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Zusammenfassung
Wechselwirkungen zwischen quantenmechanischen Teilchen können zu kollektiven
Phänomenen führen, deren Eigenschaften sich vom Verhalten einzelner Teilchen
stark unterscheiden. Während solche Quanteneffekte im Allgemeinen schwierig zu
beobachten sind, haben sich ultrakalte, in optischen Gittern gefangene atomare Gase als
vielseitige experimentelle Plattform zur Erforschung der Quantenvielteilchenphysik
erwiesen. In dieser Arbeit setzten wir ein Gitterplatz- und Einzelatom-aufgelöstes
Quantengasmikroskop für bosonische 87Rb Atome ein, um Vielteilchensysteme im
und außerhalb des Gleichgewichts zu untersuchen.

Zunächst betrachteten wir den quantenmechanischen Phasenübergang zwischen
dem suprafluiden und dem Mott-isolierenden Zustand im Bose-Hubbard-Modell,
das nativ durch kalte Atome in optischen Gittern realisiert wird, und zeigten, dass
sich die Brane-Parität eignet, um nichtlokale Ordnung im konventionell als unge-
ordnet erachteten zweidimensionalen Mott-Isolator zu identifizieren. Mithilfe eines
mikroskopischen Ansatzes zur Realisierung einstellbarer Gittergeometrien und pro-
grammierbarer Einheitszellen implementierten wir Quadrats-, Dreiecks-, Kagome-
und Lieb-Gitter und beobachteten die Skalierung des Phasenübergangspunkts mit der
mittleren Koordinationszahl des Gitters.

In einem eindimensionalen Gitter untersuchten wir zudem den Hochtemperatur-
Spintransport im Heisenberg-Modell, das durch Superaustausch in der Mott-isolieren-
den Phase eines zwei-Spezies Bose-Hubbard-Modells realisiert wurde. Durch Betra-
chten der Relaxationsdynamik eines als Domänenwand präparierten Anfangszus-
tandes fanden wir eine superdiffusive Raum-Zeit-Skalierung mit einem anomalen
dynamischen Exponenten von 3/2. Anschließend untersuchten wir die theoretisch
vorhergesagten mikroskopischen Voraussetzungen für Superdiffusion, indem wir reg-
uläre Diffusion im nicht-integrablen, zweidimensionalen Heisenberg-Modell und bal-
listischen Transport für SU(2)-Symmetrie-gebrochene magnetisierte Anfangszustände
nachwiesen. Weiterhin maßen wir die Zählstatistik der durch die Domänenwand
transportierten Spins; die sich daraus ergebende schiefe Verteilung deutete auf einen
nichtlinearen zugrundeliegenden Transportprozess hin, der an die dynamische Kardar-
Parisi-Zhang Universalitätsklasse erinnert.

Mittels Mott-Isolatoren im Limit tiefer Gitter konnten wir darüber hinaus die
durch Photonen vermittelten Wechselwirkungen in einem Spinsystem untersuchen,
das aus zwei über einen geschlossenen optischen Übergang gekoppelten Zustän-
den besteht. Durch spektroskopische Untersuchung der Reflexion und Transmission
konnten wir die direkte Anregung einer subradianten Eigenmode und kohärente
Spiegelung beobachten, was auf die Realisierung einer effizienten, im freien Raum
operierenden, paraxialen Licht-Materie-Schnittstelle hindeutet.
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Abstract
The interplay of quantum particles can give rise to collective phenomena whose
characteristics are distinct from the behavior of individual particles. While quantum
effects are generally challenging to observe, ultracold atomic gases trapped in optical
lattices have emerged as a versatile experimental platform to study quantum many-
body physics. In this thesis, we employed a site– and single-atom–resolved quantum
gas microscope of bosonic 87Rb atoms to explore many-body systems in and out of
equilibrium.

We first considered the ground-state quantum phase transition between the super-
fluid and Mott-insulating state in the Bose–Hubbard model, natively realized by cold
atoms in optical lattices, for which we found brane parity to be suitable for detecting
nonlocal order in the conventionally unordered two-dimensional Mott insulator. Using
a microscopic approach to realizing tunable lattice geometries and programmable unit
cells, we implemented square, triangular, kagome and Lieb lattices, and observed the
mean-field scaling of the phase transition point with average coordination number.

In a one-dimensional lattice, we furthermore studied high-temperature spin trans-
port in the Heisenberg model, realized by superexchange in the Mott-insulating phase
of a two-species Bose–Hubbard model. By tracking the relaxation dynamics of an
initial domain-wall state, we found superdiffusive space–time scaling with an anoma-
lous dynamical exponent of 3/2. We then probed the predicted microscopic require-
ments for superdiffusion, verifying regular diffusion for the integrability-broken two-
dimensional Heisenberg model and ballistic transport for SU(2)-symmetry–broken net
magnetized initial states. Subsequently, we measured the full counting statistics of
spins transported across the domain wall; the resulting skewed distribution implied
a nonlinear underlying transport process, reminiscent of the Kardar–Parisi–Zhang
dynamical universality class.

Moving to Mott insulators in the deep-lattice limit, we could moreover study
photon-mediated interactions on a subwavelength-spaced, array-ordered spin system
consisting of states coupled by a closed optical transition. By spectroscopically probing
the reflectance and transmittance, we demonstrated the direct excitation of a subradiant
eigenmode and observed specular reflection, indicating the realization of an efficient
free-space paraxial light–matter interface.
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Chapter 1

Introduction
Since its inception more than a century ago, quantum mechanics has evolved into a cen-
tral pillar of modern physics, providing a microscopic foundation to the understanding
of a wide range of phenomena. The core challenge in studying the physics of interacting
quantum particles lies in connecting the exponentially complex microscopic properties
with the often simpler emergent behavior. A generic approach to answering such
questions is given by quantum simulation, in which the abstract quantum-mechanical
effects of an intractable system are implemented in a well-controlled alternate physical
system [1]. Nowadays, theoretical models and experimental techniques in a variety of
physical platforms have reached a level of maturity, in which desired quantum effects
can often be engineered, solving problems ranging from quantum simulation and com-
putation to communication and metrology [2–5]. The topic of this thesis is the platform
of ultracold neutral atoms, which has become one of the leading systems for studying
quantum physics [6], benefitting from high isolation, intrinsic indistinguishability,
optical controllability and tunable interactions [7, 8].

Many-body physics with ultracold atoms

A major part of many-body physics is concerned with the equilibrium properties of an
ensemble of particles; improving the understanding and control over these systems
has been a driving force behind the advancements in the field of cold atoms. The
study of many-body physics with dilute atomic gases in the quantum regime was
enabled by the development of laser [9] and evaporative cooling, and began with the
first realizations of atomic Bose–Einstein condensates (BECs) [10, 11] and degenerate
Fermi gases [12]. Subsequent efforts focused on parametrically and adiabatically
reaching the strongly correlated regime, where interaction effects compete with single-
particle effects. For instance, the strong-interaction regime was reached in Fermi
gases using Feshbach resonances to increase collisional interactions, and resulted in
the observation of the crossover between BEC and Bardeen–Cooper–Schrieffer (BCS)
pairing [13]. A complementary approach, most relevant for this thesis, employed
optical lattice potentials, whose confinement allowed dilute atomic gases to undergo
a quantum phase transition (QPT) between a superfluid (SF) and a Mott insulator
(MI) phase [14]. These periodic systems give access to lower dimensionality and
generically emulate condensed matter models; specifically, they realize bosonic or
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fermionic Hubbard models [15], whose strong-interaction limit furthermore enabled
the exploration of quantum magnets [16]. The use of static or driven optical lattices
with more complex geometries [17–19] moreover enabled band engineering and the
study of topological and frustration physics [20, 21].

The introduction of quantum gas microscopes (QGMs) [22–28] revolutionized ex-
perimental many-body physics, enabling projective Fock-basis measurements of the
entire atomic Hilbert space using single-site– and single-atom–resolved imaging [29].
These techniques enabled the direct detection of quantum fluctuations of the atomic
occupation or spin [30–36] and the observation of order with multi-point correla-
tors [31, 37–39]. The high resolution provided by QGMs further allowed for single-site–
resolved programmable potential shaping [40], granting local control for quantum-state
and Hamiltonian engineering. These advances gave rise to the preparation of local
excitations [41, 42], as well as the microscopic characterization of entanglement and
emergent quasiparticles [43–46].

The well-isolated nature of ultracold atomic systems also lends itself well to the
study of Hamiltonian quantum non-equilibrium phenomena, in which the many-body
dynamics of interacting particles, typically prepared in states far from the ground state,
are measured. A central question in this context relates to quantum thermalization
and the breaking of ergodicity in the dynamical evolution of a non-equilibrium initial
state [47–49]. Notably, this occurs in integrable models [50, 51], which feature extensive
conservation laws, in many-body localized models [52, 53], in which disorder prevents
thermal relaxation, or in models with fragmented Hilbert spaces [54–56], which give
rise to strongly initial-state–dependent dynamics. Non-equilibrium dynamics is often
studied in the context of atomic or spin transport phenomena, being most relevant
for condensed matter systems [57], whereby the connection between microscopic
properties and the emergent macroscopic behavior is of interest. In particular, this
encompasses probing the dynamical scaling and possibly universal behavior of the
arising hydrodynamics [58–62]; certain interacting quantum models display anoma-
lous, i.e., non-diffusive and non-ballistic behavior [63, 64], whose microscopic origins
are yet to be understood.

While the aforementioned approaches are based on the motional degree of free-
dom (DOF) of the atoms, their electronic DOFs in the form of microwave (MW) and
optical transitions have also been directly employed. Notably, the inherent quanti-
zation of individual atoms is suited for the experimental study of quantum optics,
enabling observations such as photon anti-bunching or deterministic quantum telepor-
tation [65, 66]. Quantum-optical systems comprising atoms [67] have continued to play
a major role in studying the foundations of quantum mechanics [68], the generation of
exotic quantum states of light [69, 70], or applications in quantum information process-
ing [71, 72]. Another focus of investigation involves the investigation of atom–photon
interactions in ensembles of many atoms, where coherence in the light scattering pro-
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cess can reveal collective emission properties [73, 74]. While such measurements have
been performed in disordered atomic ensembles, collective quantum optics in spatially
ordered systems, as enabled by ultracold atoms in optical lattices [75], has remained
experimentally largely unexplored, and promises to give rise to rich physics [76].

1.1 Outline
In this thesis, we employ a QGM to experimentally study equilibrium properties
of the Bose–Hubbard (BH) model, dynamical features of the isotropic Heisenberg
(XXX) model and collective effects in many-atom light scattering. The emergence
of this variety of quantum many-body models is summarized in Chapter 2, which
furthermore reviews experimentally accessible observables and control parameters.

In Part I, we microscopically study the QPT of the two-dimensional (2D) BH model
in different lattice geometries. We begin, in Chapter 3, by giving an overview of the
experimental setup and describe the generation of programmable lattice structures,
the extraction of site-resolved observables, the implementation of local control and
the system calibration methods. We then introduce the BH model in more detail in
Chapter 4, characterize quantum fluctuations and probe for nonlocal order in the MI
phase in a variety of 2D lattice geometries.

In Part II, we consider anomalous spin transport in the one-dimensional (1D) XXX
model and discuss its relation to the Kardar–Parisi–Zhang (KPZ) dynamical universal-
ity class. Chapter 5 serves as a theoretical overview of the properties of the KPZ class
and provides an introduction to the main ideas of generalized hydrodynamics (GHD),
used to describe transport in integrable systems. In Chapter 6, we focus on spin trans-
port in generic Heisenberg (XXZ) chains and present measurements demonstrating
superdiffusive dynamical scaling. We further explore the microscopic requirements to
obtain superdiffusion and discuss the influence of initial states on far-from-equilibrium
transport. Lastly, we exploit the single-atom sensitivity of our QGM to measure the
full counting statistics (FCS) of the spin-transport problem, allowing us to characterize
transport beyond a scaling exponent in Chapter 7.

In Part III, we study the cooperative optical response of an atomic array in the
single-photon regime. We explain the effects of coherence in light-scattering processes
in Chapter 8, highlighting the differences between array-ordered and disordered en-
sembles of dipole emitters. Subsequently, in Chapter 9, we present experimental
measurements, showing a spectrally subradiant response and specular reflection. We
discuss the role of positional order, cooperativity and the technical and physical limita-
tions to mirror fidelity.

In Chapter 10, we summarize the results of the thesis, and give an outlook on
possible extensions of the experiments shown in this thesis.
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1.2 Publications
The following articles have been published in refereed journals in the context of this
thesis. The articles most relevant for this thesis are shown in bold font.

• Observation of brane parity order in programmable optical lattices.
D. Wei, D. Adler, K. Srakaew, S. Agrawal, P. Weckesser, I. Bloch, J. Zeiher.
Phys. Rev. X 13, 021042 (2023).

• A subwavelength atomic array switched by a single Rydberg atom.
K. Srakaew, P. Weckesser, S. Hollerith, D. Wei, D. Adler, I. Bloch, J. Zeiher.
Nat. Phys. 19, 714–719 (2023).

• Quantum gas microscopy of Kardar–Parisi–Zhang superdiffusion.
D. Wei, A. Rubio-Abadal, B. Ye, F. Machado, J. Kemp, K. Srakaew, S. Hollerith, J.
Rui, S. Gopalakrishnan, N. Y. Yao, I. Bloch, J. Zeiher.
Science 376, 716–720 (2022).

• Realizing distance-selective interactions in a Rydberg-dressed atom array.
S. Hollerith, K. Srakaew, D. Wei, A. Rubio-Abadal, D. Adler, P. Weckesser, A.
Kruckenhauser, V. Walther, R. van Bijnen, J. Rui, C. Gross, I. Bloch, J. Zeiher.
Phys. Rev. Lett. 128, 113602 (2022).

• Microscopic electronic structure tomography of Rydberg macrodimers.
S. Hollerith, J. Rui, A. Rubio-Abadal, K. Srakaew, D. Wei, J. Zeiher, C. Gross, I.
Bloch.
Phys. Rev. Research 3, 013252 (2021).

• A subradiant optical mirror formed by a single structured atomic layer.
J. Rui, D. Wei, A. Rubio-Abadal, S. Hollerith, J. Zeiher, D. M. Stamper-Kurn, C.
Gross, I. Bloch.
Nature 583, 369–374 (2020).

• Floquet prethermalization in a Bose–Hubbard system.
A. Rubio-Abadal, M. Ippoliti, S. Hollerith, D. Wei, J. Rui, S. L. Sondhi, V. Khemani,
C. Gross, I. Bloch.
Phys. Rev. X 10, 021044 (2020).

https://doi.org/10.1103/physrevx.13.021042
https://doi.org/10.1038/s41567-023-01959-y
https://doi.org/10.1126/science.abk2397
https://doi.org/10.1103/physrevlett.128.113602
https://doi.org/10.1103/physrevresearch.3.013252
https://doi.org/10.1038/s41586-020-2463-x
https://doi.org/10.1103/physrevx.10.021044
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Chapter 2

Quantum gas microscopy
Ultracold atoms trapped in optical dipole potentials have proven to be an outstanding
experimental platform for studying quantum many-body systems [6, 77]. In particular,
optical-lattice–based systems have given unprecedented insight into condensed matter
phenomena [7, 14, 15, 78], given the engineered clean environment, intrinsic unifor-
mity of the quantum particles studied and high isolation from external sources of
decoherence. The advent of quantum gas microscopy has added valuable tools by pro-
viding access to observables on the single-atom level and by allowing for site-resolved
control [22, 23, 29].

In this chapter, we will review the fundamentals of bosonic atoms in optical lattices
and describe the main properties of the resulting Hubbard model. We then present
effective models which emerge for extensions of the Bose–Hubbard (BH) model or
when considering other aspects of the atomic system. Finally, we discuss the types of
microscopically accessible observables and the role of local control in quantum gas
microscopes (QGMs).

2.1 Ultracold atoms in optical lattices
Atoms in off-resonant light fields are subject to conservative optical dipole poten-
tials [79], where the potential V(r) is proportional to the light intensity I(r). Optical
lattices typically arise from periodic interference patterns formed by the coherent
superposition of laser beams. These give rise to a periodic potential for the atoms,
V(r) = V(r+R), where R is a lattice vector. Typically, lattice depths, V0 ≡ Vmax−Vmin,
are expressed in units of the recoil energy, Ea/nm

r = h2/8ma2, where a denotes the
lattice spacing and m the atomic mass.

2.1.1 From optical lattices to Hubbard models
Given a d-dimensional optical lattice potential, Bloch’s theorem can be applied to
obtain the band structure [80] with dispersion relation En,q and Bloch waves

ψn,q(r) = eiq·run,q(r), (2.1)

where n denotes the band indices, q the quasimomentum, and un,q a R-periodic func-
tion. As we are interested in strongly correlated systems that interact via localized
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interactions, we resort to the more suitable basis of Wannier states, which are exponen-
tially localized around a given lattice site and form an orthonormal basis. Expressing
the Wannier states as superpositions of the Bloch waves from a given band n,

wn,R(r) = ∑
q

cn,R(q)ψn,q(r), (2.2)

the expansion coefficients cn,R can be calculated using the notion of the Wannier states
as eigenstates of the band-projected position operator along all reciprocal lattice vectors
Gj [81], given by P̂n r̂ ·Gj P̂n. Here, P̂n = ∑q|ψn,q〉〈ψn,q| denotes the projector onto
the band n, and the reciprocal lattice vectors are defined by Ri ·Gj = 2πδi,j. In the
following, we will restrict ourselves to the ground band, n = 1. Note that the case of
multiple sublattices (lattice sites within a unit cell) can be handled by constructing the
Wannier states from a set containing multiple bands. For our purposes, we will treat
multiple sublattices within the tight-binding approximation described below.

Having introduced the single-particle basis, we can expand the many-body Hamilto-
nian of collisionally interacting spinless bosons in the ground band Wannier states [82]
as

Ĥ = −∑
i,j

Ji,j â†
i âj +

1
2 ∑

i,j,k,l
Ui,j,k,l â†

i â†
j âk âl − µ ∑

i
n̂i, (2.3)

with the hopping matrix elements Ji,j =
∫

d3r w∗Ri
(r)(p̂2/2m + V(r))wRj(r), the in-

teraction matrix elements Ui,j,k,l = g
∫

d3r w∗Ri
(r)w∗Rj

(r)wRk(r)wRl(r), the momentum

operator p̂, the bosonic creation (annihilation) operator â†
i (âi), and the number op-

erator n̂i. The chemical potential is denoted by µ and the interaction parameter by
g = 4πh̄2as/m with the s-wave scattering length as.

The Wannier-function overlap beyond nearest neighbors can be typically neglected
for sufficiently deep lattices (e.g., Ji,i+2/Ji,i+1 ≈ 0.1 for V0 ≈ 4Er in a one-dimensional
(1D) sinusoidal lattice [83]), yielding the tight-binding approximation. We then obtain
the standard BH Hamiltonian [84],

ĤBH = −J ∑
〈i,j〉

â†
i âj +

U
2 ∑

i
n̂i(n̂i − 1)− µ ∑

i
n̂i, (2.4)

where we sum over the nearest-neighbor (NN) sites i, j, and introduce the hopping
energy J = Ji,j and Hubbard interaction energy U = Ui,i,i,i. At high atomic densities,
interaction-induced hopping processes can be of relevance, which are captured by the
bond-charge tunnelling correction [85],

ĤBH 7→ ĤBH − JBC ∑
〈i,j〉

(n̂i + n̂j − 1)â†
i âj, (2.5)

with hopping energy JBC = Ui,i,i,j.
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2.1.2 Phases of the Bose–Hubbard model
The BH model constitutes a minimal quantum many-body lattice model of bosons
which cannot be reduced to a single-particle problem [82] and features the celebrated
Mott insulator (MI)–superfluid (SF) quantum phase transition (QPT) [86]. Despite its
simplicity, the BH model is not analytically solvable and generally requires numerical
approaches for quantitative predictions. In this section, we describe the fundamental
properties of the phases in the BH model. In Part I we will perform more detailed
analyses, consider nonlocal features and discuss the lattice-geometry dependence.

Superfluid phase

In the non-interacting limit, J � U, the ground state is given by a Bose–Einstein
condensate (BEC), with all atoms populating the q = 0 state of the ground band. For
a large system with N atoms and a fixed density nγ on each sublattice γ (as imposed
by the ground band condition), the state factorizes into a product of local coherent
states [6],

|Ψ〉U/J=0 ∼ exp
(√

N â†
q=0

)
|0〉 ∼∏

i,γ

[
exp

(√
nγ â†

i,γ

)
|0〉i,γ

]
. (2.6)

Thus, the number statistics of each lattice site follows a Poissonian distribution. At
finite interaction strengths U, the distribution is modified as the repulsive interaction
suppresses higher occupations.

Generally, the SF phase is characterized by a non-vanishing superfluid density and
associated with off-diagonal (quasi-) long-range order [6, 87].

Mott-insulating phase

In the strongly interacting limit, J � U, the ground state at commensurate filling n is
given by a tensor product of Fock states on the individual lattice sites,

|Ψ〉J/U=0 ∼∏
i,γ

[
(â†

i,γ)
n|0〉i,γ

]
, (2.7)

and has vanishing number fluctuations. Finite values of the hopping energy, J, initiate
number fluctuations in the form of particle–hole pairs, â†

i,γ âj,γ′ .
Typically, the MI phase is characterized by its incompressibility, ∂n/∂µ = 0, indicat-

ing the insensitivity of the total number of atoms [6, 84]. In contrast to this definition,
which is based on the system response to external perturbation, a nonlocal order pa-
rameter has been devised which only depends on the given ground state itself [88–90],
see Chapter 4.

System inhomogeneity

In actual experimental implementations of ultracold atoms in optical lattices, the
available atom number is finite, so a confinement potential is required to limit the
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Figure 2.1: Quantum many-body models studied in this thesis. (a) The Bose–
Hubbard (BH) model, studied in Part I, describes hopping between nearest-neighbor
(NN) sites (top) and repulsive on-site interaction (bottom). (b) The Heisenberg model,
studied in Part II, effectively describes the unity-filled strong-interaction limit of a
two-species BH model. The coupling between NN spins (top, bottom) arises from spin
exchange through virtual doublon formation (center). (c) Optical excitations (green)
typically couple directly to propagating and thus dissipative electromagnetic modes
(top). Cooperative atom–light interactions, studied in Part III, emerge at wavelength-
scale interatomic distances, wherein coherent re-absorption processes occur, leading to
cooperative dissipation (center) and energy shifts (bottom).

system size. For potential variations which are small compared to the ground band
gap, the Wannier functions remain to be suitable wavefunctions for the tight-binding
model, and the confinement manifests as a local potential shift εi with the correction
Hamiltonian

ĤBH 7→ ĤBH + ∑
i

εin̂i. (2.8)

For spatially slowly varying confinement potentials, the local-density approxima-
tion (LDA) is applicable, in which we associate the local potential offset εi with a local
phase corresponding to the uniform phase with chemical potential [15], µi = µ− εi.
For a harmonic confinement potential—which the Gaussian beams forming the optical
lattices realize—at small J/U, this gives rise to a concentrically layered coexistence of
MI and SF phases, and thus results in atomic densities distributed in the shape of a
wedding cake [23, 91].
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System feature Energy scale (h)

Hyperfine splitting 109 Hz
Zeeman splitting 107–108 Hz
Light scattering rate 106 Hz
Ground band gap 104–105 Hz
Hubbard interaction 102 Hz
Tunnelling 101–102 Hz
Spin exchange 100–101 Hz

Table 2.1: Typical energy scales of a 87Rb quantum gas microscope. Ultracold
atoms in optical lattices can be studied in a variety of independent contexts. Such
experimental versatility is founded on, amongst others, the large separation of energy
scales. The energies most relevant to this thesis are displayed in the table.

2.1.3 From optical lattices to spin models
In the previous section, we have focused on the motional state of the atoms. Taking
into account the internal, electronic state, qualitatively different quantum many-body
models can be realized. In the context of this thesis, models of relevance beyond the
bare BH model are Heisenberg (XXZ) models and cooperative light scattering models.
Illustrations of these models are depicted in Fig. 2.1. Note that these models operate
on vastly different energy scales, see Tab. 2.1.

Heisenberg models (Part II)

Introducing an internal (pseudo-) spin state to the problem posed in Sec. 2.1.1, the
single-species BH model, Eq. (2.4), is straightforwardly modified to yield the two-
species BH model [92–95],

ĤBH2 = −J ∑
〈i,j〉,σ

â†
i,σ âj,σ +

1
2 ∑

i,σ
Uσσn̂i,σ(n̂i,σ − 1) + U↑↓∑

i
n̂i,↑n̂i,↓ + ∑

i,σ
(εi,σ − µ)n̂i,σ,

(2.9)
for which we sum over the two spin states, σ ∈ {↑, ↓}, and where Uσσ′ indicates the
Hubbard interaction between atoms with spins σ, σ′. In the limit of strong interactions,
J � Uσσ′ , doublons can only form virtually, giving rise to perturbative spin exchange
processes on top of regular tunnel coupling. Formally, Eq. (2.9) reduces to a bosonic
t–J model [96]. When additionally demanding unity filling, n̂i,↑ + n̂i,↓ = 1, we obtain
the spin-1/2 XXZ model

ĤXXZ = − Jex

2 ∑
〈i,j〉

(Ŝ+
i Ŝ−j + ∆Ŝz

i Ŝz
j ) + ∑

i
hiŜz

i (2.10)
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with spin exchange energy Jex = 4J2/U↑↓, anisotropy ∆ = U↑↓/U↑↑ + U↑↓/U↓↓ − 1
and local effective magnetic field hi = 2(εi,↑ − εi,↓). The spin exchange operators are
defined as Ŝ+

i = â†
i,↑ âi,↓, Ŝ−i = â†

i,↓ âi,↑, and the z-component as Ŝz
i = (n̂i,↑ − n̂i,↓)/2.

Note that, for the isotropic Heisenberg (XXX) model, ∆ = 1, the bond-charge correction
of Eq. (2.5) reduces to a renormalization of the hopping energy J.

In Part II we will discuss the properties of the 1D XXZ model and focus on anoma-
lous spin transport behavior.

Open long-range XY models (Part III)

More quantum models of interest arise when going even deeper into the atomic
limit, where inter-site motional coupling is negligible, J/U = 0. To observe non-
trivial effects away from the many-body low-energy regime of itinerant systems, we
consider two states separated by a closed optical transition as a pseudo–spin-1/2
system. As this transition couples to the electromagnetic (EM) environment, we realize
an open system of long-range–interacting dipoles, described by a master equation,
dρ̂/dt = −(i/h̄)[Ĥ, ρ̂] +L[ρ̂], with the parameters in the rotating-wave approximation
given by [76]

Ĥ = ∑
i,j

Jijσ̂
+
i σ̂−j −∑

i
(Ωiσ̂

+
i + Ω∗i σ̂−i ),

L = ∑
i,j

Γij

2
(2σ̂−j ρ̂σ̂+

i − σ̂+
i σ̂−j ρ̂− ρ̂σ̂+

i σ̂−j ),

Jij = −µ0ω2
0d∗ · Re G(ri − rj, ω0) · d, Jii = ∆i,

Γij = −2µ0ω2
0d∗ · Im G(ri − rj, ω0) · d, Γii = Γ0.

(2.11)

Here, σ̂±i indicate the local spin flip operators and ρ̂ the atomic density matrix. The
transition energy is denoted by h̄ω0, its electric dipole moment as d with an associated
single-body decay rate of Γ0/h̄, the EM Green’s tensor as G and the Rabi frequency
due to an external coherent drive field E (with a frequency detuning of ∆i/h with
respect to the bare transition frequency) as Ωi/h = d · E(ri)/h. For our case of a three-
dimensional (3D) vacuum as EM environment, G is given by the free-space Green’s
tensor,

G(r, ω0) =
eik0r

4πr

[(
1

k0r
+

i
k2

0r2
− 1

k3
0r3

)
1 +

(
− 1

k0r
− 3i

k2
0r2

+
3

k3
0r3

)
r⊗ r

r2

]
, (2.12)

with wave number k0 = ω0/c and distance r = |r|.
In Part III we will explore the weak-excitation limit of the model and discuss how

structuring the atomic positions gives rise to novel light–matter interfaces.
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2.2 Microscopic access
The development of QGMs has given unprecedented in-situ access to atomic observ-
ables and manipulation of atomic states [29]. In this section we give an overview over
the observables and control parameters relevant to our experimental setup, with a
primary focus on the models introduced in Sec. 2.1.

2.2.1 Experimental observables
The default observable of a QGM is the parity of the occupation on each lattice site, ŝi =

eiπ(n̂i−n), resulting from pair-wise losses caused by light-assisted inelastic collisions [97].
When working with lower-density clouds (i.e., typical ni < 2), the local occupation,
n̂i ≈ (1 + ŝi)/2, can be deduced. Note that superlattice techniques in several QGMs
have recently been implemented for absolute occupation measurements [33, 98, 99],
see also Sec. 3.2.2. The local on-site potential εi (or the local chemical potential in LDA)
can be characterized by analyzing the density distribution in the atomic limit [23].

In spinful systems, the local occupation of the hyperfine state (HFS) of interest can
be measured by selective optical push-out of atoms in the respective other HFS [41]. At
unity filling, as in the case of the effective XXZ model, we can assume that empty sites
correspond to sites occupied by atoms in the other HFS prior to push-out. Hence, the
z-projection of the local spin state is given by Ŝz

i = n̂↑i − n̂↓i ≈ 1− 2n̂↓i . To measure the
horizontal components of the spin state, π/2-pulses can be applied to rotate the spin
axis of interest onto the z-axis. Generic measurements of Ŝx,y

i require a fully coherent
system in the spin sector, which is not fulfilled on the time scales of the XXZ model
in our implementation due to technical fluctuations of the absolute magnetic field.
However, the ensemble-averaged horizontal component, 〈Ŝx

i cos θ + Ŝy
i sin θ〉θ, is only

sensitive to the much smaller spatial inhomogeneities of the fluctuations, which can be
well controlled.

The major benefit of a QGM lies in the fact that not only the mean value but also
multi-point correlators of the operators specified above can be measured. This enables
the observation of, e.g., full counting statistics (FCS) of site-resolved observables or
fully resolved nonlocal correlations of spin or occupation parity. Even for observables
that may be considered to be “global”, the QGM has advantages. This includes, e.g.,
the total atom number, which can be accurately measured with single-atom precision,
or the EM response of the atomic ensemble, like absorptance or reflectance, which are
accessible with single-site resolution.

2.2.2 Experimental control
In this subsection, we summarize the model parameters controllable in our experiment.
We elaborate on the experimental calibration procedures and accuracies in Sec. 3.3.

The extensive use of optical systems in experiments with ultracold atoms translates
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the high precision of laser physics into widely tunable, clean and quickly switchable
parameters of the BH Hamiltonian experienced by the atoms: While the scattering
length of the 87Rb atoms and therefore the Hubbard interaction, U, is by and large
not tunable, the hopping energy, J, can be varied over an exponential scale by simply
varying the power of the optical-lattice beam. This enables us to change the relevant BH
energy ratio, J/U, and consequently also the spin exchange energy, Jex, over multiple
orders of magnitude. Another way to optically modify the Hamiltonian lies in the use
of spatial light modulators (SLMs): By projecting spatially programmable intensity
distributions of spectrally far detuned or fine-structure–resolved light, we can realize
spin-independent local potentials, εi, or spin-dependent ones, hi, respectively.

A complementary tool for generating spin-dependent potentials consists of mag-
netic fields generated in the far fields of (combinations of) coils: While optical fields
allow for small-scale control, magnetic fields can be used for homogeneous global
offset fields free of small-scale spatial inhomogeneities, hi = const., or for clean field
gradients, hi+1 − hi = const.

The electronic states are typically controlled by applying adiabatic or resonant EM
pulses driving electric or magnetic dipole transitions. For the control of spin states in
the XXZ model, the HFS can be manipulated by a microwave (MW) drive, acting as Ŝx

i .
Due to the narrow resonance feature, this technique cannot only be employed globally
but also locally using optical addressing techniques. For the optical spin system, the
quantization axis is set by a magnetic offset field, and the state can be globally driven
by spectrally tunable laser beams, acting as σ̂x.
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Part I

Bose–Hubbard models in variable
lattice geometries
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Chapter 3

Experimental platform
The experiments presented in this thesis were performed with a quantum gas micro-
scope of bosonic 87Rb atoms. In this chapter, we start by giving an overview over
the experimental setup and describe the course of a typical sequence, available tools
and the extraction of observables. We then describe the methods and the realization
of programmable optical lattice geometries, based on the combination of structurally
phase-stable lattices and dynamically variable unit cells. We conclude by summarizing
optimization and calibration methods.

3.1 Experimental setup
The experimental setup builds on the work detailed in previous Ph.D. theses [101–
107]. We first give an overview over the basic preparation sequence used in this
setup and then discuss relevant technical details and upgrades implemented for the
experiments described in this thesis. An overview of the level scheme of 87Rb and the
experimentally relevant transitions can be found in Fig. 3.1.

3.1.1 Experimental sequence
A typical experimental sequence has a duration of 25 s and can be separated into four
main stages: the initial cooling and transport stage to prepare a cold atomic gas in
the science chamber, an evaporative cooling stage to reach the ultracold quantum
degenerate regime, the actual experimental sequence, and finally the detection stage.

Laser cooling, microwave evaporation and transport

The 87Rb atoms start as a room-temperature gas and are loaded into a 2D+ magneto-
optical trap (MOT) within a vacuum chamber and form an atomic beam. This beam
then travels through a differential pumping section into an auxiliary chamber at ultra-
high vacuum, where the atoms are loaded into a three-dimensional (3D) MOT for
4 s. Following a compressed MOT stage, after which they are in the magnetic low-
field–seeking |↓〉 ≡ |F = 1, mF = −1〉 hyperfine state, the atoms are loaded into a
magnetic quadrupole trap. Using a microwave (MW) knife on the transition to the
high-field-seeking |↑〉 ≡ |F = 2, mF = −2〉 state, we perform forced evaporative
cooling for 6.5 s. We then load the atoms into an optical dipole trap (generated by an
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Figure 3.1: Electronic level
scheme of 87Rb. We show the
most relevant hyperfine states
(black) and their Zeeman shifts in
the 5S ground and 5P excited state
manifolds (gray) [100]. Transition
frequencies are indicated by
dashed arrows and experimen-
tally driven transitions by solid
arrows.
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IPG YLR-50-1070-LP at a wavelength of 1070 nm) whose focus and thus trap position
can be moved by a translation stage. Using this technique we transport the atoms into
the science chamber in 2.5 s.

Preparation of a two-dimensional degenerate gas

From the transport trap, we load the atoms in the |↓〉 state into a crossed dipole trap
(CDT) formed by the incoming pass of the two horizontal lattice beams. All lattice
beams are operated at a wavelength of 1064 nm (Coherent Mephisto master oscillator
power amplifier (MOPA), 55 W model for horizontal lattices, 42 W model for vertical
lattices). The retro-reflected beams are blocked by a mechanical shutter to prevent the
formation of lattices. In the CDT, we perform forced evaporation by lowering the trap
depth to about 2kB · 4 µK over 1 s. Using a MW sweep, we then transfer the atoms
into the |↑〉 state. Using a vertical magnetic gradient of 15 G/cm, we compensate
the gravitational potential gradient to ensure that the atoms remain trapped in the
center of the CDT, which reduces the beam alignment sensitivity. The sensitivity has
increased compared to prior work in this setup, as we reduced the vertical waist of the
horizontal lattice beams (see Sec. 3.2.2).

We load the atomic cloud into the mode-matched vertical physics lattice, which
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yields substantial population in about 10 lattice layers. We then transfer the atoms
into the smaller-waist vertical pinning lattice, and increase the magnetic gradient to
40 G/cm, corresponding to a Zeeman-shift–induced resonance detuning of 4.5 kHz
between adjacent layers. In the tighter trap, the atomic cloud has a smaller horizontal
extent, and therefore exhibits a more homogeneous magnetic field. Using a narrow
MW sweep over less than 2 kHz, we transfer a single target layer back to the |↓〉 state
and remove the remaining atoms by a resonant push-out pulse on the D2 cycling
transition. This “slicing” procedure requires sub-10−5–precise magnetic gradients
which are created by a gradient coil driven by a unipolar precision current source
(HighFinesse UCS 20A). The current, measured via a current transducer (Danfysik
Ultrastab 768-60I), is furthermore stabilized with a feedback loop, with its setpoint fixed
by a stable voltage source (Stahl Electronics DC 1-10). To compensate slow drifts, we
use a secondary out-of-loop current transducer to independently measure the current
with a 6-digit multimeter and use a digitally controlled voltage source—in parallel and
weakly (gain of 10−4) coupled to the voltage source—to correct the setpoint.

With all atoms populating a single two-dimensional (2D) layer of the vertical lattice,
we perform a final 2 s evaporation stage: We introduce a horizontal magnetic gradient
of 8.5 G/cm by generating a magnetic quadrupole field whose zero-field position is
horizontally displaced from the cloud center. The quadrupole field is generated by
reducing the vertical magnetic gradient and adding appropriate compensating offset
fields. To improve evaporation efficiency and atom-number stability, we add a tight
dimple trap by passing a laser beam (broadband laser diode at a wavelength of 850 nm)
through the defocussed microscope objective. After this procedure, we end up with
up to 3000 atoms in a nearly pure Bose–Einstein condensate (BEC) trapped in a single
layer of the vertical lattice.

State preparation and experimental probe

In typical experiments, we then proceed to prepare a Mott insulator (MI) and initialize
the system in a unity-filled product state. The exact sequence is described in the
respective project-specific chapters. Details about the optical lattices can be found in
Sec. 3.2.2.

When preparing larger system sizes, we first load the atoms back into the vertical
physics lattice and optionally apply a local potential correction (see Sec. 3.1.3). We then
adiabatically ramp up the horizontal lattices across the superfluid (SF)–MI phase transi-
tion into the atomic limit and obtain systems with 200–2000 atoms with typical fillings
of 0.97–0.93. Starting from this state, local operations can be applied to manipulate
occupation and hyperfine states of the atomic array (see Sec. 3.1.3).

Site-resolved fluorescence imaging

After conducting the experiments, the lattice powers are ramped up to a lattice depth
of about 2000E532

r ≈ kB · 200 µK. We shine in retro-reflected molasses beams in the
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σ+σ−–polarization configuration along the horizontal axes and a spatially modulated
vertical molasses beam. We collect the emitted fluorescence light through an objective
with a numerical aperture (NA) of 0.68 and use an electron-multiplying charge-coupled
device (EMCCD) camera (Andor iXon Ultra 897) for imaging. We obtain an overall
photon detection efficiency of 7 %, accounting for the finite NA of the objective, losses
along the optical path of 60 % and the quantum efficiency of the camera of 80 %.
Using a piezo actuator (Physik Instrumente PIFOC P-726), the objective focus can be
precisely optimized using feedback data from regularly run focus sequences [103].
With molasses temperatures far below the lattice depth, the hopping probability of less
than 0.5 % (during an imaging time of 850 ms) is negligibly small. Due to light-assisted
collisions, pairs of atoms get lost and the resulting fluorescence signal corresponds to
the atom number parity of the lattice sites.

3.1.2 Reconstruction of local observables

In our experiment, local observables are generally restricted to measuring the atomic
occupation of each lattice site. By performing quantum state manipulation and selective
atomic push-out steps prior to imaging, further local observables like the hyperfine
state can be deduced from the occupation data. For ultracold atoms in optical lattices,
smaller lattice spacings tend to be advantageous due to overall higher energy scales,
resulting in shorter required dynamics times and thus reduced decoherence. However,
this comes at the expense that lattice spacings are close to or below the Rayleigh
resolution of the imaging system.

The task of accurately reconstructing the occupation thus comprises deconvolving
the image, accounting for prior knowledge of the lattice structure, and assigning
the occupation of each site, i, by thresholding the deduced fluorescence emission
state, Fi. Most reconstruction algorithms in quantum gas microscopy rely on iterative
optimization of Fi to perform least-squares minimization of the deviation between
convolved and actual image [23, 103] or use established algorithms like Wiener or Lucy–
Richardson deconvolution [108]. Furthermore, following recent advances in machine
learning techniques, alternative reconstruction approaches using both supervised [109]
and unsupervised [110] learning have been realized, extending the reconstruction to
account for nonlinearities in image formation.

In our case [111], we use a simple but computationally efficient approach to decon-
volution based on linearly projecting the image onto the vector space spanned by the
lattice sites [112]. This method has the advantage that it scales well to larger system
sizes, is non-parametric and is robust due to its linearity. In the following, we first
present the method itself and then describe how to extract the required parameters.
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Figure 3.2: Reconstruction of the lattice site occupation. (a) The raw image is
cropped in a region of interest (gray box) for every site to be reconstructed (green).
(b) To obtain the fluorescence counts emitted by the given site, a scalar product is
calculated between the projector (top) and the cropped image (bottom). (c) Repeating
the process for every site yields a fully deconvolved image. The color map corresponds
to the fluorescence counts emitted by the respective sites. (d) By thresholding the
histogram of emission counts, we can separate empty (gray) from filled (green) sites.

Projection-based deconvolution

The molasses imaging technique used in our experimental setup can be largely re-
garded as incoherent microscopic fluorescence imaging since the fraction of coherently
scattered light power is below 15 % even at highest atomic density [75]. Furthermore,
image distortions within the area of interest are negligible, such that the point spread
function (PSF) can be considered to be translationally invariant. Given a PSF, p(r), this
yields an image with a light distribution of

s(r) = ∑
i

Fi p(r− ri), (3.1)

given by the convolution of the PSF with the emitted light power, Fi, originating from
a site located at ri.

Assuming the validity of Eq. (3.1), the linearity of the relation implies the exis-
tence of a kernel ki(r) ≡ k(r− ri), which serves as an inverse of the PSFs, such that∫

ki(r)p(r− rj) d2r = δij. The application of the kernel to the image,

Fi =
∫

ki(r)s(r) d2r, (3.2)

then performs the deconvolution onto the space of lattice sites.
In practice, the fluorescence images S̃ ∈ RM̃ are discretized with 8 px/µm, with the

total number of pixels M̃ and with the magnification chosen as a compromise between
resolution and signal-to-noise ratio (SNR) at low light levels. Hence, each lattice
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site is only covered by a few pixels and a naive discretization of Eq. (3.2) becomes
insufficient. With knowledge of the exact coordinate transformation between lattice
sites and image pixels (for the extraction method, see the following subsection), the
site position can be located inside a pixel with subpixel precision. The discretized PSF
for each site, P ∈ RN×M, is thus calculated by integrating the continuous PSF over
the area of pixel m, Pj,m =

∫
Am

p(r− rj) d2r. N and M denote the number of lattice
sites and camera pixels inside a region of interest (ROI) covering the vicinity of the
site to be reconstructed. The projection kernels can then be obtained by calculating
the Moore–Penrose inverse of the PSF matrix, K = (P−1)T. The image projection onto
site j is thus given by Fj = S · Kj, with S ∈ RN denoting the image cropped to the ROI.
Repeated application of this procedure yields a full reconstruction of the emission state
for each lattice site j (see Fig. 3.2).

The computationally most expensive step consists of calculating the matrix inverse
to obtain the projection kernel. However, by exploiting the translational invariance of
lattice and image, we can pre-calculate one kernel for each fractional position of the
site center within a pixel; in our case we subdivide the pixel in 5× 5 subpixel positions.
For reconstructing a given site, we first determine the site’s pixel and subpixel position,
and choose the appropriate pre-calculated kernel for projection. The computational
complexity for the projection step thus reduces to O(MN). For the 170× 170 sites we
choose to reconstruct for every image, and a kernel size of M = 61× 61, reconstruction
times are reduced to about 100 ms.

Note that this reconstruction method works well in our setup featuring a Rayleigh
resolution of 0.61λ/NA = 700 nm and lattice spacings of a = 532 nm or 752 nm (see
Sec. 3.2.2). However, for potential technical upgrades discussed in Sec. 9.3 with lattice
spacings of 370 nm, the assumption of linear image formation will likely be invalid,
such that reconstruction might require nonlinear optimization approaches.

Extracting PSF, lattice orientation and lattice phase

The extraction of subpixel-resolved PSFs and coordinate transformations between
lattice sites and camera pixels follows Ref. [103]: From images of hot and dilute clouds,
we fit the center positions of each isolated atom. By aligning and averaging five-fold
supersampled atom images with linear interpolation, we obtain the subpixel-resolved
PSF. For determining the coordinate transformation parameters, we calculate the
histogram of positions of the fitted site centers projected onto the lattice axes. By
maximizing the histogram contrast between the positions in and out of the lattice
phase, we obtain the optimum magnification and lattice angles with per mill precision.

While PSF and lattice orientation are long-term stable, the lattice phase can vary
on the 10 min time scale due to thermal drifts. Every image therefore requires a
subpixel-precise determination of the lattice phase. Contrary to common approaches
for lattice spacings below the diffraction limit, where the center position of isolated
atoms is fitted [103, 110], we exclusively make use of the kernel projection method. We
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first subdivide the image into 8× 8 subimages and calculate the variance over these
subimages. By choosing the subimage with the maximum variance, we select the part
of the image with highest dynamic range, which contains edges favorable for lattice
phase detection. Optimizing over subpixel shifts, we then reconstruct the subimage
and maximize the variance of the projected image. A higher variation of the projected
emission suggests a higher contrast between filled and unfilled lattice sites, and serves
as a proxy to determine the best subpixel shift and thus the lattice phase.

3.1.3 Potential projection using digital micromirror devices
The single-site resolution provided by the high-resolution objective can not only be
used for detection but also for local control. Imaging a given light distribution through
the objective allows us to project site-resolved optical dipole potentials in the atomic
plane. Using spatial light modulators (SLMs), this light distribution can furthermore
be programmatically and dynamically controlled. Such local control techniques can
be classified in three main categories: sequential projection of a focussed beam [40],
phase- or amplitude-SLM–based holography [42, 113], or amplitude-SLM–based direct
imaging [35, 41, 114].

In our experiment, we employ a digital micromirror device (DMD) (Texas Instru-
ments DLP Discovery 4100) in the direct-imaging configuration depicted in Fig. 3.3,
which allows for generating both large- and small-scale potentials. The DMD consists
of an array of 1024× 768 micromirrors with a pitch of 13.68 µm, which can be indi-
vidually programmed and quickly switched between two reflection states (±12°). To
generate gray-scale values from binary reflection states, we set the imaging system
to have a 200-fold demagnification such that multiple DMD pixels illuminate each
lattice site. By performing Floyd-Steinberg dithering [115] to binarize the reflectivity,
followed by spatial filtering in the Fourier plane of the first demagnifying telescope,
we obtain percent-level grayscaling [116]. After passing through a relay telescope and
transmitting through a dichroic mirror, the DMD light is imaged into an intermediate
image plane of the microscope imaging path through which it is projected onto the
atoms. Its programmability makes the DMD a versatile tool, both for the manipulation
of the hyperfine state (HFS) via MW addressing methods [40] as well as the occupation
state via (HFS-independent) gray-scale potentials [117].

Spin addressing

When working with the internal degree of freedom (DOF) of the atoms, we typically
restrict ourselves to the two stretched states |↑〉 ≡ |F = 2, mF = −2〉 and |↓〉 ≡ |F =
1, mF = −1〉. This spin-state combination is advantageous as it realizes a two-body–
collisionally stable system [118], and is convenient as the |↑〉 state can be cleanly
pushed out via the closed D2 transition.

Addressing the spin DOF of the atoms requires the projected light to induce a
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Figure 3.3: Imaging and DMD setup. (a) The DMD beams for both the spin-
dependent (787 nm, black) and spin-independent (670 nm, red) potentials are linearly
polarized and collimated. The beams are then combined by sending them to the DMD
from opposite sides. After passing a first demagnifying telescope, they pass a stack of
780 nm quarter-wave plates (QWPs) (red) and half-wave plates (orange), generating
σ− polarization for the 787 nm beam. To minimize differential light shifts due to the
670 nm beam, an additional QWP can be mechanically flipped into the beam path
to maintain linear polarization. Via a relay telescope, the DMD image is projected
onto an intermediate image plane corresponding to the fluorescence camera position.
After transmitting through a dichroic filter, the DMD light follows the imaging beam
path in reverse to reach the atoms. (b) For fluorescence imaging, the horizontal
and vertical molasses beams (780 nm, solid green) illuminate the atoms (gray-shaded
area). The scattered photons (dashed green) are imaged via a high-resolution imaging
system onto an EMCCD camera. Two 1064 nm-blocking short-pass filters (blue) were
installed to prevent Lattice 3 light from continuing along the imaging beam path (see
Fig. 3.6 for the lattice setup). Two 780 nm band pass filters (gray) in front of the camera
additionally suppress photons from undesired wavelengths. For the most sensitive
measurements, an additional 1064 nm short-pass filter was placed behind the dichroic
splitter to guard against stray light originating from the nearby transport-trap laser.

differential light shift between the HFSs. For this purpose, we send in laser light
at a wavelength between the D1 and D2 lines (Toptica TA pro 780) and can realize
differential light shifts between 20 kHz for small-scale patterns and 200 kHz for large-
scale patterns. At the position of the atoms, the beam has a (demagnified) Gaussian
beam waist of 16.2 µm. Depending on the exact wavelength and polarization, con-
figurations with particularly interesting properties can be generated. This includes a
“tune-out” configuration at a wavelength of 787.5 nm and σ− polarization, where the
|↓〉 state does not experience a potential at all [119], and an “anti-magic” configuration
at 788.7 nm and σ+ polarization, where the two spin states are subjected to mutually
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inverted potentials.

To prepare local HFSs of arbitrary spatial pattern, we resort to a MW addressing
approach [40]. We project a uniform amount of light on the sites to be addressed;
due to the differential light shift, the MW resonance of the HFS transition is shifted
on the addressed sites. By driving a global MW sweep, only the selected atoms are
transferred into the other spin state. For patterns with only few addressed sites, we
typically transfer the atoms on the illuminated (and thus resonance-shifted) sites, while
for large-scale patterns we usually transfer the non-illuminated sites as their resonance
location tends to be more uniform.

Furthermore, making use of the HFS-selective D2 push-out, we can convert the
prepared spin pattern into an occupation pattern, giving us additional access to locally
controlling the “charge” DOF of an atomic array. By projecting such a differential–
light-shift pattern during quantum evolution, we can furthermore realize an effective
local magnetic field in the spin DOF.

Potential engineering

While controlling the initial spin state is a crucial capability, it relies on prior preparation
of unity-filling MIs. The achievable system size therefore depends on the overall
trapping potential and is typically provided by the harmonic confinement of the
Gaussian lattice beams. Therefore, the capability to generate programmable spin-
independent potentials is important for not only larger but also more consistently
filled systems, and for well-defined system boundaries. Careful shaping of the local
potential has been furthermore demonstrated to lower the entropy in a targeted area
of the system [120, 121].

The diffraction-limited demagnifying projection of the desired light distributions
poses stringent requirements onto the imaging system. For coherent light sources,
imperfections like partial reflections or scatterers in the optical elements give rise to
speckles, which significantly deteriorate imaging quality. As these effects are reduced
with incoherent light [122], we employ a temporally incoherent superluminescent
diode source (Superlum SLD-260-UHP at a wavelength of 670 nm with a spectral full
width at half maximum (FWHM) of 7 nm, amplification by Toptica BoosTA 670L),
which—upon angled incidence on the DMD—is also spatially incoherent along one
axis. This source illuminates the same DMD as the 787 nm spin-addressing laser, but
is coupled in from the opposite reflection angle (the “off”-state), and thus follows the
same achromatic imaging system. At the position of the atoms, the beam has a (de-
magnified) Gaussian beam waist of 15.7 µm. The objective is the sole non-achromatic
element and has to be shifted by about 17 µm when employing 670 nm light. Due to
its blue detuning with respect to the D2 line, this setup is particularly well-suited to
project system-confining boundary potentials.
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3.2 Realizing dynamically variable lattice geometries

Variations in the lattice geometry of quantum systems can give rise to a series of exotic
phenomena, ranging from topological band structures [123] to geometric-frustration–
induced flat band [124] or quantum spin liquid [125] physics. Neutral atom quantum
simulators have proven capable in realizing countless novel quantum effects; a major
factor for their success can be attributed to the high degree of controllability enabled
by optical dipole potentials underlying the experimental platform [79]. Manipulations
in the light intensity translate directly to variations in the atomic potentials, allowing
for customizable and scalable yet environmentally isolated potentials. Optical lattices
arise through the interference patterns of laser beams, hence providing wavelength-
scale modulations with paraxial optics, which results in clean realizations of periodic
potentials. In experimental setups, the lattice beam combinations and layouts are
carefully chosen to produce a specific interference pattern designed to realize a target
geometry [126, 127]. In 2D lattices, for example, this approach has led to geometries
beyond square lattices, including triangular [128, 129], honeycomb [17], kagome [18]
and Lieb [130] lattices. While optical lattices benefit from their inherent homogeneity
and stability, the static nature of a given beam layout restricts systems to fixed spatial
geometries.

In order to achieve dynamical tunability, two main approaches have been devised:
Firstly, arrays of optical tweezers can be generated with almost freely programmable ge-
ometries [131]. While these systems have become popular for studying many-body spin
models, reaching the itinerant regime by means of tunnel-coupled tweezers has proven
difficult for large arrays, as individual tweezers suffer from inhomogeneities and thus
a formidable calibration overhead [132, 133]. Secondly, adding additional lattice beams
gives rise to so-called superlattices [134]; by varying the relative beam intensities,
effective lattice geometries can be parametrically varied. However, superlattice setups
typically require technically complex active phase stabilization schemes [17, 135] and
furthermore lack free dynamical programmability. In this section, we address both
of these points and describe our solution to realizing passively phase-stable, tunable
lattices in combination with freely programmable unit cells.

3.2.1 Structural phase stability of optical lattices

The superposition of laser beams with scalar fields (here we consider common polar-
ization) Al(r) ∝ exp[i(αl(t) + kl · r)] forms interference patterns with intensity I(r) =
|∑n

l=1 Al(r)|2. Structural phase stability is achieved when phase shifts αm → αm + ∆α
only lead to a translation of a pattern I(r)→ I(r− ∆r), i.e., that the phase shift can be
absorbed into a translation ∆α = −km · ∆r. Setting m = 1 without loss of generality
(w.l.o.g.), this structural phase stability condition for plane-wave interference patterns
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can be shown to be equivalent to [136]

rank(K) = rank(K|~α) ∀~α, (3.3)

with K = (k2 − k1, . . . , kn − k1)
T,~α = (α2 − α1, . . . , αn − α1)

T. The rank of K cor-
responds to the number of spatial dimensions d spanned by the modulation of the
interference pattern, thus rank(K) = d ≤ n − 1 and the full pattern phase can be
parameterized with d translational DOFs, ~ϕ(~α) ∈ Rd, derived from the bare plane-
wave phases~α. Two strategies for creating phase-stable interference patterns were
identified in Ref. [136]: (i) minimal lattices using exactly n = d + 1 plane waves or (ii)
retro-reflected folded plane waves.

We can extend the classes of structurally phase-stable lattices further by additionally
considering incoherent combinations of multiple such interference patterns, Itot(r) =
∑i Ii(r). Incoherent overlapping can be achieved due to the patterns having, e.g.,
different frequencies or mutually orthogonal polarizations. Formally, this “incoherent”
phase stability condition can be expressed as follows: For a pattern translation ∆~ϕ of
any pattern j (w.l.o.g. let j = 1), there exists a displacement ∆r such that

Itot(r; ~ϕ(0)
1 + ∆~ϕ, ~ϕ(0)

2 , . . .) = Itot(r− ∆r; ~ϕ(0)
1 , ~ϕ(0)

2 , . . .). (3.4)

As the individual interference patterns Ii(r) could a priori be rather complicated, simpli-
fications of Eq. (3.4) are difficult. In the following, we discuss two approaches realized
in our experiment, in which phase stability is based on common-mode phase drifts
and drifts along translationally invariant directions.

Combined minimal lattices

In d = 1 dimensions, n = 2 counter-propagating beams trivially fulfill Eq. (3.3) and
thus form a structurally phase-stable one-dimensional (1D) lattice. Being 1D, the
translational DOF is scalar, ~ϕ ≡ ϕ, and can be identified with the phase of the sinusoidal
pattern ϕ = α2 − α1 (“lattice phase”). In a setup consisting of two mutually non-
interfering 1D lattices, the total intensity is given by

Itot(r) = ∑
i

Ii

(
1
2
+

1
2

cos(ki · ri − ϕi)

)
. (3.5)

A lattice phase shift ϕj → ϕj + ∆ϕj can then be equivalently expressed as ki · ri →
ki · (r − ∆rj). Hence, Eq. (3.4) is fulfilled, proving the structural phase stability of
typical retro-reflected 2D optical lattices (see Fig. 3.4).

In contrast, if all four beams interfere with each other and the beams are not phase
locked, Eq. (3.3) is not fulfilled, rank(K) = d = 2 6= rank(K|~ϕ) = 3, and there is
3− 2 = 1 excess DOF. As an explicit example, consider the case of retro-reflected
orthogonally crossing beams with a light field given by A(x, y) ∝ eiky + e−iky + eiαeikx +
eiαe−ikx. The resulting intensity of I(x, y; α) ∝ cos 2kx + cos 2ky + 4 cos α cos kx cos ky
thus realizes an interference pattern whose structure depends on α.
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Figure 3.4: Square lattice beam layout. (a) Beam layout for mutually non-interfering
1D lattices (blue, green lines) intersecting at an angle of 2θ forming a 2D lattice. Light
field amplitudes of the incoming pass, a1, c1, and the outgoing pass, a2, c2, retro-
reflected from the mirrors are marked by black lines. The phases picked up in the
retro-reflection path are denoted as φ1, φ′2. (b) Light intensity of the resulting square-
lattice (light to dark color indicate low to high intensity). The ground band tunnel
coupling (white dashed lines) can be tuned from pure 1D coupling to homogeneous
2D coupling by varying the beam power ratios or the beam intersection angle. (c) The
colored lines indicate the potential minima of the respective 1D lattice. The arrows
indicate how the lattices would shift when the marked phase changes, ∂∆r/∂φj. The
2D lattice is structurally phase stable as phase changes only influence one lattice at a
time and the resulting lattice shift occurs along the translationally invariant direction
of the respective other lattice.

Tunable folded lattices

However, folding a lattice beam into the optical path of the other beam, realizes
a bow-tie lattice [137] and reduces the number of phase DOFs. Generally, folded
lattices (single beam intersecting multiple times and retro-reflected back through the
same path) are structurally phase stable as they can be shown to fulfill Eq. (3.3) [136].
While the bow-tie lattice itself just realizes another square lattice, combining it non-
interferometrically with a further 1D lattice gives rise to a highly versatile setup
that allows us to qualitatively tune the lattice geometry exhibited by ground-band
atoms [17, 135].

Concretely, we consider the setup depicted in Fig. 3.5a comprising lattice beams
with the light fields given by

A2(r) = a1eiky·r + b1eikx·r+iφ2 + b2e−ikx·r+iφ2+2iφ1 + a2e−iky·r+2iφ2+2iφ1 and

A1(r) = c1eikx·r + c2e−ikx·r+2iφ1+i∆ϕ,
(3.6)
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Figure 3.5: Tunable lattice beam layout and realizable geometries. (a) Passively
phase-stable tunable 2D lattices can be formed by non-interferometrically combining a
bow-tie lattice (green) with a 1D lattice (blue). Phase stability is retained for any light
field amplitudes of incoming, a1, b1, c1, and outgoing beams, a2, b2, c2, and intersecting
at an arbitrary angle θ. The translational degrees of freedom of the bow-tie lattice
are the phases φ1, φ2. The 1D lattice shares a common phase φ1 as both lattices are
referenced to a common retro-reflection mirror. (b) There exists a third degree of
freedom, the superlattice phase ∆ϕ, that can be precisely and phase-stably controlled,
as described in Sec. 3.2.2. ∆ϕ is defined as the phase difference between the two
lattices along the cut y = 0, i.e., ∆ϕ ≡ 2π∆x/(λ/2). (c) The colored lines indicate
the potential minima of the respective lattices. The arrows indicate the translational
lattice shift upon phase drifts, ∂∆r/∂φj. The 2D lattice is structurally phase stable as
phase drifts are either common mode (φ1) and/or occur along translationally invariant
directions (φ1 and φ2). (d) Light intensity of selected lattices (light to dark color
indicate low to high intensity). The beam parameters can be tuned to qualitatively
change the tight-binding lattice geometry (white dashed lines). Realizable lattices
include square lattices (top left), triangular lattices (top right), honeycomb lattices
(bottom left), dimerized lattices or 1D lattices (bottom right).
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where ∆ϕ indicates the superlattice phase, i.e., the phase difference between Lattice 1
(L1) and Lattice 2 (L2) illustrated in Fig. 3.5b. This yields an overall light intensity of

I(u, v) = |A1(u, v)|2 + |A2(u, v)|2

= (a2
1 + a2

2 + b2
1 + b2

2 + c2
1 + c2

2)

+ 2c1c2 cos[2k(u− u0) cos θ − 2k(v− v0) sin θ − ∆ϕ]

+ 2a1a2 cos[2k(u− u0) cos θ + 2k(v− v0) sin θ]

+ 2b1b2 cos[2k(u− u0) cos θ − 2k(v− v0) sin θ]

+ 2(a1b1 + a2b2) cos[2k(v− v0) sin θ]

+ 2(a1b2 + a2b1) cos[2k(u− u0) cos θ]

(3.7)

where we have defined 2ku0 cos θ = φ2 + 2φ1 and 2kv0 sin θ = φ2. Thus, the lattice
potential only depends on a translated position r = (u, v)→ r− ∆r = (u− u0, v− v0),
which confirms that the lattice is structurally passively phase stable according to
Eq. (3.4). To gain more intuitive understanding of the effects of phase shifts, we
calculate the differential lattice translation given by

∂k∆r
∂φ2

=

(
1/ cos θ

0

)
and

∂k∆r
∂φ1

=
1
2

(
1/ cos θ
1/ sin θ

)
, (3.8)

which we visualize in Fig. 3.5c. Fig. 3.5d shows various optical lattice potentials realiz-
able by varying the beam power ratios and/or the superlattice phase.

As an instructive example, we can consider the realization of triangular lattices in
the tight-binding approximation using the topologically equivalent diagonal-neighbor
(DN) tunnelling. At ∆ϕ = 0, the effect of increasing the 1D lattice (L1) depth is to
reduce nearest-neighbor (NN) tunnelling while the DN tunnelling is largely unaffected.
By choosing suitable lattice power ratios, this realizes a ground-band triangular lattice.

3.2.2 Lattice setups
All lattices in our setup (see Fig. 3.6) have been chosen to fulfill the criteria for pas-
sive phase stability. In this subsection, we describe the lattice design considerations
and properties, with more detailed technical information deferred to a future Ph.D.
thesis [138].

Horizontal lattices

Both horizontal lattice beams are derived from a common 1064 nm laser (see also
Sec. 3.1.1) with a linewidth below 1 kHz and thus have coherence lengths which are
much larger than the dimensions of the experimental setup. The beams are frequency-
detuned via acousto-optical modulators (AOMs) and guided through photonic-crystal
fibers (PCFs) to the optical table.
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Figure 3.6: Horizontal and vertical lattice setups. (a) Square-lattice setup with a
lattice spacing of λ/2 = 532 nm formed by the mutually non-interfering retro-reflected
lattice beams L1 (blue) and L2 (green). The lattice beams are focussed onto the atoms
with a f1 = 250 mm and collimated with a f2 = 150 mm lens. The colored arrows
indicate the lattice beam polarization, chosen to be transmitting through the polarizing
beam splitter (PBS). This setup realizes the lattice discussed in Fig. 3.4. (b) By rotating
the half-wave plate (HWP), L2 is changed to out-of-plane polarization and reflects off
the PBS. L2 exhibits four-fold interference, resulting in a square lattice with a spacing
of 532 nm along the diagonals of the beam axes. To ensure equal beam sizes in the
folded path, a telescope consisting of lenses f3 = −50 mm and f4 = 75 mm images the
collimated L2 beam into the Fourier plane of the L1 focussing lens. By overlapping
the mutually non-interfering L1 beam, complex ground band lattice geometries can be
realized, ranging from 1D or square lattices to triangular or honeycomb geometries.
This setup realizes the lattice discussed in Fig. 3.5. (c) The setup comprises two
vertical lattice beams (L3), focussed onto the atoms with a f5 = 400 mm lens. Most
experiments are performed in the physics L3 (black), which has a larger waist for a
reduced confinement potential. Fluorescence imaging is performed in the pinning
L3 (gray) as it allows for deeper lattice depths for a reduced hopping rate during
imaging. Both vertical lattice beams are retro-reflected at the vacuum window, coated
for high reflection at the lattice wavelength. Analogous to the configuration (b), both
lattice beams are referenced to a common retro-reflecting optical element, resulting in
lattice phases that are passively stable to each other. An additional vertical resonant
beam (sent to the atoms via a f6 = 300 mm lens) is available for optical push-out and
absorption imaging.
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In the standard configuration of two mutually non-interfering, orthogonally cross-
ing 1D lattices depicted in Fig. 3.6a, an optical square lattice with a spacing of λ/2 =
532 nm arises. In comparison to the setup described in prior Ph.D. theses [101], both
horizontal lattice beams were changed to a horizontal Gaussian beam waist of 330 µm.
The reduced harmonic confinement potential then supports unity-filled MIs with
larger system sizes. To minimize the laser-power demands during single-site–resolved
imaging (which requires lattice depths of 2000E532

r per axis), we make use of requiring
imaging in only a single 2D plane and introduced a strong ellipticity into the beam
shape, resulting in a vertical Gaussian beam waist of 33 µm. Due to the ellipticity,
the optical configuration for retro-reflection was changed such that the lens–mirror
combination forms a 4 f -system which images the beam shape at the position of the
atoms back onto itself.

The setup also supports a tunable bow-tie lattice configuration consisting of a
folded L2 combined with a 1D lattice formed by L1. The optical layout was designed
to allow for a flexible change of lattice configuration by simply rotating a half-wave
plate (HWP) in the path of L2 before entering the vacuum chamber. To tune the
superlattice phase ∆ϕ, we make use of the long optical path length between atoms and
retro-reflection mirror of L = 300 mm: As this distance corresponds to a number of
standing wave nodes of ϕ/2π = 2L/λ = 2Lν/c, we can tune the superlattice phase
by varying the frequency difference ∆ν between the lattices

∆ϕ =
4πL

c
∆ν. (3.9)

The lattice spacing is essentially unaffected by the frequency tuning as the relative
frequency change is negligible, ∆ν/ν ∼ λ/L � 1. For our lattice parameters, we
have a tuning slope of ∆ϕ/∆ν = π/250 MHz, which corresponds to a frequency range
covered by AOM shifts. Note that although the frequency difference between the
lattices can be tuned on an absolute scale, the absolute value of the superlattice phase
has to be experimentally determined as optical coatings and imperfect focus overlap
can lead to phase differences. Further care has to be taken to choose ∆ν sufficiently
large to avoid Raman transitions between Zeeman states, particularly during sweeps
of the magnetic field.

Vertical lattices

Similar to the horizontal lattices, both vertical lattice beams are derived from a common
1064 nm narrow-band laser and are frequency-separated via AOMs. After passing
separate PCFs and beam-shaping optics, the Lattice 3 (L3) beams are combined on a
polarizing beam splitter (PBS) and reflected downwards into the vacuum chamber.
Both beams are retro-reflected off the lower vacuum window, forming a vertical 1D
lattice with a spacing of λ/2 = 532 nm.

The “physics” and “pinning” lattices have Gaussian beam waists of 350 µm and
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75 µm, respectively, with their focus set to the plane of the reflective surface. As the
atoms are located only L = 5 mm above the window [101], Eq. (3.9) yields a tuning
slope of the differential lattice phase of ∆ϕ/∆ν = π/15 GHz. Thus, typical AOM
frequency shifts do not significantly affect the differential lattice phase, ∆ϕ. A more
important effect is related to the focus-induced Gouy phase, ψG(z) = arctan z/zR, with
the Rayleigh length zR. While negligible for the large physics L3, we expect a phase shift
for the pinning L3, resulting in a differential lattice phase of ∆ϕ = 2ψG,pin.(L) = 0.1π.
Thus, the shift is sufficiently small to allow for adiabatic loading between the two
vertical lattices.

The vertical lattice beams are furthermore of central importance for the atomic
cloud shape, as they are largely responsible for the confining potential. For MIs
loaded in the pinning L3, the confinement is harmonic and the position drifts with
the beam alignment over a range of few micrometers. Hence, unity-filled MIs are
circular with radii varying depending on the loaded atom number, with the maximum
atom number of about 250 atoms limited by said harmonic confinement. Since the
physics L3 has a substantially larger beam waist, we would expect it to feature strongly
reduced harmonic confinement and thus much larger system sizes. However, (in our
setup specifically) it turns out that there exist scatterers on the lower window which
retro-reflects the vertical lattice beams. This leads to the formation of speckles with
peak-to-peak intensity variations of up to 3 %—which correspond to the Bose–Hubbard
(BH) energy scale—and a typical size of 10 µm, resulting in unity-filled MIs of similar
size. Note that due to the small distance between the atoms and the window, the
speckle pattern is largely insensitive to the small day-to-day drifts of the L3 alignment.
By substantially beam-walking the lattice beam, a speckle potential minimum can be
aligned to be centered with respect to the objective and camera. In this configuration,
experiments can be performed in just the physics L3 confinement potential as long
as evolution times are sufficiently short and tunnelling of atoms into other speckle
potential minima can be neglected. Alternatively, the confinement potential can also
be tailored to specific use cases, see Sec. 3.3.2.

3.2.3 Characterization of lattice phase stability
Having described the theoretical lattice design considerations in Sec. 3.2.1 and the
experimental setup in Sec. 3.2.2, we characterize the horizontal lattice performance in
this section.

Absolute lattice phase

While our lattices are structurally phase stable, the translational DOFs lead to drifts
of the absolute lattice phase, as discussed in Sec. 3.2.1. The absolute phase depends
on the optical path length between atoms and (retro-)reflection mirrors. Using our
reconstruction method, we extract the lattice phase from each single-site–resolved
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Figure 3.7: Absolute lattice phase stability. (a) For the 532 nm lattice, the absolute
phase of both Lattice 1 (blue) and Lattice 2 (green) is shot-to-shot stable and drifts over
time due to temperature variations. (b) For the 752 nm lattice, the absolute phase
along both the u (blue) and v (green) axes varies significantly more. We attribute this
behavior to the fact that the retro-reflection optical path is considerably longer and
comprises more mirrors, which are susceptible to drifts. Nevertheless, typical shot-
to-shot fluctuations occur below 50 nm and are sufficiently stable for DMD projection.

image to analyze the long-term stability of the absolute phase (see Fig. 3.7).
Generally, the absolute phase jump between subsequent shots is small for both

lattices, indicating sufficient stability, e.g., for DMD projection purposes. Apart from
uncontrolled long-term drifts, we can additionally observe drifts with periodicities of
about 30 min. These can be correlated to the temperature drifts on the experimental
table, indicating the importance of a stable thermal environment.

Superlattice phase

In the 752 nm lattice, the superlattice phase ∆ϕ is much more critical to realizing
tunable lattice geometries. For the superlattice phase measurements shown in Fig. 3.8,
we amplitude-modulate L1 within a deep L2 potential near the upper p-band resonance
frequency. Due to the weak single-particle drive in an isolated system, we analyze
the response assuming a two-level model with coupling Ω and modulation-frequency
detuning ∆. This model yields a mean excited-state population of Pe(Ω, ∆) = 2/(4 +
δ2 +

√
δ2(4 + δ2)), with δ = ∆/Ω. Close to the superlattice in-phase condition, ∆ϕ = 0,

the coupling is proportional to the superlattice phase, which we calculate from the
band structure results. Considering the long and weak drive, we assume that Gaussian
fluctuations in the superlattice phase (∝ σΩ) and in the lattice depth (∝ σ∆) dominate
the shape of the resonance. Thus, the excitation probability on resonance is given by
the two-fold convolution over the fluctuations, yielding

Pe(Ω) ∼ 1−
∫

fN (ω,σ2)(x)ex2
erfc|x| dx, (3.10)
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Figure 3.8: Superlattice phase stability. (a) The superlattice phase, ∆ϕ, can be
precisely calibrated by amplitude-modulating the 1D lattice, Lattice 1 (blue solid), near
the band gap frequency of a much deeper bow-tie lattice, Lattice 2 (green solid). Single-
band excitations require dipolar modulation (black dashed), which is minimal when
the lattices are in phase (∆ϕ = 0). The vertical dotted lines represent the potential
minima (and thus phase) of the respective lattices. (b) Single-band amplitude-
modulation spectroscopy probing the resonant band excitation probability at the
respective superlattice phase. The solid line shows a fit from which we extract a
superlattice phase stability of σ∆ϕ = 0.01(1)π.

where erfc denotes the complementary error function, and fN (ω,σ2) the probability
distribution of a normal distribution with center ω2 = 2Ω2/σ2

Ω and variance σ2 =
σ2

Ω/2σ2
∆.

At a L2 depth of V2 = 185(5)E752
r , where all dynamics in the lattice is frozen

and where we can separate the lattice in its local potential wells, we modulated L1
at V1 = 5.0(2)E532

r with a modulation depth of 25 % for 40 ms. As a spectroscopic
signature, we measured the fraction of atoms remaining in the ground band after
modulation by adiabatically lowering the lattice depth to V2 ≈ 18E752

r , leading to the
loss of atoms populating higher bands (see Fig. 3.8b). By fitting the functional shape
of Eq. (3.10) to our experimental data and converting from coupling strength to the
superlattice phase (for the given measurement parameters, band structure calculations
yield Ω/∆ϕ ≈ 660 Hz h/π), this model allows us to extract a standard deviation (SD)
of the superlattice phase of σ∆ϕ = 0.01(1)π. Repeating this measurement weeks later
gave a similar excitation probability, demonstrating the long-term stability of this
lattice scheme.

3.2.4 Programmable unit cells
Our tunable lattice allows us to realize a wide range of tight-binding Bravais lattice
geometries. An additional advantage lies in its enlarged lattice spacing of λ/

√
2 =

752 nm, which relaxes resolution requirements for potential projection using the DMDs.
In particular, the spin-independent DMD setup operating at 670 nm benefits from
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DMD
wavelength

Lattice
spacing

Cross talk (single pixel/site pixels)

Single site Stripe Checkerboard

787 nm 532 nm 9/14 % 35/53 % 45/72 %
670 nm 532 nm 4/8 % 15/31 % 16/48 %
787 nm 752 nm 1/4 % 3/14 % 2/22 %
670 nm 752 nm 0/2 % 0/6 % 0/9 %

Table 3.1: Nominal cross talk of DMD projection. Assuming an ideal projective
imaging system at a numerical aperture of 0.68, we compare the calculated ratio
of light power (integrated over a 100 × 100 nm2 area) at the nearest-neighbor site
compared to the targeted site for different DMD wavelengths, lattice spacings and
projected patterns. We assume fully coherent light and a Gaussian-approximated
point spread function, and distinguish between a single active pixel and all pixels
corresponding to a site active.

a b c

Figure 3.9: Programmable unit cells by site block-out. (a) Using the spin-
independent DMD setup (see Sec. 3.1.3), we can project repulsive potentials (black
lines) through the high-resolution objective on individual lattice sites in the 752 nm-
spacing lattice, which prevent the population of the targeted sites (green circles). (b)
We can project a block-out potential to remove a site (gray circles) from the ground-
band Hilbert space. When using periodic block-out patterns, this corresponds to
arbitrary unit cell engineering of tight-binding–coupled (black lines), occupiable lattice
sites (green circles). Starting from a square Bravais lattice (top), we can create, e.g.,
a Lieb lattice (bottom). (c) Starting from a triangular Bravais lattice (top left), the
same block-out pattern gives rise to a kagome lattice (bottom left). Other paradigmatic
examples include the honeycomb lattice (top right) or a next-nearest-neighbor–coupled
1D chain.
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substantially reduced cross talk, enabling us to project arbitrary single-site–resolved
potential landscapes onto the atoms. In Tab. 3.1, we estimate the cross talk of coher-
ent DMD-projected potentials based on the Gaussian-approximated theoretical PSF
provided by our objective with a nominal NA of 0.68. Note that, firstly, the amount of
cross talk strongly depends on the specific projected pattern, and, secondly, the partial
spatial incoherence of the 670 nm will lead to further reduced cross talk. Indeed, when
we project a checkerboard pattern with the 787 nm DMD setup in the 752 nm lattice,
we can perform local MW spectroscopy (method described in Sec. 3.3.2) to measure
the amount of cross talk to 21(4)%, in approximate agreement with Tab. 3.1.

As cross talk can be reduced to the percent level even for the most demanding high–
spatial-frequency patterns, we do not have to restrict us to small projected potential
depths, and instead project potentials with depths above the BH energy scale. In
this case, addressed sites become energetically inaccessible to the atoms, effectively
removing these sites from the Hilbert space of the tight-binding lattice. Hence, by
projecting appropriate periodic block-out potentials, we obtain full control to engineer
custom unit cells on top of base lattices with square or hexagonal Bravais symmetry.
The block-out patterns required to realize some paradigmatic lattice geometries are
shown in Fig. 3.9.

3.3 System optimization and calibration methods
Our experimental platform realizes a multitude of effective quantum many-body
systems, see Sec. 2.1.3. However, the model parameters are often highly sensitive
to the externally applied control parameters and therefore require direct calibration
with the atoms. In this section, we describe optimization procedures and calibration
methods to achieve this goal for the projects discussed in this thesis.

3.3.1 Lattice properties
The basis of all our experiments are the optical lattices. Thus, we require precise
knowledge of the lattice properties; particularly, considering that the hopping energy
depends exponentially on the lattice depth. We first discuss the calibration of the lattice
depth itself, followed by an analysis of the lattice phases and a direct characterization
of the hopping energy.

Lattice depth

A multitude of methods to measuring the depth of an optical lattice have been de-
vised [139]. While many of these approaches are applicable for large atom numbers,
our in-situ observables and small atom numbers benefit most from an approach based
on parametric band excitation [140].

Due to the separability of our 532 nm lattice, we calibrate L1 and L2 independently
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Figure 3.10: Quantum walks in various 2D lattice geometries. Evolution of atomic
densities at times (top to bottom) 2Jht/h̄ = 0.0, 1.8, 3.3 for square base geometries
(square (a) and Lieb (b) lattice) and 2Jht/h̄ = 0.0, 0.9, 1.7 for triangular base geometries
(triangular (c) and kagome (d) lattice). We find good agreement between experiment
(left) and simulation (right) and observe interference patterns characteristic of each
geometry.

of each other. Starting from a 2D SF trapped in the pinning L3, we ramp up the
1D lattice to a given beam power. We then perform amplitude-modulation (AM)
spectroscopy at a frequency resonant to the transition between first and third band
corresponding to a depth of 10E532

r . By observing the atomic positional spread for
varying beam powers, we find a resonance with which we calibrate a beam power
to a 10E532

r lattice depth. As the lattice depth varies linearly with the beam power,
we extrapolate the 10E532

r calibration point to other lattice depths. Compared to AM
spectroscopy at deeper lattice depths, this protocol has the advantage that calibration
is performed in the lattice depth regime typically of interest and with negligible
interaction effects. An analogous sequence can be used to calibrate the vertical lattices.

In the 752 nm bow-tie L2, however, the potential is inseparable. We therefore create
a unity-filled MI and increase the lattice depth to 180E752

r . Each lattice site can then be
treated as an independent single-particle problem. We again perform AM spectroscopy
between the s and d bands; after lowering the lattice depth, atoms in higher bands
leave the system. Thus, the MI filling can be used as a spectroscopic signature. We can
calibrate the lattice depth by identifying the two outer d band resonances.

These lattice AM spectroscopic methods allow us to calibrate the lattice depths
with typically 1–2 % accuracy. Using the lattice depth, we then use band structure
calculations to deduce the BH parameters for hopping energy and interaction energy.
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Geometry Lattice 1 Lattice 2 Axis Calculations Fit

Square – 10.0(3)E752
r

Jh/h 32.9(9)Hz 31.2(6)Hz
Jv/h 30.8(9)Hz 28.8(6)Hz

Jh/h 14.1(12)Hz 15.8(3)Hz
Triangular 8.5(3)E532

r 3.9(2)E752
r Jv/h 13.4(12)Hz 15.1(3)Hz

Jd/h 16.3(8)Hz 16.7(3)Hz

Table 3.2: Calibrated hopping energies in the tunable 2D lattice. For the square and
triangular geometries in the folded lattice, we compare the hopping energies obtained
from band structure calculations and lattice amplitude-modulation spectroscopy with
fits from 2D quantum walks.

Quantum walk calibration

An alternative calibration method for the hopping energy makes use of quantum
walks [141]. Despite being more time-consuming, this approach allows for a direct
measurement of the kinetic energy term in both atomic and spin Hamiltonians [41, 42].
Using DMD addressing, we prepare a single atom (or spin) and quench the lattice
depth to initiate dynamics. By measuring the time evolution of the wavefunction, we
can fit the theoretical prediction, which only depends on the kinetic energy parameter
and the lattice geometry. The quantum walk calibration typically yields a similar
accuracy of 1–2 %.

In Fig. 3.10, we specifically show quantum walk measurements for the square, Lieb,
triangular and kagome lattices (see Fig. 3.9), displaying characteristic interference
patterns and agreeing well with numerical simulations. We quantitatively analyze the
fitted hopping energies, Jh, Jv, Jd (along the plotted horizontal, vertical and diagonal
lattice axis) in Tab. 3.2, where we additionally compare the results with the values
obtained from band structure calculations using lattice depths measured through lattice
AM spectroscopy. We first note the lattice-depth–dependent anisotropy in the square
lattice, which we attribute to imperfect orthogonal alignment of the beam directions
and which is captured by our calculations. We further find absolute agreement with
deviations of up to 10 %, which could result from intensity imbalances or variations in
the light polarization.

3.3.2 DMD projection
For accurate projection of DMD potentials, both the alignment with respect to the
lattice sites and the local intensity have to be optimized. The procedure for determining
rotation and magnification between lattice sites and DMD pixels is outlined in Ref. [104].
We optimize DMD pattern alignment to a precision of typically 10 % of the lattice
spacing. To account for slow drifts of the lattice phase, we use the reconstructed lattice
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phase to feedback the number of DMD pixels a given pattern has to be shifted to be
aligned with the lattice [103].

Addressing patterns

To evaluate the homogeneity of addressing patterns used with the spin-dependent
DMD setup, we perform site-resolved MW spectroscopy. Given a target pattern, we
prepare a unity-filled atomic array and project the pattern with high intensity. By
varying the spectral center of a narrowly swept MW transfer pulse between spin states
|↑〉 and |↓〉 , we can resolve the MW resonance and thus the DMD-induced differential
light shift for each lattice site individually. Having a map of the absolute DMD power,
we can iterate the local DMD grayscale reflectivity to homogenize the pattern intensity.
Targeting homogeneous illumination, we can typically minimize the SD to about 5 %.

Potential shaping for large system sizes

Normally, the BH system size realized in our experiment is determined by the confining
potential caused by the vertical lattice beam. In some cases, however, it is beneficial
to work in larger system sizes or to have well-defined system boundaries. For these
situations, we resort to potential shaping with the spin-independent 670 nm DMD
setup.

In order to obtain a suitable base line for potential shaping, we start by iteratively
correcting the potential into a flat box (typically of size 50× 50 sites). For the correction
procedure, we load a low-density SF from the pinning L3 into the DMD-corrected
physics L3 potential and optimize the uniformity of the average density. To prevent
atoms from leaving the correction area, we project a strong repulsive potential outside
of the box area.

For the reliable creation of unity-filled MIs, however, this potential is not suitable
because experimentally inevitable atom number fluctuations can lead to overfilling
of the in-box lattice sites. To prevent overfilling, we ensure that the in-box sites have
a higher potential than the bare (without DMD projection) sites outside of the box.
Instead of retaining the high potential outside of the box, we project a repulsive wall
with a width of few sites and a height of 0.5–1U, which is tapered down to zero at
the outside. When adiabatically increasing the horizontal lattices, this potential has
the effect that excess atoms (with interaction-induced excess energies of ∼ 1U) are
pushed over the boundary walls, vacating the in-box area and leaving behind a unity-
filled MI. This potential engineering scheme is reminiscent of entropy redistribution
approaches [120, 121] and could be optimized to increase the in-box MI filling further.

3.3.3 Spin transfers
An important capability of the experiment comprises the high-fidelity execution of
desired changes of the atomic spin state and the prevention of undesired ones.
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Microwave transfers

For general spin transfers, we perform a Landau–Zener sweep between two HFSs via
MW Blackman pulses with a typical duration of 5 ms. We use this transfer approach for
both global spin transfers and local transfers within the context of DMD addressing. We
characterize the global transfer fidelity by performing multiple bidirectional transfers
and fit the increase of the fraction of atoms in the wrong state, yielding typical fidelities
of 99.96(1)%.

For global, coherent manipulations of the spin state we apply unswept MW pulses
with Rabi frequencies in the range of 5–20 kHz. We typically obtain coherence times of
the MW pulses of few ms.

Off-resonant light scattering

For sensitive experiments, off-resonant scattering in optical dipole potentials has to
be taken into account. While the lattice beams at 1064 nm and the spin-independent
DMD light at 670 nm is sufficiently detuned, the high intensities at 787 nm required
during DMD addressing can be of significance: The first effect involves scattering-
induced band excitations, which can be suppressed by addressing in deeper lattice
potentials, which reduces the Lamb–Dicke parameter. The second effect involves
scattering-induced spin flips, whereby the excited state may decay to ground states
differing from the initial state according to the transitions’ selection rules. This effect
can also be suppressed when working with σ− polarization, as off-resonant scattering
then solely occurs on the closed D2 transition.

3.3.4 Magnetic fields
When working with the |↑〉 and |↓〉 HFSs to probe spin physics, the differential
Zeeman shift of ∆EB/B = h× 2.1 MHz/G between the spins lead to a system which is
highly sensitive to the magnetic field. While the absolute value of the magnetic field
is insignificant—as one can consider the spin model in a frame co-rotating with the
trivial magnetic-field–induced dynamics—, fluctuations caused by ambient fields or
variations in the magnetic coil currents can lead to dephasing. For the spin experiments
discussed in this thesis, however, this is of no relevance as we are interested in either
the Ŝz spin component or ensemble-averaged quantities [104]. Magnetic gradients are
far more problematic as these cannot be transformed out and persist as field gradients
within the spin model.

Spin-differential gradients can be precisely mapped out by performing Ramsey
measurements on a spin-polarized, motionally frozen atomic array. By performing
two MW π/2 pulses, interspersed with a hold time of up to T = 600 ms, the atoms
accumulate a phase of ∆EBT/h̄, visible as interference fringes. By fitting the interfer-
ence patterns, we obtain a spatial magnetic-field map with which we can minimize
magnetic gradients to less than 0.04 Hz per site using offset coils. This method also
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allows us to benchmark deliberately generated magnetic-field gradients created by
additional gradient coils.

3.3.5 Light polarization
Setting the correct polarization of light can be essential for both resonant and off-
resonant beams.

DMD light

In the case of off-resonant (DMD) light, the polarization is critical to control differential
light shifts. For our spin-dependent potentials using 787 nm light, the maximum ratio
between light shift and off-resonant scattering is achieved for pure σ− polarization.
Using direct MW spectroscopy, the polarization purity can typically be optimized
to more than 95 %. For spin-independent potentials, we conversely optimize for
minimum differential light shift, realized for linear polarization. As the wavelength
of 670 nm of the utilized light is already far off-resonant, differential shifts are small,
and measurements rely on Ramsey sequences, see Sec. 3.3.4. In this case, we typically
achieve estimated polarization purities of up to 90 % when differential light shifts of
other sources start to become dominant.

Resonant light

Accurate control of the polarization of D2 resonant light can also be critical for certain
classes of experiments: For optical push-out of the |↑〉 state, multiple scattering
events are required, and a clean polarization prevents intermittent decay into a non-
pushed ground state. With optimized parameters, we can achieve push fidelities
up to 99.9(1)%. Resonant light can furthermore be used to probe the atoms’ optical
response by absorption imaging. For this purpose, high polarization purity is central
to quantitatively deducing the optical absorptance.

We optimize the resonant beam for σ− polarization by working in a regime where
the Zeeman states are optically resolved. By tuning the laser to be resonant to the σ+

transition, we minimize spin transfers after shining in the beam as spin flips indicate a
residual σ+ polarization. This optimization approach leads to polarization purities of
more than 98 %.
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Chapter 4

Nonlocal order in two-dimensional
Mott insulators
Phase transitions describe the change of the collective behavior of a many-body system
from a disordered to an ordered state. The order is indicated by an order parameter and
is commonly given by a local correlation function whose value is zero in the disordered
phase and finite in the ordered phase [86]. Indeed, for the paradigmatic example of a
quantum phase transition (QPT), the superfluid (SF)–Mott insulator (MI) transition
in the Bose–Hubbard (BH) model, the first detection was enabled by measuring the
SF fraction as the order parameter of the SF phase [14]. In contrast, the MI phase is
typically considered as a featureless state, and its presence defined indirectly through
thermodynamic incompressibility, the excitation spectrum or parametric susceptibil-
ities [6, 84, 142, 143]. In contrast, the notion of nonlocal order parameters gives rise
to qualitatively different ordered phases [144–146], with the Haldane insulator as a
prominent example [147]. Indeed, such order also exists in the MI phase, and has
been experimentally demonstrated in one-dimensional (1D) BH chains [31, 88] and
subsequently theoretically predicted for higher dimensions [89, 90, 148].

In this chapter, we first discuss the phase diagram of the BH model and provide
a mean-field (MF) analysis, taking into account varying lattice geometries. We then
analyze the doublon–hole correlations, which represent the quantum fluctuations
driving the phase transition, and finally establish brane parity (BP) as a proxy for the
nonlocal order parameter of two-dimensional (2D) MIs.

4.1 Bose–Hubbard model in the mean-field
approximation

In this section, we analyze the BH model within the MF approximation, which has
been shown to qualitatively capture the phase diagram [14, 149]. In MF theory, the full
many-body Hamiltonian is approximated by the sum of local Hamiltonians, Ĥ ≈ ∑i Ĥi,
by replacing nonlocal operator-valued quantities by their mean values.

Intuitively, MF theory is expected to be applicable to the BH model as it is exact in
both the atomic and the non-interacting limit (see Sec. 2.1.2). For the BH model, the
approximation amounts to â†

i âj ≈ â†
i ψj + ψ∗i âj − ψ∗i ψj, with the expectation value of
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Figure 4.1: Mean-field Bose–Hubbard phase diagram in Bravais lattices. Various
quantities of interest are plotted against the chemical potential, µ, and the hopping
energy, J, scaled by the coordination number of the lattice, z. In the experiment, we
typically operate around the µ/U ∼ 0.5 line. (a) The superfluid (SF) order parameter,
ψ = 〈â〉, reveals the presence of the SF phase outside of the Mott lobes. The dashed line
indicates the phase boundary, Eq. (4.2). (b) The Mott insulator (MI) is characterized by
incompressibility, visualized by the constant density in the Mott lobes. (c) Instead of
the density, the experiment is subject to parity projection, ŝ = eiπ(n̂−n). (d) In the mean-
field approximation, density fluctuations, ∆n2 = 〈n̂2〉 − 〈n̂〉2, suggest the presence of
SF order. However, nonlocal fluctuations are not captured, which would lead to finite
fluctuations already in the MI phase. (e) Visualization of the parity-projected density
fluctuations, ∆s2 = 〈ŝ2〉 − 〈ŝ〉2.

the annihilation operator, ψi = 〈âi〉, serving as the local order parameter [86]. Hence,
the BH MF Hamiltonian is given by [150]

Ĥi =
U
2

n̂i(n̂i − 1)− µn̂i +
J
2
(ψ∗i φi + φ∗i ψi)− J(φ∗i âi + φi â†

i ), (4.1)

with φi the sum of the mean fields on the nearest-neighbor (NN)–connected sites,
φi = ∑j∈{j|〈i,j〉} ψj. This Hamiltonian can be numerically straightforwardly solved by
taking into account the self-consistency condition between connected sites. The ground
state is found by iteratively diagonalizing the system and calculating the mean field
using the updated states.

4.1.1 Phase diagram
In the simplest case of a homogeneous system with one site per unit cell, e.g., square
or triangular lattices, the NN fields are identical to the local field. Thus, φi = zψi, and
the lattice-structure dependence reduces to a dependence on the coordination number
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z only. The phase boundary can be perturbatively calculated [150] and is given by

zJ
U

=
(dµ/Ue − µ/U)(1− dµ/Ue+ µ/U)

1 + µ/U
, (4.2)

showing the integer-filled Mott lobes for small J/U. Specifically, the critical point of
the Mott lobe with integer filling n = d(µ/U)ce is located at( µ

U

)
c
=
√

n2 + n− 1, (4.3)

and scales with the coordination number, (J/U)c ∝ 1/z.
Fig. 4.1 shows a numerical calculation of the order parameter, the expected density

and the experimentally relevant parity as a function of the BH parameters J/U and
µ/U. In MF approximation, nonlocal effects are not captured so density fluctuations
only appear in the SF phase. They grow with increasing J/U, reaching the Poissonian
variance of ∆n2 = n in the non-interacting limit.

4.1.2 Sublattice inhomogeneity
In the case of multiple sublattices in a unit cell, the MF calculation requires an inho-
mogeneous treatment, yielding separate states and fields on each sublattice [151, 152].
Here we focus on the tripartite Lieb lattice (see Fig. 4.2d) whose unit cell comprises
a “hub” site (A), with local coordination number zhub = 4, and two “rim” sites (B, C),
with zrim = 2. Each sublattice type is only connected to the respective other sublattice
type.

In Fig. 4.2, we find that the phase diagram remains to be well-described by Eq. (4.2)
when considering the arithmetic mean of the sublattices as effective coordination num-
ber, z = (zhub + 2zrim)/3. The onset of nonzero SF density occurs at the same J/U
parameter, indicating the global nature of the SF. Focussing on the spatial inhomo-
geneity of the order parameter, however, we find that close to the phase transition
ψhub ≈

√
2ψrim, showing that higher connectivity leads to more phase rigidity respon-

sible for SF formation. Following the contour line of equal density—which represents
a homogeneous system with fixed atom number—, this relation persists.

Band structure

As a complementary view in the non-interacting limit, we can compute the sys-
tem behavior from the band structure. Treating the system within the tight-binding
model [153], we obtain the three sublattice bands

E(1,3)(q · r) = ∓J
√

4 + 2 cos qxx + 2 cos qyy, E(2)(q · r) = 0, (4.4)
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Figure 4.2: Mean-field phase diagram and band structure of the Lieb lattice. (a)
The superfluid (SF) order parameter becomes nonzero at the same parameter regime
on both the hub (top) and rim (bottom) sublattice. The phase boundary is shown
as a black dashed line. The red dashed line marks the contour line of constant unit-
cell–averaged density, ∑S〈n̂S〉/3 = 1. (b) SF order parameter ψ, density n, density
variance ∆n2 and parity variance ∆s2 (top to bottom) along the unity-filling contour
line evaluated for the hub (green) and rim (blue) sites. The dashed lines indicate the
non-interacting limit. (c) Band structure E(1,2,3)(q) for the three sublattice bands
(bottom to top). (d) Eigenfunctions ψ

(1,2,3)
i,S (q = 0) for the sublattice bands (bottom to

top) and sublattice sites S ∈ {A, B, C}. The dashed box marks the Lieb lattice unit cell.

most notably, featuring a non-dispersive “flat” central band E(2). The eigenfunctions
are given by

~ψ
(1,3)
i ∝

E(1,3)(q · ri)

2J
~eA + cos

qxxi

2
~eB + cos

qyyi

2
~eC,

~ψ
(2)
i ∝ cos

qyyi

2
~eB − cos

qxxi

2
~eC,

(4.5)

where~eS denotes the sublattice S. Here we can observe that the flat-band states do not
occupy the hub site at all, while the states in the dispersive bands have a density ratio
between hub sites and rim sites of 2, consistent with the MF calculation.



4.2 Doublon–hole fluctuations 45

4.2 Doublon–hole fluctuations
While the MF approximation captures on-site quantum fluctuations, nonlocal fluctu-
ations are neglected, which play a prominent role in the MI phase at finite hopping
J 6= 0. In the experimentally relevant case of commensurate filling deep in the MI
phase, J/U � (J/U)c, the BH model can be perturbatively treated through a strong-
coupling expansion [154]. To first order, this yields a correction to the ground state
of

|Ψ〉J/U�(J/U)c ∝ |Ψ〉J/U=0 + ∑
〈i,j〉

Jij

U − ∆εij
â†

i âj|Ψ〉J/U=0, (4.6)

where Jij denotes the (possibly local) hopping energy and ∆εij = εi − ε j the variation
of the on-site potential. The perturbative term describes the formation of virtual
particle–hole pairs on adjacent sites, thus also rendering the on-site density fluctuations
nonzero.

Notably, in a homogeneous lattice, Jij = J and ∆εij = 0, we would expect every
lattice bond to give rise to an equal probability for the occurrence of these fluctuations
and density correlation functions to show a dependence characteristic of the lattice
geometry. Formally, the two-point connected correlator of the density at filling n is
given by

〈n̂in̂j〉c = 2n(n + 1)
(

J
U

)2

(ziδij + δ〈i,j〉), (4.7)

and can be deduced from parity-projected measurements as 〈ŝi ŝj〉c = 4|〈n̂in̂j〉c|.

4.2.1 Experimental scheme
The formation of virtual doublon–hole pairs has been experimentally detected in
quantum gas microscopes (QGMs) of both bosonic and fermionic Hubbard systems [31,
36]. While these measurements were limited to 1D or square lattices, we analyze the
dependence of the doublon–hole fluctuations on differing 2D lattice geometries. These
are generated by our tunable lattices with a spacing of 752 nm (see Sec. 3.2.2) and
demonstrate our ability to precisely control the geometry in the strongly interacting
regime of 2D BH models.

In the experiment, we probe the many-body ground state of the 2D BH model for
varying J/U parameters near unity filling in the square, triangular and Lieb lattices.
The experimental approach is depicted in Fig. 4.3 and started with a 2D SF trapped in
one layer of the physics Lattice 3 (L3). For the Lieb lattice, we additionally adiabatically
ramped up the block-out potential to Vb = h · 450(120)Hz in 150 ms. We then adia-
batically ramped up the horizontal lattices in 200 ms to a depth corresponding to the
desired J/U value, resulting in the preparation of the associated BH ground state. The
ramps were programmed such that the hopping energies remained largely isotropic.
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Figure 4.3: Experimental sequence for detecting doublon–hole pairs. To probe the
Bose–Hubbard model in lattices with multi-site unit cells, we first ramp up the DMD-
projected block-out potential (red). We then adiabatically ramp up the horizontal
tunable lattices to the target lattice depths. The straight hopping strength is tunable
via the Lattice 2 (L2) depth (green) and the diagonal hopping via Lattice 1 (L1) (blue).
After reaching the target depth, we rapidly ramp up the Lattice 2 (L2) depth to freeze
the occupation. (Insets) Depending on the lattice depths, different J/U value are
realized, yielding varying strengths of doublon–hole fluctuations (red shaded) in the
Mott insulator phase.

This is followed by a fast 1 ms quench to a lattice depth of V = 90E752
r , freezing the

occupation on each site and thus projecting the state into the local Fock basis upon
imaging. Note that while the hopping energy, J, depends exponentially on the lattice
depth, the interaction energy is rather insensitive, staying in the range of 200–300 Hz
throughout the measurement parameters.

4.2.2 Geometry dependence of parity fluctuations
We average the parity fluctuation measurements over 200 experimental runs per data
point. The correlations are analyzed on a region of interest (ROI) of 9× 9 sites in the
center of the cloud, where the potential is approximately homogeneous on the scale
of the interaction energy, ∆εij . 0.1U. Due to the imperfect alignment of the lattice
beams with an intersection angle of 90.7° and lattice-depth calibration uncertainties of
2–3 %, the hopping energies vary slightly between the horizontal, vertical and diagonal
directions. In the case of the square Bravais lattice, the calculated anisotropy is given
by Jv/Jh ≈ 0.92–0.94, and in the case of the triangular Bravais lattice Jd/Jh ≈ 0.93–0.99.

Parity correlations

By analyzing the dependence of the correlation strength on the BH parameter J/U
(see Fig. 4.4), we can clearly observe quadratic growth, confirming the picture of
NN–separated virtual doublon–hole pairs. These pairs, however, only form between
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Figure 4.4: Parity correlation measurements. Connected parity correlations,
〈ŝi ŝj〉c between nearest-neighbor sites (green) and diagonal-neighbor sites along the
triangular-lattice direction (blue) in the (a) square, (b) triangular and (c) Lieb lattice. In
the case of the triangular lattice, both correlators grow equally, whereas in the cases
with square Bravais lattice the diagonal correlators remain small. For all geometries,
the onsets of the correlations agree well with the perturbative dependence, predicting
proportionality with (J/U)2 (black line). (Insets) show the 2D correlations at further
locations (i, j), with the respective J/U parameter marked. For the Lieb lattice, the
blocked-out sites have been excluded from the correlation analysis. Error bars denote
the standard error of the mean (SEM).

sites that are directly tunnel-coupled. Particularly, we immediately find that only the
triangular lattice builds up doublon–hole correlations across diagonal bonds whereas
the lattices with square base geometry only show correlations along the straight NN
sites. With increasing J/U, we can observe an increase of the diagonal-neighbor (DN)
correlations also for the square lattices. We attribute this behavior to a diverging
correlation length as the system approaches the phase transition. The doublon–hole
pairs start to deconfine, and higher-order perturbations become relevant. In the SF
phase after crossing the phase transition, parity fluctuations become increasingly global
in nature, leading to a reduction in the NN correlations with further increasing J/U.

On-site parity fluctuations

Apart from two-point correlators, we can also analyze the on-site fluctuations of the
parity, 〈ŝ2

i 〉c (see Fig. 4.5a). In the MI phase, we again expect the parity variance to grow
with (J/U)2, due to the presence of the nonlocal doublon–hole fluctuations. Hence, in
contrast to the NN correlators, the on-site variance depends on the local coordination
number zS. In the non-uniform Lieb lattice, we indeed find that the variance differs
between hub and rim sites, agreeing well with perturbative analysis. The fact that the
experimental data match the theoretical curve furthermore confirms that the block-out
potentials used to create the Lieb lattice do not lead to significant potential disorder
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Figure 4.5: On-site parity fluctuations. (a) On-site parity variance, ∆s2
S = 〈ŝ2

i 〉i∈S −
〈ŝi〉2i∈S, of the Lieb lattice, evaluated on the hub (green) and rim (gray) sublattice sites.
The solid lines indicate predictions by perturbation theory, with an offset accounting
for the finite filling of 0.97. Error bars show the SEM. (b) The parity variance difference
between hub and rim sites evaluated for the Lieb (green), square (blue) and triangular
(red) lattices. The solid line indicates strong-coupling perturbation theory, and the
dashed line marks inhomogeneous mean-field theory.

on the non-blocked sites. Note that deep in the MI, we added an offset of 4n(1− n) to
the parity variance, which—using a Bernoulli distribution—classically accounts for
uncorrelated holes present due to the finite filling of n = 0.97.

In Fig. 4.5b we plot the difference of the parity variance between the sites (asso-
ciated to the hub and rim sites in the Lieb lattice) also for the square and triangular
lattices and clearly observe that only the Lieb lattice gives rise to the deviation. We
can furthermore analyze the on-site fluctuations in the SF phase, where we observe a
reduction of the variance with increasing J/U. At first glance, this appears counterintu-
itive as in the non-interacting limit band structure calculations predict that the number
fluctuations on the hub sites are twice as large compared to the rim sites. However,
due to parity projection, the experimentally observable fluctuations are limited, and
number variances increasing above unity appear constant. Sufficiently far from the
critical point, the data indeed follows MF predictions, consistent with Fig. 4.2b.

4.3 Two-dimensional nonlocal order
With Landau’s theory of second order phase transitions, local order parameters have
become a central concept for characterizing symmetry-broken phases in condensed
matter physics [155]. However, certain systems can exhibit order that is not cap-
tured by such a two-point correlation function, requiring the introduction of extensive
multi-point correlators as nonlocal order parameters [156]. Nonlocal string-order param-
eters have been particularly successful in revealing symmetry-protected topological
phases [157, 158], and have revealed hidden order in various 1D chains and ladders
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Figure 4.6: Brane parity order parameter. (a) Unity-filled Mott insulator with
bound doublon–hole pairs (red shaded), which are experimentally observable by their
parity (positive parity: green, negative parity: gray). The integer brane parity (BP) is
determined by the number of pairs cut by the boundary of the analysis area A (dashed
black box). For finite A, the BP remains finite and scales with a perimeter law. (b)
In the superfluid phase, no distinct pairs are present. For finite A, the parities are
largely uncorrelated, leading to a substantially smaller BP, which decays faster than
the perimeter law.

of spins or Hubbard systems [88, 159–164]. Experimentally, microscopic access to
site-resolved observables was crucial to detect nonlocal order, leading to observations
of string order in Hubbard and Su–Schrieffer–Heeger models [31, 37, 39, 165].

In the 1D BH model, the parity order parameter, OP = 〈∏i ŝi〉, turns out to serve
as a string order parameter detecting the hidden order in the MI phase and has
been experimentally demonstrated in Ref. [31]. In two dimensions, this concept was
theoretically generalized to “brane parity”, where the product over the parities runs
over a 2D area [89, 90, 148]. In the following, we will discuss this quantity (partially
following Ref. [102]) and present measurements, suggesting BP to be a suitable order
parameter for the 2D MI phase.

4.3.1 Brane parity order in the Bose–Hubbard model
The BP order parameter can be written in a generalized form as

O(θ)
P =

〈
∏
i∈A

eiθ δn̂i

〉
=
〈

eiθ δN̂
〉

, (4.8)

where δn̂i = n̂i − n and δN̂ = N̂ − N denote the fluctuation of the on-site occupation
and of the total atom number within a ROI area, A, respectively. The fractional parity
phase θ is a generalization of the integer parity phase, θ = π, which reproduces the
standard parity.

To analyze the scaling behavior of the BP at large ROIs, A ∼ L2 � 1, we can
approximate δN̂ as a normally distributed random variable. Then the higher statistical
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moments become functions of the variance, and the BP value reduces to [89, 90]

ln O(θ)
P ≈ −

θ

2
〈δN̂2〉 ∝

{
−θ2 L log L (SF),
−θ1 L (MI).

(4.9)

This implies that, for a fractional parity phase of θ = L−γ, γ ≥ 1/2, BP serves as an
order parameter in the thermodynamic limit, vanishing in the SF phase and becoming
nonzero in the MI phase [90, 148]. For the experimentally accessible integer parity
phase, θ = π, the BP expectation value formally vanishes in both phases, however,
with distinct scaling behavior. As, for finite ROIs, the absolute value of OP in the MI
phase is substantially larger compared with the SF phase, and the deviation grows
with L due to the differing scaling laws, the integer BP is nevertheless suitable to detect
order in cold atom experiments (see Sec. 4.3.2). Note that the use of such bipartite
fluctuations to detect quantum critical points between gapped and gapless phases has
been proposed on more general grounds in Ref. [166].

Integer brane parity

For the integer BP, OP ≡ O(π)
P , Eq. (4.8) can be written as [102]

OP = ∑
δN

pA(δN)(−1)δN = 1− 2P(ÔP = −1), (4.10)

where pA(δN) denotes the probability for an atom number deviation of δN within the
ROI, A, and P(ÔP) the probability for the BP to have the value ÔP.

This relation permits a complementary, intuitive picture depicted in Fig. 4.6. Start-
ing in the unity-filled strong-coupling limit, J � U, the ground state is a product
Fock state, yielding OP(J/U = 0) = 1. At finite perturbative hopping energies, J,
doublon–hole pairs at NN sites form, which do not alter the BP as long as both con-
stituents are located within A. However, if the boundary of A cuts an odd number
of doublon–hole pairs, the value of OP flips sign. Thus, we can consider P(ÔP) as a
binomial distribution in the number of cut pairs along the perimeter of A and obtain
OP = (1− 2p)4L. Here, p = zb(J/U)2 is the perturbative on-perimeter probability for
a cut pair, with zb = z/d− 1 the average number of bonds cut on a perimeter site.

When approaching the phase transition, the doublon–hole pairs deconfine and
higher perturbation orders have to be taken into account. As long as A is sufficiently
large to capture all relevant perturbative clusters, the perimeter law, log OP ∝ −L,
holds true. In the SF phase, however, this picture becomes invalid, leading to the faster–
than–perimeter-law decay, log OP ∝ −L log L, obtained from Eq. (4.9). Furthermore, in
the MI phase, uncorrelated holes or doublons (e.g. originating from finite temperature)
appearing in the bulk do not lead to the pairwise cancellation exhibited by the virtual
doublon–hole pairs. In this case, the binomial distribution runs across the full ROI area
instead of the perimeter, resulting in an area-law decay, log OP ∝ −L2.
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Figure 4.7: Brane parity order in various lattice geometries. (a) Integer brane parity
(BP) evaluated over 4× 4 sites in the triangular (red), square (blue) and Lieb (green)
lattice. The vertical lines show Monte-Carlo predictions for the critical value, (J/U)c,
agreeing with the parameter value at which the BP becomes nonzero. (b) The
same data rescaled with the (average) coordination number shows a collapse. This
behavior is consistent with mean-field scaling, confirming the BP as a proxy for the
order parameter of the Mott insulator (MI) phase. (c) In the MI phase at J/U = 0.029
(triangular, red), 0.029 (square, blue), and 0.033 (Lieb, green), we plot the BP evaluated
over different ROIs of L× L. The solid lines correspond to exponential fits, confirming
the predicted perimeter-law scaling, log OP ∝ −L. Error bars denote the SEM.

4.3.2 Geometry dependence of parity order
As quantum gas microscopy provides full access to site-resolved parities, images from
a measurement following the protocol described in Sec. 4.2.1 immediately allow us to
evaluate parity order. Particularly, we can leverage the experimental tunability of the
lattice geometry to study the dependence of the BP value on the local connectivity.

For the analysis of the parity data, we crop the images to a ROI of 7× 7 sites to
sample only the homogeneous potential in the center of the trap. To improve the
signal-to-noise ratio (SNR), we evaluate the BP on an area subset of size A ∼ L× L
and average over all possible embeddings of A within the original 7× 7 ROI.

Scaling with lattice geometry and system size

In Fig. 4.7a we show the results for L = 4, measured for the square, triangular and Lieb
lattices. We can clearly observe that the integer BP indeed features a sudden increase
in value when crossing below a critical (J/U)c, consistent with its interpretation as an
order parameter. Furthermore, in the case of both the square and the triangular lattice,
the value agrees well with predictions by Monte-Carlo simulations [167, 168].

As outlined in Sec. 4.1.1, MF theory predicts that the phase diagram—including the
critical point—depends on the lattice geometry only through the (averaged) coordina-
tion number of the lattice, z, and has been experimentally demonstrated by rescaling
the measured SF order parameter [149]. This fact provides an alternative way to deter-
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Figure 4.8: Critical point extraction from brane parity. (a–c) Brane parity in the
triangular (red), square (blue) and Lieb (green) lattice for increasing analysis sizes
(light to dark color), ranging from L = 2–5 for the triangular and square lattice, and
L = 2, 4 for the Lieb lattice. The solid lines indicate linear fits, from which we extract
the zero crossing as proxy for the critical point, (J/U)0. Error bars denote the SEM. (d)
The critical point proxy converges with increasing analysis size L. Solid lines mark the
critical values predicted by Monte-Carlo simulations.

mining the role of BP: In Fig. 4.7b, we plot OP as a function of the rescaled hopping
energy, zJ/U. We find that the three curves approximately collapse, demonstrating
BP as a complementary order parameter for the MI phase in the BH model. The data
furthermore suggests that the transition of the Lieb lattice around the critical point is
not as distinct as the other geometries. This could originate from finite-size effects due
to the smaller number of sites covered in a given area A, or hint at more non-trivial
effects due to the presence of multiple sublattices.

In Fig. 4.7c, we analyze the dependence of the BP on the analysis size, L, in the MI
phases of the three lattice geometries. By fitting an exponential decay to the data, we
confirm that the integer BP indeed fulfills the perimeter law, log OP ∝ −L, predicted in
Eq. (4.9). In parts of the data, we can observe a slight faster-than-expected decrease
of OP with L, which we mainly attribute to two effects: First, finite temperatures
correspond to the emergence of uncorrelated holes, giving rise to additional area-
law scaling, log OP ∝ −L2. Second, evaluating data further away from the trap
center is more susceptible to atom-number fluctuations, resulting in probing spatially
inhomogeneous values of J/U, which can show signs of more SF character, which is
expected to scale as log OP ∝ −L log L. Note that due to insufficient SNR, the scaling
in the SF phase cannot be directly experimentally characterized.

Convergence behavior

As our analyses are performed on finite system sizes, L < ∞, and the experimental
data are subject to noise, the exact critical point (J/U)c is difficult to locate. However,
due to the difference of the system-size scaling in the different phases, we expect the
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BP to grow more distinct with increasing system size (for sufficiently small thermal
and inhomogeneity effects).

In Figs. 4.8 a–c we extract the convergence behavior by fitting a linear function to
the sloped part of the BP data. We then use the zero crossing of the linear function,
(J/U)0, as a proxy for the critical point. In Fig. 4.8d, we indeed observe that the
extracted value converges. Note that we expect our proxy to slightly underestimate
the actual critical value due to both the expected nonlinear nature of the BP around the
critical point and the spatial potential inhomogeneity. As we observe contrary behavior
in the experimental data, this suggests that finite-size effects are still prevalent.

4.4 Conclusion and outlook
In this chapter, we have demonstrated the flexible realization of 2D BH models in
geometries beyond the square lattice. By example of the square, triangular and Lieb
lattice in the MI phase, we have observed NN parity correlations induced by doublon–
hole fluctuations, which are characteristic of the particular geometry. We additionally
observed that, in the strong-coupling regime, these fluctuations only depend on the
local lattice connectivity by measuring the local coordination-number dependence
of the on-site fluctuations. Leveraging the spatially resolved parity of the QGM, we
experimentally established the integer BP as a parameter suitable to detect the nonlocal
order of the 2D MI phase. We observed the perimeter-law decay of the BP in the MI
phase and found that the BP as a function of the BH parameter J/U scales with the
average coordination number.

A natural extension of this study could involve measuring the fractional BP as
the formally true order parameter of the 2D MI phase, which would remain finite in
the thermodynamic limit and could be achieved through doublon-resolved imaging
in the honeycomb configuration of our tunable superlattice. Furthermore, as the
presented data points were comparatively coarse in the vicinity of the critical point, a
more detailed investigation could directly detect the critical scaling, characterizing the
universality class of the QPT. Such a study would require larger and cleaner systems,
and could be combined with the analysis of the influence of filling fractions and spatial
potential inhomogeneity. Finally, while NN correlations per lattice bond do not depend
on the exact lattice topology in first-order perturbation, characterization of higher-order
correlations closer to the critical point could reveal the formation of more complex
doublon–hole clusters.
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Part II

Kardar–Parisi–Zhang universality and
Heisenberg chains





57

Chapter 5

Kardar–Parisi–Zhang hydrodynamics
Universal scaling has proven to be a powerful concept in a variety of fields, ranging
from physics, chemistry and biology to economics or social sciences [169]. The base
idea involves analyzing the collective behavior of a many-body system in a scale-
invariant limit, in which the microscopic details of a model become largely irrelevant
and individual models can be grouped in universality classes [170, 171]. The most
notable application constitutes the classification of equilibrium critical phenomena, for
which not only static but also dynamical properties can be accounted for [172]. While
these dynamical effects occur in the context of static criticality, there exists a wider
range of genuine non-equilibrium scenarios, which are possibly independent of the
static ground-state properties. Universal scaling can also be applied to such systems,
even though a full characterization is still lacking [173].

A prominent member of such dynamical universality classes is the Kardar–Parisi–
Zhang (KPZ) class, which will be the topic of this chapter. In Sec. 5.1, we will first
discuss the properties of the one-dimensional (1D) KPZ universality class in its original
context of interface growth, and then proceed with its relation to hydrodynamic
transport in quantum models in Sec. 5.2.

5.1 KPZ universality class
The KPZ universality class has its origins in a stochastic partial differential equation
(PDE),

∂th(x, t) = v0 + ν∂2
xh(x, t) +

λ

2
(∂xh(x, t))2 +

√
Dη(x, t), (5.1)

which was devised by M. Kardar, G. Parisi and Y.-C. Zhang to model kinetic rough-
ening and interface growth in 1 + 1 spatial dimensions [174]. This PDE describes the
height, h, of an interface as a stochastic process, with lateral position x and time t,
under the influence of spatiotemporally uncorrelated noise, η. Due to its complexity
as a stochastic nonlinear PDE, Eq. (5.1) remains an active field of study in mathemat-
ics [175] and could only recently be rigorously shown to belong to the KPZ universality
class [176, 177], with the prefactors acting as nonuniversal parameters.

The first term, v0, accounts for vertical height growth, and the second term, ∝ ν,
describes diffusion, smoothening rough surfaces and giving rise to spatial correla-
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Figure 5.1: Characteristics of the KPZ universality class. (a) The KPZ scaling
function (green) is characteristic of the KPZ universality class and features a small
deviation from a Gaussian function (gray). (b) The distribution of the rescaled height
fluctuations, χ = δh/t1/3, depend on the initial conditions. They are given by the
Tracy–Widom GOE (flat initial condition, green), Tracy–Widom GUE (wedge, blue)
and Baik–Rains (stationary, red) distributions. A normal distribution is depicted as a
reference in gray.

tions. Growth processes modelled by these linear terms alone belong to the Edwards–
Wilkinson universality class [178]. However, in most real growth processes, lateral
growth needs to be taken into account, and is modelled by the third term, ∝ λ. This
nonlinear term remains relevant in the renormalization group sense and thus yields a
distinct class—the KPZ universality class [179, 180]—, whose properties we will cover
in this section.

5.1.1 Scaling functions
Dynamical universality classes are characterized by a set of scale-invariant correlation
functions [173]. In particular the stationary-time two-point correlation function of the
interface height follows Family–Vicsek scaling [181, 182],

Ch(x, t) ≡ 〈(h(x, t)− h(0, 0)− v∞t)2〉 ∼ t2βFKPZ

( x
t1/z

)
, (5.2)

where v∞ is the asymptotic growth velocity of the interface and FKPZ is a scaling
function, with scaling exponents that are characteristic for a universality class. For
the KPZ class, spatial correlations grow with Ch(x � ξ, t) ∼ x2α and spatial exponent
α = 1/2, and temporal correlations with Ch(x � ξ, t) ∼ t2β and growth exponent
β = 1/3. The correlation length, ξ ∼ t1/z, scales with the ratio of spatial and temporal
correlations, with dynamical exponent z = α/β = 3/2.

In the case of stationary initial conditions, the connected two-point function of the
spatial derivatives of the height is of particular interest, and is given by [183]

〈∂xh(x, t) ∂xh(0, 0)〉c =
1
2

∂2
xCh(x, t) ∼ t2β−2/z fKPZ

( x
t1/z

)
(5.3)



5.1 KPZ universality class 59

with another scaling function (see Fig. 5.1a), fKPZ(y) = F′′KPZ(y), which has been exactly
calculated and tabulated with high precision [184, 185]. We will refer to this function
as the “KPZ scaling function”.

5.1.2 Fluctuations
As the KPZ equation describes stochastic processes, the distributions of height fluc-
tuations have also been investigated and found to exhibit universal behavior. Exact
analysis of models in the KPZ universality class revealed that the KPZ class can be
further subdivided into “KPZ subclasses” [186], which depend on the initial conditions,
h(x, 0). Specifically, the height field can be written as

h(x, t) = v∞t + (Γt)βχ

(
x

ξ(t)
, t
)

, (5.4)

where χ denotes an initial-condition–dependent random process [184]. In the long-time
limit, χ has been shown to universally converge in distribution and was termed Airy
process Ai [187, 188]: For the “flat” initial condition, h(x, 0) = const., this yields χ→
A1, for the “wedge” (also known as “droplet/circular”) initial condition, h(x, 0) ∼ |x|,
χ→ A2 − (x/ξ)2 and for the “stationary” initial state χ→ Astat.

Of particular interest are the universal distribution functions of the height fluctua-
tions arising in these processes [183]. In Ref. [186], it was found that the distributions
are related to the Tracy–Widom (TW) distribution [189], which describe the distribution
of the largest eigenvalues of random matrices. For the flat initial state, the height fluc-
tuations relate to random matrices in the Gaussian orthogonal ensemble (GOE), and
for the wedge initial state the Gaussian unitary ensemble (GUE). The distribution for
the stationary case is known as the Baik–Rains (BR) distribution [190]. Most notably, as
shown in Fig. 5.1b, these fluctuation distributions are asymmetric, which is a hallmark
of an underlying nonlinear effect and is reminiscent of the nonlinear KPZ equation.
The asymmetry can be quantified by higher-order statistical central moments and
provides an observable for detecting KPZ physics.

5.1.3 Models in the KPZ class
The KPZ universality class encompasses three broad categories of models: Apart from
interface growth processes, these include paths in random environments and stochastic
particle dynamics [191].

The category of interface-growth problems comprises the majority of both nu-
merically and experimentally studied models. KPZ scaling was in fact observed to
describe a variety of systems; notably, the fluctuations of paper combustion fronts or
liquid-crystal phase boundaries even displayed the full distributions expected from
KPZ universality [192, 193], experimentally confirming the initial-state–dependent
KPZ subclasses. Models in the category involving paths in random environments are
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often used to study percolation-type effects [194–197]. These include directed polymer
problems, which have been vital in the precise determination of the KPZ fluctuations
and scaling functions [185, 198].

The category of stochastic particle dynamics is most relevant to this thesis and
typically consists of mapping the KPZ height field, h(x, t), onto a particle density,

u(x, t) ∼ ∂xh(x, t). (5.5)

This substitution is well-defined in the scaling limit and gives rise to the stochastic
Burgers equation [199],

∂tu(x, t) = ν∂2
xu(x, t) + λu(x, t)∂xu(x, t) +

√
D∂xη(x, t), (5.6)

which is equivalent to the KPZ equation, Eq. (5.1), and serves as a model for tur-
bulent fluid dynamics. Classical models of this type include asymmetric exclusion
process (ASEP) particle-hopping models describing, e.g., biological transport or traffic
flow [200–202].

KPZ behavior has also been discovered to arise in quantum many-body models:
For instance, in the context of interface growth, experiments with driven 1D polariton
condensates found the condensate phase front to follow KPZ scaling [203]. KPZ scaling
was furthermore also predicted to arise as entanglement growth under random unitary
dynamics, for which the problem was analyzed with respect to all three aforementioned
KPZ categories [204]. These examples describe non-equilibrium settings subject to
explicit noise, as typical for canonical models in the KPZ universality class. Recent
numerical simulations, however, revealed that—despite the absence of these features—
the linear-response spin transport in isotropic Heisenberg (XXX) spin chains exhibited
KPZ scaling [63, 64]. This surprising finding is the topic of Part II of this thesis and
will be discussed in detail in Chapter 6 and Chapter 7.

5.2 Hydrodynamics
Microscopic models in both classical and quantum many-body physics give rise to a
wealth of dynamical phenomena. On macroscopic spatiotemporal scales, however,
the details are often lost, and the time evolution becomes well-described by universal
dynamics. This suggests the existence of a common framework to study macroscopic
out-of-equilibrium phenomena, which is provided by hydrodynamics [205–207].

In this section we first discuss the general ideas of how coarse-graining gives rise to
hydrodynamics. Then we review properties of integrable systems, which are relevant
to this thesis, and describe how these systems thus lead to generalized hydrodynamics
(GHD). We will restrict ourselves to 1D systems and follow Refs. [208, 209]. Note
that we use a continuum notation but the discussion is readily applicable to discrete
systems.
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Elementary
dynamics

Fluid-cell
dynamics

Stationary
dynamics

System
scale

Microscopic
scale

Diffusive
scale

Euler
scale

Homogeneous
system

Finite
conserved
quantities

Particle
dynamics Hydrodynamics Gibbs ensemble

thermodynamics

Infinite
conserved
quantities

Particle
dynamics

Generalized
hydrodynamics

Generalized
Gibbs ensemble
thermodynamics

Table 5.1: Scale-dependent theoretical descriptions of gases. With increasing tem-
poral and spatial scales (left to right), the effective dynamics of a many-body system
changes from considering individual particles to macroscopic densities. For integrable
systems, the thermodynamics in macroscopically homogeneous systems is generalized
to a GGE description. Analogously, for macroscopically inhomogeneous systems,
hydrodynamics is generalized to GHD.

5.2.1 Coarse-grained dynamics
Hydrodynamics is a theory of conserved quantities: As, in general, any mixed initial
state evolves towards a maximum-entropy state, the only nontrivial macroscopic
dynamics can occur for conserved “charges” {Qi} (e.g., energy or particle number).
Furthermore, microscopic charge conservation implies that a temporal change of a
local charge density must be accompanied by a spatial charge-current inhomogeneity.
This notion is encoded in a set of continuity equations,

∂tq̂i(x, t) + ∂x ĵi(x, t) = 0, (5.7)

where q̂i and ĵi denote the charge and current densities, respectively, for the total charge
Q̂i =

∫
dx q̂i(x). Entropy maximization under these constraints therefore implies evo-

lution towards Gibbs ensembles (GEs), ρ̂ ∝ e−∑i βiQ̂i , with the Lagrange multipliers
{βi} (e.g., temperature or chemical potential) fully characterizing the thermodynamic
state. Maximum entropy states have the useful property that susceptibilities of observ-
ables ô can be expressed through connected correlation functions with respect to the
charge densities [208],

− ∂

∂βi
〈ô〉{βi} =

∫
dx〈ôq̂i(x, 0)〉c{βi}. (5.8)

This in turn implies that the thermodynamic state can be equivalently expressed by
the mean charge densities [208], {qi} ⇔ {βi}.
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Dynamics of locally thermodynamic states

The hydrodynamic approximation assumes the microscopic system to settle into locally
equilibrated states within so-called fluid cells, which are described by locally varying
GEs, i.e., that any observable ô can be expressed as 〈ô(x, t)〉 ≈ 〈ô〉{βi(x,t)}. Hydrody-
namics arises from spatial inhomogeneities of the charge densities between nearby
fluid cells, which can be understood in a local-density approximation (LDA) sense.
This picture thus relates thermodynamic susceptibilities to convective dynamics. The
hydrodynamic equilibration obeys the fluid-cell–averaged continuity equations,

∂tqi(x, t) + ∂x Ji(x, t) = 0, (5.9)

for which the currents can be expanded through the constitutive relations given by

Ji(x, t) ≈∑
j

Aij({qi(x, t)})qj(x, t)− 1
2 ∑

j
Dij({qi(x, t)})∂xqj(x, t), (5.10)

where the expansion coefficients, Aij and Dij, generally depend on the local thermody-
namic state.

To leading order, we obtain the Euler scale hydrodynamic equations, ∂tqi(x, t) +
∑j Aij∂

2
xqj(x, t) = 0, whose core quantity is the flux Jacobian, Aij = ∂ji/∂qj, which

describes a velocity response due to a spatial charge gradient. Indeed, its eigenbasis,
Rij = ∂ρi/∂qj, can be written as the Jacobian of a mode density function, ρi({qj}), and
the eigenstates are known as the normal modes of hydrodynamics; the components
of Rij then describe the charge composition of the modes. The Euler hydrodynamic
equations are then given by ∂tρi + veff

i ∂xρi = 0, where veff
i denote the eigenvalues of A

and correspond to the generalized sound velocities of the normal modes. Euler hydro-
dynamics generally describes ballistic, reversible charge transport; charge diffusion
is captured by the diffusion of the normal modes, which arises when accounting for
higher orders in Eq. (5.10).

Note that the introduction of higher-order terms gives rise to nonlinear (fluctuating)
hydrodynamics. One example are generic classical fluids with continuous Galilean
symmetry (with only energy and momentum as conserved charges): When includ-
ing the next-order term and assuming diagonal contributions to fluctuations to be
dominant, Eq. (5.9) reduces to the Burgers equation (5.6) and thus features KPZ su-
perdiffusion. However, in discrete systems, Galilean symmetry is broken, such that the
momentum mode does not hold and one generally expects normal diffusion [210].

5.2.2 Generalized hydrodynamics
While the use of hydrodynamics in quantum systems with a finite number of conserved
charges has been ubiquitous for decades, recent theoretical advances involved applying
hydrodynamic ideas to integrable systems, resulting in the theory of GHD [211, 212].
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Integrable models comprise an extensive number of (quasi-) local conserved charges
and are known for being exactly solvable by the Bethe ansatz [213]. However, while
thermodynamic quantities are readily accessible, calculations of nonequilibrium quan-
tities on larger systems are generally challenging [214], motivating the development of
GHD. An overview over the hydrodynamic scales and their suitable descriptions is
shown in Tab. 5.1.

Integrable systems are described by stable quasiparticles, which correspond to
asymptotically local excitations characterized by their rapidity θ (reminiscent of mo-
menta). As rapidities are preserved in such systems, interactions can be reduced
to elastic two-body collisions, which can only affect the phase of the quasiparticles.
The effect of scattering between multiple quasiparticles can thus be thought of as a
mutual dressing process between all quasiparticles. The hydrodynamic properties
of integrable models can be obtained by identifying the quasiparticles as the hydro-
dynamic normal modes and the rapidity as parameterizing the space of conserved
quantities. The generalized sound velocities are then given by the group velocities of
the quasiparticles, veff(θ) = ∂ε(θ)/∂k(θ).

The transport behavior of a model is encoded in hydrodynamic correlation func-
tions, with the dynamical structure factor (DSF) playing a central role. With GHD, the
DSF can be expressed as [210]

〈q(x, t)q(0, 0)〉c = ∑
s

∫
dθ ρtot

s (θ)ns(θ)(1 + σns(θ))[mdr
s (θ)]2ϕt(x− veff

s (θ)t), (5.11)

where σ = 0,−1, 1 accounts for classical, fermionic and bosonic particles statistics,
and where ϕt(ζ) is the propagator of the respective quasiparticle. This dependence
warrants a kinematic view of GHD, in which solitary wave packets—propagating
ballistically with velocity veff and carrying a charge composition mdr

i (θ) = ∂ε(θ)/∂βi
dressed by elastic scattering—give rise to charge transport. A given state is represented
by the distribution of quasiparticles, ρ(θ) = ρtot(θ)n(θ), consisting of the density of
states ρtot and the state occupation n, whose kinematic dynamics can be analyzed. Note
that, generally, there can be multiple quasiparticle species s, when multiple bound
states of elementary excitations exist.

5.2.3 Scaling behavior
In this thesis, we are interested in the low-frequency limit of hydrodynamic transport,
which is commonly characterized through two transport coefficients [209, 215]: The
Drude weight, D, captures the ballistic mean transport due to convective modes, and
the diffusion constant, D, describes fluctuations thereof. These coefficients arise from
analyzing the dynamical spreading of a local disturbance of the equilibrium charge
density, where the spatial variance [215],

`2 = 〈x2〉c =
1
χ

∫
dx x2〈q(x, t)q(0, 0)〉c ≈

D
χ

t2 + Dt, (5.12)
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Figure 5.2: Extracting dynamical scaling. (a) The dynamical structure factor (DSF)
can be directly measured through the spatial charge profile initialized with a localized
perturbation. The scaling exponent is obtained by fitting the width growing with
time (light to dark). (b) The spatial charge profile of a domain wall evolves into the
spatially integrated DSF. Its width for increasing time (light to dark) again scales with
the dynamical exponent. (c) Starting with a sinusoidal modulation, the reduction in
modulation contrast follows the Fourier transform of the DSF. The dynamical exponent
relates the decay time to the increasing modulation wavelength (light to dark).

shows a characteristic dominant dynamical scaling law, ` ∼ t1/z, with dynamical
exponent z. The susceptibility, χ = ∂q/∂β, serves as a normalization of the DSF, see
also Eq. (5.8).

Note that the charge transport behavior within linear response is fully captured
by the DSF and thus represents the core quantity to study, from which the model’s
dynamical universality class can be determined. Through the height–charge mapping
introduced in Eq. (5.5), the DSF can be related to a scaling function, f , in analogy to
Eq. (5.3) as

〈q(x, t)q(0, 0)〉c ∼
1

t1/z f
( x

t1/z

)
. (5.13)

Note that, due to charge conservation, the spatially integrated DSF is constant, imply-
ing a spatial exponent of α = 1/2. Specifically, the model may be associated with the
KPZ universality class if the dynamical exponent is z = 3/2 and the function f agrees
with the KPZ scaling function fKPZ, Eq. (5.3).

5.2.4 Measuring the dynamical structure factor
As DSFs are ubiquitous in the linear-response analysis of many-body physics, a wealth
of methods have been developed to extract both the functional form and the scaling
exponents. In a setting with time-domain dynamical access to local observables—
as in numerics or in quantum gas microscopy—a generally applicable method is
to prepare an initial mixed state with a charge distribution, ε〈q̂(x, 0)〉 + 〈q̂(x, 0)〉eq,
which is slightly perturbed from equilibrium, ε � 1, yielding a density matrix of
ρ̂ ∝ exp[

∫
dx(∑i βi(x)q̂i(x) − εβ(x)q̂(x))]. By measuring the time evolution of the
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mean charge deviation [216],

〈q̂(x, t)〉 − 〈q̂(x, 0)〉eq ≈
ε

χ

∫
dx′〈q̂(x′, 0)〉〈q̂(x, t)q̂(x′, 0)〉c, (5.14)

the DSF and thus the transport properties can be deduced. In the following, we will
discuss three experimentally relevant initial states, suitable for extracting the DSF as
illustrated in Fig. 5.2.

• The most direct implementation of the scheme involves the preparation of a
local perturbation, 〈q̂(x, 0)〉 ∼ δ(x). The evolving density profile then directly
represents the DSF, realizing the scaling form

〈q̂(x, t)〉local ∼ 〈q(x, t)q(0, 0)〉c ∼
1

t1/z f
( x

t1/z

)
. (5.15)

• Another scheme, known as the Riemann problem in the context of hydrodynam-
ics, consists of preparing a domain wall (DW) initial state, 〈q̂(x, 0)〉 ∼ Θ(x). Here,
the spatial derivatives of the density profiles evolve as the DSF [64] such that the
densities scale with

〈q̂(x, t)〉DW ∼
∫

dx〈q(x, t)q(0, 0)〉c ∼ F
( x

t1/z

)
, (5.16)

where F′(ζ) = f (ζ).

• Finally, the linear-response hydrodynamics also permits a spatially spectral
treatment, where the evolution of initial states 〈q̂(x, 0)〉 ∼ eikx with varying wave
numbers, k, are probed. The amplitude of the sinusoidal modulation then decays
as

〈q̂(0, t)〉Fourier ∼
∫ ∞

−∞
dx〈q(x, t)q(0, 0)〉c ∼ f̃ (kt1/z), (5.17)

with f̃ (ν) =
∫

dζ eiνζ f (ζ).
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Chapter 6

Spin transport in the Heisenberg
model
The Heisenberg (XXZ) model is a quantum lattice model describing a system of in-
teracting spins and forms a fundamental model for the understanding of quantum
magnetism. Despite its simplicity, the XXZ model serves as a paradigmatic model
to describe a range of quantum effects, enabling the study of magnetic phases and
critical phenomena [217]. Especially in its one-dimensional (1D) form, the XXZ chain
has proven vital for the discovery of theoretical methods and experimental approaches.
Although the XXZ chain was formally analytically solved already a century ago by
introducing the seminal Bethe ansatz [213], the analysis of long-time dynamics far
from the ground state remains both an analytical and numerical challenge [214, 216].

Surprisingly, despite decades of investigation, recent numerical simulations found
a novel feature in the isotropic Heisenberg (XXX) chain, revealing that infinite-tempera-
ture spin transport follows anomalous dynamical scaling [63, 64, 218], inconsistent
with the usually occurring diffusive or ballistic transport. Moreover, the calculations
suggested that the two-point functions of spin transport agreed with the scaling
function of the Kardar–Parisi–Zhang (KPZ) universality class, triggering extensive
studies on its fundamental origins [219–221].

In Sec. 6.1, we first give an overview over the transport regimes of the XXZ model
and approaches to extracting the dynamical scaling. We then describe our experimental
protocol to prepare domain wall (DW) initial states and report on the observation of
superdiffusive spin transport in Sec. 6.2. This is followed, in Sec. 6.3, by an analysis of
the microscopic requirements of superdiffusion, probing the validity of generalized
hydrodynamics (GHD). Finally, in Sec. 6.4, we discuss how the choice of the initial
state affects the extracted dynamical exponent.

6.1 Hydrodynamics of the Heisenberg model
The Hamiltonian of the XXZ chain is given by

Ĥ = −Jex ∑
i
(Ŝx

i Ŝx
i+1 + Ŝy

i Ŝy
i+1 + ∆Ŝz

i Ŝz
i+1) + ∑

i
hiŜz

i , (6.1)
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with nearest-neighbor (NN) coupling Jex, local longitudinal field hi, and anisotropy ∆.
In the zero-field case, the model can be distinguished between the SU(2)-symmetric
case at |∆| = 1 and the anisotropic cases |∆| 6= 1 with reduced U(1) symmetry. In their
respective limits, the anisotropic XXZ model reduces to the (anti-) ferromagnetic Ising
model at |∆| � 1 and the XX model at |∆| = 0. At zero temperature, the isotropic
point corresponds to a quantum critical point separating these two phases.

In this thesis, we are, however, interested in the dynamical properties of “typical”
states. These generally correspond to states far from the ground state, and are therefore
not subject to the critical physics near the ground-state phase transition. Thus, the
well-studied theory of dynamical critical phenomena [172] is not applicable, rendering
the direct analysis of out-of-equilibrium physics more difficult. However, as the XXZ
chain is integrable, the GHD approach outlined in Sec. 5.2 is valid and will be the basis
of our discussions about spin transport.

6.1.1 Dynamical exponents

Identifying the magnetization Ŝz as a hydrodynamic charge, the dynamical scaling
behavior of spin transport phenomena in lattice systems is normally expected to fall
into one of two classes: In generic non-integrable systems, only the energy mode
is hydrodynamically relevant while (other) charge-carrying quasiparticle currents
dissipate, resulting in diffusive transport with dynamical exponent z = 2. In integrable
systems (which include non-interacting systems), the quasiparticles remain stable,
typically resulting in ballistic transport with z = 1. However, for net-uncharged
quasiparticles, e.g., due to screening by their environment, charge fluctuations need to
be taken into account and can give rise to diffusive or anomalous transport properties.

In the XXZ chain, the elementary quasiparticles correspond to free magnons, which
can form “s-strings”, which are stable bound states consisting of s magnons [222]. As
outlined in Sec. 5.2.2, these strings are treated as separate quasiparticle species within
GHD and can be parameterized by the string length s. The transport properties of
the model then depend on the bound-state structure, the two-body scattering phases
and the quasiparticle spectrum. These are generally analyzed separately for the three
regimes of anisotropy.

Easy-plane regime

In the easy-plane regime of the XXZ model, |∆| < 1, calculations have shown that
spin transport is generally ballistic and comprises an anisotropy-dependent fractal
Drude weight, reminiscent of the fractal bound-state structure [223–226]. Ballistic spin
transport is most easily seen in the XX model limit, |∆| � 1. In this case, the many-body
model can be mapped to a free-fermion system by a Jordan–Wigner transformation,
yielding ballistically propagating single-particle dynamics.
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Figure 6.1: Propagating quasiparticles. In integrable models quasiparticles retain
their momenta and propagate ballistically. In the illustrated case of the Ising model
(with few excitations), an elementary quasiparticle (gray shaded) corresponds to a spin
flip in a magnetization background. Upon collision with a larger quasiparticle (the
domain of four up-spins), the lighter quasiparticle flips its magnetization and both
quasiparticles are displaced.

Easy-axis regime

In the easy-axis regime, |∆| > 1, spin transport is, in contrast, expected to be diffusive.
As the treatment is similar to the isotropic case, relevant for this thesis, we will describe
this regime in more detail. In the following, we first outline an intuitive picture [214]
for the quasiparticle and hydrodynamic description near the Ising limit, |∆| � 1,
before moving to more general finite anisotropies.

In the Ising limit, the eigenstates are strings of s commonly polarized spins, which
are related to the quasiparticles of species s and have magnetization s. Since the number
of DWs is conserved due to energy conservation, these quasiparticles remain stable.
Considering transversal coupling as a perturbation, elementary quasiparticles (i.e.,
single flipped spins) can propagate ballistically with a velocity given by the transversal
coupling energy. “Heavier” s-strings can also move ballistically but only in a higher-
order process scaling with 1/∆s, leading to a hierarchy of quasiparticle velocities which
are exponentially suppressed with string length. In the presence of many quasiparticles,
it follows that lighter s-strings move in a parametrically static spin background formed
by heavier strings. However, while the bare quasiparticle carries a magnetization
of s, its magnetization flips sign upon crossing a DW, as illustrated in Fig. 6.1. This
means that the average magnetization of this quasiparticle becomes proportional to
the net magnetization of the whole system, h. At h → 0 the dressed magnetization
thus vanishes, explaining the lack of ballistic transport in net unmagnetized systems
despite integrability.

This intuitive picture can be generalized to finite anisotropies by thermodynamic
Bethe ansatz calculations [227, 228]. In the high-temperature limit, β → 0, these
quantities have closed-form expressions independent of the rapidities [228]. Then,
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GHD predicts a Drude weight which evaluates to D ∝ h2 [214], which—in accordance
with the intuitive picture—shows that in systems with vanishing net magnetization,
h→ 0, ballistic transport is suppressed because the dressed quasiparticle magnetiza-
tion vanishes. Therefore, spin transport is dominated by quasiparticle magnetization
fluctuations, giving rise to a spin diffusion constant which scales as D ∝ 1/

√
∆− 1 [228].

Evidently, the diffusion constant diverges with vanishing anisotropy, ∆→ 1, demand-
ing special attention at the isotropic point.

Isotropic point

The isotropic Heisenberg point, |∆| = 1, can be thought of as a dynamical critical point,
separating the ballistic easy-plane regime from the diffusive easy-axis regime in an
unmagnetized system, h = 0. The isotropic regime shares many features with the
easy-axis regime and comprises a Drude weight that vanishes with D ∝ h2| log h|. Spin
transport is thus also dominated by fluctuations, but the diverging diffusion constant
suggests anomalous superdiffusion instead of regular diffusion.

The dynamical exponent can be obtained within the kinetic picture of GHD follow-
ing arguments devised in Ref. [214]: A bare quasiparticle retains its magnetization ms
as long as it does not collide with larger strings. This time scale is given by τs ∼ `s/vs,
where vs is the quasiparticle velocity and `s ∼ 1/ ∑s′>s ρs′ is the average spacing be-
tween larger strings. An initial spin current, js ∼ msvs, then decays as e−t/τs . Hence, the
total current correlation function is given by summing all quasiparticle contributions,∫

dx〈j(x, t)j(0, 0)〉c ∼∑
s

j2s ρse−t/τs ∼ D
t

, (6.2)

which yields the spin diffusion constant, D, through the Kubo formula.
In the XXX model, the quasiparticle magnetization is given by ms ∼ s, its density

by ρs ∼ 1/s3 and its velocity by vs ∼ 1/s. Inserting these scaling relations into Eq. (6.2)
gives rise to a diffusion constant of D ∼ t1/3, which implies a superdiffusive dynamical
exponent of z = 3/2. This stands in contrast to the easy-axis regime, where the
quasiparticle velocity scales as vs ∼ e−s, yielding a diffusion constant that is constant
in time. Note that GHD calculations at the isotropic point are not straightforward,
since the quasiparticle velocity decays only polynomially with s and the hydrodynamic
assumption of macroscopically small fluid cells, s� L, is technically not fulfilled [214].

6.1.2 Observing dynamical scaling
Quantum spin chains are experimentally realized in a multitude of platforms, ranging
from solid-state bulk and surface systems to synthetic systems comprising ions or cold
atoms. While solid-state samples feature large system sizes suitable for probing scaling
behavior, direct observables of spin transport have generally proven challenging
to obtain [216]. In contrast, quantum simulators provide microscopic access and



6.1 Hydrodynamics of the Heisenberg model 71

near-ideal model implementations but contain only relatively few lattice sites. This
limitation partially motivates the extension of the system sizes realized in the context
of this thesis. Their proximity to theoretical models allows these systems to explore
numerically studied transport quantities using the schemes outlined in Sec. 5.2.4:

• For instance, an ion trap experiment observed the dynamical scaling functions
in a long-range XX model [229] employing a local disturbance as initial state,
Eq. (5.15). In the work, the authors could show superdiffusive transport and de-
termine the functional forms of the dynamical structure factor (DSF) by rescaling
the dynamical spin profiles, and could establish a temperature dependence by
varying the background spin states.

• Ultracold atoms in optical lattices, realizing the XXZ model through superex-
change, Eq. (2.10), have relied on measuring the scaling of the decay rates of
sinusoidally modulated initial states with wavelength. In Ref. [60], the dynamical
exponent of the isotropic XXX model was extracted to be diffusive in 1D and
superdiffusive in 2D. Ref. [230] extended the 1D results to encompass varying
anisotropies, ∆, of the XXZ model, yielding ballistic or superdiffusive exponents
for ∆ < 1, diffusive ones for ∆ = 1, and subdiffusive ones for ∆ > 1. These mea-
surements contradict the linear-response predictions, suggesting that the pure
spin helix states employed may feature distinct far-from-equilibrium dynamics.
We will discuss these effects in more detail in Sec. 6.4.

• The protocol using the DW initial state has been employed to study spin transport
in a two-dimensional (2D) Fermi–Hubbard (FH) system [62], finding diffusive
transport in the far-from-equilibrium regime.

The first measurements probing the high-temperature regime of the XXX model,
for which numerics predicts KPZ superdiffusion, have been performed in the quantum
material KCuF3 [231]. This was accomplished through neutron scattering, which can
be considered to be related to the Fourier-mode approach and probes the wavelength-
dependent excitation spectrum of the high-temperature equilibrium state. Indeed,
the measurements demonstrated that the system featured a superdiffusive dynamical
exponent of z ∼ 3/2; while this dynamical exponent is consistent with the KPZ expo-
nent, it does not represent a sufficient condition for identifying the universality class,
which requires agreement with a full scaling function and statistics of the transport
fluctuations, and can be obtained from quantum simulators. For our high-temperature
experiments in the XXX chain, we decided to follow the DW approach as the signal-to-
noise ratio (SNR) is more beneficial compared to the local-excitation approach and our
spatial resolution gives immediate access to the functional form of the DSF, in contrast
to the Fourier-mode approach.
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6.2 Superdiffusive spin transport
Studying the anomalous space–time scaling of spin transport in the XXX chain requires
both a faithful realization of the model as well as large systems and long evolution
times to reach the hydrodynamic regime. Optical lattice experiments with 87Rb have
been demonstrated to accurately implement the isotropic NN interaction necessary
for the Heisenberg model (see Sec. 2.1.3), and experimental upgrades increased the
available system size to 1D chains of up to 50 spins (see Sec. 3.1.3). Furthermore, the
negligible dependence of the Heisenberg parameters on spin-independent potential
inhomogeneities and access to precise calibrations of spin-dependent potentials make
our setup ideal to study spin transport.

To achieve minimal spin-dependent inhomogeneities, we reduced magnetic gradi-
ents along the 1D systems by aligning and laterally slightly displacing the magnetic
field minimum. Additionally, to minimize differential light shifts due to the 670 nm
digital micromirror device (DMD)–projected local potentials while maintaining spin
addressability with the 787 nm DMD light, we introduced a flippable quarter-wave
plate (QWP) to cancel residual circular polarization in the 670 nm light on demand.
As long evolution times of up to 1 s are required, we furthermore verified that no
significant atom loss occurred even when holding the atoms in the most sensitive
parameter regime near the Mott insulator (MI)–SF phase transition.

6.2.1 Experimental protocol
As argued in Sec. 6.1.2, we use the high-temperature DW protocol to study spin trans-
port. To prepare the required initial state, we employ a multi-step process illustrated
in Fig. 6.2: We start with a unity-filled, spin-polarized MI arranged in a bar shape to
maximize the system size along one dimension while maintaining a stable, high filling
fraction of 0.93. In the atomic limit, each atom evolves independently and is described
by a spin-1/2 state,

⊗
j|↓〉j.

Using our local addressing scheme, we flip the spin on one half of the system,
yielding [

⊗
j<0|↓〉j] ⊗ [

⊗
j>0|↑〉j]. This preparation step has a fidelity of 0.99 in the

bulk, and ∼ 0.8 on the sites adjacent to the DW. We then reduce the Ŝz modulation
by applying a resonant microwave (MW) pulse with pulse area θ. Since this state
remains a pure state, we then use the 787 nm DMD to apply a shot-to-shot varying,
spatially random spin-dependent potential, hi. This procedure locally dephases the
spins, ϕi = hit, and generates a high-entropy mixed state,

[⊗
j<0 eiϕj(− sin θ|↑〉j + cos θ|↓〉j)

]
⊗
[⊗

j>0 eiϕj(cos θ|↑〉j + sin θ|↓〉j)
]

.

We parameterize these states by a purity parameter, η, and a net magnetization, δ,
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a b c

Figure 6.2: Preparation of high-temperature spin domain walls. The bar-shaped
area shows our intrinsically 2D systems. During dynamics, one lattice axis is kept deep,
effectively realising an ensemble of independent 1D chains (black lines). Above the
atoms, we depict Bloch spheres representing the spin states of an atom on either side
of the domain wall (DW). (a) A full-contrast spin DW is created by DMD addressing,
where the green areas indicate the addressing light and the blue arrows the effect of
the microwave (MW) drive. (b) A globally resonant MW pulse is used to reduce the
Ŝz contrast. (c) To introduce entropy, a spatially random spin-dependent potential
is projected, which controllably dephases each atom. By varying the random pattern
from shot to shot, we realize a high-temperature mixed initial DW state.

which give rise to an average spin profile of

〈Ŝz
i (t = 0)〉 = 1

2

{
δ + η, (i < 0),
δ− η, (i > 0).

(6.3)

To probe the spin dynamics, we follow the experimental sequence shown in Fig. 6.3:
After ramping up the 670 nm DMD light to form the box-shaped on-site potential, we
ramp down Lattice 1 (L1) to the lattice depth suitable for dynamics—typically at 10E532

r
(see Tab. 6.1)—while keeping Lattice 2 (L2) at 40E532

r to obtain independent 1D systems.
Following the evolution time, we freeze the spin dynamics by quickly increasing the L1
depth. Both quench and freeze ramp durations are chosen to be fast with respect to the
superexchange time scale, which governs spin dynamics, while being more adiabatic
on the hopping time scale to minimize excitations in the charge sector. Finally, we
optically push out one spin species to measure the local occupation of a spin state.
Using a MW sweep prior to push-out allows us to select which spin species to detect.
We typically average over 1000 1D shots per data point.

Experimental observables

We separately measure the mean densities, 〈n̂σ
i 〉, of each spin species, σ, and formally

assign the mean spin value as 〈Ŝz
i 〉 = (〈n̂↑i 〉 − 〈n̂

↓
i 〉)/2. We furthermore introduce

the polarization transfer as a convenient integrated spin transport quantity, which is
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Figure 6.3: Experimental sequence for probing spin dynamics. 1D spin dynamics is
initiated in a box potential by lowering the Lattice 1 (L1) depth while keeping Lattice 2
deep. After freezing the spin distributions arising through evolution times of up to 1 s,
we perform single-site–resolved imaging of one spin species.

V1 J/h U/h Jex/h JQW
ex /h

10.0(2)E532
r 42.7(9)Hz 737(26)Hz 9.9(2)Hz 10.2(2)Hz

8.0(1)E532
r 66(1)Hz 686(24)Hz 27.5(6)Hz 27.0(2)Hz

Table 6.1: Calibrated Heisenberg model parameters. The other lattices were kept at
a depth of V2 = 40.0(6)E532

r and V3 = 15.0(3)E532
r , respectively. All lattice depths were

calibrated by lattice AM spectroscopy. The Bose–Hubbard parameters were obtained
through band structure calculations: J denotes the bond-charge–corrected hopping
energy, see Eq. (2.5), U the Hubbard interaction energy, and Jex the spin exchange
energy. JQW

ex is extracted from a fit to a single-spin quantum walk and is consistent
with the band structure calculations.

defined by
P(t) = ∑

i<0
〈Ŝz

i (t)− Ŝz
i (0)〉 −∑

i>0
〈Ŝz

i (t)− Ŝz
i (0)〉 (6.4)

and quantifies the number of spins which have crossed the DW by time t. As the spin
profiles are related to the DSF and thus scale with the dynamical exponent according to
Eq. (5.16) in the universal limit, the polarization transfer is expected to follow a power
law, P(t) ∝ t1/z, which provides us with a higher–SNR observable to directly extract
the dynamical exponent.

6.2.2 Spin transfer dynamics
In a first set of measurements, we study the equilibration dynamics of a net-unmagnetized
DW with purity η = 0.22(2). This purity serves as a compromise to provide a sufficient
SNR against fluctuations in preparation while being close to the linear-response regime,
for which superdiffusion has been predicted. As shown in Fig. 6.4, a power-law fit to
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Figure 6.4: Observation of superdiffusive spin transport. (a) The polarization trans-
fer across the domain wall shows a power-law growth with time, P ∝ t1/z. Fitting the
data (solid line) yields a dynamical exponent of z = 1.55(6), indicating superdiffu-
sive spin transport. The experimental data furthermore show quantitative agreement
with numerical simulations (dashed line). (b) Plotting the polarization transfer on
a double-logarithmic scale, we can observe that the data is clearly inconsistent with
both ballistic (blue) and diffusive (red) transport. (c) The agreement with theory
holds also on the level of the evolving spin profiles, here shown for the time steps
Jext/h̄ = 0, 10, 26 (bright to dark). (d) Rescaling the spatial axis by the KPZ dynamical
exponent furthermore collapses the data (shown for the time range Jext/h̄ = 5–35),
indicating superdiffusive universal scaling of the dynamical structure factor.

the growth of the polarization transfer yields a dynamical exponent of z = 1.54(7),
establishing anomalous superdiffusive transport, clearly distinct from both ballistic
and diffusive exponents.

Since our quantum gas microscope (QGM) also gives access to spatially resolved
data, we can furthermore extract the integrated DSF. After rescaling the spin profiles
by the expected dynamical exponent, j → j/t2/3, we indeed find a collapse of the
data, confirming superdiffusive hydrodynamics. Fitting the rescaling exponent to
the evolving spin profiles yields an exponent of z = 1.55(6), in agreement with the
polarization-transfer analysis.

The functional form of the spin profiles are in addition consistent with the integrated
KPZ scaling function. However, we note that this observation does not prove KPZ
universality as the data quality does not allow us to discern the functional form from
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an error function [64] (which would be expected for a Gaussian DSF). Finally, we can
compare the experimental data to numerical simulations based on tensor-network
techniques [232, 233], which show quantitative agreement on the level of the spin
profiles.

After probing the low-contrast DW dynamics in the high-temperature regime closer
to equilibrium, we also performed measurements starting from a pure-state DW. We
describe the results in detail in Sec. 6.4.2 and note here that the contrast-normalized
polarization transfer, P(t)/η, showed very similar superdiffusive behavior as the
low-contrast case.

6.3 Microscopic origins of superdiffusion
Following the discovery of superdiffusion in the XXX model, theoretical studies were
performed to identify more general requirements for a model to feature superdiffusive
transport. This has led to the notion of “superuniversality” [220, 221], wherein spin
superdiffusion generically occurs in integrable models with a non-abelian symmetry,
including the SU(2)-symmetric integrable XXX chain. In terms of GHD (see Sec. 6.1.1),
integrability ensures stable quasiparticles—which prevents regular diffusion—and the
SU(2) symmetry ensures a vanishing net magnetization of the quasiparticles—which
prevents a finite Drude weight—while retaining a diverging diffusion constant.

From an experimental point of view, this setup provides the opportunity to study
the validity of the numerically proposed requirements and the GHD prediction. To
probe potential changes in the transport behavior, our QGM allows us to control-
lably break both integrability—by realizing the non-integrable 2D XXX model—or the
SU(2) symmetry—by preparing net magnetized initial states, which correspond to the
equilibrium state under a symmetry-breaking external field.

6.3.1 Breaking integrability
As our experiment intrinsically works with 2D systems, whose coupling in either
dimension can be adjusted by the applied lattice depth, we can realize 2D XXX models
by introducing a finite inter-chain coupling, J⊥ex. To realize 2D systems, we added a
step in the experimental sequence after loading the MI, in which we remove all atoms
outside a well-defined rectangle using local addressing. This procedure prevents global
atom-number fluctuations to result in non-unity–filled states within the box potential,
outside of the Hilbert space of the spin model.

In analogy to the 1D measurements, performed at a lattice depth of 10E532
r along

the 1D chains for near-pure DWs of η ∼ 0.9, we track the evolution of the polarization
transfer for varying inter–to–intra-chain coupling ratios, J⊥ex/Jex. We then fit a power
law to the data up to a time of Jext/h̄ ∼ 50 and extract the dynamical exponent z. As
shown in Fig. 6.5, we find that spin transport indeed becomes diffusive when increasing
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Figure 6.5: Diffusive spin transport under integrability breaking. (a) The time
evolution of the normalized polarization transfer at inter-chain coupling ratios of
J⊥ex/Jex = 0, 0.40(1), 1.00(5) (green to red) follows power laws, P(t) ∝ t1/z. (b) The
fitted dynamical exponents, z, change from being superdiffusive in the 1D case, J⊥ex = 0,
to being diffusive in the 2D case, J⊥ex = Jex. The horizontal lines indicate the KPZ
superdiffusive (green) and diffusive (red) exponents.

the inter-chain coupling, with z = 2.08(4) in the fully 2D case. Interestingly, we observe
superdiffusive exponents for J⊥ex/Jex . 0.1 despite integrability being strictly broken,
which we attribute to the limited experimentally accessible time scales. This behavior is
in fact consistent with theoretical studies suggesting that superdiffusion is particularly
robust to perturbations preserving the non-abelian symmetry [234].

Finally, we remark that the 2D systems do not fully conform to the XXX model
anymore: First, given a constant lattice depth, the MI–superfluid (SF) phase transition
grows closer with increasing inter-chain coupling. This leads to a reduction in the
formal DW contrast from η = 0.93(2) in 1D down to η = 0.83(2) in the isotropic 2D
case. Second, thermal holes in the 2D t–J model can re-order the spins on the hopping
time scale, which is parametrically faster than the spin-exchange time scale, whereas in
1D both processes occur on the Jex time scale. Despite these caveats, the measurements
of the conserved spin degree of freedom (DOF) nevertheless serve as a suitable probe
of integrability breaking, demonstrating diffusive behavior.

6.3.2 Breaking SU(2) symmetry
The second predicted prerequisite for superdiffusion in the XXX model is the presence
of the SU(2) symmetry. We break the symmetry by initializing the system to a net-
magnetized initial DW, δ > 0.

To prepare half of the system with arbitrary mean magnetization, we apply a (not
fully inverting) resonant MW pulse (instead of the adiabatic sweep used in Fig. 6.2a)
with pulse area θ = Ω̃t to a system, onto which a DW pattern is projected with the DMD.
This procedure ideally results in the state [

⊗
j<0(sin θ|↑〉j + cos θ|↓〉j)] ⊗ [

⊗
j>0|↓〉].

However, the generalized Rabi frequency depends on the local detuning, Ω̃2
i ∝ δh2

i ,
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Figure 6.6: Ballistic spin transport under SU(2)-symmetry breaking. Time evolution
of the spin profiles for an unmagnetized domain wall (DW) (left, δ = 0, η = 0.22(2))
and a net-magnetized DW (right, δ = 0.80(1), η = 0.12(1)). The experimental data (top)
agrees well with the numerical data (bottom), displaying a stark contrast depending
on net magnetization. While the unmagnetized case shows superdiffusive behavior,
the net-magnetized case exhibits ballistic transport, which can be seen by the overall
increased spin transfer. Additionally, the net-magnetized case also transfers spins with
the speed of the spin “light cone”. After reaching the edge of the system at Jext/h̄ ≈ 25,
the magnons are reflected.

thus translating speckles on the DMD light, δhi, directly onto the spin state. To
minimize such effects, we decided to perform this preparation step on only half
the system, keeping the other half spin-polarized, which gives access to DWs with
η ≈ (1− δ). Using a subsequent dephasing DMD pulse (see Fig. 6.2c), we again obtain
a high-entropy state.

The equilibration measurements were performed analogously to the 1D unmagne-
tized case and the spin dynamics are shown in Fig. 6.6. In the spatially resolved plots
for the net-magnetized case, δ = 0.80(1), η = 0.12(1), a striking feature is the presence
of spin transport with the speed of the spin “light cone”, c = h̄/Jex. This contribution
to spin transport may be attributed to single magnons, showing that even the fastest
quasiparticles indeed retain a net magnetization [235]. Furthermore, the bulk of the
spins—mediated by slower-moving, heavier quasiparticles—displays transport that is
substantially faster than in the unmagnetized case. To quantify the transport dynamics,
we fit the polarization transfer to a power law with offset, P(t) ∼ t1/z + const. (with
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Figure 6.7: Ballistic polarization transfer rate. (a) We measure the normalized
polarization transfer for increasing net magnetization δ (green to blue) and fit a linear
function to the ballistic regime at Jext/h̄ > 16. (b) Using the fitted slope as the
normalized polarization-transfer rate, d(P/η)/d(Jext/h̄), we observe an increase with
δ, consistent with GHD.

the offset accounting for finite-time crossover behavior, which will be discussed in
Sec. 6.3.3). The fit indeed reveals a departure from superdiffusion, yielding a dynamical
exponent of z = 0.9(3) and thus ballistic spin transport.

GHD does not only predict the dynamical exponent but also the amount of trans-
ported spins. In particular, following Sec. 5.2.2 for the XXX chain at small η, δ, we
would expect the polarization transfer to grow as P(t) ∝ δt [117]. While the proportion-
ality with net magnetization is not necessarily expected to hold for our experimentally
accessible DW parameters, the increasing magnetization of the quasiparticles with δ
suggests that the polarization transfer rate also increases [228]. In Fig. 6.7, we therefore
measure the polarization transfer as a function of δ and calculate the transfer rate,
dP/dt, from a linear fit of the polarization transfer for times Jext/h̄ > 16. Extracting
the transport rate from the slope, we indeed find a growth with net magnetization.

6.3.3 Crossover dynamics
The assumption that the polarization transfer follows a simple power law is based
on a late-time hydrodynamic approximation, where only a single scaling form is rele-
vant. Apart from the local microscopic dynamics, which typically only gives rise to
oscillations around a mean charge density, we can account for hydrodynamic finite-
time effects by considering sub-leading terms. For instance, in the net-magnetized
case, δ > 0, we expect both ballistic and superdiffusive contributions to the polariza-
tion transfer, P(t) = at1 + bt2/3 + · · · . While the asymptotic power law is valid, a
more accurate fit generally requires accounting for the additional transport through
sub-leading terms. Since these terms are parametrically smaller, they can be better
approximated by a constant after the crossover time scale tc, such that the polarization
transfer would be described by P(t) ≈ at1 + bt2/3

c .
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Figure 6.8: Crossover analysis of dynamical exponents. Data analysis of the polariza-
tion transfer for the 1D unmagnetized case with domain wall contrasts (a) η = 0.22(2)
and (b) η = 0.95(2), (c) the 2D unmagnetized case with η = 0.83(2) and (d) the 1D mag-
netized case with δ = 0.80(1), η = 0.12(1). We use the fit function P(t) = At1/z + C
under the physical constraint C ≥ 0 and analyze the data for the time range starting
at tmin. By varying the fitted time window, we can account for initial-time crossover
effects, see main text for details. The dotted lines in the left columns indicate the
optimum fit function for a given fitted time window (light to dark for increasing tmin).
The dashed lines in the center and right columns of (d) serve as a guide to the eye. The
error bars denote the standard deviation (SD) of the fit.
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As this discussion is generally valid for arbitrary leading-order exponents, we
use the fit function P(t > tmin) = At1/z + C to model-independently analyze our
experimental data in Fig. 6.8. When varying the fitted time range, tmin, we expect
convergent fit parameters after passing a crossover time scale, tmin & tc.

For neither of the unmagnetized DWs, we can observe a crossover behavior, which
is consistent with GHD which predicts the (super-) diffusive contribution to be domi-
nant. Note that the η = 0.22 1D data shows time-range–dependent variations of the
optimum fit parameters; however, these occur due to the visually appreciable statistical
fluctuations, and are not present at all for the η = 0.95 case which has a much lower
SNR.

The only convergent change of the fitted exponent can be observed for the net-
magnetized case. This finding is consistent with GHD reasoning at low net magne-
tization, see Sec. 6.1.1, where the magnetization of undressed quasiparticles requires
a certain time scale to average to zero, which represents the time scale from which
on ballistic transport becomes perceivable. Note that, for the large net magnetization
of δ = 0.8 studied here, XXX model simulations predict a shorter crossover time;
however, the presence of thermal holes and further Bose–Hubbard (BH) effects could
alter polarization-transfer and time scales [117].

6.4 Pure initial states far from equilibrium
In Sec. 6.2 we have discussed the observation of clearly superdiffusive spin transport
in the XXX chain using the DW protocol. This result leads to an apparent contradiction
with prior measurements based on the decay of Fourier modes [60, 96, 230], which
obtained regular diffusive behavior. Notably, the experimental data of Ref. [230]
disagreed with the expected dynamical exponents regimes for all probed Heisenberg
anisotropies. However, recalling the deliberation in Sec. 6.1.1, these GHD predictions
were based on the linear-response dynamics of high-entropy mixed states, whereas
the aforementioned measurements started in pure states far from equilibrium. In this
section we will discuss the role of purity in the evolution of such spin helix states as
well as pure DW states.

6.4.1 Spin helices
In our experiment, spin helix states can be prepared using the protocol shown in
Fig. 6.9 and introduced in Ref. [60]: Starting with a spin-polarized MI of 32 spins in the
atomic limit,

⊗
j|↓〉j, we apply a magnetic-field gradient to generate a spin-dependent

potential gradient, δh = h · 6.85(3)Hz, along the 1D chains. After applying a MW π/2
pulse, the spins start to precess in the Ŝx,y plane; the magnetic gradient causes adjacent
spins to pick up a linear differential phase of k = δhT/h̄ after a waiting time of T.
We then apply another π/2 pulse, thus realizing the state

⊗
j(cos kj|↑〉j + sin kj|↓〉j).
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a

b

Figure 6.9: Preparation of spin-helix states. The helix preparation steps are shown
in analogy to Fig. 6.2. (a) Starting in a spin-polarized state, we employ a Ramsey
microwave pulse sequence under the presence of a magnetic-field gradient along the
1D chains to create full-contrast, pure spin-helix states. (b) By subsequently using the
DMD to apply a shot-to-shot random spin-dependent potential, we can dephase the
helix, yielding a mixed state with sinusoidal Ŝz modulation.

Note that we quickly switch off the gradient before the second MW pulse to prevent
uncontrolled further spin precession. We then probe spin dynamics in the same way
as for the DW measurements by ramping down L1 to a depth of 10E532

r and freezing
the spins after the desired evolution time.

In analogy to Sec. 6.2.1, we can furthermore reduce the modulation contrast to
introduce entropy to the initial state by applying a global MW pulse and dephasing the
Ŝx,y components of the spins through a spatially random DMD pulse before ramping
down the lattice. Thus, we can study the evolution of an initial Ŝz modulation of

2〈Ŝz
j (t = 0)〉 = η cos kj. (6.5)

Note that the phase of the modulation is random from shot to shot as it depends on the
absolute value of the global magnetic field (in contrast, the gradient of the magnetic
field remains stable, resulting in a faithful preparation of the spin helix). To account
for the random phase, we compute the equal-time connected correlator of the spin,
〈Ŝz

i (t)Ŝ
z
i+j(t)〉ci ∝ 〈Ŝz

j (t)〉ϕ=const. ∼ C(k; t) cos kj. Fitting a sinusoidal function to the

correlator allows us to extract the contrast over time, C(k; t) ∼ e−γ(k)t, which we in
turn fit with an exponential decay (over a k-dependent time range corresponding to a
dynamic range of one order of magnitude). By varying the wave number of the initial
state, k, we finally obtain the dependence γ(k) ∝ kz required to extract the dynamical
exponent, z, following Eq. (5.17).

Spin helix purity

To probe the dependence of the dynamical exponents on the purity of the initial state,
we perform measurements with and without dephasing. We furthermore compare
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Figure 6.10: Decay-rate scaling of spin helices. (a, c) From the decay rate of the
spin-helix contrast, h̄γ/Jex, as a function of its wave number, we extract the dynamical
exponent z by fitting the expected power-law growth (lines), γ ∝ kz. We compare
dephased (green) with non-dephased (gray) helices at initial contrasts of η ∼ 0.86 (left)
and 0.35 (right). (b, d) The data plotted double-logarithmically show a significant
difference between the dephased and pure cases. As a reference, the lines indicate
power-law growth with a superdiffusive exponent of z = 3/2 (green) and diffusive
exponent of z = 2 (gray).

whether a difference between full-contrast helices (with a formally fitted η ∼ 0.86)
and reduced-contrast ones (η ∼ 0.35) exists, i.e., considering how far the initial state
is from equilibrium. In Fig. 6.10, we find superdiffusive exponents in both dephased
cases, z = 1.5(1) and 1.4(1), for the pure- and low-contrast helices, respectively. On the
contrary, both non-dephased cases—which are expected to be the same state in an XXX
model—give fitted exponents of z = 1.8(1) and 2.1(1), respectively. This difference
suggests that the evolution of pure states in the XXX chain can be particularly distinct
from “generic” states, whose superdiffusive spin transport relies on the presence of
thermal fluctuations, in agreement with GHD.

Ref. [236] furthermore applied GHD to study the decay of full-contrast spin helices,
finding diffusive exponents in the easy-axis regime, |∆| > 1, and ballistic ones in the
easy-plane regime, |∆| < 1, albeit at inaccessibly late times and large helix wavelengths.
At the isotropic point, realized in our experiment, GHD cannot be directly applied;
however, a non-rigorous reasoning suggests an explanation for the observed exponent
of z = 2 instead of the high-temperature exponent, z = 3/2: While quasiparticles of all
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Figure 6.11: Polarization transfer for varying purity and lattice depth. (a, c) Ex-
perimental data (green) measured at a lattice depth of 10E532

r (left) and 8E532
r (right)

with initial domain wall purities of η ∼ 0.2 (dark) and η ∼ 0.9 (light). Numerical
simulations of the XXX model are shown in grey for η = 0.1, 0.4, 0.7, 1.0 (dark to light),
suggesting a stronger dependence on η than the measured. (b, d) Numerical simula-
tions of the Bose–Hubbard model (green) for a filling of 0.93 at the same purities as the
XXX model simulations show a reduced sensitivity on η, qualitatively indicating that
holes affect the observed polarization transfer dynamics. Note the different plotted
time ranges between simulated and experimental data (blue line).

string sizes are populated for thermal states, the quasiparticle content for full-contrast
spin helices of wavelength λ is dominated by strings of size s = λ. Following the
discussion around Eq. (6.2), this then leads to diffusive spin transport.

6.4.2 Domain walls
A similar difference in spin transport behavior could be expected for the pure DW,
as well. In fact, it has been shown that full-contrast DWs cannot thermalize at all in
the easy-axis regime [237, 238] and give rise to diffusive transport with logarithmic
corrections at the isotropic point [63, 239].

Full-contrast DWs are experimentally accessible by simply not performing the
contrast-reducing MW and locally spin-dephasing DMD pulses during the initial-state
preparation described in Sec. 6.2.1. In Fig. 6.11, we compare the polarization-transfer
dynamics of a DW with η ∼ 0.2 to a DW with η ∼ 0.9. Interestingly, the contrast-
normalized polarization transfer, P/η, does not show a strong difference and the fitted
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dynamical exponent retains agreement with the KPZ exponent of z ∼ 3/2 within
experimental uncertainties. Numerical simulations of the XXX model confirm that the
apparent dynamical exponent does not significantly change; at full contrast, η = 1,
regular diffusion becomes noticeable only after a crossover duration of hundreds of ex-
change times, substantially exceeding experimentally accessible time scales. However,
the simulations predict that the absolute growth of P/η should decrease with increas-
ing purity. While we observe this trend, there remains a quantitative discrepancy.

One possible cause are imperfections in implementing the XXX model: As the
physically underlying model is a two-species BH model, we perform simulations of
the full BH model, accounting for our finite filling of ∼ 0.93. The results qualitatively
confirm that reduced filling reduces the sensitivity of P/η. To verify consistency, we
additionally perform this measurement at a lattice depth of 8E532

r instead of 10E532
r ,

which yields similar fitted exponents. In the 8E532
r case, P/η is also reduced for higher

purity (consistent with numerics), but displays a stronger dependence than in the
10E532

r case. This could hint at the presence of system inhomogeneities, which affect
the dynamics in the 10E532

r case more since the hopping and spin-exchange energies
are smaller on an absolute scale.

Finite domain-wall purity

The measurements furthermore raise the question about the fate of finite-purity DWs,
η < 1. Classical simulations of the Landau–Lifshitz spin chain (modified to obey
integrability) suggest DWs with any finite η > 0 to eventually become diffusive [240].
This would be consistent with the expectation that the pure DW state clearly comprises
a broken non-abelian symmetry, which was identified as prerequisite for superdiffu-
sion [220, 221, 241]. For quantum spin chains, however, it remains an open question
as no analytic results are known, and both numerics and experiments are limited in
evolution time [63]. In both quantum and classical cases, numerical data suggest that
up to a crossover timescale—governed by the DW purity—the effective dynamical
exponent appears to be consistent with superdiffusion. One explanation entails that
in the space–time regime where the dynamics occur, local equilibration temporarily
effectively realizes the required SU(2) symmetry. Regardless of the fundamental origin,
this suggests that—at sufficiently early hydrodynamic time scales—it could be possible
to observe features of KPZ universality even at η ∼ 1, as will be discussed in detail in
Chapter 7.

6.5 Conclusion and outlook
In this chapter we have studied spin transport in the 1D spin–1/2 XXX model. By
measuring the equilibration dynamics of a high-temperature DW and utilizing the
spatial resolution of our QGM, we have measured the spin DSF and found it to be con-
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sistent with the superdiffusive KPZ scaling function. In order to test the microscopic
understanding of spin transport based on GHD, we demonstrated that switching
to a 2D XXX model restores regular diffusion, while preparing net magnetized 1D
states results in ballistic transport. This corroborates theoretical studies suggesting
integrability and non-abelian symmetry to be prerequisites for superdiffusion. With
measurements of the evolution of dephased spin helices, we have furthermore demon-
strated that, while pure initial states can show distinct behavior, thermal fluctuations
recover superdiffusion.

Having probed spin transport at the isotropic point, an extension of the study
could involve spin dynamics under general anisotropies, which could be implemented
through laser-assisted hopping processes [242]. In particular, crossovers of the trans-
port exponents (possibly for varying initial states) could be studied, which are expected
to occur near the isotropic point, where (super-) diffusive fluctuations compete with bal-
listic modes. The spin transport regimes could be furthermore contrasted with energy
transport, for which GHD predicts ballistic transport regardless of anisotropy [214],
and could be measured through the time evolution of energy DWs. Finally, the effects
of integrability breaking on spin transport could be studied in more detail: Notably,
integrability-breaking but symmetry-preserving perturbations are predicted to only
weakly affect superdiffusive transport, whereas symmetry-breaking ones quickly yield
diffusion [234]. In a 2D arrangement of 1D XXX chains, such symmetry-breaking terms
could comprise inter-chain Ising interactions implemented through spin-independent
orthogonal potential gradients [243].
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Chapter 7

Polarization transfer fluctuations
In Chapter 6, we have demonstrated that spin transport in the net-unmagnetized
isotropic Heisenberg (XXX) chain is superdiffusive. However, the exponent of the
space–time scaling behavior alone is generally insufficient to identify the universality
class of the dynamics: The observed dynamical exponent of z = 3/2 could a priori not
only result from nonlinear Kardar–Parisi–Zhang (KPZ) dynamics but also from linear
underlying transport equations, such as rescaled diffusion or Lévy flights [63, 229].
The original numerical evidence, suggesting spin transport in the XXX chain to fall into
the KPZ universality class, was based on comparing the dynamical structure factor
(DSF) with the KPZ scaling function [64]. While our measurements of the DSF were
consistent with this function, the finite experimental signal-to-noise ratio (SNR) did
not allow us to exclude other transport mechanisms.

An alternative approach to classifying transport makes use of universal fluctu-
ations of the transported quantity and is also applicable to quantum models. This
concept arises naturally in two-terminal measurements, which are not only common
in solid-state systems but have also found use in ultracold atom experiments [244].
In this context, quantum gas microscopes (QGMs) are uniquely suited to measure
the spatio-temporally resolved full counting statistics (FCS), as they provide access to
the transported quantities on the level of single sites and single charges. Microscopic
control over initial states further enables the preparation of suitable non-equilibrium
settings. In this chapter, we introduce our experimental approach to measuring the
FCS of spin transport in Sec. 7.1 and show resulting signatures of KPZ–like dynamics
in Sec. 7.2.

7.1 Counting statistics in spin transport
The core quantity for studying the spin transport fluctuations is the polarization
transfer introduced in Eq. (6.4), P(t) = P0(t) − P0(0), with P0(t) = ∑i<0〈Ŝz

i (t)〉 −
∑i>0〈Ŝz

i (t)〉. In experiments working on the basis of individual model realizations,
like QGMs, the polarization transfer can be analyzed for each snapshot, yielding a
distribution, Pr[P̂(t) = P], characterizing the transport fluctuations. For a limited
amount of data, these distributions can be evaluated through their statistical moments
and compared to known distributions distinctive of the respective universality class.
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7.1.1 Measurement protocol

As the polarization transfer measures the amount of magnetization which has crossed
a given interface, it generally depends on the Ŝz distribution at two points in time.
However, as we are working with a quantum system, this quantity cannot be directly
evaluated since initial states may contain quantum fluctuations in Sz. A generally
applicable measurement of P̂(t) would thus require an ancilla-based protocol [245,
246]. This requirement can be avoided in our setup, when limiting initial states to
deterministically prepared Sz product states.

Specifically, we choose to measure the fluctuation dynamics starting from pure
domain walls (DWs), which show superdiffusive behavior within experimentally
accessible times, as described in Sec. 6.2.2. As we can simultaneously only detect
the occupation of a single spin species in a snapshot, and the Mott insulator (MI)
is reasonably close to unity-filled, we can approximate the spin as Ŝz

i ≈ n̂i − 1/2.
Thus, the polarization transfer becomes P̂(t) ≈ 2N̂T(t) ≡ 2 ∑i>0 n̂i(t) and equates to
counting the number of atoms on the initially empty side (i > 0), N̂T(0) = 0.

While the choice of a pure DW may be conceptually not ideal for probing the
theoretically predicted near-equilibrium KPZ physics, it substantially alleviates the
experimental challenge of reaching sufficiently low noise levels suitable for measuring
FCS. This is achieved primarily by the fact that counting atoms above virtually no back-
ground yields the highest possible SNR. Furthermore, addressing large-scale patterns
like the DW gives much higher preparation fidelities compared to, e.g., randomized
local spin flips, which would be necessary to prepare high-entropy states. Finally, the
non-equilibrium setting breaks the chiral symmetry present in equilibrium. Potential
deviations from regular Gaussian fluctuations could thus manifest as asymmetric dis-
tributions, and may be observable already in the third instead of the fourth statistical
moment. Specifically, we can then search for a non-vanishing skewness, µ3[X̂]/µ3/2

2 [X̂],
where µk[X̂] denotes the k-th central moment of the random variable X̂.

Correcting for initial states

On experimentally accessible time scales, the number of transferred spins is relatively
small, 〈N̂T〉 < 5. Higher order statistics are thus very sensitive to additional atoms on
the initially empty side due to imperfections in the initial-state preparation, 〈N̂T(0)〉 >
0, which are typically introduced during addressing. The proper transport distribution,
∆N̂T(t) = N̂T(t)− N̂T(0), would thus require us to account for the initial state. If we
assume the addressing defects to not significantly affect the rest of the spin dynamics
(e.g. due to being far from the DW), N̂T(t) and N̂T(0) can be considered as independent
random variables, for which cumulants are additive. Specifically, the k-th central
moment of the corrected distribution can be written as µk≤3[∆N̂T(t)] = µk[N̂T(t)]−
µk[N̂T(0)].
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7.1.2 Central moments in linear transport
As noted in the introduction to this chapter, transport schemes with dynamical
exponent z = 3/2 other than the KPZ universality class often follow linear trans-
port equations, in contrast to the nonlinear KPZ equation (5.1). In linear transport,
each spin moves according to the DSF as propagator, which scales as ϕ(∆x, t) ∼
(1/t1/z) f (∆x/t1/z). The polarization transfer of this single spin is therefore a Bernoulli
random variable, whose probability for crossing an interface at a distance x0 from its
starting point is thus given by Φ(x0, t) =

∫ x0
−∞ ϕ(x, t) dx ∼ F(x0/t1/z); the single-spin

cumulants then scale as a polynomial, P[F(x0/t1/z)].
In the case of many spins, linearity causes the cumulants of the polarization transfer

to be additive. In a DW, all cumulants thus scale with
∫ 0
−∞ P[F(x0/t1/z)] dx0 ∝ t1/z,

such that the skewness scales as µ3/µ3/2
2 ∝ t−1/2z. Crucially, in linear models, the

skewness always vanishes at late times, while possibly staying finite in nonlinear
models.

7.2 KPZ fluctuations of the polarization transfer
The numerical simulations identifying spin transport in the XXX chain with the KPZ
universality class were based on equating the spin DSF to the correlation function of
the spatial derivative of the KPZ height field, h, see Eq. (5.3),

〈Ŝz(x, t)Ŝz(0, 0)〉c ∼
1

t1/z fKPZ

( x
t1/z

)
∼ 〈∂x ĥ(x, t)∂x ĥ(0, 0)〉. (7.1)

In order to probe universal statistics of the KPZ class, first a suitable quantity repre-
senting the KPZ height field has to be identified. Informed by the mapping of the
scaling function and canonical classical models in the KPZ class (see Sec. 5.1.3), the sim-
plest option consists of assigning Ŝz(x, t) ∼ ∂x ĥ(x, t). This conjecture thus motivates
studying the fluctuations of the polarization transfer,

ĥ(0, t)− 〈ĥ(0, t)〉 ∼
∫ 0

−∞
dx
(
Ŝz(x, t)− Ŝz(0, t)

)
∼ P̂(t), (7.2)

whose statistical distribution can be compared to the KPZ distributions described in
Sec. 5.1.2.

7.2.1 Asymmetric distributions in domain wall dynamics
We employ the experimental methods and parameters described in Sec. 6.2.1 to prepare
the pure DW as initial state and evolve the system at a lattice depth of 10E532

r . We
then analyze the polarization-transfer statistics according to Sec. 7.1.1. In addition
to measurements of the one-dimensional (1D) spin model, we compare the results
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Figure 7.1: Fluctuations of the polarization transfer. (a) Distributions of the polar-
ization transfer, Pr[P̂(t)], after evolution times of Jext/h̄ = 18.1 (left) and 45.2 (right) of
the XXX model in 1D (green) and 2D (red). (b) The mean of the polarization transfer
(circles) is confirmed to scale with the inverse dynamical exponent, 1/z1D = 2/3 and
1/z2D = 1/2 (solid lines). The standard deviation (SD) (triangles) follows a power
law with the growth exponent, β1D = 1/3 and β2D = 1/4 (dashed lines). (c) The
evolution of the skewness of the 2D data suggests a decay towards zero, implying a
Gaussian distribution associated with linear transport. In contrast, the skewness of
the 1D case remains finite, implying nonlinear transport. The value of the skewness
is furthermore consistent with the ones associated with the KPZ universality class
(gray lines), namely the Tracy–Widom GUE, Tracy–Widom GOE and the Baik–Rains
distribution (bottom to top).

to the two-dimensional (2D) case with an inter-chain coupling strength of J⊥ex/Jex =
0.25(1). This data serves as a reference of a non–KPZ model, for which we have
demonstrated diffusive behavior in Sec. 6.3.1 and for which the formal DW contrast
remains comparable, η1D = 0.91(2), η2D = 0.89(1).

In Fig. 7.1, we first show the mean of the polarization transfer, P(t) ∝ t1/z, verifying
the power law with dynamical exponents 1/z1D = 0.67(1) and 1/z2D = 0.60(2).
Furthermore, we can analyze the scaling behavior of the variance, µ2[P̂(t)] ∝ t2β,
which represents a direct measurement of the KPZ growth exponent β, as outlined
in Sec. 5.1.2. Power-law fits yield the exponents β1D = 0.31(1) and β2D = 0.24(1),
consistent with the expected β = 1/2z behavior.

Finally, we proceed to the analysis of the skewness, µ3[P̂(t)]/µ3/2
2 [P̂(t)]: In 2D we

find an overall small skewness, which is most consistent with a decay towards zero.
This behavior follows the expectation that fluctuations in linear diffusive processes
eventually become Gaussian. In contrast, the 1D case displays a substantially larger
skewness, which furthermore remains constant over time. This observation indicates
that the spin transport in 1D is governed by nonlinear transport processes and rules
out several non-KPZ processes including, e.g., Lévy flights.

The value of the observed skewness, 0.33(8), can be furthermore compared to
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the skewness of the KPZ distributions. Following the proposed spin–to–KPZ-height
mapping, a pure spin DW corresponds to a wedge of the height, h(x, 0) ∼ |x|, which
is associated with fluctuations following the Tracy–Widom (TW)–Gaussian unitary
ensemble (GUE) distribution with skewness 0.224 [186]. The data appear to be more
consistent with either 0.294 for the TW–Gaussian orthogonal ensemble (GOE) distribu-
tion associated with a flat initial condition, or 0.359 for the Baik–Rains (BR) distribution
given for a stationary initial condition. However, we note that, firstly, the uncertainties
of the values extracted from the measurements are high, and, secondly, the spin–height
mapping may only be effective for our initial state at hydrodynamically early times.

7.2.2 Distributions near equilibrium

Finally, we note that the mapping Ŝz ↔ ∂x ĥ can fundamentally not be exact [240,
247, 248]: The height derivative, ∂x ĥ, leads to chiral dynamics, as can be seen by the
signed nonlinear term in the Burgers equation (5.6), which is in stark contrast to the
symmetric dynamics of the XXX model. Hence, this mapping can be considered to be
an effective mapping, valid due to the initial large-contrast DW setting and up to a
potential crossover time.

In a subsequent work, Ref. [249] employed a chain of superconducting qubits to
perform a similar experiment for varying DW contrasts and with a higher cycle rate,
allowing them to analyze the data up to the fourth statistical moment. To account for a
crossover, they rescale time by ηt2/3, finding—within their experimentally accessible
times of up to Jext/h̄ = 25—a non-skewed distribution near equilibrium and a skewed
distribution for large η, which both appear inconsistent with the known KPZ distri-
butions. Even though numerical simulations of the classical Landau–Lifshitz model
seem to capture the phenomenology at equilibrium [250], a full understanding of spin
transport in the XXX chain remains elusive.

7.3 Conclusion and outlook
In this chapter, we have shown FCS measurements of the polarization transfer in the
XXX chain starting from a full-contrast DW as initial state. The resulting distributions
exhibited a persistent asymmetry, indicating the nonlinearity of the underlying spin
transport process. Quantified by the skewness of the distributions, the asymmetry was
furthermore found to be consistent with, though not evident of, distributions arising
in the KPZ universality class.

While alternative quantum simulation platforms can generate higher statistics, cold-
atoms systems benefit from comparatively substantially longer accessible evolution
times, with measurements of the FCS challenging classical simulations. The time range
probed in the present measurements were largely limited by system size, which could
be straightforwardly enlarged by elliptically confining lattice beams. Improvements
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in the MI filling [121] and of local addressing fidelities would also constitute a major
step towards the fully deterministic preparation of arbitrary initial states [229, 249].
These could be used to access the near-equilibrium regime or to study the behavior of
particular initial states. A related system, in which theoretical work has predicted KPZ
universality, is the integrable 1D Fermi–Hubbard (FH) model, for which both spin and
charge DSFs were associated with the KPZ scaling function [251]. Thus, analyzing the
FCS in such a system and contrasting to the non-integrable 1D Bose–Hubbard (BH)
model could reveal rich physics.

While the relation between KPZ statistics and transport phenomena in quantum
models has only recently started to be uncovered, their relation to interface growth
problems is more immediate, which offers possibilities to study KPZ statistics in a
stricter sense—also in quantum models. As such, in a system of free fermions on a 1D
lattice initialized in a pure DW, the position of the wave front has been predicted to
follow TW–GUE statistics [252] and could be realized in our setup in the regime of 1D
hard-core bosons.
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Part III

Cooperative light scattering in atomic
arrays
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Chapter 8

Atomic light–matter interfaces
A central aim in quantum optics encompasses the creation of efficient and versatile
atom–light interfaces, which represent a vital ingredient for quantum information
processing. Atomic interfaces constitute a particularly promising platform [253, 254]
as they unify the controllability of atomic states with the coherence of propagating
photons. The challenge to realizing such interfaces typically lies in achieving strong
atom–photon coupling in spite of the small scattering cross section in free space.
Several approaches have been devised to overcome this problem, ranging from tightly
focussing a photon onto a single atom [255, 256], which optimizes mode matching,
to placing single atoms in optical cavities [257], where a photon passes a single atom
multiple times, and utilizing large atomic ensembles [72], where a photon passes
multiple different atoms.

Recently, a novel platform based on subwavelength-structured ensembles of atoms
has been proposed [258–261], which employs cooperative scattering to achieve strong
coupling to paraxial beams. In Sec. 8.1, we first describe the role of photon-mediated
dipole–dipole interactions in atomic ensembles, and then discuss the consequences of
array order in Sec. 8.2.

8.1 Cooperativity in atom–light interaction
The interaction between light and ensembles of atoms is often well-described by treat-
ing the light scattering process independently for each atom. At high densities, where
typical interatomic distances reach the wavelength scale, this approximation breaks
down since the scattering process occurs coherently across multiple atoms, requiring
the ensemble to be treated as a single composite quantum object. Such collective
systems can exhibit dramatically altered radiative properties, leading to a variety of
phenomena like Dicke superradiance (subradiance) [262], in which spontaneous decay
rates are increased (decreased) compared to the single-particle case, as illustrated in
Fig. 8.1.

8.1.1 Experimental signatures
Effects of cooperative light–matter interaction have been observed in a wide range of
systems—including neutral atoms, ions, and solid-state systems [263, 264]—in both
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Figure 8.1: Single-photon super- and subradiance. Here, we show the emitted elec-
tromagnetic (EM) field, E, of ensembles of linearly polarized dipoles. (a, b) In the
small-sample (Dicke) limit, where the inter-particle distances, ∆x, are much smaller
than the wavelength, λ, the spatial mode of the emitted EM field is identical to the
single-dipole radiation lobe. However, given a total excited-state population in the
system, the emission rate varies depending on the dipole state. If the dipoles oscillate
in phase (a), their emission fields constructively interfere. Then, the collective dipole
moment and thus the radiated power is larger, leading to a higher decay rate, i.e., su-
perradiance. If the dipoles oscillate out of phase (b), their emission fields destructively
interfere, leading to subradiance. (c, d) In extended samples, exemplarily shown for
the case of ∆x = λ/2, the in-phase condition changes as the phase shift associated with
the propagation between the dipoles needs to be accounted for. Thus, we again obtain
subradiance (c) or superradiance (d) depending on the dipole state, which additionally
influences the spatial mode of the emitted field.

the optical and the microwave (MW) domain, and in a variety of electromagnetic (EM)
environments. Typical experimental protocols are sketched in Fig. 8.2.

A first class of experiments probe the multi-photon regime, in which a large number
of excitations are present in the system and can interact with each other. By preparing
the system in a strongly inverted state, the collective spontaneous emission process
has been studied by measuring the temporal dynamics of the emitted light. Such
measurements have not only been performed in free space in both dilute [74] and
dense ensembles [265], but also coupled through photonic waveguides [266, 267]. In
such systems, superradiance (also called superfluorescence in this context) is often
investigated [268], as the majority of excitations typically decay through a fast, non-
exponential, superradiant burst; however, since a minority of excitations evolve in
slowly decaying collective states, this scheme also allows for the study of subradiant
effects at late times. A notable consequence of superfluorescence is the synchronization
of the emission mode, resulting in directional emission in extended systems [269].
The structured recoil imparted on the emitting media can then give rise to motional
self-organization, and has also been observed in atomic systems [73, 270].

Cooperative effects can, however, also arise in the single-photon regime, in which
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Figure 8.2: Experimental probes of cooperativity. (a) Cooperative light scattering is
often studied by (strongly) exciting an atomic cloud (green shaded) and observing the
decay dynamics of the emitted light (wavy arrows). (b) An alternative method makes
use of the spectral response of the cloud (gray shaded) by measuring the extinction
(light green arrow) of a weak probe beam (dark green arrow) or the scattered light
(wavy arrows). (Insets) show typical photonic signals acquired at the respective
detectors. In the single-photon regime, cooperative effects manifest through altered
decay rates and spectral linewidths, respectively.

the Hilbert space is restricted to a single excitation. In this case, changes in the collective
radiative properties are pure interference effects, corresponding to generally classical
but coherent linear optics. This regime is experimentally probed by weak excitation
beams, preventing any saturation effects. As subradiant states are only weakly coupled
to propagating EM modes, they tend to be difficult to excite, such that experiments have
largely focussed on small systems [271] or on studying single-photon superradiance
in both dense and dilute atomic clouds. The latter can be achieved by measuring
the temporal decay dynamics following repeated weak excitation pulses [272–274] or
by probing the spectral width of the weak-excitation steady state through scattering
experiments [275–277]. The spectroscopic approach has the additional advantage that
the photon-mediated dipole–dipole interactions can be extracted from the shift of the
resonance [277–280].

8.1.2 Collective light scattering

In the experiments performed in the context of this thesis, we probe two-level atomic
dipoles with a spectroscopic scheme and are most interested in the system’s cooperative
light-scattering behavior. This quantum electrodynamics (QED) problem is typically
treated by coupling the dipoles, with dipole matrix element d, to the quantized EM
modes [281, 282], potentially under the presence of a driving field, E0(r). The emission
field of a radiating electric dipole is given by Ei(∆r) = µ0ω2

0G(∆r) · d〈σ̂−i 〉, with the
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free-space dyadic Green’s tensor [283]

G(r) = (k2
0 1+∇⊗∇)

eik0r

4πk2
0r

, (8.1)

the dipole transition frequency ω0/2π and its associated wave number k0 = ω0/c.
Due to linearity, the total scattered field therefore yields

E(r) = E0(r) + µ0ω2
0 ∑

j
G(r− rj) · d〈σ̂−j 〉. (8.2)

This equation represents a generalized input–output relation [284], reducing the calcu-
lation of the resulting light field to solving the atomic dipole dynamics.

The scattering properties of the collective system are then commonly quantified
with the differential cross section [285], which we define as the total energy flux
propagating into the solid angle Ω, given by

dσ

dΩ
= lim

r→∞

1
|E0|2

(
r2|E(r)|2 − |r · E(r)|

)
≡ dσin

dΩ
+

dσsc

dΩ
+

dσintf

dΩ
, (8.3)

where E0eik0z denotes the electric field of the incident plane wave. We formally separate
the contributions into an incident, a scattered (power re-emitted from the dipoles) and
an interfering part. The (integrated) scattering cross section, σsc, thus represents the
total power scattered and measures the EM response of the atomic ensemble.

8.1.3 Collective dipole modes
The atomic dynamics in Born–Markov and rotating-wave approximation can be well
described by the master equation introduced in Eq. (2.11), which—in the single-photon
regime—can be reduced to the effective, non-Hermitian Hamiltonian [76, 286]

Ĥ = ∑
i,j 6=i

(
Jij − i

Γij

2

)
σ̂+

i σ̂−j + ∑
i

(
∆i − ∆− i

Γ0

2

)
σ̂+

i σ̂−i + ∑
i

(
Ωiσ̂

+
i + Ω∗i σ̂−i

)
,

with Jij − i
Γij

2
= −µ0ω2

0d∗ ·G(ri − rj) · d and Ωi = d · E0(ri).

(8.4)

The Hamiltonian consists of single-atom terms, with local drive detuning (∆− ∆i)/h
and decay rate Γ0/h̄, and EM interaction terms, determined by the product of the
dipole moment, dσ̂−i , and the local electric field, E(ri). As the local field at the position
of dipole i itself depends on the dipole moments of all other dipoles {j}, the photon-
mediated interaction term takes the form of d∗i ·G(ri − rj) · dj. This term warrants
an intuitive interpretation, in which photons scattered at dipole j are re-scattered at
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dipole i, and whose influence on the atomic state depends on both the strength of the
rescattered field and its phase relative to the atomic dipole.

The collective eigenmodes of the dipole system can be obtained by diagonalizing
the (symmetric) Hamiltonian without the drive term [76], yielding the structure of the
collective dipole modes, mp,i. Since the drive-frequency–dependent part is diagonal,
the spectral scattering properties are fully characterized by the eigenvalues, µp(∆). The
driving field can then be decomposed into these modes, E0(ri) = ∑p bpmp,i, yielding
the steady-state dipole moments d〈σ̂−i 〉 = ∑p αpbpmp,i with collective polarizability

αp(∆) = α0
Γ0/2

µp(∆)
= α0

Γ0/2
(∆p − ∆)− i(Γp + Γ0)/2

, (8.5)

where α0 = 6πε0/k3
0 denotes the resonant single-particle polarizability. Following

Eq. (8.3), the total scattering cross section can be written in terms of the (generally
non-orthogonal) eigenmodes as [285]

σsc(∆) =
k0

ε0|E0|2

(
∑
p
|bp~mp|2 Im[αp(∆)] + ∑

p,q
Im[αq(∆)b∗p~m

†
p · bq~mq]

)
. (8.6)

Each eigenmode itself thus has a Lorentzian spectral response: The real term, ∆p,
captures virtual exchange processes, describing a coherent dipole–dipole energy shift
known as the cooperative Lamb shift; the imaginary term, Γp, captures multiple-
scattering processes that are dissipative to the system, giving rise to subradiance or
superradiance.

8.1.4 Advantages of atomic dipoles
While cooperative EM effects can in principle be observed in a wide variety of plat-
forms, atomic dipoles—apart from being inherently identical—offer distinct advan-
tages for faithfully realizing such systems in the optical regime.

For instance, inhomogeneous broadening effects, i.e., large variations of the single-
particle resonances {∆i}, can occur due to the environment of the emitters or motional
Doppler effects. The former is prevented by operating in free-space vacuum or through
homogeneous trapping, and the latter through cooling to the motional ground state, as
routinely achieved in cold-atom experiments. Homogeneous broadening effects typi-
cally arise due to nonradiative decay channels [261], Γ0 → Γ0 + γnr, and are commonly
found in solid-state systems. In contrast, atomic ensembles are entirely decoupled from
each other and the environment on the relevant time scales, so radiative transitions
pose the only viable decay channels. Finally, dipolar scattering assumes point-like
dipoles, i.e., emitters whose spatial extent is substantially smaller than the wavelength,
which is well fulfilled by atoms near the electronic ground state.
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Figure 8.3: Cooperative spectra in a perfect square array of dipoles. (a, b) The
cooperative correction to the decay rates, Γk, of out-of-plane (a) and in-plane circular
(b) polarized modes at a deeply subwavelength array spacing of a/λ = 0.47 show
radiant states, Γk > −Γ0, within and non-radiant states, Γk = −Γ0, outside of the
light cone. Their response diverges when the in-plane–projected spin wavelength
approaches the light wavelength. (c, d) The cooperative decay rate (c) and cooperative
Lamb shift, ∆k (d), for circular polarization at the experimentally realized array spacing
of a/λ = 0.68 show similar behavior. The small dependence on the spin wave number
indicates a robust behavior as a light–matter interface to more focussed or angled
illumination. Note that the light cone folds back into the first Brillouin zone.

Note that Eq. (8.4) is written for a two-level system and can be realized in atoms on
an optical cycling transition whose degeneracies are magnetically lifted by Zeeman
shifts.

8.2 Light scattering in subwavelength arrays

While disordered ensembles of dipole emitters allow for studying fundamental aspects
of collective light scattering, the involved EM modes are naturally non-deterministic.
In contrast, structuring the dipole positions allows for engineering targeted, quantum-
technologically relevant modes. A particularly interesting geometrical configuration
involves structured arrays, which have been predicted to give rise to effects reminiscent
of cavity QED systems [258, 287] and to provide efficient paraxial and non-dissipative
atom–light interfaces in two-dimensional (2D) arrays [260, 261].

8.2.1 Two-dimensional arrays

For identical atoms located on an infinite 2D lattice, Bloch’s theorem is applicable
such that the eigenstates are given by (mutually orthogonal) spin waves, Ŝ†

k =

(1/
√

N)∑j eik·rj σ̂+
j , with k denoting the 2D spin wave vector in the plane of the
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array. The effective Hamiltonian can thus be written as

Ĥ = ∑
k

(
Jk − i

Γk + Γ0

2

)
Ŝ†

kŜk, with Jk − i
Γk

2
= −µ0ω2

0d∗ · G̃(k) · d. (8.7)

The discrete Fourier transform of the regularized Green’s tensor over the lattice vectors,
{Ri}, is given by

G̃(k) = ∑
Ri 6=0

e−ik·RiG(Ri)

=
i

8π2k2
0

∫
d2q‖

k2
01− q⊗ q

qz

[
(2π)2

a2 ∑
gm

δ(gm − k + q‖)− 1

]
,

(8.8)

with the in-plane wave vector q‖, and its generally complex out-of-plane component

qz =
√

k2
0 − q2

‖. The first term reduces to a discrete sum over the reciprocal lattice

vectors, {gm}, and the second term can be analytically integrated with a cutoff matched
to the summation. The spectra for deeply subwavelength arrays and for the lattice
spacing realized in our experiment, a/λ = 0.68, are shown in Fig. 8.3.

Relation to light cone

The imaginary part of the eigenvalues, Γk, corresponding to the cooperative decay rates,
can be further simplified: First, the in-plane and out-of-plane polarization components
do not mix in a 2D array, and, second, the imaginary contributions only arise for purely
real values of qz. The cooperative decay rates are therefore given by [76]

Γ‖k
Γ0

=
3π

k3
0a2 ∑

gm,|k+gm|≤k0

k2
0 − |(k + gm) · ed|2√

k2
0 − |k + gm|2

− 1,

Γ⊥k
Γ0

=
3π

k3
0a2 ∑

gm,|k+gm|≤k0

|k + gm|2√
k2

0 − |k + gm|2
− 1,

(8.9)

where ed = d/d denotes the polarization vector of the dipole.
Evidently, the decay rates at subwavelength spacings for spin waves with |k| > k0

vanishes, leading to non-radiative, evanescent modes in analogy to guided modes in
photonic waveguides. Physically, this is caused by the fact that the phase-matching
condition between light and spin wave cannot be fulfilled, preventing propagating
light fields to couple to these collective modes. The remarkably long-lived nature of
such states have since also been discussed in the context of quantum memories or
many-body physics with light [288–290].
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Figure 8.4: Cooperative response of the in-phase mode. Collective decay rate,
Γk (green), and cooperative Lamb shift, ∆k (blue), as a function of the spacing. (a)
Cooperative interactions between a pair of circularly polarized dipoles. The oscillatory
behavior results from the accumulated phase upon light propagating between the
dipoles, and the overall decay of the interaction is a consequence of the undirected
emission pattern of a single dipole. (b) The cooperative response in a square array of
in-plane circularly polarized dipoles also shows sign-changing behavior, reminiscent of
the light-propagation phase. Furthermore, the array features divergences when higher
diffraction orders arise and thus additional dissipation channels become available [261].

Perpendicularly incident modes

In this thesis, we are more interested in the array as a light–matter interface, which
requires strong coupling to propagating EM modes, specifically the in-phase spin wave,
k = 0, corresponding to a perpendicularly incident optical mode. In subwavelength
arrays (for which |gm| > k0), one immediately finds that the out-of-plane–polarized
mode does not radiate, Γ⊥k=0 = 0, as EM modes are transversal waves and emission in
the in-plane direction is destructively interfering. In contrast, spin waves with in-plane
polarization can couple to propagating EM modes, resulting in a decay rate in the
subwavelength regime of [261]

Γ‖k=0
Γ0

=
3

4π

(
λ

a

)2

− 1 for a < λ, (8.10)

with circular polarization being experimentally most relevant, as it supports closed
dipole transitions in atoms with hyperfine state (HFS). In Fig. 8.4, we plot the coopera-
tive response for varying lattice spacings, whose dependence is discontinuous and can
be understood when considering the associated EM modes.

The discrete but periodic ordering of the emitters gives rise to a far-field emission
pattern reminiscent of a homogeneously illuminated optical diffraction grating. A
divergence in the collective eigenvalues occurs whenever the light’s wave number
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reaches an additional reciprocal lattice vector, corresponding to the emergence of
another diffraction order. At subwavelength spacings, no higher-order diffraction
occurs and the optical power remains fully confined to the zeroth order.

8.2.2 Paraxial interface
The light-scattering properties of atomic arrays can be furthermore treated in the
context of quantum light–matter interfaces, in analogy to more established systems like
atom ensembles in optical cavities. Following Ref. [291], a single-mode light–matter
interface can be thought of as a device efficiently scattering light between two target
modes. The main figure of merit is the cooperativity, C = Γ/γloss, which describes the
ratio between the power emission rate into targeted and untargeted modes, accounting
for mode-matching effects and non-radiative losses. The scattering process can be
intuitively understood as a two-step process consisting of absorption of the incident
light and re-emission due to the resulting excitations of the atomic state; the efficiency
of each step is equal to the classical field reflectivity, which is given by r0 = C/(C + 1).
The reflectivity has been shown to govern the fidelities of many quantum-optical
applications, including quantum memory and correlation efficiencies [291], and thus
serves as a convenient probe for the quality of the atom–light interface.

The experimentally most relevant target modes are Gaussian beams, as they retain
a functionally similar form throughout propagation and can be straightforwardly
refocussed through lenses. In infinite 2D atomic arrays, the eigenmodes have been
identified with spin waves, which can be associated with plane waves as EM modes. As
the distribution of plane-wave components of Gaussian beams with sufficiently large
waists, w0 � λ, is very narrow, the set of coupled spin waves are nearly degenerate
and thus scatter the light phase-coherently. Contrasting to the cavity case, this yields
ideal cooperativities of [291]

Carray =
3

4π
· Γ0

γloss
· λ2

a2 and Ccavity =
3

4π
· F

π
· λ2

πw2
0/2

. (8.11)

The technical challenges for array-based interfaces, analogous to the challenge of
maximizing the cavity finesse F , are thus to maintain a strict positional array order to
prevent uncontrolled scattering.

Finally, we note that having plane waves as eigenmodes of the array implies a gen-
erally efficient way to realize technologically relevant paraxial interfaces. In particular,
extensions to multimode interfaces by parallelly coupling multiple Gaussian beams is
straightforward, and has been proposed to, e.g., realize quantum light modulators to
flexibly generate correlated photonic states [292].
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Chapter 9

Atomic arrays as subradiant mirrors
Control over the flow of light represents one of the fundamental aspects in the field
of optics, driving research into light–matter interfaces. Progress in the creation of
nanostructured devices has enabled the realization of classical metasurfaces, which
allow for complex wavefront shaping based on subwavelength-structured light scatter-
ers [293, 294]. Extending metasurface engineering to quantum optical scatterers thus
poses a promising route to spatiotemporal quantum control of many-body states of
both photons and scatterers [292, 295, 296].

The isolated nature of and the high degree of quantum control over individually
trapped atoms render atomic arrays to be ideal candidates for realizing quantum
metasurfaces. Homogeneous two-dimensional (2D) arrays of identical atoms constitute
the foundational building blocks of such metasurfaces, and have been predicted to
serve as ideal mirrors for resonant, paraxially incident light beams [260, 261]. Probing
the reflective and spectral response of the array not only allows for testing the feasibility
of the platform as a quantum light–matter interface [291], but also for revealing the
underlying cooperative physics giving rise to directional scattering [258, 261, 297].

In our experiment, we trap atoms in a subwavelength-spaced optical lattice, allow-
ing us to study such cooperative phenomena. In Sec. 9.1, we first show experimental
light-scattering spectra and their dependence on the geometrical positioning of the
atoms. In Sec. 9.2, we then present measurements probing the role of cooperativity
based on varying the atomic density. Finally, in Sec. 9.3, we discuss technical and
fundamental limitations to the achievable mirror fidelity.

9.1 Subradiant specular reflection
The fact that 2D atomic arrays can be used as mirrors for light beams propagating in
three-dimensional (3D) free space is by itself remarkable for a variety of reasons: In
contrast to mesoscopic engineered nano-antennae [294], the reflecting matter is dilute,
with a typical ratio of 10−4 between atomic size and interatomic spacing. Further-
more considering that the array is truly 2D, the array realizes the conceptually lightest
mirror possible. Alternative atomically thin mirrors have been demonstrated only
in unstructured (and dense) emitter ensembles, e.g., through excitons in transition-
metal dichalcogenide monolayers [298, 299]. In one-dimensional (1D) systems, where
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photons propagate through classical waveguides, optical mirrors have been imple-
mented by forming Bragg mirrors with trapped atoms evanescently coupled to the
waveguide [300, 301].

A truly lower-dimensional analog of the cooperative mirror has been realized in the
microwave (MW) domain, where 1D propagating photons were reflected at a 0D mirror
realized using superconducting qubits [302]. By measuring the spectral response, MW-
domain systems, including superconducting and metamolecular systems, have also
enabled the observation of subradiant effects [279, 302, 303]. In contrast, deterministic
excitation of subradiant modes in optical dipole ensembles, has only been realized in a
small system of two ions [271].

Cold atoms trapped in optical lattices constitute a valuable platform for studying
cooperative light-scattering phenomena in structured arrays: As discussed in Sec. 8.1.3,
atoms represent ideal dipoles, Mott insulators (MIs) in the atomic limit realize unity-
filled arrays, and the optical lattice guarantees the periodic array structure. While many
quantum gas microscopes (QGMs) operate at larger lattice spacings to facilitate single-
site–resolved detection, our experiment in the retro-reflected configuration yields a
square lattice with a spacing of a = 532 nm, well within the subwavelength criterion,
a < λ = 780 nm.

9.1.1 Experimental protocol
We realize the atomic arrays by loading a 2D MI in the pinning Lattice 3 (L3), as
described in Sec. 3.1.1, and ramp up all three lattices to a depth of 300E532

r , yielding
a square array with about 200 atoms at a typical filling of n = 0.92 and a ground-
state wave function with spatial SD of s = 0.054a. We furthermore apply a stabilized
magnetic field of 3.3 G which is oriented out of the atomic plane to isolate a closed two-
level transition between the |5S1/2, F = 2, mF = −2〉 and the |5P3/2, F′ = 3, m′F = −3〉
states. To spectroscopically measure the cooperative light-scattering properties of the
array, we use a σ−-polarized probe laser which is tunably offset-locked to an ultra-
low–expansion cavity and has a laser linewidth of less than 50 kHz, much smaller than
the natural linewidth, Γ0/h = 6.067 MHz. The probe beam’s Gaussian-beam waist at
the position of the atoms is chosen to be much larger than the array size, such that the
drive is well-approximated by a plane wave.

Our experimental setup, illustrated in Fig. 9.1, allows us to illuminate the array
from above (or from below), giving us spatially resolved access to the transmitted
(or reflected) light on the electron-multiplying charge-coupled device (EMCCD) cam-
era. For the transmission measurements, we take an absorption image with atoms,
It(r), and an image of the beam without atoms, Iin(r) (and a background image to
subtract systematic fluctuations), from which we can immediately calculate the ab-
sorptance, A = 1−

∫
It(r)/Iin(r) d2r, which we evaluate over the central 11× 11 sites

to account for fluctuations in atom number and cloud position. For the reflection
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Figure 9.1: Experimental setup probing cooperative light scattering. (a) In our
experiment, we send a vertically incident probe beam with intensity I0 from either
side onto the atomic array (red circles), allowing us to measure both reflection (blue,
b,c) and transmission (green, d,e) spectra. We capture the probe light in an imaging
configuration (red dashed) with an EMCCD camera. In the reflection configuration,
we only observe the light emitted from the array; in the transmission configuration,
we measure the destructively interfering superposition of emitted and incident light.
(b, d) Numerically simulated light intensity in a plane orthogonal to the array with
14× 14 sites, accounting for an array filling of n = 0.95 and positional disorder with a
standard deviation (SD) of (s‖, s⊥) = (0.054, 0.13)a. In the absorption-imaging case,
we can see disorder-induced imperfect cancellation of the incident field in the forward
direction, and formation of standing waves due to the mirror reflection in the backward
direction. (c, e) Averaged experimental images (in the plane parallel to the array)
taken at the cooperative resonance, showing interaction-enhanced specular reflection.

measurements, we analogously use the image with atoms to obtain the reflectance as
R =

∫
Ir(r)/Iin d2r. As we cannot directly image the reflective probe beam, we cross-

calibrate the mean intensity by comparing the scattering-induced heating between the
reflection and the well-characterizable transmission beam. Note that the polarization
purity of the probe beams was optimized to more than 98 %, following the scheme
outlined in Sec. 3.3.5.
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Parameter optimization

In this experiment, the fundamental limitation lies in the fact that the absolute number
of scattered (and therefore detectable) photons is limited by recoil-induced heating
effects (see Sec. 9.3 for details). Therefore, the central technical challenge consists
of handling the low signal-to-noise ratio (SNR) in photon detection. One approach
involves increasing the photon-detection probability, however, these are practically
limited to the given experimental setup: We estimate the transmission probability of
the imaging path to be 61 % and the quantum efficiency of the camera to 80 %. Instead,
we focus on reducing the residual noise to improve the SNR and to optimize the
measurement parameters.

First, we ensure that the signal is not affected by background photons: These can be
effectively reduced by installing additional spectral filters, which block both ambient
light and high-power beams such as the lattice lasers. By varying the camera exposure
time, we indeed find that ambient photons are not varying the camera counts and are
thus not limiting the SNR.

Second, we minimize technical noise inherent to the EMCCD camera: We perform
hardware-binning of 8× 8 pixels (corresponding to about 3.5 lattice sites) to reduce the
readout noise and increase the pixel shift speed to reduce noise from clock-induced
charges, yielding a noise background with a SD over the binned pixels of about 16
photon-equivalents. We decide to operate at a SNR of around 1 near resonance, which—
upon averaging over 15–30 shots per data point and spatial averaging—is expected to
lead to a standard error of the mean (SEM) of about 3 %. We therefore choose a fluence
of 6 (and 8–16) photons per lattice site in the transmission (and reflection) configuration.
As we intend to probe the single-photon, steady-state regime, we illuminate the atoms
with a photon flux of about 0.8 ms−1 per lattice site, which corresponds to a Rabi
frequency of 7.5 kHz and is thus far below the saturation intensity. This value translates
to pulse durations of 3 ms and 5–10 ms, respectively.

Numerical analysis

To facilitate the interpretation of the measurements, we simulate the experiment by
solving the steady state of the dipole moments with Eq. (8.4) under a weak drive.
The light-scattering properties can then be obtained by evaluating the differential
cross section, Eq. (8.3), and integrating over the solid angle covered by the objective,
σ(NA) =

∫
sin θ<NA(dσ/dΩ)dΩ. In the reflection configuration, only the scattered light

(i.e., the light emitted from the atomic ensemble) is detected, such that the reflectance
is given by R = σsc/σin, where σin = Na2 denotes the area illuminated by the inci-
dent light and N the number of occupiable sites. In the transmission configuration,
the coherent superposition of incident and scattered light is detected, such that the
absorptance yields A = −(σsc + σintf)/σin. Note that here we are calculating the
response in the far field and do not account for potential real-space inhomogeneities
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as experimental fluctuations in the cloud size and position would average these out.
The full finite-NA imaging configuration can be simulated by propagating back the far
field using Debye–Wolf diffraction [304].

The motional degrees of freedom (DOFs) of the atoms can be treated as frozen
because the dipole emission rates, Γ/h ∼ 106 Hz, are far larger than the trap frequen-
cies, ftr ∼ 104 Hz. Motional effects can thus be captured by randomly sampling the
positions of all atoms according to their (quantum-mechanical or thermal) probabil-
ity distribution, and incoherently averaging the absorptances or reflectances. This
Monte Carlo approach also allows us to account for imperfect array filling and for
trap-induced inhomogeneities of the local atomic resonance frequency. By varying the
drive frequency, we can calculate the spectral response, to which we fit a Lorentzian in
order to obtain the collective linewidth and detuning.

The simulations, however, do not only give access to the spectra but also allow
us to analyze the excited eigenmodes. To quantify the contribution of a given collec-
tive mode, ~mp, with associated eigenvalue ∆p + iΓp/2, we define its population by
Pp = |bp~mp|2/ ∑q |bq~mq|2, with the driving field decomposed as E0(ri) = ∑p bpmp,i,
according to Sec. 8.1.3. To account for the Monte Carlo sampling, we build a histogram
in the space of the collective eigenvalues, finally yielding the probability distribution,
P(∆col, Γcol), representing the mode structure.

9.1.2 Dependence on positional order
In a first set of experiments, we probe the influence of the atomic geometry on the
optical response by measuring the transmission and reflection spectra of the respective
atomic ensembles (see Fig. 9.2).

In the case of the 2D array, we can observe a pronounced subradiant response
with a linewidth of 0.68(2)Γ0/h in transmission and 0.66(2)Γ0/h in reflection, clearly
signalling cooperative behavior. Furthermore, the fits yield a small transmittance,
T = 0.23(1), and a large reflectance, R = 0.58(3), indicating a directional response
and thus demonstrating the specular reflection expected for a mirror. Note that the
measured transmittance and reflectance do not add up to unity, T + R 6= 1, because
light scattered at large angles is not collected by the finite-NA objective, which captures
the light within a 43° cone around the optical axis. As a reference, we additionally take
a standard absorption image of a dilute 3D cloud, whose response is well-described
by the Beer–Lambert law. Analyzing the optical-density spectrum yields a Lorentzian
linewidth of 1.00(2)Γ0/h, in agreement with the expected single-particle behavior and
thus validating our subradiant result.

Comparing the measurement results with the spectra simulated on a 14× 14 array,
we find approximate agreement when accounting for experimental imperfections, with
the main contribution arising from the positional uncertainty of the atoms, which
increases beyond the spread of the ground-state wave function due to the scattered
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Figure 9.2: Cooperative response for varying geometries. (a–c) We measure the
reflectance (green) and transmittance (blue) spectra for atoms in a square array (a),
with out-of-plane disorder (b) and in-plane disorder (c). The colored solid lines show
Lorentzian fits. Comparing to the natural linewidth, Γ0/h = 6.067 MHz (gray solid
lines), the ordered array shows a clearly subradiant response with a linewidth of
4.09(11)MHz and 4.04(12)MHz in transmission and reflection, respectively. The high
reflectance, R = 0.58(3) (with transmittance T = 0.23(1)), indicates a mirror response.
In stark contrast, neither disordered case yields a similar reflectance, demonstrating the
importance of the array order. (Insets) Differential scattering cross section, dσsc/dΩ
(normalized to the array case), for light incident from below, and simulated accounting
for experimental imperfections. While we find a strong directional response in the
array case, the out-of-plane disordered case shows a large asymmetry, destroying any
specular reflection. In the in-plane disordered case, we would expect a more pro-
nounced reflection but are subjected to other effects (see main text). (d–f) Simulated
eigenmode decomposition of the probed steady state. For a perfectly ordered array, we
directly excite a subradiant eigenmode, whereas a large ensemble of modes are driven
in the disordered cases, leading to both homogeneous and inhomogeneous broadening
of the observed linewidth.
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photons. We nevertheless consistently obtain directional emission from the array and
find that the plane-wave drive largely excites a single subradiant eigenmode. Note
that even in the ideal case of a defect-free array of perfectly ordered atoms, a multitude
of modes are slightly excited, which is a consequence of the finite array size.

Vertical disorder

Next, we probe the response of an out-of-plane disordered cloud whose column density
remains identical to the array case. To prepare the system, we start with a 2D unity-
filled MI in a lattice with a horizontal depth of V1,2 = 40E532

r and a vertical depth of
V3 = 13E532

r . Then, we suddenly switch off L3, allowing the atoms to vertically freely
expand for 1 ms before freezing their position by rapidly ramping up L3 to 16E532

r . The
vertical positions of the atoms are then normally distributed with a SD of 10 lattice sites.
After ramping up all lattices to 300E532

r , we probe the electromagnetic (EM) response.
The most striking observation in the measured spectra is that while the transmit-

tance, T = 0.44(1), is slightly increased, the reflectance, R = 0.13(1), has disproportion-
ally reduced. This can be explained by the fact that the driving field imprints a vertical
phase gradient. As a consequence, the symmetry between forward and backward
emission is broken, leading to the difference between absorption and reflection. In
addition, the phase gradient leads to a phase-matching condition, wherein the emitted
field constructively interferes and may feature superradiant behavior.

Performing an eigenmode analysis, we can observe that, first, a random and large
variety of collective modes are excited, indicating a generally cooperative response,
and second, that the eigenvalues are scattered around the origin, indicating a change
towards non-interacting behavior. Experimentally, this is observable as a both ho-
mogeneously and inhomogeneously broadened linewidth, with fitted linewidths of
1.22(5)Γ0/h in transmission and 1.13(10)Γ0/h in reflection.

Horizontal disorder

Finally, we consider the case of an in-plane disordered cloud whose mean density
remains close to the array case. To prepare this geometry, we start with a 2D unity-
filled MI with a vertical lattice depth of V3 = 300E532

r and a horizontal depth of
V1,2 = 40E532

r = h · 80 kHz. Then, we suddenly switch off the horizontal lattices in
100 µs, upon which the atoms randomly redistribute within the plane. As these atoms
have a large kinetic energy and are horizontally insufficiently confined, we reduce
the duration of the transmission (and reflection) probe pulses to 0.2 ms (and 2.3 ms) to
minimize diluting the cloud.

In the transmission spectra, we find a similar transmittance of T = 0.54(1) and a
fitted linewidth of 1.26(6)Γ0/h, as in the vertically disordered case. The eigenmode
decomposition analysis, however, suggests that the broadening is mainly inhomoge-
neous in nature, as no phase gradients are imprinted. Furthermore, the 2D symmetry
implies that the reflectance should be similar to the non-transmittance, 1− T. In the ex-
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Figure 9.3: Cooperative response under Bloch oscillations. Starting from a 2D
array, we let the atoms vertically tunnel under a gradient. The dynamics lead to
Bloch oscillations, recovering the array order with a period of TB ≈ 4.7 ms (gray
lines). By measuring the reflectance (blue) at the array resonance, we also find an
oscillatory behavior in the EM response. The linewidths (red circles) similarly show
subradiant behavior in the ordered state and are broadened above the natural linewidth,
Γ0/h = 6.067 MHz (red line), when disordered.

periment, however, we find that the reflectance of R = 0.07(1) is substantially smaller.
We attribute this behavior to density-reduction effects as the reflective probe pulses
were about 10 times longer than the transmission pulses. The best agreement with
calculations is obtained for a simulated density of n = 0.9 (and 0.6) for the transmission
(and reflection) data.

9.1.3 Bloch oscillations
To explore the importance of the planar array geometry further, we dynamically and
periodically introduce controlled vertical disorder prior to probing the mirror response.

Experimentally, we again start with a unity-filled 2D MI with lattice depths of
V1,2 = 40E532

r and V3 = 16E532
r . We initiate quantum dynamics by suddenly reducing

the vertical lattice depth to 5E532
r . As the atoms are isolated within their own 1D

systems and are subjected to a potential gradient (due to gravity and optical gradients),
they independently perform Bloch oscillations in the out-of-plane direction [42, 305].
After freezing the dynamics by ramping up L3, the probability distribution after an
evolution time t is thus given by

〈n̂j(t)〉 = J2
j

(
4J
δV

∣∣∣∣sin
δVt
2h̄

∣∣∣∣) , (9.1)

where δV denotes the detuning between adjacent lattice sites and Jj the Bessel function
of the first kind. We then perform a reflective measurement on the ordered-array
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resonance at a lattice depth of 300E532
r .

Fig. 9.3 shows an oscillating behavior of the reflectance, with two peaks arising at
the refocussing times of the Bloch oscillations, TB = 2h/δV ≈ 4.7 ms; the maximum
half-width spread is thus given by δz/a ≈ 2.5. The cooperative linewidth, spectrally
measured at selected points, also oscillates between a subradiant value at the refo-
cussing points and a value broadened beyond the natural linewidth when the atoms
are maximally dispersed. The measurements furthermore reveal that, while the SD
of the vertical spread varies sinusoidally, the reflectance decreases disproportionally
quickly when introducing disorder, highlighting the central role of the array order.
Note that we also observe a reduction in the reflectance at the refocussing times, which
we attribute to dephasing Bloch oscillations caused by residual potential curvature,
resulting in imperfect array formation.

9.2 Cooperativity of electromagnetic response
In Sec. 9.1, we have studied the role of the positioning of atoms on light scattering and
found 2D arrays to perform well as mirrors. In contrast, for disordered samples several
issues arise which prevent reflective behavior: In out-of-plane disordered samples,
a phase gradient imprinted by the incident light along the propagation axis leads to
phase-matched emission that breaks the mirror symmetry and fundamentally cannot
work as a mirror. In in-plane disordered samples, atoms may come arbitrarily close,
leading to strong photon-mediated pairwise interactions, which effectively shift the
local resonance and result in strong inhomogeneous broadening [306]. To specifically
probe the role of the many-atom cooperativity, it is therefore interesting to study the
density-dependent response of a 2D sample with controlled minimum inter-particle
distance.

9.2.1 Array filling fraction
We implement these requirements by working with atoms at variable filling in our
optical lattice, which introduces the lattice spacing as minimum distance and confines
the atoms to a 2D plane. Experimentally, we again start with a unity-filled 2D MI; by
applying a variable-duration MW pulse between the ground hyperfine states (HFSs)
and optically pushing out one spin species, we can precisely reduce the filling fraction.
In Fig. 9.4, we show the Lorentzian spectral fit results for the transmissive and reflective
measurements.

The fitted linewidth approaches the natural linewidth for low fillings, signalling
a response reminiscent of independent single atoms. With increasing filling, the
linewidth smoothly reduces to the previously measured subradiant value near unity
filling. We also find a notable dependence of the cooperative resonance frequency
on the filling, which can be identified as the cooperative Lamb shift and captures the
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Figure 9.4: Cooperative response for arrays with varying filling. From experimen-
tally measured reflective (blue) and transmissive (green) spectra, we fit a Lorentzian
function and obtain the response amplitude, linewidth, and resonance shift. The
dashed lines indicate numerical simulations of perfectly ordered arrays with reduced
filling, the shaded areas account for a positional disorder of s‖ = 0.054a and s⊥ = 0.054–
0.14a in the in-plane and out-of-plane direction, respectively. (a) The reflectance, R,
and absorptance, A = 1− T, normalized by the filling, n, is expected to remain con-
stant for independently responding atoms. The increase of the normalized reflectance
with filling highlights the cooperative contribution to the directional reflection. (b) At
high filling, the linewidth is clearly subradiant, and approaches the natural linewidth
(gray line) with an increasing number of array defects. (c) By measuring the shift of
the resonance frequency, we can furthermore observe the cooperative Lamb shift as
the non-dissipative part of the dipole interaction. (d) An eigenmode decomposition
simulated for perfectly ordered arrays at a filling of n = 0.4 shows that mostly modes
with similar properties as for the filled array are excited, in contrast to the disordered
cases shown in Fig. 9.2.
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non-dissipative part of the dipole–dipole interaction.
Finally, we analyze the filling-normalized reflectance and absorptance. In a dilute,

non-cooperative medium, we would expect these quantities to be independent of the
filling. The normalized reflectance, however, shows a clear increase with filling, which
demonstrates the cooperative contribution to the directional reflection from the 2D
array. The normalized absorptance, on the other hand, appears to be independent of
filling: We attribute this effect to higher-order diffraction at low filling, which scatters
light away from the collection angle of the objective. The reflection signal is not affected
by this light and thus shows the cooperative response; in contrast, the absorption signal
does not distinguish between randomly and specularly scattered light and normalized
absorptance thus becomes insensitive to the filling.

Our numerical simulations agree quantitatively with the measured response when
accounting for a positional spread of s = 0.054–0.14a. Possible reasons for the residual
discrepancies in the linewidth at low filling include additional technical broadening
effects and poorer SNR, diminishing the applicability of the Lorentzian fit.

9.3 Limitations to mirror fidelity
In our experiment, we have observed a strongly subradiant response and clearly spec-
ular reflection, and have demonstrated that atomic-array–based light–matter interfaces
are feasible in principle. However, our measurements showed reflectances below 70 %,
which are thus far below the ideal mirrors theoretically predicted and technologically
envisioned. In this section, we will discuss both technical and fundamental limitations,
and outline strategies to overcome these.

9.3.1 Technical limitations
Our experimental setup imposes several constraints to the available measurement
configurations: The limited optical access in combination with comparatively small
cloud sizes restricts us to use probe beams with waists that are much larger than
the array size. In this case, even for an ideal mirror, diffraction off the array edges
leads to light scattering away from the objective, resulting in a reduced reflectance,
as suggested by our simulations in Fig. 9.5a. A related restriction to measuring the
total scattered power is given by the limited numerical aperture (NA) of the collection
objective, which misses light scattered at large angles, as shown in Fig. 9.5b. Note
however that, in imperfectly ordered arrays, an increase in the NA mainly captures
randomly scattered light and overestimates the specular reflectance.

Signal detection is furthermore limited by the comparatively high noise levels of
our EMCCD camera, which requires the probe beam to scatter hundreds of photons.
This leads to motional heating effects (as discussed in Sec. 9.3.2), exacerbating the
array structure. By switching to a single-photon detector onto which the full array is
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Figure 9.5: Technical limitations restricting observable mirror fidelity. (a, b) Simu-
lated reflectance, R, and fitted linewidth, Γ/h, as a function of the objective numerical
aperture (NA) for a perfectly ordered 14× 14 array (gray), an array with a positional
spread of s = 0.054a (green), an out-of-plane disordered sample with SD ∆z = 10a
(blue), and an in-plane disordered sample (red). The black dashed line indicates the
response of an ideal mirror, demonstrating that the reduction in reflectance at low NA
is a consequence of diffraction at the finite-size sample. (c) Simulating a probe beam
with a waist smaller than the array, a perfectly ordered array (left) reflects nearly all
incident light, whereas positional disorder, (s‖, s⊥) = (0.054, 0.13)a, leads to leakage
(see also Fig. 9.1).

imaged, the response could be probed in the truly single-photon regime, which would
substantially improve the observable reflectance.

9.3.2 Physical limitations
Neglecting any deterministic diffraction effects and technical limitations, atomic en-
sembles with ideal array order are expected to feature perfect reflectivity. However,
atoms need to be trapped to form the array order, and imperfections in populating and
creating the traps result in imperfect reflectivity.

Positional disorder

The most obvious imperfection, as discussed in Sec. 9.2.1, involves sub-unity filled
arrays, and arises due to our preparation scheme of thermodynamically loading a MI of
atoms in an optical lattice. Approaches to improve the array filling include selectively
lowering the many-body system’s entropy [120, 121] or deterministically implanting
atoms from optical tweezers into the dense lattice [307]. Generally, missing atoms
in denser ensembles appear to have a less detrimental effect on cooperativity [261],
so operating in lattices with shorter spacing could result in a more robust mirror
performance.

Another imperfection involves the positional uncertainty of each atom within its
lattice site. For large lattice depths, V, each site can be harmonically approximated
with trap frequency ωtr/2π =

√
V/2ma2, leading to a spatially Gaussian probability
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Figure 9.6: Limitations due to positional uncertainty. (a) Simulated transmittance
(green) and reflectance (blue) as a function of the isotropic positional spread, s. The
solid lines correspond to the experimental configuration with a beam larger than the
array and an objective with a numerical aperture of 0.68; the dashed lines considers the
full 2π solid angle and a beam smaller than the array. The gray shaded region indicates
the positional spread used in the simulations shown in Fig. 9.4. (b) Measurements at
an isotropic lattice depth of 300E532

r for varying photon fluence. Recoil-induced heating
leads to larger positional disorder and therefore an increased transmittance (green)
and fitted linewidth (red). The red line marks the natural linewidth. (c) For a fixed
fluence and horizontal lattice depth of V1,2 = 1000E532

r , we vary the vertical lattice
depth, V3. At low lattice depths (below the ones shown), the quantum fluctuations lead
to substantial positional disorder, resulting in increased transmittance and linewidths.
However, at higher lattice depths, we observe similar behavior due to the anti-trapped
excited state.

distribution with a variance of

δr2(β) =
h̄

2mωtr

1
tanh(βh̄ωtr/2)

, (9.2)

which accounts for both zero-point and thermal motion at a temperature of 1/kBβ.
In our experimental configuration, we scatter several photons per atom on average,
whose recoil deposits a significant amount of kinetic energy, K ≈ 1/β. The cooperative
nature of the photon emission process also modifies the resulting recoil [308, 309] and,
for the spontaneous emission of a single collective excitation in an infinite array, the
added kinetic energy has been predicted to follow [310]

K⊥
E780/2

r
=

2
5

Γ0

Γcol
,

K‖
E780/2

r
≈ 0.7

Γ0

Γcol
, (9.3)

where K⊥,‖ denote the out-of-plane and in-plane contribution of the kinetic energy.
The inverse proportionality between kinetic energy and collective decay rate can be
intuitively understood as recoil-imparting reabsorption processes within the atomic
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ensemble extending the collective life time. Neglecting any motional effects on the EM
response and accounting for both absorption and emission, we can extrapolate this
relation to the experimental fluence of 6–16 photons per site, yielding a kinetic energy
of K ≈ 54–144E532

r . Inserting into Eq. (9.2), we obtain a thermally increased positional
SD of δr/δr(∞) ≈ 1.8–3.0, which roughly agrees with the amount of disorder we
numerically identified in Sec. 9.2.1.

The correction to the EM response, numerically and experimentally analyzed in
Figs. 9.6 a–b, can also be perturbatively evaluated, yielding a scaling behavior with
positional spread of ∆col ∝ δr/λ for the cooperative Lamb shift, and R ∝ (δr/λ)2 for
the reflectance [261]. As the positional spread itself scales with the array spacing and
harmonic trap frequency, employing shorter-wavelength and higher-power lattices
constitutes a promising path to enhancing the mirror fidelity.

Trap-induced dephasing

While we expect increasing lattice depths to clearly improve the mirror response in
the truly single-photon limit, we find additional deteriorating effects arising upon
scattering larger numbers of photons, as shown in Fig. 9.6c. The core problem involves
the optical dipole trap at a wavelength of 1064 nm, which creates an attractive potential
for the |5S〉 ground state atoms but a repulsive one for the |5P〉 excited state. We
experimentally characterized this effect by measuring the resonance shift with lattice
depth and obtain a proportionality factor of d∆/dV = h · 5.06(10) kHz/E532

r .

For a large number of scattered photons, the atoms spend a significant amount
of time in the excited state. As the excited state is anti-trapped, it accelerates mo-
tional spreading of the wave function, leading to an increased kinetic energy after
projecting back to the ground state. With the additional positional spread, the atoms
also populate areas away from the harmonic potential minimum; as the local optical
transition also varies with the potential, this effect introduces inhomogeneities in the
dipole resonance, further diminishing the mirror response. At small lattice depths, the
motional acceleration is much slower and may not have significantly influenced the
dynamics, such that the base positional spread dominates the mirror response. For a
given photon fluence, we therefore expect an optimum lattice depth which maximizes
the observed reflectance; experimentally, we indeed find a maximum reflectance at
about 300E532

r , which we consequently chose as our measurement configuration.

This phenomenon can be entirely avoided by working with an optical lattice at a
so-called magic wavelength [311], at which the light shift is equal for both the ground
and excited states, which can be found for 87Rb at, e.g., 740.07(1) nm [312]. At this
wavelength, we expect to be able to substantially reduce positional disorder, and gain
the previously discussed advantages for arrays with smaller spacings.
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9.4 Conclusion and outlook
In this chapter, we have studied cooperative light scattering in 2D subwavelength
arrays of atomic dipoles. By measuring the transmission and reflection spectra using a
weak probe beam, we have observed a mirror response with a narrowed linewidth,
indicating strong photon-mediated interactions and direct excitation of subradiant
eigenmodes. Our experiments represent the realization of a novel class of light–matter
interfaces, whose paraxial nature and intrinsically clean implementability yields great
potential for applications in quantum optics. Although our mirror performance is
presently limited, we found that effects arising from positional disorder pose the major
obstacle and identified promising paths to qualitatively enhanced reflectivities.

Since our work was focussed on the linear (single-photon, classical) regime, this
naturally raises the question about the EM response of dipole arrays in the nonlin-
ear (quantum many-body) regime. While the spectral steady-state response for both
low and high probe beam intensities are expected to obey semi-classical dynamics,
intermediate intensities have been predicted to show quantum-correlation–induced
deviations [313]. Better-controlled nonlinearities can, however, be achieved by intro-
ducing long-range Rydberg interactions [314]: Employing electromagnetically induced
transparency (EIT) with the Rydberg state, the mirror can be turned into a single-photon
saturable collective dipole [296]. In a subsequent work [315], we have furthermore
applied EIT to demonstrate a mirror, whose reflectivity can be switched off with a
single qubit, by adding an ancilla atom which can be excited to a Rydberg state as the
control qubit. An extension of this scheme to multiple ancilla atoms in a larger array
could then realize a quantum spatial light modulator (SLM), capable of engineering
spatially multimode quantum states of light [292].
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Chapter 10

Conclusion and outlook
In this thesis, we have experimentally studied ultracold atoms in optical lattices in
versatile ways to advance the understanding of static and dynamic quantum many-
body phenomena. In the following, we will summarize the novel conclusions drawn
from our measurements, and discuss future experimental perspectives. For possible
direct extensions of the experiments performed, refer also to the final sections in the
respective chapters.

10.1 Conclusion
In Part I, we studied the equilibrium properties of the Bose–Hubbard (BH) model in var-
ious flexibly tunable two-dimensional (2D) lattice geometries, which were enabled by
passively phase-stable optical lattices with tunable base geometry and programmable
site-blocking potentials with minimized cross talk. By varying the BH parameter ratio
across the superfluid (SF)–Mott insulator (MI) phase transition, we microscopically
observed the geometry-dependent quantum fluctuations in the form of doublon–hole
pairs. By extracting the brane parity (BP), we demonstrated a 2D generalization of
the nonlocal order seen in one-dimensional (1D) MIs and furthermore found a scaling
collapse when rescaling the kinetic energy by the mean lattice coordination number.

In Part II, we investigated hydrodynamic spin transport in the isotropic Heisenberg
(XXX) chain by tracking the relaxation dynamics of a domain wall (DW) initial state.
The well-defined and large system sizes obtained through increased lattice-beam waists
and local potential shaping were crucial to realizing precise transport measurements.
For the bare chain, we experimentally confirmed the predicted superdiffusive scaling
with a dynamical exponent of 3/2. In contrast, transport in a net magnetized chain
showed ballistic behavior while 2D coupling led to diffusive evolution, highlighting
the role of non-abelian symmetry and integrability for the emergence of superdiffusion.
Exploiting the single-spin sensitivity of our quantum gas microscope (QGM), we fur-
thermore measured the full counting statistics (FCS) of the transported magnetization.
The resulting skewed distribution indicated a nonlinear underlying transport process,
reminiscent of the Kardar–Parisi–Zhang (KPZ) universality class.

In Part III, we utilized the subwavelength spacing of our optical lattice to study
cooperative light scattering in square arrays of atomic dipoles. By probing the steady-
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state reflectance and transmittance spectra in the single-photon regime, we demon-
strated the direct excitation of subradiant optical modes. We furthermore observed
high specular reflectivity, indicating the utility of atomic arrays for quantum informa-
tion processing, and characterized its sensitivity to positional disorder.

10.2 Outlook
The measurements and technical upgrades presented in this thesis have opened the
door to a variety of future research directions in the fields of both quantum simulation
of mobile bosons or spins on lattices and quantum optics with atomic dipole arrays.

Quantum simulation with itinerant atoms

The implementation of large-scale BH systems with homogeneous trapping potentials
in principle enables studies of the quantum phase transition (QPT) beyond the coarse
parametric resolution probed so far. This could allow for measurements of critical scal-
ing near the transition [316], for which the experimental challenge lies in minimizing
residual potential disorder far below the kinetic energy. The control over the lattice
geometry and the presence of defined system edges could also enable microscopic
studies of non-dispersive edge states [317, 318]; by implementing driven lattices [319],
one could furthermore engineer flat ground bands, where geometric frustration in the
BH model is predicted to give rise to supersolid or exotic superfluid phases [320, 321].

Lattice-dependent effects can also be observed when introducing the spin degree
of freedom (DOF), enabling studies of the bosonic t–J model [96]. Using single-site
addressing, hole propagation measurements [322] can be performed to study pola-
ronic physics in otherwise undoped variable spin backgrounds, which could feature
interference-driven spin ordering or frustration-induced magnon–hole binding [323–
325], and could reveal differences to the fermionic model variant. Furthermore, by
performing dynamics in site-resolved projected magnetic fields with a Néel-state spin
background, staggered-field–assisted magnetic hole–hole binding could be studied.
The main challenge for such experiments, in addition to homogeneous potentials and
projection fidelity, lies in the preparation of a defect-free atomic background.

While we have studied the properties of 1D spin chains in detail, the 2D XXX
model also hosts rich physics. Regarding equilibrium states, single-site control could
allow for the adiabatic preparation of antiferromagnetic states [243], enabling the study
of the inverted spectrum and negative-temperature properties of the ferromagnetic
spin model [326]; furthermore, by subsequently changing the lattice geometry, one
could potentially prepare spin liquid or chiral superfluid phases [327–329]. In the
context of far-from-equilibrium physics, universal equilibration dynamics in 2D can
be studied, including interface deformations of a DW initial state or the relaxation of
spin helices [330]. In analogy to the hole-propagation measurements, mobile holes also
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represent a limitation to studying 2D spin models, for which the separation of hopping
and spin-exchange timescales hinders probing pure spin physics. A possible solution
for dynamics experiments could involve adding a strong spin-independent potential
gradient, which localizes the holes on relevant timescales.

Finally, Raman sideband imaging of a MI state prior to an experiment would
constitute a valuable tool [331], aiding in the realization of better-filled arrays [307] and
enabling the characterization of the exact initial many-body state of every experimental
run. With this knowledge, one could measure the FCS of generic time-evolution
experiments starting from product states [332, 333], or perform quantum information
experiments, including benchmarking the many-body fidelity of itinerant quantum
simulators [334].

Quantum optics with atom arrays

Atom arrays with optimized positional order constitute a promising quantum optics
platform, as they can act as coherent, narrow-band and saturable optical elements.
This could enable waveguide quantum electrodynamics (QED) studies of separately
trapped impurity atoms, where the photonic waveguide is formed by atomic chains
and its dispersion could be engineered through atomic positioning, enabling con-
trol over the interactions between the impurities [335]. Furthermore, two spatially
separated 2D atomic layers could be prepared to realize optical cavities to generate
interesting photonic states or to probe cavity QED [336, 337].

A photon detector with higher sensitivity could be added to substantially extend
our experiments, in which we probed the control of the mirror reflectivity with a single
atom through Rydberg–electromagnetically induced transparency (EIT) [315], and
could be used to measure correlations between atomic and mirror states. Preparing
the control atom in a superposition state, one could generate a photonic cat state [292],
whose detection would require capturing and interfering both the transmitted and
reflected part of the probe light in a phase-stabilized setup. Atomic multimode control
over the array reflectivity could be demonstrated by preparing entangled states of
multiple spatially separated control atoms [338], which switch the electromagnetic (EM)
response on a subarea of the array. Correlations in the light field, which characterize
the state of the control atoms, could be observable by interfering the light originating
from the different subareas, and would naturally be detectable by imaging the far field
of the reflected light.

As the mirror reflectivity characterizes the achievable fidelities in many quantum
applications [291], improving the array order of the atoms is of central importance.
This can be achieved using optical lattices at a magic wavelength for 87Rb of 740 nm,
which not only allows for a reduced strength of and sensitivity on positional disorder
but would also grant access to strongly subradiant modes outside of the light cone [76].
While not directly excitable, these modes could be experimentally prepared through
a weak drive of a three-photon transition or by geometric phase imprinting with fast
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pulses [339, 340]. The long lifetimes associated with such states could then enable the
realization of quantum memories or controlled photonic interactions [76, 290, 341, 342].
For finite-size arrays of dipoles with unique electronic ground states, local illumination
could furthermore drive topologically protected edge states enabling controlled free-
space emission [295, 343].

The introduction of a fast single-photon–sensitive detector could further expand
the range of possible experiments to studying the decay dynamics of, e.g., metrolog-
ically interesting multi-photon excited states, including the observation of late-time
subradiant power-law decay with interaction-induced spatial correlations [344]. Full
inversion of the dipoles could in addition yield initial decay dynamics which show
directional, array-spacing and dimensionality-dependent superradiant bursts [269].
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[218] M. Žnidarič. Spin transport in a one-dimensional anisotropic Heisenberg model. Phys.
Rev. Lett. 106, 220601 (2011). (Cited on page 67)

http://dx.doi.org/10.21468/SciPostPhysLectNotes.18
http://dx.doi.org/10.21468/SciPostPhysLectNotes.18
http://dx.doi.org/10.1088/1742-5468/ac3658
http://dx.doi.org/10.21468/SciPostPhys.3.6.039
http://dx.doi.org/10.21468/SciPostPhys.3.6.039
http://dx.doi.org/10.1103/PhysRevLett.117.207201
http://dx.doi.org/10.1103/PhysRevLett.117.207201
http://dx.doi.org/10.1103/PhysRevX.6.041065
http://dx.doi.org/10.1007/BF01341708
http://dx.doi.org/10.1088/1742-5468/ac12c7
http://dx.doi.org/10.21468/SciPostPhys.9.5.075
http://dx.doi.org/10.21468/SciPostPhys.9.5.075
http://dx.doi.org/10.1103/RevModPhys.93.025003
http://dx.doi.org/10.1038/nphys894
http://dx.doi.org/10.1103/PhysRevLett.106.220601
http://dx.doi.org/10.1103/PhysRevLett.106.220601


Bibliography 143

[219] V. B. Bulchandani. Kardar-Parisi-Zhang universality from soft gauge modes. Phys.
Rev. B 101, 041411 (2020). (Cited on page 67)

[220] Ž. Krajnik and T. Prosen. Kardar–Parisi–Zhang physics in integrable rotationally
symmetric dynamics on discrete space–time lattice. J. Stat. Phys. 179, 110–130 (2020).
(Cited on pages 67, 76, and 85)

[221] E. Ilievski, J. De Nardis, S. Gopalakrishnan, R. Vasseur, and B. Ware. Superuni-
versality of superdiffusion. Phys. Rev. X 11, 031023 (2021). (Cited on pages 67, 76,
and 85)

[222] P. Lu, G. Müller, and M. Karbach. Quasiparticles in the XXZ model. Condens.
Matter Phys. 12, 381–398 (2009). (Cited on page 68)

[223] T. Prosen and E. Ilievski. Families of quasilocal conservation laws and quantum spin
transport. Phys. Rev. Lett. 111, 057203 (2013). (Cited on page 68)

[224] E. Ilievski and J. De Nardis. Microscopic origin of ideal conductivity in integrable
quantum models. Phys. Rev. Lett. 119, 020602 (2017). (Cited on page 68)

[225] V. B. Bulchandani, R. Vasseur, C. Karrasch, and J. E. Moore. Bethe-Boltzmann
hydrodynamics and spin transport in the XXZ chain. Phys. Rev. B 97, 045407 (2018).
(Cited on page 68)

[226] M. Collura, A. De Luca, and J. Viti. Analytic solution of the domain-wall nonequilib-
rium stationary state. Phys. Rev. B 97, 081111 (2018). (Cited on page 68)

[227] E. Ilievski, J. De Nardis, M. Medenjak, and T. Prosen. Superdiffusion in one-
dimensional quantum lattice models. Phys. Rev. Lett. 121, 230602 (2018). (Cited on
page 69)

[228] S. Gopalakrishnan, R. Vasseur, and B. Ware. Anomalous relaxation and the high-
temperature structure factor of XXZ spin chains. Proc. Natl. Acad. Sci. 116, 16250–
16255 (2019). (Cited on pages 69, 70, and 79)

[229] M. K. Joshi, F. Kranzl, A. Schuckert, I. Lovas, C. Maier, R. Blatt, M. Knap, and C. F.
Roos. Observing emergent hydrodynamics in a long-range quantum magnet. Science
376, 720–724 (2022). (Cited on pages 71, 87, and 92)

[230] P. N. Jepsen, J. Amato-Grill, I. Dimitrova, W. W. Ho, E. Demler, and W. Ketterle.
Spin transport in a tunable Heisenberg model realized with ultracold atoms. Nature
588, 403–407 (2020). (Cited on pages 71 and 81)

http://dx.doi.org/10.1103/PhysRevB.101.041411
http://dx.doi.org/10.1103/PhysRevB.101.041411
http://dx.doi.org/10.1007/s10955-020-02523-1
http://dx.doi.org/10.1103/PhysRevX.11.031023
http://dx.doi.org/10.5488/CMP.12.3.381
http://dx.doi.org/10.5488/CMP.12.3.381
http://dx.doi.org/10.1103/PhysRevLett.111.057203
http://dx.doi.org/10.1103/PhysRevLett.119.020602
http://dx.doi.org/10.1103/PhysRevB.97.045407
http://dx.doi.org/10.1103/PhysRevB.97.081111
http://dx.doi.org/10.1103/PhysRevLett.121.230602
http://dx.doi.org/10.1073/pnas.1906914116
http://dx.doi.org/10.1073/pnas.1906914116
http://dx.doi.org/10.1126/science.abk2400
http://dx.doi.org/10.1126/science.abk2400
http://dx.doi.org/10.1038/s41586-020-3033-y
http://dx.doi.org/10.1038/s41586-020-3033-y


144 Bibliography

[231] A. Scheie, N. E. Sherman, M. Dupont, S. E. Nagler, M. B. Stone, G. E. Granroth,
J. E. Moore, and D. A. Tennant. Detection of Kardar–Parisi–Zhang hydrodynamics
in a quantum Heisenberg spin-1/2 chain. Nat. Phys. 17, 726–730 (2021). (Cited on
page 71)

[232] C. D. White, M. Zaletel, R. S. K. Mong, and G. Refael. Quantum dynamics of
thermalizing systems. Phys. Rev. B 97, 035127 (2018). (Cited on page 76)

[233] B. Ye, F. Machado, C. D. White, R. S. K. Mong, and N. Y. Yao. Emergent hydro-
dynamics in nonequilibrium quantum systems. Phys. Rev. Lett. 125, 030601 (2020).
(Cited on page 76)

[234] J. De Nardis, S. Gopalakrishnan, R. Vasseur, and B. Ware. Stability of superdiffusion
in nearly integrable spin chains. Phys. Rev. Lett. 127, 057201 (2021). (Cited on
pages 77 and 86)

[235] F. Weiner, P. Schmitteckert, S. Bera, and F. Evers. High-temperature spin dynamics in
the Heisenberg chain: Magnon propagation and emerging Kardar-Parisi-Zhang scaling
in the zero-magnetization limit. Phys. Rev. B 101, 045115 (2020). (Cited on page 78)

[236] G. Cecile, S. Gopalakrishnan, R. Vasseur, and J. De Nardis. Hydrodynamic relax-
ation of spin helices. Phys. Rev. B 108, 075135 (2023). (Cited on page 83)

[237] D. Gobert, C. Kollath, U. Schollwöck, and G. Schütz. Real-time dynamics in spin-
1/2 chains with adaptive time-dependent density matrix renormalization group. Phys.
Rev. E 71, 036102 (2005). (Cited on page 84)

[238] J. Mossel and J.-S. Caux. Relaxation dynamics in the gapped XXZ spin-1/2 chain.
New J. Phys. 12, 055028 (2010). (Cited on page 84)

[239] G. Misguich, K. Mallick, and P. L. Krapivsky. Dynamics of the spin-1/2 Heisenberg
chain initialized in a domain-wall state. Phys. Rev. B 96, 195151 (2017). (Cited on
page 84)

[240] Ž. Krajnik, E. Ilievski, and T. Prosen. Absence of normal fluctuations in an integrable
magnet. Phys. Rev. Lett. 128, 090604 (2022). (Cited on pages 85 and 91)

[241] B. Ye, F. Machado, J. Kemp, R. B. Hutson, and N. Y. Yao. Universal Kardar-Parisi-
Zhang dynamics in integrable quantum systems. Phys. Rev. Lett. 129, 230602 (2022).
(Cited on page 85)

[242] M. Mamaev, I. Kimchi, R. M. Nandkishore, and A. M. Rey. Tunable-spin-model
generation with spin-orbit-coupled fermions in optical lattices. Phys. Rev. Res. 3,
013178 (2021). (Cited on page 86)

http://dx.doi.org/10.1038/s41567-021-01191-6
http://dx.doi.org/10.1103/PhysRevB.97.035127
http://dx.doi.org/10.1103/PhysRevLett.125.030601
http://dx.doi.org/10.1103/PhysRevLett.127.057201
http://dx.doi.org/10.1103/PhysRevB.101.045115
http://dx.doi.org/10.1103/PhysRevB.108.075135
http://dx.doi.org/10.1103/PhysRevE.71.036102
http://dx.doi.org/10.1103/PhysRevE.71.036102
http://dx.doi.org/10.1088/1367-2630/12/5/055028
http://dx.doi.org/10.1103/PhysRevB.96.195151
http://dx.doi.org/10.1103/PhysRevLett.128.090604
http://dx.doi.org/10.1103/PhysRevLett.129.230602
http://dx.doi.org/10.1103/PhysRevResearch.3.013178
http://dx.doi.org/10.1103/PhysRevResearch.3.013178


Bibliography 145

[243] H. Sun, B. Yang, H.-Y. Wang, Z.-Y. Zhou, G.-X. Su, H.-N. Dai, Z.-S. Yuan, and
J.-W. Pan. Realization of a bosonic antiferromagnet. Nat. Phys. 17, 990–994 (2021).
(Cited on pages 86 and 122)

[244] S. Krinner, T. Esslinger, and J.-P. Brantut. Two-terminal transport measurements
with cold atoms. J. Phys.: Condens. Matter 29, 343003 (2017). (Cited on page 87)

[245] L. S. Levitov, H. Lee, and G. B. Lesovik. Electron counting statistics and coherent
states of electric current. J. Math. Phys. 37, 4845–4866 (1996). (Cited on page 88)

[246] R. Samajdar, E. McCulloch, V. Khemani, R. Vasseur, and S. Gopalakrishnan. Quan-
tum turnstiles for robust measurement of full counting statistics. arXiv:2305.15464
(2023). (Cited on page 88)

[247] J. De Nardis, S. Gopalakrishnan, and R. Vasseur. Non-linear fluctuating hydrody-
namics for KPZ scaling in isotropic spin chains. arXiv:2212.03696 (2023). (Cited on
page 91)

[248] S. Gopalakrishnan and R. Vasseur. Superdiffusion from nonabelian symmetries in
nearly integrable systems. arXiv:2305.15463 (2023). (Cited on page 91)

[249] E. Rosenberg, T. Andersen, R. Samajdar, A. Petukhov, J. Hoke, D. Abanin,
A. Bengtsson, I. Drozdov, C. Erickson, P. Klimov, X. Mi, A. Morvan, M. Neeley,
C. Neill, R. Acharya, I. Aleiner, R. Allen, K. Anderson, M. Ansmann, F. Arute,
K. Arya, A. Asfaw, J. Atalaya, J. Bardin, A. Bilmes, G. Bortoli, A. Bourassa,
J. Bovaird, L. Brill, M. Broughton, B. B. Buckley, D. Buell, T. Burger, B. Burkett,
N. Bushnell, J. Campero, H.-S. Chang, Z. Chen, B. Chiaro, D. Chik, J. Cogan,
R. Collins, P. Conner, W. Courtney, A. Crook, B. Curtin, D. Debroy, A. D. T. Barba,
S. Demura, A. Di Paolo, A. Dunsworth, C. Earle, E. Farhi, R. Fatemi, V. Fer-
reira, L. Flores, E. Forati, A. Fowler, B. Foxen, G. Garcia, É. Genois, W. Giang,
C. Gidney, D. Gilboa, M. Giustina, R. Gosula, A. G. Dau, J. Gross, S. Habeg-
ger, M. Hamilton, M. Hansen, M. Harrigan, S. Harrington, P. Heu, G. Hill,
M. Hoffmann, S. Hong, T. Huang, A. Huff, W. Huggins, L. Ioffe, S. Isakov,
J. Iveland, E. Jeffrey, Z. Jiang, C. Jones, P. Juhas, D. Kafri, T. Khattar, M. Khezri,
M. Kieferová, S. Kim, A. Kitaev, A. Klots, A. Korotkov, F. Kostritsa, J. M. Kreike-
baum, D. Landhuis, P. Laptev, K. M. Lau, L. Laws, J. Lee, K. Lee, Y. Lensky,
B. Lester, A. Lill, W. Liu, W. P. Livingston, A. Locharla, S. Mandrà, O. Martin,
S. Martin, J. McClean, M. McEwen, S. Meeks, K. Miao, A. Mieszala, S. Mon-
tazeri, R. Movassagh, W. Mruczkiewicz, A. Nersisyan, M. Newman, J. H. Ng,
A. Nguyen, M. Nguyen, M. Niu, T. O’Brien, S. Omonije, A. Opremcak, R. Potter,
L. Pryadko, C. Quintana, D. Rhodes, C. Rocque, N. Rubin, N. Saei, D. Sank,
K. Sankaragomathi, K. Satzinger, H. Schurkus, C. Schuster, M. Shearn, A. Shorter,
N. Shutty, V. Shvarts, V. Sivak, J. Skruzny, C. Smith, R. Somma, G. Sterling,

http://dx.doi.org/10.1038/s41567-021-01277-1
http://dx.doi.org/10.1088/1361-648X/aa74a1
http://dx.doi.org/10.1063/1.531672
http://dx.doi.org/10.48550/arXiv.2305.15464
http://dx.doi.org/10.48550/arXiv.2305.15464
http://dx.doi.org/10.48550/arXiv.2212.03696
http://dx.doi.org/10.48550/arXiv.2305.15463


146 Bibliography

D. Strain, M. Szalay, D. Thor, A. Torres, G. Vidal, B. Villalonga, C. V. Heidweiller,
T. White, B. Woo, C. Xing, J. Yao, P. Yeh, J. Yoo, G. Young, A. Zalcman, Y. Zhang,
N. Zhu, N. Zobrist, H. Neven, R. Babbush, D. Bacon, S. Boixo, J. Hilton, E. Lucero,
A. Megrant, J. Kelly, Y. Chen, V. Smelyanskiy, V. Khemani, S. Gopalakrishnan,
T. Prosen, and P. Roushan. Dynamics of magnetization at infinite temperature in a
Heisenberg spin chain. arXiv:2306.09333 (2023). (Cited on pages 91 and 92)

[250] Ž. Krajnik, J. Schmidt, E. Ilievski, and T. Prosen. Universal distributions of mag-
netization transfer in integrable spin chains. arXiv:2303.16691 (2023). (Cited on
page 91)

[251] M. Fava, B. Ware, S. Gopalakrishnan, R. Vasseur, and S. A. Parameswaran. Spin
crossovers and superdiffusion in the one-dimensional Hubbard model. Phys. Rev. B 102,
115121 (2020). (Cited on page 92)

[252] V. Eisler and Z. Rácz. Full counting statistics in a propagating quantum front and
random matrix spectra. Phys. Rev. Lett. 110, 060602 (2013). (Cited on page 92)

[253] D. E. Chang, J. S. Douglas, A. González-Tudela, C.-L. Hung, and H. J. Kimble.
Colloquium: Quantum matter built from nanoscopic lattices of atoms and photons. Rev.
Mod. Phys. 90, 031002 (2018). (Cited on page 95)
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