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1 General Introduction

“We are surrounded by the clocks on our wrists, smartphones, cars,
appliances, walls, and computers. But it turns out that we are not only
surrounded by clocks, we are also filled with them.”

Dean Buonomano, Your Brain is a Time Machine

Timing is a fundamental mental ability which underlies the primary cognitive and

perceptual functions of the brain. This ability enables the organisms to determine when an

event occurs and how long it lasts. For example, while we get ready for work in the morning,

we have the striking ability to keep track of the passage of time of our every behavior or

action. There is almost an inner “sense” for how long time has been spent in the shower or

preparing breakfast, when the bus will be arriving at the bus station or when we should leave

home. Our subjective timing is not only limited to such conscious experiences, but also holds

an essential role in more unconscious or automatic processes such as perception or motor

performances (Coull et al., 2011).

Temporal prediction, that is, the time interval in which an organism expects an event

to occur, is one of the key mechanisms affecting perception and action (Barnes & Jones,

2000; Nobre et al., 2007). Perceptual studies varying temporal uncertainties have shown that

visual detection performances, e.g., for luminance and orientation, increase with higher

temporal certainties (Lasley & Cohn, 1981; Westheimer & Ley, 1996). Similarly, studies

using attentional orientation tasks have reported that detection and discrimination

performances are faster and more accurate when temporal expectations are cued to the

moment when stimuli would appear (Correa et al., 2004; Coull & Nobre, 1998). Moreover, in

addition to predicting onset and offsets of events, the delay in between those markers as well

as their orders, the brain can also measure elapsed time. The time keeping ability at the

sub-second to several seconds range, known as interval timing, is required for the perception

and production of accurate motor responses, speech, rhythm and music (Matell & Meck,

2000; Patel, 2003). This is illustrated by the studies researching the individuals with

Parkinson’s disease (PD), i.e., a disorder related to the dysfunctioning dopamine system in

the basal ganglia, an area also responsible for interval timing (Buhusi & Meck, 2005; Gu et

al., 2016; Merchant et al., 2008). The patients with PD have been reported to have difficulties

in movement production and coordination, keeping up with rhythmic motor responses and

speech production (Gu et al., 2016; O’Boyle et al., 1996; Volkmann, 1992). Overall, interval

https://paperpile.com/c/2TTw20/xCb0
https://paperpile.com/c/2TTw20/1hI5+Nez8
https://paperpile.com/c/2TTw20/1hI5+Nez8
https://paperpile.com/c/2TTw20/o0RQ+POI7
https://paperpile.com/c/2TTw20/gXJX+CfqH
https://paperpile.com/c/2TTw20/82fh+6TXr
https://paperpile.com/c/2TTw20/82fh+6TXr
https://paperpile.com/c/2TTw20/qbw5+mIGG+Nu6w
https://paperpile.com/c/2TTw20/qbw5+mIGG+Nu6w
https://paperpile.com/c/2TTw20/3c9a+93Ki+qbw5
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timing has been suggested to be essential and inevitable for attention, perception, action and

cognition (Matell & Meck, 2000).

Despite the importance of interval timing ability, it still holds very systematic biases.

Sensory environments built up through trial history and expectations derived from the recent

past are the two common factors affecting subjective judgments of time (Bausenhart et al.,

2014; Dyjas et al., 2014; Lejeune & Wearden, 2009). The former phenomenon which is

termed as central tendency bias implies that the perceptual judgements are influenced by the

statistical structure of the past events (Gu & Meck, 2011). Likewise, responses to current

stimuli are biased towards the preceding stimulus, indicating serial dependence

characteristics in timing (Cicchini et al., 2018). Over the half a century, these biases have

been studied extensively (Helson, 1948; Parducci, 1965). Helson (1948)’s adaptation-level

theory and Parducci (1965)’s range-frequency theory have defined the biases in terms of the

sample range which is the current stimulus drawn from while providing no explanation why

they occur initially. Bayesian models of timing stand out for a more recent interpretation of

the contextual biases (Jazayeri & Shadlen, 2010; Miyazaki et al., 2005). They suggest that the

brain monitors the uncertainty of a sensory measurement and adapts its estimation based on

the statistics of the sensory environment (Jazayeri & Shadlen, 2010). Since then, Bayesian

analysis has long been used to provide insights on many contextual factors (Burr et al., 2013;

Gu et al., 2016; Shi et al., 2013). However, there are still some key questions which cannot be

answered using classical Bayesian approaches. For instance, classical models do not consider

the temporal order of the tested intervals while integrating the sensory temporal input with

prior history. In fact, we observe differential time estimation results with the change of target

interval orders while keeping the statistical properties of the input the same (the details are

described in Chapter 2). Moreover, there is a gap between the Bayesian descriptions and their

implementations in the brain.

The following part (1.1) reviews general systematic biases observed during interval

timing and introduces influential cognitive frameworks of interval timing process. Then, the

second part of the introduction (1.2) describes the typical temporal distortions related to the

features of sensory environments and their potential neural underpinnings. The third part

(1.3) details the Bayesian models of time and describes how the Bayesian frameworks might

be implemented in the brain. The final part (1.4) details the aim of the current dissertation.

Chapters 2, 4 and 5 report three studies performed to address the effects of temporal

characteristics on the subjective experience of the passage of time, while Chapter 3 describes

https://paperpile.com/c/2TTw20/6TXr
https://paperpile.com/c/2TTw20/e7Xa+Y3Vb+hzXU
https://paperpile.com/c/2TTw20/e7Xa+Y3Vb+hzXU
https://paperpile.com/c/2TTw20/TbDC
https://paperpile.com/c/2TTw20/DoIa
https://paperpile.com/c/2TTw20/87ah+JlPL
https://paperpile.com/c/2TTw20/87ah/?noauthor=1
https://paperpile.com/c/2TTw20/JlPL/?noauthor=1
https://paperpile.com/c/2TTw20/2oi0+p1Ah
https://paperpile.com/c/2TTw20/p1Ah
https://paperpile.com/c/2TTw20/EKJY+FVEL+qbw5
https://paperpile.com/c/2TTw20/EKJY+FVEL+qbw5
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a short review on the neural signatures of interval timing. Chapter 6 discusses the findings of

the empirical work and evaluates the short review.

1.1 Psychophysical Laws of Time and Timing in the Brain

There are quantitative relationships between the physical world and their percept.

Over the last decades, psychophysical studies have tried to identify the specific conditions

where physical stimuli give rise to constant perceptual outcomes. Previous research has

explained these lawful relationships using statistical and cognitive models of the time (Paton

& Buonomano, 2018). One caveat of the timing models, however, is to primarily use and

model the processing of interval timing. Instead of a single isolated stimulus, objects, sounds

or actions that we encounter in everyday life are surrounded by other objects or features; thus,

the perception of a target input strongly depends on its spatial and temporal context

(Schwartz et al., 2007). In this part, I introduce psychophysical laws of interval timing and

how they are explained using neuro-cognitive and statistical models.

1.1.1 Stimulus Order Effects

Performance on stimulus judgments depends on the stimulus presentation order. The

discovery of the order effects can be traced back to early work of Fechner (1860). In his

influential work Elemente Der Psychophysik, he reports two constant errors during two

stimuli comparison performance: time-order errors (“Zeitfehler”) and space-order errors

(“Raumfehler”) which are observed depending on the stimulus temporal position (if

presented as the first or the second) and spatial position (if presented on the right or left of the

visual field). Later, it has been shown that when the two stimuli are presented consecutively,

the perception of the second stimulus is systematically biased as a function of the first

stimulus magnitude, known as the time-order error (TOE) (Allan & Gibbon, 1994; A.

Hellström, 1979; Schab & Crowder, 1988). For example, when participants were asked to

compare two intervals which were of equal length, participants underestimated the second

interval when the first interval was a short duration (shorter than 500 ms), whereas

overestimated when the first interval was a long duration (longer than 700 ms) (Nakajima et

al., 2004). This effect has been explained by Woodrow’s (1935) interpretation stating that the

perception of the first interval shifts towards the standard around the ‘indifference interval’ (a

duration between 500 to 700 ms) and the second interval comparison is being made with a

https://paperpile.com/c/2TTw20/Lecv
https://paperpile.com/c/2TTw20/Lecv
https://paperpile.com/c/2TTw20/KP5a/?noauthor=1
https://paperpile.com/c/2TTw20/DZhK+iNzZ+2zCW
https://paperpile.com/c/2TTw20/DZhK+iNzZ+2zCW
https://paperpile.com/c/2TTw20/Yg5Y
https://paperpile.com/c/2TTw20/Yg5Y
https://paperpile.com/c/2TTw20/5izA/?noauthor=1
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subjectively biased first interval. Since then, TOE is generally measured as the difference

between the point of subjective equality (PSE) and the standard first interval (Woodworth &

Schlosberg, 1954), where PSE is defined as the magnitude which gives rise to 50% “long”

duration judgments of the second interval (A. Hellström, 1979; A. Hellström & Rammsayer,

2004; Å. Hellström & Rammsayer, 2015). Subsequently, a series of work has suggested the

effects of stimulus order on the discrimination performance depends on the sensitivity

differences between two intervals, termed as Type B effect (Ulrich & Vorberg, 2009;

Yeshurun et al., 2008).

Timing of sequential entities differs compared to single isolated intervals behaviorally

and neurally. For example, the neural encoding mechanism of sequence timing (e.g., basal

ganglia) has been suggested to differ from those of single interval timing (e.g., cerebellum)

(Grahn, 2009; R. Ivry, 1993; Teki et al., 2011). Yet, stimulus order effects are also found in a

series of time intervals. When a train of short time intervals are presented consecutively, the

last duration is underestimated, an effect known as time-shrinking illusion (Hoopen et al.,

1993; Nakajima, Ten Hoopen, et al., 1992) and this has been explained within the Bayesian

framework stating that the perceived duration of a single target is biased towards the

sequence mean (Burr et al., 2013).

1.1.2 Regression and Range Effects

A few years after Fechner’s book Elemente Der Psychophysik (1860), Vierordt

published Der Zeitsinn nach Versuchen (1868) as a seminal work on time perception

investigations using psychophysical methods developed until then. One of the main findings

from that work is known as Vierordt’s law, also referred to as the regression effect and central

tendency bias. It is an observed effect when the subjective judgment of a given interval is

biased towards the mean interval (Vierordt, 1868), leading to underestimation of large

magnitudes while overestimation of small magnitudes. This effect was evident in many

studies showing that the sensory measurement is not only the outcome of the current input

but is also influenced by the statistics of the previously experienced stimuli (Gu & Meck,

2011; Lejeune & Wearden, 2009; Penney et al., 2000; Taatgen & van Rijn, 2011). The nature

of this effect depends on many factors such as individual differences, sensory modality and

stimulus set properties. For instance, expert musicians who are known to be more precise at

time perception compared to non-musicians, show less central tendency biases than the

control group in temporal reproduction performance (Aagten-Murphy et al., 2014).

Moreover, patients with PD who are with dysfunctional dopaminergic regulations in the

https://paperpile.com/c/2TTw20/UEtY
https://paperpile.com/c/2TTw20/UEtY
https://paperpile.com/c/2TTw20/2wg2+1O66+2zCW
https://paperpile.com/c/2TTw20/2wg2+1O66+2zCW
https://paperpile.com/c/2TTw20/Pj1C+VtIj
https://paperpile.com/c/2TTw20/Pj1C+VtIj
https://paperpile.com/c/2TTw20/trGR+5Wf1+BUof
https://paperpile.com/c/2TTw20/xj7I+3kxY
https://paperpile.com/c/2TTw20/xj7I+3kxY
https://paperpile.com/c/2TTw20/FVEL
https://paperpile.com/c/2TTw20/KP5a/?noauthor=1
https://paperpile.com/c/2TTw20/0ppq/?noauthor=1
https://paperpile.com/c/2TTw20/0ppq
https://paperpile.com/c/2TTw20/aIkq+s3va+TbDC+hzXU
https://paperpile.com/c/2TTw20/aIkq+s3va+TbDC+hzXU
https://paperpile.com/c/2TTw20/y2w5
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striatum, resulting in disturbances in interval timing, show stronger central tendency biases

than the healthy control group (Malapani et al., 1998). More than a half a century has passed

since researchers discovered the differences in time estimations for the different sensory

modalities (Goldstone et al., 1959; Maier et al., 1961). It is established that auditory stimuli

are more precisely encoded compared to visual stimuli, e.g., sounds are judged longer than

the lights when presented for the same amount of time. Therefore, a stronger central tendency

bias is observed for visual compared to auditory stimuli. For instance, the study of Cicchini et

al. (2012) showed that expert musicians (string musicians) and the non-musician control

group had central tendency bias for the visual stimuli only, while no bias was observed for

the auditory stimuli, including the control group. The regression bias is also known to be

more pronounced for larger sample intervals as compared to shorter sample intervals, known

as the range effect (Jazayeri & Shadlen, 2010).

1.1.3 Scalar Variability and Internal Clock Mechanism

When subjective judgements of time intervals are being researched in humans and

other animals, a consistent feature, referred to as scalar variability, is being noticed (Gibbon,

1977). Similar to Weber’s law (Fechner, 1860), which is a common psychophysical law

followed by many sensory dimensions such as brightness, loudness and motion detection, the

standard deviation of participants’ time estimations are being observed to increase linearly as

the target intervals increase in magnitude (Gallistel & Gibbon, 2000; Rakitin et al., 1998).

Since then, the scalar variability in the time domain is being reported in numerous behavioral

responses and neural activations (Hinton & Meck, 2004; Malapani & Fairhurst, 2002; Meck,

2003; Meck & Malapani, 2004; Wearden & Grindrod, 2003).

The explanation of this phenomenon roots in the noise emerging in the internal clock

system (Treisman, 1963). It has been so long that the question of how the brain achieves its

time perception has puzzled scientists. Time, in contrast to the other sensory dimensions,

does not have a sensory system devoted to it. Nevertheless, the brain is surprisingly accurate

at discrimination durations varying in a few milliseconds (Rammsayer & Lima, 1991) and at

sensorimotor synchronization with regular beats (Mates et al., 1994). Yet, the neural basis of

timing abilities and time perception is still not known. It has been extensively discussed if the

processing of time is achieved with the dedicated, clock-like neural mechanisms or is a

consequence of other cognitive processes (R. B. Ivry & Schlerf, 2008). One group of theories

suggest that the brain keeps track of time with a dedicated internal clock mechanism, e.g.,

Scalar Expectancy Theory (SET), Striatal Beat-Frequency (SBF). For example, based on

https://paperpile.com/c/2TTw20/f4As
https://paperpile.com/c/2TTw20/o8ZD+Bim9
https://paperpile.com/c/2TTw20/vBvM/?noauthor=1
https://paperpile.com/c/2TTw20/p1Ah
https://paperpile.com/c/2TTw20/5fRp
https://paperpile.com/c/2TTw20/5fRp
https://paperpile.com/c/2TTw20/KP5a
https://paperpile.com/c/2TTw20/FEtn+JitS
https://paperpile.com/c/2TTw20/9xZf+846B+gNJU+9fm6+38Uo
https://paperpile.com/c/2TTw20/9xZf+846B+gNJU+9fm6+38Uo
https://paperpile.com/c/2TTw20/5sbv
https://paperpile.com/c/2TTw20/Hf04
https://paperpile.com/c/2TTw20/3ZPI
https://paperpile.com/c/2TTw20/tapN
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SET, there is a three-stage information processing system where initially, a passage of time

index is accumulated in the central clock as “pulses” (resembling the ticks in a physical

clock), stored in the memory and retrieved when a comparison is needed during the decision

stage (Gibbon et al., 1984). Although SET has been a remarkable model of internal timing for

years, it has been criticized to suffer from reasonable neurobiological underpinnings (van

Rijn et al., 2014). Matell and Meck’s (2004) SBF model, providing a neurobiological

mechanism for the dedicated internal clock, assumes that the oscillations of the group of

neurons in the cortex and thalamus reset at the stimulus onsets and the concurrent firing

activity of these neurons are detected by the striatum. Dedicated models of time have been

supported considering the fact that we can transfer and compare our time estimation of one

sensory modality to another (Grondin & Rousseau, 1991; Ulrich et al., 2006). On the other

hand, strong evidence against the dedicated models with a centralized internal clock

mechanism comes from studies indicating modality-specific timing and local distortions in

sensory modalities (Bueti et al., 2008).

Second group of theories of timing, which can be referred to as intrinsic clock models,

suggest that timing is a consequence of inherent neural dynamics (R. B. Ivry & Schlerf,

2008). According to intrinsic clock models, the time perception is an outcome of the

perceptual tasks which are inherently temporal in nature (Paton & Buonomano, 2018).

Therefore, they propose no explicit clock mechanism like in pacemaker-accumulation theory

(Gibbon et al., 1984) or synchronous oscillations of population neurons (Matell & Meck,

2004). For example, the temporal context model (TCM) of Shankar and Howard (2010)

suggests that time perception of a stimulus depends on how it is represented in episodic

memory. Dedicated timing models described above are being criticized due to the fact that

the proposed mechanism needs to be restarted at every event (Addyman et al., 2016).

Memory models of the timing, e.g., the TCM and Gaussian Activation Model of Interval

Timing (French et al., 2014), can successfully overcome this resetting problem. Based on

these models, timing of all events is encoded by the principles of the memory traces with the

temporal representations of each event depending on memory decays (French et al., 2014).

1.1.4 Timing within the Bayesian Framework

The development of theories and models of timing initiates a framework to explain

how the brain processes time. Traditional timing models such as the pacemaker accumulator

model (Gibbon et al., 1984) suggest algorithms to account for subjective timing behavior,

while the models with biological implementations offer explanations on how timing takes

https://paperpile.com/c/2TTw20/1JzN
https://paperpile.com/c/2TTw20/LMqT
https://paperpile.com/c/2TTw20/LMqT
https://paperpile.com/c/2TTw20/NWYn/?noauthor=1
https://paperpile.com/c/2TTw20/DYAy+g3PH
https://paperpile.com/c/2TTw20/HV7X
https://paperpile.com/c/2TTw20/tapN
https://paperpile.com/c/2TTw20/tapN
https://paperpile.com/c/2TTw20/Lecv
https://paperpile.com/c/2TTw20/1JzN
https://paperpile.com/c/2TTw20/NWYn
https://paperpile.com/c/2TTw20/NWYn
https://paperpile.com/c/2TTw20/Trrl/?noauthor=1
https://paperpile.com/c/2TTw20/VByM
https://paperpile.com/c/2TTw20/QSqY
https://paperpile.com/c/2TTw20/QSqY
https://paperpile.com/c/2TTw20/1JzN


11

place in neural circuits (Paton & Buonomano, 2018). On the other hand, from the

computational perspective, Bayesian framework has been successful to elucidate the

questions whether and how the brain acts on the psychophysical laws, or systematic temporal

distortions, to improve timing performance. Recent studies using Bayesian inference provide

a lawful explanation to these questions (Jazayeri & Shadlen, 2010; Shi et al., 2013). Under

the Bayesian approach, the observer takes into account two sources of information while

making time estimations. First, the likelihood function of the statistics of the sensory

measurement is involved. Second, the prior probability distribution function of the past

intervals that the observer encountered is included in the final estimate. The idea of this

approach is that the information about the time estimations are noisy and they are improved

via integrating the prior knowledge.

Bayesian estimation models successfully account for the central tendency bias

(Jazayeri & Shadlen, 2010), and serial dependency effects (Cicchini & Burr, 2018). However,

they do not consider temporal order effects of the target intervals. There are recent studies

which examined the effect of the structure of target interval presentations (Glasauer & Shi,

2019a, 2021a). However, these studies researched the presentation order effects across an

experimental session, i.e., from trial to trial, whereas the temporal order effects within a trial

on the observed time estimations still lacked a thorough exploration. In Chapter 2, I describe

an experiment in which we manipulated the orders of target intervals embedded in temporal

patterns while keeping the statistics and the range of the probe intervals the same.

1.2 Context Effects in Time Estimation

It is well established that time estimations are influenced by previously experienced

intervals. Since the discovery of Vierordt’s central tendency bias (1868) and Fechner’s

time-order biases (1860), there has been a large body of work on the timing focusing on

temporal context effects. The term “temporal context” describes sample intervals that are

presented and stored in memory over the course of an exposure, i.e., in an experiment.

Behavioral studies suggest a distribution-dependent characteristics during time estimations

(Wearden, 1991; 1995) and a reliance on the ensemble perception principles (Zhu et al.,

2021). But until now, it is not clear how we achieve temporal context integration into the

current estimate. This is better investigated using measures with high temporal resolutions

such as the scalp-recorded electroencephalography (EEG) and event-related potentials

https://paperpile.com/c/2TTw20/Lecv
https://paperpile.com/c/2TTw20/p1Ah+EKJY
https://paperpile.com/c/2TTw20/p1Ah
https://paperpile.com/c/2TTw20/rOTP
https://paperpile.com/c/2TTw20/bqC0+XIOx
https://paperpile.com/c/2TTw20/bqC0+XIOx
https://paperpile.com/c/2TTw20/0ppq/?noauthor=1
https://paperpile.com/c/2TTw20/KP5a/?noauthor=1
https://paperpile.com/c/2TTw20/bRxN+eoWp/?noauthor=0,1
https://paperpile.com/c/2TTw20/TPQ4W
https://paperpile.com/c/2TTw20/TPQ4W
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(ERPs) (Luck, 2005). In this part, I describe the common temporal context effects and how

they are explained using both behavioral and neurophysiological evidence.

1.2.1 Distribution dependency

Traditional studies on temporal context commonly involve the use of perceptual

duration-categorisation tasks such as temporal generalization and bisection (Penney &

Cheng, 2018). Duration categorisation paradigms test the perception of a given interval and

provide the relationship between the tested intervals and their percentage of a correct

response. Typically, the shortest and longest durations of the target intervals (also known as

anchors or standards) are presented with a feedback in the training phase, and later, the

classification of the intermediate durations are examined in the testing phase (Church &

Deluty, 1977). The early works of Allan and Gibbon (1991) and Wearden (1991) have

suggested that the perception of the intermediate target intervals are affected by the geometric

mean of the anchor durations. Following this argument, the distribution of all target intervals,

including both anchors and intermediate intervals, have been shown to have an effect on the

categorisation (Brown et al., 2005; Penney et al., 2014). For example, as Brown et al.

(2005)’s temporal range-frequency account has pointed out, the perception of target durations

changes even though the mean of anchor durations stays the same. Instead, Brown et al.

(2005) suggested that the range position of a target (i.e., how far it is from the anchors) and

its rank order (i.e., the second or the sixth) holds a significance on the perceptual judgments.

Building upon this, Zhu and her colleagues (2021) proposed an ensemble-distribution

account, stating that categorisation judgments are based on the ensemble statistics (mean and

variance) of the set of target intervals. In large stimulus sets, how we memorize or assign the

weights to the range position or relative rank of each target would be challenging. Thus, Zhu

et al. (2021) proposed a categorisation mechanism in which humans make their perceptual

decisions by comparing the current stimulus with a memorized standard, i.e. the mean of the

target intervals set.

1.2.2 Ensemble perception

When we encounter a crowd of faces, a traffic jam or observe a pile of leaves on the

ground, we process, attend or memorize these scenes via several strategies. We either form

high-resolution representations at the cost of abandoning some parts of the scenes and

selectively attend to the most related part of them (Chun et al., 2011), or form low-resolution

https://paperpile.com/c/2TTw20/PdMuq
https://paperpile.com/c/2TTw20/a8uw
https://paperpile.com/c/2TTw20/a8uw
https://paperpile.com/c/2TTw20/8QtZ
https://paperpile.com/c/2TTw20/8QtZ
https://paperpile.com/c/2TTw20/PGl6/?noauthor=1
https://paperpile.com/c/2TTw20/bRxN/?noauthor=1
https://paperpile.com/c/2TTw20/pPSf+Wh0A
https://paperpile.com/c/2TTw20/pPSf/?noauthor=1
https://paperpile.com/c/2TTw20/pPSf/?noauthor=1
https://paperpile.com/c/2TTw20/TPQ4W/?noauthor=1
https://paperpile.com/c/2TTw20/TPQ4W/?noauthor=1
https://paperpile.com/c/2TTw20/LG4Qy
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representations of these complex scenes to extract the gist of the scenes or its statistical

properties (Oliva & Torralba, 2006). The second strategy, which our brain uses to cope with

its limitations in sensory mechanisms, involves perceiving the environment in a form of

statistical summary representations, known as ensemble perception (Whitney & Yamanashi

Leib, 2018). It is well established that ensemble perception takes place in the spatial

(Whitney & Yamanashi Leib, 2018) and temporal information (Schweickert et al., 2014). For

example, previous studies have shown such averaging mechanism in a variety of spatial

features, e.g. size (Ariely, 2001b), motion direction (Williams & Sekuler, 1984), orientation

(Parkes et al., 2001) and color (de Gardelle & Summerfield, 2011). Likewise, research has

shown that the human brain can form mean temporal information (Albrecht et al., 2012;

Piazza et al., 2013; Zhu et al., 2021).

1.2.3 Studying time using EEG

With the first known recording of ‘action potential’, that is a peculiar change in the

electric properties of a cell (Bernstein, 1868), researchers could take the advantage of using

the techniques to measure the electrical activity along the scalp elicited by the neuron firings.

Electroencephalography (EEG), given its high temporal resolution nature, has been a

cornerstone method to research how the brain achieves timing. Following the dedicated

models of time, EEG has been used to seek for mechanisms underlying different stages of

temporal processing including the encoding, maintenance and decision-making (Kononowicz,

Rijn, et al., 2018). For example, in a study in which researchers assessed the neural correlates

of temporal encoding, a heightened negativity waveform over fronto-central electrodes,

known as the contingent negative variation (CNV), was observed for longer compared to

shorter duration judgments (Herbst et al., 2015). In addition, the large positivity amplitude

measured over frontal cortical and the central-parietal regions following 300 to 400 ms after

stimulus evaluation, known as P300 or late positive component of timing (LPCt), has been

associated with temporal memory and decision-making processes (Ng & Penney, 2014;

Nieuwenhuis et al., 2005).

The late offset positivity components such as LPCt, P300 or P3 have been reported

repeatedly as the measures of temporal decision-making (Kelly & O’Connell, 2013; Ofir &

Landau, 2022a; Polich & Kok, 1995). In their recent findings, Ofir and Landau (2022b) used

a temporal accumulation-to-bound model (Balcı & Simen, 2014) and linked the P3 amplitude

to the distance to the decision threshold. In Chapter 3, I describe a short review in which we

review this recent paper (Ofir & Landau, 2022b) on their findings relating temporal

https://paperpile.com/c/2TTw20/Jlajv
https://paperpile.com/c/2TTw20/pdIQL
https://paperpile.com/c/2TTw20/pdIQL
https://paperpile.com/c/2TTw20/pdIQL
https://paperpile.com/c/2TTw20/hUxPV
https://paperpile.com/c/2TTw20/iyZWi
https://paperpile.com/c/2TTw20/DZzzv
https://paperpile.com/c/2TTw20/xPhhe
https://paperpile.com/c/2TTw20/eMriy
https://paperpile.com/c/2TTw20/RcLnS+XthSI+TPQ4W
https://paperpile.com/c/2TTw20/RcLnS+XthSI+TPQ4W
https://paperpile.com/c/2TTw20/9Qt3
https://paperpile.com/c/2TTw20/x6dE
https://paperpile.com/c/2TTw20/x6dE
https://paperpile.com/c/2TTw20/VEnq
https://paperpile.com/c/2TTw20/iyhJ+xV5m
https://paperpile.com/c/2TTw20/iyhJ+xV5m
https://paperpile.com/c/2TTw20/N0ma+RfpV+2oZ8
https://paperpile.com/c/2TTw20/N0ma+RfpV+2oZ8
https://paperpile.com/c/2TTw20/uRWZy/?noauthor=1
https://paperpile.com/c/2TTw20/dj55M
https://paperpile.com/c/2TTw20/uRWZy
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decision-making to offset P3 signals and showing contextual modulations on the offset EEG

signals.

1.2.4 Neural correlates of temporal context

Finding the neural mechanisms that translate physical time into perceived time has

always been a great interest of neuroscience. Therefore, until now, many aspects of subjective

timing have been extensively studied using neuroimaging techniques. With the use of Surface

Laplacian source localizations and intracranial testings (Ferrandez & Pouthas, 2001; Onoda et

al., 2004), the signals targeting the fronto-central electrodes, in the case of CNV and LPCt,

are suggested to originate from pre-supplementary motor area (preSMA) and right

dorsolateral prefrontal cortex (DLPFC). The preSMA activation during timing is commonly

observed in both perceptual (the subjective judgments are typically measured in categorical

decisions) and motor timing tasks (the judgements are measured by self-timed motor

responses) (Coull et al., 2016; Coull & Nobre, 2008). There have been studies reporting the

distinct neural populations in the preSMA tuned to distinct stimulus durations (Merchant et

al., 2013). Along with these findings, there is a growing literature on the EEG markers of the

brain timing and contextual modulations targeting the fronto-central regions of the brain.

A recent study investigated the neural basis of central tendency and sequential effects

focusing on the CNV and LPCt components and found that CNV activity covaries with the

preceding interval as it was shown by increased CNV amplitude with the longer prior

durations, whereas the LPCt amplitude linearly increases with the short target intervals

(Wiener & Thompson, 2015). Another study investigated the locus of Bayesian computations

in timing using EEG and found that CNV, offset P2 and beta power are affected by the

previous trial (Damsma et al., 2021). Although there have been studies on the

electrophysiological markers of temporal context, the neural basis of the ensemble context

modulations on subjective timing is still not known. In Chapter 4, I describe a study with

two separate experiments in which we manipulated the distribution context of target intervals

and used EEG to measure the common neural underpinnings of time such as CNV and offset

components, LPCt and P2.

https://paperpile.com/c/2TTw20/5Fee+NL0M
https://paperpile.com/c/2TTw20/5Fee+NL0M
https://paperpile.com/c/2TTw20/3BXB+rwYc
https://paperpile.com/c/2TTw20/GT4U
https://paperpile.com/c/2TTw20/GT4U
https://paperpile.com/c/2TTw20/hFWT
https://paperpile.com/c/2TTw20/51kZ
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1.3 Bayesian Frameworks of Time

As it has been introduced in the previous sections, the duration estimates of the brain

are noisy and susceptible to many contextual biases such as the central tendency or sequential

dependence. A line of work has shown that the sensory estimates advances when the current

measurement is combined with a prior built over past experiences (Petzschner et al., 2015;

Roach et al., 2017). Similar to classic information-processing models, also referred to as

internal clock mechanisms, Bayesian models suggest three basic components for temporal

processing: the likelihood, the prior probability, and the loss function. These components had

been related to the information-processing stages of the internal clock (Shi et al., 2013).

Classic information-processing models specify a clock stage for measuring duration and a

memory stage for comparing the current measurement in the working memory to a reference

duration in the long-term storage. In line with this, Bayesian models make use of the

likelihood function which establishes the probability of a given measurement as well as the

prior and posterior functions which mark off the probability of the internal reference and its

memory representation, respectively. The considerable emphasis on the computational

principles in the Bayesian model has brought about the development of numerous models.

These models, however, came out with different assumptions (Glasauer & Shi, 2022a;

Jazayeri & Shadlen, 2010; Petzschner et al., 2015). In this part, I describe the common

Bayesian observer models and how they are studied at the both behavioral and brain level.

1.3.1 Bayesian observer models

Bayesian observer models have been successful to provide theoretical explanations

for the subjective timing and the systematic biases and to make quantitative predictions for

the contribution of the prior experience. One crucial aspect of using Bayesian models to

predict behavior is the selection of likelihood, prior and loss functions. For example, it is

argued that choosing a fixed prior distribution to explain the perceptual biases would rule out

the influences of sequential dependency (Glasauer & Shi, 2022a). Static prior models with a

fixed prior distribution assume the same prior distribution throughout all trials, while iterative

prior models use a dynamically updated prior distribution by each trial. In one of the widely

recognised works, Jazayeri and Shadlen (2010) accounted for the central tendency bias

observed in the temporal reproduction using the classical Bayesian observer approach where

the prior knowledge assumption was defined as a fixed stimulus distribution. Since a model

with static prior does not include predictions of the sequential dependency, an iterative

https://paperpile.com/c/2TTw20/eVZQB+J2HM
https://paperpile.com/c/2TTw20/eVZQB+J2HM
https://paperpile.com/c/2TTw20/EKJY
https://paperpile.com/c/2TTw20/p1Ah+eVZQB+8BHH
https://paperpile.com/c/2TTw20/p1Ah+eVZQB+8BHH
https://paperpile.com/c/2TTw20/8BHH
https://paperpile.com/c/2TTw20/p1Ah/?noauthor=1
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Bayesian approach has been proposed where the prior is iteratively updated based on the

previously experienced trial (Dyjas et al., 2012; Petzschner & Glasauer, 2011; Taatgen & van

Rijn, 2011).

1.3.2 Temporal context driven by priors

Classic Bayesian models, implicitly, assume that people build a single prior during the

stimulus exposure. However, we are commonly exposed to sensory environments filled with

a variety of stimulus ranges and information coming from different sensory modalities. For

example, while locating a chirping bird on a tree branch, the visual cue as well as the auditory

cue of that percept will serve as two distinct information sources. In addition to the

integration of simultaneously present sensory information from different senses, we can make

use of various other sources of information while forming our perception and action. Earlier,

Petzschner and colleagues (2012) showed that informing participants by using categorical

perceptual cues influence their perceptual reproduction. Specifically, they used two

overlapping short and long stimulus ranges in three experimental sessions: blocked-wised

presentation, interleaved presentation, and interleaved presentation in which they provided

categorical cues before each trial. Their results indicated that although both interleaved

conditions had the same presentation order and stimulus sets, the session with the categorical

cue led participants to form two different priors. As a result, participants’ reproductions

biased towards these two local priors instead of the global prior of the experimental session.

On the other hand, the interleaved presentation session without any categorical cue resulted in

forming one generalized global prior for two overlapping stimulus ranges. In a later study,

Roach and colleagues (2017) showed that generalized prior formation is not limited to

overlapping ranges, but can also occur in stimulus ranges which are clearly separated from

each other. Interestingly, this generalized prior formation was not observed when the different

motor responses were expected from different stimulus ranges. It suggested that individuals

might be keeping multiple motor activity specific priors throughout an exposure. Therefore, it

remains as an open question which factors are involved in the grouping of complex stimuli

environments and how the brain makes use of multiple prior information acquired from

separate stimulus groups.

https://paperpile.com/c/2TTw20/NAtC+aIkq+wYPZ
https://paperpile.com/c/2TTw20/NAtC+aIkq+wYPZ
https://paperpile.com/c/2TTw20/ZF6A/?noauthor=1
https://paperpile.com/c/2TTw20/J2HM/?noauthor=1
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1.3.3 Electrophysiological signatures of context

A long-lasting question puzzling the researchers in neuroscience is to find out how the

brain takes the uncertainty into consideration during the processes of perception, memory,

decision making, and response. In the search for an answer, there has been numerous research

using behavioral measures as well as the neuroimaging techniques to examine the neural

mechanisms underlying these processes (Beierholm et al., 2009; Körding & Wolpert, 2004;

Vilares et al., 2012). In an attempt to disentangle cognitive processes in timing, Damsma and

colleagues (2021) used an interval reproduction task and measured the EEG signals during

the perception stage in which no decision or response takes place. They showed that the CNV

and offset P2 components were actively shaped by the prior during the perception phase of

the reproduction task. Given that CNV and P2 waveforms have been suggested to be

associated with the neural populations in the supplementary motor area (SMA) (Coull et al.,

2016), these findings propose that populations of neurons in the SMA can flexibly adjust to

temporal context at the perceptual stage in which no decision or motor preparation is

involved.

Wiener and colleagues (2018) examined the brain oscillations EEG data collected in

the temporal bisection and found that longer prior target intervals elicited higher beta power

at fronto-central electrode (FCz) site in the current trial. Similar to the trial-by-trial shift of

the psychometric function towards the prior interval, e.g., longer prior leads to a right-ward

shift in the psychometric function, the beta oscillations also reflected a shift depending on the

prior. Therefore, the authors suggested that beta oscillations measured at FCz may be tracking

the trial-by-trial update of the prior, consistent with the iterative updating models of Bayesian

accounts (Petzschner & Glasauer, 2011). Similar findings have been also reported in many

studies (Kononowicz & Penney, 2016; Li et al., 2017; van Rijn et al., 2011). However, it

remains unclear how the brain performs multi-prior integration. In Chapter 5, I describe a

study in which we examined the effects of two prior contexts (uni-prior and multi-prior) on

temporal reproductions while measuring EEG signals.

1.4 Aim of This Thesis and Research Questions

The goal of the current dissertation is to examine the behavioral and

neurophysiological correlates of contextual modulations in interval timing.

https://paperpile.com/c/2TTw20/5Xio+DjVI+EfL7
https://paperpile.com/c/2TTw20/5Xio+DjVI+EfL7
https://paperpile.com/c/2TTw20/51kZ/?noauthor=1
https://paperpile.com/c/2TTw20/3BXB
https://paperpile.com/c/2TTw20/3BXB
https://paperpile.com/c/2TTw20/efSE/?noauthor=1
https://paperpile.com/c/2TTw20/NAtC
https://paperpile.com/c/2TTw20/uYLNG+sYNqq+2J48u
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In Chapter 2, I describe an experiment in which we manipulated the temporal order of

the target intervals using a temporal reproduction task. In early implementation of Bayesian

frameworks in the duration estimation behaviors, the presentation order effects were tested

throughout an experimental session, i.e. across different trials. Therefore, in this study, we

tested the stimulus order effect within a trial by using temporal patterns generated by the

same intervals.

In Chapter 3 and 4, I describe two studies in which we review and test the context

modulations indexed by the neurophysiological evidence, respectively. Chapter 3 describes a

short review on how the brain activity measured by EEG at the offset of stimulus presentation

can successfully account for temporal decision-making. Chapter 4 describes two experiments

in which we manipulated the sample distributions presented in an experimental session and

examined the contextual effects in the behavioral outcome and in the common EEG

signatures of time. We measured post-onset signals, as well as, in line with the short review

findings, post-offset signals while searching for the contextual signatures.

In Chapter 5, I describe an experiment in which we manipulated the experimental

sessions to test the effects of multi-prior integration to the sensory input at the behavioral and

neurophysiological levels. It is still an ongoing issue to understand whether and if so, how the

multi-priors contribute to the sensory decisions. Therefore, in this study, we used a duration

reproduction task along with the EEG to examine the effects of multi-prior sensory

environments presented to the participants.
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2.1 Abstract

Despite the crucial role of complex temporal sequences, such as speech and music, in our

everyday lives, our ability to acquire and reproduce these patterns is prone to various

contextual biases. In this study, we examined how the temporal order of auditory sequences

affects temporal reproduction. Participants were asked to reproduce accelerating, decelerating

or random sequences, each consisting of four intervals, by tapping their fingers. Our results

showed that the reproduction and the reproduction variability were influenced by the

sequential structure and interval orders. The mean reproduced interval was assimilated by the

first interval of the sequence, with the lowest mean for decelerating and the highest for

accelerating sequences. Additionally, the central tendency bias was affected by the volatility

and the last interval of the sequence, resulting in a stronger central tendency in the random

and decelerating sequences than the accelerating sequence. Using Bayesian integration

between the ensemble mean of the sequence and individual durations and considering the

perceptual uncertainty associated with the sequential structure and position, we were able to

accurately predict the behavioral results. The findings highlight the critical role of the

temporal order of a sequence in temporal pattern reproduction, with the first interval exerting

greater influence on mean reproduction and the volatility and the last interval contributing to

the perceptual uncertainty of individual intervals and the central tendency bias.

Keywords: time perception, temporal reproduction, temporal order, temporal sequence

perception, auditory pattern reproduction

2.2 Introduction

Timing is critical in various everyday experiences, ranging from taking part in social

interactions to producing adaptive motor behaviors. Accurate processing of temporal patterns

enables us to recognize delicate differences in words and tones in a conversation or to enjoy

the orchestrated rhythm in music. Studies have shown that humans are able to discriminate

complex rhythmic patterns very well for both visual and auditory presentation (Grahn, 2012;

Su & Salazar-López, 2016). In complex real-world scenarios, such as in musical dance,

multiple rhythmic cues are important for perceiving the rhythmic structure (London et al.,

https://paperpile.com/c/AQWxeS/r1YG+BYsC
https://paperpile.com/c/AQWxeS/r1YG+BYsC
https://paperpile.com/c/AQWxeS/eCgB+nkki
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2016; Wang et al., 2021). Yet, perception of a temporal pattern is subject to various forms of

contextual modulation and integration.

In a simple rhythmic form, it has been shown that changes in the rate of auditory

clicks can simultaneously assimilate the apparent flicker rate of a flashing light, known as the

auditory driving effect (Recanzone, 2003; Shipley, 1964; Welch et al., 1986). This effect is

thought to occur due to the influence of the high temporal resolution of the auditory system

on the visual system, likely through cross-modal interactions in the brain. The classic

time-shrinking illusion, where a train of different intervals assimilate to each other (Nagaike

et al., 2016; Nakajima et al., 1992), further demonstrates how intervals can be perceived as

shorter or longer based on their preceding intervals, even within the same modality. Studies

on rhythm adaptation have also revealed similar effects, such as adapting to faster rhythms

leading to shorter perception of the following sequence (Becker & Rasmussen, 2007) and

adapting to decelerating rhythms leading to perception of the following isochronous rhythm

as accelerating (Li et al., 2022).

Despite extensive research on temporal rhythms, how the precise reproduction of

temporal structure in terms of its basic component - time interval - has yet been largely

overlooked in the literature. A temporal sequence consists of an ordered set of individual time

intervals, and the perception and reproduction of such sequences depend not only on the

individual elements, but also on the perception of the rhythm itself, which is heavily affected

by temporal order and the relative length of its subcomponents (Matthews, 2013).

Reproducing individual elements of a group can be challenging, even without asking for

sequential order information. For example, a study of visual size estimation (Ariely, 2001)

showed that observers can relatively precisely estimate the average size of a set of circles, but

identifying individual items can be difficult. The ability to extract the summary statistics of a

set has since been referred to as ensemble perception (for a review, see Whitney &

Yamanashi Leib, 2018).

One reason for difficulties in recalling or reproducing an individual item in a set is

due to the ensemble perception itself. Ensemble statistics may serve as a prior that could

heavily influence the perception of an individual item (Ariely, 2001; Whitney & Yamanashi

Leib, 2018). In a recent study, Zhu et al. (2021) manipulated the ensemble distribution of the

sample intervals (i.e., the set) in a temporal bisection task, and found that judgments of

individual intervals were assimilated to the mean of the probed intervals across trials,

manifesting a central tendency effect (Jazayeri & Shadlen, 2010; Laming, 1999). Previous

studies on the time-shrinking illusion (Burr et al., 2013; Hasuo et al., 2014; Nagaike et al.,

https://paperpile.com/c/AQWxeS/eCgB+nkki
https://paperpile.com/c/AQWxeS/8sYE+TWQD+vLhi
https://paperpile.com/c/AQWxeS/6Dpf+KMfR/?noauthor=0,0
https://paperpile.com/c/AQWxeS/6Dpf+KMfR/?noauthor=0,0
https://paperpile.com/c/AQWxeS/rk3A
https://paperpile.com/c/AQWxeS/jp3d
https://paperpile.com/c/AQWxeS/IiPu
https://paperpile.com/c/AQWxeS/3Phc
https://paperpile.com/c/AQWxeS/ygg8/?prefix=for%20a%20review%2C%20see%20
https://paperpile.com/c/AQWxeS/ygg8/?prefix=for%20a%20review%2C%20see%20
https://paperpile.com/c/AQWxeS/ygg8+3Phc
https://paperpile.com/c/AQWxeS/ygg8+3Phc
https://paperpile.com/c/AQWxeS/4VOQ/?noauthor=1
https://paperpile.com/c/AQWxeS/Y7se+2BwI
https://paperpile.com/c/AQWxeS/KMfR+PDHb+6Dpf+FDCO
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2016; Nakajima et al., 1992) have suggested that such assimilation may occur within a

sequence of intervals within a trial. However, these studies only focused on the influence of

general ensemble statistics on one target interval, leaving no prediction on the order effect for

sequences with the same stimuli but different orders.

The order effect within a trial has mainly been investigated in a simple two-interval

comparison. For example, the threshold and the discrimination sensitivity of the two-interval

comparison depend on the order of the standard and the comparison, known as time-order

error (TOE) (Allan, 1977; Dyjas et al., 2012; Harrison et al., 2017; Hellström, 1985; Ulrich &

Vorberg, 2009). The discrimination sensitivity is higher when the standard is presented first.

The order effect is not limited to stimuli presented within individual trials: sequential order of

stimuli across trials can also systematically alter judgments (Glasauer & Shi, 2019, 2021,

2022; Shi et al., 2022). For example, Glauser and Shi (2021) tested reproduction of the same

set of intervals in two different sequential structures: random walk and completely random

order. In the random walk condition, the successive intervals show mild fluctuation while

remaining similar, analogous to the temperature fluctuations that occur over consecutive

days. In contrast, intervals in the completely random order condition were randomly

selected, like the random rearrangement of temperature data from a year. Reproduction in a

completely random sequence, relative to a random walk sequence, yielded a more

pronounced central tendency effect, suggesting that the volatility1 of the sequence can

influence how an interval is reproduced. However, these studies, including the study of

Glauser and Shi (2021), have only used single interval reproduction. Timing of isolated

intervals (i.e., interval timing) and complex pattern timing are two distinct mechanisms that

involve different neural circuits of the brain (Teki et al., 2011), leaving unanswered the

question of how the order of a temporal sequence influences the reproduction of the whole

sequence.

On these backgrounds, we aimed to investigate the effect of sequential structure,

particularly the order (and the volatility) of sequences in temporal reproduction. We

hypothesized that the perceived volatility of a sequence may affect the ensemble

representation of the sequence, and subsequently influence its reproduction. In addition to the

order of intervals, the first and the last intervals in a sequence may also introduce additional

primacy and recency effects, respectively (Deese & Kaufman, 1957). Primacy and recency

1 Of note, the volatility should not be equated to the variability. Volatility measures the degree
of unpredictable changes from one item to the next in a sequence, while the variability
measures the dispersion of the sampled stimuli regardless of the sequential structure.

https://paperpile.com/c/AQWxeS/KMfR+PDHb+6Dpf+FDCO
https://paperpile.com/c/AQWxeS/IL37+ZwG2+FM5sY+qCvj+p0M6
https://paperpile.com/c/AQWxeS/IL37+ZwG2+FM5sY+qCvj+p0M6
https://paperpile.com/c/AQWxeS/kxkq+fEe7+T8MF+hAM8
https://paperpile.com/c/AQWxeS/kxkq+fEe7+T8MF+hAM8
https://paperpile.com/c/AQWxeS/fEe7/?noauthor=1
https://paperpile.com/c/AQWxeS/fEe7/?noauthor=1
https://paperpile.com/c/AQWxeS/cgzH
https://paperpile.com/c/AQWxeS/pDju
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effects are two phenomena related to memory and information processing that describe the

tendency for participants to better remember the first and the last item in a list (Silverman,

2010). The first interval is often perceived as longer than subsequent intervals because of the

onset saliency of the first interval (Kanai et al., 2006; Rose & Summers, 1995). According to

Bayesian inference of timing (e.g., Shi, Church, et al., 2013), perception tends to assimilate

towards the more reliable source. As people are better at recalling the endpoints (the first and

the last intervals) of a rhythmic pattern (the primacy and recency effects), they are more

likely to depend on these endpoints for perceiving and reproducing a rhythm. Consequently,

rhythms with more variable endpoints are expected to have a higher central tendency.

To disentangle these effects, we used a temporal reproduction task in which

participants were required to reproduce a series of auditory stimuli which were presented in

succession in a trial resembling a rhythm production task. Considering the ensemble statistics

(mean and variance) effects on stimulus judgements, we used temporal patterns with the same

sequence mean and variance values. Temporal patterns we used in this study had decelerating

(DS), accelerating (AS) or random (RS) sequence structures, which differed in their

volatilities. A decelerating sequence structure denotes a pattern of intervals in descending

rhythmic order (from short to long) whereas an accelerating sequence structure has a reserve

pattern. For a random temporal pattern, time intervals were presented in a random order

excluding decelerating or accelerating structures. Thus, the random temporal pattern had the

highest volatility. We expected that sequential volatility and the first and the last intervals

would impact on the perceived interval mean and central tendency. Given the primacy effect

of the first interval, which receives more attention than subsequent intervals (Kanai &

Watanabe, 2006), we hypothesized that the first interval would have a greater impact on the

perceived ensemble mean interval. However, we also considered the possibility of the

recency effect for the last interval, and thus, conducted analyses on both the first and the last

intervals. To preview the main results, we found a general bias in the reproduction of a

temporal pattern, which depended on the temporal pattern structure. Intervals in the AS

structure were reproduced more precisely than in the RS and DS structures, and the mean

interval of the DS were underestimated. Furthermore, the interval reproductions in the RS

structure showed higher variability than those in the AS and DS structures.

https://paperpile.com/c/AQWxeS/9BR5
https://paperpile.com/c/AQWxeS/9BR5
https://paperpile.com/c/AQWxeS/pHcy+vtbb
https://paperpile.com/c/AQWxeS/32XF/?prefix=e.g.%2C
https://paperpile.com/c/AQWxeS/4jbK
https://paperpile.com/c/AQWxeS/4jbK
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2.3 Method
Participants

15 participants (seven females, mean age 25.3 years) with normal hearing took part in

the experiments at Ludwig Maximilian University (LMU) of Munich. The sample sizes were

determined based on the sample sizes of previous similar temporal pattern reproduction

studies (Hardy et al., 2018; Laje et al., 2011), in which 11 to 12 participants were recruited.

We further increased the sample size to 15 to ensure the statistical power of the study. Written

informed consent was received from all participants before the experiments. They received 9

Euro per hour or course credit for their participation. The study protocol was approved by the

Ethics Board of the Department of Psychology at LMU Munich. All participants were naive

to the purpose of the research.

Fig. 1. Illustration of the experimental design and target intervals. (a) Each trial started with a

fixation cross presented for 500 ms in the middle of the screen. Participants received five beep sounds

marking the four sequential intervals, followed by a 300-ms-long presentation of the fixation cross.

Then, they were asked to reproduce the temporal pattern by clicking the mouse. After the

reproduction, a feedback was shown to indicate the accuracy of the reproduction (see the main text in

Procedure for more details). After a blank period of 1000 ms, the next trial began. (b) Illustration of

the temporal patterns used in the experiment. Each circle represents a beep sound. Two sets of

intervals were tested in the decelerating (DS) and accelerating (AS) sequences. The AS condition

consisted of the same interval sets used in the DS condition but the intervals were in the inverted

order, whereas the RS condition consisted of the same intervals randomized (in the illustration, only

one possible sequence is shown).

Apparatus and stimuli

The experiments were conducted in a sound-reduced and moderately lit testing room.

Instructions and feedback were presented on a CRT monitor. Auditory stimuli were generated

with customized Matlab codes and presented via Sony MDR stereo headphones using the

https://paperpile.com/c/AQWxeS/3t9R+rUR6
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Psychtoolbox-3 (Kleiner et al., 2007). Responses were acquired via a computer mouse for the

reproduction task. In the experiment, three temporal patterns were compared: the decelerating

sequence (DS), accelerating sequence (AS) and random sequence (RS). Each sequence had

four intervals demarcated by five ‘beep’ sounds. In each sequence type, we used two interval

sets that were randomly shuffled across trials to avoid participants recognizing the four fixed

intervals. In the DS condition, two sets of intervals with the same mean (700 ms) and the

standard deviation (SD of 294.39 ms) were tested: [400, 500, 900, 1000] ms and [400, 600,

700, 1100] ms, whereas in the AS condition, these two interval sets were in the inverted order

(Fig. 1b). In the RS condition, the orders of the sample intervals were randomized, and

all-four-intervals ascending or descending orders were excluded to distinguish them from the

other two conditions. Thus, in all sequences, the first and the second moments of the

ensemble statistics were the same (M = 700 ms, SD = 294.39 ms).

To present the intervals accurately and precisely, we created sound waves of five brief

beeps (20 ms, 1000 Hz, 60 dB) for each stimulus onset asynchrony (SOA) that corresponded

to one of the four intervals. The sound wave lasted for a duration of 2.8 seconds.

Procedure

The task was to reproduce a sequence of auditory time intervals, presented within a

single trial, using mouse-clicks. As illustrated in Figure 1a, each trial started with a white

fixation cross for 500 ms. Next, as the fixation cross turned to green color, participants heard

the sequence of five consecutive beeps that demarcated four temporal intervals. The total

duration of the intervals was 2.8 seconds, which was immediately followed by a gap of 300

ms. Then a down arrow image appeared on the screen to indicate the reproduction of the

temporal pattern could be started. The reproduction was performed by clicking the mouse

button five times, each mouse click producing a beep, and attempting to as closely as possible

imitate the previously heard sequence of beeps. Each button press initiated a beep for 20 ms

(1000 Hz, 60 dB) regardless of the pressing duration. After the reproduction, a feedback

display was shown for accuracy. The feedback consisted of four adjacent circles showing

how close the participants’ reproduction to the veridical interval of each sample interval was.

The four disks represented the four sequential intervals from the left to the right, and their

colors indicated correspondent reproduced accuracy. The red disk indicated the relative error

was 50% longer or shorter than the sample duration, and the yellow disk for the relative error

in between [-50%, -15%] or [15%, 50%], the white disk filled with gray color (as it was the

https://docs.google.com/document/d/1jJjiO7RfrdvUf-kQIxGWZq2mFIIjEwtpGQS-gTgJAFA/edit#fig_method
https://docs.google.com/document/d/1jJjiO7RfrdvUf-kQIxGWZq2mFIIjEwtpGQS-gTgJAFA/edit#fig_method
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same as the background color of gray) for the relative error in between [-15%, 15%]. To

encourage participants to reproduce the intervals accurately, the duration of the feedback

display was contingent on the accuracy. If more than three reproduced intervals were in ‘red’

or ‘yellow’, the feedback display lasted for two seconds, otherwise, it was shown only for one

second. After a one-second blank screen, the next trial started. Participants received one

practice block of 44 trials prior to the main experiment to familiarize them with the task,

which was discarded in the formal analysis. The main experiment consisted of six blocks,

with 44 trials in each block, and 264 trials in total. The orders of the trials were randomized

for each participant.

Statistical Analyses and modeling

All statistical tests were carried out in either Python or JASP. The latter was used for

Bayesian analyses of variance (ANOVAs) with default settings (i.e., r-scale fixed effects =

0.5, r-scale random effects = 1, r-scale covariates = 0.354) to provide a more rigid criteria

required for hypothesis testing (Kass & Raftery, 1995; Rouder et al., 2009). All Bayes factors

reported for the main effects and interactions were calculated using “inclusion” Bayes factors

across matched models. Additionally, outliers were excluded from all the statistical analyses

below. These outliers were defined as trials on which the reproduced interval mean of the

stimulus sequence was higher or lower than two times the standard deviation of the sequence

mean, which accounted for approximately 3% of all trials.

As demonstrated in behavioral results below, the mean reproduced interval was

influenced by the first probe interval. Therefore, in our model, we assumed the mean prior

( ) of the sequence is a weighted average of the first probe interval ( ) and the mean of theµ
𝑒

𝐷
1

tested intervals (700 ms):

.µ
𝑒

= α · 𝐷
1

+ 700 · (1 − α)

with the weight being determined by the variability of the stimulus distribution andα

measurement noise. Since duration estimates often follow Weber's law (Shi, Church, et al.,

2013), the sensory variability and the prior variability are determined by Weber fractions

( and respectively). In addition, we assumed the perceived volatility of the sequence𝑤𝑓
𝑠

𝑤𝑓
𝑝

may scale the sensory uncertainty. To be more precise, the variability ( ) of a given intervalσ
𝑖

has a volatility factor , which depends on the sequence type ,𝐷
𝑖

𝑘
𝑗

𝑗

https://paperpile.com/c/AQWxeS/TCcDV+a19d7
https://paperpile.com/c/AQWxeS/32XF
https://paperpile.com/c/AQWxeS/32XF
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.σ
𝑖
2 = 𝑘

𝑗
(𝑤𝑓

𝑠
· 𝐷

𝑖
)2

The reproduction pattern ) is then modeled as Bayesian integration between the(𝑅
𝑖

ensemble mean and individual duration (Jazayeri & Shadlen, 2010; Ren et al., 2021;µ
𝑒

𝐷
𝑖

Shi, Church, et al., 2013):

,𝑅
𝑖
 =  (1 − 𝑤) µ

𝑒
 +  𝑤 𝐷

𝑖

where weight , the reproduction variance , and .𝑤 ∝ 1/σ
𝑖
2 σ

𝑟
2 =

(σ
𝑖
2. σ

𝑒
2)

(σ
𝑖
2+ σ

𝑒
2)

σ
𝑒

= 𝑤𝑓
𝑝

· µ
𝑒

Based on these assumptions, we fitted the model to the observed data and estimated

duration reproduction patterns for each participant. The model was implemented using

PyMC3 (Salvatier et al., 2016). To demonstrate the robustness and predictiveness of the

model, we first fit the model with the structured sequences (i.e., AS and DS) and then use

those fitted parameters (excluding the sequence scaling factor k) for the RS condition. We

also assessed the model’s goodness using coefficients of determination ( ) between the𝑅2

predicted and observed data.

2.4 Results

Effects of the temporal pattern on the central tendency bias

The central tendency bias is a phenomenon, showing that intervals shorter than the

pattern mean interval are overestimated and intervals longer than the pattern mean are

underestimated. To measure this bias, a linear regression was conducted between sample

intervals and reproduced intervals (as shown by the lines in Fig. 2). As depicted in Figure 2,

all three sequence types exhibited the central tendency bias, with reproduction slopes less

than one (M = 0.8, 0.526, 0.53 for the AS, DS and RS respectively). Among the three

conditions, DS and RS caused a higher central tendency bias, while the AS condition had the

lowest bias.

The results of a two-way repeated-measures ANOVA on the regression slopes

revealed significant main effects of sequence type, F(2, 28) = 16.92, p < .001, , BF >η
𝑝
2 =. 55

100, and interval set, F(1, 14) = 57.93, p < .001, , BF > 100. Post-hocη
𝑝
2 =. 81

Bonferroni-corrected t-tests revealed that AS (M = 0.80) had a steeper slope (i.e., less central

tendency) compared to RS (M = 0.53, t(14) = 6.50, p < .001, BF > 100) and DS (M = 0.526,

https://paperpile.com/c/AQWxeS/2BwI+32XF+ithv
https://paperpile.com/c/AQWxeS/2BwI+32XF+ithv
https://paperpile.com/c/AQWxeS/kvp8
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t(14) = 3.85, p < .01, BF = 23.95). However, there were no significant differences between

the RS and DS conditions (t(14) = 0.09, p = .93, BF = 0.26). The significant difference

between the two interval sets suggests that the separation of individual intervals may also

affect reproduction (as seen by the horizontal gaps among points in Fig. 2). An interaction

between interval set and sequence type was also observed, F(2, 28) = 4.00, p = .03, = .22,η
𝑝
2 

BF = 0.51. However, the small BF value suggests that this interaction should not be

over-interpreted.

Fig. 2 The slope of the reproduction lines varied as a function of stimuli sequences. The AS condition

(blue) had a significantly steeper reproduction line than the RS (orange) and the DS (green)

conditions. The DS condition showed the most deviations from the equal reproduction line for which

the subjective reproduction would be identical to the sample intervals (diagonal dashed lines) towards

the means of the temporal patterns (700 ms). Each dot on a column of sample intervals corresponds to

the data point of one single participant. Dots shifted gradually by conditions for illustration purposes.

(a) Reproductions of interval set 1: type of pattern created using 400, 500, 900 and 1000 ms intervals.

(b) Reproductions of interval set 2: type of pattern created using 400, 600, 700 and 1100 ms intervals.
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Influences of the first and last intervals

Fig. 3. (a) Boxplots of the mean reproduction of sequence intervals (AS: accelerating

sequences; RS: random sequences; DS: decelerating sequences). The dots depict the mean

reproductions of one participant for one sequence type, averaged over interval set 1 and set 2.. (b)

Boxplots of the mean reproduction of sequence intervals in the RS, divided into three categories based

on the time interval in the initial position (Long: first interval longer than 700 ms; Middle: first

interval of 700 ms; Short: first interval shorter than 700 ms). The dots depict the mean reproductions

of one participant for one sequence type, averaged across both interval sets. (c) Standard deviation of

reproductions in the AS (blue), RS (orange) and DS (green) conditions. Solid lines represent the type

of pattern created using 400, 600, 700 and 1100 ms, and dashed lines represent the type of pattern

created using 400, 500, 900 and 1000 ms.

Figure 3a shows that the average reproduction of intervals decreases from AS, to RS,

and to DS. A repeated-measures ANOVA showed that the mean reproduced interval was

significantly affected by sequence type, F(2, 28) = 18.08, p < .001, = .56, BF > 100. Theη
𝑝
2

post-hoc Bonferroni-corrected t-tests revealed the mean reproduced intervals differed

significantly from each other (ts > 3.2, p ≤ .02, BFs > 8.0), with AS having the highest mean

(M = 702 ms, SD = 56 ms), DS having the lowest mean (M = 660 ms, SD = 55 ms), and RS

falling in between (M = 660 ms, SD = 55 ms).

Since the AS had the longest interval and the DS the shortest interval in the first

position, the differential mean reproduced intervals may stem from anchoring to the first

interval or the directionality of the sequence. To test this hypothesis, we further analyzed the

reproduced intervals in the random sets based on the first interval being the short (<700 ms),

https://docs.google.com/document/d/1jJjiO7RfrdvUf-kQIxGWZq2mFIIjEwtpGQS-gTgJAFA/edit#figur_comb2
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middle (700 ms) or long (>700 ms) sample interval in the stimuli sequence. Figure 3b shows

a similar pattern to Figure 3a, with the mean reproduced interval decreasing as a function of

decreasing first interval duration (long: M = 694 ms, SD = 57 ms; middle: M = 689 ms, SD =

61 ms; short: M = 666 ms, SD = 60 ms). The mean reproduced interval significantly differed

based on the first stimulus magnitude in the random sequences, F(2, 28) = 7.78, p = .002, η
𝑝
2

= .36, BF = 16.79. Post-hoc Bonferroni-corrected t-tests revealed that the short yielded

significantly lower reproduced intervals compared to the long and the middle (ts > 2.59, p ≤

.02, BF >3.0), while no difference between the long and middle (t(14) = 0.94, p = .36, BF =

0.38). The results suggest that the mean reproduction may be influenced by the first interval,

rather than the sequential structure.

We conducted a similar analysis for the last interval in random sets by dividing them

into three categories based on their last interval being short (<700 ms), middle (700 ms), or

long (>700 ms). However, the analysis on the mean reproduced interval did not reveal any

significant difference (F(2, 28) = 1.20, p = .32, = .08, BF = 0.38). Instead, we found theη
𝑝
2

central tendency effects were different among three categories, F(1, 14) = 13.25, p = .002,

, BF > 100 . The mean slopes were 0.62, 0.50, and 0.31 for random sets ending withη
𝑝
2 =. 49

a short, middle, and long interval, respectively. Post hoc Bonferroni-corrected t-tests revealed

that the slopes significantly differed from each other (ts > 2.94, ps < 0.33, BFs > 11). The

central tendency was least prominent for random sets ending with a short interval and most

pronounced for sets ending with a long interval, suggesting that the last interval may

influence the perceived variability of the sequence and subsequently influence the central

tendency. The impact of the last interval on the central tendency effect was similar to the

structured AS and DS sequences (see Fig. 2).

Variance of time estimation

To test if the type of sequential structure affects the reproduction variability, we

estimated the standard deviation of reproduced durations for the three types of sequences,

separately for each interval (Fig. 3c). A two-way repeated-measures ANOVA showed that the

SDs of the reproduced durations were significantly influenced by both sequence type, F(2,

28) = 48.31, p < .001, = 0.78, BF > 100, and sample interval, F(6, 84) = 16.29, p < .001,η
𝑝
2

= 0.54, BF > 100. Post hoc t-tests revealed that the reproduction variability wasη
𝑝
2



31

significantly higher for RS (M = 204.79) than for AS (M = 142.66) and DS (M = 138.72), ts >

7.4, ps < .001, BFs > 100. However, there was no significant difference in variability

between AS and DS, t(14) = 0.81, p = .43, BF = 0.35. The interaction between the sequence

type and durations was also significant, F(12, 168) = 3.46, p < .001, = 0.20, BF = 32.83,η
𝑝
2

partly due to the same interval having different positions in different sequences. The largest

variability in the RS reproduction, significantly greater than the AS and DS reproduction,

suggesting that the motor execution uncertainty was greatly influenced by the volatility. This

was likely caused by unfamiliarity of executing irregular tapping.

Estimates and prediction of the model

Using the model we illustrated in the Method section, we estimated the model

parameters and its prediction of interval reproduction. The Weber fractions of the sensory

input and the mean prior (and associated SDs) were 0.18 ± 0.09 and 0.35 ± 0.03 respectively.

The weight of the first interval was 0.195 ± 0.07, suggesting the first interval partially yet

significantly influenced the mean prior. The volatility scaling factors were 2 ± 1.2 and 2.4 ±

1.4 for the AS and DS sequences, respectively, which is consistent with observed data

showing the length of last interval may influence the perceived variability. With those

parameters obtained from the AD and DS, the fitted volatility scaling for the RS sequence

was 2.13 ± 0.17, in a similar range as the AS and DS conditions. Figure 4a shows the model

predicted mean reproductions (the solid lines) vs. the mean behavioral data (the dashed lines).

To evaluate the overall performance of the model, we run linear regression analysis between

the predicted and observed reproductions for each sequential type. The mean coefficient of

determination, , of the linear regressions were relatively high, 0.80, 0.62 and 0.91 for AS,𝑅2

DS and RS, respectively, which indicates the model in a good agreement with the observed

data.
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Fig. 4. (a) Predicted reproduction durations of the model are plotted against sample intervals and the

observed reproduction durations. Dots represent the observed data and dashed lines represent the

averaged observed data across participants. Solid lines represent the predicted reproduction by the

model. (b) Observed and predicted mean reproduction of the sequences as a function of sequence

condition. Error bars depict one standard error.

The model also successfully predicted the order of the means and SDs of reproduced

durations across three sequences: the predicted mean and SD for the AS was 684.9 ± 127.0

ms (observed = 702.5 ± 142.6 ms), for the DS 669.5 ± 132.7 ms (observed = 685.7 ± 143.8

ms), and for the RS 665.0 ± 143.9 ms (observed = 685.3 ± 190.1 ms). However, the model

generated some minor undershot (as shown in Fig. 4b). The undershot likely originated from

the model assumption. The model considered only the integration of the first interval and the

veridical mean interval of 700 ms for the mean prior. As shown in previous research (Shi,

Ganzenmüller, et al., 2013; Wearden et al., 1998), auditory intervals are often overestimated,

thus assuming a veridical mean interval of 700 ms is likely the primary source of this

undershot.

2.5 Discussion

The aim of this study was to investigate the effect of the sequential order of durations on

temporal reproduction. The main findings were that, even when the sample intervals in the

sequences were the same in terms of mean and variance, (i) the mean reproduced interval of a

https://paperpile.com/c/AQWxeS/dw0t+xgbl
https://paperpile.com/c/AQWxeS/dw0t+xgbl
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sequence was shorter with a sequence starting with a short relative to a long interval; (ii) the

central tendency was more pronounced for sequences ending with long intervals; (iii) timing

precision depended on the sequence structure, and the structured DS and AS were reproduced

more precisely than the RS. Based on those findings, we proposed a pattern timing model that

assumes the mean reproduction is a weighted average of the sample durations, with weights

determined by their perceptual reliability. The central tendency arises from Bayesian

integration of the ensemble prior and individual intervals. Our model was able to predict the

observed behavioral temporal reproductions accurately.

Objects, sounds or actions that we encounter in everyday life are surrounded with

other objects or features and how we perceive a target strongly depends on its spatial and

temporal context (Schwartz et al., 2007). Several model frameworks, including Bayesian

estimation models, have been developed to capture central tendency biases arising from trial

history in time perception (Cicchini et al., 2012; Dyjas et al., 2012; Jazayeri & Shadlen,

2010). While standard Bayesian models can account for the central tendency biases by

integrating the mean prior with sensory inputs (e.g., Jazayeri & Shadlen, 2010), they fail to

consider the temporal order effects of probe stimuli, and hence fall short in explaining the

findings observed in our study. Recent studies by Glasauer and Shi (2019, 2021, 2022) have

investigated effects of sequential order of trials on magnitude reproductions. They found that

high relative to low volatile sequences produced a stronger central tendency, despite the

stimuli being the same but differing in their sequence. Using an iterative Bayesian updating

model, they were able to predict the differential central tendency effects and the sequential

effects (depending on the previous stimulus) among different sequences. It is worth noting,

however, that their studies focused on cross-trial sequential effects on an isolated trial rather

than the temporal pattern within a short sequence. To the best of our knowledge, our study is

the first to examine the order of sequence influences on the reproduction of temporal patterns.

It is essential to differentiate between individual interval and temporal pattern timing

(Hardy & Buonomano, 2016), because interval timing refers to the timing of single durations,

whereas pattern timing involves timing relationships among subintervals. When processing

auditory interval patterns, assessing the statistical information of patterns is necessary in

processes like speech and music (Paton & Buonomano, 2018). Previous research has shown

that humans can extract the mean frequency of a tone sequence (Piazza et al., 2013) and

statistical information of tone sequences can affect performance, such as speech

categorization (Holt, 2006). In contrast to interval timing, it could be argued that participants

adopt alternative weighting schemes to process the subintervals of a pattern in pattern timing.

https://paperpile.com/c/AQWxeS/hHNG
https://paperpile.com/c/AQWxeS/2BwI+RtJA+ZwG2
https://paperpile.com/c/AQWxeS/2BwI+RtJA+ZwG2
https://paperpile.com/c/AQWxeS/2BwI/?prefix=e.g.%2C%20
https://paperpile.com/c/AQWxeS/kxkq+fEe7+T8MF/?noauthor=1,1,1
https://paperpile.com/c/AQWxeS/RD6n
https://paperpile.com/c/AQWxeS/x8Pg
https://paperpile.com/c/AQWxeS/3Th8
https://paperpile.com/c/AQWxeS/FJkf
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For example, the first interval might engage more attention than subsequent intervals, as the

onset often dilates time (Kanai & Watanabe, 2006; Rose & Summers, 1995). Indeed, the

present study showed that the first interval in the sequence had a greater impact on the mean

reproduced interval. And the pattern timing model also took this into account by adding the

weight of the first interval. Thus, our results emphasize that not only the statistical summary

but also the order of individual durations in a temporal pattern contributes to the timing of

those patterns.

Our study found that the central tendency bias in reproductions varied depending on

the sequence structure. The AS had the lowest central tendency bias, while the DS and RS

had similar and higher biases. The analysis of the last interval showed that sequences ending

with a long interval had a higher central central tendency bias. According to Weber’s law, the

variability increases as the interval increases. Therefore, the findings suggest that the

perceptual variability of a sequence was affected not only by its volatility but also by the

recency effect - the variability of the last interval. Since the DS sequences had the longest

ending interval, the perceived variability of the sequence was overestimated, reaching a

comparable level to that of the RS. It should be noted that perceptual variability is different

from reproduction variability. Our analysis of the reproduction variability unequivocally

showed that the RS had the highest reproduction variability, indicating the volatility of a

sequence, not just its physical variance, contributed to observed reproduction variability.

Previous research on central tendency bias (Jazayeri & Shadlen, 2010; Petzschner et

al., 2015; Shi, Church, et al., 2013) only considered the dispersion of the sampled intervals,

while our study took sequential volatility into account. Our findings highlight the significance

of considering sequence order in temporal reproduction. Our temporal pattern model, which

included simple volatility scaling, accurately captured the order of variability across the three

types of sequences. However, our model did not consider how volatility affects the

uncertainty of motor reproduction, such as motor execution of irregular sequences. Future

research on how sequential structure influences motor uncertainty could provide further

insights into the reproduction of temporal patterns.

In sum, the current study highlights how the sequential structure of a temporal pattern

influences listeners’ perceived ensemble mean and volatility, reflected by the average

reproduced interval and the central tendency bias of duration sequences. The mean

reproduction is largely influenced by the initial interval (i.e., onset dilation), while the central

tendency effect is influenced by the volatility of the sequence. Moreover, timing precision of

https://paperpile.com/c/AQWxeS/4jbK+vtbb
https://paperpile.com/c/AQWxeS/iyUJ+32XF+2BwI
https://paperpile.com/c/AQWxeS/iyUJ+32XF+2BwI
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same durations differ depending on sequential structure, as it was shown by the lower

precision of the random sequence than the structured ascending or descending sequences.

Data availability

The data supporting the findings of this study and the statistical analysis code used in the

manuscript are available at https://github.com/msenselab/temporal_patterns.
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3.1 Summary

Is there sufficient evidence to make a decision, or has enough time passed to justify making a

decision? According to Ofir and Landau (2022), these two questions are closely related: brain

activity measured by EEG at the offset of stimulus presentation predicts the behavioral

temporal decision, being influenced by the current context, and reflecting the relative distance

to a decision threshold which is also context-dependent.

3.2 Outlook

During a lunch break, you open a cup of instant noodles, pour hot water over the

noodles, cover, and wait. Time to open depends on your desired noodle softness and the sense

of passage of time. Too early, noodles not ready. Too late, noodles too soft. Using a classic

temporal bisection task, Ofir and Landau (2022) studied this type of time-based decision to

understand the neurophysiological basis of interval timing and how it relates to the

cumulative decision process.

In a temporal bisection task, participants are first presented with two references: the

shortest and the longest durations. After familiarization, they are asked to classify durations

that fall between the two references as ‘short’ or ‘long’. Ofir and Landau (2022) measured

electroencephalography (EEG) brain activity while participants performed this task. Similar

to previous studies (for a review, O’Connell & Kelly, 2021), they found a decision-related

large positive deflection in a group of frontocentral electrodes at 300 to 500 ms after stimulus

offset, known as the offset P300 or P3b. As stimulus duration increased, the amplitude of the

offset P3b decreased linearly when the duration was close to the ‘short’ reference, but leveled

off when the duration was close to the ‘long’ reference. Ofir and Landau (2022) interpreted

this offset amplitude as the distance to the decision boundary in a temporal

accumulation-to-bound model (Balcı & Simen, 2014). A bisection decision of ‘short’ can be

made when the presentation finishes before a decision threshold - the mean duration between

the ‘short’ and ‘long’ references. No further trigger for the ‘long’ decision is needed when the

presentation time passes the mean duration. Linking the P3b amplitude to the distance to the

decision boundary, Ofir and Landau (2022) could predict behavioral bisection performance

accurately.

Interestingly, the pattern was similar for the short- and long-range durations. In their

Experiment 3, participants performed the bisection task in two separate blocks: one with the
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sub-second (0.2–0.8 s) range and the other supra-second (1–2 s) range. Short durations in

both blocks, albeit differently in their absolute magnitude, elicited a similar large amplitude

of the stimulus offset P3b (e.g., 0.2 s in the short block, and 1 s in the long block). This

suggests the activation of the offset P3 does not reflect an absolute accumulation, but is rather

context-dependent, relative to the decision threshold set in that block. It is well-established

that time estimation is susceptible to various background contexts, such as stimulus spacing

and ensemble statistics (Zhu et al., 2021). Even with the same shortest and longest references,

the mean duration of the two references is perceived as longer when more short durations are

probed. But it is perceived as shorter when more long durations are sampled. The temporal

bisection decision does not merely compare to the short and long references. Rather, the

decision process considers the ensemble mean of the sampled durations as the decision

boundary. The findings of Ofir and Landau (2022), consistent with the temporal context

modulation, showed that the amplitude of offset P3b was determined by the relative distance

to the ensemble mean of the probed range - a critical decision threshold. For example, as the

longest duration in the short-range block, the 0.8-s target interval already passed the decision

threshold, eliciting a low P3b amplitude. In contrast, larger than the 0.8-s interval in the short

context, the shortest 1-s target interval induced the highest activation of the P3b in the

long-range block. These results demonstrated that the offset EEG activities, along with the

behavioral responses, were context-dependent.

Contexts set our expectations. For example, we expect to wait a short amount of time

for a traffic light to turn green than for a bus to arrive. These expectations influence our

decision-making processes, as shown by Ofir and Landau (2022). Five minutes would be

unexpected when waiting for a traffic light signal, but perfectly normal when waiting for a

bus. In the temporal bisection task, a short stimulus duration would be more surprising than a

long stimulus duration, because the decision process is likely already completed when the

duration is longer than the average. Earlier research has found that the latency of the offset

positivity components, such as the P300 or P3b, is positively correlated with participants’

reaction times (O’Connell & Kelly, 2021). A higher level of offset activity leads to a longer

response time. The reaction time findings, along with the characteristic build-up of the P300,

suggest that P300 activity may reflect the intensity of decision-making process (O’Connell &

Kelly, 2021), which could also be interpreted as a surprise response to the stimulus offset, as

Ofir and Landau (2022) noted. Therefore, it is necessary to further differentiate the nature of

the surprise response and temporal accumulation in the offset positivity.
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It is worth noting that the interpretation of the offset P3b as reflecting temporal

evidence is specific to the context of a prospective timing task, where the decision threshold

is predetermined and the critical event is immediately monitored upon the stimulus onset. In

many everyday timing tasks, we may not know what our decision threshold is or we may not

be constantly monitoring every event. For instance, we may not realize we have overcooked

noodles or missed an appointment until after the fact, when our attention returns to the event

and we are surprised at having missed the decision threshold. This type of retrospective

timing differs from the prospective timing process (Shi, Gu, et al., 2022). In prospective

timing tasks, judgments of time involve active monitoring of the passage of time, which

could be predicted by the classical pacemaker-accumulator model or the drift-diffusion

process (Balcı & Simen, 2014). The drift-diffusion model, for example, proposed that the

interval timing process is governed by two competing Poisson processes (one excitatory and

one inhibitory). The ratio of these processes determines the rate at which an accumulator

increases, and this accumulator is continuously monitored if it reaches a predetermined

threshold. However, when we judge the duration of a past event retrospectively, we rely on

relationships between past events stored in our episodic memory. It is unlikely that each past

event would trigger a diffusion process, as this would be inefficient in terms of cognitive

resources. Shi et al. (2022) proposed that retrospective timing may rely on oscillatory patterns

with computational accessibility to timestamp individual past events, rather than using

individual accumulation processes. Estimating the duration of a past event involves reading

out oscillatory patterns that are associated with the onset and offset of the event. Therefore,

prospective and retrospective time differ in terms of both the timing process and the source of

surprise. Results from a prospective temporal bisection task may not be applicable to

retrospective timing. Future studies that compare prospective and retrospective timing may

help to determine whether the offset P3b activation is a result of the cumulative process or a

signature of surprise, or both.

In sum, Ofir and Landau (2022b) established a clear connection between neural activity

related to decision-making and behavioral performance in a temporal bisection task, showing

that the stimulus offset activation is related to the relative distance to the decision boundary

in the accumulation-to-bound process. The temporal decision is context-dependent, and so is

the conclusion drawn from it - we should be cautious on generalizing the relation between the

offset activity and the temporal accumulation. Future research that builds on the findings of

Ofir and Landau (2022) by using different timing paradigms, such as retrospective versus

prospective judgments, would differentiate the nature of the surprise response and temporal
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accumulation, and further enrich our understanding of neural mechanisms underlying the

timing process.

3.3 References for Chapter 3

Balcı, F., & Simen, P. (2014). Decision processes in temporal discrimination. Acta Psychologica, 149,

157–168.

O’Connell, R. G., & Kelly, S. P. (2021). Neurophysiology of Human Perceptual Decision-Making. In

Annual Review of Neuroscience (Vol. 44, Issue 1, pp. 495–516).

https://doi.org/10.1146/annurev-neuro-092019-100200

Ofir, N., & Landau, A. N. (2022). Neural signatures of evidence accumulation in temporal decisions.

Current Biology: CB, 32(18), 4093–4100.e6.

Shi, Z., Gu, B.-M., Glasauer, S., & Meck, W. H. (2022). Beyond Scalar Timing Theory: Integrating

Neural Oscillators with Computational Accessibility in Memory. In Timing & Time Perception

(pp. 1–22). https://doi.org/10.1163/22134468-bja10059

Zhu, X., Baykan, C., Müller, H. J., & Shi, Z. (2021). Temporal bisection is influenced by ensemble

statistics of the stimulus set. Attention, Perception & Psychophysics, 83(3), 1201–1214.

http://paperpile.com/b/XQrNEa/83vi
http://paperpile.com/b/XQrNEa/83vi
http://paperpile.com/b/XQrNEa/fDmv
http://paperpile.com/b/XQrNEa/fDmv
http://paperpile.com/b/XQrNEa/fDmv
http://dx.doi.org/10.1146/annurev-neuro-092019-100200
http://paperpile.com/b/XQrNEa/x8LG
http://paperpile.com/b/XQrNEa/x8LG
http://paperpile.com/b/XQrNEa/Mu4F
http://paperpile.com/b/XQrNEa/Mu4F
http://paperpile.com/b/XQrNEa/Mu4F
http://dx.doi.org/10.1163/22134468-bja10059
http://paperpile.com/b/XQrNEa/ALzV
http://paperpile.com/b/XQrNEa/ALzV


46



47

4 Electrophysiological Signatures of Temporal Context in the

Bisection Task

Cemre Baykan#, Xiuna Zhu#, Artyom Zinchenko, Hermann Müller and Zhuanghua Shi

General and Experimental Psychology, Department of Psychology, LMU Munich, Germany

# shared first authorship

Author Note

This study was supported by German Science Foundation (DFG) research grants SH 166/ 3-2

to Z.S. and DAAD scholarship 57440921 to C.B. The authors declare no competing interests.

Further information and requests for resources should be directed to the corresponding

author, Cemre Baykan, General and Experimental Psychology, Department of Psychology,

LMU Munich, 80802, Munich, Germany. Contact: c.baykan@campus.lmu.de.

mailto:c.baykan@campus.lmu.de


48

4.1 Abstract
Despite relatively accurate time judgment, subjective time is susceptible to various contexts,

such as sample spacing and frequency. Several electroencephalographic (EEG) components

have been linked to timing, including the contingent negative variation (CNV), offset P2,

and late positive component of timing (LPCt). However, the specific role of these

components in the contextual modulation of perceived time remains unclear. In this study, we

conducted two temporal bisection experiments, where participants had to judge if a test

duration was close to a short or long standard. Unbeknownst to participants, the sample

spacing (Experiment 1) and frequency (Experiment 2) were altered to create short and long

contexts while keeping the test range and standards the same in different sessions. The results

showed that the bisection threshold shifted toward the ensemble mean and that CNV and

LPCt were sensitive to context modulation. Compared to the long context, the CNV climbing

rate increased in the short context, and the amplitude and latency of the LPCt were reduced.

These findings suggest the CNV represents an expectancy wave for upcoming

decision-making, while LPCt reflects the decision-making process, both influenced by the

temporal context.

Keywords: time perception, EEG, temporal bisection, CNV, P2, LPCt

4.2 Introduction

Processing the vast amount of information that surrounds us can be challenging, as our

sensory organs have limited processing capacity (Wolfe, 1994), and more so, our memory

and attentional resources (Cavanagh & Alvarez, 2005). To tackle limitations, our brain has

developed ensemble perception (Whitney & Yamanashi Leib, 2018), a method for quickly

understanding the essence of a scene by extracting statistical information, such as the mean

and variance, from its features. For example, we can quickly determine the average size of

apples in a supermarket by just glancing at them, without a need to process each individual

apple in detail. We use similar forms of ensemble perception to process basic features, such

as the average motion, orientations, and colors (Albrecht et al., 2012; Ariely, 2001b; de

Gardelle & Summerfield, 2011; Parkes et al., 2001; Piazza et al., 2013; Williams & Sekuler,

1984), as well as sequential durations (Zhu et al., 2021). There are two types of ensemble

representations: spatial (Whitney & Yamanashi Leib, 2018) and temporal (Jones & McAuley,
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https://paperpile.com/c/2TTw20/ioWIQ
https://paperpile.com/c/2TTw20/pdIQL
https://paperpile.com/c/2TTw20/RcLnS+XthSI+iyZWi+DZzzv+xPhhe+eMriy
https://paperpile.com/c/2TTw20/RcLnS+XthSI+iyZWi+DZzzv+xPhhe+eMriy
https://paperpile.com/c/2TTw20/RcLnS+XthSI+iyZWi+DZzzv+xPhhe+eMriy
https://paperpile.com/c/2TTw20/TPQ4W
https://paperpile.com/c/2TTw20/pdIQL
https://paperpile.com/c/2TTw20/lRNcn+hUxPV


49

2005; Schweickert et al., 2014). Spatial ensemble representation involves a group of similar

objects that are presented simultaneously, while temporal ensemble representation involves

processing a sequence of stimuli over time.

When serving as context, both types of ensemble statistics can influence judgments of

individual items (Ariely, 2001b; Zhu et al., 2021). For instance, a temporal bisection task to

judge if a probe duration is close to a fixed ‘short’ or ‘long’ anchor is thought to rely only on

the probe's distance to the standards. However, studies have shown that sampling durations

can affect our judgment of related durations (Allan, 2002; Penney & Cheng, 2018; Wearden

& Ferrara, 1995). The transition between the short and long durations, known as the bisection

point, is often influenced by the mean of the sample durations (Zhu et al., 2021). This form of

bias, known as the spacing effect, occurs when distances among sampled durations are

uneven (Wearden & Ferrara, 1995), and the range effect, occurs when the spread of the

sample set influences its individual durations (Droit-Volet & Wearden, 2001; Penney et al.,

2014; Wearden & Ferrara, 1996). While the behavioral effects of the temporal contextual

modulation are now better understood (Zhu et al., 2021), the neural mechanisms governing

common temporal context effects are not yet fully understood, although some recent research

has shed light on this topic (Damsma et al., 2021; Wiener et al., 2018; Wiener & Thompson,

2015).

Recent EEG studies have identified several event-related potentials (ERP) associated

with time processing and contextual modulation (Lindbergh & Kieffaber, 2013; Ng et al.,

2011; Wiener & Thompson, 2015). For example, in a bisection task, the contingent negative

variation (CNV) - a negative polarity waveform that appears in the supplementary motor area

(SMA) - has been found to increase in negativity as the interval progresses and levels off

when the duration exceeds the geometric mean of the short and long anchors (Ng et al., 2011;

van Rijn et al., 2011; Wiener & Thompson, 2015). Additionally, post-interval positivity

ERPs, which appear in the range between 200 to 600 ms after the stimulus offset in the same

electrode clusters as CNV after the stimulus offset, have been found to vary with duration

judgments and temporal decisions (Damsma et al., 2021; Ofir & Landau, 2022b). The early

positivity component P2, peaking around 200 ms after the stimulus, has been suggested to be

linked with perceived duration length (Kononowicz & van Rijn, 2011), although the

relationship between P2 and the probe duration remains unclear (Kononowicz & van Rijn,

2014; Lindbergh & Kieffaber, 2013). The late positivity components, P3, P3b, or late positive

component related to timing (LPCt), measured around 300 - 600 ms after the stimulus, have

been related to temporal decision-making (Bannier et al., 2019; Lindbergh & Kieffaber, 2013;
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Paul et al., 2011). For example, Ofir and Landau (2022b) revealed that the offset-evoked P3

was negatively correlated with the stimulus duration in a bisection task, and its amplitude

decreased as the stimulus duration increased. Using a drift-diffusion model, Ofir and Landau

(2022b) could predict behavioral performance by assuming that the amplitude of the

offset-P3 reflects the proximity of the temporal accumulation to the decision boundary (i.e.,

the bisection point). Likewise, LPCt has also been found to vary with the probe duration, with

larger positive amplitudes being associated with shorter durations (Wiener & Thompson,

2015). Given that LPCt or P3 is measured after the duration offset, higher peaks for the short

compared to long intervals are interpreted as a sign that decisions for short intervals are more

demanding, as the decision process remains active and unresolved at the offset of a short

presentation (Lindbergh & Kieffaber, 2013).

Early studies primarily focused on those ERP components on temporal accumulation

(e.g., Macar et al., 1999), which did not take contextual modulation into account. More recent

studies have shown those ERP components are also sensitive to temporal contexts. Wiener

and Thompson (2015) have shown that both the CNV and LPCt covaried with the duration

presented in the prior trial. Damsma et al. (2021) asked participants to reproduce intervals

drawn from two different but overlapping ranges (the short and the long). When the same

interval was reproduced in the short-range compared to the long-range session, the

reproduction elicited higher amplitudes of CNV and offset P2. Furthermore, the amplitudes

of the CNV and the offset P2 decreased as the prior interval increased. By probing a bisection

task in sub-second and supra-second ranges separately, Ofir and Landau (2022b) found that

the offset P3 amplitude resembled a similar pattern in the two ranges, highlighting the nature

of contextual modulation (Baykan & Shi, 2022).

Decisions in a bisection task can be made during stimulus presentation without

waiting until the end, as it becomes clear whether a duration is short or long once the elapsed

time passes the bisection point between the short and the long. But a decision in a

reproduction task can only be made during the late reproduction phase, after the full

presentation of the duration. As a result, ERP components related to different timing tasks -

bisection or reproduction - may reflect different temporal cognitive processes depending on

the task being applied (Gontier et al., 2009; Kononowicz & van Rijn, 2014; van Rijn et al.,

2011).

It is important to note that the aforementioned EEG studies primarily focused on

neural activities during the probe itself. While some studies have discussed contextual

modulation (e.g., Ofir & Landau, 2022b), the contexts are often vastly different (e.g.,

https://paperpile.com/c/2TTw20/1s4DP+wg8qA+olZ1M
https://paperpile.com/c/2TTw20/uRWZy/?noauthor=1
https://paperpile.com/c/2TTw20/uRWZy/?noauthor=1
https://paperpile.com/c/2TTw20/hFWT
https://paperpile.com/c/2TTw20/hFWT
https://paperpile.com/c/2TTw20/wg8qA
https://paperpile.com/c/2TTw20/626MQ/?prefix=e.g.%2C%20
https://paperpile.com/c/2TTw20/hFWT/?noauthor=1
https://paperpile.com/c/2TTw20/51kZ/?noauthor=1
https://paperpile.com/c/2TTw20/uRWZy/?noauthor=1
https://paperpile.com/c/2TTw20/ETD0
https://paperpile.com/c/2TTw20/sYNqq+mR8T+noeRF
https://paperpile.com/c/2TTw20/sYNqq+mR8T+noeRF
https://paperpile.com/c/2TTw20/uRWZy/?prefix=e.g.%2C%20


51

sampling from different ranges of durations, such as subseconds vs. super-seconds). None of

these studies have examined ensemble contexts within the same range of durations, but with

different duration spacing or sample frequencies. Neurophysiological mechanisms underlying

such ensemble contexts are not yet fully understood. To address this issue, we designed two

experiments using the bisection task with manipulations of sampled durations. In both

experiments, the short standard was 400 ms, the long standard 1600 ms. Participants had to

judge whether a probe duration was close to the short standard or the long standard.

Unbeknown to participants, the sampled durations in Experiment 1 were positively skewed in

one session and negatively skewed in the other, while in Experiment 2 there were high

frequencies of short samples in one session and long samples in the other. Based on previous

findings (Ng et al., 2011; Wiener & Thompson, 2015), we expected the CNV peak latencies

would correlate to the internal decision criterion of the bisection task, where peak latencies

would be earlier in short compared to long contexts, but would plateau after the ensemble

mean duration. According to literature (Kononowicz & van Rijn, 2014; Tarantino et al.,

2010), which suggests that the P2 amplitude is linked to the stimulus magnitude, we

hypothesized that the P2 amplitude would increase with target interval increases and be more

positive in short relative to long contexts. To distinguish the late positivity components, e.g.

LPCt, from the P2 component, we inserted a 300 ms blank interval after the stimulus offset in

Experiment 2, examining the relationship between the LPCt amplitude and the target interval.

4.3 Experiment 1

In Experiment 1, we manipulated the temporal context using the positively skewed

(PS, more short durations) and negatively skewed (NS, more long durations) sample

distributions, based on our previous work (Zhu et al., 2021). Behaviorally, we expected the

same outcome as the previous study - intermediate durations would be more likely to be

judged as “long” in the PS than the NS context.

4.3.1 Method

Participants

20 participants with no hearing impairment took part in Experiment 1 in exchange for

a monetary reward or course credit at LMU Munich. The sample size was calculated based on
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the effect size of a similar temporal bisection study (Zhu et al., 2021) with , and theη
𝑔

=  . 26

assumption of α = .05 and power 1 – β = .95, which required a sample size of 16 participants.

To be safe for EEG analysis, we increased the sample size to 20. All participants provided

written informed consent before their participation. One participant was excluded in the

formal analysis because of excessive eye and body movement artifacts. Thus, the final

sample in Experiment included 19 participants (10 females, mean age 27.2 years, SD = 4.2

years), who were naive to the purpose of the study. The study was approved by the Ethics

Board of the Department of Psychology at LMU Munich.

Stimuli and Procedure

The auditory stimuli were generated using the PsychoProtAudio library and presented

through loudspeakers (Logitech Z130) using the Psychtoolbox 3 (Kleiner et al., 2007).

Instructions and feedback text were displayed on a CRT monitor.

Participants sat in a sound-attenuated, moderately lit test room. Prior to the formal

experiment, participants received a practice block consisting of 5 presentations of the short

and long standards (400 and 1600 ms) to familiarize themselves with the standards. During

the practice, participants made “short” or “long” judgments and received feedback on

whether they were correct or incorrect. In the formal test, each trial started with a visual

fixation and a brief beep (20 ms, 1000 Hz, 60 dB), followed by a 500 ms blank display,

signaling the start of a new trial. A white-noise stimulus (60 dB) was then presented for a

given duration chosen from the experimental stimulus sets (see below). Immediately after the

sound presentation, a question mark appeared, prompting participants to respond by pressing

the right or left arrow keys on the keyboard using two index fingers, indicating if the

presented sound was close to the short or the long, respectively (Fig. 1a).

There were two sessions with each session of 336 trials (six blocks of 56 trials each).

Two sessions had different duration sets: the positively skewed (PS) duration set consists of

[400, 504, 636, 800, 1008, 1270, 1600] ms, the negatively skewed (NS) duration set [400,

730, 992, 1200, 1366, 1496, 1600] ms (Fig. 1b). The ensemble mean of the NS was 223 ms

longer than the ensemble mean of the PS context. Each duration was randomly tested 48

times. The order of sessions was counterbalanced across participants (before the outlier

exclusion).

https://paperpile.com/c/2TTw20/TPQ4W
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Figure 1. a) Each trial started with fixation-cross for 500 ms. It was followed by a target interval

presentation. Right after the presentation, a question mark appeared, prompting participants to

respond. The inter-trial-interval was 1000 ms. b) The target intervals used in Experiment 1. In the

short context session (PS), intervals were logarithmically spaced between 400 ms and 1600 ms and

the intervals were mirrored in the long context session (NS). Each target interval was presented 48

times during the session.

EEG acquisition and analysis methods

Electrical brain activity was recorded from 64 scalp locations (actiCAP system; Brain

Products, Munich, Germany) using the BrainVision Recorder software (Brain Products

GmbH, Munich, Germany) and a BrainAmp amplifier (DC to 250 Hz) at the sampling rate of

1000 Hz. During the experiment, the impedances of all electrodes were kept below 10 kΩ.

The electrode FCz was used as an online reference and was re-referencing to

temporal-parietal electrodes offline (TP9 and TP10).

The EEG data were analyzed using BrainVisionAnalyzer 2.0 software, with a

bandpass filter of 0.1 to 70 Hz. Artifacts caused by eye blinks, eye movements, and muscle

noises were removed using independent component analysis (ICA) and visual identification.

Before segmentation, the continuous EEG data were inspected automatically using the raw

data inspection procedure in the analyzer software and were bandpass-filtered from 0.1 to 30

Hz.

ERP components

All ERP components reported here were calculated for each participant, target

interval, and temporal context. The onset-locked ERP data for CNV analyses were baselined

to the average voltage 200 ms prior to the stimulus onset, using six clustered frontocentral

electrodes FCz, FC1, FC2, C1, C2 and Cz (Kononowicz & van Rijn, 2014; Ng et al., 2011).

To examine the evolving velocity of the CNV negativity over time, we conducted linear

regression in the time window from the end of post-onset P2 (250 ms) to the start of the CNV

https://docs.google.com/document/d/1SVePeD7YL8-nTn0Y32OsZk9I9dseRLB0mH1OaTDu0O0/edit#figur_exp1
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(800 ms) as per previous literature (Ng et al., 2011) and obtained slopes for individual

participants in each condition. We extracted the CNV peak latencies as the minimum (most

negative) amplitude from stimuli onsets to the longest duration offset (i.e., 1600 ms) for each

target interval in each context. We defined the mean CNV amplitude of each target interval as

the average waveform in the interval starting from the late negativity onset (250 ms after the

onset) and having a length of the stimulus duration (Kruijne et al., 2021). The stimulus offset

P2s were calculated using the same frontocentral electrodes as used for the CNV analysis

(Damsma et al., 2021). The offset-locked ERP data for P2 analyses were baselined to the 100

ms time window surrounding the stimulus offset (50 ms preceding and 50 ms following the

offset) (Kononowicz & van Rijn, 2014). We extracted the P2 peak latencies as the maximum

(most positive) amplitude within the 0 - 500 ms duration offset window. We defined the mean

P2 amplitude of each target interval as the average waveform between 140 and 300 ms after

the stimulus offset (Kononowicz & van Rijn, 2014).

Data analysis

Psychometric functions were estimated using the logistic function with the Quickpsy

package in R (Linares & López-Moliner, 2016), the point of subjective equality (PSE) was

then calculated at the threshold of 50%, and the just noticeable difference (JND) as the

difference between the thresholds at 50% and 75%. Mean PSEs and JNDs were compared

using repeated-measures analysis of variance (ANOVA), if necessary, with additional Bayes

factor ( ) analyses to provide a more rigorous assessment of the null hypothesis (Rouder et𝐵𝐹

al., 2009). For analysis of the EEG components, we applied a linear mixed model, which can

accommodate the covariant factor (duration) in addition to the fixed effects addressed by

ANOVA. Mixed models are robust to violations of sphericity and do not inflate Type I errors

(Singmann & Kellen, 2019). The p-values reported for mixed models were calculated using

the Kenward-Roger approximation.

4.3.2 Results

Behavioral results

Figure 2 illustrates the averaged psychometric functions, mean PSEs, and JNDs. The

mean PSE (± standard error, SE) for the short-context PS session was significantly shorter

(888.7 ± 45.9 ms) than the long-context NS session (958.9 ± 46 ms), F(1, 18) = 6.90, p =

.017, = .033, BF = 3.04 (see also Table 1). In other words, the same duration (e.g., 1 sec)η
𝑔
2
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was perceived as longer in the short relative to the long context. The sensitivities of the

bisection, measured by JNDs, were comparable between two sessions, F(1, 18) = 2.44, p =

.14, = .010, BF = 0.74, indicating the spacing of the target intervals did not change theη
𝑔
2

discrimination sensitivity. Thus, The behavioral results are in line with the previous findings

(Zhu et al., 2021).

Figure 2. (a) The averaged proportion of ‘long’ responses (scatter dots) and the fitted psychometric

curves over 19 participants, separated for the positively (PS) and negatively skewed (NS),

stimulus-spacing conditions. (b) Boxplots of the points of subjective equality (PSEs) of the duration

judgments for the PS and NS sessions (* p < .05). The dots depict individual PSEs. The lower and

upper tips of the vertical lines correspond to the minimum and maximum values, the box the

interquartile range (between 25% and 75%), and the horizontal line the median. (c) Boxplots of JND

of the duration judgments for the PS and NS sessions. The dots depict individual JNDs.

https://paperpile.com/c/2TTw20/TPQ4W
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Electrophysiological Results

Contingent negative variation (CNV)

Table 1. Mean ERPs and Behavioral PSEs and JNDs

CNV Behavioral

Experiment Context
Climbing

Rate
(μV/s)

Peak
latency

(ms)

Peak
amplitude

(μV)

Mean
amplitude

(μV)

PSE
(ms)

JND
(ms)

1: Spacing Short
(PS)

-23 773.2 -6.1 -1.47 888.7 121.1

Long
(NS)

-20 875.9 -5.6 -1.17 958.9 131.7

2:
Frequency

Short
(DF)

-19 942.8 -5.4 -0.78 749.3 96.3

Long
(AF)

-17 876.6 -4.5 -0.27 951.2 121.1

Note. The data are grouped by temporal contexts in both Experiments 1 and 2. Bold values indicate a
significant difference between the two contexts.

Figure 3 illustrates the CNV activities in the short PS (a) and long NS contexts (d),

showing the negativity changes over time for different target intervals. To characterize the

CNV components, we looked into its formation rate, peak latency, amplitude, and the mean

latency. Given the negative ballistic deflation of the activities after P2, we used linear

regression to estimate the rate (i.e., slope) at which the CNV was forming within the time

window from 250 (after P2) to 650 ms (the start of the CNV). The mean values are listed in

Table 1.

We found the rate was significantly negative for both the PS context (−23 ± 1.9 μV/s,

95% CI = [−27 to −19] μV/s, t (18) = −12.24, p < .001) and the NS context (−20 ± 1.6 μV/s,

95% CI = [−24 to −17] μV/s, t (18) = −13.12, p < .001), but significantly smaller in the PS

compared to the NS, F(1, 18) = 9.03, p = .01, = .03, BF = 5.53, indicating a faster temporalη
𝑔
2

accumulation in general for durations in the PS relative to the NS session, consistent with the

prior research (Macar & Vidal, 2004). Moreover, the CNV peaked significantly earlier for the

short context PS relative to the long context NS (773.2 ms vs. 875.9 ms, F(1, 18) = 4.99, p =

https://paperpile.com/c/2TTw20/5lPpC
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0.04, = 0.08, BF = 2.17), but only numerically higher in amplitude for the PS relative to theη
𝑔
2

NS (-6.1 μV vs. -5.6 μV, F(1, 18) = 3.61, p = 0.07, = 0.01, BF = 1.12).η
𝑔
2

Figure 3. Grand average of the ERP waveforms over the medial frontal electrodes (FCz, FC1, FC2,

C1, C2, and Cz), separated for different target intervals, separated for (a) the short (PS) and (d) the

long (NS) contexts. The mean CNV peak latency (b) and amplitude (c) of the target intervals,

separated for the PS and NS conditions. (e) The mean CNV amplitude as a function of the target

interval, separated for the PS and NS conditions. Error bars represent the standard error of the mean.

As research has shown the mean amplitude of CNV to be correlated with the sample

duration (Macar et al., 1999; Pfeuty et al., 2003, 2005), we estimated the mean amplitude

separately for individual durations, as depicted in Fig. 3e. We then applied a linear mixed

model to the mean CNV amplitude, with the Context as the fixed effect and Duration a

covariant effect. The mixed model showed that the mean negativity increased by 1.23 perµ𝑉

second of Duration (b = -1.23, CI = [-1.72, -0.73], p < .001). However, there was no

significant difference between the short and long contexts (p = .53) and no significant

interaction between the Duration and Context (p = .31).

https://docs.google.com/document/d/1SVePeD7YL8-nTn0Y32OsZk9I9dseRLB0mH1OaTDu0O0/edit#figur_exp1_ave_mean
https://paperpile.com/c/2TTw20/BUfp+CJE1x+626MQ
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Offset P2

Figure 4. Grand average of the ERP waveforms over the medial frontal electrodes (FCz, FC1, FC2,

C1, C2, and Cz), separated for different target intervals, separated for the PS (a) and the NS

conditions (c). (b) Mean P2 peak latency and (d) mean P2 amplitude as a function of the target

interval, separated for the PS (blue) and NS (red) contexts. Error bars represent the standard error of

the correspondent mean.

Figures 4a and 4c depict the ERP waveforms over the medial frontal electrodes

relative to the offset of the stimuli for the short and long contexts, showing a positive peak

around 200 ms after the stimuli offset that correlates with the target interval. Figures 4b and

4d show the peak latency and mean amplitude of the offset P2 as a linear trend of the target

interval, separated for the PS and NS contexts: The latency decreases, but the amplitude

increases as the target interval increases, while there was not much difference between the

two contexts. A linear mixed model with the Context as the fixed effect and Duration as a

covariant effect was applied to the offset P2 peak latency, which revealed that the peak

latency decreased by 78 ms/s of Duration (CI = [-144.92, -10.38], p = .026). But the peak

latency showed no significant difference between the PS and NS Context (p = .28).

Moreover, there was no significant interaction between Duration and Context (p = .58).

Similar linear mixed model applied to the Offset P2 mean amplitudes (Fig. 4d) revealed a

significant main effect of Duration (b = 2.90, CI = [1.98, 3.81], p < .001). Again, there was

no significant Context (p = .28) and no interaction between the Duration and Context (p =

https://docs.google.com/document/d/1SVePeD7YL8-nTn0Y32OsZk9I9dseRLB0mH1OaTDu0O0/edit#figur_exp1_p2
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.41). The findings indicate that while the offset P2 was responsive to the target interval, it was

insensitive to variation of ensemble contexts.

4.3.3 Discussion

Experiment 1 replicated previous research (Wearden & Ferrara, 1995; Zhu et al., 2021),

confirming that temporal bisection is subjective to the target spacing. Intervals in the short

context (PS), relative to the long context (NS), tended to be judged longer, indicating that

participants not merely compared the probe duration to the short or long standards (which

were the same in both contexts), but also took into account the spacing of the sample

durations.

Experiment 1 revealed that the mean amplitude of CNV was linked to the target

duration. As the duration increased, so did the mean amplitude. Figure 3e also shows that the

mean amplitude leveled off at middle durations (800 to 1200 ms), which is in line with

previous research (Macar & Vidal, 2003; Ng et al., 2011) that found CNV plateaued at the

geometric mean of the short and long intervals in the bisection task. The findings support that

CNV stands for temporal expectation (Amit et al., 2019; Praamstra et al., 2006). Some

researchers have suggested that the CNV amplitude is subjective to the context. For example,

adapting to shorter durations would lead to an increase in the amplitude of CNV, while

adapting to longer durations would decrease the amplitude of the CNV (Li et al., 2017). Here

we found the mean (or peak) amplitude of the CNV was higher for the short context (PS)

than for the long context (NS), but the difference did not reach statistical significance. On the

other hand, we did find that the latency of the CNV was earlier for the short context relative

to the long context, which aligns with previous research showing a faster development of the

CNV activity for short than long target durations (Pfeuty et al., 2005). However, as

Kononowicz and Penney (2016) have suggested, timing isn’t the only factor contributing to

the CNV. More complex processes, such as preparation for an upcoming event, could play a

role. Therefore, in some cases, the CNV may not truly reflect the temporal interval itself, as

revealed in a previous study that CNV-like negativity simply disappears for intervals longer

than 4 seconds (Elbert et al., 1991).

Additionally, the offset P2, a common component associated with temporal

accumulation as reported previously (Kononowicz & van Rijn, 2014; Tarantino et al., 2010),

had a negative correlation with the target interval, which is consistent with previous findings

(Kononowicz & van Rijn, 2014). This can be explained by the predictive coding account

https://paperpile.com/c/2TTw20/eoWp+TPQ4W
https://paperpile.com/c/2TTw20/PrZQ+9EnFU
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(Friston & Kiebel, 2009; Kononowicz & van Rijn, 2014; Rao & Ballard, 1999), because short

intervals that stopped before the decision threshold (i.e., the bisection point) led to larger

‘prediction errors’ than long intervals, resulting in early P2 latencies. This is also in line with

the previous studies showing that short durations lead to longer reaction times (e.g., Bannier

et al., 2019). However, the offset P2 was not affected by the spacing modulation, which is in

contrast to previous reports that the late positive component of timing (LCPt), peaking at

around 300 ms post-offset (later than P2), can be influenced by the task difficulty (Paul et al.,

2011), the prior trial duration (Wiener & Thompson, 2015), or the sample set (Ofir & Landau,

2022b).

It’s worth noting that previous studies that used bisection or duration comparison

tasks often employed durations longer than 800 ms (e.g., Ng et al., 2011), meaning that the

expectation of a binary decision would not occur earlier than 500 ms, at which point the CNV

is just emerging (as seen in Figure 3). Here we used two short intervals (400 ms, 504 ms),

which caused the offset of CNV to happen earlier for preparing action, leading to some

distortion of the offset P2 component (as seen in Figure 4), making the comparison of P2

across durations less ideal. Given this, to separate the decision-making process from

temporal encoding in a bisection task, we added a 300 ms gap before prompting a decision in

Experiment 2. In addition, to generalize the contextual modulation, we applied ensemble

context instead of sample spacing.

4.4 Experiment 2

4.4.1 Method

Participants

20 participants with no hearing impairment took part in Experiment 2 in return for a

monetary incentive or course credit at LMU Munich. The sample size was the same as in

Experiment 1. All participants were naive to the purpose of the study and gave written

informed consent before the formal experiment. The study was approved by the Ethics Board

of the Department of Psychology at LMU Munich.

Because of the excessive eye or body movement artifacts during EEG recording, three

participants were excluded from further analyses. Thus, the results of 17 participants (6

females, mean age 27.3 years, SD = 3.5 years) were reported here.
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Stimuli and Procedure

The experimental setup was the same as in Experiment 1, with the following two

exceptions: first, a 300-ms blank was inserted between the stimulus offset and the question

mark (prompting for a response), providing a decision time buffer for short durations (Fig.

5a); second, two sessions had the same equal-spaced duration set of [400, 600, 800, 1000,

1200, 1400, 1600] ms, but sampled with different frequencies (Fig. 5b). In one session, the

above durations were tested [12, 24, 36, 48, 60, 72, 84] times, respectively. We referred to

this session as the ascending frequency (AF) session. In the other descending frequency (DF)

session, the same durations were tested [84, 72, 60, 48, 36, 24, 12] times, respectively. Within

each session, the durations were randomly selected with the respective frequency. The order

of sessions was counterbalanced among participants (before the outlier exclusion).

Figure 5. a) Each trial started with a fixation cross for 500 ms, followed by a target interval

presentation. 300ms after the presentation, a question mark was presented, prompting participants to

respond. The inter-trial interval was 1000 ms. b) Target intervals used in Experiment 2. In the short

context session (DF), equally spaced intervals between 400 ms and 1600 ms were presented 84, 72,

60, 48, 36, 24, and 12 times during the session, whereas the presentation frequencies were mirrored in

the long context session (AF).

ERP components

In addition to the analyses of the CNV slopes, latencies, and amplitudes, we compared

the CNV activities between two sessions for the intermediate target intervals (800, 1000, and

1200 ms), where the temporal context greatly modulated the bisection decision. The LPCt

components were estimated on the same frontocentral electrodes as the CNV analysis

(Damsma et al., 2021), but baselined relative to the 100 ms time window surrounding the

onset of the question mark (50 ms preceding and following the question mark) (Kononowicz

& van Rijn, 2014). We extracted the LPCt peak latencies as the maximum (most positive)

amplitude within the 500 ms window starting from the question mark and calculated the LPCt

https://docs.google.com/document/d/1SVePeD7YL8-nTn0Y32OsZk9I9dseRLB0mH1OaTDu0O0/edit#figur_exp1
https://paperpile.com/c/2TTw20/51kZ
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mean amplitudes by averaging waveform between 300 and 500 ms after the stimulus offset

(Bueno & Cravo, 2021; Ofir & Landau, 2022b).

4.4.2 Results

Behavioral results

Figure 6a illustrates the averaged proportion of long responses and corresponding

estimated psychometric functions. The mean PSE (±SE) was 749.3 ± 33.86 ms for the DF

session, significantly shorter than the AF session (951.2 ± 49.91 ms), F(1, 16) = 27.72, p <

.001, = .27, BF > 100, indicating the durations in the DF session were perceived longerη
𝑔
2

than the same duration in the AF session. Thus, the finding is consistent with the previous

study (Zhu et al., 2021). Moreover, the mean JND (±SE) was 96.3 ± 6.69 ms for the DF

session, significantly smaller than the AF session (119.8 ± 12.09 ms), F(1, 16) = 8.82, p =

.01, = .01, BF = 5.22, showing that the sensitivity of the bisection was higher in the AFη
𝑔
2

compared to the DF session.

Figure 6. a) Bisection functions (proportions of “long” responses plotted against the target durations,

and fitted psychometric curves) averaged across 17 participants for the two, descending (DF) and

ascending frequency (AF) distributions. b) Boxplots of PSE of the duration judgments for the DF and

AF sessions (*** p < .001). The dots depict individual PSEs estimated from individual participants.

The lower and upper tips of the vertical lines correspond to the minimum and maximum values, the

box represents the interquartile range (between 25% and 75%), and the horizontal line represents the

median. c) Boxplots of JND of the duration judgments for the DF and AF sessions (** p < .01). The

dots depict individual JNDs of individual participants.

https://paperpile.com/c/2TTw20/uRWZy+23QZ3
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Electrophysiological results

The CNV

Figure 7. Grand average of the ERP waveforms over the medial frontal electrodes (FCz, FC1, FC2,

C1, C2, and Cz) relative to the onset of stimuli, separate for (a) the short (DF) and (d) the long (AF)

contexts. The mean CNV peak latency (b) and amplitude (c) of the target intervals, separated for the

DF and AF conditions. (e) The mean CNV amplitude as a function of the target interval, separated for

the DF and AF conditions. Error bars represent the standard error of the mean.

Figure 7 illustrates the CNV activities both in the short DF (a) and long AF (d)

contexts, showing that the negativity changes over time for different target intervals. Just like

in Experiment 1, to characterize the CNV component, we looked into its formation rate, peak

latency, amplitude, and mean latency. Given the negative ballistic deflation of the activities

after P2, we used linear regression to estimate the rate (i.e., slope) at which the CNV was

forming within the time window from 250 (after P2) to 650 ms (the start of the CNV). The

mean values are listed in Table 1.

We found the slope was significantly negative for both the DF context [−19 ± 1.5

μV/s, 95% CI = [−22, −15] μV/s, t (16) = −12.57, p < .001] and the AF context [−17 ± 1.5

μV/s, 95% CI = [−20 to −14] μV/s, t (16) = −11.37, p < .001], but significantly smaller in the

https://docs.google.com/document/d/1SVePeD7YL8-nTn0Y32OsZk9I9dseRLB0mH1OaTDu0O0/edit#figur_exp2_erps
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DF compared to AF context, F(1, 16) = 5.76, p = .03, = .018, BF = 2.14, indicating a fasterη
𝑔
2

temporal accumulation in general for durations in the DF relative to the AF session,

consistent with the previous research (Macar & Vidal, 2004). Moreover, the CNV peak

amplitudes were significantly higher (-5.4 μV vs. -4.5 μV) for the short context (DF) relative

to the long context (AF), F(1, 16) = 5.89, p = 0.03, = 0.05, BF = 2.22), but with aη
𝑔
2

comparable latency (942.8 ms vs. 876.6 ms, F(1, 16) = 0.85, p = 0.37, = 0.03, BF = 0.49).η
𝑔
2

Next, we applied a linear mixed model to the mean CNV amplitude, with the Context

as the fixed effect and Duration as a covariant, which showed that the mean negativity

amplitude increased by 1.66 for each second increased in Duration (b = -1.66, CI = [-2.35,µ𝑉

-0.96], p < .001), demonstrating again that the CNV amplitude is correlated to the target

interval. However, there was no significant Context (p = .47) or interaction between the

Duration and Context (p = .71).

Late positive component of timing (LPCt)

Figure 8. Grand average of the ERP waveforms over the medial frontal electrodes (FCz, FC1, FC2,

C1, C2, and Cz) relative to the stimulus offset in the DF (a) and the AF conditions (c). b) Mean LPCt

peak latency and (d) mean LPCt amplitude as a function of the target interval, separated for the DF

(blue) and AF (red) contexts. Error bars represent the standard error of the correspondent mean.

https://paperpile.com/c/2TTw20/5lPpC
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Next, we looked into the later positivity components, such as P2 and LPCt, in the

window of [0, 500] ms. Unlike Experiment 1, we failed to find any significant difference in

the P2 component (the mean amplitudes were 4.2 ± 0.5 and 4.4 ± 0.6 for the DF and AF,

respectively, p = 0.28. There was no significant difference among different target intervals, p

= 0.99), but as seen in Figure 8, there were visible differences in the late time window. Thus

we focused on the analysis of the LPCt component. The averaged LPCt peak latencies (±

standard error, SE) were 248.6 ± 14.03 ms and 265.9 ± 11.87 ms for the DF and AF context,

respectively (Fig. 8b). Same as in CNV analysis, we applied a linear mixed model to the

LPCt peak latency, with the Context as the fixed effect and Duration as a covariant effect.

The mixed model showed significant effects of Context (b = 38 ms, CI = [13, 63], p = .003),

Duration (b = -77 ms/s, CI = [-133, -22], p = .009) and the Duration × Context interaction (b

= -30, CI = [-53, -6], p = .013). The LPCt peaked earlier for the short DF than the long AF

context, and the latency decreased as the duration increased (Table 1). The interaction was

likely owing to the comparable peak latencies between the two contexts for the long but not

for the short durations (see Figure 8b).

For better comparison with the literature (Bueno & Cravo, 2021; Ofir & Landau,

2022b), we extracted the mean LPCt amplitude from the time window of [300, 500] ms. A

similar linear mixed model on the LPCt mean amplitude (see Fig. 8d) revealed similar

results: significant effects of Duration (b = -3.55, CI = [-5.13, -1.97], p < .001), Context (b =

1.83, CI = [1.09, 2.58], p < .001) and the Duration × Context interaction (b = -1.22, CI =

[-1.92, -0.53], p < .001). The mean amplitude was larger for the long AF than for the short

DF context (Table 1). As seen in Figure 8d, the interaction was caused by different

amplitudes for the short durations but plateaued at a similar level for the long durations.

Cross-experiment comparisons

To gain a better understanding of the temporal encoding process reflected in the CNV

and the decision-making process reflected in the offset P2 and LPCt, we further compared the

results of our two experiments for short (400 ms), intermediate (around 1000 ms), and long

(1600 ms) durations (as shown in Figure 9 a, b, and c). Visual inspection shows that the CNV

peaked earlier in Experiment 1 compared to Experiment 2. More interestingly, even when the

duration was the same, the offset late positivity was delayed by about 300 ms, suggesting that

the late positive component is not solely dependent on the offset of the duration, but also on

the onset of the response (the onset of the question mark that prompts for response).

Moreover, the late positivity component did not fully emerge for the short duration (400 ms)

https://paperpile.com/c/2TTw20/uRWZy+23QZ3
https://paperpile.com/c/2TTw20/uRWZy+23QZ3
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in Experiment 1, largely owing to the disruption of the ongoing CNV with immediate

prompting for a response.

Figure 9. The grand average of the ERP waveforms over the medial frontal electrodes (FCz, FC1,

FC2, C1, C2, and Cz) relative to the stimulus onset are depicted for the shortest (a), intermediate (b),

and the longest (c) target intervals for the temporal contexts used in Experiment 1 and 2. Light blue

and light green lines depict the long (NS) and short (PS) contexts of Experiment 1. Black and dark

blue lines depict the long (AF) and short (DF) contexts of Experiment 2. The first vertical dashed line

marks the offset cue (the question mark presentation) in Experiment 1, while the second vertical

dashed line marks the offset cue in Experiment 2. d) The CNV slope, measured in the interval from

250 ms to 650 ms after stimulus onset. Error bars show the standard error of the mean. e) The CNV

end, measured by the crossing point of the negativity waveform from negative to positive. Black and

red colors depict the shortest and longest intervals (400 and 1600 ms) in both experiments, while the

blue color depicts the intermediate durations of 992, 1000, and 1008 ms used in the experiments. For

ease of visualization, they were depicted by the same color and label (1000 ms). Error bars show the

standard error of the mean.

The mean slope of the CNV, measured within the interval from 250 to 650 ms,

collapsed for these three intervals, was −22 ± 1.1 μV/s for the short PS and −19 ± 1.0 μV/s

for the long NS in Experiment 1, while in Experiment 2, the mean slope was −19 ± 1.0 μV/s

https://docs.google.com/document/d/1SVePeD7YL8-nTn0Y32OsZk9I9dseRLB0mH1OaTDu0O0/edit#figur_exp2_p2
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for the short DF and −17 ± 1.0 μV/s for the long AF. A linear mixed model was used to

analyze the CNV slopes, with Experiment as the fixed effect and Context as the covariant

effect. A linear mixed model was used to analyze the CNV slopes, with Experiment as the

fixed effect and Context as the covariant effect. The analysis showed that there was a

significant effect of Context (b = 1.14, CI = [0.04, 2.24], p = .042), and Experiment (b = 2.60,

CI = [0.92, 4.28], p = .003), while there was no interaction between Experiment and Context

(p = 0.64).

To determine when the offset of the CNV and the onset of late positivity begin, we

examined the crossing latency, which is the point at which the CNV waveform changes from

negative to positive after 650 ms from the onset. We found significant differences in crossing

latency between the two experiments, despite using the same probe duration (all ps < .001):

703 vs. 914 ms for the 400-ms target interval, 1210 vs. 1628 ms for the 1000-ms target

interval, and 1860 vs. 2074 ms for the 1600-ms target interval for Experiments 1 and 2,

respectively. This suggests that the CNV is not solely based on the target duration, but also

reflects the expectancy of the temporal period before the decision.

4.4.3 Discussion

Similar to the results of Experiment 1, we found that the mean CNV amplitude

increased as the target interval increased. A comparison with Experiment 1, however,

revealed the CNV is not solely based on the target interval, but also depends on the period

before the decision is prompted. Interestingly, we found the rate of the CNV formation and

the peak amplitude of the CNV were dependent on the context. Combining the analysis of

Experiments 1 and 2 revealed that the rate of the CNV is a robust indicator of context

modulation. Specifically, the short context resulted in a faster rate of CNV formation,

meaning the CNV began earlier in the short context compared to the long context. Our results

are consistent with the notion that CNV activity reflects not only the temporal accumulator of

an internal timing mechanism (Macar et al., 1999) but also temporal anticipation (Elbert et

al., 1991; Ng et al., 2011), particularly for the forthcoming decision-making (Kononowicz &

Penney, 2016).

Interestingly, the offset late positivity component was more distinct in Experiment 2

than in Experiment 1, even for the short durations such as 400 ms, when we inserted a 300 ms

gap before prompting for action. This suggests that the late positive component may better

reflect the decision process when the CNV is fully evolved. As seen in LPCt, the mean

amplitude negatively correlated with the target interval, similar to the recent findings of Ofir

https://paperpile.com/c/2TTw20/626MQ
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and Landau (2022b), who reported that the offset response amplitude decreases as the interval

increases, but levels off after the interval passes the bisection point. The late offset positivity

components such as LPCt, P300, or P3 have been suggested as indicators of decision-making

at post-perceptual stages (Baykan & Shi, 2022; Kelly & O’Connell, 2013; Ofir & Landau,

2022b; Polich & Kok, 1995). For a bisection task, the decision could be made before the

stimulus offset when the interval presentation passes the bisection point, as the uncertainty of

the response (‘long’) is greatly reduced for long intervals compared to short intervals. For the

short intervals, the online monitoring of the passage of time and comparison to the bisection

point remain active (Lindbergh & Kieffaber, 2013). Thus, as suggested by Ofir and Landau

(2022), the amplitude of the late positivity may reflect the distance from the decision

threshold.

Most importantly, we observed contextual modulation of the late positivity LPCt

component: higher amplitude but later latency for the long AF than the short DF context.

Given that LPCt amplitude negatively correlated with the target duration, a higher amplitude

in the long context (AF) indicates that intervals were perceived shorter as compared to the

same duration in the short context (DF), closely reflecting the behavioral results.

4.5 General Discussion (Chapter 4)

The aim of this study was to examine the timing-related ERP components to gain a

deeper understanding of neural mechanisms underlying the impact of ensemble contexts on

temporal judgments. Results showed that ensemble contexts, both temporal spacing and

sample distribution, modulated perceived time intervals, consistent with previous studies

(Penney et al., 2014; Wearden & Ferrara, 1995; Zhu et al., 2021). The PSE was biased

towards the mean of the ensemble distribution, with short contexts lowering the PSE,

resulting in more likely to respond “long” to the target intervals in short relative to long

contexts. EEG analysis also revealed context effects on the slope of contingent negative

variation (CNV) and the latency and amplitude of the late post-offset positivity related to

timing (LPCt), which are commonly associated with expectancy and decision processes of

timing.

The CNV

In both experiments, we saw sustained negativity, known as CNV, emerging after the

onset P2, peaking between 600-800 ms, and dissolving at the end of the stimulus

https://paperpile.com/c/2TTw20/uRWZy/?noauthor=1
https://paperpile.com/c/2TTw20/N0ma+RfpV+uRWZy+ETD0
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presentation. The CNV has been considered a strong signal for temporal processing, and

early studies have suggested that its evolving slope and amplitude reflect the passage of time

(Macar & Besson, 1985; Macar & Vitton, 1982). Our results showed that long durations

elicited longer sustained negativities compared to short durations. However, the CNV

represents more than just timing. For example, comparing brain activity between two

experiments, the sustained negativity elicited by the same duration was nearly 300 ms longer

in Experiment 2 than in Experiment 1, due to the 300-ms blank period before the cue display

for response in Experiment 2. This modulation of response delay by the cue display supports

the early proposal that the dissolving of the CNV may also indicate readiness to act quickly

(Loveless & Sanford, 1974; Näätänen, 1970).

Kononowicz and Penney (2016) have recently echoed this idea that the CNV is not

just about timing, but also influenced by more complex cognitive processes, such as

anticipation and expectation, as well as response preparation (Kononowicz, Van Rijn, et al.,

2018; Kononowicz & Penney, 2016; van Rijn et al., 2011). For example, in a study where

participants were cued to respond as quickly (speed trial) or accurately (accuracy trials), the

CNV amplitude was more negative in speed trials than in accuracy trials (Boehm et al.,

2014), suggesting that CNV amplitude may reflect changes in participants’ response caution

favoring quick decision making. Similarly, Ng et al. (2011) showed that CNV activity for the

current long interval leveled off after passing a memorized internal criterion (around the

geometric mean of sample intervals). In both experiments, our results also showed that the

mean CNV amplitude increased with increasing target interval, leveling off around the

middle intervals (Figures 3 and 7), suggesting that the CNV amplitude is closely tied to the

expected decision criterion.

Another key finding is the contextual modulation of the climbing rate of CNV. In both

experiments, the short context led to faster CNV formation compared to the long context.

Since the CNV rate was already determined at the beginning of the presentation when the

length of the stimulus was unknown, it reflects the general expectation of how long the

decision interval (the ensemble mean of the sample distribution) may arrive in a given block.

Thus, the rate difference between short and long contexts indicates whether the internal

decision interval shifts earlier or later. While we observed context differences in peak latency

in Experiment 1 and peak amplitude in Experiment 2, as well as some numerical differences

in the mean CNV amplitude, the effects were not consistently significant across both

experiments.
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Together, our results suggest that CNV reflects the readiness or expectation to respond

to an incoming stimulus (Boehm et al., 2014; Kononowicz & Penney, 2016; Ng et al., 2011),

and the rate of initial CNV formation is a good indicator of context modulation of the

decision threshold.

The offset positivity components (P2 and LPCt)

After prompting for a response, we saw an offset positivity waveform, peaking at

200-400 ms and lasting for over 600 ms after the stimulus presentation. This offset positivity

is known as P2 (Kononowicz & van Rijn, 2014; Tarantino et al., 2010), P3/P3b (Ofir &

Landau, 2022b), or LPCt (Paul et al., 2011; Wiener & Thompson, 2015) depending on

studies. Depending on the timing of the response cue, either immediately after the duration

stimulus or after a 300-ms gap, we observed an offset P2 (no gap) or LPCt (with a gap) that

were related to the temporal decision. Short intervals, relative to long intervals, elicited

delayed latency for both P2 and LPCt, and higher amplitudes for LPCt.

The early findings of time-related offset P2 came from the duration comparison

studies that compared a probe interval either shorter or longer than the standard interval

(Kononowicz & van Rijn, 2014; Tarantino et al., 2010) - shorter intervals elicited higher

amplitudes and long latencies. Using the bisection task, we only found the latency dependent

on duration in Experiment 1. When a decision was requested immediately after the duration

presentation, the P2 amplitude was likely influenced by ongoing CNV activity for the short

intervals (e.g., 400 and 504 ms). As the between-experiment comparison showed that when

the decision response was delayed for 300 ms (Experiment 2), the late positivity was better

evolved. However, we did not find any duration-related modulation in P2. Instead, the late

positivity component LPCt had a strong relationship with test durations in the

decision-making stage.

Late positive components, such as LPCt or P3/P3b in prior research have been

measured relative to the response (Bannier et al., 2019; Wiener & Thompson, 2015) or the

stimulus offset (Gontier et al., 2009; Tarantino et al., 2010) with prefrontal (Gontier et al.,

2008; Paul et al., 2011) or centroparietal electrode sites (Bannier et al., 2019). The late

post-positivity has been linked to the involvement of post-perceptual processes (Lindbergh &

Kieffaber, 2013), similar to the idea that task difficulty is involved in decision processes

(Gontier et al., 2009; Paul et al., 2011). For long durations, memory and decision-making

processes would be already finished at the offset, whereas for short durations, these processes

would still be ongoing. This means that compared to long durations, short durations resulted
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in higher LPCt amplitudes and longer latencies. In this study, LPCt was measured over

prefrontal electrodes relative to the onset of the response cue, 300 ms after the test duration

offset. The results showed that LPCt amplitude and peak latency decreased as the target

interval increased and leveled off around intermediate durations, a pattern similar to a recent

study (Ofir & Landau, 2022b), which found that the amplitude of the late positivity correlated

with the distance to the decision boundary in a drift-diffusion model (DDM). According to

the DDM, the uncertainty of temporal bisection depends on the distance between the

accumulated time to the decision boundary - bisection threshold. Short intervals with large

uncertainty elicited high LPCt amplitudes, while long intervals with less uncertainty resulted

in low amplitudes. Our findings are thus consistent with this interpretation. More

interestingly, LPCt was found to be context-dependent, with short contexts leading to earlier

peak latencies and lower amplitudes compared to long contexts, indicating that the decision

boundary was set lower for the short context and, thus, the distance to the boundary was

generally shorter.

Context-dependent modulation

Both CNV and LPCt signals have been shown to depend on contextual modulation.

Climbing of CNV activity was faster, and the amplitude and latency of LPCt were lower for

short contexts compared to long contexts. Previous studies have shown temporal context can

impact CNV in different ways (Damsma et al., 2021; Wiener & Thompson, 2015). For

instance, in a reproduction task, Wiener and Thompson (2015) found that the CNV amplitude

of a current trial was linearly shifted by the duration of the previous interval, with larger

negative amplitudes for longer prior durations. In Experiment 1, we also found that the long

context (NS) induced larger CNV amplitudes compared to the short context (PS). However,

this was not the case in Experiment 2, where the short context (DF) elicited numerically

higher amplitude than the long context (AF). This suggests that the CNV amplitude is more

sensitive to short-term (e.g., inter-trial duration changes) rather than long-term (e.g.,

session-wise changes) context modulation. In contrast to the CNV amplitude, the rate of

CNV formation was faster for short contexts compared to long contexts in both experiments.

The CNV and climbing neuronal activity are believed to have a close relationship (Pfeuty et

al., 2005), and the formation of CNV indicates how the brain encodes the timing of an

upcoming event. In this study, the rate of CNV reflected the expectation of the decision

threshold, which was influenced by the ensemble context.
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The climbing CNV activity develops early in the perceptual encoding stage, which is

tied to the memory representation of the internal criterion. In contrast, the formation of LPCt

occurs during the decision stage, reflecting the comparison process of the perceived duration

and the internal criterion. In this study, we showed that context affects the uncertainty of the

comparison by altering the PSE towards the ensemble mean. This reduces the uncertainty of

bisection for the short context in general as the test duration reaches the threshold earlier in

the short relative to the long context. As a result, the amplitude and latency of the LPCt

decrease. It is worth noting that the context-dependence of the amplitude and latency of the

LPCt has been documented in previous research. For example, Ofir and Landau (2022) found

that the late positivity remains similar in both short-range (subsecond) and long-range

(supra-second) bisection tasks, even though the duration considered “short” in the long-range

is longer than all durations in the short-range.

Conclusion

In this study, we found that ensemble context, both sample spacing and frequency,

impacted the bisection task, shifting the bisection point towards the ensemble mean.

Temporal context modulation was also evident in the changes in ERPs related to interval

timing. In the short context, compared to the long context, the CNV climbing rate increased,

and the amplitude and latency of the LPCt were reduced. Both CNV and LPCt were linked to

the given test duration, but were not limited to absolute durations. Our findings, consistent

with the previous studies (Baykan & Shi, 2022; Boehm et al., 2014; Ofir & Landau, 2022b),

indicate that the CNV represents an expectancy wave for upcoming decision-making, while

LPCt reflects the decision-making process, both CNV and LPCt influenced by the temporal

context.
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The data supporting the findings of this study and the code of the statistical analysis used in

the manuscript are available at DOI: 10.12751/g-node.7snfwg.

4.6 References for Chapter 4

Albrecht, A. R., Scholl, B. J., & Chun, M. M. (2012). Perceptual averaging by eye and ear:

https://paperpile.com/c/2TTw20/ETD0+uRWZy+szTK
https://doi.org/10.12751/g-node.7snfwg
http://paperpile.com/b/NVG6U1/xFUQ


73

computing summary statistics from multimodal stimuli. Attention, Perception &

Psychophysics, 74(5), 810–815.

Allan, L. G. (2002). The location and interpretation of the bisection point. The Quarterly

Journal of Experimental Psychology. B, Comparative and Physiological Psychology,

55(1), 43–60.

Amit, R., Abeles, D., Carrasco, M., & Yuval-Greenberg, S. (2019). Oculomotor inhibition

reflects temporal expectations. NeuroImage, 184, 279–292.

Ariely, D. (2001). Seeing sets: representation by statistical properties. Psychological Science,

12(2), 157–162.

Bannier, D., Wearden, J., Le Dantec, C. C., & Rebaï, M. (2019). Differences in the temporal

processing between identification and categorization of durations: A behavioral and ERP

study. Behavioural Brain Research, 356, 197–203.

Baykan, C., & Shi, Z. (2022). Temporal decision making: it is all about context. Learning &

Behavior. https://doi.org/10.3758/s13420-022-00568-8

Boehm, U., van Maanen, L., Forstmann, B., & van Rijn, H. (2014). Trial-by-trial fluctuations

in CNV amplitude reflect anticipatory adjustment of response caution. NeuroImage, 96,

95–105.

Bueno, F. D., & Cravo, A. M. (2021). Post-interval EEG activity is related to task-goals in

temporal discrimination. PloS One, 16(9), e0257378.

Cavanagh, P., & Alvarez, G. A. (2005). Tracking multiple targets with multifocal attention.

Trends in Cognitive Sciences, 9(7), 349–354.

Damsma, A., Schlichting, N., & van Rijn, H. (2021). Temporal Context Actively Shapes EEG

Signatures of Time Perception. The Journal of Neuroscience: The Official Journal of the

Society for Neuroscience, 41(20), 4514–4523.

de Gardelle, V., & Summerfield, C. (2011). Robust averaging during perceptual judgment.

http://paperpile.com/b/NVG6U1/xFUQ
http://paperpile.com/b/NVG6U1/xFUQ
http://paperpile.com/b/NVG6U1/C75z
http://paperpile.com/b/NVG6U1/C75z
http://paperpile.com/b/NVG6U1/C75z
http://paperpile.com/b/NVG6U1/BsJ3
http://paperpile.com/b/NVG6U1/BsJ3
http://paperpile.com/b/NVG6U1/z2hG
http://paperpile.com/b/NVG6U1/z2hG
http://paperpile.com/b/NVG6U1/LTdA
http://paperpile.com/b/NVG6U1/LTdA
http://paperpile.com/b/NVG6U1/LTdA
http://paperpile.com/b/NVG6U1/Yqdi
http://paperpile.com/b/NVG6U1/Yqdi
http://dx.doi.org/10.3758/s13420-022-00568-8
http://paperpile.com/b/NVG6U1/r1mi
http://paperpile.com/b/NVG6U1/r1mi
http://paperpile.com/b/NVG6U1/r1mi
http://paperpile.com/b/NVG6U1/YnIW
http://paperpile.com/b/NVG6U1/YnIW
http://paperpile.com/b/NVG6U1/o3Ic
http://paperpile.com/b/NVG6U1/o3Ic
http://paperpile.com/b/NVG6U1/9ppJ
http://paperpile.com/b/NVG6U1/9ppJ
http://paperpile.com/b/NVG6U1/9ppJ
http://paperpile.com/b/NVG6U1/x1Md


74

Proceedings of the National Academy of Sciences of the United States of America,

108(32), 13341–13346.

Droit-Volet, S., & Wearden, J. H. (2001). Temporal bisection in children. Journal of

Experimental Child Psychology, 80(2), 142–159.

Elbert, T., Ulrich, R., Rockstroh, B., & Lutzenberger, W. (1991). The processing of temporal

intervals reflected by CNV-like brain potentials. Psychophysiology, 28(6), 648–655.

Friston, K., & Kiebel, S. (2009). Predictive coding under the free-energy principle.

Philosophical Transactions of the Royal Society of London. Series B, Biological

Sciences, 364(1521), 1211–1221.

Gontier, E., Le Dantec, C., Paul, I., Bernard, C., Lalonde, R., & Rebaï, M. (2008). A

prefrontal ERP involved in decision making during visual duration and size

discrimination tasks. The International Journal of Neuroscience, 118(1), 149–162.

Gontier, E., Paul, I., Le Dantec, C., Pouthas, V., Jean-Marie, G., Bernard, C., Lalonde, R., &

Rebaï, M. (2009). ERPs in anterior and posterior regions associated with duration and

size discriminations. Neuropsychology, 23(5), 668–678.

Jones, M. R., & McAuley, J. D. (2005). Time judgments in global temporal contexts.

Perception & Psychophysics, 67(3), 398–417.

Kelly, S. P., & O’Connell, R. G. (2013). Internal and external influences on the rate of

sensory evidence accumulation in the human brain. The Journal of Neuroscience: The

Official Journal of the Society for Neuroscience, 33(50), 19434–19441.

Kononowicz, T. W., & Penney, T. B. (2016). The contingent negative variation (CNV):

timing isn’t everything. In Current Opinion in Behavioral Sciences (Vol. 8, pp.

231–237). https://doi.org/10.1016/j.cobeha.2016.02.022

Kononowicz, T. W., & van Rijn, H. (2011). Slow potentials in time estimation: the role of

temporal accumulation and habituation. Frontiers in Integrative Neuroscience, 5, 48.

http://paperpile.com/b/NVG6U1/x1Md
http://paperpile.com/b/NVG6U1/x1Md
http://paperpile.com/b/NVG6U1/Xxno
http://paperpile.com/b/NVG6U1/Xxno
http://paperpile.com/b/NVG6U1/Hkmu
http://paperpile.com/b/NVG6U1/Hkmu
http://paperpile.com/b/NVG6U1/hUAa
http://paperpile.com/b/NVG6U1/hUAa
http://paperpile.com/b/NVG6U1/hUAa
http://paperpile.com/b/NVG6U1/kY1R
http://paperpile.com/b/NVG6U1/kY1R
http://paperpile.com/b/NVG6U1/kY1R
http://paperpile.com/b/NVG6U1/qfvy
http://paperpile.com/b/NVG6U1/qfvy
http://paperpile.com/b/NVG6U1/qfvy
http://paperpile.com/b/NVG6U1/qdIk
http://paperpile.com/b/NVG6U1/qdIk
http://paperpile.com/b/NVG6U1/W80t
http://paperpile.com/b/NVG6U1/W80t
http://paperpile.com/b/NVG6U1/W80t
http://paperpile.com/b/NVG6U1/tK9k
http://paperpile.com/b/NVG6U1/tK9k
http://paperpile.com/b/NVG6U1/tK9k
http://dx.doi.org/10.1016/j.cobeha.2016.02.022
http://paperpile.com/b/NVG6U1/pRYk
http://paperpile.com/b/NVG6U1/pRYk


75

Kononowicz, T. W., & van Rijn, H. (2014). Decoupling interval timing and climbing neural

activity: a dissociation between CNV and N1P2 amplitudes. The Journal of

Neuroscience: The Official Journal of the Society for Neuroscience, 34(8), 2931–2939.

Kononowicz, T. W., Van Rijn, H., & Meck, W. H. (2018). Timing and time perception: A

critical review of neural timing signatures before, during, and after the to-be-timed

interval. Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience,

1, 1–38.

Kruijne, W., Olivers, C. N. L., & van Rijn, H. (2021). Memory for Stimulus Duration Is Not

Bound to Spatial Information. Journal of Cognitive Neuroscience, 33(7), 1211–1229.

Li, B., Chen, Y., Xiao, L., Liu, P., & Huang, X. (2017). Duration adaptation modulates EEG

correlates of subsequent temporal encoding. NeuroImage, 147, 143–151.

Linares, D., & López-Moliner, J. (2016). quickpsy: An R package to fit psychometric

functions for multiple groups. The R Journal, 2016, Vol. 8, Num. 1, P. 122-131.

http://diposit.ub.edu/dspace/handle/2445/116040

Lindbergh, C. A., & Kieffaber, P. D. (2013). The neural correlates of temporal judgments in

the duration bisection task. Neuropsychologia, 51(2), 191–196.

Loveless, N. E., & Sanford, A. J. (1974). Slow potential correlates of preparatory set.

Biological Psychology, 1(4), 303–314.

Macar, F., & Besson, M. (1985). Contingent negative variation in processes of expectancy,

motor preparation and time estimation. Biological Psychology, 21(4), 293–307.

Macar, F., & Vidal, F. (2003). The CNV peak: an index of decision making and temporal

memory. Psychophysiology, 40(6), 950–954.

Macar, F., & Vidal, F. (2004). Event-Related Potentials as Indices of Time Processing: A

Review. In Journal of Psychophysiology (Vol. 18, Issue 2/3, pp. 89–104).

https://doi.org/10.1027/0269-8803.18.23.89

http://paperpile.com/b/NVG6U1/7akc
http://paperpile.com/b/NVG6U1/7akc
http://paperpile.com/b/NVG6U1/7akc
http://paperpile.com/b/NVG6U1/AGZV
http://paperpile.com/b/NVG6U1/AGZV
http://paperpile.com/b/NVG6U1/AGZV
http://paperpile.com/b/NVG6U1/AGZV
http://paperpile.com/b/NVG6U1/pDPy
http://paperpile.com/b/NVG6U1/pDPy
http://paperpile.com/b/NVG6U1/0lkb
http://paperpile.com/b/NVG6U1/0lkb
http://paperpile.com/b/NVG6U1/I44N
http://paperpile.com/b/NVG6U1/I44N
http://diposit.ub.edu/dspace/handle/2445/116040
http://paperpile.com/b/NVG6U1/x2d3
http://paperpile.com/b/NVG6U1/x2d3
http://paperpile.com/b/NVG6U1/cMXP
http://paperpile.com/b/NVG6U1/cMXP
http://paperpile.com/b/NVG6U1/oE37
http://paperpile.com/b/NVG6U1/oE37
http://paperpile.com/b/NVG6U1/g9kE
http://paperpile.com/b/NVG6U1/g9kE
http://paperpile.com/b/NVG6U1/PEUM
http://paperpile.com/b/NVG6U1/PEUM
http://paperpile.com/b/NVG6U1/PEUM
http://dx.doi.org/10.1027/0269-8803.18.23.89


76

Macar, F., Vidal, F., & Casini, L. (1999). The supplementary motor area in motor and sensory

timing: evidence from slow brain potential changes. Experimental Brain Research.

Experimentelle Hirnforschung. Experimentation Cerebrale, 125(3), 271–280.

Macar, F., & Vitton, N. (1982). An early resolution of contingent negative variation (CNV) in

the discrimination. Electroencephalography and Clinical Neurophysiology, 54(4),

426–435.

Näätänen, R. (1970). Evoked potential, EEG, and slow potential correlates of selective

attention. In Acta Psychologica (Vol. 33, pp. 178–192).

https://doi.org/10.1016/0001-6918(70)90131-9

Ng, K. K., Tobin, S., & Penney, T. B. (2011). Temporal accumulation and decision processes

in the duration bisection task revealed by contingent negative variation. Frontiers in

Integrative Neuroscience, 5, 77.

Ofir, N., & Landau, A. N. (2022). Neural signatures of evidence accumulation in temporal

decisions. Current Biology: CB, 32(18), 4093–4100.e6.

Parkes, L., Lund, J., Angelucci, A., Solomon, J. A., & Morgan, M. (2001). Compulsory

averaging of crowded orientation signals in human vision. Nature Neuroscience, 4(7),

739–744.

Paul, I., Wearden, J., Bannier, D., Gontier, E., Le Dantec, C., & Rebaï, M. (2011). Making

decisions about time: event-related potentials and judgements about the equality of

durations. Biological Psychology, 88(1), 94–103.

Penney, T. B., Brown, G. D. A., & Wong, J. K. L. (2014). Stimulus spacing effects in

duration perception are larger for auditory stimuli: data and a model. Acta Psychologica,

147, 97–104.

Penney, T. B., & Cheng, X. (2018). Duration Bisection: A User’s Guide. In Timing and Time

Perception: Procedures, Measures, & Applications (pp. 98–127). Brill.

http://paperpile.com/b/NVG6U1/T6fH
http://paperpile.com/b/NVG6U1/T6fH
http://paperpile.com/b/NVG6U1/T6fH
http://paperpile.com/b/NVG6U1/Hgz7
http://paperpile.com/b/NVG6U1/Hgz7
http://paperpile.com/b/NVG6U1/Hgz7
http://paperpile.com/b/NVG6U1/OuhP
http://paperpile.com/b/NVG6U1/OuhP
http://paperpile.com/b/NVG6U1/OuhP
http://dx.doi.org/10.1016/0001-6918(70)90131-9
http://paperpile.com/b/NVG6U1/dlcN
http://paperpile.com/b/NVG6U1/dlcN
http://paperpile.com/b/NVG6U1/dlcN
http://paperpile.com/b/NVG6U1/YumN
http://paperpile.com/b/NVG6U1/YumN
http://paperpile.com/b/NVG6U1/aThL
http://paperpile.com/b/NVG6U1/aThL
http://paperpile.com/b/NVG6U1/aThL
http://paperpile.com/b/NVG6U1/N5hC
http://paperpile.com/b/NVG6U1/N5hC
http://paperpile.com/b/NVG6U1/N5hC
http://paperpile.com/b/NVG6U1/wJhs
http://paperpile.com/b/NVG6U1/wJhs
http://paperpile.com/b/NVG6U1/wJhs
http://paperpile.com/b/NVG6U1/1qCz
http://paperpile.com/b/NVG6U1/1qCz


77

Pfeuty, M., Ragot, R., & Pouthas, V. (2003). When time is up: CNV time course differentiates

the roles of the hemispheres in the discrimination of short tone durations. Experimental

Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale, 151(3),

372–379.

Pfeuty, M., Ragot, R., & Pouthas, V. (2005). Relationship between CNV and timing of an

upcoming event. Neuroscience Letters, 382(1-2), 106–111.

Piazza, E. A., Sweeny, T. D., Wessel, D., Silver, M. A., & Whitney, D. (2013). Humans use

summary statistics to perceive auditory sequences. Psychological Science, 24(8),

1389–1397.

Polich, J., & Kok, A. (1995). Cognitive and biological determinants of P300: an integrative

review. Biological Psychology, 41(2), 103–146.

Praamstra, P., Kourtis, D., Kwok, H. F., & Oostenveld, R. (2006). Neurophysiology of

implicit timing in serial choice reaction-time performance. The Journal of Neuroscience:

The Official Journal of the Society for Neuroscience, 26(20), 5448–5455.

Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional

interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1),

79–87.

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests

for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2),

225–237.

Schweickert, R., Han, H. J., Yamaguchi, M., & Fortin, C. (2014). Estimating averages from

distributions of tone durations. Attention, Perception & Psychophysics, 76(2), 605–620.

Singmann, H., & Kellen, D. (2019). An introduction to mixed models for experimental

psychology. In New Methods in Cognitive Psychology (pp. 4–31). Routledge.

Tarantino, V., Ehlis, A.-C., Baehne, C., Boreatti-Huemmer, A., Jacob, C., Bisiacchi, P., &

http://paperpile.com/b/NVG6U1/deoG
http://paperpile.com/b/NVG6U1/deoG
http://paperpile.com/b/NVG6U1/deoG
http://paperpile.com/b/NVG6U1/deoG
http://paperpile.com/b/NVG6U1/LdnSO
http://paperpile.com/b/NVG6U1/LdnSO
http://paperpile.com/b/NVG6U1/bRt8
http://paperpile.com/b/NVG6U1/bRt8
http://paperpile.com/b/NVG6U1/bRt8
http://paperpile.com/b/NVG6U1/HwgQ
http://paperpile.com/b/NVG6U1/HwgQ
http://paperpile.com/b/NVG6U1/wAOj
http://paperpile.com/b/NVG6U1/wAOj
http://paperpile.com/b/NVG6U1/wAOj
http://paperpile.com/b/NVG6U1/ul4Y
http://paperpile.com/b/NVG6U1/ul4Y
http://paperpile.com/b/NVG6U1/ul4Y
http://paperpile.com/b/NVG6U1/m16b
http://paperpile.com/b/NVG6U1/m16b
http://paperpile.com/b/NVG6U1/m16b
http://paperpile.com/b/NVG6U1/b9vi
http://paperpile.com/b/NVG6U1/b9vi
http://paperpile.com/b/NVG6U1/yyYQ
http://paperpile.com/b/NVG6U1/yyYQ
http://paperpile.com/b/NVG6U1/zu9M


78

Fallgatter, A. J. (2010). The time course of temporal discrimination: An ERP study.

Clinical Neurophysiology: Official Journal of the International Federation of Clinical

Neurophysiology, 121(1), 43–52.

van Rijn, H., Kononowicz, T. W., Meck, W. H., Ng, K. K., & Penney, T. B. (2011).

Contingent negative variation and its relation to time estimation: a theoretical

evaluation. Frontiers in Integrative Neuroscience, 5, 91.

Wearden, J. H., & Ferrara, A. (1995). Stimulus spacing effects in temporal bisection by

humans. The Quarterly Journal of Experimental Psychology. B, Comparative and

Physiological Psychology, 48(4), 289–310.

Wearden, J. H., & Ferrara, A. (1996). Stimulus range effects in temporal bisection by

humans. The Quarterly Journal of Experimental Psychology. B, Comparative and

Physiological Psychology, 49(1), 24–44.

Whitney, D., & Yamanashi Leib, A. (2018). Ensemble Perception. Annual Review of

Psychology, 69, 105–129.

Wiener, M., Parikh, A., Krakow, A., & Coslett, H. B. (2018). An Intrinsic Role of Beta

Oscillations in Memory for Time Estimation. Scientific Reports, 8(1), 7992.

Wiener, M., & Thompson, J. C. (2015). Repetition enhancement and memory effects for

duration. NeuroImage, 113, 268–278.

Williams, D. W., & Sekuler, R. (1984). Coherent global motion percepts from stochastic local

motions. Vision Research, 24(1), 55–62.

Wolfe, J. M. (1994). Guided Search 2.0 A revised model of visual search. Psychonomic

Bulletin & Review, 1(2), 202–238.

Zhu, X., Baykan, C., Müller, H. J., & Shi, Z. (2021). Temporal bisection is influenced by

ensemble statistics of the stimulus set. Attention, Perception & Psychophysics, 83(3),

1201–1214.

http://paperpile.com/b/NVG6U1/zu9M
http://paperpile.com/b/NVG6U1/zu9M
http://paperpile.com/b/NVG6U1/zu9M
http://paperpile.com/b/NVG6U1/64zV
http://paperpile.com/b/NVG6U1/64zV
http://paperpile.com/b/NVG6U1/64zV
http://paperpile.com/b/NVG6U1/CVKi
http://paperpile.com/b/NVG6U1/CVKi
http://paperpile.com/b/NVG6U1/CVKi
http://paperpile.com/b/NVG6U1/sm72
http://paperpile.com/b/NVG6U1/sm72
http://paperpile.com/b/NVG6U1/sm72
http://paperpile.com/b/NVG6U1/HJf4
http://paperpile.com/b/NVG6U1/HJf4
http://paperpile.com/b/NVG6U1/nYWd
http://paperpile.com/b/NVG6U1/nYWd
http://paperpile.com/b/NVG6U1/8Dagv
http://paperpile.com/b/NVG6U1/8Dagv
http://paperpile.com/b/NVG6U1/knhX
http://paperpile.com/b/NVG6U1/knhX
http://paperpile.com/b/NVG6U1/zBKD
http://paperpile.com/b/NVG6U1/zBKD
http://paperpile.com/b/NVG6U1/FNYM
http://paperpile.com/b/NVG6U1/FNYM
http://paperpile.com/b/NVG6U1/FNYM


79

5 Exploring Range Effects in the Temporal Reproduction Using

the EEG Signatures of Time

Cemre Baykan#, Xiuna Zhu#, Artyom Zinchenko, Hermann Müller and Zhuanghua Shi

General and Experimental Psychology, Department of Psychology, LMU Munich, Germany

# shared first authorship

Author Note

This study was supported by German Science Foundation (DFG) research grants SH 166/ 3-2

to Z.S. and DAAD scholarship 57440921 to C.B. The authors declare no competing interests.

Further information and requests for resources should be directed to the corresponding

author, Cemre Baykan, General and Experimental Psychology, Department of Psychology,

LMU Munich, 80802, Munich, Germany. Contact: c.baykan@campus.lmu.de.

mailto:c.baykan@campus.lmu.de


80

5.1 Abstract

Human time estimates are influenced by temporal statistics of the surrounding stimuli.

Previous studies showed that subjective timing is biased towards the mean of sample

distribution, known as prior. When target intervals from different ranges are presented in

separate blocks, humans form distinct priors. Although forming separate priors for such

sample ranges leads to accurate perceptual outcomes, when these ranges are presented mixed

in an experimental session, individuals form a single generalized prior. Through combination

of behavioral and electroencephalographic (EEG) measures, we examined how uni- vs.

multi-prior environments influence temporal reproduction of different interval ranges.

Participants reproduced the target intervals in two prior context conditions: blocked-range

(BR), consisting of either lower or upper range intervals in a block, and interleaved-range

(IR), including both lower and upper range intervals within a block. The results showed that

the reproductions in the IR context were biased towards the single context prior while in the

BR context, they were biased towards the priors of each respective interval range. EEG

analysis revealed that prior context modulates the CNV buildup and its amplitude during

perception, with higher amplitude in the BR than the IR context. In addition, interval range

influences the CNV buildup during reproduction, with faster buildup for the lower relative to

the upper range intervals.

Keywords: time perception; range effect; context effect; EEG; CNV

5.2 Introduction

Temporal estimation is crucial to everyday activities, from conscious decision-making to

spoken language and physical functions. Despite its importance in many activities and

behaviors, subjective duration estimation is not always precise. A well-known context effect

referred to as central tendency bias or regression effect is a systematic overestimation of short

durations and underestimation of long durations when embedded in a temporal context

(Jazayeri & Shadlen, 2010; Lejeune & Wearden, 2009). This phenomenon has been shown to

be modulated by a variety of context components such as range, mean and variance (Lewis &

Miall, 2009; Wearden & Ferrara, 1996; Wearden & Lejeune, 2008; Zhu et al., 2021).

https://paperpile.com/c/TumBFe/3wCz+GGhf
https://paperpile.com/c/TumBFe/q5Jp+x6f7+nG1O+RvgT
https://paperpile.com/c/TumBFe/q5Jp+x6f7+nG1O+RvgT
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However, the neurophysiological mechanism underlying the contextual modulations still

needs more exploration.

The features of the stimulus distribution being judged influence the perception and

action. For example, the mean and variance of the sample interval distributions have been

shown to affect the duration estimates and their sensitivities, respectively (Zhu et al., 2021).

Furthermore, when the range of experimental durations (i.e., the ratio between the longest

and shortest duration) has been manipulated, the central tendency bias was shown to differ

(Brown et al., 2005). Higher central tendency bias occurs with a wider sample interval range.

One way of enhancing the noisy sensory estimations is to integrate those estimations with the

sensory environment statistics, i.e., our knowledge about previously encountered stimuli.

Previous research using the Bayesian framework has shown that humans can integrate the

sensory information (referred to as the likelihood) into prior knowledge (referred to as the

prior) in timing decisions (Cicchini et al., 2012; Jazayeri & Shadlen, 2010; Shi et al., 2013).

According to the Bayesian observer accounts, the assimilation towards the temporal context

statistics is a natural outcome of the integration process of the sensory input with the prior

(Shi et al., 2013). Bayesian models of timing have successfully provided theoretical support

for the common temporal contextual effects.

Classical Bayesian models, implicitly, assume a single prior integration to the sensory

representations (Gu et al., 2016; Jazayeri & Shadlen, 2010; Roach et al., 2017; Shi et al.,

2013). Humans can estimate the sampled range with a single prior approximation when

intervals are randomly sampled from the same range (Acerbi et al., 2012). Several studies

have reported that people can form separate priors when intervals from different ranges are

presented in separate blocks or presented in the same block but with a distinct separation cue

(Gu et al., 2016; Petzschner et al., 2012; Roach et al., 2017). For example, Petzschner et al.

(2012) showed that presenting two overlapping short and long stimulus ranges in an

interleaved way gives rise to a single prior formation for two different stimulus ranges. On

the other hand, if participants receive a categorical cue before each trial starts, this leads to

forming two separate priors for these overlapping stimulus ranges. Roach et al. (2017)

showed that individuals can form separate priors for short and long range intervals also when

these ranges do not overlap. Their results indicated that people form two separate priors for

two not-overlapping interval ranges when the ranges are presented in two different sessions

and they form a single generalized prior when the ranges are presented interleaved in an

experimental session. As a result of this manipulation, participants underestimate the long

range intervals and overestimate the short range intervals in the interleaved session relative to

https://paperpile.com/c/TumBFe/RvgT
https://paperpile.com/c/TumBFe/6yfJ
https://paperpile.com/c/TumBFe/3wCz+NbZ0+RBFK
https://paperpile.com/c/TumBFe/RBFK
https://paperpile.com/c/TumBFe/RBFK+3UCb+fCUh+3wCz
https://paperpile.com/c/TumBFe/RBFK+3UCb+fCUh+3wCz
https://paperpile.com/c/TumBFe/Gwia
https://paperpile.com/c/TumBFe/fCUh+r0sD+3UCb
https://paperpile.com/c/TumBFe/r0sD/?noauthor=1
https://paperpile.com/c/TumBFe/3UCb/?noauthor=1
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their presentations in the blocked-wise session. When humans form and maintain separate

priors for each stimulus range, that leads to more accurate perception for the given stimulus.

However, this is also more challenging and costly for an efficient response. Thus, how the

brain integrates multi-prior information derived from different sources to the current

perception while balancing accuracy and efficiency is not yet fully understood.

The contextual modulations are commonly observed in the event-related potentials

(ERPs) such as the contingent negative variation (CNV), P2 and the late positivity component

of time (LPCt) and in oscillatory powers (Damsma et al., 2021; Kononowicz et al., 2018;

Kononowicz & Penney, 2016; van Rijn et al., 2011; Wiener & Thompson, 2015). For

example, previous studies showed that a longer prior duration resulted in more ‘short’

responses, larger CNV amplitudes and higher beta power of the current trial in the bisection

task (Wiener et al., 2018; Wiener & Thompson, 2015). The CNV buildup or the accumulation

has been previously thought to reflect temporal anticipation and expectation (Pfeuty et al.,

2005; Praamstra et al., 2006). Higher CNV amplitudes have been related to higher response

caution or preparation for favoring quick decision making (Boehm et al., 2014). Similarly,

Damsma et al. (2020) found that active anticipation of a target modulates CNV and

offset-evoked P2 amplitudes. When individuals expected a shorter interval, the CNV

formation rate and amplitude as well as the P2 amplitude increased. The early positivity

component P2 has been related to temporal encoding or accumulation (Kononowicz & van

Rijn, 2011) but its relation to duration length has been shown to be modulated by temporal

context (Damsma et al., 2020). The offset-P3 or LPCt amplitude has been also found to be

sensitive to duration and context as its amplitude increases with higher task difficulty (Paul et

al., 2011) and shorter stimulus duration (Ofir & Landau, 2022). Taken together, these results

demonstrate that CNV, P2 and LPCt activities are related to temporal expectation and the

forthcoming decision-making, while beta power indexes the internal criterion to which the

current interval is compared (Wiener et al., 2018). Additionally, changes in the low-frequency

oscillatory activities such as theta and alpha have been proposed to reflect, respectively,

temporal decision making (e.g., decision certainty, post-decision error monitoring) (Cavanagh

et al., 2010; Jacobs et al., 2006) and temporal attention (Rohenkohl & Nobre, 2011b).

In the current work, we aimed to examine neurophysiological mechanisms underlying

the range effect when tested in uni-prior or multi-prior environments. Earlier studies showed

that Bayesian integration takes place even at early stages such as perception rather than

reproduction in which memory and decisional processes are involved (Damsma et al., 2020).

Therefore, we used a duration reproduction task while measuring EEG signals both in the

https://paperpile.com/c/TumBFe/VLir+G9FL+cNzA+tUJR+3LFn
https://paperpile.com/c/TumBFe/VLir+G9FL+cNzA+tUJR+3LFn
https://paperpile.com/c/TumBFe/pEvc+3LFn
https://paperpile.com/c/TumBFe/Qgfv+hhbS
https://paperpile.com/c/TumBFe/Qgfv+hhbS
https://paperpile.com/c/TumBFe/UCBn
https://paperpile.com/c/TumBFe/3IOM/?noauthor=1
https://paperpile.com/c/TumBFe/sT2v
https://paperpile.com/c/TumBFe/sT2v
https://paperpile.com/c/TumBFe/3IOM
https://paperpile.com/c/TumBFe/TMZS
https://paperpile.com/c/TumBFe/TMZS
https://paperpile.com/c/TumBFe/zahP
https://paperpile.com/c/TumBFe/pEvc
https://paperpile.com/c/TumBFe/t2mYU+GNnY9
https://paperpile.com/c/TumBFe/t2mYU+GNnY9
https://paperpile.com/c/TumBFe/ZuSf
https://paperpile.com/c/TumBFe/3IOM
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perception and reproduction phases. Our first goal was to examine how different distribution

ranges might affect the EEG signatures of temporal anticipation and decision making.

Therefore, in the current study, participants were asked to reproduce lower (0.4 s, 0.56 s, and

0.8 s) and upper (1.2 s, 1.7 s, and 2.4 s) range intervals. Secondly, we aimed to investigate

how processing of separate sample ranges (uni-pior context) and combining two different

information sources within an experimental session (multi-prior context) might be apparent in

the EEG signatures of temporal context. Accordingly, we tested both interval ranges in two

separate context sessions. Each participant started with the blocked-range (BR) session in

which interval ranges were tested in a blocked manner where lower and upper range intervals

were presented in separate blocks. Subsequently, they performed the interleaved-range (IR)

session in which both lower and upper interval ranges were tested mixed within a block

(referred to as full range).

5.3 Method

Participants

27 healthy participants between 21 and 36 years old (13 females, mean age of 26.2

years) with no hearing impairment were recruited for the study. The sample size was the same

as in a recent EEG study using the same reproduction task (Damsma et al., 2020). All

participants signed informed consent forms prior to the experiment and were paid 9 Euro per

hour or course credit for their participation. The study was approved by the Ethics Board of

the Department of Psychology at LMU Munich. All participants were naive to the purpose of

the study.

https://paperpile.com/c/TumBFe/3IOM
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Figure 1. a) Illustration of a trial procedure and target stimuli used in the experiment. Participants

performed a duration reproduction task in which they heard a tone for a certain duration in the

perception phase. After an ISI of 1.5 s, participants were presented with an auditory interval and were

asked to mark the offset of that interval. b) The stimuli of lower or upper range blocks consisted of

three short or three long durations, respectively. These separate blocks were referred to as the BR

context. In the full range blocks, six durations sampled from lower and upper range were presented

randomly in the same blocks (referred to as the IR context). c) The reproductions as a function of

target interval and session condition: BR (blue) and IR (red). Diagonal dotted line shows the accurate

reproduction.

Stimuli and Procedure

The auditory stimuli were generated using the PsychoPort Audio library as continuous

500 Hz sine wave tones and presented via Sony MDR stereo headphones using the

Psychtoolbox 3 (Kleiner et al., 2007). Instructions and feedback text were displayed on a

CRT monitor.

Participants performed an auditory interval reproduction task (Figure 1a). Each trial

started with a fixation for a random duration, lasting between 1.3 and 2.3 s, immediately

followed by an exclamation mark for 0.7 s, which signaled an upcoming tone. The tone was

presented for a specific duration (refer to the detailed design in the next paragraph) while the

exclamation mark remained on the screen. We refer to this period as the perception phase.

Then, the exclamation mark was replaced by a question mark, which appeared for 1.5 s,

https://docs.google.com/document/d/1J7b1TPKmnuA1dzDJbMixBH_cL_tR9D3KCjq588Mm5SE/edit#figur_experimentprocess
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indicating the start of the reproduction phase. Next, a tone was presented again, with the

question mark remaining on the screen. Participants had to terminate the tone when it reached

the same duration as the first interval by pressing the spacebar on the keyboard.

The experiment consisted of two sessions: the blocked range (BR) and the interleaved

range (IR) contexts. In the BR session, participants were presented with subseconds (0.4, 0.56

and 0.8 s) and super-second intervals (1.2, 1.7 and 2.4 s) in a block-wise manner. Crucially,

we kept a gap of 0.4 s between the sub-second and super-second ranges to clearly separate

them. The presentation order of the subseconds and supra-seconds blocks was

counterbalanced among participants. In the IR session, participants were presented with all

possible target intervals, ranging from the subsecond to supra-seconds (0.4, 0.56, 0.8, 1.2, 1.7

and 2.4 s), referred to as the full range in Figure 1b. Every participant began with the BR

session to ensure that they were not presented with the full range before the BR session was

completed and after a 10-min break, they continued with the IR session.

Prior to the formal experiment, participants performed 5-10 trials until they were

familiarized with the task. Each session had 12 blocks with 30 trials each, resulting in a total

of 60 repetitions for each target interval.

EEG recording and preprocessing

Electrical brain activity was recorded from 64 scalp locations (actiCAP system; Brain

Products GmbH) using the BrainVision Recorder software (Brain Products GmbH) and a

BrainAmp amplifier (DC to 250 Hz) at the sampling rate of 1000 Hz. During the experiment,

the impedances of all electrodes were kept below 10 kΩ. The EEG data were analyzed using

EEGLAB (Delorme & Makeig, 2004). Electrode FCz served as an online reference. Later, the

average of the temporal-parietal electrodes (TP9 and TP10) was used in the offline

re-referencing. The data was re-sampled to 500 Hz and bandpass-filtered from 0.1 to 70 Hz.

Artifacts caused by eye blinks, eye movements, and muscle noises were removed using

independent component analysis (ICA). Subsequently, the data were bandpass-filtered from

0.1 to 30 Hz.

ERP components

Figure 2c shows schematically the EEG waveform illustrating its components which

we measured. All ERP components reported here, CNV, P2 and LPCt, were measured on the

fronto-central electrode cluster by averaging the activity of Fz, FC1, FC2, C1, C2 and Cz

electrodes (Kononowicz & van Rijn, 2014; Ng et al., 2011). They were calculated for each

https://paperpile.com/c/TumBFe/xsct
https://paperpile.com/c/TumBFe/ut8u+tJxo
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participant, target interval and temporal context. EEG data were segmented for CNV analysis

relative to stimulus onset (-200 to +3500 ms). The onset-locked data were baselined to the

average voltage 200 ms prior to the stimulus onset. We defined the CNV buildup as the

average waveform between 300 and 600 ms from the stimulus onset, and the mean CNV

amplitude as the interval starting from late negativity onset (300 ms after the stimulus onset)

and having a length of the target duration (Kruijne et al., 2021a). For P2 analysis, EEG data

were segmented relative to stimulus offset (-100 to +600 ms). The offset-locked data were

baselined to the 100 ms time window surrounding the stimulus offset (50 ms preceding and

following the stimulus offset) (Damsma et al., 2021). We defined the mean P2 amplitude as

the averaged waveform between 200 and 300 ms after the offset. We examined the LPCt by

segmenting the averaged waveform relative to the reproduction onset (-1500 to +500 ms).

The reproduction-onset-locked data were baselined to the 100 ms time window surrounding

the reproduction onset (-50 ms to +50 ms around the onset) and the mean LPCt amplitude

was defined as the averaged amplitude in the time window starting 800 ms before the

reproduction with a length of 200 ms (-800 ms to -600 ms) (Wiener & Thompson, 2015).

Data analysis

The main behavioral and ERP results were analyzed via linear mixed model analysis

using R package lmerTest (Kuznetsova et al., 2017) or repeated-measures analysis of variance

(ANOVA). Linear mixed models are robust to sphericity violations, do not inflate Type I

errors (Singmann & Kellen, 2019) and can accommodate the covariant factor in addition to

the fixed effects addressed by ANOVA. The p-values reported for the mixed models were

calculated using the Kenward-Roger approximation. ANOVA results were reported with

additional Bayes factor ( ) analyses to provide a more rigorous assessment of the null𝐵𝐹

hypothesis (Rouder et al., 2009).

Time-frequency analysis

Time frequency analysis was carried out using MNE-Python (Gramfort et al., 2013).

To calculate the oscillatory powers of fronto-central electrodes (Fz, FC1, FC2, C1, C2 and

Cz) during the perception and reproduction, we applied to each electrode a Morlet wavelet

convolution using the MNE tfr_morlet function, frequencies ranging from 4 to 40 Hz, with 3

cycles wavelet width (Wiener et al., 2018). The frequency analysis was applied to each trial

before averaging across trials for the given target interval. The absolute power was calculated

from the baseline window of 200 ms prior to the stimulus onset. We later averaged the power

https://paperpile.com/c/TumBFe/MJk7
https://paperpile.com/c/TumBFe/tUJR
https://paperpile.com/c/TumBFe/3LFn
https://paperpile.com/c/TumBFe/9SJ8
https://paperpile.com/c/TumBFe/BVZSE
https://paperpile.com/c/TumBFe/uC5CC
https://paperpile.com/c/TumBFe/wUyH
https://paperpile.com/c/TumBFe/pEvc
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spectrums over lower and upper range target intervals for each temporal context (BR and IR).

The power spectrum differences of the IR and the BR context were tested for significance

with a one-sample t-test using cluster-based permutation analysis with the MNE

permutation_cluster_1samp_test function. The significant result of the permutation test

reveals whether the given time-frequency points of the temporal context differences are more

likely to come from a probability distribution different from a null distribution (a distribution

created by randomizing the data). The test identifies the clusters which exceed the critical

value of p < .05. It is a corrected method for multiple comparisons and identifies the correct

region of the significant clusters. We applied cluster-based permutation to the difference

between IR and BR sessions at the fronto-central electrode site from 200 to 2600 ms relative

to stimulus onset using 1000 permutations. We run separate permutations for theta (4-7 Hz),

alpha (8-14 Hz) and beta (15-39 Hz) bands (Kononowicz & van Rijn, 2015).

5.4 Results

Behavioral Results

Figure 1c shows the average reproductions for different intervals. As expected,

reproductions in the IR context were biased towards a single context prior while in the BR

context, they were biased towards the priors of each respective interval range. The results of

the linear mixed model on mean reproduction with fixed factors of Duration, Context, and

Range and Duration also as a random factor showed that the reproductions increased with

duration (b = 0.74, 95% confidence interval CI = [0.69, 0.78], p < .001) and interval range (b

= 0.19, CI = [0.16, 0.78], p < .001). We found a significant effect of temporal context,

showing that reproductions were shorter in the IR compared to the BR context (b = -0.04, CI

= [-0.05, -0.03], p < .001). In addition, there was a significant interaction between duration

and interval range (b = 0.84, CI = [0.06, 0.09], p < .001), where the lower range intervals in

the IR were overestimated (0.79 vs. 0.72 s) and the upper range intervals were

underestimated (1.78 vs. 1.85 s) compared to their presentation in the BR context.

https://paperpile.com/c/TumBFe/idyq
https://docs.google.com/document/d/1J7b1TPKmnuA1dzDJbMixBH_cL_tR9D3KCjq588Mm5SE/edit#fig_ReproductionError
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Event-related potentials

Perception Phase

Figure 2. (a) The CNV buildup, measured over the fronto-central electrodes (Fz, FC1, FC2, C1, C2

and Cz) and between 0.3 and 0.6 s. Red represents lower range intervals, blue represents upper range

intervals for (a) and (d). Solid lines depict the BR, dashed lines depict the IR context for (a), (b) and

(d). (b) Grand average of the ERP waveforms for different target intervals (indicated in seconds) in

the perception phase. Each line is plotted for the time window that ends when reproduction starts (1.5

s after the target offset). The vertical dashed lines mark the time window in which CNV buildup was

tested. (c) The structure of an ERP waveform (see Methods for the details). (d) The mean CNV

amplitudes during perception.

Figure 2b illustrates the CNV activity in the perception phase of the BR and IR

contexts, showing the negativity changes over the time for different target intervals. During

the perception phase, we measured the CNV component by its buildup, mean amplitude and

crossing latency, as well as the P2 and the LPCt components. A two-way repeated measures

ANOVA on the CNV buildup rate with factors of context (IR and BR) and interval range

(Lower, Upper) showed that the CNV rate was faster (−1.5 vs. −0.3 μV/s) in the BR

compared to the IR, F(1, 26) = 16.42, p < .001, = 0.06, BF > 100 (Figure 2a). However, theη
𝑔
2

CNV buildup in the lower and upper range intervals were comparable, F(1, 26) = 1.68, p =

https://docs.google.com/document/d/1SVePeD7YL8-nTn0Y32OsZk9I9dseRLB0mH1OaTDu0O0/edit#figur_exp1_ave_mean
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.21, = 0.01, BF = 0.27, and there was no significant interaction between the condition andη
𝑔
2

interval ranges, F(1, 26) = 0.51, p = .48, = 0.003, BF = 0.33.η
𝑔
2

We then applied a linear mixed model to the mean CNV amplitude, with the context

and duration as the fixed effects while interval range as the random factor (Figure 2d). The

mixed model showed that the average amplitude in the BR context was lower than in the IR

context (b = -0.64, CI = [-0.92, -0.36], p < .001). However, there was no significant effect of

duration (p = .91), interval range (p = .05) or the interaction between context and duration (p

= .34). We examined the crossing latency of CNV, which is the point at which the CNV

waveform changes from negative to positive after the stimulus ends. Our results revealed

significant differences in crossing latency for the two prior contexts and the interval length.

The mixed model showed that the crossing latency was significantly earlier in the BR than

the IR (1.41 vs. 1.47 s), b = -0.01, CI = [-0.02, -0.01], p = .001, and the latency was

significantly delayed as the durations increased (b = 0.98, CI = [0.96, 1.00], p < .001). The

interval range (p = .11) and the interaction between context and duration (p = .35) were not

significant.

Figure 3. (a) Grand average of the ERP waveforms for different target intervals in the target offset.

Vertical line shows the perception offset. Solid lines depict the BR, dashed lines depict the IR context.

(b) The P2 amplitudes averaged over the time window between 0.2 and 0.3 s relative to perception

offset. Red represents lower range intervals, blue represents upper range intervals. Solid lines depict

the BR, dashed lines depict the IR context.

Figure 3a illustrates the averaged amplitude over participants in the perception offset

of the BR and IR contexts, showing the positivity changes over the time for different target

intervals. We applied a similar linear mixed model to the mean P2 amplitude (Figure 3b). The

mixed model showed that the average amplitude in the BR context was higher than in the IR

https://docs.google.com/document/d/1SVePeD7YL8-nTn0Y32OsZk9I9dseRLB0mH1OaTDu0O0/edit#figur_exp1_ave_mean
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context (2.12 vs. 1.72 μV), b = 0.20, CI = [0.04, 0.36], p = .017. Moreover, there was

significantly increasing P2 amplitude for the increasing duration (b = 0.63, CI = [0.14, 1.12],

p = .012). The interval range (p = .30) and the interaction between context and duration (p =

.36) were not significant.

Figure 4. (a) Grand average of the ERP waveforms for different target intervals in the

pre-reproduction phase. Vertical line shows the reproduction onset. Solid lines depict the BR, dashed

lines depict the IR context. (b) The LPCt amplitudes averaged over the time window between -0.8 and

-0.6 s relative to reproduction onset. Red represents lower range intervals, blue represents upper

range intervals. Solid lines depict the BR, dashed lines depict the IR context.

Figure 4a illustrates the averaged amplitude over participants in the pre-reproduction

phase of the BR and IR contexts, showing the positivity changes over the time for different

target intervals. We applied a linear mixed model to the mean LPCt amplitude, with context

and interval range as the fixed effects while duration as the random factor (Figure 4b). The

mixed model showed that there was a decreasing LPCt amplitude as target duration

increased, (b = -1.12, CI = [-1.96, -0.27], p = .01). However, there were no significant effects

of context (p = .08), interval range (p = .60) or interaction between the context and duration

(p = .27).

https://docs.google.com/document/d/1SVePeD7YL8-nTn0Y32OsZk9I9dseRLB0mH1OaTDu0O0/edit#figur_exp1_ave_mean
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Reproduction Phase

Figure 5. (a) The CNV buildup measured over the fronto-central electrodes (Fz, FC1, FC2, C1, C2

and Cz) and between 0.3 and 0.6 s. Red represents lower range intervals, blue represents upper range

intervals. Solid lines depict the BR, dashed lines depict the IR context for (a) and (b). (b) Grand

average of the ERP waveforms for different target intervals in the reproduction phase. Each line is

plotted for the time window that ends before the start of the next trial. The vertical dashed lines mark

the time window in which CNV buildup was measured.

Figure 5b illustrates the CNV activity in the reproduction phase of the BR and IR

context intervals, showing the negativity changes over the time for different target intervals.

During the reproduction phase, we measured the CNV component by its buildup, mean

amplitude and crossing latency after the reproduction phase starts. A two-way repeated

measures ANOVA results showed that the CNV buildup was faster (−2.5 vs. −0.9 μV/s) in

the lower compared to the upper range intervals, F(1, 26) = 16.29, p < .001, = 0.08, BF >η
𝑔
2

100 (Figure 5a). However, the CNV buildup in the BR and IR contexts were comparable,

F(1, 26) = 0.24, p = .63, = 0.001, BF = 0.22 and there was no significant interactionη
𝑔
2

between the condition and interval ranges, F(1, 26) = 0.21, p = .65, = 0.001, BF = 0.29.η
𝑔
2

We then applied a linear mixed model to the mean CNV amplitude, with the context

and duration as the fixed effects and the interval range as the random effect. The mixed

model showed that the average amplitude in the BR and IR context was comparable (p = .46).

Moreover, there were no significant effects of interval range (p = .75), duration (p = .45) or

interaction between the context and duration (p = .23).

Furthermore, our results revealed significant differences in crossing latency for the

two prior contexts and the interval lengths. The mixed model showed that the crossing

latency was significantly earlier in the BR than the IR (1.43 vs. 1.47 s), b = -0.02, CI = [-0.03,

https://docs.google.com/document/d/1J7b1TPKmnuA1dzDJbMixBH_cL_tR9D3KCjq588Mm5SE/edit#figur_experimentprocess
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-0.01], p = .002, and the latency was significantly delayed as the durations increased (b =

0.92, CI = [0.89, 0.95], p < .001). The interval range (p = .10) and the interaction between

context and duration (p = .33) were not significant.

Time Frequency Results

Perception Phase

We examined the oscillatory power differences between temporal contexts by

averaging over lower and upper range intervals for each context (IR and BR). Figure 6

illustrates the power spectrum differences of the averaged lower and upper target intervals

when presented in the IR vs. BR being assessed using cluster-based permutation analysis

across the theta, alpha and beta bands. The results revealed a significant effect for the alpha

and theta bands at the perception phase, while showing no significant effect for the beta band.

The significant clusters were observed for the upper range intervals in the alpha band within

the 0.57 - 1.73 s (p = .001) window, and in the theta band within the 0.63 - 1.78 s (p = .003).

Figure 6. Time-frequency plot of the t-values for a cluster permutation t-test comparison run over the

difference between IR and BR contexts in the perception phase at the fronto-central electrodes (Fz,

FC1, FC2, C1, C2 and Cz). Significant clusters in the alpha band (8–14 Hz) and theta band (5–7 Hz)

for the upper duration ranges were observed. Dashed rectangles highlight the significant clusters.

Reproduction Phase

Similar to the perception phase, we examined the oscillatory power differences

between temporal contexts by averaging over lower and upper range intervals for each

context (IR and BR). Figure 7 illustrates the power spectrum differences of the averaged

lower and upper target intervals during the reproduction phase in the IR vs. BR being

assessed using cluster-based permutation analysis across the theta, alpha and beta bands. The

results only revealed a significant effect for the theta band at the reproduction phase, while

showing no significant effect for the beta or alpha bands. The significant clusters were
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observed in the lower range intervals within the 0.10 - 0.60 s (p = .015) and within the 0.68 -

1.50 s (p = .003) windows.

Figure 7. Time-frequency plot of the t-values for a cluster permutation t-test comparison run over the

difference between IR and BR contexts in the reproduction phase at the fronto-central electrodes (Fz,

FC1, FC2, C1, C2 and Cz). Significant clusters in the theta band (4 - 7 Hz) for the lower duration

ranges were observed. Dashed rectangles highlight the significant clusters.

5.5 Discussion

The aim of this study was to investigate how the temporal range impacts on duration

reproduction by testing duration reproductions in two types of sessions: interleaved session

(IR) and blocked sessions (BR). Presentations of sub-second and super-second durations were

randomly interleaved in the IR session. In the BR session, they were tested in separate blocks.

Behaviorally, we found a general central tendency effect (Lejeune & Wearden, 2009; Shi et

al., 2013) in both sessions, manifested by a shallow regression slope (0.74). However, the

magnitude of overestimation in sub-seconds and underestimation in super-seconds were more

pronounced in the IR session than in the BR session, indicating that the range of the context

also influences duration reproduction. EEG findings demonstrated that the effects of temporal

context can be detected by event-related potential (ERP) components, such as CNV, P2, and

LPCt, as well as the low-frequency oscillatory activities.

The cortical excitability during the perception and reproduction phases represent

sensory encoding processes and decision-making together with motor execution processes,

respectively. Therefore, ERP components, such as the central negativity component (CNV), a

key signature for temporal processing, in the two phases may reflect different underlying

processes. The evolving velocity and mean amplitude of the CNV may reflect temporal

accumulation, attention, and anticipation to the incoming durations during the perception

https://paperpile.com/c/TumBFe/GGhf+RBFK
https://paperpile.com/c/TumBFe/GGhf+RBFK
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phase, while they may reflect the memorized standard duration and prior knowledge during

the reproduction phase.

ERPs in the perception phase

The CNV and alpha band activity are two commonly used neural markers for

measuring temporal expectation and attention (Praamstra et al., 2006; Rohenkohl & Nobre,

2011a; Zanto et al., 2011). In the second study of the thesis (Baykan et al., 2023) which

investigated the influences of ensemble context on the temporal bisection task, we observed

that long durations elicited longer sustained CNV negativities compared to shorter durations.

The present study also confirmed that the sustained CNV correlates with duration. Previous

research has shown that the amplitude and climbing rate of the CNV, as well as the alpha

power are associated with anticipation and expectation (Kononowicz et al., 2018;

Kononowicz & Penney, 2016; van Rijn et al., 2011). We further found that the climbing rate

of the CNV was faster for the block-wise (BR) session than the interleaved (IR) session.

Moreover, the amplitude of the CNV was larger for the BR relative to the IR context. Recall

that the BR session had a narrower range of target durations within each block, the

anticipation of incoming stimuli would be expected to increase compared to the IR session,

which had a wider range of target durations in each block. These results were consistent with

our earlier study on the temporal bisection task (Baykan et al., 2023) in which the climbing

rate of the CNV was greater for short relative to long contexts.

We also observed that, similar to CNV, the offset P2 amplitude increased with

duration, and the prior context modulated the P2 activity. This observation is consistent with

previous studies showing that P2 amplitude positively correlates with stimulus duration

(Baykan et al., 2023; Kononowicz & van Rijn, 2011; van Wassenhove & Lecoutre, 2015), as

well as active anticipation of a target influences the offset amplitude (Damsma et al., 2020;

Pereira et al., 2014). For instance, research has demonstrated that P2 amplitude in the current

trial decreased with longer durations presented in the previous trial (Damsma et al., 2020),

suggesting that P2 activity at the perception offset is sensitive to temporal context and reflects

the perceptual outcome. Similarly, our findings revealed that the range context influenced the

offset P2 activity with higher amplitudes in the BR session compared to the IR session, and

such context modulation was active throughout the perception phase. P2 activity has been

seen as an index of perceptual processes (Kononowicz et al., 2018; van Wassenhove &

Lecoutre, 2015). For example, it has been suggested that P2 reflects the sense of physical

duration rather than decisional processes (Kruijne et al., 2021b). Given that in the BR context

https://paperpile.com/c/TumBFe/8wEb+dAlI+hhbS
https://paperpile.com/c/TumBFe/8wEb+dAlI+hhbS
https://paperpile.com/c/TumBFe/asti
https://paperpile.com/c/TumBFe/VLir+cNzA+G9FL
https://paperpile.com/c/TumBFe/VLir+cNzA+G9FL
https://paperpile.com/c/TumBFe/asti
https://paperpile.com/c/TumBFe/sT2v+6P66+asti
https://paperpile.com/c/TumBFe/3IOM+WwbW
https://paperpile.com/c/TumBFe/3IOM+WwbW
https://paperpile.com/c/TumBFe/3IOM
https://paperpile.com/c/TumBFe/G9FL+6P66
https://paperpile.com/c/TumBFe/G9FL+6P66
https://paperpile.com/c/TumBFe/rn6f
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there was a higher temporal anticipation for the incoming stimulus, leading to higher

temporal attention, it is possible that the overall sense of physical duration of the target

intervals were longer relative to the IR context. According to the Scalar Expectancy Theory

(SET) framework, more attention allocation to the target would give rise to more ‘long’

duration perception as a result of more accumulated pacemaker pulses (Lejeune, 1998; Ng et

al., 2011). However, the reproductions of the short intervals were not overestimated in the BR

session, implying that the decision making processes take place after the perceptual stage

which can be measured by late positivity responses such as P3 or LPCt (Kruijne et al.,

2021b).

Temporal anticipation has been previously suggested to influence temporal attention

by aligning relevant neuronal ensembles beforehand (Nobre & van Ede, 2018). The current

experiment revealed this relationship between temporal anticipation and attention to be

dependent on the sample stimulus range. Specifically, our findings showed reduced alpha

power in the BR context relative to the IR context for the super-second range intervals. This

result is likely because anticipation became stronger after the average duration, which was the

case in the super-second range. In the BR session all durations were super-seconds, while in

the IR session super-second durations were interleaved with sub-second durations. It is

possible that the temporal anticipation in the BR session readjusted to the super-second range,

while it did not in the IR session, resulting in reduced alpha power in the BR session.

ERPs in the decision-making and reproduction phase

Late positivity components P3 or LPCt have been linked with temporal decision

making (Baykan & Shi, 2022; Lindbergh & Kieffaber, 2013; Ofir & Landau, 2022) and have

been measured relative to response (Bannier et al., 2019; Wiener & Thompson, 2015) or the

stimulus offset (Gontier et al., 2009; Tarantino et al., 2010). Previous studies have shown that

the LPCt amplitude covaries with the difficulty of the perceptual task (Gibbons & Stahl,

2008; Paul et al., 2011; Wiener & Thompson, 2015). For example, Bannier et al. (2019)

demonstrated that LPCt amplitude averaged over 500-600 ms after stimulus offset was larger

in the temporal identification task than the temporal categorisation task requiring fewer

cognitive resources. Similarly, Lindbergh et al. (2013) showed that stimulus offset signals are

modulated by the subjective judgments with higher positivity amplitudes for the targets

judged as “short”.

The LPCt amplitude has been also shown to be affected by the intervals presented in

previous trials (Wiener & Thompson, 2015). Short durations presented in the long temporal

https://paperpile.com/c/TumBFe/tJxo+rhzr
https://paperpile.com/c/TumBFe/tJxo+rhzr
https://paperpile.com/c/TumBFe/rn6f
https://paperpile.com/c/TumBFe/rn6f
https://paperpile.com/c/TumBFe/1mvj
https://paperpile.com/c/TumBFe/RMHU+zahP+vjWx
https://paperpile.com/c/TumBFe/5vyHb+3LFn
https://paperpile.com/c/TumBFe/8RU4O+soMp
https://paperpile.com/c/TumBFe/TMZS+3LFn+6o1c
https://paperpile.com/c/TumBFe/TMZS+3LFn+6o1c
https://paperpile.com/c/TumBFe/5vyHb/?noauthor=1
https://paperpile.com/c/TumBFe/RMHU/?noauthor=1
https://paperpile.com/c/TumBFe/3LFn


96

context reflected larger LPCt relative to their presentations in the short temporal context

(Baykan et al., 2023). This has been related to the higher uncertainty of the short intervals

embedded in the long context. As it was shown by a recent study (Ofir & Landau, 2022), the

LPCt amplitude correlates with the distance between the accumulated time and the decision

boundary in a drift-diffusion model (DDM). The DDM posits that information is accumulated

until it reaches a decision threshold with a drift rate and the uncertainty of the perception is

related to the distance from the accumulated time to a decision boundary. Decision thresholds

are set differently in temporal contexts based on their ensemble means. Therefore, the LPCt

amplitude elicited by same target intervals when presented in different contexts would be

expected to differ.

In our task, we measured LPCt in relation to the onset of the reproduction phase, as

we expected the influence of range context and duration in the reproduction task to occur

before reproduction. Our results were consistent with previous studies showing that LPCt

amplitude decreases as stimulus duration increases (Lindbergh & Kieffaber, 2013; Ofir &

Landau, 2022). Although the LPCt amplitude was numerically higher in the IR relative to the

BR condition, we did not observe significant range context modulation on the LPCt

amplitude. It is worth noting that modulation of LPCt amplitude would be expected

depending on varying ensemble context mean (Baykan et al., 2023; Ofir & Landau, 2022).

However, in the present study, we used the same sample distribution for the IR and the BR

sessions. As shown in behavioral results, the reproduced means of the blocked sub-second

and super-second were not centered at their respective actual means but instead were

assimilated by the other block’s samples. This suggests that, even when tested sub- and

super-seconds separately, observers maintained their global prior with its mean similar to that

of the IR session. The lack of substantial difference in ensemble means could be the primary

reason why there were no distinct LPCts amplitude differences in the two sessions.

During the reproduction phase, we observed that CNV activity was influenced by the

presented stimulus range rather than the prior context. This is consistent with the previous

studies showing that the evolving velocity of CNV is influenced by the memorized standard

duration (Pfeuty et al., 2005; Praamstra et al., 2006). For example, Pfeuty et al. (2005) found

that the CNV slope was steeper when the memorized standard was short and shallower when

it was long. Similarly, Praamstra et al. (2006) used a sequence of repeated trials and showed

that the CNV slope of the last deviant stimulus onset asynchrony (SOA) is modulated by the

repeated standard SOAs after many exposures. The CNV slope of the last stimulus standard

was steeper when presented after repeated short SOAs than after repeated long SOAs. As

https://paperpile.com/c/TumBFe/asti
https://paperpile.com/c/TumBFe/zahP
https://paperpile.com/c/TumBFe/RMHU+zahP
https://paperpile.com/c/TumBFe/RMHU+zahP
https://paperpile.com/c/TumBFe/zahP+asti
https://paperpile.com/c/TumBFe/Qgfv+hhbS
https://paperpile.com/c/TumBFe/Qgfv/?noauthor=1
https://paperpile.com/c/TumBFe/hhbS/?noauthor=1
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shorter intervals would elicit earlier responses, the CNV would be expected to increase

rapidly for short targets during the reproduction. Our results support this explanation,

suggesting that the CNV buildup during the reproduction phase reflects the memorized or

encoded duration during the perception phase.

Moreover, we observed a decrease in theta power during reproduction for lower range

intervals in the IR compared to the BR context. Previous studies have linked theta activity to

temporal decision making (Cavanagh et al., 2010; Jacobs et al., 2006). For example, Jacobs et

al. (2006) indicated a positive correlation between theta power and decision confidence in a

memory retrieval task. Similarly, van Vught et al. (2012) examined the neural correlates of

evidence accumulation in decision making and found that theta activity slopes covaried with

the drift rate of evidence accumulation. Higher theta power was indicative of higher drift

rates of spontaneous neural firing (Smerieri et al., 2010). Our results suggested that the

increased theta power in the BR context may indicate higher confidence in decision-making.

However, theta power dependencies on context were only observed for lower range intervals,

implying that decision confidences are more reliant on shorter intervals.

One noteworthy similarity of the CNV component which we observed during both

perception and reproduction was the crossing latency. We examined the resolution of CNV

activity by measuring the point at which the CNV amplitude crossed from negative to

positive values. This measure showed a positive correlation with the target interval length in

both phases. It is worth noting that CNV end latency was also subject to temporal context

with earlier latencies in the BR than the IR context. Given that the IR context had a wider

range of target intervals, the expectation of an incoming stimulus could be more uncertain.

Therefore, our findings suggest that the CNV end indexes the encoded duration to the degree

of uncertainty.

Conclusion

We investigated how range and prior context influence the temporal reproduction

task. Our results showed that prior context impacted the reproduction outcome by leading to

reproduced durations that are biased towards the context mean. Combining behavioral and

EEG data, we observed that there was a higher CNV buildup and mean amplitude during

perception for the blocked-wise (BR) session, indicating an increased temporal anticipation in

this session. In addition, we observed a reduced alpha power in the BR context for the upper

range intervals, implying increased temporal attention in those blocks. During reproduction,

the CNV buildup increased for lower range intervals regardless of temporal context,

https://paperpile.com/c/TumBFe/t2mYU+GNnY9
https://paperpile.com/c/TumBFe/t2mYU/?noauthor=1
https://paperpile.com/c/TumBFe/oJsZ/?noauthor=1
https://paperpile.com/c/TumBFe/qciV
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reflecting the encoded or memorized target duration. The theta band activity during

reproduction was modulated by both temporal context and interval range, with higher theta

power observed in the BR session for the lower range intervals, indicating greater confidence

for short intervals.

Data availability

The data supporting the findings of this study and the statistical analysis code used in the

manuscript are available at: https://gin.g-node.org/msense/EEG_temporal_reproduction.git
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6 General Discussion

Throughout this dissertation, I described studies in which we investigated and

discussed the behavioral and neural correlates of the context modulations in interval timing.

We, as humans, estimate durations, make decisions and give responses affected by context.

For example, our temporal responses change when the intervals are presented in a different

order (Chapter 2). The climbing neural activity measured over fronto-central electrode sites

differ when same intervals are embedded in separate temporal contexts (Chapters 3-5). The

main objective of this dissertation was to research the potential behavioral and neural

correlates of temporal context. Therefore, Chapter 2 studied how temporal order influences

subjective timing and Chapter 3-5 focused on whether and if so, how temporal context maps

onto the brain signals measured by EEG.

Temporal context modulation is a long-established finding. The range of the given

stimuli and the ensemble statistics of the environment influence our timing. For example,

Jazayeri and Shadlen (2010) showed that temporal reproductions are drawn towards the mean

of the environment. Zhu and colleagues (2021), furthermore, showed that the sensitivity of

subjective timing is affected by the variance of the stimulus sets. Although using two sensory

environments with the same ensemble statistics (mean and variance), we still observe

different subjective timing performances. One reason for this bias is an effect of the stimulus

presentation order. Therefore, in the study which I described in Chapter 2, we investigated the

stimulus order effects on temporal reproduction. We found that temporal pattern structure and

the position of individual intervals influence the mean pattern reproduction and the precision

of the reproduced intervals. The mean reproductions were assimilated by the first interval of

the pattern. Decelerating patterns (with short intervals in the initial position) had the lowest

mean reproductions. Moreover, the volatility of the patterns influenced the central tendency

bias and the reproduction precision. Accelerating patterns demonstrated the least central

tendency effect. We examined the influences of the last interval of the patterns on perceived

volatility. The results showed that sequences ending with long intervals had a higher central

tendency bias. In addition, the random sequence (with the highest volatility) had lower

precision. Bayesian modeling of the temporal patterns, by integrating the pattern mean with

the individual durations and assuming that perceptual uncertainty depending on the interval

position and pattern structure, could go beyond the literature findings on interval timing and

predict the temporal patterns data.
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Temporal context modulations can be captured and indexed by neurophysiological

evidence. In recent research, this was shown by Wiener and Thompson (2015) where they

found that EEG signals elicited by the same target interval have been changing depending on

the previous stimulus. Shorter prior durations lead to more “long” duration responses to the

current target, as well as less contingent negative variation (CNV) amplitudes measured

relative to the stimulus onset. Ofir and Landau (2022b) focused on the stimulus offset related

signals while testing for the temporal context signatures. They found that the offset positivity

signals correlate with the subjective judgment, with higher amplitude for “short” duration

responses, compared to “long”. Importantly, their findings pointed to a relationship between

the offset positivity signals and the distance to the decision boundary in the

accumulation-to-bound process. In Chapter 3, I described a short report in which we

reviewed Ofir and Landau (2022b)’s paper on the offset related signals and their relation to

the decision-making. As it was highlighted in this report, temporal context shapes our

expectation for an incoming stimulus, which in turn affects the decision-making process. For

example, testing sub-second and supra-second intervals in different experimental blocks

revealed similar offset amplitudes for the shortest intervals of these blocks (e.g., 0.2 s in the

‘short’ block, and 1 s in the ‘long’ block).

Although the EEG signatures of the common temporal context modulations, such as

the central tendency and sequential effects, have been investigated before, the EEG signatures

of subjective judgments influenced by ensemble statistics are lacking. Therefore, in the

experiments I described in Chapter 4, we tested spacing and ensemble context modulations

and measured the common timing EEG components in the bisection task. Our results

revealed that the rate of CNV formation is the most robust finding reflecting these contextual

effects. Specifically, in both experiments, the CNV formation was faster for the short

compared to the long context. The CNV amplitude has been shown to be the more negative

for the short than long context, though not significantly. Crucially, we observed that CNV

activity continued until a response cue was prompted. In Experiment 1, we presented the

response cue immediately after the target duration while in Experiment 2, we presented it 300

ms after the target. This introduced a respective delay in the CNV activity termination, as

well. Therefore, our findings suggest that CNV amplitude does not index the target duration

itself, but it reflects the readiness for a response. Another crucial finding came from the

context modulations in the offset signals. Similar to the previous studies (e.g., Ofir & Landau,

2022b), we observed that the LPCt component was influenced by context and connected to

temporal decision-making. Short intervals showed higher LPCt amplitudes than the long
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intervals. There was also a heightened positivity for the long context, similar to the case

where there were more “short” responses during the long context session. Thus, we proposed

that CNV indicates the expectation for a response, while LPCt is related to temporal

decision-making.

The brain makes use of the prior knowledge while making judgments on a current

sensory input. In a multi-prior environment in which multiple sources of prior information are

provided, forming and exploiting separate priors for the sensory judgments would be more

accurate. On the other hand, maintaining separate priors for different targets would also be

costly in terms of an efficient response. The aim of the experiment I described in Chapter 5

was to explore the influence of uni- and multi-prior environments on the reproduction of

different interval ranges. We tested lower and upper range intervals presented in the

blocked-wise (BR) and interleaved (IR) prior contexts. Our results showed that the CNV and

alpha power during the perception phase was affected by the prior context with larger CNV

amplitude and decreased alpha power in the BR context relative to the IR context. Consistent

with previous research (Praamstra et al., 2006), these findings suggested a possible role of the

CNV and alpha power for temporal attention and anticipation during perception. During

reproduction, there is a readiness for an incoming motor response. This was reflected by the

faster buildup for lower compared to upper range intervals regardless of the temporal context.

In addition, there was an increased theta power in the BR compared to the IR context for

lower range intervals, suggesting higher temporal decision confidence for shorter intervals in

their blocked-wise presentations. One consistent feature of CNV which we observed during

both perception and reproduction was the CNV crossing latency with increasing latencies by

increasing target durations. The crossing latencies were also subject to the prior context. The

IR context had longer CNV end latencies compared to the BR context for both perception and

reproduction phases.

6.1 Discussion of results

6.1.1 Order effects in temporal patterns

In everyday life, the stimuli that surround us do not appear as isolated entities but

rather occur consecutively. For example, we can make use of the timing differences in the

spoken language, music or motor activities. How we perceive, reproduce or act on the basic
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elements of the sequences of stimuli is still debated. The brain’s assumption regarding the

individual items of a sequence can be erroneous. One reason for the inaccuracies in recalling

the individual items comes from the ensemble perception (Whitney & Yamanashi Leib,

2018). That is, forming an ensemble representation of a group of stimuli presented

simultaneously while varying spatially or presented over a course of time. It is possible that

the ensemble representation of a stimuli group constitutes a prior while making judgments for

single items. Consequently, the perceptual outcome of the same target can change when

presented in different contexts.

Temporal context can be defined as the target stimuli presented over the course of an

experimental session. However, how we experience a train of stimuli within a trial also has

contextual properties. Previously, the order effects on temporal patterns have not been

examined extensively. There have been studies to investigate the effects of stimulus

presentation order cross-trials (Glasauer & Shi, 2021a, 2022a). In those reproduction studies,

high volatile temporal presentation orders, compared to low volatile orders, led to stronger

central tendency biases. The stronger central tendency implies more reliance on the sensory

environment. For example, if we consider a situation in which things are rapidly changing,

we would be more uncertain about our current estimate. Thus, it would be more reasonable to

rely on the average of the past observations instead of only relying on the previous

observation. However, if we are in a situation in which things are fairly similar to the past

experiences, we would be more certain about the current estimate and our environment

reliance would be less. Iterative Bayesian models could successfully account for such high

and low volatile contextual modulations. Following this, we also applied a Bayesian model to

our study described in Chapter 2.

The crucial objective of our study, in Chapter 2, was to find out how the

sub-components of a pattern and the pattern structure would weigh in subjective timing. The

findings showed that the first interval affects the mean reproduction outcome: the shorter the

initial interval, the shorter the mean reproduction. This result is in line with the studies

indicating that the first interval engages in more attention (Kanai & Watanabe, 2006; Rose &

Summers, 1995). In addition, the last interval of patterns influenced the perceived volatility,

hence affecting the central tendency biases. Weber’s law states that increasing stimulus

magnitude leads to increasing variability of the percept. In this current study, the last interval

with high variability has been shown to influence the perceived variability of the entire

pattern. This is also consistent with the findings of the recency effect - the tendency of

remembering the last item better (Silverman, 2010). Moreover, the pattern structure or the

https://paperpile.com/c/2TTw20/pdIQL
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directionality of sequences contributed to the standard deviations in the reproductions.

Although all patterns had the same mean and variance, the structure of interval presentation

mattered. Rhythm perception is defined by its individual elements as well as the temporal

order and relative lengths of its subcomponents (Matthews, 2013). Therefore, perception and

reproduction of such sequences are dependent on a relatively complex relationship among its

individual durations. Our study results demonstrated the primacy and recency effects on the

temporal reproductions, and the proposed model integrating the ensemble prior and

individual intervals predicted the behavioral performance accurately. These findings add up

to the earlier research which points out the effect of uncertainty of single intervals on the

central tendency bias (Jazayeri & Shadlen, 2010; Petzschner et al., 2015) and further

highlights the influences of temporal presentation order on perception and reproduction.

6.1.2 EEG signatures of ensemble statistics effects

The stimulus offset signals measured by EEG are thought to be the indicators of

temporal decision-making. Ofir and Landau (2022) reported that offset responses correlate

with the relative distance of accumulated evidence toward a decision threshold in different

modalities and temporal ranges. However, this finding is particular to the prospective timing,

as it was discussed in Chapter 3. In prospective timing, decision-makers are actively involved

in the timing of an event or a duration and track if the estimated duration reaches a decision

threshold. Thus, prospective timing involves an attention allocation to timing and a

predetermined threshold. In retrospective timing, decision-makers make time estimates after

an event has already passed. Therefore, they do not necessarily pay attention to timing,

instead they are required to retrieve the temporal information from memory. The findings

reported by Ofir and Landau (2022b) come from a prospective timing task. Therefore, it was

not possible to determine if the offset responses involved any surprise effect. The caveat with

the evidence accumulation model used in this work is that it cannot account for retrospective

timing in which the stimulus does not have an apparent onset and offset. This is critical

because retrospective timing entails the time judgment of past events which involve many

memory functions such as storing the events from everyday lives, the so-called episodic

memory. Moreover, the authors compared short and long duration contexts (Ofir and Landau,

2022) and found that bisection judgements and the offset amplitudes do not reflect an

absolute accumulation. For example, 0.8-s target interval, as the longest duration of the short

context, led to more ‘long’ durations and elicited lower offset amplitudes compared to 1-s,
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the shortest duration of the long context. The EEG offset responses, along with the behavioral

responses, adjusted to the context modulations.

Temporal decisions are shaped by our expectations. Several EEG components (CNV,

P2 or LPCt) have been suggested to reflect temporal expectations. As it was reported in

Chapter 4, we found that the CNV accumulation rate and LPCt activity index temporal

expectancy and decision making processes, respectively. The interpretation of CNV in

temporal processing has been controversial. It has been earlier suggested that CNV is a

possible signature of temporal accumulation (Macar & Vidal, 2003; Tarantino et al., 2010).

However, there have been another line of studies suggesting that CNV is a measure for

response readiness, rather than serving as an absolute time tracker of the stimulus (van Rijn et

al., 2011). For example, Boehm et al. (2014) showed a larger CNV activity in the trials where

participants were cued to respond as quickly (speed trial) compared to trials where they were

cued to respond as accurately (accuracy trials), suggesting a role of CNV in response

preparation. Contributing to these discussions, we showed in Chapter 4 that CNV activity

continued until a response mark was provided even though the target presentation already

ended. Therefore, we suggest that our findings support the hypothesis that CNV indexes the

time accumulated until a response and/or the readiness for a response rather than the stimulus

duration.

The offset positivity components measured in the study described in Chapter 4, P2

and LPCt, had been found to reflect temporal accumulation and decision-making processes.

Earlier studies have measured these components over the time window between 200 to 600

ms after the stimulus offset (Kononowicz & van Rijn, 2014; Ofir & Landau, 2022b; Paul et

al., 2011; Tarantino et al., 2010; Wiener & Thompson, 2015) based on the task. In our study,

we observed an offset positivity peaking around 200 ms at the stimulus offset, the so-called

P2, when the stimulus end cue immediately followed the stimulus offset. The P2 amplitude

and peak latency were found to be dependent on duration, with higher amplitude and earlier

peaks in longer durations. This was consistent with classical interpretation of the P2

component as a temporal accumulation index (Kruijne et al., 2021). On the other hand, the

LPCt component, as a late positivity component, has been suggested to occur around 400 ms

later than the P2 component (Kononowicz et al. 2018). It has been related to temporal

decision making with higher positivities observed in more difficult perceptual tasks (Bannier

et al. 2019; Gontier et al. 2009). Sustained LPCt activity after the stimulus offset was

observed in Experiment 2 in which the stimulus end cue was presented after a 300-ms gap.

Our results align with the interpretation of the LPCt component as a decision making index.
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Higher LPCt amplitude was observed for shorter durations. Given that the perceptual

decision could be already made during the stimulus presentation for long durations, the LPCt

activity is smaller relative to the case of short durations. For the short durations, the

decisional processes still continue even after the perception.

6.1.3 EEG signatures of the range effect

Temporal reproduction tasks, in comparison to the bisection or categorisation tasks,

can separate the perceptual, decisional and motor execution stages in a behavioral task.

Therefore, we used a temporal reproduction task to examine the EEG signatures of the range

effect while measuring the brain signals during both the perception and reproduction phases

in the study described in Chapter 5. The common time-related ERP component, CNV,

indicated different cognitive processes in the perceptual and response stages. As mentioned in

the previous sub-section, the CNV has been related to separate stages of temporal processing

such as temporal accumulation (Macar & Vidal, 2003; Tarantino et al., 2010) or memory (Ng

et al., 2011; Wiener & Thompson, 2015). Our current study demonstrated that CNV buildup

and mean amplitude reflect the temporal anticipation of an incoming stimulus in the

perception phase. In the blocked-wise (BR) session with a narrow sample range, expectations

towards the incoming target were higher as reflected by the larger CNV activity. On the other

hand, CNV buildup indexed the memorized target duration in the reproduction phase.

Consistent with previous studies (Pfeuty et al., 2005; Praamstra et al., 2006), the CNV

buildup was larger for the short memorized durations, implying a readiness for a quicker

response.

We further explored the offset-related brain signals, measured by the P2 and LPCt

components. P2 component has been earlier associated with perceptual processes

(Kononowicz et al., 2018; van Wassenhove & Lecoutre, 2015), while LPCt has been

suggested to reflect decisional stages (Ofir & Landau, 2022). The current study results were

aligned with these interpretations. Specifically, the P2 amplitude was found to increase by

duration and be sensitive to temporal context with higher amplitude in the BR context. The

increased P2 activity in the BR context can be related to the increased temporal attention in

this session. Scalar Expectancy Theory (SET) posits that more efficient allocation of attention

to a stimulus increases the perceived duration by accumulating more pacemaker pulses

(Lejeune, 1998; Ng et al., 2011). Therefore, it is likely that higher temporal expectations in

the BR session lead to longer duration perceptions. However, we did not observe

overestimations of the lower range intervals in the BR session. Thus, the results imply that

https://paperpile.com/c/2TTw20/9EnFU+F8Jbz
https://paperpile.com/c/2TTw20/PrZQ+hFWT
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decision making processes take place at later stages after the perception in the temporal

reproduction task. It might be possible to better capture the behavioral performance and

reproduction outcomes by measuring late positivity responses such as LPCt. Previous

research has linked the LPCt amplitude with the distance between the accumulated time and a

decision boundary in an evidence accumulation model (Ofir & Landau, 2022). Decision

thresholds are thought to be based on the ensemble mean of temporal context. Our LPCt

findings revealed higher amplitudes for shorter durations while showing no context

modulation. In the IR and BR contexts, the session means were the same but only the

presentation order of the targets differed. The LPCt amplitudes did not demonstrate

significant differences between our temporal contexts, likely because the individuals

maintained the same ensemble mean in both contexts.

In addition to studying time-locked averaged EEG waveforms (ERPs), another

common analysis method used for the EEG data is to examine brain signals depending on

their spectral power and its changes over time (time-frequency analysis). In our study

described in Chapter 5, we investigated the temporal evolution of the signal frequencies. Our

results revealed that temporal attention increased in the BR session compared to the IR

session, as indicated by the reduced alpha power during the perception phase. Importantly,

this session difference on the alpha power was only apparent for long intervals. Although the

larger CNV activity pointed out increased temporal anticipation in the overall BR session, our

alpha power findings implied that the influence of temporal anticipation on the temporal

attention is dependent on the sample stimuli range. This result is likely due to the stronger

temporal anticipation for the target durations longer than the average duration, as in the case

of upper range intervals. The upper range intervals are in the supra-second range in the BR

session, while they are interleaved with the lower range intervals, hence more adjusted to the

sub-second range in the IR session. Therefore, it is possible that temporal anticipation and

attention differed based on the perceived average duration of each interval range. In addition,

we observed increased theta in the BR session for short intervals relative to the IR session

during the reproduction phase. This result, in line with the previous studies (Cavanagh et al.,

2010; Jacobs et al., 2006), implied higher decision confidence in the BR session. Given that

lower range intervals were interleaved with upper range intervals in the IR session, it is likely

that temporal decisions for the short intervals were more uncertain.
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6.2 Future directions

When analyzing time-related ERP components, the contextual ERP findings show

some inconsistencies. One reason for this is because of the use of different experimental

paradigms. For example, a longer prior interval led to higher negativity waveform at the

fronto-central electrode cluster in a temporal categorisation task (Wiener and Thompson

2015), while it gave rise to lower negativity waveform in a temporal reproduction task

(Damsma et al. 2021). This is because each experimental paradigm has different implicit

assumptions and provides different relationships between the stimuli and response. When we

examined the same ERP component in these tasks, it is not clear to what extent they reflect

the similar cognitive processes. Interval timing does not only involve tracking the passage of

time, but also engagements in many other processes such as working memory, attention and

decision making. Therefore, future studies are needed to differentiate and compare the neural

differences specific to each timing paradigm. For example, one could use retrospective timing

paradigms to differentiate the nature of surprise and temporal accumulation because in the

retrospective timing paradigm, time estimation is retrieved from the memory and is not

necessarily affected by the involvement of attention. Furthermore, linking the ERP and

oscillatory processes with internal clock models is challenging considering the fact that

internal clock models lack well-established neural support. Therefore, future studies can

examine the relationship between EEG signatures of time and more biologically supported

mechanisms of an internal clock such as the Striatal Beat Frequency model.

6.3 Conclusions

The interval timing in prospective experimental tasks shows contextual biases. In this

dissertation, using a reproduction task, I have shown that the pattern timing is also subject to

context modulations (Chapter 2). The directionality of individual durations and the initial

interval position in a pattern affect the precision of reproduced intervals and the mean

reproduction, respectively. When investigating the temporal context modulations using EEG,

the signals measured from fronto-central electrodes, targeting the preSMA brain region, are

thought to provide evidence for different temporal processes. For example, there is strong

evidence that the latency of stimulus onset-locked signals reflect memory processes (Ng et

al., 2011), while the interpretation of the amplitude is more controversial. In this dissertation,

https://paperpile.com/c/2TTw20/hFWT
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I have demonstrated that our experiment findings are more in line with the response readiness

or expectation accounts of the onset-locked signal amplitude (Boehm et al., 2014) in the

temporal bisection task (Chapter 4). Our findings also point out that stimulus offset-locked

signals are related to the temporal decision-making process, consistent with the findings of

the recent study (Ofir & Landau, 2022b) which we reviewed in Chapter 3. In addition, we

observed that brain signals measured during the perception and reproduction reflect different

cognitive processes (Chapter 5). The fronto-central neural activity measured during the

perception phase indexes temporal expectation for an incoming stimulus while covarying

with the memorized target interval in the reproduction phase. The early offset responses

reflect perceptual stages and the late positivity responses are associated with the decision

making. This dissertation, overall, demonstrates that temporal order of the individual

intervals influences temporal reproductions and EEG signatures of time can be found over the

fronto-central electrode sites, although they represent different information processing stages

for the temporal bisection and the reproduction tasks.
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Deutsche Zusammenfassung

Timing (Wahrnehmen der Zeit) ist eine grundlegende mentale Fähigkeit, die den

primären kognitiven und Wahrnehmungsfunktionen des Gehirns zugrunde liegt. Diese

Fähigkeit ermöglicht es den Organismen zu bestimmen, wann ein Ereignis eintritt und wie

lange es dauert. Während wir uns zum Beispiel morgens für die Arbeit fertig machen, haben

wir die bemerkenswerte Fähigkeit, den Zeitablauf jedes unserer Verhaltensweisen oder

Handlungen zu verfolgen. Es gibt fast ein inneres „Gefühl“, wie lange wir geduscht oder das

Frühstück zubereitet haben, wann der Bus am Busbahnhof ankommt oder wann wir das Haus

verlassen sollten. Unser subjektives Timing ist nicht nur auf solche bewussten Erfahrungen

beschränkt, sondern spielt auch eine wesentliche Rolle bei eher unbewussten oder

automatischen Prozessen wie Wahrnehmung oder motorischen Leistungen (Coull et al.,

2011).

Die zeitliche Vorhersage, also das Zeitintervall, in dem ein Organismus das Eintreten

eines Ereignisses erwartet, ist einer der Schlüssel Mechanismen, die Wahrnehmung und

Handeln beeinflussen (Barnes & Jones, 2000; Nobre et al., 2007). Wahrnehmung Studien mit

variierenden zeitlichen Unsicherheiten haben gezeigt, dass visuelle Erkennung Leistungen, z.

B. für Leuchtdichte und Orientierung, mit höheren zeitlichen Sicherheiten zunehmen (Lasley

& Cohn, 1981; Westheimer & Ley, 1996). In ähnlicher Weise haben Studien mit

Aufmerksamkeits Orientierungsaufgaben berichtet, dass Erkennungs- und

Unterscheidungsleistungen schneller und genauer sind, wenn zeitliche Erwartungen auf den

Moment gerichtet sind, in dem Reize erscheinen würden (Correa et al., 2004; Coull & Nobre,

1998). Außerdem misst das Gehirn nicht nur den Beginn und die Abfolge von Ereignissen,

die Verzögerung zwischen diesen Markern und ihre Reihenfolge, sondern auch die

verstrichene Zeit. Die Zeitmessung im Bereich von weniger als einer Sekunde bis zu

mehreren Sekunden, bekannt als Intervall-Timing, ist für die Wahrnehmung und Produktion

von genauen motorischen Reaktionen, Sprache, Rhythmus und Musik erforderlich (Matell &

Meck, 2000; Patel, 2003). Dies wird durch die Studien veranschaulicht, in denen Personen

mit der Parkinson-Krankheit (PD) untersucht wurden, d. h. einer Störung, die mit dem

gestörten Dopaminsystem in den Basalganglien zusammenhängt, einem Bereich, der auch für

das Intervall-Timing verantwortlich ist (Buhusi & Meck, 2005; Gu et al., 2016; Merchant et

al., 2008). Es wurde berichtet, dass Patienten mit Parkinson Schwierigkeiten bei der

Bewegung Produktion und -koordination haben, mit rhythmischen motorischen Reaktionen

und der Sprachproduktion Schritt halten (Gu et al., 2016; O’Boyle et al., 1996; Volkmann,



130

1992). Insgesamt wurde vorgeschlagen, dass das Intervall-Timing für Aufmerksamkeit,

Wahrnehmung, Handlung und Kognition wesentlich und unvermeidlich ist (Matell & Meck,

2000).

Trotz der Bedeutung der Interval-Timing-Fähigkeit enthält es immer noch sehr

systematische Verzerrungen. Sensorische Umgebungen, die durch die Versuchs Geschichte

aufgebaut wurden, und Erwartungen, die aus der jüngsten Vergangenheit abgeleitet wurden,

sind die beiden gemeinsamen Faktoren, die subjektive Zeit Urteile beeinflussen (Bausenhart

et al., 2014; Dyjas et al., 2014; Lejeune & Wearden, 2009). Das erste Phänomen, das als

zentrale Tendenz Verzerrung bezeichnet wird, impliziert, dass die Wahrnehmung

Beurteilungen von der statistischen Struktur vergangener Ereignisse beeinflusst werden (Gu

& Meck, 2011). Ebenso sind Reaktionen auf aktuelle Stimuli auf den vorangegangenen

Stimulus ausgerichtet, was auf serielle Abhängigkeit Merkmale im Timing hinweist (Cicchini

et al., 2018). Im Laufe eines halben Jahrhunderts wurden diese Verzerrungen eingehend

untersucht (Helson, 1948; Parducci, 1965). Helson (1948)’s Adaptation-Level-Theorie und

Parducci (1965)’s Range-Frequency-Theorie haben die Bias in Bezug auf den

Sample-Bereich definiert, aus dem der aktuelle Stimulus gezogen wird, ohne eine Erklärung

dafür zu liefern, warum sie anfänglich auftreten. Bayesianische Timing-Modelle zeichnen

sich durch eine neuere Interpretation der kontextuellen Verzerrungen aus (Jazayeri &

Shadlen, 2010; Miyazaki et al., 2005). Sie schlagen vor, dass das Gehirn die Unsicherheit

einer sensorischen Messung überwacht und seine Schätzung basierend auf den Statistiken der

sensorischen Umgebung anpasst (Jazayeri & Shadlen, 2010). Seitdem wird die Bayessche

Analyse seit langem verwendet, um Erkenntnisse über viele Kontextfaktoren zu gewinnen

(Burr et al., 2013; Gu et al., 2016; Shi et al., 2013). Es gibt jedoch noch einige

Schlüsselfragen, die mit klassischen Bayes'schen Ansätzen nicht beantwortet werden können.

Darüber hinaus gibt es eine Lücke zwischen den Bayes'schen Beschreibungen und ihrer

Implementierung im Gehirn.

In Kapitel 2 beschreibe ich ein Experiment, bei dem wir die Reihenfolge der

Zielintervalle, die in zeitliche Muster eingebettet sind, manipuliert haben, während die

Statistik und der Bereich der Prüfintervalle gleich geblieben sind. Bayes'sche

Schätzungsmodelle berücksichtigen erfolgreich die Verzerrung der zentralen Tendenz

(Jazayeri & Shadlen, 2010) und serielle Abhängigkeitseffekte (Cicchini & Burr, 2018). Sie

berücksichtigen jedoch keine zeitlichen Ordnungseffekte der Zielintervalle. Es gibt neuere

Studien, die den Effekt der Struktur von Zielintervallpräsentationen untersucht haben

(Glasauer & Shi, 2019a, 2021a). Diese Studien untersuchten jedoch die Effekte der
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Präsentationsreihenfolge über eine experimentelle Sitzung hinweg, d. h. von Versuch zu

Versuch, während die Effekte der zeitlichen Reihenfolge innerhalb eines Versuchs auf die

beobachteten Zeitschätzungen noch nicht gründlich erforscht wurden. Wir haben untersucht,

wie sich die zeitliche Reihenfolge auf die zeitliche Reproduktion auswirkt. Die Teilnehmer

wurden gebeten, entweder beschleunigende, verlangsamende oder zufällige Hörsequenzen,

die aus denselben vier Intervallen bestanden, mit Fingertipps zu reproduzieren. Unsere

Ergebnisse zeigten, dass die mittlere Reproduktion und die Genauigkeit der reproduzierten

Intervalle von der sequenziellen Struktur und ihrer Position abhängt. Das mittlere

reproduzierte Intervall wurde durch das erste Intervall der Sequenz assimiliert, wobei es bei

der verlangsamenden Sequenz am niedrigsten und bei der beschleunigenden Sequenz am

höchsten war. Außerdem war die Verzerrung der zentralen Tendenz von der Volatilität der

Sequenz abhängig. Die Zufallssequenz, die eine höhere Volatilität als die strukturierten

beschleunigenden und verlangsamenden Sequenzen aufwies, ergab die geringste Genauigkeit

der Reproduktionen und eine stärkere Verzerrung der zentralen Tendenz. Mithilfe der

Bayes'schen Integration zwischen dem Ensemble-Mittelwert der Sequenz und den

individuellen Dauern und unter der Annahme, dass die Wahrnehmungsunsicherheit von der

Struktur und der Position der Sequenz abhängt, waren wir in der Lage, die

Verhaltensergebnisse vorherzusagen. Wir kommen zu dem Schluss, dass die zeitliche Abfolge

einer Sequenz eine entscheidende Rolle bei der Reproduktion zeitlicher Muster spielt, wobei

ein höheres Gewicht des ersten Intervalls bei der mittleren Reproduktion und die Volatilität

der Sequenz zur Wahrnehmungsunsicherheit einzelner Intervalle und zur Verzerrung der

zentralen Tendenz beitragen.

In Kapitel 3 beschreibe ich eine kurze Übersichtsarbeit, in der wir einen kürzlich

erschienenen Artikel (Ofir & Landau, 2022b) über ihre Ergebnisse in Bezug auf die zeitliche

Entscheidungsfindung in Verbindung mit versetzten P3-Signalen und kontextuellen

Modulationen der versetzten EEG-Signale besprechen. Es ist allgemein bekannt, dass

Zeiteinschätzungen durch zuvor erlebte Intervalle beeinflusst werden. Der Begriff "zeitlicher

Kontext" beschreibt Stichprobenintervalle, die im Verlauf einer Exposition, d. h. eines

Experiments, präsentiert und im Gedächtnis gespeichert werden. Verhaltensstudien deuten

auf eine verteilungsabhängige Charakteristik bei Zeitschätzungen (Wearden, 1991; 1995) und

eine Abhängigkeit von den Prinzipien der Ensemble-Wahrnehmung hin (Zhu et al., 2021).

Bislang ist jedoch nicht klar, wie wir die Integration des zeitlichen Kontextes in die aktuelle

Schätzung erreichen. Dies lässt sich besser mit zeitlich hochauflösenden Messungen wie der

Kopfhaut-Elektroenzephalographie (EEG) und ereigniskorrelierten Potenzialen (ERPs)
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untersuchen (Luck, 2005). Ofir und Landau (2022b) konzentrierten sich auf die Signale, die

mit dem Stimulus-Offset zusammenhängen, während sie auf die Signaturen des zeitlichen

Kontexts prüften. Sie fanden heraus, dass sich die Offset-Positivitätssignale als Reaktion auf

die subjektive Beurteilung ändern. Antworten von "kurzer" Dauer zeigten im Vergleich zu

denen von "langer" Dauer eine höhere Positivitätsamplitude. Wichtig ist, dass ihre Ergebnisse

auf eine Beziehung zwischen den Offset-Positivitätssignalen und dem Abstand zur

Entscheidungsgrenze im Prozess der Akkumulation bis zur Grenze hinweisen. Darüber

hinaus zeigten sie, dass der zeitliche Kontext unsere Erwartung an einen eingehenden Reiz

prägt, was wiederum den Entscheidungsprozess beeinflusst. So ergab die Prüfung von

Intervallen unter einer Sekunde und über einer Sekunde in verschiedenen Versuchsblöcken

ähnliche Offset-Amplituden für die kürzesten Intervalle dieser Blöcke (z. B. 0,2 s im kurzen

Block und 1 s im langen Block).

In Kapitel 4 beschreibe ich eine Studie mit zwei separaten Experimenten, in denen wir

den Verteilungskontext von Zielintervallen manipulierten und EEG zur Messung der

gemeinsamen neuronalen Grundlagen von Zeit wie CNV und Offset-Komponenten, LPCt

und P2, verwendeten. In Anlehnung an die speziellen Zeitmodelle wurde das EEG

verwendet, um nach Mechanismen zu suchen, die den verschiedenen Phasen der zeitlichen

Verarbeitung zugrunde liegen, einschließlich der Kodierung, Aufrechterhaltung und

Entscheidungsfindung (Kononowicz, Rijn, et al., 2018). Eine neuere Studie untersuchte die

neuronalen Grundlagen der zentralen Tendenz und der sequentiellen Effekte und

konzentrierte sich dabei auf die CNV- und LPCt-Komponenten. Dabei wurde festgestellt,

dass die CNV-Aktivität mit dem vorangegangenen Intervall kovariiert, was sich in einer

erhöhten CNV-Amplitude bei längerer vorheriger Dauer zeigte, während die LPCt-Amplitude

bei kurzen Zielintervallen linear zunimmt (Wiener & Thompson, 2015). Eine andere Studie

untersuchte den Ort der Bayes'schen Berechnungen im Timing mit Hilfe von EEG und fand

heraus, dass CNV, Offset P2 und Beta-Leistung durch den vorherigen Versuch beeinflusst

werden (Damsma et al., 2021). Obwohl es Studien zu den elektrophysiologischen Markern

des zeitlichen Kontexts gibt, ist die neuronale Grundlage der Modulationen des

Ensemblekontexts auf das subjektive Timing noch nicht bekannt. In der aktuellen Studie

veränderten wir den Abstand zwischen den Proben (Experiment 1) und die Häufigkeit

(Experiment 2), um kurze und lange Kontexte zu erzeugen, während der Testbereich und die

Standards in den verschiedenen Sitzungen gleich blieben. Die Ergebnisse zeigten, dass sich

die Bisektionsschwelle in Richtung des Ensemble-Mittelwerts verschob und dass CNV und

LPCt empfindlich auf die Kontextmodulation reagierten. Im Vergleich zum langen Kontext
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stieg die CNV-Steigerungsrate im kurzen Kontext an, und die Amplitude und Latenz der

LPCt waren geringer. Diese Ergebnisse deuten darauf hin, dass die CNV eine

Erwartungswelle für eine bevorstehende Entscheidungsfindung darstellt, während die LPCt

den Entscheidungsprozess widerspiegelt, wobei beide durch den zeitlichen Kontext

beeinflusst werden.

In Kapitel 5 beschreibe ich eine Studie, in der wir bei der Messung von EEG-Signalen

die Auswirkungen zweier vorheriger Kontexte (uni-prior und multi-prior) auf zeitliche

Reproduktionen untersucht haben. Die klassischen Bayes'schen Modelle gehen implizit

davon aus, dass Menschen während der Stimulusexposition eine einzige Prior aufbauen. Wir

sind jedoch in der Regel sensorischen Umgebungen ausgesetzt, die mit einer Vielzahl von

Reizen und Informationen aus verschiedenen Sinnesmodalitäten gefüllt sind. Wenn wir zum

Beispiel einen zwitschernden Vogel auf einem Ast lokalisieren, dienen sowohl der visuelle

als auch der auditive Hinweis auf diese Wahrnehmung als zwei verschiedene

Informationsquellen. Neben der Integration gleichzeitig vorhandener sensorischer

Informationen aus verschiedenen Sinnen können wir bei der Bildung unserer Wahrnehmung

und unseres Handelns auf verschiedene andere Informationsquellen zurückgreifen.

Petzschner und Kollegen (2012) haben bereits gezeigt, dass die Information der Teilnehmer

durch kategoriale Wahrnehmungshinweise ihre Wahrnehmungsreproduktion beeinflusst. Es

bleibt daher eine offene Frage, welche Faktoren bei der Gruppierung komplexer

Reizumgebungen eine Rolle spielen und wie das Gehirn mehrere vorherige Informationen

aus verschiedenen Reizgruppen nutzt. Durch die Kombination von Verhaltens- und

elektroenzephalographischen (EEG) Messungen untersuchten wir die zugrundeliegenden

Mechanismen dieser Integration von mehrfachem Vorwissen in Kapitel 5. Die Teilnehmer

reproduzierten die Zielintervalle in zwei vorherigen Kontextbedingungen: Blockbereich

(BR), bestehend aus entweder kurzen oder langen Intervallen in einem Block, und

Interleaved-Bereich (IR), der sowohl kurze als auch lange Intervalle in einem Block enthält.

Die Ergebnisse zeigten, dass die Reproduktionen in der IR-Bedingung im Vergleich zur

BR-Bedingung in Richtung des Mittelwerts des Gesamtkontexts verzerrt waren. Die

EEG-Analyse zeigte, dass die CNV-Amplituden die Reproduktionsleistung direkt nach der

Wahrnehmungsphase widerspiegeln. Zusätzlich fanden wir eine erhöhte β-Leistung in der

IR-Bedingung während der Wahrnehmungsphase für beide Zielintervallbereiche. Diese

Ergebnisse weisen darauf hin, dass der zeitliche Kontext die EEG-Signale in der späten

Wahrnehmungsphase der Dauer aktiv beeinflusst, bevor die Reproduktion beginnt.
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In dieser Dissertation habe ich anhand einer Reproduktionsaufgabe gezeigt, dass auch

das Timing von Mustern kontextabhängig ist. Die Reihenfolge der einzelnen Dauern und die

anfängliche Intervallposition in einem Muster wirken sich auf die Genauigkeit der

reproduzierten Intervalle bzw. auf die durchschnittliche Reproduktion aus. Bei der

Untersuchung der zeitlichen Kontextmodulationen mit Hilfe des EEG wird davon

ausgegangen, dass die von fronto-zentralen Elektroden gemessenen Signale, die auf die

präSMA-Gehirnregion abzielen, Hinweise auf verschiedene zeitliche Prozesse liefern. So gibt

es zum Beispiel deutliche Hinweise darauf, dass die Latenz der stimulus onset-locked Signale

Gedächtnisprozesse widerspiegelt (Ng et al., 2011), während die Interpretation der Amplitude

umstrittener ist. In dieser Dissertation habe ich gezeigt, dass die Ergebnisse unseres

Experiments eher mit den Erklärungen für die Reaktionsbereitschaft oder die Erwartung der

Onset-Lock-Signalamplitude übereinstimmen (Boehm et al., 2014). Darüber hinaus weisen

unsere Ergebnisse darauf hin, dass Stimulus-Offset-Locked-Signale in hohem Maße mit dem

zeitlichen Entscheidungsprozess verbunden sind, was mit den Ergebnissen der kürzlich von

uns besprochenen Studie (Ofir & Landau, 2022b) übereinstimmt.
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