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Abstract

Information transmission in the brain is mediated mainly through chemical synapses.

The arrival of an action potential at a chemical synapse triggers a sequence of events

that leads to the release of a vesicle. The released neurotransmitter molecules open

the ion channels on the postsynaptic site and create an excitatory or inhibitory post-

synaptic potential.

An incoming action potential does not always elicit a vesicular release. The evoked

release probability varies widely among synapses. While the reliable synapses show a

release probability close to one, the release probability of an unreliable synapse may be

lower than one tenth. Additionally, a synapse sometimes releases spontaneously even

in the absence of an action potential. Synaptic unreliability and spontaneous release

can significantly alter the information transmission through the synapse. Synaptic

plasticity also changes the strength of synaptic connections over a wide range of time

scales. In short-term depression, the successive release of vesicles reduces the release

probability of the synapse. The functional role of short-term depression in filtering

and decorrelation of the presynaptic spike train has been shown in several studies.

In this thesis, we investigate the function of short-term depression in modulating the

rate of information transmission through the synapse.

We model a synaptic release site by a communication channel, capturing the

spike-evoked and spontaneous release of the synapse. The input of the channel is

the presynaptic spike train and the output is the elicited postsynaptic potential. To

incorporate short-term depression into the synapse model, the state of the channel is

switched between a normal state and a used state. After each release, the synapse

goes to the used state and the release probabilities of the channel reduce; the synapse

recovers back to the normal state in the absence of release. Information theory is then

employed to calculate the rate of information that is transferred from the presynaptic

spike train to the postsynaptic potential.

Synaptic release is energetically expensive and a neuron needs to compromise

between its information efficacy and energy consumption. We consider the ener-

getic cost of the release and calculate the energy-normalized information rate of the

synapse. This measure is used to evaluate the rate of information transmission for

a given energy budget. We show that the functional role of short-term depression

in modulating the information transmission depends on the relative level of depres-

sion for spontaneous and spike-evoked releases. If the depression affects spike-evoked



and spontaneous release equally, then the information rate and energy-normalized

information rate of the synapse both decrease. However, if spontaneous release is

depressed more than spike-evoked release, then short-term depression can enhance

the information efficacy of the synapse.

In the two-state model of depression, the synapse transits sharply between the

used state and the normal state. To emulate the gradual depression and exponential

recovery of short-term depression, the two-state model is extended to a communi-

cation channel with a memory of the release history. The content of the memory

specifies the release probabilities of the channel based on the dynamics of short-term

depression. We calculate the information efficacy of the synapse model and determine

the regime of synaptic parameters in which short-term depression enhances/decreases

the mutual information rate and energy-normalized information rate of the synapse.

Our analysis shows how short-term depression governs the trade-off between the en-

ergy expenditure and information rate of the synapse.
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Chapter 1

Introduction

The functionality of the brain relies on the communication between the neurons. The

neuronal communication is mediated by two types of synapses, chemical synapses

and electrical synapses. In electrical synapses, the membranes of the two neurons are

located very close to each other and some membrane specializations (gap junctions)

connect the intracellular regions of the presynaptic and postsynaptic neurons. The

potential difference between the two neurons generates an ionic current through the

gap junctions and changes the membrane potential of the postsynaptic neuron.

Electrical synapses are bidirectional and the current can flow in both directions.

The direct connection between the neurons provides an instantaneous form of com-

munication and permits the electrical synapses to synchronize activity in neuronal

populations (Purves et al., 2012). The gap junctions are, however, passive communi-

cation channels and the signal is attenuated after each transmission.

In chemical synapses, there is a gap of 20-40 nm between the membranes of the

two neurons, and communication is realized through the release of neurotransmit-

ters. The presynaptic neuron releases packets of neurotransmitter into the synaptic

cleft. The neurotransmitter molecules open the receptors on the postsynaptic neu-

ron and a synaptic current is generated. In contrast to the electrical synapses, the

communication in chemical synapses is unidirectional and has a delay from 0.3 ms to

5 ms (Kandel et al., 2000). Although chemical synapses introduce a delay in signal

transmission, they can amplify the signals. One vesicle contains several thousands

molecules of neurotransmitter and opens hundreds of receptors on the postsynaptic

site. For example, a single action potential in a motor neuron is enough to trigger

muscle contraction in several muscle cells (Lodish et al., 1995). The other advantage

of a chemical synapse over an electrical synapse is its functional diversity which is

achieved by more than 100 types of neurotransmitters and their corresponding re-

1
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Figure 1.1: Synaptic transmission in a chemical synapse, depicted in ten steps. The
presynaptic action potential creates a series of events which leads to the generation of
the postsynaptic potential. The ATP symbol shows the energy consumption during
synaptic transmission.

ceptors. Chemical synapses modulate the neuronal communications and enhance the

computational capacity of the neurons.

The efficacy of chemical synapses in signal transmission highly affects the per-

formance of the brain. In this thesis, we will study how synaptic plasticity changes

the information efficacy of the synapse. We first give an overview of the synaptic

transmission and different forms of synaptic plasticity. Then we focus on short-term

depression and describe its mechanisms and functional roles. We introduce the no-

tions of entropy and mutual information and define synaptic information efficacy

using information-theoretic measures. Finally, we present the aims of this thesis and

briefly explain our approach towards the analysis of synaptic information efficacy of

a dynamic synapse.

1.1 Synaptic transmission

A chemical synapse converts the spiking activity of the presynaptic neuron to the

postsynaptic potential. The conversion process can be explained in 10 steps (Fig.

1.1) (Purves et al., 2012):

1- Neurotransmitter molecules are stored inside the vesicles. Synaptic vesicles are

clustered around the active zones of the presynaptic nerve terminal. Active zones are

2



specialized parts of the membrane that facilitate docking and fusion of the vesicles.

Each active zone is aligned with the receptors on the postsynaptic site (Zhai and

Bellen, 2004).

2- Action potential arrives at the presynaptic terminal and changes the membrane

potential.

3- The voltage change in the presynaptic membrane opens the voltage-gated cal-

cium channels. The intracellular concentration of the calcium ion in the presynaptic

terminal is in the order of 10−7M and the extracellular concentration is in the order

of 10−3M . The opening of the calcium channels together with the concentration gra-

dient generates a calcium influx and increases the intracellular concentration of the

calcium.

4- The increased concentration of calcium leads to the fusion of the vesicles to the

membrane. The fusion machinery of the vesicle is mainly governed by the SNARE

complex which brings the vesicle and cell membrane together and initiates the fusion

(Rizo and Rosenmund, 2008).

5- The neurotransmitter content of the vesicle is released in the synaptic cleft

and initially, generates a concentration peak at the location of the release. The

neurotransmitter molecules diffuse in the narrow cleft and the concentration decays

rapidly.

6- The neurotransmitter molecules bind the receptors on the postsynaptic site.

Brain uses a wide variety of neurotransmitters and receptors to maintain different

modes of synaptic signaling. The binding of the neurotransmitter opens the ion

channels and changes the conductivity of the membrane.

7- A certain types of ions pass through the opened channels and generate a post-

synaptic current. The direction and the amplitude of the postsynaptic current is

determined by the type of the passing ions, the concentration gradient of the ions,

and the number of opened channels.

8- The postsynaptic current generates a postsynaptic potential and changes the

excitability of the postsynaptic neuron.

9- The transporters in the glial cells and the neuronal membrane remove the

neurotransmitters from the synaptic cleft. Alternatively, some neurotransmitters are

inactivated through enzymatic degradation.

10- The membrane of the vesicle is regenerated and the vesicle is prepared for the

next round of neurotransmitter refilling.

The sequence of events in Fig. 1.1 depicts a simplified version of synaptic trans-

mission in a chemical synapse. To understand the synaptic transmission in its full

3



complexity, all the molecular structures and the dynamics of the release machinery

should be taken into account.

1.2 Synaptic plasticity

Characteristics of a chemical synapse change dynamically in response to the cellular

activity. Synaptic plasticity has been observed in different time scales and is classified

into two categories, short-term and long-term plasticity. In the long-term plasticity,

the strength of the synaptic connection changes in a time scale of 30 minutes or

longer (Purves et al., 2012). Some patterns of activity induce a long-lasting increase

in the synaptic strength which is referred to as long-term potentiation (LTP). On the

other hand, in long-term depression (LTD), the neuronal activity causes a durable

reduction of the synaptic transmission. Long-term plasticity is considered as one

of the key cellular correlates of memory formation and learning. The underlying

mechanisms for long-term plasticity are modifications of the proteins and changes in

the gene expression.

The time scale of short-term plasticity is a few minutes or less. In short-term

facilitation, the postsynaptic potential gradually increases in response to a sequence

of action potentials (Zucker and Regehr, 2002). Paired-pulse stimulation is used to

measure the level of facilitation in synapses. It has been shown that the amplitude of

the postsynaptic potential corresponding to the second action potential can be five

times larger than the response to the first spike. The time course of the short-term

facilitation is hundreds of milliseconds and is usually modeled by an exponential func-

tion. Experimental data suggest the role of the presynaptic calcium in the emergence

of short-term facilitation. Repeated stimulation increases the concentration of the

presynaptic calcium and augments the number of transmitter quanta that is released

by an incoming action potential (Zucker and Regehr, 2002).

Short-term depression is another form of short-term plasticity which is a common

phenomenon among synapses. In short-term depression, the elevated synaptic activity

weakens the synaptic strength and reduces the postsynaptic potential. The underlying

mechanisms and functional roles of the short-term depression are discussed in the next

sections.

4



1.3 Short-term depression

The release probability of a synapse is decreased during short-term depression and

recovers back to normal with a time constant that varies among synapses from hun-

dreds of milliseconds to tens of seconds. Several mechanisms have been suggested for

short-term depression. Here we briefly explain three presynaptic and one postsynap-

tic mechanism that contribute to short-term depression in many synapses (Fioravante

and Regehr, 2011).

1.3.1 Depletion of vesicles

The size of the readily releasable pool of vesicles and the release probability of the

vesicles determine the number of vesicles that are released in response to an action

potential. When the readily releasable pool shrinks, the number of released vesicles

reduces and short-term depression occurs.

Depletion models of short-term depression are used to predict the time course of

the post-synaptic potential (Zucker and Regehr, 2002). In the simplest form, it is

assumed that the number of releasable vesicles is S and by each action potential, a

fraction F of the releasable vesicles are released. If each released vesicle generates

a postsynaptic current I, then the total current at the postsynaptic neuron will be

SFI. After the first release event, the number of releasable vesicles is reduced to

S(1 − F ). If the second action potential arrives within a short time after the first

action potential, the postsynaptic current will be S(1 − F )FI. The depression level

between the two successive release events is then (1 − F ). The model predicts a

higher depression for synapses in which the initial release probability, F , is higher.

This prediction is consistent with the data obtained from synapses in the auditory

brainstem and corticothalamic synapses (Fioravante and Regehr, 2011).

1.3.2 Inactivation of release sites

The other mechanism for short-term depression is based on the dynamics of the release

sites. The fusion of a vesicle changes the properties of a release site and interrupts the

release process for hundreds of milliseconds. When the endocytosis is blocked at the

presynaptic site, the depression effect is increased. Moreover, by cleaning the mem-

brane from vesicular proteins, the synapse recovers faster from short-term depression

(Hosoi et al., 2009). These observations suggest that the inactivation interval of the

release site corresponds to the time that is required for cleaning vesicular membrane

proteins that are responsible for vesicle fusion (Fioravante and Regehr, 2011).

5



1.3.3 Reduction of presynaptic calcium influx

Calcium plays a critical role in regulating the release machinery. Slight changes in the

intracellular calcium concentration can significantly alter the dynamics of synaptic

plasticity (Neher and Sakaba, 2008). A reduction of the calcium influx leads to short-

term depression in the calyx of Held (Xu and Wu, 2005). Furthermore, by elevating

the presynaptic concentration of the calcium in the climbing fiber synapse, the time

constant of the recovery from short-term depression drops to less than 100 ms (Zucker

and Regehr, 2002). These findings suggest that by incorporating the dynamics of

calcium channels into the depletion models of short-term depression, more realistic

models will be developed.

1.3.4 Desensitization of receptors

In addition to the presynaptic mechanisms, desensitization of the postsynaptic re-

ceptors contributes to short-term depression (Zucker and Regehr, 2002). When the

neurotransmitter molecules bind to the ionotropic receptors (ligand-gated ion chan-

nels), the channels open and let the ions pass through the membrane. If the exposure

of the ligand-gated channels to the agonist is prolonged, then the receptors enter a

refractory period and stop responding to the released neurotransmitter (Kandel et al.,

2000). This state of non-responsiveness is called desensitization and takes from tends

of milliseconds to minutes. Desensitization reduces the postsynaptic potential and is

considered as one of the major causes of short-term depression in several synapses

(Zucker and Regehr, 2002).

1.3.5 Release-independent depression

In short-term depression, the release probability of the synapse reduces after succes-

sive releases. It has been shown that the release probability of the synapse may reduce

even if a presynaptic action potential does not lead to a release (Thomson and Ban-

nister, 1999; Brody and Yue, 2000). Since this type of depression does not depend on

the release outcome of the synapse, it is called release-independent depression. Rapid

inactivation of the calcium channels has been proposed as a potential mechanism un-

derlying release-independent depression (Thomson and Bannister, 1999). Stochastic

fluctuations in the release machinery can also cause release-independent depression

in some synapses (Volynski et al., 2006).

6



1.4 Functional roles of short-term depression

Short-term depression alters the activity pattern of the postsynaptic neuron by re-

ducing the strength of synaptic connections. Several hypotheses have been suggested

for the functional role of short-term depression and here, we will review some of them

(Abbott and Regehr, 2004).

1.4.1 Temporal filtering

A synapse filters the signals by converting the presynaptic spike train to the postsy-

naptic potential. Short-term depression can widely alter the filtering characteristics

of the synapse (Abbott and Regehr, 2004).

Sensory neurons in the cortex behave as a low-pass filter for the input stimulus.

The neurons respond strongly to low-frequency stimuli and generate a very weak

signal (if any) in response to high-frequency stimulation (Fortune and Rose, 2001).

Computational models show that short-term depression operates as a low-pass filter

in neuronal information pathway (Izhikevich et al., 2003).

The low-pass filtering characteristic of short-term depression has been challenged

in several studies (Lindner et al., 2009; Merkel and Lindner, 2010). In (Lindner et al.,

2009), the filter response of the synapse is studied under natural conditions. The

asynchronous activity of the presynaptic neuronal population generates voltage fluc-

tuations in the membrane of the postsynaptic neuron. Coherence analysis is used to

measure the power transfer from a rate-modulated input spike process to the postsy-

naptic conductance. The results show that the information transmission through a

depressing synapse is frequency-independent, provided that the postsynaptic fluctu-

ations are considered in the analysis. It is concluded that short-term depression acts

as a broadband filter on natural presynaptic inputs.

Debate continues about the filtering response of a depressing synapse. The prob-

abilistic nature of synaptic plasticity, such as random recovery time constant, shapes

the filter response of short-term depression (Rosenbaum et al., 2012). The coherence

between the presynaptic spike train and the postsynaptic conductance is calculated

for a depressing synapse with random recovery time constant. In the absence of

stochastic properties of release dynamics, coherence is a constant function which is

consistent with the results in (Lindner et al., 2009). However, when the stochastic

dynamics are added to the synaptic model, short-term depression creates a high-pass

coherence profile. The coherence analysis suggests that a depressing synapse transfers
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the power of a fast-varying signal with higher fidelity than the power of a signal with

low frequencies (Rosenbaum et al., 2012).

1.4.2 Decorrelation

Autocorrelation analysis of intracellular recordings reveals a temporal correlation in

the order of hundreds of milliseconds (Dan et al., 1996; Baddeley et al., 1997). The

correlation in the spiking activity of a neuron indicates that the neuron carries redun-

dant information. Short-term depression and synaptic failures provide neurons with

mechanisms to filter out the redundant information from their inputs. To study the

performance of short-term depression in decorrelating spike trains, three categories

of correlated processes have been analyzed (Goldman et al., 2002):

1- Spike train of a visual neuron during saccadic eye movements: The spikes

are generated by a piecewise homogeneous Poisson process. The neuron generates

a Poisson spike train with a fixed rate until a saccade occurs. Then a new rate is

assigned to the Poisson process and the neuron’s spiking activity is updated.

2- Spike train of bursting neurons: The data is generated by fitting a neuronal

model to the data collected from MT neurons in monkeys during visual discrimination

task.

3- Experimental spike trains recorded from V1 area of the monkeys viewing natural

scenes.

It is shown that short-term depression reduces the redundancy of information in

all the three categories of correlated spike trains. By decorrelating the input signal,

short-term depression also reduces the number of releases and economizes on the

neuronal resources that are used for vesicle release.

Two processes contribute to the correlation in the spiking activity of a neuron: the

autocorrelation of the presynaptic spike train, and the cross correlation among the

synaptic inputs. Although short-term depression reduces the autocorrelation caused

by individual synapses, it can not remove the cross correlation of the presynaptic

input processes. Consequently, some correlation remains in the spiking activity of

the postsynaptic neuron.

1.4.3 Adaptation to identical stimuli

Many cortical neurons show a reduced responsiveness (adaptation) to sensory stimuli

(Ulanovsky et al., 2004; Kohn, 2007; Abolafia et al., 2010; Clifford et al., 2007; Müller

et al., 1999). The underlying neuronal mechanism of sensory adaptation has not been
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fully understood yet. However, it has been shown in the models of V1 neurons that

short-term depression can cause adaptation in the response of the neurons to the

sensory stimuli (Todorov et al., 1997; Chance et al., 1998). The functional role of

short-term depression in adaptation has been also studied in vivo recordings (Chung

et al., 2002). A rat’s whisker is stimulated and the neurons in the rat’s barrel cortex

are recorded. Neuronal responses adapt to the repeated stimulation very fast and the

recovery time course of adaptation matches the recovery from short-term depression

in thalamocortical synapses. It is concluded that shot-term depression in thalam-

ocortical synapses is one of the major causes of sensory adaptations in the cortical

neurons (Chung et al., 2002).

1.4.4 Regulation of information transfer

In a static synapse, the release characteristics remain constant over time and the

postsynaptic potential does not carry any information about the previous activity of

the presynaptic neuron. Many synapses, however, show a wide range of short-term

and log-term dynamics. The release characteristics of a dynamic synapse are affected

by the activity history of the presynaptic and postsynaptic processes. For example,

the release probability of a depressing synapse depends on the timing of the previous

release events.

Short-term depression can be considered as a memory for the synapse, regulat-

ing the release machinery based on the synaptic release history (Fuhrmann et al.,

2002). The postsynaptic neuron can potentially use this intrinsic memory to extract

some information about the history of the spiking activity of the presynaptic neu-

ron. Since the flow of information is controlled by the content of this memory, it has

been suggested that short-term depression may modulate information efficacy of the

synapse.

Synaptic information efficacy is a functional measure for analyzing the information

transmission through a synapse. It is defined by information-theoretic measures and

provides a mathematical description for the performance of the synapse. In this

thesis, we use synaptic information efficacy to study the functional role of short-term

depression in modulating the rate of information transfer. First the basic concepts

of information theory are reviewed in the next section, and then the definition of

synaptic information efficacy is presented.
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1.5 Information-theoretic measures

Information theory was founded by Claude E. Shannon to address two major ques-

tions in communication theory: the minimum compression rate of the data and the

maximum transmission rate over a communication channel (Shannon, 1948). The

applications of information theory are not limited to communication systems. The

powerful framework of information theory and Shannon’s concepts of entropy and mu-

tual information are used in many fields, such as statistics, computer science, physics,

economics, and physiology (Cover and Thomas, 2012).

1.5.1 Entropy of a random variable

The definition and quantification of information is at the heart of information theory.

Shannon used the term entropy to refer to the information content of a random

variable. Entropy is measured in bits and quantifies the amount of uncertainty about

the value of a random variable. When a fair coin is tossed, the probability of heads

or tails is 0.5 each and the amount of uncertainty about the outcome of the coin

(entropy) is equal to 1 bit. For an irregular coin that always lands heads up, there is

no uncertainty about the tossing outcome and the entropy is zero.

Another example would be a guessing game in which one object is selected from

a bag containing eight distinct objects (Fig. 1.2A) and a participant tries to find the

object with the minimum number of yes/no questions. In Fig. 1.2B, a strategy is

proposed for finding the object with 3 yes/no questions. It can be shown that on

average, the minimum number of yes/no questions needed for finding the object is

equal to 3. Therefore, the entropy of the bag in Fig. 1.2A is equal to 3 bits.

These examples can be generalized to define the entropy of a random variable.

Let X be a discrete random variable with the sample space SX . The entropy of X is

defined by

H(X) = −
∑

x∈SX

P (X = x) log2 P (X = x), (1.1)

where P (.) is the probability measure.

The content of the bag in Fig. 1.2A corresponds to the sample space of a random

variable X with 8 elements, i.e., SX = {1, 2, ..., 8}. Since the objects are selected ran-

domly with uniform distribution, the probability distribution of the random variable

is P (X = x) = 1
8
, 1 ≤ x ≤ 8. Using these probability values in (1.1), the entropy of

X is H(X) = 3 bits which is equal to the minimum number of yes/no questions.
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1- Is it a circle?

YES NO 

2- Is it blue? 

YES NO 

2- Is it blue? 

YES NO 

3- Convex? 

YES NO 

3- Convex? 

YES NO 

3- Convex? 

YES NO 

3- Convex? 

YES NO 

?

A B

Figure 1.2: Entropy of data. (A) A bag of eight different objects. The examiner
selects one object randomly and the participant should guess the object with the
minimum number of yes/no questions. (B) An optimal strategy for asking the yes/no
questions.

The definition of entropy can be extended to two or more random variables. The

entropy of two random variables X and Y is defined by

H(X, Y ) = −
∑

(x,y)∈SX×SY

P (X = x, Y = y) log2 P (X = x, Y = y), (1.2)

where P (X = x, Y = y) represents the joint probability distribution of X and Y .

1.5.2 Conditional entropy

The amount of uncertainty about a source can be reduced if some side information

is given. For example, if we know that the color of the selected object in Fig. 1.2 is

orange, then the number of yes/no questions that are needed for finding the object

reduces to 2 questions. The amount of uncertainty about the content of the bag,

given the color of the object is the conditional entropy of the bag and is equal to 2

bits.

The conditional entropy of a random variable X given another random variable

Y is denoted by H(X|Y ) and is defined by

H(X|Y ) = −
∑

y∈SY

P (Y = y)
∑

x∈SX

P (X = x|Y = y) log2 P (X = x|Y = y). (1.3)

The function H(X|Y ) quantifies the uncertainty about the value of the random

variable X provided that the value of Y is given.
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1.5.3 Mutual information between two random variables

We showed that the uncertainty about the selected object in Fig. 1.2 is 3 bits and the

uncertainty is reduced to 2 bits if the color of the object is given. Therefore, the color

of the object gives 1 bit of information about the object. In information-theoretic

terms, we say that the mutual information between the objects of the bag and the

color of the objects is 1 bit.

The mutual information between two random variables X and Y is denoted by

I(X;Y ) and is defined by

I(X;Y ) = H(X)−H(X|Y ). (1.4)

Mutual information quantifies the amount of information that one random variable

Y gives about the other random variable X. In other words, I(X;Y ) determines how

much the uncertainty of X is reduced if the value of Y is known.

1.5.4 Entropy rate of a random process

Random processes are used to model a wide variety of signals, such as EEG recordings,

fMRI BOLD signals, calcium recordings, spiking activity, and behavioral data. To

quantify the information content of these signals, the notion of entropy should be

extended to random processes.

Let X = {Xi}∞i=1 be a discrete-time random process, where Xi is the random

variable corresponding to the value of X at time i. The entropy rate of the random

process X is defined by

H(X) = lim
n→∞

1

n
H(X1, X2, ..., Xn), (1.5)

provided that the limit exists.

For example, a fair coin is tossed infinite times and its value at time i is assigned to

a binary random variable Xi. Since the random process X = {Xi}∞i=0 is independent

and identically distributed,

H(X1, X2, ..., Xn) = nH(X1), (1.6)

and hence, H(X) = H(X1) = 1 bit.

An example of a correlated process is the weather changes (Zucchini et al., 2016).

Assume that the weather has two possible states, rainy or sunny. If today is sunny,

then with a probability of α, tomorrow will be rainy, and if today is rainy, then the

probability of having a sunny day tomorrow is β (Fig. 1.3A). Since the state of the
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α 

β

1−α 1−β

SunnySunny

Rainy

Sunny Rainy

α 

β

1−α 

1−β
Day i

P(Day i +1 | Day i )

Rainy

Day i +1

A B

Figure 1.3: Weather changes modeled by a correlated random process. (A) Two
states are assumed for the weather (rainy or sunny) and the probability of having a
rainy or sunny day on day i + 1 is determined based on the state of the weather on
day i. (B) A two-state Markov chain used to model weather changes.

weather on day i+ 1 depends only on the weather on day i, the weather process can

be modeled by a Markov chain with two states (Fig. 1.3B). The entropy rate of the

weather process is derived from (Cover and Thomas, 2012),

H(X) =
β

α + β
h(α) +

α

α + β
h(β), (1.7)

where h(x) = −x log2(x)− (1− x) log2(1− x).

For α = β = 0.3, our uncertainly about the weather is H(X) = 0.88 bits. If

there was not any dependency between the state of the weather in successive days,

the uncertainty about the weather would be 1 bit. However, the correlation between

the days reduces the uncertainty to 0.88 bits.

1.5.5 Mutual information rate between two random processes

The interactions between the parts of a system have been studied using information-

theoretic measures. Mutual information quantifies the amount of information that

can be obtained from the activity of one part of the system about the activity of the

other part(s). For example, in a population of neurons, the spiking activity of one

neuron may be informative about the spiking process of another neuron. To measure

neuronal interactions, the mutual information between the spiking processes of the

two neurons are calculated.

The mutual information between two random processes is defined using a similar

approach to the entropy of a random process (Vembu et al., 1995). Let X = {Xi}∞i=1

and Y = {Yi}∞i=1 be two discrete-time random processes. The mutual information

rate between X and Y is defined by

I(X;Y ) = lim
n→∞

1

n

(
H(X1, X2, ..., Xn)−H(X1, X2, ..., Xn|Y1, Y2, ..., Yn)

)
, (1.8)
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if the limit exists.

The mutual information is used as a similarity measure between the two ran-

dom processes. Although the cross correlation function also quantifies the similarity

between the two signals, it can not extract the non-linear correlations. Mutual in-

formation can be considered as an extension of the cross correlation function which

quantifies the linear and non-linear similarities of the two signals by calculating the

amount of information that one signal carries about the other one.

Mutual information is a powerful tool for analyzing neural systems (Borst and

Theunissen, 1999; Quiroga and Panzeri, 2009; Dimitrov et al., 2011; Brunel and Nadal,

1998; van Steveninck et al., 1997). It is used to evaluate information transmission

over a wide range of spatial scales, from connectivity analysis in fMRI BOLD signals

(Rubinov and Sporns, 2010) to information coding in single-cell recordings (Nirenberg

et al., 2001; Reich et al., 2001; Brostek et al., 2011).

1.6 Synaptic information efficacy

Synapses are the communication channels between the neurons and convert the presy-

naptic spikes to the postsynaptic potential. Synaptic information efficacy (SIE) is a

measure for quantifying the amount of information that is transferred through a

synapse and is defined as the mutual information rate between the presynaptic input

spike train, X, and the postsynaptic potential, Y (Fig. 1.4) (London et al., 2002).

The definition of SIE can be also extended to include all the synapses between the

two neurons. Synaptic information efficacy between the two neurons is the mutual

information between the presynaptic spike process, X, and the postsynaptic spike

train, Z (Fig. 1.5).

Synpatic information efficacy has been used to evaluate the transmission perfor-

mance of the neurons under different experimental conditions. The spiking activities

of the presynaptic neuron(s) and the postsynaptic neuron are recorded and mutual

information between the spike trains is calculated by numerical methods (London

et al., 2002; Arleo et al., 2010; Gourévitch and Eggermont, 2007; Brochini et al.,

2011). Computational models of synaptic transmission are also used to estimate

synaptic information efficacy. The presynaptic spike process, synaptic transmission,

and the postsynaptic neuron are modeled and synaptic information efficacy is esti-

mated numerically (London et al., 2002; Scott et al., 2012) or analytically (Goldman,

2004; Fuhrmann et al., 2002).
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X : Input spike process

Y : Post-synaptic events

. . . 

1 0 0 0 1 0 1 0 1 0 1 . . . 

I(X;Y ) Synaptin Information

 E!cacy

Figure 1.4: Synaptic information efficacy of a single synapse. The spiking activity
of the presynaptic neuron is modeled by a binary process X. Each vesicle release
generates a miniature postsynaptic potential which is modeled by a binary process
Y . Synaptic information efficacy is then defined as the mutual information between
the presynaptic input spike process, X, and the postsynaptic process, Y .

1.7 Aims of the thesis

Short-term depression reduces the responsiveness of the synapse to the incoming ac-

tion potentials. The release probability of the synapse and the number of released

vesicles decrease and consequently, the amplitude of the postsynaptic potential drops.

There is not a direct relationship between the postsynaptic potential and the informa-

tion rate of the synapse. In this thesis, we investigate how the reduction of synaptic

strength during short-term depression alters synaptic information efficacy. We first

present a phenomenological model for a depressing synapse and then use information-

theoretic analysis to study the impact of short-term depression on the information

efficacy of the model synapse.

1.7.1 Modeling of a depressing synapse

Synapses mediate information transmission between the neurons and can be modeled

by communication channels (Levy and Baxter, 2002). A communication channel is a

mathematical model for signal transmission from a sender to a receiver and describes

the relationship between the transmitted and received signals (Gallager, 1968).

We model a static release site by a binary asymmetric channel (Fig. 1.6A). In this

model, the input is the presynaptic input spike process and the output is a binary
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X : Input spike process Z : Output spike process

1 1 0 0 1 . . . 1 0 0 0 1 . . . 

I(X;Z ) Synaptin Information

 E!cacy

Figure 1.5: Synaptic information efficacy of multiple synapses. The spiking activity
of the presynaptic neuron, X, and the postsynaptic neuron, Z, are derived and the
mutual information is calculated between X and Z.

process corresponding to the presence or absence of the postsynaptic potential. This

simple model captures the two release mechanisms of the synapse, spike-evoked release

and spontaneous release. The release probabilities of a static synapse do not depend

on the release history of the synapse and are constant over time (Fig. 1.6B).

Short-term depression creates a memory for the synapse by making the release

process dependent on the previous activity of the synapse. We, therefore, model

short-term depression by a binary asymmetric channel with memory (Fig. 1.7A).

The memory of the communication channel stores the release outcomes of the synapse

and determines the release probability of the synapse based on the synaptic release

history profile.

The binary asymmetric channel with memory captures the dynamics of the re-

lease probability during short-term depression. The spike-evoked release probability

reduces after each release and recovers back to its initial value exponentially (Fig.

1.7B). There is not yet enough experimental data to verify whether spontaneous re-

lease has a depression profile similar to the evoked release (solid blue line in Fig.

1.7B) or remains constant during short-term depression (dashed blue line in Fig.

1.7B) (Zucker and Regehr, 2002).

1.7.2 Analysis of synaptic information efficacy

The information efficacy of a synapse is measured by the mutual information between

the presynaptic input spike train and the postsynaptic potential. This measure quan-

tifies the amount of information that is transferred through the synapse. There are,

however, several other performance measures that are essential in analyzing neuronal
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Figure 1.6: Modeling of a static synapse. (A) The synapse is modeled by a binary
asymmetric channel. The input of the model is the input spike process and the
output is a binary process corresponding to the presence/absence of the postsynaptic
potential. The green transition arrow represents the spike-evoked release probability
and the blue arrow models the spontaneous release of the synapse. (B) A typical
input spike train and the release outcomes of the release site are depicted in the top
two panels. Sometimes an action potential does not lead to a release (green circle)
and sometimes the synapse releases spontaneously (blue circle). The bottom panel
shows the release probabilities of spike-evoked and spontaneous release as a function
of time.

transmission. For example, the energy consumption of the synapse imposes a con-

straint to the release mechanism. The energy cost of synaptic release is high and the

neuron needs to find a compromise between its energy expenditure and the rate of

information transfer.

The transmission delay is another major factor for signal communication in the

brain. Imagine that the peripheral nervous system tries to inform the brain about

a critical change in the environment. In this case, the transmission speed is more

important than the energy consumption or the bit rate. The brain needs to make

a decision as soon as possible to act properly in response to the external event; the

energy-efficiency and the precision of the signal are no longer fundamental.

Synaptic transmission is also regulated to economize the limited resources of the

neuron and achieve reliable transmission in the long term. If the neuron were to

release many vesicles from the pool in response to a transient stimulus (for high
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Figure 1.7: Modeling of a dynamic synapse. (A) A binary asymmetric channel with
memory. The release probabilities of the synapse depend on the previous release
outcomes. (B) A typical release outcome sequence of the synapse (top panel) and
the spike-evoked and spontaneous release probabilities of the synapse (bottom panel).
The solid and dashed blue lines show the two possible models of depression for spon-
taneous release.

transmission accuracy), then it could fail to transmit sufficient information for the

next sequence of stimuli. Therefore, the different factors in transmission (such as

information rate, energy consumption, latency) should be weighted according to the

specific function of the synapse to derive the utility/cost function and determine the

optimality of synaptic release.

In this thesis, we consider the energy consumption of synaptic release in addition to

the mutual information rate. We define and calculate a new measure, named energy-

normalized information rate, to study the trade-off between the energy consumption

and the rate of information transmission during short-term depression.

We start with a simple model of short-term depression in which the state of the

synapse is determined by the previous release outcome. If the synapse has released a

vesicle, it goes to the used state, and in the absence of release, the synapse returns to

the normal state. The two-state model of short-term depression permits an analytical

study of synaptic information efficacy.

We then extend the model to implement the gradual depression and exponential

recovery of the synapse during short-term depression. We use a binary asymmet-

ric channel with a memory of an arbitrary length L (Fig. 1.7). We show that the
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dynamics of our model is consistent with the dynamics that has been observed in

experimental data. We calculate the mutual information rate and energy-normalized

information rate of the synapse analytically and evaluate the effect of synaptic param-

eters, such as recovery time constant and the level of depression, on the information

efficacy of the synapse. The modulatory role of spontaneous release on the rate of

information transmission is also investigated. The information-theoretic analysis of

short-term depression reveals three functional classes for synapses and explains how

a synapse compromises between the information rate and energy consumption.

1.7.3 Spike detection

Our framework can be used to calculate the information efficacy of a synapses from

experimental data. To estimate synaptic information efficacy, the exact timing of the

presynaptic action potentials and the postsynaptic release events is required. The

timing of action potentials is usually estimated from intracellular or extracellular

recordings. However, the detection of spikes in an extracellular signal with low signal

to noise ratio (SNR) is challenging. We propose a new method for spike detection

which is based on the fractal properties of the extracellular signals. Our results reveal

a significant difference between the fractal dimension of spike and noise segments of

extracellular signals. Based on this finding, we design a spike detector by thresholding

the fractal dimension of the signal’s segments. We show that in low SNR extracel-

lular signals, our fractal spike detector outperforms the conventional spike detection

algorithms.

1.7.4 Structure of the thesis

We present the results of the two-state model of short-term depression in Section 2.

The content of this section has been already published in:

• M. Salmasi, M. Stemmler, S. Glasauer, A. Loebel, “Information Rate Analysis

of a Synaptic Release Site Using a Two-State Model of Short-Term Depression”,

Neural Computation, 29, 1528-1560, 2017.

We analyze the information efficacy of the general model of short-term depres-

sion in Section 3. The section is in the format of a manuscript which is ready for

submission:
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• M. Salmasi, A. Loebel, S. Glasauer, M. Stemmler, “Short-Term Synaptic De-

pression Can Increase the Rate of Information Transfer at a Release Site”, To

be submitted.

In Section 4, we present our suggested algorithm for spike detection in extracellular

signals which is based on the fractal properties of the signals. The content of this

section has been published in:

• M. Salmasi, U. Büttner, S. Glasauer, “Fractal Dimension Analysis for Spike

Detection in Low SNR Extracellular Signals”, Journal of Neural Engineering,

13(3), 36004-36022, 2016.
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Chapter 2

Information rate of the two-state
model of depression

2.1 Summary

A synapse mediates information transmission by releasing vesicles in response to

incoming action potentials. The synaptic release is, however, a stochastic mechanism.

While some action potentials do not elicit a vesicle release, a synapse may release

spontaneously even in the absence of an action potential. The information efficacy of

the synapse is highly affected by the stochasticity of the release.

Synaptic release characteristics also depend on the activity history of the synapse.

In short-term depression, the release probability of the synapse reduces after succes-

sive releases and the efficacy of the synapse is altered. We model a synaptic release

site by two communication channels, corresponding to the normal state and the used

state of the synapse. After each release, the synapse goes to the used state, and in

the absence of release, the synapse recovers back to the normal state.

We calculate the information rate of the synapse model analytically and evaluate

the effects of short-term depression and stochastic release on the information efficacy

of the synapse. We show that the relative level of depression for spontaneous release

and spike-evoked release determines weather depression enhances or impairs the rate

of information transmission through the synapse.

2.2 Contributions

The contributions of the authors Mehrdad Salmasi (MS), Martin B. Stemmler (MBS),

Stefan Glasauer (SG) and Alex Loebel (AL) are as follows: MS, MBS, SG and AL de-

signed the study and developed the model. MS analyzed the model and performed the
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simulations. MS, MBS, SG and AL interpreted the results and wrote the manuscript.

The manuscript was published in the journal of Neural Computation:

• M. Salmasi, M. Stemmler, S. Glasauer, A. Loebel, “Information Rate Analysis

of a Synaptic Release Site Using a Two-State Model of Short-Term Depression”,

Neural Computation, 29, 1528-1560, 2017.

The preliminary results of this study were presented as abstracts and posters in

the CNS (2015) and Bernstein (2016) conferences:

• M. Salmasi, M. Stemmler, S. Glasauer, A. Loebel, “Information-Theoretic Anal-

ysis of a Dynamic Release Site Using a Two-Channel Model of Depression”, 24th

Annual Computational Neuroscience Meeting (CNS), Prague, July 2015.

• M. Salmasi, M. Stemmler, S. Glasauer, A. Loebel, “The Impact of Depression

on the Information Rate of the Two-Channel Model of Release Site”, Bernstein

Conference on Computational Neuroscience (BCCN), Heidelberg, September

2015.
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Synapses are the communication channels for information transfer be-
tween neurons; these are the points at which pulse-like signals are
converted into the stochastic release of quantized amounts of chemi-
cal neurotransmitter. At many synapses, prior neuronal activity depletes
synaptic resources, depressing subsequent responses of both sponta-
neous and spike-evoked releases. We analytically compute the informa-
tion transmission rate of a synaptic release site, which we model as a
binary asymmetric channel. Short-term depression is incorporated by as-
signing the channel a memory of depth one. A successful release, whether
spike evoked or spontaneous, decreases the probability of a subsequent
release; if no release occurs on the following time step, the release prob-
abilities recover back to their default values. We prove that synaptic
depression can increase the release site’s information rate if spontaneous
release is more strongly depressed than spike-evoked release. When

Neural Computation 29, 1528–1560 (2017) c© 2017 Massachusetts Institute of Technology
doi:10.1162/NECO_a_00962
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depression affects spontaneous and evoked release equally, the infor-
mation rate must invariably decrease, even when the rate is normalized
by the resources used for synaptic transmission. For identical depression
levels, we analytically disprove the hypothesis, at least in this simplified
model, that synaptic depression serves energy- and information-efficient
encoding.

1 Introduction

Synapses, the junction points between neurons, are essential for informa-
tion processing in the nervous system (Eccles, Katz, & Kuffler, 1941; Foster
& Sherrington, 1897). When an action potential arrives at the presynaptic
bouton of a synapse, there is a probability that vesicles filled with neuro-
transmitter are released from release sites into the synaptic cleft (Del Castillo
& Katz, 1954). Upon docking at the postsynaptic cell, the neurotransmitter
initiates an electrochemical cascade to cause a voltage deflection in the post-
synaptic cell’s membrane, which in turn may lead to action potentials in the
output and thus complete the input-output cycle. The average amplitude of
the voltage deflection in response to unitary stimuli is usually considered
to be the measure of the synaptic connection’s efficacy (Bliss & Lømo, 1973;
Dan & Poo, 2004; Gil, Connors, & Amitai, 1999; Markram, Lübke, Frotscher,
& Sakmann, 1997; Nelson, Sjöström, & Turrigiano, 2002).

This notion of synaptic efficacy, however, ignores the short-term dy-
namics of transmission observed at many types of synapses (Markram &
Tsodyks, 1996; Wang et al., 2006; Zucker & Regehr, 2002). These dynam-
ics are reflected in time-dependent changes in the release probability. In
short-term depression, the release probability decreases following a vesicle
release, as it takes time for a release site to be refilled with a new vesi-
cle; during quiescent periods, the release probability recovers back to a
baseline (Zucker & Regehr, 2002). As a consequence, the postsynaptic re-
sponses of such a synaptic connection are time dependent. This renders the
amplitude-driven interpretation of synaptic efficacy questionable, as it is
not clear which amplitude to attach to a connection that exhibits short-term
dynamics.

The short-term dynamics and the stochastic nature of synaptic trans-
mission have led researchers to consider alternative measures of synaptic
efficacy that are based on information theory (Fuhrmann, Segev, Markram,
& Tsodyks, 2002; Goldman, 2004; London, Schreibman, Häusser, Larkum,
& Segev, 2002; Manwani & Koch, 2001; Scott, Cowan, & Stricker, 2012;
Zador, 1998). Presynaptic trains of action potentials and the postsynap-
tic responses convey information about each other, where the postsynaptic
responses could be the time series of the output action potentials of the post-
synaptic cell, the voltage fluctuations in the cell body, or the vesicle release
outcomes. Quantification of synaptic information efficacy leads to a better
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understanding of the functional role of different synaptic properties, such
as dendritic location, response amplitudes, and their dynamics. However,
an analytical, closed-form expression for the synaptic information efficacy
in the presence of short-term dynamics is still missing. Consequently, the
study of how these dynamics and synaptic parameters affect the infor-
mation transfer is limited. Nonetheless, reasonable assumptions are that
synaptic depression might contribute to efficient coding (Cortes et al., 2012;
Rangan, 2012) or modulate the information transfer at a given synapse
(Rosenbaum, Rubin, & Doiron, 2012), possibly in a frequency-dependent
manner.

Here, we adopt the information-theoretic approach and present a first
step toward the analytical estimate of information transfer at a synapse that
exhibits short-term depression. We consider a memoryless binary asym-
metric channel system as a model for a static release site (Levy & Baxter,
2002) and extend it to a two-state system (i.e., a binary asymmetric chan-
nel with a memory of depth one). The current state of the release site is
determined by the last output of the system. When a release occurred in
the previous time step (through either an action potential or spontaneous
release), the system is in the “used” state, in which the release probabilities
are depressed. When no release occurs, the state switches to the “recovered”
state. We calculate the mutual information rate of the two-state model of
depression analytically. The closed-form equation for the information rate
facilitates understanding how the parameters of depression affect synaptic
efficacy.

The energy consumption of neural systems is a key element in neuronal
information processing (Attwell & Laughlin, 2001; Sacramento, Wichert, &
van Rossum, 2015; Sengupta, Laughlin, & Niven, 2013; Sengupta, Stemmler,
Laughlin, & Niven, 2010; Sengupta, Stemmler, & Friston, 2013), so we also
consider the energy costs of synaptic release. Many neuronal circuits can
be interpreted as optimizing a trade-off between energy and information
(Niven, Anderson, & Laughlin, 2007). However, in this simple model, we
prove that, to the contrary, synaptic depression does not optimize such
an energy-information trade-off as long as spontaneous and spike-evoked
releases are equally depressed. If spontaneous release is more strongly
suppressed, though, synaptic depression improves both the mutual and
the energy-normalized information rates.

2 Model

A discrete-time model for a static release site is presented first; subsequently,
the model is extended to include the dynamic properties of short-term
synaptic depression.

2.1 Static Release Site: The One-State Model. A static release site is
modeled by a memoryless binary asymmetric channel (Levy & Baxter, 2002).



Information Rate during Short-Term Synaptic Depression 1531

The input of the model is a presynaptic input spike train, which is repre-
sented by the random process X,

X = {Xi}∞i=0, (2.1)

where Xi is the random variable corresponding to the value of X at time i,
Xi = 1 if there is a spike at time i, and Xi = 0 otherwise. We assume that X
is an independent and identically distributed (i.i.d.) random process and Xi
is a Bernoulli random variable with P(Xi = 1) = α. The parameter α can be
interpreted as the average input spike rate of the presynaptic neuron.

The output of the release site at time i is a binary random variable as
well, and it is denoted by Yi. If there is a release at time i, then Yi = 1, and
otherwise, Yi = 0. The sequence of these random variables constructs the
output random process of the model, which is denoted by Y,

Y = {Yi}∞i=0. (2.2)

The memoryless binary asymmetric channel determines the relation be-
tween Xi andYi at time i (see Figure 1A). This model embraces two important
synaptic phenomena: spontaneous release and synaptic unreliability. Spon-
taneous release is implemented by the transition from Xi = 0 to Yi = 1, that
is, even without an input spike, there can be a release with a probability of
q. Also synaptic unreliability is captured by the transition from Xi = 1 to
Yi = 0. This transition indicates that there is a probability of 1 − p that an
input spike does not result in a vesicle release. It directly follows that p and
q are the spike-evoked and spontaneous release probabilities respectively.

In our model, one release site can release at most one vesicle per presy-
naptic spike, which is in agreement with the one-vesicle hypothesis (Biró,
Holderith, & Nusser, 2005; Korn, Triller, Mallet, & Faber, 1981; Silver, Lübke,
Sakmann, & Feldmeyer, 2003; Yusim, Parnas, & Segel, 2001).

2.2 Dynamic Release Site: The Two-State Model. In short-term synap-
tic depression, the release probability is reduced after a vesicle release, and
then it recovers back to its initial value during quiescent periods. Here we
consider a simplified model for this dynamics and represent a release site
with short-term depression by a communication channel with a memory of
depth one. That is, the state of the channel at time i is determined by the pre-
vious output of the channel, Yi−1. Since Yi−1 is a binary random variable, the
dynamic release site can be modeled as a combination of two interrelated
binary asymmetric channels (see Figure 1B). If there is no release at time
i − 1, that is, Yi−1 = 0, then the release site at time i follows the recovered
state of the channel. If there has been a release at time i − 1, that is, Yi−1 = 1,
the release site at time i follows the used state of the channel. We assume
that the initial state of the release site at time i = 1 is the recovered state;
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Figure 1: (A) A static release site is modeled by a memoryless binary asymmet-
ric channel. (B) A dynamic release site with depression is modeled by a binary
asymmetric channel with a memory of depth one. In particular, if a release oc-
curs at time i − 1, the channel will be at the used state at time i; if no release
occurs, the channel will be at the recovered state at the next time step.

by convention, Y0 = 0. We call this model throughout the letter the two-
state model of depression. The parameters of the model fulfill the following
inequalities:

0 < c, d, p, q < 1, (2.3)

q < p, (2.4)

dq < cp. (2.5)

The inequalities 0 < c, d < 1 entail the reduction of the release probabili-
ties of the used state. Also, equations 2.4 and 2.5 indicate that the probability
of spike-evoked release is higher than the probability of spontaneous re-
lease. We note that the spike-evoked release probability is a function of the
number of vesicles in the release-ready pool, the proximity of the vesicles
to the active zone, and the level of intracellular calcium around the re-
lease site (Zucker & Regehr, 2002). When the size of the release-ready pool
shrinks, the release probability of the release site decreases gradually until
the vesicles from the reserve pool replenish the release-ready pool again
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Table 1: Definition of Notations.

Symbol Definition

X Presynaptic input spike process

Y Release outcome process

p Spike-evoked release probability

q Spontaneous release probability

c Depression multiplier for spike-evoked release

d Depression multiplier for spontaneous release

α Presynaptic input spike rate

rD Mutual information rate of the release site with depression

I(D)
E Energy-normalized information rate of the release site with depression

r1 Mutual information rate of the release site without depression

I(1)
E Energy-normalized information rate of the release site without depression

and increase the release probability. Therefore, depending on the size of the
release-ready pool, the release probability can be greater than zero even in
the used state and the release site is potentially capable of releasing a vesicle
at any time point. This feature is consistent with the stochastic nature of
synaptic release (Zucker & Regehr, 2002) and probabilistic models of synap-
tic depression (Hanse & Gustafsson, 2001). (For a summary of notations,
see Table 1.)

2.3 Information-Theoretic Measures. The entropy of a discrete random
variable Z is the amount of uncertainty about its value and is defined as

H(Z) = −
∑

z

P(Z = z) log2 P(Z = z), (2.6)

where P(.) is the probability measure.
The conditional entropy H(Z|W ) is the entropy of the random variable

Z given that the value of the random variable W is known. It is defined as

H(Z|W ) = −
∑
w

∑
z

P(Z = z,W = w) log2 P(Z = z|W = w). (2.7)

The mutual information between two random variables Z and W , de-
noted by I(Z;W ), is a measure of their dependence and is equal to the
reduction of the uncertainty of one of the random variables due to the
other one. The mutual information can be defined using the entropy and
conditional entropy in the following manner:

I(Z;W ) = H(Z) − H(Z|W ). (2.8)
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The definition of entropy for a random variable is extended to the en-
tropy rate of random processes (Cover & Thomas, 2012). Let X = {Xi}∞i=0
be a discrete-time random process, where Xi is the random variable corre-
sponding to the value of X at time i. We denote by Xn the values of X in the
first n time units:

Xn �
{

(X1, X2, . . . , Xn) if n > 0

0 if n = 0
. (2.9)

The entropy rate of X is defined by

H(X) = lim
n→∞

1
n

H(Xn) (2.10)

if the limit exists.
The notion of mutual information can be generalized to random pro-

cesses as well (Vembu et al., 1995). The mutual information rate between
the two random processes X and Y is defined by

I(X;Y) = lim
n→∞

1
n

I(Xn;Yn), (2.11)

provided that the limit exists.

3 Analytical Results

We derive the mutual information rate of the two-state model of a dy-
namic release site. We subsequently consider the energy consumption of
the release site and define a measure that captures the energy-normalized
information rate. Finally, we demonstrate the impact of depression on the
information efficacy of the release site. For brevity, the proofs of the theo-
rems are presented in the appendix.

The entropy of a binary random variable Z with P(Z = 0) = z is repre-
sented by h(z):

h(z)= −z log2(z) − z log2(z), (3.1)

h(0)= h(1) = 0, (3.2)

where z = 1 − z. From the symmetry of h(.), it is clear that h(z) = h(z). For
the binary asymmetric channel in Figure 1A,

H(Yi)= h(αq + αp), (3.3)

H(Yi|Xi)= αh(q) + αh(p). (3.4)
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Therefore, the mutual information between the input and output random
variables of the channel, Xi and Yi, is

I(Xi;Yi) = h(αq + αp) − αh(q) − αh(p), (3.5)

and since the channel is memoryless, its mutual information and mutual
information rate are identical:

I(X;Y) = I(Xi;Yi). (3.6)

Let r1 and r2 be the mutual information rates of the recovered and used
states in Figure 1B. From equation 3.5,

r1 = I(Xi;Yi|Yi−1 = 0) (3.7)

= h(αq + αp) − αh(q) − αh(p), (3.8)

r2 = I(Xi;Yi|Yi−1 = 1) (3.9)

= h(αdq + αcp) − αh(dq) − αh(cp). (3.10)

We prove in the appendix (see lemma 1) that for the two-state model.

I(Xn;Yn) = nr2 + (r1 − r2)(nθ + (1 − θ )
1 − λn

1 − λ
), (3.11)

where

λ= g1 − g2, (3.12)

θ = g2

g1 + g2
, (3.13)

g1 = α q + αp, (3.14)

g2 = α dq + αcp. (3.15)

We are now ready to calculate the information rate of the two-state
model.

Theorem 1. Let rD denote the mutual information rate of the two-state model of
depression in Figure 1B. Then

rD = θr1 + (1 − θ )r2. (3.16)

Corollary 1. The mutual information rate of the two-state model of depression,
rD, is the weighted sum of the information rates of its constituent channels, and
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the weights, θ and 1 − θ , are the asymptotic probabilities of being in the recovered
state and used state, respectively:

θ = lim
i→∞

P(Yi = 0). (3.17)

The information rate rD is only one possible measure for the information
efficacy of a release site. In particular, the transfer of information through
synaptic releases is an energetically costly process (Balasubramanian,
Kimber, & Berry II, 2001; Friston, 2010; Levy & Baxter, 1996). To address
this aspect of synaptic activity, we consider a quantity that reflects both
the information rate and the energy consumption of the synapse simul-
taneously. Let Ei be the average amount of energy that is consumed at
time i by the presynaptic neuron for vesicle release. We represent the
energy-normalized mutual information between Xn and Yn by IE (Xn;Yn)

and define it as

IE (Xn;Yn) �
I(Xn;Yn)∑n

i=1 Ei
. (3.18)

We assume that for each release, one unit of energy is consumed. Conse-
quently, Ei is equal to the probability of release at time i. In the case of the
two-state model, we show in the appendix (see lemma 2) that

IE (Xn;Yn) = nr2 + (r1 − r2)(nθ + (1 − θ ) 1−λn

1−λ
)

(1 − θ )(n − λ 1−λn

1−λ
)

. (3.19)

Subsequently, let IE (X;Y) be the energy-normalized information rate,
which is defined as

IE (X;Y) � lim
n→∞ IE (Xn;Yn). (3.20)

We should note that the term 1
n does not appear in equation 3.20, because

both terms I(Xn;Yn) and
∑n

i=1 Ei in equation 3.18 are normalized by 1
n .

Using I(D)

E to represent IE (X;Y) for the two-state model of depression,
we show that

I(D)

E = g2r1 + g1r2

g1
. (3.21)
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Corollary 2. Consider the recovered state and used state in Figure 1B and let their
energy-normalized information rates be I (1)

E and I (2)
E . It follows that

I (1)
E =

r1

g1
, (3.22)

I (2)
E =

r2

g2
. (3.23)

And I (D)
E is found to be simply the linear summation of these two terms:

I (D)
E = g2 I (1)

E + g2 I (2)
E . (3.24)

We note that if I(D)

E < I(1)

E , then rD < r1 (see the appendix). In other words,
if depression decreases the energy-normalized information rate of the re-
lease site, then it will also decrease the mutual information rate.

We also note that since the static release site is identical to the recovered
state of the dynamic release site, r1 and I(1)

E also represent the mutual in-
formation rate and energy-normalized information rate of the static release
site.

The above results allow us to analytically study the effect of depression
on the two measures of the release site: mutual information rate and energy-
normalized information rate. First, if the depression level is the same for
spontaneous release and spike-evoked release (i.e., c = d), then there is no
benefit for depression from the standpoint of mutual information rate and
energy-normalized information rate.

Theorem 2. Let c = d. For all values of α, d, p, and q ,

I (D)
E ≤ I (1)

E , (3.25)

rD ≤ r1. (3.26)

Hence, for both measures, the release site without depression performs
better. However, when the depression levels for spontaneous and spike-
evoked releases are not equal, then depression can enhance the performance
of the release site:

Theorem 3. For each α, p, q , and d, there exists c0, d ≤ c0 < 1, such that for
each c > c0,

rD > r1, (3.27)

I (D)
E > I (1)

E . (3.28)
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Figure 2: The convergence rate of the mutual information for the two-state
model of depression. The mutual information 1

n I(Xn;Yn) (solid lines) is plotted
as a function of n for (A) different values of input spike rate α, (B) different
values of spike-evoked release probability p. The dashed lines represent rD,
which is the limit of 1

n I(Xn;Yn) when n tends to infinity. The other parameters
of the model are q = 0.1 and c = d = 0.5. Additionally, in panel A, p = 0.5, and
in panel B, α = 0.5.

That is, if the depression multiplier of the spike-evoked release is above
a threshold, then the mutual information rate and energy-normalized in-
formation rate are increased by depression.

4 Simulation Results

The convergence of the mutual information I(Xn;Yn) to rD was found to be
fast for all values of the input spike rate α (see Figure 2A) and spike-evoked
release probability p (see Figure 2B). The high convergence rate shows that
the release site reaches its steady state very fast, and therefore our results
remain valid even for the release sites with slowly varying parameters.

We investigate the effect of model’s parameters on the mutual informa-
tion rate of the two-state model of depression. As mentioned in corollary
3, the mutual information rate rD is a linear summation of r1 and r2 with a
weight function θ (see Figure 3A). When the input spike rate is reduced, θ

increases and the weight of the recovered channel is strengthened in deter-
mining rD. This is expected because by reducing the rate of the input spike
train, the number of releases is reduced and the channel stays more in the
recovered state. When the input spike rate is increased, the weight shifts
from the recovered channel to the used channel.

The mutual information rate also depends on the value of the spike-
evoked release probability, p. As p decreases, the unreliability of the
release site increases and rD is strongly reduced (see Figure 3B). In
comparison, increasing the depression level has a much weaker effect on
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Figure 3: (A) The mutual information rate of the two-state model, rD, together
with the mutual information rates of the recovered channel, r1, and used chan-
nel, r2, as a function of input spike rate, α. The solid black line is the weight
function, θ . The values for the other parameters are p = 0.5, q = 0.1, c = d = 0.5.
(B) The mutual information rate, rD, as a function of the input spike rate, α, for
different values of the spike-evoked release probability, p. The other parame-
ters are fixed at q = 0.1 and c = d = 0.5. (C) The mutual information rate, rD,
as a function of the input spike rate, α, for different values of the depression
multipliers, c and d. The dashed black lines in panels B and C indicate the capac-
ity of the release site, CD. The other simulation parameters are p = 0.5, q = 0.1.
(D) The mutual information rate of the two-state model as a function of the
depression multipliers, c and d, for different values of the spike-evoked release
probability, p. The dashed lines show the weight function, θ . In this simulation,
c = d, q = 0.1, and α = 0.5.

rD (see Figure 3C). In communication systems, the capacity of a channel
is defined as the maximum amount of information that can be transferred
through the channel. If we denote the capacity of the two-state model by
CD, then

CD = max
α∈[0,1]

rD. (4.1)

We show in Figure 3B that the value of the input spike rate at which the
capacity is attained does not change significantly for different spike-evoked
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Figure 4: The effect of depression for the case of identical depression multipli-
ers. The energy-normalized information rate of the two-state model of depres-
sion, I(D)

E , is plotted against the input spike rate for different values of p (colored
lines). For comparison, the energy-normalized information rate of the static re-
lease site, I(1)

E , is plotted as well for corresponding p values (dashed black lines).
The remaining simulation parameters are c = d = 0.5 and q = 0.1.

release probabilities. However, by decreasing the depression multipliers c
and d (increasing the level of depression), the capacity of the release site
is attained at lower input spike rates (see Figure 3C). Hence, the optimal
spike rate of the presynaptic neuron has a reverse relationship with the
depression level of its release site. This means that synaptic depression can
save energy while maintaining the information rate.

The mutual information rate rD and the weight function θ are nonlinear
functions of the depression multipliers (see Figure 3D). When the level of
depression is decreased (by increasing c and d), the mutual information
rate of the used channel, r2, is increased. However, r1 is independent of
the depression, and for c = d, we have r1 ≥ r2. Therefore, there are two
competing terms in rD = θr1 + (1 − θ )r2. While θr1 is a decreasing function
of d, the other term, (1 − θ )r2, increases. Overall, we find that the latter term
has a greater effect, and rD is an increasing function of d.

We investigated the subspace of the parameters for which depression
decreases or increases the performance of the release site. As expressed in
theorem 1, we see in Figure 4 that when the depression levels of the spike-
evoked release and spontaneous release are equal, I(1)

E is always larger
than I(D)

E . In other words, depression decreases the energy-normalized in-
formation rate of the release site. Additionally, we found that the maxi-
mum of the energy-normalized information rates in Figure 4 are attained
at lower input spike rates compared to the spike rates that maximize rD in



Information Rate during Short-Term Synaptic Depression 1541

Figure 5: The transition in the impact of depression. The difference between
mutual information rate of the release site with and without depression, rD − r1,
is plotted as a function of the depression multiplier, c, for different values of
the input spike rate, α. The intersection of the lines with the horizontal axis
determines c0. In the inset, we zoom on the intersection points to see their order
as a function of the input spike rate. The other parameters of the simulation are
p = 0.5, q = 0.1, and d = 0.5.

Figure 3B. Hence, optimizing the energy-normalized mutual information is
energetically more efficient.

When the depression levels c and d are allowed to differ, depression
increases the mutual information rate and energy-normalized information
rate for all values of c > c0 (see theorem 3). In Figure 5, we see the transition
point, c0, at which the sign of rD − r1 switches from negative to positive.
When the input spike rate decreases, the value of c0 is also decreased (see
the inset of Figure 5). This means that for lower input spike rates, depression
can enhance the performance of the release site for a larger subset of the
values of depression multiplier c.

Finally, the orange regions in Figure 6 show the locus of parameters
for which depression increases the mutual information rate (first row) or
energy-normalized information rate (second row) of the release site. In par-
ticular, for each column, the orange regions of the first row are a subset
of the orange regions of the second row. In other words, if for a set of pa-
rameters rD > r1, then I(D)

E > I(1)

E , which is in agreement with our analytical
results.

5 Discussion

We modeled depression at a synaptic release site as a switch between two bi-
nary asymmetric channels with different release probabilities, representing
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Figure 6: The subspace of parameters, the depression multiplier (c), and the
spike-evoked release probability (p), for which depression increases the mutual
information rate (first row) and the energy-normalized information rate (second
row) of the release site. The orange regions depicts the cases in which rD − r1 > 0
(upper row) and I(D)

E − I(1)

E > 0 (lower row). The columns correspond to different
values of the input spike rate, α.

used and recovered states of the release site. Such a simplified model of
depression permits the calculation of the information rate in closed form,
which reveals that a depressing channel’s information rate is a linear sum
of the rates of its two constituent channels. This result, although simple, is
nontrivial. In particular, for the other form of short-term synaptic dynamics,
short-term facilitation, in which the current state of the channel depends
on the previous input instead of the previous output, the information rate
exceeds that of a linear sum (unpublished results).

To investigate a possible trade-off between the information rate and en-
ergy cost of synaptic transmission, we computed an energy-normalized
mutual information rate in which we assigned a unit cost to each vesicle
release. The energy costs associated with generating the presynaptic spike
trains or maintaining the synapse during quiescent periods were not taken
into account. In addition, we represented the depression levels of spon-
taneous and spike-evoked release with two distinct parameters, reflecting
recent findings that show that these two release processes are governed by
separate biological mechanisms, such as alternative SNARE proteins, dis-
tinct vesicle pools, and spatial segregation (Fredj & Burrone, 2009; Melom,
Akbergenova, Gavornik, & Littleton, 2013; Walter, Haucke, & Sigrist, 2014)
(for a recent review, see Kavalali, 2015). We analytically proved that when
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the spontaneous release is more strongly depressed than spike-evoked re-
lease, synaptic depression can enhance the performance of the release site
(see Figure 6). However, if the depression levels of spontaneous and spike-
evoked release are identical, then depression degrades even the energy-
normalized mutual information rate of the release site. Thus, short-term
depression, although it reduces the amount of synaptic resources used in
response to ongoing neuronal inputs, can fail to enhance the performance-
energy trade-off.

Synaptic information efficacy has been studied numerically and analyti-
cally. In the numerical studies, the signals are converted to binary sequences
and the mutual information is evaluated by any number of estimation meth-
ods for entropy and mutual information (Arleo et al., 2010; London, Larkum,
& Häusser, 2008; London et al., 2002; Neymotin, Jacobs, Fenton, & Lytton,
2011). The temporal correlation between the input and output signal, which
can be on the order of hundreds of milliseconds in short-term synaptic plas-
ticity, imposes a major limitation on the numerical methods. To estimate the
synaptic information efficacy analytically, Fuhrmann et al. (2002) adopt the
depression model of Markram and Tsodyks (1996). In particular, they cal-
culate the mutual information between the current postsynaptic potential
and the presynaptic input spike train. However, as this approach ignores the
history of the postsynaptic voltage trace, it cannot be used to evaluate the
impact of depression on the mutual information rate. Goldman (2004) mod-
els the input and output signal of a dynamic synapse by renewal processes.
The mutual information per vesicle release is calculated for the synapse,
which reveals that depression enhances the synaptic information rate for
correlated input. When the release probabilities are low, the mutual infor-
mation rate per unit time is a more appropriate measure (Goldman, 2004),
which is what we calculated. In addition, the previous two approaches
had not taken spontaneous release into account (Fuhrmann et al., 2002;
Goldman, 2004). Depression of spontaneous release can enhance the mu-
tual information rate even for uncorrelated input. Our results show that
the relative degree of depression of spontaneous and spike-evoked release
plays a critical role in synaptic information efficacy.

In the two-state model of depression, the state-space is strongly reduced
and does not reflect the intermediate states one would have to introduce to
model the gradual exponential recovery of a synapse after a release event.
But only such a reduced-state model is mathematically tractable, which has
the advantage that we gain a precise, analytical expression of the synap-
tic information efficacy in the presence of short-term synaptic depression.
Although the exponential recovery is not explicitly modeled, the two-state
model is still a good approximation for synapses in which ν × τr < 0.5,
where ν is the input spike rate (in Hz) and τr is the recovery time constant
of the synapse (in seconds). As an example for such synapses, we can con-
sider synapses with fast recovery that return to the recovered state with
a time constant of 6 to 40 milliseconds (Cho, Li, & Von Gersdorff, 2011;



1544 M. Salmasi, M. Stemmler, S. Glasauer, and A. Loebel

Figure 7: Comparison of the two-state model and the exponential model for
a synapse with fast recovery. (A) A typical sequence of the release events of
the synapse. (B) The release probabilities of the two-state model and the ex-
ponential model in response to the release events. In the exponential model,
the release probability is reset to zero after each release and then recov-
ers back exponentially to its maximum (initial) release probability, p0. In the
two-state model, the release probability switches between zero and peq. (C)
The mutual information rate between the input spike train, X, and the re-
lease outcome, Y, is calculated as a function of maximum (initial) release
probability, p0. The context tree weighting algorithm, which is available on-
line (Jiao, Permuter, Zhao, Kim, & Weissman, 2013; codes are available at
http://web.stanford.edu/∼tsachy/DIcode/index.htm). is used to derive a nu-
merical estimate of the mutual information rates of the exponential model and
the two-state model. These simulations are based on the parameters of the
synapses between cerebellar climbing fiber and Purkinje cells (in rats). The
recovery time constant of the synapse is τr = 40 msec, and the time unit of
the model is set to δ = 20 msec. The input spike rate of the two-state model,
α, is related to the spike rate of the exponential model, ν, by α = ν(in Hz) ×
δ(in seconds). Finally, peq is the equivalent release probability of the recovered

state that is calculated from peq = p0(1 − α)k + ∑k
i=1 α(1 − α)i−1(1 − e

−(i+1)δ
τr )p0,

where k is the number of time units used for estimating peq. In this simulation,
we set k = 8 to cover a time interval of 4τr.

Hallermann & Silver, 2013; Wang & Manis, 2008). These synapses show a
form of depression known as very short-term depression (Dobrunz, Huang,
& Stevens, 1997). For such synapses making fast transitions between the re-
covered state and the depressed (used) state, we can calculate the informa-
tion rate with high accuracy using the two-state model of depression (see
Figure 7).

The discrete time of our model, represented by the index i, is related to
the real time, t, through t = iδ, where δ is the time interval between the two
discrete time indexes i and i + 1. The results of this letter are independent
of the choice of δ, and our model gives one the freedom to select a proper
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value for δ based on the depression dynamics. The time unit of the two-state
model, δ, should be in the same order of magnitude as the recovery time
constant of the synapse, τr. For example, by setting δ = τr

2 , we can get close
approximations for the information rates of the synapse, provided that the
synapse fulfills the aforementioned condition.

The mutual information rate that has been calculated in this letter is a
measure of the amount of information that can be extracted from the re-
leased vesicles about the input spike train. Such mutual information rates
are achievable only if the information is encoded and decoded optimally.
However, since the brain has limited resources, which may confine the com-
plexity of the encoders and decoders, the mutual information rate should
be interpreted as an upper bound for the rate of information transfer. We
also note that synapses have not necessarily evolved to optimize the mu-
tual information rate. Several other factors in addition to the transmission
rate govern synaptic processes, such as energy consumption, the latency of
information transmission, and the limited size of vesicle pools and availabil-
ity of other resources. Here, we studied a compromise between the energy
use and the rate of information transmission. However, a comprehensive
understanding of optimality of synaptic release will take into account the
specific functionality of the synapse, its strength, and other factors affecting
transmission.

The simple model for synaptic depression presented here is a stepping-
stone for further studies that will incorporate more realistic features of
synaptic transmission. The current model can be extended to communica-
tion channels with arbitrary memory length, which will capture the gradual
nature of recovery from depression, and the input of the presynaptic neu-
ron can be generalized from a simple homogeneous Poisson process to a
time-varying process with arbitrary temporal correlation. We also intend to
model short-term facilitation and release-independent depression using the
binary asymmetric channels with input-dependent states, where the state
of the channel is determined by the history profile of presynaptic spikes.
We predict that short-term facilitation will enhance the mutual information
rate of the release site for normal ranges of parameters. In addition, synaptic
connections have from one to hundreds of release sites (Clarke, Chen, &
Nishimune, 2012), where each site may have different properties (Branco &
Staras, 2009). Extending the model to multiple release sites by considering
sets of parallel communication channels will permit a rigorous analysis of
the information efficacy of whole synapses.

Appendix: Proofs of Theorems

Lemma 1. For the two-state model of dynamic release site in Figure 1B,

I (Xn; Yn) = nr2 + (r1 − r2)(nθ + (1 − θ )
1 − λn

1 − λ
) (A.1)
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where

λ = g1 − g2, (A.2)

θ =
g2

g1 + g2
, (A.3)

g1 = α q + α p, (A.4)

g2 = α dq + αcp. (A.5)

Proof of Lemma 1. From the definition of mutual information,

I(Xn;Yn) = H(Yn) − H(Yn|Xn). (A.6)

We use the chain rule for the entropy terms in equation A.6:

H(Yn) =
n∑

i=1

H(Yi|Yi−1), (A.7)

H(Yn|Xn) =
n∑

i=1

H(Yi|Yi−1, Xn). (A.8)

The output of the channel at time i depends only on Xi and Yi−1.
Therefore, given Xi and Yi−1, Yi is independent of {Xj : j 	= i} and {Yj :
1 ≤ j ≤ i − 2}. Therefore, for arbitrary values of ai = (a1, a2, . . . , ai) and
bn = (b1, b2, . . . , bn),

P(Yi = ai|Yi−1 = ai−1, Xn = bn) = P(Yi = ai|Yi−1 = ai−1, Xi = bi). (A.9)

This implies

H(Yi|Yi−1, Xn) = H(Yi|Yi−1, Xi), (A.10)

and together with equation A.8,

H(Yn|Xn) =
n∑

i=1

H(Yi|Yi−1, Xi). (A.11)

Also, given Yi−1, Yi is independent of {Yj : 1 ≤ j ≤ i − 2}, because for arbi-
trary values of ai = (a1, a2, . . . , ai),
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P(Yi = ai|Yi−1 = ai−1) =
∑

bi∈{0,1}
P(Yi = ai|Yi−1 = ai−1, Xi = bi)P(Xi = bi)

(A.12)

=
∑

bi∈{0,1}
P(Yi = ai|Yi−1 = ai−1, Xi = bi)P(Xi = bi)

(A.13)

= P(Yi = ai|Yi−1 = ai−1). (A.14)

From equation A.14,

H(Yi|Yi−1) = H(Yi|Yi−1), (A.15)

and together with equation A.7,

H(Yn) =
n∑

i=1

H(Yi|Yi−1). (A.16)

From equations A.6, A.11, and A.16,

I(Xn;Yn) =
n∑

i=1

(H(Yi|Yi−1) − H(Yi|Yi−1, Xi)) (A.17)

=
n∑

i=1

I(Xi;Yi|Yi−1). (A.18)

We have

I(Xi;Yi|Yi−1) = I(Xi;Yi|Yi−1 = 0)P(Yi−1 = 0)

+ I(Xi;Yi|Yi−1 = 1)P(Yi−1 = 1). (A.19)

Let

ai �
{

P(Yi = 0) if i > 0

1 if i = 0
. (A.20)

From equations 3.7, 3.9, A.19, and A.20,

I(Xi;Yi|Yi−1) = r1ai−1 + r2ai−1. (A.21)
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By plugging equation A.21 into equation A.18,

I(Xn;Yn)=
n∑

i=1

(r1ai−1 + r2ai−1) (A.22)

= nr2 + (r1 − r2)

n∑
i=1

ai−1. (A.23)

We now derive a recurrence equation for ai:

P(Yi = 0) = P(Yi = 0|Yi−1 = 0)P(Yi−1 = 0)

+ P(Yi = 0|Yi−1 = 1)P(Yi−1 = 1). (A.24)

From Figure 1B,

P(Yi = 0|Yi−1 = 0)= α q + αp (A.25)

= g1 (A.26)

and

P(Yi = 0|Yi−1 = 1)= α dq + αcp (A.27)

= g2. (A.28)

By substituting these equations in A.24,

ai = (g1 − g2)ai−1 + g2. (A.29)

Defining

λ � g1 − g2, (A.30)

γ � g2, (A.31)

we find an inhomogeneous recurrence equation,

ai = λai−1 + γ , (A.32)

a0 = 1. (A.33)

Let

θ = γ

1 − λ
(A.34)

= g2

g1 + g2
. (A.35)
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By defining a new variable, bi = ai − θ , the inhomogeneous recurrence equa-
tion is converted to a homogeneous equation:

bi = λbi−1, (A.36)

b0 = 1 − θ. (A.37)

The general solution of equation A.36 is

bi = kwi, (A.38)

where k and w are constants. From equations A.36 to A.38,

w = λ, (A.39)

k = 1 − θ. (A.40)

Therefore, the solution of the inhomogeneous equation is

ai = (1 − θ )λi + θ. (A.41)

By plugging equation A.41 into A.23,

I(Xn;Yn) = nr2 + (r1 − r2)

n∑
i=1

((1 − θ )λi−1 + θ ) (A.42)

= nr2 + (r1 − r2)(nθ + (1 − θ )
1 − λn

1 − λ
). (A.43)

�

Proof of Theorem 1. Using equation 2.11 and lemma 1,

rD = lim
n→∞

1
n

I(Xn;Yn) (A.44)

= lim
n→∞

1
n

(nr2 + (r1 − r2)(nθ + (1 − θ )
1 − λn

1 − λ
)) (A.45)

= r2 + (r1 − r2)θ. (A.46)

�

Proof of Corollary 1. From theorem 1,

rD = θr1 + (1 − θ )r2, (A.47)
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which shows that the information rate is a weighted sum of the information
rates of the recovered state and used state in Figure 1B. From equations A.20
and A.32,

lim
i→∞ P(Yi = 0) = λ lim

i→∞ P(Yi−1 = 0) + γ . (A.48)

Therefore,

lim
i→∞ P(Yi = 0) = γ

1 − λ
(A.49)

= θ. (A.50)

�

Lemma 2. Suppose that in each release, one unit of energy is consumed by the
presynaptic neuron. For the two-state model of depression, we have

IE (Xn; Yn) =
nr2 + (r1 − r2)(nθ + (1 − θ ) 1−λn

1−λ
)

(1 − θ )(n − λ 1−λn

1−λ
)

, (A.51)

I (D)
E =

g2r1 + g1r2

g1
. (A.52)

Proof of Lemma 2. The probability of release at time i is P(Yi = 1). In each
release, one unit of energy is consumed by the neuron,

Ei = P(Yi = 1) × 1, (A.53)

and the total amount of energy consumed until the time n is

n∑
i=1

Ei =
n∑

i=1

P(Yi = 1). (A.54)

From equations A.20 and A.41,

P(Yi = 1) = 1 − ai (A.55)

= (1 − θ )(1 − λi). (A.56)

By plugging equation A.56 in A.54,

n∑
i=1

Ei = (1 − θ )

(
n − λ

1 − λn

1 − λ

)
, (A.57)

and together with lemma 1, equation A.51 is derived.
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Moreover, from equations 3.20 and A.51,

I(D)

E = θr1 + (1 − θ )r2

1 − θ
, (A.58)

and using equation A.3, the lemma is proved. �

Proof of Corollary 2. For the recovered state of the dynamic channel in
Figure 1B,

Ei = P(Yi = 1) × 1 (A.59)

= g1, (A.60)

which proves equation 3.22.
We prove equation 3.23 in a similar way, and equation 3.24 follows from

equations A.52, 3.22, and 3.23. �

Lemma 3. If I (D)
E < I (1)

E , then

I (2)
E < I (1)

E , (A.61)

r2 < r1, (A.62)

rD < r1. (A.63)

The lemma remains valid if we substitute all the < signs with ≤.

Proof of Lemma 3. From equation 3.24,

I(2)

E = I(D)

E − g2I(1)

E

g2
(A.64)

<
I(1)

E − g2I(1)

E

g2
(A.65)

= I(1)

E . (A.66)

Since I(D)

E < I(1)

E ,

g2r1 + g1r2

g1
<

r1

g1
, (A.67)

which implies

g1r2 < g2r1. (A.68)
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In the depression model, dq < q and cp < p. Since g1 = αq + αp and g2 =
αdq + αcp, we have

g2 ≤ g1, (A.69)

and equation A.62 follows from A.68 and A.69. Finally,

rD = θr1 + (1 − θ )r2 (A.70)

<θr1 + (1 − θ )r1 (A.71)

= r1. (A.72)

The proof is also valid for the other variant of the lemma in which all the <

signs are substituted with ≤. �

Lemma 4. Suppose f is a real continuous function on [0, 1], twice differentiable
on (0, 1), f (0) = 0, f (1) = 0, and d2 f

dx2 < 0 for all x ∈ (0, 1). Then f (x) > 0 for all
x ∈ (0, 1).

Proof of Lemma 4. We prove it by contradiction. Suppose that for some
x ∈ (0, 1), f (x) ≤ 0. Two cases can happen.

Case 1: There exists x0 ∈ (0, 1), such that f (x0) < 0.
Since f is continuous on [0, 1], from the extreme value theorem, f attains

its minimum value on the interval [0, 1]. Thus, there exists x1 ∈ [0, 1] such
that f (x1) ≤ f (x) for all x ∈ [0, 1]. In particular,

f (x1) ≤ f (x0) (A.73)

< 0, (A.74)

and since f (0) = f (1) = 0, we have x1 ∈ (0, 1). From Fermat’s theorem for
stationary points (Rudin, 1964),

df
dx

(x1) = 0, (A.75)

where df
dx (x1) stands for the first derivative of f at x1.

Since d2 f
dx2 (x1) < 0 and df

dx (x1) = 0, from theorem 8.32 in Shilov and Šilov
(1996), f (x1) is a local maximum of f . However, based on the definition,
x1 is also a local minimum. The only possibility is that f is constant in a
neighborhood of x1. But this contradicts d2 f

dx2 (x1) < 0.
Case 2: f (x) ≥ 0 for all x ∈ (0, 1), and there exists x0 ∈ (0, 1) such that

f (x0) = 0.
In this case, f has a local minimum at x0 and the same argument can be

used to show the contradiction. �
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Proof of Theorem 2. The hypothesis c = d together with equation A.5
implies

g2 = αdq + αcp (A.76)

= αdq + αdp (A.77)

= dg1. (A.78)

We use equations A.52, 3.22, and A.78 to derive the following equiva-
lency:

I(D)

E ≤ I(1)

E ⇐⇒ g1r2 ≤ g2r1 (A.79)

⇐⇒ r2 ≤ dr1. (A.80)

Therefore, instead of proving I(D)

E ≤ I(1)

E , we define

	 = dr1 − r2 (A.81)

and prove that 	 ≥ 0.
For given values of d, p, and q, we consider 	 as a function of α. Since r1

and r2 are zero at α = 0 and α = 1,

	(α = 0) = 0, (A.82)

	(α = 1) = 0. (A.83)

From equations 3.8 and 3.10,

r1 = h(αq + αp) − αh(q) − αh(p), (A.84)

r2 = h(αdq + αd p) − αh(dq) − αh(dp). (A.85)

Also, for x ∈ (0, 1),

dh
dx

= log2(
1 − x

x
). (A.86)

Therefore,

∂2	

∂α2 = d
∂2r1

∂α2 − ∂2r2

∂α2 (A.87)

= −k
(

1
1 − (αq + αp)

− d
1 − d(αq + αp)

)
(A.88)



1554 M. Salmasi, M. Stemmler, S. Glasauer, and A. Loebel

=−k
(1 − d)

(1 − g1)(1 − dg1)
, (A.89)

where

k = (p − q)2

(αq + αp). ln 2
. (A.90)

In our model, q < p, which implies that k is strictly greater than zero. Since
d < 1, g1 < 1, and k > 0,

∂2	

∂α2 < 0. (A.91)

From equations A.82,A.83, A.91 and lemma 4,

	 ≥ 0, (A.92)

for all values of α, d, p and q. This proves equation 3.25, and together with
lemma 3, we have

rD ≤ r1. (A.93)

�

Lemma 5. If w is defined as

w � h(αp) − h(αq + αp) + αh(q ), (A.94)

then w > 0, for all values of q , p and α ∈ (0, 1).

Proof. We consider w as a function of α:

w(α = 0)= 0, (A.95)

w(α = 1)= 0. (A.96)

We have

∂2w

∂α2 = qpL
(αq + αp)(1 − αq − αp)(αp)(1 − αp)

, (A.97)

where

L = α(−1 + q + 3p − 2p2 − 2qp) − 2p + qp + 2p2. (A.98)
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We consider L as a function of α,

L(α = 1) = p(q − 2p). (A.99)

Since q < p,

L(α = 1) < 0. (A.100)

Also,

L(α = 0)= p(q − 1) (A.101)

< 0. (A.102)

Since L is a linear function of α and it is negative at α = 0 and α = 1,

L < 0, (A.103)

for all values of α.
The denominator of equation A.97 is positive for all α ∈ (0, 1) because

0 < g1 = αq + αp < 1 and 0 < αp < 1. Also from equation A.103, the nom-
inator of A.97 is always negative. Therefore,

∂2w

∂α2 < 0 (A.104)

for all α ∈ (0, 1). Using lemma 5 for w completes the proof. �

Lemma 6. Let v be defined as

v � h(αdq + αp) − αh(dq ) − h(αq + αp) + αh(q ). (A.105)

For all values of p, q , α ∈ (0, 1), and d ∈ [0, 1), we have v > 0.

Proof. We consider v as a function of d.

v(d = 0) = w, (A.106)

and from lemma 5, for all values of p, q, and α ∈ (0, 1),

v(d = 0) > 0. (A.107)

Also

v(d = 1) = 0. (A.108)
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We prove that v is strictly decreasing on the interval [0, 1):

∂v

∂d
= αq log

(1 − αdq − αp)dq
(αdq + αp)(1 − dq)

. (A.109)

We have the following equivalencies,

∂v

∂d
< 0 ⇐⇒ (1 − αdq − αp)dq

(αdq + αp)(1 − dq)
< 1 (A.110)

⇐⇒ dq < αdq + αp (A.111)

⇐⇒ dq < p. (A.112)

The inequalities q < p and d < 1 imply that dq < p. Therefore,

∂v

∂d
< 0. (A.113)

From equations A.107, A.108, and A.113, it follows that v > 0 for all values
of d ∈ [0, 1). �

Proof of Theorem 3. We define the function 	 as

	 � r2 − r1. (A.114)

From equations 3.8 and 3.10,

	 = h(αdq + αcp) − αh(dq) − αh(cp) − h(αq + αp) + αh(q) + αh(p).

(A.115)

Consider 	 as a function of c. If c = d, then from theorem 3, rD ≤ r1. Also
from equation A.70, rD ≤ r1 if and only if r2 ≤ r1. Therefore

	(c = d) ≤ 0. (A.116)

From equation A.105,

	(c = 1) = v, (A.117)

and lemma 6 implies that

	(c = 1) > 0. (A.118)
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We now prove that 	 is a strictly increasing function of c in the interval
[d, 1]:

∂	

∂c
= αp log

(1 − αdq − αcp)cp
(αdq + αcp)(1 − cp)

. (A.119)

We have the following equivalencies:

∂	

∂c
> 0 ⇐⇒ (1 − αdq − αcp)cp

(αdq + αcp)(1 − cp)
> 1 (A.120)

⇐⇒ cp > αdq + αcp (A.121)

⇐⇒ cp > dq. (A.122)

From equation 2.5,

∂	

∂c
> 0, (A.123)

for c ∈ (d, 1). From equations A.116, A.118, and A.123, we infer that there
exists c0, d ≤ c0 < 1, such that 	(c = c0) = 0 and for c > c0, 	(c) > 0. From
equation A.70, r2 > r1 if and only if rD > r1. Therefore,

rD > r1, (A.124)

for c > c0. Finally, it follows from lemma 3 and equation A.124 that I(D)

E > I(1)

E
for c > c0. �
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Chapter 3

Information efficacy of a depressing
synapse

3.1 Summary

In Chapter 2, we modeled a depressing synapse using two communication channels

corresponding to the used state and the normal state. The simplicity of the two-state

model permitted an analytical calculation of the regimes of synaptic parameters in

which depression enhances/degrades the information efficacy of the synapse. The two-

state model, however, does not capture the gradual fatigue and exponential recovery

of short-term depression.

We extend the synapse model to a communication channel with memory. The

content of the memory is the release history of the synapse and determines the state

of the channel. We first show that our model emulates the dynamics of short-term de-

pression precisely. Then we calculate the information rate of the synapse analytically

and derive a closed-form expression for the rate of information transmission.

The energetic cost of synaptic release is high and the neurons need to compro-

mise between the rate of information transmission and the energy consumption. To

study the energy-rate trade-off of the synapse, we assume that one unit of energy

is consumed for each release and calculate the energy-normalized information rate.

The energy-rate analysis shows how short-term depression modulates the information

efficacy of a synapse with a limited energy budget.

3.2 Contributions

The contributions of the authors Mehrdad Salmasi (MS), Alex Loebel (AL), Stefan

Glasauer (SG) and, Martin B. Stemmler (MBS) are as follows: MS, AL, SG and
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MBS designed the study and developed the model. MS analyzed the model and

performed the simulations. MS, AL, SG and MBS interpreted the results and wrote

the manuscript.

The following manuscript is ready for submission:

• M. Salmasi, A. Loebel, S. Glasauer, M. Stemmler, “Short-Term Synaptic De-

pression Can Increase the Rate of Information Transfer at a Release Site”, to

be submitted.

The preliminary results of this study were presented as abstracts and posters in

the Bernstein (2016) and SfN (2016) conferences:

• M. Salmasi, A. Loebel, S. Glasauer, M. Stemmler, “Information Rate of a

Release Site under Short-term Synaptic Depression”, Bernstein Conference on

Computational Neuroscience (BCCN), Berlin, September 2016.

• M. Salmasi, A. Loebel, S. Glasauer, M. Stemmler, “Short-Term Synaptic De-

pression Can Increase the Information Rate at a Release Site”, 46th Annual

Meeting of the Society for Neuroscience (SfN), San Diego, November 2016.
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Abstract

The release of neurotransmitters from synapses follows complex and stochastic dynamics. Depending on the
recent history of synaptic activation, many synapses depress their release probability. Our understanding of
the information efficacy of such synapses, however, is limited. Here we propose a mathematically tractable
model of both spike-evoked and spontaneous release to analyze the impact of synaptic depression on the
information conveyed by a synapse. The model transits between discrete states of a communication channel,
with the present state depending on many past time steps. This history dependence enables such a model
to emulate the gradual depression and exponential recovery of the synapse.

Spontaneous release plays a critical role in shaping the information efficacy of the synapse. We prove
that depression can enhance both the information rate and the information rate per unit energy expended,
provided that spike-evoked release depresses less (or recovers faster) than the spontaneous release. We derive
several consequences for metaplasticity of short-term synaptic depression. Although the information rate of
the synapse varies considerably for different dynamics of short-term depression, we show that the energy-
normalized information rate is robust to variations in the parameters governing the depression dynamics.
As a consequence, for a fixed arrival rate of presynaptic spikes, a synapse can adjust its energy expenditure
by changing the dynamics of short-term synaptic depression without affecting the net information conveyed
by each successful release. Moreover, the optimal input spike rate is independent of the amplitude or time
constant of synaptic depression; instead, the ideal input rate only depends on the ratio between spontaneous
and evoked release probabilities. As long as this ratio remains constant, a synapse could adapt its properties
while continuing to work at the optimal operating point.

Keywords: Short-term synaptic depression, release site, information theory, binary asymmetric channel,
mutual information rate, metaplasticity.

Author Summary

Fatigue is an intrinsic property of living systems and synapses are no exception. Synaptic fatigue or
synaptic depression reduces the ability of synapses to release vesicles in response to an incoming action
potential. Whether synaptic depression simply reflects the exhaustion of neuronal resources or whether it
serves some additional function is still an open question. There are several hypotheses on the role of synaptic
depression. One key hypothesis is that it modulates the information transfer between neurons by keeping the
synapse in an appropriate operating range. In this study, we use communication channels to model synaptic
transmission and study information transmission through a depressing synapse. This model captures both
spontaneous and evoked release events; the probability of both events is determined by depression dynamics.
Our approach leads to a closed-form expression for the mutual information rate. With this result, we can
answer the question whether depression enhances or impairs information transfer: it depends on the relative
level of depression for spontaneous and spike-evoked releases. We also study the compromise a synapse



makes between its energy consumption and the rate of information transmission. Interestingly, we show
that the transmitted information per unit energy is independent of the synapse’s depression dynamics.

1. Introduction

Chemical synapses are the main conduits of information in the nervous system [1]. At such synapses, a
pre-synaptic action potential induces docked vesicles, packed with neurotransmitters, to release with a certain
probability. A vesicle release leads to a local post-synaptic dendritic voltage fluctuation, which, in turn, can
lead to the generation or inhibition of a post-synaptic action potential, depending on whether the synapse is
excitatory or inhibitory [2]. Due to the stochastic nature of vesicle release, a release failure may occur upon
the arrival of an action-potential; and alternatively, a spontaneous release can occur even without an action-
potential [3]. In addition, at many synaptic connections, the release probability is not constant, but exhibits
short-term dynamics on time scales of tens to hundreds of milliseconds [4–7]. The prevalent dynamics
consists of short-term depression, in which the release probability instantaneously decrease upon vesicle
release, and gradually recovers back during quiescent periods [8, 9]. Several hypotheses have been suggested
for the functional role of short-term depression, such as temporal filtering of pre-synaptic spike trains
[10, 11], decorrelation and compression of inputs [12], adaptation to identical stimuli [13], and regulation of
information transfer [14, 15].

In particular, the rate of information transfer at a synapse is an essential measure of its efficacy. Synaptic
information efficacy has been studied numerically [15–17], its capacity bounded analytically [18], and, in
combination with numerical methods, some approximations of the information rate have been derived [19,
20]. However, the complexity and dynamics of synaptic transmission have forced the use of elaborate models
for information transmission and have proved to be an obstacle to the derivation of a closed form expression
for synaptic information efficacy. Furthermore, the energy-efficiency of information transfer at synapses has
yet to be studied analytically. Stronger depression and slower recovery reduce both the use of metabolic
energy and the release probability, so the parameters of depression tune the information-energy trade-off
in neurons [21]. Moreover, it remains elusive how the stochastic properties of the synapse, in particular
spontaneous release, modulate the energy-information regime of the synapse.

To address these issues, we present a tractable, mathematical multi-state model for short-term depression
at a single release site. The stochastic relation between spikes and synaptic releases is represented by a binary
asymmetric channel for each state. The model allows us to distinguish between the two synaptic release
mechanisms, namely spike-evoked and spontaneous release; and the current state (release probability) of
the channel is determined by the release history. Building upon an earlier model [22], the introduction of
multiple states allows the present model to capture the gradual recovery of the site after a release, and thus
connects to classic models of depression based on differential equations [20].

Using this model, we derive analytical closed-from expression for the mutual information rate of the
release site under depression. We also consider the energy consumption of the synapse and calculate the
energy-normalized information rate of the release site. We study the impact of depression parameters on
the information rate and information-energy compromise of the synapse. Our findings clarify how the
level of depression and the recovery time constant modulate the information rate of the release site. We
subsequently assess the impact of spontaneous release on the information rate of a synapse during short-term
depression. The joint analysis of short-term depression and spontaneous release reveals the modulatory
impact of stochastic features of the synapse on the functional role of depression. Our results present a
new categorization for synapses which is based on the increase/decrease of information rate and energy-
normalized information rate of the synapse during short-term depression.

2. Model and analytical results

We model a single release site by a binary asymmetric channel with memory (Fig. 1A). The input of the
channel is the pre-synaptic spike train, a Poisson process which is modeled by a sequence of independent
Bernoulli random variables, X = {Xi}ni=1. The random variable Xi corresponds to the presence (Xi = 1) or
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Figure 1: (A) A binary asymmetric channel with a finite memory is used to model the release site under short-term depression.
The spike-evoked release probability, pi, and the spontaneous release probability, qi, are determined based on the previous L
release outcomes of the release site. (B) The algorithm for calculating the spike-evoked release probability, pi, given the last
L release outcomes, (Yi−L, Yi−L+1, ..., Yi−1). The spontaneous release probability, qi, can be derived similarly by substituting
c, e and p with d, f and q respectively. We assume that the model parameters (α, c, d, e, f, p0, q0) are strictly greater than zero
and less than one . (C) The performance of the algorithm is compared with the stochastic model of depression [20]. The

stochastic model is based on the differential equation dpr
dt

= p0−pr
τ

− uprδ(t − tr), where pr, τ, p0, u, and tr are the release
probability, recovery time constant, default (maximum) release probability, depression coefficient and the release timing. At
the bottom of the panel, the orange stem plot shows the timing of the release, tr, during an interval of 200 msec. The orange
line demonstrates the release probability, pr, calculated from the differential equation. By assuming a time unit of ∆ = 10
msec for the MRO model, the 200 msec interval corresponds to a memory of length L = 20. The memory content of the model
is shown at the top of the panel. The blue line demonstrates the release probability calculated from the algorithm in (B). The
final values of the release probability are indicated by filled circles. (D) Every arbitrary state of the release site can transit to
two other states, depending on the release outcome. The transition probabilities are shown on the transition links.

absence (Xi = 0) of the spike at time i, with α = P (Xi = 1) representing the input spike rate. The output
of the channel, Y = {Yi}ni=1, is the release outcome of the release site. If a vesicle is released at time i, then
Yi = 1 and otherwise Yi = 0. The two release mechanisms of the synapse, spike-evoked and spontaneous
release, are modeled by transitions from Xi = 1 and Xi = 0 to Yi = 1, and the transition probabilities pi
and qi are called the spike-evoked and spontaneous release probabilities.

We use a memory of the last L release outcomes of the channel to implement the short-term depression
in our model. The release probabilities of the release site, pi and qi, are determined by,

pi = pi(Yi−L, Yi−L+1, ..., Yi−2, Yi−1), (1)

qi = qi(Yi−L, Yi−L+1, ..., Yi−2, Yi−1). (2)

3



After each successful release, the spike-evoked and spontaneous release probabilities decrease to a fraction
of their earlier values. This fraction is represented by the multiplier c or d, depending on the type of release.
In quiescent intervals, in which no vesicle is released, the release probabilities gradually recover back to their
default values (p0 and q0) with recovery coefficients e and f . The algorithm in Fig. 1B describes how the
spike-evoked release probability, pi, is calculated from the release site’s history (Yi−L, Yi−L+1, ..., Yi−2, Yi−1).
The spontaneous release probability, qi, is independently parameterized by the depression multiplier e and
the recovery coefficient f . The interval between two discrete time indices i and i + 1 is called the time
unit of the model and is represented by ∆. Throughout this paper, we set ∆ = 10 msec. The biological
interpretation of ∆, as well as the other model parameters, is discussed in more details in Appendix C. Our
model can reproduce the depression and recovery dynamics of the release site and is consistent with the
probabilistic models of synaptic depression [20] (Fig. 1C). Throughout this paper, we refer to the model as
the binary asymmetric channel with a Memory of Release Outcomes, abbreviated by MRO.

To study the synaptic information efficacy of the release site under depression, we use information-
theoretic measures (please see Appendix A for an overview). The information rate of the release site is
derived by calculating the mutual information between the pre-synaptic input spike train, X, and the
release outcome process of the release site Y .

The release site in the MRO model can be in any one of 2L states. Let j, 0 ≤ j ≤ 2L−1, be an arbitrary
state of the release site with spike-evoked and spontaneous release probabilities p(j) and q(j). It can be
easily shown that the mutual information rate of the binary asymmetric channel at state j, denoted by Rj ,
is equal to

Rj = h
(
αq(j) + αp(j)

)
− αh

(
q(j)

)
− αh

(
p(j)

)
, (3)

where α = 1− α and h(x) = −x log2(x)− x log2(x).
Each state of the release site can transit to two other states, depending on the release outcome (Fig.

1D). The state transitions of the release site are modeled by a Markov chain with 2L states (e.g., Fig. 2
shows the Markov chain for the case of L = 2). We prove that regardless of the initial state, the probability
of each state j converges to a stationary probability πj . The stationary probabilities are calculated using
the power iteration method [23]. The next theorem provides a closed-form expression for the information
rate of the release site.

Theorem 1. Let RD be the mutual information rate of the release site with short-term depression. Then

RD =
2L−1∑

j=0

Rjπj . (4)

This theorem shows that the mutual information rate of the release site is equal to the statistical average
over the information rates of its constituent states. Therefore, the rate of every release profile has a linear
share in the information rate of the release site; the share is determined by the occurrence probability of
the profile. This theorem is an extension of the result that we derived for a two-state model of depression
(equivalent to L = 1) [22]. All the proofs are found in Appendix D.

The brain uses more energy on synaptic transmission than on any other process [24]. To gain a better
understanding of the trade-off between the energy consumption and information rate in a synapse during
short-term depression, we consider the energy cost of synaptic release and derive the energy-normalized
information rate of the release site. The energy-normalized information rate is calculated by dividing the
mutual information (between the input and output processes) of the release site by the total amount of
energy that is consumed for synaptic release. This measure quantifies the amount of information that
can be transferred through the release site for one unit of energy (see Appendix A for the mathematical
formulation of these concepts).

The next theorem gives a simple expression for calculating the energy-normalized information rate of
the release site.
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Figure 2: An example of the MRO model. (A) The binary asymmetric channel with a memory of length L = 2. (B) The
table of release probabilities for every possible release outcome. The spike-evoked and spontaneous release probabilities are
calculated from the Algorithm in Fig. 1B. (C) The Markov chain model representing the transitions between the 2L = 4 states
of the model. The transition probabilities are calculated using the values in table (B) and the rule given in Fig. 1D.

Theorem 2. Assume that the neuron consumes one unit of energy for each vesicle release. If we denote

the energy-normalized information rate of the release site under depression by R
(E)
D , then

R
(E)
D =

∑2L−1
j=0 Rjπj

∑2(L−1)−1
j=0 π2j+1

. (5)

The energy normalized information rate, R
(E)
D , can be used to evaluate the compromise between the rate

of information transfer and the energy consumption of the synapse.
We derived the mutual information rate and energy-normalized information rate of a synapse with

depression in Theorem 1 and Theorem 2. For a synapse without depression, we can use the same theorems
to calculate the corresponding information rates.

Corollary 1. Let R0 and R
(E)
0 be the mutual information rate and energy-normalized information rate of

the release site ‘without’ depression. Then

R0 = h(αq0 + αp0)− αh(q0)− αh(p0), (6)

R
(E)
0 =

R0

αq0 + αp0
. (7)

In contrast to the MRO model, for which the current state is determined by the last L releases, another
approach would be to let the channel’s state depend only on the release outcome and the release probabilities
at time i− 1, i.e.,

pi = pi(Yi−1, pi−1), (8)

qi = qi(Yi−1, qi−1). (9)

To compute the mutual information rate analytically for this second model, we need to quantize the release
probabilities to a finite set of possible pi and qi, as we describe in detail in Appendix E. The two models
generate similar performance results (Appendix F).

3. Simulation Results

Short-term synaptic depression represents a memory buffer for the synapse, as the current release dynam-
ics of the synapse depends on the history of releases. When pre-synaptic spikes accumulate, the initial state

5



Table 1: Definition of notations

Symbol Definition

X Pre-synaptic input spike process

Y Release outcome process

L Memory length of the release site

p Spike-evoked release probability

q Spontaneous release probability

c Depression multiplier for spike-evoked release

d Depression multiplier for spontaneous release

e Recovery coefficient for spike-evoked release

f Recovery coefficient for spontaneous release

α Pre-synaptic input spike rate

∆ Time unit of the MRO model

RD Mutual information rate of the release site with depression

R
(E)
D Energy-normalized information rate of the release site with depression

R0 Mutual information rate of the release site without depression

R
(E)
0 Energy-normalized information rate of the release site without depression
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Figure 3: (A) The mutual information rate of the release site as a function of the memory length of the channel, L, for different
values of depression coefficients. Three release probabilities are used as the initial state of the release site to measure the
effective memory of the depressing synapse. (B) The mutual information rate (solid lines), RD, and the energy-normalized

information rate (dashed lines), R
(E)
D , as a function of input spike rate, α, for various depression coefficients, c, d. The black

lines connect the maximum values of the curves. The other parameters of the model are p0 = 0.7, q0 = 0.1, e = f = 0.1. In
(A), α = 0.3, and in (B), L = 20.

of the synapse, as measured by its release probability, is slowly forgotten. We measure the effective memory
length of short-term depression by calculating the time that the synapse requires to become independent
of its initial release probability (Fig. 3A). This memory length can differ from the nominal recovery time
constant of the synapse from a single release. We find that, if the release probability of the synapse is halved
after each release (c = d = 0.5), after 160 msec (corresponding to L = 16), the relative variation of the
mutual information caused by different initial values drops to 10%. For a synapse with stronger depression
(e.g., c = d = 0.1), the effective memory of the synapse reduces to 120 msec.

The memory length of the MRO model, L, should match the effective memory of the synapse. We show
in Appendix C that for a large enough L, the mutual information rate of the MRO model converges to the
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information rate of a classical stochastic model of depression [20], the latter of which can only be evaluated
numerically.

The capacity of a release site is the maximum amount of information that can be transferred through it.
We show that the capacity is reduced significantly by increasing the depression level (or decreasing the speed
of recovery) and is attained at lower input spike rates (solid lines in Fig. 3B). Compared to the capacity,
the maximum of energy-normalized information rate is achieved at lower input spike rates, as expected.
Moreover, the energy-normalized information rate is robust to variations in the parameters of depression,
so that the spike rate that guarantees the optimal rate-energy performance of the release site is relatively
independent of the depression level (and recovery constant) (dashed lines in Fig. 3B). This shows that even
synapses with different synaptic dynamics ought to be activated at similar rates to work optimally (see also
Appendix B).

The default (maximum) evoked release probability of a synapse, p0, changes synaptic information effi-
cacy substantially (Fig. 4A). However, if the ratio between default spike-evoked and spontaneous release
probability, p0/q0, remains constant, then the range of variation in the energy-normalized information rate
as a function of p0 is limited; indeed, the optimal input spike rate is nearly independent of the release
probability p0 (Fig. 4B and 4C)

A release site with a memory length of L = 20 consists of more than one million states. In Theorem
1, we prove that the mutual information rate of the release site is equal to the statistical average of the
information rates of its constituent states. Therefore, the distribution of information rates and stationary
probabilities of the states specifies the share of the memory patterns in the mutual information rate. We
show that there are no dominant states for the release site. Indeed, the majority of the states have a
very low mutual information rate (Fig. 5A). The different states of the release site cluster, as seen in the
distribution of stationary state probabilities (Fig. 5B) and in the rate-probability representation of Fig. 5D.
To characterize the clusters, we identify them for the case of L = 5 (Fig. 5E). The clusters each turn out to
represent a fixed number of releases within the release site’s history.

We now study how depression dynamics of spike-evoked release affect the information efficacy of the
release site, while keeping the dynamics of spontaneous release fixed. We show that for low values of spike-
evoked release probability, p0, and high values of spike-evoked depression multiplier, c, short-term depression
increases the mutual information rate (Fig. 6A) and energy-normalized information rate (Fig. 6B) of the
release site. Also, the enhancement effect of depression on the synaptic information efficacy is larger for
the synapses with lower input spike rates. Based on our analysis, release sites can be classified into three
functional categories depending on their depression dynamics (Fig. 6C):

Category 1: Depression increases both the mutual information rate and energy-normalized information
rate of the release site.

Category 2: Depression increases the energy-normalized information rate, while the mutual information
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rate of the release site is reduced.
Category 3: Depression impairs the performance of the release site by decreasing both the mutual

information rate and the energy-normalized information rate.
The three categories imply that the enhancement of energy-normalized information rate is a necessary

condition for the increase of mutual information rate during depression. We also note that the recovery
coefficient of spike-evoked release has a similar impact on the synaptic information efficacy and creates the
same functional categories (refer to Appendix B).

Although spontaneous release is usually ignored in information rate analysis, we show that its dynamics
have a critical impact on the synaptic information efficacy during short-term depression; the release prob-
ability and depression multiplier of spontaneous release can completely change the regime of information
transmission (Fig. 7A-Fig. 7C). We see that for synapses with larger spontaneous release probability, q0,
and lower depression multiplier, d, the mutual information rate and energy-normalized information rate
increase during short-term depression. On the other hand, in the absence of spontaneous release (q0 = 0),
depression always decreases both the mutual information rate and energy-normalized information rate of
the release site (Fig. 7D). Interestingly, if spontaneous release does not depress at all (d = 1), depression
can still increase the information rate of the release site, provided that spontaneous release probability, q0, is
large enough (Fig. 7D). In addition, as long as spontaneous and spike-evoked release have similar depression
dynamics (c = d and e = f), depression will always decrease the energy-normalized information rate (Fig.
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7E).

4. Discussion

By modeling a single synaptic release site as a binary asymmetric channel with memory, we were able
to derive the information rate of synaptic release analytically. Such theoretical models rely on quantization,
but the theoretical results are fully consistent with the numerical evaluation of experimentally motivated
stochastic models of short-term depression [20]. In contrast to many other approaches, our calculations treat
both spontaneous and spike-evoked release; both mechanisms of release are subject to short-term depres-
sion. Recent studies show that spike-evoked and spontaneous release are regulated by different biological
mechanisms, such as separate vesicle pools and alternative SNARE proteins [3, 25–28]. As a consequence,
the two mechanisms do not necessarily follow the same depression dynamics. We note that our statistical
approach subsumes asynchronous vesicle release [29] into the spontaneous release category.
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Strikingly, we were able to show that synaptic depression can enhance information transmission provided
that spike-evoked release is depressed less (or recovers faster) than the spontaneous release. On the other
hand, if the depression dynamics for both spontaneous and evoked release are the same, then synaptic
depression always decreases the information rate of the release site, as we proved. To our knowledge, there
are no published data on the dynamics of synaptic depression following spontaneous release to date. What is
known is that short-term plasticity differs widely in its dynamics across synapses [30]. Our results, therefore,
suggest that synapses fall into one of three functional categories, based on the relative effects of depression
on spike-evoked and spontaneous release (Fig. 6C).

We proved that the information rate of every release-history-dependent state contributes linearly to the
overall information rate of the release site and its share is determined by the stationary probability of its
occurrence. The linearity of the mutual information rate is a unique feature of short-term depression and is
absent in short-term facilitation, for which the statistical average is just a lower bound for information rate
(unpublished result).

Synaptic release is energetically expensive [24, 31, 32]. Indeed, it has been hypothesized that synaptic
mechanisms optimize the energy-information rate balance during neuronal transmission [14, 24, 33]. To study
the energy-information trade-off at the release site, we calculated the energy-normalized information rate
analytically. Only the energy that is consumed by synaptic release was taken into account, which ignored the
energy expenditure needed for the generation of action potentials, cellular homeostasis, or protein synthesis
and transport.

In comparison to the information rate, the energy-normalized information rate of the release site was
much more robust to the variations in the depression dynamics. Specifically, the optimal pre-synaptic spike
rate was invariant. The spike rate needed to achieve information capacity, in contrast, was sensitive to
the strength of depression, as stronger depression implied lower input spike rates. Notably, the depression
dynamics vary across synapses and release sites, even in the same neuron [4]. Metaplasticity changes the
depression characteristics of the release site over different time scales [34, 35]. The prediction of our work
is that the input spike rate is uncoupled from synaptic metaplasticity: the input rate need not adapt to
maintain the optimal energy-information balance for release sites.

We now list a few of the limitations of the model. Strictly speaking, the proposed model is valid for
a single synaptic release site. The number of release sites in a synapse varies between one to hundreds,
with most central nervous system synapses having one or two sites [36]. Some studies have addressed the
information efficacy of the whole synapse by treating all the release sites similarly [16, 37], neglecting the
individual differences of the release sites [38]. It should be possible to use parallel MRO models (with
potentially distinct dynamics) to calculate the information rate of the entire synapse.

We only considered constant-rate input spike trains here. However, synaptic depression not only shapes
the synaptic information channels, but directly implements temporal filtering, making neurons more sensitive
to changes in presynaptic rate rather than the steady-state rate [1, 10, 11, 30, 39]. The input model can be
generalized to heterogeneous Poisson processes to account for the rate changes of the input in the presence
or absence of a stimulus.

To completely resolve the puzzle of information transmission between two neurons, we would still need to
consider the feedback mechanisms of the synapse [40, 41], the non-linearity of receptors at the post-synaptic
neuron [1, 42, 43], and other short-term and long-term dynamical mechanisms of the synapse [4, 44]. Filling
in these gaps will yield a complete picture of synaptic information transmission. We believe that the MRO
model can serve as an elemental building block to develop more detailed models and aid in future research
to complete the full picture of synaptic information transmission.
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Appendix

A. Information theoretic measures

Let X be a discrete random variable with a finite sample space {x1, x2, ..., xn}. The entropy of X,
denoted by H(X), is the amount of uncertainty about the value of X and is calculated by

H(X) = −
∑

i

P (X = xi) log2 P (X = xi), (10)

where P (.) is the probability measure.
For two discrete random variables X and Y , the conditional entropy of Y given X, denoted by H(Y |X),

describes the remaining uncertainty about the value of Y provided that the value of X is known. The
conditional entropy is derived from

H(Y |X) = −
∑

x

∑

y

P (X = x, Y = y) log2 P (Y = y|X = x). (11)

The mutual information between the two random variables X and Y is defined by

I(X;Y ) = H(Y )−H(Y |X), (12)

and quantifies the amount of information that can be obtained from X about Y .
The notions of entropy and mutual information are extended to random processes as well. Let X =

{Xi}∞i=1 be a discrete time random process, where Xi is the random variable corresponding to the value of
X at time i. We represent by Xn the first n instances of X,

Xn ,
{

(X1, X2, ..., Xn) if n > 0
0 if n ≤ 0

(13)

The entropy rate of X is defined by

H(X) = lim
n→∞

1

n
H(Xn), (14)

if the limit exists.
The mutual information rate of two random processes X = {Xi}∞i=1 and Y = {Yi}∞i=1 is

I(X;Y ) = lim
n→∞

1

n
I(Xn;Y n), (15)

provided that the limit exists.
Assume that the random processes X and Y are the input and output of a communication channel. Let

Ei be the (random) amount of energy that is consumed by the channel at time i. The energy-normalized
information rate of the channel is defined by

IE(X;Y ) = lim
n→∞

I(Xn;Y n)

E(
∑n

i=1Ei)
, (16)

where E(.) is the expected value.

B. Recovery time constant and synaptic information efficacy

The speed of recovery from depression modulates the rate of information transfer at a release site.
Slower recovery expands the range of the release history’s impact and consequently increases the release
site’s memory length (Fig. 8A). The mutual information rate of a synapse with a recovery time constant
of τ = 100 msec (corresponding to e = 0.1) becomes independent of its initial state after 160 msec. For
a synapse with faster recovery, e = 0.3 (equivalent to τ=28 msec), the impact of the initial state of the
synapse is negligible after just 70 msec.
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Faster recovery increases both the mutual information rate and energy-normalized information rate of
the release site. (Fig. 8B). The mutual information rate changes substantially by the variations of recovery
coefficient while the energy-normalized information rate is relatively robust. Specifically, by increasing the
recovery coefficient, the capacity of the release site is attained at higher input spike rates. But the input
spike rate that results in the optimal energy-normalized information rate, is practically independent of the
recovery time constant. From Fig. 8B and Fig. 3B, we conclude that the release sites with different
depression dynamics can work at their optimal energy-rate regime with the same input spike rate.

If the recovery of the spike-evoked release is faster than the recovery of spontaneous release, then de-
pression can increase the mutual information rate (Fig. 8C) and energy-normalized information rate of the
release site (Fig. 8D). We show that the differences in recovery coefficient among synapses (and release sites)
create three distinct functional categories for short-term depression (Fig. 8E).

C. Model parameters

We set the parameters of the MRO model by establishing a correspondence with an updated version
of the stochastic model of depression [20]. The release probability (spontaneous or spike-evoked) follows a
first-order differential equation in the stochastic model,

dpr
dt

=
p0 − pr
τ

− uprδ(t− tr), (17)

where pr, τ, p0, u, and tr are the release probability, recovery time constant, default (maximum) release
probability, depression coefficient and the release timing. In the absence of release, the release probability
recovers exponentially to its default value. Assuming that the release probability at time t = 0 is pin,

pr(t) = p0 − (p0 − pin)exp(−t/τ). (18)

Correspondingly, if we assume that in the MRO model, the release probability at time index i = 0 is pin,
then it can be easily shown that after k steps of recovery (k successive quiescent intervals),

pr(k) = p0 − (p0 − pin)(1− e)k, (19)

where e is the recovery coefficient of the MRO model.
The discrete time k and the continuous time t are related through the time unit, ∆, of the MRO model,

k = t/∆. (20)

To have similar recovery dynamics in the two models,

(1− e)k = exp(−t/τ), (21)

and by substituting k from (20),

ln(1− e) =
−∆

τ
. (22)

This equation shows the relation between the recovery coefficient of the MRO model and the recovery time
constant of the synapse. For example, if the recovery time constant of a synapse is τ = 100 msec, then for
a time unit of ∆ = 10 msec, the recovery coefficient of the MRO model should be e = 0.1.

We use the context tree weighting algorithm [45] to calculate numerically the information rate of the
synapse in a classical, stochastic model of depression [20]. In Fig. 9, we show that by increasing the memory
length, L, the analytical mutual information rate of the MRO model converges to the numerical information
rate estimates of the classical stochastic model of depression.
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release is q0 = 0.1. Also the memory length is set to L = 20 (except in (A)). The default spike-evoked release probability is
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D. Proof of Theorems

Proof of Theorem 1: By definition

RD = lim
n→∞

1

n
I(Xn;Y n), (23)

where
I(Xn;Y n) = H(Y n)−H(Y n|Xn). (24)

Using the chain rule [46],

H(Y n) =
n∑

i=1

H(Yi|Y i−1). (25)

For integer values a, b, we define

Y b
a ,





(Ya, Ya+1, ..., Yb) if 1 ≤ a ≤ b
(Y1, Y2, ..., Yb) if a ≤ 0 < b
0 if a ≤ b ≤ 0

(26)

The random variable Yi depends on the release probabilities at time i, pi and qi, and the input spike
variable at time i, Xi. Since pi and qi are functions of (Yi−L, Yi−L+1, ..., Yi−1), and Xi is independent of
Y i−1,

H(Yi|Y i−1) = H(Yi|Y i−1
i−L ). (27)

Applying the chain rule to H(Y n|Xn),

H(Y n|Xn) =

n∑

i=1

H(Yi|Xn, Y i−1). (28)

With a similar argument,
H(Yi|Xn, Y i−1) = H(Yi|Xi, Y

i−1
i−L ). (29)

From (24), (27) and (29),

I(Xn;Y n) =

n∑

i=1

(
H(Yi|Y i−1

i−L )−H(Yi|Xi, Y
i−1
i−L )

)
, (30)
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and based on the definition of conditional mutual information,

I(Xn;Y n) =
n∑

i=1

I(Xi;Yi|Y i−1
i−L ). (31)

The sample set of Y i−1
i−L consists of all the binary vectors of length L. For the sake of notational simplicity,

instead of the binary vector (Yi−L, ..., Yi−2, Yi−1), we use its corresponding decimal value j = Yi−1 +2Yi−2 +
22Yi−3 + ...+ 2L−1Yi−L. From (31),

I(Xn;Y n) =
n∑

i=1

2L−1∑

j=0

I(Xi;Yi|Y i−1
i−L = j)P (Y i−1

i−L = j). (32)

Let Rj represent the mutual information rate of the release site at state j. By definition,

Rj = I(Xi;Yi|Y i−1
i−L = j). (33)

The release probabilities of the release site at state j, denoted by p(j) and q(j), are calculated from the
algorithm in Fig. 1B. It can be easily shown that

Rj = h
(
αq(j) + αp(j)

)
− αh

(
q(j)

)
− αh

(
p(j)

)
. (34)

Each state of the release site can transit to two other states and the transition probabilities are fully
determined by the current state (Fig. 1D). Therefore, a Markov chain is used to model the state transitions
of the release site. The transition matrix of the Markov chain, denoted by M , is a 2L × 2L matrix and has
two non-zero entries on each row. The pattern of the non-zero entries of M is shown in Fig. 10A. It is
shown in [47] that for an irreducible aperiodic finite-state Markov chain, regardless of the initial state, the
probability of each state j will converge to a steady-state probability, denoted by πj . We prove in Lemma
1 that the Markov chain of the release site in the MRO model is irreducible and aperiodic. Therefore,

lim
i→∞

P (Y i−1
i−L = j) = πj . (35)

By interchanging the summations in (32),

I(Xn;Y n) =

2L−1∑

j=0

n∑

i=1

I(Xi;Yi|Y i−1
i−L = j)P (Y i−1

i−L = j). (36)

Since I(Xi;Yi|Y i−1
i−L = j) = Rj and is independent of i,

I(Xn;Y n) =
2L−1∑

j=0

(
n∑

i=1

P (Y i−1
i−L = j)

)
Rj . (37)

We then have

RD = lim
n→∞

1

n
I(Xn;Y n) (38)

=
2L−1∑

j=0

(
lim
n→∞

1

n

n∑

i=1

P (Y i−1
i−L = j)

)
Rj . (39)

Using (35) and the Cesàro mean theorem,

lim
n→∞

1

n

n∑

i=1

P (Y i−1
i−L = j) = πj . (40)
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Finally, from (39) and (40),

RD =

2L−1∑

j=0

Rjπj . (41)

We note that the stationary probability vector −→π = (π0, ..., π2L−1) is calculated using the power method.
We start by a random probability vector −→x0 and in each iteration i ≥ 0, we calculate

−−→xi+1 = −→xi ×M. (42)

Then we substitute −→xi with −−→xi+1 and repeat (42). It is easily shown that the probability vector −→xi converges
to −→π .

Lemma 1. In the MRO model, the markov chain of the release site is irreducible and aperiodic.

Proof. Let j and j′ be two arbitrary states of the release site corresponding to the binary vectors
(a1, a2, ..., aL) and (b1, b2, ..., bL). We show that the state j′ is always accessible from the state j in the
Markov chain M .

Assume that the Markov chain is in the state j at time i = 1. The release site can transit to the state
(a2, a3, ..., aL, b1) with a non-zero probability P1(b1). Similarly, at each time i, 1 ≤ i ≤ L, the release site can
transit from the state (ai, ..., aL, b1, ..., bi−1) to (ai+1, ..., aL, b1, ..., bi) with the non-zero probability Pi(bi).
Therefore, the probability of transition from (a1, a2, ..., aL) to (b1, b2, ..., bL) after L time steps is greater

than or equal to
∏L

i=1 Pi(bi). This proves that the state j′ is accessible from the state j, and consequently,
M is irreducible. Moreover, there is a non-zero transition probability from the state j = 0 to itself. Since
every irreducible finite-state Markov chain with a self-loop is aperiodic [47], we conclude that M is aperiodic
and the proof is complete.

Proof of Theorem 2: The energy-normalized information rate of the release site is defined by (refer to
Appendix A):

R
(E)
D = lim

n→∞
I(Xn;Y n)

E(
∑n

i=1Ei)
. (43)

where Ei is the energy consumed by the release site to release a vesicle at time i. By assumption, one unit
of energy is consumed at each release. Therefore,

Ei = Yi, (44)

and

E(
n∑

i=1

Ei) =
n∑

i=1

P (Yi = 1). (45)

From (43), (45) and Theorem 1,

R
(E)
D =

limn→∞ 1
nI(Xn;Y n)

limn→∞ 1
n

∑n
i=1 P (Yi = 1)

, (46)

=

∑2L−1
j=0 Rjπj

limn→∞ 1
n

∑n
i=1 P (Yi = 1)

. (47)
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Also,

P (Yi = 1) =
2(L−1)−1∑

j=0

P (Yi = 1, Y i−1
i−L+1 = j), (48)

=
2(L−1)−1∑

j=0

P (Y i
i−L+1 = 2j + 1). (49)

Therefore,

lim
n→∞

P (Yi = 1) =

2(L−1)−1∑

j=0

π2j+1. (50)

From (47), (50) and Cesàro mean theorem,

R
(E)
D =

∑2L−1
j=0 Rjπj

∑2(L−1)−1
j=0 π2j+1

. (51)

E. Quantized release probabilities

In the MRO model, the release probabilities of the release site at time i are determined by the last L
release outcomes, Y i−1

i−L . Alternatively, the release probabilities at time i can be derived recursively from the
release probabilities and the release outcome at time i−1. In this recursive approach, the state of the release
site at time i is specified by the pair (Pi, Qi), where Pi and Qi are the random variables corresponding to the
spike-evoked and spontaneous release probabilities. Since Pi and Qi are continuous variables, the number
of states goes to infinity by increasing i. To avoid the limitations of infinite-state models, we quantize the
release probabilities. For a quantization level of δ, the sample space of release probabilities is defined by

S = {0, δ, 2δ, ..., [ 1
δ

]δ}, (52)

where [.] is the floor function.
Let [x]

S
represent the largest entry in S that is less than or equal to x, i.e.,

[x]
S

= max{y : y ∈ S, y ≤ x}. (53)

Also assume that p0, q0 ∈ S are the default (maximum) spike-evoked and spontaneous release probability of
the release site. The quantized release probabilities at time i+ 1 are calculated recursively from

pi+1 =

{
[e(p0 − pi) + pi]S , if Yi = 0
[cpi]S , if Yi = 1

(54)

and

qi+1 =

{
[f(q0 − qi) + qi]S , if Yi = 0
[dqi]S , if Yi = 1

(55)

We refer to this model as the binary asymmetric channel with Quantized Release Probabilities, abbreviated
by QRP.

We note that since spike-evoked and spontaneous release probabilities do not exceed p0 and q0, the
sample space of (P,Q) can be reduced from S × S to SP × SQ, where

SP = {0, δ, 2δ, ..., p0}, (56)
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and
SQ = {0, δ, 2δ, ..., q0}. (57)

In the QRP model, the state of the release site at time i, (pi, qi), can transit to two other states, the
recovered state ([e(p0−pi)+pi]S , [f(q0−qi)+qi]S ) and the depressed state ([cpi]S , [dqi]S ), with the transition
probabilities αpi + α qi and αpi + αqi respectively. The state transitions of the QRP model are represented
by a Markov chain with the transition matrix M̂ . Unlike the MRO model, the pattern of the non-zero entries
of M̂ is not fixed and varies with the model parameters (Fig. 10B). For each state (p, q), the stationary
probability, π(p,q), is calculated using the power method. Also, the mutual information rate of the binary
asymmetric channel, R(p,q), is derived from

R(p,q) = h(αq + αp)− αh(q)− αh(p). (58)

Theorem 3. Let RD and R
(E)
D be the mutual information rate and energy-normalized information rate of

the release site in the QRP model. Then

RD =
∑

(p,q)∈PS×QS

R(p,q)π(p,q), (59)

R
(E)
D =

∑
(p,q)∈PS×QS

R(p,q)π(p,q)∑
(p,q)∈PS×QS

(αp+ αq)π(p,q)
. (60)

Proof. Let X = {Xi}∞i=1 and Y = {Yi}∞i=1 be the input and output random processes of the QRP model
(the top panel in Fig. 10B). By definition,

RD = lim
n→∞

1

n
I(Xn;Y n), (61)

where
I(Xn;Y n) = H(Y n)−H(Y n|Xn). (62)

Using the chain rule for H(Y n) and H(Y n|Xn),

H(Y n) =
n∑

i=1

H(Yi|Y i−1), (63)

H(Y n|Xn) =

n∑

i=1

H(Yi|Y i−1, Xn). (64)

The vector of release probabilities, (Pi, Qi), can be calculated from Y i−1. Also, given Xi and (Pi, Qi), Yi is
independent of Y i−1, Xi−1 and Xn

i+1. Therefore,

H(Yi|Y i−1, Xn) = H
(
Yi|(Pi, Qi), Xi

)
. (65)

Similarly, given (Pi, Qi), Yi is independent of Y i−1, implying that

H(Yi|Y i−1) = H
(
Yi|(Pi, Qi)

)
. (66)

Hence,

I(Xn;Y n) =
n∑

i=1

H
(
Yi|(Pi, Qi)

)
−H

(
Yi|(Pi, Qi), Xi

)
(67)

=

n∑

i=1

I
(
Xi;Yi|(Pi, Qi)

)
. (68)
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From the definition of conditional mutual information,

I
(
Xi;Yi|(Pi, Qi)

)
=

∑

(p,q)∈PS×QS

I
(
Xi;Yi|(Pi, Qi) = (p, q)

)
P
(
(Pi, Qi) = (p, q)

)
. (69)

The term I
(
Xi;Yi|(Pi, Qi) = (p, q)

)
is the mutual information rate of the binary asymmetric channel with

release probabilities p and q, which is denoted by R(p,q). Therefore,

R(p,q) = I
(
Xi;Yi|(Pi, Qi) = (p, q)

)
(70)

= h(αq + αp)− αh(q)− αh(p). (71)

Together with (61), (68) and (69),

RD = lim
n→∞

1

n

n∑

i=1

∑

(p,q)∈PS×QS

R(p,q)P
(
(Pi, Qi) = (p, q)

)
. (72)

By interchanging the summations and moving the limit inside,

RD =
∑

(p,q)∈PS×QS

R(p,q)

(
lim

n→∞
1

n

n∑

i=1

P
(
(Pi, Qi) = (p, q)

))
. (73)

The state of the release site at time i is given by (Pi, Qi) and the state transitions of the release site are

modeled by a Markov chain with a transition matrix M̂ of order |PS | × |QS |. We prove in Lemma 2 that

the Markov chain M̂ is uni-chain and its recurrent class is aperiodic. Therefore, it has a unique stationary
distribution and the probability of each state (p, q) converges to its stationary probability π(p,q) [47]. That
is

lim
i→∞

P
(
(Pi, Qi) = (p, q)

)
= π(p,q). (74)

Applying the Cesàro mean theorem to (73),

RD =
∑

(p,q)∈PS×QS

R(p,q)π(p,q). (75)

Finally, similar to the proof of Theorem 2,

R
(E)
D =

∑
(p,q)∈PS×QS

R(p,q)π(p,q)

limn→∞ 1
n

∑n
i=1 P (Yi = 1)

. (76)

In the QRP model,

P (Yi = 1) =
∑

(p,q)∈PS×QS

P
(
Yi = 1|(Pi, Qi) = (p, q)

)
P
(
(Pi, Qi) = (p, q)

)
. (77)

Hence,

lim
i→∞

P (Yi = 1) =
∑

(p,q)∈PS×QS

(αp+ αq)π(p,q). (78)

From (76), (78) and the Cesàro mean theorem,

R
(E)
D =

∑
(p,q)∈PS×QS

R(p,q)π(p,q)∑
(p,q)∈PS×QS

(αp+ αq)π(p,q)
. (79)
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Figure 10: The non-zero entries of the transition matrix in the two models. (A) The MRO model with a memory of length
L = 4. The transition matrix is invariant and does not change by altering the model parameters. (B) The QRP model. The
pattern of the transition matrix varies based on the model parameters. The first row shows the pattern for fixed depression
multiplier (c = 0.2) and different recovery coefficients. The second row shows the variation of the pattern for c = 0.5. The
other parameters are α = 0.6, p0 = 0.7, q0 = 0.1, d = c, f = e.

Lemma 2. The Markov chain of the QRP model, M̂ , is uni-chain and its recurrent class is aperiodic.

Proof. To show that the transition matrix of the QRP model is uni-chain, we need to prove that there exists
only one recurrent class in M̂ and the other states (if any) are transient.

Let (a0, b0) 6= (0, 0) be an arbitrary state in M̂ . Consider the path (a0, b0) → (a1, b1) → (a2, b2) → ...
in which every state (ai, bi) transits to its depressed state, i.e., (ai+1, bi+1) = ([cai]S , [dbi]S ). As long as
(ai, bi) 6= (0, 0), the transition probability to the depressed state, (ai+1, bi+1), is positive. Moreover, if ai > 0
then ai+1 < ai, and if bi > 0 then bi+1 < bi. Since the number of states in the Markov chain is finite and
the sequences (ai)i and (bi)i are monotonically decreasing to zero, there will be a large enough integer N

such that (aN , bN ) = (0, 0). Therefore, there is a path from (a0, b0) to the state (0, 0) in M̂ . This implies
that the state (0, 0) is accessible from every state in the Markov chain.

Now assume that there are two recurrent classes C1 and C2 in the Markov chain. Since the states in
C1 have access to (0, 0), from the definition of recurrent states, (0, 0) ∈ C1. With a similar argument,

(0, 0) ∈ C2. Therefore, C1 = C2 and there is only one recurrent class in M̂ , meaning that M̂ is a uni-chain.
Now we show that the period of the recurrent class is equal to one. Since the transition probability to

the recovered state is always positive in the Markov chain M̂ , we can consider the path (a0, b0) = (0, 0)→
(a1, b1) → (a2, b2) → ... in which every state (ai, bi) transits to its recovered state, i.e., (ai+1, bi+1) =
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Figure 11: (A) For the QRP model, the mutual information rate (solid lines) and the energy-normalized information rate
(dashed lines) are plotted as a function of input spike rate, for various depression multipliers. The other parameters of the
model are e = f = 0.1, p0 = 0.7 and q0 = 0.1. (B) The relative difference between the information rates of the MRO
model and the QRP model, as a function of input spike rate, for various values of depression multiplier. The solid lines show

the relative difference of mutual information rates,
RD(QRP )−RD(MRO)

RD(MRO)
, and the dashed lines show the relative difference of

energy-normalized information rates,
R

(E)
D

(QRP )−R(E)
D

(MRO)

R
(E)
D

(MRO)
. The parameters of the two models are similar to (A).

([e(p0 − ai) + ai]S , [f(q0 − bi) + bi]S ). It is clear that for each i, ai+1 ≥ ai and bi+1 ≥ bi. Since the number
of states is finite, there exists a finite integer N such that

aN = [e(p0 − aN ) + aN ]
S
, (80)

bN = [f(q0 − bN ) + bN ]
S
. (81)

Therefore, the state (aN , bN ) transits to itself with probability αaN + α bN . On the other hand, (aN , bN ) is
accessible from (0, 0), meaning that it belongs to the recurrent class. Since a recurrent state with a loop is

aperiodic [47], we conclude that (aN , bN ), and consequently the recurrent class of M̂ , is aperiodic and the
proof is complete.

F. Comparison between the two models of short-term depression

There are two models that can be used to calculate the mutual information rate of the release site
during short-term depression: the MRO model and QRP model. The mutual information rates and energy-
normalized information rates for the release site are comparable (compare Fig. 11A to Fig. 3B). Indeed, the
relative difference between the calculated rates of the two models is negligible (Fig. 11B). The two models,
however, have different advantages and disadvantages. The state of the release site in the MRO model is
a binary vector of length L, which corresponds to the last L release outcomes. The Markov chain of the
release site consists of 2L states and its transition matrix, M , grows exponentially with memory length. The
pattern of non-zero entries in M is always fixed and does not depend on depression dynamics (Fig. 10A). In
contrast, the state space of the QRP model consists of the quantized release probabilities, which is modeled
by a Markov chain, M̂ , of order |SP | × |SQ|. Therefore, the size of the Markov chain in the QRP model
can be much smaller than that of the MRO model. This will decrease the computational resources that are
required for calculations of information rate in the QRP model. However, the pattern of non-zero entries of
M̂ varies with depression coefficients (Fig. 10B), thus making it more difficult to achieve further analytical
advances.
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Chapter 4

Spike detection using fractal
dimension

4.1 Summary

Synaptic information efficacy quantifies the amount of information that is transferred

through a synapse. In the previous chapters, we calculated the information efficacy

of a model synapse during short-term depression. It is also possible to estimate

information efficacy of a real synapse using experimental data. To have an accurate

estimation of synaptic information efficacy, the precise timing of action potentials and

release events is required. The spike timing is usually estimated from intracellular

or extracellular signals. The low signal to noise ratio (SNR) of some extracellular

recordings, however, makes the spike detection challenging.

We present a new spike detection algorithm to detect spikes in noisy recordings.

Our algorithm is based on the fractal properties of the extracellular signals. Fractal

dimension is a measure for the roughness and smoothness of the signals and is widely

used in signal processing for pattern classification. We first show that the spike

segments of the extracellular signal are smoother and consequently, have a lower

fractal dimension than the noise segments. We then detect the spikes by thresholding

the fractal dimension of the segments of the signal. The performance of our suggested

algorithm is compared with four conventional spike detectors and it is shown that the

fractal detector has a higher probability of spike detection in low SNR extracellular

signals.
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Abstract
Objective. Many algorithms have been suggested for detection and sorting of spikes in extracellular
recording. Nevertheless, it is still challenging to detect spikes in low signal-to-noise ratios (SNR).
We propose a spike detection algorithm that is based on the fractal properties of extracellular
signals and can detect spikes in low SNR regimes. Semi-intact spikes are low-amplitude spikes
whose shapes are almost preserved. The detection of these spikes can significantly enhance the
performance of multi-electrode recording systems. Approach. Semi-intact spikes are simulated by
adding three noise components to a spike train: thermal noise, inter-spike noise, and spike-level
noise. We show that simulated signals have fractal properties which make them proper candidates
for fractal analysis. Then we use fractal dimension as the main core of our spike detection
algorithm and call it fractal detector. The performance of the fractal detector is compared with
three frequently used spike detectors. Main results. We demonstrate that in low SNR, the fractal
detector has the best performance and results in the highest detection probability. It is shown that,
in contrast to the other three detectors, the performance of the fractal detector is independent of
inter-spike noise power and that variations in spike shape do not alter its performance. Finally, we
use the fractal detector for spike detection in experimental data and similar to simulations, it is
shown that the fractal detector has the best performance in low SNR regimes. Significance. The
detection of low-amplitude spikes provides more information about the neural activity in the
vicinity of the recording electrodes. Our results suggest using the fractal detector as a reliable and
robust method for detecting semi-intact spikes in low SNR extracellular signals.

Keywords: fractal dimension, spike detection, extracellular signal, low SNR, box-counting,
semi-intact spikes

(Some figures may appear in colour only in the online journal)

1. Introduction

Extracellular recordings are a rich source of information for
analyzing the activity of different brain regions at the neu-
ronal level. The generation of a spike in a neuron alters the
extracellular field potential, which can be recorded through an
electrode inserted into the extracellular area. Therefore, the
recorded extracellular signal reflects the activity of all the
neurons that are in the neighborhood of the electrode.

In order to analyze the information content of extra-
cellular signals, several processing steps are required. One of

the main processing steps is spike detection through which
spike timing is estimated. The detected spikes are used as the
inputs to a spike sorting algorithm where they are classified
into different clusters. Each cluster is supposed to contain the
spikes of one of the neighboring neurons.

There are various methods for spike detection and spike
sorting in extracellular signals [1]. The most common spike
detection method is the threshold detector which is widely
used in different implementations. In this method, a threshold
is applied to the signal and the segments of the signal that
cross the threshold are recognized as spikes [2, 3]. The
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threshold detector has a simple structure, but it does not
perform well in low signal to noise ratios (SNR). This is
considered as main drawback of the threshold detector.
Despite the limitations of the threshold detector, it is widely
used in combination with other algorithms for spike sorting.
In such combined methods, first the spikes are detected using
a loose threshold and then the detected spikes, which may
also include some false positives, are classified into different
clusters. If the sorting algorithm works well, the false positive
spikes are detected in this stage. Therefore, spike sorting
algorithms can also work as spike detector.

Template matching is one of the methods that is used
alone or in combination with a threshold for spike detection
and spike sorting [4–6]. A well-known realization of template
matching is based on linear filters and is called average
matched filter detector [7]. In addition to template matching,
there are some spike sorting algorithms that employ principal
component analysis (PCA) [8, 9]. PCA can also be applied to
the wavelet coefficients of the signals [10, 11]. The combi-
nation of wavelet transform and PCA for extracellular signals
results in a powerful spike detector which is called wavelet-
PCA detector.

Despite these various algorithms for spike detection, it is
still a demanding task to detect spikes in low SNR signals.
Here, we propose a new spike detector which exploits fractal
properties of the signals and is able to detect spikes in low
SNR regimes.

The term fractal was first used by Mandelbrot to address
complicated geometric shapes [12]. Although mathematicians
have not reached to a unique definition for fractals yet, their
characteristics are studied extensively in fractal geometry.
One of the characteristics of fractals is self-similarity, like a
cauliflower. Another property of a fractal is related to its
dimension. Fractal dimension is an extension of the Euclidean
dimension and measures the irregularity and complexity of
the fractal. Therefore, the fractal dimension of a smooth curve
like a sine wave is less than the fractal dimension of a com-
plex curve like the Koch curve [13].

Fractal dimension has found numerous applications in
signal processing. The applications range from target detec-
tion in radar systems [14] to tumor detection in MRI images
[15, 16]. Fractal dimension has also been used in the fol-
lowing neuroscientific research areas: reliable detection of
epileptic seizures in patients [17], analysis of sleep cycles
[18], estimation of the consciousness level in patients under
anesthesia [19], emotion detection from EEG signals [20],
detection of changes in white matter structure [21], and
detection of transient effects in EEG signals [22, 23].

In this paper, we use fractal dimension to distinguish
between spike and noise segments in extracellular signals. We
design a spike detection algorithm based on fractal dimension
and call it fractal detector. Since the structure of extracellular
signals differs from other previously analyzed signals such as
EEG [22, 23], we need to design a fractal detector suitable for
extracellular signals. For evaluating the performance of spike
detectors, we require prior knowledge of spike timing.
Therefore, in the following, we simulate extracellular
recordings and use the simulated signal together with the

known spike timing to derive performance measures of var-
ious detection algorithms.

We confine ourselves in this paper to the detection of a
specific category of spikes to which we refer as semi-intact
spikes. These spikes have small amplitude in comparison with
the level of surrounding noise signal. Nevertheless, they are
not highly distorted with the activity of near neighboring
neurons and their shape is preserved to some extent.

Detection of semi-intact spikes provides us with more
information about the neuronal activity in the neighborhood
of the electrode(s). Especially in multi-electrode recordings,
the detection of semi-intact spikes in one electrode can
enhance detection and decomposition of the compound spikes
in the other electrodes.

We first present an algorithm for modeling extracellular
signals with this category of spikes. The algorithm generates a
sequence of spikes using a data-set of spike shapes. A typical
sequence is shown in figure 1(a). The spike train is deterio-
rated with three noise components to which we refer as thermal
noise, inter-spike noise and spike-level noise. A typical noisy
spike train is shown in figure 1(b). The simulated extracellular
signal is utilized for analyzing the performance of the spike
detection algorithms. As a typical example, figure 1(c) shows
the performance of the threshold detector. Since the signal to
noise ratio is low, the threshold detector can only detect two
out of five spikes. In contrast to the threshold detector, our
suggested fractal detector is capable of detecting all five spikes
(figure 1(d)). Finally we extend our analysis to experimental
data to study the performance of the fractal detector for spike
detection in real datasets.

The main contributions of this paper are summarized in
the following:

• It is demonstrated that both the spike segments and noise
segments of the simulated signal have fractal properties
and are good candidates for fractal analysis (section 3.1.1).

• We show that the fractal dimension of the spike segments
is smaller than the fractal dimension of the noise
segments. Thus, a running fractal dimension is used for
spike detection. We name our proposed method fractal
detector (section 3.1.2).

• We compare the performance of the fractal detector to the
threshold detector, the average matched filter detector, and
the wavelet-PCA detector. We show that for low SNR
signals, the fractal detector has the best performance and
produces the highest detection probability (section 3.2.1).

• We show that the performance of the fractal detector, in
contrast to the other three spike detectors, is independent
of inter-spike noise power (section 3.2.1) and is reliably
invariant to variations of spike shapes (section 3.2.3).

2. Methods

In this section, we explain in detail the structure of the fractal
detector. Also, we present our suggested method for simu-
lating signals containing semi-intact spikes. The simulated
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signals are used to compare the performance of our fractal
detector with three other detectors: threshold detector,
wavelet-PCA detector and average matched filter detector.
Since there are different realizations for these detectors, we
briefly describe their implementation for our simulations.

2.1. Simulation of semi-intact spikes

The spike detection algorithms recognize some segments of the
signal as spikes. But detection probability can be derived by
comparing the timing of these detected spikes with the correct
timing of spikes. Hence, for analyzing the performance of
spike detectors, we require to know the spike timing in
advance. This limitation enforces us to simulate extracellular
signals. The simulation provides us with the extracellular signal
together with the spike timing. Another advantage of simula-
tion is that we can investigate the influence of different features

of the signal, e.g. noise level and noise bandwidth, on the
performance of spike detection algorithms.

Simulation of extracellular signals has been the topic of
several researches. One of the simplest models is presented in
[4]. In this model, the spike shapes are modeled by a con-
tinuous piece-wise linear function and white Gaussian noise is
added to them in order to simulate extracellular signals. This
model does not consider biophysical features of neurons. Also
the geometry of neurons and the place of the electrode relative
to the neurons are not included in this model. Some exten-
sions are suggested for this model. For example, the shape of
extracellular action potentials is estimated through cable
theory and volume conductor theory [24]. Moreover, the
effect of neighboring neurons on extracellular signals is
modeled through various approaches [25, 26].

When biophysical properties are added to the model, the
computational complexity of the model is highly increased. In

Figure 1. Simulation of extracellular signals and the performance of threshold and fractal detector (s = 0.02TN and s = 0.04ISN ). (a)
Sequence of spikes. The spike shape is selected from the data set and is inserted at time points determined by a Poisson random process. (b)
Simulated extracellular signal. The spike sequence is deteriorated with thermal noise, inter-spike noise and spike-level noise. (c) Spikes
detected by the threshold detector. The red stars show correctly detected spikes and the green circles show false detections. (d) Spikes
detected by the fractal detector. The red stars show the correctly detected spikes. All five spikes are detected.
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order to solve this limitation, some computationally efficient
algorithm are suggested which are based on model simplifi-
cations [27, 28]. There is also a Matlab toolbox, namely
Neurocube, which generates extracellular signals. The tool-
box simulates a given population of neurons inside a cube.
Neurons are categorized into near and far neurons and the
signal is simulated using a data set of extracellular spike
shapes [28].

In this paper, we are interested in the detection of a
particular category of spikes which are called semi-intact
spikes. Let the target neuron be surrounded by a dense cluster
of neurons. Based on the interaction between the spikes of the
target neuron and the neural activity of near neighboring
neurons, we can classify the spikes of target neuron into two
categories. The first category consists of those spikes that are
mixed with spikes of near neighboring neurons. These spikes
are called compound spikes and their shapes are remarkably
disfigured. The second category includes spikes that are not
significantly distorted by the activity of near neurons. We call
this category of spikes semi-intact spikes. Although the spikes
of this category are not interfered by near neurons, they are
still degraded by thermal noise and the activity of far neurons.
Nevertheless, the shape of semi-intact spikes is moderately
preserved and they can be found abundantly in experimental
signals. Figure 2 shows a recording from frontal eye field
neurons of a macaque monkey. Some semi-intact spikes are
indicated with boxes. Although these spikes have low
amplitudes, their shapes are almost preserved.

The detection of the semi-intact spikes increases the
amount of information that can be extracted from neural
recordings. Moreover, multi-electrode recording techniques
can benefit from the detection of semi-intact spikes. Since
there is a correlation between the recorded signals of elec-
trodes, the detection of semi-intact spikes in one electrode
will help enhancing the detection in other electrodes. There-
fore, it is desirable and worthwhile to detect semi-intact
spikes.

Since we confine ourselves to semi-intact spikes and
exclude compound spikes, it is required to design a specific
algorithm for simulating extracellular signals. Our algorithm
is a simplified form of the model used in [28]. It preserves the
important features of semi-intact spikes and the signal is
generated very fast, which is suitable for repetitive simula-
tions. The steps of our suggested algorithm are explained in
the following.

2.1.1. Generation of spike train. We want to generate an
extracellular signal of duration T and a sampling frequency of
fs. We generate the vector of spike timing through a Poisson
random process with rate r. Also, we consider a refractory
period so that a reasonable time interval exists between
spikes. Instead of modeling the shapes of extracellular action
potentials, we use a data set from the Neurocube toolbox,
which contains hundreds of extracellular spike shapes.
Thereby we can significantly reduce the amount of time
that is needed for signal generation. Some typical spike
shapes of the data set are shown in figure 3. The spike
amplitude is plotted against the sample number (instead of
time), because the temporal width of the spikes is a parameter
that is selected based on the type of the simulated spikes. The
parameters used in our simulations are =T 1 s, =f 50 kHzs
and r=100. We choose a typical spike shape and insert it in
the time points that are determined by the vector of spike
timing. Figure 1(a) shows a part of the noise-free signal after
substituting the spike shape.

2.1.2. Simulation of noise. There are different methods for
simulating noise in extracellular signals. In the simplest case,
it is modeled as white Gaussian noise added to the noise-free
signal [4]. In more realistic simulations, noise consists of two
components. The first component is thermal noise modeled by
white Gaussian noise and the second component is a noise
signal caused by the activity of neighboring neurons [28]. In
order to simulate this second component, an imaginary
electrode is considered at a position near the target neuron.

Figure 2. Recording from frontal eye field neurons of a macaque
monkey. Semi-intact spikes are indicated by boxes.

Figure 3. Some of the typical extracellular spike shapes of the
data set.
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Then, extracellular action potentials of neighboring neurons
are attenuated based on their distance to the electrode and
their sum is used as the second component of noise.

In the present paper, we deal with semi-intact spikes and
the suggested model needs to reflect the properties of these
spikes. We simulate the signal by adding three noise
components to the sequence of spike shapes:

Component 1: Thermal noise. This component is
modeled as white Gaussian noise added to the whole signal
[4]. It is used to model the two phenomena that underlie the
distortion of semi-intact spikes:

(a) Electronic noise (Johnson noise).
(b) The activity of the neurons that are far from the target

neuron.

If we denote the thermal noise by XTN

( ) ( ) ( )s=X n Z n ; 1TN TN

where Z is an i.i.d process with standard Gaussian distribution
(zero mean and unit variance) and sTN is the level (power) of
the thermal noise. We use the terms ‘level’ and ‘power’
interchangeably in this paper.

Component 2: Inter-spike noise. We generate this noise
component by passing white Gaussian noise through a low-
pass filter [29, 30]. The output of the filter is a colored-noise
which is added only to inter-spike intervals. We represent this
noise component by XISN and

( ) ( ) ( ) ( )s= *X n Z n h n ; 2ISN ISN

where h(n) is the impulse response of the low-pass filter and
sISN is the power of the inter-spike noise.

The inter-spike noise component is used to model the
activity of neurons that are in near neighborhood of the target
neuron. Since we want to evaluate the detection performance
for semi-intact spikes, compound spikes are not included in
our simulations and all spikes are semi-intact spikes. For this
reason, we limit the second noise component to inter-spike
intervals.

Component 3: Spike-level noise. We defined semi-intact
spikes as the spikes whose shapes are not significantly
distorted with the spikes of near neurons. However, the
activity of near neighboring neurons still can shift the
amplitude of semi-intact spikes without changing their
shapes. Also the displacements of the electrode can result in
a change in the amplitude of these spikes. We use this noise
component to model these two aspects. The component shifts
the spikes of the target neuron with a random value. For each
spike, the shift value is selected randomly from a Gaussian
distribution with zero mean and a variance which is
represented by sSLN.

As an example, we generate a typical noise signal using
these 3 components and add it to the noise-free signal of
figure 1(a). The resulted signal is shown in figure 1(b). As one
can see, the spikes are almost buried in noise. We represent
the simulated extracellular signal by S(n), =n N1, 2 ,.., ,
where = ´N T fs. We denote the index letter by n to indicate
the discrete nature of the simulated signal.

2.2. Performance measures for spike detection algorithms

Before discussing the spike detection algorithms, we present
the measures through which we can quantify the performance
of these algorithms. In this paper, we use two measures.

Detection probability (True positive rate): this is the
probability that the algorithm can detect spikes. We denote it
by Pd and it is calculated by dividing the number of detected
spikes by the total number of spikes.

False-alarm probability (False positive rate): for evalu-
ating the false-alarm probability, we count the number of
times that a noise segment is detected incorrectly as a spike
and divide it by the total number of spikes. This quantity is
also known as false positive rate and we represent it by Pfa.
Note that generally, Pfa is derived by dividing the number of
false detections by the total number of segments. But in our
case, since the number of segments and the number of spikes
are both fixed, it does not change the interpretation of the
results. Here, we prefer to quantify Pfa as a fraction of the
number of spikes and thus we divide the number of false
detections by the number of spikes. For example, if =P 0.1fa

and the number of spikes is 100, then it means that 10 noise
segments of the signal have been detected as spikes.

In order to assess the performance of a spike detection
algorithm, we first set a value for Pfa and then calculate Pd for
each instance of extracellular signal. Finally, the average of
Pd is evaluated over all generated extracellular signals. The
average of Pd is the main feature that is used in this paper for
the performance analysis of spike detectors.

2.3. Threshold detector

Thresholding is the most common method for spike detection.
A threshold is set for the extracellular signal and the segments
of the signal that cross the threshold are considered as spikes
[2, 3]. In low SNR, the performance of threshold detector is
not convenient.

As an example, we use threshold detector for the signal
in figure 1(b). The performance of the threshold detector is
shown in figure 1(c). Red stars represent the correctly
detected spikes and green circles show the false detections. It
can be seen that threshold detector has a weak performance
and only two out of five spikes can be detected. However,
some extensions have been suggested for improving the
performance of threshold detector in low SNR signals
[31, 32]. Here, we employ the standard threshold detector,
which is based on a fixed threshold.

2.4. Average matched filter detector

Template matching is one of the first methods that was used
in spike sorting algorithms [4–6]. In this method, spike
templates are utilized for classification of spikes in the
extracellular recordings. For each template, the distances
between the template and the segments of the signal are
calculated and used for detecting and sorting the spikes.
Template matching can be implemented by linear filters. The
signal is passed through a linear filter in order to increase the
spike power in comparison with the noise power. We want to
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find the optimal linear filter that results in the maximum
signal to noise ratio at its output. If the noise of the signal is
additive white Gaussian noise, it is proved in signal proces-
sing that the optimal linear filter is the one that correlates its
input with the spike shape. This filter is called matched filter
because the impulse response of the filter is the vertically
flipped form of the spike shape.

Matched filters are a conventional method for detecting
and extracting different features of neural signals [33, 34].
Specifically, matched filter provide an effective way for spike
detection. First the noisy signal is passed through the matched
filter and then the spikes are detected using a threshold on the
output of the filter.

In supervised methods, the spike templates are selected
by a pre-scanning of the signal. In unsupervised algorithms,
some predefined templates are used. A typical template is
derived by averaging over a set of possible spike shapes and
the resulted template is used for spike detection. This spike
detector is called average matched filter detector [7].

2.5. Wavelet-PCA detector

There are some algorithms that employ PCA for spike sorting.
PCA is a technique for dimensionality reduction of data sets,
which is widely used in the processing of neuronal activity
[35, 36]. The first component of the PCA gives the direction
of maximum variance in the data and can be used as the main
feature for classification. We can use more components of
PCA for including more variations of the data in the classi-
fication algorithm. The number of components is selected
depending on the application and the data set. Sometimes the
first component is sufficient for classification and sometimes
more components are required.

For spike sorting, spikes are first detected with a
threshold and then PCA is used to extract a feature from the
spike shapes. Finally, spikes are classified into clusters using
the extracted feature [8, 9, 37].

While these algorithms work in time domain, there are
some other approaches that detect and sort the spikes in fre-
quency or time-scale domains. Wavelet transform is one of
the tools that can be used for processing neural signals in the
time-scale domain for spike detection [30, 38] and for spike
sorting [39–41]. In order to use wavelet transform for spike
sorting, spikes are first detected by thresholding. Then the
wavelet coefficients of detected spikes are evaluated and
spikes are sorted based on the features extracted from the
wavelet coefficients. It has been shown that wavelet transform
can outperform PCA in spike sorting [39, 42]. Wavelet
transform is also used in combination with PCA in different
applications [11, 43]. Here, we use the combination of
wavelet transform and PCA for spike detection.

In the first step of this method, we find the segments of
the signal that cross a threshold and then the wavelet trans-
form of each segment is evaluated using the Haar wavelet
with four levels of decomposition. Our goal is to distinguish
between spike segments and noise segments based on their
wavelet coefficients. Hence, we need to extract a feature from
wavelet coefficients that can classify the signals accurately.

The required feature is extracted using PCA. This spike
detection algorithm is called wavelet-PCA detector. In
appendix A, it is shown that the extracted feature can separate
spike and noise segments efficiently. Also we demonstrate
that the first principle component is sufficient for the spike
detection.

2.6. Fractal detector

In this part, we explain our suggested new method for spike
detection, which is based on fractal dimension. There are
different definitions for fractal dimension and we describe a
well-known algorithm for calculating box-counting fractal
dimension. However, before calculating the fractal dimension
of extracellular signals, it is necessary to evaluate whether
these signals have fractal properties or not. After that, the
capability of fractal dimension in classifying spike and noise
segments is investigated. Finally, we describe the windowing
method that is used for fractal analysis of extracellular signals
and discuss about the main parameters of the fractal detector
and how to estimate them.

2.6.1. Evaluation of fractal dimension. Fractal dimension can
be considered as a measure of roughness for sets. There are
different definitions for fractal dimension among which the
Haussdorf dimension is the oldest and may be the most
important one. The main advantage of the Haussdorf
dimension is that it can be defined for each set. However,
in many cases, it is very hard to calculate the Haussdorf
dimension [13]. Limitations of Haussdorf dimension together
with different insights about the concept of dimension have
resulted in other definitions for fractal dimension. For
example, the Packing dimension is considered as a dual
concept to the Haussdorf dimension [44] and has been used
for investigating the dimension of some geometrical sets
[45, 46]. However, it is also difficult to calculate it for
arbitrary sets and signals. Other definitions of the fractal
dimension are more convenient for numerical calculations
and signal processing, e.g. correlation dimension [47–50] and
information dimension [51, 52]. However, in signal
processing, the most frequently used fractal dimension is
the box-counting dimension, also known as Minkowski
dimension.

Box-counting dimension is computationally efficient and
as a result of this, has found numerous applications in signal
processing [53–56]. For defining box-counting dimension, we
need some preliminary definitions.

Let L be an arbitrary subset of n. The diameter of L,
represented by DL, is defined by the largest distance between
the points of L

{ } ( ) = - ÎD x y x y Lsup : , , 3L

where ·  is the Euclidean metric function in n.
Now, consider a set ÌF n. If there are some subsets of

n like L L L, ,..., k1 2 with the following two properties

{ } ( )d" Î ¼ <i k D1, 2, , , , 4Li
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then L L L, ,..., k1 2 are called a δ-cover for F.
For each d > 0, we find the smallest number of sets that

can make a δ-cover for F, and represent it by ( )dM F .
The box-counting fractal dimensions is defined by
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0

provided that the limit exists.
For a time series, denoted by S(t), we can use a simplified

algorithm for evaluating the box-counting dimension [13]. In
this algorithm, first S(t) is normalized to fit into the unit
square. For each d< <0 1, the unit square is transformed to
a grid with a size of δ. Then we count the number of grid cells
that intersect with the signal and represent this number by dN .
The grid-based box-counting fractal dimension is denoted by

( ( ))¢D S tBox and is defined by

( ( )) ( )
( )

( )
d

¢ =
-d

d


D S t

N
lim

log

log
7Box

0

provided that the limit exists.
Equation (7) can be used for estimating the fractal

dimension of time series, like S(t). However, we can also
consider S(t) as a subset of 2. If we denote the two
dimensional representation of S(t) by ( ( ))F S t

( ( )) {( ( )) ( ( ))} ( )= ÎF S t t S t t S, : Domain . 8

Now we can use (6) for estimating the fractal dimension
of ( ( ))F S t . It is proved in [13] that

( ( )) ( ( ( ))) ( )¢ =D S t D F S t . 9Box Box

Therefore, instead of using δ-covers, we can simply
employ grids for estimating the box-counting fractal dimen-
sion of time series.

In practice, signals have a finite number of samples and it
is not meaningful that the grid size tends to zero. In this case,
we use an algorithm which works on a finite set of δ values
[57]. We have previously used this algorithm in order to
enhance the target detection of radar systems [54]. Here, we
use it for estimating the fractal dimension of an extracellular
signal, S(n). The steps of the algorithm are as follows:

Step 1: Normalize the signal S(n), such that it fits into the
unit square.

In this step not only the amplitude of the signal is
normalized but also the maximum time index of the signal is
set to one.

Step 2: Select a set of grid sizes { }d d dD = ¼, , , k1 2 such
that d d<i j for all  <i j k1 .

Step 3: For each i, = ¼i k1, 2, , , transform the unit
square to a grid of size di.

Step 4: Count the number of cells that overlap with the
signal and denote this number by dN i

(figure 4).

Step 5: Consider the set of points P

{( ( ) ( )) } ( )d= - = ¼dP N i klog , log : 1, , . 10i i

Using regression analysis, find the optimal line that
passes through the points of P. The slope of this line is an
estimation of the fractal dimension of S(n).

2.6.2. Fractal property of signals. Although fractal analysis is
a strong tool in signal processing, it cannot be utilized for all
signals. Thus, we first assess if the signals are good
candidates for fractal analysis or not. To do so, the linearity
of the plot ( )dNlog versus ( )d-log is evaluated. If the points
are aligned along a straight line, then the signal is a suitable
candidate for fractal analysis.

We perform a linear regression analysis on the points and
use the coefficient of determination, R2, as an index for
goodness of fit. The index R2 takes values between 0 and 1
and if its value is close to one, the linear regression is
considered as a good fit to the points [58].

In section 3.1.1, we show that both noise segments and
spike segments have fractal properties and therefore are good
candidates for fractal analysis.

2.6.3. Classification property of fractal dimension. The first
motivation for using fractal dimension in spike detection
algorithms comes from our intuitive idea that the fractal
dimension of a spike segment is different from the fractal
dimension of a noise segment. Since the shape of a spike is
smoother comparing to the shape of a noise signal, we expect
to get a smaller value for the fractal dimension of spike
segments relative to the fractal dimension of noise segments.
In order to assess our intuitive idea, we calculate the fractal
dimension of 10 000 simulated spike and noise segments and
compare the histograms of fractal dimensions. In this way, we

Figure 4. Box counting method. For each di, a grid of size di is
constructed and dN i is computed by counting the number of cells that
overlap with the signal.
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can assess whether the fractal dimension is a good feature for
distinguishing between noise and spikes segments.

The results of the simulation are detailed in section 3.1.2.
As we expected, the average fractal dimension of spike
segments is smaller than the average fractal dimension of
noise segments. We will use this property as the main core of
our detection algorithm.

2.6.4. Structure of fractal detector. We have already
explained the application of fractal dimension for
classification of noise and spike segments. In this part, we
will use this feature in order to design our fractal detector.

We scan the signal with a sliding window and extract the
segments of the signal for fractal analysis and spike detection.
In the following, we describe the steps of the algorithm that
we use for the fractal detector:

Step 1: Use a sliding window over the signal for
extracting the signal segments. We use a rectangular window
of width WFD samples and extract the part of the signal that
overlaps with the window. The window slides with a sliding
step equal to nFD. Usually, the sliding step is one sample.
However, for faster calculations, one may prefer to use a
larger sliding step.

Step 2: Calculate the fractal dimension of the extracted
segment and record it in a vector of fractal dimensions. We
use the algorithm of section 2.6.1 for calculating the box-
counting fractal dimension.

Step 3: Use a threshold over the vector of fractal
dimensions. The entries of the vector whose values are less
than the threshold are detected as spikes.

A schematic of the fractal detector is shown in figure 5.
We should also mention that the temporal accuracy of the
fractal detector is almost half of the width of a spike, i.e.
around 0.5–0.7 ms. As an example, we use our suggested
fractal detector for the signal in figure 1(b). The efficient

performance of fractal detector is shown in figure 1(d) where
all five spikes are detected by the fractal detector.

Fractal dimension has been used in combination with a
sliding window in different applications [17, 23, 54, 59].
Depending on the stage of normalization, there are two
categories of algorithms:

(a) In the first case, we slide the window over the signal
and extract a segment of the signal. Then we use the
algorithm of section 2.6.1 for evaluating the fractal
dimension. Therefore, each segment is normalized
independent of the other segments.

(b) In the second case, the whole signal is first normalized
and then the window slides over the signal and fractal
dimension is estimated without renormalization [23]. In
other words, for each extracted segment, the algorithm
of section 2.6.1 starts from step 2.

These two categories of algorithms result in very
different performance. The selection of the algorithm depends
on the nature of the signal and the type of the signal
processing task. It is clear from the description that our fractal
detector is in the first category.

2.6.5. Parameters of fractal detector. Several parameters
should be selected for implementing the fractal detector. In
the following, we discuss selection of parameters.

The width of sliding window, WFD, plays an important
role in the performance of the fractal detector. On the one
hand, for small values of WFD, it is not possible to distinguish
between the smoothness differences of spike and noise
segments and on the other hand, the time resolution of fractal
detector is reduced when WFD is increased. Therefore, it is
very important to find the optimal value for the width of
sliding window. We evaluate the detection probability of
fractal detector for different values of WFD. This evaluation is
performed for different powers of thermal noise and inter-
spike noise. Using these simulations, we show that for

=W 220FD samples, the fractal detector has an efficient
performance in different noise powers. In appendix B, you
can find the results of these simulations.

Since the fractal detector uses the algorithm of
section 2.6.1, the set of grid sizes, Δ, should be determined.
We define,

{ } ( )d d d dD = + + ¼d d, , 2 , , . 11min min min max

For the smallest grid size, d ,min there should be
d

1

min

samples in each column of the grid so that the signal can
potentially cover the whole grid optimally, i.e. one sample for
each cell of the grid. In order to satisfy this goal, we assign

( )d =
W

1
. 12min

FD

For the upper bound of δ, we can simply set

( )d = 0.2, 13max

Figure 5. A schematic of the fractal detector.
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which is a typical upper bound for the grid and results in a
5×5 grid. The step size of the grid set, d, can be specified by

( )d d
=

-
d

10
. 14max min

Another parameter of the fractal detector is the step size
of sliding window. This parameter highly affects the
computational speed. When we double the step size, the
running time is halved. However, when the window slides
with larger step sizes, the detection probability is reduced.
Therefore, there is a trade-off between computational speed
and detection probability. We simulate the effect of step size
on detection probability in appendix B. Using the simulation
results, one can select a proper value for step size. All the
simulations are done in MATLAB on a quad-core computer
with 2.4 GHz CPU and 4 GB RAM.

3. Results

In this section, we first investigate the fractal properties of the
spike and noise segments in the simulated signal. Then, the
efficiency of the fractal dimension as a classifier between the
spike and noise segments is analyzed and the performance of
the fractal detector is compared with the other detectors.

3.1. Spike detection with the fractal dimension

Here, we show that extracellular signals have fractal proper-
ties and therefore, we can use fractal geometry to process
them. Also, it is shown that fractal dimension can classify
noise and spike segments efficiently.

3.1.1. Fractal properties of extracellular signals. The first step
in fractal analysis is to assess if the signals possess fractal
properties or not. As mentioned in section 2.6.2, a signal is
suitable for fractal analysis if the points

{( ( ) ( )) } ( )d= - = ¼dP N i klog , log : 1, , , 15i i

are well fitted by a straight line.
We need to study the fractal properties of the noise and

spike segments separately. In figure 6, we plot ( )dNlog against
( )d-log for typical spike and noise segments. It is seen in

both cases that the linear regression (the red dashed line) fits
the points very well. The coefficient of determination, R2,
equals to 0.92 and 0.976 for the spike and noise segment
respectively. This proves that both spike and noise segments
of the simulated extracellular signal have fractal properties,
and the signal can be used for fractal analysis.

3.1.2. Classification capability of fractal dimension. We study
the distribution of fractal dimension for noise and spike
segments in low and high noise regimes. The noise
parameters for the low noise regime are s = 0.02ISN and

s = 0.002TN and for the case of high noise regime,
s = 0.035ISN and s = 0.005TN .

We generate 10 000 spike and noise segments and
calculate the fractal dimension of each segment. Then, the
histogram of fractal dimension is evaluated for spike and
noise segments. In figure 7(a), we show the histograms for
low noise regime. The mean and variance of the fractal
dimension of noise segments are m = 1.46noise and
s = 0.046noise . For spike segments, the mean and variance
of the fractal dimension are m = 1.24spike and s = 0.035spike .
We repeat the same procedure for high noise regime. The
histograms of fractal dimension are shown in figure 7(b). In
this case, we have m = 1.46noise , s = 0.046,noise m = 1.32spike
and s = 0.041spike .

The significant difference between mnoise and mspike
approves our hypothesis that the average fractal dimension
of spike segments is smaller than the average fractal
dimension of noise segments. The fractal detector uses this
difference to detect spikes in extracellular signals.

3.2. Performance analysis of the fractal detector

In this part, we present the main results of the paper. The
performance of our suggested fractal detector is compared
with the performance of the threshold detector, the average
matched-filter detector and the wavelet-PCA detector. Since
there are some free parameters in the wavelet-PCA detector
and the fractal detector, we need to find the optimal values of
these variables (see appendix).

We consider the detection probability as a function of the
noise power, the false alarm probability and some other
parameters and in each case, compare the performance of the
detectors.

3.2.1. Detection probability against noise power. Here, we fix
the false alarm probability and compare the performance of
the detectors for different noise powers. To analyze the effect

Figure 6. Fractal property of the simulated signal. We plot ( )dNlog as
a function of ( )d-log for a typical spike and noise segment. The red
dashed lines are fitted to the data using linear regression.
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of inter-spike noise and thermal noise independently, we
simulate two different cases. In the first case, detection
probability is calculated for different thermal noise powers,
keeping the inter-spike noise power constant. For the second
case, detection probability is plotted against inter-spike noise
power for a constant thermal noise power. In the following,
we present the simulation results for these two cases.

For simulating the first case, we set the false alarm
probability to =P 0.2fa and inter-spike noise power is fixed at
s = 0.03ISN . In figure 8(a), the detection probability, Pd, is
shown as a function of thermal noise power. The performance
of the average matched filter detector is better than the other
detectors. However, the orders are changed when we increase

the level of inter-spike noise to s = 0.035ISN . In figure 8(b),
we have plotted detection probability as a function of thermal
noise level for s = 0.035ISN . The superiority of fractal
detector for high noise levels is clearly demonstrated in this
Figure.

Moreover, we see that the wavelet-PCA detector and
average matched filter detector both have a better perfor-
mance than the threshold detector. Also, the performance of
wavelet-PCA detector is better than the performance of
average matched filter in lower noise levels, but when noise
power increases, their order is reversed.

We should also explain the unusual behavior of threshold
detector in these simulations. For threshold detector, the

Figure 7.Histogram of fractal dimension for spike and noise segments. (a) Low noise regime: inter-spike noise level s = 0.02ISN and thermal
noise level s = 0.002TN , (b) High noise regime: inter-spike noise level s = 0.035ISN and thermal noise level s = 0.005TN .

Figure 8. Detection probability as a function of thermal noise power for different spike detectors. The level of inter-spike noise is set to (a)
s = 0.030ISN , (b) s = 0.035ISN .
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detection probability is increased by increasing the level of
thermal noise. Since inter-spike noise level is high, the
detection probability of the threshold detector is around zero
for small thermal noise levels. However, when we increase
the level of thermal noise, the added noise can help some of
the buried spikes to cross the threshold and this results in a
slight increase of detection probability.

For simulating the second case, we evaluate the detection
probability of detectors as a function of inter-spike noise
power (figure 9). In this simulation, false alarm probability is

=P 0.2fa and the level of thermal noise is fixed
at s = 0.005TN .

The plot shows two main advantages of fractal detector:

(1) The performance of the fractal detector is much better
than the other detectors in high inter-spike noise powers
(low SNR signals).

(2) The performance of the fractal detector is almost
independent of the inter-spike noise power.

Compared to the other three detectors, this is a unique
characteristic of fractal detector. The reason is that the fractal
detector is based on the fractal dimension of normalized
signal segments. Therefore, when the inter-spike noise power
is increased, the fractal dimension does not change sig-
nificantly and as a result of this, the performance of the fractal
detector does not degrade notably. In contrast to the fractal
detector, the increase of the inter-spike noise power influences
the wavelet coefficients and the output of the average-
matched filter and results in a decline in the performance of
these detectors.

3.2.2. Detection probability against false alarm probability. In
our simulations, the false alarm probability is varied between
0.01 and 0.4 and detection probability is evaluated for each
detector. We derive detection probability as a function of false

alarm probability for two different inter-spike noise powers
that correspond to the values used in figures 8(a) and (b).

In the first case, we set s = 0.008TN and s = 0.030ISN .
The performance of the four detectors is shown in
figure 10(a). When we decrease the false alarm probability,
we can see the superiority of the fractal detector.

In the second case, we keep thermal noise power at the
same level, s = 0.008TN , and increase inter-spike noise
power to s = 0.035ISN . For all values of false alarm
probability, the fractal detector has the best performance
among the four detectors. Also, the performance difference is
higher for smaller values of false alarm probability.

3.2.3. The effect of noise bandwidth. Since fractal detector is
based on the irregularity of noise, the bandwidth of noise is a
critical parameter for the performance of fractal detector. In
the following, we assess the effect of noise bandwidth.

In section 2.1, we explained that inter-spike noise is
modeled by passing a white Gaussian noise through a low-
pass filter. The bandwidth of this filter is the parameter that is
used in our simulations. Inter-spike noise is a model for
spiking activity of close neighboring neurons. Hence, the
bandwidth of inter-spike noise corresponds to the density of
neurons that are around the main neuron. When the density is
high, the bandwidth and irregularity of inter-spike noise is
higher. Conversely, if the density of surrounding neurons is
low, the neuronal activity is smoother and the bandwidth of
the inter-spike noise is lower.

We investigate the effect of bandwidth by calculating
detection probability as a function of inter-spike noise
bandwidth. The noise levels are fixed at s = 0.005TN and
s = 0.035ISN . The simulation result is shown in figure 11. We
find that noise bandwidth has reverse effects on the fractal
detector and the other detectors. When we increase the
bandwidth of inter-spike noise, the performance of fractal
detector is enhanced while for the other detectors, the
performance declines.

This result is consistent with the nature of fractal
detector. When we increase the inter-spike noise bandwidth,
the fractal dimension of noise segments is elevated and it gets
easier to classify spike segments and noise segments. This
leads to a higher performance for fractal detector.

3.2.4. The influence of spike shapes. In the following, we
analyze the dependence of spike detection algorithms on the
shape of spikes. We consider a set of 16 extracellular spikes
with different shapes and normalize them so that all of them
have the same power. The normalized spike shapes are shown
in figure 12(a).

For this analysis, it is more reasonable to normalize the
performance of all detectors. We fix thermal noise power at
s = 0.005TN and use the first spike shape for normalization.
We change the value of sISN in order to reach the same
detection probability for all detectors. From figure 9, it is
found that by setting s = 0.033ISN , the fractal detector has
almost the same detection probability as the wavelet-PCA
detector and the average matched filter detector. A value of

Figure 9. Detection probability as a function of the level of inter-
spike noise for different spike detectors. Thermal noise level is fixed
at s = 0.005TN .
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s = 0.028ISN is used for the threshold detector in order to
achieve the same detection probability.

Now, for each of the 16 spike shapes, we estimate the
detection probability of spike detectors. The detection
probability as a function of spike shape index is shown in
figure 12(b). The performance of fractal detector is almost
independent of the spike shapes, but the other detectors are
highly dependent on the index of spike shape and for some
spike shapes, there is a large decline in their performance.
This simulation proves another important advantage of fractal
detector.

3.2.5. Performance analysis on experimental data. We use a
publicly available dataset from the Buzsaki Lab (Dataset
number: d533101) [60]. The dataset contains simultaneous

intracellular and extracellular recordings in the hippocampus
of anesthetized rats [37]. The intracellular channel is used to
evaluate the accuracy of the algorithms that are employed for
spike detection in the extracellular channel.

First we assess the fractal properties of the noise and
spike segments of the experimental data. The spikes are
specified using the spike timing information in the intracel-
lular channel, and the noise segments are distinguished by
their amplitudes. In figure 13, we plot ( )dNlog as a function of

( )d-log for a typical spike and noise segment of the
experimental signal. The dashed red lines show the fitted
regression lines to the data. The coefficient of determination,
R2, for the spike segment and the noise segment is equal to
0.96 and 0.99 respectively. This proves that the spike and
noise segments are fractal signals. Moreover, the fractal
dimension of the spike segment is 1.16 while the fractal
dimension of the noise segment is 1.39. We conclude that the
experimental signal is a fractal, and the fractal detector can be
used for spike detection.

The SNR of the original recording is high (5 dB) and all
spikes can be detected by a threshold. We attenuate the power
of spike segments of the extracellular channel in order to
study the performance of the algorithms for different values of
SNR. First, the spike segments are determined using the
intracellular channel, and then the corresponding spike
segments of the extracellular channel are multiplied by an
attenuation coefficient. We can create different levels of
signal to noise ratio in the extracellular signal by changing the
value of the coefficient.

Figure 14 shows the detection probability of the detectors
as a function of SNR. It is demonstrated that the fractal
detector has the best performance for low SNR regimes. Also,
we see that the performance of the fractal detector does not
vary a lot by decreasing the SNR. By comparing this figure
with figure 9, we conclude that the performance results of
experimental data are consistent with the simulation results.

Figure 10.Detection probability versus false alarm probability for different spike detectors. The level of thermal noise is fixed at s = 0.008TN

and the level of inter-spike noise is set to (a) s = 0.030ISN , (b) s = 0.035ISN .

Figure 11. Detection probability of spike detectors as a function of
the bandwidth of inter-spike noise for thermal noise level
s = 0.005TN and inter-spike noise level s = 0.035ISN .
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4. Discussion

We presented a new spike detection algorithm based on
fractal dimension to detect spikes in extracellular recordings.
We were interested in a specific category of spikes to which
we referred as semi-intact spikes. We suggested an algorithm
to simulate extracellular signals with this category of spikes
and employed the simulated signal to evaluate the perfor-
mance of spike detectors.

First, we demonstrated that extracellular recordings have
fractal properties and are proper candidates for fractal ana-
lysis. Fractal dimension of spike and noise segments was
calculated and it was shown that spike segments have a
smaller fractal dimension than noise segments. This feature
was used as the core of fractal detector.

We confined comparison of the fractal detector to three of
the most common detection algorithms (threshold detector,
average matched filter detector, and wavelet-PCA detector),
while being aware of the others in the literature [61–63]. For
low SNR signals, we showed that the fractal detector has the
best performance among these detectors. We repeated the
same study on experimental datasets and demonstrated that
the results are consistent with simulation results. Another
important feature of the fractal detector is that its performance
is independent of inter-spike noise power. This characteristic
distinguishes the fractal detector from other detectors.

We conclude that the fractal detector is an efficient
method for detecting semi-intact spikes in extracellular
recordings. However, more elaborate algorithms are needed
for detecting compound spikes (refer to appendix C). The

Figure 12. The effect of different spike shapes on the performance of spike detectors. (a) Selected spike shapes after power normalization. (b)
Detection probability as a function of spike shape index for different spike detectors. Different inter-spike noise powers have been used for
detectors in order to normalize the performances for the first index of spike shapes.

Figure 13. Fractal property of the experimental data. We plot ( )dNlog
as a function of ( )d-log for a typical spike and noise segment. The
red dashed lines are fitted to the data using linear regression.

Figure 14. Performance analysis of spike detection algorithms for
experimental data. Detection probability is plotted as a function of
SNR for different spike detection algorithms.
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fractal detector is not necessarily a stand-alone detector. It is a
processing block that can be combined easily with other spike
detection and spike sorting algorithms.

Fractal dimension has been used for detection of chan-
ging patterns, including spikes, in EEG signals [22, 23]. But
our approach is different from these papers in several aspects.
In these papers, fractal dimension is used for analyzing
recorded EEG data. It is shown that the spikes that are
detectable by an expert can also be detected by fractal
dimension analysis. However precise spike timing is not
known for real data and as a result of this, the detection
performance of the method cannot be evaluated accurately.
Without a good estimate of detection probability, it is also
impractical to compare fractal analysis with other detection
algorithms. The other distinction is in the stage of normal-
ization. As we mentioned in section 2.6.4, our fractal detector
belongs to the category of algorithms in which each extracted
segment is normalized independent of the other segments.
However, detectors described in [22, 23] are based on nor-
malizing the whole signal before applying the sliding win-
dow. Using our suggested method, we can detect low-
amplitude spikes without the false detection of silent periods.
Moreover, we use box-counting method for estimating the
fractal dimension, while in [22], fractal dimension is calcu-
lated using the Katz method which is based on the length of
the curve. In the Katz method, the successive samples are
connected with a straight line and the length of the curve is
estimated by adding up the length of the lines. The advantage
of box-counting method is that there is no prior assumption
about the behavior of the signal between two successive
samples. Finally, we should note that EEG signals have a
completely different nature from extracellular signals and
specific detectors should be designed for each case.

Although in low SNR the fractal detector has the best
performance among the four detectors, it needs more com-
putational time. We suggested to increase the step size of
sliding window in order to reduce the running time and
showed that the sliding step can be increased by a factor of 10
without a tangible degradation of performance (see figure 18
in appendix).

There are also some algorithms for fast calculation of
fractal dimension [64, 65]. However, for using these algo-
rithms, it is necessary to verify that these algorithms do not
reduce the performance of the fractal detector.

We also analyzed the effect of the noise bandwidth on the
performance of spike detectors. While increasing the noise
bandwidth enhances the performance of the fractal detector,
the performance of other spike detectors is degraded. A lesson
from this simulation is that the interfering effect of noise is
not a sufficient reason for filtering the noise. When we use a
low-pass filter, the noise power is reduced but at the same
time, the noise segments get smoother. This makes the dis-
tinction between spike and noise segments more difficult for
the fractal detector. Without filtering, the rough and irregular
structure of noise segments results in a larger fractal dimen-
sion and improves spike detection.

Filtering is an important issue in extracellular recordings.
In most cases, the recorded data is filtered in the first stage of

processing, but from the point of view of fractal analysis,
valuable information is lost with low-pass filtering. In fractal
analysis, instead of removing noise as a source of inter-
ference, we use the properties of noise to detect spikes.
Therefore it is strongly recommended to use the raw data for
fractal analysis and avoid the pre-processed and filtered data.
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Appendix

A. Optimization of wavelet-PCA detector

Here, we find the optimal threshold for the wavelet-PCA
detector and study the efficiency of the extracted feature from
the wavelet-PCA algorithm. Also the influence of adding
more PCA components on the performance of the detector is
analyzed.

A.1. Estimation of threshold
In the first stage of the wavelet-PCA detector, we need to set a
threshold for the signal. The value of this threshold plays an
important role in the performance of the detector. We define
the threshold, A, using the standard deviation of signal, sS. In
simplest case

( )s= ´A k , 16S

where k is called the threshold coefficient.
In order to find the optimal value of threshold coefficient,

we calculate the detection probability of wavelet-PCA algo-
rithm as a function of threshold coefficient in two cases:

(1) We fix the thermal noise power (s = 0.015TN ) and for
some inter-spike noise powers, evaluate the detection
probability as a function of threshold coefficient
(figure 15(a)). In this figure, the dashed line connects
the maximum values of the curves.

(2) In this case, the power of inter-spike noise is fixed
(s = 0.02ISN ) and for some power values of thermal
noise, detection probability is evaluated for different
threshold coefficients (figure 15(b)). Again, the max-
imum values of the curves are connected by a
dashed line.

From figures 15(a) and (b), we find that a good choice for
threshold coefficient is k=2.5.

A.2. Efficiency of extracted feature
In the wavelet-PCA detector, we use PCA to extract a feature
from wavelet coefficient of signal segments. As mentioned
before, the feature is the first component of the PCA. We
demonstrate the performance of the extracted feature by
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comparing the histogram of feature values for spike and noise
segments. We consider two different noise regimes: a low
noise regime in which s = 0.02ISN and s = 0.002TN and a
high noise regime with s = 0.035ISN and s = 0.005TN .

In figure 16(a), we analyze the first component of PCA
for the low noise regime. The histogram of feature values for
spike and noise segments are shown in red and blue colors
respectively. Then we repeat the same simulation for the high
noise regime and the result is shown in figure 16(b). The
extracted feature (first component of PCA) separates spike
and noise segments efficiently.

A.3. Sufficiency of the first component of PCA
One way of improving the detection probability might be
using more components of the PCA. However, we show
graphically that this is not the case in our model and
increasing the number of components does not necessarily
enhance the performance.

We include the second component of PCA into the
classification algorithm which produces a two dimensional
feature. Each segment of the signal is represented by two
numbers corresponding to the first and second coordinates
of the segment in the PCA space. Therefore, we can
represent each segment by a point in two-dimensional
space. As before we perform the simulations for two dif-
ferent noise regimes. Figures 16(c) and (d) show the seg-
ments of the signal in this space for low and high noise
powers. The horizontal axis corresponds to the first PCA
component (main extracted feature) and the vertical axis
shows the second PCA component of the segments (extra
feature).

In both cases, a vertical line is the best classifier between
spike and noise segments. In other words, the second comp-
onent of PCA (extra feature) does not provide more

information for enhancing the classification. Therefore, we
use only the first component of PCA as the classification
feature.

B. Optimization of the fractal detector

The width of the sliding window, WFD, plays an important
role in the performance of fractal detector. In order to choose
a proper value for WFD, we calculate the detection probability
as a function of WFD for different noise powers.

First we fix the power of thermal noise at s = 0.005TN

and calculate detection probability as a function of WFD for
some inter-spike noise powers (figure 17(a)). The dashed line
connects the maximum values of the curves.

Then the inter-spike noise power is kept constant at
s = 0.01ISN . In figure 17(b), we plot detection probability as a
function of WFD for different levels of thermal noise. Again
we connect the maximum values of the curves by a
dashed line.

From figures 17(a) and (b), we deduce that =W 220FD is
a convenient value for the width of the sliding window.

Another parameter of the fractal detector is the step size
of sliding window. It is clear that the highest detection
probability is achieved when the step size is equal to one
sample. If computational speed matters, we can consider
larger step sizes. This parameter changes the processing time
significantly. For example, changing the step size from 1 to
10 divides the computing time by 10. However, the fractal
detector still needs more running time comparing with the
other three detectors. If we run the spike detection algorithm
for a signal with a duration of 1 s and sampling frequency of
50 kHz, then the running time for different algorithms is as
follows: Threshold detector: 0.05 s. Average matched filter:
0.1 s, Wavelet-PCA detector: 0.5 s, Fractal detector (with a
slide step of 10)=3 s.

Figure 15. Detection probability as a function of threshold coefficient. (a) Power of thermal noise is fixed at s = 0.015TN and different inter-
spike noise powers are simulated. (b) Power of inter-spike noise is fixed at s = 0.02ISN and the simulation is done for some thermal noise
powers. The dashed line connects the maximum values of the curves.
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To analyze the effect of larger step sizes on the perfor-
mance of fractal detector, we calculate detection probability
as a function of step size. In figure 18, we show the result of
simulation for different levels of thermal noise. The power of
inter-spike noise is kept constant at s = 0.03ISN

This simulation demonstrates the compromise between
detection probability and the running time of the algorithm.
Also, it is seen that we can select a sliding step of size 10
without a significant decrease of detection probability.

C. Detection of compound spikes

When the neuronal activity of neighboring neurons arrives at
the extracellular electrode simultaneously, the signals

interfere with each other, and the extracellular spike shapes
are distorted. These spikes are known as compound spikes.
The detection of compound spikes needs more elaborate
algorithms and is not the topic of this paper. However, we can
compare the performance of the fractal detector with the other
three detectors in detecting compound spikes. In figure 19, the
detection probability of compound spikes is plotted as a
function of the interference level. When the level of inter-
ference is increased, the spike shapes are more distorted and it
is harder to distinguish between the geometric shapes of spike
and noise segments. Although the performance of the detec-
tors is not satisfactory in this case, still we can see that the
fractal detector has the best performance for high levels of
interference.

Figure 16. The effect of selecting one component or two components of PCA in low noise and high noise regimes. The low noise regime
corresponds to inter-spike noise level s = 0.02ISN and thermal noise level s = 0.002TN and for high noise regime, inter-spike noise level
s = 0.035ISN and thermal noise level s = 0.005TN . (a) One Component (low noise regime): the histogram of the main component for spike
and noise segments is shown. (b) One component (high noise regime). (c) Two Components (low noise regime): segments of the signal are
shown in two-dimensional PCA space. The horizontal axis is the first component of PCA and the vertical axis is the second component. (d)
Two Components (high noise regime).
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Chapter 5

Discussion

We studied information efficacy of a synapse during short-term depression. We used

a binary asymmetric channel to model the synapse and captured the two synaptic

release mechanisms, namely spike-evoked release and spontaneous release. We intro-

duced a two-state model of short-term depression and derived the mutual information

rate of the depressing synapse analytically. In addition to the information rate, a new

measure was proposed to investigate the trade-off between energy consumption and

the rate of information transmission in the synapse. The new measure, called energy-

normalized information rate, was calculated by normalizing the information rate of

the synapse by the energy cost of synaptic release. The simplicity of the two-state

model of depression allowed us to determine the regimes of synaptic parameters in

which short-term depression enhances or degrades synaptic information efficacy.

In the two-state model of depression, the state-space is reduced to two states, and

the gradual depression and exponential recovery of the synapse are not included in the

analysis. We extended the model of the synapse to a binary asymmetric channel with

a memory of release outcomes. It was demonstrated that for a large enough memory,

the model precisely follows the dynamics of short-term depression. We proved that

the mutual information rate of the synapse under short-term depression is equal to

the statistical average over the mutual information rates of all the possible states of

the synapse. In other word, the mutual information rate is a linear function of the

mutual information rates of the consistent states of the release site.

We demonstrated that the functional role of short-term depression depends on

the characteristics and dynamics of the synapse. If spontaneous release and spike-

evoked release are depressed equally, then short-term depression reduces both the

mutual information and energy-normalized information rate of the synapse. However,

if spontaneous release is depressed more than spike-evoked release, then depression can
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Figure 5.1: The two-state model of facilitation. The state of the release site at time
i is determined by the previous input spike event, Xi−1. If there was a spike in the
previous time interval, then the release site goes to the facilitated state in which the
release probabilities are higher.

enhance synaptic information efficacy. Our information-theoretic analysis, revealed

three functional classes for depressing synapses.

5.1 Linearity of mutual information rate

The linearity of the mutual information rate of the synapse is an intrinsic property

of short-term depression and does not hold necessarily for other forms of plasticity.

Here, we show that in the case of short-term facilitation, the mutual information rate

of the synapse is no longer a linear function.

We consider a simple model of facilitation in which the synapse is modeled by two

states, the normal state and the facilitated state. The arrival of an action potential

at the presynaptic neuron increases the concentration of the intracellular calcium and

takes the synapse to the facilitated state with higher release probabilities. In the

absence of an action potential, the synapse returns to the normal state (Fig. 5.1).

Although this model looks simpler than the two-state model of depression, we will

show in the following that the mutual information rate of the two-state model of

facilitation is still an open problem.

Let X = {Xi}∞i=1 be a first-order binary Markov process (Fig. 5.2A). If Xi is the

input of a binary symmetric channel, then the output of the channel, Yi, generates a

random process, Y = {Yi}∞i=1, which is called a hidden Markov process (Fig. 5.2B).

Although the hidden Markov process, Y , has a simple definition, its entropy rate is

still an open problem in information theory (Jacquet et al., 2008; Han and Marcus,

2006; Zuk et al., 2005).
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Figure 5.2: Hidden Markov process. (A) A binary Markov process, X = {Xi}∞i=1.
(B) A binary channel with the input X. The output of the channel, Y , is a hidden
Markov process

We now show that the two-state model of facilitation is equivalent to a hidden

Markov model. Let Xi−1, Xi be the state of the model at time i. Since the presynaptic

input spike process X is an i.i.d. process with P (Xi = 1) = α, the state transitions

of the two-state model of facilitation can be modeled by a 4-state Markov chain (Fig.

5.3A). Moreover, the release outcome, Yi, in the two-state model of facilitation is

identical to the output of the asymmetric channel in Fig. 5.3B. Therefore, Yi is also

a hidden Markov process (and even more complex than the process in Fig. 5.2).

This equivalency implies that the entropy rate of the release outcome and the mutual

information rate of the two-state model of facilitation are still open problems.

Although the mutual information rate of the two-state model of facilitation is an

open problem, we derived some lower bounds and upper bounds for the information

rate of the synapse under short-term facilitation. We proved that the statistical

average over the mutual information rates of the normal state and the facilitated state

is just a lower bound for the mutual information rate of facilitation. Our preliminary

results were presented in FENS 2016:

• M. Salmasi, A. Loebel, S. Glasauer, M. Stemmler, “Short-Term Facilitation

Improves the Information Rate of a Two-State Synapse”, 10th FENS Forum of

Neuroscience, Copenhagen, July 2016.

5.2 Towards synaptic information efficacy

Information efficacy of a synapse is the mutual information rate between the input

spike process and the postsynaptic potential. Numerical and analytical methods have

been used to calculate the mutual information rate of the synapse.
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Figure 5.3: The equivalent hidden Markov model for the two-state model of facilita-
tion. (A) A 4-state Markov chain as a model for the state transitions in short-term
facilitation. (B) The release outcome, modeled as the output of a communication
channel.

In numerical methods, the spike train of the presynaptic neuron and the activity

of the postsynaptic neuron are converted to binary sequences. The entropy estima-

tion algorithms are then used to calculate synaptic information efficacy. The main

advantage of numerical methods is that more realistic models of synaptic transmission

can be studied (London et al., 2002; Neymotin et al., 2011; Arleo et al., 2010; London

et al., 2008). Nevertheless, numerical methods are subject to estimation bias or error,

and require new sampling or simulation for every change of model parameters. Sta-

tistical bias in entropy and information estimation has spawned an entire literature

in the field on bias correction (Paninski, 2003). To avoid these limitations, analytical

methods have been suggested for studying synaptic information efficacy (Fuhrmann

et al., 2002; Goldman, 2004).

In (Fuhrmann et al., 2002), the mutual information is calculated between the ‘cur-

rent’ postsynaptic potential and the presynaptic input spike train. The information

of the past postsynaptic potentials are neglected to make the calculations mathemat-

ically tractable. The transmission and noise entropies are calculated by numerical

estimation of probability distribution functions, and an upper bound is presented for

the mutual information between the postsynaptic potential and input spike train. In

contrast to this paper, we calculated the mutual information rate between ‘all’ the re-

lease events and the presynaptic spike train. Our analytical approach did not require

any numerical estimation of probability distributions and the bias error was avoided

entirely.

The analysis in (Goldman, 2004) is done through modeling the presynaptic spike
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train and vesicular release outcome by two point processes. The mutual information

‘per vesicle release’ is calculated between the occurrence times of the input spikes

and the vesicle releases. The input spike train is modeled by renewal processes which

is more general than Poisson processes and captures the correlation between the

successive spikes of the presynaptic neuron. To simplify the calculations, it is assumed

that the synapse either transmits with probability one (provided that a vesicle is

ready to release), or does not release at all until a vesicle is recovered. The probability

distribution of the output process is derived using the inverse of the Laplace transform

and the entropy functions are estimated by numerical simulations. In contrast to

(Goldman, 2004), the release of a vesicle is probabilistic in our model and the release

probability is regulated by the release history profile of the synapse. Moreover, our

model includes the spontaneous release of the synapse which is shown to be a critical

mechanism in determining synaptic information efficacy. By modeling the release site

with a binary asymmetric channel with memory, we achieved a suitable framework

to derive a closed form expression for the mutual information rate of the release site.

Also, we calculated the mutual information rate ‘per unit time’ which does not have

the limitations of the information rate per vesicle release in low release probabilities

(Goldman, 2004).

5.3 Information efficacy and energy consumption

The human brain comprises 2% of the body’s weight. However, it consumes 20% of

the oxygen that is used by the whole body (Attwell and Laughlin, 2001). The energy

cost of synaptic transmission is estimated to be around 41% of the total metabolism

of the cortex, indicating that synaptic transmission is the highest energy-demanding

mechanism of the brain (Harris et al., 2012).

The high energy cost of synaptic transmission forces the brain to compromise

between the rate of information transmission and its energy consumption. In our

study, we assumed that the synapse consumes one unit of energy for each release

and calculated the energy-normalized information rate of the synapse. We assessed

the effect of short-term depression on the energy-efficient information transmission

through the synapse. The other energy expenses of the neuron were not included

in our analysis. The reason was that in our study, we were interested in the energy-

rate trade-off of a single synapse. Therefore, the energy cost of the presynaptic action

potentials, which trigger the synaptic release in all of the synapses of the neuron, were

not included in our calculations. In the future studies, we will extend the information
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rate analysis from one synapse to multiple synapses. The energy cost of the action

potential is then added to the total energy expenditure of the synapses, and the notion

of energy-normalized information rate is updated.

5.4 Spontaneous release

An ideal synapse, releases a vesicle in response to a presynaptic action potential and

stops releasing in the inter-spike intervals. Real synapses, however, deviate from

the ideal synapse in two ways. Firstly, the spike-evoked release probability of a real

synapse is usually smaller than one, which means that the synapse does not respond to

every action potential, and secondly, the synapse may release a vesicle spontaneously

even in the absence of an action potential.

Spontaneous release contributes to the acute regulation of synaptic homeostasis

(Jakawich et al., 2010). There are several hypothesis about the mechanisms un-

derlying spontaneous release (Kavalali, 2015). One suggested mechanism for spon-

taneous release is the subthreshold elevations of presynaptic calcium concentration

which causes fluctuations in the release machinery and leads to a vesicle release. Some

studies have suggested a divergent release machinery, e.g. different SNARE proteins,

for spontaneous release and spike-evoked release. There are also some evidence for an

isolated pool of vesicles for spontaneous release (Sara et al., 2005; Fredj and Burrone,

2009). The segregation of transmission mechanisms has been also observed on the

postsynaptic site. It has been shown that distinct sets of AMPA and NMDA receptors

are activated in response to the spike-evoked and spontaneous release (Atasoy et al.,

2008; Sara et al., 2011). Another hypothetical mechanism is the spatial segregation

of synaptic release sites. It has been proposed that there are specialized release sites,

or even distinct synapses for spike-evoked and spontaneous release (Kavalali, 2015).

These findings support the idea that distinct mechanisms govern spontaneous and

spike-evoked release. To implement this segregation of mechanisms in our model, we

assigned separate depression coefficients and recovery time constants to spike-evoked

and spontaneous release.

5.5 Interpretation of mutual information

Mutual information is widely used to calculate the amount of information that a

signal contains about another signal. Although mutual information is a powerful tool

in signal processing, its values should be interpreted cautiously. Here we describe the
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Figure 5.4: (A) A monkey views gratings with different orientations, while the spiking
activity of N neurons in V1 is recorded. The image of the monkey’s head is from
https://backyardbrains.com. (B) The optimal scheme for information transmission
in communication systems. A source is connected to a destination node through a
communication channel. The channel’s capacity C is defined as the maximum of the
mutual information between the input and output of the communication channel. In
channel coding theorem, Shannon proves that for every information rate R, R < C,
there exists an optimal channel encoder and an optimal channel decoder for which the
source can send the information to the destination with an arbitrary low probability
of error.

strengths and limitations of information-theoretic analysis through a hypothetical

experiment.

Assume that gratings with different orientations are presented to a monkey and a

population of V1 neurons are recorded (Fig. 5.4A). The orientation of the grating is

represented by the random variable X. The vector Y = (Y (1), Y (2), ..., Y (N)) denotes

the random processes corresponding to the activity of a population of N neurons in

V1 during the task.

The mutual information between X and Y , I(X;Y ), gives the amount of informa-

tion that can be extracted from the population of neurons, Y , about the orientation

of the grating, X. For example, if I(X;Y ) = 7, then we infer that the population of

neurons carries 7 bits of information about X. In other words, given the recording of

the population (and with the uniformity assumption), we can estimate the orientation

of the input by a precision of 180
27

= 1.4 degrees. However, the monkey’s performance

in determining the orientation of the grating may be much lower than the precision

that is estimated from the mutual information, I(X;Y ).

The mutual information is a measure of the amount of information that can be

potentially extracted from the signal, provided that optimal encoding and decoding
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schemes are used (Fig. 5.4B). However, the encoding and decoding of information

is suboptimal in the brain, due to the limited resources of the brain, the restricted

connectivity between the neurons, and the constraints on the range of synaptic com-

putations. Therefore, the mutual information, I(X;Y ), should be considered as an

upper bound for the ‘accessible’ information.

5.6 Input spike correlations

The Poisson process is a common model for spiking activity of the neurons. The inter-

spike intervals in a Poisson process are independent random variables with exponential

distribution. The Poisson spike trains have the memoryless property, that is, the

probability of having a spike in the next tmilliseconds is independent of the occurrence

time of the previous spike.

Poisson processes do not capture some basic properties of neuronal spike trains,

such as refractory period. Following an action potential, the neuron goes to a state

of unresponsiveness, known as the refractory period, and does not elicit another

action potential for 3-4 ms. The memoryless property of the Poisson process does

not allow the spike timing of the next spike to depend on the timing of the previous

spike (Rieke, 1999). Renewal processes are an extension of Poisson processes that

are used for modeling refractoriness and some other characteristics of spike trains

(Johnson, 1996). The inter-spike intervals of a renewal process are independent, but

the distribution of the intervals is not necessarily exponential. In renewal processes,

the refractory period can be modeled by choosing a proper distribution for the inter-

spike intervals.

Spike frequency adaptation has been reported in several types of neurons (Ratnam

and Nelson, 2000; Chacron et al., 2000). The spiking activity of a neuron with spike

frequency adaptation depends not only on the timing of the previous spike but also on

the ones before that (Johnson, 1996). The statistical analysis of these neurons reveals

a negative correlation of inter-spike intervals (Ratnam and Nelson, 2000; Chacron

et al., 2000). Markov point processes and autoregressive processes have been proposed

for modeling the correlations of inter-spike intervals (Farkhooi et al., 2009)

In our future studies, we will extend the model of presynaptic spike train to corre-

lated processes and investigate how short-term depression modulates the information

efficacy of a synapse stimulated by a correlated spike train.
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Figure 5.5: (A) A synapse with multiple release site. The neurotransmitter content of
a released vesicle may spill over into the receptors of neighboring sites. (B) A model
for a synapse with multiple release sites.

5.7 Multiple release sites

The number of release sites in a synapse varies from one to hundreds (Fig. 5.5A)

(Clarke et al., 2012). We present a model to study the information efficacy of a

synapse with multiple release sites. The input spike process, X, triggers vesicular

release in K independent release sites of the synapse (Fig. 5.5B). Each release site is

modeled as a binary asymmetric channel with memory. The content of the memory is

the previous release outcomes of the release site and determines the channel’s release

probabilities based on the dynamics of short-term depression.

The exact relationship between the number of released vesicles and the amplitude

of the postsynaptic potential has not been established yet (function f in Fig. 5.5B).

We will study three potential realizations of this function:

1- The contents of a single vesicle is enough to saturate all the receptors on the

postsynaptic site (Fig. 5.6A). It is assumed that the number of neurotransmitter

molecules inside a vesicle is much larger than the total number of receptors on the

postsynaptic site. In addition, the diffusion coefficient of the neurotransmitter and

the distance between the active zones should permit the molecules to spill over and

activate all the receptors.

2- The postsynaptic potential is a linear function of the number of released vesicles

(Fig. 5.6B). The underlying assumption for this linearity is that the released vesicle

from an active zone can only activate the postsynaptic receptors that locate opposite

to the active zone, and there is no spill-over of the neurotransmitter.

3- The postsynaptic potential first increases linearly as a function of the number

of released vesicles and then saturates (Fig. 5.6C). By proper choice of the linearity

threshold NT and the saturation time constant, this function is likely to describe the
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Figure 5.6: The relationship between the postsynaptic potential and the number
of released vesicles from multiple release sites of a single synapse. (A) One single
vesicle activates all the receptors. (B) A released vesicle activates only the local
postsynaptic receptors that are opposite to its release site. (C) The contribution of
vesicles to the postsynaptic potential is linear if the number of released vesicles is
less than a threshold, NT ; the postsynaptic potential converges exponentially if more
vesicles are released.

relationship between the postsynaptic potential and the number of released vesicles

in most of the synapses.

The information-theoretic analysis of this model will help us to understand how the

number of release sites affects the information efficacy of the synapse. Moreover, by

studying different saturation models, we can evaluate the impact of neurotransmitter

spill-over and diffusion coefficient on the rate of information transmission.

5.8 Information rate between two neurons

A neuron transfers information to the other neurons through thousands of synapses.

A natural progression of this thesis is to analyze the information rate between two

neurons. We can use our model of a single release site to build a model for the

information transmission between neurons. We assume that the two neurons are

connected through L synapses. The number of release sites of the synapse i, 1 ≤ i ≤
L, is denoted by Ki. Each release site is modeled by a binary asymmetric channel with

memory. The postsynaptic potential corresponding to the synapse i is determined by

the function fi(Ni), where Ni is the number of released vesicles from the Ki release

sites of the synapse (Fig. 5.7). If the summation of postsynaptic potentials of the

L synapses is larger than a threshold T , then an action potential is elicited in the

postsynaptic neuron.

The information efficacy of the synaptic connections between the two neurons is

defined by the mutual information between the spiking activity of the presynaptic
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Figure 5.7: A model for information transmission between two neurons. The neurons
are connected through L synapses. The synapse i has Ki release sites. Each release
site is modeled by a binary asymmetric channel with memory.

neuron, X, and the generated train of action potentials in the postsynaptic neuron,

W .

In our future research, we calculate the mutual information rate between the two

neurons, I(X;W ), during short-term depression. We can then investigate how the

number of synapses, the number of release sites in each synapse, and the dynamics

of short-term depression affect information transmission between the two neuron.

5.9 Complexity of synaptic transmission

The model presented in this thesis is a phenomenological model that captures the

basic properties of synaptic transmission and short-term depression. The release

machinery of the synapse and the underlying mechanisms of short-term depression

are, however, much more complicated. Here, we describe some of the features of
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synaptic transmission than can change the information efficacy of a synapse and

should be included in future models.

5.9.1 Presynaptic terminal

The concentration of calcium plays an important role in the release machinery of

the synapse. The dynamics of the calcium channels and the random fluctuations

of calcium density in the presynaptic terminal governs the release probability and

plasticity of the synapse (Zucker and Regehr, 2002).

The size of the vesicles varies from neuron to neuron (Hu et al., 2008). Also,

the concentration of the neurotransmitter that is stored inside a vesicle depends on

the type and dynamics of the neuron (Gasnier, 2000). These two key parameters

determine the efficiency of a vesicle in activating postsynaptic receptors.

In presynaptic terminals, vesicles are clustered in three distinct pools (Rizzoli and

Betz, 2005):

1- Readily releasable pool: The vesicles of this pool are docked to the active zones

and are immediately available for release. This pool contains only 1% of the synaptic

vesicles.

2- Recycle pool: The vesicles of the recycle pool are released withing a few seconds

in response to a constant stimulation. The pool contains 10-20% of the vesicles and

refills the readily releasable pool.

3- Reserve pool: Most of the vesicles of the synapse (80-90%) are located in this

pool. It takes tens of seconds or minutes for the vesicles of this pool to migrate to

the active zones and be released.

The number of vesicles in each pool and the rate of depletion and refill of the

pools shapes the dynamics of synaptic plasticity.

The vesicles are released from some specialized parts of the membrane, known as

active zones. The size and the shape of the active zones vary among synapses and

alter the release properties of the synapse (Holderith et al., 2012; Zhai and Bellen,

2004).

In our model, we assumed that the active zone follows one site-one vesicle hypoth-

esis (Auger and Marty, 2000). This means that the active zone can release at most

one vesicle in response to an incoming action potential. Some studies have reported

multivesicular release from a single active zone (Wadiche and Jahr, 2001). The mul-

tivesicular release changes synaptic information efficacy by increasing the reliability

of the synapse.
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5.9.2 Synaptic cleft

After the release of a vesicle, the neurotransmitter molecules diffuse in the synaptic

cleft. The spatial distribution of the neurotransmitter molecules is determined by

the location of the release, the width and morphology of the synaptic cleft, and

the diffusion characteristics of the neurotransmitter. Some studies show that the

molecules released from one release site can spill over to the other active zones of

the synapse, or even further to the neighboring synapses (DiGregorio et al., 2002;

Telgkamp et al., 2004). The distribution of the molecules and the amount of the

spill-over changes the activation pattern of the receptors.

The synaptic cleft is cleaned from neurotransmitter molecules by reuptake mech-

anisms. The neuronal or glial transporters absorb the neurotransmitter molecules

and terminate synaptic transmission. The distribution and location of transporters

changes the concentration dynamics of the neurotransmitter and alters the postsy-

naptic potential (Danbolt, 2001).

5.9.3 Postsynaptic site

The type and the density of the receptors vary from one synapse to another (Auger

and Marty, 2000). For example, in hippocampal synapses, the ratio of AMPA to

NMDA receptors changes with the size of the postsynaptic density (Takumi et al.,

1999). The shape of the postsynaptic potential is determined by the number of

activated receptors of each type.

The postsynaptic potential may reduce by desensitization of the receptors. In

desensitization, the ligand-gated channels are inactivated after being exposed to the

neurotransmitter molecules. The receptors enter a non-responsive state and are not

activated for tens of milliseconds to minutes (Zucker and Regehr, 2002). The recovery

time constant of desensitization and the dynamics of the receptors affect the temporal

profile of the postsynaptic current and significantly changes synaptic information

efficacy.

The measurements show that the number of neurotransmitter molecules inside

a vesicle is much larger than the number of receptors on the postsynaptic density.

Based on this observation, it has been hypothesized that the release of a single vesicle

can saturate all the receptors. Although several studies support receptor saturation

(Clements et al., 1992; Tang et al., 1994; Tong and Jahr, 1994), there are increasing

evidences for synapses in which the receptors are not saturated by a single vesicular

release (Frerking and Wilson, 1996; McAllister and Stevens, 2000; Ishikawa et al.,
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2002). Computational models are used to study the proportion of activated recep-

tors after the release of a single vesicle. The synaptic cleft, spatial distribution of

the receptors, and the diffusion of the neurotransmitter molecules are modeled and

the probability of receptor occupancy is studied for different concentrations of the

neurotransmitter (Franks et al., 2002; Holmes, 1995; Tarusawa et al., 2009; Ventriglia

and Di Maio, 2013). The incorporation of diffusion models of neurotransmitter into

the synaptic model will help us to understand the effect of receptor saturation and

neurotransmitter spill-over on the information efficacy of the synapse.

5.10 Conclusion

Short-term depression is a ubiquitous phenomenon in synapses. The functional role of

short-term depression in filtering and decorrelation of the input has been established

in several studies. It has been also hypothesized that short-term depression modu-

lates the rate of information transmission at the synapse. To study this hypothesis,

we modeled a synapse by a binary asymmetric channel with memory and calculated

the information rate of the synapse analytically. Our analysis demonstrated how de-

pression of spike-evoked release and spontaneous release alters the mutual information

rate and energy-rate trade-off of the synapse.

Synaptic transmission is mediated through several presynaptic and postsynaptic

mechanisms. Our model captures the basics of the synaptic release, but also relies on

some simplifying assumptions that keep the model mathematically tractable. To have

a more accurate estimation of synaptic information efficacy, the computational models

of the synapse should include the other important aspects of the release mechanism,

such as the size of the pools of vesicles, the depletion and refill rate of the pools,

the concentration of vesicles, the diffusion characteristics of neurotransmitter, the

saturation and desensitization properties of the receptors, and several other aspects

of the release machinery.

Modeling a depressing synapse with a communication channel provides a natural

framework for information-theoretic analysis of synaptic transmission. Our model

can be used as a building block to construct more advanced models of information

transmission between the neurons. The extension of this work will permit the eval-

uation of the rate of information transmission in an energy-constrained network of

neurons.
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