexisting type 1 diabetes 
(T1D) or T2D [25]. The cohort also includes moth-
ers with normal weight, both with and without GDM, 
recruited as control groups [24], and a smaller pro-
portion of overweight (and a minor number of under-
weight) mothers. In case the pregnancy record booklet 
was not ready to hand at recruitment, the mothers were 
re-categorized into BMI groups based on measured and 
recorded weight values as soon as the pregnancy record 
booklet became available, leading to reclassification 
of some women into overweight or underweight BMI 
categories [26], respectively. The study protocol of the 
PEACHES cohort was published elsewhere [24].

Data from the independent German mother-child 
cohort PEPO [27, 28] were used for validation. In the 
PEPO cohort, 11,730 children and their mothers were 
recruited from October 2009 to June 2011 prior to 
the mandatory school entry health examinations in 
6 widely distributed geographical regions in Bavaria, 
southern Germany, both urban and rural. Inclusion cri-
terion in the PEPO cohort was age of the child close to 
school entry (around 6 years). Parents and their chil-
dren were invited by mail to participate via leaflets.

The local ethics committee of the Ludwig-Maxi-
milians-Universität München, Germany, approved 
the cohort studies. Written informed consent was 
provided by all participants. The results from this 
study were analyzed and reported in accordance 
with the STrengthening the Reporting of OBserva-
tional studies in Epidemiology (STROBE) [29] and 
Transparent Reporting of a multivariable prediction 
model for Individual Prognosis Or Diagnosis (TRI-
POD) [30] guidelines (Additional file 1: S1 STROBE 
Checklist, S2 TRIPOD Statement). Data for the anal-
yses were retrieved from the PEACHES and PEPO 
databases in April 2020.

Procedures
Inclusion criteria for analysis
Mothers included in the analysis were mothers with or 
without pre-conception obesity, were not diagnosed 
with T1D/T2D, and had a full-term (≥37 weeks 0 days 
of gestation) singleton live birth. For all analyses in each 
of the cohort datasets, we combined mothers with nor-
mal weight and overweight into the category “mothers 
without obesity” (<30 kg/m2), which served as a con-
trol group, as reported by others [31, 32]. Underweight 
women (PEACHES, n = 17; PEPO, n = 392) were 
excluded from the analyses.

Potential predictors of higher‑than‑normal BMI growth
In the PEACHES cohort study, data were obtained 
mainly from patient-held maternal and child health 
records (i.e., pregnancy record booklet and well-child 
booklet) for variables including maternal BMI at con-
ception, total GWG, blood glucose concentrations for 
diagnosing GDM, parity, offspring sex and birth weight, 
and child anthropometric data. Data on maternal smok-
ing during pregnancy, parental socioeconomic status 
(SES), and breastfeeding were gathered through ques-
tionnaires using questions from the “German Health 
Interview and Examination Survey for Children and 
Adolescents” (KiGGS) cohort study [33]. Information 
relating to prenatal factors was collected retrospectively 
shortly after delivery, mainly from documentation in the 
health records or via questionnaire and/or a standardized 
physician-administered telephone interview (e.g., smok-
ing during pregnancy) [24]. In the PEPO cohort study, 
at the time of the health exam prior to primary school 
entry at around age 6 years, families were requested to 
fill out a detailed questionnaire, also containing questions 
from the KiGGS study [33]. In addition, trained study 
nurses copied all weight-related maternal and offspring 
data from the pregnancy record and well-child booklets, 
respectively.

Potential prenatal and postnatal risk predictors of 
higher-than-normal BMI growth were selected accord-
ing to their known literature-based associations with 
offspring growth [34] and/or obesity [21, 35] and the 
availability of the data in both cohorts: maternal pre-
conception BMI group, total GWG, GDM, parity, smok-
ing during pregnancy, sex, birth weight category for 
gestational age and sex, SES, breastfeeding status at 1, 
3, and 6 months, and offspring BMI status at the time of 
prediction.

Data on maternal pre-conception BMI was obtained 
at the time of recruitment from the pregnancy record 
booklet in both the PEACHES and the PEPO cohort 
studies. The pregnancy record booklet contains detailed 
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information on ultrasound checkups, laboratory assess-
ments, and weight measurements at multiple times col-
lected by the obstetrician during antenatal care visits 
[24]. We used the BMI measured at the first antenatal 
visit as a surrogate for “pre-conception BMI” based on 
studies showing only a minimal difference between pre-
conception weight self-reported and weight measured at 
the earliest antenatal visit during the first trimester [27, 
36] and through own analyses (Additional file 1: Text S2, 
paragraph 1.1) [37]. In the PEACHES cohort, BMI was 
based on maternal weight and height measured (in light 
clothing and without shoes) by trained medical personnel 
at the first antenatal visit in the physicians’ offices, if the 
visit was before 12 weeks 6 days of gestation (PEACHES 
92.4%, mean 9 weeks [SD 2 weeks] of gestation; PEPO 
88.5%, mean 8 weeks [SD 2 weeks] of gestation). If the 
first antenatal visit was later than the 13th week of ges-
tation (PEACHES 7.6%, PEPO 11.5%), pre-conception 
weight and height data as reported by the woman and 
documented at the first antenatal visit was abstracted 
from the pregnancy record booklet to calculate the pre-
conception BMI.

Maternal pre-conception BMI groups were defined 
according to World Health Organization (WHO) catego-
ries [26] in both the PEACHES and PEPO cohort stud-
ies: normal weight (BMI 18.5 to 24.9 kg/m2), overweight 
(BMI 25.0 to 29.9 kg/m2), or obese (BMI ≥30.0 kg/m2). 
Mothers with obesity were further classified according 
to the severity of obesity, which included class 1 obesity 
(BMI 30.0 to 34.9 kg/m2), class 2 obesity (BMI 35.0 to 
39.9 kg/m2), and class 3 obesity (BMI ≥40.0 kg/m2).

Total GWG was calculated using serial weight meas-
urement data, which were documented in the pregnancy 
record booklet by the consulted physician throughout 
pregnancy [27]. Total GWG was defined as the difference 
between the last measured weight before delivery and 
pre-conception weight as defined above and was catego-
rized as inadequate, adequate, or excessive according to 
the 2009 BMI-specific recommendations of the Institute 
of Medicine (now known as the National Academy of 
Medicine)/National Research Council [38].

GDM was defined as “diabetes diagnosed in the sec-
ond or third trimester of pregnancy that was not clearly 
overt diabetes prior to gestation” [39]. All women of 
the PEACHES cohort who met the inclusion criteria 
for analysis had GDM testing by undergoing a 50-g glu-
cose challenge test (GCT) or a 75-g oral glucose toler-
ance test (OGTT) during the second or third trimester 
of pregnancy (median 25 weeks 5 days, interquartile 
range [IQR] 3 weeks 1 day) [39, 40]. Diagnosis of GDM 
in the PEACHES cohort was based on blood glucose con-
centrations obtained either from the pregnancy record 
booklet or from laboratory test reports provided by the 

obstetrician. The GDM test was defined as positive when 
one or more of the three glucose concentrations of a 75-g 
OGTT met or exceeded the reference values according to 
the International Association of Diabetes and Pregnancy 
Study Groups (IADPSG) criteria (1-step procedure): fast-
ing glucose ≥5.1 mmol/l (92 mg/dl), 1-h post-load glu-
cose ≥10 mmol/l (180 mg/dl), or 2-h post-load glucose 
≥8.5 mmol/l (153 mg/dl) [41]. In the 2-step procedure, a 
positive 50-g GCT (defined as 1-h post-load glucose con-
centration ≥7.8 mmol/l [140 mg/dl] [39]) was followed 
by a 75-g OGTT according to the IADPSG diagnostic 
criteria [41]. In the PEPO cohort, women reported the 
presence of GDM at the time of the school entry health 
examinations [42] by answering the question: “Was dia-
betes newly diagnosed in pregnancy prompting dietary 
or insulin treatment?”. At the time of the mothers’ preg-
nancies, GDM testing was performed between 24 weeks 
0 day and 28 weeks 0 day of gestation according to the 
recommendations of the German Diabetes Association 
at the time of the study [43], which were comparable to 
those of the American Diabetes Association at that time 
[44]. All women with a diagnosis of GDM had received 
recommendations on treatment with insulin and/or diet, 
had been advised on weight gain goals, and had been 
monitored until the end of pregnancy by their treating 
physicians.

Data on maternal smoking were obtained retrospec-
tively through two independent data sources in the 
PEACHES cohort (questionnaire sent to each participant 
and telephone interview, both carried out shortly after 
delivery) and by questionnaire alone in the PEPO cohort. 
Reported maternal smoking during pregnancy and/or the 
postpartum phase were categorized as “any time” versus 
“no time” [27].

Information on parity was abstracted from the preg-
nancy record booklet and categorized as primiparous 
(one child) or multiparous (more than one child) [45].

Data on offspring sex and birth weight were abstracted 
from the well-child booklets [24]. Birth weight adjusted 
for gestational age and sex was categorized as large-
for-gestational-age (LGA; >90th percentile), average-
for-gestational-age (AGA; 10th to 90th percentile), or 
small-for-gestational-age (SGA; <10th percentile) based 
on the German reference population [46].

Parental SES at birth was defined using an addi-
tive index based on maternal and paternal educational 
background and current type of maternal and paternal 
employment [47]. Information on parental education 
and parental employment was collected using a question-
naire, either sent to each participant in the PEACHES 
cohort or completed at the school entry health exam in 
the PEPO cohort. Educational background was catego-
rized as “low” (<10 years of formal education [score: 1]), 
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“medium” (10 years of formal education [score: 2]), or 
“high” (>10 years of formal education [score: 3]). Type of 
employment was categorized as “not employed” (score: 1) 
or “at least part-time employed” (score: 2). The parental 
scores of educational background and employment sta-
tus were added to derive the total parental score or SES, 
which was categorized as “low/medium” (total parental 
score ≤8) or “high” (total parental score > 8).

Breastfeeding data at each time point including ages 
1 month, 3 months, and 6 months were obtained retro-
spectively through questionnaires in both the PEACHES 
(at child’s ages 6 weeks and 1 year) and the PEPO cohorts 
and dichotomized as “not full” or “full.” “Full” includes 
both exclusive and predominant breastfeeding [48], 
where “predominant” means that the infant’s main source 
of nourishment during that time was breastmilk and that 
the infant may also have received water, water-based 
drinks, fruit juice, drops, or syrups [49].

Growth outcomes until age 5 years
In both the PEACHES and the PEPO cohort studies, 
child anthropometric data were abstracted from records 
of the regular well-child visits conducted by trained pedi-
atricians and other professionals of the preventive health 
program offered to all children in Germany. In addition, 
anthropometric measurements were taken by trained 
study nurses during the school entry health exam of the 
PEPO children, including weight, height, and waist cir-
cumference, and carried out three times under standard-
ized conditions [27].

In the PEACHES cohort, data from up to 9 consecutive 
measurements of weight and length/height were avail-
able during the first 5 years of life. These 9 measurements 
were collected at birth, the 1-month visit (ages 4 to 5 
weeks), 3-month visit (ages 3 to 4 months), 6-month visit 
(ages 6 to 7 months), 1-year visit (ages 10 to 12 months), 
2-year visit (ages 21 to 24 months), 3-year visit (ages 34 
to 36 months), 4-year visit (ages 46 to 48 months), and 
5-year visit (ages 60 to 64 months). The PEPO cohort 
consisted of a maximum of 4 measurements from both 
the well-child visits (i.e., at birth, 1-year visit, and 2-year 
visit) and the school entry health examination.

Consecutive age- and sex-specific BMI z-scores (WHO 
Child Growth Standards) [50, 51] were calculated to 
first identify (i) upper BMI growth clusters and (ii) off-
spring with overweight/obesity at ages 4 and 5 years, 
respectively. We defined offspring weight status at each 
time point using the WHO BMI z-score categoriza-
tions including >1 to ≤2 SD, >2 to ≤3 SD, >3 SD as “at 
risk of overweight,” “overweight,” and “obesity,” respec-
tively, for children aged ≤60 months [51]. For children 
≥61 months, we defined “overweight” and “obesity” as 
>1 to ≤2 SD and >2 SD, respectively. The category “BMI 

z-score >1 SD” included offspring “at risk of overweight,” 
with overweight, or with obesity [51]. We assumed that 
within a normally distributed population of offspring, 
15% of offspring will be above the WHO BMI z-score 
cut-off of 1 SD [50].

Next, as the main study outcome, we used “higher-
than-normal BMI growth pattern” preceding over-
weight, which we defined as exceeding the BMI z-score 
cut-off >1 SD at least twice in relevant offspring growth 
phases between 6 months and 5 years of age. Within this 
time window, we defined “early phase” and “late phase” 
as the period between 6 months to 2 years and 3 years 
to 5 years, respectively. Each growth phase contained 
three follow-up time points of BMI z-score assessments 
from well-child visits (early phase: 6-month, 1-year, and 
2-year follow-ups; late phase: 3-year, 4-year, and 5-year 
follow-ups).

Statistical analysis
The statistical analysis plan for all analyses can be found 
in the Text S1 (Additional file 1) [38, 46, 51]. We used the 
PEACHES cohort to search for structures and develop 
prediction models and performed sample size calcula-
tions to determine the appropriate size of the validation 
cohort. Internal and external validation was performed. 
Missing data were handled as missing completely at ran-
dom since missing data relate to the timing of recruit-
ment into the PEACHES cohort (i.e., offspring were too 
young to have their well-child follow-up at the time of 
data retrieval). Follow-up drop-out in offspring mainly 
occurred because of moving away from the study area 
(Additional file 1: Table S1). Given the small proportions 
of missing values in child follow-up data (PEACHES: 7%, 
PEPO: 4%, Additional file 1: Table S1), we could not iden-
tify factors related to the drop-out of participants and 
hence did not apply missing at random or informative 
missing principles.

To identify distinct BMI growth patterns from birth 
to 5 years of age, we performed a k-means cluster analy-
sis on the longitudinal data of children of mothers with 
obesity (target group) and those of mothers without obe-
sity (control group), respectively, as a non-parametric 
explorative analysis. We explored simultaneous effects of 
prenatal and postnatal factors on the endpoint “higher-
than-normal BMI growth pattern” in offspring from birth 
to 5 years of age and during the early and late phases sep-
arately by logistic regression (including the early-phase 
BMI growth pattern as a potential factor influencing the 
late-phase pattern).

The predictive potential of prenatal and postnatal fac-
tors on the offspring’s “higher-than-normal BMI growth 
pattern” was examined using penalized logistic regres-
sion (least absolute shrinkage and selection operator 
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[LASSO]) to develop consecutive prediction models and 
risk scoring during well-child visits at age 3 months, 1 
year, and 2 years. Models were optimized according to 
their discriminative power (area under the receiver oper-
ating characteristic [AUROC]) by internal cross-valida-
tion. Risk scores were based on linear predictors from 
logistic regression. All prediction models were externally 
validated in the PEPO cohort. Calibration plots were 
based on Steyerberg et al. [52]. Data were analyzed using 
R software, version 3.5.1. Additional details on all statisti-
cal methods are available in the Text S2 (Additional file 1) 
[37, 51, 53–65]. Information on the quantification of 
individual risk including the development of risk scoring 
and risk probability assessment is provided in the Text S3 
(Additional file 1).

Results
Characteristics of study populations
A total of 1557 women (n = 887 [57.0%] with obesity and 
n = 670 [43.0%] without obesity) of the PEACHES cohort 
and 9874 women (n = 917 [9.3%] with obesity and n = 
8957 [90.7%] without obesity) of the PEPO cohort were 
included in our analyses (Fig. 1, Table 1). The proportion 

of women excluded from the analyses due to missing data 
is <1% in the PEACHES cohort and 3.3% in the PEPO 
cohort (Fig. 1).

Baseline characteristics of mothers with and with-
out obesity and their children are presented in Table  1. 
Among the mothers without obesity in the PEACHES 
cohort, 442 (66%) were normal weight and 228 (34%) 
were overweight, whereas in the PEPO cohort, 6808 
(76%) were normal weight and 2149 (24%) were over-
weight. There was good agreement (98.7%, n = 
1218/1234) between pre-conception weight self-reported 
and weight measured at the earliest antenatal visit (mean 
9 weeks [SD 2 weeks] of gestation) of the PEACHES 
women (correlation coefficient 0.988), similar to data of 
the PEPO cohort [27].

Compared to control mothers without obesity, moth-
ers with obesity in each cohort had higher percent-
ages of LGA birth weight and shorter durations of full 
breastfeeding. Among women with obesity in each of 
the cohorts, despite having a lower mean total GWG, 
there was a higher proportion of excessive GWG accord-
ing to the BMI-specific cut-offs [38] than among women 
without obesity. The proportion of GDM among women 

Discovery Cohort Validation Cohort 

Women enrolled in the  
PEACHES cohort 

(n=1671) 

Women enrolled in the  
PEPO cohort 

(n=11,730) 

Inclusion criteria for analysis not meta (n=110) 
or data on inclusion criteria not available (n=4) 

Inclusion criteria for analysis not meta (n=1520) 
or data on inclusion criteria not available (n=336) 

Mothers with and without obesity 
(n= 9874) 

Mothers with and without obesity 
(n=1557) 

Mothers with and without obesity and with complete 
data on covariates and child follow-ups 

Prediction at age 3 months: n=1278 

Prediction at age 1 year: n=1160 

Prediction at age 2 years: n=1153 

Mothers with and without obesity and with complete 
data on covariates and child follow-upsd 

Prediction at age 1 year: n=7191 

Prediction at age 2 years: n=7098 

Age 3 monthsc (n=252) 
Age 1 yearc (n=370) 
Age 2 yearsc (n=377) 

Cluster analysesb Missing child follow-ups (n=27) 

Mothers with and without obesity 
(n=1530) 

Missing covariates or 
follow-up  

Age 1 yearc (n=2683) 
Age 2 yearsc (n=2776) 

Missing covariates or 
follow-up  

Prediction analyses 

Fig. 1 Flow chart of the study populations. aDid not meet inclusion criteria for analysis, i.e., pre-conception obesity, overweight, or normal weight, 
full-term (≥37 weeks 0 days of gestation) singleton live birth, or absence of T1D/T2D. bIdentification of BMI growth clusters was not performed in 
the PEPO cohort due to limited offspring follow-up time points. BMI growth clusters identified in the PEACHES cohort were validated in the PEPO 
cohort. cMissing information on at least one of the potential prenatal and postnatal predictors including maternal pre-conception BMI group, 
total GWG, GDM, parity, smoking during pregnancy, sex, birth weight category for gestational age and sex, SES, breastfeeding status at 1, 3, and 6 
months, and/or on offspring BMI status at the respective prediction time point. dExternal validation of prediction models at age 3 months was not 
performed due to unavailability of offspring BMI data at age 3 months in the PEPO cohort. BMI, body mass index; GDM, gestational diabetes; GWG, 
gestational weight gain; PEACHES, Programming of Enhanced Adiposity Risk in CHildhood–Early Screening; PEPO, PErinatal Prevention of Obesity; 
SES, socioeconomic status; T1D, type 1 diabetes; T2D, type 2 diabetes
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Table 1 Characteristics of the study populations

Values are mean (SD), median (IQR), or n (%). Participants with any missing information for baseline characteristics were excluded

BMI, body mass index; GDM, gestational diabetes; GWG , gestational weight gain; IQR, interquartile range; NA, not available; PEACHES, Programming of Enhanced 
Adiposity Risk in CHildhood–Early Screening; PEPO, PErinatal Prevention of Obesity
a The group of mothers without obesity also comprises a group of normal weight mothers with GDM, recruited as one of the control groups, as reported previously 
[24]
b Follow-up anthropometric measurements at the well-child visits
c Data collected at the school entry health examination, which is an obligatory check-up for children eligible to enter primary school in the coming year (before 
turning 6 years old) and generally takes place after the 5-year well-child visit

Maternal/child characteristics Discovery cohort: PEACHES (n = 1557) Validation cohort: PEPO (n = 9874)

Mothers with obesity 
(n = 887)

Mothers without 
obesity (n = 670)

Mothers with obesity 
(n = 917)

Mothers without 
obesity (n = 
8957)

Maternal characteristics
 Age at conception, years 31.3 (5.3) 32.6 (5.3) 29.2 (4.9) 29.0 (5.3)

 Pre-conception BMI, mean (SD), kg/m2 37.0 (5.2) 24.0 (3.1) 34.1 (3.8) 23.1 (2.7)

 Pre-conception BMI, median (IQR), kg/m2 36.1 (7.3) 23.6 (4.8) 33.0 (3.8) 22.6 (4.8)

 Pre-conception BMI group

  Normal weight NA 442 (66.0) NA 6808 (76.0)

  Overweight NA 228 (34.0) NA 2149 (24.0)

  Obese class I 384 (43.3) NA 633 (69.0) NA

  Obese class II 278 (31.3) NA 200 (21.8) NA

  Obese class III 225 (25.4) NA 84 (9.2) NA

 GDM 321 (40.2) 359 (55.9)a 65 (7.2) 213 (2.4)

 Smoking at any time during pregnancy 250 (28.4) 110 (16.7) 146 (16.2) 977 (11.1)

 Primiparous 444 (50.1) 387 (57.8) 551 (62.3) 5648 (66.3)

 Socioeconomic status at birth, high 244 (31.0) 408 (69.6) 125 (14.2) 2519 (29.3)

 Total GWG, kg 10.9 (6.9) 13.0 (5.3) 10.3 (6.6) 13.8 (5.0)

 Total GWG 

  Adequate 218 (24.7) 237 (35.7) 197 (23.1) 3175 (38.4)

  Excessive 512 (58.0) 237 (35.7) 486 (57.1) 3171 (38.3)

     Inadequate 153 (17.3) 190 (28.6) 168 (19.7) 1925 (23.3)

Child characteristics
 Sex, female 420 (47.4) 351 (52.4) 450 (49.1) 4315 (48.2)

 Birth weight category

  Average-for-gestational-age 690 (77.8) 520 (77.6) 684 (76.6) 7070 (81.1)

  Large-for-gestational-age 101 (11.4) 45 (6.7) 130 (14.6) 677 (7.8)

  Small-for-gestational-age 96 (10.8) 105 (15.7) 79 (8.8) 971 (11.1)

 Full breastfeeding, at 1 month 430 (49.2) 470 (71.5) 521 (59.0) 6475 (74.4)

 Full breastfeeding, at 3 months 338 (38.9) 431 (66.5) 401 (46.1) 5381 (62.2)

 Full breastfeeding, at 6 months 156 (18.0) 185 (28.6) 198 (22.9) 2977 (34.8)

 Child age (months) at follow-upb

  At 1-month follow-up 1.1 (0.2) 1.1 (0.2) NA NA

  At 3-month follow-up 3.3 (0.5) 3.3 (0.5) NA NA

  At 6-month follow-up 6.3 (0.7) 6.3 (0.7) NA NA

  At 1-year follow-up 11.7 (0.9) 11.8 (0.8) 11.8 (0.8) 11.8 (0.8)

  At 2-year follow-up 23.9 (1.2) 24.0 (1.2) 23.8 (1.2) 23.9 (1.1)

  At 3-year follow-up 36.1 (1.1) 36.2 (1.1) NA NA

  At 4-year follow-up 48.2 (1.4) 48.2 (1.3) NA NA

  At 5-year follow-up 62.3 (2.2) 62.1 (1.7) 69.9 (4.8)c 69.7 (4.4)c
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with obesity in the PEACHES cohort was 40% as in other 
studies [66], considering the average maternal age of > 30 
years as an additional risk factor, whereas in the PEPO 
cohort this number was only 7.2% resulting from former 
less stringent criteria for diagnosing GDM [43, 44]. The 
mean (SD) age at child follow-up in each cohort is pro-
vided in Table 1. The median number of available follow-
up data from the well-child visits was 9 (IQR 1) in the 
PEACHES cohort and 4 (IQR 1) in the PEPO cohort.

Data on demographic characteristics of mothers 
enrolled in the PEACHES and PEPO cohorts (Table  1) 
are similar to the German estimates, including maternal 
age (Germany: mean 31.6 years at birth [67]) and propor-
tion of female offspring (Germany 48.6% [9]). The pro-
portion of mothers belonging to a low SES at birth was 
18.1% in the PEACHES cohort (Germany 20.1% [68]), 
whereas more women of the PEPO cohort had a low SES 
(32.9%). Furthermore, the proportion of children with 
overweight/obesity was higher in the PEACHES cohort 
as a total (age 3 years 7.2%) than the German (3.3%) [69] 
or PEPO (4.5%) estimates, based on the specific recruit-
ment of mothers with obesity, whereas the proportions 
were similar when compared to only the children of 
mothers without obesity in the PEACHES cohort (3.2%).

BMI growth patterns in offspring
The overall follow-up rate was 93% in PEACHES children 
and 96% in PEPO children providing 12,699 and 38,022 
consecutive anthropometric measurements, respectively 
(Additional file 1: Table S1). Individual BMI growth pat-
terns among PEACHES offspring of mothers with obesity 
(Fig. 2A) and mothers without obesity (controls) (Fig. 2B) 
allowed identification of two distinct BMI growth pat-
terns from birth to 5 years of age (Fig. 2C, D, Additional 
file 1: Table S2). Among offspring of mothers with obe-
sity, 21% (185/875) belonged to the upper growth clus-
ter showing steep mean BMI z-score increments from 
birth onwards resulting in an early crossing of the WHO 
BMI z-score cut-off >1 SD at age 6 months and a growth 
peak at age 2 years (Fig.  2C). Across the subsequent 3 
years, the mean BMI z-score leveled off (1.79 SD) result-
ing in overweight and obesity at 4 years (OR 44.56, 95% 
CI 20.64–96.17) and 5 years of age (OR 16.13, 95% CI 
9.98–26.05).

In contrast, among 27.9% (183/655) of offspring of 
mothers without obesity, the upper-cluster pattern 
showed crossing of the mean BMI z-score >1 SD at 1 year 
of age, which appeared to decrease after peak growth at 
age 2 years (1.27 SD) (Fig.  2D) but also contributed to 
preschool overweight and obesity (age 4 years: OR 31.86, 
95% CI 4.08–249.01 and age 5 years: OR 27.55, 95% CI 
11.88–63.88).

Among all children belonging to upper clusters 
(Fig. 2C, D), those exposed to gestational obesity were at 
much higher risk of having multiple occasions (≥5 times) 
of BMI z-score >1 SD from age 6 months onwards (OR 
5.09, 95% CI 2.99–8.68) or developing preschool over-
weight and obesity (age 4 years: OR 7.38, 95% CI 3.68–
14.81 and age 5 years: OR 4.90, 95% CI 2.80–8.59) than 
offspring of mothers without obesity (Additional file  1: 
Figure S1) [51].

In contrast to the patterns of upper BMI growth clus-
ters, the clusters of lower BMI growth showed similar 
dynamics from birth to age 2 years in the offspring of 
mothers with and without obesity and were below 1 SD 
throughout the entire period until 5 years of age (Fig. 2C, 
D, Additional file  1: Table  S2). However, the cluster of 
lower BMI growth in the offspring of mothers without 
obesity was lower than that observed in the offspring of 
mothers with obesity. Among all offspring of the clusters 
of lower BMI growth who were older than 2 years of age, 
those exposed to maternal obesity in pregnancy showed 
a plateau in mean BMI z-scores, whereas offspring of 
mothers without obesity showed a constant reduction 
in mean BMI z-scores, i.e., before the onset of adipos-
ity rebound. Adiposity rebound relates to a “period of 
dynamic changes in body composition” [70] and is equiv-
alent to the age of the nadir of a child’s BMI curve when 
the BMI starts to rise again [71].

Based on the BMI growth cluster group and BMI 
z-score in the 5-year-old PEACHES offspring, we vali-
dated BMI growth clusters in the PEPO cohort for the 
offspring of both mothers with obesity (AUROC 0.72) 
and without (AUROC 0.69).

Higher‑than‑normal BMI growth patterns in consecutive 
early‑life phases
Subsequently, we found that the upper BMI growth 
curves of offspring with LGA (40.2%, n = 39/97), AGA 
(19.6%, n = 131/669), and SGA (12.8%, n = 12/94) birth 
weights from mothers with obesity (Additional file  1: 
Figure S2A) converged at age 3 months and continued 
all at a similarly high BMI growth level until age 5 years 
(Additional file  1: Figure S3A, Figure S3B). Compara-
ble dynamics were seen in offspring of mothers without 
obesity (Additional file  1: Figure S2B, Figure S3C, Fig-
ure S3D). Based on these patterns leading to BMI con-
vergence at 3 months and subsequent levelling off after 2 
years in offspring of mothers with obesity, we determined 
the time points age 3 months to predict higher-than-nor-
mal BMI growth in the early phase and ages 1 year and 2 
years to predict the late phase, respectively.

Maternal pre-conception obesity influenced offspring 
BMI growth dynamics in the transition from early to 
late phase, e.g., twice as many offspring of mothers with 



Page 9 of 18Gomes et al. BMC Medicine          (2022) 20:156  

obesity developed or maintained a “higher-than-normal 
BMI growth pattern” when they reached the late phase 
(32.7%, n = 191/584) compared to offspring of mothers 
without obesity (16.8%, n = 72/428) (Additional file  1: 
Table S3) [51, 72].

Risk factors of higher‑than‑normal BMI growth
Next, we assessed prenatal and postnatal factors trig-
gering higher-than-normal BMI growth from birth until 
age 5 years and during early and late phases (Fig.  3, 
Additional file  1: Figure S4) [51]. Offspring exposed to 
the highest maternal pre-conception BMI in each of the 

groups of mothers with and without obesity were more 
likely to belong to the upper BMI growth cluster (Fig. 3A, 
Additional file  1: Figure S4A). Further, an LGA birth 
weight in offspring of mothers with obesity was a risk 
factor for a “higher-than-normal BMI growth pattern” in 
all growth phases studied between birth and age 5 years 
including both the early and late phases (Fig. 3A–C). In 
contrast, in offspring from pregnancies without obesity, 
an LGA birth weight influenced higher-than-normal BMI 
growth only in the early phase, not later on (Additional 
file 1: Figure S4B). An SGA birth weight was related to a 
lower BMI growth cluster in offspring of women without 
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Upper BMI growth cluster Lower BMI growth cluster

Individual BMI growth curves from birth to 5 years

Offspring age in months

(A) Mothers with obesity

Offspring age in months

(B) Mothers without obesity

Mean BMI growth clusters

Offspring age in months Offspring age in months

(C) Mothers with obesity (D) Mothers without obesity

Fig. 2 BMI growth patterns in young offspring of mothers with and without obesity. Shown are individual BMI z-score growth curves from birth 
to age 5 years in offspring of mothers with obesity (panel A) and without (panel B) enrolled in the PEACHES cohort study. Mean BMI z-score 
growth clusters along with their 95% CI are presented for offspring of mothers with obesity (panel C) and without (panel D). BMI, body mass index; 
PEACHES, Programming of Enhanced Adiposity Risk in CHildhood–Early Screening
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(B) Higher-than-normal BMI growth in the early phase (age 6 months to 2 years) 

Intercept

Excessive GWG 

0.13 (0.08, 0.21)

1.00 (0.52, 1.90)

1.82 (1.07, 3.09)

1.90 (1.02, 3.54)
Inadequate GWG 

SGA birth weight

LGA birth weight

2.08 (1.25, 3.45)

(C) Higher-than-normal BMI growth in the late phase (age 3 years to 5 years) 

Odds ratio

Intercept

Maternal smoking during pregnancy

Higher-than-normal BMI growth
in the early phase

SGA birth weight

LGA birth weight

0.17 (0.12, 0.23)

0.73 (0.37, 1.42)

1.36 (0.93, 2.00)

1.94 (1.27, 2.95)

2.43 (1.40, 4.22)

9.19 (5.87, 14.37)

Not full BF at 1 month

Multiparity

SGA birth weight

LGA birth weight

Intercept

(A) Upper BMI growth cluster (birth to age 5 years)

0.17 (0.11, 0.27)

2.58 (1.54, 4.34)

0.60 (0.29, 1.22)

0.72 (0.48, 1.07)

Not full BF at 1 month

0.73 (0.50, 1.09)

1.38 (0.91, 2.10)

Class 2 obesity at conception

GDM positive

Maternal smoking during pregnancy

1.39 (0.94, 2.06)

1.43 (0.90, 2.28)

Class 3 obesity at conception 1.86 (1.15, 2.99)

Fig. 3 Effects of prenatal and postnatal factors on BMI growth outcomes in offspring of mothers with obesity. Shown are ORs and 95% CI of 
the influence of prenatal and postnatal factors on the development of an upper cluster of BMI growth (birth to age 5 years, panel A) and a 
“higher-than-normal BMI growth pattern,” defined as BMI z-score >1 SD [51] at least twice, during early phase (6 months to 2 years, panel B) and 
late phase (3 to 5 years, panel C) in offspring of mothers with obesity enrolled in the PEACHES cohort study. Values were derived from multivariable 
logistic regression with stepwise backward selection. Only final models based on the lowest Akaike information criterion are presented. Included 
variables in all initial models were maternal pre-conception BMI group, total GWG, GDM, parity, smoking during pregnancy, sex, birth weight 
category for gestational age and sex, SES, breastfeeding status at 1 month. Additionally, for associations shown in panel C, “higher-than-normal 
BMI growth pattern” in the early phase was also included as an explanatory variable in the initial model. BMI, body mass index; BF, breastfeeding; 
CI, confidence interval; GDM, gestational diabetes; GWG, gestational weight gain; LGA, large-for-gestational-age; OR, odds ratio; PEACHES, 
Programming of Enhanced Adiposity Risk in CHildhood–Early Screening; SES, socioeconomic status; SGA, small-for-gestational-age
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obesity (Additional file 1: Figure S4A). Offspring of moth-
ers with obesity who were exposed to either excessive or 
inadequate GWG or smoking during pregnancy were 
likely to develop higher-than-normal BMI growth in the 
early phase or late phase, respectively (Fig. 3B, C). Lastly, 
regardless of maternal pre-conception obesity, higher-
than-normal BMI growth in the early phase strongly trig-
gered higher-than-normal BMI growth in the late phase 
(Fig. 3C, Additional file 1: Figure S4C).

Sequential prediction of higher‑than‑normal BMI growth
Using these risk factors showing differential effects on 
BMI growth in consecutive life phases after birth, we 
explored and externally validated their potential to pre-
dict early-phase and late-phase “higher-than-normal 
BMI growth patterns” at ages 3 months, 1 year, and 2 
years (Table 2, Additional file 1: Table S4) [51]. Based on 
these findings, we provide a workable approach for indi-
vidual risk score calculations and risk probability assess-
ment (Additional file  1: Text S3, Table  S5) [51]. Risk 
scores above or equal to the respective cut-offs indicate 
risk for higher-than-normal BMI growth.

The score based on the first risk quantification model 
applicable at age 3 months allowed a good prognosis 
of early-phase growth, and the cut-off value was opti-
mized to avoid false-negative findings: 70.7% of off-
spring of mothers with obesity with scores ≥− 1.689 will 
develop higher-than-normal BMI growth in the early 
phase (sensitivity) and 74.1% with scores <− 1.689 will 
not (specificity) (Table  2). The positive predictive value 
indicates that 40.5% of all offspring of mothers with obe-
sity identified as “at risk” at age 3 months will certainly 
develop a “higher-than-normal BMI growth pattern” in 
the early phase, and the negative predictive value indi-
cates that 91.0% of all offspring of mothers with obesity 
classified as being “not at risk” will indeed not develop 
a “higher-than-normal BMI growth pattern.” Further-
more, the positive likelihood ratio value of 2.73 indicates 
an increase (15%) [57] in the likelihood of developing a 
“higher-than-normal BMI growth pattern” in offspring 
identified as “at risk” by the prediction model at age 3 
months. The negative likelihood ratio value of 0.40 indi-
cates a decrease (20%) [57] in the likelihood of devel-
oping a “higher-than-normal BMI growth pattern” in 

Table 2 Predictive performance of a sequential algorithm to identify higher-than-normal BMI growth in offspring of mothers with 
obesity

We used the PEACHES cohort study as the discovery cohort and the PEPO cohort study as the external validation cohort for calculation of the individual child’s risk of 
a “higher-than-normal BMI growth pattern” (BMI z-score >1 SD [51] at least twice). Values are predictive parameters and their 95% CI

AUROC, area under the receiver operating characteristic; BMI, body mass index; CI, confidence interval; GDM, gestational diabetes; GWG , gestational weight gain; NA, 
not applicable; PEACHES, Programming of Enhanced Adiposity Risk in CHildhood–Early Screening; PEPO, PErinatal Prevention of Obesity; SES, socioeconomic status
a Potential predictors included: maternal pre-conception BMI group, total GWG, GDM, parity, smoking during pregnancy, sex, birth weight category for gestational 
age and sex, SES, breastfeeding status at 1 month, breastfeeding status at 3 months, and BMI z-score >1 SD at age 3 months. External validation of models at age 3 
months could not be performed due to the lack of follow-up data at age 3 months in the validation cohort PEPO
b Potential predictors included: maternal pre-conception BMI group, total GWG, GDM, parity, smoking during pregnancy, sex, birth weight category for gestational 
age and sex, SES, breastfeeding status at 1 month, breastfeeding status at 3 months, breastfeeding status at 6 months, and BMI z-score >1 SD at age 1 year. External 
validation of models at age 1 year was performed in the validation cohort PEPO
c Potential predictors included: maternal pre-conception BMI group, total GWG, GDM, parity, smoking during pregnancy, sex, birth weight category for gestational 
age and sex, SES, breastfeeding status at 1 month, breastfeeding status at 3 months, breastfeeding status at 6 months, and BMI z-score >1 SD at age 2 years. External 
validation of models at age 2 years was performed in the validation cohort PEPO
d Offspring with a risk score above or equal to the respective cut-off score value are considered to be at risk of developing a “higher-than-normal BMI growth pattern.” 
The cut-off value of the score was optimized to avoid false-negative findings (sensitivity), which resulted in negative cut-off score values

Predictive parameter Prediction at age 3  monthsa Prediction at age 1  yearb Prediction at age 2  yearsc

Higher‑than‑normal BMI growth 
in early phase (6 months–2 years)

Higher‑than‑normal BMI growth in 
late phase (3 years–5 years)

Higher‑than‑normal BMI growth in 
late phase (3 years–5 years)

Discovery cohort Discovery cohort Validation cohort Discovery cohort Validation cohort

N 711 645 670 640 666

AUROC 0.69 (0.66, 0.72) 0.73 (0.70, 0.75) 0.61 0.79 (0.76, 0.81) 0.71

Cut-off score  valued − 1.689 − 1.135 NA − 1.133 NA

Prevalence, n (%) 140 (20.0) 194 (30.8) 221 (33.0) 192 (30.0) 223 (33.5)

Sensitivity, % 70.7 (55.5, 82.3) 73.7 (67.6, 79.0) 68.1 (62.5, 73.2) 76.0 (70.0, 81.1) 61.0 (55.3, 66.5)

Specificity, % 74.1 (61.6, 83.6) 64.7 (58.2, 70.7) 58.2 (52.5, 63.7) 78.1 (72.9, 82.5) 68.0 (63.3, 72.4)

Positive predictive value, % 40.5 (26.5, 55.6) 48.2 (41.9, 54.5) 45.3 (40.1, 50.6) 60.7 (53.5, 67.4) 49.5 (43.6, 55.3)

Negative predictive value, % 91.0 (84.7, 95.0) 84.7 (80.2, 88.3) 78.2 (73.4, 82.4) 88.0 (84.5, 90.7) 77.2 (73.3, 80.8)

Positive likelihood ratio 2.73 (1.44, 5.03) 2.09 (1.62, 2.69) 1.63 (1.32, 2.02) 3.47 (2.58, 4.64) 1.91 (1.50, 2.41)

Negative likelihood ratio 0.40 (0.21, 0.72) 0.41 (0.30, 0.56) 0.55 (0.42, 0.71) 0.31 (0.23, 0.41) 0.57 (0.46, 0.71)
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offspring identified as “not at risk” by the same predic-
tion model at 3 months of age.

The subsequent prediction models at ages 1 year and 2 
years developed for risk re-assessments for the late phase 
showed even higher predictive performance (Table  2). 
While the negative predictive values were similarly high 
for all models, the predictive model at age 2 years had the 
highest sensitivity, specificity, positive predictive value, 
and positive likelihood ratio and the lowest negative like-
lihood ratio. Similarly good parameters were observed in 
offspring of mothers without obesity (Additional file  1: 
Table S4).

In the independent validation cohort PEPO, predic-
tion models using available data at ages 1 year and 2 years 
showed fair predictive performances in offspring of both 
mothers with and without obesity (Table  2, Additional 
file  1: Table  S4). Furthermore, prediction models at age 
1 year and 2 years for offspring of mothers with obesity 
and at age 1 year for offspring of mothers without obesity 
showed good and very good calibration (i.e., agreement 
between observed and predicted risks), respectively, 
using the external cohort PEPO (Additional file  1: Fig-
ure S5) [51]. Details on use of individual risk score cal-
culations, risk probability assessment, and clinical case 
scenarios are provided in Table S5 and the Text S3 (Addi-
tional file 1).

Discussion
Longitudinal data from two large mother-child cohorts 
led to the identification of a “high-risk” subpopulation 
of offspring susceptible to early upper deviations from 
healthy weight gain trajectories and novel risk stratifica-
tion in the very first “plastic phase” of life. Such a strat-
egy could allow cost-effective and personalized advice 
and measures to slow down or prevent otherwise ongo-
ing increases in BMI growth. Several modifiable influ-
ences associated with gestational overnutrition, such as 
grade of maternal obesity at conception, excessive GWG, 
and LGA birth weight, contributed sequentially during 
consecutive early phases to the offspring’s susceptibility 
to gain more weight than expected. Here, these already 
well-documented risk associations were translated and 
condensed into a novel serial prediction strategy for pri-
mary prevention of a “higher-than-normal BMI growth 
pattern” as a subclinical stage preceding overweight in 
clinical settings. The system of well-child visits is ideal 
for identifying risks by the pediatricians and providing 
targeted supportive measures to guide offspring BMI 
growth from early life onwards.

The 2- to 3-fold increased risk of overweight/obesity 
even in young children from pregnancies with obesity 
below age 5 years [10] prompted us to study the type 
and potential predictors of very early growth patterns 

towards overweight. Unlike previous studies [31, 73], we 
focused on identifying such growth patterns among off-
spring exposed to an adipogenic intrauterine milieu. The 
identified BMI growth pattern showing recurrent cross-
ing of BMI z-scores >1 SD—the WHO cut-off for “at risk 
of overweight”—from an early age of 6 months is highly 
likely to set the stage for developing overweight at pre-
school age, which is critical to sustained obesity [3]. The 
upper BMI growth cluster in obesity-exposed offspring 
plateaued at high levels after age 2 years. This levelling off 
is in contrast to the typical BMI decline [71] preceding 
the adiposity rebound at around 6 years [74]. Our find-
ings suggest that obesity in pregnancy could potentially 
“hit” cellular processes in the fetus, which may influence 
offspring outcomes such as postnatal appetite regulation 
and fat accretion before overweight manifestation [75].

Besides maternal pre-conception obesity [34, 76], off-
spring weight development can be shaped by additional 
influences highly associated with an obesogenic envi-
ronment during prenatal and postnatal life [77, 78]. We 
found that among such obesity-associated factors, those 
relating to intrauterine overnutrition including exces-
sive GWG contributed strongly to higher-than-normal 
BMI growth during the “plastic phase” of the first 2 years. 
Indeed, there is a need for women with obesity to be pro-
vided with more customized advice on dietary intake and 
physical activity to optimize gestational weight manage-
ment [24, 79]. For the subsequent time period of the pre-
school years, gestational smoking emerged as a relevant 
modulator of growth in offspring exposed to obesity in 
pregnancy in our study. This association may take time 
to appear since mothers who smoke at the beginning 
and/or later during pregnancy are likely to resume smok-
ing postnatally and therefore refrain from breastfeed-
ing more frequently [80, 81], predisposing offspring to 
develop overweight [82]. In mothers with obesity of the 
PEACHES cohort study who had smoked during preg-
nancy, any smoking (versus no smoking) within the first 
weeks postpartum was related to higher odds of stopping 
full breastfeeding by the end of the first month (OR 1.97, 
95% CI 1.10–3.53). Irrespective of smoking, mothers 
with obesity have been recognized to experience major 
difficulties with initiating and continuing breastfeeding 
resulting in lower breastfeeding rates in these women 
[83]. Supporting previous evidence [75], our data also 
show the relevance of an LGA birth weight for overweight 
development, irrespective of maternal pre-conception 
BMI, albeit it seemed to have adverse longer-term con-
sequences only in children of mothers with obesity. Our 
data point to the differential contribution of “obesogenic 
influences” arising from the pre-gestational, gestational, 
and perinatal periods, such as grade of maternal obesity 
at conception, excessive weight gain and smoking during 



Page 13 of 18Gomes et al. BMC Medicine          (2022) 20:156  

pregnancy, as well as LGA birth weight on higher-than-
normal BMI growth during successive early-life phases 
after birth.

Using these modifiable factors [84], we developed a 
novel strategy to identify infants likely to deviate from 
the normal BMI growth pattern as a subclinical stage 
before establishing preschool overweight. Unlike previ-
ous methods that offered prediction of manifest over-
weight [56, 85] and/or were applicable at a certain age 
only [22] and were developed for offspring born to 
women of heterogeneous BMI [22], we propose a novel 
sequential strategy of prediction and re-evaluation of 
higher-than-normal weight gain in “high-risk” offspring 
of mothers with obesity at ages 3 months, 1 year, and 2 
years to guide pediatric decision-making (Fig. 4). Owing 
to these differences in the outcome (“higher-than-normal 
BMI growth pattern”), population (offspring of moth-
ers with obesity), and prediction time points (sequential 
prediction) between our and previous work, prediction 
models cannot be directly compared. Integrating such 
a novel dynamic element in the existing health care sys-
tem of well-child visits could help to quantify and confine 
risk to subpopulations and individuals at high necessity 
to intervene. These preventive visits have a high par-
ticipation rate [86], even up to 99% of children in Ger-
many, and take place seven times during the first 2 years 
of life [87]. Interventions to optimize BMI development 
during the first 1000 days are more beneficial than dur-
ing preschool ages [88], as an “adaptive phase” when off-
spring have a chance of returning to their “genetic growth 
potential” [89].

Thus, following risk stratification by individual 
risk score and probability calculation at the 3-month 

well-child visit, breastfeeding continuation can be rein-
forced by the pediatrician, given the protective role of 
breastfeeding, e.g., in overweight prevention [82]. Con-
sidering the generally low exclusive breastfeeding rates 
at 6 months (Europe 25% [90]; Germany 12.5% [91]) and 
the lack of effective intervention strategies to increase 
the rate and duration of breastfeeding particularly in 
mothers with obesity [92], prediction-guided “individu-
alized” breastfeeding support by prescribing extra lacta-
tion counselling beyond standard care seems promising. 
Following risk prediction at the 1-year and 2-year visits, 
mothers with obesity and “high-risk” children may ben-
efit from specific dietary counselling by nutritionists 
to encourage healthy complementary and family food 
choices, since early eating patterns determine future eat-
ing habits and the development of childhood overweight/
obesity [93].

Typical for a screening setting, our prediction models 
show high sensitivity to avoid false-negative cases and 
high negative predictive values to avoid misclassification 
as being “not at risk” in offspring with higher-than-nor-
mal BMI growth. Furthermore, even a high false-positive 
rate, i.e., identifying offspring with normal BMI devel-
opment as being “at risk,” can be considered acceptable 
since obesity-preventive interventions including exclu-
sive breastfeeding [82] and improved nutrition (such as 
healthier complementary and family food choices) as well 
as supportive environments (such as reducing screen 
time, increasing physical activity, maintaining a sleep 
duration of 10 to 14 h per day) [94–96] (Fig. 4) are ben-
eficial and safe for young children’s growth in general. 
However, targeting such interventions to a defined sub-
population of offspring at need will direct resources, i.e., 

PregnancyPre-conception
Late phase: 

3 years to 5 years

Conception Birth 5 y

Early phase: 
6 months to 2 years

3 m

Converging 
phase

1 y

Risk quantificationa First risk 
re-assessmentb

Exclusive 
breastfeeding until 

age 6 months
Adjustments in nutrition and home environmentdAge-appropriate interventions 

if risk score is above cut-off, e.g.

Well-child visits
Second risk 

re-assessmentc

3 y6 m 4 y2 y

Fig. 4 Prediction-guided prevention strategy for the risk of developing a “higher-than-normal BMI growth pattern” preceding overweight. 
“Higher-than-normal BMI growth pattern” defined as BMI z-score >1 SD [51] at least twice in relevant growth phases from 6 months to 5 years. 
aInitial risk quantification is performed at the 3-month well-child visit for “higher-than-normal BMI growth pattern” during the early phase (6 months 
to 2 years). bFirst risk re-assessment is performed at the 1-year visit for “higher-than-normal BMI growth pattern” during the late phase (3 to 5 
years). cSecond risk re-assessment is performed at the 2-year visit for “higher-than-normal BMI growth pattern” during the late phase (3 to 5 years). 
dOverweight-preventive measures such as healthier complementary and family food choices, reduced screen time, increased physical activity, and 
a sleep duration of 10 to 14 h per day. If a risk score is above or equal to the respective cut-off score value (Table 2, Additional file 1: Table S4), the 
child is at risk of developing a “higher-than-normal BMI growth pattern,” and age-appropriate obesity-preventive measures should be initiated by 
the pediatrician. BMI, body mass index; h, hours; m, months; y, year(s)
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costs for personal counselling, to those at the highest risk 
of excessive BMI growth and help minimizing health care 
costs.

The strength of our study is the large contemporary 
prospective mother-child cohort PEACHES of 1671 
mothers and children providing a unique longitudinal 
dataset with wide-ranging pre-, peri-, and postnatal vari-
ables from mothers with obesity, and thus, it was used as 
the discovery cohort. Multiple anthropometric measure-
ments improved precision to identify minor deviations 
in BMI growth especially in the sensitive first months of 
life. Based on the time structure of the data and use of 
robust machine learning techniques [97, 98], our pro-
posed strategy provides multiple prediction occasions 
within an early window of opportunity for prevention 
of higher-than-normal BMI growth, utilizing routinely 
available data and making it easy-to-use in clinical set-
tings [99]. Internal (cross-validation) and external (PEPO 
cohort) validation showed good discrimination between 
higher-than-normal and normal BMI growth in offspring 
of mothers either with or without obesity. Attrition bias 
is unlikely as the follow-up rates in offspring were around 
95% in both the PEACHES and PEPO cohorts. The pre-
diction models performed sufficiently well and showed 
good to very good calibration for early-risk stratification 
and identification of “high-risk” offspring.

Minor differences between the two cohorts relating to 
the recruitment strategy, the proportion of mothers with 
pre-conception obesity, and offspring follow-up time points 
could influence the lower predictive potential of models in 
the PEPO cohort. However, despite the differences, exter-
nal validation showed adequate predictive performance 
and indicates robustness of our results. Furthermore, we 
aimed at developing discriminative models for offspring of 
mothers with and without obesity separately and did not 
recalibrate the models when applied to the external cohort 
PEPO. Nevertheless, the predictive models require recali-
bration when applied to other populations. For prediction 
models relating to offspring of mothers without obesity, 
results may not be comparable to other studies with a dif-
ferent composition in the proportions of mothers with 
normal weight and overweight. Still, we were able to con-
firm our findings in the PEPO cohort. Regarding the asso-
ciation analyses, we used literature-based risk associations 
for manifest overweight and applied them to the endpoint 
“higher-than-normal BMI growth pattern” to test whether 
there is evidence for an association based on a qualitative 
approach. Therefore, we did not correct model coefficients 
by specific shrinking techniques. However, for the develop-
ment of our prediction score, this was accounted for using 
penalized regression strategies.

Future studies should develop a user-friendly tool for risk 
score calculations and evaluate prospectively whether the 

proposed prediction strategy is effective in guiding favorable 
BMI growth in early childhood. Such a tool should be easy-
to-use in clinical practice, and results should be communi-
cated in an informative manner [100, 101], e.g., a web-based 
Shiny application developed using the Shiny R package for 
building easy and interactive web apps in R [102]. Imple-
menting such an instrument and designing a prospective 
validation study are plans for our future research.

Conclusion
In conclusion, based on a unique set of validated longitu-
dinal data on BMI outcomes in offspring exposed to obe-
sity in pregnancy, we identified a population of offspring 
at highest risk of an early-starting higher-than-normal 
BMI growth trajectory inevitably followed by overweight. 
For individual risk quantification, we devised a novel 
sequential prediction system to allow early-risk strati-
fication and re-evaluation for prevention of a “higher-
than-normal BMI growth pattern” as a subclinical stage 
preceding overweight. Our proposed prediction strategy 
could stimulate the use of cost-effective and personalized 
advice and measures counteracting the risk of very early 
excess weight gain. Integrating such a procedure in the 
existing health care systems of well-child visits could help 
to quantify and confine risk to subpopulations and indi-
viduals at high necessity to intervene.
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pre-conception BMI group, total GWG, GDM, parity, smoking during 
pregnancy, sex, birth weight category for gestational age and sex, SES, 
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breastfeeding status at 1 month, breastfeeding status at 3 months, 
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External validation of models at age 2 years was performed in the 
validation cohort PEPO. dOffspring with a risk score above or equal to the 
respective cut-off score value are considered to be at risk of developing a 
“higher-than-normal BMI growth pattern.” The cut-off value of the score 
was optimized to avoid false-negative findings (sensitivity), which resulted 
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file 1: Table S4) . Offspring with a risk score above or equal to the 
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Data sources/ 
measurement 

8* 

For each variable of interest, give 
sources of data and details of 
methods of assessment 
(measurement). Describe 
comparability of assessment 
methods if there is more than one 
group 

Pages 8 to 13, Methods, 
“Potential predictors of higher-
than-normal BMI growth”, 
“Growth outcomes until age 5 
years”. 
 
 

Bias 9 

Describe any efforts to address 
potential sources of bias 

Pages 7 to 8, Methods, “Study 
design and populations”; 
Pages 8 to 9, “Potential 
predictors of higher-than-
normal BMI growth”, Page 14, 
“Statistical analysis”; Page 34, 



92 
 

Discussion, paragraph 7; 
Additional file 1, Table S1. 
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Explain how the study size was 
arrived at 
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Additional file 1, Text S2. 
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Statistical methods 12 

(a) Describe all statistical methods, 
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confounding 

Pages 14 to 15, Methods, 
“Statistical analysis”. Additional 
file 1, Text S1. “Statistical 
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“Statistical methods.”, Text S3. 
“Quantification of individual 
risk.” 

(b) Describe any methods used to 
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Page 14, Methods, “Statistical 
analysis”; Additional file 1, Text 
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Text S2. “Statistical methods.” 
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Page 14, Methods, “Statistical 
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Fig 1; Additional file 1, Text S2. 
“Statistical methods.”, 
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S1 and Table S2. 

(d) If applicable, explain how loss 
to follow-up was addressed 

Any losses to follow-up were 
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Page 14, Methods, “Statistical 
analysis”; Table 1 (footnote); 
Fig 1; Additional file 1, Table 
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cohort PEPO for validation 
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Page 7, Methods, “Study 
design and populations”, 
Pages 14 to 15, “Statistical 
analysis”; Results, “BMI growth 
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“Sequential prediction of 
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growth”; Table 2; Additional file 
1, Text S1. “Statistical analysis 
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plan.”, Text S2. “Statistical 
methods.”, Fig S1, Table S4. 

Results  

Participants 13* 

(a) Report numbers of individuals 
at each stage of study—eg 
numbers potentially eligible, 
examined for eligibility, confirmed 
eligible, included in the study, 
completing follow-up, and analysed 

Pages 15 to 17, Results, 
“Characteristics of study 
populations”, Page 19, “BMI 
growth patterns in offspring”; 
Table 1; Fig 1; Additional file 1, 
Tables S1 to S4, Fig. S2. 

(b) Give reasons for non-
participation at each stage 

Page 14, Methods, “Statistical 
analysis”; Pages 15 to 16, 
Results, “Characteristics of 
study populations”; Fig 1; 
Additional file 1, Tables S1 and 
S2. 

(c) Consider use of a flow diagram Fig 1. 

Descriptive data 14* 

(a) Give characteristics of study 
participants (eg demographic, 
clinical, social) and information on 
exposures and potential 
confounders 

Pages 15 to 17, Results, 
“Characteristics of study 
populations”; Table 1. 

(b) Indicate number of participants 
with missing data for each variable 
of interest 

Number of participants with 
complete data are given in the 
following figures and tables:  
Fig 1; Tables 1 and 2; 
Additional file 1, Tables S1 to 
S4, Fig. S2.  
Participants with any missing 
data were excluded from 
analysis.  

(c) Summarise follow-up time (eg, 
average and total amount) 

Pages 12 to 13, Methods, 
“Growth outcomes until age 5 
years”; Table 1; Additional file 
1, Tables S1 and S2. 

Outcome data 15* 

Report numbers of outcome events 
or summary measures over time 

Pages 19 to 22, Results, “BMI 
growth patterns in offspring”, 
“Higher-than-normal BMI 
growth patterns in consecutive 
early-life phases”; Figs 1 and 2; 
Table 2; Additional file 1, 
Tables S1 to S4.   

Main results 16 

(a) Give unadjusted estimates and, 
if applicable, confounder-adjusted 
estimates and their precision (eg, 
95% confidence interval). Make 
clear which confounders were 
adjusted for and why they were 
included.  

Page 9, Methods, “Potential 
predictors of higher-than-
normal BMI growth”; Pages 22 
to 27, Results, “Risk factors of 
higher-than-normal BMI 
growth”, “Sequential prediction 
of higher-than-normal BMI 
growth”; Fig 3 (including 
legend); Table 2; Additional file 
1, Fig S4 (including legend), 
Table S4.  

(b) Report category boundaries 
when continuous variables were 
categorized 

Pages 10 to 13, Methods, 
“Potential predictors of higher-
than-normal BMI growth”, 
“Growth outcomes until age 5 
years”; Pages 19 to 22, 
Results, “BMI growth patterns 
in offspring”, “Higher-than-
normal BMI growth patterns in 
consecutive early-life phases”; 
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Additional file 1, Fig S1, Table 
S3.   

(c) If relevant, consider translating 
estimates of relative risk into 
absolute risk for a meaningful time 
period 

Not applicable. 

Other analyses 17 

Report other analyses done—eg 
analyses of subgroups and 
interactions, and sensitivity 
analyses 

Not applicable.  

Discussion  

Key results 18 
Summarise key results with 
reference to study objectives 

Page 28, Discussion, 
paragraph 1. 

Limitations 19 

Discuss limitations of the study, 
taking into account sources of 
potential bias or imprecision. 
Discuss both direction and 
magnitude of any potential bias 

Pages 34 to 35, Discussion, 
paragraph 8. 

Interpretation 20 

Give a cautious overall 
interpretation of results considering 
objectives, limitations, multiplicity of 
analyses, results from similar 
studies, and other relevant 
evidence 

Pages 28 to 35, Discussion, 
paragraphs 2 to 8. 

Generalisability 21 
Discuss the generalisability 
(external validity) of the study 
results 

Page 34, Discussion, 
paragraphs 7 and 8. 

Other information  

Funding 22 

Give the source of funding and the 
role of the funders for the present 
study and, if applicable, for the 
original study on which the present 
article is based 

Pages 36 to 37. 

 

*Give information separately for exposed and unexposed groups. 

 

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological 

background and published examples of transparent reporting. The STROBE checklist is best used in 

conjunction with this article (freely available on the Web sites of PLoS Medicine at 

http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at 

http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-

statement.org.  
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S2 TRIPOD Statement. 

TRIPOD Checklist: Prediction Model Development and Validation 
Section/Topic Item*  Checklist Item Page 
Title and abstract 
Title 1 D;V Identify the study as developing and/or 

validating a multivariable prediction 
model, the target population, and the 
outcome to be predicted. 

Page 1, Title. 

Abstract 2 D;V Provide a summary of objectives, study 
design, setting, participants, sample size, 
predictors, outcome, statistical analysis, 
results, and conclusions. 

Pages 3 to 4, Abstract. 

Introduction 
Background 
and objectives 

3a D;V Explain the medical context (including 
whether diagnostic or prognostic) and 
rationale for developing or validating the 
multivariable prediction model, including 
references to existing models. 

Pages 5 to 6, Background, 
paragraphs 1 to 3. 

3b D;V Specify the objectives, including whether 
the study describes the development or 
validation of the model or both. 

Page 6, Background, 
paragraph 4. 

Methods 
Source of data 4a D;V Describe the study design or source of 

data (e.g., randomized trial, cohort, or 
registry data), separately for the 
development and validation datasets, if 
applicable. 

Page 7, Methods, “Study 
design and populations”. 

4b D;V Specify the key study dates, including 
start of accrual; end of accrual; and, if 
applicable, end of follow-up.  

Page 7, Methods, “Study 
design and populations”, 
Pages 12 to 13, “Growth 
outcomes until age 5 
years”. 

Participants 5a D;V Specify key elements of the study setting 
(e.g., primary care, secondary care, 
general population) including number and 
location of centres. 

Page 7, Methods, “Study 
design and populations”. 

5b D;V Describe eligibility criteria for participants.  Page 7, Methods, “Study 
design and populations”, 
Page 8, “Inclusion criteria 
for analysis”. 

5c D;V Give details of treatments received, if 
relevant.  

Not applicable. 

Outcome 6a D;V Clearly define the outcome that is 
predicted by the prediction model, 
including how and when assessed.  

Page 13, Methods, 
“Growth outcomes until 
age 5 years” (paragraph 
4). 

6b D;V Report any actions to blind assessment of 
the outcome to be predicted.  

Not applicable. 

Predictors 7a D;V Clearly define all predictors used in 
developing or validating the multivariable 
prediction model, including how and when 
they were measured. 

Pages 8 to 12, Methods, 
“Potential predictors of 
higher-than-normal BMI 
growth”. 

7b D;V Report any actions to blind assessment of 
predictors for the outcome and other 
predictors.  

Not applicable. 

Sample size 8 D;V Explain how the study size was arrived at. Page 8, Methods, 
“Inclusion criteria for 
analysis”, Page 14 
“Statistical analysis”; Fig 
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1; Additional file 1, Text 
S2. “Statistical methods.” 
(Page 13), Table S1. 

Missing data 9 D;V Describe how missing data were handled 
(e.g., complete-case analysis, single 
imputation, multiple imputation) with 
details of any imputation method.  

Page 14, Methods, 
“Statistical analysis”; 
Table 1 (footnote); Fig 1; 
Additional file 1, Text S2. 
“Statistical methods.”, 
paragraph 1.6 (Page 14), 
Table S1 and Table S2. 

Statistical 
analysis 
methods 

10a D Describe how predictors were handled in 
the analyses.  

Page 14, Methods, 
“Statistical analysis”; 
Additional file 1, Text S1. 
“Statistical analysis plan.”, 
Text S2. “Statistical 
methods.”. 

10b D Specify type of model, all model-building 
procedures (including any predictor 
selection), and method for internal 
validation. 

Page 14, Methods, 
“Statistical analysis”; 
Additional file 1, Text S1. 
“Statistical analysis plan.”, 
Text S2. “Statistical 
methods.”. 

10c V For validation, describe how the 
predictions were calculated.  

Additional file 1, Text S1. 
“Statistical analysis plan.”, 
Text S2. “Statistical 
methods.”, Table S4; 
Table 2.   

10d D;V Specify all measures used to assess 
model performance and, if relevant, to 
compare multiple models.  

Table 2; Additional file 1, 
Text S2. “Statistical 
methods.”, Table S4. 

10e V Describe any model updating (e.g., 
recalibration) arising from the validation, if 
done. 

Not applicable. 

Risk groups 11 D;V Provide details on how risk groups were 
created, if done.  

Page 14, Methods, 
“Statistical analysis”. 

Development 
vs. validation 

12 V For validation, identify any differences 
from the development data in setting, 
eligibility criteria, outcome, and predictors.  

Pages 7 to 15, Methods, 
“Study design and 
populations”, 
“Procedures”, “Statistical 
analysis”; Pages 15 to 17, 
Results, “Characteristics 
of study populations”; 
Table 1; Additional file 1, 
Table S1.  

Results 
Participants 13a D;V Describe the flow of participants through 

the study, including the number of 
participants with and without the outcome 
and, if applicable, a summary of the 
follow-up time. A diagram may be helpful.  

Fig. 1. 
Additional file 1, Table S3. 

13b D;V Describe the characteristics of the 
participants (basic demographics, clinical 
features, available predictors), including 
the number of participants with missing 
data for predictors and outcome.  

Pages 15 to 17, Results, 
“Characteristics of study 
populations”; Tables 1 and 
2; Additional file 1, Tables 
S1 to S4. 

13c V For validation, show a comparison with 
the development data of the distribution 
of important variables (demographics, 
predictors and outcome).  

Pages 15 to 17, Results, 
“Characteristics of study 
populations”; Table 1.  

Model 
development  

14a D Specify the number of participants and 
outcome events in each analysis.  

Number of participants 
with complete data are 



97 
 

given in the following 
figures and tables:  
Fig 1; Tables 1 and 2; 
Additional file 1, Tables 
S1 to S4. 

14b D If done, report the unadjusted association 
between each candidate predictor and 
outcome. 

Not applicable. 

Model 
specification 

15a D Present the full prediction model to allow 
predictions for individuals (i.e., all 
regression coefficients, and model 
intercept or baseline survival at a given 
time point). 

Additional file 1, Table S5. 

15b D Explain how to use the prediction model. Additional file 1, Text S3. 
“Quantification of 
individual risk.”. 

Model 
performance 

16 D;V Report performance measures (with CIs) 
for the prediction model. 

Table 2; 
Additional file 1, Table S4. 

Model-
updating 

17 V If done, report the results from any model 
updating (i.e., model specification, model 
performance). 

Not applicable. 

Discussion 
Limitations 18 D;V Discuss any limitations of the study (such 

as nonrepresentative sample, few events 
per predictor, missing data).  

Pages 34 to 35, 
Discussion. 

Interpretation 19a V For validation, discuss the results with 
reference to performance in the 
development data, and any other 
validation data.  

Page 34, Discussion. 

19b D;V Give an overall interpretation of the 
results, considering objectives, limitations, 
results from similar studies, and other 
relevant evidence.  

Pages 28 to 35, 
Discussion. 

Implications 20 D;V Discuss the potential clinical use of the 
model and implications for future 
research.  

Page 35, Discussion. 

Other information 
Supplementary 
information 

21 D;V Provide information about the availability 
of supplementary resources, such as 
study protocol, Web calculator, and 
datasets.  

Additional file 1, Text S1. 
“Statistical analysis plan.”, 
Text S3. “Quantification of 
individual risk.”, Table S5.  

Funding 22 D;V Give the source of funding and the role of 
the funders for the present study.  

Pages 36 to 37. 

*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a 
validation of a prediction model are denoted by V, and items relating to both are denoted D;V. We 
recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration 
document. 
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Text S1. Statistical analysis plan. 
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1 Study population 

The following inclusion and exclusion criteria will be applied for the analyses in the children enrolled in the 
Programming of Enhanced Adiposity Risk in Childhood–Early Screening (PEACHES) cohort and the 
PErinatal Prevention of Obesity (PEPO) cohort (validation): 

Inclusion criteria: 

1. Mothers with or without pre-conception obesity  
2. Singleton pregnancy 
3. Absence of type 1 diabetes (T1D) or type 2 diabetes (T2D) in mothers 
4. Full-term (≥37 weeks 0 days of gestation) live birth 
 

Exclusion criteria: 

1. Underweight mothers 
2. Twin/multiple pregnancy 
3. Presence of T1D or T2D in mothers 
4. Preterm children (gestational age ≤36 weeks 6 days of gestation)  

 
 
2 Calculation of specific predictors of higher-than-normal BMI growth in offspring 

The majority of predictors including maternal pre-conception body mass index (BMI), gestational diabetes 
(GDM), parity, smoking during pregnancy, sex, socioeconomic status (SES), and breastfeeding status at 
1, 3, and 6 months will be extracted from the PEACHES and PEPO databases. Gestational weight gain 
(GWG) and birth weight categories will be calculated.  

2.1 Calculation of total GWG 

Total GWG in kilograms will be calculated as the difference between the last measured weight before 
delivery and pre-conception weight and will be classified as inadequate, adequate, or excessive according 
to the BMI-specific recommendations of the Institute of Medicine (now known as the National Academy of 
Medicine)/National Research Council [38]. Pre-conception weight will be based on data measured at the 
first antenatal visit if the visit was before 12 weeks 6 days of gestation or on reported and documented data 
abstracted from the pregnancy record booklet if the first visit was later than the 13th week of gestation.   

2.2 Calculation of birth weight categories for gestational age and sex 

We will group offspring according to their birth weight adjusted for gestational age and sex into large-for-
gestational-age (LGA, >90th percentile), average-for-gestational-age (AGA, 10th to 90th percentile), or 
small-for-gestational-age (SGA, <10th percentile) categories. These cut-offs were based on the German 
reference population [46]. 

2.3 Calculation of offspring BMI z-scores 

Offspring BMI z-scores will be calculated according to World Health Organization (WHO) age- and sex-
specific growth standards [51].  

2.4 Calculation of frequencies of BMI z-score >1 SD 

“Early phase” and “late phase” of offspring BMI growth will be defined as the period between 6 months to 
2 years and 3 years to 5 years, respectively. Children will be classified as having a “higher-than-normal 
BMI growth pattern” (BMI z-score >1 SD [51] at least twice) within each growth phase.  

Among all children belonging to the group of high BMI growth, we will also categorize offspring with 
repeated occasions of BMI z-score >1 SD at the 6-month, 1-year, 2-year, 3-year, 4-year, and 5-year follow-
up visits to identify offspring with the highest risk of developing preschool overweight. 
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3 Statistical analyses 

3.1 Longitudinal cluster analysis 

Analysis with k-means clustering will aim to divide children into BMI growth clusters, which will be 
characterized by distinct BMI development patterns from birth to 5 years of age. The cluster analysis will 
be done for children of mothers with and without pre-conception obesity, respectively. 

3.2 Validation analysis of cluster findings 

The BMI growth clusters that will be identified in offspring enrolled in the PEACHES cohort will be externally 
validated in the PEPO cohort. The validation procedure will first classify offspring into different clusters 
using random forests. Next, we will apply this cluster-derived classification rule to the children in the PEPO 
cohort: offspring will be categorized into one of the different cluster-derived classes. Next, we will quantify 
whether different cluster classes can discriminate the BMI z-scores at age 5 years of the PEPO children. 
To this end, the receiver operating characteristic (ROC) will be determined and the area under the ROC 
(AUROC) will be calculated to quantify the discriminatory ability of the cluster-derived classification rule.  

3.3 Analysis of risks of adverse BMI growth outcomes 

Using logistic regression analyses, we will calculate odds ratios for the following: 

1)   Outcome = child overweight (including obesity), predictor = BMI growth cluster, subgroups  = 
mothers with and without obesity. To evaluate the influence of upper cluster BMI growth on the 
manifestation of childhood overweight/obesity, we will perform regression analysis with offspring 
overweight/obesity (yes versus no) as outcome and cluster of BMI growth (upper versus lower) as 
influencing factor in offspring subgroups of mothers with and without obesity. This analysis will be 
performed for both offspring age 4 and 5 years, respectively.  

2)   Outcome = child overweight (including obesity), predictor = maternal pre-conception obesity, subgroup 
= all offspring in upper BMI growth clusters. To evaluate the influence of maternal pre-conception 
obesity on overweight/obesity risk in all offspring with an upper BMI growth trajectory, we will conduct 
regression analysis with offspring overweight/obesity (yes versus no) as outcome and maternal pre-
conception BMI group (with obesity versus without) as influencing factor in the population of offspring 
growing in the upper BMI growth clusters  (of both mothers with and without obesity). This analysis 
will be performed for both offspring age 4 and 5 years, respectively. 

3)   Outcome = at least 5 out of 6 occurrences of having a BMI z-score >1 SD, predictor = maternal pre-
conception obesity, subgroup = all offspring in upper BMI growth clusters. Within the offspring 
population growing in the upper BMI clusters, we will calculate the odds for at least 5 out of 6 
occurrences of having a BMI z-score >1 SD with number of occurrences (≥5 versus ≤4) as outcome 
and maternal pre-conception BMI group (with obesity versus without) as influencing factor. 

3.4 Analysis of the influence of pre- and postnatal factors on higher-than-normal BMI growth 

We will explore the simultaneous effects of prenatal and postnatal factors on upper BMI growth clusters 
and “higher-than-normal BMI growth pattern” during the early phase and the late phase in offspring by 
logistic regression using backward selection. These analyses will be conducted separately for offspring of 
mothers with and without obesity. The following prenatal and postnatal predictors will be included: 

1) Outcome = upper BMI growth cluster, potential predictors = maternal pre-conception BMI group, total 
GWG, GDM, parity, smoking during pregnancy, sex, birth weight categories for gestational age and 
sex, SES, and breastfeeding status at 1 month.  

2) Outcome = “higher-than-normal BMI growth pattern” in early phase, potential predictors =  maternal 
pre-conception BMI group, total GWG, GDM, parity, smoking during pregnancy, sex, birth weight 
categories for gestational age and sex, SES, and breastfeeding status at 1  month.  

3) Outcome = “higher-than-normal BMI growth pattern” in late phase, potential predictors = maternal pre-
conception BMI group, total GWG, GDM, parity, smoking during pregnancy, sex, birth weight 
categories for gestational age and sex, SES, breastfeeding status at 1 month, and “higher-than-normal 
BMI growth pattern” in early phase.  
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3.5 Prediction analysis 

Using penalized least absolute shrinkage and selection operator (LASSO) regression analysis, we will 
explore the predictive power of prenatal and postnatal factors including current child BMI status to predict 
“higher-than-normal BMI growth pattern” in early and late phases of growth at ages 3 months, 1 year, and 
2 years in offspring. LASSO regression analysis will be conducted for early phase and late phase separately 
in offspring groups of mothers with and without obesity. 

All prediction models will include the following prenatal and postnatal factors and their two-fold interactions. 
Prenatal/postnatal factors included in prediction models are as follows: 

1) Prediction at age 3 months = maternal pre-conception BMI group, total GWG, GDM, parity, smoking 
during pregnancy, sex, birth weight categories for gestational age and sex, SES, breastfeeding status 
at 1 month, breastfeeding status at 3 months, and BMI z-score >1 SD at age 3 months. 

2) Prediction at age 1 year = maternal pre-conception BMI group, total GWG, GDM, parity, smoking 
during pregnancy, sex, birth weight categories for gestational age and sex, SES, breastfeeding status 
at 1 month, breastfeeding status at 3 months, breastfeeding status at 6  months, and BMI z-score 
>1 SD at age 1 year. 

3) Prediction at age 2 years = maternal pre-conception BMI group, total GWG, GDM, parity, smoking 
during pregnancy, sex, birth weight categories for gestational age and sex, SES, breastfeeding status 
at 1 month, breastfeeding status at 3 months, breastfeeding status at 6  months, and BMI z-score 
>1 SD at age 2 years. 

Internal validation will be performed with the whole PEACHES dataset. AUROC will be calculated to assess 
the internal prediction performance of the selected model from the LASSO regression analysis. Prediction 
models at ages 1 year and 2 years will be validated using available data of the PEPO cohort to assess the 
external prediction performance.  

We will calculate different cut-offs and determine cut-off points that are: 

1) closest to the upper left corner of the ROC curve, where equal weight is given to false negative and 
false positive predictions,  

2) closest to the upper left corner of the ROC curve, where double weight is given to false positive 
 predictions,  

3) closest to the upper left corner of the ROC curve, where double weight is given to false negative 
 predictions,  

4) 90th percentile of the linear predictors of children without “higher-than-normal BMI growth pattern”.  
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Text S2. Statistical methods. 

 
The current analysis is exploratory and hypothesis-generating (discovery) on the data of the Programming 
of Enhanced Adiposity Risk in Childhood–Early Screening (PEACHES) cohort. No formal sample size 
calculation was done, and no primary hypothesis was formulated. Independent external validation of 
analyses was performed on the data of the PErinatal Prevention of Obesity (PEPO) cohort. The sample 
size calculation for the validation was based on example 8.3 (page 226) of Pepe (2003) [53]. A total of 500 
children (assuming a 20% prevalence of children with higher-than-normal body mass index [BMI] growth) 
were needed to reject the null hypothesis (area under the receiver operating characteristic [AUROC] ≤0.55) 
given the alternative (AUROC=0.70) on a 5% level with a power of at least 90%.  
 

1.1. Assessment of the agreement between self-reported pre-conception weight and weight 
 measured at the first antenatal visit 

We assessed the agreement between maternal pre-conception weight self-reported and weight measured 
at the first antenatal visit in the PEACHES data using the principles of the Bland-Altman method [37]. We 
further estimated the correlation between the two maternal weight measurements using the Pearson 
product-moment correlation. 

1.2. Cluster analysis and assessment of adequate BMI growth clusters 

Cluster analysis was performed using the k-means technique in children of the PEACHES cohort. K-means 
clustering is a non-parametric approach aimed to group children’s growth trajectories into clusters 
characterized by distinct weight development patterns from birth to 5 years of age. The best number of 
clusters was chosen by applying the Calinski & Harabasz criterion, where maximum variances between 
clusters and minimum variances within clusters are reached [54]. The criterion gave two options: setting 
the number of clusters to two or three.  

For the analyses, we used the three-cluster option. The two lower clusters were combined and compared 
to the upper cluster. We applied the least absolute shrinkage and selection operator (LASSO) logistic 
regression and 10-fold cross validation to identify models that can best divide the offspring into separate 
BMI growth clusters. 

1.3. Validation of BMI growth clusters 

Since the number of offspring BMI z-score measurements differed between the PEACHES (maximum of 9) 
and the PEPO (maximum of 4) cohorts, clusters of BMI growth were validated in the PEPO cohort based 
on random forests. The BMI growth clusters obtained from offspring enrolled in the PEACHES cohort were 
validated by the following steps.  

In the first step, using PEACHES data from birth to age 3 months, offspring were classified into upper or 
lower BMI growth clusters. In the second step, the children of the PEPO cohort were stratified into two 
groups (i.e. into a potential lower versus a potential upper BMI growth cluster) according to the classification 
rule of step one. In the third step, within the PEPO cohort, the AUROC was calculated based on the BMI 
growth cluster membership determined in step two and the BMI z-scores at age 5 years. These steps 
allowed assessing, within the PEPO cohort, whether the BMI growth cluster membership discriminated 
children based on their BMI z-score value at age 5 years, in the respective groups of children of mothers 
with and without obesity. 

1.4. Risks of adverse BMI growth outcomes  

Based on univariate logistic regression analysis, we calculated the risks of several adverse BMI growth 
outcomes including i) multiple occasions (≥5 occurrences) of offspring BMI z-score >1 SD between age 6 
months to 5 years and ii) child overweight (including obesity) at both age 4 and 5 years, respectively. 

Firstly, we evaluated the influence of growing in the upper cluster of BMI growth on the manifestation of 
childhood overweight/obesity in the offspring populations of mothers with or without obesity. We used the 
presence of childhood overweight/obesity (yes versus no) as outcome and cluster membership of BMI 
growth (upper versus lower) as influencing factor.  

Next, we studied the influence of maternal pre-conception obesity on the manifestation of childhood 
overweight/obesity in all offspring with upper BMI growth trajectory (Figure S1). We used the presence of 
childhood overweight/obesity (yes versus no) as outcome and the maternal pre-conception BMI group 
(mothers with obesity versus without) as influencing factor. 
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Among all children belonging to the upper clusters of BMI growth, we classified offspring BMI z-score as 
below, equal or above 1 SD [51] at each of the well-child visits at age 6 months, 1 year, 2 years, 3 years, 4 
years, and 5 years. To identify offspring with the highest risk of developing preschool overweight, we 
calculated the odds for having a BMI z-score >1 SD on at least 5 out of 6 occasions in offspring growing in 
the upper BMI growth clusters (Figure S1). We used the number of occurrences (≥5 versus ≤4) as outcome 
and the maternal pre-conception BMI group (mothers with obesity versus without) as influencing factor.  

1.5. Identification of prenatal and postnatal risk factors of higher-than-normal BMI growth 

Using log-linear models, we compared the structural differences related to a “higher-than-normal BMI 
growth pattern” during the early phase and the late phase in offspring of mothers with obesity versus 
without.  

A series of multivariable logistic regression analyses were performed to identify risk factors related to i) the 
cluster of upper BMI growth membership from birth to 5 years and ii) the main outcome of a “higher-than-
normal BMI growth pattern” during the early phase and the late phase of growth, respectively, in offspring 
of mothers with or without obesity. For models assessing the effect of prenatal and postnatal factors on 
higher-than-normal BMI growth in the late phase, we used “higher-than-normal BMI growth pattern” in the 
early phase as an additional potentially influencing variable. 

After starting with a comprehensive model that included all potential prenatal and postnatal factors, use of 
a backward selection method resulted in combinations of factors influencing higher-than-normal BMI growth 
of offspring during the entire first 5 years after birth and during the early phase and the late phase within 
this period, respectively. A prenatal or postnatal risk factor was considered relevant if the 95% confidence 
interval (CI) of its odds ratio did not contain 1.  

1.6. Development and validation of risk prediction models 

Using the dataset of the PEACHES cohort, we developed several risk models to predict a “higher-than-
normal BMI growth pattern” in offspring during their early and late phases of growth, respectively. For the 
prediction analyses, we only included children with complete data on prenatal and postnatal factors and 
longitudinal anthropometric measurements. Missing values were not imputed since existing proposals for 
multiple imputation in penalized logistic regression models (see e.g. R-package MAMI [55] [http://mami.r-
forge.r-project.org/]) have not been validated up to now.  

Consecutive prediction models were developed using robust techniques such as LASSO, which enabled 
both individual risk scoring and risk probability assessment at the well-child visits at ages 3 months, 1 year, 
and 2 years. For each prediction model, we calculated several cut-off score values, because there are no 
standard criteria for the identification of risk thresholds to predict childhood excess BMI growth [56]. We 
calculated the sensitivity, specificity, positive and negative predictive values, and likelihood ratios, with 
corresponding 95% CIs for the prediction models in both the discovery and validation cohorts. Positive 
likelihood ratio values of 2, 3, and 4 indicate an increase in the likelihood of a “higher-than-normal BMI 
growth pattern” in offspring identified as “at risk” with a probability of 15%, 20%, and 25%, respectively [57]. 
Negative likelihood ratio values of 0.5, 0.4, and 0.3 indicate a decrease in the likelihood of a “higher-than-
normal BMI growth pattern” in offspring identified as “not at risk” with a probability of 15%, 20%, and 25%, 
respectively [57].  

Prediction models included the following prenatal and postnatal factors (including child’s BMI status at the 
respective prediction time point) and interactions between factors: 

Prediction of higher-than-normal BMI growth in early phase at age 3 months: maternal pre-conception 
BMI group, total gestational weight gain (GWG), gestational diabetes (GDM), parity, smoking during 
pregnancy, sex, birth weight category for gestational age and sex, socioeconomic status (SES), 
breastfeeding status at 1 month, breastfeeding status at 3 months, and BMI z-score >1 SD at age 3 months.  

Prediction of higher-than-normal BMI growth in late phase at age 1 year: maternal pre-conception BMI 
group, total GWG, GDM, parity, smoking during pregnancy, sex, birth weight category for gestational age 
and sex, SES, breastfeeding status at 1 month, breastfeeding status at 3 months, breastfeeding status at 
6 months, and BMI z-score >1 SD at age 1 year. 

Prediction of higher-than-normal BMI growth in late phase at age 2 years: maternal pre-conception 
BMI group, total GWG, GDM, parity, smoking during pregnancy, sex, birth weight category for gestational 
age and sex, SES, breastfeeding status at 1 month, breastfeeding status at 3 months, breastfeeding status 
at 6 months, and BMI z-score >1 SD at age 2 years. 
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Prediction models at offspring ages 1 and 2 years were externally validated by applying them to 
corresponding mother-child pairs of the PEPO cohort. We were unable to externally validate the prediction 
model at age 3 months because the PEPO cohort does not offer data on offspring BMI z-scores at age 3 
months. We generated calibration plots and provided calibration slopes and intercepts to assess the 
agreement between the observed and predicted probabilities of the outcome using the validation cohort 
PEPO [58, 59]. Calibration was considered as optimal, if the observed and predicted risks were on a 45-
degree diagonal line.   

All P values presented were two-sided. We used the statistical software package R version 3.5.1 [60] 
supported by the following version-specific packages: kml [61] for the cluster analysis, MASS [62] for 
backward selection in association analyses, glmnet [63] for LASSO regression analysis, lme4 [64] for 
analyses using mixed models, and ROCR [65] for prediction analyses. 
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Text S3. Quantification of individual risk. 

The overall prediction-guided prevention strategy is shown in Fig. 4, and equations for individual risk score 
calculation in offspring of mothers with and without pre-conception obesity are provided in Table S5. Risk 
scores for higher-than-normal body mass index (BMI) growth in the early phase or late phase, respectively, 
can be calculated for each child at age 3 months, 1 year, and 2 years by adding the intercept and 
coefficients of the model. These parameters represent the adjusted contribution of each risk factor to higher-
than-normal BMI growth. The final prediction models retained only those factors which contributed 
considerably to the risk score quantification (being still relevant after a cross validation-guided shrinkage of 
the coefficient).   

The risk score calculated for an individual child is also called linear predictor in the terminology of logistic 
regression. It can be used to determine the risk in terms of probability as follows (“exp” being the exponential 
function):  

Probability of higher − than − normal BMI growth =
exp(risk score)

1 + exp(risk score)
 

To calculate individual risk scores, each prenatal and postnatal variable in the risk quantification equations 
(Table S5) should be replaced by pre-defined values (0 or 1) depending on whether the condition stated is 
fulfilled (1) or not (0). 
 

1.1. Risk quantification in offspring of mother with obesity at well-child visits 

To illustrate how risk for higher-than-normal BMI growth in the early phase (between 6 months and 2 years) 
can be quantified, consider the following clinical case scenario of an offspring who was exposed to obesity 
in pregnancy:  
 
Initial risk quantification at age 3 months for developing higher-than-normal BMI growth in the early 
phase:  

A primiparous mother with class 3 obesity at conception, who had excessive gestational weight gain 
(GWG), developed gestational diabetes (GDM), did not smoke during pregnancy, and belonged to 
low/medium socioeconomic status (SES), gave birth to a boy with a large-for-gestational-age (LGA) birth 
weight and a BMI z-score of 1.01 SD at age 3 months. The boy was not fully breastfed (BF) at ages 1 month 
and 3 months. Note that “SGA” indicates “small-for-gestational-age” birth weight. 

“Higher-than-normal BMI growth pattern” during the early phase (6 months to 2 years) = -2.094 + 0.036 * 
LGA + 0.892 * LGA * inadequate GWG - 0.671 * SGA * male sex + 0.185 * GDM positive * SGA + 0.129 * 
GDM positive * excessive GWG + 0.013 * GDM positive * maternal class 3 obesity - 0.429 * GDM positive 
* smoking during pregnancy + 0.204 * GDM positive * full BF at 3m + 0.147 * excessive GWG * male sex 
+ 2.003 * BMI z-score > 1 SD at 3m + 0.246 * BMI z-score > 1 SD at 3m * SGA + 0.837 * BMI z-score > 1 
SD at 3m * inadequate GWG + 0.388 * BMI z-score > 1 SD at 3m * primiparity + 0.142 * maternal class 2 
obesity * LGA + 0.036 * maternal class 2 obesity * SGA + 0.093 * maternal class 2 obesity * primiparity + 
0.195 * maternal class 2 obesity * full BF at 3m + 0.287 * maternal class 2 obesity * LGA + 0.183 * maternal 
class 3 obesity * excessive GWG - 0.193 * smoking during pregnancy * LGA + 0.222 * smoking during 
pregnancy * SGA + 0.211 * full BF at 3m * excessive GWG = 

-2.094 + 0.036 * 1 + 0.892 * 1 * 0 - 0.671 * 0 * 1 + 0.185 * 1 * 0 + 0.129 * 1 * 1 + 0.013 * 1 * 1 - 0.429 * 1 * 
0 + 0.204 * 1 * 0 + 0.147 * 1 * 1 + 2.003 * 1 + 0.246 * 1 * 0 + 0.837 * 1 * 0 + 0.388 * 1 * 1 + 0.142* 0 * 1 + 
0.036 * 0 * 0 + 0.093 * 0 * 1 + 0.195 * 0 * 0 + 0.287 * 0 * 1 + 0.183 * 1 * 1 - 0.193 * 0 * 1 + 0.222 * 0 * 0 + 
0.211 * 0 * 1 = 

-2.094 + 0.036 + 0.129 + 0.013 + 0.147 + 2.003 + 0.388 + 0.183 = 0.805. 

Calculating the odds of higher-than-normal BMI growth: exp(risk score) = exp(0.805) = 2.24. 

Calculating the probability of higher-than-normal BMI growth: exp(risk score)/(1+exp(risk score) = 2.24/3.24 
= 0.69. 

We will now compare the calculated individual risk score (0.805) to the respective cut-off score value 
presented in Table 2 in the main text (-1.689). Since 0.805 is greater than -1.689, the child will be classified 
as belonging to the “higher-than-normal BMI growth pattern” risk group. The calculated risk probability of 
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the child to develop “higher-than-normal BMI growth pattern” is 69%. The pediatrician should discuss 
preventive measures with the mother to reduce the risk score measured during the next assessment. 
 
First risk re-assessment at age 1 year for developing higher-than-normal BMI growth in the late 
phase:  

At the well-child visit at age 1 year, the risk of this offspring can be re-assessed using the respective risk 
quantification equation. The pediatrician obtains new information (after month 3) and learns that this child 
was not fully breastfed at age 6 months and has a BMI z-score of 1.50 SD at age 1 year. 

“Higher-than-normal BMI growth pattern” during the late phase (3 years to 5 years) = -1.446 + 0.28 * LGA 
* inadequate GWG - 0.052 * SGA * male sex + 0.053 * GDM positive * low/medium SES + 0.648 * BMI z-
score > 1 SD at 1y + 0.46 * BMI z-score > 1 SD at 1y * GDM positive + 0.59 * BMI z-score > 1 SD at 1y * 
excessive GWG + 0.122 * BMI z-score > 1 SD at 1y * primiparity + 0.352 * BMI z-score > 1 SD at 1y * male 
sex +  0.057 * BMI z-score > 1 SD at 1y * full BF at 1m + 0.311 * maternal class 3 obesity * full BF at 1m + 
0.185 * smoking during pregnancy + 0.084 * smoking during pregnancy * LGA + 0.121 * smoking during 
pregnancy * low/medium SES + 0.551* full BF at 6m * LGA + 0.026 * full BF at 6m * smoking during 
pregnancy =  

-1.446 + 0.28 * 1 * 0 - 0.052 * 0 * 1 + 0.053 * 1 * 1 + 0.648 * 1 + 0.46 * 1 * 1 + 0.59 * 1 * 1 + 0.122 * 1 * 1 
+ 0.352 * 1 * 1 + 0.057* 1 * 0 + 0.311 * 1 * 0 + 0.185 * 0 + 0.084 * 0 * 1 + 0.121 * 0 * 1 + 0.551 * 0 * 1 + 
0.026 * 0 * 0 =  

-1.446 + 0.053 + 0.648 + 0.46 + 0.59 + 0.122 + 0.352 = 0.779 

Calculating the odds of higher-than-normal BMI growth: exp(risk score) = exp(0.779) = 2.18. 

Calculating the probability of higher-than-normal BMI growth: exp(risk score)/(1+exp(risk score) = 2.18/3.18 
= 0.69 

We will now compare the calculated individual risk score (0.779) to the respective cut-off score value 
presented in Table 2 (-1.135). Since 0.779 is greater than -1.135, the child will still be classified as belonging 
to the “higher-than-normal BMI growth pattern” risk group during the late phase. The individual risk 
probability of this child to develop a “higher-than-normal BMI growth pattern” remains to be 69%. The 
pediatrician should continue to discuss preventive measures with the mother to reduce the risk score 
measured during the next assessment. 
 
Second risk re-assessment at age 2 years for developing higher-than-normal BMI growth in the late 
phase:  

At age 2 years, the risk of this offspring can be further re-assessed using the respective risk quantification 
equation. This child has a BMI z-score of 1.70 SD at age 2 years.  

“Higher-than-normal BMI growth pattern” during the late phase (3 years to 5 years) = -1.995 + 0.112 * GDM 
positive * excessive GWG + 0.022 * GDM positive * low/medium SES + 0.109* GDM positive * smoking 
during pregnancy + 0.157 * GDM positive * full BF at 3m + 1.734 * BMI z-score > 1 SD at 2y - 0.097 * BMI 
z-score > 1 SD at 2y * SGA + 0.419 * BMI z-score > 1 SD at 2y * primiparity + 0.214 * BMI z-score > 1 SD 
at 2y  * maternal class 3 obesity + 0.037 * BMI z-score > 1 SD at 2y * male sex + 0.142 * maternal class 3 
obesity * full BF at 3m + 0.036 * smoking during pregnancy + 0.144 * full BF at 3m * LGA + 0.044 * full BF 
at 3m * excessive GWG + 0.015 * full BF at 3m * male sex + 0.531 * full BF at 6m * LGA + 0.14 * full BF at 
6m * male sex =  

-1.995 + 0.112 * 1 * 1 + 0.022 * 1 * 1 + 0.109 * 1 * 0 + 0.157 * 1 * 0 + 1.734 * 1 - 0.097 * 1 * 0 + 0.419 * 1 * 
1 + 0.214 * 1 * 1 + 0.037 * 1 * 1 + 0.142 * 1 * 0 + 0.036 * 0 + 0.144 * 0 * 1 + 0.044 * 0 * 1 + 0.015 * 0 * 1 + 
0.531 * 0 * 1 + 0.14 * 0 * 1 =  

-1.995 + 0.112 + 0.022 + 1.734 + 0.419 + 0.214 + 0.037 = 0.543 

Calculating the odds of higher-than-normal BMI growth: exp(risk score) = exp(0.543) = 1.72. 

Calculating the probability of higher-than-normal BMI growth: exp(risk score)/(1+exp(risk score) = 1.72/2.72 
= 0.63 

We will now compare the calculated individual risk score (0.543) to the respective cut-off score value 
presented in Table 2 (-1.133). Since 0.543 is greater than -1.133, the child will continue to have a high risk 
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of higher-than-normal BMI growth during the late phase and an individual risk probability of 63%. The 
pediatrician should continue to discuss preventive measures with the mother to reduce the child’s risk of 
overweight. 
 

1.2. Risk quantification in offspring of mother without obesity at well-child visits 

To illustrate how risk for higher-than-normal BMI growth in the early phase (between 6 months and 2 years) 
can be quantified, consider the following clinical case scenario of an offspring whose mother was normal 
weight in pregnancy:  
 
Initial risk quantification at age 3 months for developing higher-than-normal BMI growth in the early 
phase:  

A primiparous mother with normal weight, who gained adequate GWG, developed GDM, did not smoke 
during pregnancy, and belonged to a high SES, gave birth to a girl with an average-for-gestational-age 
(AGA) birth weight and a BMI z-score of 0.82 SD at age 3 months. The girl was fully breastfed at ages 1 
month and 3 months. 

“Higher-than-normal BMI growth pattern” during the early phase (6 months to 2 years) = -2.065 + 0.113 * 
LGA * primiparity + 1.717 * BMI z-score  > 1 SD at 3m + 0.072 * BMI z-score > 1 SD at 3m * GDM positive 
+ 0.08 * BMI z-score > 1 SD at 3m * inadequate GWG + 0.105 * BMI z-score > 1 SD at 3m * smoking during 
pregnancy - 0.064 * GDM positive - 0.076 * inadequate GWG * primiparity + 0.139 * maternal overweight 
+ 1.731 * maternal overweight * LGA + 0.057 * maternal overweight * excessive GWG + 0.061 * full BF at 
1m * smoking during pregnancy = 

-2.065 + 0.113 * 0 * 0 + 1.717 * 0 + 0.072 * 0 * 1 + 0.08 * 0 * 0 + 0.105 * 0 * 0 - 0.064 * 1 - 0.076 * 0 * 0 + 
0.139 * 0 + 1.731 * 0 * 0 + 0.057 * 0 * 0 + 0.061 * 0 * 0 = 

-2.065 - 0.064 = -2.129  

Calculating the odds of higher-than-normal BMI growth: exp(risk score) = exp(-2.129) = 0.12. 

Calculating the probability of higher-than-normal BMI growth: exp(risk score)/(1+exp(risk score) = 0.12/1.12 
= 0.11 

We will now compare the calculated individual risk score (-2.129) to the respective cut-off score value 
presented in Table S4 (Additional file 1) (-2.065). Since -2.129 is lower than -2.065, the child has a low risk 
of developing higher-than-normal BMI growth (individual risk probability 11%) and will not be classified as 
belonging to the “higher-than-normal BMI growth pattern” risk group.  
 
First risk re-assessment at age 1 year for developing higher-than-normal BMI growth in the late 
phase:  

At age 1 year, the risk of this offspring can be re-assessed using the respective risk quantification equation, 
given that this child was fully breastfed at age 6 months and has a BMI z-score of 0.89 SD at age 1 year. 

“Higher-than-normal BMI growth pattern” during late phase (3 years to 5 years) =  

-1.874 + 0.22 * BMI z-score > 1 SD at 1y =  

-1.874 + 0.22 * 0 = -1.874  

Calculating the odds of higher-than-normal BMI growth: exp(risk score) = exp(-1.874) = 0.15. 

Calculating the probability of higher-than-normal BMI growth: exp(risk score)/(1+exp(risk score) = 0.15/1.15 
= 0.13 

We will now compare the calculated individual risk score (-1.874) to the respective cut-off score value 
presented in Table S4 (Additional file 1) (-1.651). Since -1.874 is lower than -1.651 and the risk probability 
is 13%, the child will again not be classified as belonging to the “higher-than-normal BMI growth pattern” 
risk group.  
 
Second risk re-assessment at age 2 years for developing higher-than-normal BMI growth in the late 
phase:  
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At age 2 years, the risk of this offspring can be further re-assessed using the respective risk quantification 
equation. This child has a BMI z-score of 0.92 SD at age 2 years.  

“Higher-than-normal BMI growth pattern” during the late phase (3 years to 5 years) =  

-1.895 + 0.23 * BMI z-score > 1 SD at 2y =  

-1.895 + 0.23 * 0 = -1.895 

Calculating the odds of higher-than-normal BMI growth: exp(risk score) = exp(-1.895) = 0.15. 

Calculating the probability of higher-than-normal BMI growth: exp(risk score)/(1+exp(risk score) = 0.15/1.15 
= 0.13 

We will now compare the calculated individual risk score (-1.895) to the respective cut-off score value 
presented in Table S4 (Additional file 1) (-1.665). Since -1.895 is lower than -1.665 and the risk probability 
remains to be 13%, the child will again not be classified as belonging to the “higher-than-normal BMI growth 
pattern” risk group.  
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Supplementary figures 

  
Figure S1. Influence of maternal obesity on offspring BMI growth outcomes. 

 
Shown are ORs and 95% CIs of the influence of maternal pre-conception obesity on BMI growth outcomes 
up to age 5 years in all offspring belonging to upper BMI growth clusters from the PEACHES cohort study. 
Values were derived from univariate logistic regression.  
aThe term “multiple occasions” was defined as having BMI z-scores >1 SD [51] at least 5 out of 6 times at 
the well-child visits at age 6 months, 1 year, 2 years, 3 years, 4 years, and 5 years.   
BMI, body mass index; CI, confidence interval; OR, odds ratio; PEACHES, Programming of Enhanced 
Adiposity Risk in Childhood–Early Screening.  
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Figure S2. Proportion of offspring in upper and lower BMI growth clusters according to birth weight 
category.  

 

Shown are percentages in offspring of mothers with obesity (panel A) and without (panel B) enrolled in 
the PEACHES cohort study, according to their birth weight category for gestational age and sex.  
AGA, average-for-gestational-age; BMI, body mass index; LGA, large-for-gestational-age; PEACHES, 
Programming of Enhanced Adiposity Risk in Childhood–Early Screening; SGA, small-for-gestational-age. 
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Figure S3. Mean BMI growth clusters by birth weight category in offspring of mothers with and 
without obesity. 

 

Shown are mean BMI z-score growth clusters from birth to age 6 months (panel A, C) and birth to age 5 
years (panel B, D) by birth weight category for gestational age and sex in offspring of mothers with and 
without obesity enrolled in the PEACHES cohort study.  
AGA, average-for-gestational-age; BMI, body mass index; LGA, large-for-gestational-age; PEACHES, 
Programming of Enhanced Adiposity Risk in Childhood–Early Screening; SGA, small-for-gestational-age. 
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Figure S4. Effects of prenatal and postnatal factors on BMI growth outcomes in offspring of 
mothers without obesity.  

 
Shown are ORs and 95% CI of the influence of prenatal and postnatal factors on the development of an 
upper cluster of BMI growth (birth to age 5 years, panel A) and a “higher-than-normal BMI growth pattern”, 
defined as BMI z-score >1 SD [51] at least twice, during early phase (6 months to 2 years, panel B) and 
late phase (3 years to 5 years, panel C) in offspring of mothers without obesity enrolled in the PEACHES 
cohort study. Values were derived from multivariable logistic regression with stepwise backward selection. 
Only final models based on the lowest Akaike information criterion are presented. Included variables in all 
initial models were maternal pre-conception BMI group, total GWG, GDM, parity, smoking during 
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pregnancy, sex, birth weight category for gestational age and sex, SES, breastfeeding status at 1 month. 
Additionally, for associations shown in panel C, “higher-than-normal BMI growth pattern” in the early phase 
was also included as an explanatory variable in the initial model.  
BMI, body mass index; CI, confidence interval; GDM, gestational diabetes; GWG, gestational weight gain; 
LGA, large-for-gestational-age; OR, odds ratio; PEACHES, Programming of Enhanced Adiposity Risk in 
Childhood–Early Screening; SES, socioeconomic status; SGA, small-for-gestational-age.  
  



114 
 

Figure S5. Calibration plots of prediction models for identifying a “higher-than-normal BMI growth 
pattern” in the validation cohort. 

 

Shown are calibration curves (blue lines) and calibration slopes and intercepts for offspring of mothers with 
obesity (panel A, B) and without obesity (panel C, D) by the prediction models at age 1 year and 2 years. 
The diagonal grey lines represent the optimal prediction; the closer the model curve is to the diagonal line, 
the more accurate is the prediction. At the top of each graph, dots indicate presence of the outcome “higher-
than-normal BMI growth pattern”, defined as BMI z-score >1 SD [51] at least twice, in the late phase (3 
years to 5 years). At the bottom of each graph, dots indicate absence of the outcome “higher-than-normal 
BMI growth pattern” in the late phase. Calibration of models at age 3 months for “higher-than-normal BMI 
growth pattern” in the early phase (6 months to 2 years) could not be performed due to the lack of follow-
up data at age 3 months in the validation cohort PEPO. BMI, body mass index; PEPO, PErinatal Prevention 
of Obesity. 
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Supplementary tables 

Table S1. Offspring follow-up rates in the study populations.  

Offspring 
age 

Follow-up 
anthropometric 
data 

Discovery cohort: PEACHES Validation cohort: PEPO 

All (n=1,557) All (n=9,874) 

At birth Missinga 0 (0.0) 38 (0.4) 

Available 1,557 (100.0) 9,836 (99.6) 

Total 1,557 (100.0) 9,874 (100.0) 
1 month Missinga 31 (2.0) NA 

Available 1,526 (97.3) NA 

Total 1,557 (100.0) NA 
3 months Missinga 42 (2.7) NA 

Available 1,515 (97.3) NA 

Total 1,557 (100.0) NA 
6 months Missinga 68 (4.4) NA 

Available 1,489 (95.6) NA 

Total 1,557 (100.0) NA 
1 year Missinga 60 (3.9) 502 (5.1) 

Available 1,497 (96.1) 9,372 (94.9) 

Total 1,557 (100.0) 9,874 (100.0) 
2 years Missinga 104 (6.7) 627 (6.4) 

Available 1,453 (93.3) 9,247 (93.6) 

Total 1,557 (100.0) 9,874 (100.0) 
3 years Missinga 184 (11.8) NA 

Available 1,373 (88.2) NA 

Total 1,557 (100.0) NA 
4 years Missinga 263 (17.0) NA 

Available 1,281 (83.0) NA 

Total 1,544 (100.0)b NA 
5 years Missinga 252 (20.0) 307 (3.1) 

Available 1,008 (80.0) 9,567 (96.9) 

Total 1,260 (100.0)b 9,874 (100.0) 
Total over 
all ages 

Missinga 1,004 (7.3) 1,474 (3.7) 

Available 12,699 (92.7) 38,022 (96.3) 

Total 13,703 (100.0) 39,496 (100.0) 
Values are n (%).  
aMissing data in the PEACHES cohort were due to loss to follow-up. Missing data in the PEPO cohort 
were due to lack of availability of data in the records of the regular well-child visits at the time of 
school entry health examination.  
bA total of 13 and 297 children enrolled in the PEACHES cohort were too young for the follow-up visit 
at age 4 and 5 years, respectively, and therefore were not included in the “total” category. Missing 
data were considered missing completely at random.  
NA, not available; PEACHES, Programming of Enhanced Adiposity Risk in Childhood–Early 
Screening; PEPO, PErinatal Prevention of Obesity. 
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Table S2. Mean BMI z-scores by BMI growth cluster in offspring of mothers with and without obesity. 
Offspring follow-up Upper BMI growth cluster Lower BMI growth cluster 

Mothers with obesitya Mothers without obesityb Mothers with obesitya Mothers without obesityb 
N Mean (95% CI) N Mean (95% CI) N Mean (95% CI) N Mean (95% CI) 

At birth 185 0.07 (-0.06, 0.21) 183 -0.33 (-0.47, -0.19) 690 -0.31 (-0.39, -0.24) 472 -0.62 (-0.71, -0.53) 
1 month 185 0.50 (0.37, 0.62) 182 0.28 (0.15, 0.42) 687 -0.33 (-0.40, -0.26) 472 -0.51 (-0.58, -0.43) 
3 months 184 0.67 (0.54, 0.80) 181 0.55 (0.41, 0.68) 682 -0.51 (-0.58, -0.44) 468 -0.77 (-0.85, -0.70) 
6 months 181 0.95 (0.82, 1.08) 176 0.76 (0.64, 0.88) 672 -0.37 (-0.44, -0.29) 460 -0.66 (-0.74, -0.58) 
1 year 182 1.37 (1.25, 1.48) 176 1.02 (0.91, 1.14) 677 -0.07 (-0.13, 0.00) 462 -0.38 (-0.46, -0.30) 
2 years 174 1.79 (1.66, 1.93) 171 1.27 (1.17, 1.37) 665 0.38 (0.31, 0.44) 443 0.07 (-0.01, 0.15) 
3 years 168 1.85 (1.72, 1.99) 165 1.19 (1.05, 1.33) 621 0.23 (0.16, 0.30) 419 -0.14 (-0.21, -0.07) 
4 yearsc 155 1.97 (1.83, 2.11) 146 1.10 (1.00, 1.20) 588 0.24 (0.18, 0.31) 392 -0.25 (-0.32, -0.18) 
5 yearsc 124 1.96 (1.77, 2.16) 111 0.99 (0.86, 1.13) 461 0.24 (0.16, 0.32) 312 -0.35 (-0.43, -0.28) 
Values are mean and 95% CI in offspring of mothers with and without obesity enrolled in the PEACHES cohort study.  
aOf a total of 887 children included for cluster analysis, 875 children could be categorized into longitudinal BMI growth clusters based on an adequate 
number of data points.   
bOf a total of 670 children included for cluster analysis, 655 children could be categorized into clusters based on an adequate number of data points.  
cA total of 276 and 549 children enrolled in the PEACHES cohort were not included in the cluster analysis at age 4 and 5 years, respectively, 
because of follow-up not yet due (age 4 years: n=13, age 5 years: n=297) or missing data due to loss to follow-up (age 4 years: n=263, age 5 years: 
n=252). Missing data were considered missing completely at random.  
BMI, body mass index; CI, confidence interval; PEACHES, Programming of Enhanced Adiposity Risk in Childhood–Early Screening. 
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Table S3. Offspring BMI growth dynamics in consecutive life phases after birth following exposure to gestational obesity. 
  Late phase: 3 years – 5 years 

Mothers with obesity (n=584) Mothers without obesity (n=428) 
BMI z-score category ≤1 SDa >1 SDb “Higher-than-normal BMI 

growth pattern”c 
≤1 SDa >1 SDb “Higher-than-normal BMI 

growth pattern”c 

Early phase: 
6 months – 2 

years 

≤1 SDa 263 (45.0) 39 (6.7) 25 (4.3) 248 (57.9) 17 (4.0) 7 (1.6) 
>1 SDb 22 (3.8) 44 (7.5) 70 (12.0) 20 (4.7) 39 (9.1) 28 (6.5) 
“Higher-than-normal BMI 
growth pattern”c 

9 (1.5) 16 (2.7) 96 (16.4) 5 (1.2) 27 (6.3) 37 (8.7) 

All patterns 294 (50.3) 99 (16.9) 191 (32.7) 273 (63.8) 83 (19.4) 72 (16.8) 
Values are n (%) in offspring enrolled in the PEACHES cohort study. Only children with complete data on BMI z-scores in both the early and late phase are 
presented.  
aIncludes values for categories “normal range” (≥-2 to ≤1 SD) and a minor proportion of children with <-2 SD [72].  
bBMI z-score >1 SD defined as occurring once. Includes values for categories “at risk of overweight” (>1 to ≤2 SD), overweight (>2 to ≤3 SD), and obesity 
(>3 SD) [51].  
c“Higher-than-normal BMI growth pattern” defined as BMI z-score >1 SD [51] at least twice.  
BMI, body mass index; PEACHES, Programming of Enhanced Adiposity Risk in Childhood–Early Screening. 
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Table S4. Predictive performance of a sequential algorithm to identify higher-than-normal BMI growth in offspring of mothers without obesity. 
Predictive parameter Prediction at age 3 monthsa Prediction at age 1 yearb     Prediction at age 2 yearsc    

Higher-than-normal BMI growth 
in early phase (6 months – 2 
years) 

Higher-than-normal BMI growth in late 
phase (3 years – 5 years) 

Higher-than-normal BMI growth in late 
phase (3 years – 5 years) 

Discovery cohort Discovery cohort Validation 
cohort 

Discovery cohort Validation cohort 

N 567  515 6521 513 6432 
AUROC 0.68 (0.66, 0.71) 0.69 (0.67, 0.72) 0.65 0.77 (0.75, 0.79) 0.71 
Cut-off score valued -2.065 -1.651 NA -1.665 NA 
Prevalence, n (%) 82 (14.5) 71 (13.8) 949 (14.6) 71 (13.8) 924 (14.4) 
Sensitivity, % 75.6 (65.7, 83.4) 49.3 (38.3, 60.4) 42.0 (39.3, 44.8) 73.2 (62.2, 81.9) 65.1 (62.4, 67.7) 
Specificity, % 59.0 (48.4, 68.9) 88.1 (84.2, 91.1) 75.1 (72.8, 77.3) 80.1 (72.1, 86.3) 72.8 (70.0, 75.4) 
Positive predictive value, % 23.3 (17.4, 30.7) 40.2 (28.2, 52.5) 22.6 (20.0, 25.5) 37.5 (26.7, 49.4) 29.0 (26.2, 32.0) 
Negative predictive value, 
% 93.6 (89.5, 96.2) 91.5 (89.4, 93.4) 88.2 (87.4, 89.0) 94.8 (92.1, 96.7) 92.4 (91.6, 93.2) 
Positive likelihood ratio 1.84 (1.27, 2.68) 4.14 (2.42, 6.82) 1.69 (1.44, 1.97) 3.68 (2.23, 5.97) 2.39 (2.08, 2.75) 
Negative likelihood ratio 0.41 (0.24, 0.71) 0.58 (0.43, 0.73) 0.77 (0.71, 0.83) 0.33 (0.21, 0.52) 0.48 (0.43, 0.54) 
We used the PEACHES cohort study as the discovery cohort and the PEPO cohort study as the external validation cohort for calculation of the individual 
child’s risk of a “higher-than-normal BMI growth pattern” (BMI z-score >1 SD [51] at least twice). Values are predictive parameters and their 95% CI. 
aPotential predictors included: maternal pre-conception BMI group, total GWG, GDM, parity, smoking during pregnancy, sex, birth weight category for 
gestational age and sex, SES, breastfeeding status at 1 month, breastfeeding status at 3 months, and BMI z-score >1 SD at age 3 months. External 
validation of models at age 3 months could not be performed due to the lack of follow-up data at age 3 months in the validation cohort PEPO.  
bPotential predictors included: maternal pre-conception BMI group, total GWG, GDM, parity, smoking during pregnancy, sex, birth weight category for 
gestational age and sex, SES, breastfeeding status at 1 month, breastfeeding status at 3 months, breastfeeding status at 6 months, and BMI z-score >1 
SD at age 1 year. External validation of models at age 1 year was performed in the validation cohort PEPO.  
cPotential predictors included: maternal pre-conception BMI group, total GWG, GDM, parity, smoking during pregnancy, sex, birth weight category for 
gestational age and sex, SES, breastfeeding status at 1 month, breastfeeding status at 3 months, breastfeeding status at 6 months, and BMI z-score >1 
SD at age 2 years. External validation of models at age 2 years was performed in the validation cohort PEPO.  
dOffspring with a risk score above or equal to the respective cut-off score value are considered to be at risk of developing a “higher-than-normal BMI growth 
pattern”. The cut-off value of the score was optimized to avoid false-negative findings (sensitivity), which resulted in negative cut-off score values.  
AUROC, area under the receiver operating characteristic; BMI, body mass index; CI, confidence interval; GDM, gestational diabetes; GWG, gestational 
weight gain; NA, not applicable; PEACHES, Programming of Enhanced Adiposity Risk in Childhood–Early Screening; PEPO, PErinatal Prevention of 
Obesity; SES, socioeconomic status. 
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Table S5. Scoring system for quantification of risk of higher-than-normal BMI growth in young offspring. 
Prediction time 
point and 
outcomea 

Offspring of mothers with obesity Offspring of mothers without obesity 

Prediction at age 
3 months: Higher-
than-normal BMI 
growth in early 
phase (6 months 
– 2 years) 

-2.094 + 0.036 * LGA + 0.892 * LGA * inadequate GWG - 0.671 * SGA * male sex 
+ 0.185 * GDM positive * SGA + 0.129 * GDM positive * excessive GWG + 0.013 * 
GDM positive * maternal class 3 obesity - 0.429 * GDM positive * smoking during 
pregnancy + 0.204 * GDM positive *  full BF at 3m + 0.147 * excessive GWG * 
male sex + 2.003 * BMI z-score > 1 SD at 3m + 0.246 * BMI z-score > 1 SD at 3m 
* SGA + 0.837 * BMI z-score > 1 SD at 3m * inadequate GWG + 0.388 * BMI z-
score > 1 SD at 3m * primiparity + 0.142 * maternal class 2 obesity * LGA + 0.036 * 
maternal class 2 obesity * SGA + 0.093 * maternal class 2 obesity * primiparity + 
0.195 * maternal class 2 obesity * full BF at 3m + 0.287 * maternal class 2 obesity * 
LGA + 0.183 * maternal class 3 obesity * excessive GWG - 0.193 * smoking during 
pregnancy * LGA + 0.222 * smoking during pregnancy * SGA + 0.211 * full BF at 
3m * excessive GWG 

-2.065 + 0.113 * LGA * primiparity + 1.717 * 
BMI z-score > 1 SD at 3m + 0.072 * BMI z-
score > 1 SD at 3m * GDM positive + 0.08 * 
BMI z-score > 1 SD at 3m * inadequate GWG 
+ 0.105 * BMI z-score > 1 SD at 3m * 
smoking during pregnancy - 0.064 * GDM 
positive - 0.076 * inadequate GWG * 
primiparity + 0.139 * maternal overweight + 
1.731 * maternal overweight * LGA + 0.057 * 
maternal overweight * excessive GWG + 
0.061 * full BF at 1m * smoking during 
pregnancy 

Prediction at age 
1 year: Higher-
than-normal BMI 
growth in late 
phase (3 years – 
5 years) 

-1.446 + 0.28 * LGA * inadequate GWG - 0.052 * SGA * male sex + 0.053 * GDM 
positive * low/medium SES + 0.648 * BMI z-score > 1 SD at 1y + 0.46 * BMI z-score 
> 1 SD at 1y * GDM positive + 0.59 * BMI z-score > 1 SD at 1y * excessive GWG + 
0.122 * BMI z-score > 1 SD at 1y * primiparity + 0.352 * BMI z-score > 1 SD at 1y * 
male sex +  0.057 * BMI z-score > 1 SD at 1y * full BF at 1m + 0.311 * maternal class 
3 obesity * full BF at 1m + 0.185 * smoking during pregnancy + 0.084 * smoking 
during pregnancy * LGA + 0.121 * smoking during pregnancy * low/medium SES + 
0.551* full BF at 6m * LGA + 0.026 * full BF at 6m * smoking during pregnancy 

-1.874 + 0.22 * BMI z-score > 1 SD at 1y 

Prediction at age 
2 years: Higher-
than-normal BMI 
growth in late 
phase (3 years – 
5 years) 

-1.995 + 0.112 * GDM positive * excessive GWG + 0.022 * GDM positive * 
low/medium SES + 0.109* GDM positive * smoking during pregnancy + 0.157 * 
GDM positive * full BF at 3m + 1.734 * BMI z-score > 1 SD at 2y - 0.097 * BMI z-
score > 1 SD at 2y * SGA + 0.419 * BMI z-score > 1 SD at 2y * primiparity + 0.214 
* BMI z-score > 1 SD at 2y  * maternal class 3 obesity + 0.037 * BMI z-score > 1 
SD at 2y * male sex + 0.142 * maternal class 3 obesity * full BF at 3m + 0.036 * 
smoking during pregnancy + 0.144 * full BF at 3m * LGA + 0.044 * full BF at 3m * 
excessive GWG + 0.015 * full BF at 3m * male sex + 0.531 * full BF at 6m * LGA + 
0.14 * full BF at 6m * male sex 

-1.895 + 0.23 * BMI z-score > 1 SD at 2y 

aThe equations can be used for sequential individual risk quantification of a “higher-than-normal BMI growth pattern” (BMI z-score >1 SD [51] at least 
twice) in offspring of mothers with or without pre-conception obesity separately. The prenatal and postnatal variables in the risk quantification equations 
should be replaced by pre-defined values (0 or 1) depending on whether the condition stated is fulfilled (1) or not (0). The calculated risk score should be 
compared to the respective cut-off score value (Table 2). Offspring with a risk score above or equal to the respective cut-off are considered to be at risk 
of developing a “higher-than-normal BMI growth pattern”. Details on calculating individual risk probabilities and use of individual risk score calculations 
along with clinical case scenarios are provided in the Text S3 (Additional file 1).   
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BMI, body mass index; BF, breastfeeding; GDM, gestational diabetes; GWG, gestational weight gain; m, month(s); LGA, large-for-gestational-age; SES, 
socioeconomic status; SGA, small-for-gestational-age; y, year(s). 
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Appendix A: Book chapters 

Two book chapters are presented: 

1. Mütterliche Adipositas und langfristige Auswirkungen auf die Nachkommen. Sarah Perschbacher, 

Nathalie Eckel, Delphina Gomes, Regina Ensenauer (published, DOI: https://doi.org/10.1007/978-3-

662-61906-3_15) 

2. Perinatale Determinanten. S. Perschbacher, N. Eckel, D. Gomes, I. Nehring, R. Ensenauer (accepted 

for publication in 2023) 
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Sarah Perschbacher, Nathalie Eckel, Delphina Gomes, Regina Ensenauer 

15 - Mütterliche Adipositas und langfristige Auswirkungen auf die Nachkommen 

Trailer: 

Innerhalb der letzten Dekade wurde zunehmend deutlich, dass mütterliche Adipositas sich schon pränatal 

auf die Entwicklung der Nachkommen auswirken kann und über Mechanismen, die als „fetale 

Programmierung“ zusammengefasst werden, zu Langzeitfolgen bei den Nachkommen führt. Diverse 

Studien haben bereits ein erhöhtes Risiko für kindliches Übergewicht nach intrauteriner Exposition 

gegenüber maternaler Adipositas belegt. Weitere pränatale Risikofaktoren, die häufig mit maternaler 

Adipositas einhergehen und ein gesundheitliches Risiko bei den Nachkommen von adipösen Müttern noch 

zu steigern scheinen, sind u.a. die übermäßig hohe (exzessive) Gewichtszunahme während der 

Schwangerschaft und der Gestationsdiabetes (GDM). Im Folgenden sind Evidenzen für ungünstige 

Langzeitfolgen bei den Nachkommen nach Exposition gegenüber präkonzeptionell bestehender Adipositas 

und assoziierten metabolischen Störungen ausgeführt. 
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Perinatale Determinanten 

S. Perschbacher, N. Eckel, D. Gomes, I. Nehring, R. Ensenauer 

Hintergrund 

Als prä-/perinatale bzw. frühkindliche Determinanten für späteres Übergewicht bei Kindern und 
Jugendlichen - definiert anhand von alters- und geschlechtsspezifischen Perzentilen oder Z-scores für u.a. 
den Body Mass Index (BMI) - werden folgende Faktoren mit unterschiedlicher Gewichtung diskutiert: 
maternaler präkonzeptioneller BMI bzw. maternales präkonzeptionelles Übergewicht und Adipositas (siehe 
Tab. 3.1), Rauchen und Gewichtszunahme während der Schwangerschaft, Gestationsdiabetes, 
Gestationshypertonie, Parität, Geburtsmodus, Mikrobiom, Stillen und das Ausmaß der kindlichen 
Gewichtszunahme in den ersten 1–2 Lebensjahren. Die Evidenz stützt sich dabei auf tierexperimentelle 
Studien und Beobachtungsstudien beim Menschen, da diese Determinanten nicht in randomisierten 
Humanstudien getestet werden können. 

Eine der ersten tierexperimentellen Arbeiten zum Einfluss der früh-postnatalen Prägung des späteren 
Gewichts stammt von Widdowson und McCance. In einem Rattenmodell zeigten sie, dass eine unmittelbar 
postnatale Unterernährung zu späteren Wachstumsverzögerungen führt, während eine Unterernährung 
nach Ende der Laktation ab der dritten Lebenswoche geringere Auswirkungen auf das spätere Gewicht 
hat. 

Die empirische Evidenz für die Zusammenhänge beim Menschen stammt aus Querschnitts-, Fall-Kontroll- 
und Kohorten-Studien, deren Ergebnisse oftmals bereits in Metaanalysen zusammengefasst worden sind. 
Hierbei werden auch additive Effekte der verschiedenen Einflussfaktoren diskutiert. Das wissenschaftliche 
Interesse an Faktoren der frühen Prägung resultiert aus der möglichen Nutzung dieser Erkenntnisse für die 
Entwicklung von Präventionsmaßnahmen. Um die Erkenntnisse für die Adipositasprävention zu nutzen, 
sollten die Zusammenhänge klar belegt sein. Die Evidenz für die einzelnen Risikofaktoren ist bislang 
unterschiedlich und wird nachfolgend diskutiert.  
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